
les in Serie ger 

Sc St 
Sprin 
Sol es ate 

5 
lenc 

altsiia AYésllals K B 

dern 

vee) 

h iol 
mmet stals ry: 

ruc re\ 
Cc 

y 

Meth 
Ss 

ly ra 6) grap! ura 
fh 

s of d O 





Digitized by the Internet Archive 

in 2021 with funding from 

Kahle/Austin Foundation 

https://archive.org/details/moderncrystallogO000unse 





] Springer Series in Solid-State Sciences 
Edited by Hans-Joachim Queisser 



Professor Dr. Boris K. Vainshtein 

Institute of Crystallography, Academy of Sciences of the USSR, 59 Leninsky prospect, 

SU-117333 Moscow, USSR 

Series Editors: 

Professor Dr. Manuel Cardona 

Professor Dr. Peter Fulde 

Professor Dr. Hans-Joachim Queisser 

Max-Planck-Institut fiir Festkorperforschung, Heisenbergstrasse 1 
D-7000 Stuttgart 80, Fed. Rep. of Germany Q '.) 

a” 

Title of the original Russian edition: 
Sovremennaia kristallografiia; Simmetriia kristallov. Metody strukturnoi kristallografii 
© by “Nauka” Publishing House, Moscow 1979 

ISBN 3-540-10052-0 Springer-Verlag Berlin Heidelberg New York 

ISBN 0-387-10052-0 Springer-Verlag New York Heidelberg Berlin 

Library of Congress Cataloging in Publication Data. Main entry under title: Modern crystallography. (Springer series in 

solid-state sciences ; 15,). Translation of Sovremennaia kristallografiia. Bibliography: p. Vol. 1 includes index. Contents: 

1. Vainshtein, B. K. Symmetry of crystals. Methods of structural crystallography. 1. Crystallography. I. Vainshtein, 

Boris Konstantinovich. II. Series. |QD905.2.S6813 | 548 80-17797 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, 

specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by photocopying machine 

or similar means, and storage in data banks. Under § 54 of the German Copyright Law, where copies are made for 

other than private use, a fee is payable to “Verwertungsgesellschaft Wort”, Munich. 

© by Springer-Verlag Berlin Heidelberg 1981 

Printed in Germany 

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific 
statement, that such names are exempt from the relevant protective laws and regulations and therefore free for 

general use. 

Offset printing: Beltz Offsetdruck, 6944 Hemsbach. Bookbinding: J. Schaffer oHG, Griinstadt. 

2153/3130-543210 

NMU LIBR: 



Modern Crystallography 

in Four Volumes* 

I Symmetry of Crystals. Methods of Structural Crystallography 

II Structure of Crystals 

III Formation of Crystals 

IV Physical Properties of Crystals 

Editorial Board: 
B. K. Vainshtein (Editor-in-Chief) A.A. Chernov L. A. Shuvalov 

Foreword 

Crystallography—the science of crystals—has undergone many changes 

in the course of its development. Although crystals have intrigued man- 

kind since ancient times, crystallography as an independent branch of 

science began to take shape only in the 17th—18th centuries, when the 

principal laws governing crystal habits were found, and the birefringence 

of light in crystals was discovered. From its very origin crystallography 

was intimately connected with mineralogy, whose most perfect objects 

of investigation were crystals. Later, crystallography became associated 

more closely with chemistry, because it was apparent that the habit de- 

pends directly on the composition of crystals and can only be explained 

on the basis of atomic-molecular concepts. In the 20th century crystal- 

lography also became more oriented towards physics, which found an 

ever-increasing number of new optical, electrical, and mechanical phe- 

nomena inherent in crystals. Mathematical methods began to be used in 

crystallography, particularly the theory of symmetry (which achieved 

its classical completion in space-group theory at the end of the 19th 

century) and the calculus of tensors (for crystal physics). 

* Published in Springer Series in Solid-State Sciences, 1: Vol. 15; Il: Vol. 21; III: Vol. 36; 

IV: Vol. 37 



VI Foreword 

Early in this century, the newly discovered x-ray diffraction by 

crystals made a complete change in crystallography and in the whole 

science of the atomic structure of matter, thus giving a new impetus to 

the development of solid-state physics. Crystallographic methods, pri- 

marily x-ray diffraction analysis, penetrated into materials sciences, mol- 

ecular physics, and chemistry, and also into many other branches of 

science. Later, electron and neutron diffraction structure analyses be- 

came important since they not only complement x-ray data, but also 

supply new information on the atomic and the real structure of crystals. 

Electron microscopy and other modern methods of investigating mat- 

ter—optical, electronic paramagnetic, nuclear magnetic, and other res- 

onance techniques—yield a large amount of information on the atomic, 

electronic, and real crystal structures. 

Crystal physics has also undergone vigorous development. Many re- 

markable phenomena have been discovered in crystals and then found 

various practical applications. 

Other important factors promoting the development of crystallog- 

raphy were the elaboration of the theory of crystal growth (which 

brought crystallography closer to thermodynamics and physical chem- 

istry) and the development of the various methods of growing synthetic 

crystals dictated by practical needs. Man-made crystals became increas- 

ingly important for physical investigations, and they rapidly invaded 

technology. The production of synthetic crystals made a tremendous 

impact on the traditional branches: the mechanical treatment of mate- 

rials, precision instrument making, and the jewelry industry. Later it 

considerably influenced the development of such vital branches of 

science and industry as radiotechnics and electronics, semiconductor 

and quantum electronics, optics, including nonlinear optics, acoustics, 

etc. The search for crystals with valuable physical properties, study 

of their structure, and development of new techniques for their synthe- 

sis constitute one of the basic lines of contemporary science and are im- 

portant factors of progress in technology. 

The investigation of the structure, growth, and properties of crys- 

tals should be regarded as a single problem. These three intimately con- 

nected aspects of modern crystallography complement each other. The 

study, not only of the ideal atomic structure, but also of the real defect 
structure of crystals makes it possible to conduct a purposeful search for 
new crystals with valuable properties and to improve the technology of 
their synthesis by using various techniques for controlling their composi- 
tion and real structure. The theory of real crystals and the physics of 
crystals are based on their atomic structure as well as on the theoretical 



Foreword VII 

and experimental investigations of elementary and macroscopic processes 

of crystal growth. This approach to the problem of the structure, growth, 

and properties of crystals has an enormous number of aspects, and de- 

termines the features of modern crystallography. 

The branches of crystallography and their relation to adjacent fields 

can be represented as a diagram showing a system of interpenetrating 

branches which have no strict boundaries. The arrows show the rela- 

tionship between the branches, indicating which branch influences the 

activity of the other, although, in fact, they are usually interdepen- 

dent. 

Crystallography proper occupies the central part of the diagram. It 

includes the theory of symmetry, the investigation of the structure of 

crystals (together with diffraction methods and crystal chemistry), and 

the study of the real structure of crystals, their growth and synthesis, 

and crystal physics. 

The theoretical basis of crystallography is the theory of symmetry, 

which has been intensively developed in recent years. 

The study of the atomic structure has been extended to extremely 

complicated crystals containing hundreds and thousands of atoms in the 

unit cell. The investigation of the real structure of crystals with various 

disturbances of the ideal crystal lattices has been gaining in importance. 

At the same time, the general approach to the atomic structure of mat- 

ter and the similarity of the various diffraction techniques make crys- 

tallography a science not only of the structure of crystals themselves, 

but also of the condensed state in general. 

The specific applications of crystallographic theories and methods 

allow the utilization of structural crystallography in physical metal- 

lurgy, materials science, mineralogy, organic chemistry, polymer chem- 

istry, molecular biology, and the investigation of amorphous solids, 

liquids, and gases. Experimental and theoretical investigations of crystal 

growth and nucleation processes and their development draw on ad- 

vances in chemistry and physical chemistry and, in turn, contribute to 

these areas of science. 

Crystal physics deals mainly with the electrical, optical, and mechan- 

ical properties of crystals closely related to their structure and sym- 

metry, and adjoins solid-state physics, which concentrates its attention 

on the analysis of laws defining the general physical properties of crys- 

tals and the energy spectra of crystal lattice. 

The first two volumes are devoted to the structure of crystals, and 

the last two, to the growth of crystals and their physical properties. The 

authors present the material in such a way that the reader can find the 
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Branches of crystallography and its relation to other sciences 

basic information on all important problems of crystallography. Due to 

the limitation of space the exposition of some sections is concise, other- 

wise many chapters would have become separate monographs. Fortu- 
nately, such books on a number of crystallographic subjects are already 

available. 

The purpose of such an approach is to describe all the branches of 

crystallography in their interrelation, thus presenting crystallography as 

a unified science to elucidate the physical meaning of the unity and 

variety of crystal structures. The physico-chemical processes and the phe- 

nomena taking place in the course of crystal growth and in the crystals 

themselves are described, from a crystallographic point of view, and the 

relationship of properties of crystals with their structure and conditions 

of growth is elucidated. 

This four-volume edition is intended for researchers working in the 

fields of crystallography, physics, chemistry, and mineralogy, for scien- 

tists studying the structure, properties, and formation of various mate- 

rials, for engineers and those engaged in materials science technology, 

particularly in the synthesis of crystals and their use in various tech- 

nical devices. We hope that this work will also be useful for undergrad- 
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uate and graduate students at universities and higher technical colleges 
studying crystallography, solid-state physics, and related subjects. 

Modern Crystallography is written by a large group of authors from 
the Institute of Crystallography of the USSR Academy of Sciences, 
who benefited from the assistance and advice of many other colleagues. 

The English edition of all four volumes of Modern Crystallography is 

being published almost simultaneously with the Russian edition. The 

authors have included in the English edition some of the most recent 

data. In several instances some additions and improvements have been 

made. 

B_K. Vainshtein 
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Preface 

This volume describes the general characteristics of the crystalline state 

of matter, considers crystal symmetry, and describes the methods for 

investigating the crystal structure. 

The introductory chapter deals with the basic concepts of crystal- 

lography and the characteristics of the crystalline state of matter. It 
studies macroscopic features of a crystalline substance: homogeneity, 

anisotropy, and symmetry of properties; it also considers crystal habit, 

the basic regularities of the microscopic atomic structure of crystals, 

and differences between the structures of crystals and of other condens- 

ed media. 

Chapter 2, which encompasses almost half of the volume, is devoted 

to a systematic presentation of the symmetry of crystals. The theory of 

symmetry penetrates all of crystallography, and without it one can nei- 

ther study nor understand the structure and properties of crystals. The 

axiomatics of the theory of symmetry is given with group theory as its 

foundation; the basic concepts are treated geometrically. Point one-di- 

mensional, plane, and space groups are considered, as well as generaliza- 

tions of symmetry—antisymmetry and color symmetry. 

Chapter 3 treats the theory of the geometric description of crystal 

habit and the geometric theory of crystal lattice. 

Chapter 4 is devoted to experimental methods for studying the 

atomic structure of crystals. Main attention is given to x-ray diffrac- 

tion analysis, which is the most important tool for studying structures. 

This chapter discusses the general diffraction theory, experimental 

technique, and the fundamentals of the theory and methods of using 

diffraction analysis to determine the atomic structures of crystals. 

The chapter also describes two other related methods—electron and 

neutron diffraction structure analysis, their specifics, potentialities, and 

limitations. It gives a brief exposition of other new methods for analysis 
of the structure of matter: Moéssbauer diffraction and channeling par- 

ticles in crystals. The final section covers electron microscopy. 



XII Preface 

Almost all of the volume was written by B.K. Vainshtein, Chapter 3 

in co-operation with M.O. Kliya, and Section 4.3, with Z.G. Pinsker; 

Sections 4.5 and 4.6 were written by D.M. Kheiker. Many essential sug- 

gestions for presenting the material of Chapter 2 were made by V.A. 

Koptsik, who coauthored Sections 2.6.6 and 2.9. A number of valuable 

comments and refinements were introduced by R.V. Galiulin. The au- 

thor expresses his sincere gratitude to these colleagues. He also thanks 

L.A. Feigin,V.V. Udalova, L.I. Man, and many others who helped with 

the manuscript, the compilation of literature, and the preparation of 

the figures. 
The crystallographic literature is enormous. In this volume and the 

following ones the references are divided into two categories. The Bibli- 

ography consists of basic monographs, review articles, and important 

original papers relating to the subject of the volume. The References 

consist of publications on separate special problems touched upon in 

the text, and also the works from which illustrations were borrowed. 

We also list the basic crystallographic journals and periodicals. Some 

original photographs were made available specially for this edition. 

Their authors are acknowleged in the captions. The author thanks all of 

them sincerely, as well as those who kindly gave permission for repro- 

duction of pictures from their original papers or books. 

Moscow, December, 1980 B.K. Vainshtein 
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1. Crystalline State 

The crystalline state of a substance is characterized by a time-invariant, regular 

three-dimensionally periodic arrangement of atoms in space. This determines 

all the features of the macro- and microscopic characteristics and physical 

properties of crystals. In this introductory chapter we shall deal with the 

principles of the atomic structure of crystals and of their habit, the possibility of 

macroscopic description of the properties on the basis of the conceptions of the 

anisotropy, and the symmetry of a crystalline substance. We shall also consider 

the thermodynamical reasons the appearance of the crystalline state and for the 

differences between its structure and that of other condensed media: liquids, 

polymers, and liquid crystals. 

1.1 Macroscopic Characteristics of Crystals 

1.1.1 Crystals and Crystalline Matter 

Crystals are solids which exhibit an ordered, three-dimensionally periodic spatial 

atomic structure and therefore have, under definite conditions of formation, the 

shape of polyhedra. Such are the natural crystals of minerals arising from pro- 

cesses that occur in the earth’s crust (Fig.1.1) or synthetic crystals grown in 

laboratory (Figs.1.2,3). 

The crystalline state is the thermodynamically equilibrium state of a solid. 

Under given thermodynamic conditions, to each solid phase of a fixed chemical 

composition there corresponds one definite crystalline structure. The existence 

of natural plane faces on a crystal is the most expressive external feature of a 

crystalline substance. This external feature, however, is but one of the macro- 

scopic manifestations of its specific atomic structure. A crystal may not be poly- 

hedral in shape (Fig.1.2, crystals 9-14), but, like a fragment of any crystal, it 

possesses a number of macroscopic physical properties, which permit distin- 

guishing it from an amorphous solid. 

At the same time a great many natural and synthetic solids—minerals, vari- 

ous chemical compounds, metals and alloys, etc.—are polycrystalline, i.e., are 

aggregates of randomly oriented small crystals, which are usually of different sizes 

and irregular shapes; they are often called crystallites, or crystal grains (Fig.1.4). 



Fig. 1.1. Collection of natural crystals. 

(1) halite NaCl; (2) calcite CaCO,; (3) beryl Be,Al, [Si;O,,]; (4) vorobievite, a pink variety of 

beryl; (5) emerald, a bright-green variety of beryl; (6) pyrite FeS,; (7) quartz SiO,; (8) amazon- 

stone K[AISi,O,]; (9) antimonite Sb,S,; (10) rubellite (Na,Ca)(Mg,Al),[Si,Al,B,(O,OH),0]; 

(11) topaz Al,(SiO,) (F,OH),; (12) Brazilian topaz; (13) diopside CaMg[Si,O,]; (14) fluorite 

CaF,; (15) hematite Fe,O,; (16) celestine SrSO, 

Fig. 1.2. Collection of synthetic single crystals. 

(1,2) quartz SiO, ; (3) triglycinesulphate (NH,CH,COOH),H,SO,; (4) potassium dihydrophos- 

phate KH,PO,; (5) lithium fluoride LiF; (6) lithium iodate LilO,; (7) a-iodic acid a-HIO,; (8) 

potash alum KAI(SO,);+12H,O; (9) ruby Al,O; + 0.05 %Cr grown for the watch industry as 

a “bull”; (10) laser ruby Al,O, + 0.05%Cr; (11) garnet Y,Al,O,,; (12) lithium niobate 

LiNbO, (13) silicon Si; (14) sapphire AI,O, 
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er 

Fig. 1.3a,b. Small single crystals. 

(a) germanium (courtesy of E. I. Givargizov); (b) protein catalase [1.1] 

“A io ry) oe ‘ies i ; 3 

Fig. 1.4. Polished section of an austenite polycrystal (x 160) 

Sometimes crystallites show some preferred orientation, and then specimens 

are said to have a texture. The properties of polycrystals and textures naturally 

lepend on those of the small crystals of which they are formed, on the size and 

nutual arrangement of these crystals, and on the interaction forces between 

hem. Individual large crystals are usually called single crystals to distinguish 

them from polycrystals. 

The principal macroscopic features of crystalline matter (substances in the 

crystalline state) result from the three-dimensionally periodic atomic structure 
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of crystals. Such most general macroscopic properties are the homogeneity, ani- 

sotropy, and symmetry of the crystalline substance. In discussing these general 

and specific macroscopic physical properties of a crystal we abstract ourselves 

from its microscopic inhomogeneity, from the three-dimensional periodicity of 

the atomic structure and its microdefects (Fig.1.5), which permits us to regard 

a crystal as a continuous homogeneous media. 

a b es 
f Trenpnry 

a 
Rae e as 

Fig. 1.5a—c. Two-dimensional model of a 

crystal built of small spheres. 

(a) perfect lattice; (b) lattice with point 

and linear defects; (c) grains in a poly- 

crystal 

The motions of the atoms of a substance in the crystalline state also 

find their macroscopic expression. The atoms in a crystal experience thermal 

vibrations, which are enhanced with increasing temperature; this substantially 

affects the physical properties of the crystal. At certain temperatures the ther- 

mal vibrations become so large that they lead to phase transitions in the solid 

state or to melting. The phase state naturally depends on the external pressure 

as well. The properties of a crystal also depend on its electrons, i.e., on the 

electron energy spectrum, interaction of electrons with phonons, etc. 

Even under conditions of ideal thermodynamic equilibrium a crystal exhibits 

point defects, except them other structural imperfections such as: dislocations, 

blocks, and domains are practically always present in real crystals (Fig. 1.5b,c). 

Under actual conditions of formation, growth, and “‘life’’ of crystals one always 

observes local deviations of the composition and structure from the ideal, various 

nonequilibrium submicroscopic defects, inclusions, etc. In analyzing the concepts 

of macroscopic homogeneity, anisotropy, and symmetry of a crystal we ignore 

the kinetic phenomena and structural defects and consider the time-average 
spatial structure of the crystal. 

Some properties of crystals such have little sensitivity to the structural defects, 

and can largely be regarded from the standpoint of an “‘ideal’’ or ‘‘idealized”’ 

model of a crystal. But many properties depend to a greater or lesser extent on 
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the structural defects, and then consideration of the physical properties requires 

taking into account precisely these imperfections, i.e., the real structure of the 

crystal. 

Note that the very existence of the surface of a crystal affects its properties, 

particularly if the crystal is small. Some properties of a bulk single crystal at and 

near its surface differ substantially from those inside the crystal. Therefore in 

describing certain features of a crystalline substance it is customary to ignore 

the existence of the boundaries and to assume the crystal to be infinitely ex- 

tended. And conversely, in other cases it is precisely the boundaries of the crys- 

taJline substance that are the focus of attention, although their specific features 

actually stem from its “‘internal’’ properties. 

1.1.2 Homogeneity of a Crystalline Substance 

The term “‘macroscopic homogeneity” is taken to mean that all the properties 

of a crystalline substance are identical in any of its parts. No matter where in a 

single crystal we cut out from an identically oriented specimen of some shape 

and size (Fig. 1.6), its properties—physical (optical, mechanical, thermal, 

etc.), physicochemical (solubility of the surface, adsorption of some substances 

or other on it), and others—will be identical. 

Fig. 1.6. Identity of properties in volumes 

A and A’ 

The properties of a crystal may be expressed by a scalar (e.g., heat capacity, 

density), a vector (e.g., polarization), or in the general case, a tensor (e.g., 

elasticity). 
The very notion of macroscopic measurement of a property implies that the 

experimenter deals with lengths L, surfaces S, and volumes V of a crystal that 

the discrete atomic structure and microperiodicity cease to manifest themselves, 

i.e., when L> a, S > a’, V> a’ (a being the largest period of the crystal lattice). 

For most crystals a ~ 10A!. In practically all measurements of macroproperties 

1 1 A (Angstrom unit) = 10-%em = 0.1 nm (nanometer). 
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the specimens have such sizes L that the requirement L> a is obviously 

met. 

From the condition of homogeneity of a crystalline substance follows the 

constancy of its chemical composition and phase state throughout the volume. 

No matter what microregion of a perfect crystal is chosen for sampling (provided 

its volume is not less than V), the chemical analysis of the specimen will yield 

the same result. Speaking of measuring any property F of a crystal—scalar, 

vectorial, or tensorial—we imply that it is carried out with fixed thermodynamic 

parameters: pressure p, temperature 7, and, in the general case, under specific 

external conditions. Thus, the term crystalline homogeneity means invariance of 

any property F in passing from measurement at a point x (x), x2, x3) to any 

other point x + x’ (x, + xj, x. + x3, x3 + x3): 

F(x) = F(x + x’), (ier) 

provided the above-formulated condition L > a is fulfilled. In other words, 

homogeneity is the invariance of the properties with respect to an arbitrary 

translation of the origin in the crystalline substance. Exceptions are the surface 

and the adjacent layer, as mentioned above. 

The concept of macroscopic homogeneity makes it possible to regard a 

crystalline substance as a continuum. This approach is extremely important in 

crystallography, because it enables one to give phenomenological descriptions 

of many physical properties of crystals without the use of the concepts of their 

discrete atomic structure. This notion can be extended and used in reference to 

a real crystal. Then, lengths L > b, areas S > b?, and volumes V > B® greater 

than in the perfect crystal should be considered, b being the average distance 

between defects. This permits the influence of the defects to be averaged out. In 

many cases this approach can be used to advantage in explaining and describing 

the properties of a real crystal. 

At present, the concept of homogeneity of real crystals is not only employed 

in the theory of crystallography, but also has an important practical significance. 

It is nearly always the basic criterion of the quality of synthetic crystals, be they 

optical, semiconducting, ferroelectric, etc. The particular characteristics of the 

homogeneity required in relation to impurities, blocks, dislocations, etc., are 

taken into consideration, depending on the technical application of the crystal. 

It is worth noting that modern crystallography has at its disposal a wealth of 

methods for local microanalysis of composition and structural defects with a 

resolution of up to several angstroms. Thus it is possible to pass over from the 

averaged description of homogeneity under the condition L > b to the local 

description of inhomogeneities with lengths L < b. 

The concept of macroscopic homogeneity as defined above is applicable not 
only to crystals, but also to liquids, amorphous bodies, and gases. The charac- 
teristics of a crystalline substance and its distinction from the other states is evi- 
dent when considering its anisotropy. 
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1.1.3 Anisotropy of a Crystalline Substance 

We have already noted that certain properties of crystals are scalar, i.e., direc- 

tion independent. At the same time many properties, such as thermal conductivity, 

dielectric and magnetic susceptibility, refractive indices, and others essentially 

depend on the direction along which they are measured. If both the effects exerted 

on a crystal and the reaction being measured are vectorial (for instance, the 

electric field strength or induction) then, the property describing their relation- 

ship (the dielectric constant in our example) is a tensor. This term encompasses 

both vector-tensor and tensor-tensor properties. 

If a property of a substance does not depend on the direction, or, to put it 

differently, if the description of this property is independent of any orientation of 

the frame of reference, then the substance is said to be isotropic with respect to 

this property. Thus, liquids and gases are isotropic with respect to all properties, 

whereas crystals are isotropic with respect to some properties only. On the other 

hand, if properties are direction dependent, their description depends on the ori- 

entation of the frame of reference, and this dependence is called anisotropy. All 

the crystals without exception are anisotropic with respect to at least some of 

their properties. 

Fig. 1.7. Picture of propagation 

of deformation (revealed by 

etching) along (100) plane of a 

PbS crystal from an impact of a 

diamond indentor (x 320) [1.2] 

Anisotropy manifests itself in the very habit of many crystals, for instance, 

in their elongated or plate shape. It is vividly expressed in the mechanical prop- 

erties, e.g., in cleavage, which is the ability of some crystals to split readily along 

certain planes. Deformation of crystals is also direction dependent (Figs. Lae 

and 1.8). 

In accordance with the principle of macroscopic homogeneity (1) we can refer 

a property F to an arbitrary point. Choosing now some (any) origin, we can de- 
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[0001] Fig. 1.8. Configuration of a space 
dislocation rosette arising from a 

local stress source in the bulk of a 

crystal of corundum a-Al,O, at 

1600°C [1.3] 

[1120] Fig. 1.9. General form of the 
Fresnel ellipsoid 

scribe anisotropy, in the simplest case, as the orientation dependence of the prop- 

erty F, i.e., its dependence on the direction a along which the property is mea- 

sured: 

F(m,) # F(m). (1.2) 

A conventional technique in studying the anisotropy of crystal properties is 

carving out differently oriented specimens, say columns, parallel to the direction 

n under study, or plates normal to it, and measuring the properties along this 

direction. 

A pictorial description of the anisotropy of some properties is provided by 

the construction of indicatrice surfaces (Figs. 1.8,9) whose radius vector length 

corresponds to the value of the property F being measured. Here, the variation 

of F in relation to the scalar (e.g., thermodynamic) parameters can be repre- 

sented as a family of such surfaces for different values of these parameters. It is 

possible to investigate the anisotropy of properties under various external ef- 

fects, e.g., under tensile stress or an applied electric field, and to establish the 

influence of these factors on such properties as deformation and polarization. 
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We note that anisotropy is not a property of crystals only. It occurs in crystal 

textures and exists in liquid crystals, and in natural and synthetic polymer sub- 

stances. The anisotropy of these substances, as in crystals, is fundamentally de- 

termined by their molecular structure and does not necessarily require a difference 

in all properties in all directions. On the contrary, F may be equal for some dif- 

ferent, continuously changing or discrete directions. This equality is in fact a 

manifestation of the symmetry of crystals. We shall now proceed to consider 

this extremely important phenomenon. 

1.1.4 Symmetry 

The concept of symmetry—one of the most general fundamental concepts of 

physics and natural science as a whole—permeates all of crystallography and lies 

at its basis. Symmetry is the most general law inherent in the structure and prop- 

erties of a crystalline substance; it is sometimes said to be the property of prop- 

erties of crystals. 

Fig. 1.10. The ideal shape of a quartz crystal and its symmetry axes 

To clarify the concept of symmetry we consider some examples. Figure 

1.10 depicts the ideal shape of a quartz crystal. Its habit is such that it can be 

brought into self-coincidence by a rotation through 120° about the vertical axis 

3. Such a motion appears to change nothing, although it has in fact occurred. 

Indeed, the essence of symmetry lies in the possibility of performing a transfor- 

mation of an object, which brings it into self-coincidence in a new position. This 

can be formulated alternatively as the possibility of transforming the system of 

the coordinates of an object (in this particular case it corresponds to a rotation 

through 120°) so that it is described with respect to the new system precisely as 

it was with respect to the original one. 

The shape of crystals, their structure, and their properties can be described by 

functions depending on coordinates and/or directions. Figure 1.9 portrays the 
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Fresnel ellipsoid for a biaxial crystal. Such an ellipsoid is brought into self-coin- 

cidence on reflection in any of the coordinate planes. In each octant the func- 

tion F, describing the velocities of light propagation in a crystal, has continu- 

ously changing values. However, its values at certain points of the surface in each 

of the octants, namely at points differing in sign of any coordinate, are equal to 

each other! F(x} y, Zz) =F yy; zy) = a F(R 2) 

Thus, a finite symmetric object in three-dimensional space is an object which 

can be brought into self-coincidence by rotations and/or reflections. 

From the above, we can see that it is not the particular values of the function 

F describing an object or some of its properties which are essential, but, rather, 

the existence of certain relationships between them with respect to which F is in- 

variant. In the general form this can be stated as follows. The function Fis sym- 

metric if it is invariant under a transformation of all or some of its variables. Let 

x(X); 0.0, x,,) be arguments of function Mand x’ (2-5 a), audi (yore xe 
the transformed arguments of this function. Then the relationships 

F(x) = F(x’) =... = F(x) (1.3) 

are the conditions of symmetry (invariance) of the function F. 

An object (or a function describing it) can often be characterized by several 

distinct transformations or, in other words, symmetry operations. For instance, 

a quartz crystal (Fig. 1.10.) is brought into self-coincidence not only on rotation 

through 120° about the vertical axis, but also on any of the rotations through 180° 

about three horizontal axes 2,, 2,, 2,. The set of all symmetry transformations 

of any object is a group from the mathematical point of view. Symmetry trans- 

formations may also be such that the arguments change infinitesimally; then the 

group contains an infinite number of operations. 

When studying the symmetry of an object, we must clearly realize what kind 

of symmetry we are considering—of which properties and according to which 

features (which are described by the appropriate variables) an object may have 

different symmetries and be described by different symmetry groups with respect 

to different properties and at different levels of consideration—macroscopic or 

microscopic, purely geometric or physical, in a static or dynamic state. There is 

then a hierarchy of the corresponding symmetry groups. 

The concepts of crystalline homogeneity and anisotropy can be formulated 

from the viewpoint of symmetry. Homogeneity—the independence of the 

properties of a crystalline substance from the choice of the measuring point—is, 

as far as symmetry is concerned, invariance with respect to an arbitrary transla- 

tion of the crystal structure. The anisotropy of crystals—the direction depen- 

dence of the properties—manifests itself within the framework of symmetry: the 

functions describing the properties are themselves symmetric. 

Thus, a crystalline substance can be defined, according to its macroscopic 

features, as a homogeneous anisotropic symmetry medium. 
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1.1.5 Crystal Habit 

In addition to the “internal” properties of homogeneity and anisotropy a crystal- 
line substance possesses one more, most visual macroscopic property: in the 
course of growth under equilibrium conditions crystals acquire a natural shape 
of polyhedra with plane faces (see Figs. 1.1-3). Similar regular surfaces also 
appear in processes opposite to growth, namely in dissolution or evaporation of 
crystals (Fig. 1.11). 

Fig. 1.11. Evaporation figures 

on the surface of an EuTe alloy 

(x 1520) [1.4] 

In considering this macroscopic property we pass over from a crystalline 

substance as a continuum to a crystalline individual, a finite body built up from 

this substance. An important part here is played by the interaction of the crystal 

surface with the environment in which this crystal was formed or to which it was 

transferred. 

We note that the polyhedral faces of single crystals satisfy the requirements 

of homogeneity, anisotropy, and symmetry, but are not completely determined 

by these principles. The formation of faces is also a manifestation of the regular 

atomic structure of crystalline matter. 

The first law of crystal habit is the law of constancy of angle: the angle be- 

tween the corresponding faces of crystals of a given substance is constant and 

characteristic of these crystals. The law was first formulated in 1669 by the 

Danish scientist N. Stenon, who used quartz and hematite crystals as examples. 

The validity of this law for the crystals of all substances was established much 

later, in 1783, by the French scientist J. B. Romé de Lisle. 
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In 1784 the French crystallographer Abbé R. Haiiy deduced the second princi- 

pal law of crystal habit, the law of rational parameters. Certain edges of a crystal 

are chosen for its three coordinate axes according to certain rules. Measurements 

show that the intercepts on the axis cut off by the crystal faces can be expressed 

as integral multiples of certain axial units. But the existence of axial units in 

three directions immediately suggests the three-dimensional microperiodicity of 

the structure of crystals, and the existence of a lattice in them, which fact 

determines the habit and the other macroscopic properties of crystals. 

We have considered the general macroscopic characteristics of a crystalline 

substance. A remarkable historical fact is that the combination of these charac- 

teristics led crystallographers, even before the advent of modern methods for 

studying the atomic structure, to the conclusion that the microstructure of 

crystals is characterized by a three-dimensional spatial periodicity of the packing 

of their constituent microparticles. 

1.2 Microstructure of a Crystalline Substance 

1.2.1 Space Lattice 

The idea that the shape of crystals can be attributed-to regular packing of 

infinitesimal spherical or ellipsoidal particles was first suggested independently 

by W. H. Wollaston, R. Hooke, H. Huygens, and M. V. Lomonosov. Lomono- 

sov gave considerable time and attention to the phenomena of solution and 

crystallization of salts; he studied and classified crystals of minerals. In his thesis 

“Dissertation de generatione et natura nitri’”’ (1749) he gave the scheme of ar- 

rangement of basic particles of matter—corpuscles (Fig. 1.12) and wrote: “If 

we assume that saltpeter particles thus arranged have a spherical shape, to which 

the finest natural bodies piling together tend in most cases, it will be very easy to 

explain why saltpeter grows into hexagonal crystals’’. 

4 ee ©eeete 
e e 

BEN. RL 
Fig. 1.12. Structure of salt- 

peter crystals (Lomonosov, 

(1.5]) 

An explanation of the existence of diverse faces on crystals was given by R. 
Haity on the basis of the law of rational parameters. As we have seen, according 
to this law the microstructure of crystals is periodic and is characterized by axial 
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units of periodicity a, b, c. The ratio between these units can be found by measur- 

ing the interfacial angles. The axial units—unitary edges—may serve to con- 

struct a unit parallelepiped. Haiiy assumed that the “‘molecules”’ of a crystal have 

this form. In the phenomenon of cleavage, he perceived a physical argument in 

favor of the existence of such microparallelepipeds. For instance, calcite splits 

readily along the coordinate rhombohedral faces. By crushing calcite into 

smaller and smaller rhombohedra, reasoned Haiiy, one can obtain infinitesimal 

elementary figures of this shape. It is easy to see that they can fill the space com- 

pletely and can thus build a crystal bounded by coordinate faces. All the other 

faces can be constructed as steps with different numbers of molecules in them 

(Fig. 1.13). The “‘microroughness”’ of noncoordinate faces is of no consequence 

here, because it is unobservable macroscopically. 

wae is oo 
eet ome 

LT] | CH is ve [7 Be : = pa 
c= 

eaaaae ; Hl ie a a see 
Fig. 1.13a,b. Building up a 

crystal from ‘‘parallelepipedal 

molecules” (a) and the forma- 

tion of noncoordinate faces 

(b) (Haiiy [1.6]) 

The principle of this theory was the fundamental notion of three-dimensional 

spatial periodicity of the arrangement of particles in a crystal. The deduction 

that the structure consists of polyhedra filling space completely was physically 

erroneous. But it gave an impetus to the development of some important for- 

mal geometric concepts in crystallography. 

Indeed, a polyhedral or any other “shape”’ of the microparticles constituting 

a crystal is not essential for the explanation of the laws of geometric crystallog- 

raphy. The only essential element is the fact that the arrangement of any such 

particles obeys the law of three-dimensional repetition, 1.e., spatial periodicity. 

This gave rise to the concept of a three-dimensional lattice of crystals, whose 
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Zz Fig. 1.14. Space lattice 

v Fig. 1.15a,b. Two-dimensionally perio- 
dic pattern (a) and the corresponding 

two-dimensional lattice—a system of 

parallel translations (b) 

simplest geometric image is the three-dimensionally periodic point system (Fig. 

1.14). The unit parallelepiped (unit cell), whose three-dimensional repetition 

forms the entire crystalline structure, may contain various numbers of atoms— 

from one to millions, and the arrangement of the atoms in the unit cell may itself 

be characterized by some symmetry or other. 

It should be emphasized that the space lattice is not simply a system of nodes 

at which, say, some atoms or molecules are situated. It is the geometric image of 

symmetry operations of discrete transfers—-translations. We shall explain this 

using as an example a two-dimensional wall-paper pattern (Fig. 1.15a) and the 

corresponding lattice with periods a and b (Fig. 1.15b). Figure 1.15a has no 

selected points, but if we place a lattice positioned parallel to it at any one of 

them, for instance at the center of a flower, or at the edge of the leaf A’, or the 

point A” in the empty space between the flowers, it will in each case locate points 

which are identical, equal physically and geometrically in the sense of environ- 

ment. 
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A three-dimensionally periodic space point system, when “superimposed” 
on a crystal structure, will likewise identify symmetrically equal points—be they 
the centers of atoms of the same or a different sort or any point between the 
atoms, etc. Therefore a crystal is sometimes said to be “‘in a lattice state’. 

Naturally, the symmetry of a crystalline substance is not restricted to trans- 
lational symmetry and may be much more diversified. Figure 1.15a includes 
other flowers B, which are symmetric to the first A (to any point A there cor- 

responds a symmetrically equal point B), but A and B are not related by the 

translations shown in Fig. 1.15b. However all the points B, as well as all the 

points A, are related to each other by these translations. 

The term “‘lattice’’, which is widely used in the literature on crystallography, 

solid-state physics, and other fields of science, deserves some elaboration. In the 

strict sense the term “crystal lattice” actually coincides with the term “‘space 

lattice’ and implies three-dimensional periodicity inherent in the atomic struc- 

ture of crystals in general. We shall also use it mostly in this sense. At the same 

time the authors of many papers and books attach a broader meaning to this 

term, using it to define crystalkine structure in general. For instance, they speak 

of lattice energy, of lattice dynamics,of the lattice as the structure of some chemi- 

cal compound: “the crystal lattice of diamond ..., of rock salt’. One must 

clearly realize the difference between these interpretations. In describing the 

atomic structure of compounds and their modifications we shall use the term 

“crystalline structure”’. 

1.2.2 Experimental Evidence for the Existence of the Crystal Lattice 

The law of rational parameters and the development of the concepts of atom- 

istics leave no room for doubt that crystals are three-dimensionally periodic 

arrangements of atoms. The possible groups of symmetry of the atomic struc- 

tures of crystals—the 230 space groups—were derived theoretically by E. S. 

Fedorov and A. Sch6nflies in 1890. But the first direct proof of the existence of 

space lattices was given by the phenomenon of x-ray diffraction of crystals, dis- 

covered by M. Laue, W. Friedrich, and P. Knipping in 1912. 

The nature of these rays was not known at the time. Laue assumed that x- 

rays were electromagnetic waves with a wavelength many times less than that of 

visible light. On the other hand, from chemical data, information on molar 

volumes, etc., it was clear that the interatomic distances in condensed systems 

were approximately several angstrom and, possibly, of the magnitudes of the 

order of a wavelength of x-rays. If crystals were indeed three-dimensionally 

periodic structures, they must represent a natural three-dimensional diffraction 

lattice for x-rays analogous to optical diffraction gratings. Experiment con- 

firmed this assumption remarkably. Figure 1.16 shows the result of one of the 

first experiments by Laue, Friedrich, and Knipping. Shortly after that W. H. 

Bragg in England and, independently, G. V. Wulff in Russia derived the funda- 
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Fig. 1.16. One of the first x-ray 

patterns of Laue, Friedrich, and 

Knipping (zinc blende) [1.7] 

Fig. 1.17a—c. Structure of rock salt 

(a), copper (b), and diamond (c) 

mental equation for the reflection of x-rays from crystals. In 1913-1914 W. H. 

Bragg and W. L. Bragg performed the first structure determinations of NaCl, Cu, 

diamond, etc., on the basis of x-ray experimental data, using the models of atomic 

packings proposed by W. Barlow (Fig. 1.17). 

Today the atomic structures of several tens of thousands of inorganic and 

organic compounds have been determined by means of x-ray structure analysis 

and by electron and neutron diffraction methods. 

Electron microscopy makes it possible to obtain images of objects with a 

resolution up to a few angstroms and thus to observe directly the arrangements of 

large molecules or groups of atoms in crystal structures and the packing of large 

particles in different crystal faces (Fig. 1.18). 

Individual atoms in the simplest crystal structures of metals may be directly 

visualized by the method of field emission microscopy. A high voltage is applied 

to the surface of a single crystal in the shape of a needle. The atoms serve as the 

centers of electron or ion emission; the geometry of the emitted beams is such 

that they project the arrangement of the atoms onto a screen, i.e., the crystal 

structure can be directly visualized. These kinds of pictures (Fig. 1.19) show the 

packing of atoms in different faces and the steplike structure of the faces. 
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Fig. 1.19. Arrangement of atoms on the surface of a tungsten crystal needle point obtained by 

the ionic field emission method [1.10] 

Thus the hypothesis of the three-dimensional periodicity of atomic arrange- 

ment in crystals has now become a familiar fact of physical knowledge, which 

serves as a basis for all concepts of crystals and the starting point of solid- 

state theory. 

1.2.3 Reasons for the Microperiodicity Principle 

What are the physical causes of the fact that the structure of a solid in the 

crystalline state is always characterized by three-dimensional periodicity? 

In the first place, crystals (and liquids also) are condensed systems, where 

atoms “‘touch”’ each other. Such systems are formed because interaction forces 

between atoms at distances of over 3-4 A are those of attraction. The potential 
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energy of interaction U(r) between atoms for all types of chemical bonds is de- 
scribed by a curve, whose shape is given in Fig. 1.20; its minimum lies within 
the range of interatomic distances from 1.5 to 3.5 A. At distances of 1-2 A 
attraction is changed for vigorous repulsion. 

Fig. 1.20. Curve of the potential energy of atomic 

interaction 

On the other hand,the atoms in a crystal are in the state of thermal vibration. 

The kinetic energy of vibration of particles with a mass m is equal to p?/2m, 

where p is the momentum. If this energy exceeds U(r), the bonding forces will 

be overcome. Thus the condition for the existence of a condensed system, a 

crystal in particular, can be written as 

p?/2m < U(r). (1.4) 

Condition (1.4) also holds for a liquid. But in the transition from a crystal to a 

liquid the nature of the order of the atoms changes sharply, because with in- 

creasing momenta the average interatomic distances also increase, and the atoms 

are found more and more often far from the minimum of the curve U(r). Ina 

liquid, some preferred mutual configurations of atoms are formed statistically, 

but they are destroyed all the time by thermal motion; ordering is lower the 

higher is the temperature. At 0 K when only zero vibrations of the atoms 

exist, all the phases are crystalline, with the exception of helium, a most 

quantum liquid. It is obvious that in a solid the amplitude of vibrations of the 

atoms is less than the interatomic distance, otherwise they would dominate 

over the processes of free redistribution—atom migrations—which are char- 

acteristic of the liquid state, but which may also exist in crystals as fluctuations. 

In the presence of an external pressure, phase states shift towards condensa- 

tion and crystallization, and substances whose atomic interaction is described 

by U(r) without a minimum may crystallize. The effect of the pressure is similar 

to an increase in attraction forces and opposite to the temperature effect. 

The simplest approach to the explanation of the periodicity of the atomic 

structure of crystals consists in consideration of close packings of particles. 

Strong repulsion at short distances can be interpreted as “mutual nonpenetra- 

tion” of atoms, so that they can be thought of as rigid spheres (“‘hard balls’’), 
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and the attraction forces can be replaced by an overall effect which brings the 

spheres closer together, for instance, in the gravity field. Two-dimensional 

models of this kind (see Fig. 1.5a) yield a regular doubly periodic structure— 

a planar close packing of spheres. Hence the minimum of the potential energy 

in the simple case of equal mutually attracted spheres is equivalent to the 

geometric condition of their closest packing, and in the two-dimensional case 

such packing exhibits two-dimensional periodicity. 

Three-dimensional close packing is obtained by placing two-dimensional 

close-packed layers upon each another so that the spheres of the next layer fit 

into the voids between the spheres of the preceding layer. An infinite number of 

different arrangements of the structure of successive layers is possible. Some of 

them are periodic in the third direction, i.e., they actually simulate a three- 

dimensionally periodic structure, while others show no such periodicity. Thus, 

the principle of the closest packing of identical spheres does not necessarily result 

in three-dimensional periodicity, although it does admit of it. The packing of 

spheres of different sizes and also the packing of more complicated figures, 

for instance ellipsoids or, in general, convex figures of arbitrary shape, can be 

considered. Here, too, we shall only arrive at qualitative or semiquantitative 

conclusions supporting the concept of three-dimensional periodicity without 

actually proving it. 

In the general form, the problem of finding an equilibrium configuration of a 

large number of n particles (for a crystal, n + oo) is the subject of thermo- 

dynamics and statistical mechanics. 

The free energy F of a system of particles depends on its internal energy U 

and the entropy part TS (T is the absolute temperature and S, the entropy) 

F=U-—TS. (1.5) 

The minimum of F corresponds to the most stable state of the system and deter- 

mines its configuration. A system of n particles is characterized by 6n parameters 

(coordinates and momenta) and by the interaction potentials, which define the 

internal energy U. In the lowest energy state, at absolute zero, F = U, and the 

state is determined by the minimum of the internal energy, which depends 

exclusively on coordinates. 

The great diversity of forces acting between atoms and the enormous variety 
of crystalline structures, many of which consist of several sorts of atoms in com- 
plicated quantitative ratios, suggest that three-dimensional periodicity in the 

solid state must be predetermined by most general factors, and its formation is a 
law of nature. 

This can be explained by proceeding from the fact that the minimum of 
energy of a system as a whole corresponds to that of its constituent parts, due 
account being taken of their interaction. The state of the system at T = 0 then 
must be unique. 

Let us consider the equilibrium system of a very large (“infinitely large”’) 
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number of uniformly mixed atoms of chemical composition corresponding to a 

certain compound. We select from the entire volume of this system some small 

finite volume 4A, all the atoms of the system being represented in it in the ap- 
propriate ratios. Since interatomic forces are mostly short range, the configura- 

tion corresponding to the minimum of the energy will be achieved in the volume 

A, which is comparable with the total volume of the atoms of one or several 

“chemical formula units” of the given substance. 

If we-select a volume A’ according to the same conditions at a different 

arbitrary site, the same atomic arrangement must be achieved in A’, because only 

this arrangement corresponds to the minimum of energy. The positions of the 

atoms in A’ must be identical to those in A, not only relative to the atoms of 

these volumes themselves, but also relative to the entire system as a whole; in 

particular, the positions of the atoms in volume A’ must be identical with respect 

to the atoms in volume 4A, and vice versa. In fact, it is sufficient to say that 

volume 4’ contains a point which is identical in all respects to some point in 

volume A, and that there will be an infinite number of such points, because A’ 

can be chosen at infinitely many different positions. 

We now see that there is a geometric equivalent of the physical requirement 

of minimum of energy of the system: the system must be homogeneous and 

symmetric. That is, certain minimum groups of atoms can all be transformed 

into one another by symmetry operations, which also must transform the whole 

system into itself. Since the number of atoms in a system is infinite, this is pos- 

sible only when there exist symmetry operations of infinite order, i.e., when they 

can reproduce indefinitely a certain minimum groups of atoms. 

Symmetry operations of infinite order are infinitely small displacements or 

infinitely small rotations. Atoms or their groups, however, are of definite size, 

and therefore such operations are inapplicable to them. In other words, the 

geometric condition of symmetric equivalence in a system containing an infinite 

number of particles must include the concept of discreteness i.e., of the atomism 

of crystalline substance, since not all the points of the substance are identical. 

Thus, points of different atoms or points of the center and the periphery of the 

same atom are not equivalent. 

A symmetry operation of infinite order which ensures discreteness is an 

operation of discrete, infinitely repeating transfers—translations. Then since the 

condensed system under review extends in all the three dimensions, it will be 

three-dimensionally periodic, i.e., crystalline. 

The lowest energy state at T = 0, which actually is a lattice, is unique. 

Indeed, according to the third principle of thermodynamics the entropy S = 0 

at T = 0, and the state at T = 0 is unique, because S = In N (N being the 

number of states). 

Thus, the thermodynamic principle of the minimum of energy of a system 

consisting of an infinite number of particles can be realized only within the 

framework of the principle of symmetry and specifically within the frame- 

work of three-dimensionally periodic translational symmetry. When 7 > 0 
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(1.5) receives a contribution from the term TS, and the number of states increases 

with 7. But the principle of translational symmetry ensures the minimum of (1.5) 

up to certain temperatures, because the atoms vibrate about the equilibrium 

positions. Here, their thermal motions are interdependent, and their vibrations 

are realized in the form of plane waves, which are, from the quantum-mechanical 

point of view, quasi-particles of excitation, phonons. A crystal is characterized 

by the energy spectrum of elementary excitations. With increasing temperature 

the excitation level of a crystal depends on the number of quasi-particles in a defi- 

nite energy state. Accordingly, the energy spectrum has phonon, electron, and 

other branches. 

Consequently, the concept of an ensemble of attracting particles, despite the 

thermal motion, helps one to understand the origin of three-dimensional period- 

icity, which simultaneously imparts to the thermal motion itself the specific 

nature of “‘lattice’”’ vibrations. 

As the temperature increases, the thermal motion disturbs lattice more 

and more, the possible result being a phase transition into a different structure or 

melting according to condition (1.4). 

Thus, the principle of microhomogeneity of a crystalline substance includes 

both the principle of symmetry (a crystalline substance contains an infinite 

number of symmetrically equal points) and the principle of discreteness (not all 

the points of a crystalline substance are identical). These principles are realized 

simultaneously only within the framework of three-dimensional translational 

symmetry (see Sects. 2.4 and 2.8). 

Hence also follows the principle of macroscopic homogeneity. Indeed, mac- 

roscopic phenomena and measurements, for instance optical ones, when the 

wavelength exceeds the lattice periods many times over, or mechanical ones, 

when the result depends on interaction of a large number of atoms in the speci- 

men, affect a crystal volume containing an enormous number of unit cells; aver- 

aging occurs then, as a result of which it is possible to regard a crystalline 

substance as a continuum. 

From the nonequivalence of directions in a space lattice follows the macro- 

scopic principle of anisotropy. Finally, microsymmetry finds its macroscopic 

expression in the symmetry of the habit of crystals and their properties. 

Lastly, we note that the energy gain of three-dimensional periodicity is so 

great that the lattice “tolerates” most diversified defects—point, linear, etc. (see 

Fig. 1.5b), even macroinclusions. Interestingly, in many cases defects themselves 

show a trend towards a certain ordered periodic arrangement with large periods, 

which “‘modulate”’ the crystal lattice. The energy gain of periodicity, which is 

now revealed at the submicroscopic, rather than the ‘tatomic’’, level evidently 
manifests itself here, too. 

The trend towards condensation and crystallization is also observed at a 
deeper level of organization of a substance. The arrangement of nucleons in 
nuclei is ordered. It is not improbable that a crystalline order exists in superdense 
states of matter, for instance in neutron stars. Here, quantum-mechanical con- 
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sideration is necessary, of course—as well, incidentally, as for certain atomic 

crystals, for instance, “‘quantum”’ crystals of solid helium existing near T = 0 K 

and at pressures above 25 bar. 

The crystal lattice contains theoretically an infinite, and practically a very 

large number of atoms. However, during crystal nucleation, a small number 

of atoms first gather together. The question arises whether these configura- 

tions of a small number of atoms are identical to the configurations of these same 

atoms in a lattice, under the same conditions of thermodynamics and interaction 

with the environment. This evidently is not necessarily so in the general case. 

Energy calculations and some experimental data show that for an ensemble of a 

small number of atoms the equilibrium configurations may be different from 

those in a crystal; in particular, they may possess an icosahedral symmetry, 

which is forbidden in a lattice. Besides, the distances between neighboring 

pairs of atoms in molecules and in ensembles of a small number of atoms are, 

as a rule, shorter than in a lattice. This means that the crystal lattice can arise 

only if there is a sufficient number (of about several tens) of atoms or molecules 

of a given substance. 

1.3 Structural Characteristics of Condensed Phases 

We shall now consider the main principles of the structures of condensed phases 

in general, some of which, such as amorphous solids and many polymer sub- 

stances, have no space lattices. Indeed, if we assert that the equilibrium state of a 

solid is a crystalline state, how can we explain the existence of amorphous and 

glassy bodies ?? 

The answer is simple enough: the amorphous state is not an equilibrium one; 

it results from kinetic factors and is equivalent to the liquid state from the struc- 

tural point of view. But this is a supercooled liquid of tremendous viscosity, 

so that the relaxation times—rearrangement into an equilibrium crystalline 

structure due to diffusive thermal displacements of atoms—are very large, and 

often practically infinite. Transition processes for instance the phenomenon of 

“devitrification”, i.e., crystallization of certain glasses, can occasionally be 

observed. 
Crystalline structures are often defined as systems with a “long-range order”’. 

Indeed, knowing the structure of the crystal unit cell we also know, by virtue of 

three-dimensional periodicity (see Fig. 1.14), how atoms are positioned in any 

other unit cell and also the mutual arrangement of the atoms of the entire struc- 

ture, that is of each of its atoms with respect to any other atom spaced at any 

distance from it. 

2 The terms ‘‘amorphous” and “‘glassy”’ bodies are equivalent from the structural point of view, 

although the term ‘“‘glasses”’ in its historical connotation is applied to amorphous bodies of 

high hardness. One point of view has it that glasses are polycrystalline bodies consisting of 

very fine crystals, possibly of various coexisting phases. 
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Liquids and amorphous bodies have no long-range order. At the same time 

they have a statistical short-range order (Fig. 1.21a). If we take any one of the 

atoms of such a system, the arrangement of atoms around it can be charac- 

terized by the radial-distribution function W(r) (Fig. 1.21b). This function deter- 

mines the probability of encounter with an atom of a certain type which is at a 

distance r from the one under consideration; in particular, it depends on the 

number of the nearest neighbors and the distance to them. Statistically, the 

number of first and second nearest neighbors does not necessarily have to be 

integral; the interatomic distances are not strictly fixed, and the maxima of the 

distribution functions indicate only most commonly occurring distances (Fig. 

1.21c). This does not contradict the fact that within the statistical framework of 

the short-range order the mutual configurations of atoms in a liquid may be 

constant to some extent and in some cases close to those in the crystalline struc- 

ture. 

Fig. 1.21a—c. The radial-distribution function. 

(a) Two-dimensional scheme of atomic arrangement; (b) frequency of appearance of certain 

interatomic distances, (c) experimental curves W(r) for liquid tin (7) and amorphous selenium 

(2). The dashed line denotes the distribution of the average atomic density, i.e., function W(r) 

in the absence of a short-range order [1.11] 

In amorphous solids the statistical short-range order is considered with 

respect to the space; in liquids, it is considered with respect to both space 

and time, because in liquids atoms continuously move over distances exceed- 

ing the interatomic ones. In amorphous bodies, too, the atoms naturally 

experience thermal motion, which largely occurs around fixed positions, as 

in a crystal. 

Note that statistically (from a macroscopic point of view) amorphous bodies 

and liquids are isotropic. 

There are substances which are intermediate, with respect to structure, between 

crystalline and amorphous bodies. These are polymer substances, which consist 

of long-chain molecules, and liquid crystals. Molecules of polymer substances 

are built up of stable atomic groups—monomer units linked together into a chain 
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by covalent bonds. If all the units are identical, the molecule possesses strict 

periodicity in one direction. If the units are nonequivalent, for instance because 

of various kinds of side radicals, the one-dimensional periodicity is only ap- 

proximate. When chain molecules are packed in polymer substances the mole- 

cules naturally tend to line up parallel to each other. The great length of polymer 

molecules, the possibility of their entanglement, twisting, and so on, hinder the 

ordering and crystallization of polymer substances. Therefore, together with 

equilibrium crystalline structures, polymer substances exhibit various types of 

ordering, which are sometimes called paracrystalline. The order in this case is 

Fig. 1.22a—d. Basic types of condensed systems. 

(a) crystal. Atoms, or asymmetric atomic groups, or molecules, are arranged periodically in three 

dimensions; within the unit cell the atoms or atomic groups are related by operations of non- 

translational crystallographic symmetry. The system has a long-range order in all directions; 

(b) polymer. Along the chain, the atomic groups (molecules) are arranged exactly or approxi- 

mately periodically and may also be related by other symmetry operations. There is one- 

dimensional long-range order along the chain. Only short-range order, to some degree or other, 

is observed in the arrangement of the monomers of neighboring chains; 

(c) liquid crystal. Only short-range order exists in the arrangement of the molecular centers; the 

order is anisotropic, the long molecular axes show an approximately parallel orientation. Sta- 

tistically the system is cylindrically symmetric; 

(d) liquid and amorphous solids. Only an isotropic short-range order exists in the arrangement 

of the molecular (atomic) centers; the molecules are randomly oriented. The system is sta- 

tistically spherically symmetric 

NIMT) TIPRRARY 
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lower than the perfect order in crystals, but higher than the order in liquids. In 

distinction to amorphous bodies and liquids, polymers may be anisotropic 

because of the parallelism of stacking. 

A remarkable class of substances which strictly correspond to the thermody- 

namic concept of a phase and exhibit an ordering intermediate between crystal- 

line and liquid (this is also reflected in their name) are liquid crystals, or meso- 

morphic phases. Liquid crystals are fluid, like ordinary liquids, but they are 

anisotropic. They have a definite temperature range of existence above which 

they “‘melt’’ into an isotropic liquid and below which they crystallize. The prop- 

erties and structures of liquid crystals are largely determined by the fact that 

the molecules of the substances of which they are composed have elongated 

shapes. Two basic types of structure of liquid crystals are known: nematic and 

smectic. In the former, the characteristic of ordering is the parallel arrangement 

of the molecules, and in the latter, in addition, the molecules are grouped into 

layers. 

The structure of liquid crystals can be described in terms of the concept of 

statistical translational symmetry. 

Thus, apart from the two main types of condensed state—solid (crystalline) 

and liquid—different states with an intermediate character of atomic order are 

realized in nature. Figure 1.22 is a schematic representation of the structure of 

the basic types of condensed systems. 

The gradations in the diversified physical properties of condensed systems 

correspond to the degree of their internal ordering, the highest of which—the 

space lattice—predetermines all the remarkable features of the crystalline state. 



2. Fundamentals of the Theory of Symmetry 

Crystals, crystalline substances, are objects in three-dimensional space. There- 

fore the classical theory of symmetry of crystals is the theory of symmetric trans- 

formations of three-dimensional space into itself which are subject to restrictions 

imposed by the existence of the crystal lattice. 

At the same time the theory of symmetry has a wider significance and ap- 

plication. The atoms and molecules, plants, animals, and man himself, man- 

made machines, and many objects of art are symmetric. Many laws of nature 

possess symmetry in a certain sense. 

It should be mentioned that despite such diverse, extensive manifestations of 

symmetry in nature and its universality, the theory of symmetry was basically 

developed and received its logical refinement in crystallography. At the same 

time, the development of physics in the 20th century deepened the concept of 

symmetry and expanded its field of application. New extensions of the symmetry 

concept originated in crystallography itself; in connection with the consideration 

of certain classes of objects, biological in particular, the theory of noncrystallo- 

graphic symmetry was developed and applied. 

2.1 The Concept of Symmetry 

2.1.1 Definition of Symmetry 

In view of the above we shall consider the theory of symmetry from a somewhat 

wider platform than the classical crystallographic standpoint, while giving our 

principal attention to crystallographic symmetry. In certain problems of crys- 

tallography and solid-state physics, such as diffraction theory, it is necessary to 

introduce functions which are not defined in real three-dimensional space, but 

which depend on different kinds of variables. For the latter, however, it is possible 

to introduce formally special spaces of some appropriate dimension. In quantum- 

mechanical problems, or when considering tensors, and in many other cases, some 

variables may change not continuously, but take two or more discrete values. 

For these spaces and functions, definite symmetry regularities also occur. 

We have already dwelt on the concept of symmetry. Any object—a geometric 

figure, a crystal, some function—can be subjected as a whole, to certain trans- 

formations in the space of the variables describing it. For instance, a geometric 
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object in three-dimensional space can be rotated, displaced, or reflected, but the 

distance between any pair of points in it remains unchanged. If the object is 

brought into self-coincidence, is transformed into itself as a result of such a 

transformation, i.e., if it is invariant to this transformation, it is symmetric, and 

this transformation is a symmetry transformation. To emphasize that a transfor- 

mation converts an object into itself, while the structure of space remains un- 

changed, such a transformation is called automorphous. A transformation of 

an object into itself implies that its parts located at one site will coincide, after 

the transformation, with parts located at another site. This means that the 

object has (can be divided into) equal parts. Hence the word symmetry, which 

is the Greek (avuipetpea~) for commensurability. 

Here we see a different approach to the definition of symmetry, namely 

proceeding from the existence of equal parts in the object!, which are themselves 

nonsymmetric (asymmetric) in the general case. The equal parts must be mutual- 

ly positioned not in an arbitrary, but in a regular, manner so that they can be 

converted into each other by a certain transformation. The two approaches are 

equivalent. 

The very concept of the equality of the properties, parts, or structure requires 

establishing in what respect, by what features, and at what level the equality is 

considered. For instance, parts of the object may be geometrically equal, but 

differ in some physical property, and so on. One can find an adequate mathemati- 

cal description of this within the framework of the theory of symmetry. 

Thus, to put it concisely, symmetry is invariance of objects under some of 

their transformations in the space of the variables describing them. 

This is, of course, not the only definition of symmetry, although it is perhaps 

the most general one. Fedorov [2.1] stated: “‘symmetry is the property of geomet- 

ric figures to repeat their parts, or, more precisely, it is the property of figures 

in different positions to bring them into coincidence with the figure in the initial 

positions’’. The statement mentions the repetition, i.e., equality, of parts, while 

the second part of the formulation actually expresses the principal idea of 

invariance of an object under transformation. 

We shall now consider symmetric transformations in more detail and see 

how many of them exist and how they are interrelated. 

2.1.2 Symmetry Operations 

As mentioned before, in considering symmetry in the geometric sense, transfor- 
mations of the coordinates of the object’s space are implied. In a broad sense, 
symmetry is also considered with respect to any other variables describing the 
given object. If there are m variables altogether, the region of their variation can 

' The concept of equality in the theory of symmetry satisfies the general mathematical defi- 
nition of equivalence, i.e., it includes the conditions of: 1) identity: a = a; 2) reflexivity: if 
a = b, then b = a; and 3) transitivity: ifa = band b = c, thena = c. 
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be regarded as a space of m dimensions with the coordinates of a point in it 

Mashens FV sibs 

The set of coordinates will be denoted by x. They may have either identical 

meanings (as in the three Cartesian coordinates) or distinct ones (for instance, 

some may mean distances, others angles, while still others, some physical param- 

eters). 

Let an operation g perform a certain transformation of the coordinates x 

of space 

oS a ak Ee ee ee ee ee (2.1) 

We call F a symmetric object (function, figure) and g, a symmetry operation or 

transformation, provided F does not change when g acts on the initial variables, 

F(x, — ae sy = F (g[x, pop oe ae xed) = F(x;; yaa a | bet), 

(2) 
F(x) = F[g(x)] = F(x’). 

The formulation (2.1) implies that a method exists for obtaining each 

variable x; from the set of variables x,;. The transformation g may then act 

on all the variables x, on which the given function depends, or just on some of 

them. 

For each symmetry transformation g(2, 1), which transforms points x to x’, 

there is an inverse transformation g~!, which transforms points x’ back to x, 

g~'[x’] = x, Ce 

which, according to (2.2), is also a symmetry transformation. 

The identity: transformation g = e, which leaves all the variables unaltered, 

x; = x}, is also a symmetry operation according to (2.2). 

An object may have several symmetry operations g;. Two or more consecu- 

tively performed identical or different symmetry operations also constitute a 

symmetry operation according to (2.1,2). Relationships can be established 

between operations g, irrespective of their geometric or other meaning. As we 

shall see below, the set of symmetry operations of a given object is a group from 

the mathematical standpoint. 

The theory of symmetry considers both aspects of the problem—the partic- 

ular meaning of the operations and the general-group relations between them. 

It should be emphasized that symmetry transformations (2.1,2) have two 

equivalent interpretations: as a change in the coordinate system with the object 

remaining unmoved, or, conversely, as a change in the position of the points of 

the object in a fixed coordinate system. The formulation (2.1) corresponds to a 

change in the position of the object’s points, the coordinates x, and x; are mea- 

sured in the system of fixed axes X(X), ..., X,,). To the first case, there corres- 

ponds the transformation of the coordinate system X into X’, while the object 

(all its points) remains unmoved. It is easy to see that the operation of transfor- 
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mation of the coordinate system is g~! [X] = X’, 1.e., it is inverse to the opera- 

tion (2.1) of transformation of the object’s points g [x] = x’. Naturally, it is pos- 

sible to assume that the initial operation is the transformation of the axes; then 

the inverse operation is the transformation of the coordinates of the points. 

These two interpretations can also be distinguished in the description and 

perception of symmetry. In one case the object is perceived as static and self- 

equilibrated. The observer applies a certain measure (coordinate system) to it in 

different positions, and the object proves identical with respect to these applica- 

tions. The physical meaning of symmetry consists precisely of this internal equili- 

brium. In the other case the observer does not move the measure, but hecan trans- 

form the object, bringing it into self-coincidence. With this approach symmetry 

operations are more visual, because they can be related to the displacements or 

other processes the object experiences as a result of the symmetry transforma- 

tion. Crystallographers often take advantage of this, manipulating all kinds of 

models. It should be borne in mind, of course, that the “transformation process” 

itself, although visual enough, is not essential for the understanding of symme- 

try: the important point is what was “‘before’”’ and what happened “‘after’”’ the 

transformation, i.e., it is the final result that is important. 

In this connection we must mention still another essential aspect of descrip- 

tion of symmetry. Upon transformation, a symmetric object is indistinguishable 

from the object in its original position. Then how do we establish the possibility 

of such a transformation? This is exactly where we need the above-mentioned 

“external measure’. The object must be regarded in relation to the physical or 

geometric conditions external to it, to its coordinate system, with respect to 

which their difference can be established for the internally equal parts of the 

object. A crystallographer with a model in his hands at first marks mentally one 

of its parts relative to himself and then, bringing the model into self-coincidence 

in the new position, checks that another part is equal to the first. But the inter- 

nal, physical content of symmetry as self-equality with respect to some features 

and properties remains the fundamental principle. 

Let us now turn to the geometric properties of symmetry operations. 

2.2 Space Transformations 

2.2.1 Space, an Object in It, Points of Space 

Symmetry operations act on all the coordinates x; of a space. The object may be 
finite, occupying part of this space, or it may be infinite, occupying the entire 
space. It is convenient to speak of symmetry transformation of the whole space 
into itself, in which a finite or infinite object described by the function F, is 
transformed into itself. 
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The points x and x’, which are transformed one into another under a sym- 

metry transformation g[x] (2.1), will be called symmetrically equal points. 

We denote as “‘figures” any sets of points: discrete finite or infinite sets, or con- 

tinuous manifolds—straight or curved lines, segments, various closed or open 

planes, surfaces, or volumes. Figures will be called symmetrically equal if all the 

corresponding points of these manifolds are transformed into each other by the 

specific rule g[x] = x’ (and hence g™ [x’] = x). 

Symmetry transformations which leave the metric properties of the space 

unaltered are called isometric. Under these transformations the space is not 

stretched or twisted, i.e., it is an undeformable whole, so that the distances be- 

tween any pair of points remain unchanged upon transformation. 

Any transformation of an “empty” space is a symmetry transformation. But 

such an “‘empty”’ space has no features by which one can judge whether a trans- 

formation has been performed in it. Therefore, when speaking of transformation 

of a space we imply that it has certain labels which indicate that the space has 

brought itself into self-coincidence by some transformation or other. In studying 

concrete objects, crystals in particular, the ‘‘physical labels’’ are the objects them- 

selves or any of their characteristics F: the shape (habit), properties expressed by 

one function or another, the atomic structure, etc., to which some coordinate 

system can be assigned. 

! se 

Fig. 2.1. Asymmetric tetrahedron as a 

label of point A and a coordinate re- 

at fi Patt 5 my ai 2 emp ference for any point E 

No point, straight line, or plane (or any number of points lying on them) can 

serve as a label, because they may remain unmoved in some symmetry transfor- 

mations. A label ridigly connected with a three-dimensional space may consist 

of four noncoplanar points A, B, C, and D (Fig. 2.1), the distances between 

which are different; or of an asymmetric (i.e., having no symmetry) tetrahedron 

formed by joining these points. Any three edges of this tetrahedron issuing from 

a common vertex may be regarded as reference axes (with the corresponding 

axial units). Thus, any point of space E has definite coordinates with respect to 

these axes, and the space as a whole is uniquely related to such a tetrahedron. 
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2.2.2 Basic Isometric Transformations of Space 

We shall show that any transformation of a space which leaves its metric intact 

can be reduced to translation (which is parallel transfer), rotation and reflec- 

tion’, or to a certain combination of these transformations. 

To prove this, it will suffice to bring an asymmetric label of space—a tetra- 

hedron—into self-coincidence. Suppose we have two such tetrahedra: ABCD 

and A’B’C’D’, equal to one another, which implies the respective equality of the 

lengths of all the six edges AB = A’B’, etc., and let these tetrahedra be placed 

anywhere and in any position (Fig. 2.2a). Each point of space can be brought 

into coincidence with any other point by translation. So we bring points A’ and 

A into coincidence, and the tetrahedron A’B’C’D’ will be shifted parallel to itself 

(Fig. 2.2b). Now, rotating point B’ about A, we bring it into coincidence with 

B (Fig. 2.2c), and rotating then C’ about AB, we bring it into coincidence with C 

(Fig. 2.2d). Point B’ could also be brought into coincidence with B, and-C’ with 

C simultaneously by rotating the tetrahedron about line g, which is the line of 

intersection of the planes of triangles A’B’C’ and ABC (Fig. 2.2b). In some way 

or other, triangles A’B’C’ and ABC are now brought into coincidence by mo- 

tions. Distances AD, BD, and CD, A’D’, B’D’, and C’D’ are equal respectively ; 

hence, if the points A, B, C are fixed, only two positions are possible for point 

D’: either coincidence with point D or a position mirror-equal to it with respect 

to plane ABC (Fig. 2.2d). In the former case the result has already been obtained, 

A’ Ds 

D 

a 

Cc 
a B B' b 

A 

D : 
D 

Cc eC 
C NN Fig. 2.2a-d. Identical tetrahedra (a), 

LE brought into coincidence by succes- 
B sive translations (b), a rotation (c), 

Cc d and a reflection (d) 

* The contents of these elementary operations are clear; their exact definition will be given in 
SECiwee oa 
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and it is obvious that the transformation of the tetrahedron and of the space 

rigidly connected with it was reduced to motion. In the latter case the result, 

i.e., the coincidence of the tetrahedra (and of the space), is achieved by an ad- 

ditional operation of reflection of point D’ in plane ABC. 

These two possibilities correspond to two cases of equality of the initial 

asymmetric tetrahedra—coincidental or, in other words, congruent equality, 

and mirror equality. As to the transformation of space, it satisfies the definition 

of symmetry transformation in both cases. Thus the concept of symmetric 

equality of figures includes the notion of their congruent and/or mirror equality. 

Transformations of translation and rotation and their combinations are called 

transformations of the first kind, or proper motions, or just motions. Transfor- 

mations which include reflections are called transformations of the second kind, 

or improper motions. 

When a space or an object contained in it is brought into self-coincidence, the 

symmetrically equal points are also brought into coincidence. Here it would be 

appropriate to elaborate on the concept of the point in crystallography and in 

the theory of symmetry, which does not coincide with that in mathematics. We 

have seen that a point can serve as a label of space, which indicates its orientation 

when considered together with its environment, and the minimum label of such 

an environment is three neighboring points which make up an asymmetric 

tetrahedron together with it. Such a point is called ‘“‘crystallographic’’. In dis- 

tinction to this, a mathematical point x, y, z has no orientation characteristics, 

but has a maximum symmetry itself: it can be rotated about any axis or reflected 

in any plane passing through the point at hand, and it remains the same point. 

Crystallographic points, however, may be (and we shall call them so sometimes) 

parallel, rotated, or reflected. 

The symmetric equality of points in any object can be explained as follows. 

We select any point in such an object and “‘view”’ the object as a whole and all of 

its parts from this point; then we ‘“‘view”’ the object from any point symmetrically 

equal to it. By virtue of invariance condition (2.2) the pictures will be indis- 

tinguishable upon transformation (2.1). This emphasizes the fact that equal 

points and their sets—parts of symmetric objects—are equal not only in the sense 

that they can be brought into coincidence by symmetry operations, but also that 

each of these points or parts is positioned geometrically equally with respect to 

the set of all the others, i.e., to the object as a whole. During such observations 

from different symmetrically equal points, however, the observer has either to 

shift or to turn, maybe upside down, or even “‘be reflected”’. 

Let us now revert to space transformations and demonstrate the following: 

any transformation of the first kind is either a translation or a simple or a screw 

rotation of the space about some axis. 

We shall first prove that any motion of a plane which brings it into self- 

coincidence is either a rotation about one of its points or a translation (Chasles’ 

theorem). We consider two points A and A’ together with their two-dimensional 

asymmetric labels—triangles ABC and A’B’C’ (Fig. 2.3). Point A’ can evidently 
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be transferred to A by rotating it about any point lying on a perpendicular 

erected from the midpoint of AA’. We select a point O such that the angle of ro- 

tation a about it is equal to the angle between the lines AB and A’B’. This actual- 

ly is the desired point, the Chasles center. If AB||A’B’, then O lies at infinity and 

the triangles are brought into coincidence by translation. 

Consider now two congruent tetrahedra ABCD and A’B’C’D’ in three- 

dimensional space, which are positioned in any way whatsoever (Fig. 2.4). As can 

be seen from Fig. 2.4, they can be brought into coincidence by transferring the 

second tetrahedron along the vector A’A and rotating it about some axis g. Such 

a motion, which consists of a translation and a rotation, is called a screw rotation. 

Let us draw a plane p in Fig. 2.4 through A’ perpendicularly to axis q; their 

intersection yields point A’. The Chasles center O will be found in plane p and 

will transfer A’ to A’; a straight line through it passing parallel to q is the axis of 

screw rotation N, with a translational component t, = AA” and an angular 

Fig. 2.3. To the derivation of the 

Chasles theorem 

Ng Fig. 2.4. General case of motion (first- 

kind operation): screw motion about 

axis N, (bringing into coincidence ar- 

bitrarily positioned tetrahedra A’B’C’D’ 

and ABCD) 
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component a,. If a, = 0, the motion reduces to a translation, and if t, = 0, it 

reduces to a simple rotation. Thus, a screw rotation (a helical motion) is the most 

general transformation of the first kind, while translations and rotations can be 

regarded as its particular cases. On the other hand, a screw motion can be 

decomposed into a rotation and a translation. 

We shall now show that any operation of the second kind can be represented 

as a mirror-rotation operation. Referring to Fig. 2.2 we saw that mirror-equal 

tetrahedra can be brought into coincidence by a translation, a rotation, and a 

reflection, and the translation and the rotation axes and the reflection plane were 
oriented arbitrarily relative to each other. We shall demonstrate that this set of 

operations can be replaced by a rotation about some definite axis? N, and a re- 

flection in plane m perpendicular to this axis (Fig. 2.5). This operation is called 

a mirror rotation. 

Fig. 2.5. General case of a sec- 

ond-kind operation: a mirror 

rotation about axis N, (the same 

operation—inversion rotation 

about axis N,) 

3 We shall denote symmetry operations and the respective geometric forms—symmetry ele- 

ments (i.e., axes, planes, etc.)—by identical symbols; for instance, WN, is both an operation of 

rotation and a rotation axis, mis both a reflection and the plane in which it occurs. Whenever 

operations have to be distinguished from symmetry elements, special mention will be 

made. 
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D D 

Fig. 2.6a-c. Particular cases of a second-kind operation. (a) 

reflection, (b) glide reflection, (c) inversion 

The arrangement of mirror-equal tetrahedra T and T’ with respect to N, and 

m is as follows: m intersects Nz at a point O such that the distances from any 

corresponding points (A and J’, etc.) to m are equal. By reflecting T’ in m we 

obtain tetrahedron 7”, which is congruently equal to T and positioned at the 

same height, and the projections of TJ’ and T” onto m coincide and are equal to 

the projection of T. If we rotate T” about N, through angle a, T” will coincide 

with 7, which is in the final analysis a mirror rotation of T’ to T. 

Special cases of mirror rotation are simply a reflection in plane m (a = 0) 

(Fig. 2.6a) and a glide reflection a, when N, is at infinity, and a rotation through 

a transforms into a translation ¢ along a straight line, parallel to m (Fig. 

2.6b). 
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At a=, we have another special case of mirror rotation—inversion 

(denoted by 1) or transformation with respect to the center of symmetry (Fig. 

2.6c). This transformation is characterized by the fact that all the lines passing 

through the center of symmetry O are transformed into themselves, but ‘‘re- 

verse” their directions (vectors r are transformed into —r), while all the other 

lines or planes are transformed into lines or planes parallel to themselves and 

situated at the same distance from O, but oriented (if we place asymmetric labels 

on them) oppositely, i.e., they become antiparallel. 

Reverting to the general case of mirror rotation, it should be stressed that 

just as the screw-rotation axis N, can be chosen in a unique way in the operation 

of screw displacement for two arbitrarily positioned congruently equal tetrahed- 

ra, so for arbitrarily positioned mirror-equal tetrahedra the mirror-rotation axis 

N,, together with the plane m perpendicular to it is also unique. An exception is 

inversion 1: any choice of axis NW, and a plane m perpendicular to it, which pass 

through the center of symmetry, yields the same transformation. 

The unique position of N, and m can, in the general case, be found by the 

construction shown in Fig. 2.7, which is analogous to that of Fig. 2.4 for N, (cf. 

Fig. 2.5). At first we must obtain from 7” through inversion a tetrahedron 7’’” in 

such a way that T’’” (which is congruent to T) coincides with T through some 

point, say C. This enables us to construct axis g. Then we construct plane m 

perpendicular to g and equidistant from the corresponding points of tetrahedra T 

and 7’. From the projections of T and T’ onto m we find the Chasles center O 

on this plane and erect from it the desired axis N, parallel to q. 

Mirror-rotation operations can be represented as operations of inversion 
rotations Nz (Fig 2.5). Let us perform inversion 1= WN, of tetrahedron T’ at 

Na 

Fig. 2.7. Finding the axis of a mirror (or inver- 

D' sion) rotation 
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point O, which will yield tetrahedron 7’. This operation differs from mirror 

rotation N, by an angle 8 = a — n. Rotate T’” to T through this angle. Thus we 

obtain the operation of inversion rotation Mz, which is equivalent to the mirror 

rotation of NW, = N,_,. Symmetry theory uses both types of operation. 

Thus, the most general operation of the first kind is a screw rotation, and its 

particular cases are a rotation and a translation. The most general operation of 

the second kind is a mirror (or inversion) rotation, its particular cases being a 

reflection, an inversion, and a glide reflection. 

These transformations, as we shall see below, are symmetry operations of 

finite figures only at definite values of their angular components @ (namely when 

a = 2n/n, n being an integer). 

Operations of simple and mirror rotations (and the particular cases of the 

latter, namely a reflection and an inversion) leave upon the transformation at 

least one point of space unmoved (invariant); axis N or NW passes through it. This 

point is called a singular* point and the operations are called point symmetry 

operations. 

If several differently oriented rotation axes pass through the special point, 

the set of rotations of the space about them, which transforms this point into 

itself, will be called rotations, and the set of point symmetry operations of the 

second kind, improper rotations. Thus, under a symmetry transformation the 

singular point does not change its position in space, but being considered a 

crystallographic point it can be rotated and/or reflected into itself. 

Operations of translation, screw rotation, and glide reflection contain a 

translational component; they displace all the points of space, and there are no 

special points in this case. 

2.2.3 Analytical Expression for Symmetry Transformations 

Let us choose in space a Cartesian system of coordinates X,, X2, X;—a right 

handed system, i.e., such that if we look from the end of axis X3, a rotation from 

X, to X, will be an counterclockwise rotation (Fig. 2.8). The symmetry trans- 

formations g[x] of three-dimensional space are described by the following 

linear equations: 

x’ = g [x], 
/ 

Xy = AX + Ay2X2 + Ay3X3 + Ay, 

/ 

X_ = AX + Ag2X%2 + Ay3X3 + Ap, (2.4) 

/ 

X3 = A3,X, + A32X2 + A33X3 + 3, 

which are written in a matrix form 

“ The term “‘special”’ is also used. 
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where 

Q1 Az Ay3 

(4;;) =| ay, G22 a3 |= D, (2.6) 

43, A432 433 

or in the operator form 

x’ = Dx +t. (2.7) 

Fig. 2.8. Right-handed system of Cartes- 
x ian and cylindrical coordinates 

Matrix D describes point symmetry transformations, i.e., simple or mirror 

rotations, and fis a translation, which is given by components a,. 

We know that a symmetry transformation can also be regarded as a trans- 

formation of a reference system X, into X;, the transformation of the point co- 
ordinates and the axis transformation being mutually inverse. Therefore the 

matrix of the transformation of axes (q/,) will be transposed with respect to (2.6), 

i.e., it will be the matrix of (a,,), while the values a,, are cosines of the angles be- 

tween the transformed X; and the initial X¥, axes. The values a,, satisfy the 

orthogonality relationships 

Lt=k, 
De Oyo 2.8 

hs ae Dope Ie: Ce) 

where only three of them are independent. 

The condition of isometricity, i.e., the constancy of the distance between the 

points under symmetry transformations, has the form 

|x —y| = M(x — y1)? + (2 — Y2)? + (%s — y3)? = |X’ — yy’. (2.9) 

It also ensures the preservation of the angles between the transformed lines 

or planes. If an isometric transformation is a point transformation, i.e., if it 
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includes no translations, it is called orthogonal. It follows from (2.9) that the 

determinant of matrix D (2.7) is always equal to +1 or —1, i.e., 

|D| = |a,| =+1. (2.10) 

Let us now consider a concrete form of relations (2.4-7) for the principal 

space transformations. 

A parallel translation implies displacement of all the points x of space in the 

same direction by the same vector 

xis xt, dy = 1,0, = 0 for i-j, at least one of a7 07) (2:11) 

A rotation of space is the same angular displacement of each of its points 

relative to the rotation axis. If we choose axis X; and, looking from its end at the 

origin, measure the angles in an counterclockwise direction (Fig. 2.8), then in 

rotation through angle a in cylindrical coordinates r, g, x; 

Cc —f, hi — X00 — Oo (2.12) 

and in Cartesian coordinates 

Ki OCOS Xs — FSi Ve l= ee, (2.13) 

so that matrix (2.6) has the form 

cosa —sina O 

sin @ cosa 0}. (2.14) 

0 0 1 

A mirror reflection in plane m transfers each point x to a point lying on the 

other side of this plane, equidistant from it, and situated on the same perpendicu- 

lar to it. If plane mis plane X, X2, then 

ay, = 1% an, = ik. a33 = —l, a, = 0 for SS Jj- (2.15) 

For any mirror rotation about X,; the matrix will be the same as (2.14), but 

Qj, —1. For inversion all a, = 1, 4a,,— Otorg=- 7, 

Operations of the first kind—motions—will be denoted by g!, and those of 

the second kind—improper motions—by g”. 

2.2.4 Relationships and Differences Between Operations of the First 

and Second Kind 

Matrices of operations of the first kind g' have a determinant (2.10) equal to +1 

(a; =a (2.16) 
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Successive performance (product) of any number g of such operations gig} ... g1 

= g, has a determinant 

l4yle. = (4 1I*°= +1. (2,17) 

Hence the product of any number of operations of the first kind is always an 

operation of the first kind: g, = g}, i.e., a product of motions is always a mo- 

tion. 

For operations g™ of the second kind the determinant (2.10) is always equal 

to —l, 

[aj|ex= — 1. (2.18) 

Comparing (2.17) and (2.18), we can see that no operation of the second kind 

gi can be obtained by any combination of motions g'. Indeed, by moving an 

asymmetric figure—a tetrahedron—tt is possible to bring it into coincidence only 

with a congruently equal tetrahedron, but not with a mirror-equal one; the latter 

would require an operation of the second kind. 

A sequence of qg operations of the second kind gf’ g/... g'=g, has a 

determinant 

7a feorg=— 27: g2°" =o G9) 
lGizle, =(—ly= 

= for g=274+ 1: go = ¢e". (2.20) 

Consequently, a product of an even number of operations of the second kind 

g™ (2.19) is an operation of the first kind g’. On the other hand, an odd number 

of such operations g™ (2.20) is an operation of the second kind g™, which is not 

reducible to motions. 

The operation of motion g! will always remain such but the result of its action 

can also be represented as the result of a simultaneous action of an even number 

of operations g™ (2.19). 

There are the following simple theorems, which illustrate the above con- 

clusions. 

Theorem I. The line of intersection of two planes m and m’ at an angle a/2 

is a rotation axis N,. Indeed, taking this axis to be perpendicular to the drawing, 

we can see from Fig. 2.9a that the reflection in m transforms figure T to its mirror 

reflection 7’, and the reflection in m’ gives a figure T” congruent to T and rotated 

through angle a. 

Theorem II. Translation t can be obtained by two reflections in planes m 

spaced by 1/2, parallel to one another and perpendicular to the translation axis 

(Fig. 2.9b). 

