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4 Physical Properties of Crystals 

Editorial Board: 

B. K. Vainshtein (Editor-in-Chief) A. A. Chernov L. A. Shuvalov 

Foreword 

Crystallography - the science of crystals - has undergone many changes in the 

course of its development. Although crystals have intrigued mankind since 

ancient times, crystallography as an independent branch of science began to 

take shape only in the 17th-18th centuries, when the principal laws governing 

crystal habits were found, and the birefringence of light in crystals was dis¬ 

covered. From its very origin crystallography was intimately connected with 

mineralogy, whose most perfect objects of investigation were crystals. Later, 

crystallography became associated more closely with chemistry, because it was 

apparent that the habit depends directly on the composition of crystals and can 

only be explained on the basis of atomic-molecular concepts. In the 20th century 

crystallography also became more oriented towards physics, which found an 

ever-increasing number of new optical, electrical, and mechanical phenomena 

inherent in crystals. Mathematical methods began to be used in crystallography, 

particularly the theory of symmetry (which achieved its classical completion in 

space-group theory at the end of the 19th century) and the calculus of tensors 

(for crystal physics). 

* English editions have originally been published in Springer Series in Solid-State Sciences , Vols. 

15 (I), 21 (II), 36 (III) and 37 (IV). 



VI Foreword 

Early in this century, the newly discovered x-ray diffraction by crystals caused 

a complete change in crystallography and in the whole science of the atomic 

structure of matter, thus giving a new impetus to the development of solid-state 

physics. Crystallographic methods, primarily x-ray diffraction analysis, pene¬ 

trated into materials sciences, molecular physics, and chemistry, and also into 

may other branches of science. Later, electron and neutron diffraction structure 

analyses became important since they not only complement x-ray data, but also 

supply new information on the atomic and the real structure of crystals. 

Electron microscopy and other modern methods of investigating matter - 

optical, electronic paramagnetic, nuclear magnetic, and other resonance tech¬ 

niques - yield a large amount of information on the atomic, electronic, and real 

crystal structures. 
Crystal physics has also undergone vigorous development. Many remark¬ 

able phenomena have been discovered in crystals and then found various 

practical applications. 

Other important factors promoting the development of crystallography were 

the elaboration of the theory of crystal growth (which brought crystallography 

closer to thermodynamics and physical chemistry) and the development of the 

various methods of growing synthetic crystals dictated by practical needs. Man¬ 

made crystals became increasingly important for physical investigations, and 

they rapidly invaded technology. The production of synthetic crystals made a 

tremendous impact on the traditional branches: the mechanical treatment of 

materials, precision instrument making, and the jewelry industry. Later it 

considerably influenced the development of such vital branches of science and 

industry as radiotechnics and electronics, semiconductor and quantum elec¬ 

tronics, optics, including nonlinear optics, acoustics, etc. The search for crystals 

with valuable physical properties, study of their structure, and development of 

new techniques for their synthesis constitute one of the basic lines of contempor¬ 

ary science and are important factors of progress in technology. 

The investigation of the structure, growth, and properties of crystals should 

be regarded as a single problem. These three intimately connected aspects of 

modern crystallography complement each other. The study, not only of the ideal 

atomic structure, but also of the real defect structure of crystals makes it possible 

to conduct a purposeful search for new crystals with valuable properties and to 

improve the technology of their synthesis by using various techniques for 

controlling their composition and real structure. The theory of real crystals and 

the physics of crystals are based on their atomic structure as well as on the 

theoretical and experimental investigations of elementary and macroscopic 

processes of crystal growth. This approach to the problem of the structure, 

growth, and properties of crystals has an enormous number of aspects, and 

determines the features of modern crystallography. 

The branches of crystallography and their relation to adjacent fields can be 

represented as a diagram showing a system of interpenetrating branches which 

have no strict boundaries. The arrows show the relationship between the 

branches, indicating which branch influences the activity of the other, although, 
in fact, they are usually interdependent. 
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Branches of crystallography and its relation to other sciences 

Crystallography proper occupies the central part of the diagram. It includes 

the theory of symmetry, the investigation of the structure of crystals (together 

with diffraction methods and crystal chemistry), and the study of the real 

structure of crystals, their growth and synthesis, and crystal physics. 

The theoretical basis of crystallography in the theory of symmetry, which has 

been intensively developed in recent years. 

The study of the atomic structure has been extended to extremely complic¬ 

ated crystals containing hundreds and thousands of atoms in the unit cell. The 

investigation of the real structure of crystals with various disturbances of the 

ideal crystal lattices has been gaining in importance. At the same time, the 

general approach to the atomic structure of matter and the similarity of the 

various diffraction techniques make crystallography a science not only of the 

structure of crystals themselves, but also of the condensed state in general. 

The specific applications of crystallographic theories and methods allow the 

utilization of structural crystallography in physical metallurgy, materials 

science, mineralogy, organic chemistry, polymer chemistry, molecular biology, 

and the investigation of amorphous solids, liquids and gases. Experimental and 

theoretical investigations of crystal growth and nucleation processes and their 

development draw on advances in chemistry and physical chemistry and, in 

turn, contribute to these areas of science. 

Crystal physics deals mainly with the electrical, optical, and mechanical 

properties of crystals closely related to their structure and symmetry, and 



VIII Foreword 

adjoins solid-state physics, which concentrates its attention on the analysis of 

laws defining the general physical properties of crystals and the energy spectra of 

crystal lattices. 
The first two volumes are devoted to the structure of crystals, and the last 

two, to the growth of crystals and their physical properties. The contributors 

present the material in such a way that the reader can find the basic information 

on all important problems of crystallography. Due to the limitation in space the 

exposition of some sections is concise, otherwise many chapters would have 

become separate monographs. Fortunately, such books on a number of crystal¬ 

lographic subjects are already available. 
The purpose of such an approach is to describe all the branches of 

crystallography in their interrelation, thus presenting crystallography as a 

unified science to elucidate the physical meaning of the unity and variety of 

crystal structures. The physico-chemical processes and the phenomena taking 

place in the course of crystal growth and in the crystals themselves are described, 

from a crystallographic point of view, and the relationship of properties of 

crystals with their structure and conditions of growth is elucidated. 

This four-volume edition is intended for researchers working in the fields of 

crystallography, physics, chemistry, and mineralogy, for scientists studying the 

structure, properties, and formation of various materials, for engineers and those 

engaged in materials science and technology, particularly in the synthesis of 

crystals and their use in various technical devices. We hope that this work will 

also be useful for undergraduate and graduate students at universities and 

institutions of technology studying crystallography, solid-state physics, and 

related subjects. 
Modern Crystallography has been written by a large group of researchers 

from the Institute of Crystallography of the USSR Academy of Sciences, who 

benefited from the assistance and advice of many other colleagues. The English 

edition of all four volumes of Modern Crystallography is being published almost 

simultaneously with the Russian edition. The contributors have included in the 

English edition some of the most recent data. In several instances some 

additions and improvements have been made. 

B. K. Vainshtein 



Foreword to the Second Editions 

The 4-volume treatment Modern Crystallography was first published in the early 

eighties. Crystallography is centuries-old, and its basic concepts and laws are 

well established. However, the rapid progress in all the branches of science 

at the end of our century cannot by-pass crystallography. Our knowledge on 

the atomic structure of matter, on the formation and growth of crystals and 

their physical properties are becoming ever deeper, and the experimental 

methods are being constantly improved. Therefore, to justify the series title - 

Modern Crystallography - we had to enrich the treatment and complement it 

with new data. 
Most of the First Edition has largely has been preserved, but several sections 

were up-dated, the text somewhere improved and complemented with some new 

illustrations. At the same time, numerous new results that could not be neglected 

have been summarized in the updating chapter concluding each volume. Indeed, 

we could not leave out quasicrystals, the high-temperature superconductors, 

discovered in the eighties, the development in molecular-beam epitaxy, surface 

melting, improper ferroelectrics, incommensurate phases, and many other 

topics. We have also presented several novel techniques which became widely 

used in crystallography - e. g., tunneling microscopy, EX AFS, position-sensitive 
detectors for x-rays, etc. The list of references has also been revised and supplied 

with new publications. 

The Second Editions of Modern Crystallography were prepared mainly by 

the contributors of the first editions. In addition, we have been assisted by other 

colleagues with their notes, new figures and references. We take this opportunity 

to sincerely thank all of them. 

B. K. Vainshtein, A. A. Chernov, L. A. Shuvalov 





Preface to Modern Crystallography 2 

This volume Modern Crystallography 2 is devoted to the structure of crystals. It 

is a sequel to Modern Crystallography 1 which covers the symmetry of crystals, 

their geometry, and the methods for investigating the atomic and real structures 

of crystals. This volume Modern Crystallography 2, discusses the concepts of the 

atomic and electron structures of the crystal lattice, their dynamics, and the real 

microscopic structure of crystals. The structure of crystals develops in the course 

of their formation and growth under definite thermodynamic conditions. These 

problems will be treated in Modern Crystallography 3. On the other hand, the 

formed crystal structure determines the physical properties of crystals, which 
will be elucidated in Modern Crystallography 4. 

Chapter 1 of this volume expounds the fundamentals of the theory of the 

atomic structure of crystals and of the chemical bonding between atoms, and 

the principal concepts of crystal chemistry, of the geometric and symmetry 

principles of the formation of crystal structures and of lattice energy. 

Chapter 2 reviews the main classes of crystalline structures - elements, 

inorganic and organic compounds, metals and alloys. The description of the 

structure of polymers, liquid crystals, as well as crystals and macromolecules of 

biological origin, which have been practically neglected in most of the books on 

crystallography, are given more attention than usual. These first two chapters 

were written by B. K. Vainshtein. 

Chapter 3 presents the fundamentals of the electron theory and band 

structure of the crystal lattice. 

Chapter 4 is devoted to lattice dynamics and phase transitions. It considers 

the vibrations of atoms in crystals, their heat capacity and thermal conductivity, 

and also the relationship of the thermodynamic characteristics and symmetry of 

crystals with phase transitions. Chapters 3 and 4 were written by V. M. Fridkin, 

except for Section 4.8, which was prepared by E. B. Loginov. These chapters 

may serve as a bridge linking crystallography with solid-state physics; they 

supply microscopic substantiation of the treatment of many physical properties 

of crystals. 
Finally, Chapter 5 considers the structure of crystals not as idealized systems 

consisting of atoms with the strict three-dimensional periodicity, but as the real 

structure with various defects. The principal types of lattice imperfections are 

classified and analyzed, particular attention being given to the dislocation 

theory. This chapter will aid in understanding Modern Crystallography 3 which 



XII Preface to Modern Crystallography 2 

is concerned with the mechanisms of real crystal structure formation. At the 

same time it prepares the reader for Modem Crystallography 4 dealing with 

the physical properties of crystals, many of which - especially the mechanical 

properties - essentially depend on the real structure. Chapter 5 was written by 

V. L. Indenbom. 

The authors are grateful to L. A. Feigin, A. M. Mikhailov, V. V. Udalova, 

G. N. Tishchenko, L. I. Man, E. M. Voronkova, and many other colleagues for 

their effective aid in the preparation of this volume. 

Moscow, April 1982 B. K. Vainshtein 

V. M. Fridkin 

V. L. Indenbom 



Preface to the Second Edition 

Structure of Crystals represents the second edition of the text of Modem 

Crystallography 2. It is supplied with new data on crystal structures of elements, 

inorganic, organic and biological structures obtained in the period 1982-1992. 

Some corrections have been made in the text of Chapters 1-5, but the most 

important additions are included into Chapter 6 entitled Advances in Structural 

Crystallography. This chapter consists of eleven sections written by various 

contributors: 

6.1 Development of Structure Analysis. Data Banks by N. G. Furmanova 

6.2 Fullerenes and Fullerides by B. K. Vainshtein 

6.3 Achievements of the Crystal Chemistry of Silicates and Related Compounds by 

D. Yu. Pushcharovsky 

6.4 Structure of Superconductors by V. I. Simonov and B. K. Vainshtein 

6.5 Modular Structures, Blocks and Fragments by B. B. Zvyagin 

6.6 X-Ray Analysis for Studying Chemical Bonding by V. G. Tsirelson 

6.7 Organic Crystal Chemistry by N. G. Furmanova and G. N. Tishchenko 

6.8 Structure Investigation of Biomolecular Crystals by B. K. Vainshtein 

6.9 Ordering in Liquid Crystals by B. I. Ostrovsky 

6.10 Langmuir-Blodgett Films by L. A. Feigin 

6.11 Photo- and Thermostimulated Phase Transitions in Ferroelectrics by V. M. 

Fridkin 

The Bibliography has been revised and complemented with new entries. 

The authors would like to express their sincere gratitude to V. V. Udalova, 

L. I. Man, I. L. Tolstova and L. A. Antonova for their most valuable help in the 

preparation of the present volume. 

Moscow, June 1994 B. K. Vainshtein 
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1. Principles of Formation of the Atomic 
Structure of Crystals 

The atoms in crystals are in direct contact, and the interactions of their outer 
electron shells produce chemical bonding. The condition for the formation of 
a crystal structure is a sufficiently low temperature, so that the potential energy 
of attraction between atoms considerably exceeds the kinetic energy of their 
thermal motion. The diversity of structures of crystals is determined by their 
composition and by the individual chemical characteristics of their constituent 
atoms which define the nature of the chemical bond, the electron density 
distribution, and the geometric arrangement of the atoms within the unit cell. 
Many important characteristics of crystal structures - interatomic distances, 
coordination, etc. - can be described on the basis of the geometrical model in 
which the atoms are represented as rigid spheres of definite radii. 

1.1 The Structure of Atoms 

1.1.1 A Crystal as an Assembly of Atoms 

Each atom in a crystal structure is bound to its nearest neighbors at definite 
distances. It also interacts with the next nearest atoms, both directly and 
through the first nearest neighbors, then with still further atoms, and so on, i.e., 
in end effect with the entire structure. The formation of crystals always results 
from the collective interaction of atoms, although it may sometimes be regarded 
approximately as the result of pair interactions. The assembly of atoms in the 
crystal lattice is also united by its intrinsic system of thermal vibrations. 

The concepts of the chemical bond, valence, etc., play an important part in 
crystal chemistry and the theory of crystal structures. They have mainly been 
developed to explain the structure of molecules, whereas in a crystal the 
interaction of the whole set of atoms must be taken into consideration. Let us 
take, for instance, the simplest compound NaCl. If we write down its formula as 
Na + Cl“ (in accordance with the valences of these atoms and the concepts of the 
positive charge of Na and negative of Cl), we obtain “molecules” Na + Cl“, of 
which the crystal seems to be made up. In fact, the structure of NaCl, as well as 
most of the ionic, covalent, and metallic structures, has no molecules at all: the 
formula NaCl is realized in the high-symmetry packing of these atoms, each of 
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which is surrounded by 6 neighbors of a different sort, then, further on, by 12 of 

the same sort, etc. On the other hand, in a number of crystals the molecules, or 

some other stable atomic groupings, retain their individuality. In this case the 

weaker forces binding these groupings into a crystal structure have to be 

explained. There are also many intermediate cases. 

The task of “calculating” the concrete crystal structure is extremely compli¬ 

cated. However, generalization of a huge amount of chemical data on interatomic 

bonds and valence, quantum-mechanical information on the nature of atomic 

interactions and on cooperative interactions of particles, and, above all, diffrac¬ 

tion and other investigations have made it possible to formulate a number of 

laws and regularities describing and governing the general principles and pecu¬ 

liarities of various crystal structures. Some of them are rigorously substantiated 

by theory and have a quantitative expression, while the others are semiempirical 

or qualitative. Nevertheless, on the whole these theoretical and empirical data, 

which comprise the subject of the theory of the atomic structure of crystals, or 

crystal chemistry, ensure reliable orientation in the tremendous diversity of 

crystal structures, explain many of their peculiarities, and enable one to calcu¬ 
late and predict some of their properties. 

This chapter begins by explaining the general principles of the formation of 

chemical bonds in molecules and crystals. Then it considers the main geometric 

laws of the construction of crystal structures and some general questions of 

crystal chemistry. After that we discuss the basic types of crystal structures and 

classify them according to the nature of their chemical bonds. We also consider 

the structures of polymers, liquid crystals, and biological substances. 

The chemical bond between atoms in molecules and crystals is realized by 

the electrons of their outer shells. Therefore, although atoms in a crystal always 

differ, to some extent, from free atoms, this difference actually refers exclusively 

to their outer shells. The interaction of these shells, the changes in their 

structure, and the redistribution of electrons from atom to atom or into the 

common “electron gas” of the crystal - all these actually reflect different aspects 

or possibilities of approximate description of the state of atoms and electrons 

assembled in the crystal structure. Even the simplest - ionic - type of bond, when 

oppositely charged ions attract each other electrostatically, requires, in the first 

place, an explanation of the reasons why it is “profitable” for one atom to give 

up an electron and become a cation, and for another to accept it and also 

become an ion, but with the opposite sign, i.e., an anion. Then problems arise 

concerning, for example, the equilibrium of the repulsive and attractive 
forces. 

The stability of the inner shells of atoms, the relative stability of the outer 

shells, and the trend towards the formation of some stable states at the chemical 

bond in molecules and crystals are the starting points from which chemistry and 

crystal chemistry begin their analysis of the possible arrangement of atoms. 

Therefore we must first of all recall some basic information on the structure of 
atoms. 
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1.1.2 Electrons in an Atom 

Electrons in an atom are in the spherically symmetric Coulomb field of the 

nucleus Ze/r; they interact, repelling each other owing to electrostatic forces, 

and obey the Pauli principle. The stationary states of the electrons in an atom 

are described by the Schrodinger equation HV = FT. Wave function T(x, y, z), 

which is the solution to the Schrodinger equation is generally complex, and the 

square of modulus | T|2 = W* gives the probability density of finding electrons 

at point x, y, z, i.e., the electron density of the atom p(x, y, z). 

Let us consider the hydrogen atom. Here the Schrodinger equation in the 
spherical coordinates has the form 

/ h2 - e2\ 
V2 + — il/(r, 9, q>) + EiJ/(r, 9, (p) = 0 (1.1) 

\on m r ) 

and is solved analytically. 

Each of the set of solutions 

ipnimir, 9, (p) = Rnl(r)Ylm(9, (p) = Rnl(r)0lm(9)<Pm((p) (1.2) 

is characterized by a definite combination of quantum numbers n (principal 

quantum number), l (orbital quantum number), and m (magnetic quantum 

number), and by the eigenvalue of the energy 

2n2me4 

~n2h2~ 
(1.3) 

The wave functions ip of electrons in an atom - of one electron in a hydrogen 

atom or of each electron in a multielectron atom - which give the distribution of 

the electrons in an atom, are called atomic orbitals by analogy to Bohr’s atomic 

orbitals AO. With a given principal quantum number n, n2 combinations 

according to the following scheme are possible: 

n — 1,2,...; l — 0,1,. . ., (n — 1); m = 0, + 1, ± 2,. . . , + /. (1.4) 

With a given n the energy of each one of a set of states is the same, i.e., the states 

are degenerate. 

The solution ^(1.2) consists of radial, R, and angular, Y, components and 

may have a different symmetry according to the quantum numbers. The sym¬ 

metry depends on the type of Ylm and is described by one of the point groups of 

symmetry or antisymmetry. Figure 1.1 shows the radial components Rn, for the 

first states of the H atom. Figure 1.2 represents some orbitals of the H atom. In 

states with / = 0 {m is then also zero), T0o = E these states are spherically 

symmetric and called s states (Fig. 1.2a). For instance, the orbital with the lowest 

energy (the ground state) has the form 

-7=expf - —\ 
VTtOCo V a°/ 

•Ai s = (1.5) 
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Fig. 1.1. Radial components R„, of wave func¬ 
tions ip of the H atom: (/) ip100 (ground state 

Is), (2) 1^200. (2) 1^21 i, W 300* (5) 31 1 » 

(6) ^322 

where a0 = 0.529 A is the Bohr radius, the atomic unit of length. States with 

/ = 1 are called p states, with Z = 2, d states, and with Z = 3, / states. 

At Z ^ 1 the orbitals are no longer spherically symmetric. Thus, at / = 1 three 

solutions (m = 0, ± 1) of (1.1) are possible. Generally, angular components are 

complex, but real combinations may be constructed from them. So three real 

p orbitals are obtained, 

Px = 
V3 Rnl(r)sin 6cos <p, py 

n 
R„i(r) sin 6 sin <p, 

71 

Pz R„i(r)cos 6. 

These orbitals have a cylindrical symmetry and are elongated either along the x, 

or the y, or the z axis (Fig. 1.2b). These functions reduce to zero on the plane of 

antisymmetry mi (nodal surface) perpendicular to the axis of cylindrical sym¬ 

metry; their absolute values are mirror equal, but opposite in sign on the both 

sides of m', i.e., they are described by the antisymmetry point group oo/m'. The 

orbitals with Z = 2 (d states) have a more complex configuration (Fig. 1.2c). The 

orbitals with Z = 3 (/states) are still more complex. 

All the orbitals are normalized and orthogonal, i.e., they obey the conditions 

J tpiipfdv 
1 for i = j, 

0 for i 4= j. 
(1.6) 
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Fig. 1.2a-c. Cross sections of 
some functions of the H atom 
in contour lines of equal values 

(yfejal). The lines are dashed at 

the negative values, (a) i^10o (Is); 
(b) iA2io(2p);(c) 1A322 (dx2-yi). The 
functions have different sym¬ 
metries; i/^oo is spherically sym¬ 
metric, \p210 is cylindrical and 
antisymmetric, (00 /m'\ i/r322 is 
tetragonal and antisymmetric 
(4/mm'm). The m' planes are nodal; 
11> is equal to zero on them [1.1] 

The first of these relations shows that for each orbital the integral of the 

probability density t/t2 of the presence of an electron, taken over the entire 

volume, is equal to unity, and the second, that for any pair of different orbitals 

integral (1.6) is equal to zero, which reflects the properties of orbital symmetry. 

The square of the modulus of the wave function 

|^|2 = t/ri/r* = p(r) (1.7) 

is the electron density of an atom in the corresponding state, p(r) being 

expressed by the number of electrons per unit volume. The models of electron 

density distribution in a hydrogen atom for the ground (Is) and other states are 

shown in Fig. 1.3. 
Let us consider the function of radial distribution of electrons in the atom 

D(r), which is obtained by integrating \iJ/\2 over the angles. As a result, the 

dependence on Ylm(9, <p) disappears, and the dependence on r is given by R„i(r). 

Thus, for the hydrogen atom and any multielectron atom the radial distribution 

of electrons in the n, l state is described by the function 

D„i(r) - 4nr2R2n,(r) (1.8) 
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m = 0 

4/ 
m = i 4 f m = 0 2s m=0 3p m 

3p m=0 4d m = 1 4d m =1 4d 

Fig. 1.3. Model of space distribution of the electron cloud in the hydrogen atom in different states 
[1.2] 

so that D(r)dr gives the total number of these electrons in a spherical layer of 

radius r and thickness dr (Fig. 1.4a)1. The hydrogen atom contains one electron 
while, in general, an atom contains Z electrons; therefore, ^ 

IliAl2dv = \ p(r)dvr = J D(r)dr = Z. (1.9) 

The graphs of radial functions for the hydrogen atom (Fig. 1.4b) clearly show 

the peculiarities of the radial distribution of the electrons. The maximum of D(r) 

for n = 1 - the ground state of hydrogen - lies at r = a0, the Bohr radius of the 
first orbital. 

By multiplying p(r) (1.7) and D(r) (1.8) by e we can express these functions in terms of the charge. 
1 
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Fig. 1.4a, b. Radial distribution functions of 
the electron density in the H atom: (a) rela¬ 
tionship between the radial component R(r) 
of the wave function and the radial distribu¬ 
tion D(r) of functions i//ls and ip2s; (b) func¬ 
tions D(r) for different states n, /: (/) 1,0; 
(2) 2, 0; (2) 2, 1; (4) 3,0; (5) 3, 1; (6) 3, 2. 
(cf. Fig. 1.1) 

The above laws about the structure of H orbitals hold true for the motion of 

electrons in any central field and, therefore, can be used for describing the 

structure of the outer shells of any atom if we assume that the inner electrons, 

together with the nucleus, form some fixed, spherically symmetric system. 

1.1.3 Multielectron Atoms and the Periodic System 

The task of calculating multielectron wave functions, i.e., of finding the energy 

levels and the distribution of the electron density of atoms or ions is complicated 

and cannot be solved analytically, in distinction to the hydrogen atom. The most 

rigorous method of finding its solution was proposed by D. R. Hartree in 1928 

and improved by V. A. Fock in 1930; it is known as the self-consistent field 

method taking account of the exchange. Each electron of an atom is described 

by its one-electron wave function, the orbital, and is assumed to be in the 

potential field of the nucleus and of all the other electrons. It can be assumed 

with sufficient accuracy that this potential is spherically symmetric, and there¬ 

fore the types of solutions with respect to the s, p, d, and / states are preserved. 

The orbitals have the same form as for the H atom (Fig. 1.5). One should also 

take into consideration the electron spin and the Pauli principle; each n, /, and 

m orbit may have not one, but two electrons with opposite spins. Therefore, in 
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Fig. 1.5. Schematic structure of atomic s, p, and d orbitals 

addition, factor ms = ± 1/2, describing the spin coordinate, is introduced into 

the formula of the orbital i/r(2); then il>nlmms is called a spin orbital. 

For a system of N electrons, the full wave function 'F can be constructed 

from N spin orbitals i/r,•(<!;), where i is the number of the state, and j is a set of 

quantum numbers [see below (1.33)]. Functions i/',■(£,•) are orthonormalized 

according to (1.6). As a result, we obtain sets of equations whose solution by 

successive approximations determines both the wave functions and the field 

correlated with these functions, i.e., the self-consistent field. Beginning with the 

helium atom, which has two electrons, exchange terms of Coulomb interaction 
appear in such equations. 

By now, computer calculations of wave functions have been carried out for 

all the atoms and a number of ions (Figs. 1.6, 7). As the number of electrons 

increases, orbitals with larger quantum numbers are filled. It is seen from 

Fig. 1.6 that despite the increase in the number of electrons in the shell with 

increasing Z, the shells contract within a given period because of the increased 

Coulomb attraction to the nucleus. For each of the atoms, transitions of 

electrons from the ground to the excited states, with other quantum numbers 

and energies2, are possible. Therefore calculations for excited states have also 
been carried out for some atoms. 

The chemical-bond theory uses different energy units, electron volt (eV), kilocalories per mole 
(kcal/mol), kilojoules per mole (kJ/mol); the atomic energy unit, 1 a.e.u. = 27.7 eV; 1 eV = 
23.06 kcal/mol = 96.48 kJ/mol, 1 kcal = 4.184 kJ. 

Fig. 1.6. Structures of electron shells (squares of wave functions) for the first ten atoms of the 
periodic system in the ground state, and the electron density of all the constituent orbitals [1.3], 

The highest density contour line corresponds to the value 1 e/al, the value of the succeeding 
contours is decreased by a factor of two. The last line corresponds to 4.9 x 10~*e/al. The total and 
orbital energies are indicated in atomic energy units (1 a.e.u. = 27.7 eV) 
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atoms 
Electron density 

1 s 2s 
atomic orbitals 

2PX 2 Pv 2 Py 

H 
Is 

He 

Is2 

-2.861680 -0.91795 

-0.49470 -0.30983 

c 

ls22s22p2 
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-11.32550 -0.70562 -0.43333 -0.43333 

-54.40093 

o 

-15.62 8 9 8 -0.94528 -0.56754 -0.56754 -0.56754 

F 

\s22s22ps 

-99.40933 -26.38265 -157245 

N e 

ls12s22p6 

-128.5471 -32.77233 -1.93031 

-0.72994 - 0.72994 -0.72994 
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D(r) 

Fig. 1.7a-c. Radial distribution functions D(r) for 
the electron shells of the C (a), Na (b), and Cl (c) 
atoms 

6s O 

5^0 

4jO 

6p O O O 
SdO o o o o 

5POOO 
4^00000 

4pO o o 
3rfOOOOO 

4/00 0 00 0 0 

3 pO o o 
3*0 

2/0 0 0 
2sO 

IsO Fig. 1.8. Approximate energy levels of atomic orbitals 

Using the formal combinatorics of quantum numbers and knowing the 

arrangement of the corresponding energy levels of atoms (which predetermines 

their filling with electrons), it is possible to explain all the basic regularities of 

Mendeleyev’s periodic system. Figure 1.8 gives the sequence of the filling of the 

levels, and Table 1.1 their systematics. It should be emphasized that while for 
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Table 1.1. Electron configurations and orbital radii r0 of elements [1.4] 

z Ele¬ 
ment 

Elec¬ 

tron 

configu¬ 

ration 

Outer 
shell 

rQ Z Ele¬ 
ment 

Elec¬ 
tron 
configu¬ 
ration 

Outer 
shell 

ro 

1 H 1 s1 Is 0.529 51 Sb 5s25p2 5 P 1.140 
2 He Is2 * Is 0.291 52 Te 5s25 p4 5 P 1.111 

53 I 5s25ps 5 P 1.044 
3 Li 2s1 25 1.586 54 Xe 5s25p6' 5 P 0.986 
4 Be 2 s2 2s 1.040 
5 B 2s22 pl 2 P 0.776 55 Cs 6 s1 6 5 2.518 
6 C 2s22pL 2 p 0.620 56 Ba 6s2 6s 2.060 
7 N 2s22p3 2 P 0.521 57 La 5d'6s2 65 1.915 
8 O 2sl2p4 2 P 0.450 58 Ce 4/26s2 65 1.978 
9 F 2s22p5 2 P 0.396 59 Pr 4/36s2 65 1.942 

10 Ne 2s22p6* 2 P 0.354 60 Nd 4/46s2 6s 1.912 
61 Pm 4/56s2 6s 1.882 

11 Na 3s1 3s 1.713 62 Sm 4/66s2 65 1.854 

12 Mg 3s2 3s 1.279 63 Eu 4/76s2 65 1.826 

13 A1 3s23/?’ 3 p 1.312 64 Gd 4/75rf'6s2 65 1.713 

14 Si 3s23p2 3 P 1.068 65 Tb 4/96s2 6s 1.775 

15 P 3s23p3 3 p 0.919 66 Dy 4/106s2 65 1.750 

16 S 3s23p4 3 p 0.810 67 Ho 4/u6s2 6s 1.727 

17 Cl 3s23p5 3 p 0.725 68 Er 4/126s2 65 1.703 

18 Ar 3s23p6* 3 p 0.659 69 Tu 4/,36s2 6s 1.681 
70 Yb 4/146s2 65 1.658 

19 K 4s1 45 2.162 71 Lu 5d'6s2 65 1.553 

20 Ca 4s2 45 1.690 72 Hf 5d26s2 6s 1.476 

21 Sc 3dx4s2 4s 1.570 73 Ta 5d26s2 65 1.413 

22 Ti 3d24s2 45 1.477 74 W 5d*6s2 65 1.360 

23 V 3d34s2 45 1.401 75 Re 5ds6s2 6s 1.310 

24 Cr 3d54s' 4s 1.453 76 Os 5d66s2 65 1.266 

25 Mn 3d5 4s2 45 1.278 77 Ir 5d16s2 65 1.227 

26 Fe 3db4s2 4s 1.227 78 Pt 5d96s1 65 1.221 

27 Co 3d14s2 45 1.181 79 Au 6 s1 6s 1.187 

28 Ni 3d*4s2 4s 1.139 80 Hg 6s2 65 1.126 

29 Cu 3d'°4s' 4s 1.191 81 Tl 6s26p1 6/7 1.319 

30 Zn 3dl04s2 4s 1.065 82 Pb 6s26p2 6/7 1.215 

31 Ga 4s24px 4p 1.254 83 Bi 6s26p3 6/7 1.130 

32 Ge 4s24p2 4 p 1.090 84 Po 6s26p4 6/7 1.212 

33 As 4s24p3 4 p 0.982 85 At 6s26p5 6/7 1.146 

34 Se 4s24p4 4 P 0.918 86 Rn 6s26p6‘ 6/7 1.090 

35 Br 4s24p5 4 p 0.851 

36 Kr 4sz4pb ' 4p 0.795 87 Fr 7s1 7s 2.447 

88 Ra 7s2 Is 2.042 

37 Rb 5s1 5s 2.287 89 Ac 6d'7s2 7s 1.895 

38 Sr 5s2 5s 1.836 90 Th 6d27s2 7s 1.788 

39 Y 4d1 5s2 5s 1.693 91 Pa 5/26rf’7s2 7s 1.804 

40 Zr 4d25s2 5s 1.593 92 U 5f36d17s2 7s 1.775 

41 Nb 4d45s' 5s 1.589 93 Np 5f46d'7s2 7s 1.741 

42 Mo 4di5si 5s 1.520 94 Pu 5/47s2 7s 1.784 

43 Tc 4d55s2 5s 1.391 95 Am 5/77s2 7s 1.757 

44 Ru 4d15si 5s 1.410 96 Cm 3f6dx7s2 7s 1.657 

45 Rh 4d*5s' 5s 1.364 97 Bk 5f*6d'7s2 7s 1.626 

46 Pd 4 d'0' 4 d 0.567 98 Cf 5f6d'7s2 7s 1.598 

47 Ag 5 51 5s 1.286 99 Es 5f'°6d'7s2 Is 1.576 

48 Cd 5s2 5 5 1.184 100 Fm 5f"6d'7s2 7s 1.557 

49 In 5s25pt 5 p 1.382 101 Md 5fn6d'7s2 7s 1.527 

50 Sn 5s25p2 5 P 1.240 102 No 5f'36d'7s2 7s 1.581 

’ The atoms below contain this shell 
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small n the calculation of the levels, at least with respect to their energy values, is 

comparatively simple, at large quantum numbers it becomes highly complicated 

and is carried out with due regard for experimental spectroscopic and other 
data. 

In the helium atom He (Z = 2) which follows hydrogen, the ground state can 

accommodate a second electron, but with an opposite spin, on the same Is orbit, 

which yeilds a stable two-electron, the so-called K shell. 

Subsequent filling of energy levels by electrons according to the scheme of 

Fig. 1.8 is possible at n = 2, which gives, at / = 0, the completion of the 2s level 

of Li and Be (Z = 3, 4), and six more possibilities at / = 1 and m = 0, +1, — 1, 

which correspond to 2p states of the atoms of B, C, N, O, F, and Ne (Z = 5-10). 

At first, the three p states with parallel spins are filled, those of B, C, and N; then 

the same states are filled by electrons with antiparallel spins. Thus we obtain the 

second period of Mendeleyev’s system, which is completed by a stable eight- 

electron shell (L shell) (see Fig. 1.6). The next level, 3s, is spaced far from 2p. 

Further filling according to the scheme of Fig. 1.8 will lead to the third period 

(n = 3, Na-Ar) of the eight elements with Z = 11-18; the corresponding outer 

shell is called the M shell (Fig. 1.7b, c). This is followed by two large periods, 

each of which consists of 18 elements, n = 4, K-Kr, Z = 19-36; n = 5, Rb-Xe, 

Z = 37-54 (outer N and O shells, respectively). The next period contains 32 

elements, n — 6, Cs-Rn, Z = 55-86. The last period, n = 7, begins with Z = 87. 

Table 1 1 shows the distribution of the electrons in atoms according to their s, p, 

d, and / levels. The valencies of the transition elements, Sc-Ni and Y-Pd, 

rare-earth elements (lanthanides), elements of the platinum group, and trans- 

uranic elements, including actinides, are due to the fact that it is energetically 

advantageous to fill the incomplete inner shells, while the number of electrons 
on the outermost orbitals may remain constant. 

The electron density of the atom as a whole, pat, is a rapidly decreasing 

function (Fig. 1.9a). It may be characterized by radial functions (1.8) of the 

electron density of each shell (Fig. 1.7), while the total radial electron density of 
the atom is their sum (Fig. 1.9b) 

D(r) = 47ir2 ^R^r). (U0) 

The “shell” structure of the atom is clearly seen only in the radial function D(r) 

(Fig. 1.9b), which differs from the real electron density p(r) (Fig. 1.9a), by 

integration over the angles, which yields the resulting factor 4nr2. The maxima 

of the radial function represent the superposition of the squares of atomic 
orbitals with similar radii. 

The function of the electron density of the atom as a whole, as well as the 

functions describing the structure of separate shells, extends to infinity. But in 

practice these functions damp out rather rapidly. The electron distribution in an 
atom can be characterized by the rms radius of the atom 

r2 = \D{r)r2dr/Z, <r>at (111) 

where Z is determined by (1.9). When the number Z of electrons in atom 
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Fig. 1.9a-c. Shapes of the peaks of the electron 
density p(r) for Mg and Rb atoms (a), and the 
radial electron density distribution D{r) of these 
atoms (b). (a) The dashed line indicates the elec¬ 
tron density of the atom smeared out by its ther¬ 
mal vibrations in the lattice; (b) the peaks are the 
superposition of a series of orbitals on each other 
(2s, 3s, 3p; cf. Fig. 1.7); (c) radial electron density 
distribution for uranium, radius on logarithmic 
scale [1.4] 

increases, so does the charge + Ze of the nucleus to which they converge. As 

a result, <r)at falls off. According to the statistical theory of the atom 

<r>at ~ Z“ 1/3. (1.12) 

This statistical dependence undergoes a number of fluctuations depending on 

the filling of the shells and the forming of new ones (Fig. 1.10). 

Each shell can be characterized by the radius corresponding to the position 

of the maximum of its radial function, the so-called orbital radius 

roi = r{max[/??(r)r2]}. (1.13) 

It would be natural to take the orbital radius rc of the outer shell as the 

characteristic of the size of the atom. Table 1.1 gives the electron configurations 

of atoms and the orbital radii rQ of the outer shells after Waber, Cromer [1.4]. 

Similar results were obtained by Bratsev [1.5]. 

As mentioned, in spite of the increase in the number of electrons in a given 

shell its orbital radius diminishes because of the growing Coulomb attraction to 

the nucleus (Fig. 1.10). When a new shell appears, its r0 is much larger than that 
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Fig. 1.10. Mean-square atomic radii <ral> (dark circles) and outer shell orbital radii r0 (light circles) 
of neutral atoms vs atomic number Z 

of the preceding shell; then, with growing Z the new shell contracts to the 

nucleus again. Thus, with an increase in Z the value of rQ changes “toothwise”, 

decreasing inside the periods and rising abruptly as new shells appear, which 

also affects the variation in <r)at (1.11). On the average, rc increases with atomic 
number Z. 

A knowledge of the electron structure of atoms is important for many 

branches of crystallography. Apart from the fact that it supplies information on 

the geometric characteristics of atoms, it is a starting point for the chemical- 

bond theory and permits calculating the functions of atomic scattering of X-rays 

and electrons, etc. In particular, a decrease in <r)at with increasing Z means that 

on the Fourier maps of the electron density of crystals the peaks of pat of the 

heavier atoms will always be sharp. The peaks are additionally smeared out by 

the thermal motion of the atoms (Fig. 1.9a, dashed line; see also [Ref. 1.6, 

Sect. 4.1.5]), but the thermal motion, too, is less for the heavy atoms than for 
light ones. 

The experimental data obtained by X-ray structure analysis confirm these 

theoretical predictions. In these investigations the electron density of the crystal 

obtained by Fourier series summation manifests itself as a set of electron density 

peaks of separate atoms p(r) = £ patj(r - r,), and not as a set of their radial 

functions. The experimental results of investigations into the distribution of p(r) 

in crystals are in good agreement with the theory. Since, however, the electron 

density of each atom falls off rapidly and is, additionally, smeared out in the 

crystal by the thermal motion (Fig. 1.9a), individual atomic shells are not 
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resolved on ordinary Fourier syntheses of the distribution of p(r). Nevertheless, 

it is possible to reveal the outer shells and to investigate the electron redistribu¬ 

tion, due to the chemical bond, with the aid of Fourier difference syntheses 

[Ref. 1.6, Sect. 4.7.10]; this will be discussed in more detail further on. 

1.2 Chemical Bonding Between Atoms 

1.2.1 Types of Chemical Bonding 

A chemical bond arises when atoms draw closer together and is due to interac¬ 

tion of their outer electron shells. The formation of such a bond (in a molecule or 

a crystal) means a reduction in the total and, hence, the potential energy of the 

system. Theory must explain not only the binding of atoms, but all the experi¬ 

mental data on valence; it must explain the directional character of bonds, which 

occurs in some cases, and their saturation; it must give values of binding energy 

which agree with experiment; and, finally, it must serve as a basis for calculating 

the properties of molecules and crystals. The binding of atoms is the result of the 

electrostatic interaction of the nuclei and all their electrons and can only be 

explained on the basis of quantum mechanics. The main principles of the theory 

are verified by consideration and investigation of simple molecules. At the same 

time, the analysis and calculation of complex multiatomic systems involve 

considerable mathematical difficulties and require some simplifying assump¬ 

tions. This entire complex of questions is the subject of quantum chemistry and 

the quantum theory of the solid state. 

According to the traditional terminology, distinction is made between ionic 

(heteropolar), covalent (homopolar), metallic, and van der Waals types of bonds 

between atoms, as well as one more special type, the so-called hydrogen bond. 

The first three types are stronger than the last two. As we shall see further on, 

this classification into bond types, especially between the first three, is somewhat 

conventional. All the types of strong chemical bonding are due to the interaction 

between the outer orbitals of mutually approaching atoms and the formation of 

common electron states of the new system, i.e., a molecule or a crystal. Although 

the functions describing the electron distribution in the object are continuous 

throughout its volume, the distribution has certain features for each type of 

bond. An increase in the electron concentration in some atoms and a decrease in 

others result in Coulomb attraction, which is an ionic bond. If the shared outer 

electrons are concentrated predominantly on orbitals spatially fixed relative to 

the bonded atoms, we speak of a covalent bond. If the outer electrons are 

collective, i.e., distributed throughout the crystal lattice, we have a metallic bond. 

An isolated atom has a discrete system of energy levels. In a system of 

N widely spaced atoms each level is essentially N-multiply degenerate. The 

change in the system of these levels as the atoms draw closer together amounts 

to eliminating the degeneracy due to interaction which leads to the splitting of 
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Fig. 1.11a, b. Change in the energy spectrum of electrons as the atoms come closer together, 
(a) In a metallic crystal levels merge into a continuous band as the atoms come together up to the 
equilibrium distance re; (b) in a carbon crystal the spectrum depends on the arising polymorphous 
modification, diamond has a slit between the bands, while graphite does not 

the levels. Since there are very many levels, they merge into continuous bands 

when the atoms form a crystal. The nature of the electron energy spectrum of 

a crystal depends both on its constituent atoms and on the distances between 

them (see Chap. 3). Thus, for metals (Fig. 1.11a) the levels merge into a continu¬ 

ous band with vacant levels over the electrons filling the lower part in the bands. 

With a covalent or ionic bond (Fig. 1.11b) there is a gap in the crystal energy 

spectrum between the filled lower band and the following ones. 

Since the spectrum depends on the interatomic distances, the nature of the 

bond in certain crystals may change at phase transitions, especially for those due 

to the pressure. At very high pressures all crystals are metallized. 

The simplest qualitative explanation can be given for the ionic bond, which 

is ascribed to the electrostatic attraction of oppositely charged ions. But all 

the other bond types, including the ionic, can only be fully understood from 

the standpoints of quantum-mechanical theory. 

It should also be borne in mind that along with those crystals in which the 

bond can largely be described according to one of the three indicated types, the 

bond in many other crystals is of an intermediate nature; in this case one can 

conventionally single out, for example, the ionic and covalent components. 

There are also a number of special cases, such as complex compounds. 

The molecular crystals are somewhat different. The bond between atoms 

inside the molecules is covalent, and the association of the molecules into 

a crystal is due to weak van der Waals forces or hydrogen bonds. 

Any type of interaction between atoms in a crystal or a molecule can be 

approximately described (and in many cases accurately enough) by the model 

of central forces with the aid of a potential interaction energy function u(r) 

(Fig. 1.12) found theoretically or empirically. This curve is characterized by the 

following principal parameters. The condition du/dr = 0 defines the distance 

re of the minimum from the origin, i.e., the equilibrium interatomic distance, and 
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Fig. 1.12. Schematic curves of po¬ 
tential energy of atomic interaction 
for a covalent, ionic, and metallic 
bond (/) and a van der Waals bond 

(II) 

the energy ue(re) of a given interatomic bond at absolute zero. This refers to the 

interaction of a pair of atoms. The equilibrium values of the interatomic 

distances in a crystal lattice are defined by the condition dU/dr = 0, where U is 

the energy of the lattice as a whole, which can be calculated from the energy of 

pair interactions u(r) (see Sect. 1.3.2). The second derivative d2u(r)/dr2 of the 

curve u(r) at the minimum characterizes the bond “rigidity”. This manifests itself 

macroscopically in the phonon spectrum of the crystal, its elasticity, so that high 

frequencies and large elastic constants correspond to more rigid bonds. The 

steep rise of the curve towards the lesser r characterizes the mutual “impenetra¬ 

bility” of the atoms. The corresponding macroscopic characteristic of crystals 

- their compressibility - makes it possible to select empirically an analytical 

expression for describing the repulsion forces. This steep rise enables one to 

operate in crystal chemistry with atom models in the form of rigid spheres 

touching each other in a crystal structure. The asymmetry of the potential well 

- a flatter shape of the curve u(r) towards larger r - increases the amplitude and 

anharmonism of thermal vibrations with temperature, which augments the 

interatomic distances, i.e., leads to thermal expansion of the crystal. The vibra¬ 

tional anharmonism also explains various nonlinear effects in the acoustics and 

optics of crystals. Note that for a covalent bond the central-force approxima¬ 

tion, although describing the interaction in the main, is insufficient because the 

covalent bond forces are directional (Sect. 2.4). 

The nature of the chemical bond is expressed in the macroscopic physical 

properties of crystals. The stronger the bond (the interatomic distances are 

usually short), the better are the mechanical properties, such as hardness and 

elasticity, the lower is the coefficient of thermal expansion, and the higher the 

melting point. The covalent crystals (for instance, diamond) or ion-covalent 

crystals (for instance, oxides of the type MgO, A1203) are the strongest and 

hardest. Yet even among them a transition to relatively lower strength crystals 

with a lower melting point (the melting temperature range is ~ 2500-500°C) 

takes place as the bonding weakens and the interatomic distances increase. 

A still wider discrepancy of the characteristics of mechanical properties occurs in 
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metals, which include very hard and high-melting as well as low-melting metals, 

and even those liquid at normal temperatures (mercury). But a specific feature of 

metals is their high plasticity. The molecular crystals of organic compounds are 

the weakest and softest, and have the lowest melting point; they also have high 

coefficients of thermal expansion due to the weakness of the van der Waals 
bond. 

The electrical properties of crystals are determined by the energy spectrum of 

their electrons (see [Ref. 1.6, Chap. 3]). Ionic crystals are, as a rule, dielectrics; 

covalent crystals, dielectrics or semiconductors; metals, conductors; and 

molecular crystals, dielectrics. 

The type of the chemical bond is also manifested in the optical properties. 

A large refractive index is characteristic of ionic and covalent crystals, which are 

usually transparent in the visible or infrared region, but can also be colored, i.e., 

absorb light in certain regions of the visible spectrum. For ionic crystals this is 

due to the cations of the transition or rare-earth elements. Molecular crystals are 

usually transparent. On the other hand, metals possess a metalic luster, i.e., they 
are opaque and reflect light well. 

We give here the most general characteristics of the manifestation of the 

chemical bond types in the physical properties of crystals. Further on, in this 

and subsequent volumes, the question will be treated in more detail. As we have 

already said, many properties of crystals certainly depend not only on the ideal 

atomic structure and the type of chemical bond in it, but also on the defects in its 

real structure. Let us now consider the basic types of chemical bonding. As 

mentioned above, the quantum-mechanical approach makes it possible to 

explain and accurately calculate all the types of bonds. At the same time an ionic 

bond is basically characterized by simple Coulomb interaction; we, therefore, 

begin our consideration of it from the classical standpoint, followed by the 
fundamentals of quantum-mechanical treatment. 

1.2.2 Ionic Bond 

When, during interaction of the outer electrons of neighboring atoms, the 

electron distribution shifts from one to the other, charged ions appear which are 

attracted electrostatically. This bond is called ionic and is usually found in 

relatively simple structures consisting of atoms of typical metals and nonmetals. 

If a diatomic molecule with a bond of an ionic nature is formed, it naturally 
has a dipole moment 

M=rZ\ (1.14) 

where Z' is the ion charge, and r is the distance between the ion centers. In 

a crystal, an ion residing in a field of oppositely charged ions causes polarization 

of the electron shell, i.e., its slight deformation corresponding to the symmetry of 

the surrounding field. Then a net dipole moment of the structure may arise (for 

instance, in ferroelectrics) or may not (for instance, in structures of the NaCl 
type). 
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The possibility of the formation of a chemical bond by an atom and its 

nature depend to a large extent on the stability of the outer electron shell of the 

atom. This factor can be characterized by the ionization potential of the atom 

/ + , i.e., by the energy required to detach the first valence electron. The lowest 

ionization potentials /+ are characteristic of alkali and alkaline-earth metals 

(4-5 eV), and the highest, of noble gases and halides (12-24 eV). Thus, metal 

atoms readily give up their outer electrons, and their ionization energy is low; 

after this a stable inner shell remains. On the other hand, atoms of nonmetals tend 

to add electrons, especially if this addition leads to the formation of stable 

electron shells of the noble-gases type. In that case, addition of one lacking (for 

the filling of the outer shell) electron causes a release of energy, the affinity 

energy /“. This is most prominently manifested for halogens: I~ is 3.5 eV for F, 

3.7 eV for Cl, and 3.7 eV for Br. Oxygen readily captures one electron, 

I~ = 3.4 eV, but the addition of a second electron causes a predominance of 

electrostatic energy of repulsion and is energetically unprofitable. 

Consider the formation of an ionic bond on the example of Na+ and Cl”. 

The ionization energy of Na is 5.1 eV, and the electron affinity of Cl is 3.7 eV. 

Hence, the formation of a pair of such ions requires an energy of 1.4 eV. The 
o 

distance between these ions in the molecule is about 2.5 A, and the electrostatic 

energy of attraction ~ 10 eV. This value greatly exceeds 1.4 eV, which explains 

the bond between Na+ and Cl”. The same is true for a crystal, although the 

calculation of the electrostatic energy is then more complicated. Thus, in 

general, the energy of a system built up of ions attracted to each other is on the 

whole lower than the sum of the initial energies of the neutral atoms, although 

the ionization energy of metallic atoms has the opposite sign in the overall 

balance. 
The interaction of the two ions is Coulombic, but when they touch one 

another the forces of repulsion between the electron shells come into play. The 

repulsive potential is described by a dependence of the type br~n, where n = 6 9 

and parameters b and n can be found from the compressibility of the crystals. 