Theorem III (Euler’s theorem), A rotation about two intersecting axes N,, 

and N,, is equivalent to a rotation about a third axis N,,, their resultant(Fig. 

2.10). Let us draw a plane m through axes N,, and N,,. By Theorem I we replace 
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Fig. 2.9a,b. Motion operation as the 

result of successive reflections in two 

planes m and m7’. 

(a) rotation (planes m and m’ inter- 
sect, the line of intersection is the 

rotation axis); (b) translation (planes 

m and m’ are parallel) 

m m 

Fig. 2.10. The derivation of Euler’s theorem. The continuous 

arcs show the intersection of the symmetry planes with a sphere 

of arbitrary radius with center at the point of intersection of the 

O axes 
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the action of N,, by that of planes m and m’, the angle between which is equal to 

a,/2. Similarly, we draw a plane m” through axis N,, at an angle a,/2 to m. The 

successive reflections here are as follows: A in m’ gives A’, A’ in m gives A” 

(this is equivalent to a rotation of N,,). A”, again in m, yields the same A’, A’ 

in m” gives A’” (this is equivalent to N,,). A’” is congruent to A and rotated 

about Mes which is the line of intersection of planes m’ and m’’. The rotation 

angle a; is a doubled angle between m’ and m” (note that in the general case 

several resultant axes may be obtained). 

Thus. as we have seen, operations of the first kind can be reduced to an even 

number of those of the second kind. Of course, the operations of first kind exist 

and can be introduced irrespective of the operations of the second kind. At the 

same time it follows from the foregoing that any symmetry operation can be 

represented as the result of one or more operations of the second kind—mirror 

reflections. 

The existence of the two types of symmetric equality—congruent and 

mirror—is a fundamental property of our space and of all physical objects, and 

it plays an important role in crystallography. 

Let us now pass over to possible combinations of symmetry operations and 

their interaction, i.e., to groups of symmetry operations. 

2.3 Fundamentals of Group Theory 

2.3.1 Interaction of Operations 

Let us consider the point symmetry of a quartz crystal, whose perfect shape is 

depicted in Fig. 1.10. The figure is brought into self-coincidence under the 

following symmetry operations: 

Lo = 21 = 3, 82 = 3", 3 = 2 Sa = 2) Bs = Aw (2.21) 

where g, is a rotation through an angle 2n/3 in a counterclockwise direction 

about the axis denoted by 3 in Fig. 1.10; g, is a rotation through 2 x 2n/3 ina 

counterclockwise direction about axis 3 (or, what is the same, through 21/3 

in a clockwise direction); g3, 24, g; are rotations through m about the axes 

denoted by 2,, 2,, and 2, in Fig. 1.10, perpendicular to axis 3 and positioned at 

an angle of 27/3 to each other. 

Successive performance of two (or more) symmetry operations is also a 

symmetry operation, since in virtue of conditions (2.1) and (2.2) the object re- 

mains unchanged after the first (and each) operation. Thus, in our example, the 

twice-performed operation g, is equivalent to operation g,, which is recorded 

as £12; = g? = &. Similarly, g:g, = g;, etc. (It is implied that at action 2,g, 

operation g, comes first.) Operations g; and g, are reverse to one another: 

g; = g7'; operations g3, g,, gs are self-inverse: g; = 57% 
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The symmetry operations also include the identity, or unit operation g) = 

e = 1, which transforms nothing. Geometrically, it corresponds to a state of rest 

or to a rotation through 2n about any axis and is inherent in any object, including 

an asymmetric one. Despite the apparent uselessness of the operation e it plays 

an important part in the formalism of symmetry theory. It is easy to see that the 

performance of any operation followed by the inverse one is equivalent to a 

unit operation: gg~! = e. The result of several operations may also be reduced 

to a unit operation. In our example, g,g, = e, g} = e, gi = e, etc. This, as well 

as the above-discussed general properties of symmetry, show, as we shall see 

immediately, that from the mathematical point of view a set of symmetry opera- 

tions is in line with the group concept. 

2.3.2 Group Axioms 

In mathematical theory of sets, compositions of their elements are considered 

only from the point of view of their mutual relationships. If in a set of elements 

{g1, 82, ...} four definite rules (group axioms) are fulfilled, it is called a group 

G. The group axioms are formulated thus: 

1) in G, the “group operation’ —“‘ multiplication” is defined, so that the pro- 

duct of any pair of elements g,; € G and g, € Gis an element g,, which is also 

contained in G, 

8:8) = 8% | G; (2.22) 

2) for any elements of a group the multiplication is associative, 

&(8 481) = (8:8))81; (2.23) 

3) there is a unit element e € G such that for any g, € G 

€8;= 81; (2.24) 

4) for any g; € G there is an inverse element g7', so that 

8:8; |= e. (2.25) 

From the set of axioms it follows that the unit element is unique and eg, = g,e, 
and also that the inverse element is unique, and g71g,= g,g7'. 

From the above-discussed properties of symmetry transformations (21) G2) 
and the examples it follows that their set satisfies the group axioms, i.e., a set of 
symmetry operations forms a group.* A product of the elements of group 28; 

* According to the traditional nomenclature symmetry operations g, are “elements of a group’’, 
mathematically speaking. At the same time crystallographers make wide use of the ““sym- 
metry element’’—axes, planes, etc.—invariant geometric forms associated with the relevant 
Operations. One should take care to make distinction between these terms and to use them 
correctly. 
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is always an element of a group, but the result, generally speaking, depends on 
the sequence of the elements, 

8:8) F 8 j8i- (2.26) 

When applied to symmetry operations, it means that if their order is changed 

(firstly either g, or g, is performed), the resultant operation may prove to be 

different. In so-called commutative (or Abelian) groups the result is independent 

on the sequence of the operations 

§:8; = 88:- (2.27) 

Thus, the theory of symmetry is actually that of symmetry groups; it makes ex- 

tensive use of the mathematica] techniques of abstract group theory, but assigns 

a geometric or physical interpretation to each element of the group. 

The crystallographic groups have definite designations, which will be dis- 

cussed in more detail further on. Thus the symmetry group of the shape of quartz 

(Fig. 1.10) is denoted by 32 (which is read “‘three-two’’) or D, (D-three). 

2.3.3 Principal Properties of Groups 

Apart from the symmetry groups there are various other groups with a different 

concrete meaning of the elements and operations (for instance, a set of real 

numbers with group action—addition, sets of permutations, etc.). If the geomet- 

ric, arithmetic, physical, etc. meaning of the group elements is not indicated, 

then the group G is called abstract. 

A group may contain one, several, or an infinite number of elements. The 

order n of a group is the number of its elements. A group is called finite if n is 

finite. Thus, group D; = {g) = e, 81, 82, 83, 24 Zs} has order n = 6. 

An extremely important concept in group theory is isomorphism. If mutually 

unique (one-to-one) correspondence can be established between the elements of 

two groups so that to the product of any two elements of one of the groups there 

corresponds the product of the respective elements of the other, these groups are 

called isomorphous. Thus, groups G = {g, g2,...,g,} and H= {h, kh, 

...,A,} are isomorphous, 

God, ifg,coh, g,oh, 218; hjhy. (2.28) 

If two groups are isomorphous, their orders are the same. For instance, the 

groups of rotations of space through angles 2x/N are all isomorphous to a 

group of m complex numbers exp (2min/N) (O<n< N), in which the group 

operation is complex multiplication. 

Isomorphous groups are, from the standpoint of group theory, realizations 

of one and the same abstract group. Therefore regularities established in 
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abstract groups hold good for all concrete groups isomorphous to them, and this 

is precisely where the generalizing value of group theory lies. 

Since all the regularities reduce to the law of multiplication of elements, the 

properties of the abstract group G are completely determined by its multiplica- 

tion table, which is also called Cayley’s square. For a finite group, this table 

has the form 

£1 B20 or Gs 

81 | 8t = 8182 -» B18n 
2 

2. | 8281 BF +» B28, 
(2229) 

oh lee, Sw ese ee 

Since g;g; = g;, table (2.29) will be assigned if it is indicated to which of the 

elements g,, ... , g, each of the n? elements g,g, is equal. For instance, for the 

above-discussed group 32 (2.21) the multiplication table is (the operation given 

in the column is performed first, then the operation in the row) 

ss par ee tr Fe 

a ak ial Sala: Sle? 4 ll Fc 

Se ae Oe a eee 

SERS Saas ores ee (2.30) 

DTP Ie De BS 

Sy Nhe eee eek eee 

ath 2h. P22 Stet Senne 

In symmetry groups their elements—operations—have a concrete geometric 
meaning. As we shall see below, some distinct symmetry groups, i.e., those dif- 
fering geometrically (for instance in one of them g, is a reflection, while in an- 
other, a rotation through m), may have the same multiplication table, i.e., be 
isomorphous. 

Two groups G and H may be in unidirectional correspondence, which is 
called homomorphism and which is not so complete as isomorphism (2.28) 

Bi ji 

N N\ 
G— H, 2, >h,, 2g), > h;, 8,2), > hih, (Sete See ye (231) 

A Pal 

og 

Six 2 
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Group G is of a higher order than H. Several elements g,,, g,, ... , 2, € Gare 

mapped onto one element h, € H, but the group operation is preserved. For in- 

stance, the following mapping of group 32 (2.21) onto the group of numbers 

{1, —1}: 20, 21, 82> 1, 83, Z4, 8s > —1 is homomorphous with the group 

operation, which is the multiplication of these numbers. 

Let us briefly consider some other concepts of group theory. 

2.3.4 Cyclic Groups, Generators 

If a group G contains an element g such that its powers g’ exhaust all the ele- 

ments of the group, i.e., 

G= {g, ee £.<+ 8” = e}, (2.32) 

such a group is called cyclic, and its order is equal to n. Such are all the sym- 

metry groups of rotation through 2/n, which are denoted by C,. Such an ele- 

ment g,, whose powers are the other elements of the group, is called a generating 

element, or a generator. If the group is not cyclic, one can select several elements 

in it, whose powers and products yield all the n elements of group G. 

The definition of a group by a multiplication table (2.29) is pictorial, but 

redundant. Using generating elements and assigning the defining relationships 

between them, we also obtain a complete description of the group. Thus, for 

group 32 (2.21) the generators may be g, and any one of g;, g,, g;; the defining 

relationships are as follows [cf (2.30)]: 

81 = 83 = (£183) =e. (2.33) 

2.3.5 Subgroup 

If it is possible to choose, from the elements g, (i = 1, ... ,n) of group G, some 

subset of elements g,(k = 1,... , my, nm, <n), which itself forms a group G’, 

i.e., which satisfies all the group axioms (2.22-25); such a subset is called a 

subgroup of group G, which is recorded as G’ C G. 

For instance, group 32 = D,(2.21), (2.30) has subgroup 3 consisting of three 

elements: gy, g,, and g,, which is a group of rotations through 2n/3 about the 

vertical axis. The group contains still another subgroup, namely subgroup 2 of 

rotations through m about the horizontal axis: go, g3 (Or g4, OF gs). 

Some groups have no subgroups, except trivial ones: group e — G (of order 1) 

and the group itself: G C G. 

The order of subgroup n, is the divisor of the order of the finite group n 

Wig = p: (2.34) 

p is called the subgroup index. 
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One can say that group G > G’ isa supergroup of G’ or that Gis an extension 

of group G’. 

2.3.6 Cosets, Conjugates, Classes, Expansion with Respect to a Subgroup 

Let G’ be a subgroup of G, G’ Cc G. If element g; € G is not contained in the 

subgroup G’, we can form coset g,G’ (left), or G’g; (right) which consists of all the 

products g,g; (or gig;), where g; runs through the elements of G. For instance, 

in group 32 (2.21) one can take G’ = {gp, g1, g2}, and then the left coset g,G’ will 

consist, according to the multiplication table (2.30), of elements {g;, g4, gs} ,and 

group G can be expanded with respect to the subgroup G’ by representing G in 

the form of the “‘union’’ (symbol U) of the cosets of G’ 

G=g2,G' U 2G’ U... U g,G’ (2.35) 

This formula can also be regarded as an extension of the group G’ to G. Note 

that, with given G and G’, the systems of cosets {go, 2), ... , gp} can be chosen 

in different ways. 

An element of group g is said to be conjugate to element g, if G contains an 

element g, such that 

Se = 87 '8:8)- (3.36) 

Thus, in group 32 elements g; and g, are conjugate: g31g,g, = g,. If we fix g, 

and take all g; € G in (2.36), then a collection of (distinct) g, forms a class of 

conjugate elements. Group 32 has three such classes: {go}, {91, 22}, {23, Za, Zs} - 

Subgroup H of group G is called an invariant subgroup or a normal divisor 

if element h, = g;'h,g,; © H for any g; © G and h,, h, © H,ie., if H forms a 

class of conjugate elements in G, 

H= gable; (2.37) 

In group 32, subgroup {e, g,, g.} is normal, while {e, g;} is not. 

The normal divisor H of group G is used to introduce the factor-group con- 

cept. We form cosets g,H(= Hg;,) by virtue of (2.37). A factor group is denoted 

by 

G/H (2.38) 

and is a group whose elements are the cosets themselves together with 
H = g)H. The multiplication table for a factor group, with due regard for the 
rule of class multiplication, 

(¢:H) (¢,H) = g.g,H, (2.39) 

has the form 
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2 oH wate gpl 

SoH | gsH ...  8o8,H (2.40) 

Belt | eiaall °. Mei: 

The order of a factor group is equal to the index of H in G. The factor-group 
concept is used in analyzing the relationship between space and point symmetry 
groups and in a number of other cases. 

2.3.7 Group Products 

Two groups H and K, of which all elements, except the unit element A, = e = 

ko, are distinct, can be arranged into new groups G. 

Group G = H ®& Kis called the external direct product of H and K if each 

element g € Gcan be written as the product g = hk. The multiplication law is 

hig; ® hygs = hihygj81. (2.41) 

Both initial groups are invariant subgroups, i.e., normal divisors of the newly 

formed group G. 

Group G = H © Kis called the semidirect product of groups H and K if all 

g can be expressed as g = hk, kH = Hk. 

The multiplication law is 

hig, © hg; = hj(gjhygj") § 81+ (2.42) 

In this case the invariant subgroup—the normal divisor of G—is only subgroup 

H (it stands first in the semidirect product). 

New symmetry groups can be obtained by using direct or semidirect products 

and also by considering the subgroups of these products. Let us discuss the fol- 

lowing example. We take a group of one-dimensional translations 7, on a plane. 

This group is infinite but can be assigned a basis {0, t}, where ¢ is a translation 
whose repetition assigns the other elements of the group: 2t, 31, ... (Fig. 

2.11a). Let us form its semidirect product with the point group of reflection 

M = {e, m}, so that the line of reflection is parallel to the translation axis (Fig. 

2.11b). This product is 

G=17,M = (0,1, 21,...}@ {e, m} = {0e, te, 2te, ...., Om,,tm, 2tm,...:.}. 

(2.43) 

Each of the initial groups 7, and M can be called a trivial subgroup (divisor) 

of the new group. The new group 7, © M (Fig. 2.11c) contains a new element 
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eC ee et er 

Fig. 2.1la-d. Formation of a product of groups and singling out of a nontrivial subgroup from 

it. (a) Translation group of an arbitrary figure; (b) reflection group; (¢c) their product (sym- 

morphous group); (d) nontrivial subgroup of the product: the glide-reflection group (non- 

symmorphous) 

tm = a, a glide—reflection operation. It turns out that in this group we can now 

isolate a subgroup which does not coincide with its trivial subgroups T, and M. 

This subgroup is: A = {0e, 2te,..., Oa, 2ta,...} (Fig. 2.11d). Thus, new 

symmetry operations of the type a = tm, obtained by composing different geo- 

metrical operations—elements of both initial groups T and M—can exist inde- 

pendently within the framework of the new group, the nontrivial subgroup 

A CT, © M of the product of the two groups. In crystallography, groups of 

the type T,; © M, obtained as group products, are called symmorphous, and 

their nontrivial subgroups of the type A, nonsymmorphous groups. 
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2.3.8 Group Representations 

Each group G is characterized by the multiplication table of its elements g,. If 

the elements are represented by some numbers, symbols, functions, etc., which 

have an identical multiplication table, this is an exact, or faithful, i.e., isomor- 

phous, representation of group G. In a homomorphous mapping, G > H, the 

order of the group of representation H is less than that of G and is its divisor. 

In group theory in general, and in the theory of symmetry groups in particular, 

the main role is played by representations I of groups G by square matrices 

M(G), 

4, G2 a, 

He Ce i. a 
MGS = YUCE no tan): (2.44) 

ay a,2 =e ann 

where the a;,, are real or complex numbers. To the multiplication of elements G 
there corresponds multiplication of matrices, which is performed according to 

the matrix multiplication rule 

pa Dy Oie = Crx- (2.45) 
J 

Matrix multiplication is governed by group axioms. The unit element is repre- 

sented by a unit matrix, for which a,, = 0, a, = 1. A trivial representation of 

any group is the representation of all its elements by unity, i.e., by a matrix of 

order one, M = a,;,; = 1. Homomorphous representations G > H are possible 

where the order of group H, represented by J, is less than that of group G. An 

exact-isomorphous representation is possible, where G <> H. 

Thus, a point group can be represented by a set of three-dimensional matrices 

D, = (a,;),(2.6) of transformations of coordinates on the basis (X;, X2, X3); each 

of the matrices D, corresponds to a definite operation g, of this group (so-called 

vector representation, of dimension three) 

xe > (Ais), eo {21, Z2) --- }o {D,, D,, ix} py (2.46) 

According to the matrix multiplication rules the multiplication table of these 

matrices corresponds to that of elements g,. Different representations of the 

same group G can be obtained by choosing a certain matrix S and forming pro- 

ducts SDS—! with the initial representation. If it is found that for two representa- 

tions T’,(D,, D2, ...) and ’,(D,, D2, ...) the condition 

SD,S~ = Di (2.47) 

is fulfilled, these two representations are called equivalent, while S in this case 

defines the linear transformation of the basis. 
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Any square matrix can be represented thus: 

ale ene . (2.48) 

where A, and A, are square matrices. A transformation by S may result in such 

matrices in which B,, B, = 0, and the block-diagonal matrices A, and A, have a 

smaller dimensionality. This kind of representation is called reducible. 

If this cannot be achieved by any transformation S, i.e., B; # 0 or B, # 0, 

the representation is called irreducible. 

If three-dimensional matrices can be reduced in this way to matrices com- 

posed of two- or one-dimensional irreducible blocks A, the group will be re- 

presented more economically. For instance, there is the following exact two- 

dimensional irreducible unitary representation for group 32 (2.21, 30): 

&o 81 2 §3 

il 4 0 1] i “a l i 

LO 1} |-1 —1} l 0; |-l —| (2.49) 

&4 §s 

[/—1 a Fi ld, 

20 bea 0| 

and a one-dimensional representation, but no longer exact (homomorphous 

mapping of the group): 

ay. £4. 83 84 8s (2.50) 

Cee, eee eee sae 

The sum of the diagonal elements—the trace of the representation matrix 

d 4 = x(g) (2.51) 

—is called the character of the representation of the group element. It is easy to 

see that y(g,)) determines the dimensionality of the representation. The char- 

acters of all the equivalent representations are the same. One and the same group 
may have several irreducible representations; for finite groups their number is 

equal to the number of classes of the conjugate elements in the group. 

An analysis of symmetry group representations suggests a number of conclu- 

sions concerning their relationships. At the same time it enables one to reveal the 

deeper meaning and regularities in the symmetry concept itself. Thus, the group 

of transformations (2.1), which is governed by the group axioms (2.22-25), 



2.4 Types of Symmetry Groups and Their Properties 53 

was introduced in relation to the symmetry condition (2.2) for self-coincidence 
of a function upon transformation. It is, however, possible to perform group 
transformations on any asymmetric objects or functions and see which sym- 
metric properties they contain (we shall return to this in Sect. 2.9). 

Since group representations contain concise information about all their pro- 
perties, they serve as an important tool for investigating the properties of sym- 
metric physical systems: atoms, molecules, crystals, and the spaces of physical 
values both in classical and quantum-mechanical problems. It is possible, not 

only to analyze the “‘static’’ symmetry of these systems or spaces, but also to 

investigate their possible changes in dynamics or under external effects. The 

representations of symmetry point groups will be discused in Sect. 2.6. 

2.4 Types of Symmetry Groups and Their Properties 

2.4.1 Homogeneity, Inhomogeneity, and Discreteness of Space 

Groups of space symmetry can be divided into types which are defined by the 

homogeneity or inhomogeneity of space and its subspaces of smaller dimen- 

sionality, i.e., planes or straight lines in three-dimensional space. 

The concept of space homogeneity can be formulated for two cases— infinite 

continuous space and infinite discrete space. Examples of the former are an 

empty Euclidean space and an anisotropic crystalline substance considered as a 

continuum from the macroscopic point of view. An example of the latter is a 

crystalline substance considered at the microscopic level; its atomicity is 

actually expressed by the geometric condition of discreteness. 

In both cases the space consists of an infinite number of symmetrically equal 

points. But a continuous space is a continuum of only such points: all its points 

are symmetrically equal. In a discrete space, not all the points are symmetrically 

equal. 

The geometric postulate of microhomogeneity (“discrete homogeneity’’) can 

be formulated as follows: 

a) there exists a sphere of a radius R, which may be chosen at any place in 

space; there will be within it a point x’ symmetrically equal to any preassigned 

point x of space (homogeneity); 

b) there exist in space such points (at least one point x) that around them, 

within a sphere of radius r, there is not a single point symmetrically equal to them 

(discreteness). 

The requirement a) means that there is an operation g[x] = x’ satisfying 

the symmetry condition F(x) = F(x’) (2.1, 2), and 

jz —(x’— x)|< R, (2.52) 
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where f is an arbitrary vector (Fig. 2.12a): it may be equal to zero or be infinitely 

small, or indefinitely large, and arbitrarily directed. Since there is an indefinitely 

large number of symmetrically equal points, there is also an indefinitely large 

number of operations g, and therefore G > g is a group of infinite order. Ac- 

cording to the general definition of symmetry (2.1, 2), each operation g trans- 

forming a given point x to x’ also transforms any other point of space to one 

symmetric to it, i.e., it transforms the entire space into itself. 

Fig. 2.12a,b. Homogeneity sphere (a) and dis- 

creteness sphere (b) 

The requirement 5) is written 

[peta (2.53) 

where x is a certain point, and x’’ is not derivable from x by any operation 

g & G (Fig. 2.12b). 
Both these requirements, taken together, can be reformulated as a require- 

ment for the finiteness of the fundamental (independent) region, or stereon. Such 

a region is a part of space consisting of symmetrically unequal points? (see Sect. 

2.5). Then its finiteness—it is not infinitely small—ensures the fulfillment of con- 

dition 6). On the other hand it is not infinitely large and hence there are 

points outside it which are symmetrically equal to the points within the region 

[(condition a)]. 

Since within a sphere r with center at point x there are no points symmetri- 

cally equal to it, then always 

Rr) 2 (2.54) 

If we take any point, then, within a sphere R, contacting it, there is a point equal 

to it, and therefore the distance d between the closest equal points 

d<2R. (2.55) 

® Terms “‘fundamental cell’’, or ‘‘asymmetric unit’’ are also used—see Sect. 2.5.5. 
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This means that any equal points can be joined by a broken line with vertices at 

the equal points, whose links are less than 2R. 

We have considered the (r, R) conditions (2.52, 53) and their corollaries (2.54, 

55) in a space with symmetrically equal points, which thus can be described by 

some group G of infinite order. 

It is worth noting that there may exist point systems satisfying the (r, R) con- 

ditions, but not describable by any group. Let us consider, for instance, a system 

of points—centers of molecules in a liquid. This is a discretely homogeneous 

(r, R) system which, incidentally, has approximately the same values of r and R 

as a crystal. A gas is also a homogeneous system, but with R larger than in a 

liquid. However, a symmetry group cannot be assigned in these systems and, 

knowing the position of one point, we cannot find those of the others. 

For (r, R) systems described by a group we defined the concept of symmetric 

equality of their points. In (r, R) systems which cannot be described by a sym- 

metry group, it is also necessary to indicate in what sense the points are equal. 

One can speak only of geometric points, as in the example with the centers of 

molecules in a liquid. In the case of a liquid crystal one can already speak of 

“oriented”’ points satisfying the (r, R) condition, since the elongated molecules 

are here approximately parallel to each other. 

2.4.2 Types of Symmetry Groups and Their Periodicity 

A homogeneous discrete symmetric space is described by the (r, R) condition 

(2.52, 53) and by a group G. We have not yet established, however, which parti- 

cular operations g; € G are possible here, and which of them are obligatory. 

The existence of translations is clearly consistent with the (r, R) condition. 

It would suffice if the largest translation a, were smaller than 2R (2.55). But, as 

we shall see below, the inverse statement is also true: group G with the (r, R) 

condition always contains a translation subgroup T 

Gaia: (2.56) 

This is Sch6nflies’ theorem. 

In a continuous homogeneous space conditions (2.52, 53) become 

R->0,r->0. (2:57) 

This means that the fundamental region shrinks to a point. The subgroup of dis- 

crete parallel translations (2.56) turns into a continuous group of infinitesimal 

translations T, (t > 0), i.e., all the points of a continuous homogeneous space 

are translationally equal. As in the case of a discrete space, group G > T, may 

also contain other symmetry operations, including infinitely small rotations in 

a space of m > 2 dimensions. 

A homogeneous space has discrete or infinitesimal translations in all of its 

m dimensions. Cases are possible where the space is inhomogeneous, but in a 
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subspace of n (< m) of its dimensions the homogeneity condition is fulfilled 

[at n = 2 or | the spheres mentioned in the microhomogeneity postulate (2.52, 

53) are replaced by circles and segments, respectively]. If a space has no homo- 

geneous subspaces (n = 0), it is fully inhomogeneous. 

The types of symmetry groups corresponding to these cases will be denoted 

by G”, m > n, which implies, unless otherwise stipulated, discrete groups, i.e., 

groups periodic in dimensions. Thus, in three-dimensional space, G3 are space 

groups; G3, layer groups; G}, rod groups; and Gj, point groups. Finite (in all 

dimensions) figures in three-dimensional space, i.e., figures occupying only part 

of the space, are therefore inconsistent with the homogeneity condition and 

hence are described by groups G3. Groups G? are used for describing figures 

infinitely extended in one direction and finite in two directions, and G3, for figures 

infinitely extended in two directions and finite in one direction. Groups G3 

describe crystals’ as infinite objects—structures periodic in three dimensions. 

As we shall see below, in groups G3 at least one plane remains invariant, 

i.e. it transforms into itself in all symmetry operations; in G} one straight line, 

and in G3 one point. Such planes, lines, and points are called singular. In two- 

dimensional space, groups G3, G?, and G3 are possible, and in one-dimensional 

space, G} and Gj}. 

If a group possesses operations of the second kind, it is called a group of the 

second kind G"; if a group has only operations of the first kind, it is called a 

group of the first kind G’. 

The following is true: each group G necessarily contains a subgroup of all of 

its motions; in particular, G™ contains subgroup G' 

Gua GAG LG eG auc (2.58) 

Indeed, G* consists only of motions. Any group G™ also contains operations of 

the first kind g" (at least e = g", but there may be other gas well). Then, by com- 

piling a multiplication table for G' = {... gl ..., ... gf}... }, due account being 

taken of (2.17, 19, 20), we obtain 

gi pot ye 

gt Soe oe ee (2.59) 

ye gee! 

We can see that all the g} form group G'; the upper left-hand square retains 
only the results of their interaction { ... g}...}. The elements g! do not form a 
group, since their products gf gf = {... gi...} eG. 

7 Naturally, when considering the atomic structure of crystals we abstract ourselves from the 
boundedness of a piece of crystalline substance in space and assume it infinitely extended, 
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G* is a subgroup of G™ of index 2, since to each operation g} © G there cor- 
responds an operation gl! = gigll. 

Thus, from (2.58) it follows that in order to establish whether some group or 
other has a translation subgroup, it will suffice to ascertain that its motion sub- 
group contains a translation subgroup 

ase Ge Drikedts x. ax t2} (2.60) 

Another point is as follows. Operations g; of groups G describing a homo- 

geneous space may either themselves be rotations of both kinds, i.e., simple or 

inversion Ones, or contain rotational components of both kinds (screw axes, 

glide reflections), but they may not contain these components (translations). 

With products of operations g;g,, which have rotations or rotational com- 

ponents, these components act exclusively on one another. In this case, if trans- 

lational components are present as well, they also act, but yielding only parallel 

displacements of points of space. Thus, rotations (rotational components) of 

both kinds of groups G of a homogeneous space themselves form a group 

G.= K. (2.61) 

We shall see later that it is a crystallographic point group. 

Let us now consider space groups of different dimensionalities. 

2.4.3 One-Dimensional Groups G' 

If a one-dimensional space, which is a straight line, is inhomogeneous, it has a 

special point and the corresponding groups are Gj. Here, the only symmetry 

operation, with the exception of identity g) = e, is inversion I (which is a re- 

flection m in a point). So, only two groups of type G} exist: 1 and 1. 

In a one-dimensional homogeneous space, for any point A in an adjacent seg- 

ment of length 2R there is, by (2.52), a point A’ symmetrically equal to it with 

respect to group G! (2.54) (Fig. 2.13a). But this implies parallelism, i.e., transla- 

tional equality of A’ and A and the existence of an operation of translation ¢ along 

a straight line. A repetition of this operation will thus give an infinite row of re- 

gularly spaced points (Fig. 2.13b). The corresponding group is infinite, cyclic, 

Merete ee oon ih ssl of ocece Gil 5 sca) Vo Le Ol eters CO 

t Fig. 2.13a,b. One-dimensional 

space. (a) Point A’ symmetrically 

A° A A A" ae equal to A; 

b t t t t (b) origin of a translation group 
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Besides group 7, = G!, in one-dimensional homogeneous space there exists 

one group G": in addition to ¢ it contains elements I. 

Group 7), which is regarded as an abstract group, is unique. But from the 

standpoint of metric properties of space, taking into acceount th magnitude of 

period t = a, it has an infinite number of realizations, and each of them can be 

obtained from any other by a homogeneous affine deformation—extension or 

contraction of a straight line. Besides, each group 7, > ¢ contains a subgroup 

with translation pt, p being an arbitrary integer: T, > T,,. Abstractly, they are 

ismorphous: T, <= T,,. If we neglect the discreteness requirements (2.53), the 

straight line is a continuum; it also admits of infinitely small translations t > 0, 

to which a continuous limiting group 7, corresponds. Metrically, its subgroup is 

any SLOUD else aon oe 

One-dimensional space is either inhomogeneous or homogeneous, and hence 

it has no other groups except G} and G}. 

2.4.4 Two-Dimensional Groups G? 

These groups are groups of transformations of two-dimensional space, which is 

a plane, into itself. If this space is inhomogeneous, it contains a singular point, 

and the groups are G3 point groups. 

Let us choose in this space some direction and assign along it an operation 

(and hence a group) of one-dimensional translation ¢ (Fig. 2.14a). Thus, there 

exist groups of type Gj. There is no periodicity along any other direction. Along 

the singular direction t microhomogeneity conditions (one-dimensional) (2.52, 

53) hold true. An example of such a space is given in Fig. 2.14b. 

Fig. 2.14a,b. Two-dimensional space. 

(a) Group of one-dimensional translation 

in it; (b) example of such a space with 

one-dimensional periodicity 

We shall now assign, in a space m = 2, two noncollinear vectors of transla- 
tions ¢, and f,. In this way we obtain group T; of type G2, which will transform 
any point into a twice-periodic array of points—a plane net or a two-dimensional 
lattice (Fig. 2.15a). This space is homogeneous and discrete. 
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a b 

Fig. 2.15a,b. Twice-periodic two-dimensional space. (a) Translation net; (b) proof of existence 

of two noncollinear translations in a homogeneous plane 

Let us consider the question whether, besides G3 > T,, there may be some 

other symmetry groups G? containing no 7, and transforming a homogeneous 

plane into itself. We shall prove that this is not so. According to (2.58) it is suffici- 

ent to convince oneself that there are no such groups among the motion groups 

G". By Chasles’ theorem (Fig. 2.3) there could be (if they exist) groups containing 

only rotations. 

We start with two arbitrary symmetrically equal points A and A’ of two- 

dimensional space “‘rotated”’ through some angle and find their Chasles center 

O (Fig. 2.15b). Let us take some other Chasles center O’ symmetrically equal to 

O and perform a rotation through the same angle g about it. Then A will trans- 

form into point A”. Points A’ and A” are turned by the same angle g relative to 

A; hence they are parallel, and there is a translation t, between them; so there 

exists an infinite row of such points. Now take some point symmetrically equal 

to A’ away from the row A’, A”,.... If it is parallel to A’, as, for instance, B, 

then there is a translation f, noncollinear with t,, which proves the theorem. On 

the other hand, if a chosen point, for instance B’, is turned relative to A’, then 

there always will be a Chasles center upon rotation about which point B’ will be 

transferred to point B” parallel to A’. Thus, in this case, too, there is a transla- 

tion f, i.e., it exists in all cases. 

As we shall see in Sect. 2.7.2, T, contains an infinite number of translations, 

which are generated by two basic ones: tf, and f). 

Consequently, groups of transformation of homogeneous two-dimensional 

space into itself are groups G3 D 7>, i.e., they always contain a two-dimensional 

subgroup of translations T, with a basis {t,, t,}. This is Sch6nflies’ theorem for 

two-dimensional space, according to which any (r, R) system whose points are 

equivalent with respect to some group possesses a subgroup of translations. 

This can also be proved by another method, which will be useful in consider- 

ing three-dimensional space. 
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Fig. 2.16. The proof of the finiteness of the angle of 

rotation about a point of the (r,R) system 

From the (r, R) condition (2.52, 53) it follows that rotation angles are finite. 

Indeed, taking on a plane an axis (point) N (Fig. 2.16), we find by (2.52), in a 

circle of radius R contacting it a point N’ symmetrically equal to N. Another 

point N”, which is obtained from N’ by rotation about N, must, by (2.53), lie 

outside the circle r around N’. This gives the following condition for the rotation 

angle: 

g>r/2R (2.62) 

and the order of the axis 

N < 4nR/r. (2.63) 

Thus, by the action of axis N it is possible to obtain from any point A a finite 

set of rotated points symmetrically equal to it, and by the action of an identical 

axis lying in a different place another set of points rotated through the same 

angles. Consequently, the points of these sets are pairwise parallel, and hence 

there exists a translation. 

We shall now consider homogeneous nondiscrete (continuous) groups G’. 

Here, infinitesimal translations in one or two directions are possible, i.e., semi- 

continuous groups 7,,,, and continuous groups 7,,,,. A two-dimensional space 
with a group G3 > T,,,, may have points (axes) of rotation of infinite order, 

i.e., a group T7,,,,00 is possible. If it is supplemented by reflections, we obtain 

a limiting group T,,,,00m, which describes an “empty” two-dimensional 

space; its subgroups are any groups G’. 

Thus, any group of transformations of a homogeneous plane G? D T, and 

the two-dimensional groups belong to types G3, G?, G3. 

2.4.5 Crystallographic Groups 

The rotation angles g (2.62) in two-dimensional discrete space are finite, and 

the order of the axes is N < 4m R/r (2.63). 

But the presence of a net structure in such a space, which is associated with 
the translation group T, C G3, leads to a stronger restriction, one of the most 
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important in crystallography. It states that in crystal only operations of rotation 

symmetry (simple, screw, or mirror rotations) of the Ist, 2nd, 3rd, 4th, and 6th 

order exist. Let us prove this. 

Consider a plane net and the possible rotations of the plane which bring the 

net into self-coincidence. The rotational points (axes),°® if they are present, them- 

selves are points of this plane. The translation operations ¢f, and f, bring all the 

translationally equal points, including the rotational points (axes), into coin- 

cidence; therefore, the points form a net. We choose in the net a number of 

such points for which the distance between them is the shortest. Let us consider 

the action of some rotation point N from this row on the two points N’ and 

N” (Fig. 2.17). If N = 2, then N will transfer N’ into N”’, and vice versa, i.e., 

the existence of axis 2 is possible. If N = 3 (or 6), its action from N’ and N” 

will produce points 3; the shortest distance between the closest points in this 

whole set is the same and equal to a. Thus, the existence of axes 3 and 6 is also 

possible. If N = 4, there arises a point 4 with a diagonal distance from N’ and 

N” of a,/2, which is greater than a. It means that the existence of axis 4 does 

not contradict the convention adopted. But if N = 5, the distance between the 

points 5—S produced from N’ and N” is less than a. This contradicts the initial 

assumption that a is the shortest distance in the net. Consequently, axis 5 is not 

possible. The same will occur for any N > 7. Thus, groups G3 D T may contain 

translation operations exclusively of the Ist, 2nd, 3rd, 4th, and 6th order. 

Fig. 2.17. Proof that in a_ two- 

dimensional net there can exist only 

crystallographic rotations of order 

eae Oln 6) 

This proof has been carried out for two-dimensional groups, but it is also true 

for the three-dimensional case. The point is that the discrete groups G3} = @, 

which describe a three-dimensional crystal space, always contain a three- 

dimensional subgroup of translations T;, and since T; D 7T;, then ® D T; D 

T,. The three-dimensional group T; derives a space lattice from any point, and 

the lattice contains two-dimensional nets described by group 7>. If the lattice 

contains rotation axes N, they are necessarily positioned perpendicularly to some 

plane net of the lattice. The rotation about the axis brings the net into self-coin- 

cidence; if there were no such coincidence the axis would not be an axis of sym- 

metry. But these axes can be, as we have seen, only of the Ist, 2nd, 3rd, 4th, 

and 6th order. 

8A rotation point in two-dimensional space about which a plane is rotated (it is also called 

“rotacenter’’) is an analog of rotation axes in three-dimensional space. 
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The same is true for the axes N and N,. Being projected onto the net, any axis 

yields rotational points, and hence they can be of the orders indicated above. So, 

only one-, two-, three-, four-, and sixfold axes are possible in crystals. Among 

the symmetry groups the term “crystallographic” is attached to groups con- 

taining only some of the axes of these orders: simple, screw, or inversion, and the 

axes themselves are called crystallographic. Note that discrete groups G3, G3 = 

@, as wellas G3 are crystallographic in their intrinsic properties, since they contain 

a subgroup 7;, i.e., they do not include noncrystallographic groups. Other types 

of groups, however, may contain both crystallographic and noncrystallographic 

groups. Thus, the number of point groups G} is infinite, but there are 32 crystal- 

lographic groups K among them. They coincide with the rotation groups or 

rotational components (of both kinds) of a homogeneous discrete three-dimen- 

sional space G,,, (2.61). 

2.4.6 Three-Dimensional Groups G* 

By analogy with the above discussion it is easy to infer that apart from groups 

G3 (point groups) there exist, in inhomogeneous three-dimensional space, groups 

G? with a singular direction—one-dimensionally-periodic groups—and groups 

G3 with a singular plane—twice periodic. Indeed, by adding a third dimension 

to groups G3 without making this dimension periodic, we obtain groups G3. If, 

along some direction noncoplanar to the singular plane, we assign a translation, 

groups G3} = @ will be obtained. These are Fedorov space groups. Parallel to the 

singular direction in G}? the condition of one-dimensional homogeneity is ful- 

filled, and parallel to the singular plane in G3, the condition of two-dimensional 

homogeneity. 

The question arises, again, whether the groups G3, which contain a translation- 

al subgroup exhaust all the groups of symmetric transformation of a homogene- 

ous discrete three-dimensional space into itself. This is proved in SchO6nflies’ 

theorem. We shall not give the proof in full, but shall indicate its main stages. 

It is required to establish whether there exist, under the (r, R) condition (2.52, 

53), groups of motions G} without translations, i.e., consisting only of simple 

and/or screw rotations. 

For simple rotations, we can arrive at condition (2.62) g > r/2R precisely as 

was discussed for the two-dimensional case (Fig. 2.16), this time not with a 

circle, but with a sphere 2R contacting the rotation axis. 

The case of screw rotation is more complicated, because this motion has a 

translational component displacing any point A along the axis of screw rotation. 

This prevents direct utilization of the r condition (2.53), as in (2.62). Therefore a 

combination of screw motions is considered. 

If the screw axes are parallel, then by (2.55) the distance d between the closest 

of them is less than 2R. Let us consider screw motion # along one, and reverse 

motion i#~' along the other. This will bring any point back into the plane per- 

pendicular to these axes. If the angular components g, and g,-, are added 
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together, this will yield a simple rotation through 29,, and then, according to 
(2.62), 

Qu > r/4R. (2.64) 

If they compensate one another, this will already give a parallel translation in 
the plane indicated. 

The most complicated case is when the axes of screw motions are nonparal- 
lel. This case is analyzed by Schénflies and other authors [2.2-6] by considering 
the displacements of some point A under the action of some complex operation 
(“commutator”) w = uv’'u'-!v"’"—! composed of screw rotations. It is found that 
in this case, too, condition (2.62) is fulfilled. So, in all cases of simple or screw 
rotations g > r/4R (2.63, 64). It follows that a rotation group (a group of 
rotational components G,,, of the group G’) of three-dimensional discrete homo- 
geneous space is finite. Then, obtaining from point A a set of points symmetri- 
cally equal to it with a finite number of different orientations, we shall have an 

identical set, with the same orientations, at a different place as well. But this 

will imply parallelism of the points of these sets, i.e., the existence of transla- 
tions. 

Reasoning similar to that we used for the two-dimensional case suggests that 

that there are three noncoplanar translations. This proves Schénflies’ three- 

dimensional theorem 

G3 = © D> f;{h, to, t,}. (2.65) 

Thus, symmetry groups of three-dimensional homogeneous discrete space— 

Fedorov groups—are thrice periodic. Group T; transforms any point into a three- 

dimensionally periodic infinite system of points—a space lattice. 

The concrete metric values of three basic vectors of translations ft, t,, and t; 

(repetition periods) are denoted as a, b, c or a), da), a3. A parallelepiped con- 

structed on a, b, c as edges is called a repeat parallelepiped, or a unit cell. Three 

basic translations generate an infinite number of other translations of the space 

lattice (see Sect. 2.8.1). 

With infinitely small translations t in one or two directions we obtain three- 

dimensional discrete-continuous groups 73: T),4.,. T2.2,, and, with translations 

t in all the three directions, a continuous group 7,,,,,,. Groups G} D T,,,,., 

may contain axes co perpendicular to 1,73. If G} D T,,,,,,, then axes co may be 

of any orientation, 1.e., the group is T,,,,,,0000. If we also add any operation of 

the second kind (for instance, m) into it, we obtain a group of the highest sym- 

metry of a three-dimensional continuous isotropic medium (and, in particular, 

an empty Euclidean space) T,,,,,,00com. Its subgroups are all the groups G’, 

and hence, G? and G!. 

The conclusions from our consideration of symmetry groups in one-, two-, 

and three-dimensional space are summarized in Table 2.1; Table 2.2 gives the 

numbers of crystallographical groups. 



64 2. Fundamentals of the Theory of Symmetry 

Table 2.1. Types of symmetry groups 

Space 

m Inhomogeneous Inhomogeneous with Homogeneous Limiting group 

homogeneous subspace 

1 4 — GaSe i 

2 G3 GH SS) If, (BD hy T,,7,00m 

3 G3 Gil Gan Geir, T;.,rr3 C0COM 

Table 2.2. Number of crystallographic groups G” 

m 3 Z 1 0 

3 230 80 75 32 
2 — 7 7 10 

1 — — x 2 

It should be mentioned that with decreasing dimensionality m’ < m of space 

and with the same n (< m) the corresponding groups are subgroups of space of 

a higher dimensionality 

Gn’ < G™(m' <m). (2.66) 

Below we shall consider each G” type of groups separately. We also dwell on 
other possibilities of group classification, for instance by the presence or absence 
of operations of the second kind or generally some operations or other. 

2.5 Geometric Properties of Symmetry Groups 

2.5.1 Symmetry Elements 

Symmetry operations may be associated with the presence in space of certain 
points, straight lines, or planes with respect to which these operations are per- 
formed. 

Each of the symmetry operations g; © G (except the identity) accomplishes a 
transformation g,[x] = x;; it can be said that it transfers point x to point x,. 
Points of space, generally speaking, then change their positions, but some of 
them do not. The condition 

gi [x] =x,=x (2.67) 
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defines the locus of such points. Points, lines, or planes which remain unmoved 
in a symmetry operation, i.e., which satisfy condition (2.67), are symmetry ele- 
ments corresponding to this operation. 

For a symmetry group G > g, of order n one can write n equations (2.67). If 
the group is cyclic, all of them define one and the same symmetry element. This 
also refers to each cyclic subgroup of a given group—each of them defines one 
symmetry element. 

For rotation operations, the symmetry element is a straight line—the axis 
about which this rotation is performed (Fig. 2.18). This follows from the very 
definition, but can be derived formally from (2.67) with due regard for the rota- 
tion matrix (2.14). For a reflection operation (2.15), the symmetry element is a 
mirror plane (Fig. 2.6a). For an inversion, the symmetry element is a point, the 
center of symmetry (Fig. 2.6c). 

Fig. 2.18a,b. Rotation (a) and 

screw (b) symmetry axes 

For mirror (inversion) rotations, the solution of (2.67) is a single point; for 

screw rotations and glide reflections, (2.67) has no solutions. However, in these 

symmetry operations there are such lines or planes (we call them invariant) which 

are brought into self-coincidence as a whole after the transformation, i.e., their 

points x, although changing their position when transferred to x;, remain on the 

invariant line or plane. Thus, a symmetry element corresponding to a given sym- 

metry operation is a plane, a straight line, or a point which remains unmoved in 

a given operation, and, lacking these, it is an invariant line or plane which is 

brought into self-coincidence in a given operation. 

Thus, for operations of mirror (inversion) rotations (Fig. 2.5), any point 

(with the exception of x = 0) changes its position. But the axis of such a rota- 

tion, as a whoie, has been brought into self-coincidence, reversing its ‘‘ends”’ 

after this symmetric transformation—each of its points has been transferred to 
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a point of the same line. Mirror-rotation axes of even order also contain a simple 

rotation axis—an unmoved symmetry element. For a mirror rotation, the plane 

perpendicular to the axis and passing through the origin is also brought into self- 

coincidence, but to describe this operation it will suffice to indicate only the 

axis as the symmetry element. 

The symmetry elements for a translation-containing rotation are also in- 

variant; these elements are displaced along themselves. Thus, to screw rotations 

there correspond straight lines—screw axes of symmetry; they shift in them- 

selves, according to the translational component of this operation (Fig. 2.18b). 

To glide reflections there correspond glide-reflection planes, which also shift in 

themselves in the direction of action of the translational component (Fig. 2.6b). 

A symmetry group may contain one or several cyclic subgroups, and then one 

or several identically or differently named symmetry elements correspond to it. 

The set of symmetry elements of a given group characterizes it consistently 

and unambiguously. All points of space x obey operations g, € G of a given 

group, while the symmetry elements themselves are invariant sets of points. 

Then any symmetry operation which brings the symmetry element correspond- 

ing to it into self-coincidence simultaneously brings the other symmetry elements 

of identical type into coincidence with each other. In short, it can be said that 

the symmetry elements of a given group are symmetric with respect to each 

other and to themselves. 

We have considered symmetry elements for all operations of three-dimen- 

sional space, except translations. The geometric image of these operations, as 

we know, may serve as an infinite lattice of points derived from a given point by 

translations ¢,, t2, t;. Being displaced parallel to itself by any translation, a lattice 

carves translationally equal points out of the space (see Fig. 1.15). 

2.5.2 Summary and Nomenclature of Symmetry Elements 

In this book we shall mainly use the international nomenclature adopted in the 

“International Tables for X-ray Crystallography” proposed by C. Hermann and 

C. Mauguin with some adjustments. Shubnikov’s nomenclature [2.7, 8] is close 

to it. Sometimes we shall also use the widespread symbols of A. Schénflies. 

We shall consider successively all the symmetry elements corresponding to 
the various operations in three-dimensional space. We shall denote the symmetry 
elements by the same symbols as are used for the corresponding generating sym- 
metry operations, for instance m, n, 6, and 3. The symbol of one or several gen- 
erating operations also implies the corresponding group. Other nongenerating 
operations of the group (if they exist) will be denoted by the powers of the 
generating operations, for instance 3? and 4°. We shall consider all the crystal- 
lographic symmetry elements. 

Rotation axes. In rotation through an angle a = 2n/N the symbol N indicates 
the order of the axis. So these axes are denoted by the figure corresponding to 
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their order. The crystallographic axes are: 1, 2, 3, 4, and 6 (Fig. 2.19a). The 

general designation of the axis is N, which also denotes the corresponding 

group containing the entire set of operations of rotations about such an axis. 

Operation | corresponds to a “rotation” through 21, i.e., it is the identity opera- 

tion e. The rotation axes are called: a rotation axis (or simply an axis) of the 

first order, of the second order, etc., or, for short, a twofold axis, a threefold 

Fig. 2.19a,b. Crystallographic rotation (a) and inversion-rotation (b) symmetry axes and their 

action on an asymmetric figure—a tetrahedron 
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axis, a fourfold axis, and a sixfold axis. According to International Tables, rota- 

tion axes are supposed to have the following short names: 1—monad, 2—diad, 

3—triad, 4—tetrad, and 6—hexad. 

A mirror-reflection plane, or simply a symmetry plane or a mirror plane 

(Figs. 2.6a, 19b), and the corresponding operation are denoted by the letter m 

or by the symbol 2, since this operation is simultaneously an inversion rotation of 

the second order. 

Inversion-rotation axes? are at the same time mirror-rotation axes (see Fig. 

2.5), but with the unit rotation angle differing by m. Inversion-rotation axes with 

a rotational component a = 2n/N (and the corresponding operations and 

groups) are denoted by a barred figure corresponding to the rotation order: 

I, 2, 3, 4, and 6 (Fig. 2.19b).!° These axes are called inversion axes of corre- 
sponding order: for instance, the inversion axis of the fourth order, or the four- 

fold inversion axis. The most important particular case is the center of symmetry 

1, which is also called the inversion center (Fig. 2.6c, 1 in Fig. 2.19b). Mirror- 

rotation axes are called just this; they (and their respective operations and 

groups) are denoted by the figure corresponding to the order with a tilde (~) 

over them: 1, 2, 3, 4, and 6. 
Inversion and mirror rotations are related as follows: N, = Ng_,(Fig. 2.5). 

Hence for the axes I = 2,2 =~ 1 = m,3 = 6, 4 = 4, 6 = 3 (Fig. 2.19b) and for 
operations 3 = 6-!, 4 = 4-!, 6 = 6". 

Mirror rotations of even order 2N’ contain simple rotations N’ ; therefore, the 

symmetry element—axis 4 = 4 is simultaneously rotation axis 2, and 6 =3, 
aXis:35 

All the enumerated symmetry elements are inherent both in point and space 

groups. The latter also have symmetry elements with a translational component. 

Let us consider them. 

Screw axes, or, more precisely, axes of screw rotations, have an angular a, 

and a translational t, component 

a, = 2n/N, N = 2, 3, 4, 6, (2.68) 

1 i ee aleve (2.69) s N > > > > > S . 

This relationship is due to the fact that NY = 1 and 1t,%/* = (N/q)t, = t, i.e., 

there is a translation operation t along the screw axis in the lattice. Expression 
(2.69) shows that the quotient of division of the index of the screw rotation q 

by the order of axis N determines the value of t,. The general symbol of screw 

axes is V,. They are depicted in Fig. 2.20. 

° The term “‘rotatory-inversion”’ axis is also used. 

© Previously, in the Russian literature N signified a mirror-rotation axis, while inversion axes 
were not used at all. 
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Fig. 2.20. Crystallographic screw axes and their action on an asymmetric tetrahedron 
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At q < N/2 the screw axes are right-handed, and at gq > N/2, left-handed; 

at q = N/2 a, =n, clockwise and counter clockwise rotations are equivalent; 

and these axes are simultaneously right- and left-handed or, what is the same, 

non-right- and non-left-handed. The simplest screw axis is 2;. In a right-handed 

screw motion along the axis normal to the drawing (from it to the observer and 

with an counter clockwise rotation) we have axes 3,, 4,, and 6,(q = 1). A screw 

motion can also be performed by following a left-handed screw. For the left- 

handed axis 3 the left-handed rotation a, = —2n/3 can be replaced by a right- 

handed rotation a, = 2 X 2n/3, and the left-handed axis 3 is denoted as the 

right-handed 3,. Similarly, the left-handed axes 4; are denoted as the right- 

handed 4,, and the left-handed 6), as the right-handed 6,. Axis 6,-right-handed, 

contains axes 3, and 2; axis 6, = 6,—left-handed, contains 3, and 2. Axes 4, 

and 4, contain axis 2,; axis 6, contains 3,, and axis 6, contains 3,. Axis 4, con- 

tains axis 2; and axis 6, contains axes 3 and 2,. Axes 2), 4,, and 63, as was in- 

dicated, are neutral in the sense of right- or left-handedness. 

Glide-reflection planes. When a glide-reflection operation is repeated (cf Fig. 

2.11d), its translational component t’ is doubled, and the resulting translation 2r’ 

must coincide with one of the lattice periods. Such operations (and planes) are 

denoted by a, b, or cin accordance with the designation of the unit cell along which 

the glide occurs (Fig. 2.21). Thus, for operation a the translational component 

a, is equal to a/2, where a is the lattice period. Glide-reflection operations with a 

component fr’ along the diagonals of the unit cell faces are also possible: t’ = 

(a + b)/2, or (a + €)/2, or (6 + c)/2. The corresponding symmetry elements are 

diagonal glide-reflection planes denoted by n. Finally, in tetragonal and cubic 

lattices the glide-reflection operations with?’ along the space diagonals are possible 

t=—(a+5)/4, ¢t =(6+0)/4, t=(e+a)/4, t =(atb+oco)4. 

Fig. 2.21. Glide-reflection op- 

erations c, b, and n 
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=r 
sepsis ravine vidal 
7 same bea 

Fig. 2.22a-e. Graphical notation for symmetry elements. 

(a) Symmetry axes perpendicular to the plane of the drawing; (b) axes 2 and 2, parallel to 

the plane of the drawing; (c) symmetry axes parallel or oblique to the plane of the drawing 

(the straight line is mounted by a symbol distorted in perspective); (d) symmetry planes per- 

pendicular to the plane of the drawing; (e) symmetry planes parallel to the plane of the drawing 

The corresponding symmetry elements are diamond glide-planes d. The graphical 

notation of all the symmetry elements is given in Fig. 2.22. 

We know how the operations corresponding to each symmetry element 

transform space. Here we shall note that any plane perpendicular to the rotation 

axis is brought to self-coincidence by rotation; a plane perpendicular to a mirror 

or screw axis is transferred into a position parallel to itself by rotation. Any 

straight line perpendicular to the reflection plane turns over and is brought into 

self-coincidence upon reflection. In glide reflection such a straight line is trans- 

ferred to a position parallel to itself by turning over. In two-dimensional space 

the symmetry elements are the rotation points N and the lines of reflection: m 

stands for mirror reflection, and a, b, and n for glide reflection, which are de- 

noted graphically in the same way as in the three-dimensional case. 

2.5.3 Polarity 

This concept is one of the important characteristics of directions in crystals. It 

is possible to go in opposite directions along any straight line. If the two direc- 

tions are equivalent, the line is nonpolar and is transformed into itself by some 

operation which reverses (brings into coincidence) its opposite ““ends’’. Thus, in 

three-dimensional space the action is performed by axis 2, or plane m,, per- 

pendicular to this line, or by the inversion center 1 lying on it. 
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If the indicated operations are not present, the sequence of the points of 

the line in opposite directions is different, generally speaking, and the straight 

line (and the vector lying in it) is called polar. The ‘“‘ends”’ of such a line, for 

instance the points of its emergence from different sides of a crystalline poly- 

hedron, are different. But a polar line may be symmetric “‘along itself’? when it 

is, for instance, a symmetry axis (noninversional) or when it lies in the symmetry 

plane. If we take into account the space symmetry, a polar line may also be equal 

to itself translationally. Since symmetry axes are straight lines, they may be either 

polar or nonpolar. Thus, inversion axes are always nonpolar, while rotation axes 

may be polar, provided they do not intersect with symmetry elements 1, m, or 2. 

The polarity of the physical properties of crystals corresponds to that of direc- 

tions in crystals. 

2.5.4 Regular Point Systems 

Consider some group G. Each of the symmetry operations g; € G performs a 

transformation g,[x] = x,.. We choose any point x(x, y, z) and apply all the 

operations g;, to it. Each of these operations will give one new point x,, and as 

a result we obtain, in the general case, n points (Fig. 2.23). 

Xo 

Fig. 2.23. Regular point system of group mm 

The set of points derived from any starting point x by all the operations g; 
of group G, 

X,%), X2, ve+y Xy-1, 
(2.70) 

is called a regular point system (RPS).'! These points are symmetrically equal. 
RPS is written as the set of coordinates of each of the points, and the coordinates 

‘The term “‘orbit” of group G is also widely used. 
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of the multiplied points x,, y;, z; are expressed in terms of the coordinates of the 

starting point xyz (see Fig. 2.81). In the general case, when a point is not located 

on a symmetry element, it is called a point of general position. The starting point 

x can be chosen anywhere. As a result of multiplication it yields n points (2.70), 

which together make RPS of general position. 

Joining adjacent points of general positions derived by the point group with 

straight lines we obtain a convex polyhedron with equal vertices called an 

isogon. 

As we have already noted, a crystallographic “‘point”’ is asymmaetric, and 

hence each point of RPS of general position is also asymmetric. The situation is 

different when a point lies on a symmetry element satisfying condition (2.67), 

i.e., on a rotational symmetry axis, a symmetry plane, or an invariant point of an 

inversion axis. As a set of RPS of general positions approaches such a symmetry 

element, these points draw closer together until they merge completely on it at 

the value x = x’ (Fig. 2.24). If the symmetry element was generated by a cyclic 

subgroup of order n,, then n, points will merge on it, and the point will become 

n,-tuple. Such points are called points of special position. One can speak of 

the symmetry of such a point (the result of merging of n, symmetric points) and 

naturally assign to it the symmetry of the symmetry element on which it is 

located—the symmetry of position. Thus all points lying on plane m have this 

symmetry; they are mirror-equal to themselves; and this symmetry element con- 

sists of such points. Points lying on axis N and making it up are “‘rotationally”’ 

equal to themselves. 

x if Fig. 2.24. Merging of asymmetric points 

of general positions x and x’ into a sym- 

metric point of special position 

Thus, apart from RPS of general position, symmetry groups may include 

RPS of special positions containing n/n, points. If a group has essentially 

different subgroups, then there are as many essentially different regular point 

systems with a multiplicity n, and a number of points n/n,. At the intersection 

(if any) of symmetry elements, points arising as a result of the action of cyclic 

subgroups merge together; the symmetry of such points is the common sym- 

metry of the intersecting elements. 

At a singular point of point groups, all the symmetry elements intersect; 

this point has the symmetry of the given point group. In this case RPS consists 

of one point; its multiplicity is equal to the order of group n. 

All groups containing translation operations are of infinite order. Points of 

RPS, however, are reproduced in such groups not only by translation operations, 

but also by other operations of this group. In this case, there is a finite set of sym- 
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metry operations and a finite number n of points of general position within the 

unit cell. Translation operations reproduce each of them into an infinite 

number of unit cells. Therefore, when one speaks of the order of symmetry 

groups with translations and of their RPS, one implies the number of points n 

and their arrangement within one unit cell. In each regular system of points we 

indicate: a) their point symmetry, b) the order of this symmetry, c) the multi- 

plicity, and d) their coordinates (see Fig. 2.81). 

Any RPS uniquely characterizes group G if the points of RPS are crystal- 

lographically “‘labelled”’, i.e., if they are assigned the symmetry of the positions 

they occupy (points of general position are asymmetric, points of special 

positions have certain symmetry). Thus, a crystallographically labelled RPS 

determines group G, and conversely, knowing G, we can derive all its RPS. 

If, however, the points of some RPS are assigned a higher symmetry than 

that of the positions they occupy, an apparent overstatement of the symmetry 

of RPS derived by group G may occur (Fig. 2.25). Thus, a geometric point de- 

noted only by its coordinates x, y, z has (in distinction to the crystallographical 

point with symmetry 1) the highest spherical symmetry. Therefore, in depicting 

symmetry groups the point of general position is given some features of asym- 

metry (the asymmetry of its environmental space). We have used asymmetric 

labels—tetrahedra; “‘commas’’, dots with plus or minus signs, etc., are also 

used (see Fig. 2.81). 

\ 7 

Fig. 2.25. Set of three points transformed into 

each other by the operation 3. If the points are 

symmetric, the set seems to have symmetry 3m, but 

if they are asymmetric (with tails), no symmetry 

planes arise 

The concept of regular point systems corresponding to a given symmetry 
group finds the most extensive application in space-group theory and in the 
description of crystal structure, but it can also be used in studying other groups 
of symmetry. The concept of regular systems of figures derived from a given 
one by operations g; © Gis quite similar to the concept of regular point systems. 

2.5.5 Independent Region 

This concept defines important geometric properties of a symmetric space. Let 
us take a point of general position x in space with symmetry G? (Fig. 2.26) 
and begin to “blow up” its environmental space region in an absolutely arbi- 
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Fig. 2.26a,b. Formation of asymmetric independent regions as exemplified by two-dimensional 

groups mm (a) and 3 (b) 

trary manner. Let us do the same with the regions surrounding the other points 

of this RPS, applying the same “‘blowing-up” law to them. We continue 

“blowing-up”’ until the regions touch each other and fill the entire space. It is 

clear that the loci of such contacts are determined by condition (2.67), but no 

other limitations on the shape of the regions thus obtained arise. This means 

that the rotation axes of symmetry in three-dimensional space lie on the surface 

of an asymmetric region and are common lines of contact of these regions, while 

on the plane the common points are the points of rotation (see Fig. 2.26b). The 

center of symmetry | also lies on the boundary of such a region. Mirror planes in 

three-dimensional space (lines of symmetry in two-dimensional space) will al- 

ways be the boundaries of such regions (see Fig. 2.26a), otherwise their bounda- 

ries are absolutely arbitrary. Let us call such regions in the three-dimensional 

case stereons. It is easy to see that stereons are equal in shape to each other, be- 

cause any point of any one of them (including the boundary one) will be in one- 

to-one correspondence (by virtue of operations g,; © G) with the symmetrically 

equal points in each of the other stereons. The number of stereons is equal to the 

number of points in RPS of general positions, i.e., to the order of group n. Hence, 

a symmetric object (function, figure) which is subordinate to a symmetry group 

of order n consists of n equal parts—stereons, the volume of each part being 

equal to V/n, where V is the volume of the entire object. Thus, from the concept 

of invariance (2.2) in symmetry transformation (2.1) follows the obligatory pre- 

sence of equal parts in the object. 

A stereon is an independent (fundamental) region of a given group. In sucha 

region it is possible to assign an arbitrary function f of variables x, ... , Xp. 

Then symmetry operations g; € G will automatically construct from it a func- 

tion F defined throughout the space. 

Note that an independent region taken separately is asymmetric, i.e., it pos- 

sesses no symmetry, since, by definition, the points within it are not transformed 
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into each other by symmetry operations of group G describing the space. But it 

is possible, by drawing the boundaries of independent regions arbitrarily, to 

impart some symmetry to the external shape of an independent region artificially 

(Fig. 2.27a, b), provided we regard it as a “box” for an empty space. But when 

using the right to assign any function in this region, we see immediately that the 

points of the independent region are not equal symmetrically, i.e., that it is asym- 

metric in its essence. 

a b 

Fig. 2.27a-c. An asymmetric (a) and an artificially symmetricized (b) independent region in a 

two-dimensional translation group G3; (c) local point symmetry of two “‘molecules”’ in the inde- 

pendent region 

Here we must dwell on the so-called local symmetry inherent in the crystal- 

line structures of certain molecular compounds and proteins. The asymmetric 

region of the space group of such a structure may contain several (usually two) 

identical molecules, and they are related, only to one another, by a symmetry 

operation, for instance, by axis 2. This operation is local, it does not belong to 

space group G3. Local axis 2 or some other local symmetry element may be 

positioned in an absolutely arbitrary manner in the unit cell (two-dimensional 

example in Fig. 2.27c). Therefore such a local point symmetry inside the asym- 

metric region is called noncrystallographic. At the same time, the local symmetry 

elements lying inside the stereon are multiplied together with it by all the opera- 

tions of group G3. The local symmetry of position of some structural units does 

not contradict the fact that the independent region as a part of space remains 

asymmetric, since the surrounding of these parts by other identical parts no 

longer obeys the action of local symmetry operations, because they do not trans- 

form the entire space into itself. 

Added together, stereons fill the space completely. For point groups ste- 

reons are infinite, but when converging to the singular point they become more 

and more narrow. Their shape can be described by the intersections of the 

boundaries with the surface of the sphere. For periodically discrete groups, 

stereons are finite. 

Intuition suggests, and this is indeed the case, that each symmetry group— 

point, space, or any other—can be assigned with the aid of the shape of the figure 

of an asymmetric stereon specific to it. The shape of the stereon surface is such 
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that it determines its unique joining with the corresponding parts of the surface 

of other identical stereons. Such parts may be called complementary. As we have 

mentioned earlier, the choice of the shape of a given stereon, apart from the 

condition of its being framed by rotation axes, symmetry planes, and inversion 

centers, is arbitrary. But being chosen, the shape determines the connection of 

stereons, and hence a given group, uniquely. If stereons have plane faces, one 

must indicate the mode of connection of such plane regions of adjacent stereons. 

The mutual arrangement of such figures filling the space will define the symmetry 

group. This will be a regular system of figures of general positions. 

The concept of an asymmetric independent region is widely used in inter- 

preting and describing the structure of crystals, since assignment of the arrange- 

ment of atoms or molecules in it within the framework of a given space group 

defines the whole space structure. 

In the case of a homogenous space independent regions are finite. We shall 

now illustrate some of their properties as exemplified by two-dimensional groups 

G3. Two-dimensional independent regions will be called planions. Planions of 

different groups may have either curvilinear or straight boundaries (Fig. 2.28; 

see also Fig. 2.57). 

Fig. 2.28. Filling of a plane with 

two-dimensional asymmetric figures 

(Escher’s drawing). Plane group pg 

[2.9] 

Figures with straight boundaries—polygons filling the plane—are called 

planigons (Fig. 2.29). A planigon may be a planion (i.e., an asymmetric unit) ora 

symmetric collection of several such regions. In all, 46 types of division of a 

plane into planigons are known. If the edges of a planigon are mutually parallel 

and if the planigons themselves are parallel, they are called parallelogons. 

Another type of polygons filling the plane completely are plane isogons. In 

distinction to planigons, which contain points of a regular system within them, 

isogons are obtained by joining points of a regular system with straight lines. 

A similar problem of filling a three-dimensional space with stereons and 

various types of polyhedra will be considered below (see Sect. 2.8). 
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2.5.6 Description of a Symmetric Object by Groups of Permutations 

We have already said that in constructing a symmetry theory it is possible to 

proceed from the conditions of invariance (2.2) in transformation (2.1), but it is 

also possible to define a symmetry by postulating the condition of the presence 

of equal parts in an object. In Sect. 2.1.1 we obtained such parts, which are none 

other than independent asymmetric units, from conditions (2.1) and (2.2). Let us 

show now that one can proceed in the opposite way. 

Suppose an object consists of m equal parts, each of which is positioned 

equally with respect to all the others (and hence with respect to the nearest parts) 

and these n parts exhaust the entire contents of the object: it contains nothing 

else. Observing such a symmetric object from outside, we can mark these equal 

parts in some way or other, for instance number them (Fig. 2.30a). Equal parts 

can be interchanged, and such replacements can be described in the form of 

permutation of the respective numbers: 

fj Dee | ee eT | a 

s = , . 

bee bee, Deo. (2.71) 

In expression (2.71) the upper row denotes the numbering of places i; the 

numbers 5, in the lower row indicate to what site that part was transferred after 

permutation. Thus, in our example of Fig. 2.30b,c the permutations 

fe tastavtag hice : 
ST a ; : 
PONE EE OR pe pit icnkonn.s Sa 

mean that in the first case part 1 took the place of 4, and 4 took the place of 1— 

they have changed places, while the other parts remained in place; in the second 
case three parts have changed places 1 + 2, 2-» 5, and 5 — 1. In the general 
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Fig. 2.30a-e. Symmetric figure consisting of five equal parts, and 

some permutations of these parts 

case, all the n parts can change places (Fig. 2.30d). One can thus perform two or 

more permutations consecutively and express the final result as a single permuta- 

tion. Such operations are called multplication of permutations. 

Let us now consider permutations under which all the parts change places 

(or all remain in place—a “‘unity’’ permutation); we select only those under 

which the mutual arrangement (neighboring) of the object parts remains also 

unchanged as a whole. For instance, of the two permutations of Figs. 2.30d 

ande 

en oe 
i= : 

a ye ee | 

| AE ae ee 
= ( ) (2.74) 

BT 14 
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this condition is satisfied by the second: the replacement of parts in it occurs by 

the cyclic law. 

It is easy to see that such permutations of n parts form a group and are 

isomorphous to some group of symmetry (in our example, to the group of rota- 

tions 2n/5). Further, we can introduce a coordinate system and pass on to geo- 

metric consideration of the properties of these groups. Thus, in constructing a 

symmetry theory we can also proceed from the definition of symmetry on the 

basis of the equality and equal postioning of the parts. 

But still, from the geometric standpoint, the construction of the theory of 

symmetry from conditions (2.2) of invariance of objects under transformations 

(2.1) is more general than on the basis of the equality of the parts of the object. 

The point is that in this approach the resulting equal parts (stereons) can be 

chosen, as we have seen, in absolutely different ways, and the condition of their 

symmetric arrangement is obtained automatically. If, however, we proceed from 

equal parts, we assign beforehand their definite “form” and demand beforehand 

that they occupy identical positions with respect to one another. 

At the same time it is interesting that from the standpoint of permutation 

theory the concept of symmetry expands in some sense. Symmetry operations 

(with the exception of the unity one) transform the entire space as a whole, and 

each independent region into another. When considering equal and identically 

mutually arranged parts in an object we can perform permutation operations in 

it which interchange (“‘mix’’) only certain parts (2.72) or which interchange all 

the parts, but without preserving their mutual arrangement (2.73), while the ob- 

ject as a whole remains unaltered. It can be shown that a set of any permutations 

of n parts of the type (2.73) is a group (the number of permutations is equal to 

n!—120 in our example), and their subgroup is a group of the permutations of 

the type (2.74) isomorphous to the group of symmetry operations. 

2.5.7 Enantiomorphism 

We have established that any symmetric object can be represented as a collection 

of equal asymmetric parts (stereons). Let this object be described by a point, 

space, or any other symmetry group G' containing only operations of the first 

kind—motions—and, hence, containing no reflections or inversions. In this case 

all these parts are congruently equal to each other, and there are no parts mirror- 

equal to them in the object. (A particular case of such an object is an asymmetric 

object described by point group 1). Let us construct an object which is mirror- 

equal to the one described, reflecting it in a plane m lying anywhere (Fig. 2.31a, 

b). The object will consist of the same number of congruently equal asymmetric 

parts, and these parts will be mirror-equal to those of the first object. 

Two objects described by a symmetry group containing operations of the 

first kind only and mirror-equal to each other are called enantiomorphous. One 

of such objects, no matter which, is customarily called right, and the other, left 

(by analogy with the right and left arm). Their parts (independent regions), which 
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Fig. 2.31a-d. Enantiomorphous figures. 

(a) Symmetric object, whose parts are transformed into each other by first-kind operations; 
(b) an object enantiomorphous (mirror-equal) to it; (c, d) enantiomorphous independent re- 
gions of these two objects 

Fig. 2.32a,b. Examples of enantiomor- 

phous objects. 

(a) Molecules of amino acids of L- and D- 

tyrosine; (b) crystals of right-handed and 

left-handed tartaric acid 

are mirror-equal to each other, are also called right and left (see Fig. 2.3lc, d). 

To indicate that objects belong to the right or left enantiomorphous variety, 

one can also use the term “chirality” (from the Greek yecp, arm). Enantio- 

morphous forms of molecules and crystals are widespread (Fig. 2.32). 

Let us now consider any arbitrary object which is described by groups of the 

second kind G™. These groups contain simultaneously operations of the first and 

second kind G! = gl, gj’. Then the set of operations g} © G forms a subgroup 

of index 2 of motions of the initial group of the second kind G™ > G' 5 g!; 
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therefore, groups G" are always groups of even order. Herefrom follow some 

consequences. 

Among equal asymmetric regions of such an object there are regions of 

two types: right and left, which are mirror-equal; their number is the same, 

being equal to the order n of subgroup G’, while their total number is equal to 

the order 2” of group G!. Any operation of the second kind transforms only 

parts of different chirality into each other (right into left), and any operation of 

the first kind G', only of the same chirality (right into right, left into lett: 

Objects described by groups G™ can be called self-enantiomorphous, and 

from them one can isolate sets of “right” and “‘left” parts (Fig. 2.33); these sets, 

when regarded as separate objects, are enantiomorphous (Fig. 2.31c, d). 

Fig. 2.33. An object described by 

a second-kind symmetry group. 

One can isolate a set of right (d) 

and left (/) parts. Each set is de- 

scribed by the first-kind group 3 

Each of these two enantimorphous sets is transformed into itself by group 

G', which is the same for both. Note that a point group G3! of enantimorphous 

objects is always the same. This is also true for most of the space groups ®'”. 

The problem of enantiomorphism is one of the most interesting problems 

in crystallography and physics. It plays a particularly important part in biology. 

Since any right and left constructions from atoms are absolutely equivalent en- 

12 Some three-dimensionally periodic enantiomorphous objects are described, not by one, but 

by two enantiomorphous space groups. The point is that there are screw axes N, of different 

chirality, for instance 3, and 3, (see Fig. 2.20), and, correspondingly, pairs of space groups 

containing only one sort of such axes (see Sect. 2.8.8). The crystalline structures described 

by such pairs of groups are enantiomorphous. An example is the structure of right and 
left quartz, whose point group is the same, 32. The chirally different pairs of space groups are 

abstractly isomorphous. 
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ergetically, because they are symmetrically equal, they must be found in ap- 

proximately equal numbers, which is actually almost always observed in 

inorganic nature. A remarkable exception is the molecular organization of living 

systems, which are built up, as a rule, of only one (‘“‘left’’) variety of biological 

molecules. But this peculiarity is not revealed at the macroscopic level of 

organization of living organisms. Their symmetry is extremely diversified. So, 

very many organisms, among them most of the animals and man himself, 

in the outward shape of their bodies are mirror-symmetric. But there exist 

animals and plants with a high axial symmetry of the second kind, and also some 

organisms having point symmetry of the first kind, including asymmetric and 

enantiomorphous forms. 

Problems of enantiomorphism, symmetry, and asymmetry are fundamental 

in analysis of the foundations of matter—in considering the structure of ele- 

mentary particles and their interactions and play an important part in cos- 

mological theories. 

We have established the general geometric properties of symmetry groups. 

Let us now proceed to the particular types of groups. 

2.6 Point Symmetry Groups 

2.6.1 Description and Representation of Point Groups 

Symmetry operations of point groups leave at least one singular point of space 

unmoved. We shall derive all the possible point groups Gj and give special at- 

tention to the 32 crystallographic point groups. We denote them by K; they are 

also called classes. These groups describe the symmetry of the external shape and 

minimum symmetry of the macroscopic properties of crystals. The 32 crystal- 

lographic point groups K were first found by Hessel [2.10] and, independently, 

by Gadolin [2.11]. 

Point groups can be represented with the aid of an axonometric drawing of 

the symmetry elements and the corresponding regular point systems or regular 

systems of figures. Stereographic projection is then widely used. 

Let us consider one of the features of RPS of general position in groups G3. 

These points are symmetrically equal, and hence the vectors drawn to them from 

the special, fixed point are also equal. This means that the points of general-posi- 

tion of any point group are situated on the surface of a sphere. Therefore any 

point symmetry transformations can be regarded as rotations (proper and im- 

proper) of a sphere, which transform its points to points symmetrically equal to 

them. In other words, groups G3 are isomorphous to the groups of rotation (of 

both kinds) of a sphere. The axes and planes of symmetry pass through the 

center of the sphere, their intersections with the surface—points and arcs of 

great circles—represent the spherical projection of these symmetry elements 

(Fig. 2.34). 
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—— SS Fig. 2.34. Spherical projection of-a crystal 9) 

Ry Fig. 2.35a,b. Stereographic projection. 

(a) the principle of construction of a stereo- 

graphic projection; (b) symmetry plane per- 

pendicular (1), inclined (2), and parallel (3) 

to the plane of the drawing. Mirror-equal 

points are denoted by circles (if they are 

on the upper hemisphere) or by crosses (if 

they are on the lower) 

=-——.. 
- <— 

A spherical projection is very pictorial, but is difficult to represent, and there- 

fore we must switch from it to a plane drawing, done by using a stereo- 

graphic projection (Fig. 2.35a). This is the same projection which is used to 

represent the globe surface on a geographical map by two plane “hemispheres” 

with a network of parallels and meridians. The equator of a stereographic pro- 

jection corresponds to the equatorial section of a spherical projection, and the 

poles, to the emergences of the normal to this section. All the central sections 

of the sphere, and hence the planes of symmetry of the point groups, are repre- 

sented on a stereographic projection as arcs of great circles (in a particular case, 

as straight lines) passing through diametrically opposite points (Fig. 2.35b). 

Incidentally, it is usually sufficient to depict the emergences of the symmetry 

elements on one (“‘upper’’) hemisphere of this projection. If we must distinguish 

the points of the “‘upper’”’ and “‘lower’’ hemispheres, they can be depicted as 

open circles and crosses, respectively (Fig. 2.35b). Figure 2.36 shows a perspec- 

tive representation of the set of symmetry elements of one of the point groups 

and the corresponding stereographic projection. 

2.6.2 On Derivation of Three-Dimensional Point Groups G3 

There are different methods for deriving symmetry groups. Almost all these 

methods are based on examination of all the permissible combinations of gener- 
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Fig. 2.36a,b. Set of symmetry ele- 

ments of the point group 6/mmm on 

an isometric (a) and a stereographic 

(b) projection. The latter also shows 

symmetrically equal points 

ators (generating elements) of groups, group theory or geometric analysis of these 

combinations, and proofs that this examinationis exhaustive. There are algorithms 

for derivation of symmetry groups based on the isomorphism of their operations 

with other algebraic classes of elements, for instance substitutions. We shall use 

the method of examination on the basis of geometric considerations, because it 

gives the spatial idea of symmetry, which is most important to crystallography. 

As we know, symmetry operations of point groups are simple NV and mirror 

N (or inversion NW) rotations. Cyclic groups are characterized by the presence of 

one symmetry element. But several distinct and differently oriented symmetry 

elements may pass through the singular point. Each of them, as we know, trans- 

forms itself into itself by the action of “its own” operation g, © Gj and transforms 

all the other elements into equivalent ones. The task of deriving groups G$ 

actually consists in finding closed sets of operations g, and the corresponding 

geometric combinations of symmetry elements. 

Indeed, axis N will reproduce any axis inclined to it into N axes and any 

plane nonperpendicular to it into N planes. Any plane will double the number 

of planes or axes intersecting it, unless they coincide with it or are perpendicular 

to it. Therefore “‘oblique’’ symmetry elements will give new ones, and these 

will generate the next ones, etc. A finite point group can clearly be obtained if 

the elements combined are so positioned that their mutually reproducing action 

brings, immediately or after a finite number of operations, the elements being 

generated into coincidence with the existing ones. 

To consider interaction of operations we shall use theorems I and III of Sect. 

2.2.4, which states that the action of any rotation axis can be replaced by that 

of two mirror planes passing through it (see Fig. 2.9a), and the action of two 

intersecting rotation axes is equivalent to that (i.e., causes the appearance) of a 

third axis (see Fig. 2.10). 

One rotation axis N is always possible. If there are two axes N, and N;, then 

there is a third axis N;. Let us join, on a spherical projection, their emergences by 

arcs of a great circle, which will yield a spherical triangle, and the entire sphere 
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will be divided into such triangles (Fig. 2.37). The angles at the vertices of these 

triangles a, are half the elementary rotation angle of the corresponding axis. 

The sum of the angles of a spherical triangle exceeds 1; therefore, 

2 2K 2n , 1 1 1 
Cu Ca dea i, ab i ig, et iL (2.75) 
ON PDN. 1b INaokl NE IN NG 

Fig. 2.37. Emergence of symmetry axes at the 

sphere surface 

The following possibilities arise. The first case is that of a single principal axis 

N, of any order, and N,; = 2, and N, = 2: N22. Although at first sight there are 

numerous combinations of axes of any order, according to (2.75) only the fol- 

lowing are possible (we write the names of the axes directly) : 332, 432, 532. These 

are the so-called rotation groups. This consideration of the division of a spherical 

surface into spherical triangles, which limits the combination of axes, resembles 

to some extent the consideration of a plane with a group T; (see Fig. 2.17), which 

limits the order of corresponding crystallographic axes N = 1, 2, 3, 4, 6. If the 

point group is of the second kind, then G3" > G3! by (2.58), i.e., it contains a 

subgroup of all its rotations, and thus only the same combinations of axes are 

possible in it. 

The number of point groups is infinitely large. Therefore, following Shub- 

nikov [2.7, 8], we divide them into families. A family is characterized by definite 

group generators and the relationships between them, and also by its continu- 

ous limiting group, so that all the groups of a given family are its subgroups. 

Each given family also contains crystallographic groups K. We shall give the 

family symbol in international and Sch6nflies notation. Each family will be 

represented by a scheme in which its symbol will be indicated at the top, then 

followed by the generator of the group and, finally, by the limiting group of the 

family. We shall indicate the mutual orientation of the symmetry elements, if 

required. For groups containing only one principal axis, N or N we shall write 

out, in separate rows, the axes of odd and even orders. Groups K are always the 

first two in the upper row and the first three in the lower. 
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The difference between the odd and even rows is substantial because the cor- 

responding groups have some peculiarities. For instance, one of these peculi- 

arities is the presence or absence of polar directions. For crystallographic groups 

of each family we shall give the picture of arrangement of their symmetry 

elements. 

2.6.3 Point Group Families 

To begin with, we shall consider families consisting of groups of the first kind. 

I. Groups N — C, (Fig. 2.38; see also Fig. 2.19a): 

(Mest n 877: 

N CO, 

Deeg Oe Shee 

ee re es 222 32 422 622 

Fig. 2.38 Fig. 2.39 

Fig. 2.38. A set of symmetry elements of crystallographic groups of rotations N — C, 

Fig. 2.39. Set of symmetry elements of crystallographic groups of family N2 — D, 

These groups are cyclic of order n = N, g? = gy = e; they have a single 

element of symmetry, axis N of rotation. Any point of this axis is singular. If 

nN =Nn,+n2, then axes N,, N2, ... coincide with axis N, i.e., group N contains 

subgroups N,, N2, ... In odd groups (N = 2n + 1) all the directions are polar, 

and in even ones (VN = 2n) the directions perpendicular to N are nonpolar. The 

principal axis N in groups of this family is always polar. 

IJ. Groups N2 — D,, (Fig. 2.39): 

(29) 32 52 Blog 
N, 2(2.N) oo), 

eT Ay Ay 6) = 62? 

In these groups there is a single principal axis N and axis 2 perpendicular to 

it. Condition 2 _| WN is obligatory, since otherwise the action of axis 2 would 

give another axis NV. Because WN and 2 are perpendicular, axis 2 only “‘reverses”’ 

axis N and brings it into self-coincidence. The parentheses contain the group 2, 

already derived in family I, in a different orientation. 



88 2. Fundamentals of the Theory of Symmetry 

All these groups contain the principal axis N and n axes 2 as symmetry ele- 

ments. The presence of n axes 2 in odd groups is understandable: the principal 

axis N reproduces 7 times the axis 2 perpendicular to it. In even groups the ac- 

tion of N on axis 2 yields n/2 equivalent axes, because the even powers of this 

operation will bring each such axis 2 into self-coincidence (although with op- 

posite ends). Here, however, another set arises of n/2 axes 2 corresponding 

to the products of operations N-2. As an example let us consider the simplest 

case where axis 2 is the principal one (see Fig. 2.39). Axis 2 perpendicular to it is 

already itself symmetric with respect to the first (and vice versa), and it would 

seem that this group must contain only two axes 2 (one besides the ‘principal). 