Thus, 

uion(r)= — Z\Z'2e2r~1 + br~n, (1.15) 

where Z\ and Z'2 are the effective charges of the ions. In a more general form, 

this relation can be rewritten 

u(r) = — ar m + br " (n > m); (1.16) 

then it can also be used for describing other types of bonds, naturally with 

different values of the constants. The condition of the minimum of du/dr = 0 

gives equilibrium values of re and ue = u(re) 

u — a m 
r, »e = 

n 
(1.17) 



20 1. Principles of Formation of the Atomic Structure of Crystals 

Now we can express a and h and, hence, u(r) in terms of re and ue, 

u(r) = ue 
nm 

n — m 
(1.18) 

Here, for the ionic bond m = 1. The exponential dependence exp( — ar) proves 

to be more accurate than the power dependence for describing the repulsive 

potential in ionic crystals [see (1.35)], the value of a 1 being about 0.35 A. The 

interaction in ionic crystals according to (1.15) must be supplemented by the van 

der Waals forces operating between the ions and the polarization of the ions in 

each other’s field. 

The curve of the potential energy of interaction for the ionic bond is shown 

in Fig. 1.12. The ionic bond energy usually equals about 100 kcal/mol, being, for 

instance, 137 kcal/mol for gaseous LiF, and 88 kcal/mol for NaBr. 

As discussed above, when atoms join together into a molecule or a crystal 

mainly owing to the ionic bond, covalent interaction, caused by the joining of 

the outer electrons, also invariably takes place. Even in crystals of the most 

prominent representatives of ionic bonding, such as halides of alkali metals, 

a certain (although very small) fraction of the binding energy is due to covalent 
interaction. 

Chemists and crystal chemists have always been interested in how to de¬ 

scribe the tendency of atoms to form an ionic bond and, if the bond is not purely 

ionic, but ionic covalent, how to estimate the ionic fraction of the bond. The 

concept of electronegativity (EN) of elements is used for this purpose. L. Pauling 

Table 1.2. Electronegativities EN, ionization potentials 7 + , and the affinity I of certain 
atoms to an electron * 

Ele¬ 

ment 

EN Orbi¬ 

tal 

/+ 

[eVl 

r 

[eV] 
Ele¬ 

ment 

EN Orbi¬ 

tal 

I+ 

[eV] 

r 
[eV] 

H 2.2 s 13.60 0.75 Cl 3.2 P 15.03 3.82 
Li 1.0 s 5.39 0.82 K 0.8 s 4.34 1.46 
Be 1.6 a 9.92 3.18 Ca 1.1 s 7.09 2.26 
B 2.0 s 14.91 5.70 Sc 1.3 o 7.21 4.03 
C 2.6 tetr 14.61 1.34 Cr 1.6 — — — 

N 3.0 P 13.94 0.84 Fe 1.8 — — — 

O 3.1 P 17.28 1.46 Zn 1.6 — — — 

F 4.0 P 20.86 3.50 Br 3.0 p 13.10 3.54 
Na 0.9 s 5.14 0.47 Rb 0.8 s 4.18 0 
Mg 1.2 a 7.10 1.08 Sn 1.8 p 6.94 0.87 
A1 1.6 P 6.47 1.37 Te 2.3 p 11.04 2.58 
Si 1.9 tetr 11.82 2.78 1 2.6 p 12.67 3.23 
P 2.2 o 10.73 1.42 Cs 0.7 — — — 

S 2.6 p 12.39 2.38 Ba 0.9 - - - 

Only some values of / + and I ~, corresponding to the most frequently encountered states of a 

given atom, are listed. For other types of atomic orbitals (and also depending on hybridization) 

these values are different, for instance, I+ = 21.01 and I~ = 8.01 for the s state of carbon 
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has given a semiempirical scale of EN on the basis of thermochemical data 
(see Table 1.2). 

When two atoms combine, the outer electrons shift towards the one whose 

EN is higher. Naturally, EN is higher for anions than for cations; its values 

decrease when descending along the groups of the periodic system. The differ¬ 

ence between the electronegativities of the combining atoms, AEN, roughly 

characterizes the fraction and energy of the ionic component. According to 

Pauling, at AEN % 3.0 the bond is almost completely (by ~ 90%) ionic, and at 

Aen < 1 the ionic component is less than 20%. The energy of the ionic compo¬ 

nent is approximately 30 • A|n kcal/mol. 

The concept of electronegativity for atoms can be determined more rigor¬ 

ously in terms of their ionization potentials /+ and the electron attractive energy 

I~ for the corresponding valence state (examples of these values for some atoms 

in one of their states together with the corrected Pauling’s EN values are given 

in Table 1.2) (see, for instance [1.8, 9]). In this approach the electronegativity x is 

expressed as one-half of the sum of the ionization potential and the attractive 

energy 

X = (/+ + /-)/2. (1.19) 

Pauling’s EN and x (119) can be correlated by a certain normalization. The 

ionicity of bond e is defined by the equation 

_ (I+ + I )cat — (I+ + I )an _ _2{Xcal ~ Xan)_ , j 2Q^ 

(I+ ~ /“)cal + U+ - /")an _ (/+ ~ Oca, + U+ ~ /“)an ’ 

which contains the corresponding values for cations and anions. According to 

Fig. 1.13. Electron density of 
av NaCl crystal. Cross section 
of three-dimensional function 
p(x,y,z) at z = 0 through the 
centers of the Na and Cl atoms 
[1.10] 
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(1.20) e is 0.82 for NaCl, 0.83 for LiF, 0.92 for KC1, and 0.94 for RbCl, whereas 
for HC1 it is 0.18. 

The physical characteristic describing the ionic contribution to the bond is 
the effective charge of the ion Z'. 

Let us consider experimental X-ray data on the electron density distribution 

in a NaCl crystal (Fig. 1.13). These data indicate that the electrons are redis¬ 

tributed from Na to Cl; according to different authors, the number of electrons 

in Na+ is 10.3-10.15 (11 in a neutral atom) and 17.7-17.85 in Cl (as against 17 in 

neutral atom), i.e., the effective charge is about 0.8 e [1.11], In a rather large 

region between the atoms the electron density falls off practically to zero. For 

LiF these data are 2.1 e for Li and 0.9 for F, i.e., the effective charge is equal to 

0.9 e [1.12]. The effective charges in ionic crystals can also be estimated on the 

basis of X-ray and IR spectra, the dielectric constant, and other methods. Thus, 

for MgF2, CaCl, and MgCl2 estimation of the effective charges of anions leads 

to values of about 0.7 e, and of cations, 1.2-1.4 e. In silicates, the effective charge 

of Mg is 1.5-1.0 e\ Al, 2.0 e, and Si (according to different estimates), 1.0-2.0 e. 

The oxygen ion in oxides and silicates has an effective negative charge of 
0.9-1.1 c.3 

The effective charge of the ion Z' may be related to the formal valence of the 

atom n by factor s, which thus determines the degree of ionization of the atom 

Z' = sn. (1.21) 

The degree of ionization e in (1.21), which is found experimentally, practically 

coincides with the value of e in (1.20), defined as the ionicity of the bond. 

So, for univalent ions the degree of ionization £ and effective charges Z' are 

close to unity. At the same time, for divalent and, all the more so, trivalent ions, 

“integral” ionization £ = 1, which would lead to values of charge Z' = n, equal 
to the valence, takes place very rarely. 

Symbols of the type O2-, Cr3+, Nb4 + , etc., which are often found in the 

literature, should only be understood as indicating the formal value of the 

valence, not as the actual value of the charge, which is always smaller and is not 

integral33. Occasionally encountered symbols of the type C4“, Te6 + , etc., have 
no physical meaning. 

We shall now treat the electron distribution in ions. The filling of the orbitals 

in the anions of the crystal does not differ essentially from that in free atoms. For 

example, quantum-mechanical calculation of electron distribution in MgO 

(such calculations are described in Sect. 1.2.6) showed that in this dielectric 

crystal, which has four valence zones, one of them is associated with the s state, 

and the other three, with three p states of the oxygen atom (see Fig. 1.28a). 

3 Note that the concept of the effective charge in a partly ionic bond is somewhat conventional, 
since it depends on the choice of the range of integration of the charge corresponding to each atom 
and also to the electrons of the bond. 

Exceptions are some rare cases when a metallic ion is surrounded by strong electronegative anions 
F“, such is the case of Cu4+ in Cs2CuF6 [1.12a]. 
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On ionization of a metallic atom to a cation, the filled inner shell becomes 

the outer shell with a much smaller orbital radius than the initial outer shell, 

experiencing almost no change upon ionization. Thus, r0(Na) = 1.713 A and 

r0(Na + ) = 0.278 A. On the other hand, the orbital radii of the outer shells of the 

anions, which have received the electrons needed for their complete filling, 

coincide almost exactly with the orbital radii of the outer shells of the same 

neutral atoms. For instance, r0(F) = 0.396 A, r0(F“) = 0.400 A, r0(Cl) = 

0.725 A, r0(Cl“) = 0.742 A, r0(Br) = 0.851 A, and r0(Br") = 0.869 A. In other 

words, the electron structure of the anions practically coincides with that of the 

neutral atom, but their outer electron shell becomes “denser”. 

Now, using NaCl as an example again, we consider the radial density 

distribution D(r) (1.8, 10) for these atoms, taking into account the distance 

between them in the crystal. To do this, we plot the theoretically calculated 

radial functions of the outer shells both for neutral atoms and for the ions Na + 

and CP, laying them off towards one another from the ends of a segment equal 

to the interatomic distance in the crystal (Fig. 1.14a, cf. Fig. 1.7). It should be 

borne in mind that such a plot is only conventional; it pinpoints fairly well the 

site where the wave functions overlap, but does not reveal the actual nature of 

the overlapping because, in fact, it is the wave functions i/r (which rapidly fall off 

with increasing r) that overlap, and not the radial functions D(r) (1.8, 10) 

containing a factor r2 which causes the maxima to appear. As to the position of 

the maxima, the situation is as follows. For neutral atoms, the maximum of the 

radial function for the outer 3s shell of Na coincides in its position with that for 

the outer 3p5 shell of Cl. For the cation Na + , the outer shell is now 2p6, whose 
o 

orbital radius is equal to 0.278 A, and the maximum of the electron density of its 

former 3s shell was transformed and “incorporated” into the 3p shell of the 

Fig. 1.14a, b. Comparison of (a) the theoretical radial density D(r) distribution of the outer valence 
orbitals of Na+ and CP ions (dashed lines) and neutral Na and Cl atoms (solid lines) with (b) the 
experimentally obtained distribution of electron density p(r) between these atoms [one-dimensional 
cross section of p(x00) from Fig. 1.13]. The dashed curve in (b) referring to the atom periphery is 

scaled up. r0: orbital radii, rp. effective ionic radii, rph: physical ionic radii 
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anion CP after ionization, actually remaining at the same distance from the 

center of the Na atom. Since the resulting maxima of the indicated functions 

coincide, then, approximately, 

d(Na + CP) * r0(Na) + r0(Cl), (1.22) 

i.e., the distance between ions Na + and Cl “ is approximately equal to the sum of 

the orbital radii of the neutral atoms. 

If we take the sum r„(Na+) + r0(CP), it turns out to be much less than the 

observed distance d(A+ /B~) and differs from it by approximately A, i.e., is the 

distance between the outer orbital r0 of the metallic atom and the nearest inner 

orbital r0, which becomes outer on ionization 

d(A + B~) = r0(A + ) + r0(B) + A. (1.23) 

o 

The values of A [A] for certain metals are: 

Li Be Na Mg A1 K Ca Rb Sr 

1.40 0.90 1.43 1.03 1.09 1.57 1.15 1.55 1.14 

The physical meaning of A values is as follows. In accordance with Pauli’s 

principle and the energy levels determined by solving Schrodinger’s equation, 

A values indicate the shortest distances from the inner cation orbital at which 

(and not less than at A) the next electrons can be positioned, irrespective of 

whether they form the outer orbital of the neutral metallic atom, or whether they 

are electrons of the outer orbital of a neighboring anion. Ionization of the metal 

atom (Na in our example) in the crystal actually takes place, since its outer 

electron has been incorporated in the anion shell. But the distance from this 

electron to the Na nucleus has not actually changed; it is regulated by the value 

of A. We emphasize once more that the scheme of superposition of the radial 

functions (Fig. 1.14) indicates only the site of the overlapping of the orbitals. The 

picture of ionization and cation anion contacts is schematized in Fig. 1.15. 

On p(r) maps obtained by X-ray analysis (Figs. 1.13, 14), the “border” of the 

Cl atom corresponds to the site of the overlapping of the maxima of the radial 

functions, while the region of low p(r) lies between the outer shells of the ions 

Na+ and CP and is determined by the values of ANa (Fig. 1.15). 

The foregoing refers to the outer shell of univalent cations, when it is 

practically fully ionized. In di- and tri-valent cations, not necessarily all the 

electrons leave the outer orbit; only some of them are incorporated in the anion 

shells as in the above-discussed case. The schemes of the superposition of radial 

density functions (Fig. 1.14) and the effect of the quantity A (Fig. 1.15), which 

regulate the interatomic distances, remain in force. But the outer orbital of the 

cation, at a distance corresponding to r0, may retain some of the electrons (as 

shown for Na in Fig. 1.15, see also Fig. 1.53). Here, a bond of no longer purely 

ionic nature corresponds to the real overlapping and rearrangement of the outer 

orbitals of the cation and anion; a covalent interaction also arises between the 
ions (we shall discuss it below). 
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Fig. 1.15a, b. Schematic representa¬ 
tion (a) of neutral Na and Cl atoms 
and (b) of their ionization in a NaCi 
crystal. A: distance between the outer 
ionized 3s orbital of Na and its nearest 
inner 2p orbital. The inner shells are 
conventionally shown by cross-hatch¬ 
ing. The outer shell of the Cl" ion 
(which has incorporated an electron 
from Na+) is at a distance A from the 
inner shell of the Na atom, which has 
now become a Na+ ion 

1.2.3 Covalent Bond. Valence-Bond Method 

The chemical bond between neutral atoms in molecules and crystals cannot be 

explained in such a simple, classical way as the ionic bond. At the same time, 

a covalent bond is typical of most molecules and many crystals. 

With the accumulation of a huge amount of experimental data in chemistry 

and crystal chemistry and the development of the theory of atomic structure it 

became more and more apparent that the covalent bond is due to the interaction 

of the outer valence electrons of atoms drawing closer together. The covalent 

bond is usually defined as a directed chemical bond realized by pairs of 

electrons. For each chemical valence (denoted by a dash in the scheme) there are 
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1 

H—C— 
I 

H 

H, 

H 

H :C1: 6: O :N ::N H -C H. 

H 



26 1. Principles of Formation of the Atomic Structure of Crystals 

two corresponding electrons (two dots on the scheme). Such a two-electron 
bond is stable; from the area surrounding the atoms, assuming that their own 
valence electrons and those of the added atoms are common, one can single out 
octets of electrons. From the quantum-mechanical standpoint these formal rules 
are qualitatively interpreted as a trend to form stable orbitals with pairs of 
electrons having antiparallel spins. 

The first quantum-mechanical explanation of the chemical bond was given 
in 1927 by W. Heitler and F. London, who carried out a quantitative calculation 
of the molecular ion H2 and the molecule H2 of hydrogen. The vigorous 
development of these concepts and their application to the explanation of the 
structure of molecules and crystals is due to the work of Pauling and many other 
researchers. 

Two (or more) atoms spaced at very large distances can be regarded as 
isolated stable systems with their intrinsic orbitals and energy levels. If they start 
to approach each other, then, beginning with a certain distance, interaction 
between them takes place, and a new common system with characteristics of its 
own arises. To calculate such a system, certain functions ij/ are chosen as initial. 
By varying them the solution is improved, the criterion being the attainment and 
decreasing of the energy minimum. Any functions can, generally speaking, be 
chosen as the initial ones, but it is natural to use atomic orbitals for this purpose 
and solve the problem by the methods of perturbation theory. 

Heitler and London considered the hydrogen molecule, which consists of 
protons a and b and electrons 1 and 2. The wave functions of the separate atoms 
are 1J/al and 1J/b2. When they draw closer together, electron 1 can interact with 
proton b, and electron 2, with proton a. The wave function of the atoms which 
have drawn together has the form 

^ = Cl'l'al'l'b2 + c2\jja2\j/bi. (1.24) 

The electrons interact with both nuclei. The Schrddinger equation for this 
system has two solutions with energies (supplementary to the initial energy of 
the hydrogen atoms not drawn together) 

E = 
H u i H12 

1 ± S12 
where (1.25) 

Htl = H22 = JJ ei 
' 1 1 1 1 \ , , 
~ + I --(r«i)'A (rb2)dvldv2. 

Jab '12 'a 2 rblJ 
(1.26) 

Hi2 ~ Ne2 (~ + :---— ) 'l'(rai)'J'(ra2)il/(rbl)iJ/(rb2)dvldv2, 
\'ab r\2 *a2 *b\) 

(1.27) 

S12 = Jj 'Pal'l'a2'l'bl'l'b2dvldv2 = J t/^lJ/bldvl J \\)a2^b2^2 = S„b. (1.28) 

Here, the integrals Hi j = H22 are simply the electrostatic energy of interac¬ 
tion of the two atoms. Integral Hi2 also describes the electrostatic interaction of 
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four particles, but it contains the products eip(ral )^(ra2) and et/r(rM)t//(rfc2), 

which are the consequence of the fact that electrons 1 and 2 are indistinguish¬ 

able. This integral cannot be interpreted on the basis of classical concepts. 

Integral Hl2 (1.27) is called the exchange integral; it describes the exchange part 

of the system energy, which basically determines the binding energy of the 

molecule. Similar exchange terms arise in calculating any multielectron system 

in the one-electron function approximation, including calculations of atoms 

by the self-consistent field method, described above. Integral S12 is called the 
overlapping integral. 

The solution to (1.25) with a plus sign is called symmetric with an energy 

£symni, the arrangement of the electron spins for it being antiparallel. The 

solution to (1.25) with a minus sign is called antisymmetric with an energy £ant; 

it is antisymmetric in respect to the coordinates, and the arrangement of the 

spins is parallel. Figure 1.16 shows the curves for the dependence of energies 

£symm and £an, on the distance to the nucleus (1.25). It can be seen that £symm has 

a minimum, i.e., it corresponds to the formation of a covalent bond. £an, is 

positive everywhere, i.e., it does not produce any bonds, although it determines 

a physically possible state at which the atoms repel each other. This calculation 

of the hydrogen molecule was approximate; later on a number of improvements 

were introduced into it, which resulted in excellent agreement of theory with 

the experimental values: bonding energy £ = 4.747 eV = £exp, and distance 

^h-h = 0.741 A = dex p. 
The above consideration of the H2 molecule was the prototype of one of the 

methods [the valence-bond (VB) method] for calculating the chemical bond, in 

which the wave function of the whole system is composed of single-electron 

wave functions of the separate atoms, as in (1.24), with due consideration for all 

the permutations of the electrons; the solution of the Schrodinger equation with 

variation of the coefficients c helps to find the minimum of the system energy. 

Thus, from the standpoint of the VB method, the nature of the covalent bond 

is explained quantum mechanically. The covalent bond is realized in the hydro¬ 

gen molecule by a pair of electrons with antiparallel spins and is formed between 

E, kcal/mol 

Fig. 1.16. Dependence of the en¬ 
ergies Esymm and £an, of two un¬ 
excited hydrogen atoms on the 
distance between nuclei 
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multielectron atoms according to the same principles. One of the electrons 

forming a covalent bond can be contributed to the orbital, as we have seen, by 

each of the contacting atoms. But there is another possibility for the formation 

of a two-electron covalent bond, namely, when one of the combining atoms (or 

groupings) - a donor - has an excess of electrons not involved in any bond, while 

the other - an acceptor - has a free orbital unoccupied by electrons. Such 

a covalent bond in which there are ultimately two electrons per each valence is 
called a donor-acceptor bond. 

1.2.4 Hybridization. Conjugation 

None of the atomic orbitals, except s, have a spherical symmetry. Therefore, 

directional covalent bonds can be explained as a result of their combination 

with s orbitals and with each other. The formation of directional bonds in this 

way is called hybridization. For instance, sp hybridization, i.e., a combination of 

s and p orbitals, gives a directional sp orbital; sp2 hybridization, i.e., a combina¬ 

tion of one s and two p orbitals, produces trigonal bonds (Fig. 1.17). 

The contribution of each AO to the resulting hybridized orbital is deter¬ 

mined by its symmetry (antisymmetry) and by the condition of orthonormal¬ 

ization of AO. The direction of the resulting bonds may not coincide with that of 

the density maximum of the initial AO, as seen from Fig. 1.17. Another example 

Fig. 1.17a-d. Generation of (a, b) hybridized atomic sp orbitals and (c,d) one of the sp2 orbitals 
forming trigonal bonds of the carbon atom. (a,c) position of the s and p AO (the weights of the AO 
are indicated); (b, d) resultant hybridized orbitals, their positive regions correspond to superposition 
of the positive regions of the initial AO 
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is the tetrahedral arrangement of single bonds of the carbon atom, such as in 

methane CH4, diamond, or hydrocarbons. This bond is attributed to sp3 

hybridization with the formation of four equivalent orbitals of the type 

<Pi = 2 (•As ± <Apx ± <Apy ± lApz)- (1-29) 

Here, \ps is spherically symmetric and tj/p are elongated along three mutually 

perpendicular axes x, y, z (Fig. 1.18). But hybridization imparts tetrahedral 

direction to the resulting orbital; for instance, all the plus signs in (1.29) give an 

orbital cpn 11] elongated in the direction [111], Accordingly, the three other cases 

are <ptnT], <P[tiT]> and cp{xTl]. Tetrahedral bonds, which are quite common, 

determine the structure of Ge, Si, and many semiconductor compounds. 

In addition to directional covalent bonds - linear, trigonal, and tetra¬ 

hedral - other types of directional bonds are also known. Thus, the tetrahedral 

bonds of atoms of transition metals which have electrons in the s, p, and also 

d states are ascribed to the hybridization of d3s states. The observed plane 

square configurations, as in ion [PtCl4]~2, are attributed to dsp2 hybridization; 

octahedral, to spid2 hybridization; etc. (see Sect. 2.5). 

The formation of hybrid orbitals is energetically favorable, because pairs of 

electrons electrostatically repelling one another arrange themselves at a max¬ 

imum distance from one another. 

The number of electron pairs depends on the participation of s, p, or also 

d electrons in the formation of the bond. The maximum spacing leads to their 

disposition at the vertices of the following configurations: 2 - line, 3 - triangle, 

z 
z 

b 

Fig. 1.18a-c. Scheme showing the origin of tetrahedral hy¬ 
bridization of the carbon atom, (a) superposition of one s and 
three p orbitals (positive regions px, py, and pz are oriented 
along the positive directions of the x, y, z axes); (b) arising 
hybridized sp3 orbital; (c) four such orbitals directed along the 
tetrahedron axes (only the positive regions are shown) 
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2e 

Fig. 1.19. Scheme of the structure of the water molecule; the arrange¬ 
ment of two lone electron pairs is indicated. The molecule has two 
positively charged projections (protons) and two negative ones, where 
the lone pairs are concentrated 

4 - tetrahedron, 5 - trigonal bipyramid, 6 - octahedron, 8 - square antiprism, 
etc., depending on the number of pairs. 

Apart from the electron pairs involved in the bond, other electron pairs may 

remain on the free orbitals. Such pairs are called lone or unshared. For instance, 
H 

the water molecule H:0: contains two lone pairs. If we interpret directional 

bonds from this point of view, the valence angles are deformed because the lone 

pair electrons repel the shared ones slightly more strongly than the latter repel 

one another. The “corner” structure of the H20 molecules is thus ascribed to the 

directional p bonds and to the presence of two lone pairs (Fig. 1.19). The 

structure of the pyramidal molecule NH3 is interpreted similarly. Theoretical 

calculations [1.13] and experimental investigations into the distribution of the 

electron density by the method of difference deformation syntheses4 show 
maxima due to lone pairs of electrons (Fig. 1.20a-d). 

If the covalent bond is formed by two or three electron pairs, then multiple 

(double or triple) bonds arise, which are stronger and shorter than single ones. 

Not all the bonds in a number of compounds are of integral order; according 

to their characteristics, i.e., the energy and distance between the bonded atoms, 

they have an intermediate character, the bond order being fractional. Neverthe¬ 

less, the compound formula can be written with classical valence dashes; for 

instance, H2C=CH-CH=CH2. With this alternation of bonds of formally inte¬ 

gral order their properties are actually partly or wholly equalized, becoming 

intermediate between those of “pure” double and single bonds. This is called 

“conjugation”. Another classical example is benzene, for which it is possible to 
write two principal Kekule valence schemes, 

H H 

h^Vh hc^c>h 

hU hU <U0> 
H H 

4 As indicated in [Ref. 1.6, Sect. 4.7.10] a map of deformation Fourier synthesis of electron density is 
the difference between the observed electron density of the crystal structure and the spherically 
symmetric electron densities of nonbonded atoms, whose centers occupy the same positions as in 
the crystal, i.e., it reveals precisely the deformation of the electron density caused by the chemical 
bond. Thermal vibrations of atoms are also taken into account. 



1.2 Chemical Bonding Between Atoms 31 

Fig. 1.20a-d. Difference deformation electron density maps of some molecules, showing the charge 
of lone electron pairs and covalent bond bridges, (a, b) water molecule in LiOH H20. Contour 

interval 0.005 e A 3, (a) The plane of H-O-H atoms; (b) perpendicular plane [1.14]; (c, d) group 

C-C^q of the molecule of a-glycine; (c) theoretical calculation; (d) experimental data contour 

interval 0.008 e A ~3 [1.15] 

with single and double bonds. But in actuality all the bonds in benzene are 

equivalent, their order being Equivalent bonds of the same nature (order 1^) 

are inherent in the hexagonal net of carbon atoms in graphite (see Figs. 1.31 and 

2.5). The higher the order of the bond, the shorter is the bond. The dependence of 

the interatomic distance on the bond order in various compounds is given in 

Fig. 1.46. 

The physical significance of the conjugation phenomenon and of the forma¬ 

tion of intermediate-order bonds lies in the fact that the electrons are actually 

not fixed on a definite bond, but belong to the molecule as a whole, and the 

condition of “multiplicity” of finding an electron pair on a bond is energetically 

advantageous in many cases, but not necessarily in all. 

Interpretation of intermediate-order bonds in complex multiatomic mole¬ 

cules may involve the writing of classical valence schemes for them. Thus, the 

equivalence of bonds in benzene can formally be obtained by forming a “super¬ 

position” of two formulae (1.30). The structures, which are obtained by super¬ 

position of several structures corresponding to possible classical formulae, were 
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named resonance structure by L. Pauling. The resonance concept helped to 

supply qualitative and semiquantitative [with calculation similar to (1.26-28)] 

descriptions of the structure of many molecules. But since the initial structures, 

between which the resonance occurs, do not exist as such, this concept is purely 

conventional. 

A description of intermediate bonds more consistent with physical reality is 

given by the molecular-orbital method, which will be considered below. 

Thus, the principal type of two-electron bond does not exhaust the whole 

diversity of covalent interactions between atoms. In addition to the above- 

mentioned compounds with intermediate bonds, so called electron-excessive 

and electron-deficient compounds are also known. In the former, the two- 

electron orbitals are all used up, but there are also electrons residing outside 

them. The bond in these compounds is comparatively weak. Electron-deficient 

compounds (typical examples are boranes) do not have a sufficient number of 

electrons to form two-electron orbitals, but here, too, covalent interaction is still 
possible. 

1.2.5 Molecular-Orbital (MO) Method 

This is the basic method in modern quantum chemistry. The valence-bond 

theory considers the bonds between any pair of atoms in terms of the interaction 

of pairs of electrons whose orbitals belong to mutually approaching atoms, i.e., 

are single centered. One can, however, proceed from a more general assumption 

and consider the orbitals of one electron in the field of all the nuclei making up 

the molecule (or crystal) - multicenter single-electron functions - and then take 

into account the interaction of such orbitals. Here, the Schrodinger equation is 

solved for fixed nuclei at rest (Born-Oppenheimer’s adiabatic approximation). 

It is further assumed that when an electron approaches one of the nuclei, its 

motion must be as if it were assigned by the corresponding AO. Thus, in the case 

of a diatomic molecule, when considering the motion of each electron in the field 

of both atoms simultaneously, as the initial approximation the MO are com¬ 
posed of the AO 

and in the general case of multiatomic molecule 

t/Vii ^ (1.31) 
p 

where i is the number of MO, p are the number of AO, and cip are the coefficients 

determining the weight of the AO in MO. For instance, for a hydrogen molecule 

it is possible to use this method for constructing, from Is orbitals, two MO with 
electron densities 

l<Am|2 ~ V* + ± 2tAai/v (1.32) 

The degree of overlapping of the atomic orbitals is described by the integral of 



1.2 Chemical Bonding Between Atoms 33 

Fig. 1.21a, b. Bonding and antibonding molecular orbitals of the H2 molecule, (a) origin of bonding 
MO; (b) origin of antibonding MO 

-0.002 

difference deformation density of the H2 molecule 

the overlapping 

S = j il/a^bdv. (1-33) 

If the integral is positive, the electrons concentrate between the atoms, and 

a bonding MO5 may arise, to which the plus sign in (1.32) corresponds. For 

a bonding MO (Fig. 1.21a), the electrons are between the nuclei of the mutually 

approaching atoms and thus draw them together. Figure 1.22a shows the 

electron density of the H2 molecule calculated theoretically, and Fig. 1.22b gives 

the picture of the deformation difference density obtained by subtracting the 

spherically symmetric density of individual H atoms from the electron density of 

the molecule (Fig. 1.22a). The maximum between the H nuclei in Fig. 1.22b and 

the minima behind the nuclei show the electron redistribution due to the 

formation of a covalent bond; the maximum corresponds to the positivity of the 

integral of overlapping (1.33). If the signs of the AO are opposite when MO are 

5 For bonding and antibonding MO the corresponding German terms gerade and ungerade are also 

used. 
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rt (d+d) 
Fig. 1.23a-c. Origin of the most 
important molecular orbitals 
from atomic orbitals. AO sym¬ 
metry, its signs, and symmetry of 
the superposition are essential, (a) 
AO combinations; (b,c) examples 
of bonding and antibonding MOs 
(the latter are marked with an as¬ 
terisk). er-MO is obtained from 
combination (p + p)- AO using 
the signs indicated in (a); <r*-MO 
is obtained on change of sign of 
the right p-AO. n- and 7t*-MO are 
obtained similarly 

being formed (Fig. 1.21b), then antibonding MO arise, the probability of finding 

electrons between nuclei is low, and, being behind both nuclei, the electrons of 

such orbitals weaken the bond. The lowest energy levels of the molecule are 

those which are in line with the formation of bonding MOs when the integral of 

overlapping (1.33) is positive, and which is equal to zero for antibonding MO. It 

should be emphasized that the positive or zero value of the integral of overlap¬ 

ping is simply determined from the symmetry and antisymmetry of the atomic 

orbitals (Fig. 1.23). The MO of a molecule with a definite symmetry 

are described by the irreducible representations of the corresponding point 
group Go. 

Figure 1.23 shows the most important types of MO formed when AO 

combine. So-called a bonds are formed when s AO combine or when s AO is 

combined with p AO, or also when two p AO directed along the line of the bond 

are combined. Another type of bond, namely a n bond, is formed when p AO 

combine normal to the line, or p-d AO or d-d AO; S bonds arise from “parallel” 

d AO. Such MO, for instance, serve to form the electron distribution in the 

bonds of diatomic, second-period molecules - from Li2 to F2. The distribution 

of the electron density p(r) in molecules such as Li2 and 02 is shown in Fig. 1.24. 

Linear combinations of the atoms involved in the bonds are constructed to 

explain and calculate their multiple (double, triple) bonds from the initial wave 

functions. Wave functions of different types (s, p, d, etc.) can be combined 

for this purpose. The electrons may be located on both bonding and anti¬ 

bonding MO. Generally, the bond order is defined as the difference between 

the numbers of electron pairs located on bonding and on antibonding MO. 
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Fig. 1.25a, b. Chemical bond in molecules of ethylene C2FI4 (a) and benzene C6H6 (b). Trigonal 
hybridized sp AO [shown only in (a)] form ordinary bonds of C atoms among themselves and C-H 
bonds. The additional bond between the C atoms is due to the n MO. The n orbitals lie above and 
below the planes of the molecules, forming “bananas” in the case of ethylene and “bagels” in the case 
of benzene 

H H 

Figure 1.25a shows the scheme of the MO of the plane ethylene molecule C=C ; 

H H 

sp2 hybridization of C atoms on the basis of s, px, and py AO and a combination 

of these orbitals with the s AO of the H atom results in an MO with H atoms 

and a o bond C-C. To the second valence dash corresponds the n MO produced 

from the pz AO. From the standpoint of MO theory the formation of intermedi¬ 

ate-order bonds is interpreted as the result of MOs embracing the entire 

molecule. For instance, in benzene such a solid framework forms n MO (Fig. 
1.25b). 

Single a bonds are cylindrically symmetric relative to the bond line. This 

means that the atomic groupings joined by these bonds can rotate about them 

to the extent permitted by the steric interaction of the other atoms contained 

in these groupings (see Fig. 2.61). The other covalent bonds - multiple and 

intermediate - are constructed from MOs of definite symmetry, which almost 

always determines the azimuthal arrangement of the groupings bonded by them, 
i.e., rotation about these bonds is not possible. 

Calculations of multiatomic molecules and, all the more so, of crystals by the 

MO method are very complicated. The problem is to find the multi-electron 

wave function of a given system by the self-consistent-field (SCF) method. 

Because of the complexity of these calculations they were impossible until the 

advent of modern electronic computers. The principal method used for solving 

such problems is the method of linear combinations of atomic orbitals (LCAO) 

and the molecular orbitals composed of them, the SCF-LCAO-MO method. 

The calculation is based on the choice of the “basis”, i.e., a set of initial atomic 

functions describing the electron states of isolated atoms (or ions). One can also 

narrow down the basis by assuming the inner shells to be intact and taking into 

account the wave functions of only the outer shells, which are responsible for the 

chemical bond. Then, single-electron MO are formed as linear combinations of 

AO, while the full wave function 2, . . . , N) of the molecule is determined 
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from these MO, 

V = 

>M 1)«M2) 

»A2(1)«Aa(2) . . . t//2(N) 

«M 1)^(2) MAO 

(1.34) 

The numbers in the arguments of orbitals i/q stand for three orbital and one spin 

coordinates of the electron. The Pauli principle is fulfilled for MO; each of them 

can carry not more than two electrons with differing spin coordinates. Functions 

il/j are orthonormalized, one of the results being the appearance of factor 

l/y]V!. Function ¥' is antisymmetric. The larger the number N of the initial AO 

in the basis, the more accurate is the approximation of the molecular orbitals, 

but the calculations become much more complicated because the number of 

single-electron integrals of the type (1.26) is then approximately proportional to 

~ 1/2N2, and that of two-electron integrals of the type (1.27), to ~ N4. 

Generally speaking, various functions can be chosen as the basis, provided they 

are close to the functions describing isolated atoms at small distances from 

nuclei. Of great importance in the choice of the basis is the simplification of the 

calculations. Use is made of numerical Hartree-Fock atomic orbitals or ex¬ 

ponential hydrogenlike Slater orbitals of the type r"~1 exp( — /?r) Ylm which 

are more convenient for calculations, and also Gaussian approximations of 

rn~lexp{ — a.r2)Ylm. Carrying out complete, non-empirical, ab initio calcu¬ 

lations takes into account all the electrons of the system; positions may be 

assigned for the nuclei, but, in a more general sense the nuclei are not fixed. 

These calculations are extremely complicated; therefore, it is customary to make 

semiempirical calculations only for valence electrons or some of them, fixing the 

nuclei and the other electrons. In calculations of comparatively simple mole¬ 

cules, such as C02, bases of several tens of Slater or Gaussian functions are 

usually employed, and the number of integrals is of the order of 105-106, which 

is time consuming. To simplify the solution of such problems, various approx¬ 

imations are used. 
In recent years various approaches have been developed to the direct 

solution of the Schrodinger equation for crystals (Sect. 6.3.5). 

1.2.6 Covalent Bond in Crystals 

The problem of calculating the chemical bond in crystals is solved by the 

universal method: by finding the solution of the Schrodinger equation 

//¥' = £¥' for a crystal. As the number N of atoms in crystals is enormous, it 

may seem impossible to find the solution. However, the most important sim¬ 

plifying factor is the presence of translational periodicity in a crystal. The crystal 

potential determining Hamiltonian H is periodic, u(r) = v(r -I- t), where t is any 
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lattice translation. On the other hand, for the same reason wave function V can 
be represented as a sum of Bloch functions 

•At = x(r)exp(27riAr) (1.35) 

where k is the wave vector of the electron in the reciprocal lattice. The solution 

of the Schrodinger equation is expressed precisely by Bloch functions. This 

consideration leads to the band theory of electrons in a crystal, which is covered 

in Chap. 3. The band theory predicts the allowed energies of free electrons in the 

crystal E(k). It is a general approach applicable not only to the covalent, but also 
to the metallic and ionic bond. 

The interaction of electrons with the crystal lattice is due to their wave 

nature. Similar phenomena arise in electron diffraction by crystals [Ref. 1.6, 

Sect. 4.8]. Proper free electrons of a crystal are also reflected from the lattice 

planes, which leads to a fundamental conclusion that not all the values of 

energies E(k) = h2k2/2m are possible. The permissible values of vector k are 

limited in the reciprocal space by polyhedra, i.e., Brillouin zones (Fig. 1.26). As 

we shall see in Chap. 3, inside these zones k (and hence E) takes on a practically 

continuous multitude of values (actually, there are N values, where N is the 

number of unit cells in the volume of a crystal). Within a zone the energy is 

a continuous function of k. The mathematical methods used for solving the 

Schrodinger equation for a crystal strongly depend on the bond in the crystal 

concerned. If the electron-atom bond is strong, as in ionic and covalent crystals, 

these methods are closer to the above-discussed methods for analyzing the 

covalent bond in molecules. On the other hand, in metals where the outer 

electrons of atoms are collective, it is also possible to apply other approaches 

(Sect. 1.2.8). In all the cases the lattice potential can be represented as a sum 

of atomic potentials V(r) = £ va(r + t), and the mutual overlapping of va ulti¬ 

mately defines the distribution of the coupling electrons among the atoms. Then, 

the potential is also expanded in a Fourier series V(r) = £ vH[ - exp(27ii//r)], 
H 

which yields the set of equations for functions \J/i (1.35), the Fourier coefficients 

of potential vH, and energies E(k). The calculation is greatly simplified because 

the inner shells (atomic cores) remain unaltered and can be excluded from 

Fig. 1.26. (a) first and (b) second 
Brillouin zones for the structure 
of copper 
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consideration; it suffices, therefore, to take into account the potential on the 

periphery of the atoms and between them, which changes comparatively slowly. 

The band structure and wave functions of the electrons for covalent crystals 

are calculated according to the above-described schemes. Since the covalent 

bond is realized by electrons localized on MOs between pairs of neighboring 

atoms, it can be described very well on the basis of the SCF-LCAO-MO 

method with expansion of the atomic functions in spherical harmonics of the 

type (1.2). A set of electrons of N crystal atoms is regarded as distributed over 2N 

two-center orbitals of the type (1.31). Indeed, the characteristics of the bond in 

a single tetrahedral bond C-C in an organic molecule or in diamond are very 

similar. Analogous tetrahedral bonds arise in crystals of Si and Ge, and in 

AU,BV compounds; in the latter, they are already of a donor-acceptor nature. 

Other methods - those of so-called orthogonalized plane waves and of the 

pseudopotential (Sect. 1.2.8) - also help to calculate the characteristics of the 

covalent bond in crystals. 

For covalent crystals, the energy-level structure is such that the energy 

necessary for transferring an electron from a completely filled Is band (valence 

band) to the vacant 2s band (conduction band) is high. This energy (the width of 

the forbidden band) is equal to 5.4 eV for diamond, and ~ 13 eV (cf. Fig. 1.11) 

for typical semiconductors. Here, certain states of the atoms (s, p, etc.) can be 

correlated with the corresponding energy bands of the crystal. 

As an example, we consider the calculation of the electron density of 

covalent crystals of the diamond type (Ge, Si, GaAs, ZnSe, etc.) carried out by 

the pseudopotentials method [1.16]. After solving the Schrodinger equation, 

one finds the wave functions ipn,k(r) of the valence bands n; the electron density 

of each state is proportional to \ ij/n,k\2, and the total electron density is equal to 

llAn,kl2 Csee (1-39)]. For n = 1 (n = 2) the valence density is similar to the 
s states of the free atoms (Fig. 1.27a), and for n = 3 (n = 4) (Fig. 1.27b), to the 

p states. The summary distribution (Fig. 1.27c) reflects the tetrahedral sp3 state 

with an increase in density of the valence electrons between the atoms. For 

GaAs and, to a greater extent, for ZnSe, the ionic component of the bond is 

prominent. Thus, for ZnSe the first band - the state with n = 1 (Fig. 1.27d) - 

clearly describes the ionic component of the bond: the corresponding charge is 

concentrated around Se. The summary distribution of the valence density of 

ZnSe also has a covalent “bridge” on the bond, as in Ge. 
An example of the application of these methods to the ion structure is the 

calculation of p(r) for a MgO crystal using the pseudopotentials method [1.17], 

To find Bloch functions and distributions of pn(r) corresponding to the four 

valence bands, use was made of the pseudopotentials found from the experi¬ 

mental energy dependence of the imaginary part of the dielectric constant. As 

can be seen from Fig. 1.28a-c, the p(r) of the valence bands are very similar to 

the charge distribution in the relevant atomic states. According to calculations, 

the Mg atom is practically fully ionized, and the O states correspond to the 

s state and to three p states (recall that the electron density of the inner filled 

shell is excluded). The charge of O is 0.9 e. 
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Fig. 1.27a-d. Theoretically calculated valence electron density contour map in the (110) planes of 
Ge (a, b, c) and ZnSe (d) crystals, (a) electron density of the first valence band of (s type) of Ge 
(b) electron density of the third band of p3 (p type) of Ge; (c) total electron density (sp3 type) of Ge; 
(d) electron density of the first band of ZnSe showing a shift of the charge towards Se (ionic 
component of the bond) [1.16] 
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Fig. 1.28a-d. Theoretically calculated band components of the valence electron density in the (100) 
plane of MgO crystal passing through the centers of the atoms, (a) Pi (s type); (b) pi (c) pi (d) p4 (all 

P type) [117] 

In estimating the energy and the force constants of the covalent bonds 

a sufficiently good approximation is provided by the curves of the potential 

interaction energy u(r) of the type shown in Fig. 1.12 obtained semi-empirically 

or by approximating the exact calculations. A satisfactory description of attrac¬ 

tion forces is given by an expression of the type ar (m = 4). As r decreases and 

a minimum is passed, the short-range repulsive forces increase sharply; they are 
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due to the electrostatic repulsion of nuclei and electron shells of various atoms 

which exceeds the attraction of the nuclei to the electrons and the exchange 

energy [see (1.27)]. Repulsion can be approximated by the expression br~n, and 

then equations of the type (1.16, 17) (m = 4 and n = 6-9) are applicable for 

covalent forces. Quantum-mechanical calculations of the repulsive potential 

give the exponential dependence; for the covalent forces 

u(r) — — ar~m + cexp( — ar), m = 4. (1.36) 

From the condition du/dr — 0, which determines the equilibrium state of rp and 
the energy up = w(rp), we find 

(1.37) 

The energy of covalent bonds depends on their order; triple and double 

bonds have the highest energy of all types of bonds, for instance, 225 kcal/mol in 

the triple bond in N2 and 150 kcal/mol in the double bond C=C. In single bonds 

(or per unit bond order) it ranges from 60-70 kcal/mol (for the strongest bonds) 

to 30-40 kcal/mol or less (for instance, 36 kcal/mol for F2). A lower re corres¬ 

ponds to a higher binding energy. The constant a can be calculated via the 

second derivative d2u/dr2 at the point of minimum. For a covalent bond this 

derivative is large and the bond is rigid; its characteristics change only slightly 

(including the value of r) on the transition from the molecule to a crystal. 

It is noteworthy that there is a certain small component of the covalent bond 

even in the most typical ionic compounds. Similarly, with the exception of such 

genuinely covalent crystals as diamond, other covalent compounds composed of 

different sorts of atoms have the ionic component of the bond. For instance, in 

borazon BN (a structural analogue of diamond) a charge transfer from boron to 

nitrogen already takes place; the same is true of another compound with this 

type of structure ZnS, where the effective charges are estimated at 0.5-0.8 e. 

Such a partly ionic (i), and partly covalent (c) bond can be described within 
the framework of the VB method by the wave function 

•F = aji/q + acil/c (1.38) 

where the degree of ionicity e = af/(af + a2). The degree of ionicity can also be 
estimated by the MO-LCAO theory, leading to (1.20). 

It is easy to take into account the ionic component by adding to (1.36) 

the first term ar~1 from (1.15, 16), i.e., electrostatic attraction coefficient a is 
determined by the effective charges. 

Semiempirical equations of the type (1.36, 37) only permit estimating the 

energy as a function of the interatomic distance between the bound atoms. At 

the same time the covalent bond is also directional, with the corresponding 

energy of deformation of valence angles. Rotations of groupings about a single 

bond are also possible, which defines the fraction of the so-called torsional 

energy. These contributions to the energy are covered by the appropriate 
equations, which will be treated in Sect. 2.6. 
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1.2.7 Electron Density in a Covalent Bond 

The electron density of any system - an atom, a molecule, or a crystal - is 

described by the square of its wave function | T|2. While described by ortho¬ 

gonal orbitals iof the type (1.7, 34) the electron density has the form 

p(r) = e\ *P\2 = £ |t/q|2. (1.39) 
i= 1 

Each atom is a highly concentrated cloud of electron density; the overwhelming 

number of its electrons are within a peak of comparatively small radius 

(Fig. 1.9). The electrons realizing the valence bond are associated with a certain 

region of the wave function T, and the relevant increase in the values of the 

electron density between atoms corresponds to the overlapping integral (1.33). 

Let us consider, as an example, the structure of an element, for instance 

diamond, C. By analogy with the above construction for NaCl in Fig. 1.14, let us 

plot the radial electron density functions D(r) [see (1.8)] of the initial atoms 

towards each other from the ends of the segment connecting the nearest atoms. 

The maxima of these functions for the outer orbitals of both p shells will be 

found at approximately the same place (Fig. 1.29a). Recall again that this 

construction is conventional; it shows the place where the orbitals overlap, but 

does not describe the actual electron density p(r). In the distribution of the 

electron density of the crystal there is no maximum of p(r) on the bond line. It 

can only be said that in the case of the formation of a covalent bond the 

summary electron density along this bond, i.e., on the straight line joining the 

bound atoms, is higher than that at the same distance from the atom, but in 

a direction not corresponding to the bond. It is also higher than the practically 

near-zero electron density between the atoms in the case of a purely ionic bond 

(Fig. 1.13). At the same time, if we eliminate the electron density of the inner 

shells by subtraction, such a maximum is observed for the distribution of the 

valence electrons. This is indicated both by theoretical (Fig. 1.27b, c) and experi¬ 

mental data obtained from precision X-ray investigations with calculation of 

0.5 o 1-0 1-5 

b r’ A 

Fig. 1.29a, b. Electron density of a single C-C 
bond, (a) overlapping of the radial density distri¬ 
bution maxima of the valence orbitals of the 
C atoms; (b) experimentally found distribution of 
the electron density along the line of the covalent 
C-C bond (curve I) and in the direction “between 

the bonds” (curve II) 
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p(r) by a Fourier synthesis. Figure 1.30a shows the electron density map of 

diamond (a classic example of a crystal having a covalent bond) on a plane 
\/ \/ 
C C 

passing through one of the series of atoms /xcxx forming the structure. The 

X 
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Fig. 1.30a f. Experimental electron density maps of diamond and silicon, (a) cross section p(xxz) 
of diamond through the centers of C atoms (peak height 174 el/A3); (b) corresponding difference 
deformation density [1.10]; (c,d) electron density of valence electrons pyat in a Si crystal along the 
plane of Si-Si bonds (c) and perpendicular to the Si-Si bond in its center (d). The lines are drawn at 
intervals of 0.1 e/A3; (e,f) the same for the deformation difference density pdef, the contours are 
drawn at intervals of of 0.05 e/A3, negative values are shown by dashed lines [1.18] 
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Fig. 1.31. Electron density of valence electrons in the C-C bond 
in graphite (vertical section of the unit cell) [1.19] 

“bridges” of increased density can be seen between the C atoms. An increase in 

p is determined by the maxima of the difference deformation density (Fig. 1.30b). 

Similar, very accurate data for Si have been obtained by measuring X-ray 

structure factors (not intensities) on the basis of the pendulum solution of 

dynamic theory [Ref. 1.6, Sect. 4.3], (The standard deviation of p is 0.007 e A-3). 

Figure 1.30c, d gives difference maps of the valence electron density of Si (the 

inner-shell electron density has been subtracted). The valence density peaks are 

elongated along the bond line and are approximately cylindrically symmetric 
° - 

relative to it. Their height of 0.69 e A is in good agreement with the theoret¬ 

ically calculated value, 0.65 e A-3. Figure 1.30e, f shows the deformation differ¬ 

ence density (the total spherically symmetric electron distribution of nonbonded 

atoms has been subtracted)6. According to these data the deformation difference 

electron density of the Si-Si bond is slightly lower than that of C-C in diamond. 

According to these and other data the deformation density pdef of a single bond 

at a maximum is 0.3-0.4eA~3. According to theoretical data the summary 

charge of the valence-electron peak on the bond is about 0.1 e. 

In the case of multiple bonds the electron density is naturally higher. Figure 

1.31 presents the valence density of the bonds between the carbon atoms in 

graphite (the Is2 electrons are excluded). These bonds are hybridized, their order 

being l£. 

6 See footnote 4, p. 30. 
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Similar information was obtained for the structure of organic molecules in 

crystals by combining X-ray and neutron-diffraction data (recall that the latter 

supply accurate positional parameters of the nuclei and the parameters of the 

anisotropic thermal vibrations). Examples are given in Fig. 1.32 (see also 

Fig. 1.20). Thus, in investigating cyanuric acid (Fig. 1.32a) the difference defor¬ 

mation synthesis clearly reveals maxima due to the covalent bond, unshared 

Fig. 1.32a-f. Difference Fourier syntheses map of the 
electron density of some organic molecules constructed 
on the basis of precise X-ray and neutron diffraction 
data and theoretical calculations of the distribution of 
electron density in free, spherically symmetric atoms, 
(a) deformation density pdef of cyanuric acid [1.20]; 
(b,c) valence pva, and deformation pdef densities in the 
peptide group at deuterated a-glycylglycine [1.21]; 
(d-f) deformation density of the butatriene grouping 
in tetraphenylbutatriene - the plane of the grouping 
(d) and perpendiular to the external (e) and internal 
(f) C-C bond [1.22] 
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electrons of the O atoms, and the electron outflow (negative electron density) 

from the external part of H atoms. The same features are prominent on 

difference valence (Fig. 1.32b) and deformation (Fig. 1.32c) syntheses of deutero- 

a-glycylglycine (a deuterated crystal is more suitable for neutron diffraction 
studies). 