But according to Euler's theorem (see Fig. 2.10) a third axis, 2, arises perpen- 

dicular to both. Since this third axis is not derived by symmetry operations from 

the second, it is customary to write the symbol of this group as 222, rather than 

22, although the latter is sufficient, because it contains the generating operations. 

The situation with the other even groups of this family is similar. 

The principal axis N of family II is nonpolar. The order of the groups of this 

family is 2n; they contain groups N and 2 as subgroups. 

We shall now pass on to groups with a single principal axis, which contain 

operations of the second kind. 

IIIa. Groups of inversion rotations NW — S (Fig. 2.40; see also Fig. 2.19b): 

if 3 5 a 9 
N 

2=m 4 6 = 3/m 8 10 = 5/m 
: ‘ co/m 

i 3 5 
N 

3 6 ude 10 f4006 Ms 

Lee : 
2 : 

Fig. 2.40. Set of symmetry elements 

of crystallographic groups of inver- 

3 4 6 sion rotations N — § 

These are inversion-rotation groups; all of them are cyclic. The order of the 
groups is Neve. — 1, Noag — 2n. Each of the groups of inversion rotations W is 
equivalent to one of the groups of mirror rotations N. Rules of correspondence 
of groups W and WN are as follows: odd groups (axes) of one name are even groups 
(axes) of the other name, i.e., Noga = 2N, Noag = 2N. Twice-even (multiples of 
four) groups (axes) are RENEE Groups 2, 6, 10 are actually groups N,4/m 
of the IIIb family (see Fig. 2.40). 
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Let us now consider groups containing planes m in addition to the principal 

axis N. The requirement for uniqueness of the principal axis N makes it possible 

to arrange the plane in two ways: with m perpendicular to N, which is denoted 

flee (or N/m), or with axis N lying in this plane, which is designated as Nm. 

If we assume that the principal axis is vertical, then, according to Schénflies, 

the first groups have the notation C,,,(A being the horizontal plane), and the sec- 

ond, C,,(v being the vertical plane). 

Ill. Groups N/m — C,,, (Fig. 2.41): 

(l/m=m) (/m=6) (5/m=10)... 

2/m 4/m 6m ... 

Fig. 2.41. Set of symmetry elements of crystallo- 

graphic groups of rotations with reflections in 

planes perpendicular to the principal axis, 

2/m 4/m 6/m Nim — Con 

3m 4mm 6mm 

Fig. 2.42. Set of symmetry elements of crystallographic groups with reflections in planes 

coinciding with the principal axis, Wm — C,, 

The order of the groups is 2n. Groups with odd N (enclosed in parentheses) 

were already contained in family Ila. Groups of IIa and IIIb have the limiting 

group in common and therefore can be regarded as two subfamilies of one and 

the same family. 

IV. Groups Nm — C,, (Fig. 2.42): 

(1m = m) 3m 5m 

N, m(N © m) comm. 

2m =mm2 4m=4mm 6m = 6mm... 

These groups, with the exception of the principal axis N,.have other n planes 

passing through the principal axis as symmetry elements. The appearance of n 

planes, in accordance with the order of the axis, is understandable for odd 
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groups, and for even groups it is explained in the same way as for axes 2 in 

groups N2. Therefore their formulae (second row) have the form Nmm. The 

order of groups Nm is equal to 2n. 

Let us consider the combination of symmetry planes with inversion (or mir- 

ror) axes. If these elements are perpendicular, we do not obtain new groups, 

since the groups of inversion (or mirror) rotations are themselves subgroups of 

groups N/m. When the planes coincide with the axes, new groups arise. 

Va. Groups Wm — D,,, (Fig. 2.43): 

(Im = 2/m) 3m 5m ae 
N,m(N € m) A ti H : co/mm. 

(2m=mm2) 4m=42m 6m= 6m2 

Fig. 2.43. Set of symmetry ele- 

ments of crystallographic groups of 

inversion rotations with reflections 

in planes coinciding with the inver- 

sion-rotation axis, Nm — D4 
3m 42m 

In these groups, in addition to the generating elements, axes 2 arise perpen- 

dicular to N; in odd and twice-even groups they bisect the angles between the 

planes of symmetry. Group 2m = mm2 is already familiar to us. 

Since 6 = 3/m, 10 = 5/m, groups 6m2, etc., in the second row above, could 

also be considered in the next subfamily Vb. In them, axes 2, perpendicular to 

the principal, arise; they lie at the intersection of the horizontal and vertical 

planes. 

Let us consider groups containing both horizontal and vertical planes m. 

Vb. Groups * m — D,, (Fig. 2.44): 

N, m,,m(N € m,) 

1 3 = 5 — 
qm = mm2) =m = 6m2) (=m =i m2) .. 
m m m 

m = 4/mmm S m = 6/mmm ... 

co/mm. 

The intersection of the horizontal and vertical planes m generates axes 2. 

Therefore the full symbols of the even groups are 

rGor2ue2 
mmm 
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Fig. 2.44. Set of symmetry elements of crystallographic groups of rotations with reflections 
in symmetry planes coinciding with the principal symmetry axis and perpendicular to it, 
N 
Gn ara Dyn) 

The order of all the groups of this family is 4n. 

The limiting group co/mm contains, as subgroups, all the groups of the 
above-listed families I-V, including their limiting groups. 

We have exhausted all the possibilities of constructing point groups with a 
single principal axis. Let us now pass on to groups with oblique axes, which are 
very few in number, as we have seen before. 

VI. Groups N,N, (Fig. 2.45) 

3; 2,4,5 23—T, 432—O, 532—Y; coo 

Fig. 2.45. Set of sym- 

metry elements of cubic 

crystallographic  rota- 

tion groups 

432 
23 

These are groups of rotations with an “oblique” arrangement of the axes. Ac- 

cording to (2.75) the number of such groups is only three. 

The orders of these three groups are 12, 24, and 60, respectively. Among them, 

the first two are crystallographic groups K. Like families I and II, these groups 

are of the first kind, and all of them taken together exhaust the groups of the 

type Gil. 
Adding planes m (or center 1), we obtain groups of the second kind. 

VII. Groups W,N,(Fig. 2.46) 

3;1,m;2,4,5 m3—T,, 43m—T, m3m—O,, m5m—Y,,; cocom. 
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<7, aa” 
=| 

d 
bf 

all 
- 

Ih 
ly Lu i, 

m3 43m 

Fig. 2.46. Set of symmetry elements of 

ONE cubic crystallographic groups with re- 

flections 

a b 

Fig. 2.47a-f. Regular polyhedra and 

their relation. 

(a) cube; (b, c) octahedron and tetra- 

hedron inscribed in a cube; (d) rela- 

tion between an octahedron and a 

tetrahedron; (e, f) icosahedron and 

dodecahedron inscribed in a cube 

\ u Nl 

These are groups of proper and improper rotations with an “‘oblique”’ ar- 

rangement of the axes and mirror planes. Addition of planes m passing through 

axes 2 (or inversion I as well) to group 23 gives group m3; this group can be 

denoted also by 6/2 or 3/2. Addition of planes m passing through axes 3 to 23 

gives group 43m, in which axes 2 turn into 4. This group does not contain I. 

Addition of m (or 1) to 432 gives m3m, in which the symmetry planes pass 

through axes 4, 3, 2. Axes 3 in it become axes 6 = 3. Another arrangement 

of the planes would have produced additional symmetry axes, which is impos- 

sible for finite groups. Similar addition of m to 532 gives the group m5m. 

The orders of groups VII are 24, 24, 48, 120. The first three of them are 

groups K. 
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Groups of families VI and VII are groups of transformation of regular poly- 
hedra into themselves—only of their rotations or also reflections (F ig. 2.47). All 
the crystallographic groups in them are subgroups of group O, of transforma- 
tions of a cube and an octahedron into themselves (Fig. 2.47a, b), and therefore 
these groups are called cubic. Groups T and T, transform a tetrahedron into it- 
self (Fig. 2.47c). The interaxial angles in cubic groups are shown in Fig. 2.48. 
The value of the tetrahedral angle between the axes running from the tetrahedron 
center to its vertices (i.e., between axes 3) is equal to 109 °28’16”. 

Fig. 2.48. Angles between axes in cubic groups 

Groups Y and Y, are groups of transformation of an icosahedron or penta- 

gondodecahedron into itself (Fig. 2.47e, f); they are called icosahedral. These 

noncrystallographic groups are of great interest, because they describe the struc- 

ture of closed pseudospherical objects, in particular, various artificial shells 

(Fig. 2.50a). Icosahedral packings of atoms are observed in a number of struc- 

tures (Fig. 2.50b) though, naturally, it is only local symmetry because, as we 

know, 5-fold axes are prohibited in crystals. Icosahedral point symmetry is ex- 

hibited by the so-called spherical viruses [Ref. 2.13, Fig. 229]. 

Thus, we have derived all the point groups Gj, whose number is infinite; the 

number of families is 7 (9 with subfamilies), of which 2 are finite. The number of 

crystallographic groups K is 32. The stereographic projections of all the 32 

crystallographic and 2 icosahedral point groups according to the families and 

subfamilies are given in Fig. 2.49. In the same figure the symbols of continuous 

limiting groups and figures illustrating them are given. 

The limiting group of proper and improper rotations cocom contains, as 

subgroups, all the point groups and, in particular, all the limiting groups of 

families I-V. The limiting group of rotations coco contains all the groups of the 

first kind (I, IJ, VI) as subgroups. 
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Fig. 2.49. Stereographic projections of 32 crystallographic and 2 icosahedral groups with in- 

dication of the limiting group and with the figure illustrating it. 

The symmetry planes are denoted by solid lines. The circular arrows in the lower-row figures 

indicate the rotation of the figure as a whole or of the points of its surface; the straight 

arrows show the polar directions 

We did not concern ourselves with two-dimensional point groups. They are 

very easy to find. If there is a singular point, a plane can be brought to self- 

coincidence either exclusively by rotations N about this point or also by reflec- 

tions in the line of symmetry m passing through it. Therefore, as is easy to see, 

all the groups Gj are groups N or Nm, i.e., they are isomorphous to families I 

and IV of the three-dimensional groups. There are 10 crystallographic two- 

dimensional point groups (see the representations of groups of families I and IV 

in Fig. 2.49), 
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Ss a 

Fig. 2.50a,b. Examples of objects exhibiting an 

icosahedral symmetry. 

(a) pseudospherical architectural construction 

made up of triangular elements according to 

icosahedral symmetry. Five triangles group 

together at 12 points of the pseudosphere; (b) 

upper outer half of a complicated group of 84 

atoms in one of the boron modifications. The 

group shows icosahedral symmetry. Inside (not 

shown) is a regular icosahedron made up of 

boron atoms and bound with the ‘“‘depressed”’ 

atoms of the outer shell [2.12] 

2.6.4 Classification of Point Groups 

Figure 2.49 and Tables 2.3-5 show all the crystallographic point groups and 

some of their characteristics. In addition to the international and Sch6nflies’ 

designations Table 2.3 includes the convenient notation of Shubnikov [2.7,8], 

in which the point(-) between the symmetry elements denotes their paral- 

lelism; and two points(:) their perpendicularity; and the stroke, the oblique dis- 

position of these elements. Also included is the “‘symmetry formula’’ (in- 

dicating the number of each symmetry element of a given group) and the name 

of the class. 

Table 2.5 gives the matrices of the generating operations. These matrices 

depend on the choice of the reference axes. This choice is made in conformity 

with the crystal symmetry using definite rules, which are called the crystal set- 

ting. (This will be discussed in Sect. 3.2.1; see Table 3.5.) 



96 2. Fundamentals of the Theory of Symmetry 

Table 2.3. Symbols and names of the 32 point groups of symmetry 

De eee 

Symbol 
Symmetry Name of the class 

Syngony. formula 
Inter- After After 

national Shubnikov Schonflies 

Se ee eee 

Triclinic 1 1 C; Ihe Monohedral 

i 2 C7=S; .C Pinacoidal 

Monoclinic 2 2 GC; ju Dihedral axial 

m m Cin Ce eek. Dihedral axisless 

2/m 2:m Cr, VAR G Prismatic 

Orthorhombic 222 2:2 (Dees be Rhombotetrahedral 

mm2 2m (Coy IAP Rhombopyramidal 

mmm me2:m Dip, = Ko, SIPBVEC Rhombodipyramidal 

Tetragonal 4 4 C, je Tetragonal-pyramidal 

422 4:2 D, IGA Tetragonal-trapezohedral 

4/m 4:m Ci EPC Tetragonal-dipyramidal 

4mm 4-m Gr Lt4P Ditetragonal-pyramidal 

4/mmm me4:m Dy, JEP LE By XE Ditetragonal-dipyramidal 

4 4 Ss Lz Tetragonal-tetrahedral 
42m 4.m Di Vee bene Tetragonal-scalenohedral 

Trigonal 3 3 C; jig Trigonal-pyramidal 

32 Bez Dy (LBW Er Trigonal-trapezohedral 

3m 3-m Cu IEP Ditrigonal-pyramidal 

3 6 Ce = Sa L3G. Rhombohedral 
3m 6-m D3; 133L?3PC Ditrigonal-scalenohedral 

Hexagonal 6 3:m Cy L3P Trigonal-dipyramidal 
6m2 me3:m De L33L74P Ditrigonal-dipyramidal 
6 6 (Gr jLe Hexagonal-pyramidal 

622 6:2 Ds L°6L* Hexagonal-trapezohedral 

6/m 6:m Cr DARE Hexagonal-dipyramidal 

6mm 6°m Gr, L°6P Dihexagonal-pyramidal 

6/mmm me6:m Den EOEATL RG Dihexagonal-dipyramidal 

Cubic 23 3/2 Th BY LAYLe Tritetrahedral 

m3 //2 TP: 3174123 PE Didodecahedral 

43m 3/4 Ti 3L24L36P Hexatetrahedral 
432 3/4 O SEA E7617 Trioctahedral 

m3m 6/4 O, 3L4*4L361°9PC Hexoctahedral 

Note. In the “‘symmetry formula” we have the following symbols used sometimes in textbooks: 

(L) axes, (C) center, and (P) plane of symmetry; each symbol is preceded by the number of the 

relevant elements. 

The point groups are classified according to a number of features. Our deriva- 

tion was based on the classification by the limiting symmetry group which, as 

we shall see further on, also plays an important part in analyzing the physical 

properties of crystals However, analysis of these properties makes it possible 

to classify groups K according to other features as well. If we divide the families 

according to the symmetry operations, then families I, II, and VI are of the first 

kind, their elements are only rotation axes, and enantiomorphism is possible in 

them. All the other families are of the second kind. 



2.6 Point Symmetry Groups 97 

Table 2.4. Rotation, inversion, and mirror groups K 

Groups K?! 

Rotation groups K! 
Inversion Mirror 

1 i(=1@1 m= 1@ m) 
2 2/m=2@1 mm2 =2®m 

3 3=3@Q@1 6=3@m;3m=3@m 
4 4/m=4@1 4mm = 4© m; 4 
6312 6/m = 6@ 1 6mm = 6®m 

2225— 2:00 2 mmm = 222 @ 1 42m = 222®©m 
32138) 3m = 32@ 1 6m2 = 32@Q@m 

422 =4©2 4/mmm = 422 @ I - 

622 = 6©2 6/mmm = 622 @ I — 

23 — 222,63 m3 =23@1 43m = 23©m 
432 — 2316) 2 m3m = 432@ 1 — 

The above derivation of point groups according to the families actually con- 

sisted in consideration of the possible direct and semidirect products (2.41, 42) of 

some simplest initial groups—axial N, inversion I, and reflection m, with their 

geometrically permissible mutual orientations. A summary of 32 crystallographic 

groups recorded in this manner is given in Table 2.4. Inversion groups may also 

contain planes; mirror groups contain no inversion center. Group 4, which has 

neither m, nor 1, is placed among the latter conventionally; it is a nontrivial 

subgroup of group 4/m = 4@I1> 4. 
We can see that among the 32 groups K there are 11 groups of the first kind, 

K', and 21 of the second kind K™. Among the latter, 11 groups have an inversion 

center. In classifying the groups according to the presence of a single principal 

axis we obtain families I-V, and according to the presence of several axes of order 

3 and higher, families VI-VIJ—cubic groups. The scheme of subordination of 

the limiting groups of the families is as follows: 

VII cocom 

VI coco Voco/mm 

I i Z IIIco/m IV comm 

I co 

Each lower-lying group is a subgroup of the senior group joined to it by an 

arrow. Analogous subordination schemes can be written for each point group. 

Similarly, for each of the point groups one can find those groups (“‘supergroups’’) 

whose subgroup it is. Note that all the 32 crystallographic groups K are the 

subgroups of two groups: cubic m3m and hexagonal 6/mmm. 
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Table 2.5. Matrices of point group generators 

Syngony and 

metric relation 

Triclinic, 

a= bc, 

GREE [3 SEO, 

Monoclinic, 

(GLE [oy Se 

y#a=B=90° 

Orthorhombic 

G =2 |) s2 @; 
a— fp —y—3902 

Tetragonal, 

@) = 1) == & 

a= B=y=90° 

Trigonal, 

in rhombohedral axes 

q—b—"c, 

a=fp=y+# 90° 

(description in 

hexagonal axes 

is also possible) 

International 

symbols 

1 

— 

2/m 

222 

mm2 

mmm 

- 

422 

4/m 

4mm 

Generator matrices in the orthogonal system of 

coordinates 

ae 

t 
1 

Saat 
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| | 

Oormoor-cocoorPoeoroorFPCcorcerooorF So oH So oo oS oo Sooo — olor 
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eocoroordocorcjoroonoormoororqcooreqcoorooroorooroorocrF.6o 

oO 

fife f 

nee poe aS SS 2 

L i 

ores, 
jo) 

| 

or 

S) J =) 

im i im fly 

oe ee ee =) NS Nee Se So = SS 

fpye 

V372 
=i 
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Se = el 
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TF 
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ey er See eye) IS) SS) 

| 

ootr-oorFoCoOF 
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QS 
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Table 2.5 (continued) 
ee ee ee 
Syngony and International Generator matrices in the orthogonal system of 
metric relation symbols coordinates 
ee ee See SA ere et at el, ek Pe ee os Fie ere 

Trigonal 3 1/2 —/3/2 0 
(continued) | v3 /3/2 1/2 ° 

Oo -!i1 

32 ais NP, MOY) eleOr sO 

v3 MIP SPY 0 0-1 ° 

0 1| Ome 
3m a J3/2 07 f—1) 0. 0 

v3 NSP SPE 0 One | 
0 1| ivr 20) @f 

3m l - Tle Ole. i=l, 0. 00 
pe 1/2 0 0 1 j 

L eS Le. Oe afl 
Hexagonal, 6 i os W/O 
a=b+#e, —/3/2 1/2 ° 
a= fp=90°, bi 0 1 
y = 120° 

6 f —1/2 —/3/2 0] 
/3/2 —1/2 0 

| oO Oo | 
6m2 ie Noe 0 [=e rOn*0) 

SID ==>) 0 OPPs £0 

a) = ei0— MO ety 
622 iF We AE 0] fF uk @ ol 

=,/3/2 1/2 0 0-1 O 

lhtankO 0 1| be rOr Ose | 
6/m ff UP 3 OI [ i Ops OF 

—/3/2 1/250 (Olea O 
ful © 0 1] L © @ =i 

6mm [ LRA 3/20) f—-1 0 Oj 
=ID Yor Oho 
yo 0 1] PO 1| 

6/mmm ie 2 wBP 0 1 © Oj) f= ©. © 
= BD 1/2 0 On | Oe J 

Poete 0 [ile eOune Oa (OmnOmeel 
Cubic, 23 = if advo ik Oy 
ea is 0-1 O OO 

a=p=y=90° GeO" 13 19) OigsO] 
432 i, O- 1 07 [ OF Te On 

—1 0 0 Ome Omen! 

PRAT hee aaa 0) [4 809 he 
m3 rib OG; rf o-1 07 

OG 0 0-1 

AO tiasii4 1 = 0) a0) 
43m f 0-1 OO] [ OF FIMO} 

Dias) OmSOnal 

Ou Opeth Li Ma] 
m3m ett ile C08 [ 0-1 Oj Ome 1 

fe ag A0 0 O-1 ote 0) 

Li Gen Opals xt se Ooh Os Om Oued 

Note. The above matrices (a,,) correspond to the transformation of the coordinates of points 

(2.4,6). The elements of matrix a,, are determined as cosines a,, = cos(X;X,) between the 

transformed X/ and the original X, axis (see Sect. 2.2.3). 
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An important division of the crystallographic groups K is the division into 

seven syngonies (or systems). This division is based on the point symmetry of the 

space lattice of the crystal, which manifests itself in the symmetry of the unit paral- 

lelepiped and is expressed in definite relationships between its periods and angles. 

The division of groups K according to this principle is due to the fact that the 

symmetry in question is crystallographic and determined by the presence of a 

space lattice in crystals. In Sect. 2.8, we shall treat the lattice symmetry and the 

division into syngonies in detail; at this junction we shall only characterize 

them. 

The characteristics of the syngonies and the distribution of the groups K 

among them are given in Tables 2.3 and 2.5. In the general case of triclinic 

syngony all the periods are unequal to each other: a + b ¥ c, and the interaxial 

angles also differ from each other a # B # y and from 90°; in the highest, cubic 

syngony a= b = canda = £ = y = 90°. The remaining cases—the hexagonal, 

trigonal (it is also called rhombohedral), tetragonal, orthorhombic, and mono- 

clinic syngonies—are intermediate and are characterized by the values of all or 

some of the angles of 90° (or 60°) and the equality of all or some periods. 

Groups K are groups of symmetry of the shape (habit) of crystals. They, and 

hence the syngony of crystals, can be found by goniometrical measuring of the 

external form of the crystal’; this can also be done by x-ray diffraction, of course. 

All the groups K belonging to a given syngony are a subgroup of a higher group 

characterizing the syngony. Such a group is called holohedral. This name origi- 

nates from the consideration of the crystal habit (see Sect. 3.2.4) and means 

“completely-faced”’. 

Point groups of symmetry describe not only the external shape (habit) of 

crystals, but also their properties. With respect to the point group K of a crystal, 

point groups G,, describing its intrinsic properties are supergroups of K. The 

highest group of certain properties may also be the limiting point group Gi, 

corresponding to a given property, while group K is the lowest in this set: 

Giim > G,, 5 K. Such a manifestation of a different, but subordinated point 

symmetry of a crystal in its various properties is called the maximum and mini- 

mum symmetry principle. 

If a crystal is subjected to an external effect whose point symmetry is G’, this 

effect may desymmetrize the phenomenon, and the symmetry of the observed 

properties is described by relation G,, > K  G’, where () is the symbol of 

intersection of the groups (an intersection is a group containing elements com- 

mon to the two groups included in it). Thus, in the case of external effects the 

symmetry of the properties is a supergroup of the indicated intersection; this is 

the Curie principle [2.14]. 

It should be noted that groups K also find application in describing regular 

concretions of crystals (twins, triplets, etc.) [Ref. 2.13, Chap. 5]. 

When measuring the external form by goniometry (see Chap. 3), a complex of possible faces 
turns out to be the same both for hexagoual and trigonal crystals. Therefore some authors 
unite them into one system. At such approach, there are 6 (and not 7) systems. 
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2.6.5 Isomorphism of Groups K 

In terms of the abstract theory of groups some point groups are isomorphous, 

i.e., they make up one and the same abstract group. This is because the opera- 

tions of the abstract group, g; € G with their multiplication rules in accordance 

with Cayley’s square, may have a different geometric meaning in three- 

dimensional space. 

Let us consider, for instance, three groups of the fourth order: 222, 2/m, and 

mm2. These groups are isomorphous, which follows from the multiplication 

Table 2.6, although the geometric meaning of the operations q,, q3, and q, is 

different for each of them. 

Table 2.6. Isomorphism of groups 222, 2/m, and mm2 

Multiplication table 

Group* 

PRD RIE 1 2 Dy Ds 1 » 3 4 

2/m 1 Zz m i D 1 4 3 

m,m,2, 1 YD 3 4 1 2 

4 3 2 1 

* Indices x,y,z in operation 2 indicate the direction of the axis, and in m they show to which axis 

this mirror plane is perpendicular. 

> Only the operation numbers are given. 

Table 2.7. Abstract groups K 

Group order Defining relations Groups K 

1 AE. 1 

2 Ae 2 1,2,m 

3 Ai € 3 § 

4 Ane 4;4 

4 AaB =A) 6 2/m, mm2, 222 

6 Ae Te 6, 6, 3 
6 A — Bb (AB) 32, 3m 

8 A* = B* = C? = (AB) = (AC)* = (BC = e mmm 

8 A? = B= ABA B —e 4/m j 

8 At = B? = (ABY =e 4mm, 422, 42m 

12 A® = B* = ABA B=e 6/m F 
12 AG B= (AB)- — 3m, 6m2, 6mm, 622 

12 A> "Bb — (AB) —e 23 

16 A= B= C2= (ABY = (AC) = (BOY =e 4/mmm 

24 At — Boi — (4B) — 2 432, 43m 

24 Al Be —\(ALBAB) =e m3 

24 A? = B? = C* = (AB)* = (AC)? = (BC)' = e 6/mmm 

48 A — Bo AB) e m3m 
EE 
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All the cyclic groups of the same order are clearly isomorphous as well 

because they represent the degrees of some operation irrespective of its geometric 

meaning. Therefore, for instance, families N and WN, and also families N/2 and 

N/m, are isomorphous. Table 2.7 lists 18 abstractly different groups K and the 

corresponding 32 crystallographic groups K. Each abstract group can be as- 

signed by its generating elements and the defining relations between them. 

These are indicated in Table 2.7. 

2.6.6 Representations of Point Groups K 

In Sect. 2.3 we established that group G can be represented by an isomorphous 

(2.28) or homomorphous (2:31) group H, whose elements may be numbers, 

matrices, etc. 

An exact (isomorphous) representation of groups K is given by matrices 

D(g) (2.6) of transformation of coordinates corresponding to the given operation 

g & K. A set of such matrices forms an exact vector representation (of dimen- 

sionality 3) of the corresponding group; according to the matrix multiplication 

rules (2.45) the multiplication table of these matrices corresponds to that of ele- 

ments g;. (The matrices of the generating operations are given in Table 2.5.) 

For instance, for group K = 2/m the vector representation of D with a special 

choice of axes X,, X,, X; (Table 2.5) has the form: 

pie ON, %, i, m_— }, (2.76) 
120 0) [1 ORO Nt te OmrOn eC men 

D(2/m) = ‘ 1 oh Ome oh Opamed , a1 |. (2.77) 
On0 ti 0. SOL Oni Olt CLO me 

It is easy to see that, for instance, that the multiplication 2.1 = m corresponds 

to the multiplication of the relevant matrices from (2.77). 
Proceeding from this kind of vector representation of group K it is possible, 

by switching to other orthogonal axes X¥, X¥, X¥ with the aid of a nonspecial 

transformation S, to obtain other, equivalent, representations of the same group 

D*(g) = SD(g)S~'. But for all the equivalent representations the trace of the 

matrix—the character of the representation y(g) (2.51)—is preserved. 

Thus, the characters of elements y(g) of group 2/m in all vector orthogonal- 

equivalent representations D(G) are equal to 

x(g) = {x(1) = 3, x(2) = — 1, x0) = — 3, x(m) = 1}. (2.78) 

By following definite rules it is possible to obtain, from vector representations 

of groups K, tensor representations of degree 37, . . ., 3°, which is important in 

analyzing the physical properties of crystals described by tensors of different 
ranks, The corresponding matrices D*, . . .,D* are multiplied using the tensor 
multiplication rules. 
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On the other hand, vector representations can be reduced into irreducible 

components—diagonal square blocks of the type A (2.48). Thus, each of the 

matrices of the vector representation D(2/m) can be represented as a direct sum 

of three matrices, for instance, 

al 0G 0 Mc Oe MOMEbOAI Ole GOW OM 
D0) | Of 0/-| 0 0 sol = ola 0 , (2.79) 

Gest hal OlaRO1F OOF qu OIG! 4 \OKO1 

Taking these degenerate 3 x 3 matrices with one significant matrix element 

D,, for a one-dimensional square block, let us construct two one-dimensional 

(antisymmetric) representations D;,(G) of group 2/m, 

eime—= {13 Za ly m}, 

t 
D,,Q2/m) = {1, —1, —1, 1} = D,,(2/m), (2.80) 

D;,(2/m) = (1, 1, —1l, —}} (2.81) 

(subscripts ii mark the position of the matrix element D,,(g) in split 3 x 3 

matrices). Correlating numbers +1 with elements g © K, it is possible to con- 

struct, in addition to these two, two more one-dimensional representations: a 

trivial unity (fully symmetric) representation, 

eee, Spey ORD) 

(| ares Pe hater o (2.83) 

The latter forms a representation of group 2/m, since 2.1 (—1)(1) =(—lhom, 

etc. Thus, group 2/m has only four one-dimensional representations. Noting 

that for one-dimensional matrices, the matrix D(g) itself coincides with the 

character y(g) of the representation, we write the result in the form of the 

character table 

asl 2 I om 

Teeit 1 1 1 

y a | eS a (2.84) 

1.1 1-1 a 

Eoele gt 1 
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Here, the first row contains the group elements, and the first column, one- 

dimensional representations symbolized by I; in each row J, are quantities 

x(g) = D(g), corresponding to elements g € K. 

The number of nonequivalent irreducible representations is equal to the 

number of classes of conjugate elements (2.36). Therefore, the first row in 

the character table of irreducible representations of groups K usually lists 

elements grouped into classes of conjugate elements {xgx~'}. Isomorphous 

groups K, ~ K,<K split up into an equal number of classes {xgx—'} and 

therefore they have identical irreducible representations I, and a common 

Table 2.8. Characters of Irreducible Representations of Crystallographic Point Groups* 

C,—2 em Cs D, — 222 e CG Cincy 

C,—1 ene G Cy, — 2/m B (Ch op C; 
C;—l1]e C,—m e OG, Cy —mm2\e C, oy ox 

foo PAT Ve er ey Bee | 1 ts pe pee ba 1 1 
Fi = BAI CA lig eee ee eee 1 «—1,.—1 

BD eB | lee 1 —-1 

Gn ditpdifn Jey |i il Sil 

D, — 32 QO HE, Xo 
e C, Ci C= 8 || @ Meg soe 

] 1 1 1 Bs a A;, A’ 1 1 

Le 22) VI ee 
I Re ge? VE Ra E 2 —1 

| _ 

D, — 422 e G? 2G, 267 2G; 

Cy — 4mm e (Fi XE A 20, 20%, 
Dig — 42m e (65 2S, 2G 20; 

I, — A, Aj, A, 1 1 1 1 1 

I, — A,, A,, A, 1 1 1 —1 —1 

IP — Seb B,, B, 1 1 —1 —1 
l— Bs. B,, B, 1 1 —] —1 1 

lr, — E, E, E 2 —2 0 
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Ds — 622 e G 2C2 2G; 3C; 3Ch 
Cov — 6mm e re 2Cc3 oC, 30, 30 

Ds, — 6m2 e ay 253 2S; 3c, 30, 
Dsyg — 3m e we, 2.82 2S¢ 3G, 3a 

a ee See are ereeera ait St Bind Felice fi) ermal 

ry =A: ‘Ai; 2 Ae 1 1 1 1 1 1 
I, — Aa, AS Ai, re 1 1 1 1 —1 —1 
ry = Be B.. i E, 1 —1 1 —1 1 —1 
I, — Bs B,, a Ass 1 —1 1 —1 —1 1 
rz —5,. E.. A yh Ax 2 2 —1 —1 0 0 
re F., Wo E* E, 2 —2 ={ 1 0 0 

O — 432 Cau SCuy -3C ia CC... 6C, 
e 3G. AC. aCe 

* Key to the table 

I II 

Notation of groups K Notation of classes of conjugate elements 

(Sch6nflies and international) 

il IV 

Notation of representations Characters of representations 

Note. Symmetry operations (group elements) are symbolized after Sch6nflies: C, are rotations 

(n = 1,2,3,4,6); C, is inversion 1; e is unit operation 1; a is reflection in planes m; o,, 0, are. 

planes parallel and perpendicular to axes of symmetry; a, are diagonal planes in group 43m; 

S, — 4, S, — 6, Ss — J are inversion rotations. 
Each class is defined by a characteristic operation (which is a class representative) and by 

the number of elements included in the class (the corresponding number stands in front of the 

representative). Irreducible representations are denoted by symbols I, and also by spectro- 

scopic symbols: F (or T) are three-dimensional representations and E, two-dimensional. One- 

dimensional representations are denoted as follows: A is symmetric, B is antisymmetric with 

respect to rotations (for groups C,,), A’ is symmetric, A” is antisymmetric with respect to o 

(for groups C,, C,,,,, D,, with an odd number of mirror planes a), A, is symmetric (gerade), and 

A, is antisymmetric (ungerade) with respect to inversion (for groups containing inversion C,). 

Letters A, B are provided with a subscript 1 if the representation is symmetric with respect to 

C, 1. C, Or dy, G4, || C,, and with a subscript 2 if it is antisymmetric. 

In the tables of groups D,, D,,, C2», axis CZ is adopted as the principal; eveness or oddness 

of the representation is marked by a suffix with respect to C¥ and 0%. Group D,, is isomorphous 

with group D, by the inverted multiplication law, but its characters are the same. 
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character table. Thus, by virtue of isomorphism of groups 2/m <— 222 — mm2 

(Tables 2.6 and 2.7) all of them have one and the same table of characters (2.84). 

The other important properties of irreducible representations of groups K are as 

follows: 

1) dimensions n, of the matrices of irreducible representations J, are divisors 

of the order of groups G; 2) the sum of the squares of dimensions )}, n? is equal 

to the order of G; 3) among representations J, there is always a unity I). 

The characters of the unit (identity) representation y, in any I, are equal to 

the dimension n, of representation I. The possible values of characters y of one- 

dimensional representations I’, of groups K follow from the determining re- 

lations of Table 2.7 of the type A” = e,n = 1,2,3,4,6 for cyclic groups (sub- 

groups), provided e < 1. This gives y” = 1, whence vy = exp (—2ni/n). To sum- 

marize, the following characters are possible: +1, +i, e = exp (—2zi/3), @ = i 

exp (—2mi/6). The real y = +1 describe operations m,2,1, and the complex ones, 

rotations: ¢ corresponds to rotation axis 3, i to 4, andw to 6. In Table 2.8 charac- 

ters y(g) of irreducible representations are given for 11 groups K’ (of the first 

kind). The same characters are inherent in isomorphous groups K™ (of the 

second kind) (see Table 2.7), i.e., another 14 groups or 25 in all. The tables of 

characters of the remaining seven groups are defined by the fact that these 

groups are direct products of groups K! and group I (see Table 2.5): mmm 

= 222@ 1, 4/m=4@ 1, 6/m=6@1, m3 =23@1, 4/mmm = 422 @ I, 
6/mmm = 622 @ 1, m3m = 432 @ 1. If group G= G, ® G,, then, as can 
be shown, its tables of characters are calculated by the equation 

eae = rate raw (2.85) 

where p, p;, and p, are classes of conjugate elements in G = G, ® G,, G,, and 

G,; x5! is the character of element g € p, in the J;-th representation of group 

Gi k="1 72): 

As to the table of characters of group I, it is the same as that of group 2 (see 

Table 2.8). Thus, the number of irreducible representations of all the remaining 
groups of the type K'@® I is twice that of groups K! (or ones isomorphous to 
them) listed in Table 2.8. 

More comprehensive tables of representations also indicate the represen- 
tations of some group or other by which the coordinates of the functions of the 
corresponding symmetry are transformed. 

Representations I of groups K are called unitary; some representations are 
real, as seen from Table 2.8, while others are complex and mutually conjugate. 
In all, there are 73 one-dimensional nontrivial real representations for groups K, 
of which 58 are sign-alternating, and 18 complex conjugate pairs. 

Representations of point groups are widely used in crystal physics for 
analyzing physical properties of crystals. They are used in quantum-mechanical 
consideration of free atoms or atoms in a crystal, especially in spectroscopy and 
in the theory of structure and properties of molecules. For instance, irreducible 
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representations of point symmetry groups of molecules are used for transforma- 
tion of their vibration coordinates; they are also used to describe of molecular 
orbitals responsible for the chemical bond, and so on [Ref. 2.13, Chap. 1]. 

Irreducible one-dimensional representations are also related to groups of 

generalized point symmetry (see Sect. 2.9). 

2.6.7 Group Representations and Proper Functions 

Let us consider, by way of example, the description of the states of a physical 

system in quantum mechanics. They are characterized by eigen functions, which 
are solutions of the Schrédinger equation. If a physical system possesses sym- 
metry properties, the relevant Schédinger equation will be invariant to symmetry 

transformations g; € G ofa group of this system. Therefore, at these g, the wave 

function corresponding to a definite value of energy will transform to some 

other function for the same energy level. Using all the elements of the group, we 

find some number of linearly independent functions y,,..., wy, which are 

linearly related by symmetry transformations. Each element g@G can 

therefore be regarded as an operator ¢ transforming function y, into a linear 

combination of functions y;, . . ., Wy, 

f 

&y,. = 2 AW. (2.86) 

Wave functions can always be assumed normalized and orthogonal, and then 

matrix (a,,) coincides with the quantum-mechanical concept of the matrix of the 

operator 

Sx = f vrevidg. (2.87) 

It is easy to see now that to the product of two elements of group gh there cor- 

responds a matrix obtained from matrices (g;;), (hy) according to the conven- 

tional matrix multiplication rules. Thus, these matrices form the group repre- 

sentation. Functions y,;,..., wy, which construct the matrices of the linear 

representation, are called basis functions, their number coinciding with the 

dimensionality of the representation. For orthonormalized basis functions the 

linear representation will be unitary. 

If we subject orthonormalized basis functions to the unitary transformation S, 

we obtain a new system of functions, which are also orthonormalized and define 

a new representation of the same group. The matrices of the operators of the 

symmetry group are then equivalent to g’ = SgS!. 

A representation of a symmetry group given by basis functions is ir- 

reducible (unless this is prevented for special reasons). This representation as- 

signs all the properties of the symmetry of the state with respect to different sym- 

metry transformations. Group theory therefore enables one to obtain important 

results for a physical system without a complete solution of the Schrodinger 
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equation. For instance, for a system placed in the external field of a definite 

symmetry, it is possible, by considering representations, to find the splitting of 

the energy levels [2.14]. 

2.7 Symmetry Groups Gi, G2, Gi, G2 

The structure of a crystalline substance is described by Fedorov groups ® = G3. 

The groups under consideration, G?, G3, G?, G3, containing translations, are 

also of interest to crystallography, since they include subgroups of Fedorov 

groups ®. These groups are also very important in their own right, outside 

the scope of crystallography proper. 

2.7.1 Symmetry Groups Gj of Borders 

These two-dimensional groups G? D> T,; >t contain a translation ¢ in one, 

singular direction of two-dimensional space. The objects described by them are 

SEO gene ca emesgitignaiin imp cemremeette acannon 

Fig. 2.51. Example of borders with 

f symmetry t:m [2.15] 

Fig. 2.52. Seven border symmetry 
! | : ce groups G?, represented by a set of 

their symmetry elements 
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any two-dimensional, periodic in one dimension functions or images of the 

border type on a plane (Fig. 2.51; see also Figs. 2.11c,d; 2.16). They may contain 

planes (lines of symmetry) m parallel or perpendicular to translations, a glide- 

reflection plane a, and rotation points (axes) 2. All these groups are crystallo- 

graphic; there are seven of them (Fig. 2.52). 

2.7.2 Plane Twice-Periodic Groups G? 

These groups play an important part in crystallography, since they are two- 

dimensional analogs of space groups G3. They describe projections of 

crystalline structures, their plane two-dimensional sections (in particular, 

those of electron density distribution), and some other functions used in 

crystallography. These groups are of great importance in applied art because 

they reflect the symmetry of patterns on textiles, wall paper, ornaments, etc. (see 

Fig. 1.15). 
We know that any such group contains a subgroup of two-dimensional 

translations G3} D T, 5 ft,,t,, which are finite provided the discreteness con- 

dition is fulfilled (2.53). 
Let us consider an arbitrary plane net (Fig. 2.53). A parallelogram con- 

structed on two noncollinear vectors issuing from one point is a unit cell. From 

Fig. 2.53a it is clear that such a parallelogram can be chosen in an infinite num- 

ber of ways, in which it will not contain a single point translationally equal to the 

vertices, i.e., not a single additional point. (The lattice points are also called 

nodes). The areas of all such primitive parallelograms are equal. Hence, group 

T, may be characterized by a basis—any pair of vectors forming the sides of 

the primitive, unit parallelogram. Group T, consists of an infinite set of trans- 

lations 

t = p\@, + P24, Pas Pace Ove Se, oe aes (2.88) 

a, 

Fig. 2.53a,b. Two-dimensionally periodic net of points. (a) different ways for choosing a pri- 

mitive parallelogram; (b) proof of the absence of points inside the unit primitive parallelogram 
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where a;, @, are periods, and the group operation is that of vector addition, 

which correlates a third vector 

i+h=t6 7, (2.89) 

with any pair t,, t, © T>. 

Introducing the translation operator ¢, we find that any point x of the plane 
is transformed by any translation ¢ into a translationally equal point x’ 

i (x)= x-- f= x7, (2.90) 

and the set of all the points derived from any point by all operations ¢ (2.90) is 

actually an infinite net. 

If, in any choice of a primitive parallelogram, the periods a, # a, and the 

angle between them y # 90°, the net is called oblique. It is customary to choose 

as periods the smallest translations a, and a,. By definition we have chosen sucha 

cell to be empty: it contains no lattice points inside. If we assume, however, that 

there is such a point inside (Fig. 2.53b), the new translation 5 will be shorter than 

the initial ones, which contradicts the condition of the “theorem of emptiness’”’ 

of a unit parallelogram. 

It is, however, possible to choose in an infinite number of ways nonprimitive 

parallelograms containing one, two, or any number of nodes inside them or on 

each of the parallel sides. All the translation groups arising will be subgroups of 

group T, (Fig. 2.54). The area of a parallelogram containing q points is q times as 

large as that of the unit parallelogram. A primitive parallelogram is denoted by 

P, and a parallelogram containing one lattice point is called centered, since this 

single point is always at the center, and labelled C. 

Fig. 2.54. Different nonprimitive parallelo- 

grams in a two-dimensional net 

Groups G{ > T, naturally may contain not only translations, but other 
operations as well. As we know (see Sect. 2.4), all these groups are crystallo- 
graphic, i.e., they can only have rotations 1, 2, 3, 4, 6. A complete group of 
transformations of two-dimensional nets into themselves is called a Bravais two- 

dimensional group. Taking into consideration the possible point transformations 

of a net into itself leads to conditions of equality or inequality of a, and a, and to 
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definite values of the angles between them. This gives rise to five different two- 
dimensional groups T,, which are called Bravais two-dimensional groups, and 
five respective plane nets (Fig. 2.55). A Bravais orthorhombic group with ai = 
a, and y # 90° is usually described as a centered rectangular group witha, # a, 
and y = 90°. The point symmetry (syngony) of the nodes and nets here is as 
follows: 2 for oblique nets, mm2 for two orthorhombic nets, 4mm for a tetrago- 
nal (square) net, and 6mm for a hexagonal net. 

Fig. 2.55a-e. Five types of plane net illustrat- 

ing two-dimensional Bravais groups. 

(a) oblique, (b) orthorhombic primitive, (c) 

orthorhombic centered, (d) square, (e) hex- 

d e agonal 

Let us form a semidirect product of a Bravais group and a two-dimensional 

point group of the corresponding symmetry T, © G3. This is associated geo- 

metrically with placing a set of symmetry elements of a point group at nodes 

of two-dimensional nets. The groups G3 thus obtained are symmorphous; there 

are 5 of them. It should be noted that, when forming symmorphous group G3, 

interaction of translations 4 © J, with mirror reflection m € G3 will produce 

new operation—glide reflection g, which was not contained in both G2 and T,, 

and a corresponding symmetry element—glide plane. According to the procedure 

illustrated in Fig. 2.11 one can use symmorphous groups to find their nontrivial, 

nonsymmorphous subgroups, which are also of the type G3. There are 12 such 

groups. In all, there are 17 groups G3. 

All these plane groups are depicted in Fig. 2.56a, which also gives their 

notation. The corresponding regular systems of points of general positions are 

shown in Fig. 2.56b. Among groups G3 there are 2 oblique (monoclinic), 7 

rectangular (orthorhombic), 3 square (tetragonal), and 5 hexagonal groups. Of 

these 17 groups, 4 are groups of the first kind and 13 of the second. 

Plane figures corresponding to the independent asymmetric region—planion 

(see Sect. 2.5.5)—for each plane group are presented in Fig. 2.57. By joining these 

planions we can fill the plane completely. Symmetry transformations of such 

a division of plane into planions form the corresponding group G3. 
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ps p6&mm Fig. 2.56. (a) Graphical representation of 
17 plane groups G? [2.16] 

2.7.3 Cylindrical (Helical) Groups G? 

These groups G}? D T, > t,, which are also called rod groups, describe three- 

dimensional space and objects in it which are periodic in one direction. This 

direction X; is called singular; in two other dimensions, X,X2, the space described 

by these groups is inhomogeneous and hence nonperiodic. These groups are 

suitable for describing such objects as rods, chains, ribbons, or screws; their 

importance lies in the possibility of describing synthetic and natural chain 

molecules such as polymers. 
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Operations of the first kind, translating the space along the singular axis, are 

(with the exception of pure translations) screw rotations, and operations of the 

second kind, glide reflections c. The axis of the singular direction is unique, and 

any symmetry operations inherent in groups G} must leave it unique. It is therefore 

easy to understand that they may also contain axes N or N of any orders coincid- 

ing with the singular (principal) axis, planes m passing through or perpendicular 

to it, and the axes 2 perpendicular to it. Any other and differently positioned 

symmetry elements would generate a new singular axis, which is not 

allowed. 
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Fig. 2.57. Asymmetric plane figures (planions) characterizing each plane group [2.17]. The 

arrangement of the figures corresponds to that of the representations of the groups in Fig. 2.56a. 

Packing of the figures gives the filling of the plane by the corresponding plane group. The “‘links”’ 

fix the figures when joining them along the planes (lines) of symmetry 

Cylindrical groups can be derived in several ways. Thus, similarly to what we 

did for groups G3, it is possible to form a semidirect product of a one-dimension- 

al translation group and point groups (with a single principal axis of any order), 

T, © Gj. These (symmorphous) groups, together with their nontrivial (non- 

symmorphous) subgroups—divisors—form all the groups G?. Nontrivial sub- 

groups can be obtained by increasing the translation t 5 T, M times and se- 
lecting some of the operations. 

A characteristic operation for these groups is a screw displacement s,,. It 

consists of a unit rotation through an angle a = 2n/M about the principal axis 
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with a simultaneous displacement ft, along the axis. The quantity M may be any 
integer M = N, which corresponds to the “integer” screw axis N,. But any 

fractional numbers M = p/q are also possible (p and q integers); then a = 2nq/p 

is one-pth part of g rotations (Fig. 2.58a). The period t = Nt, or pt,. This means 

that in a rational screw displacement there is always a translation ¢. We can also 

conceive of a case where M is irrational, and then there is no true translation tf 

and the corresponding period, and a case where a > 0, which corresponds to axis 

Fig. 2.58a,b. Model of a 
structure with a helical sym- 

metry. 

(a) screw rotation sy, M= 

pP/q = 7/2; (b) radial projec- 

tion of a structure with sym- 

metry 7/2. The straight lines 

on the plane net (b) corres- 

pond to the helices in (a), 

ABFE is the unit cell of the 

radial projection. It can be 

chosen differently, for in- 

stance ABED 

The families of groups G? are represented in Table 2.9. The upper row con- 

tains the generating family of point groups and the left-hand column the 

generating operation with the translational component. 

Groups G? are conveniently representable with the use of a radial projection. 

Let us write all their operations in the cylindrical system of coordinates r, g, x3. 

Now we “wrap’”’ an object (for instance, the one shown in Fig. 2.58a) in a 

cylindrical surface, whose axis is the principal one, and project its points onto 

this surface along the rays gy, x; = const perpendicular to the principal axis 

and radiating from it. The two-dimensional coordinates of the radial projection 

are gy and x, and can be drawn ina plane (Fig. 2.58b). If group G} contains a sub- 

group N, then it will be periodic along coordinate g with a period a = 2n/N. 

Table 2.9. Families of groups G} 

Point group 
Operation with 

translation N 

N N, N Nim Nm Nm ra 
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Sy ‘sy N SyN/2 

Son 
SayN/m 

cNm Eid 
m 

c cN cN cN/m 
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Such a projection can clearly belong only to one of the groups Gj D T,, and the 
periods ¢,, f, of the arising net are equal tot, = ar + t,, t, = t. Herefrom we can 

see still another way for deriving groups G?: it is taken into consideration that in 

the projection along the principal axis they yield groups G3, and in the radial 

projection, G3. Since X; is the singular direction, among groups G3 only oblique 

and rectangular groups—the first 9 out of the 17 (Fig. 2.56a)—can be used. In 

other groups, axes 3,4 and 6 would be perpendicular to the principal axis which 

is impossible in this case. The radial projections of all the families Gj are given 

in Fig. 2.59 in coordinates a, t [2.18]. One unit cell with parameters 2n/N and 

tis depicted. There are various possible ways for closing a two-dimensional net 

characterized by group G? onto a cylindrical surface depicted by group G3 (Fig. 
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Fig. 2.59. Radial projections of 15 families of groups of the type G3 
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Fig. 2.60. Variants of the closing of a plane 
net into a cylindrical one which illustrate the 

possibility of formation of helices with a dif- 
ferent number of starts 

Fig. 2.6la-c. Tubular crystal of the protein of phosphorylase B. (a) electron micrograph 
(x 3.5-10°); (b,c) result of optical filtration of the micrograph, which reveals separately the 
“front” and the “back”? wall of the tube and the helical cylindrical packing of the molecules 
in them [2.19] 

2.60). The points of the cylindrical net may proceed either along a one-start 

helix, or along helices with two or more starts. 

The relationship of groups G} and G3, whichis described ina radial projection, 

is not just a geometric abstraction. It finds its physical embodiment in the existence 

of so-called tubular crystals, which are formed by certain globular proteins (Fig. 

2.61). The molecules of these proteins are packed into a monomolecular layer 

during crystallization; this layer is not plane, however,but closed into a cylindri- 

cal surface. It should be remarked that some proteins form plane monomolecular 

layers, too, which are described by groups G3; these will be treated below. 

The formation of tubular crystals indicates that, generally speaking, the re- 

quirement for three-dimensional homogeneity (2.52, 53) is not always obligatory 

for the formation of systems from an infinite number of particles. But in this case 

a one-dimensional condition similar to (2.52, 53) is feasible. 

Regular point systems (RPS) of general positions in groups G} lie, in the 

general case, on the surface of a cylinder with an axis N. Thus, these groups are 

isomorphous to groups of transformation of a circular cylindrical surface into 

itself (just as groups G3 are isomorphous to the group of transformations of a 

sphere into itself). 
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The RPS of groups with N > 2, which contain sy, c,m, lie on circles, and 

such groups can be called proper cylindrical, or circular. For groups containing 

Sy, M = N/q, RPS lie on helices; these are proper helical groups. 

The groups framed by the dashed line in Table 2.7 are of the first kind; the 

objects realized in them are enantiomorphous. Such groups describe the mole- 

cules of biopolymers—fibrillar proteins, DNA. All the other groups are of the 

second kind. There are 75 crystallographic groups G}. A particular case of 

groups Gj are symmetry groups of a two-sided plane with one special direction, 

so-called ribbon symmetry groups. There are 31 of them. 

2.7.4 Layer Groups G3 

These are symmetry groups of three-dimensional twice-periodic objects [2.20, 

21]. They describe, for instance, the structure of walls, nets, panels, honey- 

Fig. 2.62. Structure of py- 

rophyllite built up of three- 

story layers.  Silicon- 

oxygen tetrahedra adjoin 

the central octahedral 

layer from two sides 
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combs, and at the atomic-molecular level, separate layers, which can be singled 

out in the structure of a number of crystals: layer silicates (Fig. 2.62), graphite 

[Ref. 2.13, Fig.2.Sc], in £-proteins [Ref. 2.13, Fig.2.119], various monomo- 

lecular layers and films, biological membranes, in smectic liquid crystals, etc. 

Groups G} > T, contain two translations. In the discrete group T, D ty, bh 

the translations with periods a,, a, lie in the singular plane X,, X,; hence, in 

G3 there is no periodicity along direction X, perpendicular to X,, X>. 

It is clear that subgroups of groups G3 are groups G3, onto which the former 

are projected along axis X3. Therefore all the groups G3 are crystallographic and 

can be subdivided into the same syngonies as groups G3. 

All the groups G3 can be derived, using the familiar method, by forming semi- 

direct products T, © Kand orienting the symmetry elements of Kso that rotations 

3,4 and 6 are performed only about the axes perpendicular to the singular plane 

(otherwise they would derive from it more identical planes, which is impossible). 

These (symmorphous) groups, together with all their nontrivial (nonsym- 

morphous) subgroups, actually constitute all the groups of the type G3. In them, 

operations arise which transform points lying on one side of the singular plane 

X,, Xz into symmetrically equal points lying on the other side of, and at the same 

distance from, it; in this case the two half-spaces (X; > 0 and X; < 0) are sym- 

metrically equal to one another. The corresponding symmetry elements, which 

always lie in the special plane, may be axes 2 and 2,, the glide planes a,b, and n. 

The other operations are the same as in groups G3; they do not change co- 

ordinate x3. 

All the 80 layer groups are depicted in Fig. 2.63 with the aid of a small asym- 

metric figure—a triangle; their international notation is also given. To distinguish 

the upper and lower sides of the triangle, one of them (let it be the lower) is 

colored black, and the othér (upper), white. In such operations, which change 

the third coordinate, triangles lying at any arbitrary height x; are flipped, the 

black sides appear instead of white, and vice versa, x; transforms into — x3. If 

plane X,, X, is a mirror-reflection plane, the triangles are positioned one over 

another and coincide upon projection. Then they are symbolized as triangles with 

a dot. Among these groups there are those which have no operations transform- 

ing the upper and lower half-spaces into one another, and then the space is asym- 

metric along axis X, perpendicular to X,, X;, and all the triangles are white (or 

black). The unit cell of the layers is an infinite “column” perpendicular to X,, X2, 

with a cross section in the form of a parallelogram of sides a, and a). 
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2.8 Space Groups of Symmetry 

2.8.1 Three-Dimensional Lattice 

The present-day conceptions of the symmetry of the space structure of crystals 

go back to the work of the French crystallographer A. Bravais, who established, 

in 1848, 14 types of three-dimensionally-periodic lattices, which are named after 

him. In 1879, L. Sohncke [2.23], proceeding from the results of C. Jordan (1869), 

described the groups of motions, i.e., the space groups of the first kind. A full 

derivation of space groups was carried out by the Russian crystallographer 

E. S. Fedorov and completed by him in 1890, and a little later, independently, by 

the German mathematician A. Schonflies. In their correspondence Fedorov and 

Sch6nflies put finishing touches to the description of all the 230 space groups. 

The Fedorov groups ® = G3 are groups of transformation of three-dimen- 

sional homogeneous discrete space into itself; they describe the atomic structure 

of crystals. It is the condition of homogeneity and discreteness which determines 

that all of them are three-dimensionally periodic ® D T;, and hence crystallo- 

graphic, with axes only of the Ist, 2nd, 3rd, 4th, and 6th order. (From now on we 

shall write simply T instead of T;). 

The translation subgroup T of Fedorov group @ is defined by three non- 

coplanar (and pairwise noncollinear) basis vectors, @,, a, and a,, 

t = p\@, + p2@, + P343, Pi, P2, P3 =90, +1,4+2.... (2.91) 

The group action in J is vector addition of any t:t, + t, = t; & T. The vector 

corresponding to a unity operation of a group is denoted by 0, and the operation 

inverse to each operation t, by —t. A translation group is infinite, Abelian; it is 

metrically characterized by (2.91). The three vectors, a,, a,, and a;, are the basis 

if they can represent any lattice translation t according to (2.91). In particular, the 

three shortest mutually noncoplanar vectors can be taken as a basis. An infinite 

discrete array of points x’ derivable from a given point x by the operation x’ = 

x + t forms a geometric invariant of group T—a space lattice. A parallelepiped 

constructed on a, a, a, is called a unit, or primitive parallelepiped (Fig. 2.64). 

Fig. 2.64. Possibility of different choice of a primitive 

unit cell in a space lattice 

This parallelepiped does not contain lattice points, i.e. nodes within it and is 
said to be empty (cf Fig. 2.53). As in the two-dimensional case (Fig. 2.53) the three 
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basis vectors, and hence a primitive parallelepiped, can be chosen in an infinite 

number of ways (Fig. 2.64). The volumes of all the primitive parallelepipeds are 

the same. Despite the fact that we can choose three basic vectors in a given lattice 

in different ways, all of them describe metrically one and the same translation 
group. 

At the same time, a lattice has an infinitely large number of nonprimitive 

parallelepipeds, which contain on their edges and/or faces, and/or in the volume, 

points belonging to the primitive lattice (Fig. 2.54, the two-dimensional ex- 

ample). Their edges are three arbitrary noncoplanar translations ¢,,t,,t; out of 

the whole set (2.91). The volumes of such parallelepipeds are multiples of that of 

the primitive one. It is obvious that all the groups 7’ = {t,, t,, t3} are sub- 

groups of T= {a,, @,, a;}, because the lattice derived by group T’ does not 

cover all the points of the lattice of group T. Abstractly, all the 7’ are isomor- 

phous, and also isomorphous with T, i.e., group T, in the abstract sense is 

unique. 

The possibility of choosing a primitive or nonprimitive unit cell for a given 

lattice in an infinite number of ways does not mean that it is impossible to 

indicate an unambiguous method for choosing a unique standard basis. For such 

a choice the nontranslational symmetry of the lattice is taken into account. 

There exist also algorithms for reduction of any unit cell to standard settings, 

which will be discussed further on (see Sect. 3.52). 

2.8.2 Syngonies 

Group T derives a lattice from any one point of space. Let us consider a possible 

point symmetry of a lattice point (they are all identical) and of the lattice as a 

whole with respect to this point, i.e., let us find the maximum group K retaining 

a fixed point unmoved and bringing the lattice into self-coincidence. 

Fig. 2.65. Six vectors -+a, issuing from a lattice 

point 

A set of six vectors, @,, @, 43, —a@,, —a,,and —a, comes out of each point 

of the lattice; they can be used to construct eight unit parallelepipeds; taken 

together, they make up one large parallelepiped with double-sized edges and the 

chosen point at its center (Fig. 2.65). It is easy to see that the symmetry K 

of the point and lattice as a whole with respect to the point coincides with the sym- 

metry of these six vectors and of the large parallelepiped, or with the symmetry 

of the unit parallelepiped, provided that we take the most symmetric one of 
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Fig. 2.66a-g. Unit parallelepipeds characteriz- 

ing seven syngonies. 

(a) triclinic, (b) monoclinic, (c) orthorhombic, 

(d) tetragonal, (e) trigonal, (f) hexagonal, and 

(g) cubic je) Go @: 

d e f g 

all such possible parallepipeds (and a,, a,, a, corresponding to them) (Fig. 2.66). 

In this way the point symmetry of the lattice defines the choice of a standard 

basis. It should be noted that in one case, i.e., in the hexagonal syngony (Fig. 

2.66f), the symmetry of the lattice point corresponds to that of the six unit 

parallelepipeds adjacent to it which, taken together, make up a hexagonal 

prism. The division of lattices according to the point symmetry K of their points 

is called the division into syngonies (or systems). (See footnote 13 on p. 100.) 

There ase seven syngonies all in all. They can readily be derived by consider- 

ing the possible symmetry of parallelepipeds, gradually raising the symmetry 

of the least symmetric one with edges a, # a, # a, and anglesa + f # y, or by 

deforming the most symmetric one, a cube, and reducing its symmetry (Fig. 

2.66). The syngonies have the following names: cubic (symmetry of paral- 

lelepiped O, — m3m), the highest; hexagonal (D,, — 6/mmm), tetragonal 

(D,, — 4/mmm), and trigonal D,, — 3m), intermediate, with one principal axis; 

and orthorhombic (D,, — mmm), monoclinic (C,, — 2/m), and triclinic (C; — 

—1), the lowest. The holohedral groups of symmetry K (see Sect. 3.2.4), which 

characterize the syngonies, are subgroups of each other. 

The subordination scheme is as follows: 

cubic hexagonal 

tetragonal trigonal 

orthorhombic 

monoclinic 

triclinic 

The characteristics of the syngonies were given in Tables 2.3 and 2.4. We have 
already considered them in the classification of point groups. 

2.8.3 Bravais Groups 

The lattice point has a point symmetry K (holohedral), which depends on the 
allocation of the lattice to one of the seven syngonies. The lattice is also trans- 
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formed into itself by a group of translations 7. A full group of motions (of both 
kinds) that bring the lattice into self-coincidence, i.e., which contains both point 
symmetry operations and translations, is called a Bravais group, and an infinite 
lattice derived from one point by a Bravais group, a Bravais lattice. 

The seven parallelepipeds (Fig. 2.66), characterizing the syngonies described 
by definite metric and angular relationships between the vectors of the basis 
translations, correspond to the seven Bravais lattices. These parallelepipeds are 
primitive; therefore, the corresponding Bravais groups and lattices are called 
primitive and are denoted by letter P. 

a 

b 

Fig. 2.67a-c. Two-dimensional nets with symmetry mm: 

primitive (a) and centered (b); centering of an oblique 
C om net (c) does not produce a new Bravais group 

To find the other Bravais lattices we consider a two-dimensional example of a 

net with symmetry mm. The point lying on m and the whole lattice, have this 

symmetry in two cases: the first, if the two shortest translations are oriented one 

in mand the other perpendicular to it, then a, # a,, angle y = 90°; and the net is 

rectangular (Fig. 2.67a); and the second, if a is directed arbitrarily, angle y # 

90°, but then a, = a; because of the presence of m, and the net is orthorhombic 

(Fig. 2.67b). The second net can also be described as rectangular with transla- 

tions a, = a, + a, and a, = a, — a), y = 90°, but centered: it has a point 

located at the center of the rectangle, whose vector is a, = (a, + a,)/2. In both 

cases the net and its points have symmetry mm, but metric and angular relation- 

ships between the minimum basis translations are different, i.e., there are two 

two-dimensional Bravais lattices and two groups here. The second lattice arises 

because of the possibility of centering the rectangular primitive lattice. Note that 

the centering of an oblique net (Fig. 2.67c) with a, # a, y # 90° will not pro- 

duce a new Bravais group, since a; = (a, + a@,)/2, a, = (a, — a,)/2 and the 

relationships for the new values are the same as for the initial: a; # a, y # 90°. 

In the three-dimensional case, too, nonprimitive Bravais lattices and groups 

are possible; they contain points at the center of one or all the rectangular faces 

or at the center of the (rectangular) parallelepiped itself. Symmetry K of these 
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parallelepipeds and of each point is the same as that of the primitive, but the 

set of vectors issuing from each point towards the neighboring ones has 

become different: it is supplemented by vectors running to the centering points. 

This means that the syngony remains the same, but the Bravais group (it is 

characterized precisely by a set of minimum translations) is different. 

The requirement for the rectangularity of the centered face leaves only the 

primitive Bravais group P1 for the triclinic lattices. 

Groups and, hence, lattices centered on one face are called base- or side- 

centered and denoted by A (centered face a,a;), B (a,a;), or C (a,a,). In this way 

a nonprimitive Bravais group arises in the monoclinic (Fig. 2.68a) and ortho- 

rhombic (Fig. 2.68b) syngonies'*. In the tetragonal syngony (Fig. 2.68c), when 

a, = a, y = 90°, centering on the base gives the same relationships as in the 

principal lattice: a; = aj, y = 90°, and therefore no new Bravais group arises. 

Fig. 2.68a-d. Different pos- 

sibilities for lattice centering. 

Appearance of a base-cen- 

tered Bravais group in a mo- 

noclinic (a) and orthorhom- 

bic (b) lattice. Centering of a 

tetragonal lattice with res- 

pect to the basis (c) brings us 

back to the case of a primi- 

tive tetragonal lattice. Cen- 

tering of a orthorhombic lat- 

tice with respect to two faces 

(d) will also lead to the cen- 

tering of the third basal face 

Centering on two faces in the case of the orthorhombic (Fig. 2.68d) and other 
lattices is impossible, since the arising translation a{ must also center the basal 
face. 

Centering on all the three faces, which is denoted by F, gives a set of 12 
vectors (equal in length) of the form a, = +(a, + a,)/2, where i, k = lee243 
(Fig. 2.69a). A polyhedron drawn over the ends of these vectors is an ortho- 
rhombically deformed cubooctahedron (Fig. 2.69b). Bravais face-centered 
groups arise in this way in the orthorhombic and cubic syngonies, while in the 
tetragonal syngony they are reduced to the case of P. 

4 Tn the monoclinic syngony the three-dimensional lattice is characterized by symmetry 2/m, 
although the plane nets perpendicular to m have a two-dimensional symmetry mm, as in 
Fig 2.67. 
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Fig. 2.69a,b. Description of a face- 
ta centered lattice. 

(a) a set of 12 vectors directed 

towards the centers of the faces 

adjoining the given point (F-center- 
ing, possible in rectangular cells); (b) 

polyhedron (dodecagon) drawn over 

these vectors 

Fig. 2.70. Set of eight vectors directed 

towards the centers of cells adjoining the 

given point : J-centering, possible in rec- 

tangular cells. A polyhedron drawn over 

their ends coincides in shape with the cell 

itself 

Centering of the volume, which is denoted by J, gives a set of eight 

vectors (equal in length) of the kind a, = (+ a; + a, + a,)/2 (Fig. 2.70). A poly- 

hedron drawn over the ends of these vectors coincides in shape with the initial 

unit cell. This gives new Bravais groups in the orthorhombic, tetragonal, and 

cubic syngonies. 

The primitive parallelepipeds in cubic F and J cells are rhombohedra (Fig. 

2.71). Similar primitive unit cells can be singled out in tetragonal and ortho- 

rhombic J and F lattices; their faces are parallelograms and rhombs. 

As we have already noted, the true symmetry of the lattice point of the 

hexagonal cell and of a set of unit vectors (there are eight of them) is revealed 

if we add together three unit parallelepipeds (see Fig. 2.66), which constitute a 

hexagonal prism. Here, consideration of the possibilities of centering proves that 

there are no new Bravais groups. 
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Fig. 2.71a,b. Primitive rhombo- 

hedra which can be singled out 

in cubic J (a) and F (b) lattices 

V Fig. 2.72a,b. Relation between 

a hexagonal and a rhombohedral 

cell. (a) axonometric representa- 

tion; (b) projection onto the 

basal plane; the figures denote 

the z coordinates of the points 

Only one rhombohedral Bravais lattice—primitive—is possible; it has a 

trigonal symmetry. But it can be described in the hexagonal setting with additional 

points and, conversely, a hexagonal cell can be described in the rhombohedral 

setting (Fig. 2.72). 

Table 2.10. 14 Bravais groups (lattices) 

Syngony Centering Translation group 

(Schénflies notation) 

Triclinic 1p iF 
Monoclinic Ie i Bee 

B(C) tT 
Orthorhombic P IE 

C(B,A) IP 

I 0 
F Ig 

Tetragonal IE iF. 

fi ds 
Trigonal R I Bn 

Hexagonal ie If. 

Cubic P ip 

I IY 

F Tig 

International 

symbol 

Pi 
P2/m 

B(C)2/m 

Pmmm 

C(B,A)mmm 

Immm 

Fmmm 

P4/mmm 

I4/mmm 

R3m 

P6/mmm 

Pm3m 

Im3m 

Fm3m 
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Fig. 2.73a-g. Fourteen Bravais 

lattices. 

(a) triclinic; (b) monoclinic; (c) 
orthorhombic; (d) tetragonal; (e) 

trigonal; (f) hexagonal; (g) cubic 

(see Table 2.10) 

Thus, we finally obtain 14 Bravais groups and, hence, 14 Bravais lattices 

(Fig. 2.73 and Table 2.10). 

Taking into account the possible centering, the operations of translations of 

the Bravais groups have a form similar to (2.91), but with an additional term f,, 

t= p,4, + pra, + p38, +1t,, Pi, P2,P3=90,+1,42,...,+0. (2.92) 

For instance, when centering on the base t, = (a, + a,)/2, etc (see Fig. 2. 

68b). It is also possible to write ¢ directly through primitive translations, say for 

a base-centered lattice 

t=p; E ~ =) + Pr 4 + P33. (2.93) 

Operations of the translation group T, being applied to any point x of the 

crystal space (TJ is mobile), will derive a lattice of parallel points x’ =x-+t 

from it (see Fig. 1.15); this group is free. On the other hand, the point symmetry 

of the lattice and the Bravais group its revealed if one “‘stopped”’ lattice is con- 

sidered. 
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Points x of space, however, may be interrelated not only by operations of the 

Bravais groups, but also by other symmetry operations. All the possible groups 

of such operations are in fact space groups ®, which will be considered next. 

2.8.4 Homomorphism of Space and Point Groups 

We take any asymmetric point A in space together with its asymmetric label— 

a tetrahedron—and perform all the operations of the given space group over it, 

being interested only in the components of rotations (proper and improper) 

of these operations, and disregarding translations and translational com- 

ponents of any operations (if they exist). All the rotations of the obtained points 

A, A’, A”, . . . will be preserved if we transfer these points parallel to them- 

selves to one common point O; all the translations will naturally be lost. For 

instance, if we had an operation of screw rotation with an axis N, giving dis- 

placed and rotated points, they would now only be rotated about axis N, which 

corresponds to N, in its order. To the symmetry operations (and elements) a, b, 

c,n, d there will correspond m in a parallel orientation. The operations N, N, and 

m of groups ® remain unaltered. The symmetry elements of groups ® may all 

intersect at a single point (Fedorov named such a point the “‘centre of symmetry” 

attaching to it a different meaning than we do now), but they may not intersect, 

either. The procedure under consideration transforms all the spatially distributed 

symmetry elements @ into point symmetry elements intersecting at a singular 

point. 

All the rotations (of both kinds) of group ® themselves make up a group, 

because in performing operations ® these operation components act only on each 

other, while the translational component is insignificant. At the same time, 

these rotations in group @ are only such that they bring the lattice produced by 

group T C @ into self-coincidence. It follows that the group of these rotations is 

one of the 32 crystallographic point groups K, which is homomorphous with 

group @. 

Since each Bravais lattice of a given syngony is described by a holohedral 
point group K (the most symmetric of all the point groups of this syngony), it is 
clear that the orientation of the symmetry elements of the space group of this 
syngony can only be that of the respective elements of the point symmetry of the 
unit parallelepiped. 

The entire set of parallel motions of group © consists only of its group of 
translations TC @ and translational components a@ of rotation operations of 
both kinds, if they exist. Therefore we can write the following symbolic rela- 
tion: 

®:(T+a)oK, (2.94) 

which means that exclusion of all parallel motions from @ results in a group K 
such that the lattice derived by Tis described either by K itself, if it is holohedral, 
or by its supergroup holohedral with respect to K. 
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As we shall see below, strict group-theoretical relations (2.98,101) correspond 
to this geometric reasoning. 

A homomorphous mapping of the sets of groups ® onto definite groups K is 

not only an abstract notion, but reflects the physical fact of interrelation of the 

microscopic and macroscopic structure of crystals and has actually originated 

from it. 

Space groups describe the microstructure of a crystal, while point groups its 

habit. Let us take some crystal which has, say, a screw rotation axis. Let a lattice 

net be inclined to this axis. Macroscopically, this net is expressed as a crystal 

face. The microscopic action of the screw axis consists in rotating this net and 

displacing it by atomic-scale distances. From the macroscopic point of view it is 

tangible and measurable only as a rotation, and in the crystal habit we shall see 

only a simple rotation axis. The same refers to the macroscopic manifestation of 

other symmetry elements with a translational component: they lose it in macro- 

manifestation. In other words, groups ® and their symmetry elements are 

macroscopically “‘visible’’ as the respective groups K and their point symmetry 

elements. 

2.8.5 Geometric Rules for Performing Operations and for Mutual Orientation of 

Symmetry Elements in Groups ® 

The existence of translational symmetry operations t € 7; C ® predetermines 

the geometric features of their products (successive performances) with other 

operations g; € ®, which may include point symmetry operations g; E K C @. 

Translations will generate, from any line or plane, an infinitely large number 

of lines or planes parallel to the initial. By definition of a symmetry element (see 

Sect. 5) its points or the element as a whole are transformed into themselves by all 

the degrees of the operation generating it, and it is transformed completely into 

similar elements by other operations. Hence it follows that a lattice always has 

translations (rows of points) parallel to the axes of symmetry (Fig. 2.74) and 

translation nets parallel to the planes of symmetry (Fig. 2.75), since such trans- 

lations displace the indicated elements parallel to themselves. It can be seen from 

the figures that there are always nets of points perpendicular to axes of any 

type (Fig. 2.74), and there are always one-dimensional rows of points, i.e., there 

are translations perpendicular to any plane of symmetry (Fig. 2.75). 

Plane m, perpendicular to translation ¢, is reproduced by it into identical 

planes spaced at t from each other, but by theorem IJ of Sect. 2.2.4 and as evident 

from Fig. 2.9b, one more plane m’, parallel to m and spaced at t/2, always arises 

in this case. The same is true for glide-planes perpendicular to ¢. By analogy, it 

is easy to understand that if there exist translationally equal axes of symmetry of 

even order, there exist parallel axes of the second order halfway between them. 

There are also derivative inversion centers at midpoint between translationally 

equal inversion centers. Thus, groups ® have infinite systems of parallel sym- 
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a N, or Noor Ney 

ected pone eonaran ey j++ +S 
| le aha ma te 4 oa t+ 

m, or a,orn 

Fig. 2.74. Translation ft, parallel to the sym- _‘ Fig. 2.75. Net of translations t,t, parallel to 

metry axis, and a net of translations t,t, the symmetry plane, and translation f, 

perpendicular to it perpendicular to it 

metry elements derivable from some initial ones, both translationally equal and 

derived, lying halfway between them. 

2.8.6 Principles of Derivation of Space Groups. Symmorphous Groups ©, 

In deriving groups ® use is made of geometric, arithmetical, combinatorial, 

group-theoretical, and other methods. We shall proceed from geometric concepts 

and group theory. 

From consideration of translation group 7 and the Bravais groups, and also 

from the deduction of homomorphism (with appropriate orientations) of groups 

@ and K (2.94). A simple method for deriving symmorphous space groups follows: 

it is possible to combine operations f; of group 7 in its realization as one of the 

Bravais lattices with operations k of point groups K of appropriate syngony, i.e., 

to form a semidirect product (2.42) of such groups 

,=TOK. (2.95) 

Geometrically—in the language of symmetry elements—this is equivalent to 

placing the symmetry elements of group K at the points of the Bravais lattice of 
the same symmetry (here, as we know, new, derivative symmetry elements may 
also arise). Group K in (2.95) may be either a higher, holohedral group of a given 
syngony, or one of the lower subgroups of the holohedral group (the latter does 
not contradict the above-formulated requirements). The groups thus obtained 
were named symmorphous by Fedorov. 

Let us consider two examples. In the first case the Bravais lattice is mono- 
clinic primitive P, and the point group is 2/m. A group ®, = C},— P2/m arises 
(Fig. 2.76). In accordance with the above rules, additional derivative elements 
have also arisen within the unit parallelepiped apart from the initial symmetry 
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1 et aa 
i} ) Q ; ae 

Fig. 2.76a-c. Derivation of a symmorphous space group 

\ . as a product of a point group and a translation Bravais 

group. 

-s3a6 tS 1 (a) point group 2/m and a regular point system in it (for 

c visual clarity, the points are joined by straight lines; they 

form a rectangle); 

(b) symmetry elements “‘planted”’ at the points of a primitive oblique Bravais lattice and regular 

point systems of group 2/m (this produces space group P2/m; apart from the initial symmetry 

elements of group 2/m, additional elements 2, m, i arise in it at half-distances) ; (c) conventional 

representation of space group P2/m in projection onto an oblique face 

elements of group K. In the second case the Bravais lattice is tetragonal, body- 

centered I, and the point group is 42m. A group ®, = D3, — I4m2 arises (2.77a- 

c). Elements with a translational component (inherent in any centered Bravais 

lattice) appear in addition to the derivative elements of point symmetry. With 

another coincidence of the symmetry elements (rotation of 42m through 45°) a 
group ®, = D3} — 142m appears (Fig. 2.77d). 

In the semidirect product (2.95) the factor T is an invariant (normal) divisor, 

so that T = KTK~—"', while K is not. Geometrically, the idea is that the invariant 

subgroup 7 Cc @ in space can be singled out anywhere (this is a free vector 

group), while the point subgroup K C ®, can be isolated only with respect to 

certain points of space, namely those at which all the symmetry elements of 

group K = k, intersect. Here, (2.95) reflects the fact that the operations k, of 

group K transform the lattice into itself. 

The semidirect product (2.95) can be rewritten 

ene ere ie 8. k,) = Ty, UT U a U Te (2.96) 

where the symbol U means joining the cosets T,, = {tik,, tnk,, tsk, . . .}. The 
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cosets themselves are elements of a new group @/7, a factor group (2.38). The 
multiplication law in it 

1 Pay — 7 = 1. +> kk, — k, (2.97) 

coincides with the law of multiplication of elements in group K. Thus, in place 

of the symbolic relation (2.94) we can write exactly 

©, > &,/T o K. (2.98) 

This means that the symmorphous group ®, is homomorphously mapped onto 

the factor group ®,/T with respect to the translation subgroup, and this factor 

group is isomorphous with the point group K. The unit of the factor group is the 

translation group T = eT itself; its action is equivalent to the operation e € K, 

while the other cosets g,T = Tg; © g,, i.e., they correspond to one of the 

operations k,; © K (t,k,; > k;, thk; > k,, ...). 

The operations of any symmorphous group @, thus consist of operations of 

the point group, which are characterized by matrices (a,,) = D(2.6), and transla- 

tion operations of the Bravais group (2.92), i.e, are linear transformations 

(2.4,5), 

g,& D, x  =Dx+t. (2.99) 

In constructing ®, as semidirect products of T and K in accordance with 

(2.95) it should be borne in mind that one and the same group K may be en- 

countered in different Bravais groups of the given syngony (Table 2.11). 

Table 2.11. Distribution of the 73 symmorphous groups ®, among the syngonies 

Syngony Number of groups Syngony Number of groups 

Cubic ese Orthorhombic 3-4 1=>13 

Tetragonal 7-2+ 2 = 16 Monoclinic Yon = 6 

Trigonal 5-1 == 9 Triclinic Io) ==) 

Hexagonal Ze 4 

In Table 2.11 the first factor shows the number of groups K, and the second, 

the number of Bravais groups in each syngony. In the tetragonal, hexagonal, and 

orthorhombic syngonies, if group K is not the highest, sometimes more than one 

consistent setting of symmetry elements of K and those of the Bravais group is 

possible, which gives additional 7 groups (the plus signs in Table 2.11). An 

example of this kind is given in Fig. 2.77. In all, there are 73 symmorphous 

groups ®,. 
If in forming symmorphous groups by (2.95) we take K' of the first kind 

(T = T‘ are themselves of the first kind), we obtain ®{ of the first kind, of which 
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there are 24. Accordingly, taking K", we have ©" of the second kind, of which 

there are 49. 

It is worth noting that the Bravais lattice of spherically symmetric points, 

taken separately, is described by the most symmetric of the symmorphous 

Fedorov groups of the corresponding centering of a given syngony. These groups 

are indicated in Table 2.10. 

2.8.7 Nonsymmorphous Groups ©, 

To obtain the other, nonsymmorphous Fedorov groups, we recall that in the 

formation of the group product it is possible to isolate nontrivial subgroups in 

the resultant group. This is illustrated in Fig. 2.11, where the product of the 

operation of point group m with one-dimensional translation ¢||m is considered. 

From the group G? formed, a new subgroup with a basis {e, a}, containing a 

glide reflection a (Fig. 2.11d), can be singled out. 

It should be emphasized that although the translation period in the new 

group t’ = 2t (twice as large as the starting one), this is of no importance now, 

and it can be taken as the unit period, and the translational component of the 

glide reflection a will be t’/2, as usual. The group obtained is a subgroup of the 

symmorphous group Gj, but it is not identical to any other symmorphous group 

of this type. 

Precisely the same approach holds for groups G3 [2.24]. The unit cells of 

groups ®, enlarged by the same factor in one, two, or all the three directions, 

contain not only the symmetry elements of the generating point group and the 

corresponding operations, but also operations with the translational com- 

ponent—glide reflections and screw rotations—if the multiple period is adopted 

Fig. 2.78. Formation of the nonsymmorphous group @,. Selection 

of operation 6, in six unit cells (arranged one above another) of a 

group containing axis 6 
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as a basis. Let us take, for instance, six cells, arranged on top of each other, of 

group ®, containing axis 6 (Fig. 2.78). They have operations 6” (n = 0, ... , 5), 

and also 6”-t’, . . .,6”-St’. Out of these we select only 6”-nt’. They constitute 

a screw rotation, and a nontrivial subgroup ®, C Q, arises with a period t = 

6t’, which contains a screw rotation 6,. 

Thus we obtain nonsymmorphous groups ®,, which are nontrivial subgroups 

of groups ®,, ©, > ©,. Symmorphous and nonsymmorphous groups, taken 

together, constitute all the Fedorov groups. Accordingly, all the operations— 

elements g; © ®,—are a part (subgroup) of the set of elements {... g;...} = 

®,, which are included in a symmorphous group (with multiple translations). 

Groups ®, D> ®, are homomorphous to the same point groups K to which @, 

are homomorphous. 

Fedorov divided the nonsymmorphous groups into two types, hemisym- 

morphous and asymmorphous. Let us take some symmorphous group of the 

second kind @!. On doubling its period we can discard those operations of the 

second kind whose elements intersect at the same point where their axes do. This 

yields hemisymmorphous groups @{); all of them are of the second kind; there 

are 54 of them. 

Among symmorphous groups ®,, on multiple increase of their periods, it is 

possible to select such subgroups ®, which have no points of intersection of axes 

of all directions; they are asymmorphous groups ®,. A characteristic example of 

asymmorphous groups are groups with screw axes (cf Fig. 2.78). Thus, a sym- 

morphous group 9, has, by definition (2.95), positions of points whose symmetry 

is precisely that of the respective point group K. A set of equivalent points of 

general position, surrounding the point of highest symmetry, and an isogon— 

polyhedron, formed by them has the same symmetry K —see, for instance, Fig. 

2.77a. In a hemisymmorphous group @/ the highest symmetry of the positions of 

the points is described by one of the subgroups of the first kind K’ of index 2 of 

group K", which is homomorphous with @#, i.e., the position of points in K™ 

splits up into two enantiomorphous positions in K". For instance, group Pmmm 

is symmorphous, there are points (and isogons) in it with symmetry mmm (Fig. 

2.79a); the group Pann is hemisymmorphous, the highest symmetry of points (and 

isogons) being 222 (Fig. 2.79b). Similarly, group Pm3m is symmorphous with the 

highest symmetry of position m3m, group Pn3m is hemisymmorphous with the 

highest symmetry of position 432, while group Pm3n is asymmorphous; it has 

no positions with symmetry m3m and 432. 

The number of groups ®, is 103, of which there are 41 ®) and 62 7. 

Let us consider the recording of operations of nonsymmorphous groups ®, 

®,>g2;: x =Dx+a(D)+t, (2.100) 

where Dx determines, by (2.4) and (2.5), all point symmetry transformations (if 

they exist) of the given group, a(D) are the components of a screw translation or 

glide reflection associated with the proper or improper rotation, and f is the 

translation operation of the Bravais group (2.92). 
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Fig. 2.79a,b. The concept of hemisymmorphous group ®,. In the symmorphous group Pmmm 

(a) a regular system of eight points has symmetry mmm. The same symmetry is exhibited by an 

isogon (a polyhedron whose vertices are points of a regular point system); in this particular case 

it is a parallelepiped. In the hemisymmorphous group Pnnn (b) four poits with symmetry 222 

are selected from this regular system (222 is a first-kind subgroup of index 2 of group mmm), 

the corresponding isogon is a tetrahedron; another four points, which are enantiomorphous to 

the first, arelocated at the center of a unit cell 

The analytical expression of operations of space groups depends on the choice 

of the origin. Therefore, in particular, operations of symmorphous groups have 

the form (2.99) only when the origin is chosen at the point of intersection of all 

their symmetry elements; if a different point is chosen, operations are written 

in the most general form (2.100). 