Figure 1.32d, e represents cross sections of difference deformation syntheses 

of the butatriene grouping for tetraphenylbutatriene, a representative of the 

cumulenes. The experiment was carried out at 100 K. The characteristics of the 

double bonds G=C are of interest here. The values of pdef at their peaks are 

0.9 e A 3 for the internal and 0.75 e A-3 for the external bond, which naturally 

exceeds the values characteristic of single bonds. The sections perpendicular to 

the bonds (drawn through the bond midpoint) are elliptical, i.e., these bonds (as 

distinct from single ones) do not show cylindrical symmetry. The charge in the 

external C=C bond is elongated along the normal to the butatriene plane, and in 

the internal bond, in this plane. This agrees with the predictions of the classic 

theory of n electrons in cumulene systems (cf. Fig. 1.25a, see also Fig. 2.75). 

Deformation and valence difference syntheses also enable one to establish 

the charge at the peak by integrating over the positive or negative electron 

density peak at the site of the subtracted atom. It turns out that there is almost 

always some charge redistribution from atom to atom in a molecule. Thus, in 

the peptide group of the molecule of deutero-a-glycylglycine 02CCD2NDC0- 

CD2ND3 the O atoms have a negative charge of about —0.5 e, and N, about 

— 0.4 e; atoms of C bound with O have a positive charge of +0.3 to +0.4 e; and 

those bound with D, a weak negative charge of —0.1 e; all the D atoms are 

charged positively, +0.1 to +0.3 e. The summary charge of the bond electrons 

can be similarly established by integrating over the corresponding peaks. 

Methods for a parametric description of experimentally obtained electron 

distribution of valence-bound atoms in various systems have also been de¬ 

veloped. One such approach consists in expanding p with respect to a set of 

basis functions <p 

p(xyz) = X Z U-40) 
H v 

and finding coefficients P/1V [1.23]. Slater’s or Gaussian orthonormalized orbitals 

(multipoles) can be chosen as basis functions as in (1.34) [1.24-26]; the aniso¬ 

tropic thermal motion is also taken into account. On the basis of such a descrip¬ 

tion and taking into account the symmetry of the system it is possible to 

calculate the electron population density q(A) of atoms and q{AB) of bonds 

between atoms, and to compare it with the data obtained with theoretical 

predictions. It is essential to take into account the quantum properties of the 

electron distribution - the Pauli principle - in many calculations. The matrix of 

Ppv values should then satisfy condition P2 — P [1.27]. 

Most of the results of the calculations of q{A) and q(AB) agree with the 

theoretical predictions, some others diverge, for instance as regards the shape 

and distribution of the electron density regions corresponding to lone pairs. 
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1.2.8 Metallic Bond 

In a covalent bond, superposition and some redistribution of electrons of the 

outer shells of atoms take place, the orbitals of these electrons being mainly 

localized between the pairs of neighboring atoms. The discrete energy levels of 

the atoms change and form a quasicontinuous filled band in the crystal. 

The nature of a metallic bond is the same as that of covalent bond, namely, 

sharing the outer electrons; the localization of these electrons, however, is 

different. In metallic atoms the outer orbitals are filled with a small number of 

electrons, and the ionization energy I+ necessary for the detachment of outer 

electrons, which can be considered a measure of the stability of the orbital (see 

Table 1.2), is small. In most cases this is a spherically symmetric s orbital, which 

is comparatively wide. When metallic atoms draw close together and form 

crystals of metals or alloys, these orbitals overlap with a great number of 

identical neighboring orbitals; for instance, in metals with a face-centered cubic 

lattice they overlap with 12 orbitals (Fig. 1.33). Therefore the concept of localiza¬ 

tion of outer electrons near a given atom or between pairs of atoms loses its 

meaning, and their entire system, described by the wave function, common 

for the whole crystal, is characterized by its approximately uniform value in the 

space between the atoms. This also corresponds to the classical concepts of the 

electron theory about the presence of a “gas” of free electrons in metals. 

As mentioned in Sect. 1.2.6, the methods for calculating the metallic bond are 

based on the band theory. In metals, the electrons can freely shift to vacant levels 

immediately adjoining the filled levels, which actually explains the metallic 

properties. Since the band is not filled completely, the surface of vectors k, 

corresponding to the maximum energy and called the Fermi surface, does not 

D(r) D(r) 

Fig. 1.33a-c. Electron density distri¬ 
bution in the structure of metals. Over¬ 
lapping of the radial distribution func¬ 
tions of outer electrons in Li (a) and A1 
(b). Experimentally determined elec¬ 
tron density in aluminium (c) along the 
Al-Al line (the dashed curve referring 
to the atom periphery is scaled up) 
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touch the faces of the Brillouin zone or forms “channels” in the periodic 

reciprocal space (see Chap. 3 for details). The methods for calculating the 

structure of metals use various models. Since only the outer electrons are 

common for the atoms of metals, the problem can be solved, for instance for 

alkali metals, by representing the lattice potential as a sum of the potentials of 

the ionic core with the shell of the noble gas atom in whose field the conduction 

electrons are moving (one-electron approximation). If we divide the whole 

volume of the lattice into equal Dirichlet polyhedra (see [Ref. 1.6, Fig. 2.89] 

surrounding the given atom (such a construction for metals is called a division 

into Wigner-Zeitz cells, see Sect. 2.8), it can be assumed that within the filled 

shell of the core the potential is spherically symmetric, and outside the shells it 

changes only slightly, being practically constant. By fitting the solutions to¬ 

gether at the boundaries of shells and polyhedra one can find the general 
solution. 

In the one-electron approximation, the interaction due to Coulomb repul¬ 

sion between the free electrons is neglected. There are several methods which 

take into account these effects, and also exchange interaction and spin effects. 

One can ultimately obtain, in terms of one metallic atom, simplified expressions 

for the energy of the type 

-- + -|+ -| + *3. (1-41) 
r r r 

where the constants are calculated theoretically or semiempirically from the 

compressibility data, etc. Expression (1.41) with the first two terms can also be 

obtained from the classical concepts about the interaction of a negatively 

charged gas with the positive ionic cores. The energy curves for alkali metals, 

obtained with the aid of quantum-mechanical calculations, are given in 

Fig. 1.34. It is important to emphasize that, in view of the cooperative nature of 

the interaction, these curves are only valid for a crystal; they do not describe the 

interaction between a pair of atoms, for instance in a Me2 “molecule”. The 

physical meaning of the attraction forces in the metal structure is that the 

potential distribution in it enables the outer electrons to occupy lower energy 

levels than in free atoms. 

Fig. 1.34. Energy curves for the lattice 
of metallic sodium. (7) interaction 
energy of a free electron with Na + ; 
(2) kinetic energy of electrons; (3) 

total energy 
5 
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In metals with several electrons in the outer shell the interaction is more 

complicated because not all these electrons are free, i.e., not all of them shift to 

the conduction band. Therefore, the covalent interaction also contributes a cer¬ 

tain component to the attraction forces. A purely metallic bond is non-direc- 

tional, i.e., it is spherically symmetric, therefore, many structures, for instance 

those of the metals Na, K, and many others, are close-packed cubic. At the same 

time, for many metals the effects of bond orientation become apparent, when, for 

instance, body-centered cubic or hexagonal structures are formed. The quan¬ 

tum-mechanical calculations have only been performed in several cases. In such 

calculations, the pseudopotential method is used for multivalent metals. In this 

method the pseudowave function is calculated, instead of the true wave function; 

the latter must be orthogonal to all the wave functions of electrons in the inner 

shells and, therefore, has a complex oscillating form within the ionic cores of the 

metal. The pseudowave function coincides with the true wave function outside 

the ionic cores, but remains smooth inside them. The equation defining the 

pseudowave function is obtained from the conventional Schrodinger equation 

by replacing the local true potential with the nonlocal pseudopotential. This 

includes, in addition to the term corresponding to attraction, a term describing 

the effective repulsion of conduction electrons from the ionic cores. In approx¬ 

imate calculations of the interaction energy and other characteristics of metals, 
equations of the type (1.41) can also be used. 

X-ray investigations positively confirm the presence of a continuously dis¬ 

tributed constant electron density in the metal structure and the ionization of 

the outer atomic shell. The electron density of an ionized metallic atom is 

spherically symmetric [1.8, 28, 29], The mean electron density of the interatomic 

space is constant and equals about 0.15-0.20 e A“3 (Fig. 1.33c, cf. Fig. 1.14b); 

the obtained values of the number of electrons in atoms for some metals are as 

follows: 10.4 for Mg, 10.2 for Al, 23.0 for Fe, and 20.0 for Cr, which approxi¬ 

mately corresponds to ionization equal to the valency of the metal. 

Note that the above-discussed three basic types of “strong” bonds - ionic, 

covalent, and metallic - are close in energy and characteristic interatomic 

distances. Below (in Sect. 1.4) we shall revert to the causes of this similarity. We 

recall once more that in many compounds the bond is intermediate in nature. 

This refers, for instance, to such an important class of compounds as semicon¬ 

ductors, which are formed by such elements as P, S, Ge, Si, Ga, As, Se, Sb, Te, 

etc., as well as to some intermetallic compounds. The bond in them cannot be 

allocated to a single definite type; it has features of both a covalent and 

a metallic bond, and sometimes of an ionic bond. The ionization of atoms and 

the existence of a small valence bridge electron density are detected in such 

compounds by experimental X-ray investigations (cf. Fig. 1.27a-d, see also 
Sect. 2.4). 

It should always be kept in mind that a chemical bond in a compound is 

a quite definite state of the outer electrons of a given multiatomic system. Its 

division into certain components is, to a large extent, conventional. 

It should also be emphasized that many substances which under normal 

conditions are insulators or semiconductors experience phase transitions and 
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acquire metallic properties with an increase in pressure; the bond in them also 
acquires a metallic character. This is natural because forced mutual approach of 
atoms under external pressure increases the overlapping of outer shells and, 
hence, the number of shared outer electrons; the energy spectrum also 
changes - the bands merge together. Thus, Te becomes a metal at ~40 kbar, Ge 
at 160 kbar, and InSb at 20 kbar. The problem of metallic hydrogen is of 
interest. According to theoretical estimates ordinary molecular hydrogen 
H2 can be transformed into metallic hydrogen at a pressure of about 2 megabar. 
It has been suggested that this phase may be metastable, i.e., it may remain 
metallic after the pressure is lifted, and will also be superconducting. Some 
hypotheses assume that depending on the particular structure of the energy 
spectrum (for instance, for Ni), a pressure increase may, contrariwise, result in 
a loss of metallic properties. 

1.2.9 Weak (van der Waals) Bonds 

Noble gases, whose atoms have completed shells, crystallize into highly symmet¬ 
ric structures at low temperatures. Organic molecules having a system of strong, 
completely saturated (covalent) bonds also form crystals. A number of physical 
characteristics (melting point, mechanical properties, etc.) show that the bonds 
between the particles in all such crystals are weak. According to X-ray data, the 
shortest distances between non-valence-bonded atoms, i.e., atoms of “contact¬ 
ing” neighboring molecules or atoms of noble gases, considerably (by 50 or 
100%) exceed the “short” distances of strong bonds. The attraction forces 
operating here are commonly called van der Waals forces, because they explain 
the correction for molecular attraction in the van der Waals equation for the 
state of gases. 

If molecules possess a constant electric moment /r, one of the components of 
these forces is the classical dipole-dipole interaction. It is reduced by the thermal 
motion, which disturbs the dipole orientation. The energy of such interaction is 
defined by 

ul(r)= (1-42) 

This is called the orientation effect. Naturally, its fraction in intermolecular 
interactions is large only for molecules with a high /r, for instance, for H20 and 

NH3. 
Some contribution to the molecular interaction is also made by another, 

so-called induction effect, which takes into account the possibility of the polar¬ 
ization of molecules by one another, i.e., the possibility of inducing dipoles. The 
corresponding energy is also proportional to r”6, 

u2(r) = —2cc/j,2r~6, (1.43) 

where a is the polarization. 
The principal component of the intermolecular forces is the so-called disper¬ 

sion interaction between neutral atoms or molecules, which completely explains, 
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in particular, attraction between the atoms of inert elements. This interaction is 

due to the presence, in the atoms, of instantaneous dipoles induced by the 

moving electrons of neighboring atoms and can be considered quantum mech¬ 

anically. According to F. London, while finding it one must take into account 

both the ground, ij/0 and cp0, and excited, tjj„ and cpn, states of the mutually 

approaching atoms. Since the atoms are spaced wide apart and only remote 

regions of the wave functions overlap, the exchange can be neglected. It is 

possible to deduce, on the basis of the second approximation of perturbation 
theory, that 

, , 3h v.v2 
u3(r)=-Kr-6, K = -—^-<x1 a2. (1.44) 

2 V[ + v2 

Here, K is expressed in terms of polarization al5 a2, and the characteristic 

frequencies vl5 v2 of atom excitation are the same as those responsible for the 

light dispersion. If we take into account not only the dipole, but also the 

multipole interaction, terms with r-8 and r~10 also appear. The zero energy is 

taken into consideration as well. The potential of repulsion of molecules or ions 

is expressed by the exponential function. As a result, the following equation 

holds true for the description of interaction of the atoms of neighboring 
molecules: 

u(r) = Uj + u2 + n3 + cexp( — cur) = — ar~6 + cexp( — ar). (1-45) 

This equation is the same as (1.35), but with m = 6 and with different a, c, 

and a. For instance, for interactions of C atoms a = 358 kcal/mol, c — 

4.2 x 104 kcal/mol, and a = 3.58 A" '. The fraction of the three components in 

the intermolecular bond energy depends on the dipole moment /r and the 

polarization a of the molecules. For instance, for H20 w, = 190, u2 = 10.0, and 

u3 = 93.0 (erg-10“60); and for CO uv = 0.003, u2 = 0.05, and u3 = 67.5. Thus, 

for molecules with a small or zero dipole moment (these constitute the vast 

majority of the molecules of organic compounds) the molecular interaction 

energy is practically entirely due to the dispersion forces. Equation (1.45) can be 

rewritten in the form (1.37) by introducing the equilibrium distance re and 

energy ue. The characteristic distance re for the van der Waals forces is 3-4 A. At 

the same time, the exponential repulsive term in (1.45) produces a sufficiently 

rapidly increasing left-hand branch of the interaction energy curve (Fig. 1.13, 

Curve II), so that the mutual approach of non-valence-bound atoms is also 

sharply limited. This permits introducing the concept of intermolecular radii 
(see Sect. 1.4). 

The van der Waals forces of molecular interaction are much weaker than the 

forces of the covalent, ionic, and metallic bonds. They may be called forces of 

weak interaction in contrast to the three types of strong bonds. These forces 

rapidly diminish with distance; the minimum of (1.45) is shallow and less 

prominent than for strong interactions (Fig. 1.12). Therefore the distances be¬ 

tween non-valence-bounded atoms in crystal structures have (for a given pairs of 
atoms) a slightly greater spread than for strong bonds (see Fig. 1.50). 
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1.2.10 Hydrogen Bonds 

One more variety of binding forces is known, the so-called hydrogen bond. It is 

formed between H atoms included in the groupings NH or OH and elec¬ 

tronegative atoms of N, O, F, Cl, or S, which is denoted schematically as 

AH ... B. 
The localization of H atoms is sufficiently achieved by all three diffraction 

methods (Figs. 1.32, 35-37). The maximum of the potential, which corresponds 

to the position of the nucleus, is recorded by the electron diffraction technique. 

The value of the potential, which increases with reducing electron density of the 

shell, points to some positive ionization of the H atom in the H bond (Fig. 1.35). 

The position of the proton (or deuterium) and its thermal motion are deter¬ 

mined by the neutron diffraction method (Fig. 1.36). The position of the electron 

cloud of H is determined by X-ray diffraction using difference syntheses of 

electron density. If the peaks of all the atoms, except H, are subtracted (Fig. 1.37, 

see also Fig. 2.64), it is usually found that the maximum of the electron density 

pH does not coincide with the position of the proton but is shifted towards the 

atom with which H forms a covalent bond. Thus, according to spectroscopic 

and neutron diffraction data the C-H distance is 1.09 A and the N-H distance 

about 1.00 A, while the maximum of the electron density peak is located 

0.1-0.2 A closer to C or N atom. The shift of the maximum of pH is attributed to 

the anisotropy and anharmonicity of thermal motion and the ionization of the 

H atom, especially when it is involved in the hydrogen bond. The “external” part 

of the H atom actually has a decreased electron density. The same is revealed by 

Fourier deformation difference syntheses with subtraction of the spherically 

symmetric electron density of the H atom (see Figs. 1.20, 33). This is manifested 

Fig. 1.35. Fourier synthesis map of the electrostatic potential of diketopiperazine constructed from 
electron diffraction data. Chains of molecules linked by hydrogen bonds in the crystal are clearly 
seen Solid contours are drawn at 15 V, and dashed ones, at 7.5 V intervals. The potentials of the H, 
and H2 atoms of the CH2 group are 32 and 33 V, and that of the H3 atom of the NH group involved 

in the NH-H hydrogen bond is 36 V, which points to its ionization [1.30] 
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Fig. 1.36. Fourier synthesis of the nuclear density of 
BeS04 • 4H20. The contours are drawn at intervals of 
0.46 cm ■ 10~12 A~3, the z coordinates of the nuclei 
are indicated [1.31] 

Fig. 1.37. Difference electron density map of the 1:1 O 
complex of s-trinitrobenzene and s-triaminobenzene; 
the electron density of the hydrogen atom is shown 
[1.32] 

H 

in the deformation synthesis: the outer region has negative values of difference 
density. 

The H bonds of molecules in liquids and gases are often responsible for the 

formation of dimers and, in crystals, also of chains (Fig. 1.35) or two- and 

three-dimensional nets; the latter are observed, for instance, in the structure of 

ice (Fig. 1.38). The hydrogen bond is directional, the atom B lies approximately 

on the continuation of the covalent bond A-H and is spaced not more than 20° 
from this straight line. 

The distances in NH . . . N and NH . . . O bonds vary from 2.7 to 3.0 A. The 

OH ... O bonds are divided into short (2.45-2.6 A) and long ones (up to 2.9 A). 

According to X-ray data the O-H distances in hydrates of metal fluorides lie in 

the range of 0.7-1.0 A, and the OH-F distance, 2.50-2.90 A [1.33]. It can be seen 

that these distances are, as a rule, shorter than in van der Waals interactions 

between A and B atoms and are a priori shorter than in van der Waals H and 

B contacts. The energy of hydrogen bonds is slightly higher (i.e., they are 

stronger) than that of weak molecular interaction; it equals about 

5-10 kcal/mol. The principal features of the hydrogen bond AH ... B can be 

explained by assuming that the H atom in the AH grouping is partially ionized; 

according to various data, including X-ray and electron diffraction, it contains 
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Fig. 1.38. The structure of ice. The hydrogen bonds 
OH . . . O are tetrahedral, the H atoms of one H20 
molecule are directed towards the lone electron 
pairs of the O atom of the other H20 molecules 
(cf. Fig. 1.19) 

Fig. 1.39. Relationship between 
the length of the AH bond and 
that of the hydrogen bond 
AH . . . B 

from 0.5 to 0.85 e. The ionization of the H atom promotes its attraction to 

electronegative atoms. In the structure of ice as well as in other structures with 

bonds of the type AH ... O the proton is directed towards the sites of increased 

concentration of electrons of the O atom, i.e., towards its lone electron pairs. 

This is directly revealed in deformation difference syntheses of electron density 

(see Figs. 1.20, 37). At the same time the quantum-mechanical effect of the 

overlapping of the outer parts of the orbitals of the H and B atoms also takes 

place. The ionic nature of the hydrogen bond is also evident from the fact that its 

constituent molecules or groupings usually possess a dipole moment. This, 

among other things, may be responsible for the ferroelectric properties of some 

compounds with hydrogen bonds. 
Accurate neutron diffraction determinations showed that the shorter (stron¬ 

ger) the A-H bond, the longer (weaker) is the hydrogen bond A-H . . . B 

(Fig. 1.39). The hydrogen bonds determine the structure and properties of many 

inorganic compounds, such as water, crystallohydrates, and ammoniates. Thus, 

the structure of ice (Fig. 1.38) is assigned by the “corner” arrangement of the 

H atoms in the water molecule at an angle of ~ 109°, which is close to 
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tetrahedral. Here, H constantly moves from position OH . . . O to O . . . HO 

and back because they are equivalent, both of them being statistically occupied 

with a weight of 1/2. A similar effect occurs in the structure of KH2P04; the two 

potential wells between the atoms are equivalent, but as the temperature 

decreases the H atom stays in one of them. In the compound KHF2, a strong 

hydrogen bond F-H-F with a spacing of 2.26 A is formed; the two wells then 

merge together, so that the H atom finds itself between two F atoms, where it 

produces strong vibrations along the elongated potential well. 

Hydrogen bonds are of great importance in many organic compounds. They 

determine many important features of the structures and functions of molecules 

of organic nature, such as proteins and nucleic acids (Sect. 2.9). 

1.2.11 Magnetic Ordering 

So far we have been considering the various forces of chemical bonds between 

atoms which lead to the formation of crystal structures. There is, however, one 

more type of interaction inherent in atoms possessing a magnetic moment, 

which results in additional interaction among them. In addition to ordered 

periodic arrangement of atoms in certain crystal structures, an order of a differ¬ 

ent kind is observed, namely a regular, consistent orientation of the magnetic 
moments of the atoms. 

The resultant magnetic moment of the electron shell of an atom depends on 

its structure and the presence of uncompensated electron spins. Such a moment 

is inherent in atoms of the metals of the iron group, Fe, Co, and Ni with an 

uncompensated 3d shell, as well as in atoms of rare-earth elements, Gd, Dy, Tb, 
Ho, and others with an uncompensated 4/ shell. 

The time-average function of electron density p{xyz) is a scalar function of 

the coordinates. The magnetic moment of the atom is described by an axial 

vector or, what is the same, by the equivalent ring elementary current, whose 

plane is perpendicular to the indicated vector. The symmetry of the axial vector 

is co/m (Figs. 1.40, 41). Thus, the space distribution of the magnetic moment is 

a vector function of the coordinates j{xyz). The description of the magnetic 

structure of a crystal thus includes, in addition to the electron density function, 

Fig. 1.40a, b. Magnetic order¬ 
ing. Magnetic moment distribu¬ 
tion in a ferromagnetic crystal 
of iron (a) and in an antifer¬ 
romagnetic crystal of manga¬ 
nese fluoride (b) 
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Fig. 1.41a-d. Helicoidal structures, 
simple spiral (a); ferromagnetic spi- 

f ral (b); complex spiral (c); and static 
d longitudinal spin wave (d) 

the distribution of the magnetic moment of those atoms which have such 

a moment. It is usually sufficient to indicate the orientation of vectors/(r) with 

respect to the center of each such atom. Using neutron diffraction analysis, it is 

possible to find the distribution of the electrons with an uncompensated spin, 

the so-called spin density [Ref. 1.6, Fig. 4.99]. 
Spin interactions leading to a consistent orientation of magnetic moments 

are quantum mechanical in nature. The calculation of the hydrogen molecule 

(1.26-28) shows, for example, that an essential component defining the binding 

energy is the exchange integral Hl2 (1.27); two solutions corresponding to 

parallel and antiparallel spin orientation are possible. 
Similarly, when the lattice contains atoms with an uncompensated spin, an 

exchange interaction arises and leads to magnetic ordering of the atoms. This 

ordering is manifested macroscopically in the ferro- or antiferromagnetic prop¬ 

erties of the substance. The exchange energy of electrons may be either positive 

or negative. In the former case, parallel spin orientation corresponds to a de¬ 

crease in the overall energy minimum (Fig. 1.40a). The summary magnetic 

moment of the unit cell is not equal to zero (this is a ferromagnetic system). In 

the latter case the spin arrangement is antiparallel, and the summary magnetic 

moment of the cell is equal to zero (this is an antiferromagnetic system) 

(Fig. 1.40b). 
Since magnetic interactions are weak and do not affect ordinary chemical 

interactions in crystals, the magnetic structure of crystals exists within the 

framework of the ordinary crystal structure, but does not necessarily coincide 

with it. The periods of the magnetic structure (“the magnetic unit cell”) may 

coincide with those of the ordinary cell (then sometimes called a “crystallo- 

chemical” cell), but may also be its small multiples (double, triple, quadruple) in 
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a certain direction. As we already know (see [Ref. 1.6, Figs. 2.98, 99]), the 

symmetry of magnetic structures is described by groups of antisymmetry or, 

more generally, of color symmetry. Point antisymmetry groups give a macro¬ 

scopic description of magnetic structures (31 groups describe ferromagnetics, 

and 59 groups, antiferromagnetics). There are 275 space groups of antiferromag¬ 

netics out of all the Shubnikov groups, and 629 antiferromagnetic groups [1.34]. 

Another approach to the description of magnetic structures is based on the 

theory of the representations of point or space groups [1.35]. As explained in 

[Ref. 1.6, Chap. 2], the two approaches are essentially equivalent, because the 

groups of generalized symmetry can be based on representations of groups of 
ordinary symmetry. 

Apart from ferromagnetic and antiferromagnetic ordering, there are other 

types of magnetic ordering. Ferrimagnetism is an intermediate type. In it the 

magnetic moments of atoms are antiparallel, but different in magnitude, so that 

the resultant moment of the magnetic unit cell is nonzero. Along with uniaxial 

antiferrimagnetics one encounters multiaxial ferrimagnetics with a pairwise- 

antiparallel arrangement of spins in several orientations, as well as “polygonal” 
structures. 

Besides the types of orientation which can be fitted into the theory of 

generalized crystal symmetry, in which the magnetic cell is a multiple of the 

ordinary cell, there are types of ordering which are not associated with the 

periodic arrangement of atoms (incommensurate structures, see Sect. 1.6.5). 

These are the various helicoidal orderings (Fig. 1.41a-d). They have the follow¬ 

ing structure. The magnetic moments turn gradually along the axis of a helicoid. 

They may be perpendicular to this axis (Fig. 1.41a) or inclined to it (Fig. 1.41b) 

(umbrella structures). The inclination and rotation angles may gradually change 

(Fig. 1.41c). Otherwise their direction may coincide with the axis varying 

periodically in their magnitude and direction along and against the axis 

(Fig. 1.4Id). In describing such structures, the one-dimensionally periodic 
groups Gj can be used. 

For complex magnetic structures, the theory of exchange interactions and 
ordering is no longer restricted to taking into account the direct contact of 

magnetic atoms (sometimes there is no such contact at all), but gives due 

consideration to contact with order atoms as well (“indirect exchange”). This 

helps to explain magnetic ‘long-range action” and ordering in complex oxides, 

fluorides, and other metallic compounds from the group of iron and rare-earth 
elements. 

Since the magnetic interaction energy is low, as indicated above, magnetic 

ordering is destroyed by thermal motion, while the crystal structure proper 

remains intact. This occurs at definite points of magnetic phase transitions. 

By now, over a thousand magnetic structures have been investigated. A more 

detailed discussion of the relationship between ordering and the domain struc¬ 

ture of magnetic materials and the macroscopic magnetic properties of crystals 
will be given in [1.7]. 
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1.3 Energy of the Crystal Lattice 

1.3.1 Experimental Determination of the Crystal Energy 

The free energy F of a system of atoms forming a crystal structure consists of the 

potential energy of the chemical bond U between the atoms (cohesion energy) 

and the free energy of thermal motion FT 

F — U + Ft. (1.46) 

To decompose a crystal into atoms at the temperature of absolute zero and 

separate them to an infinite distance from each other requires work equal to the 

potential energy of the chemical bond taken with the opposite sign — U. This 

energy in terms of 1 mole (or gram atom) of the substance is precisely the energy 

of the crystal (the energy of the complete dissociation of the crystal - i.e., of its 

“atomization”), which is by tradition called the “lattice energy.” For elements, 

metals and alloys, and covalent structures the crystal energy is equal to the heat 

of sublimation S at absolute zero. The heat of sublimation, in turn, is equal 

to the sum of the heat of evaporation E and the heat of fusion F, plus the heat 

of dissociation of the molecules D, provided they arise in evaporation or 

sublimation, 

-U = S + D = E + F + D. (1.47) 

For molecular crystals, it is natural to use molecules, rather than atoms, as 

structural units; accordingly, the energy of breaking the intermolecular bonds 

should be used for the lattice energy; it is equal to the heat of sublimation S or 

to the sum E + F at absolute zero. Thus, theoretical calculations of the lattice 

energy can be compared with the experimental data. 
Historically, the first calculations were made for ionic crystals; their lattice 

energies implied the energy L/5 of the dissociation of such a crystal into ions, 

rather than atoms. It is obvious that U{ differs from (7(1.47) by the ionization 

energies of cations I+ and the affinity /“of anions for electrons 

- Ut = S + D + I+ -r. (1-48) 

Experimental values of U{ for ionic crystals can be obtained by means of the 

so-called Born-Haber circular process, which is shown in Fig. 1.42 for a com¬ 

pound of the type MX, where M and X are single-charged ions (for instance, 

NaCl). The energy values in all the stages of the process (except /+ and /“) 

reflect the change in the heat content in corresponding reactions at 298 K. From 

the figure it follows that 

_ Ui = Q + S + /+ +y-/“- (1 49) 

Molecular crystals have the lowest lattice energies (on decomposition to mole¬ 

cules), U ~ 1-5 kcal/mol. The lattice energy U of elements ranges from several 
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Fig. 1.42. Born-Haber cycle 

tens to a hundred kilocalories per gram atom. For instance, it is equal to 

130 kcal/g at. for B, 26 for Na, 170 for C, 42 for Ca, 101 for Co, 26 for I, and 160 

for Os. The lattice energy of ionic and covalent crystals is of the order of 
hundreds of kilocalories per mole. 

1.3.2 Calculation of the Potential Energy 

Finding the free energy of a crystal is a key factor in determining all the 

thermodynamic functions and other characteristics of the crystal structure, in 
particular, its lattice parameters, various physical constants, etc. 

If we vary F(1.46) for an arbitrary arrangement of atoms, corresponding 

then to the equilibrium crystal structure, there is the deepest minimum of F, at 
which 

SF = SU + SFr = 0. (1.50) 

The principal contribution to (1.46) is made by lattice energy U; the condition 

SU = 0 determines the arrangement of atoms in a given lattice at absolute zero. 

Finding the equilibrium arrangement of atoms in a crystal is a complicated task; 

in calculating the lattice energy it is usually assumed that the atomic coordinates 

are known, although it is possible to solve the more complex problems as well. It 

is also clear that if we neglect the free energy of thermal motion, we cannot solve 

the problem of phase transitions and polymorphism in solids. We shall elabo¬ 

rate on this in Chap. 4; meanwhile, we shall consider the possibilities of potential 
energy computations. 

Quantum-mechanical calculations of the crystal energy are rather intricate, 

but calculations of U become reasonably straightforward if pairwise interactions 

are assumed and semiempirical expressions for energies of the type (1.16, 40) or 
their variations are used. 
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Thus, assuming that the interatomic forces are central and the atom-atom 

interaction potential energy has the form 

«ut = uik(rik), (1.51) 

i.e., that they are independent of each other, the potential energy of any atomic 

association in a crystal can be represented by a sum of such expressions. It is 

a good approximation for all types of bonds, except the metallic. Therefore, for 

pairwise interactions (for instance, for electrostatic ones) the total potential 

energy is the sum of interatomic potentials over all the possible pairs 

u = iZ uik(rik)- (L52) 
^ i.k 

For n atoms, the sum (1.52) contains n(n — l)/2 terms, the factor 1/2 arising since 

each function uik refers to a pair of atoms. Functions (1.51) decrease rapidly and 

make an appreciable contribution only at rik not exceeding 10-20 A, which 

reduces the number of terms in the sum, nevertheless leaving it rather consider¬ 

able. 
In the case of a covalent bond an atom interacts almost exclusively with its 

nearest neighbors, and therefore only the terms uik(rik) of the interaction be¬ 

tween such covalently bound pairs of atoms can be taken into consideration in 

sum (1.52). For a metallic bond, the pairwise interactions are not considered 

when the calculations are made in terms of one atom, for instance by (1.41), and 

the whole lattice is actually taken into account. 
Energy calculations are simplest if the compound is homodesmic, i.e., if it has 

one type of bond, and if its chemical composition is not complicated. Then the 

number of terms in uik (1.51) is not large. As the crystal structure is periodic, 

summation (1.52) can be performed over the atomic arrangement within a unit 

cell, and then over the cells. These sums are called lattice sums. 
The first, and now classical calculations of the ionic energy of lattices U, were 

carried out by M. Born and his associates. Let us consider such a calculation for 

a NaCl-type lattice. We find lattice sum (1.52) for the first - electrostatic - term. 

The environment of any Na or Cl atom is the same. Each of them is surrounded 

by six neighbors of opposite signs at a distance of r = d(AB), then by 12 

neighbors of the same sign at a distance of rj2, then by eight neighbors of 

opposite signs at a distance of rj3, and so on (Fig. 1.13). Consequently, the 

electrostatic energy of interaction of one atom of a NaCl-type structure with the 

other atoms of the lattice is 

12 J_6_ _24_ 

7? + 73 V/5 + v/5 
(1.53) 

The series in (1.53) converges rapidly; the value M is called Madelung’s constant. 

Its value in (1.53) for a NaCl-type structure is 1.748; for other structural types, 

the values of M are as follows: 1.76 for CsCl, 5.04 for CaF2, 1.64 for ZnS, 4.38 for 

Cdl2, and 24.24 for A1203. (In the case of non-univalent ions, M includes, as 
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a factor, the product of the formal charges of cation and anion.) In addition to 

the electrostatic energy of attraction and repulsion, which is covered by the sum 

(1.53) , we should take into account the contribution of the repulsive forces 

between the electron shells - the second term in (1.15) of the type r~n. Similarly 

to M in (1.53), factor M' will arise, but since the repulsive forces decay rapidly 

with distance, M depends almost only on the nearest neighbors of the given 

atom. In the final analysis, taking into consideration that in the case under 

review all the atoms make an identical contribution to the total lattice energy 

and also assuming that there are N such atoms in a gram molecule, we get 

- Ui(r) = N(Me2r~1 - M'br~n). (1.54) 

The second term in (1.54) is small compared with the first. Thus, Born’s equation 

(1.54) helps to calculate the lattice energy in high-symmetry ionic crystals. 

A comparison of the calculated values with the experimental data is given in 
Table 1.3. 

In the case of single-charged ions the agreement is good, which supports the 

theoretical conclusions. When the ion charge increases, the agreement becomes 

worse, but is still satisfactory. In the light of the available data, however, it 

cannot be regarded as a confirmation of Born’s theory. Indeed, the ion charge in 

such compounds, for instance, in A1203, does not coincide with the formal 

valency and is nonintegral. On the other hand, determination of U\ for such 

compounds according to the Born-Haber cycle (1.49) is also inconsistent, 

because it includes the electron “affinity” of a multicharge ion, which in fact does 

not exist. Besides, for the last compounds given in Table 1.3 there is a consider¬ 
able fraction of covalent bond. 

If we assume that the equation for the potential energy of pairwise interac¬ 

tions has the form (1.16) or (1.41), its parameters can be found from macroscopic 

measurements of the crystal. Thus, substitution of (1.16) into (1.52) yields 

u = ^Irikm + xl^n, (1.55) 
Z ik Z ik 

and the four parameters a, b, m, and n can be found from the experimental values 

of the lattice energy, the molar volume, the compressibility, and the thermal 
expansion of the crystal. 

The Born equation (1.53) was simplified by A. F. Kapustinsky who used the 

following considerations. The value of M for different structures can be replaced 

by a near-constant coefficient if it is referred to the sum of ions I in the formula 

Table 1.3. Comparison of the experimental and theoretical values of ionic energy of some crystal 
lattices (in kcal/mol) 

Ui LiF NaCl Rbl CaF2 MgO PbCl2 Ai2o3 ZnS Cu20 Agl 

Experiment U-t 242 183 145 625 950 521 3618 852 788 214 
Theory Ul 244 185 149 617 923 534 3708 818 644 190 
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unit. Then 

U = 256 [kcal/mol]. (1.56) 

This equation deviates from expression (1.54) by about l%-3%. The energy of 

interaction of a definite ion with the lattice as a whole, which can be calculated 

by (1.56) in the simplest cases, should not depend strongly on the particular 

structure. Therefore A. E. Fersman suggested that this energy should be re¬ 

garded approximately as a constant increment of a given ion, and named that 

increment the “energy constant” (EC). The values of EC for some ions are as 

follows: 

K+ Na+ Li+ Cu+ Ba2+ Fe2+ Mg2+ Al3 + F CP BP O2" S2“ N3^ 

0.36 0.45 0.55 0.70 1.35 2.12 2.15 4.95 0.37 0.25 0.22 1.55 1.15 3.60 

In this approximation the lattice energy is simply equal to U = 256 ZEC. 

This equation, as well as (1.56) or its slightly more complicated versions, is 

approximate because it is based on the concept of a pure ionic bond in all cases 

and overstates the share of energy contributed by multicharge ions. Yet it 

enables one to estimate the energy of complicated structures, for instance, 

minerals, which is essential to geochemistry. 

In the years following the development of M. Born’s classic theory, calcu¬ 

lations of the crystal lattice energy were carried out for many crystals on the 

basis of more accurate approximations of the interaction potentials, mainly for 

the repulsive term, and also on the basis of quantum-mechanical considerations. 

In these calculations the repulsive potential has a more accurate form, 

exp( — ar) (1.36), due consideration being given to van der Waals, dipole-dipole 

(1.44), and multipole interactions, to the zero vibrations of the lattice, and, 

finally, to the so-called many-particle interactions, i.e., the overlapping of remote 

regions of the wave functions of atoms not only with the nearest, but also with 

the next nearest neighbors. 
Thus, for NaCl the electrostatic term (1.53) is 205.6 kcal/mole, van der Waals 

attraction, 5.7, repulsion energy, 24.9, zero energy, 1.4, and the total ionic energy 

of the lattice U,= 185.2 kcal/mole at 298 K, which practically agrees with 

experiment. 
Quantum-mechanical calculations of crystal energy require solving the 

Schrodinger equation and can be carried out, as mentioned above, for a lattice 

on the basis of the MO-LCAO method with expansion of Bloch’s functions 

(1.35). 
For ionic crystals, the first electrostatic term (1.52) appears, in a further 

quantum-mechanical consideration, in the same form, while the other compo¬ 

nents are the energy due to consideration of the extended (as opposed to the 

pointlike) distribution of the ion charge and the covalent exchange energy 

corresponding to (1.27). The most comprehensive calculations with an allow¬ 

ance for the various corrections, not only give the values of the lattice energy, 

but also allow one to calculate the equilibrium interatomic distances r, i.e., 
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ultimately the parameters of the lattice. This can be done by varying the value of 

r in the expressions for the energy and finding its minimum. Thus, for LiF it was 
o o 

found that d(LiF) = 2.01 A (de — 2.00 A). Since the terms appearing in the 

ultimate expression are large and have different signs, the theoretical and 

experimental energy calculations sometimes disagree. 

Energies Ua (atomization) for some crystals (including the ionic ones) 

are given in Table 1.4. Recall that Ua is always less than by — I+ 4- /“ (1.48). 

For instance, U- is equal to 242 kcal/mol for LiF and 950 kcal/mol for MgO 

(see Table 1.3). 

For covalent crystals, exact energy calculations are naturally possible only 

on the basis of quantum-mechanical considerations. A simplified calculation can 

be made in the pairwise-interaction approximation (1.52), where the terms 

corresponding to the nearest neighbors remain, and the summation can be 

reduced to the interaction of neighbors in a single unit cell. The energies of 

covalent crystals are high, for instance, U — 170 kcal/g at for diamond. 

For metals, quantum-mechanical calculation actually yields the lattice 

energy per atom. The values of coefficients a, bu and b2 in equation (1.41) are 

obtained by summation of several terms of equal degrees but with different 

signs; therefore, they are not reliable enough, and the theoretical and the 

experimental values of U do not always agree sufficiently well (Table 1.5). 

Using lithium as an example we can illustrate the above-mentioned differ¬ 

ence between the interaction energy of a pair of atoms characterized by the 

potential curve u(r) and that of identical atoms in the lattice, when the equilib¬ 

rium distance is determined by condition dU/dr = 0, rather than by du/dr = 0. 

In the Li2 molecule, the binding energy is equal to 1.14 eV, and distance re is 

about 2.7 A. In a lithium crystal U — 1.7 eV, and the interatomic distance is 

greater, 3.03 A. Although the energy of a metal lattice cannot be represented as 

a sum of pairwise interactions, the formal division of 1.7 eV by 12 yields 0.14 eV 

Table 1.4. Comparison of experimental and theoretical values of atomization energy for certain 
crystals (in kcal/mol) 

Substance LiF NaCl KI MgO CaF2 Agl ai2o3 Si02 

Experiment t/a 199 150 122 239 374 108 730 445 
Theory t/a 202 152 125 262 428 116 695 416 

Table 1.5. Comparison of experimental and theoretical values of lattice energy for certain metals 
(in kcal/mol) 

Substance Li Na K Cu Be 

Experiment 39 26 23 81 75 
Theory 36 24 16 33 36-53 
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(each Li atom has 12 neighbors), and thus helps to estimate the weakening of 

“individual” bonds, with an ultimate gain in the crystal lattice energy compared 

with the molecule. A similar effect of an increase in interatomic distances and 

energy gain compared with molecules is also observed for ionic crystals. At the 

same time rigid covalent bonds only slightly change their characteristics in 

molecules and crystals. 

1.3.3 Organic Structures 

For the simplest crystals with van der Waals bonds the calculation of the lattice 

energy by (1.45-52) gives satisfactory agreement with experiment (Table 1.6). 

Since the van der Waals forces rapidly decrease with distance, it is sufficient 

to sum (1.52) over the atomic pairs within a sphere of radius 10-15 A. 

For complicated molecules, a good approximation of the potential of the 

forces acting between atoms of different molecules is (1.45), the “6 exp” potential. 

Thus, to compute hydrocarbon structures it will suffice to find the constants in 

(1.45) for three types of interaction, C and C, C and H, and H and H, proceeding 

from the experimental data for several typical structures. Then, assuming these 

potentials to be universal, it is possible to use them for analyzing all the known 

or new structures of this type. If the molecules have a dipole or quadrupole 

moment, one can also compute the corresponding electrostatic interaction; the 

hydrogen bonds can also be accounted for with the aid of an potential curve. 

With this approach [1.36], a sufficiently good physical model of an organic 

crystal can be obtained and its structure and properties described. The simplest 

problem is to calculate the potential energy, i.e., the heat of sublimation for 

a given structure. Here, we obtain satisfactory agreement with experiment, for 

instance, for benzene Uexp = 11.0 kcal/mol, and U{heoI = 11.7 kcal/mol. In gen¬ 

eral, when the structure’s energy is described by (1.52) on the basis of 

atom-atom potentials of the type (1.45), U is found to be a multidimensional 

function of the periods a, b, c and angles a, /l, y of the unit cell, the coordinates of 

the centers of gravity of the molecules in the cell xh yt, zh and the Eulerian 

angles 9, cp, and ij/, which assign the orientation of the molecules, 

U = U(a,b,c,oc,f},y,Xi,yl,zi, 01,<Pi,t/'i,*2,};2,Z2,02,<P2,«/'2> • • • )• (l-57) 

The structure at absolute zero corresponds to the minimum of this multidimen¬ 

sional function. It is difficult to solve the problem in the general form, and one 

can investigate the shape and minima of the energy surface only by changing 

Table 1.6. Comparison 

substances (in kcal/mol) 

of experimental and theoretical values of lattice energy for some 

U Ne Ar o2 ch4 Cl2 

Experiment 0.52 1.77 0.74 2.40 6.00 

Theory 0.47 1.48 1.48 2.70 7.18 
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Fig. 1.43a, b. Cross sections of u(d, <p, ij/) (a) and u{x, y, z) (b) at the minimum of the energetic surface 
of benzene. The energy values are indicated in kcal/mol [1.36] 

some variables and assuming the others to be fixed. For instance, knowing 

the unit cell and the space group of a crystal, one can seek the orientation of the 

molecules. Thus, for benzene the minimum actually gives agreement between the 

calculated and observed orientation with an accuracy to l°-3°. It is also possible 

to find the parameters of the unit cell with a given orientation of the molecules 

(Fig. 1.43) or both the unit cell and the orientation with a given space group 

and the number of molecules in the cell, and thus one can assign in (1.57) 

x,y, z, 6, of only one molecule, while for the others the same values depend 
on the symmetry elements. 

Proceeding from an analysis of the shape of the minimum we can compute 

the physical characteristics of a crystal, for instance, 62[//0x? defines the 

elasticity coefficients and the shape of the surfaces of compression along differ¬ 

ent directions. It is possible to identify the characteristics of the spectrum of 

intermolecular vibrations, and so on. By stating the problem as in (1.57) the 

existence of the crystal structure is postulated beforehand by introducing the 

unit cell parameters. In principle, one can try to simulate the very origin of 

three-dimensional periodicity, i.e., of the crystal, so that the cell and symmetry 

are obtained automatically, by calculating U with assigned interaction of 
a sufficiently large number of atoms or molecules. 

Recall that the minimum of U corresponds to the structure at the temper¬ 

ature of absolute zero. The structure of a given phase may remain unaltered 

(experiencing only thermal expansion) up to the melting point. In other cases, 

a change in structure - a phase transition - may take place. This is due to the 

contribution of the free energy of the thermal motion of atoms or molecules to 

the general expression (1.46) (for more details see Sect. 4.3). 
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1.4 Crystallochemical Radii Systems 

1.4.1 Interatomic Distances 

Entering into a chemical bond and forming a crystal, atoms arrange themselves 

at definite distances from each other. The experimental data on crystal struc¬ 

tures prove that interatomic distance d{AB) between a given pair of atoms A and 

B in one type of a chemical bond remains constant with an accuracy to about 
o 

0.05-0.1 A in all structures, i.e., it is practically independent of the given 

structure. This distance corresponds to the minimum of the curve for the 

potential interaction energy (Fig. 1.12) of a given pair of atoms in the crystal. 

Each atom has its own spatial distribution of electrons, which, even for outer 

electrons, changes comparatively little with the formation of a strong chemical 

bond, to say nothing of the weak van der Waals bond. Therefore it is possible, as 

a first approximation, to assign certain “sizes”, i.e., certain constant “radii” to 

atoms, depending on the type of bond, so that the distances between different 

pairs of atoms are sums of these values. This is called the additivity of the 

crystallochemical radii. Once established, crystallochemical radii are well main¬ 

tained in newly discovered structures, i.e., they posses the power of prediction. 

Thus, the huge amount of experimental data on interatomic distances accumu¬ 

lated in structural investigations is generalized in the radii systems. At the same 

time, as we shall see below, the very concept and the concrete values of 

crystallochemical radii are, in a sense, conventional. 

The concept of crystallochemical radii has been developed by many crystal- 

lographers and geochemists; the trail was blazed by Bragg, who proposed the 

first system of radii in 1920 [1.37], A considerable contribution to this area was 

made by Goldschmidt [1.38] and later by other researchers, who compiled 

various tables of radii. New improvements in radii systems have been intro¬ 

duced in recent years. 

1.4.2 Atomic Radii 

By considering the interatomic distances in the structures of elements it is easy 

to construct a system of the atomic radii of the elements rat. This quantity is 

equal to half the shortest interatomic distance (Fig. 1.44) rat = 1/2 d(AA). In the 

structures of elements (Sect. 2.1) the atoms are bound by a metallic or covalent 

bond; therefore, the set of atomic radii can be subdivided into rm and rc 
according to the type of bond. Experiments confirm the additivity of such radii 

also for the structures of compounds with the corresponding type of bond. For 

instance, the C-C distance in diamond is equal to 1.54 A, i.e., the covalent radius 

(of a single bond) of carbon is 0.77 A. The Si-Si distance in silicon is equal to 

2.34 A, whence the corresponding radius is 1.17 A. The observed Si-C dis¬ 

tance in silicon carbide, 1.89 A, is in good agreement with the sum 

r(C) + r(Si) = 1.94 A. Thousands of such examples can be quoted. The same is 
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Fig. 1.44a-e. Simplest structures depic¬ 
ted as contacting spheres, (a) Cu; (b) a- 
Fe; (c) diamond; (d) a-Se; (e) NaCl. In the 
structures of elements the sphere radius 
rat is defined as half the interatomic dis¬ 
tance. The radii of spheres in structures 
of different atoms (NaCl) are determined 
on the basis of the additivity principle in 
series of structures and other data 

true for metallic radii. For instance, r(Nb) = 1.45 A, r(Pt) = 1.38 A, Lr = 2.83 A, 

and the distance between these atoms in the compound is 2.85 A. When 

constructing the system of metallic radii, the data on the distances between 

different metallic atoms in intermetallic compounds are also taken into consid¬ 
eration. Thus, 

d(AB) ~ rat(A) + rat(B). (1.58) 

The system of atomic radii is presented in Table 1.7 and Fig. 1.45. Inter¬ 

atomic distances with a given type of bond vary to some extent, depending on 

the coordination. They decrease with decreasing coordination number (c.n.), 

each bond becoming stronger and, hence, shorter. For metals, the r values in 

Table 1.7 are given for c.n. 12; the decrease in distance for other c.n. is as follows: 
c.n. 8 by 2%, c.n. 6 by 4%, and c.n. 4 by 12%. 

The covalent bond is directional. The lengths of these bonds and the relevant 

resulting coordinations depend on the bond multiplicities. For C, N, O, and 

S the shortening of rc, as compared with the single bond, equals 12%—14% for 

a double bond, and 20%-22% for a triple bond. The dependence of the length of 

the C-C bond on order (including intermediate-order bonds) is presented in 

Fig. 1.46. Tetrahedral single covalent bonds are very common. The correspond¬ 
ing system of radii is given in Table 1.13. 

As has already been mentioned, the equilibrium interatomic distance for 

a covalent and metallic bond corresponds to a strong overlapping of the outer 

shells, which is illustrated by the scheme of overlapping radial density functions 

in Fig. 1.29 and 1.33. Therefore the atomic radii (1.58) are approximately equal 
to the orbital radii (1.13) of the outer shells 

% - rQ, d(AB) ~ r0(A) + r0(B). (1.59) 
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O 

0 10 20 30 40 50 60 70 80 90 100 
Z 

Fig. 1.45. Systems of crystallochemical radii. (7) atomic radii rat; (2) ionic radii rK\ (3) atomic-ionic 
radii rai; (4) physical ionic radii rph (in the graph they are given for the maximum valence and c.n. 6 or 
for the maximum c.n. for the given element if it is less than 6) 

o 

r, A 

Fig. 1.46. Dependence of the bond length between carbon 
atoms on the order of the bond; (/) acetylene; (2) ethylene; (J) 
benzene; (4) graphite; (5) diamond 

The curves of the atomic radii versus the atomic number are defined by the 

structure of the electron shells of the atom, and the graph of Fig. 1.45 is close to 

that of the orbital radii in Fig. 1.10. Both graphs reflect the rules for the filling of 

electron shells. The appearance of a new shell (the beginning of a period) 

increases rat; then, with increasing Z inside the period, rat is reduced because the 

Coulomb forces of attraction of the electrons to the nucleus become stronger. 
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Towards the end of the large periods the increase in the number of electrons 

nonetheless gradually increases rat. The filling of the inner shells either slightly 

affects rat or, in lanthanides and actinides, reduces them. 