We shall now consider briefly the matrix-vector method for the derivation of 

groups ®. Any transformation g; € ® can be written as (D,a,), where D is the 

matrix of a proper or improper rotation of group K, and ap is the displacement 

vector (2.5). The symmetry transformations of groups K written in the form of 

primitive vector triads yield 73 integer-nonequivalent finite groups of whole- 

number matrices corresponding to symmorphous groups. These are called 

arithmetical classes. To derive all the Fedorov groups it is sufficient to indicate, 

for each arithmetical class, all the different displacement vectors corresponding 

to its matrices. A necessary and sufficient condition, which must be satisfied by 

the displacement vectors under two consecutive transformations D, and Dj, is 

Frobenius’ comparison, Dap, + @p, = a (mod T) [(mod 7) means the fulfill- 

ment of this relation with an accuracy to a translation group.] There is a method 

for solving such comparisons, which is standard for all the arithmetical classes 

[2.22] and which gives all the ®. The geometric aspect of such a derivation con- 

sists in finding all the possible ways for dividing an isogon of the symmorphous 

group corresponding to a given arithmetical class and the vectors carrying the 

parts of the isogon over the primitive parallelepiped. 

Let us turn once again to the considerations concerning the relationship of 

any Fedorov groups with point groups. In view of the presence of the term a(D) 

in expression (2.100) the factor group of the nonsymmorphous group @, with 

respect to the translation subgroup does not coincide with point group K, as 
was the case for symmorphous groups according to (2.98). Here, however, 

some group K’ appears, which also includes operations with translational com- 
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ponents. It is agreed then that the degree of operations yielding a translation (for 

instance, 3} = t, see Fig. 2.80) is equivalent to a unity operation e, and such a 

group is called a modulo group, in this case modulo 3}. With this convention 

group K’ turns out to be isomorphous to the respective ordinary point group K, 

and the factor group is mapped onto the first one of them, 

®@,/T > K'o K. (2.101) 

This means that (2.98) is valid not only for symmorphous groups ®,, but for non- 

symmorphous @, as well. In other words, the factor group of any Fedorov group 

with respect to the translation group 7 is always isomorphous to the crystallo- 

graphic group K. 

2.8.8 Number of Fedoroy Groups 

The finiteness of the number of Fedorov groups follows from the method of 

their derivation. Indeed, the number of symmorphous groups 9, is finite, since 

they are a product of a finite number of Bravais groups and a finite number of 

groups K with a finite number of possible combinations of groups K with Bravais 

groups. As for the number of groups @,, it is finite, because there are subgroups 

of the former with a finite (multiple) increase of the periods by 2, 3, 4, 6 (but not 

more) times. If we take larger multiple periods, no new operations with trans- 

lational components will be obtained: they will all coincide with the degrees of 

the existing ones; thus, no new groups can be constructed, either. 

Consequently, symmorphous ®,, hemisymmorphous ®,, and asymmorphous 

®, constitute all the groups ®, and their number is therefore 73 + 54 + 103 = 

230. Of these, there are 65 groups ®! and 165 @". 

38 
neh 

Fi.g. 2.80 The concept of a modulo group. 

In a modulo group, the degree of operations with a translational 

component, which is equivalent to a translation, is taken to be 

equivalent to a unity operation, for instance, 3} = tf = e 
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Among the groups ® some have operations performed by screw rotations 

and the corresponding axes of different chirality 3,, 3,, 4, 45, 61, 65, 62, and 6,. If 

such a group is of the second kind, these axes are always pairwise; if it is of the 

first kind, they all are of only one chirality (all right-handed or all left-handed). 

There are 11 pairs of groups of the latter type. Each of them can be obtained by a 

mirror reflection of its enantiomorphous analog. Abstractly, these 11 pairs of 

groups @ are equal. 

All the other Fedorov groups are abstractly different, i.e., nonisomorphous. 

If we regard the indicated pair of groups as one group, the number of groups 

@! will be 30, and the total number of Fedorov groups, 219. 

2.8.9 Nomenclature of Fedorov Groups 

Table 2.12 lists all the Fedorov groups with their division into symmorphous 

groups and their subgroups: hemi- and asymmorphous. 

Table 2.12. Fedorov groups @ 

(symmorphous @,, hemisymmorphous @®,, and asymmorphous @,) 

D, PD, ?, 

Ci — Pl 
Ci = Pil 

C} — P2 CZ — P2, (2) 
C3 — B2 
C!— Pm C2 — Pb (2) 
C3 — Bm C+ — Bb (2) 

C= Pim | «Ch = P20) C2, — P2,/m (2), Ci, — P2,/b (4) 
C3,— B2jm _— C$, — B2jJb (2): 
Di = P22? DP P2227) 0), DP P22, 

Dz — P2,2,2, (8) 
D§ — C222 D3 — G222;(2) 

Die 
Do js PY ORR 
Ci, — Pmm2 C3, — Pcc2 (2), C4, — Pma2 (2), Cre ic2 (2) Gos cola). 

C3, = Pnc2 (4), C3, — Pba2 (4), C2 — Pmn2, (4), C?, — Pna2, (8) 

C32 — Pnn2 (8) 

11 — Cmm2 C43 — Ccc2 (2) C}2 — Cme?, (2) 
Ci4 — Amm2 Ci3 — Abm? (4), C1§ — Ama? (2), 

C37, — Aba2 (4) 
48 — Fmm2 Ci}? — Fdd2 (8) 

C2 lmm2 C3! — Iba2 (8), C32 — Ima2 (8) 

Dj}, — Pmmm D3, — Pnnn (8), D3, — Pccm (2), D3, — Pmma (2), D§, — Pnna (8), 

D3, — Pban (8) Dj,, — Pmna (4), D8, — Pcca (4), 

D3,, — Pbam (4), D}2 — Pccn (8), 

D3}, — Pbem (4), D3}? — Pnnm (8), 

D3} — Pmmn (4), D314 — Pben (8), 

D}3. — Pbca (8), D3}§ — Pmna (8) 
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Table 2.12. (continued) 

®, 

D3} — Cmmm 

D3} — Fmmm 

D3; — Immm 

Ci — P4 

ci — 14 

Si — P4 
S?— 14 

Ci, — P4/m 

C3, — 14/m 

D} — P422 

D3 — 1422 

Cl, — P4mm 

C2, — [4mm 

Di, — P42m 

D3; — P4m2 

D3, — 14m2 

D113 — 142m 
Di, — P4/mmm 

Py 

D3° — Ccecm (2), D3} — Cmma (4), 
D2 — Ccca (8) 

D3% — Fddd (8) 

D3§ — Ibam (8) 

Ci, — PA/n (2) 

C2, — P4bm (2), Cz, — P4cc (8), 

C$, — P4nc (8) 

19 — I4cm (8) 

D2, — P42c (2) 
D$, — P4c2 (2), Di, — P4b2 (4), 
D8, — P4n2 (8) 
D183 — 14c2 (8) 

D2, — P4/mcc (2) 

D3, — P/4nbm (2), D4}, — P4/nnc (8) 

Di] — 14/mmm_ D}3 — 14/mcm (8) 

Ci — P3 

Ci — R3 

Ci, — P3 

C3, — R3 

D! — P312 
D3 — P321 
Di — R32 
Ci, — P3ml1 

C2, — P31m 

C3, — R3m 

C3, — P3cl (2) 
4, — P3lc (2) 

C$, — R3c (2) 

141 

PD 

D3, — Cmem (2), Di} — Cmca (8) 

D3]. — Ibca (8), D38 — Imma (8) 

Ci — P4, @), Ci — P4, @), 
Ci — Pa; (4) 
C$ — 14, = 14, (4) 

Ci, — P4,/m (2), Ch, — P4,/n (8) 
C$, — 14,/¢ (16) 
D2 — P42,2 (2), D3 — P4,22 (4), 
D4 — P4,2,2 (16), Dj — P4,22 (2), 

D& — P4,2,2 (8), DZ — P4,22 (4), 

D§ — P4,2,2 (16) 

D}° — 14,22 (16) 
Ci, — P4,cm (2), Ci, — P4,nm (8), 
Cl, — P4,mc (2), C3, — P4,bc (8) 

11 _ J4,md (16), C}2 — 14,cd (16) 

D3, — P42,m (4), Dt, — P42,c (8) 

D33 — 142d (16) 
Di, — P4/mbm (2), Dg, — PAlmne 

(8), 
Di, — P4/nmm (2), 
D8, — PA/nce (8), 
D3, — P4,/mme (2), 
D2 — P4,/mcem (2), 
Di} — P4,/nbe (8), 
D2 — P4,/nnm (8), 
D}3 — P4,/mbc (8), 
Dit — P4,/mnm (8), 
D1; — P4,/nmc (8) 
Dif — P4,/ncm (8) D132 — I4,/amd (16), 
D22 — I4,/acd (16) 
CF a P3, (3), C3 P3, (3) 

D3 — P3,12 (3), D3 — P3,12 (3) 
D4 — P3,21 (3), D§ — P3,21 (3) 
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Table 2.12 (continued) 
ee he 

®, ®, ®, 

a 

Di, — P3lm Dt, — P3lc (2) 

Di, — P3ml D4, — P3cl (2) 
D3, — R3m D§, — R3c (2) 

Ci — P6 C2 — P6, (6), C2 — P6, (6) 

Ci Po, (3), Ce = 26,3), 
C§ — P6, (2) 

Cl, — Pé 
Cé, — P6/m Cz, — P6,/m (2) 

Di — P622 D2 — P6,22 (6), D3 — P6522 (6), 
Dé — P6,22 (3), Di — P6,22 (3), 
Dé — P6,22 (2) 

ci, — P6mm Cz, — Pb6cc (2) G29 PG, crm (2) Ge hic (2) 

D1, — P6m2 D3, — P6c2 (2) 
D3, — P62m D4, — P62c (2) 

Di, — P6/mmm D2, — P6/mcc (2) D2, — P6,/mcm (2), Dé, — P63/mmc (2) 

je) Ie Toe PD (8) 
T? — F23 
T? — 123 T*® — 12,3 (8) 

Ti — Pm3 T2 — Pn} (8) TS — Pa3 (8) 

T3 — Pm3 T# — Pd3 (16) 
T3 — Im} Tz — Ia} (8) 
O' — P432 O? — P4,32 (8), O& — P4,32 (16), 

O7 — P4,32 (16) 

O? — F432 O* — F4,32 (16) 
O* — 1432 O® — [4,32 (16) 

T: — P43m Ti — P43n (8) 

T? — P43m T$ — P43c (8) 
T? — 143m T§ — 143d (8) 

O1 — Pm3m O2 — Pn3n (8) O3 — Pm3n (8), Of — Pn3m (8) 

O3 — Fm3m O$ — Fimc (8) O7, — Fd3m (8), O8 — Fd3c (8) 
O32 — Im3m O}° — Ja3d (8) 

Note. The figures in the parentheses for ®, and ®, indicate the factor by which the volume of 

unit cell ®, must be multiplied to obtain the particular subgroup [2.21]. 

Sch6nflies’ notation of space groups is simply the notation of ahomomorphous 

point group with serial number as superscript, for instance D},, D3;,.. . D$;—~ D3q. 

Figure 2.81 illustrates the standard representation of one of the space groups, 

namely D3? in accordance with the International Tables [Ref. 2.27, Vol. 1]; the 

representations of all symmetry elements are given in Fig. 2.22. Because of some 

difficulties in showing oblique symmetry elements that edition gives, for cubic 

groups, only an analytical description without a graphical. The schemes of these 

groups can be found in a number of books [2.24, 28, 29].15 Such a scheme 

15 A new edition of International Tables is being prepared by the International Union of 

Crystallography. 
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Orthorhombic mmm P2,/n2,/m2,/a No. 62 Pnma 

Di, 

Origin at I 

Number of positions, Co-ordinates of equivalent positions Conditions limiting 

Wyckoff notation and possible reflections 

point symmetry 

General: 

8 d 1 X,Y, Z: + ty + ry. 4 — hkl: No conditions 
j Okl: k + 1 = 2n 

zt+ynt—x9,442; AOI: No conditions 
= 1 1 1 hkO: h = 2n 
¥,9,2;4 —% Oty +23 h0O: (A = 2n) 

bik aed ae: “i OKO: (k = 2n) 

ca hip Sal Na Sins 2 <i Yala 00/: (J = 2n) 
ay ee HS th ee Special: as above, plus 

S c m x, 9 2, %, » 25 — XxX, ) ’ Soka 

4 4 2 4°2 Ld no extra conditions 

fin dht-: 
7 ; i had Wass | ih al 

= b 1 0,0, 739, 7,939 9,0; >, 5,0 

i 1 1 eran hkl: h + 1 = 2n; k = 2n 

4 a 1 0; 0; 030; 79; 4, 9, oe GUILD) 

Symmetry of special projections 

(001)pgm; a’ = a/2,b’ = b (00)cmm: b’ = b,c =e (O10) peec0 6a — a 

Fig. 2.81. Representation of group Puma — D3 in the International Tables. 

Top line: point group, full symbol, number, and abbreviated symbol. Drawing on the left— 

points of general position, on the right—set of symmetry elements (axis X = X, is directed 

downwards, Y = X, to the right, and Z = X, towards the reader). Below the drawings on the 

left—the multiplicity and symmetry of positions, then coordinates of points in general and 

special positions, and on the right—conditions limiting possible reflections on diffraction 

patterns. Bottom line: symmetry of projections of the group [Ref. 2.27, Vol. 1] 
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Fig. 2.82a-c. Representation of the cubic space 

groups. 

(a) regular system of points of groups T? — 123; 
(b) its symmetry elements [2.28]; (c) another 

method for representing symmetry elements: 

projection of 1/8 of the cell of group O07 — Fd3m 
(1/4 of its projection) [2.15] 

represents all or part of the stereographic projection of the symmetry elements 

intersecting at the characteristic points of cubic groups (Fig. 2.82). 

The international notation includes the symbol of the Bravais lattice and 

indicates (sometimes excessively) the generating symmetry operations (they also 

denote the elements), which are given in a definite three-position order in ac- 

cordance with the symbol of the homomorphous point group and the choice of the 

crystallographic axes X,, X,, and X;. Since the notation contains the symbol of 

the Bravais lattice and generating operations, it permits full description of 

the group. 

For monoclinic groups, the notation indicates the symmetry axis and the 

plane of symmetry perpendicular to it (if they exist), for instance P2, Pb, C2/m. 

For orthorhombic groups, the first place is occupied by the designation of the 

axis parallel to axis X,, or the plane perpendicular to it, and then the designations 

are given for axes X, and X3, e.g., Pmma, Iba2, and C222. 

In tetragonal and hexagonal groups, first comes the symbol of the principal 

axis (it passes along X;) and then the symbol of a plane perpendicular to it after 

a stroke (if there is such a plane). Further, the planes perpendicular to the sides 

of the cell base are indicated, if they exist; and if they do not, the axes parallel to 
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these sides, after which, in accordance with the same principle, follow elements 

parallel to the base diagonal, for instance P4/n, P4,/mem, I4,, P3,21, and P6c2. 

In cubic groups, the coordinate axis elements are written first, then the 

symbol of axis 3 (body diagonal), and finally the elements of the base diagonal, 

for instance Pn3, F4,32,Ja3d. Full symbols give the name of the principal axis 

in the numerator, and name of the plane perpendicular to it in the denominator, 

for instance D3?7-C2/m 2/c 2,/m. 

Attention should be drawn to a peculiarity of the international notation of 

monoclinic and especially orthorhombic groups. By taking a rectangular 

parallelepiped cell of any orthorhombic group, it is possible to direct axes Xj, 

X,, X; from any of its vertices along three edges adjacent to it. Since the sequence 

of recording of the elements and also the name of the side-centered face and 

glide-planes a,b,c depend on it, the symbol of one and the same group may look 

different, and thus it determines the choice of the axes as well. For instance, the 

monoclinic group C$, can be written as B2b or C2c; orthorhombic C3, as Pcc?2, 

P2aa, or Pb2b; and D}$ as Pnma, Pbnm, Pmcn, Pnam, Pmnb, or Pcmn. In 

tetragonal groups it is sometimes convenient to switch from a primitive lattice 

P to a base-centered C, from a body-centered J to a face-centered F. This will 

also change the notation, for instance, 44cm changes to F4mc, etc. 

International notation indicates the possible Fedorov groups proceeding from 

their homomorphism with the point groups (combinatorial “‘class’”” method by 

Beloy [2.30}). Beginning with orthorhombic class mm it is possible, by combin- 

ing different planes of symmetry (m, n, a, etc.), to write directly the space groups 

Pmm, Pmn, Pmc, Pnn, Pna, Pcc, Pca, and Pba. Taking into account the pos- 

sibility of obtaining identical groups, but in different orientations, yields 16 

groups of class mmm: Pmmm, Pnnn, Pmmn, Pnnm, Pmna, etc. If a center or axes 

of symmetry are present in some class or other as derived elements, they will 

also remain in the space group, but they may shift relative to the point of inter- 

section of the planes by a quarter or half of the translation in accordance with 

definite rules. In a similar way axial groups, for instance nine groups ® from 

elass- 272, canbe obtained: P222, P222;, P2,2,2, P2;2;2;; C222; C222;,° F222; 

1222, and J2,2,2,. If we proceed from orthorhombic groups “‘down”’ the sym- 

metry, we can form monoclinic and then triclinic groups, and if we go “‘up’’, 

groups of the tetragonal and cubic syngonies. Hexagonal groups are derived 

similarly. 

2.8.10 Subgroups of Fedorov Groups 

Group ® may have, as subgroups, point groups K (i.e., groups without transla- 

tion) and subgroups which are themselves groups ®. The former means that the 

space contains points (and RPS) characterized by a crystallographic group K. We 

know that the point subgroups of symmorphous groups ®,, are, according to 

(2.95), groups K generating them, and hence all the subgroups K, of K,i.e., ®, D 

K > K,. Nonsymmorphous groups ®, may also contain point subgroups K,(see 
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Fig. 2.79b), for each ©; they can be found in the International Tables and 

correspond to symmetry K, of points of special positions of the given group 

(see Fig. 2.81). For instance, for group P4/ncc, subgroups K will be 4,4,222. Of 

the 230 groups ®, 217 have subgroups K, 13 do not have them (with the exception 

of 1) ie., they do not contain any point symmetry element, but only elements 

with a translational component (for instance, P2,2,2,, Pca2,, P6,, etc.). 

Subgroups of groups ®, which themselves are groups ®, can be classified 

according to different features. Owing to the decrease in the symmetry of the 

generating point group K (within the same syngony), when the translational 

group is preserved, translation-equivalent subgroups ® are formed. And, con- 

versely, with the preservation of K, but with a change in the scale of 7 or a 

transfer to centered Bravais groups 7, we obtain class-equivalent subgroups ®. 

Interestingly, symmorphous ®,, belonging to one and the same class K, but with 

a Bravais group of different centering, are subgroups of each other. Examples 

are groups Pm3m, Fm3m, Im3m. Besides, as we already know, all ©, C ©, owing 
to the possibility of multiple increase of periods. 

A change (decrease) in the generating point group K can be achieved by 

affine transformations of space. Such transformations include homogeneous 

extensions (or contractions) and shears. Straight lines then remain straight lines, 

and planes remain planes, but the angles between them change, generally speak- 

ing. Under those affine transformations, where the symmetry K of the unit 

parallelepiped, 1.e., of the syngony, is preserved (Fig. 2.66), group @ is preserved 

(“centroaffine equivalence’’). For instance, orthorhombic groups ® remain un- 

changed upon extension of the space along any one of the reference axes. Cubic 

groups @ remain'cubic ones upon similarity transformation: uniform expansion 

(contraction) of the space in all directions, etc. 

However, if we perform affine deformation which changes the syngony, i.e., 

Kas well, we obtain a subgroup of the initial group ® such that some or all angles 

between its symmetry elements are not preserved. For instance, on extention of 

cubic groups along the diagonals of a cube we obtain trigonal groups, on their 

extension along one of the sides of the cube, tetragonal, on extension of groups 

of medium syngonies along one of the directions perpendicular to the principal 

axis, orthorhombic or monoclinic, etc. (see scheme on p. 124). Thus, subgroups 

of @ in affine transformation may be groups © of any lower syngony. For in- 

stance, group 7 has the following subgroups: T°, C$,, C4, D32, S2, D®, Ci°, C3,, 

3, Ci. 
If we take into account all the possible ways of formation of subgroups, we 

shall find that any group @ is a subgroup either of group Pm3m, or P6/mmm, or 

both. 

2.8.11 Regular Point Systems of Space Groups 

Equations of the type (2.99,100) enable one, with the knowledge of all the 
operations of group ®, to obtain from any point x all the other points symmetri- 
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cally equal to it, i.e., RPS of this group. In practice, however, it is easier to use 
for this purpose the coordinates of regular point systems of general and special 

positions given for each space group in the International Tables (see Fig. 2.81). 

Recall that a point of general position is asymmetric, the number of points in 

the RPS of general position per unit cell is usually called the order of ® 

(although @ are groups of infinite order). Points of special positions—on 

point symmetry elements—themselves have this symmetry, and their number is 

correspondingly smaller. If ® contains some point group K asa subgroup: ® > K 

(i.e., if ® has elements of point symmetry), then the RPS of the space group, 

which is united by this K, possesses such a point symmetry. 

As we know, the points of a regular system of group © equivalent with respect 

to K are the vertices of a polyhedron called an isogon. These isogons are ar- 

ranged regularly in space in accordance with group ®. In symmorphous groups 

@, the isogons are given simply by the RPS of point group K contained in (2.95), 

while their centers are arranged over a lattice derived by the corresponding 

group T (Figs. 2.76,77,79a). For instance, for group Pmmm (Fig. 2.79a), we 

obtain a system of parallel-positioned rectangular parallelepipeds. 

On transition to nonsymmorphous groups ®, Cc ®, of the same group K, 

the RPS of the symmorphous group decomposes into parts, each of them is a 

RPS of the corresponding subgroup K, C K, K, Cc @,, and the isogon of the 

symmorphous group transforms into another, less symmetric, isogon (Fig. 2.79b). 

As we have already mentioned, there are 13 groups ® which contain no point 

subgroups, except the trivial 1. They naturally have no isogons. 

In describing crystalline structures, each belonging to a definite group ®, 

it is indicated for each sort of atoms of the structure what RPS—general or 

special positions—they occupy, and their coordinates x, y, z are given for only 

one, “‘basic’’, atom of each sort, while the other coordinates are obtained by the 

formulae of equivalent positions in the International Tables. Different basic 

atoms A, B, C,. . . of the structure may occupy different or identical positions 

with respect to the RPS symmetry; in the latter case, of course, their original 

coordinates x, y, z will be different. 

It should be noted that one can often come across the following phrases in 

the literature: “‘the structures consist of lattices of atoms A and B, inserted into 

each other’’. This means that the indicated atoms occupy positions differing in 

basal coordinates of RPS of the given group ®. The same is implied when a 

“sublattice” of some sorts of atoms is singled out in some “‘lattice”’ (i.e., crystal- 

line structure). 

2.8.12 Relationship Between the Chemical Formula of a Crystal and Its Space 

Symmetry 

The simplest condition following from translational symmetry is the presence in 

a unit cell of a total number of atoms equal to, or multiple of, the number of 

atoms in the chemical formula or, as is customary to say, of an integral number 
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of formula units. Indeed, a unit cell cannot contain fractions of atoms of the 

formula unit, since then it would not be a geometric repetition unit.’° The 

usual numbers of formula units in a unit cell are 1,2,4, . . ., and in trigonal and 

hexagonal structures, also 3,6,.... 

The formula of a substance and its structure are also linked by another kind 

of relationship, which is determined by the possible multiplicities of regular point 

systems. The multiplicities in groups ® are as follows: 1,2,3,4,6,8,12,16,18,24, 

etc., up to 192, and in certain groups, only some of these. The atoms of 

a given element in a structure may be arranged within one RPS, and then the 

number of these atoms in a unit cell corresponds to the multiplicity of this RPS. 

The formula of the compound will contain atoms in “crystallographic” ratios 

given by the multiplicities of this group. But chemically identical atoms may 

also be arranged within different RPS, of the same or different symmetry. Owing 

to this latter possibility, compounds with any “‘noncrystallographic”’ number of 

atoms in the chemical formula, for instance 5,7, etc., can crystallize, i.e., these 

compounds “‘select’’ such groups ® in which the sum of the multiplicities of 

RPS is equal to, or a multiple of, the number of atoms of this element in the 

chemical formula. 

The asymmetric (independent) region contains (n’/n)-th part of the atoms 

of the formula unit, where n’ is the number of formula units per unit cell, and 

n is the order of the group, i.e., the multiplicity of RPS in general position. 

Thus, the asymmetric region may contain an integral number of formula units, 

one formula unit, or a fractional part. The latter means that certain atoms, 

namely those arranged on symmetry elements, are shared by several asymmetric 

regions. 

As the chemical formula becomes more complicated, the space group sym- 

metry of crystals usually is reduced [Ref. 2.13, Chap. 2]. 

2.8.13 Local Condition of Space Symmetry 

Each group, including ©, derives a regular system of points from one point. The 

RPS of the Fedorov group ® = G} is infinite. If we “look” from any point of such 

a system at the other points, we shall see the same picture: congruent for groups of 

the first kind 1 and congruent or mirror-reflected for groups of the second kind 

". This can also be formulated as follows: the sets of vectors going from each 

point of this system to the others—a ‘hedgehogs’ ¢., covered with an infinite num- 

ber of spikes—are identical. And, conversely, the congruent or reflection equality 

of all the “infinite hedgehogs” implies the regularity of an infinite point system. 

One may ask whether it is necessary to require the identity of “‘infinite 
hedgehogs” ¢,, to assign the regularity of an infinite point system, i.e., space 
symmetry, or would it suffice to assign certain “‘finite hedgehogs” [2.31]. 

The statement of the problem here is as follows: we assign a discrete homo- 

© We do not have in mind the case of nonstoichiometric structures, when some atoms may 
occupy their positions statistically. 
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geneous point system satisfying conditions (2.52), i.e., the presence of a homo- 

geneity sphere R, and (2.53), i.e., the presence of a discreteness sphere r. This 

means that we assign an (r,R) system. The condition of equality of the points 

with respect to the symmetry group is not assigned. Instead the condition of 

congruent or reflection equality of certain finite ““hedgehogs”’ is assigned. 

Let us see whether we can derive a space symmetry from “‘finite hedgehogs” 

and what is their size. 

Take any point A, of our system and points nearest to it (Fig. 2.83). Let us 

define the term “nearest’’. First, we take the very nearest point A,; by (2.55) it 

lies not farther than at a distance of 2R. At the midpoint of segment A,A, we 

draw a plane m, perpendicular to it. Now we take two next nearest noncoplanar 

points A, and A, and construct planes m, and m, in the same way. We do like- 

wise further on until the planes m,, ..., m, cutting each other form a closed 

polygon about Ay. The hedgehog Ay — Aj, ..., Ap — Aj, ..-5 Ao — Ay will 

be called the (least) finite “hedgehog” ¢, = &. This is Dirichlet’s method of 

constructing polygons. One of the peculiarities of Dirichlet’s construction is 

that all the points of the polygon thus obtained are closer to its starting point A) 

than to any other point A,,..., etc. (The same is true for any other similar 

polygon with respect to its starting point.) 

Fig. 2.83. Two-dimensional regular 

system of points satisfying the (r, R) 
conditions, construction of ‘“‘hed- 

gehogs’’, and Dirichlet’s polyhedra 

for it 

By the condition of congruence of the “‘hedgehogs’’, the closed polyhedra 

formed about each point are equal and contact by equal faces. Owing to the con- 

ditions of convexity and equality of the polyhedra themselves and also to their 

contacting along equal faces, the space is filled completely, which is illustrated for 

the two-dimensional case in Fig. 2.83. This filling of space with equal figures is 

the same as the filling of space with fundamental regions—stereons consisting of 

unequal points (for a plane, planions), which can be constructed about regular- 

system points assigned by a group, as discussed above (Sect. 2.5.5). Indeed, it is 



150 2. Fundamentals of the Theory of Symmetry 

really so: the assignment of a local “hedgehog” defines a polyhedral stereon— 

stereohedron, and this is equivalent to assigning a group, i.e., a regular point 

system. 

Note that all the “hedgehogs” ¢, and stereons S, of a given system have, in 

the general case, point symmetry 1 [cases where points, their “hedgehogs”, and 

the corresponding polyhedrons are symmetric (all with the same point sym- 

metry), are also possible.] We join to stereons S, (of point A), stereon S, (of 

point A,) along their common equal face and, similarly, all the k stereons along 

all the other faces of stereon Sy. We call the motions g; transforming stereon S) 

into stereons S;, ... , S, basis motions; gp is a unity motion. 

Stereons S,,..., S, surrounding S), and their points A;,..., A, can 

clearly be transformed into each other through points A, by motions of the type 

g7'g,, and any other stereons, by products of some number of basis motions. 

Hence, the entire set of points—centers of “finite hedgehogs”—is a regular 

system and is described by a group.?” 

In Sect. 2.5.5 it was inferred that assignment of a group in a homogeneous 

space defines an independent region, a stereon, in it. The converse is also true: 

the local conditions of equality of “hedgehogs” also defines the equality of 

stereons and the unique way of their joining, which results in complete filling of 

the space, i.e., defines a group (Fig. 2.83). 

To put it differently, the regularity of an infinitely extended discrete homo- 

geneous space is ensured by the identity of the regularity of its limited parts, pro- 

vided that any such limited part is identically surrounded (in a finite volume) by 

the others. 

2.8.14 Division of Space 

The stereons of each group fill the space completely, i.e., they form the division 

of space. Their number in a unit cell is equal to the number of points of general 

position in the RPS. Planes m and axes N fringe such regions, i.e., are their 

boundaries. 

Apart from the indicated properties to limit the surface of stereons by sym- 

metry elements and to possess mutual complementarity, no other special limita- 

tions are imposed on the shape of stereons. Plane-face stereons, i.e., stereohedra, 

can be constructed by Dirichlet’s method. The shape of a stereohedron depends 

on the metric characteristics, the specific choice in it of the position ofa point, a 

unit cell (translations, angles), and on the regular system for which the Dirichlet 

region is constructed. 

Therefore, for each space group, there is a great number of combinatorically 

(i.e., with respect to the number of faces and their shape) different stereohedra. 

17 Strictly speaking, this reasoning is applicable only to an asymmetric stereon with asymmetric 

faces. But the final result formulated in this section is valid in any case. 
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Fig. 2.84a,b. Examples of 

stereohedra. (a) symmetric 

stereohedra in the diamond 

structure, which surround 
one C atom, their packing, 

and an individual stereo- 

hedron; (b) 18-face stereo- 

hedron in group Pi [2.5] 

E. S. Fedorov and other mathematicians and crystallographers concerned them- 

selves with stereohedra. B. N. Delone supplied the algorithm for the derivation 

of stereohedra for any group and proved that the number of different divisions of 

space into identical convex polyhedra is finite. Thus, for the triclinic group P1 

this number is equal to 180. 

Figure 2.84 gives examples of stereohedra: a are symmetric stereohedra for 

group Fd3m assigning the shape of the Dirichlet region around the C atom in the 

diamond structure; b is one of the 180 asymmetric stereohedra of group P1. 

Figure 2.83 for the plane group p3 can be regarded as a cross section of stereo- 

hedra in the form of prisms, for the space group P3—C}. The stereons may 

have either curved (Fig. 2.85) or plane faces, being stereohedra. 

Of -Fd3e 

Fig. 2.85. Examples of three-dimensional figures—stereons—asymmetric independent regions 

unambiguously characterizing a given group ® and filling space completely [2.32] 
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The shape of stereons for each group ® characterizes the group uniquely. 

Piling up of stereons by joining their complementary surfaces or equal faces 

defines the symmetry operations of a given group. 

An asymmetric region surrounds the point of general positions of a regular 

system. It is, however, also possible to construct regions surrounding points of 

particular positions, which have definite point symmetry. These regions also 

fill the space completely. Such a region will naturally have the symmetry K of 

the point which it surrounds. This region can also be constructed as a plane- 

face one, and then it will be some symmetric polyhedron. It is obvious that such 

regions can be divided into asymmetric stereons. Taking, in a given group ®, the 

regular point systems with an ever-increasing symmetry, we shall obtain more 

and more symmetric polyhedra filling the space completely. 

If we take the RPS with the highest symmetry K in a given group @,, its points 

will form a Bravais lattice. We are thus approaching a special and important case 

of polyhedra filling the space completely, such that are derived from each other 

by operations of translation group J. This is an analog of the two-dimensional 

problem on parallelogons (see Fig. 2.29). There is one node of the Bravais lattice 

for each of the polyhedra. 

Such polyhedra, adjoining each other with their equal and parallel (in a 

separate polyhedron and in their entire set) faces, were named parallelohedra by 

Fedorov. A particular case of parallelohedra for primitive lattices are unit 

parallelepipeds themselves, which characterize the syngony (see Fig. 2.66). 

Figure 2.86 portrays five most symmetric Fedorov parallelohedra—a cube, a 

thombododecahedron, a cubooctahedron, an elongated rhombododecahedron, 

and a hexagonal prism, corresponding to the cubic lattices P, F, and J, the te- 

tragonal lattice F, and the hexagonal lattice H. Figure 2.87 shows how some of 

them fill out the space. These five parallelohedra are different in their combi- 

natory structure, 1.e.,in the number of faces and edges bounding them. The five 

basic parallelohedra can be subjected to affine deformations, but remain paral- 

lelohedra which fill the space without gaps and overlappings. 

Maeo®@ 
Fig. 2.86a-e. Five most symmetric parallelohedra. (a) cube, (b) hexagonal prism, (c) rhombodo- 

decahedron, (d) elongated rhombododecahedron, and (e) cubooctahedron 

The set of all these parallelohedra interested Fedorov because he associated 
the derivation of space groups with them. The crystal space described by sym- 
morphous groups ®, can be filled with such parallelohedra. If the group is 
hemisymmorphous ®,, however, this will already be some composite parallelo- 
hedron and, in asymmorphous groups ®,, a stereohedron of definite shape. 
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de ).. 
ON 
OL 4 Fig. 2.87a-c. Filling of space by hexa- 

gonal prisms (a), rhombododecahedra 

(b), and cubooctahedra (c), and the cor- 

responding lattices 

Fig. 2.88. Construction of Dirichlet’s 

two-dimensional region 

Important particular types of parallelohedra can be obtained by Dirichlet’s 

construction, joining a point of the Bravais lattice with all the nearest points by 

straight lines and drawing, at the midpoints of the segments obtajned and 

perpendicular to them, planes which, on intersecting, will close the desired figure 

(Fig. 2.88, example of two-dimensional construction). Such a region in a real 

space is called the Dirichlet region, or the Wigner-Seitz cell. Such polyhedra in 

the reciprocal space are used for describing energy zones (Brillouin zones) in 

crystals and for some other purposes [Ref. 2.13, Chap. III]. The Dirichlet 

region is always centrosymmetric, and so are its faces. It is clear that if the 

Bravais group is rectangular and primitive, the Dirichlet region coincides in 

shape with the unit parallelepiped. In other cases this is not so. 
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(J-3) cubic; (4-6) tetragonal; (7, 8) rhombohedral; (9) hexagonal; (10- 15) orthorhombic; (J6-2/) monoclinic; (22-24) triclinic [2.33] 

Fig. 2.89. Twenty-four sorts of parallelohedra filling space completely, and the corresponding lattices. 
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Five Dirichlet regions coincide with the five respective Fedorov parallelo- 

hedra (Fig. 2.86). For less symmetric lattices, variations of these forms are 

obtained; different forms arise for some Bravais lattices depending on the differ- 

ent ratios between the edges and angles of the unit cell. There are 24 variations 

named after Delone (including the above five) [2.33,34]. They are shown in Fig. 

2.095 

Let us now see whether or not the theory of filling the space with parallelohe- 

dra, stereohedra, or stereons of arbitrary shape can be related to the physical 

causes for the formation of the crystalline structure. Assignment of a unique way 

for joining stereons defines, as we have established, the entire three-dimensional 

structure with a certain group G3, i.e., it dictates periodicity according to 

Sch6nflies’ theorem. The same is true for symmetric stereons. Doesn’t this 

geometric condition enable us to explain the existence of the lattice? 

In the case of molecular structures this approach is indeed close to the truth, 

since molecules are ready-made building blocks of a crystal which are packed 

owing to the molecular interaction energy. This is why we can take a molecule 

and some space around it for a stereon, because the condition of equality of the 

surrounding of a given molecule by its nearest neighbors is fulfilled, since only 

such equality leads to the minimum of energy of the whole system (see Sect. 1.2. 

3). The same reasoning can be used in respect to structures built up of atoms of a 

single sort, i.e., atoms of elements, provided the atoms occupy a single regular 

point system. For instance, for cubic face-centered structures of metals a paralle- 

lohedron is represented by a rhombododecahedron (Fig. 2.87b). True enough, 

the question remains, why this parallelohedron has this particular shape, and 

not a different one. 

With more complicated structures, however, the geometric approach contri- 

butes little to the understanding of the causes for the formation of the three-dimen- 

sionally periodic structure. This is already evident in such molecular structures 

where the molecule centers occupy two, rather than one, regular point systems, 

which does happen, though rarely. Then the interaction forces inside the geometric 

region which define the structure are the same as between the regions. This also 

refers to inorganic structures which contain atoms of different sorts in the unit cell. 

As an example let us consider a two-dimensional structure of the type NaCl 

(Fig. 2.90a). Its “‘atoms’”’ occupy high-symmetry positions, and its two-dimen- 

sional stereon (shaded) contains 1/8 Na “atom” and 1/8 Cl “‘atom’’. For the 

three-dimensional case the stereon of the structure of NaCl looks as shown in 

Fig. 2.90b, its volume is 1/192 unit cell, and it contains 1/48 Na “‘atom” and 

1/48 Cl “‘atom’’. The stereons are all identical and identically packed relative to 

each other, as they should be, but such a division of the crystal space does not 

have any evident physical meaning. 

Still greater difficulties and ambiguities arise in consideration of complicated 

structures of inorganic compounds which contain in the unit cell, and hence in 

its asymmetric region, a great number of atoms occupying several different 

regular point systems. 
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Fig. 2.90a,b. Two-dimen- 

sional structure of the 

NaCl type (a), and arrange- 

ment of a stereon of the 

three-dimensional  struc- 

ture of NaCl in 1/8 of the 

unit cell (b) 

Assume that we already know the structure. Even if we have chosen in it, in 

some way, a geometric stereon containing the “chemical formula unit’ (and we 

know that its choice is often ambiguous) then, as in the case of molecular 

structures with two molecules in the asymmetric region, the interaction energy of 

atoms inside the stereon is the same as for the atoms of the neighboring stereons. 

Equilibrium in the structure is established, not owing to the interaction between 

“ready-made blocks’’—they simply do not exist—but due to the interaction of 

the assembly of atoms as a whole, as we discussed in Chap. 1. 

2.8.15 Irreducible Representations of Groups ® 

Fedorov groups contain information on the geometry of thecrystalline structure. 

The possibilities of their utilization are extended with the aid of the theory of 

irreducible representations. This enables one to solve problems relating to the 

dynamics of the lattice, its electron and magnetic structures, phase transitions, 

physical properties, etc. We shall consider this briefly. 

The crystal structure can be described by periodic functions (with lattice 

periods a,), so that any vector r, when translated, is transformed into a vector of 

the type r + a, or, in the general case, r + t (2.91). Therefore an irreducible rep- 

resentation of group @ is given by functions of the type 

yj(r) = Ujy(r) exp (Hr), (2.102) 

where # is the so-called reciprocal-lattice vector (see Sect. 3.4.3). To rotational 
(of both kinds) operations of group @ in a physical space there correspond rota- 
tions of vectors Hin H’, H”, etc., in the reciprocal space, and in the general form 
for symmorphous groups ®, expression (2.102) transforms into the correspond- 
ing linear combination y, as in (2.86). In this way the irreducible representations 
of groups ®, are related to those for groups K. For nonsymmorphous groups ®, 
it is necessary to take into account not only translations a,, but also the transla- 
tional components a,/p of screw rotations and glide reflections. 

As an example of the possibilities afforded by the use of representations of 
groups ® we refer to the theory of second-order phase transitions. In distinction 
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from the first-order phase transitions, when a considerable rearrangement of the 
atoms and a jumpwise change in some properties takes place, and the symmetry 
of the new phase may not be related to that of the initial, phase transitions of the 
second order are attended by a slight displacement of atoms (for instance, in 
barium titanate), or cessation of “‘rotation’’ of some atomic groups, for instance 

NH, in ammonium chloride, while the crystal state changes continuously. 

But the symmetry cannot change “gradually”; it changes jumpwise at the 

point of second-order phase transition. ®, of the less symmetric (low-tempera- 

ture) phase is a subgroup of group @ of the more symmetric phase © 5 @y, i.e., 

it “loses”? some of its elements in phase transition. The functions p describing 

the structure of both phases differ by some Ap, 

P(r) = polr) + Ap(r). (2.103) 

Function Ap can be expanded in basis functions of the type (2.102), 

Ap = di cwi(r). (2.104) 

The phase transition of the second order, however, is associated with only 

one of n irreducible representations of group ® of the high-symmetry phase; 

hence 

Ap = Dew). (2.105) 

Thus, consideration just on the basis of symmetry and representation theory 

defines the physics of such transformations to a great extent, and by using 

this technique it is also possible to calculate a number of specific physical and 

thermodynamic characteristics. 

Another way to extend the possibilities inherent in space groups consists in 

their generalization with the aid of the concepts of antisymmetry and color sym- 

metry (see Sect. 2.9, also [Ref. 2.13, Chap. IV]). 

In concluding our discussion of the properties of space symmetry groups of 

crystals, we wish to point out that these groups describe the time-average struc- 

ture of the crystal lattice and find most extensive application in the structure 

analysis of crystals and in solid-state physics. The additional potentialities of 

the space group theory are realized with the aid of the theory of representations 

and by extension of groups through introducing nongeometric characteristics. 

All these techniques are widely used in various problems of the physics of the 

crystalline state. 
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2.9 Generalized Symmetry” 

2.9.1 On the Extension of the Symmetry Concept 

Symmetry is defined as the invariance of an object F, i.e., its equality to itself, 

under transformations g, of group G (2.1) and (2.2) 

glx] =x’, F(x’) = F(x). 

In defining symmetry in this way, we also said that the property of objects to show 

some symmetry is relative. This relativity may be taken into consideration when 

defining the symmetry operation (2.1) or defining the very concept of the equality 

of an object (and hence the equality of its parts) to itself (2.2); these two aspects 

may be interrelated. 

We have considered the symmetry group of one-, two-, and three-dimension- 

al space, mainly three-dimensional groups, and isometric transformations g 

satisfying the requirement (2.9) for the preservation of lengths and angles. This 

requirement can be changed both within and outside the framework of Euclidean 

space, and then a different symmetry arises. On the other hand, geometric 

equality alone may prove an insufficient characteristic for describing the pro- 

perties of physical objects in three-dimensional space, and one can introduce ad- 

ditional (4th, Sth, etc.) nongeometric variables which may be continuous or 

discrete and may take a finite or an infinite number of values. Formally, this can 

be considered as passing on to a space of more than three dimensions. 

Thus, the generalization of three-dimensional isometric symmetry is passing 

on to a four-dimensional space, for instance to a four-dimensional Euclidean 

space, in which all four variables are equivalent. In the transition to four-dimen- 

sional space, no pictorial geometric constructions are possible. But since n- 

periodic groups G” of an m-dimensional space are characterized by their (m — 1)- 

dimensional projections, and all the groups G3 are known, they can be used for 

constructing symmetry groups G%. Thus, there are 227 crystallographic point 

groups Gj and 4895 “Fedorov” groups, of which 112 are enantiomorphous. 

The concept of classical symmetry can also be modified by approximate ful- 

fillment of either condition (2.1) or condition (2.2), or both. This is how various 

“statistical” symmetries arise; they are used in describing distortions in the 

crystal structures and in analyzing systems less ordered than crystals. 

2.9.2 Antisymmetry and Color Symmetry 

Groups in which three variables remain geometric coordinates of space, while 
the fourth has a different physical meaning, are of importance in crystallography 

and physics. Such a variable may be time or physical values associated with it, a 

8 This section was written in cooperation with V. A. Koptsik. 
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phase of a wave function or, in the reciprocal space, a phase of a complex func- 

tion [2.35, 36]. The discrete fourth variable may be a spin, a charge sign, etc. Such 

generalizations of symmetry are called antisymmetry and color symmetry; they 

were proposed and developed by Shubnikov [2.7], Belov [2.8] and others [2.30, 

37-44]. 

To elucidate the essence of antisymmetry we shall consider, as an example, 

the projection of the layer groups G3 (see Fig. 2.63) onto a plane X,, X, along 

axis X3;, which yields, as we know, 17 plane groups G3 (see Fig. 2.56). Note that 

those of the groups G} which transform the third coordinate (together with 

transformation of x,, x, or without it), change the values x; to —x, and in no 

other way. Figure 2.9la, b gives examples of such groups. 

We can now regard such groups as two-dimensional G?! (two variables 

have the meaning of two geometric coordinates, as before), but each geometric 

point x,, x, has an additional characteristic, a “load’’ x3, which takes only two 

discrete opposite values. It is most convenient to assume that these values x; = 

+1, x; = —1 are “‘anti-equal”’. Visually, this characteristic can be interpreted 

as the “color” of the point x,x,: “‘white’’ (+1) or “‘black’’ (—1). By means of 

transformations bringing x; into coincidence with x3 at equal x,, x, we obtain 

““srey”’ points (Fig. 2.9 1c). 

24 a| N WN NG rw 
Fig. 2.9la-c. Examples of two-dimen- 

\ PF Ais “A sional antisymmetry groups 

= N | N rlZs a (a, b) groups of the type G? interpreted 

b € 
as two-dimensional antisymmetry 

groups G?'! (triangles disposed in the 

same plane change their color (sign) on certain operations g’ € G%'); (c) “‘grey group’, 

which brings to coincidence opposite signs (colors) in a figure [2.9] 

As a result, in projecting those of the 80 groups G3 in which the transforma- 

tion of x; with a simultaneous change in x, and x, took place we obtain 46 

plane-antisymmetry groups G3' (see Fig. 2.63). If we also take into considera- 

tion “grey” or neutral plane groups (x; are projected into x; while x,, x, do not 

change), which there are 17, and single-color groups (the transformation of x; 

into x} is absent), of which there are also 17, the number of plane groups G?! 

and groups G3 coincides, making up 80. Figure 2.92 (on p. 160) is the “Horse- 

man”, a picture by Escher [2.45], which is described by the antisymmetry group 

of Fig. 2.9 1a. 

The nongeometric characteristic of a point may take more than two dis- 

crete values. Let us project onto a two-dimensional plane those space groups 

G3 in which the coordinate x; takes 3, 4, or 6 discrete values, respectively, be- 

cause of the presence of screw axes 3), 4,, or 6,, and interpret these values as 

the “load” of the appropriate point x,, x,. Thus we obtain, not a two-valued 

(black-white), but a multivalued, 3, 4, 6 “color” symmetry. Examples of such 

color groups G? (there are 15 of them) are given in Plate I. 
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Fig. 2.92. Figure described by anti- 

symmetry group pg’ [2.9] 

A theory of antisymmetry and color symmetry groups may be constructed 

in several different ways. One of them we have seen: if the high-dimensional 

groups G™ are known, we can consider their projections G™%~' along a variable 

which takes a finite number of values. 

Another method consists, on the contrary, in increasing the order of the 

geometric group G™ by introducing new operations of group P, which acts in 

the space of physical variables, and in forming the direct product 

P®G = {Pi, isi » Pr} {21, staje +2.) [Sa {Pi81, oe »PiSn sis is >» Pr&1> is > Pr&nt 

=G”. (2.106) 

This group is a set (finite or infinite) of binary elements in which the group opera- 

tion P;8;-Px81 = PiP~Zj8i iS introduced and all the group axioms are fulfilled. 

The method for obtaining new generalized groups on the basis of the representa- 

tion theory is also associated with this construction. The general way of forming 

new groups consists in making wreath products of P and G groups 

P2G=@P@G=G™, (2.107) 

where @ denotes a multiple product of P by itself, being the order of G. 

Antisymmetry groups in a space of m dimensions will be denoted as groups 

G™'; the unity in the superscript indicates that there is one antisymmetric 

variable additional to m, and the color groups will be designated as G™ or 

G7, Crystallographic antisymmetry point groups will be denoted by K’ (the 

prime indicates antisymmetry of the group or operation); color groups are de- 

noted by K. 
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Plate La 

Plate Ia-d. Colored two-dimensional groups. 

(a) figure illustrating group P4 [2.9]; (b, c, d) mosaics illustrating different groups 

[2.46, 47] 
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Plate I.b 

Fdd 

PA, /4,;md=F4,dm 
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Plate I.c 
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Groups with more than one antisymmetric variable, namely with / such 

variables, are possible; they will be symbolized G™! (/-multiple antisymmetry).'* 

2.9.3 Antisymmetry Point Groups 

Let us introduce a fourth “antisymmetric”’ variable x, = +1 in three-dimen- 

sional space. The operation g[x,] = x4 changing this variable alone is called the 

anti-identity operation and is denoted by 1’; (1’)? = 1. In antisymmetry, there 

are four types of equality between geometrically equal objects: identity, mirror 

equality, anti-identity, and mirror anti-equality. These types of equality are il- 

lustrated in Fig. 2.93. The ordinary operation of reflection m changes the chirality 

of the glove: it transforms the right glove into the left; to the anti-identity 1’ 

there corresponds a change of color, while a reflection with a change of color 

ml’ = m’ changes both the chirality and the color of the glove simultaneously. 

From any symmetry operation g; in three-dimensional space it 1s thus possible to 

construct an “‘anti-operation”’ g; = g;,’’. Antisymmetry operations in three- 

dimensional space act on the coordinates of point x(x,x.x3x,) as follows: 

&:[X1X2X3X4] = (2ie0%), Viggk x= sab L(x, =x. (2.108) 

Fig. 2.93. Four gloves illustrating four types of 

equality in the case of antisymmetry: 

a=a,b=b,.. . identity; a — b,c —d mirror 

=_ equality; a — c, b — d anti-identity; a — d,b —c 

mirror anti-equality 

The matrix of antisymmetry point transformations—proper and improper rota- 

tions and antirotations—has the form 

Q, G2 3 O +1 for operations g, 21 22 23 : | a,,| =—=-l, g.= : (2.109) 

G- 43 a3, °0 —1 for operations g’. 

0 0 0 "ipo 

The function F in the four-dimensional space of variables (2.107) is invariant 

(2.2) to generalized symmetry transformations, but, viewed in three-dimen- 

19 Antisymmetry groups are also designated G,”. They and color groups are often written as 

G#_,, where the suffix m (the dimensionality of a space) is shifted below, and the superscript 

characterizes some generalized symmetry. 



166 2. Fundamentals of the Theory of Symmetry 

sional space, it changes the signs of its parts after these transformations, i.e., it 

is antisymmetric. 

We can see that the requirement for the equality F(x) = F(x’) in a space of 

m dimensions may [on transition to the (m — 1)th dimension] generate new 

requirements for the relationship between F(x ¢,—1,) and F(X’ (m—1,), which do not 

reduce to equality after transformation, but lead to “‘anti-equality”’ or “color” 

equality. This broadens the very concept of “‘symmetric’”’ equality. 

By analogy with the ordinary symmetry elements it is possible to introduce 

elements of antisymmetry. Each of them simultaneously with the geometric 

action inherent in it, changes the sign of the fourth variable. Antisymmetry 

groups are composed of both operations—ordinary symmetry and antisym- 

metry—in other words, they possess the symmetry elements of both types. 

The operations and elements of antisymmetry are denoted in the same way as 

the ordinary ones, but with a prime: m’, N’, N’. It is convenient to depict these 

elements using another color (Plate II). 

Senior point groups K’ can be obtained by using (2.106), forming a direct 

product of group K = {k, ... k; ...} by group 1’ = {1, 1’}: 

Riga eee ek, ky. (2.110) 

Selecting nontrivial subgroups K’ C K ® 1’, which contain no anti-identity 

operation 1’, we obtain 58 black-and-white antisymmetry point groups. The 

number of groups containing 1’, 1.e., grey (neutral) groups, will be the same 

as that of groups K, i.e., 32. The number of single-color groups containing no 

k’, will be the same; they naturally coincide with K. There are 122 groups 

altogether. Plate If shows stereographic projections, and Fig. 2.94 figures and 

polyhedra, which illustrate some antisymmetry point groups K’. 

Antisymmetry and color-symmetry groups are contained, in a sense, within 

the groups of ordinary symmetry. This can be shown with the aid of irreducible 

representations. We shall consider, as an example, the point group K mm2 = C),. 

Let us take an asymmetric figure (function) f; and, acting on it by operations 

of group K = {1, 2, m,, m,}, construct the parts f,, f;, and f,, symmetrically 

equal to f, (Fig. 2.95). The sum F; = ff, +2 +f; +f, will be a function with 

the symmetry mm2 satisfying condition (2). The table of irreducible representa- 

tions of the group is as follows (see Table 2.8): 

= | | 
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Plate II. Stereographic projections of some point antisymmetry groups (the 

antisymmetry elements are colored red) [2.24] 
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Fig. 2.94. Examples of an- 

tisymmetric figures and 

polyhedra [2.48] 

Fig. 2.95a-d. Derivation and _ rela- 

tionship of the groups m2 (a), m'm'2 

(b), mm’‘2’ (ce, d) using irreducible 

representations of the group mm2 

We can see that the symmetric function F; is transformed into itself by the 

first unit representation, with positive signs of its parts f; corresponding to this 

transformation (Fig. 2.95a). But other representations offer different possibi- 

lities: multiplying f; by --1 in the sequence they are written in I,, [;, and I, 

we obtain antisymmetric functions F, =f, +f,—fs—fi,, Fs =fi -—fp + 
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+ fs — fa, Fs =fi — fo — fs + f, shown in Fig. 2.95b-d. Function F,, which is 
transformed by J, determines the group K’ = m'm’2. In the sense of antisym- 
metry groups, functions F; and F, coincide and determine group K’ = mm’2’. In 
the general case, too, for any group K one can find such functions F, which, being 
transformed by k; © K, are multiplied by characters yy, of one-dimensional 
representations. Thus, one-dimensional real representations [, of groups K 
generate antisymmetry groups K’ and directly indicate their structure [2.50]. 
Hence, 58 nonequivalent one-dimensional real representations of groups K 
(out of 73, with an accuracy to selection of axes) actually correspond to 58 black- 
and-white groups K. From this consideration it is also clear that groups K’ are 
abstractly indistinguishable from the respective K, since K’ have the same re- 
presentations as K: both reduce to 18 abstract groups K (Table 2.7). Table 2.13 
lists 90 antisymmetry point groups K’. 

Table 2.13. Ninety antisymmetry groups K’ 

Triclinic m’m'2 42/2’ Trigonal 6/m1’ 6’/m'm'm 

Gs mm?’ 4mm’ Silo 6/m’ 6/m’ mm 

i’ mmm\’ 4mm’ 317 6’/m’ 6/m’mm 

r mmm 4’mm 3% 6’/m 6/mm' nm 

Monoclinic mmm’ 42m1’ 321’ 6221’ Cubic 
DAE mmm 42'm! BZ 62/2’ 234 

me Tetragonal 4’2m' 3m)’ 6'2/2 m31’ 

ml’ 41’ 4/2'm 3m! 6mm’ m3’ 
nm 4’ 4/mmm\’ 3ml1’ 6mm’ 4321’ 
2/m1’ 41’ 4/m' mm 3m! 6’mm’ 4/32’ 

2/m’ 4 4/m'mm 3m 6m21’ 43ml’ 
2’/m 4/ml’ 4’/mmm 3/m 6m'2! 43m 

2'|m’ 4/m’ 4’/m'm'm Hexagonal 6’m2’ m 3m)’ 

Orthorhombic 4’\m’ 4/mm'm’ 61’ 6’m’2 m3! ml! 
2K 4’/m 6 6/mmm\)’ m3'm 
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Symmetry K’ is exhibited, for instance, by the wave functions of atoms and 

molecules, which are transformed according to the proper representations [Ref. 

2.13, Figs. 1.3, 1.23]; groups K’ are point groups of magnetic symmetry of those 

crystals in which the magnetization vector can take two values; groups K’ also 

describe the point symmetry of the reciprocal space with due regard for the 

phases of structure amplitudes [2.50a]. 

2.9.4 Point Groups of Color Symmetry 

A discrete nongeometric variable x, in three-dimensional space can be assigned, 

not two (as in the case of antisymmetry) but several values. This gives rise to 

color (multicolor) symmetry proposed by N.V. Belov. In constructing composite 
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color groups (2.106) one should bear in mind the correspondence of the orders of 

geometric transformations of group G and the color permutations of group P. 

Point groups K” can also be found by proceeding from representation of 

groups K, namely by considering those which have complex characters X¥ = +i, 

€ = exp(—2ni/3), w = exp(—2ni/6). Thus, as in the above considerations, we 

obtain 18 cyclic groups K”, which correspond to 18 complex conjugate re- 

presentations of point groups K (see Table 2.8). In these, the “color” variable 

takes 3, 4, or 6 values, and each of them can be assigned a “‘color”’ of its own, 

indicating the sequence of values xj, ... x. ““Color’’ polyhedra, corresponding 

to some groups K”, are shown in Plate III. Point groups K’” can be used, for 

instance, for describing the magnetic, real face and sectorial structures of single 

crystals. 

On the basis of the group-extension method, by including both antisymmetry 

and color symmetry into the generalization of point symmetry and with the aid 

of substitution groups it is possible to obtain color groups with crystallographic 

values of the color variable up to 48. These groups K‘” are constructed by the 

algorithm K” — P © K/H, where H c K is the invariant classical subgroup 

of group K of index p. The number of such groups is 81 or 134 (in the latter case, 

with the inclusion of color enantiomorphism). They are isomorphous to the cor- 

responding groups K. 

In addition to the above described groups there are color point groups of 

Van der Waerden and Burckhardt [2.44] K% and groups of Wittke and Garrido 

[2.52, 53] K¥2 isomorphous to them and derived by the law of direct (2.106) or 

wreath product (2.107). 

In an object described by the color subgroup KY it is possible to select a set 

of points of the same color (domains), with p domains of different color. 

Groups K(?3 have a noninvariant subgroup H C K%, which preserves a fixed 

i-th color, i.e., describes the domain, and an invariant (classical) subgroup H, 

which is the intersection of all the conjugate H{”. Groups K& are obtained by 

replacement of certain color elements by classical ones in such a way that one of 

the H transforms into isomorphous H,; [2.49]. 

There exist also noncrystallographic color point groups of the indicated 

types, including icosahedral ones, where the number of colors may be a multiple 

of 5. 

The distribution of antisymmetry and of color groups of all types with 

respect to the number of colors p is given in Table 2.14. 

A color group of P symmetry can be deaoted by the symbol K” (H,| A). 

With the aid of such symbols it is possible to analyze the chirality of these 

groups. If H is chiral, then the corresponding color group is also chiral. If K 
is Chiral, but H is not, then “color chirality’’ arises, i.e., reflection in a “‘color 
mirror’ with pairwise change of colors. 

Noncrystallographic Gj # K and continuous (limiting) three-dimensional 
point groups also permit ‘“‘antisymmetric” and “color” generalization. In 
limiting groups (see Fig. 2.50), only generators m’ and 2’, but not axes co, can be 
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Plate III. Color polyhedra illustrating some color symmetry groups [2.51] 
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Table 2.14. The number of crystallographic point groups of generalized symmetry 

P KY Kya, Kwe 

2 58 — 
3 7 10 

4 30 11 
6 V7 23 
8 9 8 

12 11 16 

16 1 1 

24 5 4 

48 1 — 

Total 58 + 81 WE 

antisymmetric. There are seven such groups: 0oo/m’, 002’2’, com'm’, co/m’mm, 

co/mm'm’', co/m'm'm’, and cocom’. There exist an infinite number of limiting 

color groups, and axis co can itself be a color axis oo” with an infinite number 

of colors. 

2.9.5 Space and Other Groups of Antisymmetry and Color Symmetry 

By analogy with point groups K’ and K? it is possible to construct groups of 

antisymmetry, multiple antisymmetry, and color symmetry corresponding to the 

different types of G” groups—layer, rod, etc. We began our exposition of ideas 

of generalized symmetry with the description of two-dimensional G?! and G?)” 

groups. The diagram of subordination of groups of symmetry and multiple anti- 

symmetry G™’ is given in Fig. 2.96. It can be seen that as / increases, the number 

of groups increases very rapidly. The same refers to classical groups. For a space 

Fig. 2.96. Number of sym- 

metry and multiple-antisym- 
Space metry groups and their sub- 

dimensionality ordination [2.54]. 
ae a (2°) classical grqups, (2!) 

30 antisymmetry groups, (2?) 

FLLIO A group of two-fold and (23) of 

three-fold antisymmetry 
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Po16/mmm 

Fig. 2.97. Some antisymmetric Bravais groups 

of m = 2, 3, 4 dimensions there exist 10, 32, and 227 point groups, 5, 14, and 64 

Bravais groups [2.6, 55]; and 17, 230, and 4895 Fedorov groups, respectively. 

Let us consider space antisymmetry groups G}! = @’ = ILI-“‘Shubnikov’”’ 

groups [2.56, 57]. 

Since they include the anti-identity operation 1’, the antitranslation opera- 

tion t = f1’ also arises. In addition to the 14 ordinary translation Bravais groups 

there are another 14 antitranslation groups and 22 combined translation and 

antitranslation groups (altogether 50); the combined groups are denoted as 

ordinary groups, but with an anticentering index, for instance P, , Cy, etc. Ex- 

amples are presented in Fig. 2.97. Groups LI are symbolized as ordinary space 

groups, but with a prime, if the corresponding element is an antielement, for 

instance Pm'n2', P,4,nm, etc. Their drawings can be conveniently made in two 

colors (Plate IV): black for the elements of symmetry, and red for the elements of 

antisymmetry; antiequal points have different colors. 

There are altogether 1651 groups IL: 1191 are black-and-white, 674 without 

and 517 with antitranslations, and there are 230 grey and 230 single-colored 

groups. From the isomorphism of point K’ «> K and translation T’ <= T groups 

the isomorphism of LI] = &’ © @ also follows, i.e., the number of abstract 

groups corresponding to LILI is 219. Similarly to isomorphism of G}! <> G3, the 

groups of four-dimensional three-dimensionally periodic layers are isomorphous 

to the Shubnikov groups 

I = G31 G3. 
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<q Plate IVa 

Plate [Va,b. Examples of space antisymmetry (Shubnikov) groups [2.24]. 

(a) 11423 — P.nnm; (b) 1123, — P3’c 1. 
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A physical function described by Shubnikov groups is, for example, the 

stationary spatial arrangement of the atomic spins in crystals with magnetic 

properties. The time-average distribution of electrons and nuclei in a crystal of 

any compound obeys the ordinary symmetry ®, but within this symmetry there 

is no variable describing the orientation of the magnetic moments. If the mag- 

netic moment can take only two values (parallel and antiparallel spins) in a sys- 

tem, the magnetic structure is characterized by one of the groups LL (Fig. 2.98). 

Antisymmetry can also be used for describing ferroelectric structures (positive 

and negative charges of ions) and structures with “‘vacant”’ or “‘filled’’ coordina- 

tion polyhedra. 

By analogy with space groups of antisymmetry ®’ one can form space groups 

of color symmetry ©”. There may be color groups 6” both with and without 

color translation subgroups. Thus, we have 817 cyclic and 2125 noncyclic, with 

respect to color, permutation groups, altogether 2942 groups. Of these, 111 are 

Fig. 2.98. Structure described by an antisymmetry group. Posi- 

tion of cobalt atoms (A positions) in the structure of CoAI,O, (of 

the spinel type, space group O7 — Fd3m). Orientations of magnet- 

ic moments (conventionally indicated by arrows) of Co atoms are 

opposite, which is described by antisymmetry group L133? — 
Fd'3m' 

V4 

Fig. 2.99. Structure of MnP described by a color symmetry group (T < 50 K). 
Black and white circles: Mn ions at a height z = 1/4 and 3/4, respectively; the arrows are the 
projections of the magnetic moments forming a helix about Y. Space group P2,/b 2,/n 2,/m, 
with due consideration for the magnetic structure of the symmetry operation, acquire color 
loads, and the group is recorded as 

wx) 2x) 
OP) = 122 @ Pay? PTE ITD OR 

(MAD SID ip) 
2 : . ' 

a'v~ means that a translation by vector a is accompanied by a rotation y2 = 2y of the mag- 
netic moment about the X axis, and glide-plan bYx performs, besides the corresponding 
translation, an additional local rotation y, (due to load y,). This structure can also be described 
with the aid of group @‘ 
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three-color, 2170 four-color, and 661 six-color. The groups ®” with higher color 

multiplicities are not derived. Groups ®” and also so-called position groups 

G;™, constructed according to the principle of wreath product (2.107) of P and 
®, can be used for describing ordered magnetic structures, in which the magnetic 

moments of the atoms are arranged not in two, but in several substructures with 

their own symmetry (Fig. 2.99). In groups ®” the loads affect only the function 

of spin density at the points of its determination. Magnetic structures can also be 

described by position groups ®, in which the loads affect geometric and spin 

variables simultaneously. Position color groups can also be used in describing 

the distribution of defects in real crystals, or in describing space modulated 

structures [Ref. 2.13, Chap. I, Sect. 6.5]. 

2.9.6 Symmetry of Similarity 

If, in symmetry transformation (2.1) we do not require the fulfillment of isometry 

condition (2.9), i.e., preservation of lengths, angles, areas, and volumes, we pro- 

ceed to the generalized concept of equality (2.2). 

In the symmetry of similarity two figures are considered equal if they are 

similar. As we recede from the singular point of the singular axis of the figure, 

the distances in the “‘equal’”’ parts of the figures increase proportionally (Fig. 

2.100) which is automatically taken into account by symmetry operations. The 

corresponding groups are isomorphous to groups Gj. 

Fig. 2.100a,b. Figures with similarity 

symmetry. 

(a) thin section of the shell of a Nautilus 

mollusk; (b) 24-start spiral. This figure 

can also be regarded as possessing ele- 

ments of antisymmetry [2.7] 
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Another possibility of nonisometric symmetry is “‘oblique’’ symmetry, de- 

scribed by so-called homology groups, in which, for instance, plane m reflects 

points not necessarily along a line perpendicular to it. Proceeding further on this 

path, we can advance to “curvilinear” symmetry, etc. 

2.9.7 Partial Symmetry 

Symmetry can be regarded with respect not to all, but to some of variables m’ < 

m describing an object F. Then the object will be symmetric relative to these m’ 

variables and asymmetric, or disymmetric, as they say, relative to the other 

(m — m’) variables. These m’ variables may be discrete; for instance they may 

describe the presence or absence of some characteristic or its many-valuedness. 

Such an approach can be used in describing the structure of certain objects, and 

in particular, objects of nature—plants and animals. 

2.9.8 Statistical Symmetry. Groupoids 

After symmetry transformation g[x] = x’(1) the object F may prove to be not 

precisely (2.2), but only approximately (statistically), similar to itself 

F(x’) = F(x), @ii1t) 

and the measure of this similarity can be determined quantitatively. For instance, 

in a disordered crystalline structure, in solid solutions, some of the translational- 

ly equal atoms (or whole unit cells) are replaced by other atoms, ‘“‘approxi- 

mately’’ equal to the basic ones. It is possible to indicate the filling coefficient or 

other characteristics of such approximate equality. 

The idea of gradual variation in F under translation symmetry is illustrated 

in Fig. 2.101. 

Fig. 2.101. Escher’s drawing (fragment) illustrating the idea of gradual change in the ‘‘ap- 
proximate” equality of figures in translation symmetry [2.45] 
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The symmetric transformation (2.1) g[x] = x’ may itself be performed in- 

accurately (statistically). Thus, many polymers and liquid crystals consist of 

strictly equal molecules, i.e., F(x) = F(x’); however, the values of x” do not 

exactly coincide with x’, but are statistically distributed around this most 

probable value in accordance with some function indicating the translational 

and angular components of the probable deviation of x” from x’. This is another 

aspect of statistical symmetry. 

There exist objects, where both the group transformation (2.1) and the con- 

dition of self-equality of F(2) are fulfilled. 

Another generalization of symmetry is the theory of groupoids which is 

is used by Dornberger-Schiff [2.58](see also [2.59]) for describing ordered- 

disordered (OD) structures. Groupoids are the most general algebraic sets 

satisfying only one of the group axioms: to every two of its elements there cor- 

responds the third element of this set. If the first element is transformed into 

the second, and the second into the third, a transformation of the first element 

into the third exists. But here the object, as a whole, is not transformed into 

itself, as is the case in a group-symmetrical transformation (1),(2). Using the 

theory of groupoids, one can describe, for example, different variants of 

stacking of layers in structures of silicates. The groupoids describing layered 

OD-structures break down into 400 families. 

The development of the theory of symmetry has been advancing vigorously 

in recent years. An important question which we have not mentioned in this 

chapter concerns interaction of the symmetry of objects and the environment. 

This will be treated in [2.14]. 



3. Geometry of the Crystalline Polyhedron and Lattice 

Crystallography as an exact science originated from the study of the outward 

shape of crystals. Observations of the habit—plane faces, angles between them— 

and investigations into the regularities revealed led to an unambiguous conclu- 

sion about the regularity of the internal structure, namely the existence of three- 

dimensional periodicity, i.e., a crystal lattice. Later on, the crystal lattice was 

revealed directly by means of x-ray diffraction. 

Observation and measurement of crystal faces and establishment of the laws 

of their arrangement are the subject of so-called geometric crystallography of 

the crystalline polyhedron, the chief method of which is goniometry (measure- 

ment of angles between crystal faces). The geometric crystallography of the 

lattice studies its absolute metric characteristics—repetition periods and angles 

of the unit cell. Simultaneously, the point symmetry of the crystal is established. 

At present, the principal technique of geometric crystallography is the x-ray 

method, while goniometry, which had played the leading part before x-ray diffrac- 

tion was discovered, is used only for describing the outward shape of crystals. 

3.1 Basic Laws of Geometric Crystallography’ 

3.1.1 Law of Constancy of Angles 

Natural or synthetic crystals grown under definite conditions exhibit well- 

developed flat faces and edges between them. The existence of faces and edges 

and the laws of their mutual arrangement are macroscopic manifestations of the 

existence of the crystal lattice. 

The crystal habit is characterized primarily by the presence of flat faces. For 
many crystals the flat faces are maintained very strictly. At the same time there 
are various types of disturbances of the flat faces of actual crystal forms associated 
with defects in the structure and the conditions of formation of the crystals. 

Note that crystalline polyhedra have a relatively small number of faces. 
Crystals of a definite substance may have a different habit, but as a rule one can 
single out faces encountered often and those encountered more rarely. 

The small number of faces and the almost constant presence of some of them 
on the crystals served as a ground for establishing the first basic law of geo- 

" Sections 3.1.1-3 were written in cooperation with M. O. Kliya. 
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metric crystallography—the law of constancy of interfacial angles. If we take 
several crystals of a given substance, it is possible to arrange them in space so 
that certain faces are parallel (Fig. 3.1). They are called corresponding faces. 
The law of constancy of angle (Stenon’s law) states: “Interfacial angles between 

the corresponding faces are constant’. 

Fig. 3.1. Three quartz 

crystals with correspond- 

ing faces developed dif- 

ferently 

The constancy of angle is preserved under given thermodynamic conditions 

and in the absence of external effects. For many crystals it holds with a high degree 

of accuracy—up to fractions of minutes. Deviations from stoichiometry, the 

presence of impurities, etc., and also external effects alter the angles but slightly. 

3.1.2 Law of Rational Parameters. Lattice 

The second basic law of geometric chrystallography is Haiiy’s Jaw of rational 

parameters. It establishes that the arrangement of all the faces observed on a 

set of crystals of a given substance can be characterized by certain rationally 

related integers. 

The law of rational parameters is as follows: if we select the direction of three 

noncoplanar edges of a crystal as its reference axes, then the intercepts p,, p2, 

P3, and p;, p3, p; made on them by any pair of faces and called parameters? 

relate as integers (Fig. 3.2) 

erie ee pany apt vie) CT Wesel pei ay ta Hater 4 Ih (3.1) 

Therefore the law just mentioned is also called the law of rational intercepts. 

The parameters of one of the faces cutting all the axes may be taken as units of 

measurement along each axis and called unitary parameters a, b, c. Such a face 

may be called a unit face. Then the angle of inclination of the other observed 

faces of crystals may be expressed as p,a, p,b, p3c, where the factors p,, po, P3, 

2 In the crystallographic literature, axes and parameters are denoted both by identical letters 

with suffixes (a,a,a,; a*a*%a* ; ppp; hyh,h,) and by special letters (a, b,c; h, k,/). We shall use 

them interchangeably as dictated by convenience. 
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Fig. 3.2. The law of rational parameters 

which were proposed by Weiss in 1818, are positive or negative integers. Only 

the ratio of the lengths of unit parameters can be determined by inspecting the 

habit, but not their absolute values. The three integers p, p.p; characterizing each 

face can then be found. If the face is parallel to one or two axes, the relevant 

Weiss indices are infinite. 

From the law of rational parameters (Fig. 3.2) the existence of a lattice with 

unit cell edges a, b, and c follows unambiguously. 

Any vector of such a lattice can be described by Weiss indices 

Eo :paps = Pia =i P24 ae P33. (3.2) 

It is clear that the directions of the possible edges of crystals are defined by the 

vector f,,,,,, and have the corresponding indices, and that the same indices can 
be employed to describe crystal faces by using (3.1). As we have already em- 

phasized, the law of rational parameters (3.1) was established first, from which 

follows the existence of the lattice (3.2). Proceeding from the lattice (3.2) one 

can obviously obtain the law of rational parameters (3.1) (see 1.1.5, Fig. 1.13). 

The notation proposed by Miller in 1839 proved to be more convenient for 

describing crystal faces. Miller’s indices h, k, / are the least integers inversely 

proportional to the numbers p,, p2, and p; in (3.1), when pj, p3, p; are taken to be 

equal to unity, 1.e., when the face making these intercepts is unit one. 

At the same time Weiss’s indices p,, p2, p3; remain convenient for denoting 

the directions of edges and other straight lines in a crystal lattice. 

3.2 Crystalline Polyhedron 

3.2.1 Ideal Shape. Bundle of Normals and Edges 

The crystal habit is governed by two basic laws, those of constancy of angles and 

of rational parameters. But it also obeys the crystallographic point symmetry 



3.2. Crystalline Polyhedron 183 

K. The fact that there are only 32 crystallographic point groups, which were 

derived in studying the crystal habit, as well as the two indicated laws, follows 

from the existence of the crystal lattice. An (individual)crystalline polyhedron 

is a single crystal grown under equilibrium conditions, on which a definite 

combination of edges and faces is observed. 

The habit of a crystal that exhibits an ideal (or perfect) shape strictly obeys 

the group K describing the crystal (Fig. 3.3). As has already been noted, the 

shape of an actual single crystal depends on the conditions of formation of the 

crystal. Because of the possible nonuniformity of actual conditions of growth 

(temperature gradients, concentration, etc.), the actual shape may differ drasti- 

cally from the ideal [Ref. 3.1, Chap. 1]. Neverhtless, if the faces and edges of a 

crystal of a given substance are defined clearly enough, one can make a geometric 

description independent of its particular habit. 

According to the law of constancy of angles, during the growth of crystals 

each face and each edge shifts parallel to itself. This also applies to the orientation 

of the corresponding faces and edges of different crystals of one and the same 

compound. The orientation of each face can be assigned by a normal to it. A 

set of such normals drawn from a common origin will thus completely describe 

the mutual angular orientation of the faces of a given crystal. The lines of 

intersection of the faces, the edges, can also be drawn from this origin. This 

kind of construction is called a face-and-edge bundle. With its aid, any crystal 

of a given substance with an identical set of faces receives a unified description 

irrespective of its individual features. The spherical projection of a normal- 

and-edge bundle (Fig. 3.4), or the corresponding stereographic projection gives a 

quantitative description of the interfacial angles and other geometric regularities 

of the habit. 

Crystal edges are denoted by three indices in square brackets, and faces, by 

three indices in parentheses. The edges [p,p.p3] in such a set correspond to 

Fig. 3.3. Ideal shape of K,SO, crystals. Faces _ Fig. 3.4. Spherical projection of faces (dots) 

belonging to the same simple form are and zones (great circles) 

labelled identically 
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the lattice vectors t,,..), = Pid: + P2@, + p3a;, where p, are Weiss indices, a, 

are the unit cell vectors, and the crystal faces (hk/) have normal vectors Hj,; 

with Miller indices h, k, / [see (3.27)]. 

It should be stressed that the indices of the faces (as well as the edges) must 

not have common factors. The face and edge indices may be either positive or 

negative. If we change all the signs in the symbol (Ak/) for (A/D), it will mean de- 

scription of two opposite, but parallel, faces with a common normal H,,,. Thus 

it is senseless to change the signs of all the indices (Ak/) (similarly, symbols[p, p2ps] 

and [p,p2p3] imply one and the same edge). 

From the formal consideration of the lattice one might conclude that any net 

of a lattice with arbitrary indices hk/ can be a face of a crystal. In fact, however, 

this is not the case. During the growth of crystals, only faces with small values of 

the indices hkl,usually up to 3-5, are generally formed, and in exceptional cases 

up to 10 [Ref. 3.1, Chap. I]. Faces with the least indices have the largest number 

of net points per unit surface area, i.e., the highest reticular density. This was 

noted by A. Bravais, who formulated a rule according to which habit faces 

(i.e., those most often present in a crystal) are the faces with the highest reticular 

density. 

3.2.2 Simple Forms 

The entire set of faces of an ideal crystalline polyhedron can be divided into sets 

of symmetrically equal faces, i.e., faces transformable into each other by point 

symmetry operations of a group K. 

A set of faces obtained from one assigned crystallographic plane by applica- 

tion of all the symmetry operations of group K to it and cutting each other along 

the intersection lines—edges—is called a simple form. These faces are symmetri- 

cally equal in their geometry and also to their physical and chemical pro- 

perties. 

If a set of planes of a simple form does not close the space (see, for instance, 

Fig. 3.7a-e, g), it is called open. Open forms are characteristic of crystals of lower 

syngonies and are possible in all the syngonies, with the exception of cubic. If 

Fig. 3.5. Sphere inscribed in a simple form 
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the space is closed (Figs. 3.7f, h; 10-15), a convex polyhedron is formed, which is 
a closed form. Such a polyhedron is an isohedron, i.e., an “‘equifacial poly- 

edron’’. Since to each simple form there corresponds a bundle of symmetrically 

equal normals, it can also be obtained by drawing planes tangent to points of 

emergence of these normals onto the sphere (Fig. 3.5). In other words, a sphere 

can be inscribed in a simple form. 

From the foregoing it follows that to each regular point system (RPS) of 

group K there corresponds a simple form, and hence the number of faces in this 

simple form corresponds to the multiplicity of such a regular point system. We 

can see that from the standpoint of the theory of symmetry, the concept of the 

simple form may be associated with the concept of a regular point system of a 

crystallographic group K. But in considering simple forms one also takes into 

consideration the mutual intersection of the symmetrically equal planes forming 

them, i.e., the edges. Therefore, in certain groups, several simple forms may 

correspond to one regular point system, because the possibilities of different 

intersections depend on the orientation of the initial plane relative to the sym- 

metry elements. We shall explain this with reference to group 3 (Fig. 3.6). If the 

initial plane is perpendicular to axis 3, its normal coincides with this axis. By the 

action of this axis the plane is transformed into itself, and its symmetry, as well 

as that of the corresponding point of particular positions, is 3 (Fig. 3.6a). The 

point of general positions has a multiplicity of 3, two simple forms correspond to 

this regular point system: a general one—a trigonal pyramid (Fig. 3.6c), when 

the plane is inclined to axis 3, and a particular one—a trigonal prism (Fig. 

3.6d), when the plane is parallel to axis 3. The face symmetry in the latter two 

cases is 1. 

ha 

To avoid this ambiguity, which takes place for all the axial groups N, one 

usually fixes, on the axis of symmetry the point corresponding to the center of 

the stereographic projection. Then, in the above example, to RPS lying on the 

equator there corresponds a prism, to those lying outside the equator, a pyramid, 

and to the polar point, a monohedron. 

A simple form is called general if all its faces are not parallel and not per- 

pendicular to one and the same symmetry element and do not cut the equivalent 

symmetry elements at equal angles, and it is called special if this condition is not 

Fig. 3.6a-d. Simple forms of group 3. 

(a) points of general positions in group 

3; (b) monohedron, (c) trigonal pyra- 

fe d mid, (d) trigonal prism 
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met. The symmetry of faces of a general form is 1. The number of faces of a sim- 

ple form of general positions is equal to the order of group K. 

The derivation of simple forms precisely consists in successive examination 

of forms of general and different special positions for each group K. It is done 

conveniently with the aid of a set of normals of a stereographic projection. 

The names of the simple forms which we list below derive from the Greek 

numbers (mono—one, di—two, etc.) and from the words “‘hedron’’—face and 

“‘gon’’—angle. 

In the lower syngonies? open forms are possible—a monohedron (pedion) 

in group | (Fig. 3.7a), a pinacoid in group I (Fig. 3.7b), and dihedra (doma) 

in groups m and 2 (Fig. 3.7c, d). In m and 2, monohedra and dihedra are also 

possible. In orthorhombic groups, a rhombic prism, tetrahedron, pyramid, and 

bipyramid are added (Fig. 3.7e-h). Intermediate syngonies are characterized, 

apart from monohedra and pinacoids, by prisms (Fig. 3.8), pyramids (Fig. 3.9), 

bipyramids (Fig. 3.10), tetrahedra (Fig. 3.11), rhombohedra (Fig. 3.12), scaleno- 

hedra (Fig. 3.13), and trapezohedra (Fig. 3.14). The latter are possible in 

groups of the first kind K' and are characterized by the absence of symmetry 

planes and inversion axes. The upper pyramid of the trapezohedron is turned 

with respect to the lower by acertain angle not equal to half of the unit angle of 

rotation about the principal axis. Trapezohedra in this group K! may be right- 

handed or left-handed, 1.e., they are enantiomorphous. In cubic groups all the 

simple forms are closed (Fig. 3.15). They are derived from the shapes of the 

tetrahedron (see the tetrahedron series in Fig. 3.15a-f), the octahedron (see 

the octahedron series in Fig. 3.15g-m), and the cube (see the cube series in Fig. 

3.15n-r). Cubic groups of the first kind also have enantiomorphous forms. 

In all, there are 47 geometrically different simple forms (Figs. 3.7-15). 

OSPp 
ARTI 

7 Fig. 3.7a-h. Simple forms of lower syn- 

d e £ gonies. 

(a) monohedron, (b) pinacoid, (c) di- 

iaila yee hedron with a plane, (d) dihedron with 

an axis, (e) rhombic prism, (f) rhombic 

Ce. tetrahedron, (g) rhombic pyramid, (h) 
g h thombic dipyramid 

> As it was mentioned, another, equivalent term for “‘syngony” is ‘‘system’”’. 
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> 

a 

Fig. 3.8a-f. Prisms of intermediate syngonies. 

(a) trigonal, (b) ditrigonal, (c) tetragonal, (d) ditetragonal, (e) hexagonal, (f) dihexagonal 

DM Ms 
ANA Ms 

Fig. 3.9a-f. Pyramids 

of intermediate syn- 

gonies. 

(a) trigonal, (b) di- 

trigonal, (c) tetragonal, 

(d) ditetragonal, (e) 

hexagonal, (f) dihexa- 

gonal 

Fig. 3.10a-f. | Bipyramids 

of intermediate syngonies. 

(a) 

(c) 

trigonal, (b) ditrigonal, 

tetragonal, (d) dite- 

tragonal, (e) hexagonal, (f) 

dihexagonal 
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Wi Sg 
Fig. 3.11. Positive and negative tetragonal Fig. 3.12. Positive and negative rhombohedra 

tetrahedra 

me $4 
Fig. 3.13a,b. Positive and negative scalenohedra. (a) tetragonal, (b) ditrigonal 

Fig. 3.14a-c. Right- and left-handed tra- 
pezohedra. 