As the orbital radii r0 (1.12) characterize the free atoms, and the overlapping 

of the outer shells of nonexcited atoms is only an approximation for calculating 

the equilibrium interatomic distance, from which rat is found, the agreement 

between the graphs of rat in Fig. 1.45 and r0 in Fig. 1.10 is not complete. 

A comparison of Tables 1.1 and 1.7 and of Figs. 1.10 and 1.45 shows that the 

orbital radii rQ approximately coincide with the atomic radii rat for the beginning 

and the middle of the periods, respectively. At the end of each period, 

rQ continues to fall off with increasing Z, while the atomic radii rat of period III 

decrease slower than the r0 and the rat in the larger periods IV, V, and VI even 

begin to increase. For some elements (for instance, Ag, Sb, Te, Hg, Ta, Pb, Bi) the 

divergences may reach several tenths of an Angstrom. This can evidently be 

explained by the insufficiency of the pure AO model for these elements; thus it is 

necessary to take into account the interactions of their electron shells in crystals, 

and the corresponding changes in energy levels. 

1.4.3 Ionic Radii 

By analogy with the system of atomic radii, it is possible to construct a system of 

ionic radii /*; for ionic compounds. The procedure of establishing them from the 

interatomic distances is, however, ambiguous. To find rs, use is made of the 

cation-anion distances in a series of isomorphous (i.e., identically built) struc¬ 

tures. Classical series of this kind are those of cubic structures of halides of alkali 

metals and also of some oxides. Figure 1.44 depicts the structure of NaCl, and 

Fig. 1.47, a series of face-centered structures isomorphous to it (three struc¬ 

tures - CsCl, CsBr, and Csl - are built differently; the anion atom centers the 

cube, not its face). From the observed cation-anion (A B) distances 

d(A{B) = rfizl,) + r;(B), d(AnB) = r^T,,) + r{(B) 

one finds the differences in cation sizes 

r-Mi) - ri{A\\) = d(A\B) - d(AuB) (1.60) 

and, similarly, from d(AB{) and d(ABn), those of the anions 

rdB,) - rdB,,) = d(AB,) - d(ABu). (1.61) 

It is clear that in order to establish a definite system one must either have r, 
of some atoms as a “reference” or employ some other data. Indeed, if a certain 

system of rt helps to calculate the interatomic distances 

d(AB) = rcat + ran, d-62) 

then the system of radii 

rcat = rcat T 3, ran fran (1.63) 
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Fig. 1.47. Arrangement of ions with radii r} in the (100) face of the cubic unit cell of the alkali-halide 
structures. For the structures of CsCI, CsBr, and Csl, the arrangement of the ions in the diagonal 
(100) plane is shown 

would give the same distances 

d(AB) = r'at + r'an. (1.64) 

Proceeding from the data on molar refraction, Goldschmidt [1.38] assumed that 

the ionic radius of the fluoride anion r(F“) = 1.33 A and that of oxygen 

r;(02 ) = 1.32 A. Pauling [1.39, 40] adopted crystals of NaF, KC1, RbBr, and 

Csl as standards, assuming the ratio rcat/ran in them to be about 0.75, and 

established a somewhat different system, in which r;(F“) = 1.36 A, r;(02~) = 

1.40 A. One more criterion helping to eliminate the uncertainty in the choice of 

S (1.63) consists in using the distances in structures with large anions and 

assuming that these (identical) anions are in contact [1.41], In the isomorphous 

series of alkali halides (Fig. 1.43) LiCl and LiBr are such structures, and the 

“touching” of anions is also observed in a number of other structures. In such 
a case 

d(BB) ~ 2ran. (1.65) 

The “classical” systems of effective ionic radii are built so that ran sufficiently 

describes both the cation-anion (1.62) and anion-anion (1.65) distances in the 

case of “contacting” anions, although some deviations are observed for large 

anions. For instance, r;(/_) = 2.20 A, 2r^/-) = 4.40 A, and the /-/ distance in 
Lil is 4.26 A. 
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The ionic radii corresponding to Goldschmidt’s system, as corrected by 
Belov and Boky [1.42], who assumed ^(O2-) = 1.36 A, are given in Fig. 1.45 
and Table 1.8a. In this table, the anion radii of each period of Mendeleyev’s table 

, o 

are larger than the cation radii in the same period. For instance, r(Li ) = 0.68 A 
o 

and r(F~) = 1.33 A; both types of radii increase when going down the subgroup 
r(Na+) = 0.98 A and r(Cl ) = 1.81 A, etc. According to the system of ri5 cations 
never touch each other. 

The distances between ions observed in simple structures usually agree with 
the sum of the corresponding radii with an accuracy up to about l%-3%. In 
complicated structures with asymmetric coordination and also in structures 
with large anions the deviations from additivity may reach a few per cent. The 
coordination can be taken into account by a corresponding correction. The 
tabulated rK refer to a cation coordination number equal to 6. On transition to 
a larger coordination number the radii r{ somewhat increase; for instance, for 
a c.n. 8 they increase by 3% and for 12, by 12%. The deviations from additivity 
observed in structures with large ions were attributed to the comparative 
softness and “polarizability” of their electron shell. For instance, in AgBr, 
Ir;= 3.09 A, and d(AgBr) = 2.88 A. 

The above-considered ionic radii are called effective, because their system 
corresponds fairly well to the purpose of describing and predicting inter-atomic 
distances. Many regularities in crystal chemistry, including the coordination of 
atoms in a number of compounds, phenomena of isomorphous substitutions, 
etc., were interpreted on the basis of the “classical” system, but some inconsis¬ 
tencies arose in its practical use. 

At the time of the introduction of the system, the knowledge of the electron 
distribution in atoms and crystals was very vague, and the values of ionic radii 
did not correlate with it. If we refer, for example, to Fig. 1.14 and draw the 
boundary corresponding to the effective ionic radii, its course will not be related 
to any real characteristic of the electron distribution in atoms or to the para¬ 
meters of the interaction curve. 

The present-day chemical bond theory and experimental X-ray data on the 
electron density distribution in crystals provide physical substantiation for the 
concepts of crystallochemical radii, in general, and ionic radii, in particular. 

In the case of a pure ionic bond the electron density peaks of cations and ions 
in crystals are isolated, and a reasonable criterion for determining the ionic radii 
would be the distance from the peaks to the electron density minimum along the 
straight line joining their centers [1.43-45], The minimum for NaCl is shown in 
Fig. 1.14. Such ionic radii found on the basis of experimental X-ray data on the 
electron density distribution in the structures of alkali-metal halides, which may 
be called “X-ray” or “physical” (rph) radii, have the following values [A]: 

Li+ Na+ K+ Rb+ Cs+ F~ CP Br“ P 

0.94 1.17 1.49 1.63 1.86 1.16 1.64 1.80 2.05 

This minimum of electron density lies in the zone of the decrease of clashing 
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“tails” of the orbitals of the ionized metallic atom and anion. According to (1.23) 

this zone has a width A, and the minimum is found to lie near A/2, i.e., the cation 

radius 

rph(A + ) = r0(A+) + kA, k * 0.5. (1.66) 

It is significant that another criterion - calculation on the basis of refined 

potentials of interaction in ionic crystals - leads to about the same values of 

ionic radii as those given by X-ray data on the electron density minimum. 

After a computer analysis of interatomic distances in the structures of over 

1000 compounds - oxides, fluorides, etc. - Shannon and Prewitt [1.46] and 

Shannon [1.47] elaborated a system of ionic radii corresponding to the “phys¬ 

ical” values, in which they adopted rph(F“) = 1.19 A and rph(02~) = 1.26 A for 

coordination number 6 (Table 1.8b; calculated values of r are given for some 

ions). The additivity scheme of (1.62, 63) naturally holds true here. The physical 

ionic radii differ from the classical, but not too much; for cations they are about 

S = 0.15-0.2 A larger, and for anions by the same amount smaller than those 

adopted in the classical systems. Table 1.8b also gives the refined system of 

effective “classical” radii for which rffO2-) = 1.40 and ^(F-) = 1.33 for c.n. 6, 

were accepted as basic values. 
In Table 1.8b the values of radii are given for different coordination num¬ 

bers. It is noteworthy that in this system the dependence of the ionic radii on the 

coordination number has been found not only for cations, but also for anions. 

For instance, rph(02_) increases with c.n. and the bonds are weakened. 

Another interesting feature is the dependence of the ionic radii of transition 

metals on their spin state. The outer d shells of these atoms have a spin 

configuration depending on the splitting of the levels in the crystal field where 

they are located and which is formed by the surrounding atoms. In a weak field 

the spins of the d electrons are parallel and not compensated; this is a high-spin 

(hs), strongly paramagnetic state. In a strong field the spins are compensated 

owing to the pairwise antiparallel arrangement. This is the lowspin (Is) state; 

the electron “packing” in the d shell becomes closer and its radius decreases7. 

Table 1.8 (column rph) indicates the relevant radii for both states, the difference 

reaching almost 0.2 A (see Fig. 1.48). 
The system of physical ionic radii corresponds to the real characteristic of 

the electron density distribution, i.e., to its minimum between ions. This system 

gives a good description of interatomic distances in ionic crystals. Its interpreta¬ 

tion of the radii of anions and single-charged cations is particularly clear. For 

incompletely ionized divalent and (all the more so) multivalent cations, when the 

bond becomes partly covalent, the physical interpretation of these radii becomes 

vague; they should be treated more cautiously, as formal characteristics. Nat¬ 

urally, this is generally because the atoms in the crystal are described by the 

7 An interesting example is the decrease in the size of the Fe2 + ion and its entry into the plane of the 
porphyrine ring while the oxygen atom is being added to the hemoglobin molecule during 

oxygenation (Sect. 2.9.4). 
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O 

Fig. 1.48. Dependence of the physical ionic radii rph on the number of 3d electrons (q is the number 
of d electrons). Dark circles denote divalent metals, Is state; open circles, divalent metals, hs state; 
dark squares, trivalent metals. Is state; and open squares, trivalent metals, hs state 

conventional, crystal geometrization concept as “spheres” with certain radii, and 

because the continuous electron density, not necessarily spherical, is divided 

into definite parts in conformity with some criteria. At the same time, as we shall 

see below, this is not the only possible physical approach to the description of 

interatomic distances in ionic crystals. 

1.4.4 The System of Atomic-Ionic Radii of a Strong Bond 

When considering the three main types of strong bond - ionic, covalent, and 

metallic-we saw in Sect. 1.2.3 that although each of them has its own specificity, 

in all cases the chemical bond is realized by overlapping - mutual penetration of 

outer electron shells of the atoms (experiencing some changes in the process). 

Then the “radius” may be defined as the distance from the atom center to the site 

of interpenetration of the electron shells of neighboring atoms; it is approx¬ 

imately equal to the orbital radius of the free atom. 

At the same time, it was noted long ago that interatomic distances d(AB) in 

ionic and partly ionic structures can also be described fairly well by the sums of 

the atomic radii. This is not accidental. As discussed in Sect. 1.2, the ionic bond 

can also be interpreted from the standpoint of the overlapping of outer orbitals. 

Considering again the example of NaCl, we can lay off the radial functions of the 

neutral atoms Na and Cl, taking their centers at a distance corresponding to the 

interatomic distance in the crystal; then we find that the position of the outer 

orbital of Na coincides with that of the outer orbital of Cl (1.22) (Fig. 1.14). Thus, 

similar to the case of atomic radii (1.59), we have 

d(A + B-)~r0(A) + r0(B), (1.67) 
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i.e., the distance between ions of opposite signs is approximately equal to the 

sum of the orbital radii of the neutral atoms, although we actually have Cl “ and 

Na+ ions in this crystal. The reason is that electrons - either proper ones, 

belonging to the outer 3s shell of the neutral atom of Na, or foreign ones 

belonging to the 3p6 shell of the CP anion - can only be positioned at the 

distance r0(Na) from the Na nucleus or, what is the same, at a distance A (1.23) 

from the inner 2p6 shell of the Na atom. If the cation is incompletely ionized, its 

outer orbital, depleted in electrons, overlaps with the electron-enriched outer 

orbital of the anion to form a partly covalent bond. In this case, too, (1.67) 

holds true 

d(AB) ~ r0(A) + ra(B). (1.68) 

Thus, as indicated by Slater [1.48, 49], for all types of bonds, including the ionic, 

the interatomic distance approximately corresponds to the sum (1.59, 67, 68) of 

orbital radii rQ and is defined by the coincidence of the positions of the outer 

orbitals of the neutral atoms during the chemical bond formation (Figs. 1.14, 

29, 33). 

For a number of structures, the theoretically predicted sum of orbital radii is 

in good agreement with experiment; for instance, for the Al-O, Si-O, and Si-F 

distances as well as for many others, the differences lie within 0.01-0.004 A. 

In other cases the deviations are greater and may reach 0.2 A. Deviations for 

certain atoms are due to the fact that in crystals atoms may transfer to excited 

states which are close in energy to the ground state, but have slightly different 

values of rQ, and also that the difference between low- or high-spin states of 

atoms with d electrons is neglected. Having this in mind, J. Slater and other 

authors proposed an empirical system of unified atomic-ionic radii rai 

rai « rat « rQ, (1.69) 

which is also suitable for describing anion-cation contacts in ionic structures 

(Table 1.9, Fig. 1.45). It is based on data relating to interatomic distances in 

many compounds and is accurate for rai to about 0.05 A. The sums of rai describe 

the interatomic distances of most structures with an accuracy of about 0.1 A 

neglecting any corrections, say, for coordination, etc. 

Being unified for all three types of strong bonds, the system of rai naturally 

cannot be as accurate in describing specific structures as the systems of covalent, 

metallic and ionic radii, which are ramified and include many corrections. 

Lebedev [1.50] proposed a system of rai, which is similar to Slater’s system, but 

differs from it by 0.1-0.15 A for the atoms of some elements; in particular, 

rai = 0.50 A is accepted for oxygen, 1.60 A for magnesium, etc. 

Figure 1.49 presents the structures of NaCl and LiBr drawn with the help of 

physical ionic and atomic-ionic radii. 
In the system of radii of a strong bond, the cation radii are larger than the 

anion ones in contrast to the systems of ionic radii r{. The reason is that the 

quantity A (1.23) divided into approximately equal parts between cations and 

anions in the system of rph, completely belongs to the cations in the rai system. 
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Fig. 1.49a-f. NaCl and LiBr structures, (100) section of cubic unit cell; (a, d) structures are depicted 
using physical ionic radii, (b, e) atomic-ionic radii, (c, f) atomic-ionic (strong-bond) radii (solid lines) 
and weak-bond radii of anions (dashed lines) 

Using additive constant S in (1.63), one finds that on transition from the physical 

ionic to atomic-ionic radii S ~ 0.65 A, i.e., 

rai(an) ~ rj(an) — 0.65 A, rai(cat) ~ rs(cat) + 0.65 A. (1-70) 

For transition from the classical ionic to the atomic-ionic radii, this constant is 

S ~ 0.85 A. 
There is no contradiction in the fact that the two systems of rph and rai for the 

ionic bond, based on physical interpretation, are different, since they describe 

entirely different characteristics of electron density distribution between bound 

atoms. Additivity (1.63) ensures the possibility of computing the interatomic 

distances (1.62) as in the system of effective ionic radii. 

1.4.5 System of Intermolecular Radii 

In molecular crystals, the interaction between molecules is determined by weak 

van der Waals forces or hydrogen bonds. The distances between the nearest 

atoms of neighboring molecules in this case of the van der Waals bond are 

comparatively large; their interaction is due to the overlapping of the farthest, 

unfilled outer orbitals of atoms, whose strong (covalent) bonds are already 

completely saturated. By analyzing these distances in organic and other crystals 

where such bonds exist, it is possible to construct, by the familiar method, 

a sufficiently consistent system of the van der Waals (or, as they are also called, 

intermolecular) radii, so that the following additivity condition holds for the 

nearest atoms of neighboring molecules: 

rm = U(AA\ d(AB) ~ rm(A) + rm(B). (1.71) 

These radii are presented in Table 1.10. Recently, proceeding from the statistical 
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Table 1.10. Intermolecular (van der Waals) radii 

H He 

1.17 1.40 

c N O F Ne 

1.70 1.58 1.52 1.47 1.54 

Si P S Cl Ar 

2.10 1.80 1.80 1.78 1.88 

As Se Br Kr 

1.85 1.90 1.85 2.02 

Te 1 Xe 

2.06 1.96 2.16 

treatment of distances in a large number of organic structures, values of rm for 

some atoms were found, differing slightly from those given in Table 1.10, namely 

for N 1.50; O 1.29; S 1.84; Cl 1.90; Br 1.95; I 2.10 A. Intermolecular radii rm are 

always larger than strong-bond radii. As the potential function for weak bonds 

has a very gradual slope (Curve II in Fig. 1.12), the additivity condition (1.71) 

permits deviations up to tenths of A units. Figure 1.50 shows a histogram of 

deviations of van der Waals contact distances, found experimentally, from 

standard ones [1.51]. (Recently it has been found that some molecular structures 

have bonds somewhat shorter than conventional ones (Sect. 6.7.2).) According 

to the system of rm a molecule formed by covalently bound atoms should be 

represented, with respect to the intermolecular contacts in the crystal, as if it 

were wrapped in a “coat” with the shape of spheres of indicated radii (Fig. 1.51). 

N 

300 

Fig. 1.50. Histogram of the distribution of deviations of interatomic 
distances at van der Waals contacts from standard values 

250 

200 

150 

A r. X 
Fig. 1.51. Molecule as a geometric body 
framed in a “coat” of van der Waals radii 
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1.4.6 Weak- and Strong-Bond Radii 

In molecular and noble gas crystals the equilibrium distances between non- 

covalently bound atoms are defined by the repulsive branch of the weak 

interaction curve (Fig. 1.12); the system of intermolecular radii serves as a geo¬ 

metric model of this repulsion. 
As we have already said, a similar interaction takes place between anions in 

ionic crystals. Vivid examples are layer lattices, which are flat packets of anions 

with cations inside (Fig. 1.52). The packets contact each other only by means of 

anions. These crystals exhibit cleavage due to weak bonds between layers. As in 

intermolecular contacts, the strong bonds inside some of the structures are 

saturated, while the contacting anions have the filled shell of noble gas atoms. 

The distances between them are nearly the same as in molecular crystals; for 

instance, the Cl-Cl distance in CdCl2 is 3.76 A. The tabulated values of the 

effective ionic radius of Cl” and the van der Waals radius of Cl practically 

coincide, r;(Cl) = 1.81 A and rm(Cl) = 1.78 A. Another important example is the 

distance between oxygen atoms. The distance between non-valence-bound 

anions O2” in ionic structures - oxides, silicates, and inorganic salts - ranges 

from 2.5 to 3.2 A, which corresponds to the effective ionic radius of oxygen, 

taken to be r^O2”) = 1.38 A. The tabulated values of the intermolecular radius 

rm(0) are 1.36-1.52 A, i.e., it is the same value. 
Anions in ionic structures do not attract each other (if we neglect the weak 

van der Waals forces); they experience Coulomb repulsion, but are united in 

crystal structures owing to their interaction (attraction) with cations. The 

distances between the anions correspond to the equilibrium of all these forces. 

Thus, the similarity between the effective ionic radii of anions and the inter¬ 

molecular radii of the corresponding atoms 

r ~ r. (1.72) 

is not accidental — it reflects the identical physical nature of the interaction 

between atoms whose strong chemical bonds are already saturated. These radii 

Cd Fig. 1.52. Layer structure of CdCl2. Contact of sheets having formula 

CdCl2 is due to weak Cl-Cl bonds 
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may be called weak-bond radii. They can be interpreted physically as quantities 

determining the minimum distance of “touching” of non-valence-bound atoms 

(Figs. 1.49f, 50, 51). The physical model corresponding to a strong bond 

(covalent, metallic, or anion-cation) is the interpenetration of the outer orbitals 

of the contacting atoms, although it acquires a specific form for each of the main 

types of bond (Fig. 1.53). Thus, the interpenetration is most pronounced in the 

covalent bond; the cation electrons are fully or partly incorporated in an anion 

shell in the case of ionic bond; the valence electrons are collective in metals. 

From this standpoint, ionic structures, as well as molecular ones, can be 

described by two systems of radii, namely by the radii of the strong cation-anion 

bond, and (if there are anion-anion contacts) by weak-bond radii (Fig. 1.49c, f). 

In conclusion we reiterate the most essential elements in the construction 

of the various systems of crystallochemical radii. The covalent, metallic, and 

“atomic-ionic” radii are approximately equal to the orbital radii of the outer 

atomic electrons, which are responsible for the formation of a strong chemical 

bond. The radii of weak bonds describe the geometric picture of the contacts in 

weak van der Waals atomic interactions. The system of physical ionic radii gives 

the distances to the minimum of the electron density at cation-ion contacts. The 

formal scheme of effective ionic radii also describes the interatomic distances, 

since the additivity conditions are also fulfilled. 

c d 

Fig. 1.53a-d. Schematic illus¬ 
tration of various types of 
chemical bonds. Only two 
bound atoms are shown con¬ 
ventionally. (Hatching) outer 
orbitals; (cross-hatching) inner 
atomic shells; (dotted circles) 
orbital radius. 

(a) Covalent bond. At the site of the superposition of valence orbitals the electron density is 
increased; it exceeds the sum of the electron densities of the valence orbitals of isolated atoms. 
(b) Ionic bond. The cation (on the right) has lost an electron from the valence orbital, which was 
incorporated into the anion shell. The anion is so positioned, however, that its shell is at the same 
distance from the inner cation shell at which the now-ionized electron of the cation was located. 
(c) Covalent bond with a fraction of ionicity - a case intermediate between (a) and (b). The cation 
shell is depleted and the anion shell enriched in electrons; at the site of the overlapping the electron 
density exceeds the sum of the electron densities of the valence orbitals of the isolated atoms. 
(d) Metallic bond. The electrons of the valence orbitals are now distributed uniformly throughout 
the crystal lattice space (except in the core shells); the interatomic electron density is relatively low 
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1.5 Geometric Regularities in the Atomic Structure of Crystals 

1.5.1 The Physical and the Geometric Model of a Crystal 

The theory of crystal structure, i.e., the theory of its formation from an assembly 

of interacting atoms, is based on the general principles of thermodynamics, 

solid-state physics, and quantum mechanics. At the same time, the result of this 

interaction is geometrically amazingly simple; in the unit cell of a three-dimen- 

sionally periodic structure the atoms occupy fixed positions at definite distances 
from each other. 

The very consideration of this geometry, irrespective of its physical causes, 

using certain relatively simple physical or chemical data which are also geomet- 

rized, promotes the understanding of many regularities in the atomic structure 

of crystals. 

In the geometric model of a crystal, the arrangements of the crystal’s 

structural units, i.e., atoms or molecules, the distances between them as well as 

their coordination are considered. Proceeding from the systems of crystallo- 

chemical radii, atoms can be modeled as hard spheres, and molecules as solids of 

more complicated shape. Then packings of such spheres or bodies can be 

analyzed. The formally geometric consideration is supplemented by taking into 

account the nature of the chemical bond between the atoms; stable groupings of 

atoms - coordination polyhedra, complexes, molecules, etc. - are studied, as are 

their shapes and symmetries and their relationship with the space symmetry of 

the crystal. 
The geometric model of a crystal is the most simplified version of its physical 

model. The geometric approach was the starting point for the development of 

concepts of the atomic structure of crystals. It is naturally limited and cannot 

claim to explain crystal structures in all their details. It does help, however, to 

formulate and describe a number of regularities in the structure of crystals in 

a simple and pictorial form. 

1.5.2 Structural Units of a Crystal 

The very expression “the atomic structure of a crystal” shows that the ultimate 

structural units with respect to which the structure of a crystal is considered (at 

any rate, at the geometric level) are the atoms. In many cases, however, even 

before the formation of a crystal or in the course of its formation, the atoms, 

owing to their chemical nature, draw together into certain stable groupings 

which are preserved in the crystal as an entity and can conveniently and 

legitimately be regarded as structural units of crystals. The isolation of struc¬ 

tural units according to their crystallochemical features makes possible their 

definite geometric and symmetric description. 
In dividing the crystals into structural units according to the types of 

association of the atoms, one should consider whether the chemical bond forces 

acting between all the atoms are the same or different. In the former case the 
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crystals are homodesmic. Since all their interatomic bonds are the same type, the 

interatomic distances differ but little. Examples of homodesmic structures are 

those of metals and alloys; covalent structures, as well as many ionic ones, are 

also homodesmic. The structural units of such crystals are the atoms themselves, 

which form a three-dimensional network of approximately equivalent bonds; at 

the same time, definite structural groupings can sometimes be singled out 

among them. 

Stable, isolated, finite groupings or complexes of atoms in a crystal can form 

if the types of bonds are different. Such crystals are called heterodesmic. More 

often than not, the bonds inside such a structural grouping are fully or partly 

covalent. A typical example are organic molecules; strong covalent bonds act 

within the atoms, but weak van der Waals bonds operate between unit mole¬ 

cules in the crystal. Examples of structural groupings in inorganic crystals are 

the complex anions CO3 ”, SO4 ~, N02 , water molecules H20, the complexes 

[PtCl4]2“ and [Co(NH3)6]3 + , intermetallic complexes MoAl12(Fig. 1.54), etc. 

These groupings are finite in all three dimensions; sometimes they are called 

“insular” groupings. But there may also be one- or two-dimensionally extended 

structural groupings, chains and layers, which will be discussed below. 

1.5.3 Maximum-Filling Principle 

In considering the formation of a crystal out of structural units from the 

geometric standpoint, one should take into account their own shape and 

symmetry, and the nature of interaction among them. 

If we first refer to crystals whose structural units are atoms, they can be 

divided into two subtypes as regards the intrinsic symmetry of atoms. If the 

Fig. 1.54. Examples of structural units of crystals: molecules, inorganic anions, complexes, the 
intermetallic complex MoA112 
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forces acting among atoms are central or approximately so, as in metallic and 

ionic crystals as well as in crystals of solidified noble gases, one can speak of an 

intrinsic, spherical or approximately spherical point symmetry of atoms oo /oo m. 

The other subtype is given by the covalent crystals. The atoms in them have 

directed bonds and can be regarded as having a definite and nonspherical point 

symmetry. We shall treat them later. If a crystal has limited or any other kind of 

structural groupings, the interaction between them can also be reduced to the 

central interactions among the atoms of neighboring groups despite the great 

diversity in their forms and symmetry. 

The principal contribution to the free energy of a crystal F (1.46) is made by 

the potential energy of interaction U, i.e., the lattice energy. All expressions for 

the energy of the central interaction forces are dependent on the interatomic 

distance (1.51); the energy minimum is attained at the equilibrium interatomic 

distances which are typical of given atoms and of the type of bond between 

them. These distances can be expressed as the sums of the corresponding 

crystallochemical radii. The more atoms approaching equilibrium interatomic 

distances, i.e., the more terms in (1.52) having rik corresponding to the largest 

u(rik), the larger is U (1.52). However, the repulsive branch of the interaction 

curve, which can be interpreted geometrically as the finite size of atoms 

(Fig. 1.12), limits the number of atoms reaching the equilibrium interatomic 

distances. All these circumstances can be expressed as the geometric principle of 

maximum filling. It consists of the following: that, subject to the action of central 

or near-central forces of attraction, the atoms or more complex structural units 

of a crystal always tend to approach each other so that the number of permis¬ 

sible shortest contacts is maximal. This can also be expressed as a tendency 

towards a maximum number n of atoms (or structural units) per unit volume 

Q at distances ru, not less than the standard permissible distances rst, 

—--» max. (1-73) 
V(nj>rsl) 

The most appropriate formulation is based on the concept of crystallochem¬ 

ical radii r. If there is a “radius”, then naturally a crystal model consists of 

atoms - balls having these radii and volumes Vat — 4/3nr3 are in contact with 

each other (Figs. 1.44a, b; 47). If we introduce the ratio of the sum of volumes 

occupied by atoms to the volume of the cell Q, i.e., the so-called packing 

coefficient, 

E Vat/Q — q -> max (1-74) 

then the maximum filling principle can be described as that of the packing 

coefficient maximum. It is most clearly expressed in structures built according to 

the method of the closest packing of identical balls (q = 74.05%). But it is also 

used when considering the geometric interpretation of structures made up of 

different atoms as the packing of balls of different radii. The closest packings will 

be specially considered below. In general, however, according to this principle 

a structure should not have any vacant sites where atoms (balls) of the largest 
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radii could be accommodated, and there must be as few sites as possible which 

are not occupied by other atoms (balls) having smaller radii. 

Similarly, if we assign some volume Vt to multiatomic structural groupings 

or molecules, wrapping them in a “coat” of weak-bond radii (as shown in Figs. 

1.49, 50), then the maximum-filling principle will be expressed analogously (1.74) 

E Vi/Q = q -* max. (1-75) 

Being the geometrization of the concepts of the crystal structure, the 

maximum-filling principle, or the same idea expressed as the closest-packing 

principle, is naturally qualitative, because it explains the main tendency in the 

formation of structures consisting of mutually attracted particles, but not the 

individual features of the specific structures. Yet owing to its simplicity and 

generality it plays an important part in crystal chemistry and sometimes aids in 

drawing quantitative conclusions, for instance in considering the structure of 

some ionic and molecular crystals (Sect. 2.3.6). 

1.5.4 Relationship Between the Symmetry of Structural Units and 

Crystal Symmetry 

As has already been noted, the atoms in a structure - when they are its structural 

units - can be regarded either as spherically symmetric or as having a different 

point symmetry corresponding to the orientation of the covalent bonds (cf. 

Fig. 1.18c). Multiatomic finite structural groupings also have a definite point 

symmetry, most often crystallographic (Fig. 1.54), but there may be groupings 

with a noncrystallographic symmetry as well. The force field around such 

groupings, i.e., the field of the potential interaction energy, is anisotropic and 

corresponds to the symmetry of the grouping itself, which presupposes, to some 

extent, the possibility of its contacts with other atoms or with similar or different 

groupings. But this anisotropy is not very large, and for geometric consideration 

it is often possible to assume that the forces of interaction between charged 

groupings are near central. For instance, the structure of Na2S04 can be 

considered as built up of mutually attracted structural units of Na+ and S04“ 
(Fig. 1.55). 

Inorganic and organic molecules are the most diversified as regards their 

structure and symmetry. They include asymmetric (symmetry I), centrosymmet- 

ric (/), and higher symmetry molecules (see Fig. 2.72) up to giant virus molecules 

with an icosahedral pseudospherical symmetry (see Figs. 2.169, 174). 

Let us now see whether the space symmetry <P of the structure arising from 

the given structural units is related (and if so, then how) to the point symmetry 

Go of these units. When forming a crystal, atoms or more complex structural 

units occupy definite positions in the unit cell, and arranging themselves in 

accordance with one or several regular point systems of the general (with 

symmetry 1) or particular (with symmetry K) position of group <Z>. Consider 

whether there is any connection between the intrinsic symmetry Go of the 

structural unit and the symmetry K of its position in the crystal. 
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Fig. 1.55. Na2S04 structure 

On the one hand, many examples of such a relationship are known. For 

instance, the spherically symmetric atoms in the structures of metal elements 

occupy all positions with the maximum symmetry m3m in the cubic, high- 

symmetry space group Fm3m; the same symmetry is observed for Na and Cl 

atoms, with central forces acting between them in the structure of NaCl. The 

tetrahedral carbon atom in the diamond structure occupies a position with 

a tetrahedral symmetry 43m, or, more precisely, predetermines the symmetry of 

this position. The trigonal complex anion CO3- “imposes” the rhombohedral 

symmetry on the calcite structure (see Fig. 2.19), etc. In such cases it can be said 

that the symmetry of position K, being a subgroup of the symmetry of structural 

unit Go, is maximally close to, or coincides with it: Gq 3 K. This corresponds to 

the fulfilment of the so-called Curie principle of interaction of symmetries [1.7]. 

The field of all the particles of the structure, surrounding a given particle with 

the symmetry Gq, interacts with its own field. This interaction ultimately 

determines the symmetry K. 
On the other hand, in many structures symmetric atoms 01 molecules 

occupy positions K, which are less symmetric than their proper symmetry. In 

this case, too, the Curie principle holds, i.e., the point group of positions is 

a subgroup K c G03 of the point group of the structural unit, but the anti- 

symmetrization may be quite strong so that sometimes the positions may even 

be asymmetric, K = 1. For instance, benzene molecules with a high symmetry 

6/mm are packed in an orthorhombic structure, and the symmetry of the 

positions of the molecule center is I. The tetrahedral grouping Si04 in different 

crystals occupies both the positions corresponding to this symmetry (cristo- 

balite) and those whose symmetry is lower, i.e., 2, m, or 1 in many silicates. 

The answer to our question is simple. The determining principle of the 

formation of a structure is the principle of energy minimum, which for undirec¬ 

ted interaction forces is expressed geometrically as the maximum-filling prin¬ 

ciple. If the symmetry of a structural unit during the formation of a crystal is 

consistent with or helpful in attaining this minimum, then a structure is formed 

with such a space group <t> and such positioning of the structural units within it 
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which are closest to their proper symmetry. But if the minimum is attained when 

the structural units occupy low-symmetry positions, their proper symmetry 

either does not play any role or is used only partly, i.e., it does not completely 

coincide with the symmetry of positions. 

When speaking of the relationship between the symmetry of positions K and 

that of structural unit Go, one may distinguish two cases. In one, the symmetry 

Go of an isolated structural unit in the crystal taken by itself is preserved 

Go = Go(cr). In the other, the effect of the field of the surrounding particles (the 

lattice field) is such that the structure of a molecule changes and its symmetry is 

reduced, Go =3 Go(cr) 3 K. 

It is worth mentioning one more circumstance, which is associated with the 

simplicity or complexity of the chemical formula of a given substance. The 

number of most symmetric positions in any space group <P is limited. For 

structures with a simple formula this may not be meaningful. For instance, in 

ionic structures having simple formulae of the type AX, AX2, etc., central forces 

operate between the atoms which can occupy high-symmetry positions, and the 

structures usually show a high symmetry. But if there are many sorts of atoms, 

the number of such positions is simply insufficient, and the symmetry of the 

structure is reduced. Therefore, usually the more complex the chemical formula 

of an inorganic compound, the lower is the symmetry of its crystal structure. 

If speaking of the relationship between the point symmetry of a structural 

unit and its position in the crystal, one must also mention those cases where the 

latter is higher than the former. This is naturally impossible for molecules “at 

rest”, but it can be achieved statistically, either by averaging over all the unit 

cells of the crystal or by thermal reorientation of the molecules or of their 

rotation, K = Go(s,a,iSt.) => Gq. Thus, cases are known where asymmetric (with 

symmetry 1) molecules, which are, however, approximately centrosymmetric in 

shape, form a centrosymmetric crystal, in which they statistically occupy a posi¬ 

tion with symmetry I. Owing to thermal reorientations the grouping NH4 with 

a proper symmetry 43m occupies positions with the symmetry m3m in some 

crystals, while in certain compounds it is in the state of complete spherical 
rotation. 

We have considered the relationship between the point symmetry of struc¬ 

tural units (with nondirectional binding forces between them) and the point 

symmetry of their positions in the crystal structure. What is more important, 

however, the space symmetry <Z> also regulates the mutual arrangement of the 

structural units, not only by means of point symmetry operations, but also by 

translations and symmetry operations with a translational component. Let us 

take a look at Fig. 1.56, which illustrates the role of symmetry operations when 

particles of arbitrary shape contact each other. It is seen that, from the stand¬ 

point of the principle of maximum mutual approach of neighboring particles, 

point symmetry operations (Fig. 1.56a) are actually inappropriate since they 

impose the condition of pairwise arrangement of the centers of the atoms along 

lines (or in planes) perpendicular to the corresponding symmetry elements, and 

this precludes the most economical utilization of space. On the contrary, 
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Fig. 1.56a, b. Packing of structural units in a crystal. Point symmetry operations 
(in this case mirror plane m) are not appropriate because the projections of the 
structural units confront each other (a). Close packing is promoted by symmetry 
operations which a translational component (b) 

symmetry elements with a translational component (Fig. 1.56b) let some par¬ 

ticles enter the spaces between others; more precisely, these elements are vir¬ 

tually formed with such packing. Therefore, the important consequences of the 

maximum-filling principle are, the rules concerning, firstly, the utilization of 

symmetry elements having a translational component, and, secondly, the im¬ 

plications of the appearance of point symmetry elements between neighboring 

atoms; if such elements exist, the atoms or structural units should be arranged 

on them. 
If the binding forces are directional, as in covalent crystals, the close-packing 

principle contradicts the physical model picturing the attainment of the poten¬ 

tial energy minimum. Then, representing the structure by means of contacting 

balls also is not adequate any more. The energy minimum is attained precisely 

upon saturation of the directional covalent bonds; in this case the principle of 

a proper point symmetry of atoms is always in the foreground. Therefore, the 

covalent structures in which atoms have relatively few neighbors (1.3, 4, 7) in 

accordance with their symmetry, are “lacier” than the maximum-filling struc¬ 

tures. Examples are diamond (Fig. 1.44c) and other tetrahedral structures, 

octahedral structures of the NiAs type (Fig. 1.57). The symmetry of these 

structures is defined by the symmetry of the constituent atoms. Although 

covalent structures are “lacy”, the volumes per atom in structures with distinct 

types of bonds differ only slightly, on the average, since the covalent bonds are 

usually slightly shorter than the ionic or metallic. 
Concerning the relationship of the point symmetry of structural units Go, 

their positions in the crystal K, and the space symmetry of structure G3, one 

must also mention the so-called local, noncrystallographic symmetry. In some 

molecular (Sect. 2.6.2) and biological (Sect. 2.9.4) structures such packing of the 

structural units is observed when they are related symmetrically, for instance, by 

axes 2; these symmetry elements do not belong to group Go (they are said to be 
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Fig. 1.57. The structure of NiAs with octahedral Ni 
bonds 

noncrystallographic), but act locally, say, between definite (not all) pairs of 

particles (Fig. 2.150). The so-called noncrystallographic screw axes, which link 

chains of particles running along different directions in the crystal, are also 

known (see Fig. 2.75). Later (Sect. 2.6) we shall see how all these phenomena can 

be explained from the standpoint of the packing energy minimum principle and 
from the structural features of the units packed. 

1.5.5 Statistics of the Occurrence of Space Groups 

The above considerations are confirmed by the statistics of the distribution of 

the investigated structures among the space groups. Such data were obtained by 

processing the results for 5,600 inorganic and 3,200 organic structures (there are 

8,800 structures in all) [1.52, 53]. They are listed in Table 1.11, the groups being 
arranged in the order of increasing symmetry. 

Thus, 40% of the inorganic structures belong to only nine groups, 60% of 

the organic structures to six groups, and half of all the structures to the 12 
groups <P listed in Table 1.11. 

The occurrence of the listed groups is due to the above consideration 

concerning the advantage of the presence of “packing” symmetry elements with 

a translational component, which is typical of practically all the groups of Table 

1.11 and is most clearly manifested in inorganic structures having complicated 

formula, as well as in organic structures. If a structure has a relatively simple 

formula, its atoms can arrange themselves on point symmetry elements. This 

mainly explains the lower part of the table; all the groups listed in it belong to 

the structures of elements and simple inorganic compounds. 

Only 40 groups <P (including the just listed 12) are relatively widespread. 

Representatives of 197 groups <P (out of 219) have been found. An analysis of the 

frequency of occurrence of group <P shows, however, that, with the increase of 

the number of investigated crystals the representatives of groups not yet ob¬ 
served may be found. 
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Table 1.11. Distribution of crystal structures among space groups 0 [Vo] 

0 Inorganic Organic All 

structures structures structures 

Cj - Pi 1 5 3 

C22 - +2, - 8 3 

C\h - P2x/c 5 26 13 

C6lh - C2/c 4 7 5 

D\ - +2,2,2, - 13 5 

D\l - Pbca - 3 1 

D\l - Pnma 7 - 5 

D\d - Rim 4 - 2 

D\h - P63/mmc 4 -■ 3 

0\ - Pmim 4 - 3 

0\ - Fmim 9 - 6 

Q\ - Fdim 5 - 3 

The center of symmetry 1 is present in most of the structures investigated - in 

82% of the inorganic and 60% of organic, or altogether in 74% of the sub¬ 

stances8. 

1.5.6 Coordination 

In analyzing the crystal structure it is important to investigate the environment 

of an atom (or molecule): the number of its neighbors, their characteristics, and 

the distances to them. These features are all described by a single concept of 

“coordination”. Consider the coordination of atoms in the simplest structures of 

metals and ionic compounds and in some other structures; the neighbors 

surrounding the given atom are positioned symmetrically in relation to it and 

are located at equal distances from it. The number of such nearest neighbors, or 

their number in the first coordination sphere, is called the coordination number 

(c.n.). The next-nearest neighbors form the second coordination sphere, and so 

on. In more complicated, low-symmetry structures the distances to the nearest 

neighbors may differ slightly, but the coordination concept can still be used, 

provided there is a gap between this set of distances (i.e., to the nearest 

neighbors) and the set of distances to the atoms of the next-nearest coordination 

sphere. If the distances to the atoms of the first and second spheres do not clearly 

differ, both c.n. are sometimes indicated, for instance, 8 + 6. The value of the c.n. 

is associated with the type of chemical bond and the proper symmetry of the 

atoms. For central forces, the c.n. is usually large 12, 6 + 8, 8 + 6, etc., and for 

covalent forces, it is small, 3, 4, or 6. 

8 In recent years, due to the development of the structure analysis technique, the percentage of 

investigated noncentrosymmetric structures has increased. 
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Fig. 1.58a, b. Construction of a coordination polyhedron as exemplified by 
a tetrahedron (a) and an octahedron (b) 

The concept of coordination is also used in molecular structures. The 

arrangement of the centers and the number of neighboring molecules are 

considered with respect to the center of a given molecule. 

If we join the center of adjacent atoms of the first coordination sphere by 

straight lines, we obtain a convex polyhedron, i.e., a coordination polyhedron 

with a number of vertices equal to c.n. The distances from the vertices to the 

central atom are the interatomic distances in this sphere, and the polyhedron 

edges are the distances between the nearest neighbors (Fig. 1.58). The various 

types of coordination polyhedra are shown in Fig. 1.59. The coordination 

polyhedra for a given c.n. may be different, i.e., have a particular point sym¬ 

metry. One case is plane configurations. When some coordination polyhedra are 

singled out in such a structure, they may be either isolated, or linked with other 

polyhedra via common vertices, edges, or faces. 

The concept of polyhedra is not only a method for describing crystal 

structures. It also has a physical and chemical meaning when the polyhedra are 

either the structural units discussed above, for instance, tetrahedra Si04, com¬ 

plex groupings, say PtCl4, or combinations of a central atom with surrrounding 

atoms, which are common in ionic compounds such as octahedra MeX6 
(X anion). 

1.5.7 Classification of Structures According to the Dimensionality of 
Structural Groupings 

All the structures can be classified by the presence or absence of structural 

groupings - atoms or their complexes - in which the bonds are stronger (and 

hence shorter) than those between the groupings, as well as by the dimension¬ 

ality of these groupings, i.e., by the number of dimensions of space k within 

which they are finite. Since the groupings are in a three-dimensionally periodic 

lattice, the quantity m = 3 — k indicates the number of dimensions in which the 
groupings are infinite and periodic. 

The values k = 0, m = 3 corresponds to homodesmic structures, their struc¬ 

tural units being atoms between which there is a three-dimensional net of 

approximately equivalent bonds. Such a crystal taken as a whole can be 
regarded as a giant structural grouping with symmetry Gf. 
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Fig. 1.59a-x. Various types of coordination polyhedra. (a) dumb-bell, c.n. 1; (b) corner, c.n. 2; 
(c) triangle, c.n. 3; (d) square, c.n. 4; (e) tetrahedron, c.n. 4; (f) tetragonal pyramid, c.n. 5; (g) trigonal 
bipyramid, c.n. 5; (h) octahedron, c.n. 6; (i) trigonal prism, c.n. 6; (j) one-cap trigonal prism, c.n. 7; 
(k) seven-vertex polyhedron, c.n. 7; (1) pentagonal bipyramid, c.n. 7; (m) cube, c.n. 8; (n) square 
antiprism (cube), c.n. 8; (o) trigonal dodecahedron, c.n. 8; (p) two-cap prism, c.n. 8; (q) three-cap 
trigonal prism, c.n. 9; (r) icosahedron, c.n. 12; (s) truncated tetrahedron c.n. 12; (t) cubooctahedron, 
c.n. 12; (u) hexagonal cubooctahedron, c.n. 12; (v) rhombododecahedron, c.n. 14; (w) pentagon- 

dedecahedron, c.n. 20; (x) truncated octahedron, c.n. 24 

Further, as k increases and m declines, we obtain 

o
' 

II m = 3: three-dimensional structures with symmetry G3; 

k= 1, m = 2: layer structures, layer symmetry Gf; 

II K>
 

m = 1: chain structures, chain symmetry Gf; 

k = 3, 2
 II o
 

structures with finite groupings of symmetry Go 
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Structures of the first type are, as a rule, homodesmic; the others are 

heterodesmic. Along with structures which can definitely be allocated to one of 

the indicated types, there are intermediate structures, i.e., structural groupings, 

which are not very clearly defined, and also structures with groupings belonging 

to different types. Let us now consider the basic features of all these structures. 

1.5.8 Coordination Structures 

This name is usually given to structures of the first type, with k = 0 and m = 3, 

because the coordinations of atoms in them are approximately equal in all 

directions. This term is not quite appropriate, since some amount of coordina¬ 

tion is inherent in any atom or any structure, thus it would be more correct to 

call these structures coordination equal. 
Coordination-equal structures form most of the inorganic compounds; these 

include practically all the metals and alloys and most of the ionic and covalent 

compounds. Their coordination numbers are usually large (12, 6 + 8, 8 + 6) 

except for the covalent structures. The coordination structures are also found in 

the crystals of inert elements; they have a large c.n. of 12 (closest packings). These 

structures are isodesmic, all the bonds in them being identical — not strong, but 

weak van der Waals bonds. 
Among the coordination-equal structures one can single out coordination 

polyhedra of the same or different types, but they always form some kind of 

a space array (see Fig. 2.17). Sometimes the stable frameworks of interlaced 

structural groupings (for instance, silicon-oxygen tetrahedra and Me06-octa- 

hedra) form a lacy space structure, which has rather large holes, isolated or 

channel-shaped, passing through the entire structure (see Fig. 2.37). These are 

called skeleton structures. 

1.5.9 Relationship Between Coordination and Atomic Sizes 

Ionic structures can be represented by and described with the aid of coordina¬ 

tion polyhedra with cations at the center and anions at the vertices. Magnus 

[1.54] and Goldschmidt [1.38] introduced a geometric criterion, the ratio of 

effective ionic radii, 

rcat/ran = g', l1-76) 

which determines the coordination number n and the type of the coordination 

polyhedron (Fig. 1.60). Since the effective ionic radii of cations are purely 

conventional values, as noted above, one can use for the geometric criterion the 

following quantity independent of the choice of rcat: 

g = d(AB)/ran, (1.77) 

where d{AB) is the distance from the polyhedron center to its vertex (i.e., the 

cation-anion distance), and 2ran is the polyhedron edge (i.e., the distance 
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Fig. 1.60. Illustration of the Magnus rule for coordination 
numbers 4, 6, 8 

Table 1.12. Relationship between coordination n and values of g and g' 

Coordination n 9 9' 

Tetrahedron 4 1.225 0.225 

Octahedron 6 1.414 0.414 

7 1.592 0.592 
Thomson (wringed) cube 

8 1.645 0.645 

Cube 8 1.732 0.732 

Cubooctahedron 12 2.000 1.000 

between anions). Here, g’ = g~l. Table 1.12 lists the values of g and g' permit¬ 

ting coordination n (or any one below n). 
If g is intermediate between the “nodal” values, for instance, 1.225 ^ 

g < 1.414, then only four anions can settle around the cation (not necessarily 

contacting each other) at a given d(AB). As g increases, a transition to larger 

coordination numbers and to the corresponding polyhedra may (and must, from 

the standpoint of close packing) take place. If, on the contrary, there is contact of 

all the outer spheres, then on realization of coordination n and at g less than the 

corresponding nodal value (e.g., for the octahedron n = 6 and g < 1.414), the 

cation will “dangle” among the surrounding anions. Such a configuration is 

unstable from the geometric standpoint. Thus, at a given g, the geometrically 

most probable coordination is realized when g is less than the nearest nodal 

value, but lower coordinations are also possible. Thus, although at g = 1.645 the 

formation of a Thomson cube with n — 8 is already possible, at these and higher 

values a stable grouping is often an octahedron with n = 6 (this is true, for 

example, of KF and RbCl). The Magnus rules hold for a number of ionic 
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crystals. So, for many halides of alkali metals (see Fig. 1.47) the values of 

g correspond to the observed octahedral coordination. The structures of CsCl, 

CsBr, and Csl have a cubic coordination in conformity with the values of gr (1.75, 

1.84, and 1.91). At the same time, these rules are not fulfilled in many cases. Thus, 

the structures of LiCl, LiBr, and LiF have g < 1.415, i.e., they would be expected 

to be tetrahedral (the octahedron is “impossible” for them), but in fact they 

crystallize as NaCl, with an octahedral coordination. This is due to the conven¬ 

tional nature of the geometric model. 

1.5.10 Closest Packings 

A number of the structures of elements, alloys, and ionic crystals are built on the 

close-packing principle. Consider the geometry and symmetry of the closest 

packings of spheres and some related questions. 
One two-dimensional close-packed layer of identical spheres is depicted in 

Fig. 1.61 together with its intrinsic symmetry elements. Axes 6 pass through 

the centers of the spheres, and axes 3, through the interstices (holes) between 

spheres. There are twice as many interstices as spheres. The next, identical layer 

will be packed most closely if its spheres are placed over the voids, between the 

spheres of the lower layer (Fig. 1.62). The common elements for two, or any 

number of layers superimposed in this manner will be the axes 3 and planes m, as 

before. Hence, the space groups of the closest packings are all the groups which 

have subgroup P3ml; these are (besides the foregoing) R3m, P3m\, R3m, P6m2, 

P63mc, Pb^fmmc, and Fm3m; in all, there are eight such groups [1.55], 

If we denote (as in Fig. 1.62) the initial layer of spheres by A, the possible 

ways of placing the next layer, either B or C, over it are b and c. The symbol is 

irrelevant until the third layer is determined (in Fig. 1.62 it is B) which may be 

placed over the interstices of layer B. Thus, any combinations of arrangements 

of new layers can be described by a sequence of letters A, B, and C, and no 

identical letters can stand side by side, since that would mean placing one sphere 

over another. The packing coefficient for any closest packing is 74.05%. The 

Fig. 1.61. Close-packed layer of spheres and 
its symmetry 
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Fig. 1.62. Two principal variants of the formation of three-dimensional closest packing of spheres 
made up of the layers A, B, C stacked over the interstices in the lower layer a, b, c; ABC (left) and 
ABAB (right) 

Fig. 1.63a, b. Hexagonal (a) and cubic (b) closest packing. In the cubic packing the closest-packed 
layers can be singled out in four planes perpendicular to the body diagonals of the cube 

two-layer packing . . . ABAB . . . (right-hand side of Fig. 1.62 and Fig. 1.63a) 
is called the closest hexagonal and has the symmetry P63/mmc. A remarkable 
arrangement is the three-layer packing . . . ABCABC . . . (left-hand side of 
Fig. 1.62, and Fig. 1.63b). The stacking of the initial three close-packed two- 
dimensional layers produces an arrangement such that precisely identical layers 
in it (and only in it) can be singled out along three other directions, as seen from 
Fig. 1.63b. This packing is cubic face centered, its symmetry being Fmlm. 

Further, we can consider the stacking of layers with a periodicity n, greater 
than for three layers. Before we do that, we should note that the obvious 
three-letter notation is redundant. This follows even from the fact that the 
sequences . . . ABAB . . . , AC AC . . . , and BCBC . . . denote one and the 
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same hexagonal packing. It would suffice to label a given layer according to 

the way the two nearest layers adjoin it from below and from above, namely 

by the hexagonal (h) or cubic (c) law. Then the two principal packings will be 

written as follows (the symmetry is also indicated): 

ABAB 

hhhh 
D4 u6h P63/mmc, n = 3 

ABCABC 

ccc . . . 
05h = Fm3m, (1.78) 

where n is the number of layers in the packing. Figure 1.64 shows the coordina¬ 

tion polyhedra of spheres of type h and c, i.e., cubooctahedra, in packing c, 
a regular, and in h, a “wrung” one (hexagonal, an analog of the cubooctahedron). 

Packings with n = 4, 5 are as follows: 

ABAC 

chch 
D4 6(i P6i/mmc, 

ABCAB 

hccch 
Did — P3ml. 

There are two packings with n = 6, 

ABCACB . ^ ; 
n = 6 , Dlh = Pbi/mmc, 

nccncc 

ABABAC 
D\h = P6m2. 

chhhhch 

Figure 1.65 shows some packings with different numbers of layers. 

Fig. 1.64a, b. Coordination polyhedra, cubooc¬ 
tahedron c (a) and its hexagonal analog h (b) 

CGCD m 

c9 
CQDDCQOD CQDD 

D TOT (DO) 

CQQ) 

cp:cD 
m 
ted 

W? 
OQ 

d5ci)caa) 

TO 
TO? 

a x) TOp CO) 
Fig. 1.65. Closest packings with different peri¬ 
odicity number of layers: 2, 3, 4, 6, 9, 12 
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A complete system of the closest packings of spheres was proposed by Belov 

[1.55]. With a fixed n, the number of different packings is naturally limited, but 

it increases with n, 

number of layers 23456789 10 11 12... 

number of packings 1 1 1 1 2367 16 21 43... 

An example of 8-layer packing is h c c c h c c c, and of 12-layer, hhcchhcchhcc. 

It is significant that while at small n all the spheres are symmetrically equal, i.e., 

they occupy a single regular point system, an increase in n renders this impos¬ 

sible. This reflects the above-described competition of the principles of closest 

packing and preservation of proper symmetry of particles in the lattice, which 

arises when the number of particles in the unit cell is large. 

The structures of many elements - metals [Na, Al, Cu, Fe, Au, etc. (c), Mg, 

Be, aNi, Cd, Zn, etc. (/j)] and solid inert elements - are built according to the 

principle of cubic face-centered (fee) and hexagonal closest packing (hep). In 

some cases the structure deviates from the ideal, examples being the rhom- 

bohedral or tetragonal distortion of cubic packing, and deviation from the 

“ideal” value of c/a = 1.633 in hexagonal packing (Fig. 1.66). 

Closest packings are also realized in structures made up of different atoms, 

provided these structures are homodesmic and the atomic radii are approxim¬ 

ately equal. A good example is the structure of alloys, such as Cu3Au (see 

Fig. 2.9b) and semiconductor alloys containing Bi, Sb, S, Te, Ge, and Ag with 

coordination 12, all of whose atoms have radii of 1.6-1.8 A. These alloys form 

multilayer packings, sometimes with a statistical population of more than one 

position; an example of such a compound is presented in Fig. 1.67. 

Fig. 1.66a-c. Deviation from 
the ideal ratio c/a = 1.633 in 
the structure of some metals, 
(a) Be, c/a = 1.57; (b) ideal lat¬ 
tice; (c) Cd, c/a = 1.89 

Fig. 1.67. Structure of AgBiTe2 t> 

<1 

Fig. 1.68. Cubic body-centered structure 
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Body-centered cubic packing (bcc) is common in the structures of elements 

and a number of compounds (Fig. 1.68). If we regard it formally as a packing of 

equal spheres, the packing factor will be equal to 68.01%; it is less than the 

factor of 74.05% for closest packings, but is still large. Transitions between such 

two types of cubic structures (for instance, a-y-<5-Fe: bcc-fcc-bcc) are very 

interesting. From the geometric standpoint one can say that the stability of bcc 

structures is due to the fact that the principle of high symmetry of the atoms is 

well maintained, and that their coordination (8 + 6) is very high. But a compre¬ 

hensive explanation of this type of structure can be achieved only by taking into 

account all the features of atomic interaction and lattice dynamics. 

1.5.11 Structures of Compounds Based on Close Packing of Spheres 

Between closest-packed spheres there are interstices, or holes of two types. 

Having covered the structure of the densest layer with the next one (Fig. 1.62), 

we shall now see that holes of the lower layer which are covered by spheres of the 

upper are surrounded by four spheres, the centers of which form a tetrahedron 

(the hole a is covered by a sphere A, or b is covered by B, and c, by C). They are 

called tetrahedral holes (Fig. 1.69a). There are three spheres above and below 

Fig. 1.69a-c. Octahedral and tetrahedral holes between two layers of closest packing with small 
spheres inserted in them (a); polyhedra around octahedral (b) and tetrahedral (c) holes 
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holes of the second type; they are octahedral [a has nonmatching spheres B and 

C above and below, and so on (Fig. 1.69a)]. In any three-dimensional closest 

packing the number of tetrahedral holes is twice that of the spheres, while the 

number of octahedral holes is equal to that of the spheres. 

The holes could be filled with smaller spheres contacting the principal 

spheres of radius R. The radius of such a small sphere for a tetrahedral hole is 

equal to 0.225 R, and for an octahedral hole 0.415 R (Fig. 1.69b, c). Using the 

ionic radii systems we can consider the geometric possibilities of “populating” 

the holes in an anion packing with cations. These possibilities depend on the 

formal values of g or g' according to Table 1.12, which correspond to octahedral 

and tetrahedral coordinations. 

However, in the vast majority of crystals built according to this scheme the 

“close-packed” spheres of anions no longer contact each other, since the cations 

“spread out” the packing irrespective of the fact whether we regard it from the 

standpoint of the system of effective or physical ionic radii or, all the more so, 

from the standpoint of the atomic-ionic radii of strong bonds. It nevertheless 

turns out that a number of structures can be described with the aid of such 

models. It can, therefore, be said that the system of anion-cation bonds, the 

presence of covalent interactions directed along a tetrahedron or an octahedron, 

and the mutual repulsion of like-charged ions result in an arrangement where 

the centers of atoms, in particular those of anions, occupy positions correspond¬ 

ing to the closest packing of spheres (but of a larger diameter). In other words, 

the positions corresponding to a close packing are energetically favorable. This 

can no longer be explained from the standpoint of the geometric theory of 

closest packings, because the main condition, i.e., the mutual contact of the 

principal spheres, is violated. On the other hand, the principles of maximum 

filling and symmetry are nearly always maintained. 
Proceeding from the versions of closest packings of anions and from the 

different possibilities of populating voids of one type or another with cations, we 

can describe, following Belov [1.55], various structures. Such a description is 

equivalent to representing these structures as combinations of vacant or filled 

octahedra and tetrahedra connected in various ways. 
For instance, populating all the octahedral holes in the closest cubic packing 

produces the structural type NaCl, and populating all of them in hexagonal 

packing, the NiAs type (Fig. 1.70, cf. Fig. 1.57). Note that the centers of the 

atoms residing in octahedral holes are arranged according to the close-packing 

law, and that the entire structure can just as well be regarded as one having the 

holes populated by anions in a cation packing. The centers of both sorts of 

atoms form identical lattices, but are shifted relative to one another. 

If half of the octahedral holes in a hexagonal packing are occupied, we 

obtain type Cdl2 (Fig. 1.71); the filling of two-thirds of the holes according to the 

corundum motif results in A1203 type (Fig. 1.72). The filling of all the tetrahedral 

holes in the closest cubic packing yields the Li20 type of structure (Fig. 1.73a). 

As indicated above, by using the formal scheme for the accommodation of 

atoms and holes in close packing the structures can be described by directional, 
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tetrahedral or octahedral, covalent bonds. Thus, filling half of the tetrahedral 

holes in cubic packing we obtain the structure of sphalerite, ZnS (Fig. 1.73b), 

and in a hexagonal, wurtzite (Fig. 1.73c). Various multilayer modifications of 

SiC, in which tetrahedral nets alternate in different sequences of h and c, are built 

similarly (Fig. 1.73d). 
If the d{AB)/ran ratio increases, then, according to Table 1.12, the coordina¬ 

tion number must also increase, and the structures cannot be fitted into the 

close-packing scheme. High coordination numbers 7, 8, and 11 are indeed 

observed for the large cations of Ca, Sr, Ba, etc. The coordination polyhedra 

may be very complex for them (Fig. 1.74). Classical examples of regular poly¬ 

hedra -cubes - are represented by the structures CsCl and CaF2 (Fig. 1.75a, b); 

in the latter, half of the cubes are vacant. 

1.5.12 Insular, Chain and Layer Structures 

If the bonds between the atoms in a structure are of distinct types (heterodesmic 

structures), such structures are coordination unequal, and it is possible to single 

out groupings of atoms with m = 0, 1, 2, which are bound together by short 

(strong) bonds. The atoms of such distinct groupings are bound by weak (long) 
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Fig. 1.73a-d. Filling of tetrahedral holes, (a) structure of Li20, all 
the tetrahedra are populated in cubic packing; (b,c) structures of 
sphalerite and wurtzite, half of the tetrahedra are populated in cubic 
and hexagonal packing, respectively; (d) silicon carbide SiC (modifi¬ 
cation IT) 

<1 

Fig. 1.74. Eight-vertex polyhedra around Lu 
atoms in the structure of BaLu2F8, Ba is sur¬ 
rounded by 11 or 12 atoms of F 

Fig. 1.75a,b. Structures with the cube as a co¬ 
ordination polyhedron, (a) cube in CsCl; (b) 
packing of cubes in CaF2. Structure of CsCl - 
solid packing of cubes, and of CaF2 - chess-like 
packing 

V 



108 1. Principles of Formation of the Atomic Structure of Crystals 

bonds. The configurations of the atoms within a grouping depend on the mutual 

arrangement of the groupings as a whole, i.e., the groupings are stable units of 

the structure. Since strong bonds are saturated within the groupings, the mutual 

packing of groupings as stable units is largely defined by weak forces. 
The insular structures (k = 0) with finite “zero-dimensional” groupings of 

atoms “islands”, include all the molecular compounds except high polymers 

(Fig. 1.76), structures containing finite complexes of metals with inorganic or 

organic ligands (Fig. 1.77), and some others. These structures will be considered 

in detail in Sect. 2.5, 6. 
Sometimes it is difficult to draw a clear-cut boundary between zero-dimen¬ 

sional and equal-coordination structures. For instance, such stable groupings as 

NH4 and S04 are finite, but they are not separated from the other surrounding 

atoms by large distances. 
Structures with one-dimensional groupings {k = 1) are called chain struc¬ 

tures. Typical examples are crystalline polymers built up of infinitely long 

molecules, and the inorganic structures such as selenium (Fig. 1.44d), semicon¬ 

ductor-ferroelectric SbSI (Fig. 1.78), the complex compound PdCl2 (Fig. 1.79), 

and chain silicates of the asbestos type. 
The chain itself is described by one of the symmetry groups Gj5. In a crystal 

this symmetry can only decrease, according to the same principles as for insular 

structures. An example is the structure of paraffins CnH2n + 2 (Fig- 1-80). The 
symmetry of the chains themselves is mmc, but when they are packed in a lattice, 

only the “horizontal” planes m and axes 2 remain, and “packing” symmetry 

elements n and a arise; the space group of the structure is Pnam. Such a rigid 

chain retains its configuration in the crystal. Another version is also possible, 

where the bonds between some rigid chain units, or links, allow different mutual 

orientations of these elements with the preservation of chain continuity. In this 

case the conformation of the chains when packed in a crystal structure is, to 

a large extent, due to the weak bonds between the chains, which are arranged 

parallel to each other in chain structures. 

Layer structures (k = 2) have groupings of atoms bounded by strong bonds; 

these groupings extend infinitely in two dimensions. Good representatives of 

such structures are graphite (Fig. 2.5), layer structures of the Cdl2 type (Fig. 

1.71), and layer silicates (Fig. 1.81), which can also be regarded as a two- 

dimensional system of coupled stable coordination polyhedra. Structures which 

are composed of thick “multistory” layers are sometimes called packets. The 

stacking of layers according to the close-contact principle can sometimes be 

done in ways, which differ very little energywise, and therefore various modifica¬ 

tions of such structures often arise. For instance, Cdl2 has many modifications, 

and there are numerous modifications of various clay minerals, differing in the 

stacking of the packets or in some features of the structure of the packets 

themselves. 

Concluding this section we emphasize once again that the allocation of some 

structure to the coordination-equal, the chain, or the layer type sometimes 
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Fig. 1.78 

Fig. 1.76. Example of zero-dimensional (insu¬ 
lar) structure: tetraiodoethylene 

Fig. 1.77. Structure of K2PtCl6 

Fig. 1.78. Structure of SbSl [156] 

Fig. 1.79. Structure of PdCl2 

Fig. 1.80. Structure of paraffin C„H2n + 2 in two 

projections 
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Fig. 1.81. One layer of the mica structure; 
three-dimensional Fourier synthesis of the lat¬ 
tice potential [1.57] 

cannot be made rigorously enough. In coordination-equal structures it is often 

possible to single out chains or layers which explicitly play an independent 

structural role, but are in close contact with other atoms of the structure, etc. 

Some structures are made up of units of two types, for instance, finite complexes 

and layers or chains, and so on. 

1.6 Solid Solutions and Isomorphism 

1.6.1 Isostructural Crystals 

Many crystals have an identical atomic structure, i.e., are isostructural. This 

means that their space groups are identical and the atoms are located over the 

same regular point systems (RPS); for instance, atoms A of one structure and 

atoms A' of another occupy the same RPS, B and B' occupy another, and so on. 

It is obvious that isostructural substances are also “isoformular”, i.e., their 

formulae are identical as regards the number of the corresponding atoms. 

Isostructural crystals may be of different complexity, beginning with simple 

substances and ending with complicated compounds. For instance, face- 

centered cubic metals and crystals of inert elements are isostructural. 

Alkali-halide compounds of the type NaCl (Fig. 1.46), a number of oxides such 

as MgO, and many alloys such as TiN may serve as other examples. There are 

large series of isostructural compounds with formulae AB2, AB3, ABX2, etc. 

Each isostructural series is named after one of its most common (or first- 
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discovered) representatives, for instance, the structural types a-Fe, NaCl, CsCl, 
K2PtCl4, etc. 

The concept of isostructural crystals is formally geometric. The same struc¬ 

tural type may cover crystals with different types of bonds, for instance, ionic 

and metallic. Yet geometric similarity indicates that the symmetry of the binding 

forces must be the same; for example, these forces, referring to corresponding 

atoms, must be, for instance, spherically symmetric or identically oriented. 

1.6.2 Isomorphism 

If crystals are isostructural and have the same type of bond, they are called 

isomorphous. The parameters of the unit cells of such crystals are close. Their 

similarity is also manifested macroscopically: owing to the above reasons their 

external forms are very similar (hence the term isomorphism). This is exactly 

how isomorphism was discovered at the macroscopic level by E. Mitcherlich 

in 1819 when observing crystals of KH2P04, KH2As04, and NH4H2P04. 

Goniometric measurements showed that these tetragonal crystals have identical 

simple forms, and that the angles between the corresponding faces are similar. 

Another classical isomorphous group is rhombohedral carbonates MC03, 

M = Ca, Cd, Mg, Zn, Fe, or Mn, for which the vertex angles of the rhombohed- 

rons differ by not more than l°-2°. The physical properties of isomorphous 

substances are similar as well. The present-day investigations of isomorphism 

are mainly based on X-ray and other diffraction data, which have made it 

possible to elaborate and extend the initial concepts of isomorphism. 

1.6.3 Substitutional Solid Solutions 

X-ray studies have revealed a close relationship between isomorphism and 

solubility in the solid state - the phenomena referring to the formation of 

so-called solid solutions. Isomorphism of crystals is often associated with the 

possibility of the formation of a series of homogeneous solid solutions of 

isomorphous substances with a phase diagram of the type shown in Fig. 1.82a. 

The most common type of solid solution is a substitutional solution, in 

which atoms of one component substitute for atoms of another in a given 

regular point system (Fig. 1.83). The probability of finding a substituting atom 

Fig. 1.82a-c. Various types of 
phase diagrams, (a) The compo¬ 
nents form continuous solid solu¬ 
tions; (b) limited solubility case; (c) 
the components do not form solid 

solutions 

c 
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Fig. 1.83. Structure of a substitutional solid solu¬ 
tion. Only one regular point system according to 
which substitution occurs is shown conventionally, 
there may be other regular point systems according 
to which no substitution occurs 

Fig. 1.84. Unit cell of a solid solution T\Hal'xHal"i _x. At the 
center of the cell the halogen atoms may replace each other 
statistically in any concentration 

at these points is a constant value depending on the composition of the solid 

solution. If, for instance, atoms of sort A in phase AB can be replaced by atoms 

of sort A', whose atomic fraction is equal to x, then such a solid solution will be 

described by the formula Ax -XA'XB. In this case the probability of detecting the 

atom A at a point belonging to a given RPS (or in a given sublattice, as it is 

sometimes called) is equal to 1 — x and that of detecting the atom A', x. 

Consequently crystals with a formula Ax-XA'XB(0 < x < 1) for any x are 

isostructural to each other and with the extreme terms of the series, i.e., 

compounds AB and A'B (Figs. 1.84, and 2.9a). 

Thus, the term “isomorphism” is actually used to denote two similar but not 

quite identical concepts. The first implies similarity of the structure and the 

shape of crystals of different (but related) chemical compositions, and the 

second, mutual substitution of atoms or other structural units in crystalline 

phases of variable composition. 

Investigations into the atomic structure of isomorphous substances and their 

solid solutions have helped to establish not only the geometric similarity of their 

structures, but also the geometric restrictions on the sizes of the atoms, which 

can replace one another. For instance, KBr and LiCl are isostructural and have 

an identical type of bond, but they do not form a series of homogeneous solid 

solutions. This is due to the significant difference in the size of their ions. An 

analysis carried out by V. M. Goldschmidt and corroborated by numerous 
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subsequent investigations showed that in ionic compounds the radii of ions 

substituting for each other usually do not differ by more than 10%—15%; about 

the same range of difference between atomic radii exists in the isomorphous 

structures of covalent and metallic compounds. Therefore, the sizes of the unit 

cells of isomorphous substances, the interatomic distances in them, the coordi¬ 

nates of generally situated atoms differ but slightly. 
The dimensions of the unit cells of solid solutions of isomorphous substances 

are approximately linearly dependent on the concentration; this is Vegard’s law 

(Fig. 1.85). Often deviations from this law are observed. The curve of the 

concentration dependence of the periods may slightly buckle upwards or down¬ 

wards, or have an S shape. Since the atoms of the solute and the solvent 

generally differ in size, the introduction of impurity atoms into the solvent lattice 

results in two effects: a microscopically uniform strain of the crystal lattice of the 

solvent and local displacements due to each impurity atom. 
Thus, the unit cell parameters of solid solutions, observed by X-ray diffrac¬ 

tion, and the interatomic distances are averaged over all the cells of the crystal. 

Uniform strain results in a concentration dependence of the periods of the lattice 

of a solid solution, which is observed by the X-ray method. Because of the local 

displacements produced by solute atoms, each cell is distorted to some extent; its 

size and shape vary depending on the substituting atoms and the neighboring 

cells (Fig. 1.86). The local displacements are responsible for the weakening of the 

intensity of the X-ray reflections and the appearance of diffuse scattering 

concentrated near them. On the average, however, the long-range order is 

preserved despite local distortions; all the atoms deviate statistically from 

certain mean positions, which correspond to the ideal three-dimensional peri¬ 

odicity with averaged-out periods. Thus, the periodicity is also statistical, but on 

Fig. 1.85. Vegard’s law: the periods of unit 
cells a of solid solutions of isomorphous 
substances are linearly dependent on the 
concentration c 
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Fig. 1.86. Local deformation of the 
lattice around impurity atoms of lar¬ 
ger or smaller radius 

the average it is accurately maintained. Naturally, deviations of atoms from the 

ideal positions must be proportional to the difference Ar between the radii of the 

atoms substituting for each other and must depend on their concentration. 

When the radii differ by 5%—10%, Ar are equal to 0.1-0.2A. The X-ray 

determinations of the r.m.s. displacement of atoms from averaged-out ideal 

positions N/ui2 are of the order of 0.1 A. Larger values of Ar and evidently 

themselves lead to lattice instability and prevent the formation of a homogene¬ 

ous solid solution; a separation of components occurs, which results in new 
phase formation. 

It should be mentioned that the similarity of atomic sizes (with the same type 

of bond) does not always ensure isomorphism by itself. Moreover, a pair of 

atoms which substitute for each other isomorphously in one structural type, 

may not do so in another. This is not surprising because isomorphism is 

a property of structures as a whole, and not of the individual atoms themselves. 

If the structure has a complicated chemical formula and a large cell, the 

requirements regarding the differences in sizes of the atoms substituting for each 

other are slightly milder, since there are greater opportunities for preserving the 

same equilibrium of interatomic forces by small shifts of other atoms of the cell. 

Atoms replacing each other isomorphously must also be similar in the type of 

the bonds they form, which can be characterized by the ionicity fraction e(1.20) 

[1.58, 59]. The stability of an isomorphous mixture with respect to decomposi¬ 

tion is determined by the value of the interchange energy uint; the higher this 

energy, the higher is the decomposition temperature, and the smaller the 

substitution limits at a given temperature. In turn, uint depends on the squares of 

the differences in interatomic distances, i.e., the differences in the radii of the ions 

replacing each other, Ar, and the differences in the degrees of ionicity of the bond 

of the components, Ae, uint ~ a(Ar)2 + b(As)2. Because of the large difference As, 
pairs of elements such as Na and Cu1, and Ca and Hg do not replace one another 

in practice, despite the similarity of their ionic radii. 

The phenomenon of substitution of some atoms for others in the structure of 

crystals is not necessarily associated with the fact that both components, when 
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mixed, are isostructural and produce a continuous series of homogeneous solid 

solutions. Limited solubility, when the components are nonisomorphous or 

nonisostructural, is still more common. The relevant phase diagram is presented 

in Fig. 1.82b. Here, too, the statistical replacement of atoms of one component 

by those of another is called isomorphous substitution (although, as indicated 

above, the components mixed are themselves no longer necessarily truly isomor¬ 

phous); it proceeds according to the same scheme as for true isomorphism 

(Fig. 1.9), except that the variable-composition compound, for instance, 

An-xA'xBm, exists at limited, rather than at any arbitrary x, so that Vmax < n. 
Naturally, xmax depends on the thermodynamic parameters, i.e., the temperature 

and pressure. If the components are mutually insoluble, we obtain a phase 

diagram of the type shown in Fig. 1.82c. The requirements concerning the 

possibility of the iosmorphous replacement of atoms which are not structure 

isomorphous are less stringent, although the limitation Ar < 15% remains. 

Different versions of isomorphism and isomorphous substitutions are pos¬ 

sible according to the number of components and the complexity of the chemical 

formulae of the phases forming a given phase diagram (or diagram section). 

Isomorphous substitutions or complete isomorphism occur for one, two, or 

several sorts of similar atoms, i.e., occupancy of one RPS by similar atoms of 

A and A', of another by B and B\ of a third by C and C', etc. On the other hand, 

atoms not of two, but of three or more elements A, A’, A" .. . may be arranged 

in a single RPS. 
Atoms replacing each other often have an identical valency; this is isovalent 

isomorphism. Heterovalent isomorphism is also possible, when the solute atoms 

replacing the solvent ones have a different valence. It is then necessary that the 

lattice as a whole be neutral, i.e., that the valence (charge) be compensated. For 

instance, divalent ions of A can be replaced by a set of a univalent A' and 

a trivalent A" ion, provided, of course, that the condition of allowance for the 

radii and a similar nature of the bond is preserved. Vacancies may also play the 

role of charge compensators; then, for instance, a univalent ion can be replaced 

by a divalent or a trivalent one with charge compensation by the corresponding 

number of vacancies. In covalent semiconductor structures of Ge and Si, which 

belong to group IV of Mendeleyev’s system, host atoms can be replaced by 

corresponding numbers of atoms of groups III and V; on the other hand, if we 

introduce atoms only of group III or only of group V, electrons or holes will 

become compensators, which will yield n or p types of semiconductor crystals. 

Compensation may occur not only with respect to atoms occupying the 

same regular point system, but also with respect to different systems. For 

instance, Fe2 + (C03)2~ and Sc3 + (B03)3“ are isomorphous. 
The required approximate equality of the radii restricts the possibilities of 

isovalent substitution of atoms along the columns (groups) of Mendeleyev’s 

system. This requirement is better fulfilled by diagonal shift, which explains the 

geochemically and mineralogically important heterovalent isomorphism along 

Fersman’s diagonal rows: Be-Al-Ti-Nb, Li-Mg-Sc, Na-Ca-Y (P3), and 

Th (Zr). 
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Isomorphous substitutions are very significant in natural and synthetic 

crystalline substances. Many elements are contained in mineral ores precisely as 

isomorphous impurities - for instance, rare-earth elements - in silicates, where 

they replace Ca; Co or Ni often replace Fe in iron-containing minerals. There 

are many such examples. 
The principle concerning the introduction of certain atoms in a lattice 

(matrix) and thus changing its properties is essential to the production of many 

technically important crystals and materials, beginning with high-strength 

alloys and ending with crystals for quantum electronics and semiconductor 

technology. Thus, in laser crystals a small part of host cations is replaced by an 

active ion; for instance, ruby consists of A1203, in which 0.05% of A1 atoms are 

replaced by Cr; in yttrium-aluminium garnet, Y3A15012, up to 1.5% of Y is 

replaced by the rare-earth element Nd. In fact, practically all crystals contain 

some dissolved atoms (although in small amounts). 

As a specific variant of substitutional solid solutions one can consider 

subtractional solid solutions, where an atom of one of the components does not 

fill the possible positions completely. An example is Al-xA'yB, where y < x or 

y = 0. Here the solution has a formula A^-XB. The unoccupied positions can be 

regarded as “vacancy-populated” A*, and the formula of the compound can be 

written as Ax -xA'yA*-yB. 
Elements are mixtures of isotopes. Taking this feature of atoms into consid¬ 

eration, the crystals of almost all substances can be regarded as isotopic 

substitutional solid solutions. Whenever it is possible to single out monoisotopic 

isomorphous crystals, one can detect slight differences between them. The lattice 

parameters of hydrides and deuterides (and also of ordinary and heavy ice) differ 

but slightly, by hundredths of an angstrom. When hydrogen bonds are present, 

their lengths, thermal vibration parameters, etc., change slightly. 

Substitutional solid solutions are also observed in organic crystals, in which 

the molecule, rather than the atom, must be regarded as the structural unit 

of the crystal. The requirement regarding the approximate equality of the 

size and shape of the substituted molecules should be fulfilled in this case, too. 

For example, the structure of anthracenef T T [exhibits limited 

\_/ \ 
solubility of some of its chloroderivatives or of phenanthrene \ / \ / 

, v_y 
I I I also replace those of anthracene in its The molecules of naphthalene 

lattice, and the part of space which accommodated the third benzene ring 

remains unoccupied. One large impurity molecule sometimes can replace two 

matrix molecules under suitable geometric conditions. 

1.6.4 Interstitial Solid Solutions 

Isomorphous substitution within the structure of a solid solution is due to the 

possibility of complete or partial statistical replacement of atoms A by atoms A' 
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within a given regular point system (Fig. 1.83). Another basic type of solid 

solution is an interstitial solid solution. Its phase diagram is the same as for 

substitutional solutions with limited solubility (Fig. 1.82b), but the “dissolving” 

atoms enter the interstices between the host atoms, statistically populating 

a new, previously unoccupied regular point system of the space group describing 

the matrix crystals (Fig. 1.87). The set of RPS occupied by atoms of the host 

lattice is often called crystal lattice points; it is then said that the atoms entering 

the space between them enter the interstices. Sometimes transition to another 

space group, a subgroup of the first, is also possible. Then we can no longer 

speak of a new compound as being isostructural with the initial one, although 

the point symmetry group and the simple forms of the single crystal (if it is 

obtained) may be preserved. Interstitial-type solubility is usually low, being 

normally just a few per cent and only rarely reaching 10%. Classical examples of 

interstitial solid solutions are austenite (a solid solution of carbon in y-iron), 

where C atoms settle statistically in the octahedral voids of the cubic face- 

centered structure of the y-Fe (Fig. 1.88), and the structures of many carbides, 

nitrides, borides, hydrides of metal, etc., which are called interstitial phases. 

Since the atoms of a solute enter the spaces between the matrix atoms (often 

octahedral or tetrahedral holes of closest packings), their sizes should obviously 

be close to those of the interstices, and not of the host atoms, as in the case 

rYTTVrTT^Y 
tttYTtY 
(WhWhk) 

yttttTY Fig. 1.87. Idealized scheme of the structure of in¬ 

terstitial solid solutions 

Fig. 1.88. Austenite structure. Crosses represent the positions of the 

C atoms being incorporated into the y-Fe lattice 
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isomorphous substititions, i.e., they must be smaller than the host atoms. It is 

therefore easy to understand why interstitial solid solutions are often formed by 

such atoms as H, B, N, and C, which have small radii. If the size of the interstitial 

atom does not correspond to that of the interstices, the region of the matrix 

lattice around them may be greatly distorted. Indications have been found that 

H molecules enter lattice interstitials in metals, such as Zr and W. 

It should be noted, that owing to the metallic nature of the bond in alloys 

and many interstitial phases, charge redistribution occurs cooperatively 

throughout the volume of the crystal. The interstices may be filled, not only in 

accordance with a phase diagram with limited solubility (Fig. 1.82b), but also 

through attaining the stoichiometric composition, when all the holes of this type 

are filled. Then a new structure with a definite formula is formed; for instance 

ABX, at x = n, where n is an integer (Fig. 1.89). Thus the structure ABX, at x < n, 
can be interpreted in two ways: either as an interstitial solution of the atoms of 

B in structure A, or as a defect structure AB„, in which some of the possible 

positions of the atoms of B(n — x) are vacant (a subtraction solution). 

It is also known that, within significant concentration ranges, series of 

homogeneous solid solutions exist between substances with different formulae 

(with charge compensation, if the atoms contained in the lattice have different 

valence). A classic example is the system CaF2-YF3 (Fig. 1.90), with YF3 

solubility up to 40%. In the general case such systems with the fluorite-tissonite 

structures (Fig. 1.90) can be written as MjtxRl + F\+x, where R is a rare earth 

element. In the substitution of Me2+ - by Re3+ - cations the charge is 

compensated by additional F1- anions entering the structure. At the same time 

some F_1 ions leave the main fluorine position of the fluorite phase. Thus 

formed voids incorporate clusters containing more fluorine than the position 

X [010] X 
X 

O Th 
\ 

oC Fig. 1.89. Structure of ThC2 
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Fig. 1.90a-c. The structures of fluorite (a) and a fluorite-based solid solution Bao.73Pro.27F2.21 with 
additional fluorine atoms on the two-fold axis (b); Sro.69Lao.31F2.31 with additional fluorine atoms 
on the three-fold axis (c). Above figures (b) and (c) the M6F32 and M4F26 clusters are shown 

initially had. Earlier it was assumed that F1- ions are randomly distributed in 

their sites on the two- and three-fold axes. But then it was established that, 

depending on the ionic radii ratio of the substituted and substituting cations, 

two types of structures can be formed - with additional fluorine atoms on 

two-fold axes (Fig. 1.90b) and with additional fluorine atoms on three-fold axes 

(Fig. 1.90c). The geometries of clusters in this case turned out to be different as 

well (Fig. 1.90) [1.60]. 
Specific features of the atomic arrangement in such solid solutions lead to 

different physical properties of nonstoichiometric fluorides used as the matrices 

for lasers, ionic conductors and other applications. 
Thus, there are many different ways in which impurity atoms can enter the 

crystal lattice, beginning with isomorphous substitutions in a series of homo¬ 

geneous solid solutions and ending with incorporation of atoms into new 

positions with a change in the structure as a whole. Accordingly, the space 

symmetry of the crystal structure may be retained or changed (reduced in most 

cases); the decrease in symmetry may also extend to the point group, and 

transitions to the lower syngonies are also possible. 
It is noteworthy that the process of the formation of substitutional or 

interstitial solid solutions requires a description of not only an ideal crystal 

structure but also of a real one, with an indication of the distortions in the ideal 

lattice, the way the atoms enter it, etc. 
The atomic interaction in solid solutions excludes a completely random 

distribution of atoms of sorts A and A' in the substitutional “sublattice” [1.61]. 

If atoms of sorts A and A' attract each other, then there is an “atmosphere” 
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around each atom of sort A due to the preferential distribution of atoms of sort 

A'. This phenomenon is called the short-range order. In the opposite case, when 

the atoms of sorts A and A' repel each other, an atmosphere of the same kind of 

atoms is formed around the atoms of sort A. This phenomenon is usually called 

short-range decomposition. But in both cases we deal with a correlation in the 

mutual arrangement of atoms A and A'. The formation of such linear, two- or 

three-dimensional associations of related atoms (“block isomorphism”) is also 

possible; they can interact with other lattice defects, such as vacancies and 
dislocations. 

1.6.5 Modulated and Incommensurate Structures 

In two-phase systems arising with the decomposition of metallic or other solid 

solutions, the segregations of the new phase are sometimes arranged regularly, 

rather than randomly with a certain periodicity, as is evidenced by electron- 

microscopy, X-ray, and electron diffraction data. The shape, orientation, and 

periodicity of these segregations depend on the initial structure and its orienta¬ 

tion relationships with new phase. Such periodic distributions of inclusions are 

called modulated structures. The periodicity can be observed along one, two, or 

all three directions. Modulated structures (Fig. 1.91) are observed, for instance, 

in Au-Pt, Al-Ni, Cu-Ni-Fe, and many other alloys. 

The consistent periodic arrangement of the precipitations of the new phase is 

ascribed to the fact that a substantial energy contribution to such a system is the 

strain-induced energy due to the mismatch of the crystal lattice of the two 

phases. The total energy minimum just corresponds to the modulated structure, 

whose formation results in the disappearance of the long-range fields of elastic 
stresses. 

Fig. 1.91. Electron-microscopic 
image of the two-dimensional 
modulated structure of a ticonal- 
type alloy, (001) plane, x 32,000 
[1.62] 
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The most general case is the so-called incommensurate structures in which 

the distribution of some structural parameter, say, charge, magnetic moment, or 

deformation, is periodic, (in one, two, or three dimensions), but the period A{ is 

not multiple to the integral number of crystal lattice periods a,, i.e., At =h kat. In 

particular, such structures are observed in ferroelectrics and ferroelastics. The 

periods At .depend on temperature and other external conditions. At a certain 

temperature a transition to the commensurate structure (A, = kat) can take 

place. 

Fig. 1.92a, b. Ideal structure of the 
W03 type made up of octahedra 
(a) and a structure with CS along 
the {103} plane (b) 

Fig. 1.93. Electron micrograph of 
a crystal of overall composition 

Ti0 03w°3 containing mostly 
[103] CS planes. Short segment 
of [102] GS plane is arrowed 

[1.65] 
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1.6.6 Composite Ultrastructures 

In recent years it has been found, due to the use of high-resolution electron 

microscopy (see Sect. 4.9.3 in [1.6]), that many structures with a macroscopi- 

cally nonstoichiometric formula are actually a combination of parts of related 

structures having stoichiometric formula. A classic example are the oxides of 

transition metals M„03„_m (tungsten, molybdenum, niobium, etc.) and the 

intermediate structures resulting from their oxidation or reduction [1.63-65], 

The stable elements of these structures are columns of MOe octahedra which 

share the vertices in the ideal case of M03. Contact by the edges produces the 

so-called crystallographic shear (CS) (Fig. 1.92). CS along {102} yields the 

structures M„03„_h and along {103} M„03„-2, etc. Thus, the co-existence of 

these structures in the same crystal results in a macroscopically nonstoichio¬ 

metric formula of the type M„03n_x (Fig. 1.93. Figure 4.106 in [1.6] may serve 

as another example.) Coexistence of blocks of different composition in a crystal 

is known for silicates (Fig. 1.94) and for many other compounds. In all these 

cases one observes a continuous crystal structure, but one can no longer speak 

of the same lattice throughout the entire volume of the crystal; there are 

Fig. 1.94. Electron micrograph of three-row Na-Co silicate [theoretical formula Co4Na2- 
Si6016(OH)2]. Besides the regular structure consisting of 3 silicon-oxygen chains, one can see 
insertions consisting of 4 or 5 chains. On the schematic representation of the structure the Si04 2 
tetrahedra are denoted by triangles [1.66] 
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different, although related, lattices alternating at the microlevel and forming 

a macroscopically unified crystalline aggregate. If this alternation is uniform and 

regular throughout the whole volume, one can speak of a superlattice. If it is 

irregular, there is no long-range order in the whole volume; it exists only in 

individual blocks. Ultrastructures may naturally show various structural defects 

(Chap. 4). 



2. Principal Types of Crystal Structures 

At present more than a hundred thousand of crystal structures are known. They 

can be classified according to definite features of their enormous diversity. First of 

all, we shall consider the structures of elements in which different types of bonds 

are encountered, since these structures most prominently display the crystallo- 

chemical properties of the atoms of a given element; these properties are very often 

inherited by the structures formed by compounds of these atoms as well. 

There are many principles for classifying the structures of compounds: by the 

ratios of components in the formula (AB, AB2 etc.), by the structural types, by 

the iso- or heterodesmicity of the bonds, by the dimensionality of the structural 

groupings, etc. We shall adhere to the most widespread classification, namely 

that according to the types of chemical bonds. We shall consider structures with 

a metallic, ionic, and covalent type of bond and, finally, molecular structures 

with van der Waals binding forces between molecules. Owing to the enormous 

diversity and specificity of definite classes of molecules, we shall single out, in the 

molecular structures, common organic compounds, then high-molecular com¬ 

pounds - polymers, liquid crystals, and, finally, biological structures. 

2.1 Crystal Structures of Elements 

2.1.1 Principal Types of Structures of Elements 

The basic features of the crystal structures of elements depend on their position 

in Mendeleyev’s table and are of periodic character as all their basic properties. 

The structures are schematically represented in Fig. 2.1 in accordance with their 
position in the table. 

They can be divided into two large groups: metal and nonmetal structures. 

The structure of typical metals is determined by the metallic nature of the bond 

and its nondirectional character, therefore, these structures are based on close 

atomic packings. As we move right- and downwards along the periodic table, 

the fraction of covalent effects in the interatomic bonds increases gradually, the 

structures of the metals becoming more complicated and their bonds acquiring 
a directional character. 

On the right side of Mendeleyev’s table, beginning with B, Si, Ge, and Sn, we 

have typical covalent structures. Then there are structures in which covalently 
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bonded atoms form the groupings linked by van der Waals bonds. Finally, the 
atoms of inert elements have no strong bonds between them and are packed 
owing to the van der Waals forces. Thus, in addition to the typical metals, it is 
possible to isolate in the periodic system covalent-metallic structures, typically 
covalent structures, the molecular heterodesmic structures, and structures of 
inert elements. 

Many elements have several polymorphous modifications. The phase dia¬ 
grams of some of them are given in Fig. 2.2 [2.1]. When pressure increases, the 
main trend is a transition to more densely packed structures, and at very high 
pressure metallization occurs. An increase in temperature, which loosens the 
orientation of the bonds, usually increases the symmetry. 

Let us now consider some typical structures of elements. Hydrogen forms 
H2 molecules. In the crystal structure, which exists at a normal pressure below 
3 K, the centers of the molecules are arranged according to the close cubic 
packing, and on heating, to close hexagonal packing. Here we evidently have 
free or restricted thermal rotation of molecules, respectively; their proper cylin¬ 
drical symmetry may affect the “choice” of hexagonal packing. 

Helium, which forms crystals only under pressure, has a hexagonal close- 
packed structure, but body-centered cubic and cubic close-packed modifications 
of 4He and 3He were also observed at definite p-T conditions (Fig. 2.2a). In 
helium crystals quantum phenomena are observed; defects of the lattice in these 
quantum crystals must be interpreted as “smeared out” over a volume. The 
crystal structure of other solidified noble gases is the closest cubic packing, with 
van der Waals interactions between atoms. 

At very high pressures (about 1 Mbar), solid Xe becomes metallized and 
shows superconductivity. Crystals of the elements of subgroup la, alkali metals, 
open up the series of typically metallic structures. The structure of these, the 
alkaline earth group Ila, and many other metals belong to one of the three types 
of packing: closest cubic, closest hexagonal (packing coefficient 74%; 13% of all 
the structures of elements belong to each of them), or body-centered cubic 
packing, which also exhibits a high density (packing coefficient 68%) (Figs. 
1.44a, b, 63a). The common cause for the appearance of these types of structures 
lies in the nondirectional character or weak orientation of the metallic bond. It 
is, however, very difficult to explain which of these three types of structure will 
be realized for an element under given thermodynamic conditions because their 
energies are very close and depend on fine details of their electron and phonon 
spectra. 

A classical example of polymorphism is iron (Fig. 2.2c); a-Fe, the bcc lattice 
with a ferromagnetic spin ordering transforms to /?-Fe at 770°C, retaining the 
same bcc structure, but losing ferromagnetism; then, at 920°C, transition to 
a close-packed fee structure of y-Fe occurs, but at 1400°C the bcc structure of 
<S-Fe appears again. Two modifications are observed in Na, Be, Sc, Co, etc., and 
three, in Ta (Fig. 2.2e), Li, and La. In the hexagonal close-packed structures of 
metals the c/a ratio is usually slightly lower (down to 1.57) than “ideal” (1.633); 
for P-Ca and a-Ni this ratio is about 1.65. A change in pressure also results in 
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T, °C 

Fig. 2.2a-f. p-T phase diagrams for some elements, (a) helium 4; (b) sulphur; (c) iron; (d) cerium; 

(e) thallium; (f) uranium 
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polymorphous transformations in many metals. Thus, an interesting transition 

takes place in Ce at 12.3 kbar (Fig. 2.2d). The close-packed cubic structure (fee) is 

preserved, but the cell period decreases from 5.14 to 4.84 A. This is attributed to 

the transition of one 4/ electron to the 5d level. 

As we move right- and downwards in Mendeleyev’s table, the covalent 

interaction plays an ever-increasing role. The whole variety of metal structures 

which manifest covalent effects to some degree can be divided into several 

groups. Cd and Zn are examples of deviations from hexagonal close packing 

with an increase in c/a ratio to 1.86 and 1.89, respectively; this points to 

non-equivalence of the bonds between the atoms in a layer and between the 

atoms of different layers. In the metal structures with a still larger fraction of 

covalent bonding, conduction electrons characteristic of metals are preserved, 

but the trend towards the formation of directional bonds results in different, 

sometimes extremely complex structures, whose “background” is close packing, 

as before. These are “metal-covalent” structures. For instance, /?-W (Fig. 2.3a) 

has a peculiar structure with coordination numbers 12 and 14. Magnesium has 

three modifications: a with 58, /? with 20, and y with 4 atoms in the unit cell. The 

phase a-Mn has a distorted fee structure (Fig. 2.3b). The complexity of this 

structure is evidently due to the different valency states of magnesium atoms. 

The phase /?-Mn (Fig. 2.3c) can be allocated to the “electron compounds” (see 

Sect. 2.2.2), and y-Mn has the structure of y phases (see Fig. 2.12). Actinides (Pa, 

U, and Np) have a great variety of polymorphous modifications (examples are 

presented in Fig. 2.5d, e). Plutonium has six modifications, including bcc and fee 

structures, structures based on their modifications, and so on. 

A conventional boundary between metals and nonmetals can be drawn 

between subgroups IIIB and IVB. Where the atomic numbers are low (B), 

however, the boundary is shifted to the left, and where they are high (Sn, Pb, and 
Bi), to the right. 

A remarkable example of the diversity of polymorphous modifications is 

offered by B. Its atoms form electron-deficient, directional bonds with a c.n. of 

5 or more; c.n. 5 promotes the formation of space groupings with a fivefold 

icosahedral symmetry. The B-B distance in icosahedra varies between 1.72 and 

1.92 A. Figures 2.50, 66 and 72b in [2.2] exhibit complex structures of interlaced 

icosahedra, or more complex groupings of boron atoms. The following modifi¬ 

cations of the boron structure are known (the figure indicates the number of 

atoms in the unit cell): B-12, B-50, B-78, B-84, B-90, B-100, B-105, B-108, B-134, 

B-192, B-288, B-700, and B-1708, which have extremely diverse forms of space 
symmetry. 

In covalent structures element’s valency determines the number of nearest 

neighbors and, hence, the extent of structural groupings, i.e., the ability of the 

atoms of some element or other to form a three-dimensional pattern, two- 

dimensional layers, one-dimensional chains, or zero-dimensional (molecular) 

groupings. Groupings of specific dimensionality are mutually bonded owing 

to van der Waals or partially metallic bonds. The electron spectrum of these 
structures is often of a semiconductor nature. 
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Qw, ®w, ^Mn| Q)MnIIQ>MninOMni\ 

O 

Fig. 2.3a-f. Structure of some metals with complicated coordination, (a) /1-tungsten; (b) a-manga- 
nese; (c) /9-manganese; (d) a-uranium; (e) protactinium (modification stable under ordinary condi¬ 

tions); (f) ^-neptunium 



130 2. Principal Types of Crystal Structures 

Fig. 2.4a, b. Fragments of the structures of two boron modifications, (a) tetragonal B-50 and 
(b) rhombohedral B-105 

In conformity with the principles of the formation of a two-electron bond, 

a simple rule is obeyed in covalent structures. The coordination number K = V, 
where V is the valence, or K = 8-N, where N is the number of the group. Thus, 

in the fourth group K = 4, C, Si, Ge, and a-Sn (grey tin) have a tetrahedral 

diamond structure (Fig. 2.5a) and 0-Sn (white tin) has a distorted diamond 
structure (Fig. 2.5e). 

Carbon has two principal modifications, diamond and graphite, and two 

varieties of these (Fig. 2.5a-d). In graphite, which is stable at normal temper¬ 

ature (Fig. 2.5c), the strong covalent bonds between the atoms in the plane net 

are hybridized; they are one-third double, the C-C distance being equal to 

1.420 A. The bond between the layers is van der Waalsian, the distance between 

them being 3.40 A. The graphite structure is double layer. There is also a three- 

layer structure, namely, the rhombohedral modification of graphite (Fig. 2.5d). 

The diamond modification of carbon (Fig. 2.5a), with 1.54 A distance for 

a single C-C bond, is metastable; the equilibrium region of its existence lies at 

high pressures (70 kbar) and temperatures (2000°C). We also know the hexa¬ 

gonal modification of diamond, lonsdalite, in which C retains its tetrahedral 

coordination, but the packing of the tetrahedra is a three-layer hexagonal, as in 
wurtzite (Fig. 2.4b). 
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Fig. 2.5a-f. Structure of carbon and diamond-like elements, (a) diamond, silicon, germanium; (b) 

hexagonal modification of diamond-lonsdalite; (c) normal hexagonal graphite; (d) rhombohedral 
graphite; (e) molecule of fullerene C60; (f) flattened tetrahedron in the structure of white (/?) tin 
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In 1985 a new carbon modification was discovered - fullerene C60 

(Fig. 2.5e). A case-like C60 molecule possesses an icosahedral symmetry. There 

are known some other case-like Cn molecules. Fullerene C60 has a cubic closely 
packed structure (for details Sect. 6.2). 

In the fifth group K = 3. White phosphorus forms tetrahedral molecules. 

Black phosphorus (Fig. 2.6a), which also has c.n. = 3, forms a layer structure. 

The elements As, Sb, and Bi, with three pyramidal bonds, also crystallize in layer 

structures (Fig. 2.6b), which can be regarded as distorted hexagonal close 

packings, in which the distances between the atoms of neighboring layers are 
10%—20% larger than in the intralayer structures. 

In the sixth group, K = 2, one of the modifications of S, /?-Se, and Te forms 

chain structures with corner p bonds (Fig. 2.6c). Hexagonal y-Se and Te may 

also be regarded as distorted close-packed structures, in which the bonds 

between the atoms inside the layer are shorter than between the atoms of 

neighboring layers. In the other sulphur modifications (they are very numerous, 

see Fig. 2.3b) the chains of atoms are closed into six or eight-membered 
(Fig. 2.7a, b) rings, and various molecular structures arise. 

Oxygen 02, ozone 03, and nitrogen N2 (Fig. 2.7c) do not obey the rule 

K = 8 — N because of the multiple bonds in their molecules. These elements form 

molecular structures and have different polymorphous modifications. Finally, in 

conformity with the rule K = 8 - N, the halogens F, Cl, Br, and I form diatomic 
molecules, which also pack into molecular structures (Fig. 2.7d). 

2.1.2 Crystallochemical Properties of Elements 

This concept implies those properties of atoms of elements which are retained in 

compounds. Thus, for intermetallic compounds, the metallic type of bond and 

the presence of free electrons remain the characteristic properties. The elements 

located near subgroup IVc form covalent structures and have a predominantly 

Fig. 2.6a-c. Some covalent structures satisfying the rule K = 8 - N. (a) black phosphorus; (b) a-As 
(grey), Sb and Bi have the same structure; (c) y-Se and Te, chain structures 
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d 

Fig. 2.7a-e. Examples of molecular structures, (a) 
packing of six-membered rings in rhombohedral sul¬ 
phur; (b) packing of eight-membered rings in rhombic 
sulphur; (c) a-nitrogen (space group Pa3); (d) the same, 
showing molecular packing; (e) structure of a Br2 

crystal 

covalent bond in intermetallic compounds as well. This nature of the bond is 

best preserved in combinations of elements equidistant to the right and to the 

left from subgroup IVc, for instance, BN and ZnS. 
Compounds of metals with elements of the covalent group usually have 

a metallic bond, although covalent interactions also play a certain part in them. 