(a) trigonal, (b) tetragonal, (c) hexagonal 

GOOD 



ox 

| wy 

Fig. 3.15a-t. Simpe forms 

of the cubic syngony. 

(a) tetrahedron, (b) tri- 

gontritetrahedron, (c) 

tetragontritetrahedron, 

(d, e) right-handed and 

left-handed pentagon- 

tritetrahedron, (f) hexa- 

tetrahedron, (g) octa- 

hedron, (h) trigontri- 

octahedron, (j) tetragontrioctahedron, (k, i) right- 

handed and left-handed pentagontrioctahedron, 

(m) hexaoctahedron, (n) cube (hexahedron), (p) 

pyramidal cube (tetrahexahedron), (r) rhombodo- 

decahedron, (s) pentagondodecahedron, (t) dido- 

decahedron 

3.2.3 Distribution of Simple Forms Among Classes 

This distribution is given in Tables 3.1-4. We can see that in addition to triclinic 

classes which have one simple form, each class (point group) K allows of three 

or five, or seven simple forms.’ A given class K is, as a rule, characterized by the 

+ It is taken into consideration here that class 2/m includes two pinacoids differently positioned 

relative to the symmetry elements of the class, and classes 42m and 3m each include two 

prisms with different arrangements (see Table 3.1-3). 
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Table 3.1. Simple forms of lower syngonies 

Triclinic Monoclinic Rhombic 

Simple form Class 

1 i 2 m 2/m 222. mm2 mmm 

Monohedron (1) + oe ae ae 

Pinacoid (2) Se eee 
Dihedron (2) aL Jt a 

Rhombic pyramid (4) at 

Rhombic prism (4) ae aie ain ate 

Rhombic tetrahedron (4) ae 

Rhombic bipyramid (8) ir 

Note: The figure standing next to the name of the simple form indicates the number of its 

faces, the plus sign, the presence of a simple form in this class, and two pluses, the presence 

of two symmetrically different faces of simple forms. 

Table 3.2. Simple forms of tetragonal syngony 

. Class 
Simple form 

4 4 4/m 422 4mm 42m 4/mmm 

Monohedron (1) oh ae 

Pinacoid (2) ae a ale Te ai 

Tetragonal pyramid (4) = ae 

Tetragonal prism (4) aL di ne a a Segal rg 

Tetragonal tetrahedron (4) =E a 

Ditetragonal pyramid (8) ae 

Tetragonal bipyramid (8) ae fe att. re 

Ditetragonal prism (8) cia Si = == 

Tetragonal scalenohedron (8) a 

Tetragonal trapezohedron (8) a 

Ditetragonal bipyramid (16) ais 

general form. Therefore the names of the classes correspond to the name of 
the simple form of general positions in the given class, for instance rhombo- 
prismatic (2/m), trigonally pyramidal (3), etc. The same simple form may be 
encountered in different crystal classes (a general form of one class may be 
realized as a special form in another class). But the symmetry of faces of a 
geometrically identical simple form may differ from one class to another. For 
instance, an axial dihedron and a dihedron with a plane are distinguished (Fig. 
3.7c, d). A monohedron is possible in ten different classes (which corresponds 
to the ten plane classes). In real crystals this difference reveals itself in studying 
the physical properties of face surfaces, primarily of their growth, solution, and 
etch figures; and other peculiarities of the face sculpture. For instance, cubes 
of different classes of the cubic syngony have different hatching of the faces in 
accordance with the symmetry (Fig. 3.16). 
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Table 3.3. Simple forms of trigonal and hexagonal syngonies 

Class 

Simple form 

3. 3 32 3m 3m 6 6 6/m 622 6mm 6m2 6/mmm 

Monohedron (1) + 
Pinacoid (2) ae 

Trigonal pyramid (3) “bh 

Trigonal prism (3) + 

Ditrigonal pyramid (6) 

Trigonal bipyramid (6) 

Ditrigonal prism (6) 

Hexagonal pyramid (6) 

Hexagonal prism (6) 

Rhombohedron (6) 

Trigonal trapezohedron (6) 

Ditrigonal bipyramid (12) + 
Ditrigonal scalenohedron (12) 

Hexagonal trapezohedron (12) 

Hexagonal bipyramid (12) ae ae 

Dihexagonal pyramid (12) at 

Dihexagonal prism (12) + + 4 

Dihexagonal bipyramid (24) 

+ + 
+ + 4+ 

+++ +++ + 

+ 

++ 

+ 

a 

+ ++ + + 
+4 

+++ 4+ 4 + 
++ 

of 

+ 

++ 

++ 

Table 3.4. Simple forms of cubic syngony 

Class 

Simple form 

23 m3 432 aS w = 3 wi 3 

Tetrahedron (4) 

Hexahedron (6) 

Octahedron (8) 

Rhombododecahedron (12) 

Pentagondodecahedron (12) 

Trigontritetrahedron (12) 

Tetragontritetrahedron (12) 

Pentagontritetrahedron (12) 

Hexatetrahedron (24) ae 

Trigontrioctahedron (24) + 

Tetragontrioctahedron (24) f 

Pentagontrioctahedron (24) 

Tetrahexahedron (24) 

Didodecahedron (24) + 

Hexoctahedron (48) 

aan 

++4+4+ 
+++ + ++ +++ 

+4++++ 
++ 

++++ + 

+ + ++ 

The total number of simple forms which differ geometrically is 146 and, if 

we also include enantiomorphous pairs, 193. In classes with polar directions 

the faces hkl and hkI which are parallel to each other, may not be derived from 

each other by symmetry operations of group K. The simple forms corresponding 
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to them are geometrically identical, but they differ in the physical properties of 

the faces. The forms of such a pair are called positive and negative; for instance, 

there are a positive and a negative tetrahedron in group 23. The number of simple 

forms, with an allowance for such differences, is 318. If we take into account the 

differences in the space symmetry of the crystals, the number of distinct simple 

forms will be equal to 1403. 

POOL A 

preteen fesneueaetanss eluate, LEAK 

iaeeeeenaaed ELEY 

OOOO \ LEP EELEEA 

EPA ATA j 

ATELY 

Fig. 3.16. Proper symmetry of the faces of five cube varieties belong to different classes of the 

cubic syngony 

Ua @ ace 

The faces of a simple form are symmetrically equal, so the indices in their 

symbols (hk/) are transformed in accordance with the transformations of the 

corresponding group K (see Sect. 3.4). The indices (hk/) of the faces of a given 

simple form may differ only in the signs or in their permutations with or without 

a change of sign. The indices of a generally situated face (hk/) are all nonzero. 

For instance, in the intermediate syngonies the symbols (hk/) of the faces of a 

general simple form are obtained by changing the signs of the three indices 

and permutations of indices / and k taken for some fixed face. In faces of special 

positions, either one or two indices are equal to zero, or some indices are equal 

to each other (in the intermediate syngonies these indices are h and k). 

We shall.see below in (3.7) that in the trigonal and hexagonal syngonies the 

first two indises fA and k are replaced by a symmetric triad of indices hki 

[i = —(h + k)], and the fourth, /, remains unchanged. If the symbol of all the 

faces belonging to the given simple form, i.e., the symbol of the simple form as a 

whole, is to be indicated, its indices (positive) are placed in braces: {hkl}. 

3.2.4 Holohedry and Hemihedry 

The analysis of the habit of crystals and simple forms is associated with the 
classical crystallographic division of the crystal classes within each syngony into 
holohedral (i.e., “‘full-faced’’), hemihedral (having half the full number of faces in 
the holohedral class), and sometimes tetartohedral (having 1/4 of the faces). The 
holohedral class is the highest in a given syngony, and any other class of it is 
its subgroup. Take, for instance, the holohedral tetragonal class 4/mmm and its 
general simple form—the ditetragonal bipyramid (Fig. 3.17). We can select, in 
several ways, half the faces from it (““hemihedry’’) and, extending them, close 
them up with each other, so that we obtain the general simple forms of the sub- 
groups of index 2 of this group, namely groups 4mm, 4/m, 422, 42m. For in- 
stance, selection of the faces of the upper bipyramid alone will lead to class 
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Fig. 3.17. Derivation of general forms for hemihedral classes of the tetragonal syngony 

4mm, the selection shown in Fig. 3.17b will give a tetragonal trapezohedron, 

etc. We can similarly pass on to tetartohedry. 

3.2.5 Combinations of Simple Forms 

As a rule, crystals exhibit faces belonging to several simple forms, and in this 

case one speaks of their combinations. Open simple forms can obviously exist 

on crystals only in combinations with other, open or closed forms, and closed 

forms can be present both in combinations or separately. 

The principle of formatidn of combinations is shown in Fig. 3.18: the simple 

forms “‘cut”’ each other, producing a convex polyhedron. The particular dimen- 

sions of the resulting faces depend obviously on the number of simple forms com- 

bined and on the linear dimensions of each of them. Simple forms of the same 

name, but with different indices {hkl}, may also be combined. Physically, 
the appearance of some or other faces is associated with their growth rate [Ref. 

3.1, Chap. 1]: faces with the least growth rates are the ones usually revealed. 

Therefore crystals of one and the same substance grown in different conditions 

may have different habits. 

Fig. 3.18a,b. Formation of combina- 

tions of simple forms. 

(a) tetragonal prism and tetragonal bi- 

pyramid, (b) rhombododecahedron and 

cube 

The ideal form of a crystal can be constructed by taking each simple form on 

a set of normals whose lengths are proportional to the growth rate of the 

faces of this form. The actually observed number of simple forms on crystals is 

usually small, not more than 3-5. 
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Each of the simple forms of a given class K has its symmetry. Hence, when 

various crystal forms appear in combination, the crystal faces of each of them, 

due to their intersection, are symmetrically equal; i.e., they are equal polygons. 

The surface of a perfect crystalline form, indeed, consists of several sorts of such 

equal polygons, i.e., of combinations of simple forms. If only one simple form 

is present, only one sort of polygon forms the habit. Different crystalline poly- 

hedra will be presented below (see Fig. 3.18). 

Group K of a given crystalline polyhedron naturally also describes all the 

other elements of the habit, namely its edges and vertices. The number of these 

elements is related by Euler’s equation for convex polyhedra 

je (3.3) 

where F is the number of faces, V of vertices, and E of edges. 

3.2.6 The Zone Law 

Since edges are intersections of faces, their arrangement is interrelated. The 

condition for edge [p,p2p,] to belong to face (Ak/) or, what is the same, for face 

(Akl) to intersect some other face along edge[p,p2p;] has the form 

pih + pak + pl = 0. (3.4) 

This relation follows immediately from condition (3.2) for the existence of a 

crystallattice, whose plane nets correspond to the macroscopic faces, and the rows 

of points to the edges (see Sect. 3.4.2). By (3.4), several distinct faces (hkl) may 

be parallel to a certain direction—edge [p,p.p;]. A set of such faces is called a 

zone. The edge (direction) [p,p2p3] 1s called the zone axis. From the two equations 

of the type (3.4) it is possible to find the zone axis if the two planes (h,k,/,) and 

(A,k,/,) intersecting along this axis are known. Putting these indices into 

(3.4) 

Ap, + kip, + lip; =0, hp, + kip, + hp; = 0 

and solving these equations, we obtain 

Pi=klh,—hk,, p2=hh,—hh, ps3 = hk, — kyhy. (32) 

The simplest examples of zones are coordinate zones. For instance, all the 

faces (Ok/) are parallel to the coordinate edge [p,00]. In a face-and-edge bundle 

the normals of the faces H,,,; are perpendicular to the zone axis Eu, ane their 
emergences onto the spherical or stereographic projection lie on the same great 
circle whose plane is perpendicular to the zone axis [p, p,p3]. 

Each face has at least two nonparallel edges [p,p2p,] and [pj p3p4] and there- 
fore belongs to at least two zones. Knowing the indices of the two edges, we can 
find the indices of the face by (3.4), 
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h = p2p3 — Pspx, k= psp; — pips, 1 = ppt — pip (3.6) 

Edges—the sides of the faces, which are polygons, —obey the general relation 
(3.4). This is Weiss’ zone law: each plane parallel to two actual or possible edges 
of a crystal is an actual or possible face of the crystal, and (reciprocally) each 
direction parallel to the line of intersection of two actual or possible crystal 
faces is its actual or possible edge. The zone law enables one to find new, 
potential faces and edges from the observed ones. This procedure is called the 
development of complexes of edges and faces (Fig. 3.19). 

001 on 021 010 

100 Fig. 3.19. Development of a face complex 

3.3, Goniometry 

3.3.1 Crystal Setting 

Goniometry is concerned with measuring angles between crystal faces. In con- 

nection with the development of x-ray analysis this method has ceased to be the 

most important technique in geometric crystallography, but it still retains its 

importance in morphology and the theory of crystal growth, the practice of 

crystal physics and crystal technology, mineralogy, and a number of other fields. 

Goniometric measurements of crystals and microcrystals are used, in con- 

junction with data on chemical composition, for phase analysis of synthetic and 

natural substances. 

By measuring interfacial angles one can determine the class K of a crystal 

and hence its syngony’, the axial ratio a:b:c, and angles a, f, and y of the unit 

cell, and can also index all the faces and edges. Since in goniometry only the 

axial ratio is found and one of the parameters is taken to be unity, the number 

of values characterizing the cell is five, in the general case. The cubic cell has 

5 See footnote on p. 100. 
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Table 3.5. Crystal setting 

3. Geometry of the Crystalline Polyhedron and Lattice 

Syngony Crystallographic axes Unit face 

Triclinic Axes X, Y, Z are parallel to actual The unit face makes unequal inter- 
or possible crystal edges cepts on the crystallographic axes 

Axis Z, which is parallel to the axis 

of the most developed zone, is placed 

vertically 
Wt, 

ti, 

“I ; 

po 

Ss x 
0 

: 
jn 

BX 
atpHY x Gee 

Monoclinic Axis Y is brought into coincidence ~ The unit face makes unequal inter- 

with axis 2 or with the perpendicular cepts on the crystallographic axes 

to m and is placed horizontally. The 

axes X and Y are chosen in the plane 

perpendicular to Y, parallel to the 

actual or possible edges of the 

crystal. Axis Z is vertical 
Le 

B 

B Jo y y 
90° 

pz. 

BX : 
a=y=90°#6 x FbFC 

Orthorhombic Axes X, Y, Z are brought into The unit face makes unequal inter- 
coincidence with three axes 2 or 

with one axis 2 (vertical), and with 

the perpendiculars to the two planés 

m 

90° 
6° Io 0 

90° 

>< 

a=B6=Y=90° 

cepts on the crystallographic axes 

ax b#c 



Table 3.5. (continued) 
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Syngony Crystallographic axes Unit face 

Tetragonal 

Trigonal and 

hexagonal 

The vertical axis Z is brought into 

coincidence with axis 4 or 4. Axes 
X and Y are chosen in the plane per- 

pendicular to Z or along axes 2, or 

along perpendiculars to planes m, or 

along the directions parallel to the 

actual or possible edges of the crystal 

a=6=yY=90° 

Hexagonal setting. Vertical axis Z 

is brought into coincidence with axis 

6 or 6, or 3 or 3. Axes X, Y, U are 
chosen in the plane perpendicular to 

Z, or along axes 2, or along perpen- 

diculars to the planes m, or along 

the directions parallel to the actual 

or possible edges of the crystal 

The unit face makes equal intercepts 

on the horizontal axes X and Y and 

an intercept unequal to them along 
axes Z 

The unit face makes equal intercepts 

on the two horizontal axes and an 

intercept unequal to them along Z. 

The unit face is either parallel 

to one horizontal axis (a) or makes 

an intercept on it which is half the 

length of those on the other two 

horizontal crystallographic axes (b) 

di b Z 

Cubic The axes are brought into coinci- 

dence with the three axes 4 or with 4, 

or (in the absence of fourfold axes) 

with 2 

Zz 

90° 

90 

a=p =Y=90° 

The unit face makes equal intercepts 

on the crystallographic axes 
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no relative metric characteristics, while its angles are equal to 90°, and thus it is 

not characterized in any way in goniometry. 

We know that each crystal has a space lattice with definite metric parameters, 

but the unit cell axes may be chosen in different ways. To be able to compare the 

results of investigations of different crystals of the same substance or to identify 

an unknown crystal by using data available in the literature, one must have a 

rule for choosing the coordinate axes a, b, and c of crystals. The choice of these 

axes is called crystal setting. The origin of this term is associated with the tech- 

nique of goniometric measurements, i.e., with the most convenient and correct 

setting of a crystal for measurements on a goniometer head. 

The choice of coordinate axes is dictated, in the first place, by the symmetry, 

i.e., the allocation of the crystal to a syngony with a characteristic axial ratio 

a:b:c and angles a, f, and y of the unit cell. The axes are chosen along the axes 

of symmetry of the crystal or along the normals to the symmetry planes m. The 

rules for choosing the axes are indicated in Table 3.5. 

It is necessary to distinguish between positive and negative directions of axes 

X, Y, Z: the positive are chosen so that when viewed from the positive end of 

axis Z the rotation from X to Y is counterclockwise. In intermediate syngonies, 

axis Z is always chosen to be the principal, i.e., axis 3, 4, or 6 is taken for Z. A 

technique characteristic of setting crystals is the choice of unit face (111) which 

cuts off axial units a, b, c on the coordinate axes (see Table 3.5). 

In rectangular syngonies—cubic, tetragonal, and orthorhombic—axes YX, 

Y, Z are chosen along symmetry axes orthogonal to each other. In the tetragonal 

syngony, the shortest (in the basal plane) period should be chosen as a = b. 

In the hexagonal syngony, axes X¥ and Y to which a = bcorrespond are arranged 

at an angle of 120° to each other, but there is a third axis U, symmetrically equal 

to them, which also makes angles of 120° with XY and Y. Using these three equi- 

valent axes in the basal plane, we obtain three indices h, k, and i as the symbols 

of planes, too, instead of the pair h and k, while index /, which corresponds to 

axis Z, is determined in the usual way. The trace of the section of plane XYU 

Fig. 3.20. Relationship between the indices in the hexagonal system 
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by any plane (hkil) is the straight line L (Fig. 3.20), which makes intercepts x, 

y, and —u on the axes. From the figure it follows that x:(x + u) = y:(—u), 

whence x-' + y-! + u-' = 0. But the inverse values of the intercepts are 

indices, i.e., 

ha dat = (8 (3.7) 

Thus, in the hexagonal syngony the symbols of the planes have four indices, 

for instance (1120), (3124), (2021), etc., but only three of them are independent. 
The same refers to the description of rhombohedral crystals in the hexagonal 

system of coordinates. 

In the monoclinic and triclinic syngonies consideration of only crystal sym- 

metry does not permit an unambiguous choice of axes. In monoclinic crystals 

the symmetry fixes only one axis—axis 2 or the normal to m; this axis is usually 

chosen as axis Y. For X¥ and Z it is customary to choose the shortest periods in 

the plane perpendicular to axis Y so that angle f is obtuse. This setting is called 

crystallographic. In the x-ray (and crystallophysic) setting of monoclinic 

crystals, axis 2 or the normal to m is sometimes taken as axis Z. 

When only the goniometric method was available, the problem of correct 

crystal setting sometimes involved great difficulties. Ambiguities arose not only 

in the setting of triclinic and monoclinic crystals, but also tetragonal (the basis 

axes can be turned through 45°), hexagonal, and trigonal (the basis axes can be 

turned through 30°). At present such problems are easily solved by using the 

x-ray method. 

There is a general algorithm for the reduction of any, arbitrarily chosen, unit 

cell of any symmetry to the standard cell, which corresponds to the only correct 

setting (see Sect. 3.5.2). 

3.3.2 Experimental Technique of Goniometry 

As already indicated, goniometry is used for studying the habit of crystals, ori- 

enting them in crystallophysical or other investigations, and sometimes also at 

the preliminary stage of x-ray analysis. 

Goniometers of different types are used depending on the size of the crystal, 

the number of its faces, and the quality of their surface. The most common types 

of them are contact and reflecting goniometers. Both may be one-circle (i.e., 

with a single circle divided into degrees) or two-circle. 

The contact-type one-circle goniometer (Fig. 3.21) consists of a protractor and 

an arm pivoted on it. When measuring a dihedral angle the goniometer is ap- 

plied to the crystal so that the edge between the faces is parallel to the rotation 

axis of the arm. Such goniometers ensure an accuracy up to 30’ and are used 

where the large size of the crystal or the imperfection of its face surfaces pre- 

vents more accurate measurement. 
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Fig. 3.21. General view of the contact goniometer 

Fig. 3.22 (a) scheme of single-circle reflection goniometer 

(K: crystal, SO: incident beam, OA: reflected beam, BA: telescope); 

Fig. 3.22 (b) two-circle Goldschmidt goniometer 
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Optical goniometers are based on the principle of successive reflections of 
light beams from different faces of the crystal (Fig. 3.22a). With the use of plasti- 
cine or wax a crystal K is mounted to acrystal holder connected to a stage, which 
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rotates together with the circle. The edge between the faces being measured (the 

zone axis) must be set parallel to the rotation axis. A light beam from a source 

falls on the crystal through a collimator. An observer sees in a telescope the image 

of the light source, the so-called signal, only when one of the crystal faces (a,) 

takes a position normal to the bisector of the angle made by the optic axes of the 

collimator and the telescope. 

Having read the angle in accordance with the indicated position and 

turning the crystal together with the circle so that face a, replaces a, (or is 

located parallel to it), the value of angle 8 between the normals to these faces is 

found from the difference between the readings. Angle 8 = 180° — a, where ais 

the interfacial angle. A complete revolution of the crystal makes it possible to 

measure all the axes of one zone of the crystal. With this crystal setting only one 

zone can be measured, which is a disadvantage of a one-circle goniometer. To 

measure all the zones it is necessary to change the orientation of the crystal 

several times by positioning it differently on the crystal holder. 

The reflecting two-circle or theodolite goniometer (Fig. 3.22b) enables one to 

make a complete goniometric determination at one setting of a crystal. This 

instrument was introduced into practice by Fedorov and Goldsmidt in 1893. 

It enables one to determine the position of the normals to each of the faces by 

measuring both angular coordinates simultaneously—the polar angle p, which 

varies from 0 to 180°, and the longitude g, which varies from 0 to 360°; these 

angles are read on the horizontal and vertical circle, respectively. A new 

technique—photogoniometry—is gaining wide acceptance. In it, light reflections 

from a part of the crystal surface are simultaneously registered on a photo- 

graphic film; the mean coverage of the projection sphere is 2.0 sterad. By using 

intermediate reflections from the internal surface of a paraboloid of revolution 

(into whose focus the crystal is placed) one can obtain a gnomonic projection of 

the crystal faces directly on the film [3.2] (Fig. 3.23a, b). 

Fig. 3.23. (a) Diagram of the photogoniometer: /: illuminating laser ; 2: parabolic mirror; 3: 

film cassette; 4: crystal; 5: crystal holder; 6: auxiliary screen 
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Fig. 3.23. (b) Photognomonic projection of a pyrite crystal [3.2] 

3.3.3 Goniometric Calculations 

The indices of crystal faces can be calculated using angle measurements. Faces 

can be indexed either trigonometrically or graphically. The former method 

produces an accurate result, but is laborious, especially for low-symmetry crystals. 

The formulae for the angles between the normals H,,,; to the faces, between the 

normals H,,, and edges ¢, and between different edges will be given below 

(Se SeCL. 370.5): 

The graphical method provides a lower, but practically quite sufficient ac- 

curacy and is very pictorial. It is best realized with the aid of a stereographic 

projection, on \ ‘hich the central sections of the spherical projection are mapped 

into arcs (or straight lines) passing through diametrically opposite points (great 

circle arcs). For this purpose use is made of Wulff’s stereographic net of merid- 

ians and parallels, 20 cm in diameter, with divisions of 2° (Fig. 3.24). A set of 

meridians (great circles) on it gives the description of a zone if it is rotated 

about the central point in the plane of the drawing. An important property of 

the stereographic projection is the fact that the angles between the two great 

circles on the sphere of the spherical projection are equal to the angles between 

their mapping on the stereographic projection. 

From given p and g for all the faces, the emergences of normals H,,, are 

marked on the Wulff’s net, giving the stereographic projection of the crystal. The 

zones are then marked (they correspond to the great circles), and the zone axes 

(edges) are found. The taken set of angles between the faces is seen directly from 

the drawing, and thus the syngony can be determined. When choosing the refer- 

ence axes of the crystal, one should follow the rules of crystal setting (see Table 

Se) 

1D2)3? 
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Fig. 3.24. Wulff’s net 

To determine the a:b:c ratio and the face indices, use is made of the fol- 

lowing relation, which will be proved in Sect. 3.5.3: 

COS Q,,H) = N,/a,H. (3.8) 

Here, g is the angle between the normal to the face and the corresponding 

reference axis measured directly on the stereographic projection. 

Taking a unit face (111) (all 4, are equal to unity), we obtain from (3.8) 

Ga ; : : : ; ; (3.9) 
COS 9, COSY, COS 9, 

where 9,, 9,, gy, are the angles between the normal to the unitary face and axes 

X, Y, Z. If no unit face is observed, a pair of faces of the typs (110) and (011) may 

serve as an alternative. On the other hand, the indices of any face (hk/) are deter- 

mined from (3.8) and (3.9) by the relation 



204 3. Geometry of the Crystalline Polyhedron and Lattice 

eke tit oo ee eee (3.10) 
COS 9, COS Y, COS 9g, 

where y,, W,, W, are the angles between the normal to the face and axes X, Y, Z. 

There is also a purely graphical method of indexing based on the zone law 

(3.4). Indeed, two faces determine, by (3.5), the zone, i.e., the great circle, cor- 

responding to edge [p,p.p;]. On the other hand, the intersection of two zones 

determines, by (3.6), the indices of the possible face. The new face, in turn, can 

be used for constructing one more zone, etc. This procedure is called zone de- 

velopment. Coincidence of the possible faces with the measured defines their 

indices. 

A detailed description of the method and calculations in goniometry can be 

found in many manuals on crystallography. As an example, Fig. 3.25 shows the 

perfect form of a beryl, Be,Al,(SiO;),, and describes its simple forms. 

Examples of the habit of crystals representing each of the 32 crystallographic 

classes K are given in Fig. 3.26. 

Fig. 3.25. Beryl Be,Al,(SiO;),; a:c = 1:0.4989. 

Combination of a pinacoid c {0001} with a hexagonal prism m {1010}, 

three hexagonal bipyramids: o {1011}, ¢ {2021}, and r {1121} and a 
dihexagonal dipyramid x {3211} 

6 7 

Fig. 3.26. Examples of crystal habit representing all the 32 crystallographic classes. 
1—1 (calcium sulphate hexahydrate CaSO,+6H,O); 2—1 [boric acid B(OH,)]; 3-2 [dextra 
tartaric ammonium (NH,),C,H,O,]; 4—m (paratoluidoisobutyric ester CH,-C,H,-NH- 
C(CH;),*CO,+C,H;); S—2/m (-sulphur); 6—222 (silver nitrate AgNO); 7—mm2 [triphenyl- 
methane CH(C,H;),;; 8—mmm (potassium nitrate KNO,); 
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21 22 23 24 

Fig 3.26. (continued). 9—4 (wulfenite PbMoO,); 10—4 (kaneite Co, B,As,O,.°4H,O); 11— 

4/m (scheelite CaWO,); 12—422 (potassium trichloroacetate K[Cl, CCO,]); 13 —-4mm 
(pentaeritrite C,H,,O,); 14- 42m (urea CH,N,O); 15 —4/mmm (calomel Hg,Cl,); 16-3 

(sodium periodate Na,I,0,*6H,O); 17 — 3 (dioptase CuH,SiO,); 18 — 32 (potassium dithionate 

K,S,0,); 19-3m (tourmaline NaMg,Al, [(OH,)(BO;),SisO,,]); 20 —- 3m (hydroquinone 

C,H,O,); 21 — 6 [right-handed strontium antimony] tartrate Sr(SbO), (C,H,O,),]; 22 — 6 (silver 

biphosphate (Ag,*>HPO,); 23-6/m (apatite Ca, [(OH,Cl-F)/(PO,)3]); 24-622 (potassium 

silicomolybdate K,MoO,,SiO,9); 
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Fig. 3.26 (continued) 25-— 6mm (silver iodide Agl); 26- 6m2 (benitoite BaTi [Si,;O,]); 

27 — 6/mmm [beryl Be,Al,(SisO,.)]; 28 — 23 (right-handed sodium chlorate NaClO,); 

29 — m3 (pyrite FeS,); 30 — 432 (ammonium chloride NH,Cl); 31 — 43m [grey ore (SbAs), (Cu,- 

FeZn),S,]; 32 — m3m (lead glance PbS) 

3.4 Lattice Geometry 

3.4.1 Straight Lines and Planes of the Lattice 

A space lattice is a system of points situated at the ends of vectors r(3.2), 

lp spaps *s PQ, + P2@2 FE P343, 

constructed from three coordinate noncoplanar vectors a, @,, a3, which de- 

termine the primitive cell. This expression is basic to geometric crystallography ; 

from it follows, in particular, the law of rational parameters. 

Thus, an infinite lattice T(x) can be described as 

be +co 
T(x) a SS >] y (x es 3) Ly A PQs) =< » o(r = pee a (3.11) 

Pi pz Ps Pip2p3 re co 

where the 6-function is equal to unity at the points r= f,, t,, t,, and to zero 
at all the other points. 

Hence each point is characterized by a triplet of integers p,, p2, p3. One can 

draw straight lines through points, which are called rows; and planes, which are 

called lattice nets. The position of a row can conveniently be defined by a pair of 

neighboring points through which it passes. In particular, if one of them is taken 

as initial (Fig. 3.27), then the other, p,, p,, p; defines such a line, and its symbol 

[P1, P2, P3] 18 a triad of indices in square brackets. 



3.4 Lattice Geometry 207 

X3 

x3 

*P, P, Ps 

Xo 

Fig. 3.27. Vector ftp,»,», determining the Fig. 3.28. Planes with Weiss indices p,, p2, D3 

line [p,p2p3] (p,; = 3, p2 = 5, p3 = 6) assigned —_ (256), (324), (131) 
in a coordinate system with unit vectors 

@;, G2, Gs 

The position of a plane is defined by three noncollinear points. If three 

such points lie on reference axes, the plane makes the following intercepts on 

them: p,a, on the first, p,a, on the second, and p,a, on the third, and the triad 

of numbers p;, p2, p; are in this case the Weiss indices of the plane (Fig. 3.28). 

Because of the periodicity of the lattice (3.2) the rows and nets contain an 

infinite number of points. It is clear that any pair of intersecting or parallel rows 

defines the net whereas any pair of intersecting nets defines the row. Indices 

PiP2P3, or any values derived from them, are sufficient for describing the lattice 

unless one is interested in the metric characteristics of the crystal. If one wishes 

to calculate the distances, angles, etc., the absolute values of unit translations 

a, should be known, according to (3.2). 

3.4.2 Properties of Planes 

Suppose there is a plane with Weiss indices p,, p2, p3 (Fig. 3.28). Its equation has 

the form 

AIS Tl A ae eS (3.12) 
Pid P24,  P3G3 

and if we express the coordinates in axial units x; = x,/a,, then 

/ y / 

x1 X2 X3 

Pi P2 P3 
= 1, 

This can be rewritten 

hx, + kx, + lx; = p, (3.13) 

where 

h=h, =p.p;, k = h, = piPs, l=h,;=DPiP2., P = PiP2P3- (3.14) 
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The triplets of integers h, k, Jor hy, hz, h; are Miller indices or, as is customary 

to say, simply the indices of planes or faces. Indices h, (as well as indices p,) may 

be either positive or negative. The symbol of the lattice planes is the same as that 

of the faces: (hkl), a triad of indices enclosed in parentheses. But, distinct 

from faces, when the common divisor of the indices (if it exists) is cancelled, in 

analysis of planes in atomic structures of crystals this is not the case; for in- 

stance, one may write (422) for a plane; face (211) corresponds to this plane. 

Through each lattice point it is possible to draw a plane with indices (h,h2h3); 

it will be parallel to the plane given by (3.13). The two-dimensional case (p; = 2, 

D2 = 3, h, = 3, h, = 2) is depicted in Fig. 3.29 and the three-dimensional— 

plane (324)—in Fig. 3.30. For plane (A,h,h;) passing through the origin 

yx, + Inx2 + hyx3 = 0, (3.15) 

which is precisely the equation of the face. 

Fig. 3.29. Relationship between the Weiss Fig. 3.30. Family of lattice planes with 

(P;, P2) and Miller (h,, 42) indices in the two- Miller indices: h, = 3, A, = 2,h, = 4 

dimensionals case) (p1— 2a p>— ss 

hi) 

Let us see how many planes (h,h,h;) are between the zero (3.15) and the pth 

(3.13) planes. The translation a, repeats the zero plane (3.15) p, times, 1.e., 

through the points lying on axis X it is possible to draw p, planes (p, = 2 in 

Fig. 3.29), and this set will be repeated p, times by translation a,(p, = 3) in Fig. 

3.29), and their total number in the two-dimensional case is equal to p,p2, while 

in the three-dimensional it is p,p,p; due to the repetition p, times by translation 

a;. Each of the planes contains translationally equal (i.e., parallel and equally 

spaced) nets consisting of an infinite number of points. Thus, any integers 

p=0, +1, +2,... are possible in (3.13). When in (3.15) x; = p,, i.e., when x, 

are integers (p, are the indices of vectors f,,,,,,, and thus of the possible edges), 

we obtain the condition for f,,,,,, to lie in the plane—face (h,h,h;), 
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hyp, + h,p, + hap; = 0, 

i.e., the zone law (3.4). 

Depending on the particular values of h,, A, h,, in the general case several 

planes of this family pass within a unit cell (see Figs. 3.29, 30), thus dividing the 

edges of the primitive cell and its diagonals into certain equal segments ac- 

cording to the rules: edges a), a@,, a; are cut into /,, A, h, parts, respectively; the 

face diagonals, into h, + h3, h; + h,, h, + h, parts; and the body diagonal, 

into h, + h, + hy; parts. 

Indeed, for the plane (4,h,h;) nearest to the origin, in (3.13) p = 1, and the 

intercepts made by this plane on the axes are equal to x; = 1/h, (or x, = a,/h,, 

Figs. 3.29,30). The rules for the diagonals can be obtained in the same way. 

3.4.3 Reciprocal Lattice 

The distance between a pair of neighboring planes of the (hk/) family is called 

an interplanar spacing and is denoted by d,,,. It is measured along the normal 

to plane (Akl) and depends on the metric parameters aj, a, a; of the unit cell. 

Let us construct a normal vector H,,, to each plane (Ak/) and define its length 

as the reciprocal of the interplanar distance d,,,: 

| Aner | = Tint (3.16) 

In the general case of the oblique unit cell (Fig. 3.31) the normal to the coordi- 

nate plane is given by a vector product of the type [@,a,|)—a vector whose 

modulus is equal to the area of face a,a, of the cell, and the distances between 

the coordinate planes are the quotients of division of the cell volume by the area 

of this face. The cell volume is defined by the mixed product 

Q = a,[a,a,] = a,[a,a,] = a,[a,a,]. (3.17) 

Thus, 

Q Q Q op # ene cam a 3.18 
400 = Taal)? “= Tae) "= Tava oY) 

(a; a.) 

Fig. 3.31. Interplanar distances dio, do10, door, 

and normal [a,a,] to (001) plane in the general case 

of an oblique cell 
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This defines, by (3.16), the three vectors Myo) = at, Hoio = 4%, Hoo: = 43: 

[a,a,] 
Q -) 

[a,a;] ae [a,a,] 1 (eats) ay = Hut (3.19) Lh a ai = at = 

normal to the coordinate planes. Hence, 

dioo = a%"', doo = A37', door = 3~? (3.20) 

(Fig. 3.31). In the particular case of orthogonal lattices (Fig. 3.32) 

- =1 ee ee el 
at = ay! = ding, Af = az" = doo, a5 = a3 = doo1- (3.21) 

Hy jhghg 

Fig. 3.32. Coincidence in the directions of Fig. 3.33. General case of construction of 

the basis vectors a,, a,, and a, of direct vector Hj,2,,, Which is normal to plane 

and a*, a¥, and a* of reciprocal lattice inan ijk) (it — ale a) 
orthogonal cell 

From (3.19) it follows that 

1, tej, (3.22a) 
eee (3.22b) 

aay = 

Let us now find H for an arbitrary plane with Miller indices (h,h,h;) (Fig. 

3.33), repeating the same procedure as for the coordinate planes, but with an 

additional construction. In place of the unit cell we consider a small cell with 

basis vectors 

/ Qa, a, , a, a, ,  @; 
a; sera te ee eT (== h;’ (3.23) 

Vectors a; and a; lie in plane (h,h,h;), and the vector product [a{a5] defines 
the direction of H,,,,,, and the area of the small face, while Q = a‘[a‘a‘], i.e., 
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Fig. 3.34. Reciprocal lattice as a set of points with 

basis a¥, a¥, a¥ and one of the vectors H in it (H,,.) 

Ps Abe. 155 _ [aa] 
Dishahs = |[a@,a@3] | > By hats a feu : (3.24) 

Using (3.22) and (3.23), we find that [a}a3] = (h,a* + h,at% + hak) Q’, Q' = 

Q/hkl, i.e., that 

Hy,; = hat + hat + haat. (3.25) 

We obtain a remarkable result: the set of vectors H,,,; (3.25) is expressed in terms 

of basis vectors at, a3, a} with integral coordinates hkl, which are precisely the 

Miller indices of planes (Ak/). In other words, the ends of vectors H,,, form 

the lattice T*(S) constructed on the vectors at, a%, a$(Fig. 3.34) exactly as the 

vector of space lattice (2) forms the lattice T(x) constructed on the vectors 

a,, @,, a; (Fig. 3.27), 
E nips 

T*(S) = 3° (S — Hy), (3.26) 

where o is the delta function. 

A lattice having a vector H,,,, with basic vectors af, a¥, a3 iscalled the recipro- 

cal lattice, vectors a*,a%,a* (which are also labelled a*, b*, c*) are called the 

coordinate vectors of the reciprocal lattice; they are the edges of the unit cell 

of the reciprocal lattice. From (3.22) and (3.25) follows 

Ayah, =1, Byy@2/h, = 1, HA,,.:4,/h,; = 1. (Gi27) 

The reciprocal lattice is defined in three-dimensional reciprocal space having 

dimensionality of ‘‘reciprocal-lengths’’. If one has to distinguish the initial lattice 
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of the crystal, defined in real space, from the reciprocal lattice, the former is 

called an “‘atomic”’ or “direct” lattice. 

From (3.22) it follows that the atomic lattice is the reciprocal to the reciprocal 

lattice, i.e. they are reciprocals, and it is possible to replace the asterisked symbols 

in (3.19) by those without asterisks, and vice versa, for instance 2 is replaced 

Q*, which is calculated using (3.17) when a, is replaced by a¥. Expression 

(3.22a) shows the mutual reciprocity of equally denoted coordinate vectors 

of the two lattices, and (3.22b), the perpendicularity of any pair of differently 

denoted coordinate vectors of these lattices. 

The relationship of the atomic and reciprocal lattices can also be formulated 

as follows: straight lines—rows in one lattice are perpendicular to the planes with 

the same indices in the other, the distances between the points in one are recipro- 

cal to the interplanar spacings in the other. 

It follows, for instance, that a bundle of normals to the nets of an atomic 

lattice—faces—is a bundle of straight lines of points in the reciprocal lattice, 

and vice versa; that the rows of points of the atomic lattice are perpendicular to 

the nets of the reciprocal lattice, etc. All this enables one to write down straight- 

forwardly, using vector H,,, (3.16,25), many relations characterizing the atomic 

lattice. Thus, the equations of the plane (3.13) and (3.15) are rewritten simply 

as a scalar product of vector r, whose end is on this plane, and vector H, 

rH = P, rH= 0, 

and the zone law (3.4), as 

by spips( Anes! Ani) = 9. (3.28) 

We have derived the reciprocal lattice proceeding from the assignment of 
vector H,,; normal to plane (hk/) of the atomic lattice and equal in length to 
net (3.16), and have obtained its properties (3.19, 22, 25). Conversely, the re- 

ciprocal lattice can be derived from (3.19) or from (3.22) and acquires the proper- 
ties of (3.16) and (3.27). One more derivation of the reciprocal lattice arises auto- 
matically in consideration of diffraction phenomena (see Chap. 4). 

The reciprocal lattice is an important mathematical image which finds 
numerous applications in geometric crystallography, in diffraction theory and 
structure analysis of crystals, and in solid-state physics. 

3.5 Lattice Transformations 

3.5.1 Transformation of Coordinates and Indices in the Atomic 
and Reciprocal Lattices 

The unit cell in the lattice can be chosen in an infinite number of ways, and any 
such cell can be transformed into any other (Fig. 3.35). In practice it is important 
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a Fig. 3.35. Example of selection of a new cell with basis vectors 

qa, A,, Az, A; in a lattice assigned previously by vectors a,, az, a; 

=a 

to pass from an arbitrary unit cell to the one assigned by the rules of symmetry 

for a given syngony (Table 3.5) or by the reduction algorithm (see Sect. 3.5.2). It 

may also be necessary sometimes to change from one unit cell of a given crystal 

to another, for instance from centered to primitive, or from a rhombohedral 

description to hexagonal, etc. In x-ray investigation of crystals it is necessary to 

establish the relationship between the intrinsic crystallographic coordinate system 

of a crystal and the orthogonal coordinate system of an instrument. In such 

transformations from one coordinate system to another, the point coordinates 

and the indices of lines and planes also change. Let us see how their new values 

are expressed in terms of the old. 

Denoting the new axes by 4, [they are vectors of lattice (3.2)] and the old by 

a,, we get 

A; = @)@, + @12@, + @343, 

A, = @21@, + @22@, + 2343, G22) 

Ay = @3)@, + @32@, + 03343, 

i.e. A; = (ax) @x, 

where (a;,) is the transformation matrix. In turn, 

a, = BA; + Bi2A2 + P33, 

@, = BA, + BrrA2 + fr3xAs, (3.30) 

a, = BA, + BrA2 =e P3343, 

i.e. @, = (Bix) Ax, 

where (f,,) is a transformation matrix reciprocal to (@;,). 

The coefficients of the direct and reciprocal matrices satisfy the relations 

a iB se Ari B x2 =; a3: P xs 

an Bix + air Brx “a ai3sP 3x 

This is easy to check by substituting into (3.30), in place of A,, their expressions 

in terms of a, in accordance with (3.29). 

= l(i=k) or 0G #4). (3.31) 
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The radius vector of point X, X;, X; (which was x,, x2, x; in the old system) 

is invariant to a change in the reference system 

r= XG, + XA, + X303, 

R= XA, si XA, + X;A;. 

(3.32) 

Whence, at r = R, we find by (3.30): 

X, = Bix, + Borx%2 + BsiXs, 

X= Bix. + Boxe + Bs2%s, (3°93) 

X3 = BisX1 + Br3X2 + Bs3Xs, 

DekXp== (pa) Xr 

Rows £ in (3.30) have become columns in (3.33); matrix (f;,) has been reflected 

through its diagonal and become a transposed matrix (f;;). Such a transforma- 

tion is called countervariant in contrast to the covariant transformation (3.29, 30). 

Similarly, from (3.29, 32) we obtain 

X; = (yi) Xy- (3.34) 

In a particular case, if r = R, and in (3.32) the vector of lattice (3.2) t = T, 

then x, are the indices of p, straight lines in the old system, and also X;, are the 

indices of P, straight lines in the new. Therefore, relations (3.33) and (3.34) also 

hold for the transformation of the indices of the straight lines, 

P, = (Bai)Px: (3.35) 

Pi = (ui) Pr. (3.36) 

Let us now consider the transformation of the indices of planes h,h,h, (old 

ones) into the new H,H,H;. To do this, we substitute (3.34) into (3.15) for the 

nodal plane and collect the terms with X,, X,, X;: 

(ah + @i2hz + ay3h3) X; + (aah + @o2h, + @23h3) Xz 
ey 

ST (Gail) 1 Can  @s4,) A =O, ( ) 

Thus, 

FA, = (ain) Ay, hy = (Bix) Ay. (3.38) 

We have at once the reciprocal relation, which is obtained similarly to (3.37). 
These transformations are the same as (3.29, 30); they are covariant. 

Let us now find the rules for transforming the vectors of the reciprocal lattice, 
using the relation (3.22) and set up the expression 
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iMe 

3 

aat = 3 = 9) 4,4}. (3.39) 
t=1 

Denoting a; by A, on the left by (3.29) or A, by a, on the right by (3.30), we find 

ay = (a,;) Ag, AP = (By) af. (3.40) 

These transformations are countervariant, and they all have the same coef- 

ficients @ and f. Finally, for coordinates x* and X# in the reciprocal space, as 

well as for indices A; and H; (3.38), which are also the indices of the straight lines 

in the reciprocal lattice 

XP = (ax) x8, XP = (Bx) XF, (3.41) 

i.e., the transformations are covariant. 

When setting a crystal in x-ray crystallography, one expresses the coordinates 

of nodes /,h,h; in the reciprocal space in the Cartesian system X* (X* = X*, 

¥ = Y*, XF = Z*). By analogy with (3.41) 

X¥ = (ain) he, Ie = (Be) XE, where (3.42) 
a, qd a, 

(Bx) =| b. b, 2B, |. (3.43) 
Ceuits 0 

The elements of this matrix are the projections of the edges of the reciprocal unit 

cell onto orthogonal axes. 

We can see that all the transformations in the reciprocal lattice are opposite 

in variance (covariant vs countervariant) to similar transformations in an atomic 

lattice. Within each of these lattices, the transformations of the axes and of the 

indices of the planes, on the one hand, and of the coordinates or the indices of 

the lines, on the other, are opposite in variance. The rules of mutual reciprocity 

of the two lattices are fulfilled automatically here: the indices of the lines in 

one are the indices of the planes tn the other. 

These transformations can be written in a unified symbolic form 

= Ay a, a, 

HA, =] %11 G2 13 At X, 

HA, =| @21 @22 G23 AZ X, > (3.44) 

HA; 
* 

3, 32 33 AZX; 

at ay a} 

X; X22 X3 
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Tiseiovell; 

| 
h,a, = Bi Biz Bis | atx) 

h, a, = Br Bor B23 | 43 X2 (3.45) 

h; a; = Bs: Bsr Bs3 | @3X3 

[rcalrecttl a 
Ay Ay A}— 

It will be noted that ¥* and x* (3.41) are transformed into one another in the 

same way as H, and h,, while P, and p; (3.35, 36), are transformed as X;, and x;. 

The symbol |~_~ corresponds to covariant transformations, and the symbol 

___f, to countervariant. 
The volumes of unit cells assigned by vectors A and a and those of the 

respective reciprocal cells relate as 

Q4:Q4 = |aie| 1 = 1:| Bia] = 2 = Qae? Qax, (3.46) 

i.e., this ratio is defined by the moduli of the determinants of the transformation 

matrices and is equal to n—the ratio of the number of points in the respective 

cells. If ais a primitive cell, then n is the number of points in a large, nonprimitive 

cell A. 

Let us consider examples of some transformations. For instance, if 4; = a,, 

A, = a, + a,, A, = —a, (Fig. 3.35), the matrix takes the form 

10 0 
Ogee le (3.47) 
Omonn 

The matrices of some transformations between primitive P, body-centered J, 

and face-centered F cells are as follows: 

Pol I->P POF FP 

= 4 ~{ fo 1] | f el jj bce! 

a eb bh 01) | 60 MMT eT einer o ass 

: : -5 sce a Pe i 0 yeh 

Another example is transition from a rhombohedral cell R to a hexagonal H 
of thrice its volume (Fig. 2.72) 
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HR RH 

Pod] fire 
eS oe (3.49) 

+34] fir 
3.5.2 Reduction Algorithm 

Each lattice is uniquely defined by its unit cell. But in one and the same lattice it 

is possible to choose the unit cell in an infinite number of ways. As a result, the 

same crystal may receive geometrically different descriptions in experimental 

X-ray or goniometric investigations. Therefore, it is necessary to have criteria 

leading to an unambiguous description of the lattice by a certain unique cell, 

and an algorithm which permits transition from any cell of a given lattice to this 

unique, or “‘reduced”’, cell. This algorithm was given by Delone [2.33]. 

In all crystals, with the exception of triclinic and monoclinic, the choice of 

such a cell can be made on the basis of symmetry, and the reduced cell is the 

Bravais parallelepiped. In a monoclinic cell the symmetry unambiguously defines 

one axis b, which coincides with 2 or is a normal to m. But in symmetric lattices, 

too, the initial choice of the cell may accidentally contradict the symmetry. 

Let us consider the reduction algorithm (without proof). The metric and 

angular parameters of a unit cell are different in nature. Any cell is completely 

defined by its unit cell vectors and by the inversed body-diagonal vector d, (Fig. 

3.36), so that their sum is equal to zero 

Bee eS dO. (3.50) 

7 
0 

% 

Fig. 3.36. Unit cell and inverse body diagonal dy 

We shall describe the initial arbitrary cell by six homogeneous parameters 

given by the pairwise scalar products of the vectors appearing in (3.50): 

Jee a bye cos Ao, Sy = Ay cos Woas 

Qo = Cody COS Bo, Ty = body COS Wos, (3.51) 

Ry = Apbo COS Yo, Up = Codo COS Woes 
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where y are the angles between the edges and diagonal. Here, 

a= —S,— Q— R, b= 1 Roe 20; 
(3.52) 

co —Usy— Po = Gy, a5 = —=So— 1 — Us. 

A reduced unit cell is a cell for which all the angles 

a, B, Y> Was Wo, WY. 2 90°. (3.53) 

Hence, in accordance with (3.51), for it, all the 

Pe OF Rae ete 80, (3.54) 

On the other hand in the initial cell, from which we have to pass to a reduced 

cell, some angles may be acute, and some Po, . . ., Up (3.51) positive, respective- 

ly. 

The reduction algorithm consists of the following. We place the identical 

parameters of the initial cell on the symbol 

Co 

OF Po 

PENS 
Ro 

(3399) 

which can conveniently be thought of as the image of a tetrahedron whose 

vertices are vectors (3.50) and whose edges, joining the vertices, are the cor- 

responding scalar products (3.51). We take, among the initial parameters, any 

positive one, say, Q, [if none is available, then the cell is already reduced in 

accordance with (3.54)], and switch to the new symbol according to the following 

scheme: 

(3.56) 

i.e., we have O, = —Q), U,; = Py + Qp, etc. In the new hexad of parameters Q, 

is already negative. The rules for transition from (3.55) to (3.56) are as follows: 

1) we subtract the chosen positive parameter from the parameter standing on the 

opposite edge (J) — Qo); 2) we add it to all the other parameters (S) + Qo,...); 

3) we interchange any two of the last four parameters and such as stand on edges 

converging at one of the vertices adjacent to the initial edge Q, (i.e., we inter- 
change Py) + Q) and Uy + Qs) in (3.56); and 4) we change the sign of the para- 
meter under consideration. 
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This transition will produce new a, b,, c,, d,, and angles; there is a certain 
corresponding transition matrix (3.29). In our example (3.56) a, = a, b; = 
by + Co, C) = —Co, d; = dy + Co, and the transition matrix is (3.47). Transfor- 
mation (3.55, 56) must be repeated until we obtain a symbol with all nonpositive 
P,,,.... U, <0 (3.54). The possible equality of some of them to zero means that 
the corresponding angles (3.51) are right angles. 

The form of the terminal symbol—equality of certain P, Q, ..., U to zero or 
to each other and their mutual arrangement—allocates the lattice to one of the 
24 Delone varieties [2.33] (Fig. 2.89), and thus to one of the 14 Bravais groups. 
For instance, some of these symbols have the form 

monoclinic rhombohedral orthorhombic cubic 

primitive primitive face-centered 

O O @ P 0, 0 Pp Pp 

(3.57) 

R P O 

In addition to the tabulated symbols we can get another five symbols, which can 

be reduced to the tabulated by one reduction step through zero. According to 

definite rules the values of the reduced a, b, ec, d assign the basis vector a.g), Bis), 
€.s, of the corresponding Bravais parallelepiped. This reduction does not neces- 

sarily yield the three shortest unit cell vectors [2.2-4], which define the so-called 

Buerger cell, but they are among the seven vectors, the reduced four vectors a, b, 

c,d,anda+ b,a+c,b-+- ce. For triclinic lattices we must select from among 

them, as periods, the three shortest noncoplanar vectors. In primitive monoclinic 

lattices the reduced vectors include the vector running along axes 2, which gives 

one period, while the other two are chosen from among the shortest vectors of 

the plane net perpendicular to axes 2, which form an obtuse angle. If the mono- 

clinic lattice is centered (on one of the rectangular faces), one chooses for the 

second period the least possible edge of the plane net perpendicular to axis 2, 

from which a centered side face is obtained, and for the third period, the short- 

est of the vectors of this plane net which makes an obtuse angle with the second 

period. 

It should be noted that in some cases it is most expedient to choose a mono- 

clinic or triclinic cell not only by following formally the geometric rules given by 

the reduction algorithm, but also by proceeding from the crystallochemical 

features of the structure. The directions of the axes will correspond to clearly 

revealed directions, for instance to those of the layers of polyhedra in layer 

silicates, some chains in crystals with a chain structure, etc. 

In contrast to the unit cell of a crystal (in direct space) the angles of a reduced 

reciprocal cell are not obtuse: a*, B*, y* < 90°. A reduced reciprocal cell can 

be found from a reduced direct cell. 
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3.5.3 Computation of Angles and Distances in Crystals 

By using the vector formulae (3.2, 22, 25) and expanding the corresponding 

scalar products it is possible to obtain equations for determining angles in an 

atomic and reciprocal lattice, which are used, in particular, in geometric 

crystallography—see (3.6, 8). Thus from (3.27) it follows that the angle between 

the normal to the plane (face) (hk/) and the axial vector [relation (3.8)] is equal to 

COS Oya, = N/A; Ax 

The angles between point rows, between the normals to the planes, and be- 

tween the planes and the rows are defined by the equations 

tt’ HH’ tH 
ua COS PuH’ — a » Cos tH z= ed) (3.58) 

COS Ory = 

In the general case the products (3.58) are rather complicated ; the last equation 

is simpler, since its numerator is equal to (ph, + ph, + p3h3). In practical 

computations one must switch from these and other above-derived equations 

assigned in vector form to equations containing the lengths of periods 

a, b, c and the angles between them a, f, y. The computations are made in 

crystallographic coordinates, i.e., the unit cell is assigned according to the 

syngony (Table 3.5). Whenever necessary, the unit cell is reduced, or transition 

to a more convenient setting is performed by (3.44, 45). 

For each syngony we write down the equations expressing the periods and 

angles of the reciprocal cell via the same quantities of the atomic lattice. These 

equations also hold for the reverse transition; then each asterisked quantity must 

be replaced by one without an asterisk, and vice versa. 

We shall also give equations for interplanar distances d,,;, which define 

the length of vector H = d™', and for the distances r;, between the points in the 

unit cell (interatomic distances); the coordinates x;, y;, Z;; Xx, Ves Z, are expressed 

in fractions of the corresponding period (i.e., x; = X,,,/a;, etc.). If in the equa- 

tions for r we put x; — x, = p, etc., we obtain equations for the lengths of vec- 

tors t of the lattice. 

1) General case—triclinic lattice: a, b, c are arbitrary; angles a, B, y # 90 or 
60°. 

Q = abc /1 — cos? a — cos? 8 — cos? y + 2cos a cos Bos ¥, 

» _ bc sina pe — 2c Sin B ox — ab siny 
Q > Q > Q ’ 

pe COSIB COSI COS a » _. COSY COS a — cos B 
COS a" = : 5 COSA == : 

sin f sin y sin @ siny 

cos a cos B — cos 
cos y* = Z ie 

sin a sin B 
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Ve ge ae = h*a*? + k?b** + [2c*2 + 2hka*b*cos y* + 2klb*c*cos a* 
hkl 

+ 2lhc*a*cos B* = (1 — cos? a — cos? B 

hee. ie 
— cos* y + 2cos a cos B cos ys sin? a@ + B sin? B 

2 

— J sin? y — AE (cos f cos — cosa) + 2h (cosy cosa — cos f) 

2hk 
Re ae (cos a cos B — cos AF 

ig = (x, — X_)?a* + O% — Vx)*b? + (2; — 2%)? e? + 20; — Ve)(Z; — 2) Be COS a 

+ 2x; — Xu)(Zs — Zp) ac cos B + 20%, — X,)1 — Yu) ab cos y. 

2) Monoclinic lattice: a, b, c are arbitrary, a = y = 90°; B < 90°. 

Q = abc sin f, 

I 1 1 * * Das ee 
Sassi eth | csinp 
a*=90°, p*=180°— Bf, 7»* = 90°; 

1 h? Ke te 2hI cos B 
2 APS — — 

Me a gh gin hm ca sin? B 
Reka) 2 es I) 0 Zu) ce 

+ 2(x, — x,) (z; — Z,) ac cos fp. 

3) Orthorhombic lattice: a#b#c,a=fP=y= 90%. 

1 1 1 = gene a pees ees 2 JER ee Of aa OO One a = = b 5? c zt B y 90°; 

] eo ke be 

Hin = ae gt + BT oP 
te = (% — Mk Ay: yx) b? + (z;, — Aye. 

4) Tetragonal lattice: a = b, cis arbitrary,a = B = y = 90°. 

—_ fb meee GQ=ec a*=b*=—, ct=—, 

at = p* = y* = 90°; 

1 [je Ae Iie If 

diy a ck Ge 

rie = ayo AY, aN wet 4 a ie 

2 
Axi —- 
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5) Hexagonal lattice: a = b, c is arbitrary, a = B = 90°, y = 120°. 

Ea ty oe Mapes eZ pak Q) == are > a b ays Cc = 

CO == Pee y= 60s 

1 
ree 

Tie (pte) i = Vide CO Vee eee 743 eh 

h? + k? +hk be 

The computation procedure requires only indices A and k, but there are also 

equations using the three basis vectors and three indices h, k, andi = —(h + &). 

Note that the three basis vectors in the reciprocal lattice are arranged at angles 

of 60°. 

Rhombohedral lattice:a = b = c,a = Bf = y # 90°, it can be reduced to the 

hexagonal description of a’, c’: a’ = 2asina/2,c’ =a,/3 ,/1 + 2cosa, 

with the transformation matrix (3.49). 

6) Cubic lattice:,a. == ba—icro, — fay 90 

a9 me h2 + k2 + [2 

daa a : 

rea lOp— XE Ore) Ga 22) le 

<7) — 7-1 = ©, Qin oe Cas aad ee ie 

It should be mentioned that in computer calculations of oblique lattices it is 

sometimes more convenient to use Cartesian, rather than crystallographic, co- 

ordinates. The relationship between them is defined by the general equations 

(3.43, 44), though the coefficients a,, and f,, in this case are not integers or 

rational fractions, but may have any values. 



4. Structure Analysis of Crystals 

In 1912 x-ray diffraction in crystals was discovered, and soon afterwards the 

structures of rock salt and diamond were determined. This laid the foundation 

of x-ray structure analysis introducing the physicists to the world of atomic struc- 

tures of crystals. Later on, two more similar methods—electron and neutron 

diffraction—came into being. 

From the mathematical standpoint, the diffraction of short-wave coherent 

radiation by systems of atoms is the problem of finding the wavefront and inten- 

sity in the process of scattering. The determination of the structure of an object 

from the experimentally observed diffraction field is the reverse problem. It 

reduces to the solution of complicated sets of equations or integral equations 

and often has no unambiguous solutions. Both diffraction theory and structure 

analysis are applied not only to single crystals, but also to less ordered systems, 

e.g. polycrystals, liquid crystals, solutions of molecules and macromolecules, to 

liquids and amorphous solids, and, finally, to gases. 

Structure analysis uses various experimental methods. These depend essen- 

tially on the ordering of the substance studied and on the type of radiation used. 

These methods will be the subject of the present chapter. 

4.1 Fundamentals of Diffraction Theory 

4.1.1 Wave Interference 

The study of the atomic structure of a substance is based on the diffraction 

phenomena caused by its interaction with x-rays, electrons, or neutrons. The 

theory of diffraction, i.e., the relationship between the diffraction pattern and 

the spatial arrangement of the atoms, is the same for all three types of radia- 

tion. We shall present it in a general form, mostly with respect to the x-ray 

method but with due reference to electron and neutron diffraction where re- 

quired. 

If we allow an x-ray beam to go through an assembly of atoms, the electron 

shells of atoms will interact with the incident wave, scattering it. The direction of 

wave propagation is defined by wave vector k, whose modulus is equal to 

|k| = 2n/A, (4.1) 

where / is the wavelength. 
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The general expression for a plane monochromatic wave is 

A exp [i (Ar + a)], (4.2) 

where A is the amplitude, r is the radius vector of the points of space, and a is 

the initial phase. 

This expression does not contain time as a parameter because we are in- 

terested not in the process of wave propagation in time, but in the diffraction 

pattern at any given moment. This is sufficient for establishing the relative phase 

difference arising in interference of scattered waves, since this difference depends 

exclusively on the spatial arrangement of the atoms and is constant in time. 

Thus, if two waves propagating in the same direction are in phase, they 

enhance one another and produce a wave with a doubled amplitude, (Fig. 4.1a) 

which is constructive interference; if they are out of phase (a = 7), they extin- 

guish one another, which is destructive interference (Fig. 4.16); intermediate 

phase difference changes both the amplitude and phase (Fig. 4.1c). 

SS ! ae Wat: 

is 142 

Fig.4.la-c. Interaction of two waves 

(1) and (2) with the same amplitude. 

(a) doubling of the amplitude when 

the waves are in phase, (b) mutual 

annihilation of the waves in counter- 

phase, (c) change of amplitude and 

phase in the general case of a phase 

shift 

Fig. 4.2. The derivation of the 

Bragg—Wulff formula 

When radiation is scattered by an object both elastic (without any loss of 

energy or change in wavelength 4) and inelastic scattering arise. The most impor- 

tant scattering is elastic, and it is this scattering that determines the diffraction 

pattern, whose analysis then allows one to determine the arrangement of atoms 

in the object. 

Diffraction by crystals can be interpreted as “reflection”? of x-rays by the 

planes of the crystal lattice (Fig. 4.2). 



4.1 Fundamentals of Diffraction Theory DS) 

“Reflection” takes place only when the waves scattered by parallel planes are 

in phase and enhance one another, i.e., when the path difference for waves scat- 

tered by neighboring planes is equal to an integral number n of wavelengths A, 

This is the Bragg-Wulff law [4.1 a,b], which relates the directions of the propaga- 

tion of scattered beams (@ angles) to the interplanar distances d,,; [see (3.24)] in the 

lattice; nis the reflection order. If this condition fails, then, owing to the presence 

in the crystal of a very large number of planes, the difference in phase arising at 

reflection from different planes leads to the complete disappearence of the scat- 

tered beams for any angles different from those given by condition (4.3). Although 

the geometric derivation of (4.3) yields a correct result, the physical essence of the 

interference phenomenon as an interaction of secondary waves resulting from the 

action of the initial wave throughout the object is not evident. The Bragg-Wulff 

equation, as well as the Laue conditions considered below (4.29), indicates that 

diffracted beams can be obtained for a given d,,; in monochromatic radiation 

(i.e. at constant A), owing to the change in crystal orientation (i.e. in 8 angles); 

and for a fixed crystal in polychromatic radiation reflection arises at the appro- 

priate A. 

4.1.2 Scattering Amplitude 

In a general approach, secondary waves coming from all the points of the 

object are considered. Suppose we have two scattering centers O and O’ (Fig. 4.3). 

We choose the origin (r = 0) at one of them; and the position of the other is 

given by vector r. The incident plane wave excites these centers, and each 

of them becomes the source of a secondary spherical wave. In general the in- 

itial wave arrives at both centers with a different phase; therefore, the scattered 

waves will also have different initial phases. Interfering, the waves will enhance 

or weaken one another in some directions depending on whether they are in or 

out of phase (Fig. 4.1). Note that if 2 greatly exceeds r, the distance between the 

scattering centers, there will be no phase difference on scattering in any direction, 

and the intensity then will not depend on the angle. 

Fig. 4.3. Scattering by two point 

centers 
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Interatomic distances lie within the range of 1-4 A. Therefore no diffrac- 

tion by assemblies of atoms can be observed, for instance, with visible-light 

waves, which have a wavelength of several thousand angstroms. Thus follows 

the impossibility of obtaining in the optical wavelength range a magnified image 

of the atomic structure of a substance, because the production of an image 

ultimately involves interference. 

X-rays, neutrons, and electrons, on the contrary, have suitable wavelengths 

(about 1 A) and so they give interference effects on scattering by assemblies of 

atoms. Thus, these radiations are suitable, in principle, for obtaining the image 

of atomic structures. 

Let us now find the path difference between a plane wave scattered in the 

direction & by a point in position rand a wave scattered by point r = Ointhesame 

direction. This difference (Fig. 4.3) is equal to Ar — kyr = (k — k,) r. Thus. 

if the initial wave is of unit amplitude (A = 1), the scattering center in position r 

gives a wave 

J exp [i(k — ky) r] = fexp [27i(Sr)]. (4.4) 

Coefficient f indicates the scattering power of this center, which may, gen- 

erally speaking, be of any value. Equation (4.4) contains vector S 

2 sin 8 
A b 

(Bo 
» Dg” 

[S| = (4.5) 

perpendicular to plane P in Fig. 4.3, with respect to which one can measure 

the scattering angle 20. 

Ifthe object placed in the path of the initial wave consists of n scattering 

centers with a scattering powers f;, located at points r,, the amplitude of the 

scattered wave will be, according to (4.4), 

31 F exp [2ni(Sr,)] = F(S). (4.6) 
The quantity F(S) is called the scattering amplitude of a given object. For a 

“point” scattering center, the quantity f, is constant and independent of S. Ex- 
pression (4.6) for the scattering amplitude is of universal application as, by 
generalizing the concept of scattering power f of a given center, one can take for 
it any physical scattering unit—an electron, an atom, a molecule, a group of 
molecules, etc. 

The physical “points”, which interact with x-rays (electromagnetic waves) 
in an object and scatter them, are electrons.! Each of them becomes the source 

' Positively charged atomic nuclei also oscillate in the electric field of the primary beam and 
emit secondary waves. But due to the presence of m in the denominator of (4.7) the scattering 
on them will be mz/m, ~ 10* times less and can be neglected. 
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of a secondary scattered wave of the same frequency and wavelength as the 
incident one. The amplitude of scattering by an electron is proportional to that 
of the initial wave and is given by 

le cae ae 
= ee 2 sin Q, (4.7) So.x 

where R is the distance to the point of observation, e and m are the charge and 

the mass of the electron, respectively, and c is the light velocity; sin g accounts 

for the polarization of the incident wave (for more details see Sect. 4.5.2). 

If we assume the amplitude of scattering by one electron to be equal to 

unity, then scattering of x-rays by any object in these “electron”’ units will be de- 

scribed by the following expression according to (4.6): 

F(S)(el. units) = = f, (el. units) exp [2ni (Sr)]. (4.8) 

To express the scattering amplitude in absolute units, F must be multiplied by f, , 

Fyp(S) = F(S) fix - (4.9) 

From now on we shall use (4.8) as the scattering amplitude of x-rays without a 

special indication that it is expressed in electron units. When calculating the 

absolute values of intensity (see Sect. 4.5), the value of f,, must also be taken 

into consideration. 

4.1.3 Electron Density Distribution. Fourier Integral 

Instead of a discrete set of n points at positions r, one can consider the continu- 

ously distributed scattering power of the object. Since (as we have just noted) 

X-rays are scattered by electrons, “the scattering matter” for them is the time- 

average electron density of the object p (r). This function is equal to the average 

number of electrons n,(r) in a volume element Av, near point r divided by this 

volume element, 

p(r) = n,(r)/Av,. (4.10) 

This description also corresponds to the quantum-mechanical approach: the 

time-average electron density is given by the square of the wave function of a 

given object 

p(r) = | P(r)’. (4.11) 

With this approach, the sum of the discrete scattering centers in (4.8), must be 

replaced by an integral over the continuously changing function p(r): 
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F(S) = f§ p(r) exp [2ni (Sr)] dv, 

foo 

SS p@cyz) exp [2ni (xX + y¥ + 2Z)] dx dy dz = F [p], (4.12) 
x,y, 2=— 2 

where dv, is an element of the scattering volume; X, Y, Z are the three coordi- 

nates of vector S; and .¥ is the Fourier operator. This expression assigns the 

amplitude as a function of vector S, i.e., it defines scattering in any direction 

k=k, + 2x8. 

In its mathematical form this integral, which describes diffraction, is a 

Fourier integral. The function F(S), which describes scattering, is given in the 

space of vector S, so-called reciprocal space. F(S) is an “‘image”’ in the reciprocal 

space of function p(r), which describes the structure of the object in direct space, 

and is in one-to-one correspondence with it. With the aid of (4.12) it is possible to 

consider a variety of problems: scattering from atoms, molecules, crystals, and 

continuous objects of different shape and with different distribution of scattering 

power within them. 

The distribution of the electron density p(r) in an object depends on the dis- 

tribution p,(r) of electrons in the constituent atoms and the mutual arrangement 

of these atoms. The maximum values (peaks) of function p(r) correspond to the 

centers of the atoms, and the smaller values are due to the distribution of the 

outer electrons involved in chemical bonding. If the centers of the atoms are 

located at points r, the electron density of such an assembly of n atoms is 

expressed by the coninuous function 

ptr) =X pir — ry). (4.13) 

In this description of the electron density p(r) in a crystal or a molecule as a 

superposition of the electron densities of separate atoms p,(r) we neglect the 

fine effects of redistribution of p; in the outer valency shells of the atoms during 

the formation of the chemical bond. The electron density p(r) is positive (non- 

negative) everywhere. 

The Fourier integral (4.12) is suitable for describing phenomena of diffrac- 
tion of any radiation from objects in which the inhomogeneities are commen- 
surate with the corresponding wavelength. Therefore it is used both in the theory 
of all diffraction methods and in the optical diffraction theory applied to simula- 
tion of x-ray and electron diffraction (see Fig. 4.11). 

4.1.4 Atomic Amplitude 

The atomic amplitude defines scattering by an isolated atom; it is also often 
called the atomic factor. Inserting the electron density of the atom, pr) into 
(4.12) we obtain the atomic amplitude 

f(S) = f p,(r) exp [2ni (Sr)] do,. (4.14) 
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To a sufficiently good approximation, the electron shells of atoms are spherically 

symmetric p,(r) = p,(r) and therefore it is possible to write the Fourier integral 

(4.12) in spherical coordinates 

sin sr 

sr 
f(s) = J 4nr? p,(r) dr. (4.15) 

Here, s = 2n| S| = 4n(sin @)/A. Thus, f depends exclusively on the value of mod- 

ulus s and is a spherically symmetric function in reciprocal space. To calculate 

F,(s) for x-rays it is necessary to know the electron densities of atoms p,(r). They 

have been calculated with a high accuracy by methods of quantum mechanics 

for all atoms [Ref. 2.13, Chap. 1, Sect. 1]. The values of f,(s) have been calculated 

and tabulated as well [Ref. 2.27, Vol. 4]. The deviations from spherical sym- 

metry, for instance because of covalent bonding, are small, and whenever 

necessary can be taken into account as a correction to the spherically symmetric 

function f(s) (4.15) [4.1]. But for the vast majority of problems of structure 

analysis, the spherically symmetric approximation (4.15) is sufficient. 

For s > 0, (sin sr)/sr > 1 and 

f.(0) = § p,(r) dv, = Z. (4.16) 

Thus, with a zero scattering angle the atomic amplitude is simply an integral of 

the electron density over the volume of the atom, which is equal to the number of 

electrons in it. As the scattering angle increases, the function f, decreases. Such 

functions for certain atoms, the so-called f, curves, are presented in Fig. 4.4a [4. 1c]. 

Separate scattering from different electronic shells of atoms may be calculated. 

Figure 4.4b shows partial amplitudes of atomic scattering by K and L electron 

Fig. 4.4a,b. Curves of the atomic 

amplitudes of x-ray scattering f, 

for some elements (a); curves of 

amplitudes of x-ray scattering 

by K-shell (1) and L-shell (2) of 

05 1.0 15 sinO/Z,A'! carbon (b) 
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shells of carbon. It is seen that the outer LZ electrons do not scatter x-rays signi- 

ficantly inthe “distant” region of reciprocal space (at sin 6/A > 0.6 A~?) [4.2]. 

Taking into account scattering by different electron shells is essential in x-ray 

investigations of the chemical bond in atoms using difference Fourier series 

(see Sect. 4.7.10, and also [Ref. 2.13, Chap. 1, Sect. 2.7]). In the special case 

of what is called anomalous x-ray scattering the atomic factor f, has a small 

additional complex component—see (4.146). 

Since the physical nature of scattering of a given radiation by a substance 

depends on atomic scattering, the specific features of the other two methods— 

electron and neutron diffraction—are clearly seen from comparison of the ato- 

mic amplitudes for these radiations, f, and f,, with the amplitudes for x-rays, f,. 

WN 

-8 
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Fig. 4.5 Curves of atomic amplitudes of electron 

02 04 06 08 1,0 scattering f, for some elements. The curve number 
sin O/A,A corresponds to that of the element 

The scattering of electrons is due to their interaction with the electrostatic 

potential of atoms g (r), which depends on the potential of the positively charged 

nucleus, and that of the negatively charged electron shells, which screen it. If we 

insert the potential of the atom @,(r) into (4.14) and (4.15) instead of the function 

of the electron density p,(r), we obtain the atomic amplitudes f of electron scat- 

tering. In this way f.(s) for all atoms have been calculated; some of them are 

given in Fig. 4.5 [4.1c]. Since the potential is defined by the charge distribution, 

the amplitudes f, and f, are also related 

f(s) =e EEO) (4.17) 

Here, / is Planck’s constant. 

The curves f,(s) are less dependent on the atomic number Z. On the average 

f(0) ~ Z''3, whereas f,(0) ~ Z (4.16). Therefore the relative contribution from 
light atoms to scattering in the presence of heavy atoms is larger in electron 
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diffraction than in x-ray diffraction. It means that the “detectability” of light 
atoms in the presence of heavy ones is better in electron than in X-ray analysis. 

Neutron scattering occurs on atomic nuclei due to the nuclear-interaction 
forces, which have a very short range, about 10-!3 cm. Therefore, to neutron 
waves with 4 ~ 10-*cm a nucleus is a “point”; it scatters neutrons equally 
in all directions, i.e., the neutron scattering amplitudes are independent of the 
scattering angle f,(sin 0/4) = f,(0). 

Here, the general principle of the theory of scattering is valid, which finds 
expression in the properties of the Fourier integral (4.12): the smaller the object, 
i.e., the more compact the function p(r) in direct space, the larger the region’ of 
reciprocal space (the higher values of |.S|) in which amplitude F(S) is dis- 
tributed. Conversely, the larger the object in direct space, the smaller its image is 
in reciprocal space. Thus, the potential of atoms p(r) is more ‘“‘smeared out” 
than its electron density p(r), while the curves f,(s) are more “contracted” towards 

the low values of S than the f,(s) curves. So, for neutrons, when the scattering 

object—the nucleus—converges to a point, the f, curves do not fall off. (Figs. 

4.6,7). 
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Fig. 4.6. One-dimensional scheme of distribution of electron density p(x), electrostatic po- 

tential g(x), and nuclear scattering power d(x) in a crystal with atoms at rest 

Fig. 4.7. Comparison of the dependence of the absolute values of atomic scattering amplitudes 

for electrons (/), x-rays (2), and neutrons (3) on sin 6/A (for Pb) 

The neutron scattering amplitudes f, only slightly depend on the atomic num- 

ber Z, and f, of some nuclei are negative, as distinct from the atomic amplitudes 

for x-rays and electrons, which are always positive. This promotes efficient neu- 

tron diffraction investigation of structures consisting of atoms with significantly 

differing Z. The dependencies of f,, f,, and f, on the atomic number Z, averaged 

over the scattering angles, for the first few elements of the Periodic Table is pre- 

sented in Fig. 4.8. 
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fxsferfn Fig. 4.8. Relative dependencies of the atomic scattering 

amplitudes for x-rays (——), electrons (----), and 

neutrons (° © o) averaged over sin 6// for the atomic 

numbers Z from 1 to 12 
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The neutron has a magnetic moment. Therefore, besides interaction with 

nuclei, an additional “‘magnetic’”’ scattering of neutrons arises from electron shells 

of atoms possessing a magnetic moment. These include, among others, the 

d-shells of transition metals. The corresponding amplitude f,,,, is defined by 

the space distribution of electrons with an uncompensated moment and can 

be computed by the general equation (4.12). 

The interaction of each of these radiations with a substance is characterized 

by the absolute value of the amplitudes: f, ~ (107? — 10-"') cm for x-rays, 

f. ~ 107° cm for electrons, and f, ~ 107! cm for neutrons. Hence, electrons 

interact with a substance most vigorously, several orders of magnitude more 

strongly than x-rays or neutrons. Electron and neutron scattering is treated in 

more detail in Sects. 4.8 and 4.9. 

4.1.5. The Temperature Factor 

Atoms in crystals are in the state of thermal motion. The function of electron 

density p(r), which defines scattering, is the time-average electron density; the 

duration of a diffraction experiment greatly exceeds the periods of the thermal 

vibrations of atoms. To take into account the thermal motion, one must 

know functions w(r), which give the time-average distribution of centers of atoms 

about their equilibrium position. This function will “‘smear out’’ the electron 

density (and also the potential and the nuclear density) of an atom at rest p(r), 

which defines the atomic amplitudes (4.14). 

Let us find the electron density distribution in such a moving atom. To do this, 

we multiply the electron density upon displacement of an atom to point r’, i.e., 

p(r — r’), by the probability w(r’) of its being at this point, and take an integral 

throughout the volume 

Pat (tr) = f p(r — r’) w(r’) do, (4.18) 

This is a particular case of the problem of finding the scattering amplitude for 
complex systems when the amplitude for some scattering unit is known and the 
law of mutual arrangement of these units is assigned. 
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Ifin general case a function f{(r) is distributed according to a law assigned by 

another function f,(r), the joint distribution will be expressed by the integral 

JAC PAC) do, = flr) * Ar). (4.19) 

Such an integral is called the convolution integral, or simply the convolution of 
functions f, and f,. It possesses a very important property: if the Fourier integrals 

(4.12) of some functions are known, the Fourier integral of the convolution is the 

product of the Fourier integrals of each function 

FLTAM) = FS), FTA) = FS), FTA) * AW] = Fi(S) F(S). 
(4.20) 

These relations are known as the convolution theorem. 

Thus (4.18) is nothing else but the convolution 

Par(") as pr) * w(r). (4.21) 

The Fourier integral (4.12) of function w(r) describing the thermal motion is 

precisely the temperature factor 

Fr (S) = J w(r) exp [2ni(rS)] dv, (4.22) 

According to (4.21) and to the convolution theorem (4.20) the function of scat- 

tering by an atom in thermal motion, which is called the atomic-temperature 

factor, is 

far (S) = f.(0S) FS). (4.23) 

The ‘“‘smearing-out”’ of function w(r), i.e., of the amplitude of the thermal vi- 

brations of atoms, depends on many factors. It is approximately inversely pro- 

portional to the forces of chemical bonding of atoms in molecules and crystals, 
inversely proportional to the atomic mass, and directly proportional to the 

temperature. In most cases function w(r) is anisotropic. But in the first approxi- 

mation one can assume isotropy, i.e., the spherical symmetry of the thermal 

vibrations of atoms. 

Spherically symmetric vibrations are described by the Gaussian distribution 

with a root mean square (r.m.s.) displacement of the atom from the equilibrium 

position Vv? 

w(r) = w(r) = exp (— r?/2u’), (4.24) 
1 

(2nu*)? U2 

and the corresponding temperature factor is 

fr (S) = exp (— 2nu?S?) = exp | 5(5*)'), B= 8n7w?. (4.25) 
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Expression (4.25) is obtained from (4.24) with an allowance for (4.15). For dif- 

ferent crystals the displacement »/1? is about 0.05-0.10 A (for inorganic crys- 

tals) and may reach 0.5 A (for organic crystals). 

In the general case of anisotropic vibrations of atoms the r.m.s. displacement 

varies in direction. The corresponding function w(r) for harmonic vibrations has 
the form 

w(r) = Casas exp [- +(4+ i a + =), (4.26) 
Us es us u3 

Fig. 4.9a,b Ellipsoids of thermal vibrations 

of atoms in a lattice. (a) general case of 

arbitrary orientation, (b) anisotropy of 
atomic vibrations in the structure of nickel 

p-acetylene-bis-cyclopentadiene at 300 K 

(top) and 77 K (bottom). Molecules of 

acetylene are at the center, those of cyclo- 

pentadiene on the sidés [4.3] 
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where x,, X2, x; are the coordinates of the displacement vector r along the axes 

of an ellipsoid characterizing the thermal vibrations, and w ur are the r.m.s. 

displacements along these axes. The axes of these ellipsoids do not generally 

coincide with those of the crystal (Fig. 4.9a). Function f,(S) has the form 

fr(S) = exp [— 2n(u2S2, + w3S2, + 12S2)], (4.27) 

where S,, is the projection of vector S onto the axes in a reciprocal space, 

which are parallel to the principal axes x; of the ellipsoid of thermal vibrations. 

Thus, the harmonic vibrations of each atom in the crystalline structure are, 

in the general case, described by three semimajor axes J uw, of the vibration 

ellipsoid and by the three angles specifying the orientation of this ellipsoid, i.e., 

by six parameters. Naturally, the lower the temperature, the smaller are the 

thermal vibrations of the atoms—the fact which is recognized in x-ray structure 

analysis (Fig. 4.9b). 

Spherical averaging of (4.27) will give us again (4.25). In principle, it is pos- 

sible to take into account the anharmonicity of vibrations, since the curve of 

the energy of atomic interaction forces [Ref. 2.13, Fig. 12] is asymmetric. Such 

corrections to the amplitudes of scattering of atoms are extremely small and 

usually ignored in practice. 

4.2 Diffraction from Crystals 

4.2.1 Laue Conditions. Reciprocal Lattice 

The structure of crystals is three-dimensionally periodic. The simplest image of 

a periodic structure is a one-dimensional point lattice with a period a (Fig. 4.10). 

Let us consider the diffraction of a incident monochromatic wave impinging on 

it at an angle a). The secondary waves will maximally enhance each other when 

scattered at angles a such that the path difference BC-DB is an integral number 

h of wavelengths A 

a(cos a — COS @) = hid. (4.28) 

Fig. 4.10. Diffraction from a row of points 
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Here, the diffraction is independent on the angle y, which describes the “rotation”’ 

of the scattered beam about the axis of the point row under consideration—the 

scattering is cylindrically symmetric, and the scattered beams form cones whose 

axis is the axis of this row. 

Let us now consider diffraction by a three-dimensionally periodic lattice. 

The set of its points is described by (3.2, 11), with a lattice vector t = p,a, + p24, 

+ p34;, and expression (4.28) holds for each of their coordinate rows. Thus, the 

three equations (4.28) for i = 1,2,3 are the conditions of diffraction from a lat- 

tice; these are the three so-called Laue conditions. For each of the rows, direc- 

tions of the scattered beams along cones are possible (Fig. 4.10). But in a three- 

dimensional lattice Laue conditions (4.28) must be fulfilled for three directions 
simultaneously. This means that only those reflections are possible which cor- 

respond to the lines of intersection of all three cones having axes @,, a2, and a3. 

Keeping in mind (4.1), we rewrite Laue’s conditions in vector form 

a,(k — ky) = 2th, aS = h; 

a,(k — ky) = 2nk, a,S = k, (4.29) 

a,(k — ky) = 2nil, a,S.= 1, 

which will give the possible values of vector S at scattering by a three-dimen- 

sional lattice. These conditions, however, are nothing else but conditions (3.25, 

27) for determining the vector of the reciprocal lattice H,,, from the main vectors 

of the crystal lattice a;. Thus, in diffraction from a crystal, the directions of 

the scattered beams are defined by 

S = Ay, = ha* + kb* + Ic*, K = ky + 20 Aix. (4.30) 

We have considered the three-dimensionally periodic lattice of scattering 

points as the simplest image of a crystal. A complete description of the crystal- 

line structure will be obtained by assigning its electron density function p(r). 

An infinite point lattice is described by (3.11) 

I(r) = ss Ore ts): 
P1P2P3 

—oo 

An infinite crystal, each unit cell of which is “filled”? with an electron density 
Peet(r), Will be written as a convolution T * poo 

oo 

palP¥ = Peers?) =| SiG = fon): (4.31) 
PiP2P3 

— oo 

We have seen that if function p(r) is arbitrary, F(S) exists at any values of S, and 
integral (4.12) is taken from —oo to + oo in infinite limits. If the function is 
periodic, however, the Fourier integral is taken within the period and is nonzero 
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only at discrete values of S, becoming Fourier coefficients (terms). The corres- 

ponding expressions in the one-dimensional case are as follows: 

i p(x) exp(2nixX) dx = F(X), (4.32) 

alo [ p(x) exp (2nihja) dx = Fy, (4.33) 

Thus, the scattering amplitudes F(X) = F(h/a) are nonzero only at ¥ = h/a. 

Similarly, for the three-dimensional case the Fourier coefficients take the form 

oes . [hx Fur = {ff oCaye) exp|2ni (8 
000 a 

= f p(r) exp[2ni (rH, dv,, 

+ “Y + als dy dz (4.34) 

where h, k, / are integers. We have again arrived at conditions (4.29,30), because 

the index in exponent (4.34) contains the scalar product of vector r and vector 

H,,; of the reciprocal lattice, i.e., the permissible values of vector S = H,,; 

(4.29, 30). The Fourier integral (4.34) not only determines these permissible 

values, but also enables one to calculate the scattering amplitude F;,,;. 

Similarly to (4.33), in (4.34) we should have written the factor 1/a[be] = 

Q-' before the integral, where a, 5, and ¢ are the unit cell vectors, and Q its 

volume. However, this factor is usually omitted so that the expression for 

structure amplitude F (4.34) can have the same dimensionality as f (4.14) and 

the Fourier integral (4.12). It must be introduced into the final expression for 

the amplitude of scattering from the crystal. 

Taking into account (3.26), which describes the set of nodes of the recip- 

rocal lattice, we find that the expression of the complete Fourier transform 

of an infinite crystal has the form 

_ Fins px Fx 60S — Hy,:). (4.35) 

This is a three-dimensionally periodic set of nodes, each described by a delta func- 

tion and placed at the ends of vectors H,,;. The weights of these nodes are 

different and defined by complex values F,,,, which are called structure amplitudes. 

The reciprocal lattice has been introduced formally as a set of points at the 

ends of the vectors of normals H,,,; to the crystal planes with indices (hkl), and 

the length of the normals is inverse to the interplanar distance d,,, [see (3.19)], 

| Haxr| = Tne 

We can now see that in considering diffraction phenomena and the Fourier 

integral the concept of the reciprocal lattice arises automatically. Indeed, this 

could be expected, bearing in mind that the result of the interaction of a periodic 
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wave with the periodic structure of the crystal must itself have a periodic 

character. The geometric meaning of the reciprocal space and the reciprocal 

lattice is naturally independent of the way they are introduced. But now this 

concept acquires a real physical meaning—vectors Hj, define the directions 

of beams scattered by the crystal. Further on we shall see some other physical 

realizations of the reciprocal lattice concept. 

Thus, on scattering from a nonperiodic object (atom, molecule, etc.) the 

distribution of amplitude F(S) in reciprocal space is continuous, i.e., scattering 

with some intensity can occur in any direction. On scattering from crystals only a 

definite, discrete, set of directions of the diffracted beams is possible [deter- 

mined by conditions (4.29,30)]. These beams can also be interpreted as “reflec- 

tions’ from crystal planes (hk/) with spacings d,,;, since from (4.5), (4.30) and 

(3.19) it follows that 2 sin 0/A = | H,,,;|, which is the Bragg-Wulff equation 

(4.3). 

4.2.2 Size of Reciprocal Lattice Nodes 

The Fourier integral (4.34) leads to the concept of a “‘point”’ node 6(S — H,,;) of 

the reciprocal lattice described by the discrete indices h, k, /, since the periodic 

function p(r) in it is infinitely extended, and integration is taken over its periods. 

But actually a scattering crystal has finite dimensions and a definite shape and 

volume V; it contains a finite number of unit cells. Therefore, the nodes of the 

reciprocal lattice in an actual diffraction experiment are not points 6(S — H,,,), 

but have a finite size and a definite shape depending on those of the crystal. 

To take into account the finiteness of the crystal dimensions and describe its 

shape, one can introduce the shape function 

1 inside the crystal 
O(r) = (4.36) 

0 outside the crystal, 

and then the function p.(r) (4.31) of an infinite crystal will be transformed, by 

multiplying by P(r) (4.36), into the function p,,(r) of a crystal (Fig. 4.11) with 
the shape ®(r) 

Per = pal?) BF) = [paalt)® | 32 d(r — trun) | 20. (4.37) 
P1P2P3 
—oo 

£09 

ce 

Fig. 4.11. Action of a shape func- 

tion ®(r) (two dimensional scheme) 
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The scattering amplitude of an infinite crystal is given by (4.35). The Fourier 

transform (amplitude) of the crystal shape is defined by 

F [O] = D(S) = J P(r) exp [2ni (Sr)] dV, = f exp [2ni(Sr)] dV, (4.38) 
Vv @ 

According to the convolution theorem p,,(r)®(r) in (4.37) will be replaced in 

the Fourier transformation by the convolution of each of the transforms, which 

are known; they are (4.35) and (4.38). Thus, for a finite crystal 

F922 Pp fags (S — Hus) « D(S). (4.39) 
hkl 

The convolution of each of the functions d6(S — H,,;) of the point nodes of the 

reciprocal lattice with D(S) means that each of these nodes will now take the 

form D, 1.e., 

O(S — Hi,,;) * DUS) = DUS — Aix). 

Hence, a node of the reciprocal lattice of an actual finite crystal has a density 

distribution D(S) depending on the crystal shape; this distribution is the same 

for all the nodes, including that at the origin 000. The amplitude of scattering 

by a finite crystal of the shape P(r) is described by the expression 

1 
F.,(S) — OQ > F4:D(S = H,,:). (4.40) 

To investigate the effect of the dimensions and shape of the crystal ®(r) on the 

diffraction peaks we consider a simple example—a crystal in the shape of a 

parallelepiped with edges A,A,A;. Then 

A,/2 A,/2 A,/2 

DE FO Pre rrexp (20 XP vl 22) \'ax dy az 
~—A,/2 —A,/2 —A,/2 

sin tA,X sin tA,Y sin 1A,Z 

Oe mY 7 a 
(4.41) 

The functions of one of the cofactors of (4.41) and its square are depicted in Fig. 

4.12. The halfwidth of function D(S) is inversely proportional to the dimension 

A, of the crystal in the corresponding direction. Thus, the reciprocal lattice nodes 

in an actual diffraction experiment are some small finite regions, whose linear 

dimensions in reciprocal space are equal to Ay. This means that the diffracted 

beams have a finite angular halfwidth AO ~ A;'; the larger the crystal, the 

narrower the beams. The value of each cofactor of (4.41) at its maximum is 

equal to A, and, hence, D(S) at the maximum has a value A,A,A, = V—the vol- 

ume of the crystal. 
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3(A,X) Fig. 4.12a,b Function 6(A,x) = sin 2Ax/nx (a) 

and its square (b) 

Note that the area under the peaks formed by the square of each of the 

cofactors of (4.41) is 

ap sin? tA,X 

R(X)? 
POSE, (4.42) 

i.e., an integral over the values of | D|? 

J | DCS)|? dv, = 4,424; = V (4.43) 

is equal to the volume of the crystal. 

4.2.3 Reflection Sphere 

We shall now revert to the analysis of the diffraction conditions (4.29, 30). In 

diffraction of monochromatic radiation, i.e., at a constant J, these conditions 

are realized by an elegant geometric construction, which is known as the Ewald 

reflection sphere in reciprocal space (Fig. 4.13). If ky and & are the directions of 

the incident and scattered wave, the set of the ends of vectors S lies on the Ewald 

sphere, described by vector & and having a radius 1~'. The condition k = ko 

corresponds to the value of S = 0 = Hpoo, i.e., to the zero node of reciprocal 

space. Let us now construct a reciprocal laitice starting with vectors a*, a%, a¥ 

from the zero node (Fig. 4.14 shows the corresponding two-dimensional construc- 

tion). Its orientation will be defined by that of the crystal with respect to ky. The 

condition for the formation of a diffraction beam with indices hk/ consists in 

intersection by the reflection sphere of the node hk/ of the reciprocal lattice; this 

is precisely the condition S = H,,,(4.31). Thus, the formation of diffraction 

beams depends on the crystal orientation and the sphere radius J~'. In x-ray 

and neutron diffraction 4 ~ 1-2A, which is comparable with the periods of unit 
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Fig. 4.13a 
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Fig. 4.13a,b Formation of diffrac- : 
| 
I 

tion pattern (a) and the correspond- | 

ing Ewald construction (b). 

(J) reflection shpere, (2) limitation 

sphere, (3) locus of the centers of 

the reflection spheres 

Fig. 4.14. Ewald’s sphere in the re- 

ciprocal lattice of a crystal: for 

x-ray diffraction (——-) and for 

electron diffraction (- - - - - ) 

cells (~ 10A), and the sphere has an appreciable curvature with respect to the 

planes of the reciprocal lattice. The intersection of node 000 by the sphere means 

that scattering always occurs in the direction k = &p, i.e., in the direction of the 

initial beam. A diffracted beam—“‘hk/-reflection”’—will appear when the sphere 

intersects some hkl node depending on the crystal orientation and the direction 

k,. The sphere may also intersect two or, sometimes, several nodes, then a 

number of reflections will appear simultaneously. It may also intersect no 

nodes (with the exception of 000); thus no reflections arise at all. 

So, if we have a monochromatic beam of x-rays or neutrons and the crystal 

is fixed, then to obtain the assigned reflection Ak/ it is necessary to orient the 

crystal appropriately. Various x-ray diffraction methods (see Sect. 4.5) make it 

possible to record the entire set of nodes of the reciprocal lattice by setting the 

crystal successively into different reflecting positions (Fig. 4.15). 

In electron diffraction 2 ~ 0.05A, the curvature of the Ewald sphere is 

small, its segment is nearly flat (Fig. 4.14), and one can record simultaneously 

the set of reflections belonging to the zero plane of the reciprocal lattice, 1.e., 

the plane passing through node 000. 

If the reflection sphere radius is A~', we can, by changing the directions 

of beam &, (or the object orientation relative to it), obtain information on the 
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Fig. 4.15. Precession x-ray photograph of hk0-zone of a crystal of protein aspartate-transam- 

inase (courtesy of N. I. Sosfenoy). 

Precession angle 9°, CuKa radiation, Ni-filter, rotating-anode apparatus, V = 35 kV, i = 30 

mA 

values of F(S) within the “‘limitation sphere’? of a radius S,,, = 247! (Fig. 

4.13b). Thus, as already noted, the wavelength used determines, in principle, 

the amount of information which can be obtained from a diffraction experiment. 

The wavelength must be sufficiently small so that the entire function F(S) 

(i.e., the range where it differs from zero) is within the limitation sphere. In 

practice, such a variation of F(S) actually takes place with the wavelengths 4 

usually used in diffraction methods, because of the drop in atomic amplitudes 

with increasing S and the action of the temperature factor. 

On the other hand, if A > 2;a, where a, is the largest lattice period, the 

radius of the Ewald sphere will be so small compared with a# that the sphere will 

not intersect a single node, and in this case no reflections from the crystal will be 

observed. 
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4.2.4 Structure Amplitude 

We have established that the directions of possible scattered beams depend 

on the geometry of the reciprocal lattice, which is periodic in a reciprocal space 

with a unit cell a*, b*, c*. In a diffraction experiment, however, its periodicity 

is expressed only in the arrangement of nodes Akl, while their “weights” are 

different and assigned by the values of F,,; (4.34). These values depend on the 

distribution p(r) of the electron density in the unit cell of the crystal (4.34), 

being its Fourier terms, and hence they depend on the arrangement of the atoms 

in the cell. 

Let us now express p of the cell as a sum of electron densities pir, = p; of 

each of its atoms j with coordinates r, (4.13): p = 2 p,(r-r,) and insert this ex- 

pression into Fourier integral (4.34). For each p, we obtain, according to (4.22, 

23), the atomic temperature factor f;;, but with an additional, so-called phase 

factor exp 2ni(r,H), which takes into account the position of the atom in the cell. 

Therefore 

| oe = dita (sin 6/A) exp [27i(r;H.:)] = data exp [2ni (hx, + ky, + /z,)). 

(4.44) 

Here, the coordinates are expressed in fractions of the period x; = X;,,;/@;. This 

formula is precisely the scattering amplitude of one unit cell of the crystal, the 

socalled structure amplitude (or structure factor). 

It should be noted that if we take into consideration the anisotropic tem- 

perature factor (4.26), the computation of F,,; (4.44) will be more complicated, 

since then the values f;; themselves depend on H,,,; because of the “‘oblique”’ 

orientation of the ellipsoid of thermal vibrations with respect to the coordinate 

axes. 
The conditions for the appearance of a strong reflection from the crystal, 

i.e., for a high value of F,,,, are a high “population density” of the atoms of a 

given system of crystallographic planes Ak/, to which vector H,,; is perpendicular 

(Figs. 3.30, 34), and a small number of atoms between them. If the atoms are 

distributed uniformly both in and between planes, then the phases of waves 

scattered by them in the direction Ak/ are different, and waves weaken each 

other, which reduces the reflection amplitude or “‘extinguishes”’ it altogether. 

The scattering amplitude F,,, is a complex value 

F=A+iB, 

A = Xf, cos 2n (hx, + ky, + z,), (4.45) 

B = 2f, sin 2x (hx, + ky, + [z,). 

One can also write F in terms of modulus |F| and phase a 
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tana = B/A, |F| =./A? + B’, 

A= |F "cos a, B — | F\ sin a; (4.46) 

F = |F\ exp ia. 

4.2.5 Intensity of Reflections 

So far we have been speaking of amplitudes of scattering in a direction defined by 

vector S in the general case, or by the vector H of the reciprocal lattice for 

crystals. In an experiment the time-average scattering intensity, which is pro- 

portional to the square of the amplitude modulus, is recorded 

Tei ~ ean aaa FyFR = A’ ar dee (4.47) 

Attention must be given to the following important circumstance. As follows 

from (4.47), in a diffraction experiment only the measurement of the scattering 

amplitude moduli can be realized physically, while their phases are lost. This, as 

we shall see below (in Sect. 4.7), seriously complicates the determination of 

the structure of crystals from the diffraction data. 

The expressions (4.45) and (4.46) for the structure amplitude, and hence for 

the intensity (4.47), contain the atomic temperature factors of all the atoms 

Sir (4.23) of the structure, as well as the trigonometric factor for each of them. This 

factor may take different values—from —1 to +1, which results in different 

values of F,,;. At the same time f,; decreases gradually with increasing sin 6/A, 

i.e., towards the periphery of the reciprocal lattice. The average value of [exp 

2ni(rH)) = 1, and therefore from (4.44, 47) it follows that the drop in inten- 

sities with increasing sin 0/A is determined by the equation 

Ina (Sin 8/2) = TFyasl? = 32 3 (Sin 8/2). (4.48) 
Thus, although the intensities /,,, are different, they decrease, on the average, 

with an increase in sin 0/A. The “limit” of their observation usually lies near 
| Hoax| = dai, = 1—2 A-' and mainly depends on the decrease of the average 
temperature factor (4.25). Since the curves of the atomic factors fy; are known 
and fr = f, fr (4.23), it is possible, by using (4.48), to find the value of the 
average temperature factor from the average J and the theoretical value of f,. 

There exists one more expression relating the intensities and f2,, which is 
called the law of conservation of intensity. From Fourier’s series theory it is 
known that the sum of the squares of the moduli | F,|? of all the Fourier coef- 
ficients is constant; it is determined by the rms value of the initial func- 
tion p(r)? 

| 
Xl Fal? = ul lta. (4.49) 
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On the other hand, pcan be expressed via (4.13) in terms of the electron densities 

of separate atoms ;, and the latter, by inverting the Fourier integral of the type 

(4.15), again through atomic temperature factors. Finally, this will yield, with 

due regard for (4.47), 

La = 5 D f Az (S) 4nsas. (4.50) 

We can see that the sum of the intensities taken over all the nodes H,,, of the re- 

ciprocal lattice is constant, and can be computed beforehand for a crystal in 

accordance with (4.50) on the basis of the curves of the atomic temperature 

factor. 

4.2.6 Thermal Diffusion Scattering 

So far we have referred to scattering due to the three-dimensional periodicity of the 

crystalline structure, which can be recorded as the intensities of the diffraction 

pattern J,,; concentrated at the nodes of the reciprocal lattice. The lattice, how- 

ever, shows one more type of periodicity. We have spoken of the thermal motion 

of atoms, which is accounted for by the temperature factor (4.22). But that ex- 

pression did not include all components of thermal motion. The vibrations of 

atoms in the lattice are interrelated. They are treated as a system of acoustic 

waves, phonons, which is characterized by the phonon spectrum of the crystal 

(Ref. 2.13, Chap. IV]. The phonon wavelengths A are multiples of periods a, a2, 

and a;. The Fourier transform (4.12) of the function describing a set of such 

waves leads to the following. The scattering maxima J; of these waves are 

situated around the nodes H,,, of the reciprocal lattice and are smeared-out 

regions. The intensity J; is several orders weaker than the intensities /,,,; because 

of the crystal structure. Nevertheless, thermal diffusion scattering is detected 

Fig. 4.16. X-ray pattern of a pen- 

taerythrite with thermal diffusion 

maxima (courtesy of E. V. Kolon- 

tsova) 
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by using special techniques (Fig. 4.16). Naturally, J; is temperature dependent. 

The shape of the maxima and their length in different directions depend on the 

anisotropy of the amplitudes of the acoustic waves in the crystal. 

4.2.7 Symmetry of the Diffraction Pattern and Its Relation to the Point Symmetry 

of the Crystal 

The reciprocal lattice (4.35) is periodic, provided we disregard the “‘weight’’ 

of its nodes F (or J); if we do include the weights, however, it becomes aperiodic, 

and the symmetry can be described by one of the crystallographic point groups 

K. From (4.45, 46) it is seen that the structure amplitudes of reflections Ak/ and 

hkl, i.e., of nodes Hand H, which are centrosymmetric in the reciprocal lattice 

with respect to node 000, are complex conjugate quantities 

Fy = Fig = Fee = Fi, (4.51) 

and hence their moduli | F| and observed intensities J (4.47) are identical 

T= I: (4.52) 

This relation is known as Friedel’s law: the reciprocal lattice is centrosymmetric; 

its nodes H and H have the same weight. Consequently, the symmetry group of 

intensity distribution in the reciprocal lattice is one of the eleven centrosymme- 

tric (inversion) point groups K (see Table 2.4), which are called Laue classes, 

when referred to diffraction phenomena. The presence of the center of symmetry 

in the diffraction pattern is independent of whether the structure itself belongs to 

a centrosymmetric or noncentrosymmetric point group K and to the correspond- 

ing space group ®. In other words, it is impossible to establish from the symme- 

try of the reciprocal lattice whether or not a given crystal has a center of sym- 

metry; the diffraction pattern unavoidably “‘adds”’ a center of symmetry to a 

point group K. Thus, to the observed Laue class K of the diffraction pattern 

there may correspond a crystal of either the same centrosymmetric group K, or of 

some one of its noncentrosymmetric subgroups K (see Table 2.3). 

Note that since a syngony is defined by its highest centrosymmetric group, a 

diffraction experiment which gives the Laue class of the crystal also makes it 

possible to directly find its syngony. 

It should be borne in mind that if we take into consideration the complex 

nature of F,,,, then in describing the distribution of these values in the reciprocal 

lattice we can use point groups of antisymmetry K’ and of color symmetry K”. 

For instance, for noncentrosymmetric groups F,,,; and Fre = Fx, will be anti- 

equal. But for the description of the experimentally observed distribution of 

intensities 7,,,, only eleven Laue centrosymmetric classes can be used. The deter- 

mination of the Laue class from the diffraction pattern does not exhaust the pos- 

sibilities of obtaining other information about crystal symmetry from it: indeed, 
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so far we have only tried to find out what can be deduced from the symmetry of 

this pattern. 

Friedel’s law may be violated under special conditions. One of such cases 

is the so-called anomalous x-ray scattering, when the atomic amplitude / (4.20), 

which is real, acquires an imaginary component (see Sect. 4.7). Then (4.52) 

ceases to hold, and J, # J. Other violations of Friedel’s law are associated with 

taking into account the peculiarities of scattering from single crystals as a whole 

and are described by dynamic theory of scattering (see Sect. 4.3). 

4.2.8 Manifestation of Space-Symmetry of a Crystal 

in a Diffraction Pattern. Extinctions 

The expression for the structure factor (4.44) includes the coordinates of atoms r, 

in the unit cell. If the space group of a crystal is asymmetric, P1, expression (4.44) 

is final. All the other groups have symmetric relationships between the coordi- 

nates of the points, i.e., they have regular point systems (RPS) (Sect. 2.5). The 

atoms in the cell can occupy one or several such RPS. Figure 2.81 gives an ex- 

ample of RPS for one of the space groups, D3’. The coordinates xyz of all the n 

atoms of a given RPS can be expressed in terms of the coordinates xyz of one 

atom in the independent region of the cell. Using this fact, it is convenient to 

transform, with the aid of the corresponding trigonometric relations, the general 

expression for structure factor (4.44), so that each RPS of n atoms (where n is 

the multiplicity of the position) is represented by one expression. Then the struc- 

ture factor will break down into k terms, each of them representing a set of 

atoms occupying one regular point system with a multiplicity of n, so that the 

sum k,n, + k,n, + ... + k,n, = N is the total number of atoms in the unit 

cell. 

The simplest example of the effect of symmetry is the action of a center of 

symmetry 1. If an origin is chosen in it then, together with the atom in position 

xyz, there is an atom in centrosymmetric position xpZ. Then exp in (4.44) is re- 

placed by cos, and F becomes a real value with a plus or minus sign, B = 0, 

a=0Oorn: 

N/2 

Faz 2 >, f,c08 2ahx + ky +12): (4.53) 
j=1 

Summation is done only over symmetrically independent atoms. Other symmetry 

operations (taking into account the position of the corresponding symmetry 

elements in the cell, which, as mentioned above, is directly expressed in the set of 

coordinates of RPS) will lead to other simplifications in the equations for F 

(4.44, 45). Thus, the presence of simple or glide planes of symmetry manifests 

itself so that (4.44) and (4.45) are transformed into factors of the type 

cos cos cos 

2thx 2nky 2ni/z. (4.54) 

sin sin sin 
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Fig. 4.17 General and special expressions for the structure factor and the electron-density func- 

tion for the space group Pnma-D3}§ [Ref. 2.27, Vol. 1] 

Figure 4.17 reproduces the general and special forms of the structure factor for 
the group D;¥ according to the International Tables. Such formulae exist for all 
space groups. It is worth noting that in computer calculations it is sometimes 
easier to use the main formula (4.45) or, in the presence of a center of symmetry, 
(4.53) and the coordinates of all the points. 

If the space group @ of the crystal is such that it contains symmetry elements 
with a translational component—screw axes, or glide-reflection planes—or if the 
translation subgroup T of group @ is centered, it is directly manifested in the 
structure of the reciprocal lattice and results in the appearance of the so-called 
extinctions, i.e., systematic absences of reflections Ak/, for which F,,; = 0. 

Let us consider, for instance, the action of screw axis 2, coincident with axis 
z. Here, along with the atom in position xyz, the cell will contain an atom in po- 
sition X, p, z + 1/2. We substitute these coordinates into the expression for 
structure factor (4.44) for reflections 00/ along the axis c* of the reciprocal 
lattice. Since h = k = 0, these reflections are insensitive to the coordinates x,y 
of the atoms, and 

Hie = a Oma wew [anil(: ” ale (4.55) 
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For odd / this expression goes to zero, and for even ones it is nonzero. In other 
words, the presence of a screw axis manifests itself in the reciprocal lattice by 
extinctions of reflections on the corresponding reference axis of the reciprocal 
lattice. If the screw axis were axis 3,, then reflections 00/ only with / = 3n would 
be present, while reflections with / 4 3n would be absent, etc. 

Assume now that we have a glide-reflection plane a perpendicular to axis b 
which produced a point with coordinate x + 1/2, 5, z from any point xyz. 
Setting up a sum for these two points similarly to (4.55), we find that in the zero 
plane (kK = 0) of the reciprocal lattice (parallel to the glide plane in the atomic 
lattice) possessing reflections A0/, those of them with h # 2nare absent. On the 
other hand, reflections A0/ with even Ah = 2n are not extinguished. 

Fig. 4.18. A structure with axis 2, (a) 

projected onto this axis (b) and onto 

an arbitrary direction (c) 

The explanation of the effect of symmetry elements with a translational 

component on the diffraction pattern, which we derived formally for the expres- 

sion for the structure factor (4.44), is very simple. For an x-ray “reflection” from 

a crystal plane, only the atomic coordinates along vector H,,, are essential for 

the value of the structure factor, i.e. those in projection onto this vector, which 

is normal to the given plane, while the atomic coordinates in the plane are not 

essential. But in projection, for instance, onto screw axis 2, the structure actually 

has a halved period because of the presence of the translational component (Fig. 

4.18), and this means that the period in the reciprocal lattice for this direction is 

doubled, i.e., is equal to 2c* and not c*, and there are no nodes with odd /. 

The effect of glide planes is explained similarly: the structure in projection onto 

such a plane has a halved period along the glide component, and the period in the 

reciprocal lattice on the corresponding coordinates plane is doubled accordingly, 

i.e., odd reflections are extinguished. It is significant that extinctions due to 

screw axes or glide planes arise only on coordinate axes or on planes of the reci- 

procal lattice, respectively, because no multiple reduction in period is obtained 

for projections along other directions (Fig. 4.18c). 
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Extinctions due to the centering of atomic lattices A, B, C, J, F refer to the 

entire set of reflections Ak/ of the reciprocal lattice, and not only to its coordinate 

axes or planes. Let us assume that the lattice is a C-lattice, i.e., it is centered 

on face ab, and to each point x, y, z there is a corresponding a point x + 1/2, 

y + 1/2, z. Similarly to (4.55) we find that for any hk/, only those F,,; do not 

vanish for which h+ k = 2n, and if h+k # 2n, then F,,; = 0, 1.e., the 

corresponding reflections are extinguished. The absence of these reflections 

simply follows from the existence of a primitive cell with a’ = (a — b)/2, 

b’ = (a + b)/2, where a and Bb are the periods of the centered cell (Fig. 4.19a). 

The primitive reciprocal vectors in this case are equal to a’* = (a* — b*), 

b’* = (a* + b*) (Fig. 4.19b); all the reflections in the reciprocal lattice with 

a primitive reciprocal cell are observed, but if we switch to its nonprimitive 

indexing, we shall obtain the above-mentioned condition h + k = 2n. If the 

lattice is centered on all the three faces, then only those reflections will be ob- 

served for whose indices the conditionsh + k = 2n,h + 1 = 2nandk + /]= 2h 

are fulfilled simultaneously. When the lattice is body-centered, only those 

reflections are observed for which h + k + / = 2n. The last two cases account 

for the fact that the reciprocal lattice has nodes Ak/: in the first case only at the 

vertices and at the center of the reciprocal lattice with doubled periods, and in 

the second, at the vertices and at the centers of the faces (Fig. 4.20). Therefore 

it is sometimes said that the reciprocal lattice of a base-centered atomic lattice 

is base-centered (Fig. 4.20b), that of a body-centered one, face-centered (Fig. 

4.20c), and that of a face-centered one, body-centered (Fig. 4.20d). 

Thus, if a point group of a crystal K is expressed in the symmetry of a reci- 

procal lattice as one of the Laue classes, then the Bravais group and the sym- 

metry elements of group @ with a translational component manifest themselves 

in the diffraction pattern through extinctions (but the point symmetry elements 

of groups @ do not manifest themselves). Hence, each group @ is described in 

the reciprocal lattice by conditions limiting possible reflections, i.e., by a certain 

definite set of extinctions or by their absence. For instance, for D}$—Pnam (full 

designation P2,/n 2,/a 2,/m) the translation group is primitive, and therefore 

Fig. 4.19a,b. Base-centered cell a, b, cin the direct space (a) and the corresponding cell a*, b*, ¢* 
in reciprocal space (b). Solid lines denote primitive cell a’, 6’, e’ and the corresponding cell a’*, 

b’*, c’* 
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Fig. 4.20a-d. Atomic and corres- 

ponding reciprocal lattices: (a) 

primitive—primitive, (b) base-cen- 

tered—base-centered (c) body-cen- 

tred-face-centered (d) face-cen- 

tered—body-centered 

there are no extinctions for reflections of the general form hk/; plane n causes 

extinctions of reflections Ok/ with k + / # 2n; and plane a, of reflections A0/ 

with h # 2n. But the same extinctions are characteristic of another group C3, — 

Pna2,, because in the first case m does not affect extinctions, and axis 2, was pre- 

sent in the first group. Thus, the same set of extinctions characterizes, in the 

general case, not one, but several groups (although some @ are determined by 

them unambiguously). In all, 120 ‘‘x-ray groups” are known, which differ in the 

Laue class and the set of extinctions; they comprise 230 space groups. Conse- 

quently, a diffraction experiment enables one to allocate a crystal to one of sev- 

eral groups ®, and sometimes to determine it unambiguously. In addition, 

in some groups @ extra extinctions arise if atoms occupy not general, but spe- 
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cial positions. The extinction tables for groups ® corresponding to them are given 

in the International Tables [2.27] (see Fig. 2.81) and many other publications. 

Diffraction data, however, contain one more kind of information on crystal 

symmetry which is built into the total set of values of the structure factors. 

As we know, the coordinates of the atoms in the cell are symmetrically 

related, and they enter into the trigonometric factor (4.44, 45). But these equa- 

tions also contain the atomic temperature factors f,; (23) which systematically 

reduce F with increasing sin 0/1. To obtain values depending only on the dis- 

position of the atoms, it is customary to introduce the so-called unitary structure 

factors ie 

N 

Pye = P= ¥ ny exp [oni (ax + ky +2) 
3; re j=1 

= 

n= a aS (4.56) 

in 
Here, n, are constant numbers if all the atoms in the cell are the same, and are 

almost constant numbers if they are different, since to a satisfactory approxima- 

tion f;; curves for different atoms are similar. 
Let us consider the total set of | #| irrespective of their indices Ak/, making 

the natural assumption that the argument of the trigonometric factor takes all 

values from 0 to 2x with equal probability. All the | #,,| are within the limits of 

0 < F, < 1, and according to (4.56) the average value of the square | F|? = 

mn}. The symmetry will affect the nature of the function describing the statis- 

tical distribution of | Fa| among these values. Indeed, if the cell shows no 

symmetry then, by (4.45), Fi,,; are distributed over the complex plane within 

a circle. If there is a center of symmetry 1 in structure (4.52), they are already 

distributed over the real axis along the straight line (—1, +1). This difference 

affects the form of the integral cumulative distribution function N(¢), where 

CS | Fl2/| F |, which shows the fraction of reflections for which the intensities 

are less than or equal to ¢, and also influences the value x = | FI /| FI, namely 

iN — 1 = eS, 1x = T/4 — 0.785, 

ae 4.5 
iN =erf ee Sie 72 feon0,687. Sais 

The center of symmetry can be located most efficiently by constructing curves 
N(¢) from | F¢,| and comparing them with the theoretical (Fig. 4.21). In the 
same way it is possible to establish (unless it follows from other data) the pre- 
sence of axis 2 (or 2,), whose action in projection is similar to that of the center 
of symmetry, from a reflection zone of the type h0/. One more manifestation of 
symmetry in values | F'|? will be considered in Sect. 4.7; it is associated with the 
construction of the so-called interatomic-distance function. 
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Fig. 4.21a,b. Functions of intensity distribution for crystals with and without a center of 

symmetry. (a) curves of the distribution of structure amplitudes for a noncentrosymmetric (/) 

and a centrosymmetric (2) crystal, (b) comparison of calculated (——) and experimental dis- 

tribution N(¢) for a centrosymmetric (2) and a noncentrosymmetric (/) crystal: (+ » +) horse 

methemoglobin with a resolution > 6 A [4.4]: (oc co co) B-naphthol, projection [100] [4.5] 

a 

4.3 Intensity of Scattering by a Single Crystal. Kinematic and 

Dynamic Theories’ 

4.3.1 Kinematic Theory 

In the preceding section we considered scattering of short waves in a crystal and 

focused our attention on those peculiarities of scattering which follow from 

the periodic structure of the crystal lattice. Our calculation essentially con- 

sisted in the summing of elementary waves arising throughout the volume of the 

crystal under the effect of the initial, incident wave. The theory of scattering 

based on this approach is called the kinematic theory. It explains the funda- 

mental property of diffraction from crystals—the discreteness of the directions 

of scattered beams—and allows us to calculate the intensity of these beams, but 

only to a certain approximation, which is valid under definite conditions. 

The kinematic theory ignores the following circumstances. When an incident 

wave is propagating in a crystal, its amplitude must diminish gradually, because 

energy is lost on excitation of secondary scattered waves, and thus the initial 

wave is weak when it reaches the “‘farthest”’ crystal cells. It is also weakened by 

absorption. The factor of greatest importance, which is not described by the 

kinematic theory, is that the secondary, diffracted waves themselves interfere 

both with the initial wave and among themselves and experience, in turn, 

scattering and absorption. 

The theory which takes into account the entire set of these phenomena is 

called dynamic theory. Kinematic theory is an approximation to this more 

general theory. 

2 This section was written in cooperation with Z. G. Pinsker. 
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But since dynamic effects develop gradually as the initial wave penetrates 

into the crystal, the kinematic approach yields fairly accurate results for suffi- 

ciently small thicknesses. Indeed, at small thicknesses the primary wave does 

not weaken considerably, the secondary waves have not yet gained enough 

intensity, and the absorption effects are not considerable, either. 

In other words, kinematic theory is valid when the absolute intensity of the 

scattered beams is weak compared with that of the incident beam. Estimates 

(we shall give them below) show that the kinematic approximation can be 

used for calculating the intensity of x-ray reflections at less-than-critical crystal 

thicknesses 

AB=10 *="10~ cm: (4.58) 

When the thickness of the scattering crystal exceeds A*, the dynamic theory 

should be employed. 

Crystals used in x-ray structure investigations have linear dimensions of 

several tenths of a millimeter, which greatly exceeds A* (4.58), and never- 

theless the intensities observed are well described by the equations of kine- 

matic theory, as has been confirmed experimentally. This is due to the real 

structure of crystals. Such a crystal represents a mosaic of crystal blocks about 

10-° cm in size, which are more or less misoriented with respect to each other 

by angles of the order of fractions of a minute [Ref. 2.13, Chap. 5]. Such a crystal 

is called perfectly (ideally) mosaic. The coherent interaction of the scattered 

waves in such a crystal, i.e., interference, occurs within a single block; thus, the 

condition of applicability of kinematic theory is fulfilled. As for scattering by a 

mosaic crystal as a whole, it is defined by the sum of intensities of scattering by 

each block. The mosaic structure is taken into consideration by introducing some 

corrections. 

If a crystal has a perfect, nonmosaic structure, then at thicknesses of A > A* 

the scattering is described by dynamic theory equations. 

4.3.2 Integrated Intensity of Reflection in Kinematic Scattering 

Let us consider the intensity of reflection by a single crystal in kinematic scat- 

tering. Suppose the crystal is in the reflecting position at the Bragg angle and 

gives a reflection hk/, which is recorded on an x-ray photograph (Fig. 4.22). The 

Ewald sphere then intersects the node Ak/, as shown in Fig. 4.14. The amplitude 

of scattering by a crystal of shape @ is determined by (4.40), and the intensity of 

the reflection hkl, by one of its terms Q-? | F,,,|7| D(xyz)|?, where D is the shape 

amplitude. 

The intensity distribution in the diffraction spot is determined by the distri- 
bution of values of this function in its section by the Ewald sphere and by pro- 
jection of each point of the section onto the plane of the x-ray photograph. This 
depends, naturally, on the angle of rotation of the crystal. Let us find the integrated 
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Fig. 4.22. Section of Ak/-node by the Ewald sphere in the reciprocal space along plane XY and 

the formation of the corresponding hk/-reflection on the x-ray pattern. The point and reflection 

are scaled up. Crystal (K) with surface S = 4,A, is irradiated with a primary beam of intensity J, 

intensity of the reflection from the fixed crystal, i.e., the total intensity over all 

the points of the reflection or, what is the same, the intensity scattered within 

the three-dimensional angular region encompassing the reflection. 

Integration over the coordinates x, y of the x-ray photograph in direct space 

can be replaced (assuming the portion of Ewald’s sphere to be a plane) by inte- 

gration over the cross section of the node Akl in a reciprocal space with co- 

ordinates X, Y. As can be seen from Fig. 4.22, the factor of proportionality 

between these coordinates is R/A~' = RA, where R is the distance from the 

crystal to the film (detector), and Z(@) is an angular factor depending on the 

mutual angular orientation of the crystal and detector. The scattered wave is 

spherically symmetric, i.e., its intensity drops off ~ R~?. Thus, with due regard 

for (4.7), 

2 2 

(bz) = 2 3) Ed a L (0)| D (XYZ)|? (RAY aX d¥. (4.59) 

Here, J, is the intensity of the incident beam. 

For a crystal in the form of a parallelepiped, integration with respect to X 

and Y will yield values A; and A). The third factor |D|* depends on the angle 

of rotation of the crystal 0 and the corresponding value of (sin 1A;Z/nZ)’, as 

follows from (4.41). When the center of the node (Z = 0) is intersected by the 

sphere this factor is equal to 43. Then, in place of (4.59), we get the equation 

Z 

Fn 4.60 BEY VA, (4.60) 
e 2 

Text — If; =) IE, (0) ie 

where V = A,A,A, is the crystal volume, and A; = A is its thickness. 
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Introducing the value A,A, = S (the area of the irradiated surface of the 

crystal) we find that the ratio of the scattered intensity to the intensity [)S 

received by the crystal from the initial beam, i.e., the coefficient of the in- 

tegrarted reflection from a crystal fixed at the Bragg angle, is 

Tet = (=) 2 
Sa Ay mc? ‘ 

This expression, which was derived in the kinematic approximation, shows that 

the coefficient of the integrated reflection is proportional to the square of the 

crystal thickness A. Naturally, this can be true only up to certain thicknesses A*, 

otherwise the scattered intensity would exceed the initial. Therefore the following 

relation may be adopted as the criterion of applicability of the kinematic ap- 

proximation: 

2 

EVN 4.61 roe || ae (4.61) 

dive fh ME, (4.62) 

where F,,, = Fix: €?/mc?. [See (4.7). The factor L(@) is of the order of unity.] 

Assuming for simplicity that all the atoms in the cell scatter in phase, i.e., 

that F,,, = Uf..x, and the value of f, , ~ 10~''—_107'” cm, the volume per atom ~ 

10-73 cm3, and A = 107° cm, we find from (4.62) that A* < 10~*. This is actually 

the thickness limit at which the kinematic theory ceases to be valid. For real 

crystals, A* has different values, of course, because the magnitude of the struc- 

ture amplitudes depends on the arrangement of the atoms in the cell and also 

(through f, ,) on the atomic number. 

Equation (4.60) gives the integrated intensity of the reflection hk/ from a fixed 

crystal in the reflecting position which corresponds to the exact intersection of the 

center of the node hk/ by the Ewald sphere. In determining the intensities in 

structure analysis it is, however, practically impossible to bring the crystal into 

an exact reflecting position for measuring each reflection. In actual practice all 

the methods for detection and measurement of intensities are based on the fact 

that the crystal is rotated in the beam. Then, as the Ewald sphere intersects the 

nodes of the reciprocal lattice, various reflections, recorded in turn on the x-ray 

photograph, will appear and disappear. As the sphere “‘traverses”’ the node hkl 

in the third direction (Fig. 4.22), the intensity of each separate reflection in- 

creases in accordance with the function [sin?1A,Z/(xZ)*] (Fig. 4.12b), reaches a 

maximum, and then falls off. Thus the intensity is integrated in the third direc- 

tion, 1.e., over the whole volume of the node of the reciprocal lattice. The x-ray 
photograph or the detector records precisely this integrated intensity Jit. It is 
noteworthy that integration over the angles automatically takes into account the 

disorientation of the mosaic blocks with respect to each other; hence they “‘re- 

flect”’ at closely similar angles, so that all these reflections find themselves in the 

common region of the reciprocal lattice and produce a single reflection hk/ on the 
x-ray photograph. 
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Integration in the third direction excludes (within the framework of the kine- 

matic theory) the dependence on the crystal thicknesses A, and therefore only 

the dependence on the total volume of the mosaic crystal V remains. The 

integrated intensity equations naturally depend on the specific geometry of the 

x-ray photography method, this being accounted for by the angular factor L 

(Lorentz factor) [see (4.96)], and also on the angular velocity of crystal rotation 

@. Inthe final analysis the following expression for integrated intensity is obtained: 

int e ; Av 2 
(ES — Is mc pL =o | Fer | B&G. (4.63) 

Here, p is the polarization factor, B is the transmission factor (depending on 

the absorption coefficient yz), G is the correction for anomalous scattering, 

and @ is the extinction coefficient. This coefficient depends on the mosaic 

structure of the crystal and has two components. One of them accounts for 

the slight drop in intensity due to dynamic effects in each separate block. 

This is the so-called primary extinction. At the same time, the mosaic blocks 

standing first in the path of the wave and from which the reflection occurs de- 

prive the following blocks of part of the energy of the incident wave, and this 

causes the so-called secondary extinction. The summary action of both these 

effects (the second plays a more important part) is given by the coefficient @, 

which is determined experimentally. 

Real single crystals studied by x-rays have, in addition to mosaic structure, 

many other structural distortions inside each block, such as point defects and dis- 

locations. The number of such defects is usually not very large (less than 10'° 

cm~*) and, as indicated by theoretical estimates and experimental data, this does 

not affect (4.63) significantly. 

Thus, for integrated intensity, the relation [jt ~ | F,,,|? is valid in kinematic 

theory. This fact is the experimental basis of x-ray and other diffraction methods 

of investigating the crystal structure. 

If a crystal abounds in various defects, such as those occurring in solid inter- 

stitial and substitutional solutions or in stressed crystals, where lattice distor- 

tions and displacements of atoms from equilibrium positions take place, x-ray 

scattering becomes sensitive to such distortions. Static displacements of atoms 

act statistically just as their thermal motion does, which leads to an additional 

drop in intensity of far reflections in accordance with (4.22) for the temperature 

factor. Lattice distortions ‘cause variations in the unit cell dimensions and 

thereby affect the shape of the nodes of the reciprocal lattice (see Sect. 4.6). 

The study of the distortions to crystal structure comprises a special branch of 

x-ray structure analysis [Ref. 2.13, Chap. 5]. 

4.3.3 Principles of Dynamic Theory 

The dynamic theory describes scattering of short waves in perfect (“ideal”) and 

near perfect crystals. Dynamic consideration is based on taking into account the 
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interactions with energy exchange of all waves in the crystal, both the initial 

and the diffracted waves [4.6]. 

Since its appearance in the 1920s, the theory of dynamic scattering of x-rays 

has been developing in two forms. One of them—Ewald-Laue theory—con- 

siders the general problem of propagation of electromagnetic waves in a periodic 

medium. The other theory goes back to the ideas of Darwin, who proceeded 

from the kinematic approximation and took into account multiple scattering, 

interaction and absorption of waves scattered by crystal planes. In principle, 

for perfect crystals the two theories are equivalent, but their use depends on each 

particular problem. 

In studying x-ray diffraction from ideal crystals, two basic cases (Fig. 4.23) 

are considered: the Laue case—interference of beams passing through a crystal 

plate, and the Bragg case—interference of beams emerging on the same side 

of the crystal as the incident beam. 

Fig. 4.23a-d. Arrangement of the crystal surface and the reflected beam: (R) reflected beam, 

(T) transmitted beam. Bragg case: (a) asymmetric, (b) symmetric. Laue case: (c) asymmetric, 

(d) symmetric. The dashed line denotes the orientation of the reflecting plane 

In dynamic consideration, relationships are established between the rocking 

curves from crystals and the width of the wave front, the shape and orientation 

of the crystal, and the degree of its perfection. Other important problems here 

are the interpretation of the image of the internal defects of crystals obtained in 

diffracted beams, and also x-ray interferometry. In classical structure analysis, 

i.e., determination of atomic coordinates in the unit cell of the crystal, dynamic 

theory is not used. At the same time, the theory is promising for determining 

symmetry and also for precise determination of the moduli of structure ampli- 

tudes |F,,| for simple structures directly from the geometry of the diffraction 

pattern. 

4.3.4 Darwin’s Treatment 

Darwin constructed a theory of dynamic scattering for the Bragg case, taking 

advantage of the fact that the kinematic approach is valid for separate thin 

“reflecting planes” of a crystal [4.6a]. These planes fill the crystal half-space and 

are parallel to its plane surface (Fig. 4.24). The incident wave is reflected from these 

planes in conformity with the Bragg-Wulff condition (4.3). The ratio of the am- 
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R 
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Fig. 4.24. The formation of diffracted beams 

by successive reflections from planes parallel 

to the crystal surface 

Fig. 4.25. Reflection curve for the perfect crystal >» 

without absorption 88 ) 

plitude of the reflected wave A, to that of the initial A, is defined by the structure 

factor and is equal to some coefficient iq(@). On the other hand, the transmitted 

wave, “scattered” in the direction of the initial, has weakened slightly, and the 

corresponding amplitude ratio is equal to iq(0) (the quantity i covers the phase 

difference). The same can be said about any wave entering the rth plane inside 

the crystal. But due to repeated Bragg reflections and transmissions, the ampli- 

tude of the wave from the (r — 1)th plane, impinging on plane r, is not the same 

as the initial. By using the recurrence relations for the coefficients of reflec- 

tion R and transmission 7 through planes (r — 1), r, and (r + 1) it is possible to 

obtain the expression for the intensity of the beam reflected by a thick plate. If 

the crystal is rotated slowly near the Bragg angle, the curve for the coefficient of 

reflection R for such a perfect crystal (without absorption) has the shape shown 

in Fig. 4.25. Coefficient R in the region of the maximum is equal to unity, but the 

angular width of this region is small, of the order of 10-40.” 

For a crystal plate of thickness A = Nd, where d is the interplanar spacing 

and N is the number of planes, and for a nonpolarized initial wave the coeffi- 

cient of integrated reflection is expressed as 

8 e 1+ |cos 26| cal 2 64 
3nmc? 2sin20 NAN Ea: oD) 
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We can see that the intensity is here proportional to the first power of |F,| in 

distinction from kinematic theory for a mosaic crystal, where it is proportional 

to | F,,|? (4.63). 
Because of the dynamic interaction of the primary and reflected waves, the 

wave propagated in the initial direction is weakened. This phenomenon—pri- 

mary extinction—is particularly significant for strong reflections, but it can prac- 

tically be neglected for sufficiently small crystals, i.e., for the mosaic blocks of a 

perfectly mosaic crystal. 
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4.3.5 Laue-Ewald Treatment 

This theory analyzes interaction of an electromagnetic wave with a crystalline 
medium with a periodic electron density p(r), a dielectric constant e, and a 

polarization y = e — 1. Diffraction phenomena in such a case are described by 

a solution of Maxwell’s equation for the induction vector D 

oD 
yo ae c* curl curl D/e. (4.65) 

As a result of the interference of the initial and all the excited secondary waves, 

an electromagnetic field is set up in the crystal. Its amplitude varies with the 

periodicity of the lattice itself, and hence the solution can be represented as a 

sum of a series of plane waves 

D=¥D, exp (2ni[vt — (kor + Hpr)]}, (4.66) 

where K, is the wave vector of the initial (refracted) wave that entered the crystal, 

r is the radius vector in the lattice, and H,, is the vector of the reciprocal lattice. 

The polarization X can be expanded in a Fourier series, which finally gives 

the relation 

k2 — K? 
je Pm = Ba Xm—nD nema (4.67) 

Here, K is the wave vector of the incident wave in a vacuum; k,, = k, + H,, 

are the wave vectors in the crystal; D,[m] is the component D, perpendicular to 

vector k,,; and y,,_, 1s the Fourier component of polarization y for reflection 

H, 
m—n 

= SSS (4.68) 

The system (4.67) formally contains an infinite number of equations, but their 

number is practically limited because of the drastic reduction in D,, with in- 

creasing difference k2 — K?. 

Of greatest importance is the case when, along with initial (refracted, more 

precisely) wave, one more strong diffracted (reflected) wave arises in the crystal, 

which interacts with the initial. This is the so-called two-wave solution. As in 

kinematic theory, dynamic reflection can also be interpreted with the aid of the 

Ewald sphere in the reciprocal lattice (Fig. 4.26), but here the sphere does not 

necessarily intersect point H, which may be at a certain distance from the sphere. 

This is due to the fact that as a result of refraction of the wave at the vacuum— 

crystal interface vector K does not exactly coincide with ky. In the two-wave 

solution, in place of vectors D) and D,, one considers their scalar ¢ and z com- 

ponents Do,, Do, Dr,, and D,, with a polarization perpendicular and parallel 

to the plane of incidence. 
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Fig. 4.26. Appearance of an x-ray 

diffraction maximum according 

to dynamic theory in the case of 

nonexact intersection of point H 

- by Ewald’s sphere 

es 

The equations for the amplitudes have the following form (the symbols _|_ 

and || are omitted): 

ki — K? ki — K 2 
eal Do = XoDo + XiDr, Di = XnDo + XoDr- (4.69) ky 

The solution of this system gives four waves for each polarization state. Two 

distinct interference effects arise as a result of interaction of these four waves. 

The first is due to the fact that in a transparent crystal (without absorption) 

refracted and diffracted waves interact. In the simplest case of a centrosymetric 

crystal and symmetric reflection from a system of planes perpendicular to the 

entrance face, the rocking curve has a finite width and is symmetric with respect 

to the Bragg angle. 

For a certain fixed point of the maximum the amplitudes of the refracted and 

diffracted waves within the crystal are periodic functions of the depth z, which is 

perpendicular to the entrance face. The period of these amplitudes is the extinc- 

tion length 

y=t(l+y'?, 0) 
where 7, is the extinction length at the exact Bragg condition, and y is some 

function of the angular deviation from @ within the maximum. 

The value of y is defined by the equation 

1 

Yh 2 Ie 
2c | 28 (I —|Xn17) 

Yo 

2A0 sin 20 + zor ( 2 alt (4.71) 
0 a 

Here, C is the polarization factor, which is equal to unity for ¢ polarization and 
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to cos 20 for x polarization; yo,, = COS (Ko, 4)” is the inward normal to the 

surface, and y,, and y,; are the real and imaginary part of the Fourier component 

of the crystal polarization, respectively. 

Periods t, are of the order of 10°-10° A; they increase for weak reflections. 

Another interference effect arising in the wave field of a crystal is due to 

interaction of two refracted waves, as well as of two diffracted waves. Here, the 

periods of variation of the amplitude along depth are equal to d, of the reflecting 

planes. 

The values of the coefficients of reflection R and transmission T for the Laue 

case—transmission through a transparent crystal plate of thickness A—are 

calculated with an allowance for the boundary conditions on the exit face. Fora 

parallel-sided crystal plate it appears that the quantities R and T are periodic 

functions of the crystal thickness and the angle of incidence within the angular 

interval of the corresponding maximum. This is the so-called Pendellosung (or 

pendulum solution) (Fig. 4.27) 

da. 
un yy ey 

RiGee (4.72) = 9 |DpI- 1+” : 

jee eet nV) = D® = 1— R,()). (4.73) 

Fig. 4.27a,b. Change in the values of R and T in the region of the maximum for a transparent 

crystal. (a) curves R and T correspond to thickness A = 2n Tp [4.7], (b) curves at different cry- 

stal thicknesses; subsidiary maxima of the pendulum solution (/) A = (2n + 1)t)/2; (2) A 

= NT, are shown [4.8] 

The subsidiary maxima of this solution for R, at a fixed value of A decrease. 

With a small increase in thickness A (in the transparent crystal approximation) 

the oscillations oncurves R and T disappear, the respective values being denoted 

by R and T (Fig. 4.28). 
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Fig. 4.28. Profile of the maxima of 

averaged functions R and T [4.6] 

If a crystal plate is wedge shaped, the values of R and TJ on the exit face 

represent a periodic function with a period t’ = t/sin yw, where yw is the wedge 

angle, and the arising pattern shows lines of equal thickness. This effect can 

be used for determining structure amplitudes, since according to (4.68, 71, 72, 

73) the values of |F,,| are related to D via y,. Such measurements are highly 

accurate and are used for precise investigations of the distribution of the 

electron density in crystals with a simple structure [Ref. 2.13, Chap. 2].. 

Integration over the entire intensity maximum at reflection from a trans- 

parent parallel-side crystal plate in the Laue case gives the value of the integrated 

intensity 

2a 

Re a i Ig(x) dx, a= Face FAR (4.74) 

The integral of the Bessel function J,(x) depends only on the upper limit 2a, and 

the value of R, increases linearly with increasing a in the region of small a values, 

and then oscillates with a decreasing amplitude near the average value n/2 (Fig. 

4.29). The region of linear increase in R, is nothing else than the range of ap- 

plicability of kinematic theory. Regarding a ~ 0.7 as the limiting value, we find 

(for a symmetric reflection) for a crystal thickness A*, for which the kinematic 

approximation holds, the value 

0,7 cos 8 

~ (2/me?) | Fy/Q\a’ 
(4.75) A*® 

which practically coinsides with (4.62). This yields, forinstance, A ~ 1.25 x 107? 
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Rj Fig. 4.29. Curve of integrated reflection [4.8] 
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cm for the 333 reflection from Si for MoKa radiation and A = 1.5 x 10-*cm 

for the 220 reflection from Ge for CuKa radiation. From (4.75) it follows that 

for crystals of heavy elements with a simple structure, i.e., for large values of 

| F;;|/Q, A* is small. And conversely, for complicated organic crystals A* is com- 

paratively large and may reach 10-7 cm. 

4.3.6 Dynamic Scattering in an Absorbing Crystal. Borrmann Effect 

The scattering in thick crystals depends essentially on the diffraction mechanism 

of x-ray absorption. 

The most interesting phenomenon in dynamic scattering in an absorbing 

crystal is the effect of anomalous transmission, or the Borrmann effect [4.9, 4.9a]. 

The full value of the absorption coefficient for the quantities R and T is formed, 

algebraically, from the mean value o, and diffraction contribution (a, + @;). 

Here, an anomalously large absorption occurs for one field, and, contrariwise, 

an abrupt decrease in absorption—anomatous transmission—for the other. 

A pictorial physical model of the Borrmann effect is associated with inter- 

ference of the refracted and diffracted waves for each of the two fields. As a 

result of this interference the maxima of the amplitudes of the quasi-standing 

waves in the first field coincide with the system of atom-filled planes (hk/), which 

results in strong absorption of this field. The maxima for the second field occur 

halfway between the indicated planes, which yields anomalous transmission 
(Fig. 4.30). 

For a given linear coefficient of absorption yw the Bornmann effect manifests 

itself strongly enough already at values ~A > 10, where A is the crystal thick- 

ness. Thus, for a germanium crystal for CuKa radiation this corresponds to 
A > 0.28 mm, for MoKa radiation, to A > 0.35 mm, and for a silicon crystal to 
A> 0.7 and 7.0 mm, respectively. The Borrmann effect results in the disap- 
pearance of the secondary maxima and a sharp asymmetry of the transmission 
curve in the medium-thickness region. The rocking curves remain symmetric 
about the y axis (Fig. 4.31). 
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< Fig. 4.30a,b. Physical model of the 
o KD ® x?) Borrmann effect. 

. (a) anomalous transmission, nodes 

of quasi-standing waves are on 

atomic planes, (b) anomalous ab- 

sorption, antinodes are on the 

atomic planes [4.7] 

< Fig. 4.31a,b. Curves of transmis- 

sion and reflection for an absorbing 

crystal in symmetric recording for a 

series of increasing values of yt (tis 

the thickness). (a) transmission max- 

ima T (reflection 200 NaCl, CuKa 

radiation, uw = 160 cm™ [4.10]; (b) 

reflection maxima (reflection of 220 

Si, MoKa radiation, uw = 13.4cm7!). 

[4.11]. 
N levels correspond to normal 

absorption at the appropriate thick- 

nesses 

In reflection from a thin crystal plate (the Bragg case) the boundary con- 

ditions change substantially, and two effects take place. One part of the wave 

field is reflected back and, interfering with the initial wave field, gives, upon 

emergence through the entrance face, secondary maxima at the sides of the 

overall maximum. The other part emerges through the lower boundary of the 

plate, which leads to the transmission effect for the Bragg case. 

The symmetric shape of the maximum (Fig. 4.27) with a flat top in the region 

of full reflection, which is typical of a transparent (with low absorption) semi- 

infinite crystal, becomes more and more asymmetric with increasing in absorp- 

tion, with a sharp maximum at one of the boundaries of the indicated region 

(Fig. 4.32). 
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Fig. 4.32a-c. Curves of Bragg reflection from a 

thick absorbing crystal, corresponding to differ- 

ent values of parameters g and k. 
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(a) —K=0; (|) —k=0.1; (Cc) —K =0.2 
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Fig. 4.33a,b. 

Figure caption see opposite page 
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In the problems of classical dynamic theory briefly described here we con- 

sidered cases of incidence of a plane wave on a crystal in the form of an infinite 

plate or semispace. At present, the generalized dynamic theory is being devel- 

oped, in which the incident wave may have any shape for surface of equal 

phase and any front width, while the crystal may have an arbitrary shape (Fig. 

4.33). 

4.3.7 Experimental Investigations and Applications of Dynamic Scattering 

One of the most important tasks in investigating the dynamic scattering of x-rays 

in crystals is to establish the exact correlation between the experimentally 

measured scattering parameters and their theoretical analogs. 

In experimental studies of dynamic scattering, x-rays of a definite wavelength 

fall on the crystal under investigation which is set in the reflecting position. If the 

crystal is fixed, one can study the space distribution of the intensity of the 

diffracted rays. X-ray diffraction topography is based on this. If we rotate the 

crystal near the exact reflecting position, we can study the intensity distribution 

by the rocking curves method. 

The curves are measured in double- and triple-crystal x-ray spectrometers, in 

which an incident x-ray beam is collimated and monochromatized with the aid 

of reflection from a monochromator crystal or two such crystals. 

Fig. 4.34. Diagram of the double-crystal spectro- 

meter after Bragg. (X) x-ray source; (C) detectors; 

(J) monochromator crystal; (2) crystal under in- 

vestigation. The solid and dashed lines denote, 

respectively, the parallel and the inclined posi- 

tions of crystals / and 2 

The rocking curve, which is measured in the Bragg classical scheme of a 

double-crystal spectrometer after Bragg (Fig. 4.34) is a convolution of the rock- 

ing curves of both crystals and does not coincide with the theoretical value of the 

diffraction maximum. The increase in the angular width of the experimental 

curve is due to angular and spectral broadening (i.e., nonparallelism and non- 

monochromatism) of the incident beam. 

The effect of these factors on the shape and width of the rocking curve can be 

made small by using a three-crystal x-ray spectrometer (Fig. 4.35). By using 

4 
Fig. 4.33a.b. Pendulum bands in the form of hyperbolae arising in transmission of a spherical] 

wave through a crystal wedge. 

(a) interference pattern [4.13] (b) propagation of the wave front in a wedge-shaped crystal and 

the formation of hyperbolic maxima on the exit face [4.14] 
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different mutual positions of two fixed crystalsk—monochromators 1 and 2—and 
using asymmetric reflection, onecan obtaina practically parallel, monochromatic 

and fully polarized beam falling on the crystal under investigation. In other 
words, in a three-crystal spectrometer, the above-mentioned approximation of 

a plane incident wave is realized experimentally. 

Fig. 4.35. Scheme of the three-crystal 

spectrometer 

With the aid of such a beam it is possible to measure the so-called proper 

curves of diffraction reflection, compare them with the corresponding theore- 

tical values, and study fine diffraction effects, which require a high angular reso- 

lution. For instance, the asymmetry of the rocking curve, predicted by the theory 

for an absorbing crystal, was first discovered experimentally only with the aid 

of a triple-crystal spectrometer. 

Precise investigations of the shape of the rocking curve and its variations 

supply quantitative information on the structural perfection of the crystal 

under examination, since all the changes in the parameters of the curve are en- 

tirely due to distortions of the ideal structure. 

X-ray topography consists in obtaining the image of the whole crystal in a 

single Bragg reflection. Imagine that there is a parallel x-ray beam of large cross 

Fig. 4.36a-c. X-ray diffraction topo- 

graphy method. (a) geometry after Lang, 

ESE S (b) x-ray topogram of natural diamond 

obtained by the Lang method, x 15 

(courtesy of V. F. Miuskov) (c) topogram 

s/h of a KD,PO, crystal obtaned in a syn- 

= chrotron x-ray beam. The domain struc- 

3 ture which arises below the Curie point 

ae (T = 115K) has been revealed (courtesy 
a P of O. P. Aleshko-Ozhevsky) 
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Fig. 4.36b,c. Figure cap- 

tion see opposite page 

section. (This has recently been realized with the aid of beams of x-ray syn- 

chrotron radiation—see Sect. 4.5). If we place a crystal in a reflecting position 

in this beam, the “reflection” will have the size of the crystal and show its 

internal structure. In practice, when conventional sources are available, this is. 

realized for thin crystal plates by the Lang method—scanning the plate ac- 

cording to the Laue scheme under an narrow incident x-ray beam with syn- 

chronous motion of a photographic plate under the reflected beam (Fig. 4.36a). 

In this way the image—topogram of the entire crystal—is obtained (Fig. 

4.36b). If to take a topogram in a synchrotron radiation beam (Fig. 4.36c), we 

can detect rapid changes in the real structure of a crystal on phase transitions, 

in the course of growth, etc. 
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If a crystal has some defect, for instance a dislocation, then during the pro- 

pagation of a wave through it a phase difference arises with respect to the 

wave which has not transmitted through this defect. Such a phase contrast leads 

to a change in the image on the corresponding site of the topogram as compared 

with the other regions of the crystal. The particularmanifestation of the defect— 

brightening or darkening—depends on the crystal thickness and the extinction 

length. For instance, at wA < | (a “transparent” crystal) dislocations with a 

Burgers vector parallel to vector H, of the reflection employed appear as dark 

lines. Photography in the “‘absorbing’’-crystal regime (uwA > 1) is also used. 

The topograms also show the boundaries of large mosaic blocks, slip bands, and 

the interference effeets of the pendulum solution. The study of these phenomena 

is the subject of the theory of image formation, which has been developing 

vigorously in recent years, not only for x-ray, but also for electron and neutron 

diffraction.’ 

The Lang method requires a total exposure of several hours, whereas the use 

of a beam of synchrotron radiation reduces it to seconds, which makes it pos- 

sible, in principle, to study changes in real structure during deformation, phase 

transitions, etc. 

Of great interest are the methods of x-ray interferometry and moiré pattern, 

which have been developing in recent years. Here, one observes the repeat inter- 

ference of an x-ray beam which has passed through a system of crystal plates 

with a perfect structure. 

A diagram of an x-ray interferometer is given in Fig. 4.37. The whole instru- 

ment, which consists of three crystal plates—separator S, mirror M, and ana- 

Fig. 4.37. Diagram of an interferometer according to Laue 
scheme [4.15] 

3 X-ray topography of defects and interferometry are also discussed in [Ref.2.13, Chap. 5]. 



4.3. Intensity of Scattering by a Single Crystal 271 

lyzer A and their common base—is carved out of a large perfect single crystal. 

The thicknesses of plates (A ~ 20) are chosen in such a way that each plate is 

anomalously transparent only for the second field in accordance with the classical 

theory. An incident x-ray beam splits on S in two and on passing this and the 

other plates is reflected from the same system of plates consecutively forming 

refracted and diffracted waves. If the analyzer grating A is displaced or turned 

with respect to the “common” grating of S, M, and A, or if it has defects, the 

pattern of the emerging beams will reveala moiré pattern. The instrument can also 

be used for observing and interpreting moiré patterns at preassigned conditions 

of displacement or rotation of the analyzer plate. With a parallel arrangement 

Fig. 4.38a,b. X-ray diffraction moiré 

of silicon crystals. (a) rotation moiré 

pen a ee a a renee mn ee pattern from two Si platelets, rotation 
Ne Re at retin Le ep ee ne Eli 2 cea 

soles on ponear oman eonomepmra~avmmanencnmanecionateenowe angle 2.5” [4.16]; (b) complex moiré 
Re er 9 er 8 EY Steere es PO s rf 4 

Cae SS ee pattern: fop left moiré from disloca- 
EE RE EE EER RR A Sk ee Ame ar . . ' 

fea a ge ay ea aw en pre a aba ro enren ont tions, bottom right and left rotation 
I eee piler . * “Keg 

Sates novandemapmigenarseen cpm wroeatenioe tovtwaerencr ane eaeare moiré, top center dilatation moiré, 

ee A = SO ce SAO a AS AI ena IO center mixed moiré (courtesy of 
ae 8 Sa A A ia is = a 
spate At POEID NEL 8A CORE PE SIE LEO ATIC: iV F. Miuskov) 
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of the reflecting planes in S and M, if they differ in the values of the interplanar 

distances d,, a dilatation moiré pattern witha period A = d,d,/Adwillappear. This 

makes it possible to detect extremely small disturbances in periodicity, of the 

order of 10~® of a period d,, i.e., Ad ~ 107'6 cm. If the periods coincide, but the 

crystals have a small relative turn about the axis perpendicular to the plates, a 

rotational moiré pattern appears; its period Az ~ d/g, where ¢g is the rotation 

angle (Fig. 4.38). In this case, too, the sensitivity threshold of the moiré pattern 

to the variation in g is extremely high, Ag = 10-* rad is detected. In moiré 

patterns one can also visualize lattice defects, namely dislocations (Fig. 4.38b). 

Thus, dynamic theory, which was first developed for perfect crystals, is also 

becoming a tool for investigations of imperfections in crystals. It should be 

emphasized that diffraction from crystals intermediate in size between those to 
which one can apply either purely kinematic or purely dynamic theories is the 

most difficult for analysis. 

4.4 Scattering by Noncrystalline Substances 

4.4.1 General Expression for Intensity of Scattering. 

Function of Interatomic Distances 

X-ray and other diffraction methods supply the most accurate information on 

the crystal structure, but they can also be used for studying the structure of less 

ordered systems—polymers, liquid crystals, amorphous solids, liquids, and 

gases. The closer the order in the system to that in a crystal, the more features 

inherent in diffraction from a crystal are retained in scattering from such a 

system. 
Since condensed noncrystalline systems have no long-range order, it is impos- 

sible in practice to calculate their scattering amplitudes, but direct calculation of 

the scattering intensity is feasible. 

Let us consider such a possibility. The Fourier integral (4.12) or expressions 

of the type (4.44) following from it with an allowance for (4.25), i.e. 

F(S) = Lhe exp [271 (r,S)] (4.76) 

are universal; they give the amplitude of scattering from an assembly of any N 

atoms in positions r, and having atomic-temperature factors fj;. We know 

that only strictly discrete directions of scattered beams are possible for a crystal 

in accordance with the condition S = H,,, (4.30). But for an arbitrary object, § 
may have any value, i.e., scattering with a noticeable intensity is possible in any 
direction k = ky + 2nS (Fig. 4.13). The intensity is defined, by analogy with 
(4.47), as 

TUS)="|F OS) = FCS) F=(S)t (4.77) 
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It can naturally be calculated after F(S) is obtained from (4.76). But how can 
we assign all the atomic positions r,, say, in such a system as a liquid? It is 

possible, however, to obtain a different expression for intensity / if we insert the 

scattering amplitude taken from (4.76) into (4.77), bearing in mind that for F* 

the distance r, is replaced by —r,. This will yield 

WS) = 3 fir fer exp 2ni llr, — rx) S}. (4.78) 

Equation (4.78) is exactly the same as (4.76), but the atomic-temperature 

factors appearing in (4.76) are now replaced by their products, and the atomic 

coordinates r,, by the coordinate differences r; — r, = r,,, which are nothing 

else but interatomic distances. Hence the intensity can be calculated from the 

set of interatomic distances in the object, without knowledge of the atomic 

coordinates. This is extremely important for most noncrystalline substances, 

because it is particularly difficult to know the arrangement of constituent atoms, 

but one can assign functions which describe statistically all the possible intera- 

tomic distances. 

Quite similar expressions are obtained if we proceed from the description of 

the scattering density of a substance as a continuous function p(r), whose scatter- 

ing amplitude is F(S) (4.12). Equation (4.77) contains both the amplitude F(S) 

and F*(S). The former is a Fourier transform of p(r):F(S) = ¥ [p(r)], and the 

latter, of the inverted function p(—r):F*(S) = ¥ [p(—n)]. By the convolution 

theorem (4.20) the product of amplitudes is a Fourier transform of the convolu- 

tion of the corresponding functions 

F [p(r) * p(—r)] = F(S) F*(S) = 1(S), (4.79) 

and such a convolution [cf (4.19)] has the form 

QO(r) = pln) * p(—r) = J pl’) pr’ — £) doy. (4.80) 

Function Q is called function of interatomic distances in the object. It has high 
values when atoms are at points r’ and r’ — r. But this means precisely that 

in this case r is the interatomic distance. On the other hand, the intensity is a 

Fourier integral (4.79) of function Q(r) (4.80). 

4.4.2. Spherically Symmetric Systems: Gas, Liquid, and Amorphous Substances 

Let us revert to (4.78). It contains N? terms, N of them with j = k being sepa- 
rated into a ‘“‘zero”’ term = f;7 with an exponential factor, which turns into unity, 

because r,, = r, — r, = 0. This term corresponds to the distances of the atoms 
to “themselves”. Let us use (4.78) to calculate the intensity of scattering of 
molecules in a gas. The arrangement of the atoms in a molecule is described by 

a set of r,, and hence of interatomic distances r,,. But in a gas the molecules have 
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0 0.2 0.4 sin@/A 0 0.2 0.4 0,6 sin6/A 

Fig. 4.39a-d. Diffraction from liq- 

uids. 

(a) x-ray scattering curve /(S) for 

liquid lead; (b) the same for 

germanium (the dashed line de- 

notes the variation in the intensity 

of independent coherent scatter- 

ing); (c) x-ray pattern of methyl 

alcohol (courtesy of A. F. Skry- 

shevsky) (d) electron diffraction 

pattern of gaseous benzene (cour- 

tesy of L. V. Vilkov) 

random orientations and, accordingly, function /(.S) (4.78) must be spherically 

averaged. As in (4.15), such averaging gives 

N,N-1 

KS) = SIR+ SS Sinha apg (4.81) 

The most effective method for studying the structure of free molecules in a 

gas or vapor is electron diffraction analysis because of the strong interaction 

(the large absolute value of f) of electrons with atoms (see Sect. 4.8 below). An 

electron diffraction pattern of molecules in vapors is a set of diffuse rings (Fig. 

4.39d). The measurement of /(S) helps to find the set of interatomic distances 

r,, na molecule and, as a result, leads to a model of its structure. 

Scattering by condensed noncrystalline systems of atoms depends on the na- 

ture of their ordering and symmetry. Let us imagine that the ideal crystalline 

structure disorders gradually and that periodicity though exists, but only approx- 
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imately (see Fig. 1.22). In reciprocal space such “paracrystalline’’ systems will 

be represented by smeared-out nodes of the reciprocal lattice; their smearing-out 

increases rapidly with increasing |. S|, and F(S) vanishes at some | S,,,,| = Ro. 

Here, R is the average radius of ordering, i.e., the distance at which it is still pos- 

sible to find a correlation in the arrangement of the atoms of the object. The 

structure and smearing-out of the scattering intensity function J(S) will also 

depend on the anisotropy of ordering: the interference peaks are “sharper” in 

those directions along which the object is more ordered, and smeared out in 

those along which it is less ordered. It is possible to calculate the intensity once 

the function of interatomic distances is given by the set r, =r, — r, according 
to (4.78) or as a continuous function Q(r) (4.80). 

Gases, liquids, and amorphous solids are statistically isotropic, and their 

structure is described by the radial distribution function Q(r) = W(r), which 

gives a description of the interatomic distances r in terms of probabilities, but 

with no information about spatial orientation (Fig. 1.22). Then J(S) = I(S), 

too, is a spherically symmetric function; we know only moduli S (length of 

vectors S), and the exponent in (4.78) is replaced by the known factor (sin 

2nSr)/2nSr. An x-ray, neutron, or electron diffraction pattern is in this case 

similar to a diffraction pattern from molecules in a gas and constitutes a set of 

smeared-out diffusive rings (Fig. 4.39). 

4.4.3 Systems with Cylindrical Symmetry: Polymers and Liquid Crystals 

The symmetry of function /(.S) depends on that of the object, which also defines 

the symmetry of Q(S). A characteristic ordering for polymers, both natural and 

synthetic, is the packing of their chain molecules parallel to each other, but with 

a random angular (azimuthal) orientation of these molecules or their groups. 

Liquid crystals exhibit the same, approximately parallel orientation of molecules. 

Such objects possess a statistically cylindrical symmetry. Then the same sym- 

metry will have intensity function /(S) which consists of more or less diffuse 

annular regions in the reciprocal space. Vector S is in this case given by only two 

cylindrical coordinates: S = S(Sp, Z); Z is the axis of cylindrical symmetry in 

the reciprocal space. The intersection of such annular regions by the reflection 

sphere actually gives an x-ray diffraction pattern consisting of more or less diffuse 

arcs arranged along the so-called layer lines (Fig. 4.40). The distance between 

them, c*, is inversely proportional to the periodicity of the chain molecules c. 

The structure amplitude in the case of diffraction by chain molecules results 

from the transformation of the general expression (4.44) to cylindrical co- 

ordinates, which yields 

n=—o 

F(R,y, Z) = x exp in (v a 5) f if p(r, YW, z) J, (20rR) 

Z 
< exp i (ny) + 2n z r dr dy dz. (4.82) 
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Fig. 4.40. Formation of smeared-out rings from _ Fig. 4.41. Helical structure (left, sym- 

reciprocal-lattice points in the case of acylindrical- _ metry 5,9) and the optical diffraction pat- 

ly symmetric object and their intersection by the tern from it (right) 

Ewald sphere A 

Here, r, yw, and z are the cylindrical coordinates in real space, R, y, Z = I/c 

are those in reciprocal space; and J, is the Bessel function. 

Of special interest is diffraction by helical molecules. In this case (4.82) 

includes, and only some of the Bessel functions determined by the selection 

rule 

1 = mp + (nq/N), (4.83) 

where / is the number of the layer line, p, g, and N are the spiral parameters of a 

helix S,/4, N (see Sect. 2.7), and n and mare integers. The selection rule leads to 

a peculiar arrangement of reflections in the form of a “‘diagonal cross”’ on x-ray 

photographs from helical molecules. This is illustrated by the optical diffraction 

pattern of Fig. 4.41 and by the x-ray photographs of [Ref.2.13, Fig. 2.156]. 

The structure analysis of noncrystalline materials is based on the possibility 

of finding, by the Fourier transformation (4.80) of the observed intensity 

distribution, function Q(r), which is cylindrically symmetric for polymers, or 

W(r) function of radial distribution for liquids and amorphous solids, molecules, 

and gases. In the case of spherical symmetry, by analogy with (4.15), 

lS sin sr 
Oe: J K(s)r? ——— dr, (4.84) 

whererand sare spherical coordinates. Upon some normalization of the intensity, 

Q(r) changes to W(r). 

In the case of cylindrical symmetry 

O(r, z) = 2 { f HR, Z) Jo(2nrR) cos (2nzZ) IR AR AZ. (4.85) 
0 o 
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Here, r, z and R, Z are the cylindrical coordinates in real and reciprocal 

space, and Jy is a zero-order Bessel function. Of course, interatomic-distance 

function is not a structure, but it is closely related to the structure and enable one 

to make many conclusions about it. A similar approach, i.e., the calculation of 

interatomic-distance functions, is used in studying the crystal structure; this 

problem will be discussed in detail later on. 

Thus, the structure and peculiarities of the intensity function J(S) in reci- 

procal space, which is revealed in a diffraction experiment, is directly as- 

sociated with the structure of the scattering object. The more ordered the 

object, the more orderly and “‘sharper’’ it is expressed in the reciprocal space, 

and the more detailed is the information which can be obtained about it from a 

diffraction experiment. The less ordered is the object, the “‘smoother’’ is its 

representation in the reciprocal space and the less information is obtained from 

a diffraction experiment. This, however, does not mean that the potentialities of 

such an experiment have dwindled, but it simply reflects its physical adequacy to 

the order of the structure under investigation. Indeed, while the structure of a 

crystal with a hundred atoms in the unit cell is described by a total of up to 

10? — 10* parameters and it gives several thousand J,,, in the reciprocal lattice, 

the structure of a liquid is described by the statistical function W(r), which has 

several peaks, and, consequently, the function /(S) is also poorly defined. 

4.4.4 Small-Angle Scattering 

Diffraction methods can be used not only at the level of atomic resolution, but 

also at a resolution of 10 — 1000 A. Sucha scale permits determination by the 

diffraction methods of some important characteristics of biological macromole- 

cules, which have molecular weights of the order of 10° and more, namely, their 

shape, volume, mutual arrangement of their subunits, etc. A similar problem is 

the determination of the shape and size of submicroscopic segregations of a 

new phase in solid solutions, the particle size in various disperse systems, etc. 

Here, the electron density of an object or, more precisely, the difference be- 

tween it and the density of the surrounding medium, can be assumed constant, 

p(r) = P(r) = const, to a first approximation, while outside the object this 

difference is equal to zero. The shape function ®(r) describes the external form 

and size of the particle (macromolecule). The scattering amplitude for such an 

object is defined by the familiar expression (4.38) 

D(S) = § P(r) exp [2ni(Sr)] dv, = f exp [2ni(Sr)] dv,. 
p 

D(S) can be found analytically or numerically. Since function @(r) is nonzero 

in a large (in the “diffraction” sense) volume, function D(S) is, contrariwise, 
concentrated near | S| 0, i.e., at small scattering angles, near the initial 

beam. For particles with a cross section A this area is defined by (4.41) through 

the value A, i.e., for instance, for A ~ 100 Aand A = 1.5 A, function D(S) is 
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concentrated in an angular interval of ~ 1°, whereas diffraction due to dis- 

tances between atoms, for instance in crystals, encompasses “‘large’’ angles 

up to 90°. 

An analysis of the shape of a zero peak [,(S) = K| D(S)|? makes it possible 
to solve the reverse problem as well, namely finding the shape of the scattering 

object from the intensity of small-angle x-ray scattering. Then, using (4.41) or 

similar equations, one can determine the particle dimensions along different 

directions. The problem of finding the shape of particles is complicated by the 

fact that they are often randomly oriented, and this considerably smooths out the 

scattering curve. Buta number of geometric parameters of a particle—its radius of 

gyration fp(r)r?dv/{p(r)dv, volume, and surface—can be determined unambi- 

guously from the small-angle scattering curve. Measurements of small-angle scat- 

tering on the absolute scale determine the molecular weights of microparticles and 

the mass per unit length for chain molecules. The details of the shape of the object 

can be revealed by constructing hypothetical models and comparing their theo- 

retical scattering curves with the experimental (Fig. 4.42). In the case of disperse 

systems of unequal particles—powders, porous bodies, and solid solutions—it 

is possible to determine both the average particle size and the particle size 

distribution. 

-30 

20 40 a 

Fig. 4.42. Experimental curve of small-angle x-ray scattering by the bacterial virus Cp(/) and 
scattering curves calculated for homogeneous models: two contacting spheres of diameter 720 
and 240 A (2) and an icosahedron with a cylindrical tail (3). A schematic representation of a 
model of bacterial virus Cy, is given, for which the best agreement with experiment was obtained 
[4.17] 
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Measurement of scattering in the immediate vicinity of the primary beam is 

a complicated task; it requires construction of special small-angle cameras 

to measure scattering beginning with a few angular seconds and minutes. 

Along with small-angle scattering of x-rays, small-angle scattering of neu- 

trons and electrons has found ever-increasing application in recent years. 

4.5 Experimental Technique of X-Ray Structure Analysis 
of Single Crystals‘ 

4.5.1 Generation and Properties of X-Rays 

X-rays are electromagnetic waves with a wavelength 4 from 10-? to 10? A. In 

x-ray structure analysis wavelength of about | A are used. 

The refractive index q of x-rays is less than unity, although very close to it: 

a= 1 1,.3-10-* pi?, (4.86) 

where p is the density of the substance in g/cm’, and 4 is in A. Since q is close to 

unity, x-rays cannot be focused with the aid of any lenses. In x-ray optics beams 

are usually formed with the aid of apertures. It is also possible to use mirrors 

with complete external reflection and diffraction methods for beam focusing. 

The source of x-radiation is an electron x-ray tube (Fig. 4.43). In it, electrons 

emitted by the heated cathode (a tungsten filament) are accelerated by the elec- 

tric field and directed to the metallic anode. When the electrons are slowed down 

abruptly in the anode substance, their energy is transformed into photons of 

x-radiation 

hy = E, — ES. (4.87) 

where £, and E, are the electron energy before and after collision with the anode. 

Fig. 4.43. X-ray tube. 

(1) anode; (2) windows; (3) focusing cup; (4) filament; (5) metal-glass seal; (6) glass body; (7) 

filament terminals; (8) focusing electrode terminal 

4 Sections 4.5 and 4.6 were written by D.M. Kheiker. 
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The maximum frequency »,,,, (the minimum wavelength /,,;,) corresponds to 

a full stoppage of the electrons (FE, = 0) 

hnen = = = By = e, (4.88) 

where U is the accelerating voltage. Since E, may have any magnitude less than 

E,, the continuous spectrum from the long-wave side is limited only by the 

absorption of soft x-rays in the material of the tube window and in the air. 

Figure 4.44 shows continuous spectra from a tungsten anode. The radiation 

intensity is defined by the expression 

I= piU. (4.89) 

Here, iis the anodecurrent, p = 1.1 x 10-° ZUisthe portion of the energy of the 

electron beam transformed into x-radiation, Z is the atomic number of the anode 

material, and U is the accelerating voltage. The intensity maximum in the 

continuous spectrum is associated with a wavelength of approximately 3 /,,;,/2. 

If the energy of the accelerated electrons exceeds that of the excitation 

threshold, i.e., is sufficient to eject an electron from an inner shell of the atom, 

50{kv] 

I [rel. un.] 
[op) 

25 

20 
Ss Fig. 4.44. Continuous x-ray spectra at different accelera- 

OK 0.5 OF - : 
A[A ting voltages (tungsten anode) 

K, 
ys 6 

O05) 107 15) 210/24] 0.4 

Fig. 4.45a,b. Radiation spectra of x-ray tubes with a copper (a) and a molybdenum (b) anode 
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lines of characteristic x-radiation appear against the background of the con- 

tinuous spectrum (Fig. 4.45). The electrons of the atom, passing from the outer 

shells with a high energy E to a vacancy in an inner shell, emit photons 

ed a i (4.90) 

The value of Ay depends on the system of energy levels characteristic of each 

element. The spectral lines are divided into series K, L, M, N, ..., depending 

on which shell the electron was removed from. Inside each series there are 

several lines @, a, ..., B,, B, ... in accordance with the level from which the 

energy transition occurred. 

The most intensive lines are Ka, (electron transition L;;, — K;) and aslightly 

weaker line Ka,(L;; — Ky), which is close to it. The intensity of the line KP, 

(Miz; — K,) equals 15 — 25% of that of Ka,. The other lines have still lower 

intensities. The frequency of a line changes from one element to another in ac- 

cordance with the Moseley’s law 

Jv =cZ— 9), (4.91) 

where c and @ are constants. 

Ka, and Ka, lines of metals from chromium (Z = 24) to molybdenum 

(Z = 42), with wavelengths in the range from 2.3 to 0.7 A, are most commonly 

used as monochromatic radiation in x-ray. structure analysis. 

At a constant power of the anode current W = iU the intensity of the 

characteristic radiation J, increases as (U — U,)':°/U, where U, is the excitation 

threshold, while the intensity of the continuous spectrum / increases as U [see 

(4.89)]. The maximum of the ratio /,/J is achieved at U = 3U,. 