Compounds of elements considerably remoted from each other to the right and 

to the left of vertical IV, i.e., compounds of metals with oxygen, sulfur, and 

halogens, already exhibit a predominantly ionic, polar bond. Many of these 

structures, for instance, oxides and halides of metals, are insulators. 
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Finally, the combinations of elements forming molecular structures - H, C, 

N, O, F, Cl, Br, and I - are themselves molecular with covalent intramolecular 

and van der Waals intermolecular bonds. 

The increased complexity of the electron shells of atoms, which promotes the 

formation of complex hybrid orbitals involving s, p, and d electrons, helps to 

distinguish another large series of elements of subgroup Villa and neighboring 

subgroups in the periodic system; they are the complex-formation elements. 

They form predominantly covalent bonds with halogens and some other ele¬ 

ments. The complex groupings themselves are bound with each other and with 

other atoms contained in such compounds by ionic or van der Waals forces. 

Thus, the traditional crystallochemical division of the structures into inter- 

metallic, covalent, ionic, complex, and molecular has its foundation in the 

periodic system, too. Naturally, the allocation of structures to one of the types of 

chemical bond is often conventional, and compounds with an intermediate-type 

bond - heterodesmic structures with different types of bonding between certain 

atoms contained in them - will be formed depending on the complexity of the 

formula, which may include atoms of elements most varied in their chemical 
features. 

2.2 Intermetallic Structures 

Metals may form different types of structures when they combine with each 

other. Since the metallic bond is due to the free electrons, the individual 

properties of the constituent atoms do not substantially affect the formation of 

such structures, as compared with ionic or, all the more so, covalent structures. 

This means that they are more tolerant to the kind of neighboring atoms, as well 

as to the stoichiometry of the components. Therefore, intermetallic structures 

show a considerable trend towards the formation of solid solutions and, during 

the formation of compounds, towards large deviations from the stoichiometric 

composition; these structures have many defects. Metastable phases are formed 
rather readily. 

2.2.1 Solid Solutions and Their Ordering 

Solid solutions composed of metals are substitutional solid solutions. A continu¬ 

ous series of solid solutions is formed (in accordance with the rules discussed in 

Sect. 1.6) when two metals are characterized by an identical structure, by similar 

atomic radii, deviating by not more than 10%, and by similar chemical proper¬ 

ties in respect to their proximity in the periodic table. Thus, solid solutions form 

over the entire concentration range, in the systems Ag-Au (both rm = 1.28 A), 
Co-Ni (1.25 A) (but not in systems Ag-Co and Au-Co), K-Rb (2.36 and 2.48 A), 
Ir-Pt (1.35 and 1.38 A), and so on. 
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As noted above, a continuous series of solid solutions is characterized by 

such a distribution of atoms over the positions in the crystal lattice that the 

atoms of both components (for a binary solid solution) occupy positions with 

certain probabilities. These probabilities are equal to the atomic fraction of the 

components. Such a distribution of atoms is called disordered. Since the mutual 

arrangement of atoms in the structure depends on their interaction, it is natural 

to ask when a disordered atomic distribution takes place. It follows from 

physical considerations that disordered distribution should arise when the 

typical thermal energy kT essentially exceeds the typical value of the energy U of 

the atomic interaction, which determines the ordering (the interchange energy) 

(Uinl/kT <| 1). In the opposite case (Uint/kT > 1), the effects of thermal disorder¬ 

ing can be neglected; then, the atomic distribution is determined by the condi¬ 

tion of the minimum of the total interaction energy. If the interatomic potentials 

are such that each atom of sort A tends to be surrounded by atoms of the sort B, 
an ordered structure arises in which atoms of sorts A and B alternate. 

If, however, the atomic interaction potentials are such that each atom tends 

to be surrounded by atoms of the same sort, decomposition into two phases 

takes place. One of these phases is enriched in component A, and the other, in B. 
Formally, these two cases are associated with opposite signs for the interchange 

energy. The transition from a disordered solid solution, which is realized at high 

temperatures, to an ordered distribution is a phase transition and occurs at 

temperatures T0, at which kT0 x |l/int|. Decomposition of a disordered solid 

solution into two phases also takes place at temperature T0, at which 

kT0 ~ | Uint\. 
A classical example of ordering is the Au-Cu system. Both metals have a fee 

structure; their radii are close, 1.28 and 1.44 A, respectively; and they form 

a continuous series of solid solutions (Fig. 2.8). The disordered structure 

at %Cu 
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weight %Cu Cu 

100 

Au 

Fig. 2.8. Phase diagram of the Cu-Au 

system 
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(Fig. 2.9a) can be stabilized by quenching. At low temperatures, however, it 

becomes metastable. At temperatures about 400°C the phenomenon of ordering 

in some concentration ranges is observed; a completely statistical arrangement 

of Au and Cu atoms over the positions of the fee lattice, i.e., according to a single 

regular point system of group Fm3m, is replaced by an ordered distribution over 

two RPS, into which the initial RPS is decomposed (with a reduction of 

symmetry). Ordering is accompanied by a change in the physical properties, for 

instance, electrical conductivity. In the composition CuAu (/? phase) these atoms 

alternately occupy “floors” perpendicular to axis 4 (Fig. 2.9c), and the structure 

becomes tetragonal (but with a pseudocubic relation of the lattice parameters 

a'y/2 « c). 
With the composition corresponding to Cu3Au (a' phase), the Cu atoms 

occupy the centers of the faces of the cubic cell, while Au are situated at its 

vertices (Fig. 2.9b). But these structures are not realized in the ideal form: each 

RPS is not completely occupied by the definite sort of atoms; statistically, the 

atoms of the second component are also present there. For instance, in Cu3Au 

the face centers are occupied by about 85% of Cu atoms and, hence, the vertices 

are occupied by about 55% of the Au atoms. Consequently, gold atoms occur 

preferentially on alternate planes (Fig. 2.10). The deviation from the 

stoichiometric composition within certain concentration limits preserves the 

ordering, and the percentage of each of the positions for each component 

changes in accordance with the concentration. The degree of ordering also 

depends on the annealing temperature. The ordered structure consists of do¬ 

mains, whose boundaries are out of phase (Fig. 2.10). The existence of substitu¬ 

tional solid solutions within the entire concentration range or within only a part 

of it, as well as order-disorder phenomena, is very common in binary and 

multicomponent alloys. Some systems form subtractional solid solutions. For 

instance, in NiAl (structure of the type CsCl) with an A1 content of over 50%, 
some of the Ni positions are vacant. 

2.2.2 Electron Compounds 

Metals of the subgroup Ib-Cu, Ag, Au, and some others - when forming 

structures with metals which have more than one valence electron, form an 

Fig. 2.9a-c. Ordering in the Cu-Au system, (a) disordered structure; (b) ordered structure of 
Cu3Au; (c) ordered structure of CuAu 
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Fig. 2.10. Electron micrograph of a partially ordered structure of Cu3Au showing planes parallel to 

the cubic face. Domains are arrowed [2.3] 

interesting group of alloys, the so-called electron compounds, or Hume-Rothery 

phases. Their structures are characterized by a definite electron concentration, 

i.e., by the ratio of the number ne of valence electrons in the alloy unit cell to the 

number na of atoms in it. 
The type of the electron compound mainly depends on the electron energy. 

The Brillouin zone corresponding to a given structure and determining the 

maximum electron energy is stable only when the number of electrons is 

proportional to the volume of the Brillouin polyhedron. The “overcrowding” of 

the zone results in the structure instability and the formation of a new one with 

a more capacious Brillouin polyhedron. Thus, the limit to electron concentra¬ 

tion for the fee lattice of the a phase is 7/5 - 1.4. For the first polyhedron of the 

y phases, which is bounded by the simple forms {330} and {411} (Fig. 2.11), 

njna = 22.5/13; a more accurate calculation of the polyhedron shape yields 

precisely the value of 21/13. This is how the limits to the solubility (with the 

formation of the fee structure) of one metal in another are determined, and these 

limits are lower for higher valence metals. For instance, the solubility of metals 

Cd, In, Sn, and Sb (with 2, 3, 4, and 5 valence electrons, respectively) in Ag 

should be'40, 20, 13.3, and 10%, which is in good agreement with experiment. 
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Fig. 2.12. Structures of electronic compounds of the a, p, y, e, and rj phases in the Cu-Zn system; the 
e and the r\ phase are hexagonal, close packed; for the e phase c/a = 1.55, for the rj phase, 1.85 

The structures of electron compounds and some of their representatives are 

given in Fig. 2.12. For p phases (bcc lattice) and p' phases (cubic cell with 20 

atoms), njna = 3/2. In y phases, njna = 21/13; their structure is related to the 

P Phases and can be obtained by tripling with respect to all the axes of the latter 

unit cells, of these 27 cells with 54 atoms, two atoms — at the center and at the 

corners of the large cell — are absent, while the remaining 52 atoms are slightly 

displaced with respect to the ft phase structure. For hexagonal £ and vj phases, 

ne/na — 7/4. In a number of electron compounds, ordering phenomena are 
observed. 

2.2.3 Intermetallic Compounds 

Such compounds with a definite stoichiometric ratio of the components (and 

a certain range of concentrations near this ratio) may be due to the ordering of 

alloys in the solid state as well as to direct crystallization from the melt. The 

factors determining their structures are the ratio of the atomic radii, the electron 
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concentration, and the presence of ionic or covalent components of the metallic 

bond between atoms in alloys. 

The basic structures of intermetallic phases are shown in Fig. 2.13. Many of 

them are based on the structures of the constituent pure metals. The unit cell of 

a compound may either correspond to the metal unit cell with reduced sym¬ 

metry or be based on a multiple of it. There are also compounds, such as CuZn, 

in which the structure of the intermetallic phase does not correspond to that of 

any of the constituent metals. 

All these compounds have high coordination numbers. Compounds with 

a high coordination and packing coefficient may also be formed by atoms with 

considerably different atomic radii, owing to the filling of the interstices in the 

packing of large atoms by smaller ones. Thus, in the cubic structures of MgCu2 

(Fig. 2.13c), which is an example of so-called Laves phases, the Mg atoms 

occupy the points of the diamond lattice, whereas the Cu atoms form a continu¬ 

ous string of tetrahedral groups along the free octants. 

The compounds with a low coordination-number usually arise when there is 

a considerable difference in the atomic radii and the fraction of covalent or ionic 

bonds increases significantly. Among them are structures of the type NiAs with 

c.n. 6 (octahedron or trigonal prism); the centers of these polyhedra are occupied 

by an atom of a more covalent element (Fig. 2.13a). The structures of PtAl2 and 

Auln2 are of the type CaF2 (Fig. 1.75b); here too, the more covalent atom has 

®Ni QAs ®Sn QMg ® Mg °Cu 

d 

• AI QFe 

o2=a° 

Q 
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®Cr ©Al 
®Na ©T1 

Fig. 2.13a-f. Some structures 

(e) Cr2Al; (f) NaTl 

of intermetallic phases, (a) NiAs; (b) Mg2Sn; (c) MgCu2; (d) Fe2Al; 
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Fig. 2.14a-d. Structure of MgZn2 (projection onto the xy plane). Coordination polyhedra of 
Mg (a), Zn(1) (b), and Zn(2) (c), and the Laves 12-vertex polyhedron (d) are shown 

a tetrahedral coordination. The compounds of electropositive with elec¬ 

tronegative metals (for instance MgPb2, type CaF) can be regarded as being 
fractionally ionic or covalent. 

A number of intermetallic compounds are characterized by complicated 
coordination polyhedra (Fig. 2.14). 

2.3 Structures with Bonds of Ionic Nature 

2.3.1 Structures of Halides, Oxides, and Salts 

Halides, oxides, silicates, many chalcogenides, and salts of inorganic acids are 

structures with bonds of an ionic nature. When allocating, as according to the 

crystallochemical tradition, these structures to the ionic type it must be borne in 

mind that they also always show covalent interaction, to some extent. This is 

manifested very weakly in some structures, more strongly in others, and there 

are structures in which it appears to be predominant, as was demonstrated 
in Sect. 1.2. 

Classical representatives of compounds with an almost completely ionic 

bond are halides of alkali metals, in which univalent ions are practically fully 

ionized. The effective charge of di-, tri, and, all the more so, multivalent ions is 

always below the formal value of the valence and usually does not exceed one or 

two electrons. For instance, for some cations the population of the valence 
orbitals and the effective charge are [2.4], 
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s P d Effective 
charge 

Si4 + 0.9 1.7 0.7 + 0.7 
S6 + 1.0 2.2 0.9 + 1.9 
Cr6 + 0.2 0.8 4.4 + 0.6 

(According to other data the effective charge of Si4+ is 1.0-2.0 e). 
Most of the halide structures are built according to the geometric scheme 

of close packing; they include structures of the types NaCl (Fig. 1.49), CaF2 

(Fig. 1.75b), CdCl2 (Fig. 1.52), etc. Another simple type of ionic structure, CsCl 

(Fig. 1.75a), is encountered more rarely. Many oxides - MgO (type NaCl), 

A1203 (Fig. 1.72) - are also built according to the close-packing principle; the 

close packing in the structure of rutile Ti02 is slightly distorted (Fig. 2.15). The 

structures of complicated oxides, for instance, perovskite CaTi03 (Fig. 2.16), 

spinels (Fig. 2.17), which include oxides of iron and other metals, and some 

garnets (Fig. 2.18), can also be considered on the basis of the geometrical scheme 

of close packing of anions with the filling of some of the holes according to the 

chemical formula and the ion size. 
Compounds of this type often have special physical properties and are of 

technical importance. Thus, the perovskite type (Fig. 2.16) includes barium 

titanate and many other ferroelectric crystals; the crystals of several complicated 

oxides of trivalent metals of the spinel (Fig. 2.17) and garnet (Fig. 2.18) types are 

valuable magnetic materials. The yttrium-aluminium garnets Y3A15Oi2 men¬ 

tioned above and other similar compounds are used as laser materials. 

In the structures of the salts of acids with a complex anion, for example, 

CO*-, NO*-, SO^-, PO^-, the bonds between atoms in the anion are close to 

purely covalent, the anion entering the crystal structure as a structural unit. In 

these structures, for instance, those of calcite CaC03 (Fig. 2.19), and gypsum 

CaS04-2H20 (Fig. 2.20), the principle of the maximum filling of space is well 

Fig. 2.15. Structure of rutile Ti02 Fig. 2.16. Structure of perovskite CaTi03 
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Fig. 2.17 Fig. 2.18 

Fig. 2.17. Structure of spinel-type oxides with a general formula M'J'M1104. It includes 
Fe2Mg04, Fe304, Al2Ni04, Cr2Zn04 and other compounds. In the closest cubic packing of 
O atoms (32 per unit cell), metal M"1 populates (in the ideal case) 16 out of 32 octahedral voids, and 
metal M", 8 tetrahedral voids; this arrangement is shown in the figure 

Fig. 2.18. Unit cell of the crystal structure of grossular garnet Ca3Al2Si3012 in polyhedra, tetra- 
hedra around Si, octahedra around Al, and twisted cubes around Ca 

maintained, but the voids are now filled not only with spheres, but also with 
more complicated figures. 

The presence of a cation that freely gives up electrons may lead to the 

appearance of unusual anions in crystal structures. An interesting example is the 

Li3N structure (Fig. 2.21a), in which the plane of a layer of N atoms and two Li 

atoms alternates with a layer consisting only of Li atoms (this structure is an 

ionic conductor, see Sect. 2.3.3). Experimental data [2.5] - the calculation of 
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O N z=0 N 

• Li (1) 2 = 1/2 

Q Li(2) z = 0 

a b 

Fig. 2.21. (a) structure of Li3N; (b) difference electron density map for Li3N at 20°C (z = 0) 
calculated under the assumption of the presence of Li+ and N3- ions. Full and broken lines 
correspond to positive and negative densities, respectively. The lines are drawn at 0.05 e A-3 [2.5] 

deformation difference syntheses (Fig. 2.21b) - showed that both the cation and 

anion are almost fully ionized, i.e., the Li+ cation leads to the appearance of an 

N3- anion. 
In complicated ionic compounds, especially those with large cations, close 

packing is more rarely the geometric basic of the structure; the c.n. of the cations 

increases. 
When analyzing the structure of ionic compounds L. Pauling introduced 

the concept of “bond valence strength”, i.e., the cation valence divided by its 

coordination, and formulated the “electrostatic-valence rule”. This rule says that 

the sum of the valence strengths s converging on an anion is (approximately) 

equal to its valence 

(2.1) 

This rule is reasonably well obeyed by many simple and complex ionic struc¬ 

tures, and deviations from it do not exceed 1/6. 
On the basis of the concept of bond valence strength s between ions of 

opposite signs in “ionic” structures, some authors proposed empirical quantita¬ 

tive relationships between the values for a given bond and its length R. Thus, for 

cation-oxygen bonds [2.6] 

(2.2) s = s0(R/R0yN, 

where s0, R0, and N are the parameters of a given cation for a given c.n. 
Thus, for bonds between oxygen and second-row atoms (from Na to S) the 

relationship s = s0(K/1.622)-4 29 (Fig. 2.22) holds true. For bonds with other 

cations, individual parameters were chosen; s0 fluctuates between 0.25 and 1.5, 

R0 between 1.2 and 2.8, and N between 2.2 and 6.0. For example, for Al3+, 

s0 = 0.5, R0 — 1.909, and N = 5.0. The Pauling rule holds true here both for 

cations and anions, and also for any coordination of the cation. It should be 

stressed that the use of expressions of the type (2.2) is by no means based on the 

assumption that the structure is actually built up of “genuine” ions. 
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s 

Fig. 2.22. Correlation be¬ 
tween bond strengths S and 
distance R between atoms 
for O-X bonds, X: atoms of 

the third period [2.7] 

Another Pauling rule states that in ionic structures the presence of common 

edges and, especially, faces in coordination polyhedra is unlikely. The essence of 

this rule is simple. Electrostatic repulsion between cations in polyhedron centers 

tends to move them away from each other, and this can be achieved when the 

polyhedra are linked together at their vertices and, to a lesser extent, at their 

edges. Linking at faces signifies the maximum mutual approach of cations, and 

therefore is rarely observed. Octahedra are linked by their edges more frequently 

than tetrahedra. 

2.3.2 Silicates* 

The most important class of compounds which are traditionally called ionic are 

silicates, although, in fact, the bond in the principal building block of these 

structures - the tetrahedron Si04 - is mostly covalent, as indicated above. 

A compound built up exclusively of tetrahedra Si04 is silica Si02. It has 

a number of modifications (Fig. 2.23). The effective charge of the anion O2 “ is 

about le. The principal modification - hexagonal quartz (density 2.65 g/cm3) - 

transforms at 870°C to tridymite (also hexagonal, density 2.30 g/cm3), and at 

1470°C to cubic cristobalite (density 2.22 g/cm3). Each modification exists 

in two forms, low and high temperature (a and /?, respectively). The fl-cc 
transition in quartz is represented in Fig. 2.76b (showing only the positions of Si 

atoms). Research in meteorite craters revealed a denser modification, coesite 

(Fig. 2.23d), and the densest modification, stishovite, of the rutile type structure; 

they had formed under high pressures and temperatures. Stishovite (Fig. 2.23e) 

had been obtained under laboratory conditions at 1200-1400°C and 160 kbar, 

the Si coordination in it is nearly octahedral. 

In the structure of A1P04 which is similar to that of quartz, half of the Si 

atoms are replaced by Al, and the other half by P. The deformation difference 

syntheses of electron density for aluminium phosphate and quartz (Fig. 2.24a, b) 

* See also Sect. 6.3. 
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Fig. 2.23a-e. Polymorphous modifications of silica, (a) cristo- 
balite; (b) tridymite; (c) quartz; (d) coesite; (e) stishovite [2.8] 

showed that the charges in aluminium phosphate are as follows: A1 + 1.4, 

P + 1.0, and O - 0.6e; in quartz Si + 1.22, and O - 0.61. In both compounds 

an electron density corresponding to the covalent fraction of the bond is 

observed. In A1P04, the electron density of the covalent bridge in the P-O bond 

is somewhat stronger than in Al—O. Lone-pair densities of O atoms are dis¬ 

placed from the bonding plane, and oxygen appears to be sp2 hybridized 

[2.9, 10]. 
The grouping SiO^“, in chemical combination with oxides of various other 

metals, forms silicates, the basic minerals of the earth s crust. The silicon^oxygen 

tetrahedra in them may be isolated or connected at the vertices. The possibility 

of connection at one, two, three, or all four vertices yields a large variety of 

spatial motifs. The formation of one of these motifs generally depends on the 
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Fig. 2.24a, b. Deformation difference electron density maps for A1P04 (a) and quartz Si02 (b); 
sections through bonded atoms. Interval 0.1 e A 3; (broken lines) negative densities [2.9, 10] 

other cations, to whose coordination polyhedra the silicon-oxygen tetrahedra 

adapt. Therefore, silicates are the most complex inorganic structures. The 

foundations of the crystal chemistry of silicates were laid by the classic X-ray 

structure investigations of Bragg's school in the 1920s and 1930s [2.11]; the crystal 

chemistry of silicates with large cations was developed in the postwar years by 

Belov and co-workers [2.12-14]. 
As regards the nature of the silicon-oxygen tetrahedra linking, the silicates 

can be divided into four groups. They are zero-dimensional, m = 0, silicon- 

oxygen groupings, one-dimensional, m — 1, (chain-type) structures, two-dimen¬ 

sional, m = 2, (layer-type) structures, and three-dimensional groupings with 

a spatial net of Si04 tetrahedra (Sect. 1.5). 
Examples of structures with insular groupings are olivine MgFe[Si04]1 

(Fig. 2.25), topaz Al2[Si04] (OH, F2), which possesses an isolated orthogroup 

[Si04]. Examples of silicates in which the double tetrahedron - diorthogroup 

[Si207] - is the final grouping are tilleyite Ca2[Si207] (C03)2 (Fig. 2.26) and 
seidozerite Na4Zr2TiMn02[Si207]2F2 (Fig. 2.27). In beryl Be3Al2[Si6018] 

(Fig. 2.28) the basic structural unit is a classical six-membered ring. Many of the 

silicates mentioned exhibit a close packing of oxygen atoms, whose tetrahedral 

voids accommodate Si atoms, and the octahedral Al, Fe, Mn, or other not very 

large cations. An interesting example of a structure with a finite grouping Si04 is 

tricalcium silicate alite 3 Ca0 Si02, one of the main components of cement 

(Fig. 2.29). This structure is built of Ca polyhedra (five- and seven-vertex figures), 

joined together mainly at faces; the Si tetrahedra occupy the voids of this massif. 

1 The brackets indicate the silicon-oxygen radical characteristic of the structure. 
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Fig. 2.26. Structure of tilleyite. Double tetrahedra [Si207] are projected into triangles denoted by 

“Si”. They are surrounded by Ca octahedra (hatched) 

Fig. 2.27. Structure of seidozerite; 
[Si207] groups are linked with 
large-cation octahedra 
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z 

Fig. 2.29. Crystal structure of tricalcium 
silicate 3 CaO Si02. The projection of 
two (out of four) layers of the structure 
along the y axis. Part of the Ca atoms are 

depicted as balls [2.15] 

Figure 2.30 shows various types of simple and complicated chains and 

ribbons in silicates [2.12, 16]. Examples of chain silicates are wollastonite 

CaSi03 (Fig. 2.31) and diopside MgCa[Si03]2 (Fig. 2.32). Vinogradovite con¬ 

tains both chains and ribbons (Fig. 2.33). Motifs similar to chain of Si04 groups 

are also observed in a number of phosphates with the chains of P04 tetrahedra. 

Layer silicates form an important class of structures. They include various 

micas, for instance, muscovite KAl2[AlSi3O10]OH2, pyrophyllite Al2[Si4O10]- 

(OH)2, and talc Mg3[Si4O10](OH)2, numerous clay minerals, e.g., kaolin- 

ites Al4[Si4O10](OH)8, and montmorillonites (iCa, Na)0.7(Al, Mg, Fe)4 

(Si, Al)8O20(OH)4 nH2O (Fig. 2.34). 
All these structures have identical basic motifs: they consist of pseudotri- 

gonal sheets of A1 or Mg octahedra linked with the sheets of Si-O tetrahedra. 

Their enormous diversity is due to different combinations of octahedral and 
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Fig. 2.30a, b. Various types of simple (a) and complex (b) chains in silicates 

tetrahedral sheets (in 1:1 or 1:2 ratios) building the layers, different orientations 

of tetrahedra, various isomorphous substitutions, and the alternation with 

layers of large cations, water, or organic molecules which weakly bind these 

layers. Stacking the layers differently results in the formation of numerous 

poly types [2.18, 19]. Slightly different sizes of octahedral and tetrahedral sheets 

may lead to layer bending and the formation of cylindrical lattices and tubular 

structures of the chrysotiles. 
Finally, skeleton silicates exhibit a spatial framework of Si04 tetrahedra. 

They include feldspars (Fig. 2.35), nepheline Na[AlSi04], and a number of 

other structures. Technically important silicates of this type are used as molecu¬ 

lar sieves, their strong three-dimensional skeleton of the groups Si04 has large 

voids. The size of the voids defines the sizes of the organic molecules which can 

pass through such sieves. An example of molecular sieves is zeolites with 
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Fig. 2.31. Structure of wollas- 
tonite CaSi03 in projection 
along [001], Chains of Si04 tet- 
rahedra (black) are shown on 
Ca polyhedra ribbons 

O Mg at a heightofO Q Ca at a heightofO 

• Mg at a heightof 1/2 Cast a height of 1/2 

Fig. 2.32. Structure of diopside Fig. 2.33. Structure of vinogradovite Na4Ti4 
MgCa[SiC>3]2 [Si2Oe]2 [(Si, Al)4O10]O4■ nH2Q [2.17] 

o 

channels of about 3 A in the six-membered rings. The nature of the linking of the 

tetrahedra into a spatial framework is clearly revealed by indicating the skel¬ 

eton, i.e., the position of Si atoms. Such a skeleton in the prototype structure of 

zeolites - hydrosodalite - is cubooctahedral (Fig. 2.36a), each cubooctahedron 

having eight hexagonal faces (“windows”) made up of six-membered rings. In 

other molecular sieves the windows are built of eight- and twelve-membered 
rings, and their size may be as large as 13 A (Fig. 2.36b, c). 
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Fig. 2.34a-e. Structure of layer silicates, (a) talc; (b) chlorite; (c) kaolinite; (d) mica;(e) montmoril- 
lonite 

Fig. 2.35. Structure of feldspar 
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Fig. 2.36a-c. Structure of skeleton silicates, (a) cubooctahedral “lantern” built up of Si04 tet- 
rahedra in hydrosodalite Na8[(0H)2(AlSi04)6]; (b) “windows” in the structure of phillipsite 
Cu5FeS4; (c) faujasite-Linde’s molecular sieve passing molecules not exceeding ~ 8 A in diameter 

Various silicates, which crystallize in the earth’s crust from the melt or 
during hydrothermal processes, contain atoms of a variety of elements which 
enter the structure stoichiometrically or as isomorphous substituents. Thus, 
aluminum, which is mostly arranged in octahedra, in aluminosilicates also 
occupies tetrahedral positions, imitating silicon; tetrahedra are also formed by 
Be and B. Among the anions, in addition to O, one encounters hydroxyls (OH 
and F), some complicated anions (such as C03 and S04), water, etc. The 
isomorphism in silicates (see Sect. 1.6) vividly confirms the diagonal row rule. 

An important determining factor for silicate structures is the size of the 
cations. The typical coordination polyhedron for Al, Mn, Ti, Fe, and Mg, i.e., an 
octahedron with an edge of 2.7-2.8 A, combines directly with orthogroups Si04, 
whose edges are 2.55-2.70 A (Fig. 2.37a). For large cations - Ca, Na, K, Ba, Nb, 
Zr, and rare-earth elements - the size of the edge, which is 3.8 A, is, on the 

Fig. 2.37a-d. Joining of octahedra and tetrahedra [2.11]. (a) joining of octahedra formed around 
small cations with orthogroup [Si04]; (b) joining of octahedra formed around large cations with 
diorthogroup [Si207]; (c, d) combined joining 
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Fig. 2.38. Structure of bafertisite BaFe2Ti[Si207]0(0H) [2.20] 

contrary, incommensurate with the edges of the orthogroups, but matches well 

those of the diorthogroups Si207 (Fig. 2.37b), i.e., with the distance between the 
o 

oxygen atoms of the coupled tetrahedra, 3.7-4 A. Thus, according to [2.12] the 

main building blocks of silicates with large cations are the diorthogroups Si207. 

This is how complicated chains with alternation of ortho- and diorthogroups 

(Fig. 2.37), eight-membered rings, etc., appear. If polyhedra with a coordination 

number exceeding that of the octahedron arise, some of their edges may be 

foreshortened again to become commensurate with the tetrahedron of Si04. An 

example of the structure of such silicates is bafertisite (Fig. 2.38). 

2.3.3 Superionic Conductors 

In recent years attention has been drawn to a special variety of the crystals of 

ionic compounds, termed ionic or superionic conductors. They are also called 

solid electrolytes. As a rule, these are defect structures. Some cations in them are 

very weakly bound with the lattice of the other atoms; their thermal-vibration 

amplitudes are so large that they are comparable with the distances between the 

possible crystallographic positions which these ions may occupy. As a result, 

some cations can migrate through the crystal, this property being reflected in the 

term “solid electrolyte.” Their ionic conductivity a is comparable with, and for 

some compounds even higher than that of liquid electrolytes. Such crystals are 

promising for various technical applications. 

Examples of superionic conductors are Agl, AgBr, CuCl, RbAg4I5, 

Ag2HgI4, and /Talumina, which is a nonstoichiometric compound based on 

aluminium oxide containing Na, with an ideal composition Na20- 11A1203. 

As indicated above, in a crystal of a solid electrolyte the carrier ions migrate 

through the lattice of the “matrix.” In other words, the sublattice of the carrier 

ions is disordered, but, in distinction to the ordinary case of disordered struc¬ 

tures where the atoms are “tied” to the positions which they occupy (on the 

average, statistically with respect to the volume), in a superionic conductor the 

disorder is dynamic. 
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Let us consider one of the structures of this type, /Talumina (Fig. 2.39a). This 

hexagonal structure is built up of rigid three-layer spinel blocks of A1203 with 

Na20 layers in between. Sodium occupies one crystallographic position in the 

idealized structure. It has been recently established, however, that these cations 

can also occupy two other positions in the indicated plane, but with a lower 

probability of occupancy. The distribution of Na cations over these positions, 

obtained by neutron diffraction, is given in Fig. 2.39b. In a real structure the 

number of these ions exceeds the idealized composition by 15%—20%, which is 

compensated by the corresponding excess of oxygen. Thus, the indicated plane 

Fig. 2.39. Structures of solid electrolytes, (a) idealized crystal structure of Na20 • 11 A1203; (b) dis¬ 
tribution of Na atoms in the conducting xyO plane of this structure [2.21]; (c) structure of a-Agl. 
Spheres: I-ions. Positions of Ag: (O): coordination number 4, (®): c.n. 3, (•): c.n. 2 



2.4 Covalent Structures 155 

between the spinel blocks is a conducting plane, in which Na cations “flow” 

along the “channels” shown in Fig. 2.39b. Here, the ionic conductivity is two- 

dimensional and anisotropic in the conducting plane. 

In other ionic superconductors, ion migration is possible along different 

spatial directions as well. Thus, in the cubic structure of a-Agl large anions I- 

form a cubic body-centered packing, while the relatively small cations Ag + 

statistically occupy three types of positions with coordination 4,3, or 2 

(Fig. 2.39c). The barriers of the transitions between these positions are small, 

which enables the cations to “flow” through the anion lattice. 

The thermal motion of ions - charge carriers - can be characterized by the 

probability density function with due regard for the anharmonic temperature 

factor described by tensors of high ranks. Thermal motion and potential along 

the diffusion path can be determined with sufficient accuracy from diffraction 

experiments. Such experiments have been done for the ionic conductor Li3N 

[2.5, 22] (cf. Fig. 2.21). 

Because the bond between the carrier ions and the matrix lattice is weak, the 

ionic conductivity strongly depends on the temperature. For the same reason, 

phase transitions are often observed in such structures. They often permit 

isomorphous replacements, both of the carrier cations themselves and of the 

“fixed” cations of the matrix lattice. The properties of solid electrolytes can be 

changed and improved by introducing isomorphous atoms. 

Ionic conductors in which anions are the charge carriers are also known. 

Examples are CaF2-YF3 solid solutions, in which some positions of F" are 

disordered, and the Zr02-Ca0 system. 

2.4 Covalent Structures 

Compounds having a covalent bond are mostly formed by the elements of the 

group IVb and groups close to it. Since the covalent bonds are strong, crystals of 

these compounds usually show high hardness and elasticity; they are semicon¬ 

ductors or dielectrics, according to their electron spectrum. In a number of 

crystals the covalent bond should be regarded as somewhat ionic or metallic. 

The properties of such crystals change accordingly. 
A classical example of a covalent crystal is diamond (Figs. 1.30, 2.5) with its 

uniquely strong lattice. Let us now replace the C atoms of diamond, with their 

four hybridized sp3 orbitals in each (Fig. 1.18), by B (3s and p electrons) and 

N (5s and p electrons) atoms. This is the cubic diamond-like structure of BN, 

which is obtained at high pressures and whose mechanical properties are similar 

to those of diamond; it refers to the structural type of zinc blende (Fig. 2.40a). The 

electron shells of B and N in this structure show the same tetrahedral hybridiza¬ 

tion as those in C atoms; they form four, strong covalent bonds from spin- 

antiparallel electron pairs. It is immaterial that the nitrogen atom made a greater 

contribution to the electron pair of each bond, and the boron atom, a smaller 
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Fig. 2.40a, b. Structure of BN. 
(a) “diamond” modification; 
(b) “graphite” modification 

contribution (whereas in diamond each carbon atom contributed equally, one 

electron). A hexagonal (wurtzite) modification of tetrahedral BN, similar to 

hexagonal diamond, is also known (see Fig. 2.5b). 

The graphite structure (see Fig. 2.5a), which corresponds to trigonal sp2 

hybridization of the electron cloud of the C atom (see Fig. 1.17d) with the 

participation of n orbitals (Fig. 1.23c), also has its analog in hexagonal boron 

nitride, another polymorphous modification of BN (Fig. 2.40b). 

We shall now consider another tetrahedral covalent structures. Similar to 

the transition from tetrahedral C to BN, it is possible to form compounds with 

a covalent bond from elements equidistant to the right and to the left of the IVb 

group of the periodic table - compounds AmBw, for instance GaP, GaAs, GaSb, 

InAs, and A1P; compounds AUBV\ for instance BeO, ZnO, ZnS, ZnSe, CdS, 

CdSe, CdTe, and HgSe; and compounds A'BVU, for instance CuCl, CuBr, and 

Agl. For all these compounds the ratio of the number of valence electrons to 

that of the atoms appearing in the formula (or per cell) is ne/na = 4. With the 

distance from the IVb group along the horizontal of the periodic table, and also 

with the descent along the verticals, i.e., with an increase of the number of 

electrons in the inner shells, the strength of the bonds decreases, and these 

become more ionic or metallic. For instance, the bond in a BN crystal is 

typically covalent; yet estimated by the difference in electronegativities, it is to 

a small degree - about 15% - ionic. In beryllium oxide BeO the ionic compo¬ 

nent is already considerable, about 40%, but the coordination remains tetra¬ 

hedral. On the other hand, the transition to the cubic structure of LiF (the 

fraction of the ionic component is about 90%) is accompanied by the appear¬ 

ance of octahedral coordination. Figure 2.41 shows the radial distribution 

functions D{r) (1.7) of the valence orbitals in these structures. The fraction of 

ionicity increases with the expansion of the metal orbital and with the coincid¬ 

ence of its maximum with the nonmetal atom orbital. The presence of a fraction 

of ionicity in AulBv, AuBvl compounds is also indicated by quantum-mechanical 
calculations (Fig. 1.27d). 
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Fig. 2.41. Radial electron density distribution functions D(r) for neutral atoms in crystals of C, BN, 

BeO, and LiF. (-): left-hand atoms; (-): right-hand atoms [2.23] 

The covalent-ionic bonding is also observed in semiconducting compounds 

of the gallium arsenide type (see Sect. 1.2.8). Experimental X-ray data on the 

electron density distribution reveal the presence of covalent bridges with a den¬ 

sity of up to 0.2-0.3 e/A3 [2.24]. 
At the same time, according to various data, the charge of Ga in GaAs is 

from + 0.21 to + 0.5 e and that of As, from - 0.21 e to - 0.5 e. In tetrahedral 

structures the gradual change in the nature of the bond as we go from the IVb 

column is also manifested in an increase of the width of the forbidden band AE 

from fractions of 1 eV to 2-3 eV. 
The tetrahedral coordination for binary compounds is realized in two 

principal structural types: cubic diamondlike sphalerite ZnS (Fig. 2.42a) and 

Q Q Q Q> Q 
Zn S Cu Fe S 

Fig. 2.42a-c. Structures of (a) sphalerite ZnS, 

Cu2FeSnS4 

c 

O Q 9 Q 
Cu Fe Sn S 

chalcopyrite CuFeS2, and (c) stannine 
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a hexagonal structure with the same formula (ZnS) wurtzite (Fig. 1.73b, c). 

Many ternary, quaternary, and multicomponent compounds also exhibit tetra¬ 

hedral coordination of atoms and possess structures similar to those indicated 

above. Their formulae can be obtained from those of binary compounds by 

horizontal and diagonal substitution in the periodic system, such that the ratio 

ne/na = 4 is satisfied. For instance, replacing In in indium arsenide by Cd and Sn 

we obtain CdSnAs2 and replacing Cd in cadmium selenide by Ag and In, 

AgInSe2. This is how families of the type AnBIVC2, AlBmCvl, etc., arise. They 
have structures of the type of chalcopyrite CuFeS2 (Fig. 2.42b, c), which pos¬ 

sesses characteristic tetrahedral bonds of sulfur or related atoms. Various 

polytypes of SiC (Fig. 1.73d) have been built on the basis of hexagonal interlink¬ 

ing of tetrahedra. A peculiar tetrahedral structure with the preservation of In-In 

pairs is inherent in InSe (Fig. 2.43); on the other hand it is related to the structure 

of molybdenite MoS2 (Fig. 2.44) with a coordination in the form of a trigonal 

prism. 

The interatomic distances in tetrahedral structures are well described by 

a special system of tetrahedral covalent radii, suggested by Pauling and Huggins 
[2.25] (Table 2.1). 

Representatives of a large series of structures with octahedral coordination 

which have predominantly covalent bonds, are compounds of the types PbS and 

Bi2Te3. The ionic bond character is slightly stronger here than in tetrahedral 

structures. In octahedral hybridization, not only s and p orbitals of electrons 



2.4 Covalent Structures 159 

Table 2.1. Covalent radii [A] 

Tetrahedral 

Be 1.07 B 0.89 C 0.77 N 0.70 O 0.66 

Mg 1.46 A1 1.26 Si 1.17 P 1.10 S 1.04 

Cu 1.35 Zn 1.31 Ga 1.26 Ge 1.22 As 1.18 Se 1.14 

Ag 1.53 Cd 1.48 In 1.44 Sn 1.40 Sb 1.36 Te 1.32 

Au 1.50 Hg 1.48 

Mn 1.38 

T1 1.47 Pb 1.46 Bi 1.46 

Octahedral 

C 0.97 N 0.95 O 0.90 

Mg 1.42 A1 1.41 Si 1.37 P 1.35 S 1.30 

Cu 1.25 Zn 1.27 Ga 1.35 Ge 1.43 As 1.43 Se 1.40 

Ag 1.43 Cd 1.45 In 1.53 Sn 1.60 Sb 1.60 Te 1.56 

Au 1.40 Hg 1.45 T1 1.73 Pb 1.67 Bi 1.65 

Mn 1.31 

may be included in the bonds, but also the d orbitals which are close to them in 

level. Because of the increased ionic (and sometimes also metallic) nature of the 

bonds it is possible to use the terms of the theory of close packing of atoms in 

describing and interpreting these structures. Since the atomic radii are similar 

for many compounds, they can here be regarded as joint packings of approxim¬ 

ately identical spheres. The structure of lead selenide PbSe and its analogs - 

PbS, SnTe and SnAs - belongs to the NaCl type (Fig. 2.45). A large family of 

octahedral structures belongs to the Bi2Te3 type (Fig. 2.46a). It includes Bi2Se3, 

Bi2Te2S, etc. According to the periodic table, horizontal, vertical, and diagonal 

replacements can also be made in these compounds, and the resulting structures 

often have much in common with their precursors. Thus, interesting multilayer 

packings are formed, for instance, in GeBi4Te7, Pb2Bi2Te7, and AgBiTe2 

(Fig. 2.46, see also Fig. 1.67). 
The interatomic distances in octahedral structures can be approximately 

described by the sums of the effective ionic radii and also by the sums of the 

O 

& 

—6^—<r 

o 

O Pb Os Fig. 2.45. Structure of PbS (structure type NaCl) 
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a be' d e 

Fig. 2.46a-f. Structural motifs of Bi2Te3 (a) and of its complicated analogs, GeBi4Te7 (b), GeBi2Te4 
(c), Pb2Bi2Te5 (d), Ge3Bi2Te6 (e), and AgBiTe2 (f) [2.26] 

atomic or atomic-ionic radii (Tables 1.8, 9). But sums of r{ are, as a rule, larger 

than the observed distances, and more accurate results are obtained by using the 

system of octahedral radii of Semiletov [2.27] (Table 2.1). 

The rule ne/na = 4 and the octet rule for semiconductor compounds with 

a nonquarternary coordination may be supplemented by the Mooser-Pearson 

rule [2.28] 

de/dan = 8 - b, (2.3) 

where b is the number of bonds formed by the atoms of the same kind. This rule 

holds for many structures, for instance, Mg2Si(ne = 8, nan = 1, b — 0); Li3Bi(8,1, 

0); Mg3Sb(16, 2, 0); AgInTe2(16, 2, 0); Ti02(16, 2, 0); BaTi03(24, 3, 0); 

In2Te3(24, 3, 0); and PbS (8, 1, 0). It is, however, sometimes violated. The 

generalized Pearson rule for complicated compounds with a covalent bond has 

the form 

ZV+ba 
8. (2.4) 

Here, ZV is the sum of the valencies of all the atoms in the chemical formula 

of the compound, ban is the number of electrons involved in the anion-anion 

bond, bca{ is the number of electrons of the cations which are not involved in the 

bond (or which form cation-cation bonds), and nan is the number of anions in 

the chemical formula of the compound. 

It should be borne in mind that the atoms which enter into a covalent bond 

with neighboring atoms do not necessarily use up all their valence electrons. 
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Fig. 2.47. Structure of Cu20 

Thus, in compound PbS (Fig. 2.45) lead has a formal valence of 2 and, hence, 

only two of the four valence electrons are involved in the bond. For instance, for 

PbSe(10 + 0 - 2)/l = 8, and for ZnP2(12 + 4 - 0)/2 = 8. 

As the formulae become more complicated various structures arise in the 

course of formation of compounds which do not satisfy the above rules of 

substitution according to the periodic table. Their common feature is the 

relatively low coordination of atoms, not exceeding 6. An example of this type of 

structure is the chain structure of SbSI (see Fig. 1.78), a compound exhibiting 

valuable ferroelectric and semiconductor properties. 

In conclusion we note that compounds of this type tend to form various 

defective lattices, for instance subtraction structures. The introduction of tiny 

fractions of atomic impurities having either an excess or a deficiency of electrons 

(for instance, As or Ga in Ge and binary structures of the type GaAs) into 

semiconducting tetrahedral structures results in their n (electron) or p (hole) 

conduction, which is extremely important for manufacturing various semi¬ 

conductor instruments and devices, including diodes, transistors, and integral 

circuits. 
The covalent nature of the bond is also observed in some metal oxides. An 

interesting example is cuprite Cu20 (Fig. 2.47) (Ag20 has the same structure). 

The bonds here are directional; the O atom is surrounded by four Cu atoms 

according to a tetrahedron, while the Cu atoms have a linear coordination of 2, 

forming bridges between the oxygen atoms. This compound often has vacancies 

in O positions; some of its properties indicate a partly metallic nature of the 

bond. This structure can be described as one formed by the entry of O atoms 

into the tetrahedral voids in the packing of metallic copper having an fee 

structure, with an increase in Cu-Cu distances, of course. 

2.5 Structure of Complex and Related Compounds 

2.5.1 Complex Compounds 

Complex compounds always contain stable groupings made up of a central 

atom, and of nonmetal atoms or molecules - ligands - surrounding it; the bonds 

of the central atom usually have high symmetry and a stable geometric config¬ 

uration. Classical examples of complex compounds are offered by platinum, 

which forms octahedral (for instance, in K2PtCl6, see Fig. 1.77) or square (for 
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instance, in K2PtCl4, Fig. 2.48a) complexes. Octahedral complexes are also 

produced by Co in ammoniates, nitrates, halides, and hydrates (Fig. 2.49), and 

by many other elements. Tetrahedral complexes are produced by Zn (Fig. 2.50). 

The atoms forming these complexes include Pt, Pd, Rh, Co, Cr, Mn, Fe, Ni, Zn, 

W, and Mo, i.e., elements belonging mainly to the transitional group Villa and 

Fig. 2.48a, b. Square coordination of platinum in the structures of K2PtCl4 (a) and PtS (b) 

J5 A Onh3 9co Qci OHjO 

Fig. 2.50. Structure of Zn(NH3)2Cl2 Fig. 2.51. Structure of CoCl2 -2H20 
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those close to it. Complexes observed in the crystal structure are often stable in 

solution as well, but not necessarily. The ligands of the complex may either not 

be covalently bonded with the other atoms, or be a part of an inorganic or 

organic molecule. With the aid of the common atoms, complexes may join into 

chains, PdCl2 (Fig. 1.79) and CoCl2 • 2H20 (Fig. 2.51), and form a space network, 
PtS (Fig. 2.48b). 

The ligands contained in a complex may be of two or more sorts; therefore, 

chemically and structurally different compounds are formed because of their 

different spatial position. Thus, the complex of dichlorodiamminoplatinum may 

have two forms, trans and cis 

NH3 

Cl—Pt—Cl 

Cl 

ci—Pt—nh3. 

nh3 nh3 

Naturally, the higher the coordination and the greater the number of sorts of 

ligands, the more stereoisomers can appear. Such complexes can be distin¬ 

guished spectroscopically and also by optical rotation according to sign and 

magnitude. 

The coordination number in a complex is always higher than the formal 

valence of the complexing metal. For instance, tetravalent platinum gives 

octahedral (c.n. 6) complexes, divalent platinum, square (c.n. 4), and divalent 

cobalt, octahedral (c.n. 6) complexes. Note that, in forming a coordination 

sphere from ligands of some charge, one and the same metal may form com¬ 

plexes of unlike charges. For instance, the complex [PtlvCl6]2~ in the crystal¬ 

line structure of K2PtCl6 is bound by ionic forces with the K+ cations, while 

a similar octahedral complex [Ptlv(NH3)4Cl2]2+, but already positively 

charged, in the structure of [Pt(NH3)4Cl2]Cl2 is already packed with CP 

anions owing to the ionic forces. The Cl atoms of the inner coordination 

sphere play quite a different role here than the CP anions of the outer sphere, 

and it would be senseless to write the chemical formula of this struc¬ 

ture as Pt(NH3)4Cl4. Complexes also exist with an internal charge com¬ 

pensation - molecular complexes - for instance, the octahedral grouping 

(C6H5)2SbCl3H20. 
The complexes are characterized by a strong mutual influence of ligands in 

chemical reactions; in particular, the so-called trans-influence effect is known, 

i.e., when a strongly bonded ligand affects, through the complexing metal atom 

(located in the center), the centrosymmetric (trans) ligand, thereby weakening its 

chemical bond. 
The relatively high strength of the bonds in complex compounds points to 

their specific nature. Such bonds are called coordination bonds because of 

a number of their specific features and in accordance with their main character¬ 

istic, i.e., formation of stable coordinations. The bonds may be two electron 

(covalent) or one electron; in all cases the central metal atom is a donor of bond 

electrons. It can be seen from the scheme of the levels of atomic orbitals (Fig. 1.8) 
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Fig. 2.52. Orientation of bonds as a result of the formation of some 
hybridized orbitals of complexing atoms 

Fig. 2.53. Scheme of the superposition of AO in one of 
the six octahedral n bonds of Co-CN 

that in elements with a sufficiently large number of electrons, including 

transition elements, and d levels are similar energywise to the next s and p levels. 

This similarity permits the formation of directional hybridized orbitals of the 

central atom. Thus, octahedral hybridized orbitals are formed from the electrons 

d2sp3, and square orbitals, from dsp2, etc. (Figs. 2.52, 53). 
Each of the AO electrons of the central atom is coupled with an electron of 

a ligand atom to form characteristic dielectronic covalent bonds. Hybridization 

of 9 orbitals d5sp3 of transition metals may result in a ninefold coordination 

with angles of about 74° and 120-140° between the bonds [2.29], 
This approach, however, cannot explain all the characteristics of coordina¬ 

tion bonds. The magnetic properties of some of them, for instance, point to the 

presence of lone electrons; high-spin compounds of this type exist along with 

low-spin ones. 
A more detailed consideration is based on taking into account the effect of 

the ligands on the energy levels of the complexing atom. These compounds are 

characterized by a substantial participation of the d and / states in the chemical 

bond, the energy sublevels of these states being close. At first, the splitting of 

these degenerate (in a free atom) levels caused by the electrostatic field of the 

surrounding atoms is taken into account. Level splitting depends on the field 

symmetry and can be considered on the basis of point group theory [Ref. 2.2, 

Sect. 2.6]. A more general theory - the ligand field theory - treats, with due 

regard for symmetry, any possible interactions of the central atom with the 
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Fig. 2.54. Splitting of energy levels on the 
formation of MO in octahedral complexes 

ligands, proceeding from the molecular-orbital concepts. This theory makes it 

possible to calculate the bonds and energy levels of a system and compare them 

with the data from optical- and radio-spectroscopy. 
The color of many complex compounds depends on the light absorption by 

electrons during the transitions between levels resulted from their splitting in the 

ligand field. The direction and strength of the resulting bonds thus also depend 

on the structure of the shell of the complexing atom and on the strength of the 

ligand field. The stronger fields are produced by small compact anions, such as 

CN~ and NH4 , while large anions, say, I~ and Cl”, yield weak fields. 
The strength parameter of the ligand field is the quantity A, whose value 

fluctuates between 1 and 4 eV. With weak-field ligands the bonds are usually 

one electron and mostly ionic; the splitting of the levels of the central atoms is 

insignificant. In the case of strong-field ligands the electrons are paired, using the 

split levels, and the bonds become covalent. A characteristic feature of octahed¬ 

ral and tetrahedral complexes is the formation of molecular a orbitals. The 

scheme of level splitting for such octahedral bonds is given in Fig. 2.54. 