The predominant part of the electron beam energy is spent on heating the 

anode, about 1% is transformed into x-radiation, and less than 0.1% into 

characteristic radiation. The heat released at the anode limits the power of the 

radiation source, and therefore the tubes have to be cooled. There are x-ray 

tubes of different design and power, with different sizes of the focal (emitting) 

spot—from several micrometers (in microfocus tubes) to several millimeters (in 

normal-focus tubes) depending on their purpose. The tube power ranges from 

0.01 to 100 kW and the quantum flux density at a distance of 100 mm from the 

source varies from 10’ to 10’? cm~*+s7!. 
The smaller the dimensions of the focus, the better the conditions of heat 

removal and the higher the power per unit area of the focus, and hence the 

greater is the brightness of the x-radiation source. But the total power of the tube 

is then reduced, and so is the quantum flux density. For instance, in a 20 W 

microfocus tube with a focus diameter of 40 1m the specific load is 15 kW/mm?, 

while the quantum flux density at a distance of 125 mmis 0.006 x 10'? cm~?+s7!; 

in a 1.5 kW tube with a normal focus of | x 10 mm’ the specific power output 

is 0.15 kW/mm?, while the quantum flux density at the same distance is 0.45 x 

10'2 cm-?-s7~!. The total and specific power of the tubes can be increased by a 

factor of 10-20 by rotating a water-cooled hollow cylindrical anode. 
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Modern x-ray equipment for structure analysis is designed for a voltage of 

up to 60 kV and ensures a radiation stability of 0.03-0.3 °%. The x-ray beam from 

the tube is then collimated and monochromatized. 

The most common collimation system consists of three apertures (or slits). 

The first aperture cuts the necessary area out of the projection of the focus spot, 

the second aperture restricts the size of the beam incident on the specimen, 

and the third cuts off additional radiation which is due to the second diaphragm 

(Fig. 4.46). 

Fig. 4.46. Primary-beam collimator consis- 

ting of three apertures D,, D,, and D, 

\ 

Specimen 

v Fig. 4.47a-c. Methods of monochromatization 

by bent crystals. (a) Johannson’s;(b) Johann’s; 

Gbeervaton Coshua’s. (M) bent monochromator crystal; 

plane (F) real (or imaginary) focus; (F’) focus image 

in diffracted rays; (O) center of the focusing 

circle; (r) radius of this circle, (NN’) crystal 

curvature radius 

The operation of a crystal monochromator is based on Bragg-Wulff reflection 

(4.3): with fixed d and @ the crystal isolates from the spectrum a narrow spectral 

interval of width depending on the mosaic. 

To improve focusing, bent crystal monochromators are used. The ray dia- 

gram for monochromators is shown in Fig. 4.47. The bend must be such that 
the angle of incidence is constant for all the rays of the diverging beam, while 

the reflected rays converge at a single point. This can be achieved, for instance, 

by bending the crystal around a circle with a radius equal to the diameter of 

the focusing circle on which the crystal surface rests (the Johannson method). 

Monochromators use perfect single crystals of quartz, pyrolytic graphite, 

etc. 
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In recent years, synchrotron radiation from annular electron accelerators— 

synchrotrons and storage rings—have been used as powerful x-ray sources. 

Moving in a circular orbit, the electrons emit a quasicontinuous electromagnetic 

spectrum with A(x) A 

AT 23S RIBY (4.92) 

Here, R is the radius of the electron orbit in meters, and E is the electron 

energy in GeV. Thus, at E = 2.2 GeV and R = 6.15 m, A(x) = 1.4 A; this kind 

of radiation is suitable for x-ray structure analysis. The radiation is strictly polar- 

ized in the plane of the electron orbit and directed tangentially to it. After mono- 

chromatization it is possible to obtain a photon flux density of 10!'° mm? s~!, 

which is 3—5 orders higher than the flux from powerful tubes. 

Isotopic sources are also used in x-ray investigations. The nucleus of such an 

isotope captures the K electron from the nearest orbit. When electrons from 

higher orbits pass to such a vacated orbit, a characteristic spectrum arises. Such 

sources are portable and stable, but their intensity is low. Specific sources 

producing coherent y quanta with a wavelength suitable for x-ray analysis are 

Mossbauer sources, for instance those of !°Te or '!°Sn nuclei. 

4.5.2 Interaction of X-Rays with a Substance 

The propagation of x-rays through a substance is attended by the following basic 

processes: 

I) coherent scattering giving diffracted beams; x-ray photons change direc- 

tion without any loss of energy; 

II) incoherent scattering, in which the photons deflect from their initial direc- 

tion and part of the photon energy is transferred to the recoil electron (Compton 

effect), and 

III) absorption, when part of the photon energy is spent on ejecting an 

electron from an atom, while the remaining energy is transferred to this photo- 

electron (photoeffect). The excited atom, returning to the normal state, emits a 

photon of a lower energy (secondary fluorescent radiation) or a so-called Auger 

election (secondary photoeffect). 

As a result of these processes the intensity of the primary beam decreases 

exponentially in passing through a layer of substance of thickness / 

I= I, exp (—p), (4.93) 

where yu is the summary coefficient of attenuation. 

The absorption coefficient is approximately proportional to 4’, and also to 

Z>. On this dependence are superimposed absorption jumps (edges) correspond- 

ing to the energy of the photons, which may remove an electron from some 

atomic shell. 
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By using filters made of an element with a suitable Z and by taking advantage 

of its selective absorption near the K edge, one can reduce the short-wave com- 

ponent of the background on x-ray photographs and eliminate f lines. 

Let us consider the coherent scattering of x-rays by electrons. According to 

classical electrodynamics a free electron in the alternating electromagnetic field 

of an incident x-ray wave is set into vibration with a frequency of an electric 

vector and becomes a dipole with a variable moment, which will, in turn, be the 

source of scattered radiation with the same frequency. The intensity of radiation 

of a vibrating electron [see (4.7)] at a linear polarization of the primary beam 

of intensity J, is equal to 

Ca \ a ae 4.94 
I, =Ip\ 7G BR Sin’ 9g, (4.94) 

where @ is the angle between the scattered beam and the dipole axis, and R is 

the distance from the emitting electron. 

If the primary beam is polarized, and K,, and K, are the coefficients of polari- 

zation in the scattering plane and perpendicular to it, the electron emission 

intensity is equal to 

e 2 1 ; 

I, == I, pe R (K, -+ K, COS 20), (4.95) 

where 26 is the scattering angle (y,, = 90°—26, 9, = 90°). 

If the primary beam is not polarized, then K,, = K, = 1/2, and 

Canin lb cos 20 [soar a aoe (4.96) 

It is usually assumed that the magnetic structure of crystals does not affect the 
scattering of x-rays and can be investigated only by neutron diffraction (see Sect. 
4.9). In actual fact, the interaction of x-rays with the magnetic moment of atoms 
(i.e., those which have unpaired electrons) takes place, although it is very weak. 
Therefore one can observe ‘“‘magnetic”’ peaks of scattering from ferro- or antifer- 
romagnetics [4.17a]. 

4.5.3 Recording of X-Rays 

The intensity of x-ray scattering patterns is measured by the photographic 
method or with the aid of photon counters. In photographic recording the film 
can, simultaneously or consecutively, record x-ray beams scattered by the 
specimen at different angles, i.e., it is a two-dimensional detector. The effect of 
X-rays on a photographic film is the same as that of visible light and consists in 
photochemical decomposition of silver bromide. The blackening D is defined as 
the logarithm of the ratio of the intensities of a light beam transmitted through 
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an irradidated area of the film J and a beam transmitted through nonir- 

radiated area of it Jy 

D = Ig(J/Jo). (4.97) 

The blackening of the film in the range of 0.3-1.2 is proportional to the number 

of incident x-ray photons per unit area. 

In visual estimation of blackenings, use is made of the method of blackening 

marks—standard spots with a constant blackening ratio 1: ,/2 :2:2 ,/2 ... or 

with a smaller interval, with which the observed blackenings of the reflections of 

the x-ray photographs are compared. 

Accurate Measurements of blackenings are made by optical microphotometers 

or microdensitometers, which record either blackening or peak profiles in the 

form of a curve, and by computer-controlled microdensitometers. 

Another basic technique for recording x-rays is the diffractometric method 

based on the use of various x-ray quantum counters of the ionization, scintilla- 

tion, semiconductor, etc., type. As a rule, a counter can record a narrow beam 

of rays in a small angular interval, 1.e., it is a point detector. 

Gas discharge proportional counters and scintillation counters are the most 

common; the latter combine a luminescent crystal which lights up under the ef- 

fect of x-ray quanta, and a photoelectronic multiplier. Ge or Si semiconductor 

detectors are also used. 

The efficiency of a detector is defined by the ratio of the number of recorded 

photons to that of photons incident on the input window of the detector, and 

equals 60-98 °/ We shall discuss diffractometric devices in more detail further 

on. 

4.5.4 Stages of X-Ray Structure Analysis of Single Crystals 

Determination of the structure of crystals, i.e., of the atomic coordinates and 

other parameters of the structure, consists of two stages: a) obtaining and pro- 

cessing diffraction data (including determination of symmetry and unit cell) and 

b) finding the atomic structure or determining the electron density distribution 

by mathematical techniques. The first stage is covered by Sect. 4.5, 6 and the 

second, by Sect. 4.7. 

An x-ray experiment, in turn, consists of two stages. The first is a preliminary 

investigation: the lattice parameters and symmetry are determined, the crystal 

is oriented, its mosaic structure is established, and the absorption curves are 

found. The second stage consists in measuring the integrated intensities of the 

entire set of reflections from the crystal. 

It should be noted that the crystal orientation and the precise determina- 

tion of the cell may constitute a separate problem. The determination of the cell 

parameters is used for identifying substances existing as small single crystals. 

Crystal orientation is employed in studying the direction of growth, epitaxy, and 
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topotaxy, and in technical applications of single crystals. Precise measurement 

of the lattice parameters is used in investigating solid solutions, the thermal 

expansion tensor, etc. Single-crystal diffraction data also help to investigate 

thermal diffusion scattering, i.e., the phonon spectrum of crystals. 

X-ray investigation is sometimes preceded by the selection of a specimen and 

its preliminary inspection with the aid of optical goniometry and crystallooptical 

methods. 

The structure of single crystals is examined in a monochromatic or poly- 

chromatic (white) radiation. In the former case, we can, in accordance with 

Ewald’s construction (Fig. 4.136), record either only one or several reflections 

at a time, and therefore it is always necessary to use methods in which the 

crystal can successively be set into different reflecting positions. In the latter case 

Ewald’s construction is a continuous series of reflection spheres with a radius 

{FOM Pin = Ants tO gay = Ania, SO that a large number-of reflections) appear 

simultaneously. 

4.5.5 Laue Method 

This method consists in taking x-ray photographs of a fixed single crystal in a 

parallel polychromatic beam. In this case the ordinary Ewald construction is 

modified. We replace a continuous series of reflection spheres, corresponding to 

different A, by a single sphere of unit radius, and simultaneously change the scale 

of vectors H,,,. Then the nodes of the reciprocal lattice will be transformed into 

radial segments of length 

Dak = {BiyxiAmins Ayn: a . 

As follows from Fig. 4.48, at point M the sphere will be intersected by seg- 

ments corresponding to several orders of reflection; rays with a wavelength 

Ay = OM/Aizy 22 = OM/Ararnr), etc., will be scattered in the direction of 

O,M, i.e., the consecutive orders of reflections hk/ are represented by a single 

spot. 

Fig. 4.48. Ewald’s construction 

for Laue case 
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Laue photographs are taken as follows. The white radiation, including the 
characteristic spectral lines, of a tungsten or molybdenum (sometimes copper) 
anode is directed towards the specimen through a “point” collimator D,D, 
(Fig. 4.49). The film is placed behind the specimen, thus recording a Laue trans- 
mission photograph (Fig. 4.49a), or in front of the specimen, thus giving a 
“back” Laue photograph (Fig. 4.49b). In the latter case the specimen may be 
bulky. 

Fig. 4.49a,b. Front (a) and back (b) Laue photographs 

The Laue method is used to determine the symmetry of the crystals and also 

their orientation, for such purposes as placement in other cameras, machining, 

etc. 

The construction in Fig. 4.48 points to a simple relationship between the 

position of the spot on the film and the direction of the normal of the reflecting 

system of planes. The projection of the bundle of normals onto the plane—the 

so-called gnomonic projection—is considered. The normal and the reflected 

beam lie in the same plane, which intersects the gnomonic projection along the 

central line. The distance of the projection of the normal N,,,; from the center of 

gnomonic projection O, for the Laue photograph is equal to 

O.N,,, = 2: cot 0 = 2 cot (= arctan =, (4.98) 

where OP is the distance of the spot from the trace of the primary beam on the 

film, and L is the specimen-film distance. 

The symmetry of the reciprocal lattice of the crystal is established by analyz- 

ing the gnomonic or stereographic projections and obtaining Laue photographs 

along the main directions. The sets of reflections of one zone are arranged on the 

Laue photograph on a conical section (ellipse, parabola, or hyperbola), whose 

axis is that of the zone. On switching to a gnomonic projection the zones will be 

represented by straight lines. 

An important property of Laue photographs (Fig. 4.50) is that if the picture 

is taken along an axis or symmetry plane of a crystal, the pattern will possess the 

same symmetry elements. Therefore, after taking a picture of a crystal with 

arbitrary orientation to find the principal symmetry axes, other Laue photo- 
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Fig. 4.50. Laue photograph of a crystal of [C(NH2)3], [UO,0,(CO3;)2]. 2H,0 obtained on an 

unfiltered molybdenum radiation; the trace of the primary x-ray beam coincides with the line of 

intersection of two symmetry planes 

graphs taken along these principal axis are used to determine the crystal sym- 

metry. 

A Laue photograph is a plane two-dimensional image, and hence its sym- 

metry is described by one of the ten two-dimensional crystallographic groups. 

By comparing Laue photographs taken along different directions it is possible to 

allocate the point group K of the crystal to one of the eleven Laue classes, which, 

regardless of whether K has a center of symmetry, ‘“‘add”’ to it the symmetry of 

the reciprocal lattice (see Sect. 4.2.6). 

The most rapid technique for orientation and establishing the symmetry on 

the basis of the Laue method is the use of an electrooptical convertor, by which 

the diffraction pattern is amplified many times over, and the researcher can 

directly observe the diffraction pattern on the display. 

4.5.6 Crystal Rotation and Oscillation Methods 

These methods are based on the fact that during the rotation of a crystal about 

an axis which does not coincide with the direction of the primary beam the nodes 

of its reciprocal lattice will intersect in turn the sphere of reflection. To obtain 

x-ray photographs by these methods, a parallel monochromatic beam is directed 

towards a small single crystal (0.2-1.0 mm) and the crystal is rotated in a full 

(@ = 360°) or limited angular interval @m about an axis perpendicular to the 

primary beam. The crystal is oriented so that the rotation axis coincides with 

some axis of the atomic lattice, for instance a,; then the a¥a¥ planes of the 

reciprocal lattice are perpendicular to the rotation axis. In rotation, these planes, 

which are called layer planes, intersect the reflection sphere in circles spaced at 
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_Rotat. axis 

Recipr. lat 

Primary 

beam 

Fig. 4.51. Ewald’s con- 

struction for x-ray rotation 

patterns 

Cylindr. film 

Primary — 

beam = 

Fig. 4.52. Layer lines which are formed 

on intersection of interference cones with 

-—----~ LL a cylindrical film, in the rotation method. 

ever Cae 0, 1, 2 are layer line numbers 

a;' (Fig. 4.51). The diffracted rays are arranged on cones with apexes at the 

center of the reflection sphere and axes coinciding with the rotation axis. The 

cone angle is t—2y. The film may be placed in a flat or a cylindrical cassette 

whose axis coincides with the rotation axis. Then the cones are recorded on the 

film as straight layer lines (Fig. 4.52). From the distances between the layer lines 

it is possible to find the period a, along the rotation axis 
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vy, = arctan ity ayi = ees (4.99) 
id 

where /, is the distance of the ith layer line from the zero line on the x-ray photo- 

graph, and R is the radius of the film. 

For the rotation axis one can choose not only coordinate, but also some 

other simple axes, for instance [110] and [111]. 

During the rotation of the crystal, all the nodes of the reciprocal lattice 

situated in the toroid traced by the reflection sphere will consecutively occupy 

reflection position; in the layer planes these will be rings—toroidal cross sections 

(Fig. 4.53). Under oscillation within small angular intervals, fewer nodes will 

appear in the reflecting position; these nodes are situated in crescentlike regions 

of the layer planes. 

Fig. 4.53. Toroid contains which reciprocal lattice points occurring in the reflecting position 

when x-ray rotation photographs are taken. R is radius of the reflection sphere; R, and R, 

are radii of the sections of a sphere by the first and the second layer plane, respectively; a, and 

a, are cone angles 

The distance of the spot from the middle generatrix is proportional to the 

angle l’. Using Ewald’ construction, it is possible to determine from angle Y the 

cylindrical coordinate of the node of the reciprocal lattice é (the distance to the 

rotation axis) 

2 — sin’y — j?é 

2 cos v 
COs a (4.100) 

Thus, x-ray rotation photographs help to establish two cylindrical coordi- 

nates of the node in reciprocal space: € and € = sin y. The third cylindrical co- 

ordinate g, associated with the crystal rotation angle w at which the reflection 

arises, 
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Fig. 4.54. Rotating-crystal x-ray photograph of vinogradovite; MoK, radiation 

£2 2 
g = q@ — arcsin c a (4.101) 

remains unknown. With a small unit cell this coordinate can be obtained by 

drawing a circle of radius € in the net of the layer plane calculated from para- 

meters af and a}. The coordinate g and indices A and k of the nodes on the 

circle are assigned to the corresponding spot on the x-ray photograph. 

An x-ray rotation photograph is shown in Fig. 4.54. An indexed photo- 

graph allows one to determine the extinctions and to measure the intensities J,,,;. 

But if the unit cell is large, the reciprocal cell is small, and some spots on the 

layer lines are superimposed, making unambiguous indexing impossible. 

An x-ray oscillation photograph within a narrow range of angles w precludes 

superpositions and ambiguity in indexing. From a series of such photographs 

one can obtain a complete set of intensities for structure investigation. There are 

special cameras (for instance the Arndt-Wonnacott camera) which are used for 

taking a series of oscillation pictures from single crystals with large cell para- 

meters. All the layer planes are registered simultaneously in such cameras in a 

narrow range of rotation angles. The measurements of such photographs can be 

done only with the aid of automatic microdensitometers; the densitometer data 

are processed by a computer. Figure 4.55 is an x-ray photograph taken in an 

Arndt-Wonnacott camera. 
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Fig. 4.55. X-ray photo- 

graph of a single crystal of 

the protein catalase Penicil- 

lium vitale (a = 144 A; = 

134 A) taken in oscillation 

camera in the angular range 

of 0.6°, CuK, radiation, 

rotation axis c, crystal-film 

distance 75 mm (courtesy 

of V. R. Melik-Adamian) 

4.5.7 Moving Crystal and Film Techniques 

The motion of the film during the rotation of the crystal makes it possible to 

separate the reflections by their third coordinate and thus to prevent superposi- 

tions and ambiguity of indexing of diffraction spots. In the Weissenberg camera, 

or the x-ray goniometer the geometry is similar to that of the rotation camera, but 

only one cone of diffracted rays, corresponding to one layer plane, is isolated 

with the aid of a cylindrical screen (Fig. 4.56). 

-6 

Fig. 4.56. Diagram of the Weissenberg method. 

(/) primary beam; (2) reflection sphere; (3) nth plane 

of the reciprocal lattice; (4) section of the reflection 

sphere by this plane; (5) projection of the sections; (6) 

cylindrical film 
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A cylindrical x-ray film moves along the rotation axis simultaneously with 

the rotation of the crystal (Fig. 4.56). The coordinate on the film, which is 

measured along the generator, directly yields the value of the rotation angle w of 

the crystal. Thus, the position of the slit in the screen determines angle v and co- 

ordinate ¢, while the two coordinates on the film allow us to calculate the cylin- 

drical coordinates € and g of the node of the reciprocal lattice with the aid of 

(2.100, 101). The orthogonal coordinates of the node are 

Zi ==), X* = Cosma se St) D. (4.102) 

The indices of the plane (or the coordinates of the node of the reciprocal 

lattice in oblique crystallographic axes) are obtained from (3.42, 43). 

Since only one layer plane is registered in an x-ray goniometer at a time, the 

primary beam may be inclined at an angle w = —y to the rotation axis, the angle 

being different for each layer plane. In this case the equi-inclination scheme is used 

(Fig. 4.57). Because of this inclination the ring which limits the effective region 

on the layer plane turns into a circle, and the toroid in reciprocal space into a 

limiting sphere of radius 2A~'. The equi-inclination camera has, in principle, 

no dead (i.e., unrecorded) zones in reciprocal space. Figure 4.58 is an x-ray 

photograph obtained in a Weissenberg-type x-ray goniometer. 

The recording of the layer plane can also be performed by other methods. 

One of them—rotation of the film in its own plane about an axis parallel to the 

rotation axis of the crystal (De Jong and Bouman’s scheme)—is employed in the 

camera for photography of the reciprocal lattice (CPRL) (Fig. 4.59). If the dis- 

tance between the rotation axes of the crystal and film is chosen appropriately, 

OO' Rotat. axis 

beam A trace 

Fig. 4.57. Ewald sphere obtained by Weissen- Section along AA’ j =e ; ; 
berg’s equi-inclination method 
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Fig. 4.59. Diagram for obtaining an.undistorted image 

of the reciprocal lattice plane. 

(/) primary beam; (2) reflection sphere; (3) nth recipro- 

cal lattice plane; (4) crystal rotation axis; (5) film; (6) 

film rotation axis; (7) projections of the sections 

Fig. 4.60. X-ray photograph of 

KScGe,0O, single crystal obtained 

in CPRL camera. Mo-radiation, 

the reflections on the x-ray photo- 

graph correspond to an undis- 

torted image of the reciprocal 

lattice 
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the film shows an undistorted image of the layer plane of the reciprocal lattice 
(Fig. 4.60). Then the position of the rotation axis of the film relative to the circle 

of intersection of the diffraction cone with the film must be similar to the position 

of the rotation axis of the crystal relative to the intersection of the reflection 

sphere with the layer plane. Owing to the simplicity of indexing, such photo- 

graphs are especially convenient for determining systematic extinctions. 

Another scheme is employed in Buerger’s precession camera, in which the 

crystal and film are in a correlated precession motion (Fig. 4.61); such an x-ray 

photograph is shown in Fig. 4.15. Here, the reflection circle shifts relative to the 

layer plane as in a CPRL camera. But in distinction to CPRL, where the reflec- 

tion circle is fixed, in the precession camera the reflection circle moves over the 

reflection sphere, and the x-ray pattern is an undistorted image of the planes of 

the reciprocal lattice parallel to the axis of the goniometer head (Fig. 4.15). 

By using Laue and x-ray rotation photographs and also by visualizing the 

diffraction pattern, one can determine the crystal orientation and the unit cell. 

In all these methods the reflection on the x-ray photograph has a definite shape 

and size, which depends on the crystal (its shape, mosaic structure, etc.), the 

geometry, and various instrumental functions. After the background is eliminated 

onecan obtain the integrated intensity of the reflection, 1.e., the total darkening of 

the entire area under the reflection spot (the number of quanta it has received), 

which is proportional to | F|?. 

The integrated intensity is defined by (4.63) 

int Z ; AY, 2 
J bey — Ife me? pL Oo: | Fuxs| B&G. (4.103) 

Fig. 4.61a,b. Obtaining an undistorted 

image of the reciprocal lattice plane ina 

precession camera. 

(a) general diagram; (b) kinematic 

scheme (QO) zero node of the reciprocal 

lattice; (S) center of the reflection sphere; 

(P) reciprocal lattice point; (P’) image of 

this point; (NV) normal to the recorded 

plane of the reciprocal lattice; (V’) nor- 

mal to the film plane; (M) motor; (AA) 

arc for setting the angle of inclination of 

the primary beam; (BB) film; (C) cry- 

stal; (F) crystal—film distance; (O) point 

on the film corresponding to the zero 

point of the reciprocal lattice or to its 

projection onto the ith plane 
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The Lorentz factor L takes into account the geometry of the various 

methods. For instance, for the inclination x-ray goniometer it is equal to 

(cos wcos y sin Y)7'. (4.104) 

Indexing of reflection and visual estimation of their intensities are superseded 

by automatic computer-controlled densitometers. In addition to measuring 

the experimental integral intensities the computer accomplishes their primary 

processing, i.e., performs the transition from /}# to | F,,,| with due regard for 

the angular factors. In such instruments the x-ray photograph is placed on a 

rotating drum and is scanned over the entire area. The number of points meas- 

ured may reach 10°10’. 

Computer programs provide for refinement of the matrix a, (3.43), cell para- 

meters, and crystal orientation by several reflections on the x-ray photograph, 

the calculation of the spot positions from their indices hk/, integration of the 

intensity in a certain area around the spot, and determination and subtraction of 

the background. 

In automatic microdensitometers of another type measurements are made on 

the flat x-ray film by turns in the region of each spot; the reflections are brought 

to the optic axis and scanned at spaces of 50-100 um, 1.e., at approximately 100 

points per spot. The minimum densitometer measuring rate is 2-3 s per reflec- 

tion, 1.e., several minutes for the whole x-ray photograph. The number of quanta 

measured in photographic methods is 10-107 s~’ with an accuracy of 3-5%. 

4.5.8 X-Ray Diffractometers for Investigating Single Crystals 

In x-ray diffractometers a scintillation or proportional counter serves as a 

detector. This permits measuring the photon flux intensity in the range of 

10-' — 10° s~! with an accuracy of 0.5-1 %. 

Diffractometers of an inclination design have a geometry similar to that of 

Weissenberg’s x-ray goniometer (Fig. 4.57). The layer plane is isolated by inclin- 
ing the counter at angle v. By rotating the counter through angle 7 about an axis 

Fig. 4.62a,b. Diffractometer  set- 

ting angles. (a) inclination meth- 

ods [w, v: angles of inclination of 

the primary beam (tube) and the 

diffracted beam (counter); w, Y: 

angles of rotation of the crystal 

and the counter about the prin- 

cipal axis of the goniometer] 
(b) equatorial methods (®: angle of rotation of the crystal about of goniometer-head axis; x: 
angle of inclination of ® axis, @ angle of rotation of the x circle, 20: angle of rotation of the 
detector) 
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coaxial with the rotation axis of the crystal, the input aperture of the counter 

is brought into coincidence with the diffracted beam (Fig. 4.62a). 

In equatorial four-circle diffractometers (Fig. 4.62b) the counter is in the 

equatorial plane, the axis of the goniometer head can be inclined at an angle 

zx. The reciprocal lattice node under investigation is brought to the plane 

bisecting the angle 180°-20 between the primary and diffracted beams by 

rotating the goniometer head through angle ® about its axis. By inclining the 

axis of the goniometer head at angle y the reciprocal lattice node is brought to 

the bisector of the angle 180°-20. Then the counter is rotated through an angle 

of 20, which corresponds to the condition 2 sin 0/A = Hy,;, the bisectorial 

plane turning automatically through angle @ = 9. This method of bringing the 

plane (Ak/) of the crystal into the reflecting position, and the counter on the 

diffracted beam, is called the inclination method. For this method, the setting 

angles are determined as follows: 

S=9,7=p,0 = 9, 

(4.105) 
Aix: 
9 ’ 

20°? aresin 2 

where 9, p, and H,,, are the spherical coordinates of the reciprocal lattice node. 

When rotating the goniometer head through angle ® about its axis (hori- 

zontal in this method), the reciprocal lattice node is brought into the equatorial 

plane, and then, by turning through angle m about the vertical axis, onto the 

bisector of the angle 180°-20 

P=9 + 90° 7 = 90°, 
(4.106) 

© =0 + 90° — p, 20 = 2arcsin 4 

In the general case, it is possible to change all the setting angles ®, w, x, and 

20. One can also assign the value of the azimuthal angle y—the angle of rotation 

of the reflecting plane about the normal. 

Also, «-goniometers are used in which, instead of an x ring, there is an ad- 

ditional axis of rotation with an angle of inclination to the w axis less than 

90°. 

Angle settings of a crystal and a counter in automatic diffractometers are 

performed by follow-up systems, which include angle encoders accurate to 

0.01-0.02°. The average time of measurement of the integral intensity of one 

reflection is about | min. 

In investigating protein crystals, which have very large cell periods and give 

10*-10° reflections, it is possible to measure 10-20 reflections arising simultane- 

ously. This is done by multichannel diffractometers with banks of several 

counters or coordinate diffractometers with mosaic or position-sensitive 

detectors. 
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A chain of counters can be used as a one-dimensional detector, and a minia- 

ture-counter mosaic as a two-dimensional [4.18]. Other types of detector such as 

multiwire proportional chambers can detect and measure the intensities at 

256 X 256 points of square net (grid), delay lines are used for determining the 

coordnates of reflections. 

Two-coordinate television-type detectors using a thin scintillator polycrys- 

talline ZnS screen are also employed. The screen is coupled optically with an 

electrooptical brightness amplifier and a TV tube. 

With cell parameters up to 100 A, a diffractometer with a one-dimensional 

detector may have an efficiency 10 times higher than that of a single-channel 

diffractometer, and diffractometers with a two-dimensional detector, 100 times 

and more. 

4.5.9 Diffractometric Determination of the Crystal Orientation, 

Unit Cell, and Intensities 

Rapid and accurate determination of the orientation and cell can be accom- 

plished in a four-circle, a computer-controlled diffractometer. 

Several reflections are first sought by systematic investigation of some region 

in the reciprocal space by means of consecutive changes of the setting angles or 

by combining photographic operations with the search on the diffractometer. 

Then the setting angles of the crystal are adjusted in cycles, for instance by 

determining the mid-points of the peak consecutively for all the angles. From 

these angles, the orthogonal coordinates of the nodes in the reciprocal space 

(X* Y*Z*) are found with the aid of a computer. 

An analysis of the lattice in reciprocal space is carried out as follows. 

Five to fifteen vectors H,(i = 1, ... , N) are measured; they are supplemented bv 

derivative vectors H, = H, — H,, which represent the differences of the initial 

vectors. The radius vectors | H;| and | H,| are aligned in increasing order, and 

the three smallest noncoplanar ones are chosen from among them and taken as 

a*, b*, and c*. The vectors a*, b*, and e* define matrix a,, (3.43). Inversion 

of a, by (3.31) gives £;,, which defines the trial cell by the components of the 

projections of its axes £,, onto the orthogonal axes. 

Using the a, b, and ¢ obtained and running through the nodes in the direct 

trial lattice in the order of increasing p,, p2, and p;, the computer selects those 

radius vectors f,.,,,, which, being adopted as the edge of the unit cell, will yield 
a near-integer Miller indeces for all the initial ¥*, Y*, and Z* 

h, = Bu X* + Bi Y* + By Z*. (4.107) 

For instance, 

kote = DY ab Z*. 

The ultimate choice of a, 6, and ec, and hence also Aki, is made on the basis 
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of analysis of the values of t,,,,, and the angles between the assumed cell 
edges. 

Matrix f, constructed from the a, b, and ¢ finally chosen, contains informa- 
tion on the six parameters of the cell 

a=,/[M]n, «= arceos Mth Ie, 

b= .,/[M],, B= arccos any (4.108) 

c= IM 7= arceos Ml de 

where M = ££*(" is the transposed matrix). The refinement is made by the 

least-squares method, bringing the experimental and calculated coordinates of 

the nodes, to a better agreement. 

In a computer-controlled diffractometer these procedure is carried out 

automatically, as a result the computer delivers the data on the cell and uses the 

matrix a@ found for obtaining the orthogonal coordinates X*, the spherical 

coordinates, and the setting angles of the crystal and counter. The diffracto- 

meter sets the crystal and counter in the necessary orientation for subsequent 

measurements. 

To measure the integrated intensities, the mosaic structure of the crystal un- 

der investigation and its transmission curves are first determined on the diffrac- 

tometer. Then the following operations are carried out according to computing 

and controlling programs: 

—calculating the setting angles and parameters for measuring the integrated 

intensity ; 

—setting the angles of rotation of the crystal and the counter with selection of 

the optimum combination of the different speeds of the instrument; select- 

ing the attenuation filter; 

-estimating the integrated intensity and optimizing the peak and background 

measurements, excluding the measurement of weak reflections and their 

theoretical evaluation; 

—measuring the integrated intensity; 

—various adjustments and checkups; and 

—primary processing and optimization of measurements of reflections in 

relation to their intensity. 

The diffraction function obtained from experiment is the convolution of the 

diffraction function of the crystal itself and of a number of instrumental func- 

tions which are associated with the imperfections of the instrument and the 

measuring conditions. These functions take into account the divergence of the 

primary beam, the spectrum of the radiation used, the block-mosaic structure 

of the specimen, and its finite dimensions. As a result, the diffraction inténsity 
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is proportional to the integrated density Jjz} (4.103). The inclusion of the instru- 

mental functions helps to determine all the parameters of the experiment and the 

scanned volume around each node in the reciprocal space. 

The most common procedure for taking the background into account is its 

measurement on the periphery of the diffraction maxima and linear interpolation 

to the area under the peak. Errors in making allowance for the background are 

due to its nonlinearity. 

Absorption may also be allowed for by preparing specimens of definite geo- 

metric shape (spheres, cylinders, parallelepipeds), for which the absorption 

integral is tabulated. Another way is to calculate the absorption factor on a 

computer using the data on the shape, dimensions, and absorption of the speci- 

men or using the experimental transmission curves as crystal is rotated about 

the normal to the reflecting plane. 

The correction # for extinction in (4.103) arises because we compute the 

integrated intensity of reflection in the kinematic approximation, while the 

actual values lie between the values obtained in the kinematic and dynamic ap- 

proximation (see Sect. 4.3). It depends on the average size of the blocks and their 

angular spread and can be determined by computing | F;,| and comparing the 

weak and strong (for which it is substantial) experimentally observed | Fy| 5, 

or by other methods. 

Despite the validity of Friedel’s law (4.52), it is customary to measure both the 

hkl and hk/ reflection intensities, which improves the measuring accuracy. At the 
same time, in the presence of anomalously scattering atoms the difference be- 

tween | F,,| and | Fg| is often measurable experimentally. This can be used for 

structure analysis. 

Thus, automation of an x-ray experiment on the basis of densitometry or 

diffractometry considerably speeds it up and increases its accuracy. In a densi- 

tometer it is impossible to optimize an experiment with feedback: the experi- 

ment is completed in the x-ray camera before the film is developed. A diffracto- 

meter, on the contrary, allows one to perform an experiment with feedback. 

Besides, the accuracy of intensity measurements in a diffractometer is higher. 
The advantage of the photographic method is that the result of the experiment 
(x-ray film accessible for reprocessing) is preserved. 

Systems of automation in structure analysis reduce the experiment time for 
investigation of a crystal with a moderately complicated structure (with 80-100 
atoms in an asymmetric unit) to one or two weeks. The automatic system con- 
trolling the experiment may be coupled by a direct communication channel with 
a computer, where the structure analysis is performed. 
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4.6 X-Ray Investigation of Polycrystalline Materials 

4.6.1 Potentialities of the Method 

A substance to be investigated is not always available in the form of a single 

crystal. Moreover, in many natural and synthetic technically important ma- 

terials the crystalline substance is in the form of a polycrystal or powder, and 

it is essential to be able to study its structure and properties just in this state. 

A polycrystalline material consists of a multitude of small crystals; it may be 

an aggregate of tightly bonded crystals, as in the case of metals, alloys, many 

minerals, and ceramic materials, or a fine powder of a given substance. A poly- 

crystalline substance also may be composed of small crystals of different 

phases. 

X-ray investigation of polycrystalline specimens is used for: 

1) determination of the unit cell of an unknown substance; 

2) analysis of simple structures; 

3) phase analysis: qualitative, i.e., identification of the crystalline phases in 

minerals, alloys, etc., by comparison of their d,,,; and /,,, values, with tabulated 

data; and quantitative, i.e., determination of the amount of the phases in the 

mixture of crystals, and also investigation of phase transitions; 

4) determination of the average sizes of crystals and grains in a specimen, or 

their distribution by sizes, which is done by measuring the diffraction line pro- 

files; 

5) studying the internal stresses from the profile of the lines and their dis- 

placement of lines; and 

6) studying the textures, i.e., the establishment and description of preferred 

orientation in polycrystalline specimens. 

If the small crystals of the specimen have all the possible spatial orientations 

with equal probability, it is equivalent to spherical rotation of one small 

crystal and, hence, of its reciprocal lattice, in which each node H,,, occupies all 

the positions on the surface of a sphere of radius H,,;. Thus, the reciprocal 

lattice of a polycrystalline specimen is represented by a set of such spheres of 

radius H,,, with a weight proportional to | Fi,,,|?. 

To a parallel monochromatic beam there corresponds a reflection sphere of 

radius J~!. It intersects the concentric spheres of the reciprocal lattice in circles. 

The diffracted rays issuing from the center of the reflection sphere form a family 

of cones with apex angles of 40 = 4 arcsin (AH;,/2). From this construction it is 

clear that a polycrystalline specimen gives all the diffraction beams hk/ simulta- 

neously. An x-ray photograph of a polycrystal is often called a Debye diagram. 

The interplanar distances are found by the Bragg-Wulff equation d,,; = 

A/2 siné. 
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4.6.2 Cameras for Polycrystalline Specimens 

In the Debye-Scherrer camera the film is placed in a cylinder whose axis coin- 

cides with that of a thin column-like specimen. In this arrangement the film inter- 

sects all the cones of the diffracted rays in arcs, which are curves of the fourth 

order. From the distance between the centrosymmetric lines on a Debye photo- 

graph it is easy to determine the angle 0 

Lc; 1807 
Dnt = we eet 

(4.109) 

where R is the camera radius. Figure 4.63 shows the Debye photograph of 

a-SiO). 
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Fig. 4.63a,b. Debye diagram of a-SiO, obtained in an x-ray camera (a) and in a powder 

diffractometer (b) 

In a Debye-Scherrer camera a powder specimen usually has the form of a 

cylinder which 1s prepared either by packing a powder in a capillary or by glueing 

the powder on a filament. The crystals must be as small as possible (not larger 

than 0.01 mm), otherwise the set of orientations will be insufficient, sphere H;,,; 

will not be filled with nodes completely, and the Debye line will consist of se- 

parate points. To increase the set of orientations of the crystals forming the line 
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and make it continuous, the specimen is sometimes rotated about its own axis 

during the experiment. There are cameras with rotation about two axes (in this 

case a Debye photograph can be obtained even from one small crystal). 

The resolution of an x-ray photograph is the higher and the accuracy of 

determination of angles 6 the better, the thinner is the cylindrical specimen and 

the more parallel the primary beam. But at the same time the illumination of the 

Debye camera decreases with a consequent increase of exposure time. Focusing 

cameras according to Zeeman-Bolin, Preston, and Guinier have no such short- 

comings. 

Diagrams of cameras with focusing according to Zeeman-Bolin and Preston 

are shown in Fig. 4.64. A narrow slit (a radiation source), a bent specimen, and 

a photographic film are placed on a cylindrical surface. The focusing is based on 

the theorem on the equality of angles inscribed in a circle and subtended by the 

same arc. Rays reflected from different points of the specimen merge together 

to a certain approximation, into a single sharp line. The position of line J,,, is 

taken from the midpoint of the radiation source, 0,4; = /4,,/4R, where R is 

the radius of the focusing circle. This type of focusing does not permit recording 

reflections with angles 6 < 15 — 20°. 

Fig. 4.64a,b. Geometric schemes 

of focusing cameras. 

(a) camera with Zeeman-Bolin 

focusing; (b) focusing camera for 

back photography (Preston ca- 

S mera). (b,) width of the focus pro- 

jection, (S) entrance slit, (p) speci- 

bf men 

If the beam divergence does not exceed 1° — 2°, the bent specimen may be 

replaced by a flat one, touching the focusing circle. If the film is arranged on a 

circle of radius R with its center in the middle of the specimen, focusing will be 

obtained for only one line, for which radius R is equal to the distance from the 

middle of the specimen to the focusing point. This kind of focusing is called 

asymmetric focusing according to Bragg—Brentano. If the radiation source (or 

the slit) is at the distance R from the middle of the specimen, we obtain 

symmetric Bragg—Brentano focusing (Fig. 4.65). 

In the simplest case, the processing of x-ray photographs consist in mea- 

suring the distance between the lines and switching to the values of 0, and then 

to d,,, according to the Bragg—Wulff equation and the visual estimate of the inten- 

sities. 
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Fig. 4.65a-c. Ray path in a dif- 

fractometer with Bragg-Brentano 

focusing. (a) in the equatorial 

plane; (b) in the case of low pro- 

jection of the focal spot; (c) in the 

case of high projection of the 

focal spot. 

(S;, 53) beam forming slits ; (S'.) slit in front of the counter C; (a) angle of selection of the primary 

beam; (y) divergence angle; (H;, b,) dimensions of the projection of focus F; (H,, 6.) dimensions 

of the slit in front of the counter; (H’,, b,) dimensions of the specimen; (R,) goniometer radius 

Microphotometry of Debye photographs (along a single straight line perpen- 

dicular to the diffraction lines) yields at once the positions of the lines, their 

intensities, and profiles. 

4.6.3 Indexing of Debye Photographs and Intensity of Their Lines 

To determine a unit cell from a Debye photograph it must first be indexed, i.e., 

each line must be assigned hAk/ indices. In principle, the indexing problem can 

always be solved. In the general case of a triclinic unit cell d,,, is defined by six 

parameters: three periods and three angles. Hence, knowing the indices of six 

lines from six equations of the general type of the quadratic form HZ, (see 

Sect. 3.5.3), it is possible to determine the cell parameters. But the solution of the 

problem is impeded by the fact that Debye photographs usually have no re- 

flections with weak F, and many reflections (usually with small d,,,;) merge toge- 

ther. These facts hinder indexing or make it ambiguous, especially for large low- 

symmetry unit cells. 

In the case of high-symmetry crystals the task is simplified. For cubic crystals 

ak ne 
sin? O41. = Aa (A> + k? + I’). (4.110) 

Therefore, for them the ratios of the squares of the sines are determined by a 
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series of integers: for a primitive cell 1:2:3:4:5:6:8:9:10: ... , fora face-centered 

cell 3:4:8:11:12:16:19: ... , for a body-centered cell 2:4:6:8:10:12:14.... If an 

x-ray photograph for a cubic cell cannot be indexed, a hexagonal or tetragonal 

cell is assumed. For these cells indexing is done graphically with the aid of the 

so-called Hull curves, which give log dz, for any c/a. In the case of orthogonal 

crystals, the differences of the squares are used [(d~')? = H?] 

1 l 
1 Aina = Be re 

hikilt Ayjkyly 
(4 11 1) h? ke 2 h k2 [2 

a hat ioe ae (+H +d) 

which are identical for series of lines in accordance with Pythagorean theorem. 

The most commonly encountered differences are of the type h?/a’, or k?/b?, 

or /?/c?, which correspond to the orthogonal basis vectors Hyoo, Hoxo, and Hoo;, 

whence the parameters a, b, c are determined. 

Similar techniques are used in analyzing monoclinic crystals. A number of 

mathematical algorithms for determining low-symmetry cells have been pro- 

posed. The correctness of indexing is checked by the agreement of the calcu- 

lated and experimental values of dZ,. If necessary, the cell obtained can be 

transformed to the standard setting by the reduction algorithm (4.51-57). 

The use of computers for indexing speeds up the calculation, but does not 

eliminate the above difficulties. 

The integrated intensity of the diffraction line hk/ of the Debye photograph 

is equal to the area of a peak whose profile is measured along coordinate 0. Ina 

sphere of radius H;,,, and hence in the given line, all the symmetrically equal 

nodes of the reciprocal lattice, or, in other words, all the reflections from the 

crystallographically equal planes, merge together. The number of such planes 

depends on the symmetry of the crystal and is called the multiplicity factor p; 

it is equal to the number of planes in the simple form of the crystal (see Tables 

3.1,4) and therefore depends on the indices of the planes and on the crystal 

symmetry; the multiplicity factors have values of 48, 24, 16, 12, 8, 6, 4, 3, 2, and 

1. If the symmetry is lower, reflections with equal d,,,, but unequal | Fi,,|, 

may merge together in one line of the Debye photograph; lines whose d,,; acci- 

dentally coincide can also merge in one line. 

The intensity of the Debye line is given by 

e*\? 1+ cos*é 
4.112 

i hy (are ) 32nr* sin? cos 8 ee ak pB@G. 
( ) 

Here, r is the radius of the Debye ring on the flat film. As we have already noted, 

in the case of simple structures, the set of /,,, obtained from a Debye photograph 

may be used for a complete structure analysis. 
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4.6.4 Diffractometry of Polycrystalline Specimens 

In single-channel x-ray diffractometers for polycrystals the photographic film is 

replaced by a detector with a narrow input slit. Scintillation and proportional 

counters are usually employed as detectors. The diffraction pattern is recorded 

consecutively as the detector moves, permitting utilization of symmetric 

Bragg-Brentano focusing. The analytic slit of counter S, and radiation 

source F, the projection of the tube focus, are arranged on the goniometer circle 

of radius R, through the center of which the surface of the flat specimen p passes 

(Fig. 4.65). When the counter is turned through an angle of 20, the specimen 

turns simultaneously through @ so that its surface continuously touches the 

circle of focusing with a variable radius 

r = R/(2 sin 0). (4.113) 

Goniometers may be provided with attachments for rotating or oscillating 

coarse-grained specimens, studying the textures, for investigations at small 

scattering angles and at low and high temperatures. Multichannel diffracto- 

meters with Zeeman-Bolin focusing can record a series of diffraction lines at 

one time by means of several counters, and diffractometers with a coordinate 

detector can record the entire x-ray photograph. 

A set of reflections hk/ of a polycrystalline specimen can be obtained by 

using a polychromatic radiation. A semiconductor detector with a high ampli- 

tude resolution (1.5-3 %) is set at a constant scattering angle of 20.,.;:. By ac- 

cumulating pulses, corresponding to different wavelengths, in different channels 

with the aid of a multichannel amplitude analyzer we obtain a diffraction spec- 

trum as a function of A, from which we find the interplanar distances d = A 

(2 sin O.onst) by the Bragg-Wulff equation. This is convenient for experiments, 

for instance, at high pressures or temperatures, since during measurements under 

these conditions the diffracted rays emerge from the goniometer through a single 

slit and in a single direction. 

The intensity of the diffraction peak in a polycrystalline diffractometer is 

given by the expression 

Cu ee ans S | 
Ter = Io isa Be nee alr (4.114) 

i 

where S is the cross section of the primary beam, p,,, is the multiplisity 

factor, A = (2p) is the transmission factor for a flat specimen according to 

Bragg—Brentano, p is the density of the substance, L is the Lorentz factor, and 

@ is the angular velocity of rotation of the specimen. 

The introduction of instrumental functions takes into account various factors 

affecting the position and profile of the diffraction peak and also helps in 

estimating the measuring errors. 
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4.6.5 Phase Analysis 

X-ray phase analysis is used in mineralogy, studies of metals, and materials 

science and is a versatile and rapid method. It is based on the fact that an x-ray 

powder diagram of a given phase is characterized by a set of d,,, and J,,;, while 

an x-ray diagram of a multiphase specimen is a superposition of x-ray pictures 

of the separate phases. 

Phase analysis can be carried out by the photographic or diffractometric 

method. It requires reference data which are collected in special manuals. The 

most complete x-ray data are given in the card files of the ASTM. At present, 

there are several versions of computer-assisted information systems for automatic 

qualitative phase analysis. 

Quantitative x-ray phase analysis is based on the dependence of the intensity 

of reflection on the contents, x,, as of the corresponding phase and is carried out 

using powder diffractometers. The intensity expression (4.114) can be rewritten as 

1,(Ak1) = Ipm,(hk1) * £ =F (4.115) 
ef 

where m,(hk/) is the reflecting power of the plane hk/ of the jth phase. It follows 

that J, is proportional to x,/p;. This helps to determine x, by measuring certain 

reference /,,,; and introducing the necessary corrections for absorption. 

4.6.6 Investigation of Textures 

A “true” polycrystalline specimen contains, with equal probability, crystals with 

all the orientations. Despite the anisotropy of the properties of individual 

small crystals, such a substance is statistically isotropic. In a number of cases, 

however, for instance, during the growth of crystals in orienting fields, during 

plastic deformation of metals (rolling, drawing, etc.), and when the small crystals 

have a fiberlike or platelike structure, they acquire a preferred orientation, 

called texture. 
A preferred orientation can be characterized by the density distribution of 

normals H,,; to a given crystallographic plane hk/ over a sphere. Such a distribu- 

tion is called a “‘pole figure”’; its coordinates are p and g. A pole figure is con- 

structed for certain special directions in a specimen, for instance, the coordinate 

directions [100], [010], and [001], on the basis of photographic or diffractometric 

data. 

Measurement of the intensity of the diffraction pattern in a diffractometer 

with the counter and specimen fixed gives a value proportional to the density of 

the normals in the direction of the bisector of the angle of 180°—20 made by 

the primary and diffracted ray from the specimen. To investigate the directions 

making an angle p with the normal to the specimen surface, the normal has to 

be deflected from the indicated bisector. A full pole figure can be investigated by 
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Co We @s : 
Fig. 4.66. Pole figure [110] of an Fe —Si alloy. Hatching of the regions of the polar figure denotes 

the different density of the normals in density units of the pole figure of a specimen without a 

preferred orientation. 

(J) less than 1/2; (2) 1/2-1; (3) 1-2; (4) 2-4; (5) 8; (6) more than 8. (RD) direction of rolling 

wy 

changing the angle p consecutively and recording the diffraction pattern each 

time with a slow rotation of the specimen in its proper plane. The x-ray pattern 

will show the intensity as a function of angle g. Automatic texture diffracto- 

meters have been developed for investigating the textures. Figure 4.66 illustrates 

the pole figure of a texture due to rolling. 

4.6.7 Determination of the Sizes of Crystals and Internal Stresses 

The width and shape of the diffraction line in an x-ray photograph of a poly- 

crystal depend on the size of the small crystals. We know that the size of the 

nodes of the reciprocal lattice is inversely proportional to that of the small scat- 

tering crystal in the corresponding direction (4.41). The size of the small crystal 

A in the direction of the normal to plane hAk/ is related to the half width of the 

broadened diffraction line £ by the equation 
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A 
Lr peewee 

(4.116) 

where n is the number of interplanar spacings d,,,. Equation (4.116) gives the 

averaged value of A. 

The effect of the broadening of the diffraction line on a Debye diagram be- 

comes noticeable if the particle size is less than 1000 A. Crystals exceeding 10* A 

in size can be regarded as infinitely large in terms of their effect on the line 

width. The lower limit of the sizes lies in the range of ~ 10 A, when the width 

of the scattering lines becomes close to the one in diffraction from amorphous 

substances. 

Equation (4.116), which gives the average size of the small crystals, does not 

take into consideration their size distribution. Additionally, the broadening of 

the diffraction line on the Debye patterns is due to contributions from various 

distortions in three-dimensional periodicity inherent in a real crystal: micro- 

stresses, errors in sequences of the layers, etc., which in fact gives rise to some set 

of d about the average value d,,,. The line profile depends in a complicated way 

on the causes of its broadening. In precise measurements this helps in finding the 

character and quantitative parameters of the defects and the sizes of the small 

crystals. Thus, the method of Fourier transformation of the line profile helps to 

find the functions of crystal size distribution and of microdeformations. 

4.7 Determination of the Atomic Structure of Crystals 

4.7.1 Preliminary Data on the Structure 

The experimental data for crystal structure determination, i.e., for finding the ar- 

rangement of the atoms in the unit cell and other parameters of the structure, 

consist of a set of values of | F,,|. In the preceding sections we described the 

experimental technique and procedure for determining the unit cell and the 

symmetry and finding the values of | F|? from an x-ray diffraction experiment. 

In principle, any structure can be determined from these data alone, but the 

use of other information facilitates structure analysis. 

Such information includes, in the first place, the chemical composition of the 

substance. The chemical formula is almost always known, and the building block 

of a crystal—the unit cell—may contain only an integral number n of “formula 

units”. A diffraction experiment yields the unit cell volume Q and, if the density 

of the substance p has been measured, then 

n = Qp|/|Mmg, (4.117) 

where M is the molecular weight of the “formula unit” (Dalton), and my is the 

mass of the hydrogen atom. 

The data on the point symmetry K obtained from Laue patterns can be 

supplemented by goniometric, crystallooptical, and crystallophysical measure- 
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ments. These may be helpful in establishing the presence or absence of polar 

directions, a center of symmetry, the allocation of the crystal to the point group 

of the first or second kind, etc. (see Chap. 2 and also [2.14)). 

The x-ray group, which is determined from the extinctions, together with the 

statistics of intensities (see Sect. 4.2) and the data on group K, often gives un- 

ambiguously the Fedorov group @ of the crystal or narrows down the choice of 

@® to two or three groups. 

The number of atoms of each sort which must be placed in the unit cell is 

known from (4.117) and from the chemical formula; assume n, atoms of sort 

Ay, nz of Az, n; of A;, ... . The numbers n; are compared with the multiplicities n 

of the special and general positions of the regular point systems in the given 

group ® (see Fig. 2.81), and thereby the possible positions are determined. Some- 

times, especially in organic structures, when the chemical formula units of the 

structure are also the physical building units—molecules—the regular system of 

points which they can occupy in the given group @ is defined unambiguously. 

In structure interpretation it is customary to use crystallochemical data on 

the atomic radii, the packing of atoms or molecules, the shape of the latter, the 

coordination, isomorphism, and also analogies with other structures, etc. [Ref. 

2.13, Chap. 1, Sect. 4]. Such information is particularly useful in interpreting 

relatively simple structures and when diffraction experiments supply insufficient 

data, for instance, when only an x-ray powder photograph can be obtained. 

Structure determination in the strict sense begins after establishing all the 

indicated geometric, symmetry, and crystallochemical data with which the 

solution must fit in. It has already been noted that x-ray structure analysis can 

also be carried out without the knowledge of the chemical formula or with just 

approximate data on it, then it can be used instead of chemical analysis. 

4.7.2 Fourier Synthesis. Phase Problem 

The integral (4.34), which determines the value of the scattering amplitude F(S) 

for an object with an electron density p(r), is a Fourier integral. This latter pos- 

sesses the property of reversibility, which consists in the fact that knowing the 

function F(.S) one can compute p(r) from it with the aid of an inverse Fourier 

transform. I p(r) is the electron density of the crystal, i.e., a three-dimensionally 

periodic function the inverse Fourier transform is the Fourier series 

I _(h: py) = SS exp 2ni ( eal eu =) (4.118) 
Pos a b ied G 

whose coefficients are the structure amplitudes F,,,; of reflections Ak/. Thus, 

knowing F'y,;, 1.e., their moduli and phases a,,; (4.46), one can, by summing the 
series (4.118), construct the electron density distribution p(r). This is the solu- 

tion of the structure since the peaks of p(r) give the arrangement of all the atoms 

p; according to (4.13). 
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The Fourier synthesis consists in superposition of individual harmonics, 

i.e. the terms of the series (4.118), 

| Frey |COS 27 (= “y > a & + ani) (4.119) 

each term being a plane wave of spatial density with a wavelength (the distance 

between the wave maxima) of d,,,, a normal H,,;, and an amplitude F;,,;. 

One two-dimensional harmonic is shown in Fig. 4.67a. This is the physical em- 

bodiment, so to speak, of a system of parallel reflecting planes (hk/) of the crystal 

(cf Fig. 3.29); the reflecting power—the atomic population of such a system—is 

expressed by the absolute value of the amplitude | F,,,,|. The same harmonic, being 

perpendicular to H,,,, can be displaced to any position along this vector, and its 

dx, and | F,,;| remain unaltered. But this displacement is determined exactly by 

the value of phase a@,,,;. Superposition of harmonics, each with | F| and a of its 

own, yields an ever more complicated picture (Fig. 4.67b,c) and, finally, their 

entire set (4.118) corresponds to the electron density distribution of the crystal 

(Fig. 4.67d), which is usually denoted by contours of equal density (Fig. 4.68). 

Fig. 4.67a-d. Fourier synthesis as 

a result of superposition of ele- 

mentary harmonics F,,, (two- 

dimensional case). Each harmonic 

is represented as a_ sinusoidal 

distribution of optical density (a). 

Superposition of two (b) or more 

(c) harmonics complicates the pic- 

ture; the combination of all the 

harmonics—Fourier synthesis— 

gives the image of the structure 

(d) [4.19] 
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Fig. 4.68. Image of the structure of p-oxyacetophenone projected onto the xy plane as a super- 

position of the cross sections of the electron density of atoms obtained by constructing a three- 

dimensional Fourier synthesis (hydrogen atoms are not shown). The molecules are bound into a 

chain by the hydrogen bonds [4.20] 

Obtaining the image of the object by calculation on the basis of diffraction 

data can be interpreted as follows. The formation of an image in optics (for in- 

stance, in a light or electron microscope) can be divided into two stages. The 

first consists in the scattering of incident radiation by the object and the forma- 

tion of diffracted beams with amplitudes F(.S). This stage is exactly the same as 

in x-ray scattering and corresponds to the Fourier expansion. At the second 

stage the scattered beams are focused with the aid of lenses, and the image of the 

object is formed, which corresponds to the Fourier synthesis. There are no lenses 

for x-rays, however, and therefore the second stage, i.e., the formation of the 

image, must be realized by computation. Thus, the Fourier synthesis from the 

experimental F;, serves as a “mathematical microscope” with atomic-scale resolu- 

tion. 

Owing to the decrease in the atomic temperature factor f,7, the intensities 

weaken gradually, on the average, with increasing sin 0/A [see (4.48)] and dis- 

appear altogether at a certain limiting value of (sin 0/A)max = 1/2dnin. This is 

the natural limit of the diffraction field. The last (with d,;,) Fourier harmonics 

correspond to the finest details of the electron density. Therefore the quantity 

di, 1s adopted as the measure of natural resolution of the diffraction experiment. 

The value of d,,;, is determined by the width of the peak of the electron density 

of an atom p,7(r) (4.21) in the state of thermal motion. 

Se 
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Therefore the resolution is determined by the decrease in function f,; (4.23), 

and depends on the sort of an atom, i.e., on atomic number Z, on the radiation 

used (electrons, x-rays, neutrons—the resolution improves in this sequence), 

and largely on the value of the temperature factor, i.e., the quantity uw? appearing 

in w(r) (4.24). Thus, for inorganic crystals d,,, may reach 0.5 A; for organic 

substances, d,,;, is usually = 0.7 — 1.5 A. The thermal motion smears out the 

electron density of the atom and individual electron shells become practically 

indistinguishable; in principle, they could be revealed by the x-ray method if 

the atoms were at rest. (Exceptions are the outermost shells; see Sect. 4.7.10.) 

For protein crystals d,;, ~ 1.5—3A and, asarule, atoms are not resolved on 

electron density maps; only their groupings are revealed. 

For these reasons, in x-ray studies of organic crystals and proteins, it is suffi- 

cient to use CuK, radiation (A = 1.54 A) which permits one to record reflections 

with d,,;, up to 0.77 A. This is insufficient, however, for inorganic crystals, and 

therefore MoK, radiation (A = 0.71 A, a (=/0535 A) is used. Neutron diffrac- 

tion analysis provides the highest resolution. 

Sometimes it is desirable to include in Fourier series only F,,, with a certain 

limiting “‘artificial’’ d/,,, > dni,- In this case the resolution is naturally defined 

by the quantity dj;,. Additionally, the map obtained by Fourier synthesis will 

exhibit the so-called series termination waves, which distort the true distribution 

of scattering density around the atoms. 

The moduli of the structure amplitudes | F,,|, which are necessary for construc- 

ting the Fourier series (4.118), are determined directly from the reflection inten- 

sities (4.47): |F,| ~ /I,. An experiment yields relative values of the integrated 

intensity, i.e., | F,,|”,and hence also | F,,|. To express the experimentally observed 

values of | F,,| in electron units they must be scaled to the absolute values. 

This can be dorfe on the basis of (4.48) or (4.50), whose right-hand sides include 

the absolute values of the squares of the tabulated atomic factors fj. The left- 

hand side contains J, ~ | F,|*, and it is equated to the right-hand side by 

multiplying | Fy| 25s, re: and the scaling factor k, as determined from (4.48) or 

(4.50), so that k | Fy| se, re: = | Fez| bs, avs» By putting the | F,,| thus scaled into 

the series (4.118), we obtain the values of electron density p(r) in electron units. 

This makes it possible to analyze the function p(r) quantitatively, for instance, 

to find the number of electrons in each peak and thereby identify a given atom, 

etc. 

The construction of the Fourier series (4.118), however, requires a knowl- 

edge not only of the moduli | F,|, but also of the phases a, of the reflections, 

which are lost in the diffraction experiment. This is, in fact, the principal difficulty 

of structure analysis. The problem of structure determination consists essentially 

in finding the phases, after which the calculation of (4.118) gives the structure 

p(r) at once. 

All the methods for solving structures and determining phases which are used 

in structure analysis are computational. Experimental measurement of phases 

of the reflected beams involves enormous difficulties. It is possible to solve the 
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problem in some special cases of dynamic scattering of electrons and x-rays 

[4.21]. Direct measurement of phases can, in principle, be carried out by using 

Mossbauer sources of coherent x-ray quanta. Another possibility, which has not 

been realized yet, consists in developing an x-ray laser and utilizing the con- 

cepts of holography. 

The Fourier series (4.118) gives the three-dimensional distribution of the 

electron density p(xyz). It is also possible to construct projections of the 

three-dimensional distribution onto coordinate or any other planes. Thus, the 

two-dimensional series 

HONE x 3 5 Faso €xP | —2ni (n= ” ke) (4.120) 

represents the projection of the structure along the c* axis and is constructed from 

the amplitudes Fi, of the reflection zone hkO. According to (4.44) these ampli- 

tudes are independent on the atomic coordinates z,. The expressions for the other 

two coordinate projections are similar, being constructed from Fy; or Fox. 

There are also many other versions of construction of the Fourier series. For in- 

stance, it is possible to project, not the entire structure, but a part of it, chosen 

in an arbitrary way. The three-dimensional distribution (4.118) can be calcu- 

lated not only within the whole volume of the unit cell, but within selected two- 

dimensional (plane) sections or along straight lines. 

4.7.3 The Trial and Error Method. Reliability Factor 

The trial and error method was the principal procedure in the early decades of 

the development of structure analysis. Starting from some model of a structure 

built according to its symmetry, chemical formula, and crystallochemical data, 

it is possible to calculate, from the atomic coordinates r,, the structure ampli- 

tudes Fiz; (4.44) 

N 

—— dif exp[2mi (hx, + ky, + Iz,)]. (4.121) 
= 

If the trial structure is at least approximately correct, then 

| Ful catc | Fl ops: (4.122) 

Of importance here is the coincidence of large, by absolute value, structure 
amplitudes |F,|. A considerable difference between calculated | Feared, 
observed | Fy| 54; Shows that the model is wrong, and then other atomic arrange- 
ments are tested. As the correct solution is approached, a better agreement 
between | Fy|cac and | Fy| 4; is achieved with small displacements of atoms. 
Since the coordinates x,, y,, z; of the atoms are in argument of (4.121) in pro- 
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ducts with h, k, / indices, reflections with large Ak/ (and small d,,;), are always 
more sensitive to the values of the coordinates. This also clearly follows from 
the consideration of individual harmonics (4.119) of the Fourier expansion: 
in higher harmonics the maxima are sharper, and they record more distinctly 
the possible displacements of atoms (along H,,;). 

The trial and error method was used, as a rule, to interpret centrosymmetric 
structures with a small number of atoms in general positions. The large number 
of manual calculations made structure determination very laborious. To shorten 
experiments and calculations, structures were determined mostly from projec- 
tions, i.e., with the use of the coordinate zones of reflections AkO, Ok/, and AO/ 
only. 

At present the trial and error method is hardly used at all, but its basic idea— 
comparing and fitting the calculated and experimental | F| (4.122)—is still used 
widely as a criterion of the correctness of the determined structure and as a 
method of its refinement. As a quantitative measure of the closeness of | F| o4. 
and | F|.,;, one can use the reliability factor 

> | | Fil obs = | Fel catc| 
Cae 

Ri 4.123) rie ( 
H 

or a correlation function of the general form 

Ror x Wilk | Fy| Sos — | Fx| Sac)’, (4.124) 

where w, is a weighting factor which characterizes, for instance, the accuracy of 

measurement of | F,,|,,, or the reliability of the calculation of | Fy| ac; K is the 

coefficient scaling | F,,| .,, to the absolute values, and a and f are some constants; 

the case a = 2 corresponds to the consideration of intensities. 

When the correct preliminary model of the structure is found, the R factor 

(4.123) has a value of 20-25%. Then Fy..;, can be calculated by (4.121) and 

the Fourier synthesis can be constructed by taking the phases a, from this 

calculation and supplying them to | F,,| ,,, (4.118). In the final refinement of the 

structure with an allowance for the anisotropic temperature factor the R-factor 

reduces to 3-5 %. 

4.7.4 The Patterson Interatomic-Distance Function 

When discussing scattering from an arbitrary object (see Sect. 4.4) we saw that 

the intensity is a Fourier integral of the function Q(r) (4.79) of the interatomic 

distances in the objects, i.e., Q(r) and [(S) = | F(S)|? are mutual Fourier trans- 

forms. For crystals, the interatomic-distance function was proposed by Patterson 

in 1935 [4.22]. We denote it by P(r). Similarly to (4.80) this function has the 

form 
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P(r) = Solr’) pl’ — r) dvy = plr) * p(n), (4.125) 

i.e., P(r) is a convolution of the crystal electron density p(r) with the same, but 

inverse function p(—r)’. From the convolution theorem (4.20), as well as from 

the fact that intensity and P(r) are mutual Fourier transforms, it follows that this 

function can be represented by a Fourier series with respect to the values of 

| Fel? 

P(r) = < ELE |Ful? cos 2n(hx + ky + 12), (4.126) 

similar to the Fourier series for the electron density p(r) (4.118). But for P(r) the 

coefficients of the series are the values of | F,,|* found directly from experiment; 

they are all positive, i.e., their phases a = 0. Indeed, as Fourier coefficients p(r) 

are F,,, the Fourier coefficients of the convolution are the products of those of 

the initial functions, i.e; F, F% = |F,\2- Since) |Fy|/?—\Fe)7n(4.52)ssenes 

(4.126) is constructed by the cosines. 

Let us consider the properties of the Patterson function P(r). The electron den- 

sity of a crystal is a sum of atomic densities p(r) = & p,(r — r,) and has the highest 

values at the centers of atoms r,. Consequently, P(r) has maxima at points r = 

r, — r,,1.e., when the vector r is an interatomic vector. The correlation between 

the structure and its function of interatomic vectors is demonstrated in Fig. 4.69. 

The possibility of obtaining information on the set of all interatomic distances in 

a crystal directly from experimental data greatly simplifies the task of structure 

determination. Therefore the Patterson function is widely used in structure 

analysis. 

Pod 

Fig. 4.69a,b. Relationship be- 

tween the positions of atoms 

p(r) (a) and the function of in- 
de teratomic distances P(u) (b) 

d Pp 

* The value of P(r) will not be-changed for any product of p appearing in (4.125) if the 
difference of their arguments is equal to r. Therefore the integrand is often written as 
P(r’ + r) p(r’). It should also be noted that if p is centrosymmetric, then p(— r) = p(r). 
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The principal properties of this function are as follows: 

1) the vector joining each pair of atoms a and bin p(r) is represented in the 

function P(r) by a peak P,,(u,,); vector u,, is drawn from the origin (Fig. 4.69); 

2) the function always has a center of symmetry, i.e., P(r) = P(—r), even if 

the initial structure does not possess it, because, along with vector u,,, there is 

always an equal and opposite vector u,,. This also follows from the fact that all 

the harmonics in (4.126) are cosines. 

3) the weight of the peak P,,(u,,), i.e., the integral over its volume, is equal to 

the product of the numbers of the electrons Z, and Z, of atoms a and b and, if 

the distances u,, in the structure are repeated, the product is multiplied by 

the number of repetitions; and 

4) if p(r) contains n atoms, then P(r) contains n? peaks, of which n merge 

together at the origin, giving a peak P(o) with a weight 2Z?, which represents n 

distances u,, of atoms “‘to themselves’’, while the remaining n(n — 1) peaks are 

distributed throughout the unit cell volume. 

Before we proceed to the discussion the possibilities of deriving a structure 

from the Patterson function it should be pointed out that this function can be 

analyzed in terms of the crystal symmetry. Assume, for instance, that the crystal 

has an axis 2 directed along the c axis. Then, to any atom with coordinates x, y, 

z there corresponds an atom with coordinates x, p, z, and the interatomic vector 

has coordinates 2x, 2y, 0. This means that all the interatomic vectors due to the 

action of axis 2 arrange themselves in the zero plane perpendicular to it, 1.e., as 

is usually said, in the cross section P(x, y, 0) of the Patterson function. It is easy 

to see that the interatomic vectors due to the action of, say, axis 2, are arranged 

in cross section P(x, y, 1/2) and those due to the action of plane m, perpen- 

dicular, say, to x, in the one-dimensional cross section P(x, 0, 0), etc. Such sec- 

tions are called Harker sections [4.22a]. This information facilitates structure 

determination directly from the synthesis and in some cases allows us to solve the 

structure. The most general approach to function P(r) is based on the fact 

that each group @ has the regular point systems and hence the corresponding 

systems of interatomic vectors, which should be represented in the picture of 

Pir). 

The properties of function P(r) are such that, in principle, one can pass from 

it directly to the electron density distribution. Integral (4.25) can be regarded as 

a successive shift of the structure as a whole by vector r, function p(r’ — r) being 

multiplied at each point by the weight assigned by p(r). 

This is particularly evident if p(r) is represented as a set of n points (Fig. 4.70). 

Note that shifting p as a whole and placing any atom at the origin, we obtain 

the vectors from this atom to all the others. Hence, the shifts of the structure, 

with successive placement of each atom at the origin, will give all the possible 

distances. This is precisely function P(r) in point representation. 

Let us consider, on the other hand, the set of all these shifts. These are shifts 

of p by distances —r, of a given atom with respect to the origin (since it occupies 

the position r,). Consequently, all the n structures are arranged in accordance 
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Fig. 4.70a-d. Singling out a point structure from the corresponding point Patterson function. 

(a) six-atom structure p(r) with one “‘heavy’’ atom (denoted by the double circle) and the 

corresponding centrosymmetric p(—r); (b) point Patterson function of this structure (one of 

the displaced structures is marked); (c) isolation of p(r) + p(—r) as a system like (left) ends 

of equal vectors; (d) isolation of p(—r) as a system of minimal figures—‘‘corners”’ [4.23] 

with the structure of p(—r), which is centrosymmetric to the given structure 

p(r). By marking any given atom in these n structures onecan obtain the image of 

the inverse structure p(—r). This 1s illustrated in Fig. 4.70. The simplest repe- 

tition element in a system of superimposed structures is any interatomic vector. 

As an example, let us take the structure depicted in Fig. 4.70a, and in its interatom- 

ic function (Fig. 4.70b) draw all the vectors which are equal, say, to vector 41 
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(Fig. 4.70c). Since this vector appears both in p(r) and in p(—r) (Fig. 4.70a), the 

system of its repetitions (for instance, all its left ends) is the initial structure plus 

its inverse p(r) + p(—r). To separate p(r) from p(—r) in their overall set of points, 

it is sufficient to repeat the same operation with another vector or with the 

simplest figure—a pair of vectors (Fig. 4.70d). If the structure itself has a center 

of symmetry, i.e., p(r) = p(—r), then the choice of the vector joining the centro- 

symmetric atoms as the initial one immediately singles out p. 

Instead of drawing equal vectors we can use the principle of shift and 

superposition. Let us shift the P(r) by the vector u, which gives P(r — u), and 

superimpose it on the P(r). If wis the interatomic vector, then p(r) + p(— r) is 

given by the coinciding points of P(r) and P(r — u). In the centrosymmetric case 

the choice of the vector u between the centrosymmetric atoms producers p(r). 

The practical realization of such techniques, however, is difficult because of 

the spreading of the P(r) peaks and their inevitable overlapping, since the 

number of peaks n(m — 1) increases rapidly with the number n of atoms in the 

structure. 

To use this principle in practice Buerger [4.24] introduced superposition 

functions. With the superposition of P(r) and P(r — uw) such functions enhance 

only those peaks which coincide and removes noncoincident peaks. These 

requirements are met by the minimum function 

M(r) = min {P(r), P(r — w)}, (4.127) 

in which one takes the minimum values from the superimposed pictures, and by 

the product function 

TTS) =P) Pe — a). (4.128) 

The product I(r) can be expressed analytically and represented by a Fourier 

series. Figure 4.71 shows the use of the M function. The result of the super- 

position procedure can be improved by performing it with several different 

vectors u. 

Since the picture of the structure obtained from (4.127) and (4.128) is inac- 

curate, it represents only an intermediate result, which yields approximate posi- 

tions of the main atoms of the structure. Nevertheless it can be used as a means 

of calculating the phases of reflections [4.26]. The phases obtained are assigned 

to the values of | Fy|,»,, and then the Fourier series (4.118) is constructed. The 

result is shown in Fig. 4.71. Methods for improving such syntheses by successive 

approximations have been developed—Fourier transformation of the inter- 

mediate syntheses with “cutting off” the background in accordance with the 

condition of nonnegativity p > 0 and with gradual elimination of false peaks. 

The above-described methods are very efficient in structure determinations 

and their different versions find wide application, especially in analyzing struc- 

tures without a center of symmetry. For a long time, however, their drawback 
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Fig. 4.7la-c. Projection p(x, z) of the structure of Ca-seidozerite. (a) Patterson function, (x ) 

position of the centrosymmetric vector between heavy atoms; (b) Burger function M, (x, z); (c) 

final Fourier synthesis [4.25] 

was the necessity of first finding, in the picture of P(r), the mutual arrangement 

of at least three atoms (for centrosymmetric structures, two will suffice). Many 

procedures have been worked out for eliminating this difficulty: using strong 

“multiple” peaks which single out not one, but several structures on super- 

position; methods for improving the superposition functions for better calcu- 

lation of the phases from them; etc. [4.27—29c]. 

Effective algorithms for the computer search from P(r) of the mutual arrange- 
ment of several heavy atoms in the structure have been developed. Such 
structure fragments are located by direct and complete testing of the possible 
arrangements. Then the fragment is used for the automatic construction of the 
superposition synthesis. The synthesis gives a structure model, which is refined 
by the least-squares method. 

The interatomic distance function can be used in still another way, provided 
the structure of certain fragments, for instance some atomic groupings in large 
organic molecules, is known. Then this grouping is represented in P(r) by a 
vector set known a priori. By finding the orientation of this set in P(r) we deter- 
mine the orientation of the known grouping in the structure. Another similar 
possibility arises if the structure contains identical molecules, but in different 
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orientations, so that they are not related by crystallographic symmetry. Each of 

them has a differently oriented, but identical, set of interatomic vectors in P(r) 

(4.125). Then, in order to find their mutual orientation, it is possible to construct 

a rotation function by turning P(r) about point r = 0 and finding its best self- 

coincidence. This is achieved at rotation angles corresponding to the mutual 

rotation of two molecules. Such rotation can also be performed directly for the 

function | F,,|* inthe reciprocal lattice, because it is in one-to-one correspondence 

with P(r). This method is used in the x-ray protein crystallography. 

4.7.5 Heavy-Atom Method 

If a structure contains one or several atoms with a large atomic number Z or, as 

is customary to say, heavy atoms, which scatter x-rays strongly, while the other 

atoms are light, structure analysis is considerably facilitated. Indeed, in this 
case the f, of the heavy atoms makes the basic contribution to the value of F, 

(4.44, 121). 
Let us consider the Patterson function for a structure having one heavy atom 

with Z, and many light ones with Z,. The height of its peaks Z,Z, is much 

greater than that of the other peaks Z,Z,, and function P(r) directly yields a 

picture of the structure with the heavy atom at the origin. True enough, if the 

structure p(r) is noncentrosymmetric, a picture of p(r) + p(—r) arises, i.e., the 

inverse structure is also present (Fig. 4.72). The ‘“‘heavy-atom”’ idea also lies at 

the basis of the method of isomorphous replacement, where two isomorphous 

structures are investigated [Ref. 2.13, Chap. 1], differing only in the weight Z of 

Fig. 4.72. Projection of the Pat- 

terson function for Pt(NH,).Cl, 

[4.30] 
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one atom. Then the differences (| F',|3 — | F,| 7), used as Fourier coefficients in 
(4.126), give the function P(r), which is similar in its properties to the function 

with one heavy atom. 

If the structure contains several heavy atoms, their position is found from the 

Patterson function, and this helps to calculate the phases, since they make the 

major contribution to | Fy| in (4.121). 

The heavy-atom method is valuable in analyzing the structure of large 

organic and protein molecules. In this case the determination of the crystal 

structure is mainly a means of finding of the three-dimensional structure of the 
molecules of which the crystal is built. The crystal structure simultaneously 

reveals also the structure of the constituent molecules. This procedure is used, 

for instance, in the structure analysis of the crystals of proteins, whose molecules 

contain 10*—10° atoms. 

In this case it is possible to obtain crystals of protein P and isomorphous 

crystals of P + H with groups containing heavy atoms H, say, PtCl,, HgY2, 

etc. It is necessary to have at least two different derivatives. The crystals of 

proteins, like those of almost all the other natural compounds, are always non- 

centrosymmetric [Ref. 2.13, Chap. II, Sect. 8]; therefore, it is the phases a, (not 

the signs) that are to be determined. At first, the coordinates of the heavy atoms 

in P + H, and P + H, are determined from the Patterson syntheses of the 

heavy-atom derivatives. The structure factor of the derivatives can be written 

Fp + Sa Fp + fms (4.129) 

where F> is the contribution from all the light atoms making up the protein 

molecule, and /;, is the contribution of the atom H. By obtaining the moduli 

|Fp|_ and | Fpy,| = |Fe + fu,| from the experiment one can establish two 

possible values of a,, from the phase diagram of Fig. 4.73, and the use of | Fu, | 

Fig. 4.73a,b. Determination of the phase of reflection in the method of isomorphous replace- 
ment [4.31]. 

(a) finding two possible values of phases a» from known values of fx, | Fey|, Fp| ; (b) unambigu- 
ous determination of the phase by means of two derivatives with heavy atoms (in addition to the 
values indicated in Fig. 4.73a, f,, and | Fpyz,| are also known) 
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= |Fp + fx,| z leaves only one of them. It is better to investigate more than two 

derivatives to eliminate experimental errors and improve the reliability of phase 

determination. The structure analysis of proteins is a very complicated problem 

because of the difficulties in obtaining isomorphous crystals of proteins with 

heavy atoms and the necessity of measuring an enormous number of reflections 

(10*-10°). 

4.7.6 Direct Methods 

Methods which make it possible to determine exactly or with some probability 
the phases a, of reflections from a certain set of | F,,| values are called direct. 

The existence of such methods follows from the fact that, in principle, derivation 

of the structure from experimental data can be carried out, for instance, using the 

Patterson method. 

In the general case of a structure with symmetry | the phase a, can take 

any values in the range (0, 27), while in the presence of a center of symmetry I it 

can take only two values a, = 0 or n, which naturally facilitates the solution of 

the problem. In the latter case there are two possible signs of F,,: plus or minus; 

the sign of F,, is designated by Sy. 

Since the phases are determined by the coordinates of the atoms, unitary struc- 

ture amplitudes F (4.56) are used, which are independent of the atomic factors 

a N 

Fy = Fy/ do Serr (4.130a) 
= 

Here | F,|,,, must be expressed in electron units by (4.48) or (4.50). So-called 

normalized amplitudes 

Eg = Fyl<Fin"”, (4.130b) 

N 

where (FZ) = >; f2,, is mean value of F? in the given interval of sin 9/A, are 
j=1 

also used. 

The theory of direct methods considers the phase relationships between the 

amplitudes, moduli of amplitudes (magnitudes), or squares of moduli of the set 

of reflections, whose indices are linear combinations of one another: for instance 

for the triplet of reflections: h,k,l,; Apkol,; (hy — hz) (ky — k2) (1, — 42), or, ina 

short form, H,, H,, H, — H,. Such combinations of indices correspond to sums 

or differences of the vectors H,, H,, ..., H, of the reciprocal lattice and can be 

written in the form of a matrix 

0 i, H, it H, 

H, 0 A, — H,...0, — 4, 

H, H,— H, 0 ah a , (4.131) 

4h aoe A) 0 
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It should be mentioned that since the phase depends on the choice of the origin, 

the relations between the phases a, must be determined, rather than their 

absolute values. If a center of symmetry is present, it is assumed to be the 

origin. 

The theory of direct methods is based on some general mathematical ideas 

and uses the following properties of the electron-density function: its non- 

negativity p(r) > O and its atomicity p(r) = XL p,(r — r,), i.e., the presence of 

sharply defined peaks in it. 

Several approaches are used in establishing the phase relationships. The first 

consists in considering the trigonometric formulae, the Cauchy inequality, and 

the determinants. The trigonometric formulae prove that phase relationships 

exist. For instance, for a centrosymmetric structure with two atoms in a cell 

F, = cos2urH and, taking into account the equality 2cos*a = 1 + cos2a, it 

follows that 

= + 2a gih ws (4.132) 

Other cosine formulae lead to similar relationships. The unit cell of a crystal 

usually contains a large number of atoms. But in this case, too, by using trigono- 

metric formulae with combinations of F,, appearing in the matrix (4.131) and 

the Cauchy inequality 

Nab? <VaeDe (4.133) 

and substituting, for instance, the values a, = ./n,, b, = »/n,cosa, we obtain a 
number of inequalities relating # and F2. In the most general and concise form 
all inequalities are contained in the determinant 

he wads Pe, 
ey ol 

Beaks on al e0R (4.134) 

ene ee 7 

which, as can be shown, is always nonnegative. One can also set H, = H,, etc., in 
it. Thus, taking a third-rank determinant with H, = H, and expanding it, we 
obtain, in place of (4.132) [4.32], 

lp 
a + > Fon. (4.135) 

C2 
HSN 

This simplest inequality, as well as the other inequalities, gives information on 
signs only at sufficiently large values of |F,|. For instance, S,, = — if 
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| Foal = 0.5 and | Fa| = 0.7; but no answer can be obtained for small aa 
Taking the symmetry into consideration yields additional possibilities. For in- 
stance, in the presence of axis 2 

eel ae (4.136) 

Of particular importance are the triplet relationships of amplitudes, the 

sums of whose indices are equal to zero: H, + H,+ H,=0, ie., Hy = 

— H, — H,. Using the condition of centrosymmetricity, one can represent 

H, = H, + H, (other symmetry relationships, if any, can also be taken into 

account). Thus, expanding the determinant (4.134) for the triplet Pes je and 

Fy,+5,, We have 

1 = F? aa Fz - rer ae 2F a, i ef iiraps z> 0, (4.137) 

whence it follows that if fe — re + Fan, 2 1, then 

Sz Su, = Sa+a,- (4.138) 

Relation (4.138) implies that amplitude ie +n, has the same sign as the product 

of the signs of amplitudes FE, _ and ye . It is also possible to consider the linear 

relationships between the amplitudes F, appearing in the matrix (4.134) [4.33]. 

For instance, if | Fi, | + |F,| ‘ee > 3/2, we again arrive at (4.138). 

The same result can be obtained from Kitaigorodsky’s theory of products: the 

equality (4.138) is fulfilled if | Fy, Fy, Fy,+2,| 2 1/8 [4.33a]. 

Another approach consists of comparing functions p(r) and p*(r) and also 

considering the relationship of these functions with P(r). Thus, as Sayre [4.34] 

pointed out, in the case of identical atoms the function p(r) coincides with its 

square p’(r), but the peak shapes are different. The values of F for p’(r) are found 

by the convolution theorem (4.70); then 

= a De AR (4.139) 
H’ 

This gives the relationship between the given and all the other amplitudes. 