In crystals and molecules with coordination bonds, the adiabatic approx¬ 

imation, in which the electron states are considered within the framework of 

a stable configuration of nuclei, is sometimes inapplicable, and the nuclear 

motion must also be considered. This is the essence of the so-called Jan-Teller 

effect; the symmetry of the complex diminishes, which manifests itself in the fine 

structure of optical and EPR spectra. 

2.5.2 Compounds with Metal Atom Clusters 

Experimental investigations of organometallic and complex compounds have 

led to the discovery of another interesting class, in which metal-metal bonds 

are observed within the complex. Clusters of two, three, or more atoms are 

formed. The bonds between metal atoms do not resemble the ordinary metallic 
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bonds in the structures of these metals themselves; they are shorter, stronger, 

and directional, i.e., they are of a covalent nature. For instance, the length of the 

Hg-Hg bond is dimercurochloride CIHgHgCl is equal to 2.50 A, whereas the 

minimum distance in the metal is 3.00 A; in the complex structure of 
o 

K3[W2C19] the W-W distance is 2.40 A, which corresponds to a double bond, 

whereas in the metal the W-W distance is 2.80 A. In the PtCl4 columns in the 

structure of K2PtCl4 (Fig. 2.48a), the Pt-Pt distance is shortened. Interesting 

examples are rhenium compounds, in which the Re-Re bonds (Fig. 2.55) are 

considerably shortened. Thus, in the dinuclear complex [Re2Cl8]4_ (Fig. 2.55a) 
o 

the Re-Re distance is equal to 2.22 A, which is less than those in the metal, while 

the Re-Cl distances are also shortened. A trinuclear Re complex is shown in 

Fig. 2.55b. Me-Me bonds in clusters are attributed to the interaction of orbitals 

which are not realized in pure metals. More intricate complexes with 

metal-metal bonds are also known. As an example, Fig. 2.56a shows the 

octahedral complex of molybdenum atoms with a cube of Cl atoms found in the 

structure of [Mo6C18]C14 • 8H20; the Mo-Mo distance of 2.63 A corresponds 
o 

to single bonds (in the metal, this distance is 2.78 A). The electron pairs 

responsible for the Mo-Mo bond are localized on the edges of the Mo octahed¬ 

ron. Considerations based on the MO method shows that d3z2 _ x, dxy, dxz, dyz, and 

pz AO of each atom take part in their formation. Similar octahedral complexes are 

formed by Ta and Nb. 

Clusters of metal atoms of the V-VI groups are usually surrounded by 

weak-field ligands, while clusters of metal atoms of the VII and VIII groups, by 
strong-field ligands. 

Other compounds with clusters of metal atoms have different types of 

bonding - ionic and metallic. These are Rb and Cs suboxides with unusually 

high amounts of metal atoms, for example, Rb902, (Cs!!O3)Cs10, and 

(Cs1103)Rb7 (Fig. 2.56b). Metal atoms form groups with O atoms or may be 
situated between these groups [2.31], 

z 

Fig. 2.55a, b. Structure of (PyH)HReCl4 with the groups [Re2Cl8]4~ in it (a), and of trinuclear 
complex ion Re3Cl12 (b) [2.30] 
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a 
10 A 

Fig. 2.56. (a) structure of complex ion [Mo6C18]4 + ; (b) the projection of (Cs!!03)Rb7-structure. 
(Open circles) Cs; (black circles) O; (shaded circles) Rb [2.31] 

2.5.3 Metal-Molecular Bonds (n Complexes of Transition Metals) 

The consideration of the bonds in complexes from the standpoint of molecular- 

orbital theory has explained the structure of complexes which were absolutely 

incomprehensible to classical chemistry. In these structures the bonds of the 

central atoms are directed, not towards the center of the ligand atom, but, say, 

towards the “middle” of the bond between a pair of atoms, towards the “middle” 

of the five-membered ring, etc. For instance, in the square complex 

[PtCl3(C2H4)] the fourth bond of Pt is directed to the bond between two carbon 

atoms of ethylene (Fig. 2.57). This bond can be described in terms of the 

deformation of the binding n orbital of ethylene (Fig. 1.25a) and its overlapping 

with the AO of the metal. In other cases, the antibonding n orbitals of the ligand 

and the d orbitals of the metal overlap, etc. 
A remarkable example is the structure of “sandwich” molecules consisting of 

cyclic hydrocarbons with metals Fe, Ni, Co, Cr, Ti, Ru, Os, and some others, in 

which the central atom is squeezed between two parallel-oriented rings of an 

aromatic hydrocarbon. A classic representative of this class of compounds is 

iron dicyclopentadienyl Fe(C5H5)2, or ferrocene (Fig. 2.58). This is a case of 

Fig. 2.57. Structure of complex PtCl3(C2H4) 
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Fig. 2.58a, b. Three-dimensional Fourier synthesis map of a molecule of ferrocene Fe(C5H5)2 
(a) and its structure (b) [2.32] 

five-membered rings, but the rings may also be six-membered, as, for instance, in 

Cr(C6H6)2 and Mn(C5H5)(C6H6); besides, sandwich compounds with four-, 

seven-, and eight-membered rings are known. In ferrocene, the symmetry of the 
molecule is 5m, all the carbon atoms are equivalent, and the Fe atom and both 

rings are nearly neutral (but, for instance, in nickelocene it was found that Ni is 

charged by about + 1.4 e and each C atom, by - 0.14 e). The bond in sandwich 

compounds is ascribed to the overlapping of their n orbitals, lying “under” and 

“over” the rings (cf. Fig. 1.25b) with the 4s and 3d orbitals of the metal. As 

a result, nine bonding orbitals are formed, in which 18 electrons are involved. 

2.5.4 Compounds of Inert Elements 

Early in the 1960s, compounds of inert elements XeF2, XeF4, XeCl2, oxides of 

these elements, etc., were discovered; they had formerly seemed impossible from 

the standpoint of the classical theory of valence. Figure 2.59 pictures the crystal 

structure of XeF4. The XeF4 molecules are flat, roughly square, the Xe-F 

Fig. 2.59. Structure of XeF4 [2.33] 
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distances being 1.92 A. The existence of such molecules is attributed to the 

interaction of 2pa orbitals of fluorine atoms and 5pa orbitals of xenon atoms; as 

a result, MO is formed, on which single electrons of the fluorine and an unshared 

pair of xenon electrons are located. 

2.6 Principles of Organic Crystal Chemistry 

The crystal chemistry of organic compounds, or organic crystal chemistry, is 

unquestionably the richest area of crystal chemistry as regards the number of 

crystals and substances embraced by it. The number of investigated crystal 

structures runs into many thousands (100000 by 1992)2, but this is only a small 

part of the entire diversity of organic molecules, of which about 3 million are now 

known. 

The structural unit of crystals of organic compounds is the molecule. The 
bonds within the molecule are covalent; their strength greatly exceeds that of the 

weak van der Waals intermolecular bonds. Therefore most of the organic 

structures are of the finite-groupings, insular type. In some compounds, not only 

van der Waals interactions between the molecules exist, but also hydrogen (or, 

more rarely, ionic) bonds, which are usually stronger than the van der Waals’s. 

This often promotes the formation of chain or layer structures (Sect. 1.5). 

2.6.1 The Structure of Organic Molecules 

The structure of organic molecules depends on the covalent bonds between the 

atoms of the molecule. The lengths of these bonds are well described by the sums 

of the covalent radii (Table 1.7). The multiplicity of intermediate order of the 

bonds is then taken into account. For instance, in aromatic compounds the 

bond order in the rings is between 1^ and lj. In other cyclic or chain groupings 

with formal alternation of single and double bonds conjugation phenomena arise, 

which is accompanied by some equalization of the bond lengths. The bond lengths 

in different molecules and the bond order are given in Fig. 1.46. 
Knowing the chemical formula of a molecule and using the tables of covalent 

radii and graphs of the type of Fig. 1.46, it is possible to predict the interatomic 

distances of bonds of an intermediate nature within the molecule with an accuracy 

of about 0.02-0.05 A. Taking into consideration the orientation of the bonds 

- their tetrahedral, trigonal, or linear nature - one can often also predict, more or 

less unambigously, the stereochemistry of the molecule, its space structure. Several 

2 Currently more than 8000 organic structures are being determined each year. 
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versions are sometimes geometrically possible; then one can find the structure of 

the molecule from energy considerations. A fairly good approximation is in this 

case possible according to the “mechanical” model of a molecule, a system of 

atoms bound together by rigid, slightly extensible elastic hinges with spring fixing 

the angles between them. 
The energy of the molecule in this representation [it should not be confused 

with the energy of the packing of molecules in the structure, i.e., with the lattice 

energy (1.52)] can be written as follows: 

Umol — b^nv + Ub + Uang + UlOTS, (2.5) 

Unv = 1/Mj), (2-6) 
hj 

Ub = WKi(l-l0)\ (2.7) 
^ i 

Uan% = \ Z Ci(a ~ «0)2, (2-8) 

^ i 

u{ors = -y (i + cos rup). (2.9) 

The interaction of non-valence-bound atoms of the molecule is described by the 

term Unv, the expressions (1.45) or (1.16) being taken for the potential. Deviation 

of the bond lengths from the ideal /0, or of the bond angles from the ideal a0 

results in energies Ub and I/ang. The term UlOTS covers the energy of rotation of the 

molecules about the single bonds, and U0 is the so-called internal rotation barrier. 

The quantity Umol can have one minimum (which defines the conformation of 

the molecule) or several minima similar in depth (then several conformations are 

possible, i.e., different conformers of the molecule). Note that the mechanical 

model of the molecule also helps to calculate its elastic properties, vibrations, etc. 

If the angles and distances are near to the ideal and there is no forced proximity of 

non-bonded atoms, the molecule is unstrained, and its structure (provided no 

single bonds are present) can be predicted from geometric considerations. The 

situation is different in the presence of single bonds, about which rotations are 

possible. The mutual orientation of the parts of the molecule linked by such bonds 

depends on the non-bonded interactions Unv between these parts, on the term 

t/tors, on contacts with neighboring molecules, and on the hydrogen bonds, if any. 

The rotation about a single bond is restricted according to the requirement 

that the atoms of neighboring parts of the molecule linked by this bond should 

not approach each other by distances less than the sum of the intermolecular 

radii or, in any case, should be spaced as far as possible. For instance, atoms of 

two tetrahedral groupings linked by a C-C bond (Fig. 2.60) are stabilized in 

positions corresponding to inversion-rotation symmetry 3. But since atoms 
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Fig. 2.60. Rotational isomerism, which can arise by rotation 
about the single bond between two C atoms 

^t»A5, and A6 may be different,3 three rotational isomers are 
generally possible here; Ax and A6 are opposite one another (trans-configura¬ 

tion) or A6 is turned to the right or to the left through 120° (two “gauche” 

configurations). In cyclical structures the closure condition limits the number of 

versions. Thus for six-membered rings of the type (CH2)6, the “chair” and “boat” 
conformations are possible (Fig. 2.61a, b). 

In such molecules with single bonds, and also in some polymers, the particular 

structure of the molecules in a crystal often depends on their mutual packing. To 

put it differently, the energy of a molecule (neglecting its constant contribution 

Unv and Uang) and the energy of transition between conformers, and also the 

packing energy, are comparable in magnitude, hence, the energy minimum 

characterizing the structure as a whole determines both the packing and the 

conformation of the molecules. A part of the thermal vibration energy also may 

exert an influence. Sometimes it is found that chemically identical molecules in 

a given structure have several different conformations (Fig. 2.62); they form 
“contact isomers.” 

Fig. 2.61a, b. Idealized schemes of “chair” (a) and “boat” (b) formations in cyclohexanes 

3 These may be atoms of hydrogen, carbon, nitrogen, oxygen, etc. Other atoms may, in turn, be 
added to them. 
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<3 Fig. 2.62. Structure of cyclohexaglycyl, in which three 
molecules occupying symmetrically nonequivalent posi¬ 

tions differ in conformation [2.34] 

Fig. 2.63a, b. Strained molecules, (a) 3,4 benzophenath- 
rene C18H12 [2.35]; (b) 5,6-dichloro-l 1,12-diphenyl- 

naphthalene C3oHi8C12 [2.36] 

A number of organic molecules have a so-called sterically strained or “over¬ 

crowded” structure. The angles and bond lengths in them are distorted as 

compared with equilibrium. This is due to the steric hindrances, namely, the 

mutual approach of non-bonded atoms caused by the configuration of the valence 

bonds (Fig. 2.63). 
It should be mentioned that the energy of the distortion of bond angles l/ang is 

much lower than the energy of extension of the bonds t/v; the angles readily 

deform by 10-20°, while the bond lengths change by 0.02-0.03 A. In complicated 

strained aromatic molecules, the atoms which have moved towards each other 

find it more convenient to “twist out” in different directions from the plane of the 

molecule in order to increase their spacing, thereby also distorting the flatness of 

the molecule. Thus, all the terms in (2.5) play a part here (except Utors, which is not 

used for aromatic molecules, having no single bonds). 
Another factor stabilizing the definite configuration or causing some distor¬ 

tions is the intramolecular hydrogen bonds, say, in s-methyl-dithizone (Fig. 2.64, 

see also Fig. 2.75). Naturally, the mechanical model of the molecule is only 

a convenient approximation, and a more rigorous picture can be obtained by 

the SCF-CAO-MO method with the aid of quantum-mechanical calculations 

(Sect. 1.2). But these calculations are extremely complicated. 

The structure of molecules is only one of the aspects of organic crystal 

chemistry which is of special interest to the chemists. Although conformation 
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Fig. 2.64. Structure of the molecule of s-methyl- 
dithizone with an intramolecular H bond (-), 
difference map of the electron density with peaks 
of H atoms [2.37] 

analysis enables one in most cases to predict the structure of a molecule on the 

basis of the chemical formula, whenever the presence of different conformers is 

possible, the final and accurate data on the stereochemistry of the molecule, the 

order of the bonds, and the nature of thermal vibrations are obtained by X-ray 

structure analysis (Figs. 2.65, 66, see also Figs. 2.62, 64, 75). Moreover, X-ray 

structure analysis, which does not, in principle, require the knowledge of the 

chemical formula (which only facilitates structure determination), is sometimes 

a method for refining or establishing the chemical formula. Thus, the ultimate 

Fig. 2.65. Ellipsoids of thermal vibrations in the structure of the anion of the salt of sodium 

1,3,5-triphenylcyclotrisiloxane 1,3,5-triolate [2.38] 



174 2. Principal Types of Crystal Structures 

Fig. 2.66. Structure of the molecule of phenoxy- 
methylpenicillin Ci6H18N205S partly shown by the 
Fourier synthesis fragments [2.39] 

formulae (together with the structure of the molecule) of penicillin (Fig. 2.66), 

and vitamin B12 (Fig. 2.109) have been established by an X-ray diffraction 
technique. 

2.6.2 Symmetry of Molecules 

Molecules with a simple chemical formula are often symmetric, and their point 

symmetry is not associated with the crystallographic prohibition of 5th-, 7th-, or 

higher-order axes, although in most cases the order of the symmetry axes is not 

high. As the formulae grow more complicated, the molecules generally become 

less symmetric or completely asymmetric. For such molecules, as well as, in 

general, for molecules having the point symmetry groups Go’1 characteristic 

of the less complicated ones, enantiomorphous - right- and left-hand - forms 

(enantiomers), absolutely equivalent energywise, are possible. 

The existence of enantiomorphous organic molecules is often due to the 

presence in them of an “asymmetric” tetrahedral carbon atom (more precisely, 

one asymmetrically surrounded by four different neighbors - atoms or group¬ 

ings) (see Fig. 2.60). For such an atom, two (right-hand and left-hand) enan¬ 

tiomorphous forms are possible. Molecules containing such an atom form two 

enantiomers; they are optically active, the signs of their optical activity being 

opposite. If the molecule contains two asymmetric carbon atoms, four 

stereoisomers are possible, including two pairs of enantiomers, etc. 

Natural compounds - amino acids, peptides, hormones, steriods, proteins, 

and nucleic acids - have, as a rule, enantiomorphous form. For instance, almost 

all the amino acids contained in proteins are “left-hand”. Asymmetric molecules 

Fig. 2.67a-n. Examples of organic molecules with different symmetry: (a) LDDD-form of cyclic 
tetradepsipeptide [-<MeVal-HyIv)2-], 1; (b) LLDD-form of cyclic tetradepsipeptide 
HMeVal-HyIv)2-], 1; (c) 1,5-dimethylnaphthalene 2/m; (d) urea, mm2; (e) dipotassium ethylene- 
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tetracarboxylate, 2; (f) oxindigo, 2/m; (g) di-rc-xylylene, mmm; (h) ion of 2,2',2"-triamino- 
trimethylamine, 3; (i) trimethylamine oxide, 3m; (j) tetraphenylporphine, 422; (k) porphine, 4/mmm; 
(1) cyclohexaamilase, 622; (m) annulene, 6/mmm; (n) Cuban, m3m. The last expression indicates the 
point symmetry of the given molecule. The hydrogen atoms are not shown in some cases (a, b, f, j, 1) 
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not containing an asymmetric tetrahedral C atom can also form enantiomor- 
phous pairs. For instance, the molecule of 3,4-benzophenanthrene (Fig. 2.63a) 
has two mirror-equal modifications. 

The most common symmetries of molecules are 1,1, 2, 3, 222, m, mm2, and 
mmm, but there are also molecules of a higher (up to cubic) symmetry (Fig. 2.67). 
Unusual examples are also known, such as ferrocene (Fig. 2.58) with symmetry 
5m, etc. 

2.6.3 Packing of Molecules in a Crystal 

Knowing the skeleton of a molecule, which was constructed a priori or on the 
basis of some experimental data, it is possible, using the values of intermolecular 
radii (Table 1.10) (and taking into account the H atoms, of course), to wrap it in 
a “coat” of such radii and represent the molecule as a solid body, “rigid” or with 
several degrees of freedom of rotation of the groups linked by single bonds 
(Fig. 2.60). 

The interaction of these molecules and their packing in organic crystals 
constitute the second main aspect of organic crystal chemistry [2.40]. Because of 
the complicated shape of the molecules (in contrast to the “spherical” shape of 
the atoms), the determining factors in the structure are the above-discussed 
(Sect. 1.5) geometric principles of maximum filling of space, symmetry of struc¬ 
tural units, and symmetry of their packing. 

Ignoring for the time being hydrogen bonds, which have an energy of about 
3-10 kcal/mol, the packing of molecules is determined by the van der Waals 
forces with an energy of 1-3 kcal/mol. Geometrically the energy minimum under 
this interaction is expressed in the dense filling of the crystal space by molecules 
with a sufficiently high packing coefficient (1.75). 

By nonuniform deformation of hexagonal closest packing of spheres, stretch¬ 
ing both the spheres themselves, i.e., transforming them into triaxial ellipsoids, 
and the lattice of their centers in an arbitrary direction, it is possible to obtain 
the first approximation to the model of packing of arbitrarily shaped bodies. 
Clearly, some “layers” of molecules corresponding to the former layers of 
spherical packing can be singled out, and the coordination number of 
the molecules will remain equal to 12 (6 + 3 + 3; 6 in the layer, and 3 each from 
the upper and lower layer). For a individual layer, the coordination ensuring the 
fullest possible filling is usually equal to 6, or sometimes to 4. 

When considering the packing of arbitrarily shaped molecules, the max¬ 
imum filling of space is achieved by following the same rules. It is often possible 
to single out in a structure layers with coordination 6. The molecules may be 
arranged in the layers not only in “parallel”, but also in “antiparallel” rows or in 
“herringbone” fashion. The layers are stacked so that c.n. 12 or, more often 14 
(6 + 4 + 4) is usually obtained, but sometimes c.n. 8, 10, 16, and others arise 
(Fig. 2.68). The molecules are then disposed in such a way that their “projec¬ 
tions” (these are mostly H atoms) enter the hollows of neighboring molecules or 
gaps between other molecules. As noted above (Fig. 1.56b), this promotes the 
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Fig. 2.68. Stacking of layers 
of organic molecules 

appearance, in molecular structures, of symmetry elements with translational 

components, i.e., glide planes or screw axes. At the same time it is inconvenient 

to accomplish mutual packing of molecules or their layers with the aid of 

symmetry planes or twofold axes of symmetry, because then the projections of 

one molecule face those of another (see Fig. 1.56). Therefore symmetry planes 

m are very seldom found in organic crystals. 

We have already considered the relation of the symmetry of structural units 

(molecules) to the principle of maximum filling (Sect. 1.5). This is the determin¬ 

ing principle in the arrangement of structural units. They occupy only such 

positions whose symmetry permits maximum filling. There are definite relations 

between the proper symmetry of the molecules and the possible symmetry of the 

positions they occupy. 
Consideration of the various structures of layers having maximum filling 

(this requires analyzing groups G\ and Gf, [Ref. 2.2, Sect. 2.7]) and then also of 

three-dimensional packings of molecules of different symmetry, leads to the 

following conclusions [2.40]. Figures of arbitrary shape (i.e., molecules of any 

symmetry or asymmetric ones) can always be packed into dense layers with 

coordination 6. Such layers may belong to one of the following four (out of 80) 

symmetry groups Gf: pi, plib, p 12^, and pHi/al (Groups no. 3,4, 15,21 in 

[Ref. 2.2, Fig. 2.63]). The first three groups permit the arrangement of asymmet¬ 

ric figures and symmetric figures without a center of symmetry, and the last two, 

of figures with a center of symmetry I, so that the centers of symmetry of the 

molecule coincide with those of the layer. With a suitable shape of the molecules 

with a proper symmetry m, 2, 2/m, mm, 222, and mmm, they can be packed 

densely into layers containing the same symmetry elements; there are ten such 

groups. Space groups <P, which are characteristic of the close packings of 

molecules, are built up of the indicated groups of layers, and the layers are 

packed densely (for instance, a plane m between layers is forbidden). From the 

indicated peculiarity of the packing of figures with symmetry T it follows that 

a molecule possessing this symmetry element will always retain it in the crystal. 
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occupying a centrosymmetric position, while almost all of its other symmetry 

elements will be lost, i.e., they will not coincide with the symmetry elements of 

the crystal (“the center of symmetry rule”). For instance, naphthalene with 

symmetry of the molecule mmm crystallizes in the space group P21/c, the centers 

of the molecules coincide with the centers of symmetry of this group (Fig. 2.69). 

Below we compare the symmetry of molecules with the most probable 

symmetry of their position in the crystal: 

Point symmetry 112 m mm 2/m mmm 222 

of the molecule 

Symmetry of 1 I 1 or 2 1 or m 1 or 2, I I 1 or 2 

positions or m 

For molecules with symmetry 1 (or with such a symmetry of positions in the 

crystal) the space groups 0 most probable from the standpoint of close-packing 

theory are PI, P2U P2l/c, Pea, Pna, and P212121, and for molecules with 

symmetry T (or with such a symmetry of positions), PI, P2x/c, C2/c, and Pbca. 

The statistics of the distribution of homomolecular (i.e., consisting of only 

one sort of molecules) crystals among the Fedorov groups (Table 2.2) proves the 

validity of the rules of close packing of molecules4. Thus, among the 

homomolecular organic crystals investigated the most common groups are 

C|h-P21/c (37.9%), D4-P2i2121 (16.8%), CS-P1 (9.0%), and C\-P2X (8.4%) 

[2.38, 39]. The allocation of an organic crystal to a given space group does not 

completely characterize the packing of molecules in it, since for the given (P there 

may be structures with arrangements of molecules over different regular point 

4 The distribution among the groups <P given in Table 2.2 differs slightly from the data listed in Table 
1.11 for organic compounds. The point is that Table 1.11 takes into account all the organic 
compounds, both heteromolecular (i.e. containing molecules of different sorts) and homomolec¬ 
ular. On the other hand, in Table 2.2 the statistics were compiled on more comprehensive (new) 
material, but only homomolecular crystals were taken into consideration 
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Table 2.2. Distribution of homomolecular crystals among space groups 

Space group Number of structures m 

P2x/c 1897 37.9 
P21212 j 839 16.8 
PI 449 9.0 
P2, 418 8.4 
C2/c 310 6.2 
Pbca 247 4.9 
Pna 2j 120 2.4 
Pnma 94 1.9 
Pbcn 58 1.2 

Total 4432 88.7% 

systems (RPS) (i.e., systems of symmetry equivalent positions, see [Ref. 2.2, Sect. 

2.8.11]), the molecules being of identical or different chirality. Therefore, for 

systematics and statistics of organic crystal structures the concept of the struc¬ 

tural class is introduced [2.40]. The structural class is a set of crystals with 

a given group <P, in which the molecules occupy identical systems of equivalent 

positions (i.e., their centers are identical RPS). For instance, a widely spread 

structural class is that of naphthalene (Fig. 2.69) P2x/c, Z = 2(1); the molecules 

occupy one of the systems of centers of symmetry. In another class of the same 

space group, Z = 4(1,1) two systems of centers of symmetry are occupied, 

a representative being tolan (Fig. 2.70). The structural classes can be divided into 

four types according to the chirality or nonchirality of the positions occupied by 

the molecules forming the crystal. Type A contains groups 01 of the first kind, 

layer A r' y1' C-' S N 

layer B 

Fig. 2.70. Structure of tolan C14H10 
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i.e., the structure is built up of chiral molecules (only right-hand or only left- 

hand). Types B, C, and D contain groups <f>" of the second kind. In type B the 

positions of the molecules are chiral, but right- and left-hand in equal numbers. 

In type C the positions occupied by the molecules are nonchiral. In type D the 

molecules occupy both chiral and nonchiral positions. 
Type A crystals include most of the molecular structures of natural com¬ 

pounds. As indicated above, their molecules exist in one of the two possible 

enantiomorphous forms and, hence, are optically active. Therefore such crystals 

show no symmetry elements of the second kind, and thus only two groups, 

P212121 and P2y, are most probable for them. The predominance of these 

groups also follows from the usual presence of H bonds in natural compounds. 

As confirmed by statistics, the most common class in type A is 7>2j212i, 

Z = 4(1); it contains 56% crystals of type A (16% of all the homomolecular 

crystals), and class P2UZ = 2(1), 25% (and 7%), respectively. Thus, almost all 

the amino acids crystallize in one of the two indicated groups. 
Type B crystals are the most numerous. The most common class among 

them is P2Jc, Z = 4(1); 52% (28% of all the crystals), it is followed by PI, 

Z - 2(1); 10% (6% of all the crystals); and then comes Pbca, Z = 8(1); 7% 

(4% of all the crystals). These crystals include families of natural and synthetic 

compounds, i.e., a mixture of equal numbers of l and d enantiomers. In C type 

crystals, the same group, 2t/c, predominates, and the most common class is 

naphthalene, Z = 2(1); 39% (6% of all the crystals), which is followed by PI, 

Z = 1(1); 12% (1.9% of all crystals). The six most common structural classes 

include about 70% of the homomolecular crystals. 
There are also certain high-symmetry organic crystals; they form when the 

molecules with the corresponding high symmetry have a shape suitable for close 

packing. For instance, the molecule of hexamethylenetetramine has the sym¬ 

metry 43m, the space group of the structure being 743m (Fig. 2.71); the molecule 

of triazidecyanuric acid has the symmetry 6, the space group of the structure 

being P63/m (Fig. 2.72). 
In some organic crystals the arrangement of the molecules is such that in 

addition to space symmetry operations there are\some noncrystallographic 

operations of local symmetry or supersymmetry [Ref. 2.2, Sect. 2.5.5], which do 

not belong to the set of operations of group <P. Thus, local noncrystallographic 

axes 2, by which pairs of molecules are related, and supersymmetry screw axes 

2U 3l5 and 4X were observed [2.44]. It is obvious that noncrystallographic 

symmetry arises when it is advantageous from the standpoint of close packing of 

molecules (or linking molecules by hydrogen bonds), while the further uniting of 

such groupings with proper symmetry occurs within the framework of group <P, 

which has already different symmetry operations of its own. 

The packing coefficient, see (1.75), for organic structures does not decrease 

lower than 0.65-0.68; for most structures it equals 0.70-0.75 and sometimes 

reaches 0.80. The close-packing principle is only the first, rough approximation, 

which realizes geometrically the condition for the minimum of packing energy, 
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Fig. 2.71. Structure of hexamethylenetetramine C6H12N4 (the H atoms are shown only in one 
molecule) 

Fig. 2.72. Packing of the molecules of triazidecyanuric acid 
in a crystal 

see Sect. 1.5 and (1.52). More accurate quantitative results are produced accord¬ 

ing to the method of energy calculations using atom-atom potential functions, 

see (1.16, 45). In analyzing the mutual arrangement of molecules it is sometimes 

sufficient to take into account the symmetry of the potential functions, consider¬ 

ing energy Uv6^ (1-57) when a pair of molecules are spaced at a distance r and 

have different orientations assigned by angles 9, cp, and ij/. 

The most comprehensive physical interpretation of the arrangement of 

molecules in organic crystals requires thermodynamic considerations with due 

regard for the lattice dynamics, which helps to calculate, not only the structure 

of the crystal, but also its main characteristics, such as the heat capacity, 

compressibility, thermal expansion coefficient, etc. [2.45]. 
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It is noteworthy that, because of weak van der Waals bonds, the thermal 

vibrations of molecules as a whole and of their constituent atoms in organic 

crystals are very large. The coefficients B of the temperature factor usually equal 

3_4 a2, i.e., the mean square displacements are of about 0.2 A. The displace¬ 

ments of atoms are largely due to the vibrations of a molecule as a whole, and 

therefore they are greater near the periphery of the molecule. But individual 

components of the thermal motion of the atoms can also be determined, 

depending on the structure of the molecule and character of the bonds between 

its atoms (Fig. 2.65). 
Molecular crystals are insulators, as a rule, because the electrons are local¬ 

ized on bonds inside the molecules. However, organic conductors of the quasi- 

one-dimensional type are known, in which conductivity is achieved due to the 

packing in stacks of flat organic molecules, which are electron donors. An 

example of such a compound is tetrathiotetracene (TTT) and its selenium analog 

TSeT 

Se-Se 

Se-Se 

The structure of (TSeT)2+Cr is shown in Fig. 2.73. The molecules are 

packed into infinite stacks extending along the c axis, the spacing between 

the molecular planes being 3.37 A. The conductivity in the c direction is 

2.10 x 103 ohm~1 cm-1, i.e., is essentially metallic; it is achieved owing to the 

maximum overlapping of the n orbitals of the molecules; the conductivity in the 

other directions is several orders of magnitude lower [2.46]. Because of this high 

conductivity these compounds are called “organic metals.” Among those are 

also superconductors (Sect. 6.4.1). 
Another class of organic compounds - stable nitroxyl radicals - exhibits 

paramagnetism and nonlinear optical properties. Figure 2.74a shows a map of 

the difference deformation electron density of a molecule of the organic para¬ 

magnetic C13H17N202. Atom 0(1) is charged negatively and forms an intra¬ 

molecular hydrogen bond with H(22). The bond N(4)-0(2) reveals an extended 

cloud of the n orbital perpendicular to the plane of the molecule (Fig. 2.74b), 

which evidently carries the nonpaired electron responsible for paramagnetism. 

2.6.4 Crystals with Hydrogen Bonds 

The principle of close packing of molecules has to be extended when we refer to 

structures with hydrogen bonds. These bonds are also formed, in particular, by 

most molecules of biological origin. Van der Waals bonds determine the close 

packing in the presence of hydrogen bonds, despite their higher energy, so that 

a different principle of joining the molecules is fulfilled. The hydrogen bond is 
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a 

Fig. 2.74. (a) Difference deformation electron density map of paramagnetic compound 
C13H17N202; (b) cross section perpendicular to N(4)-0(2) bond (the numbers indicate the electron 

density, in 0.1 eA-3) [2.47] 
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directional, and the “projections” of one molecule, namely H atoms of OH or 

NH groups, draw closer together with the “projections” of the other molecule, 

i.e., O and N atoms. Therefore, if a molecule of arbitrary shape has these 

“projections”, active in the sense of the hydrogen bond, a convenient mutual 

arrangement of a pair of such molecules may be realized with the aid of a center 

of symmetry or a twofold symmetry axis. Often, especially in the case of 

asymmetric molecules, the disposition on their surface of atoms linked by 

H bonds is inconvenient for closing into pairs. Then, for instance, NH groups of 

one molecule combine with O atoms of the other, and the NH groups of this 

next molecule combine precisely in the same way with the O atoms of a third 

molecule, and so on. This results in chains which wind around the screw axes of 

symmetry, mostly around axes 2t (Figs. 1.37, 2.75a, b). Sometimes such an axis 

may be noncrystallographic. If the molecule has more than one hydrogen atom 

forming H bonds, the structures with two- or three-dimensional networks of 

hydrogen bonds can arise (Fig. 2.76). 

<3 Fig. 2.75a, b. Chains of molecules united by hydrogen 
bonds (-): (a) in the structure of cyclo-L-valylsar- 
kozyl [2.48], (b) in the structure of oxyacetophenone; 
the chains have the form of helices with local symmetry 
4,. The helix axes are parallel to the b axis [2.49] 

Fig. 2.76. Structure of urea CO(NH2)2 



2.6 Principles of Organic Crystal Chemistry 185 

Thus, in organic crystals with hydrogen bonds the appearance of twofold 

axes or a center of symmetry could be expected for the packing of molecules 

possessing symmetry elements of the second kind, and the appearance of simple 

or screw twofold axes for asymmetric molecules and those with symmetry 

elements of the first kind, which is actually the case. 

The formation of a space network of hydrogen bonds may cause the ap¬ 

pearance of stable symmetric configurations. The urea molecule ii , 
h2n-^^nh2 

for instance, has symmetry mm2, while the tetragonal space group P4m of its 

structure (Fig. 2.76) is unusual from the standpoint of close packing. It is the 

consequence of the arrangement of H bonds. Upon saturation of the hydrogen 

bonds between molecules, the close-packing principle and van der Waals forces 

come into play, which results in structures where the hydrogen bonds are 

saturated and the molecules are packed quite densely. 

2.6.5 Clathrate and Molecular Compounds 

The clathrate, or inclusion, compounds make up an interesting group among the 

organic crystals. These are structures composed of two sorts of structural units: 

organic molecules and some small organic (for instance HCOOH) or inorganic 

(H2S, HC1, S02, etc.) molecules fitting into the voids in their packing. The bonds 

with these molecules may be not only van der Waals ones, but also hydrogen or 

ionic. An example of a clathrate structure is presented in Fig. 2.77. An interesting 

kind of a clathrate structure is offered by the filling of voids in dodecahedral 

packings of H20 molecules by the atoms of inert elements or by small molecules 

(Fig. 2.78). 

Fig. 2.77. Clathrate compound 
3C6H4(OH)2 S02 

Fig. 2.78. Network of dodecahedra and more 
complex polyhedra formed by water molecules in 
a clathrate compound 
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In recent years it has been found that organic molecules differing in nature 

may cocrystallize, forming a crystal with a stoichiometric ratio of the compo¬ 

nents (mostly 1:1). The structure and formation of such molecular compounds 

(Fig. 2.79a, b) can be explained proceeding from the maximum-filling principle; 

in this case the shapes of the molecules complement each other to achieve 

the highest packing coefficient. Such “compounds” exist only in solid phases. 

Such structures can also be formed by charged metal-containing molecules 

(the so-called molecular ions). Thus flat HCTMCP molecules are crystallized 

together with pseudocylindrical Te(MES)2 molecules (Fig. 2.79c) [2.50]. 

Molecular compounds and solid solutions of polymer and ordinary organic 

molecules are known. 
Solid solutions are known to form in organic crystals; however, their solu¬ 

bility limits are low, up to several per cent. For instance, technically important 

organic crystals - scintillators - are solutions of certain molecules in a matrix of 

aromatic compounds (say, 10_4wt. % anthracene in naphthalene, 0.5 wt. % 

phenanthrene in naphthalene, etc.). They are called now molecular alloys. For 

a series of such alloys the solid-liquid state diagrams have been constructed 

[2.51]. In a number of organic crystals complete or limited rotation of molecules 

or their parts has been observed. 
The synthesis and study of molecular compounds and alloys is a new 

promising direction of organic crystal chemistry. It founds ever growing applica¬ 

tion in creation of materials with valuable electronic and optical properties. 

Fig. 2.79a-c. Molecular compounds, (a) molecular complex of 

perylene C20H12 with fluoroanil C6F402, one layer of the structure 
located near the plane z = 0; (b) superposition of molecules along 
the c axis; (c) close packing of flat molecules HCTMPC (black, 
charge — 2) with cylindrical molecules Fe(MES)2 (white, charge 
+ 2) in the crystal structure 
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2.7 Structure of High-Polymer Substances 

2.7.1 Noncrystallographic Ordering 

Proceeding to a description of the basic features of the structures of high 

polymers and liquid crystals, as well as those of biological macromolecules and 

their associations, we somewhat expand the limits of classical crystallography, 

which deals (or, more precisely, dealt) exclusively with true crystal structures 

exhibiting three-dimensional periodicity. At the same time crystallography (if we 

regard it as a science of the ordered atomic structure of condensed matter) has 

gradually taken on new objects, which did not necessarily show three-dimen¬ 

sional periodicity, but were characterized by some ordering and a definite 

symmetry, which were sometimes very close to, and sometimes very far from, 

those of crystals. Of course, this enormous class required proper theoretical and 

structural treatment because of the widespread occurrence of these diverse 

structures, the importance of their functions and properties in organic and 

inorganic nature, and their increasing application in industry and technology. 

This task was entrusted to crystallography, which had at its disposal the 

methods and tools best suited to cope with it. The extension of its field of 

application to a wider class of objects is sometimes emphasized by using the 

term “generalized crystallography”, implying that attention is focused on struc¬ 

tures of live organic matter. 

2.7.2 Structure of Chain Molecules of High Polymers 

The high-polymer compounds are built of long, chain-type molecules. It is just 

this feature that explains most of the physico-chemical properties of polymers. 

However, not only the structure of the molecule as such is important, but also 

the character and manner of mutual packing, i.e., the aggregation of the chain 

molecules into a polymer substance. 

We shall first consider the structural principles of the chain molecule itself. 

Such a molecule is a one-dimensional sequence of atoms or radicals linked by 

covalent bonds, to which side groupings can be attached at certain sites. Here, 

the term “one-dimensional” indicates, of course, only the type of sequence of 
atoms or radicals in the three-dimensional chain molecule. As a rule, it is 

possible to distinguish, in such a molecule, a consecutive single chain of atoms, 

the backbone of the molecule (Fig. 2.80a). The backbone will be more complex if 

the chain contains cyclic or more complicated groups (Fig. 2.80b). 

The chain is uniformly constructed if it consists of one sort of radical and if 

all its units’ links are identical (homopolymers). A chain consisting of various 

radicals (heteropolymers) is more complicated. Two or more kinds of radicals 

may be arranged in a random order along the chain. Such chain molecules do 

exist, although chains of regular structure are far more common. The simplest 

requirement for ordering - the repetition of some structural unit along the 

molecule axis - is maintained to some extent in them. The repetition is an 
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Fig. 2.80a, b. Structure of chain molecules formed by a simple (a) or 

complex (b) chain 

essential feature of a chain molecule, although often its occurrence is statistical 

rather than strict. 
Symmetry groups of chain molecules are groups Gj, which describe three- 

dimensional structures, periodic in one direction. The width of chain molecules 

in the direction perpendicular to translation (i.e., their thickness ) for most of 

the synthetic polymers does not exceed 10 A, but in complex biological polymers 

it may reach several tens of angstroms. 
When the number of links in a molecule exceeds 10 or 20, the peculiarities of 

the structures of the molecules and their packings, typical of high-polymer 

substances, begin to manifest themselves. In true polymers the number of links 

runs into the thousands and millions. The simplest examples are paraffins 

C„H2„ + 2 and the “infinite” paraffin chain of polyethylene (CH2)„ (Fig. 2.81), its 

Fig. 2.81a-c. Chain molecules of polyethylene (a) 
and tetrafluoroethylene (b, c). (b) shows the arrange¬ 

ment of the centers of the C atoms 
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backbone consists of a chain of carbon atoms , the repeating unit 

being group CH2. C C 

The structure of a chain molecule is governed by the general rules concern¬ 

ing the direction and length of covalent bonds, which determine the backbone 

structure and the attachment of side radicals, and by the van der Waals 

interactions of the side radicals with themselves and with the backbone atoms. 

These interactions, as well as those of the chain molecules with themselves in 

their aggregates, stabilize definite conformations of the backbones of chain 

molecules, which are highly mobile owing to the single bonds, which are almost 

always present and permit rotation (see Fig. 2.60). Thus, taking into considera¬ 

tion the repulsion of C atoms in a polyethylene chain it is easy to understand 

that the trans-configuration is the most stable for it (Fig. 2.81a). The repulsion of 

adjacent links of the chain practically always tends to “straighten” it out. But the 

shape of the molecule as a whole is governed by the shape of the individual links 

at their contact, and such repulsion may lead to a conformation of a more 

general type, namely to a helical structure (a particular case is a zigzag confor¬ 

mation). Let us consider tetrafluoroethylene (CF2)„, in which all the hydrogen 

atoms in the polyethylene chain are replaced by fluorine. Here, the chain 

configuration changes from zigzag to helical (Fig. 2.81b). The reason is that 

H atoms with an intermolecular radius of ~ 1.2 A settle freely one over another, 

because the periodicity of the backbone of the carbon atoms is 

2.54 A > 2 x 1.2 A. The fluorine atoms, however, have an intermolecular radius 

of 1.4 A, and the indicated periodicity cannot be realized, since 2 x 1.4 > 2.54 A. 
These spatial stresses are overcome by a small rotation about the C-C bonds 

with respect to the trans-position, which ultimately leads to a helical structure of 

the backbone. 
The geometry of the ideal periodic chain molecule can be described as 

follows. It consists of monomeric units - links. The succession of the links 

(Figs. 2.80, 82) can be described by the inclination a of the axes of the links, the 

angle q> of torsion of axis O'O'' of a link about axis 00" of the preceding, and, 

finally, the angle of rotation \p of the link about its own axis 0 0". The 

characteristics of the chain are the length of the link /, the value c' of the 

projection of / on the axis of the molecule, and period c = pc' of the chain 

molecule (p links per period constitute a unit grouping, an analog of the unit cell 

of a crystal). If the molecule is helical, the period c does not necessarily 

correspond to a single turn of the helix; translational repetition may be achieved 

after q turns, and the general case of the helical symmetry Sm,M = p/q 

[Ref. 2.2, Fig. 2.58], 
The principal types of periodic chain molecules are shown in Fig. 2.83. The 

simplest case is a simple repetition of monomers: a = 0 and ip = 0. At a = 0 and 

ip / 0 we obtain a class of screwlike, linear molecules. The case where ip = 180° 

and a^O yields a large class of zigzag chain molecules (polyethylene and 

others). The general case of arbitrary a / 0, <p ^ 0 and ip ± 0 gives different 

elongated or gently sloping helices, which are thus the most general type of the 
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Fig. 2.82. Mutual arrangement of the links of Fig. 2.83. Principal types of chain molecules 
the chain molecule and the angular para- and their symmetry 
meters characterizing it 

chain molecule (Figs. 2.84-88). Note that the helical structure of a chain 

molecule is clearly revealed in the diffraction pattern (Fig. 2.156). 
A number of polymers are built so that two or more sorts of side radicals are 

attached in some order to the backbone, which has a fixed structure. In this case 

the description of the chain molecule is more complicated. The possible cases are 

a) a regular sequence of radicals Rlt R2. . . with a certain period, b) their 

statistical distribution described by some distribution function, and c) random 

distribution of radicals along the chain. 

Speaking of the order of attachment of the radicals, or of violations of this 

order, one must keep in mind not only the individual chemical nature, the 

“types” of radicals and their relationships with specific atoms of the chain, but 

also such geometric characteristics as the “right-” or “left-handed” attachment 

and the possible different orientations of the attached radicals. 

Thus, the tetrahedral carbon atom in a chain molecule has two possible 

positions of attachment (/ and d positions) 

If we consider the possible attachments of radicals to such a chain, we can 

have a chain of the type ... Ill... (or . . . ddd . . .) (isotactic polymer), of the 

type . . . Idld . . . (syndiotactic polymer), or with random alternation of / and 

d positions (e.g., atactic polystyrene). These are different cases of stereoisomer¬ 

ism in chain molecules. Finally, we must mention one more kind of possible 

disordering of polymer chains; this is when they are composed of structurally 

identical but polar links, i.e., the links have a “head” and a “tail” and, therefore, 



2.7 Structure of High-Polymer Substances 191 

Fig. 2.84. Structure of crystals of polyethylene- 
terephthalate (-CH2-CH2-C02-C6H4-C02-)„. 
The molecule is formed by translational repeti¬ 

tion of the monomer [2.52] 

Fig. 2.85. Structure of gutta-percha [-CH2C- 
(CH3)CHCH2-] [2.53] 

b 

Fig. 2.86a, b. Structure of a polysaccharide: 
xylane backbone with side groups of ara- 
binose [2.54]. (a) view along the perpendicular 
to the helix axis; (b) projection along the helix 

axis 

Fig. 2.87. Structure of some regular 
helical polymers with different helix 
parameters 
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Fig. 2.88. Structure of polystyrene (compare with the first structure in 

Fig. 2.87) 

can enter the chain in two different positions. Complicated chain molecules of 

biological origin may consist of several chains; their structure will be discussed 

below. 

2.7.3 Structure of a Polymer Substance 

Let us now turn to the structure of three-dimensional aggregates of chain 

molecules. The packing of molecules is described by the familiar principles of 

organic crystal chemistry. These principles operate, however, within the frame¬ 

work of extremely specific circumstances - the chain structure of molecules and 

their great length. The former determines the main peculiarity of polymer 

substances, the parallelism of the packing of molecules. The latter leads to a very 

strong influence of kinetic factors (conditions of formation) on the chain- 

molecule aggregate’s structure. 
Owing to the great length of chain molecules the formation of a three- 

dimensionally periodic crystalline structure from them is impeded. In the course 

of crystallization such long and flexible molecules must straighten, either com¬ 

pletely or in some of its parts, and occupy strictly definite places in a definite 

orientation. But interaction with the neighbors, entanglement, twisting, etc. 

hinder this in every possible way. Therefore, in most of the chain-molecule 

aggregates an ordered equilibrium state is not achieved, and the degree of 

ordering depends on the character and time of condensation and further 

treatment. 

Formely, the two concepts, “crystalline” and “amorphous” components, 

were used in describing the structure of polymer substances. In some parts of 

a polymer substance the chain molecules are stacked regularly with respect to 

each other and form a “crystalline”, although maybe not perfect, region several 

tens or a hundred angstroms in size. The great length of the molecules leads to 
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their entanglement and does not allow the lattice to be built over the entire 

volume of the object; therefore, crystalline regions interchange with those of 

amorphous substance, in which no order exists. A single molecule may run 

through several crystalline and amorphous regions. It is clear at this juncture 

that the concepts just described are extremely tentative, although they are 

justified as certain limiting cases, which are sometimes realized. Apart from the 

crystalline and amorphous structure, various intermediate types of chain- 

molecule aggregation are possible; they will be treated in Sect. 2.7.5. 

2.7.4 Polymer Crystals 

Some polymers crystallize under certain conditions forming a crystal lattice 

throughout their volume or part of it. A necessary (but not a sufficient) condition 

for the formation of a truly crystal structure is the regular structure of the chain 

molecule itself, its stereoregularity. Regions with crystalline ordering can, as 

usual, be characterized by the unit cell, space group <P, etc. Figure 1.80 presents 

the unit cell of n paraffins (the same cell as in polyethylene), and Figs. 2.84, 85, 

that of polyethylene terephthalate and gutta-percha. 

Macroscopic-faceted single crystals can be grown from solution of some 

simple synthetic polymers - polyethylene, polypropylene, polyamides, and 

Fig. 2.89a, b. Crystals of polyethylene 
(CH2)„. (a) spiral-layer structure; (b) cor¬ 
rugated zone structure [2.55] 
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Fig. 2.90a-d. Structure of the crystalline re¬ 
gions in polymers, (a) crystals formed by regu¬ 
lar folding of chain molecules; (b) polymers 
crystallizing from the melt or subjected to 
orienting treatment; (c) crystalline region of 
a polymer obtained by flux crystallization; (d) 
crystalline region obtained by polymerization 
of a monomer single crystal 

others (Fig. 2.89). The crystals have a characteristic lammelar habit and often 

exhibit clearly defined signs of a spiral (dislocation) growth mechanism. Inves¬ 

tigation into the morphology of these crystals with the aid of electron micros¬ 

copy and X-ray diffraction analysis revealed a remarkable feature of their 

structure. It was found that, in the course of packing into the crystal structure, 

the long polymer molecule, with its many thousands of links, bends over many 

times to form straight parts of the same length of about 100-150 A. The result is 

an elementary layer of a crystal shown in Fig. 2.90a. The thickness of the 

elementary growth steps on the crystal surface (Fig. 2.89) corresponds to the 

length (L) of the straight parts of the folded chain molecule. The length L (and 

hence the thickness) of the layer is constant under given conditions, but is 

temperature dependent. To a higher crystallization temperature corresponds 

a larger L. If a formed crystal is heated, L also increases. This indicates that the 

layers become thicker owing to the passage of molecules through the bending 

site and longitudinal slipping of the straight parts of the chains relative to each 

other. Theoretical considerations show that bending can be ascribed to the 

contribution from the free surface energy to the total energy of the crystal; the 

change in L can be explained likewise. 

The growth of a single layer of a crystal is achieved by the wrapping of 

repeatedly folded chains around the lateral face. This is the basis of many 

interesting features of such crystals, for instance, that their lateral faces and 

sectors are not equivalent, and that the flat face of the crystal is perpendicular to 

the molecular axis in each sector. Thus, on transition to the condensed state 

chain molecules tend to self-aggregation by folding. 

Multiple folding is also a basic mechanism in crystallization of polymers 

from the melt. Since a perfect crystal structure cannot be achieved, much of the 

volume is occupied by crystalline regions, while in its smaller part the ordering is 



2.7 Structure of High-Polymer Substances 195 

lower. Crystalline regions are of different shape and size. While they are forming, 

the polymer molecules can bend over many times or pass through them. The 

structure of a crystalline region in an aggregate of this type is schematically 
shown in Fig. 2.90b. 

By orienting treatment, i.e., crystallization of a polymer simultaneously with 

its drawing, stretching of specimens, etc., one can obtain a parallel orientation of 

molecules over a large distance. This may produce fiber-like (microfibrillar) 

sections interchanging with “knots” of entangled molecules (Fig. 2.90c). When 

crystalline polymer specimens composed of crystalline blocks are stretched, 

individual folded crystals (lamellae) disintegrate and the chains folded into them 

unbend and stretch into a microfibrillar structure (Fig. 2.91). 