(Factor gy covers the indicated difference in peak shapes.) A similar relation 

(called £, formula) was obtained by Karle and Hauptman [4.35, 36]. The 

other consistent relationships between F’s are established by analyzing the distri- 

bution functions of the probabilities of different combinations of |Fy|, | Fx, 
| Fy,|, etc. The most general conclusion is that inequalities leading to reliable 

signs only at high values of the unitary structure amplitudes | F| give a statis- 

tically correct result also when applied to small amplitudes | Fl. Therefore a 

correct result is obtained by averaging over the whole set of | FI. For instance, 

(4.138) can be rewritten as the statistical equality of Cochran and Zachariasen 

[4.37, 38] 
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APA ORY, p (4.140) 

Its meaning is as follows. Let us take all the pairs of F differing from each 

other by vector Hj in the reciprocal lattice, and form the products of their signs; 

the sign of the majority of the products determines the sign of the amplitude on 

Using (4.140), it is possible to take into account the symmetric relation- 

ships between the signs of amplitudes which are characteristic of a given space 
group. 

In the most general form the phase relationship can be written as 

Qn, a ay, a Qy, = 2nt, i= Dg igs <5 H, A, — H, => 0. (4.141) 

From (4.141) it follows that (4.138) is a particular case of a more general formula 
‘ Se . . 

for the noncentrosymmetric structure @y + @yiy, = @y,. The relationship 

between the phases can also be expressed with the aid of the tangent formula 

Dy EyEy,—x| sin (@g + Qy,—H) 
(4.142) tana@y = : 

ss >) | ExEx,-2|Cos(a@g + Qy,-4) 
H 

Relation (4.140) can be written as the condition of the positivity of the 

product 

FeFREes PS (4.143) 

with a probability P* of the fulfillment of this inequality 

ig N N 3/2 A 
(Sn/) (Sat) | Fafa Pe-mlll (4.144) 
j=l y=1 

l l 
Be + > tanh 

ro] 

If the structure is composed of identical atoms, the first term under the symbol 
is simply equal to N-'/?. This formula shows that the larger the product 
(4.143), ive., the larger the | F| appearing in it, the higher the probability of Pt, 
and with particularly large | F| reliable inequalities occur. Hence it is clear that 
the statistical sums (4.142) and (4.144) also largely depend on the strong pairs 
Ey Ey, contained in them. 

In recent years analysis of the probability distributions of phases in triplets has 
been extended to a larger number of amplitudes [4.39-42]. We have seen that the 
classical triplet can be written as one satisfying the condition H, + H,+ H,=0. 
Similarly, it is possible to investigate quartets, quintets, and combinations con- 
taining a still larger number of amplitudes. Let us consider, for instance, the 
amplitude quartet H, + H, + H, + H, = 0, the nested neighborhood A, + H,, 
H, + H,, H, + Hy; and the phase a = Q@y, + Gy, + Gy, + ay, If the moduli 
of the amplitudes contained both in the quartet and in the nested neighborhood 
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are large, the most probable value is a = 0, but if the moduli of the amplitudes 

of nested neighborhood are small, the most probable value is a = n. This is 
a significant distinction from the early theories, in which only zero values of the 
phase sums could be obtained. 

In practical work, the phase determination is performed as follows. A 

group consisting of approximately ten reference amplitudes is chosen. The group 

includes strong amplitudes, from which many triplets (or quartets, etc.) charac- 

terized by high probabilities P+ can be formed. 

It is possible to assign arbitrarily the phases to three amplitudes (or less, 

depending on the space group of the crystal); this means the fi: ing of the coordi- 

nate origin. After that two paths are possible. 

In the first. the so-called symbolic addition method, the phases of the am- 

plitudes of the reference group are lettered and all the possible relationships 

between them are found. For noncentrosymmetric crystals, possible phase values 

are assumed to be discrete: for instance a = 0, n/n, 2n/n ... n = (8-16) or, more 

crudely, a = 0, 2/2, 2, 3/2. If some letters remain undetermined, different phase 

values are given to them, each of them should be checked. 

The second, so-called multisolution method, consists in direct testing of all 

the variants of the phases of the amplitudes of the reference group. The method 

is time consuming. The phases of the several hundred strongest amplitudes 

are calculated for each variant (their number may reach a thousand or more). 

Using special criteria, the 20-30 best variants are chosen and subjected to 

further analysis. At this point. the first and second method of solving the phase 

problem converge again. The analysis of a variant includes the construction of 

the approximate electron density function by using the established phases, 

localization of its maxima, and identification of the atoms of the structure with 

these maxima. The criteria of correctness are the number and the type of posi- 

tioned atoms, the correlation of the obtained interatomic distances with crystal- 

lochemical standards, the value of the R factor, and the possibility of refining the 

structure model. 

Since the average value of F,, is low for complicated structures the efficiency 

of direct methods is also limited by structure complexity. At present, they permit 

solving structures with up to 100 atoms in an asymmetric unit of the cell. 

4.7.7 Nonlocal-Search Method 

The formula for the structure amplitude F,, (4.44) or for its modulus | F,| can 

be regarded as an equation for unknowns x,, y,, and z;—the atomic coordinates. 

Similarly, the general formula of the R factor (4.124) 

R=} wal | PalSe el Se |? 

can be regarded as a function of the coordinates of all the atoms which attains a 
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minimum if |Fy|c-¢ corresponds to the true structure. For a reasonably 

complicated structure, however, the number of such independent coordinates, 

i.e., variables describing the function R, is several tens or even over one hun- 

dred, and from the computational point of view it is practically impossible 

to find the absolute minimum of this function. 

For molecular structures, this problem is solved using the following ap- 

proach [4.43,44]. The position of a molecule in the unit cell is described by six 

parameters: three coordinates of its center of gravity and the three Euler 

angles of its orientation. The arrangement of the atoms in a molecule is often 

predictable reliably enough on the basis of the data on molecular stereochemistry 

[Ref. 2,13, Chap. 2], so that the coordinates of all the atoms (there may be 

up to 20-30 of them) are expressed in terms of the indicated six parameters. If 

there are some other degrees of freedom in the molecule, for instance the pos- 

sibility of rotation about some chemical bonds (Fig. 4.74), additional parameters 

are introduced. If there are two independent molecules in the cell, their arrange- 

ment is already described by 12 parameters. Thus, the function R can be de- 

scribed by the generalized parameters 7, 72, ..., ¥,, Whose number n ~ 10-20. 

The structure of the function R in n-dimensional space is such that, in addition 

to the absolute minimum, it has a set of local minima, which are not so deep as 

the absolute. These minima are connected by “‘ravines’—regions of low values 

of R. 

4 

Fig. 4.74a,b. The search of the benzophenone structure. (a) model of the molecule: (b) the 
positions and shape of the molecule found by the nonlocal-search method. The Euler angles, 
molecule orientation in the cell, position of the origin of the coordinates of the molecule, and 
angles x, and y, were chosen as the generalized variables of the search [4.45] 

Imagine that a molecule is allowed to turn around and “float about” in the 
unit cell; this is associated with some line in R space. If this line is chosen so 
that we go along the “ravines” without stopping in the local minima, in the direc- 
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tion of decreasing R, we finally arrive at the absolute minimum. At present, 

methods for finding the absolute minimum have been developed for functions 

with n ~ 10-20; these methods are called methods of nonlocal (i.e., avoiding 

the local minima) search and are based on the idea of motion along the 

“ravines”. 

At the same time the “floating” of molecules about the cell is limited by one 

more circumstance, namely, the distances between the atoms of neighboring 

molecules r,;, must not be less than the sum of the van der Waals radii; the 
molecules cannot penetrate each other [Ref. 2.13, Chap. 1, Sect. 2.4]. The 

function of permissible intermolecular contacts M is also expressed via the 

generalized parameters 7;, 7%2, ... Y,- It has small values when the indicated 

condition is fulfilled, and rises abruptly if it is violated. To calculate R and M, 

the 100-200 highest values of | F,|.,, are selected. The absolute minimum of 

the function 

S=R+aM (4.145) 

yields the solution. Here, @ is a constant, which is usually chosen as 0.1-0.2. 

Figure 4.75 illustrates motion along a “ravine’”’ down to the point of the 

solution, which corresponds to a preliminary model (the value R ~ 20%) still 

to be refined. 

, [rad] 

5 

—| 0 1 2 ? [rad] 

Fig. 4.75. A stage of solving the L-proline structure by the nonlocal-search method. Sequence of 

gradient descents of function M and ravines with respect to function R. Projection of Euler 

angles g, and g, onto a plane [4.44] 



330 4. Structure Analysis of Crystals 

4.7.8 Determination of the Absolute Configuration 

Owing to Friedel’s law (4.52), ordinary diffraction phenomena do not permit 

distinguishing between enantiomorphous forms of crystals. But there are many 

crystals possessing only one of two possible absolute configurations—“right- 

handed” or“ “left-handed”. They are described by the Fedorov groups @’ of the 

first kind. Almost all natural compounds form such structures. But a priori we 

do not know which of two possible enantiomorphs is realized as both give 

identical sets of F,, so that Fy = Fg. 
The possibility of determining the absolute configurations arises in the so- 

called anomalous scattering of x-rays near their absorption edge because Friedel’s 

law is then violated. In this case the atomic factor f, has an additional complex 

component 

Pom fereAf ib fem fo aid itd) (4.146) 

Figure 4.76 shows the dependence of Af’ and A f” on the ratio of the frequency 

of incident radiation @; to the frequency w, of the absorption edge of the scat- 

tering atom. If the cell has anomalously scattering atoms r along with normally 

scattering atoms f, the structure amplitude can be split into two components 

Pac Pigt) = A; = 1B, pA, iB, (4.147) 

(from now on the subscripts correspond to Fee). 

Af kh 

Fig. 4.76. Dependenec of 4 f{/g, 

x (Curve 1) and Afig, (Curve 2) 

on the frequency of incident ra- 

diation @,; expressed in relative 

units x = @,/@, (g,: oscillator 

strength of K electrons, w,: fre- 

quency of the K edge of the absor- 

ption band) (courtesy of A. N. 

Chekhloy) 

Let us single out the anomalous component 

Fii(Fres) = A, + iB, + A,, + iB,, + (5) + id,) (A,, + iB,,) 
=A iB + 0; (4,, + iB,) 4 oid, = B.), (4.148) 
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Here, A and B include the normal contributions from all the atoms, some of them 
being anomalous scatterers. Here A,, and B,, are the normal contributions from 
anomalously scattering atoms. The square of the structure amplitude is equal to 

Fr(Fre) = A? + B? + 26,(AA,, + BB,,) + 26,( — AB,, + A,B) 

+ (61 + 62) (Az + By). (4.149) 

Thus, F, # Fg, and by using (4.149) one can find the normal component from 
the experimental data. At the same time the difference | F,,|”, — | Fg|? due to the 
anomalous scattering supplies information on the absolute configuration; for 
enantiomorphous structures it has the opposite sign. The chirality—the “sign 

of the enantiomorphism’’—can be established by the trial and error method, 

calculating the R factor for each of the enantiomorphous forms. Another way is 

to construct syntheses analagous to P(r) (4.126), but using sine harmonics and 

the indicated differences as Fourier coefficients. Anomalous scattering may help 

in determining the phases, in particular, when investigating heavy-atom deriva- 

tives of protein crystals. 

4.7.9 Structure Refinement 

The refinement stage follows finding a model with R = 15-20%. 
By finding the phases from the preliminary model, by (4.121), and using 

| F|,; the Fourier synthesis is calculated. The peak coordinates are determined, 

and on their basis the entire procedure of calculating F and constructing p(r) 

is repeated. When the signs (phases) do not change any more, the solution is 

assumed to be final. 

If we seek the accurate values of the atomic coordinates x,, y,, z, and of the 
parameters of thermal vibration, the method of maximum fitting of | F| ..;. to 

| F| ,; 1s used. To a correct preliminary model there corresponds the absolute 

minimum of R (4.123), and the refinement process consists in finding the 

lowest point of the correlation function R’ (4.124) by the least-squares and 

gradient-descent methods. The level of complexity of the problem depends on the 

number of parameters minimized. They include, primarily, the coordinate para- 

meters of atoms x,, y;. z, and the average temperature factor B of the structure. 

Then it is possible to introduce individual isotropic (4.25) and anisotropic tem- 

perature factors, which acquire the following form in view of the different orien- 

tation of the ellipsoid axes (4.26) relative to the crystal axes: 

3 3 

T(M) = exp 3—2n* 37 UM hy, (4.150) 
i=1 j=1 

where h, and h, are the coordinates in reciprocal space, and U” are the 

components of the vibrational tensor, U' = U?/(a¥ ax). 
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At the minimum of the function R’ (4.124) its derivative with respect to the 

refinement parameters x; is equal to zero, and hence, finding N corrections Ax, 

to the varied parameters requires the solution of a set of N equations with coeffi- 

cients a,, = >) w,(0| F.../0x;) (0| F|/0x,), which amounts to the inversion of a 

square symmetric matrix of the coefficients. If the number of parameters is 

large, the inversion of the entire matrix on a computer is difficult to do (N 

may run into the hundreds). The block-diagonal refinement can be achieved in 

cycles, for instance, by refining first the coordinates and then the parameters of 

the anisotropic thermal parameters, or else by refining N’ coordinate and thermal 

parameters of some atomic group, then of another group, and so on. If hydrogen 

atoms are present, their contribution to F can also be taken into account at the 

final stages. When refining the structure by the least-squares method one can also 

introduce, if necessary, the individual weighting factors w,, which allow for 

differences in the accuracy of measurements of F,, and adjust the contribution 

of each of the structure amplitudes to the function being minimized. 

4.7.10 Difference Fourier Syntheses 

To establish the details of the electron density distribution of crystals, which are 

difficult to detect by means of ordinary syntheses, the Fourier difference synthesis 

method is used. The method consists in constructing the Fourier synthesis 

passe = FE Fes — Fra) XP [= 2ni(r HD] (4.151) 

whose coefficients are the differences between the observed F,,, and calculated 
Fac Values. It is clear that pajrp will have one meaning or another, depending 
on which F.,,, we subtract. If we calculate F.,,, for part of the atoms of the 
structure, the other, unsubtracted atoms will remain on the map fair. This is 
used to detect hydrogen atoms in organic and other compounds. In the presence 
of the other, heavier (h), atoms the electron density of the hydrogen atoms py is 
hardly discernible, but the subtraction of F,,;.., leaves only peaks of py (Fig. 4.77) 

Pu = Prtotat — Ph: (4.152) 

A similar technique is used in x-ray crystallography of proteins, when the 
difference synthesis reveals small molecules added to the giant molecules of 
protein. 

If we take F.,;, in the approximation of the spherically symmetric temperature 
factor, the difference density will describe the deviations of P. froma spherical dis- 
tribution (both positive and negative) due to the anisotropy of atomic vibrations. 

The method of difference syntheses is of special importance in studying the 
fine structure of the electron distribution due to the chemical bond between 
atoms. This requires a maximum experimental precision and due allowance for 
corrections (absorption, etc.; see Sect. 4.5), which make it possible to obtain the 
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most precise value of F,,,. In this case important information is obtained from 

the so-called difference deformation syntheses of the electron density 

1 ; 
Pacer = Q > (Fx = F euic) exp [= 2ni(rH)), (4.153) 

H 

where the F.,,, were calculated using theoretical values of f, for spherically sym- 

metric atoms “at rest’’, account being taken of their positional x;, y,, z; and aniso- 

tropic temperature T(4) (4.150) parameters in the crystal. Such a synthesis 

obviously gives the picture of the redistribution of the electron density due to the 

chemical bond: positive peaks where the electron concentration increases (which 

is characteristic of the covalent bond) and negative peaks where the electron 

density decreases; both the increase and decrease are taken in relation to the 

superposition of the spherically symmetric distributions of the electron density 

of the isolated atoms. Such syntheses are often constructed using the positional 

and temperature anisotropic parameters of atoms obtained from neutron diffrac- 

tion experiments (where these parameters are found most accurately; see Sect. 

4.9) and theoretical values of f, (4.14) for x-rays. An example of difference 

synthesis is given in Fig. 4.77 (See also Modern Crystallography, Vol. 2; [2.13], 

Figs. 1.20, 32, 37). 
Here F.,,;. can be calculated using amplitudes f of scattering by inner electron 

shells not involved in the chemical bond (see Fig. 4.4b); substitution of such F 

into (4.153) will give p,,,—the distribution of the valency electrons. This synthesis 

[Ref. 2.13, Fig. 1.32] is also useful, but it does not reveal as fine details as pa.¢ does 

Fig. 4.77. Set of difference 

Fourier maps (sections) 

from which hydrogen 

atoms have been localized 

(the lines of equal density 

are drawn on an arbitrary 

scale) in the structure of 

2H-thiopyran p-bromo- 

benzylester [4.46] 
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(4.153). In either case it is possible to obtain both the distribution of p in the 

peaks and the number of electrons contained in them. Sometimes the electron 

density distribution of atoms is presented in a parametric form as linear com- 

bination of certain functions, for instance Gaussian (See [2.13], Sect. 1.2.7). 

The structure investigation is concluded by estimating the accuracy. In 

present-day investigations the error in determination of the atomic coordinates 

is usually equal to several thousandths of an angstrom. In precise investigations 

of electron density distribution p, the error in determination of its absolute values 

is Ap = 0.05 e/A?. 
When completing a structure interpretation, in addition to the atomic coordi- 

nates, the data on the bond lengths and angles and on the planes or straight 

lines approximating the positions of some atoms are usually also given. The 

electron density maps in the form of lines of equal density, stereodrawings of 

the molecules (see, for instance, Fig. 4.78), and fragments of the structure are 

obtained with the aid of computer-controlled plotters and displays. 

Fig. 4.78. Stereoscopic pair of 

images of a molecule of dipep- 

tide glycyl-glycine. The ellip- 

soids of the thermal! vibrations 

of nonhydrogen atoms are 

shown. The sizes of the semi- 

axes correspond to 50% pro- 

bability of finding the atom in 

the ellipsoid. Hydrogen atoms 

are represented as spheres of 

radius 0.1 A [4.47] 

4.7.11 Automation of the Structure Analysis 

An x-ray structure experiment, which requires measuring a large number of 

intensities, is time consuming. Still more time is needed for determining and 

refining the atomic structure. Therefore, although remarkable results were ob- 

tained in crystal structure analysis even before the advent of electronic com- 

puters, they took too much of the researcher’s time. Also, very complicated 

structures practically could not be solved. 

The introduction of computers changed the situation drastically. It should 

be remarked that the area of crystal structure analysis proved to be very grateful 

for automation. Indeed, the monotonous experimental routine can be carried 

out with the aid of controlling computers. At the same time, despite the lack of 

a universal algorithm for the solution of structures, which could yield results with- 
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out the researcher’s participation, the available methods make it possible to solve 

practically any structure problem. Therefore one can speak of automation of 

structure analysis at both the experimental and computational stages. A computer 

easily performs all the necessary operations:.computation of F, finding phases, 

computation of p(r) at 10°-10° points by summing the Fourier series over 10°—-10* 

F’s, and refinement of the structure, which is the most time-consuming procedure. 

The researcher, however, retains the option to select his own approach to 

structure determination and, in the case of complicated structures, to interfere 

directly in the search of the solution at various stages of the application of parti- 

cular algorithms, including the regime of the ““man-computer”’ dialogue. 

In modern programming systems the organization of the F data according 

to their indices is standardized; there are standard formats for atomic coordi- 

nates, structure amplitudes, distributions of p and F, and unit cell parameters. 

Such program sets can be supplemented by additional programs. A set of 

programs for crystal structure analysis usually includes: 

1) preliminary investigation of a crystal; 

2) automation of diffractometer operations, including the computation of 

angles, optimization of measurements, etc. ; 

3) controlling the automatic densitometer; 

4) processing of diffractometric or densitometric data; 

5) symmetry analysis, data editing, and scaling to absolute values; 

6) direct methods of phase determination; 

7) interpretation of the Patterson function; 

8) nonlocal-search method; 

9) computation of the F,,, and of the Fourier integral; 

10) computation of Fourier synthesis (conventional, difference, etc.); 

11) localization of maxima (possibly with algorithms for automatic allo- 

cation of atom types) and estimate of accuracy ; 

12) geometric structure analysis (distances, angles, planes, etc.); 

13) the least-squares method (full matrix; block-diagonal versions) with a 

possibility of allowance for anomalous x-ray scattering, secondary ex- 

tinction, anisotropy of thermal vibrations of atoms, etc; 

14) printing various tables, graphical representations of the structure, 

presenting it in full or in parts on displays; displaying color stereoscopic 

images of atomic structure instead of three-dimensional modelling; 

and 

15) procedures allowing the researcher to intervene in the course of auto- 

matic structure determination at its different stages, for instance when 

using programs of sections 6-8. 

Structure analysis uses both large-memory and high-speed computers and 

small, but sufficiently powerful computers that are on line with a diffractometer 

or densitometer and carry out both the experiment and many computations. 
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4.8 Electron Diffraction 

4.8.1 Features of the Method 

Electron motion is described by Schrédinger’s wave equation 

2 

vy + a (E— U)w =0. (4.154) 

Here, y is the wave function, Fis the total energy, and U is the potential energy. 

An incident wave has the form yw) = a exp[i (Ar)]. If the electrons are accelerated 

by a voltage V, then E = eV, and 

k/2n = A-! = ,/2mEJh, 4 = ,/150/V, (4.155) 

where V is expressed in volts, and 1 in angstroms. Two main ranges of energy are 

in use: high energy electron diffraction—HEED, when V = 50—100 kV and 

A = 0.05 A, and low energy electron diffraction—LEED, when V = 10 — 300V 

and 1 ~ 4—1A. The potential energy U(r) = eg(r), where g(r) is the elec- 

trostatic potential. 

Thus, the “‘scattering matter’ in electron diffraction is the electrostatic 

potential g(r), which plays the same role as the electron density p(r) does in x-ray 

scattering. In the kinematic approximation the scattering of the electron wave 

Wo by the object with a distribution of potential g(r) is described with the aid of 

the general formulae of the Fourier integral (4.12), the atomic amplitude (4.15), 

and the structure amplitude (4.34) and (4.44). Here one should always put in the 

values of the potential g(r) and the atomic factors for electrons f,, which are 

related to f, by (4.17). The exact solution of Schrdédinger’s equation for the 

crystal (4.154) leads to the dynamic theory equations, which will be discussed 

below. 

We already know that electrons interact with a substance much more inten- 

sively than x-rays (see Sect. 4.1). The basic features of the electron diffraction 

method are as follows. Electrons are diffracted in thin (10-7 — 10~* cm) layers of 

a substance. The dependence of f, on the atomic number of the scattering atoms 

is weaker than for x-rays, f, ~ Z*'*. Experiments are carried out in a high 

vacuum. 
Scattering of electrons by the potential makes it possible to obtain the dis- 

tribution g(r) from the observed structure amplitudes ©, by constructing 

the Fourier series 

g(r) = De ®,, exp [—2ni(rH)| . (4.156) 

The potential of a crystal is, like the electron density p(r), a three-dimensional 

periodic function positive everywhere; the maxima of its peaks correspond to the 
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positions of the atomic nuclei. The value of g(r) can be expressed in volts by 
means of appropriate normalization. Because of the relatively weaker depend- 
ence on the atomic number, the peaks of light atoms in the presence of heavy 
atoms are revealed more clearly by the electron diffraction method than by x-ray 
diffraction. This is utilized, for instance, in detecting hydrogen atoms in organic 
compounds, carbon atoms in carbides of metals, etc. The determination of the 
peak heights makes it possible to estimate atomic ionization, and in the case of 
nonstoichiometric defects, to calculate the percentage of filling by atoms 

of their positions. 

4.8.2 Experimental Technique 

The diagram of an electron diffraction camera ER-100 is shown in Fig. 4.79. 

Electrons are accelerated by an electron gun with a high voltage of 50-100 

kV ; they pass through apertures, are focused by a magnetic lens, and scattered by 

a specimen placed on a crystal holder, which permits shifting and turning the 

object in the beam. The cross section of the beam on the specimen is about 0.2 

mm7’. The scattering angles do not exceed 3—5°. The specimen-screen distance L 

is usually 500-700 mm. The diffraction pattern is observed visually on a fluo- 

rescent screen, which is replaced by a photographic plate for recording the 

image. Exposures last several seconds. Recording with a counter or a Faraday 

cup is also possible. A counterfield is used in special instruments to study the 

energy distribution of the scattered electrons and particularly to remove inelas- 

tically scattered electrons upon their passage through the specimen. 

The electron diffraction camera as an instrument is very close to the trans- 

mission electron microscope, although in the latter the scattered beams are 

transformed into an image by electron optics. A combination of the two methods 

offers extensive opportunities for observation of the image and selected area 

diffraction (microdiffraction), the formation of an image by the diffracted beams, 

etc. Every modern electron microscope is equipped with devices for electron 

diffraction studies. 

In transmission investigations the specimens from a solution or suspension 

are deposited on an extremely thin (down to 1077 cm) organic or carbon sup- 

porting film. Specimens may be polycrystals, textures, or mosaic single crystals. 

This last type of specimens is obtained, as a rule, by condensation of some 

compound in a vacuum onto a cleaved face of an orienting single crystal (NaCl, 

CaF,, or some other compound), which is usually heated, and then is transferred 

from it onto a substrating film. Another method is reducing the specimen thick- 

ness by etching. 

Bulky specimens are investigated by the reflection method: the incident beam 

is directed almost parallel to the surface and experiences diffraction after pene- 

trating to a very small depth or passing through minute protuberances of the 

rough surface. In this case, only half of the diffraction field is observed. 
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Fig. 4.79. Column of an electron-diffraction camera 

ER-100. 
(1) electron gun; (2) electromagnetic lenses; (3) 

specimen stage; (4) chamber; (5) optical micro- 

itd scope for observing the image on the screen; (6) 

tube; (7) photographic camera 

ae 

e: ere" at 
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There are instruments with an accelerating voltage up to several hundred 

kilovolts; this opens up additional opportunities. 

In electron diffraction investigations of free molecules (see Fig. 4.39d) an 

electron beam is directed at a thin jet of the gas or vapor of the substance under 

investigation. 

4.8.3 Structure Determination 

The small wavelength of high-energy electrons (0.05 A) considerably simplifies 

the geometric theory of electron diffraction patterns. The radius of Ewald’s 

sphere is large, the surface practically becoming a plane (see Fig. 4.14), and the 

electron diffraction pattern is nothing else than an image of the central plane 

cross section of the reciprocal lattice. Therefore the main formula relating the 

distance r of the reflections in the electron diffraction pattern from the central 

spot with d,,,; = Hj; is (Fig. 4.80) 

eee —— r/L, rdx} = LA, (4.157) 

where L is the distance from the specimen to the photographic plate, and A 

is the wavelength. In other words, the reciprocal-lattice cross section is directly 

represented on the electron diffraction pattern to a scale LA. Expression (4.157) 

is obtained from the Bragg-Wulff formula (4.3) in an approximation sin 0 = 6, 

since the electron scattering angles do not exceed 5°. 

Fig. 4.80. The calculation of elec- 

tron diffraction patterns 

Electron diffraction patterns from a single-crystal specimen (Figs. 4.81, 82) 

thus reveal the reflection zone corresponding to the specimen orientation, i.e., 

one plane of the reciprocal lattice passing through point 000; by rotating the 

specimen it is possible to bring other planes into the reflecting position. In ad- 

dition to the smallness of A, the simultaneous detection of all the reflections of 

the zone is promoted by the mosaic structure (some angular spread of the 

blocks) of the “‘single-crystal’’ specimen. Using spot electron diffraction pat- 

terns it is easy to determine the unit cell and the Laue symmetry of the crystal. 

Electron diffraction patterns from textures have gained wide use in electron 

diffraction studies. When small crystals are deposited on a flat substrate, they 

are often oriented with a definite, well-developed face parallel to it, but the 

azimuthal orientation is random. This is equivalent to rotation of the reciprocal 

lattice about an axis perpendicular to the face lying on the support. We denote 



340 4. Structure Analysis of Crystals 

Figure captions see opposite page 
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Fig. 4.83. The formation of inter- 

ference curves—ellipses—in elec- 

tron diffraction patterns from 

textures 

this axis by c*. Straight lines of the reciprocal lattice with constant h and k and 

variable / are parallel to c*. During the above-mentioned “‘rotation”’ the nodes 

turn into rings lying on coaxial cylinders (Fig. 4.83). If the specimen is inclined 

to the beam, the cross section of such a system will give groups of reflections 

arranged along ellipses, which are the most characteristic interference curves of 

electron diffraction patterns from textures (Fig. 4.84). If the lattice is orthogonal, 

all the nodes with a constant / are arranged in layer planes, to which corre- 

spond layer lines in the electron diffraction patterns. There has been worked out 

a complete geometric theory of indexing electron diffraction patterns of oblique 

textures from crystals of any syngonies determination of the unit cell from them 

on the basis of measurement of r for reflections or the semi-minor axis of the 

ellipse, the heights of the reflections over the zero layer line, etc. 

Electron diffraction patterns from polycrystalline specimens are similar to 

x-ray Debye photographs (Fig. 4.85). They consist of a system of rings, but their 

interpretation is simpler because (4.157) holds. Reflection electron diffraction 

patterns (Figs. 4.86, 87) are used mainly for determining the phase composition 

and the perfection of the structure of surfaces and epitaxial films. 

< 
Fig. 4.81. Electron diffraction spot pattern from a mosaic crystal of BaCl,+2H,O (accelerating 

voltage 60 kV, L = 700 mm) [4.48] 

Fig. 4.82. Electron diffraction pattern of two superimposed single crystals of lizardite with 

secondary-scattering effects taken on an electron diffraction camera with an accelerating 

voltage of 400 kV [4.49] 
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Fig. 4.84. Electron diffraction pattern of an oblique texture of the In,Se,. hexagonai phase. 

The tilt angle is 60° [4.50] 

Fig. 4.85. Electron diffraction pattern from polycristalline hexagonal nickel hydride [4.51] 
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Fig. 4.86. 

Fig. 4.87. 

Fig. 4.86. Reflection electron diffraction pattern from a mosaic film of silver. The weak addi- 
tional reflections indicate the presence of Ag,O in the specimen 

Fig. 4.87. Reflection electron diffraction pattern from a germanium single crystal. The scatter- 

ing is of a dynamic nature because of the high perfection of the structure. The diffraction pat- 

tern clearly shows the Kikuchi lines and bands (courtesy of V. D. Vasiliev) 

By using transmission pattern from amorphous substances (Fig. 4.88), which 

represent a set of diffuse rings, a conclusion about the short-range order in their 

structure, based on the construction of the radial-distribution function (4.84), 

is made. By using electron diffraction patterns from gases or vapours (Fig. 4.39d) 

the structure of the molecules can be determined. 
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Fig. 4.88. Electron diffraction pattern from an amorphous CuSbSe, film [4.52] 

The intensities J,, of reflections from a crystal are determined by the square 

of the structure amplitude, which is calculated similarly to (4.44) 

Pixs = Di fier XP [2mi(hx, + ky, + Iz,)], (4.158) 

where f.; is the atomic factor for the electrons with a temperature correction 

[see (4.23)]. 

Due to the strong interaction of the electrons with the substance the dynamic 

scattering phenomena are observed at comparatively small thicknesses A of the 

crystals. The limits of applicability of the kinematic theory are estimated from 

the relation 

wail act, (4.159) 

which is similar to the expression for x-rays (4.62). Here, ® is the average 

absolute value of }, (4.158). 

Estimates show that for not very complicated structures composed of atoms 

with medium Z, A ~ 300-500 A, while for simple structures made up of heavy 

atoms A ~ 100 A. Since specimens in electron diffraction studies have thick- 

nesses of the same order, the dynamic effects manifest themselves here more often 

than in x-ray diffraction. The formula for the integrated intensity of single-crystal 

mosaic films and textures has a form similar to (4.60) for x-rays 

2 @ 
aa |, (4.160) Tier 92 —}) 0 

JOS 
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Fea Ae, LSE (4.161) 

where S is the irradiated area of the specimen; is a factor depending on the 

specimen type (%, refers to mosaic single crystals, and “%,, to textures); A is 

the specimen thickness; @ is the mean angular spread of the mosaic blocks; .R’ 

is the horizontal coordinate of the reflection on the electron diffraction pattern 

from textures; g is the angle of inclination of the specimen; and p is the repeti- 

tion factor for the texture pattern (the number of nodes of the reciprocal lattice 

merging together in the ring). 

The intensities are measured visually using the standard scale of blackening 

marks from photographs with multiple exposures, or microphotometrically. 

Sometimes the thicknesses of the small crystals A in specimens are greater than 

provided by condition (4.159) for the applicability of the kinematic theory. In the 

case of dynamic scattering in a mosaic single crystal or texture J,,,; ~ ®, i.e., 

the intensity is proportional to the first power of the structure amplitude. 

Sometimes, the scattering is of an intermediate nature. The degree of “‘dyna- 

micity”’ of scattering can be estimated by comparing the curves of the averaged 

intensity J (sin 8/2) with 57 f, or >‘ f? in the same angular interval. I introducing 

the corresponding corrections, one can obtain the values of ®,,, from J,,,,, which 

will be discussed in more detail further on. 

The main method in electron diffraction structure analysis is the construction 

of @*-series which gives interatomic distance function (4.126) and subsequent 

construction of the Fourier synthesis of the potential (4.156) (Fig. 4.89) [4.48]. In 

electron diffraction studies one can also use direct methods of phase determina- 

tion. 

The above-described specific features of the method enable one to use it in 

investigating a number of important classes of objects, including those encoun- 

tered only in a highly dispersed state and therefore practically inaccessible for 

the x-ray method. The structures of many layer ionic lattices, crystal hydrates 

Fig. 4.89 Fourier synthesis of the 

potential of the structure of paraf- 

fin (projection along the axis of 

the chain C,H,,,,). Hydrogen 

atom peaks are clearly seen 
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and hydroxides, and organic and inorganic compounds containing hydrogen 

atoms have been studied by the electron diffraction method. Electron diffraction 

is widely used in analyzing layer silicates, including clay minerals. The vacuum 

condensation technique has proved to be convenient for studying the structure of 

various phases in two- and multicomponent systems (carbides and nitrides of 

certain metals, semiconductor compounds of elements of groups III, IV, V, VI, 

and some others). Electron diffraction structure analysis has yielded interesting 

results in the study of the structure of polymers, amorphous substances, and 

liquids. Electron diffraction study of molecules in vapors and gases is an exten- 

sive special field. 

4.8.4 Dynamic Scattering of Electrons 

We have already said that electrons often experience dynamic scattering in mosaic 

single-crystal films or textures. Scattering in large perfect single crystals can be 

adequately described only within the framework of the dynamic theory. In dy-_ 

namic scattering all the waves, both incident and diffracted, interact with the 

attendant energy exchange. In addition to elastic scattering, a significant inelastic 

coherent and incoherent electron scattering arises. 

In the dynamic scattering by perfect crystals when the thickness of specimens 

exceeds the value given by (4.159) the absolute intensities of reflections, especi- 

ally of back reflections, increase and tend to a common level due to the multiple 

scattering. With thefurther increase of thickness the contribution of inelastic 

scattering becomes more significant,and the intensities of the spots are ‘pumped’ 

into the general background. It results in the appearance of the so-called Kikuchi 

extinction lines and bands associated with the position of reflecting planes of 

the crystal (see Fig. 4.87). 

The foundations of dynamic theory were laid down by Bethe, who considered 

the solution of Schrédinger’s equation (4.154) for y in a form similar to (4.67), 

but with scalar waves. 

The problem can be solved in the two-beam approximation by considering the 
interaction between the initial wave and one strong scattered wave. It is slightly 
less rigorous than in x-ray diffraction because the Ewald sphere, degenerated 
into a plane, may intersect many nodes of the reciprocal lattice or pass near 
them. In the two-beam approximation, similarly to (4.69), 

Ka kt) Wor Un 0, VeWo + (K? — ki) wy = 0, (4.162) 

where 

ko =k+0,/2k, k= »/2meEJh, 0, = 4n|@,|/Q. (4.163) 

The wave field in a transparent crystal exhibits a periodic variation in the 
values of wave functions y) and y, with the depth of penetration. Diffraction 



4.8 Electron Diffraction 347 

maxima for electrons have a halfwidth of the order of angular minutes, while 

for x-rays it is ~ 10” or less. The integrated intensity is proportional to | ®|. 

The effects of dynamic scattering in electron diffraction are stronger for a 

mosaic crystal than for polycrystalline or texture specimens. The most essential 

phenomenon here is the effect of extinction, i.e., the weakening of strong re- 

flections (and their higher orders) as compared with values given by kinematic 

theory. 

The formula for the intensity in dynamic scattering in the two-beam ap- 

proximation is [cf (4.160)] 

ce 2/22)" Rw) Ro) = f Jo(2x) dx. (4.164) 1 

A/A 4 

The value of . is obtained from (4.159), and that of Y, from (4.161); Jy is 

the Bessel function of zero order; the equation is similar to (4.74). Use is generally 

made of the graph of the function of the dynamic correction R(.27), which helps 

to find the value of .e corresponding to the best agreement between the experi- 

mental and calculated intensities. Taking into account the extinction for several 

strong reflections, the final values of R (A) are chosen for the averaged value 

of 

In the second Bethe approximation, the following values are used instead 

of vz = 4n|@,|/Q (4.163): 

Uy =V_e— DY eB (4.165) 
g+0,H 

The necessity of introducing the indicated corrections actually depends both 

on the accuracy of measurement of the experimental intensities and on the 

degree of complexity of the structure [4.52]. 

The multiwave solution of (4.154) is more rigorous. It requires taking into 

consideration the matrix M of scattering and the intensity of the reflected wave 

is expressed by 

oli), 
The diagonal components of M are defined by the deviation from the exact value 

of the Bragg angle for all the possible reflections, with the crystal setting in the 

position for reflection H. 

The nondiagonal components of the matrix are formed by the interaction 

potentials v,,, of any two reflections (H # H’), including the zero reflection. The 

dynamic theory equations can also be obtained in a form similar to those of 

Darwin’s theory. 

A semiphenomenological theory of inelastic scattering, both incoherent, in 

the form of a general strong background, and coherent, in.the form of Kikuchi 

lines, bands, and envelopes, has been elaborated. 

Z 

f= (4.166) 
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Electron diffraction experiments on single crystals are often carried out in 

electron microscopes, where various opportunities offered by electron optics are 

used. Thus, using the methods of a converging electron beam or of a bent crystal, 

one can observe patterns in which the distribution of the extinction contours and 

other peculiarities make it possible to determine the point symmetry and space 

group of the crystals [4.53]. Such investigations are the basis of a new field of 

diffraction electron microscopy. 

4.8.5 Low-Energy Electron Diffraction (LEED) 

Since the periodic potential of the lattice terminates at the crystal surface, the 

arrangement of the atoms on the surface may, in principle, differ from that in 

the bulk. In other words, the structure of the thin surface layer may not coincide 

with that of the remaining part of the crystal. At the same time, the crystal sur- 

face plays an important part in such processes as electron and ion emission, 

adsorption and catalysis, nucleation of a new phase and diffusion (in epitaxy), 

ionic implantation, oxidation, etc. While adsorbing gas atoms can form two-di- 
mensional ordered structures. Electrons with energies of 10-300 eV can penetrate 

into a crystal several atomic planes. Therefore LEED is an effective method for 

investigating the crystal surface: the arrangement of atoms on it, the nature of 

their thermal vibrations, etc. [4.54]. 

In LEED cameras the initial beam falls normally or at an angle of ~ 45° to 

the specimen surface. The investigation is carried out in a vacuum of 107'° 

—10-' Torr. Elastically scattered beams forming the diffraction pattern 

supply information on the structure of several surface layers and, in the limit, 

on the structure of the monoatomic surface layer. 

The electron diffraction pattern geometry is determined, to a first approxima- 

tion, by the two-dimensional surface lattice. Some conclusions can also be drawn 

from the reflection intensities. But unambiguous interpretation of electron dif- 

fraction patterns is greatly impeded by the multiple scattering of electrons. Addi- 

tional information on the energy spectrum, chemical composition, and valency 

states is given by Auger spectroscopy of the scattered electrons. 

Auger electron spectroscopy is based on the dependence of the energy spec- 

trum of Auger electrons on the type and state of the atoms on the surface. 

The primary beam (£ = 10 to 2000 eV) excites the atoms of the specimen. 

Auger-electrons, arising in the process of the radiationless transition of the inner 

atomic shells into their normal state, are emitted from the specimen surface. A 

modern LEED apparatus usually contains Auger spectrometers. The sensitivity 

of the method is sufficiently high to detect the presence of up to one atom out 

of a hundred in a monolayer of foreign atoms on a surface. If one needs data on 

impurity distribution with depth in a specimen, its surface is atomized con- 

secutively with the aid of an ion gun. 

Many papers have been published lately on the structure of atomically pure 

surfaces of various crystals (Ge, Si, CdS, GaAs, W, Mo, Au, Pb, NaCl, etc.), 

adsorbed layers, the initial stages of growth of epitaxial films, etc. 
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Fig, 4.90. (a) Model of the surface structure of 

Si(111)(7 x 7) [4.54]; (b) LEED patterns from BaO 

deposited on the W(110) surface; (c) one of the 

GS surface structures of BaO (4 x 3) on W(110) [4.55] 
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The most interesting result of semiconductor investigations is that in the 

course of annealing the surface structure is changed, or rearranged, so that some 

superstructure is formed. It is assumed that during this rearrangement the free 

surface energy decreases, and the free chemical bonds become “locked”. 

Figure 4.90a shows the atomic structure of the Si surface, whose period exceeds 

by a factor of seven that of the three-dimensional lattice. 

Figure 4.90b depicts the diffraction patterns of low-energy electrons record- 

ing the changes in the structure of the (110) face of tungsten during adsorption 

of barium oxide. As the concentration of BaO grows, various two-dimensional 

structures of BaO form on the indicated face. One of them (4 x 3) is depicted 

in Fig. 4.90c. 

Electron diffraction patterns from the (100) faces of ionic crystals (NaCl, LiF, 

KCl), and also from PbS type semiconductors show no superstructure reflec- 

tions, i.e., the surface structure corresponds to that of the bulk. Such a correla- 

tion also takes place for metal crystals, with the exception of Pt and Au, where 

the superstructure | x 5 is formed. 

In the adsorption of gases, a disordered or ordered arrangement of their atoms 

or molecules on the surface is observed, depending on the nature of the gas and 

the degree of coverage of the surface by it. 

4.9 Neutron Diffraction, Mossbauer Diffraction, and Scattering 

of Nuclear Particles in Crystals 

4.9.1 Principles and Techniques of the Neutron Diffraction Method 

A neutron is a heavy particle with a mass of 1.009 Daltons, a spin of 1/2, anda 

magnetic moment of 1.91319 nuclear magnetons. In neutron diffraction, the 

wave properties of these particles are used. 

Neutron diffraction investigations require powerful neutron sources. This 

purpose is served by high-flux, slow-neutron nuclear reactors; pulsed reactors 

can also be used. In nuclear reactors the neutrons are in thermal equilibrium 
with the moderator atoms. According to de Broglie’s equation the wavelength 
is 

h h 
seeeritat /3mkT” (4.167) 

where m is the mass of the neutron, v is its velocity, h and k are Planck’s and 
Boltzmann’s constants, respectively, and Tis the absolute temperature. The spec- 
trum of the neutron beam channeled from the reactor is continuous (“‘white’’), 
because of the Maxwellian velocity distribution; its maximum at 100°C corre- 
sponds to A ~ 1.3 A. 

When it is necessary to use long-wave neutrons (5-30 A), the entire spectrum 
can be shifted with respect to energies by passing the reactor neutrons through 
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cooling filters. These may take the form of chambers filled with liquid helium, 
hydrogen, or another moderator (i.g., beryllium) cooled to helium temperatures. 

In modern research reactors, a thermal-neutron flux of about 10!5 cm~?+s~! is 
maintained in the core. But the collimated flux of monochromatic neutrons that 
hits the specimen has a substantially lower intensity. Figure 4.91 is a schematic 
representation of a neutron diffraction unit. A neutron beam with a “white” 
spectrum passes through the reactor shielding along a channel terminating in a 
monochromator. Primary collimation is performed in the channel. Large single 
crystals of Cu, Zn, Pb, or other metals, or pyrolytic graphite plates usually serve 
as monochromators. The intensity of the resulting monochromatic beam strongly 
depends on the quality of the monochromator and also on the collimation; in 

good units the monochromatic neutron flux is 107 — 108 cm=?«s7!. 

Fig. 4.91. Neutron diffractometer. 

(/) neutron beam from a reactor; (2) primary collimator; (3) 

monochromator; (4) secondary collimator ; (5) specimen; (6) col- 

limator in front of the detector; (7) neutron detector; (8) reactor 

shielding; (9) neutron and y radiation shields 

Diffractometric units are similar in their principle and design to x-ray devices, 

but they are usually larger because the detector must have a thick radiation 

shielding. Proportional gas counters filled with *He or '°BF; are generally used 

as detectors. For polycrystalline specimens it is sufficient to have a one-circle 

diffractometer, while for single crystals the four-circle design is most convenient. 

The devices are either fully automated or remote controlled. When required, 

various attachments are used: for cooling and heating of specimens, their 

magnetization, uniform compression, etc. Since the initial flux and the neutron 

scattering cross section are less than for x-rays, the objects under investigation 

are larger than in x-ray investigations—several millimeters. In the polychro- 

matic version, neutron diffraction can be used by analogy with the Laue x-ray 

method. Then, with the detector fixed and the crystal rotating, the reflected neu- 

tron beams with different 2 can be measured by the time-of-flight method. 

We are already familiar with the interaction of neutrons with matter (see 

Sect. 4.1). Nuclear interaction is described by the amplitudes of nuclear scatter- 

ing b, which are of the order of 10~'* cm and are measured in Fermi units f( f= 
10-!3 cm). The values of b vary nonmonotonically with the atomic number Z 
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(Fig. 4.92). Isotopes of one and the same element have different values of b; for 

some isotopes the value of b is negative because of the presence of resonance 

levels in their nuclei (this is not the case in either x-ray or electron scattering). 

Thus, for hydrogen 'H b = — 3.74, for deuterium *D b = 6.57, for carbon LG 

b = + 6.6, for nitrogen '*N b = + 9.4, and for manganese **Mn b = — 3.7f. 

Since the size of a nucleus is small (10-!? cm) as compared with the wavelength 

A ~ 10-8 cm, the values of b do not decrease with increasing scattering angle, i.e. 

they are constant for all sin 6/2. Atoms or ions which have a nonzero spin and/or 

orbital magnetic moment exhibit an additional interaction with the magnetic 

moment of the neutron, which is of the same order of magnitude as the nuclear 

interaction. The atomic amplitude fy, of magnetic scattering depends on the 

shape of the relevant electron shell and decreases with increasing sin 6/A. The 

temperature factor is taken into account in the same way as for x-rays (4.22- 

27). Besides, the effects of absorption, and inelastic coherent and incoherent scat- 

tering take place. 

i ——— 

20 60 100 fat. wt] 

Fig. 4.92. Dependence of the amplitude of coherent nuclear scattering of neutrons on the 

atomic weight of the elements. (- - -) scattering on the nuclear potential [4.56] 

The intensity of coherent elastic scattering of nonpolarized neutrons by a 

crystal is determined by the sum of the squares of the structure amplitudes 

|Fonl® = [3u,byfr exp [ni (EDI? + @?| 3 Sewn exp ni (ey HDI|?, (4.168) 
where fjmr refers exclusively to N’ magnetically scattering atoms, if they are 
present in the structure, and q is the product of the unit vectors of the normal 
to reflection plane by the beam vector. The integrated intensity formulae are 
similar to (4.77) and (4.103). 

4.9.2 Investigation of the Atomic Structure 

Neutron diffraction analysis is used predominantly for refining or obtaining 
additional information on structures studied by the x-ray method. Investigation 
is often conducted simultaneously with x-ray studies, and thus data on the unit 
cell, symmetry, and positions of most of the atoms are already available. Then 
the calculation of phases (4.46) permits construction of the Fourier synthesis of 
nuclear density 
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1A 

Fig. 4.93a,b. Structure of KH,PO, in the ferroelectric state at —180°C. (a) Fourier projection 

of the nuclear density onto the (001) plane; (b) projection of the difference synthesis on which 

H atoms are clearly visible (when the sign of the external electric field is reversed, the H atoms 

shift to the positions marked with crosses) [4.57] 

n(r) = pa Fig exp [— 2ni(rH)). (4.169) 

In the absence of magnetic scattering the peaks of this synthesis give time- 

average distribution of the nuclei due to the thermal motion; the peak heights are 

proportional to the scattering amplitudes b of the corresponding nuclei and, if 

b is negative, the peak is negative as well, i.e., it shows the atom as a “pit” on the 

Fourier synthesis (Fig. 4.93). In refining the position of the nuclei, use is made 

of difference synthesis and also of the least-squares method with anisotropic 

temperature factors. Neutron diffraction data are especially suitable for the 

latter method because, as indicated above, the values of b are constant and the 

intensity decrease is due solely to the thermal motion. 

The advantages offered by neutron diffraction structure analysis are due 

to the previously described features of nuclear amplitudes b. These include, in 

the first place, a better (as compared with x-ray analysis) possibility for deter- 

mining the position of light atoms in the presence of heavy ones. A significant 

advantage is the detection of hydrogen atoms in crystals of different compounds. 

Hydrogen atoms can be replaced, completely or partly, by deuterium, which 

provides additional] information. The H peaks in the Fourier synthesis maps are 

negative and those of D positive, in accordance with the sign of the amplitude 

of scattering. 

Various modifications of ordinary and heavy ice, a number of crystal hy- 

drates, many organic and inorganic compounds, including metal hydrides, 

hydrogen-containing ferroelectrics, and phase transitions in them were studied 

in this way (Figs. 4.94, 95). Other examples of investigated structures with atoms 

differing drastically in their atomic numbers Z include nitrides, carbides, oxides 

of heavy metals, etc. 
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Fig. 4.94. Structure of solid 

D,S at 102 K. 
Projection onto the (001) 

plane. (- -—-) hydrogen bonds 

forming zigzag chains parallel 

to the [100] and [010] axes [4.58] 

Fig. 4.95. Projection of the nu- 

clear density of the crystalline 

structure of deuterated dicyandia- 

mide C,N,D,. 
Dashed lines join the hydrogen- 

bonded atoms [4.59] 

Another advantage of neutron diffraction studies consists of the possibility 

of investigating structures containing atoms with close Z, which are almost 

indistinguishable by the x-ray method. Examples are Fe, Ni, Co, and Cr alloys 

and their compounds, for instance, ferrospinels, complicated oxides, and sili- 

cates containing Mg and Al. The amplitudes 6 for such atoms or their isotopes 

differ widely enough for the individual positions of these atoms to be determined. 

The difference in 5 for isotopes of a given element makes it possible, in principle, 

to investigate the ordering of isotopic nuclei in crystalline structures. 
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Since the values of b are indepedent on the scattering angle, the decrease in 
structure amplitudes F,, (4.158) with increasing |H| depends exclusively on 
the temperature factor. Therefore the neutron structure amplitudes can be mea- 
sured up to higher values of sin 0/A, i.e., higher hk/ (lower d;,;) than in X-ray or 
electron diffraction studies. This means that neutron diffraction investigations 
can give both the positional and thermal motion parameters with an accuracy 
higher than in x-ray diffraction. This is used, in particular, when constructing 
difference x-ray—neutron diffraction syntheses [see (4.153.]. 

Neutron diffraction studies open up additional opportunities for determin- 
ing crystal structures involving comparison of F, and F,. As the x-ray and neutron 
atomic (nuclear) amplitudes of individual atoms appearing in the structure-ampli- 
tude equation are different, such a comparison is equivalent to isomorphous 
replacement. In addition, for neutrons there is an effect similar to anomalous 
X-ray scattering; such “anomalous” nuclei are, for some 4, '!3Cd and '4°Sm, 
among others. By changing the wavelength we also change the b and hence F,y 
(4.168) of the given structure; thus we can determine the position of the ano- 
malously scattering atoms. 

In some cases the “zero” matrix method, i.e., the use of isotopes or different 

atoms with opposite signs of b, may prove to be highly sensitive. If their nuclei 

occupy equivalent positions of the unit cell, such positions can be “left out” 

of diffraction by an appropriate choice of concentrations. Thus, only diffraction 

from other atoms takes place. 

The most complicated compounds investigated by neutron diffraction are 

vitamin B,, (refinement of the structure investigated by x-rays with a resolution 

of 1A) and protein myoglobin. 

4.9.3 Investigation of the Magnetic Structure 

In such studies the neutron diffraction method yields unique information [4.60]. 

Various kinds of spin ordering of magnetic atoms (transition metals, rare-earth 

elements, and actinides) with a parallel (ferromagnetics), antiparallel (antiferro- 

magnetics), inclined, conical, helical, etc., spin orientation [Ref. 2.13, Chap. 1, 

Sect. 2.11] affect the amplitude of scattering by magnetic structures. 

Different versions of ordering of atomic magnetic spins are possible. In one 

case it is achieved within the ordinary crystallographic, i.e., “chemical” unit cell 

of a given compound, which is determined by x-rays. Then the “‘magnetic”’ cell 

coincides with the “‘chemical’’, and the magnetic contribution to the intensities 

(4.168) is represented together with the nuclear, so that the nuclear contribu- 

tion must be subtracted to determine the magnetic structure. 

In another case the magnetic structure is described by a unit cell exceeding 

the ordinary “chemical” cell by some multiple, and the cell is superstructural 

with respect to the ordinary cell (Fig. 4.96). Then the magnetic contribution to 

scattering is manifested in the appearance of additional, purely “magnetic’’, 

reflections due to the large magnetic cell and may be absent in the nuclear- 
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Fig. 4.96. Model of the magnetic struc- 

ture of MnO. Magnetic moments of Mn 

atoms in positions A(+) and D(—) are 

antiparallel and lie in planes perpendi- 

cular to the [111] axis of the crystal. The 

linear dimensions of the magnetic cell 

are twice as large as those of the ““chemic- 

al’ one [4.61] 
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Fig. 4.97a,b. Neutron diffraction patterns from MnO powder at 80 (a) and 293 K (b) (below 

and above the Curie point). The low-temperature neutron diffraction pattern shows reflections 

due to neutron scattering by an increased unit cell (compared with the ‘‘chemical’’ one). The 

arrow indicates the effect on diffraction of the short-range residual magnetic ordering [4.61] 
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scattering maxima (Fig. 4.97). In both cases when describing the magnetic 

symmetry, it is possible to use the space groups of antisymmetry ®’ = LI 

or color symmetry ® and © (see Sect. 2.9) associated with the group ® of 
the chemical structure. 

Finally, in some kinds of helical ordering the period of the helix may not be 

commensurate with that of the “‘chemical’’ structure; then there is no correlation 

of ordinary symmetry @ and the magnetic symmetry, which belongs to the type 

Gj. In this case the relevant magnetic reflections appear along the reciprocal space 

axis which corresponds to the axis of the helical magnetic ordering (Fig. 4.98). 

Additional opportunities are created by using a beam of polarized monoch- 

romatic neutrons, which can be obtained by reflecting the primary beam from 

some magnetized ferromagnetic single crystals. Then the magnetic and nuclear 

contributions are separated more distinctly, and the details of the magnetic 

structure are revealed better than for nonpolarized neutrons. 

Many classes of magnetic structures, phase transformations in them, the 

behavior of spins near the Curie point, etc., have been studied with the aid of 

neutron diffraction analysis of magnetic materials [2.14]. 

The computation of the Fourier synthesis using the Fy of magnetic scattering 

gives the distribution of the spin density of the magnetic atoms. Figure 4.99 depicts 

such a pattern for a body-centered structure of @-Fe after the subtraction of the 

spherical component. The electrons of the shell of the Fe atom with an uncom- 
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Fig. 4.98. Neutron diffraction pattern (reflections 00/) from a single crystal of BaSc, sFeo sOj9 

ata Dike)? A. The signs * and ~ mark the satellite magnetic reflections [4.62] 
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pensated spin in the a phase are distributed in a complicated manner. In addi- 

tion to the positive areas due to 3d electrons, three-dimensional chains of 

annular regions of negative magnetization were revealed, which have not yet 

been interpreted unambiguously. Similar investigations were conducted for some 

other metals. As we see, they supply information on the distribution of the 

magnetic-shell electrons. 

Saruital Fig. 4.99. Spin density distribution in a-Fe [4.63] 

Inelastic coherent magnetic scattering of neutrons, which is similar to x-ray 

scattering by phonons, enables one to investigate magnons, i.e., spin waves in 

crystals. 

4.9.4 Other Possibilities Offered by the Neutron Diffraction Method 

The energies of a thermal neutrons and of a lattice vibrations (phonons) are 

close one to another; therefore, an energy exchange between neutrons and the 

lattice, i.e., their inelastic scattering, takes place [4.64]. In the neutron-phonon 

interaction, energy can be transferred both from neutron to lattice and vice versa. 

Investigation into the angular and energy distribution of scattered neutrons is 

called neutron spectroscopy. Measurement of coherent inelastic scattering of 

neutrons from single crystals is an efficient tool in studying the phonon spec- 

trum of a crystal and hence the atomic interaction forces responsible for this 

spectrum. Similar data can be obtained from inelastic incoherent scattering, 
Neutron diffraction analysis, like the other diffraction methods, can be used 

for studying the structure of noncrystalline objects. When investigating amor- 

phous solids, glasses, and liquids, the possibility of obtaining the scattering 

curves up to large values of sin 0// is extremely valuable, because the drop of the 

curves is due only to the temperature factor, while the nuclear amplitudes b are 

constant. Therefore it is possible to obtain curves of the radial distribution for 

a given substance with a high accuracy. 

New opportunities also open up for the use of small-angle neutron scattering. 

Changes in wavelength from | to 30 A enable one to study nonuniformities of 

different sizes. The small-angle method helps to obtain data on the decomposi- 
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tion of metallic solid solutions of the iron group (of atoms with close Z) and the 

formation of new phases in them, and also on the structure of glasses, the disloca- 

tion structure of metals, and the structure of polymers and biological objects. 

In neutron scattering dynamic effects are also observed and used. 

4.9.5 Diffraction of Mossbauer Radiation 

Some nuclei, namely *’Fe, '!°Sn, '*°Te, and others are sources of Méssbauer y- 

radiation with an energy of 1-100 keV and, accordingly, wavelengths 4 from 

several to tenths of an angstrom. These are precisely the wavelengths that are 

used in classical x-ray analysis, and therefore diffraction of Méssbauer radiation 

from crystals can be used [4.65]. 

MOssbauer diffraction has a number of specific features. They are based pri- 

marily on the extremely small energy width of y-quanta, about 10-* eV (for the 

ordinary characteristic radiation of an x-ray tube this is about | eV). Therefore, 

along with the scattering by electrons of atomic shells, which is usual for x-rays, 

resonance scattering from nuclei is of no less importance. If a crystal contains 

Méssbauer nuclei, the phenomenon of excitation by the incident radiation of 

their respective levels and subsequent emission of y quanta, which is actually 

resonance scattering, occurs with a time and space correlation unobtainable in 

other methods. The conditions of exact resonance may be disturbed by moving a 

source or a detector. Then observation of the Doppler effect makes it possible to 

determine the scattering amplitudes and phases experimentally (Fig. 4.100). 

bi] 
Crystal | 

Fig. 4.100. Scheme of a setup for Mossbauer diffraction. (S) Méssbauer source; (S,) and ($2) 

collimators: (A) vibrating resonance absorber for measuring the Doppler effect; (R) detector 

In distinction from ordinary x-ray scattering, where atomic amplitudes are 

scalar quantities depending on the electron density p(r) of the atom and on the 

scattering angle, in Mossbauer diffraction the atomic amplitude Iu 
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Tuk, P, Ko, P) = £.(k, P, ko, Po) + fr(k, le ky, P) (4.170) 

consists of an electron, f,, and nuclear, f,, components, which depend on the 

wave vectors k, and k of the incident and scattered waves as well as on their 

polarization vectors P, and P and are, in the general case, matrix quantities. The 

nucleus in a crystal is in the electric and magnetic fields of the surrounding atoms; 

its energy levels are thus split, which chang f, and hence fy. The equations of dif- 

fraction from a crystal inthe kinematic approximation acquire a very complicated 

form, and consideration of the dynamic effects is still more complicated. At the 

same time, owing to these specific features, a number of remarkable phenomena 

arise, which find ever-increasing application in the study of crystals. The poten- 

tialities of the method are, unfortunately, limited by the relatively weak inten- 

sity of Mossbauer se@urces (only tens of quanta per minute have to be counted) 

and their relatively short lifetime (the half-life of the sources is less than a year). 

Another limitation is the fact that the crystal under investigation must contain 

Mossbauer nuclei. 

Thus the basic features of Mossbauer diffraction are as follows: 

1) The possibility of experimental determination of the phases of structure 

amplitudes by observing fy = f. + f, at different (at least three) Doppler shifts. 

This has been done for the simplest structures, but similar projects are under 

way for more complicated structures, including proteins. 

2) The possibility of studying the magnetic structure of crystals (which 

may supplement or replace neutron diffraction investigations), because f, 

depends on the magnetic fields at the nucleus and the orientation of the atomic 

magnetic moment. 

3) The dependence of Méssbauer scattering on the gradients of the electric 

field at the nuclei makes it possible to study these fine phenomena as well and 

determine, in particular, the different orientation of the tensors of this gradient 
at the crystal lattice points indistinguishable (equivalent) from the standpoint of 
ordinary symmetry. This can be described with the aid of color symmetry. 

The collective interaction of crystal nuclei with the incident and scattered 
waves of Mossbauer radiation gives rise to a number of specific features, and the 
amplitudes of scattering from nuclei in the crystal become different in their 
energy characteristics from those for free nuclei. It turns out that interactions 
remain effective only in elastic scattering, whereas they are suppressed in inelas- 
tic scattering [4.66]. Therefore dynamic scattering at Bragg angles is accompanied 
by an anomalously high transmission, a y-nuclear effect similar to the Borrmann 
effect in x-ray diffraction. 

In scattering from crystals it is possible, by using the high energy resolution 
of Mossbauer detectors, to separate the elastic from inelastic components of the 
diffracted beams and use the latter to obtain information on lattice dynamics. 
This can be done even for crystals containing no Méssbauer nuclei. 

Phenomena of coherent scattering of y quanta also exhibit the effects of 
birefringence and optical activity. 
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Thus, the Méssbauer method is a promising line of crystal structure analysis. 
However, its wide application is still hindred by the scarcity of effective sources 
and by a number of experimental difficulties. 

In conclusion, we wish to emphasize once more that all the diffraction 

methods, namely x-ray, electron and neutron analysis, and also the Mossbauer 

method, are very similar in regard to the essence of the phenomenon utilized— 

scattering of short waves in crystals or in noncrystalline substances—and the 

mathematical devices of the theory. But due to the differences in the physical 

nature of interaction with matter each method has its own field of appli- 

cation. In principle, all these methods are independent and each can be used 

separately for solving almost any structure problem, but in fact they often 

complement each other. One must naturally also take into consideration the 

differences in experimental realization, because each method has its own ad- 

vantages and limitations. With due regard for all these features, one should 

choose the proper way to solve the problem at hand. 

4.9.6 Particle Channeling and the Shadow Effect 

Under certain conditions, the passage of heavy charged particles—protons, a- 

particles, and ions—through crystals with a simple structure is accompanied by 

phenomena which do not require wave treatment and are interpreted simply 

from the standpoint of classical mechanics [4.67]. If we inspect a crystal with a 

simple, e.g., close-packed structure, we see that the crystallographic planes in 

it are clearly defined physically: there are parallel planes which are occupied 

by atomic nuclei and the central parts of electron shells; they alternate with 

parallel “empty” regions with a low or zero electron density corresponding to 

the periphery of the atoms (Fig. 4.101). Obviously, both the “populated” and 

“empty” planes are most clearly evident at the small crystallographic indices, 

i.e., large spacings. Similarly, there are vacant “channels” and dense one-dimen- 

sional rows of atoms in radial directions with small axial indices. 

The channeling phenomenon actually consists in the classical transmission 

of charged particles through a crystal along its vacant planes or axes, hence the 

terms ‘“‘plane”’ and “‘axial’”’ channeling. The atoms disposed on both sides of each 
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vacant plane (or surrounding the axial channel) promote, by means of their 

electrostatic field, the passage of the particles precisely in these directions. The 

particles can pass through the channels only if the angle of their entry into the 

channel does not exceed a certain value (of the order of | °), which depends on the 

momentum, the atomic number ratio, and the interplanar distance. 

The channeled particles, “‘slipping’”’ along the periphery of atoms, interact 

with them only weakly. At the same time the unchanneled particles, which 

follow arbitrary directions, have much stronger interaction (nuclear or electron) 

with the atoms of a crystal. 

Crystal defects hinder the channeling, and therefore this phenomenon can 

be used for their investigation. 

The shadow effect can be regarded as the “‘negative” of the channeling. In this 

case the centers of emission of fast charged particles—protons, deuterons, and 

heavy ions—are the atoms.of the crystal structure themselves. This effect can be 

achieved either by introducing @-radioactive nuclei into the lattice or by exciting 

nuclear reactions in the lattice atoms with the use of appropriate radiation. Since 

the atom (nucleus) itself is at the center of “populated” crystallographic planes, 

the particles emitted from it, encountering the greatest number of atoms along 

precisely these planes and other rational crystallographic planes and axial direc- 

tions, cannot penetrate through them, and deflect from them. Thus, the angular 

distribution of particles leaving a single crystal will have sharp minima—‘‘shad- 

ows’’—along the emergences of crystallographic planes and axes with small 

indices. The shadow intensity is then equal to about | % of the average intensity 

in the other directions. The shadow pattern recorded on a photographic plate 

(Fig. 4.102) (sometimes such patterns are called proton or ion pattern) is 

nothing else than a gnomonic projection of the crystal. 

Fig. 4.102. Ion shadow pattern of 

a tungsten crystal (courtesy of A. 

F. Tulinov) 
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The shadow effect can be used for determining the orientation of crystals and 

thin single-crysta! films, for studying lattice defects, and also for nuclear physics 

investigations. 

4.10 Electron Microscopy 

4.10.1 The Features and Resolution of the Method 

In electron microscopy an image is obtained with the aid of electrons which 

have passed through, been reflected from, or emitted by, an object. Electron 

beams are formed by electrooptical systems with the use of magnetic or elec- 

trostatic lenses. The image is obtained on luminescent screens, photographic 

plates and films, or other electron-sensitive detectors with devices for memoriz- 

ing and amplifying with displays. 

The basic features of the method are as follows: 

a) the possibility of obtaining very large magnification and high resolution, 

up to the atomic level, direct observation of the objects; 

b) electron-optical information on the object (image) can be supplemented by 

a number of other data based on the physics of interaction of electrons with 

matter, in particular by electron diffraction data. The crystallographic and 

other chracteristics of the defects in crystals can be studied by analyzing the 

diffraction contrast of the image; 

c) the possibility of studying the local chemical composition of the specimen 

with the aid of spectral analysis of its x-ray radiation excited by the electron 

beam; 

d) extensive possibilities of exerting some effects on the object in the course 

of observation (heating, deformation, irradiation, magnetization, etc.). The 

possibility of observing the dynamics of the processes and registering them by 

means of videorecording; 

e) the possibilities of observing the surface relief and analysis of cathodolu- 

minescence, secondary electrons, etc., especially in scanning electron micros- 

copy. 

4.10.2 Transmission Electron Microscopy 

The optical scheme of formation of the image and of diffraction in a transmission 

electron microscope (TEM) is given in Fig. 4.103. Transmission microscopes are 

designed as a vertical column, the 10-°-10~’ Torr vacuum is used. Electrons 

emitted by the heated cathode filament are accelerated by high voltage. They then 

pass through two condensor lenses, which reduce the minimum cross section of 

the beam and focus it on the object. The specimen is placed either directly on 

a special microgrid or on a grid previously coated with a supporting film. Passing 

through the object, the electrons are scattered within some solid angle. This 
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Fig. 4.103a,b. Optical scheme of a transmission electron microscope. (a) for imaging; (b) for 

microdiffraction. 

(1) source; (2) condenser lens; (3) object ; (4) objective lens; (5) selecting area aperture; (6) inter- 

mediate lens; (7) projector lens 

angle is restricted by the objective aperture. The object image formed by the 

objective lens is magnified by intermediate and projecting lenses. The contrast 

in the image is due to the absorption and scattering of electrons. The contrast 

due, mainly, to absorption is called the amplitude contrast, and that due to the 

difference in the phases of the scattered electrons and the initial beam, the phase 

contrast. 

The electron wavelength is determined by the accelerating voltage V and is 

equal to 2(A) = ./150/V(V) (4.155). For the usual voltage of 100 kV, 4 = 0.037 
A. The resolution of any optical system is limited by the diffraction spread of 

the image of the point and is equal to 
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dp = 0.61A/a, (4.171) 

where 2a, is the angular aperture of the objective lens. This relation can also be 

interpreted in terms of the Fourier transformation of the object (4.12, 118) and 

the formation of the image as a Fourier synthesis from harmonics with an 

spacing d defined by the Bragg—Wulff equation nA = 2dsiné (4.3) (in our case 

20 = a). Putting (4.3) into (4.171) yields 

dp = 0.61d, (4.172) 

1.€., point-to-point resolution is determined by the minimum spacing of the dif- 

fracted beams, which are still not cut off by the angular aperture of the objec- 

tive lens. In the case of scattering from crystals, diffracted beams are collected in 

the image. If an image is formed by two beams— the initial (000) and diffracted, 

say, (220)—the Fourier synthesis of these two harmonics is the image of the sys- 

tem of (220) planes (Fig. 4.104). 

Since 2 = 0.04 A, and is still less in high-voltage microscopes (0.008—0.004 A), 

at first glance it seems rather easy to achieve direct resolution of atoms, because 

the interatomic distances lie within 1-4 A. The main obstacles to this are aber- 

rations of lenses, above all spherical aberration: 

fe (4.173) 

where C, is the instrumental constant of the objective lens, which is usually equal 

to 2/3 its focal distance. 

Fig. 4.104. Electron micrograph of a gold crystal: image of a system of (220) planes 
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Fig. 4.105a,b. High-resolution elec- 

tron micrographs. 

(a) molecule of copper chlorophtha- 

locyanine [4.68] and its structural 

chemical formula; (b) dark-field 

micrograph of a microcrystal of 

thorium dioxide; thorium atom 

rows are visible [4.69] 

Thus, by increasing the aperture a , which is necessary for improving the 

diffraction resolution 6,(4.171), we simultaneously increase (to the third power) 

the spherical aberration (4.173). The optimum aperture is 6, ~ A/a and the theo- 

retical resolution of the electron microscope 1s 

Op = VAG (4.174) 

This value is about 2 A for 100 kV, but the resolution can be increased by using 

higher accelerating voltages (up to 1.0 MeV). 

The best modern transmission microscopes have ensure a point-to-point 

resolution of about 2 A. The correct contrast transfer in high resolution electron 

microscopic images can be obtained only for thin (100-150 A) specimens under 

the conditions of optimum underfocusing of the objective lens. The image for- 

mation can be simulated by computers. 
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coherent regions of different composition: Me,;X37 (A), MezgX7 (B), Meéy2X29 (C) [4.70] 

The resolution of individual atoms by TEM has been achieved in a number of 

works (Fig. 4.105). The imaging of strongly scattering atomic groups (for instance, 

MeO, octahedra) in perfect (Fig. 1.18) and imperfect (Fig. 4.106) crystal 

structures has been also obtained. 

Different types of superstructures, order-disorder phenomena, the dynamic 

behaviour of atoms, the structure of grain boundaries and other features of 

the real structure of crystals have also been investigated. 

In the conventional observation scheme (Fig. 4.105a) the bright areas of the 

image correspond to the “transparent” areas of the object, and the dark areas, 

to the sites of the object that absorb and scatter electrons. This is a bright- 

field image. One can, on the other hand, screen the initial beam and form the 

image by the deflected scattered beams. In such a “‘dark-field’’ image the con- 

trast will be inverted. In this way it is possible to observe the image of crystals in 

definite diffracted beams; this leads to electron diffraction topography of the 

object similar to x-ray topography (see Sect. 4.3). 

Defects of the crystal structure can be observed owing to the change in the 

diffraction conditions in the vicinity of the defect. If the crystal is close to the 

reflection position, a slight turn of the lattice near the dislocation brings this area 

into an exact reflecting position. In the area surrounding the dislocation the 

intensity will be redistributed from the initial to the diffracted beam, and the 

image of the dislocation will appear in the bright field (Fig. 4.107). Many charac- 

teristics of the defects of a crystal lattice are determined quantitatively in this 

manner. The diffraction contrast patterns can be computationally simulated. 

High-voltage (up to 1-3 MeV) TEM is being used increasingly in materials 

science. In addition to providing a possibility for working with objects of con- 
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Fig. 4.107. Image of dislocations in a deformed silicon crystal (courtesy of Yu. V. Maloy, 

V.N. Rozhansky) 

siderable thickness, studies of radiation damage, etc., these instruments simplify 

operations involving analysis of diffraction contrast®. 

In investigating the morphology of crystal and other surfaces, surface distri- 

bution of electric charge and other phenomena, wide use is made of the replica 

and decoration methods. A replica is a thin layer of carbon vacuum-deposited 

on the surface of a bulk specimen. Its structure repeats the surface relief of 

the specimen. Therefore, when a replica is separated from the specimen and 

placed into a microscope, it enables one to study the structure of the surface. 

To increase the contrast, a thin layer of a heavy metal is evaporated in a 

vacuum onto the surface or a replica at an oblique angle (shadowing method). 

The nonuniformity in the distribution of the layer over the surface helps to reveal 

fine details of the surface relief. 

In the decoration method, a substance selectively crystallizing on the active 

sites of the surface is applied on the crystal surface. Figure 4.108a is an electron 

micrograph of a NaCl crystal with gold-decorated steps of monoatomic height. 

In Fig. 4.108b the decorating gold particles reveal the distribution of an impurity 

and of charged point defects on the surface of the NaCl crystal. 

A special technique is used when investigating polymers and biological 

objects which scatter electrons weakly. Here, one can use the method of shadow- 

ing protein molecules or crystals on substate. To avoid distortions due to the 

action of the vacuum, preliminary freezing of the biological objects to liquid 

® The observation of defects with the aid of transmission electron microscopy is also treated 

in [Ref.2.13, Chap. 5]. 
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Fig. 4.108a,b. Application of the decoration method. (a) elementary steps on the surface of a 

cleavage of a NaCl crystal [4.71]; (b) visualization with decorating gold particles of charged 

point defects on the surface of a cleavage of a NaCl crystal grown with PbCl, inclusions. 

Double electric layers at the interface of the PbClI, inclusions and the matrix crystal are seen 

[4.72] 

nitrogen or helium temperatures has been used in recent years. But the resolution 

of this method is rather low (20-30 A). 

The best results are achieved by the staining methods. For this purpose, 

substances strongly scattering electrons, for instance uranylacetate and phospho- 

tungsten acid, are introduced into the specimen. In positive staining (Fig. 

4.109a) the molecules are covered with particles of the stain. Wider use is made 

of the negative-staining method, when the specimen is immersed in the stain 
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(Fig. 4.109b) or surrounded by a thick layer of it. The stain makes a cast. of 

the object and also penetrates into its cavities. The resolution of negative staining 

is usually about 20-30 A, achieving 8-10 A in the best investigations. Glucose or 

sucrose is also introduced into the preparation of biological molecules and 

crystals protecting them from destructing during drying. In this case small 

doses of electron radiation should be used. The resolution achieved is also 

~10 A. Examples of electron micrographs of biological specimens are given 

in Fig. 1.18; see also [Ref. 2.13, Figs. 2.158, 161, 164, 169, and 176]. 

Fig. 4.109a,b. Positive (a) and negative (b) staining 

of biomolecules on a substrate (S: stain) 
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4.10.3 Image Correction and Processing. Three-Dimensional Reconstruction 

The electron microscope is a physical instrument; the images obtained in it have 

a number of distortions due to various ‘“‘noises”’: instability and discreteness of 

the beam, instability of the power supply of the lens, mechanical vibrations, the 

effect of extraneous fields, the inhomogeneity of photographic emulsions, etc. 

In addition there are instrumental errors in measurements of the electron 

micrographs. Many of these errors may be eliminated by mathematical treatment 

and processing of the image. Quantitative data on the image in the digital or 

graphical form may be obtained using computer-controlled densitometers. 

Then corrections of systematic instrumental effects, lens aberrations, defocusing, 

and phase contrast can be made. 

The processes of scattering, diffraction, and image formation can always be 

regarded from the general standpoint of the formation of the wave field carrying 

the information about the object. This information is contained in the intensities 

and phases of any plane section of the wave scattered by the specimen. It can be 

observed and recorded in the diffraction plane as well—as the diffraction pattern, 

and in the image plane, as a direct image, and in any other plane. 

The superposition of scattered waves with another reference wave gives the 

information on the object in the form of a hologram. The application of ideas of 

holography in electron microscopy is hindered by the lack of coherent electron 

sources. Estimates show that with the aid of holographic methods the resolution 

can ultimately be increased to 0.4 A. An image can be reconstructed from a 

hologram by the optical method or by computer calculations. 

Since the principles of light and electron eptics are the same, electron micro- 

scopic images can be improved by using the experimental technique of optical 
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diffraction and filtration. An electron micrograph of a crystal or another periodic 

object is placed in an optical diffractometer (Fig. 4.110). The optical diffraction 

from the periodic structure is concentrated at the nodes of a reciprocal (two- 

dimensional) lattice (Fig. 4.110a). Observation of diffraction permits establish- 

ing the geometric parameters of the object, its symmetry, etc. (Fig. 4.110c, 

111). It is possible to place in the diffraction plane a screen (“‘mask’’) with holes 

at the points of the reciprocal lattice. Then only beams passing through 

the holes form the image, thereby eliminating aperiodic components—the 

“noises” in the periodic structure. This is optical filtration of the electron 

micrograph [4.75] (Fig. 4.110d). This process can also be performed by a com- 

puter. 

The fundamental limitation of an electron microscopic image is its two- 

dimensionality, 1.e., it is just a magnified “‘shadow’’, projection of the object. But 

the various projections of a three-dimensional object enable its space structure to 

be reproduced mathematically. Such methods are called three-dimensional 

Fig. 4.110a-d. Optical diffraction and filtration of 

electron micrographs. (a) diagram of an optical 

diffractometer (L,, L,, L,) lenses of the optical sys- 

tem; (D) object (an electron micrograph); (Mp) the 

diffraction plane and a mask, which transmits only 

the beams corresponding to the periodic compo- 

nent; (D,) plane of the filtered image [4.73]; (b) 

electron micrograph of the crystalline layer of the 

protein phosphorylase B; (c) diffraction from it (the 

circles correspond to the holes in the mask); (d) 

filtered image. 
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Fig. 4.11la,b. Electron micrograph of a 

bacteriophage DD6 (x 550,000) (a) and 

optical diffraction from the image of its 

tail (b). 

The tail is built as a pile of ‘‘discs” of 

protein subunits; 24 such discs are super- 

imposed on each other according to the 

helical symmetry. The arrangement of the 

maxima in the diffraction pattern permits 

determining the parameters of the helical 

symmetry S,,N of the packing of protein 

subunits; in thiscase M = p/q = 7/2 and 

rotation symmetry N = 6 [4.74] 

reconstruction methods; they are finding ever-increasing application, especially 

in analyzing biological structures. 

Three-dimensional reconstruction can be carried out using various algorithms: 

algebraic, double Fourier transformation [4.76], and direct reconstruction. If the 

structure of an object is described by the function p(r), its two-dimensional pro- 

jection along vector t onto the plane with vector x is 

L(x) = fp(r) dt. (4.175) 

By changing the direction of projection we obtain a set of L,,. In the direct 

reconstruction method summation of projections L modified with the aid of the 

so-called Radon operator R gives the three-dimensional structure 

pr) = x R[L,\]. (4.176) 

Figure 4.112 represents the results of three-dimensional reconstruction of an 
element of a tail fragment of a bacteriophages—a “‘disc”’ consisting of protein 
molecules (see Fig. 4.111, and [Ref. 2.13, Fig. 2.181). 
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Fig. 4.112a,b. Structure of a single disc of the tail of a bacteriophage 76. 

(a) set of disc sections obtained by three-dimensional reconstruction; (b) superposition of 

sections: the disc of the structure [4.74] 

Additional possibilities arise in joint analysis of electron micrographs and 

electron diffraction patterns from one and the same specimen. Then it is 

possible to use the former for calculating the phases from the image, and the 

latter for measuring the intensities of reflection. Combining these data, we obtain 

the structure using Fourier synthesis. Thus, electron microscopy is not only a 

tool for obtaining two-dimensional images, but also a method for analyzing the 

three-dimensional structure of crystals and macromolecules similar to other 

methods of structure analysis. 

4.10.4 Scanning Electron Microscopy (SEM) 

In TEM the image is formed by transmission of electrons simultaneously through 

all the points of the specimen; thecrossover of the electron beam is then larger than 

the size of specimen. But another principle is also possible: a condensor system 

focuses a very fine electron beam on a small area—a “‘point”’ of the specimen 

surface (both in the case of transmission and reflection). A special deflecting sys- 

tem scans the surface of the specimen with an electron beam, reflected electrons 

are detected. Thus, the image is formed by successive recording of its different 

areas. This is the principle of SEM. The resolution depends on the diameter of 

the beam. In the transmission version (STEM) a resolution of about 2-5 A was 

achieved in unique investigations. In the best commercial reflecting SEM appa- 

ratus it is 30-50 A. Special detectors record transmitted or secondary electrons, 

or cathodoluminescence, or x-rays, etc. In SEM the image is observed on the 

screen of a cathode-ray tube. The beam in it is controlled by a detector and 

scans the screen synchronously with the beam falling on the object. 
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SEM is the most efficient instrument for investigating the morphology and 

microrelief of a single crystal. The depth of focus in the scanning microscope 

greatly exceeds that of the optical microscopes, which permits observation of 

three-dimensional structures with deep relief (Figs. 1.11, 4.113). 

Scanning and transmission electron microscopes, usually have special 

devices for measuring local chemical composition of specimens. For that x-ray 

spectroscopy method is used. The incident scanning electron beam excites 

characteristic x-ray radiation which is analyzed by a crystal spectrometer or 

semiconductor detector. There are also apparatus with special devices for local 

Fig. 4.113a,b. Electron _micro- 

graphs obtained in reflecting 

scanning microscope. 

(a) whiskers of silicon crystals de- 

monstrating the periodic instability 

of their growth (x 20,000) [4.77]; 
(b) mineral millerite (x 7,000) 
[4.78] 
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Auger-spectroscopy. In addition spectral analysis of the fluorescent radiation 

excited by electron beam can be used. 

TEM and SEM instruments are often equipped with a computer, which 

processes the image and automatically gives information on the particle size 

and shape distribution, the distribution of the chemical elements, etc. 

Apart from these basic types of instruments, emission microscopes are 

used. Electrons are emitted by the specimen under the effect of heating or 

ultraviolet radiation. An electrooptical system projects the electrons onto a 

fluorescent screen, forming the image of the object. Under special conditions, 

when the point-projection principle is used, the emission microscope gives an 

image at the atomic level (see Fig. 1.19). 

Thus, electron microscopy, along with x-ray, neutron, and electron diffrac- 

tion, is an important method for investigation into the atomic and real structure 

of crystals. 
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334 

Amorphous solids 23, 275 

Amplitude of scattering 226, 272 
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Debye photograph 302 
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Determinant of structure amplitudes 
324 

Difference synthesis Fourier 332 

valence 333 

deformation 333 
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crystals 235 

dynamic theory 253, 272 
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256 
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diffraction peak 306 
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Polarization factor 25/7 

coefficient 284 
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Programs for crystal structure 
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Radial distribution function 24, 
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spherical symmetry 276 

Radius of gyration 278 

Rational parameters 12, 181 
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250 
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Reciprocal space 156, 228, 237, 272 

Reconstruction, three-dimensional 

370 

Reduction algorithm 217 
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256 

Reflection (Ewald) sphere 240, 286, 
339 
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247 

Replica method 368 

Representation of group 51, 53 
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365, 366 
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273 
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273 
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Scattering amplitude 

for neutrons 

magnetic 232, 352 
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Modern Crystallography I covers the general characteristics 

of crystalline matter, the fundamentals of crystallography relale| 

its theoretical basis, the theory of symmetry, and the methods 

of analyzing the atomic structure of crystals. The theory of 

classical and generalized symmetry is considered, based on 

geometrical representations and group theory. The geo- 

metrical theory of crystal forms and of three-dimensional 

space lattice is given. This volume also covers the funda- 

mentals of diffraction: mehors used in investigaling iss 

structure of crystals; 

The description of crystal stricture will be Siaied in 

Modern Crystallography Il. Volumes III and IV will cover ink 

growth and the physical properties of aye ee 