One of the possible ways for parallel packing of polymer molecules consists 

in their crystallization in a melt flux with a velocity gradient. In such cases, and 

sometimes in crystallization from solutions, fibrillar crystals with lamellar thick¬ 

enings are produced, which are called “shish kebab” structures (Fig. 2.92a) 
[2.57], The appearance of these interesting structures, the packing of molecules 

in which is demonstrated in Fig. 2.92b, is due to the fact that the orienting action 

is not uniform throughout the system. Presumably, the fibrillar core structure is 

first formed, which serves as a nucleus for the growth of portions with a folded 

(lamellar) crystalline structure around it at certain distances from each other. 

In natural polymer fibers the orientation and parallel arrangement of the 

chains are caused by the fact that the crystallization (orientation) process 

coincides with the synthesis of the chain itself. 

A method is known for obtaining crystals of some polymers in which the 

chain molecules are packed parallel without bends along their entire length. 

This is so-called directed stereoregular polymerization in the solid phase. The 

precursor of such a crystal is a single crystal of a monomer. Polymerization¬ 

sewing together of monomers - gives rise to an array of chain molecules with the 

order laid down by the crystalline array of the monomers. For instance, single 

crystals of trioxane exposed to X-radiation give chain molecules of poly- 

oxymethylene (-CH20)„, which are packed according to Fig. 2.90d to form 

a highly ordered crystal. Such crystals possess a very high strength, close to 

theoretical. 

uuinm^% 

fuuuir^^/ 
Fig. 2.91. Model of formation of a microfibril¬ 
lar structure from folded crystals [2.56] 
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Fig. 2.92a, b. Fibrillar crystals with lamellar overgrowth (“Shish kebabs”) of polyethylene, 

(a) electron micrograph; (b) molecule packing model 

2.7.5 Disordering in Polymer Structures 

Let us now consider aggregates of chain molecules with less-than-crystalline 

ordering. The determining factor here is the presence of the short-range order in 

the packing of near-parallel molecules. The following deviations from the ideal 

three-dimensionally periodic packing may take place (Fig. 2.93): a) parallel shifts 

of molecules along their axes; b) turns (rotations) of molecules about the axes; 

c) distortions of two-dimensional periodicity in the projection of molecules 

on their axes (“net distortions”). 

Fig. 2.93. Parameters specifying the position of a chain 

molecule 
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These distortions are almost always interrelated. They may be accompanied 

by nonparallelism or bending of the chains. The distortions are described by 

functions of a statistical nature. Thus, the statistics of the shifts can be assigned 

by displacement function z(z). This function indicates the probability of dis¬ 

placement of molecules along the axis from some ideal position. If any shifts are 

equally probable, then z(z) has a constant value. Such an arrangement can be 

characterized by the limiting symmetry operation of an infinitely small trans¬ 
lation Too- 

“Turns” imply the statistical spread of the azimuthal orientations of the 

different molecules of a given aggregate about the equilibrium angular position. 

They are characterized by function /(i//), which gives the probability of finding 

a molecule in the azimuthal orientation at an angle »A. 

The angular spread of the molecules, especially if their cross section is nearly 

circular, readily transforms into a complete set of all possible orientations, and 

then one can speak of the “rotation” of molecules. In that case — const. The 

term “rotation”, as well as “shift”, should be understood statistically, i.e., as 

indicating that different molecules are oriented differently with respect to the 

azimuth. But sometimes (as in paraffins at temperatures near the melting point) 

torsional thermal vibrations of molecules about the principal axis become so 

large that one can speak of the real rotation. The statistical symmetry of 

a “rotating” molecule is characterized by the rotation symmetry of infinite 

order, oo. 

We shall now consider the distortions in the net of the projections of 

molecular axes onto a certain plane. The ideal net is characterized by two 

translations a and b. Its distortions consist in the fact that the system of 

translations is preserved only statistically. Two cases are possible here, so-called 

distortions of the first and second kind. Distortions of the first kind can be 

described as follows. There is an infinite regular system of points of a two- 

dimensional net, and there is a certain probability (which diminishes with the 

distance from the point) that the axis of a given molecule may be displaced from 

this point (Fig. 2.94a). Then, although each of the molecules is not actually at the 

point, the crystalline ordering throughout the volume is preserved on the 

average, and it is said that the long-range order is retained. 

Distortions of the second kind are of a different geometric nature 

(Fig. 2.94b). Although the (statistical) average translations a and b can also be 

indicated there, these translations give the probable mutual arrangement only of 

the neighboring molecules and do not extend to the description of the projection 

net or of the volume as a whole (Fig. 2.94b). Only the short-range order is 

retained. Such a type of ordering is also called paracrystalline. 

Net distortions can be described with the aid of the statistical distribution 

function IV(r), which gives the probability of the arrangement of the neighbor¬ 

ing molecules relative to the given one at point r. For first-kind distortions the 

distribution function W(r) is periodic, but its peaks are smeared out (Fig. 2.94c). 

With second-kind distortions W(r) has the form shown in Fig. 2.94d. It clearly 

shows the distribution of the first nearest neighbors - the short-range order, 
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Fig. 2.94a-d. Distortions in the 
arrangement of the projections 
of the axes of chain molecules 
onto the basal plane, (a) first- 
kind, (b) second-kind, (c, d) cor¬ 
responding distribution func¬ 
tions 

- because there is a minimum distance to which molecules are allowed to 

approach each other, and a maximum distance, since no large gaps between 

molecules can exist, either. It is easy to understand that the distances to the 

next-nearest neighbors will vary over a wider range, since deviations in transla¬ 

tions not only from a given molecule to a neighboring one, but also from the 

neighboring to the next one are accumulated. The further the neighbor, the more 

“smeared out” is the distribution function of the second kind, and at a certain 

distance it becomes practically constant, the probability of finding a molecule 

being the same everywhere. It can be said that translations a and b gradually 

degenerate into continuous ones, and t„- 
In many X-ray structure investigations of fibrous materials and polymers, 

the “unit cell” of the packing is determined. In light of the above-described 

considerations it is easy to understand that if there is an assembly of chain 

molecules with second-kind distortions the “unit cell” concept has only a statis¬ 

tical meaning, and the “periods” a and b characterize the short-range order. 

Apart from the indicated distortions, polymers show nonparallelism of 

chains and bends. Bends may be conforming (“curvilinear crystal”) or uncon¬ 

forming, when the molecules tangle up, retaining approximate parallelism 

(Figs. 2.95, 97). Bends can also be characterized by the statistical function D(oc), 

which gives the probability of the deviation of molecular axes by angle a from 

the principal axis. 

Fig. 2.95a, b. Conforming (a) and unconforming (b) 
bending of chain molecules 
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Fig. 2.96. Types of distortions in aggregates of chain molecules 

Fig. 2.97. Structure of amorphous polymers 

Different types of ordering of polymer substances taking into consideration 

their mutual effects and indicating the functions characterizing each type are 

presented in Fig. 2.96. The limiting case of disordering [random orientation 

oo/oo W(r)] corresponds to the “amorphous” state of polymers. Even in 

amorphous polymers, chain molecules form regions in some places, where they 

are approximately parallel to each other (Fig. 2.97). 
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As in polycrystalline solids, macroscopic polymer specimens may consist of 

regions which are identical as regards the type of ordering, and may be differ¬ 

ently oriented relative to each other. In most cases, textures are formed. The 

ordering regions have no distinct boundaries; there are transition zones between 

them, whose order is always lower than in the regions themselves. 
Thus, high-polymer substances made up of chain molecules have many 

gradations of ordering both at the level of molecular packing and at the level of 

packing microregions, which themselves may show different ordering. 

2.8 Structure of Liquid Crystals 

2.8.1 Molecule Packing in Liquid Crystals 

There exists an interesting class of organic substances capable of forming liquid 

crystals. The ordering of molecules in liquid crystals is neither three-dimen- 

sionally periodic, as in a solid crystal, nor random as in a liquid, but is of an 

intermediate nature. The fact that liquid crystals exhibit a certain ordering of 

molecules is indicated by the anisotropy of the liquid-crystal substances, al¬ 

though they are fluid. Liquid crystals or, as they are also called, mesomorphous 

phases arise within a certain temperature range from qc to q, where qc corres¬ 

ponds to the transition of a solid to a liquid crystal and q, to that of a liquid 

crystal to an isotropic liquid. 
Molecules of substances forming liquid crystals have an anisometric elon¬ 

gated shape; they have low symmetry or are asymmetric, as a rule (Fig. 2.98). 

Fig. 2.98a-e. Shape of some molecules forming the liquid 
crystal, (a) para-azoxyanisole; (b) a-benzolazo-ce-anizyl- 
naphthylamine; (c) ethyl ether of para-azoxybenzoic acid; 
(d) n-n-nonoxybenzolyltoluidine; (e) cholesterylbenzoate 
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Such molecules are often nonuniform in thickness, but may have some parts 
approximately equal in cross section. Arrangement of two benzene rings or 
some other aromatic groupings in the middle of a molecule and the presence of 
hydrocarbon “tails” on one or both of its ends is characteristic of mesogenic 
molecules. The main structure feature of the liquid-crystal state is a parallel 
array of molecules, with a high lability of all or some of the contacts between 
them. Such mutual packing determines their short-range order and can be 
characterized by some statistical symmetry. 

2.8.2 Types of Liquid-Crystal Ordering* 

As regards the packing of molecules, the liquid-crystal state is divided, according 
to Friedel [2.58] into two types, the nematic and the smectic. A variety of the 
former is the cholesteric type. All the types are characterized by a parallel 
arrangement of the neighboring molecules within certain microregions of liquid 
crystals (Fig. 2.99). A region in which a given orientation is preserved is called 
a domain. 

Liquid crystals (their domains) possess strong optical birefringence, which 
lies at the basis of the methods of their optical investigations (Fig. 2.100, see also 
[2.59]). Nematic liquid crystals are optically inactive, i.e., they do not rotate the 
polarization plane. (However, if a layer of the nematic phase is sandwiched 
between two glass plates, which are then rotated, optical activity arises as 
a result of gradual twisting of the direction of the molecular axes). 

When elongated molecules are packed parallel to each other, their packing is 
denser than in random orientation, which is characteristic of a liquid. Thus, this 
geometric factor permits the existence of some energy minima (packing energy 
plus free energy of thermal motion) intermediate between the true liquid and the 
true solid state, which actually correspond to the liquid-crystal state. The 
arrangement of molecules in liquid crystals can be described by statistical 

Fig. 2.99a-c. Arrangement of molecules in liquid crystals, (a) nematic; (b) cholesteric; (c) smectic 

* See also Sect. 6.9. 
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functions of the second kind, which were applied above for analyzing the 

structure of high polymers [2.60], 
In the nematic state the centers of gravity of the molecules (with their parallel 

arrangement preserved) are randomly disposed (Fig. 2.99a). Here, only the 

factor of the elongated shape of the molecules is important. Statistical rotation 

of molecules about their long axes occurs. There is no correlation between the 

projections of the distances between the molecular centers onto the principal 

axis of the domain. Hence, any shifts of molecules relative to each other are 

equally probable, which can be described by an infinitely small statistical 

transition i.e., the axis of continuous transitions. If the molecules are polar 

(and this is almost always the case), their parallel and antiparallel arrays are 

possible, generally speaking. Here, an additional symmetry operation, which 

statistically transforms molecules into each other, is axis 2, which is perpendic¬ 

ular to the principal axis of the liquid-crystal domain. 

In the projection along the long axes the molecular packing in the nematic 

phase shows some ordering. This ordering can be described by the distribution 

function IV(r) of the projections of the molecular axes onto the plane perpen¬ 
dicular to the principal axis. The function is of the second kind (see Fig. 2.94b, d). 

Because the cross sections of the molecules making up liquid crystals are 

nonuniform, the distances between the nearest neighbors vary widely. Therefore, 

function IV(r) has, as a rule, less prominent maxima for them than for chain 

molecules proper. 
The mutual azimuthal orientation of molecules is maintained, to some 

extent, only for the nearest neighbors. Function /(t/0, which describes the 

orientation (see Fig. 2.93), is strongly smeared out, and any orientations of 

molecules are encountered throughout the domain as a whole. Therefore, the 

principal axis of a nematic domain is (statistically) an axis of infinite order oo, 

and the whole function W(r) becomes cylindrically symmetric, W(r). 

Summing up, the symbol of the structure (symmetry) of nematic liquid 

crystals can be written as oot„ W(r). This symbol can be detailed by taking into 

account the proper symmetry of the molecules, the presence or absence of 

antiparallel packing, etc. 

Nematic liquid crystals have the so-called cholesteric variety. The molecules 

of cholesteric liquid crystals are chiral optically active. Their aggregate 

comprises monomolecular layers with nematic ordering, but the natural super¬ 

position of layers occurs so that their axes gradually rotate (Fig. 2.99b). The 

arrangement of the molecules in the layer plane is characterized by oper¬ 

ation too, the symmetry of a set of layers being characterized by a screw axis of 

infinite order o^. The period of the set is usually equal to several thousand 

angstroms. 

Another basic type of structure of liquid crystals is the smectic one. As in 

nematic liquid crystals, in smectic phases the molecular axes are parallel to each 

other, but the molecules are packed in layers (Fig. 2.99c). The higher ordering of 

the smectic phase follows from the fact that when a given substance forms both 

a smectic and a nematic phase, the former is the low temperature one. For 
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Fig. 2.100a-c. Textures 
of liquid crystals in a 
polarized light. (a) 
nematic; (b) cholesteric; 
(c) smectic 



204 2. Principal Types of Crystal Structures 

instance, p,p'-nonyloxybenzaltoluidene (BT) (Fig. 2.98d) is smectic in the tem¬ 

perature range from 70° to 73.5°C, and nematic from 73.5° to 76 C. 
The formation of smectic layers means that the side interactions between the 

molecules are strong enough. This may be assisted by the absence of projecting 

side groupings, which prevent close contacts between the molecules. For in¬ 
stance, p-azoxyanisole and a-benzolaso-(anisole-a'-naphthylamine) (BAN) 

(Fig. 2.98a, b) form only nematic liquid crystals, as noted above, and p,p'- 

nonyloxybenzaltoluidene (BT) forms both smectic and nematic liquid crystals. 

When analyzing the shape of molecules one can conclude that one of the main 

possible causes for the formation of smectic layers is the convenience of anti¬ 

parallel packing of molecules (Fig. 2.101a). Thus, smectic liquid crystals show 

a correlation between shifts of molecules along the axis relative to each other, 

which is described by function t(z), while the layers are stacked at a certain 

regular distance c, which is close to the length of the molecule. Inside the layers, 

the arrangement of the molecules is characterized, as in nematic liquid crystals, 

by function W(r) and, evidently, often by “statistical” axes 2 (which assign 

antiparallelism) disposed in the layer normal to the principal axis of the mole¬ 

cules. Consequently, the symbol of the smectic liquid crystal structure can 

generally be written as ooct(z) W(r)/2. This type of smectic liquid crystals, in 

whose layers the molecules are parallel to each other and perpendicular (with 

some spread in orientations) to the plane of the layer, is called smectic A 

(Fig. 2.101b). 
Other types of molecular ordering in smectic modifications are also known. 

Thus, in smectics C the molecular axes are not perpendicular to the plane of the 

layer, but are inclined to it. Versions of smectics C are shown in Fig. 2.101; 

a uniform tilt in the layers (Fig. 2.101c), a tilt that alternates in either direction in 

each layer (a “herringbone” pattern. Fig. 2.98d), and helical variation of uniform 

tilt from layer to layer (Fig. 2.101e), which is characteristic of chiral smectics C 

iMfflnm 
mmmum 
iimnimnn; 

mmumu imm: 
j/mnnimi ii/umm: 
imjaunm. 

-T-T--F-T-T- 

Fig. 2.101a-g. Packing of molecules in smectic liquid crystals. Antiparallel arrangement of the 
molecules in smectic layers (a). The varieties of smectic phases: smectic A (b), smectics C (c,d,e), 

smectic B (f), and smectic H (g) 
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possessing piezo- and ferroelectric properties. If we imagine that the tilt is 90°, 

then the chiral smectic C will transform into a cholesteric liquid crystal. Interest¬ 

ingly, similar types of ordering of an entirely different physical nature of the 

structural units and the interaction between them are observed in magnetics 
(Sect. 1.2.11). 

In smectic B, a higher degree of molecular ordering is observed (Fig. 2. lOlf). 

The molecular axes in the layer are arranged in accordance with the law of 

hexagonal packing, which has distortions described by the function W(r) of the 
first kind (Fig. 2.94a). 

Figure 2.101g depicts the structure of smectic H, which has correlated tilts of 

molecules in the layers, as distinct from smectic B, and the molecular axes form 
an orthorhombic net. 

Smectic phases exhibit still more ordered structures, which are in fact 

already particularly plastic three-dimensional crystals, but disordered. Thus, 

smectic D is optically isotropic and has a cubic structure with a space group Ia3. 

Such a mesophase has been found in only two compounds. One of them - 

3'-nitro-4'-n-hexadecyloxybiphenyl-4-carboxylic acid - has a cubic structure 

o 

with a — 105 A, containing 1150 molecules in the unit cell. Curiously, this phase 

lies in the temperature range between anisotropic smectic phases of the types 

C and A. The so-called smectic E, to which the orthorhombic structure is 

ascribed, is actually also three-dimensionally ordered. Types F and G are known 

as well. Thus, in liquid crystals it is possible to observe several polymorphous 

modifications, i.e., different phases with an ordering of the constituent molecules 

characteristic of each phase. 

Solid crystals which transform into liquid crystals upon melting are called 

mesogenic. In such crystals approximately parallel arrangement of the mole¬ 

cules already exists. A classic example of a nematic liquid crystal is p- 

azoxyanysol. Figure 2.102 pictures the arrangement of the molecules of this 

substance in the solid phase. The parallelism of the molecules in a nematogenic 

crystal, but without a strictly fixed mutual arrangement, is inherited by the 

liquid-crystal phase as well. Similarly, solid crystals transformed into smectic 

liquid-crystal phases are called smectogenic. 

In those cases where a liquid crystal has some polymorphous modifications, 

ordering at phase transitions diminishes with rising temperature. When the 

temperature decreases several other phases may arise. Terephthal-bis(p- 

c4h 9 
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Fig. 2.102. Shape of the mol¬ 
ecules of para-azoxyanisole 
and their arrangement in the 
unit cell of a solid crystal 
[2.61] 

butylaniline) (TBBA) is an example. Its phase transitions’ scheme is as follows: 

, 113°C 144°C 175°C 200°C 236°C ., 
solid --> smB 4-v smc <■-> sm^ <-> nem *-*■ liquid 

crystal 
'|‘63°C |sb°c 

VII ^ VI (smE). 

When the nematic phase is formed from the smectic on heating, it may, 

especially at temperatures close to the phase transition point, retain “fragments” 

of smectic layers, i.e., small molecular associates. An example is the nematic 

phase of nonyloxybenzoic acid (Fig. 2.103a), which is obtained on melting of the 

smectic phase C. 

Liquid-crystal phases have been found lately, which are not built of elon¬ 

gated molecules, but, on the contrary, of disclike molecules [2.62, 63], These 

E -► E 

a b 

Fig. 2.103a, b. Para-nonyloxybenzoic acid. Molecular arrangement in the smectic (a) and nematic 
(b) phase in a constant electric field. The field direction is shown by the arrow 
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; R = C4H9-C9H19 

disclike molecules, for instance the molecule are stacked on top of each other 

forming columns. These columns play the role of a structural element of liquid 

crystal (Fig. 2.104). Different kinds of ordering in such columnar phases have 

been observed; the column axes can be in hexagonal or rectangular order or also 

can be tilted as in smectic C. Another ordering of disclike molecules is when 

columns are not formed but the planes of molecules are still parallel (nematic 
discotics). 

Liquid crystalline polymers form another type of mesophase which exists in 

two varieties. The first variety is made up of linear polymers displaying the 

properties of liquid crystalline phases on melting. The other is composed of 

flexible polymeric molecules with large side radicals of mesogenic nature at¬ 

tached to the backbones. In the liquid crystalline phase the radicals are ordered 

either according to the nematic or the smectic type. 

Various types of order of molecules in liquid-crystal phases are preserved, as 

noted above, within certain microregions, or domains. Optical observations 

show that if there are no special orienting effects, liquid-crystal domains are 

disposed randomly with respect to each other. The special cases of continuous 

transition from one axes orientation to another and the formation of a special 

kind of texture are also possible [2.59], 

Fig. 2.104. Schematic representation of the mesophase struc¬ 
ture built up from disclike molecules [2.62] 
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Liquid crystals, i.e., their domains, can be oriented, for instance, by stretch¬ 

ing, in flux, or by an electric or magnetic field. As a result, an axial texture is 

formed; its domains which have only slightly defined boundaries merge continu¬ 

ously with each other. The texture has cylindrical symmetry (Fig. 2.105). The 

same symmetry is exhibited by the intensity distribution in reciprocal space 

and is revealed by X-ray diffraction. A number of conclusions concerning the 

structure can be obtained here by constructing a cylindrical Patterson function 

[Ref. 2.2, Sect. 4.4.3] and its sections at z = 0 and R = 0. The former defines 
function W(r), which gives the distribution of distances between the “side” 

neighbors in an aggregate of parallel molecules. Figure 2.106 shows W{r) for 

a nematic liquid crystal (p-azoxyanisole) oriented by a magnetic and an electric 

fields, with an average lateral intermolecular distance of about 4 A. 

Figure 2.107 presents the cylindrical function of interatomic distances Q(r, z) 

for the nematic phase of ethyl ether of p-anizalaminocinnamic acid oriented by 

an electric field, and Fig. 2.108, for the smectic phase of the same substance 

oriented by a magnetic field. This function was obtained by optical diffraction, 

Fig. 2.105a-c. X-ray photograph of a smectic liquid crystal (a), a model of the smectic structure (b), 
and the optical diffraction pattern from a scaled-down image of the model (c) 

2 TT rZjr) 

Fig. 2.106a, b. Para-azoxyanisole. Function 2nrZm(r) of a nematic liquid crystal oriented by 
a 16,000 Gs magnetic field (a) and by a constant 4,000 V/cm electric field (b) 
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Z.A 

Fig. 2.107. Two-dimensional cylin¬ 
drical^ symmetric function of 
interatomic distances Q(r, Z) con¬ 
structed for the nematic phase of 
ethyl alcohol of p-anizalaminocin- 
namic acid oriented by an electric 

field [2.64] 

Fig. 2.108. Two-dimensional cylindrical function of interatomic distances Q(r, Z) for the smectic 
phase of ethyl ether of p-anizalaminocinnamic acid oriented by a magnetic field as obtained by the 

optical diffraction. Contours of calculated function are also shown (upper right) [2.65] 
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i.e., by Fourier optical transformation of the observed X-ray diffraction pattern; 

computation gives the same result. The plot of Fig. 2.108 vividly illustrates the 

stacking of smectic layers (its maxima are spaced with a corresponding period- 
o 

icity of 10.5 A along the c axis). 

All the above-described types of liquid crystals were one-component systems 

formed only by molecules of the given substance. The liquid-crystal state can 

also be obtained in two-component or more complicated systems, for instance, 

in aqueous or other solutions of long molecules of fatty acids, lipids, and other 

organic substances. Such liquid crystals are called lyotropic. Their structures are 

still more diversified than those of thermotropic liquid crystals. The physical 

properties of liquid crystals will be treated in [2.59], 

2.9 Structures of Substances of Biological Origin 

2.9.1 Types of Biological Molecules 

The structure of substances of biological origin has been in the focus of attention 

ever since the advent of X-ray diffraction analysis. In the early twenties the first 

X-ray photographs of natural fibers - silk and cellulose - were obtained which 

demonstrated a high ordering of their structures. The extremely complicated 

structure of most of these substances and the absence of comprehensive chem¬ 

ical data on them hindered their detailed interpretation for a long time. It was 

not before the postwar period that these investigations gained momentum. The 

particular complexity of the objects stimulated the improvement of X-ray 

methods and the techniques of crystallographic structure calculations, and 

promoted the development of new concepts in the theory of symmetry and in 

molecular crystal chemistry. The results obtained have brought about a radical 

turn in the development of biology, which now makes use of data on the atomic 

structure of a great variety of organic molecules, including proteins, nucleic 

acids, viruses, vitamins, and so on. A new science - molecular biology - has 

sprung up, whose most efficient tool is the generalized crystallography with its 

powerful X-ray technique. Valuable data were also contributed by high-resolu¬ 
tion electron microscopy. 

The complexity of structures which have become objects of investigation is 
illustrated by Table 2.3. 

Investigations up to the level of atomic resolution are being conducted for 

almost all the above structures, with the exception of membranes and nucleo- 

proteins. At the same time, electron microscopy is also widely used for studying 

most of these objects, except for - as they now seem - relatively simple molecules 

of the first two lines; this technique supplies information on the structure of 

stable aggregates of atoms and the subunits in various structures, as well as of 

chain molecules, at a resolution up to several angstroms. 

The molecules, and the crystals formed of them, which are listed in the first 

line of Table 2.3, are typical of contemporary organic crystal chemistry as 
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Table 2.3. Structural characteristics of biological objects 

Object Symmetry 

of mole¬ 

cules 

Type of 

ordering 

Period 

of cell 

or chain 

Number of 

atoms in a 

molecule 

Number 

of re¬ 

flections 

[A] or in a 

unit of a 

chain mole¬ 

cule 

in x-ray 

diffraction 

experiment 

Amino acids 

nucleotides, sugars 
Gl crystals 5-20 up to 102 1000 

Peptides, steroids, 

hormones, vitamins, 

lipids 

Gl crystals, 

liquid 

crystals 

10-30 up to 

102-103 
3000 

Fibrous proteins, 

polysaccharides 
G\ textures, 

layers 
10-100 up to 102 10-100 

Globular proteins Gl crystals, 

layers 
30-200 up to 

103 —105 
up to 

100,000 

Membranes Gl layers 50-100 

■'3
' 
O

 1 
<N

 
o

 10-1000 

Nucleic acids Gl Gl textures, 

crystals 
30-100 102-103 100-1000 

Nucleoproteids, viruses Gl Gl textures, 

crystals 

up to 

2000 
106—108 up to 106 

regards their complexity. They are, as indicated above, characterized by the 

presence of hydrogen bonds. These molecules are often represented in nature by 

only one of the two possible enantiomorphous forms. The enormous importance 

of these simple molecules lies in the fact that they are building blocks of almost 

all biological structures. The number of these “blocks”, of which all the living 

beings are made up, is rather small, only 20 amino acids, 4 nucleotides, glucose 

and some other sugars as well as a number of fatty acid derivatives. The 

structures of all these molecules and of a great number of their less abundant 

varieties have been determined by now. Some data have also been obtained for 

various “small” (from the biological standpoint), but already very complex (for 

X-ray crystallography) molecules and crystals in the second line, steroids, 

hormones, vitamins, peptides, etc. These molecules usually play an important 

role in the control of biological processes in organisms. Figure 2.109 shows the 

structure of vitamin B12. Water molecules, which fill the empty space between 

large molecules, play an important part in the packing of biological molecules in 

crystals. 

Lipids make up an interesting class of biological structures. They are 

elongated molecules with an aliphatic “tail” at one end, which sometimes 

contains a cyclic group, and a polar group (OH, O, COOH, NH2, etc.) at the 

other. The simplest molecules of this type are fatty acids C„H2n + 1COOH. They 

behave peculiarly in aqueous solutions, in which they form layer structures 

(Fig. 2.110a) similar to smectic liquid crystals. Here, the molecules are extended 
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5 A 

Fig. 2.109. Fourier synthesis of the molecule of the vitamin B12. Center: cobalt atom [2.66] 

a be 

Fig. 2.110a-c. Various types of lipid molecule ordering in solution, (a) in layers, (b) in monomolecu- 
lar and (c) bimolecular spheres 

parallel to each other and perpendicular to the layer, so that the polar groups 

face the water, while the nonpolar parts come together inside the layer, being 

excluded from the water (hydrophobic interaction) and attracted to each other 

by van der Waals forces. Other associations may also arise, depending on the 

shape of the molecules and their concentration in solutions (Fig. 2.110b, c), 

mainly due to the hydrophobic and polar interactions. 

2.9.2 Principles of Protein Structure 

Proteins are large chain molecules of high molecular weight and made up of 

amino acid residues. The amino acids (they are always L in proteins) 
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H 

H2N-C-COOH (2.10) 

R 

differ in their radical R. Figure 2.111 depicts the structure of one of the amino 

acids, phenylalanine. The vast majority of proteins are built up of 20 “main” 

amino acids, which are often likened to a “protein alphabet” (Fig. 2.112). The 

side chains of one group of amino acids, for instance glycine (R — H), alanine 

O (R = CF1), phenylalanine {R = CH2 ), are neutral; they are hydrophobic, 

i.e., they are repelled by water molecules. The side chains of other amino acids 

have polar or charged groups OH, NH3, SH, COO , etc. in serine 

R — CH2OH, in asparagine R = CH2CONH2, in cysteine R = CH2SH, and so 
on. These groups are capable of forming hydrogen or ionic bonds; water 

molecules readily combine with them. Amino acids are abbreviated by using the 

first letters of their names, such as leu for leucine and phe for phenylalanine. 

The detachment of one of the H atoms of the amino group and OH from the 

carboxyl (with the release of water) enables the residues to join into a polypep¬ 
tide chain 

H O R. H H O 

(2.11) 

R, H H O R3H 

which lies at the base of the protein structure (Fig. 2.113). 

Protein molecules may be described by their primary, secondary, tertiary 

and quaternary structures. The primary structure is the chemical formula given 

c 

c 

c 

Fig. 2.111. Structure of the phenylalanine mole¬ 

cule [2.67] 
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Fig. 2.112a-t. Side radicals of L-amino acids: (a) glycine (Gly); (b) alanine (Ala); (c) phenylalanine 
(Phe); (d) tryptophane (Trp); (e) tyrosine (Tyr); (f) isoleucine (lie); (g) leucine (Leu); (h) methyonine 
(Met); (i) valine (Val); (j) asparagine (Asn); (k) cysteine (Cys); (I) glutamine (Gin); (m) proline (Pro); (n) 
serine (Ser); (o) threonine (Thr); (p) arginine (Arg); (q) histidine (His); (r) lysine (Lys); (s) aspartic acid 
(Asp); (t) glutamic acid (Glu) 

by the sequence of amino acids in the chain. Such a formula, for instance that of 

lysozyme (Fig. 2.114), describes the covalent topology of the protein molecule. 

The letters are already composed into a phrase, but this is far from enough for 

a full description. A chain, each of its units, and each of its side groups are 

arranged in a distinct way in three-dimensional space. 

The secondary structure of protein describes how the polypeptide chain is 

arranged into a definite conformation stabilized by hydrogen bonds. “Standard” 

bond lengths and bond angles, characteristic of the unit of the polypeptide chain 

(Fig. 2.113), have been established on the basis of X-ray structure determinations 

of amino acids and small peptides [2.68, 70] (Figs. 2.111, 115). 

The distribution of valence and deformation electron density in the peptide 

group is shown in Fig. 1.32b, c. It is seen that the valence bridge density in the 

C-N bond is higher than in single bonds. 

Experimental data, as well as theoretical calculations [2.72] show that atoms 

of the peptide group are charged, their values being as follows: N - 0.3 to 

— 0.4 e; H (linked to N) + 0.2 e; C + 0.4 to + 0.5 e\ O — 0.4 to — 0.6 e; 

Q — 0.1 to + 0.1 e\ H (linked to Ca) is almost neutral. 
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Fig. 2.113a, b. Structure of a link of the polypeptide chain, (a) standard parameters of the chain 
[2.68] , (b) Fourier projection of the potential of synthetic polypeptide poly-y-methyl-L-glutamate 
[2.69] 

40 

Fig. 2.114. Primary structure (sequence of amino acid residues) of hen-egg lysozyme 
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Fig. 2.115. Structure of the molecule 
of cyclic depsipeptide enniatin B with 
a dumbbell of two H20 molecules in the 
center [2.71] 

Fig. 2.116. Angles determining the con¬ 
figuration of the polypeptide chain. 
Angles q> and [p determine the mutual 
conformation of neighboring units of the 
polypeptide chain. Angle cu determines 
the deviation of the amide group from 
planarity. Side radical R is represented 
by carbon atom Cp 

The amide group \N-^C\ is always plane or almost plane5, since the 

H 

C-N bond in it is not quite single, but is approximately of order 1^, and the 

diversity of conformations or the chains is ensured by the possibility of rotation 

about single bonds: through angle cp about Ca-N and through angle tj/ about 

C-C„ (Fig. 2.116). Yet these rotations are limited owing to the interaction of the 

atoms of the side groups R adjacent to the chain; these atoms cannot approach 

5 Small deviations from planarity of the amide group may be described, if they are observed, by the 
angle of rotation w about the N-C bond (Fig. 2.116). 
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Fig. 2.117. Conformation plot [2.73]. 
The heavy line denotes the parts of 
fully allowed values of cp and ijt, the 
dashed line corresponding to the 
allowed conformation strains. The 
smooth contours were obtained on 
the basis of energy calculations with 
the aid of semiempirical potentials of 
atomic interactions. Regions I, II: heli¬ 
cal conformations. The dots mark the 
right-handed and the left-handed a he¬ 
lices, n helix with 4.4 residues per turn, 
3/10 helix with 3 residues per turn. Re¬ 
gion III: extended structures, P layers 
and collagen, which are marked with 
dots, and Region IV: intermediate field 

each other by less than the sum of their van der Waals radii. Proceeding from 

this, Ramachandran constructed a conformation plot of the permissible tp and 

(p values for the polypeptide chain (Fig. 2.117) (the diagram differs for different 

amino acid residues in some details). The geometric approach can be replaced by 

the energy treatment, using some interaction potentials (1.35,2.5). The fixed 

values of <p and t/r correspond to some stable conformation of the chain or a part 

of it, i.e., to a definite secondary structure. More complicated folding of the chain 

may be characterized by the sequence of angles i/q and <p; for each unit. 

There are two main types of secondary structures: an extended [5 and 

a helical a conformation. In the former the polypeptide chains are parallel to 

each other and are joined together by hydrogen bonds. The polypeptide chain 

(2.11) is polar; the sequence of amino acid residues is different when it is read 

backward. In the layer shown in Fig. 2.118a (or in a section of such a layer) the 

chains run in the same direction; this is the so-called parallel /I structure. The 

period of a completely stretched chain is equal to 7.34 A, while in a parallel layer 

the period decreases to 6.5 A providing the best H contacts by the rotation 

about Ca-N and C-Ca bonds. The spacing between the chains is 4.7 A, this is 

another period of the layer. In the antiparallel /I structure (Fig. 2.118b) the 

chains are stretched almost completely, C = 7.0 A; the period perpendicular to 

the chains is now equal to the doubled distance between them, i.e., to about 

10 A, because oppositely directed chains alternate normally to it; region III of 

the conformation plot of Fig. 2.117 corresponds to the /? structures. Figure 2.119 

portrays the structure of silk fibroin formed of parallel (3 layers. 

The other principal type of the secondary structure of polypeptide chains 

- the a form - was predicted by L. Pauling and R. Corey in 1951 on the basis of 

stereochemical data for amino acids and on FI bond regularities. The ideas of the 
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Fig. 2.118a, b. Parallel (a) and antiparallel (b) /i-pleated sheets 
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Fig. 2.119. Silk fibroin structure 

helical structure of polymers in general and of polypeptide chains in particular, 

which haunted the minds of investigators, could not be reconciled with the rules 

of crystallographic symmetry, according to which only integral screw axes with 

N = 2, 3, 4, and 6 are feasible in crystals. Abandoning this restriction, it became 

possible to construct a helical structure satisfying all the conformational re¬ 

quirements: near-linear H bonds with satisfactory distances, good van der 

Waals contacts, and permissible rotation angles [2.74], For the right-handed 
a helix cp — — 57° and ip = — 47°. In it, H bonds exist between the NH of each 

amino acid residue and the O atom of the residue standing fourth from it along 

the chain, so that these bonds are approximately parallel to the chain axis 
o 

(Fig. 2.120). The pitch of the helix is 5.4 A and the projection of the residue onto 
o 

the axis is 1.52 A. In an a helix, there are 18 residues per 5 turns (M = 18/5), the 

full period c — 1.5 x 18 = 5.4 x 5 = 27 A. The cross section of the helix is about 

Fig. 2.120a, b. Structure of the right- 
handed a helix, (a) scheme, (b) model 
of the structure of synthetic polypep¬ 
tide poly-y-methyl-L-glutamate in the 
a form 
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10 A. There are conformations close to the a helix: a helix with M = p/q = 3/10, 

and also n helix with 4.4 residues per turn (see Fig. 2.117). The left-handed 

a! helix is energetical^ less advantageous because of the excessively close 

contacts of the Cp atoms and, therefore, is not realized. 

The main regularities of the folding of polypeptide chains and the two 

principal types of the secondary structure are observed even in the simplest 

substances of protein type, i.e., synthetic and natural peptides. The peptides are 

open or cyclic chains, in which the number of amino acid residues ranges from 

3-6 to several tens. They include some antibiotics, for instance gramicidin C; 

ionophores, complexes which handle the transport of metal ions through bio¬ 

logical membranes; some hormones; and toxins. Figure 2.115 shows the struc¬ 

ture of cyclic hexadepsipeptide enniatin B, whose ring can accommodate a metal 

cation or a water molecule. 

The spatial folding of a polypeptide chain possessing some secondary struc¬ 

ture into a fixed complex configuration of the protein molecule is called a terti¬ 

ary structure. In other words, the tertiary structure is a specific description of the 

three-dimensional structure of a polypeptide chain in peptides, in globular or 

fibrous proteins with allocation of some parts of the chain to a definite second¬ 

ary structure (if any) or to an irregular conformation. The next stage of the 

hierarchy is the quaternary structure. This is an association of several subunits 

of biological macromolecules having a tertiary structure; such an assembly 

usually possesses a definite point symmetry (see Figs. 2.131a, c, 151). Finally, we 
can consider structures of the fifth order, i.e., associations of large numbers of 

molecules (they may also have a quaternary structure and be one or several 

sorts) into assemblies like viruses, membranes, tubular crystals, etc. 

The description of the structure of biopolymers with its division into the 

primary (chemical), secondary, tertiary, and quaternary is applied not only to 

proteins, but also to nucleic acids, polysaccharides, and some other classes of 
biological compounds. 

2.9.3 Fibrous Proteins 

Natural fibers, the building materials for the tissues of higher animals, are 

mainly fibrous proteins, and, for plants and some organisms, also polysacchar¬ 

ides. In fibrous proteins the number of types of amino acid residues is small, for 

instance, glycine and alanine in silk; keratin (structural protein of hair, wool, 

horns, and feathers) is also rich in these amino acids. 

X-ray studies of packing of polypeptide chains in fibrous proteins, which 

were begun in the 1930s, have revealed their two main varieties, which were 

named the a and /? forms. The two principal types of the secondary structure 

were later named after them. Valuable results were obtained by investigation 

of model polymers - synthetic polypeptides - which contain only one type of 

radical R. It was established that in the (i form the chains are extended (because 

the period along the fiber axis was 6.5-7 A), parallel, and linked with each other 
by H bonds (Fig. 2.118). 
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Parallel or antiparallel strands in /? proteins form layers. The symmetry of 

a parallel layer is pl2x 1, and that of an antiparallel one p212l2, axes 2 being 

perpendicular to the layer [Ref. 2.2, Fig. 2.63]. The layers in /? structures of 

fibrous proteins are usually packed with small degree of ordering. Thus, it is the 

two-dimensional layer that is a rather stable structural unit. An example of 
a fibrous protein with a (3 structure is silk fibroin (Fig. 2.119). 

The a proteins include a keratin, myosin (the muscle protein), epidermin, 

fibrinogen, etc. They, as well as some synthetic polypeptides, are characterized 

by a meridional reflection with d ~ 1.5 A on X-ray texture photographs. These 

had defied interpretation for a long time until the a helical type of secondary 

structure was found, for which the indicated value was precisely the projection 

of the screw displacement of one amino-acid residue onto the helix axis. Thus 

the structure of a proteins was established. It is interesting to note that by 

extending some of these proteins their structure can be transformed into the 
[3 form, in which the chains straighten out. 

Chains with a secondary a helical conformation form structures of a higher 

order in fibrous proteins. Thus, keratin in wool exhibits coiling of the axes of 

a helices, due to the mutual packing of a helices into a structure of the type of 

three-stranded “rope” (Fig. 2.121). Three-stranded “subfibrils” are packed in still 

more complicated fibrils (Fig. 2.121c) in the so-called 9 + 2 structure. 

Another type of a secondary structure of polypeptide chains, different from 

a and f3, is formed in collagen, the protein of the connective tissue, skin, and 

tendons. The chemical structure of the collagen chain is such that each third unit 

in it is a glycine residue, while the other, most common residues are five- 

membered rings of proline or hydroxyproline. The molecule consists of three 

weakly wound chains (cp % — 70°C, if/ as 160°C, see Fig. 2.117) joined into 

a unified system by H bonds. The chains are transformed into each other by 

Fig. 2.121a-c. Structure of a keratin, 
(a) coiled a-helix; (b) three-stranded 
subfibril; (c) individual fibril of a keratin 
formed of two subfibrils surrounded by 
nine others 
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a rotation through 108° and a translation by 2.86 A. Each of the units is twisted 

as a left-handed screw, and their axes, as a right-handed one. The period of the 

molecule is 28.6 A. Its model is depicted in Fig. 2.122. Owing to the complicated 

primary (chemical) structure of collagen the fibers of this protein have super 

periods of 85 and 640 A. 
Thus, fibrous proteins have a complicated structural organization, which 

obeys definite symmetry and conformation laws. This organization also exhibits 

the hierarchy typical of biological systems in general, namely, a small number 

of certain kinds of structural units form a unit of the next order of complexity, 

and so on. 

While the fibrous proteins are the basic building materials for most animal 

tissues, sugar polymers - cellulose and other polysaccharides - play this part for 

plants, and also for certain animals. For instance, chitin, the substance of the 

exoskeleton and joints of insects and other Arthropoda, is a polysaccharide. The 

arrangement of cellulose chains is presented in Fig. 2.123; the fibrils are about 
° 

100 A thick; the packing of the chains in a fibril can be described, to a first 

approximation, as paracrystalline (Fig. 2.94). 

2.9.4 Globular Proteins 

The most important biological macromolecules are the molecules of globular 

proteins, whose polypeptide chain is folded into a compact globule. Many 

globular proteins are enzymes, i.e., biological catalysts, which carry out an 
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infinite number of metabolic reactions in living nature. Globular proteins in 

organisms also perform many functions such as the transportation of small 

molecules or electrons, the reception (for instance, of light), and protection 
(immunity proteins). 

If a globular protein is well purified, it may, as a rule, be crystallized in vitro 

(Figs. 2.124a-d). Sometimes crystals are formed in organisms (Fig. 2.125). With 

the aid of electron microscopy it is possible to visualize directly the regular 

packing of protein molecules in a crystal (Fig. 2.126). Protein crystals (“wet 

crystals”) are extremely peculiar; they contain mother liquor in the empty space 

between the molecules, and are stable only when in equilibrium with this liquid 

or its vapors. It has been established by X-ray diffraction techniques that some 

of the water molecules are bound on the surface of the protein molecule, forming 

a kind of a “coat” (Fig. 2.127). Crystals can be dried, in that case much of the free 

crystallization water disappears, the unit cell shrinks, and the crystals become 
disordered. 

The very fact that a formation of protein crystals produces thousands of 

reflections on X-ray photographs (Fig. 2.128) suggests that all the giant mole¬ 

cules of a given protein are identical and have an ordered internal structure. 

The interaction between protein molecules in a crystal is extremely compli¬ 

cated because the protein surface carries various polar residues and the electro¬ 

static interaction is screened by the water molecules. The ions present in the 

solution and the hydrogen ion concentration exert an influence on the surface of 

the molecules. Protein crystals are extremely sensitive to these factors and can 

form various polymorphous modifications. 

Because of the weak bonds between protein molecules and the rotational 

and translational movements in the intracrystalline mother liquor, as well as the 

lability of the molecules themselves, the displacements of the atoms from the 

equilibrium position and the values of the temperature factor are very large, 

— 0.5-1.0 A, B = 30-100 A2. This causes a rapid drop in intensities. The 

diffraction field boundary and, hence, the resolution is about 1,0-1,5 A at best; in 
o 

some proteins only a 2.5 A resolution can be attained. Sometime the diffraction 

field contains only low-resolution reflections (5-10 A), which implies consider¬ 

able disordering in the molecules or their mutual arrangement. 

The packing of molecules of globular proteins in crystals (or of subunits of 

a given molecule) sometimes shows a noncrystallographic symmetry, i.e., local 

symmetry elements (for instance, axis 2), which do not belong to the symmetry 

elements of the group <P of the crystal. Some proteins were found to form planes 

of monomolecular layers (see [Ref. 2.2, Fig. 4.113]) and tubes with mono- 

molecular walls (Fig. 2.129, see also [Ref. 2.2, Fig. 2.61]) which exhibit a helical 

symmetry. 
X-ray structure analysis of protein crystals, which have huge unit cells (see 

Table 2.2), is very complicated and laborious; the main problem consists in 

determining the phases of the structure amplitudes. This is solved by intro¬ 

ducing into these crystals heavy atoms (often as part of small organic molecules 

or inorganic ions), thus attaching them to the protein molecules [Ref. 2.2. Sect. 
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Fig. 2.124a-d. Protein crystals (x 100). (a) leghemoglobin; (b) catalase Penicillium vitale; 
(c) aspartate-transaminase; (d) pyrophosphatase 
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Fig. 2.125. Hemoglobin 

microcrystal formed in a 
blood vessel of the cat mio- 
card [2.75] 

Fig. 2.126. Electron micrograph of orthorhombic ox-liver catalase. (Courtesy of V. Barynin) 
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Fig. 2.127. Structure of a crystal of globular protein. The 
protein molecule is adjoined by a layer of water molecules 
bound with it (hatched); solution molecules are denoted by dots 

Fig. 2.128. X -ray precession diagram of the hkO zone of a hexagonal crystal of catalase Penicillium 
vitale (sp. gr. P3121, a = 145 A, c = 180 A), n = 9°. CuKa radiation 

4.7.5]. It is necessary that the structure of the protein crystal with such additions 
would not change, i.e., would be isomorphous to the structure of the native 
protein crystal. The intensities of reflections change owing to the addition of 
heavy atoms. By constructing the difference Patterson function one can find the 
positions of the heavy atoms, determine their contribution to the phases, and 
then define the phases of the reflections of the protein crystal itself. Additional 
information can be obtained by taking into account the anomalous scattering 
by heavy atoms. Then a Fourier synthesis is constructed. Fourier maps with 
a low resolution of ~ 5 A yield the shape of the molecule and its subunits as well 
as the position of the helical segments in it. Synthesis with a resolution of 

o 

~ 2.5 A allows us to trace the course of the chain and distinguish the amino acid 
o 

residues, while those with a resolution of 2 A and higher reveal individual atoms. 
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Fig. 2.129a, b. Tubular crystals of ox-liver catalase, (a) electron micrograph, (b) model of the packing 
of molecules in the tube obtained by the method of three-dimensional reconstruction [2.76] 

The first crystalline proteins whose structure was solved were myoglobin 

and hemoglobin. Their function consists in the reversible binding of the oxygen 

molecule 02. Hemoglobin is present in the erythrocytes of the blood and 

transports 02 in the circulation, while myoglobin stores oxygen in the muscles. 

The molecular weight of myoglobin is about 18,000; it contains 153 amino acid 

residues, i.e., about 1200 atoms excluding hydrogen. The unit cell is monoclinic: 

a = 64.6, b = 31.1, c = 34.8 A, /? = 105.5°, space group Pl^. The unit cell con¬ 

tains two protein molecules [2.77, 78]. Fourier synthesis at 6 A resolution 

revealed the polypeptide chain (Fig. 2.130a), and that at 1.4 A resolution (about 

25,000 reflections were included) the arrangement of all the atoms (Fig. 2.130b). 

The molecule of myoglobin, as well as molecules of some other proteins, 

contains a so-called prosthetic group attached to the polypeptide chain. Here it 

is a flat porphyrine molecule, the so-called heme, at whose center there is an iron 

atom with which an 02 molecule is bonded. A model of the myoglobin structure 

is given in Fig. 2.130c. Its polypeptide chain is 75% helical. The hemoglobin 

molecule (molecular weight 64,000) is built up of four subunits (Fig. 2.131), 

similar to the myoglobin molecule as regards its tertiary structure [2.79, 80], 

Investigations into several proteins of this type showed that the “myoglobin” 

type of folding of the polypeptide chain is maintained in all of them. Figure 

2.132a, b pictures a simpified diagram of the structures of myoglobin and plant 

leghemoglobin. Although these proteins differ drastically in their primary struc¬ 

ture and stand wide apart evolutionarily (their common precursor existed about 
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Fig. 2.130a. Myoglobin molecule. 

Model of molecule = based on 
Fourier synthesis at 6 A resolution. 
High-electron-density regions (rods) 
corresponds to a helices 

Fig. 2.130b. Myoglobin molecule. Part of Fourier synthesis at 1.4 A resolution in the heme region. 
Upper left: a helical part projected along the helix axis; right: perpendicular to the axis 
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Fig. 2.130c, d. Myoglobin molecule, (c) tertiary structure. Arrangement of C* atoms of amino acid 
residues in the polypeptide chain is given. A-H: a helices, the numerals indicate the numbers of the 
residues in the helix, the pairs of letters showing the nonhelical regions. The heme group and the side 
groups of histidines £7 and F8 interacting with it are fully represented [2.77], (d) intramolecular 
conformational and thermal dispalcements in myoglobin (hatched) [2.78] 

Fig. 2.131a. 



230 2. Principal Types of Crystal Structures 

Fig. 2.131a, b. The structure of hemoglobin, (a) model of a molecule built ujj of plates corresponding 
to the sections of a three-dimensional electron density distribution at 5.5 A resolution; subunits of 
the molecule have myoglobin folding, so-called a subunits are white, and P subunits are black. The 
helical segments of the subunits are denoted as in Fig. 2.130c, the hemes are shown as disks, the place 
of attachment of the 02 molecule to the p subunit is indicated [2.81], (b) Part of the molecule near 

the hemogroup 

Fig. 2.131c. The structure of hemoglobin. Change 
in the quaternary structure of the hemoglobin 
molecule. The P subunits come closer together in 
the course of oxygenation 
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Fig. 2.132a, b. Comparison of the tertiary structure of the molecules of myoglobin (a) and leghemo- 
globin (b), (a helices are shown as cylinders [2.82]) 

Fig. 2.133. Atomic model of the leghemoglobin molecule [2.83] 
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1.5 billion years ago), their tertiary structure differs only in some details. 

Figure 2.133 presents the structure of the leghemoglobin molecule established 

on the basis of X-ray data with a resolution of 2 A. The leghemoglobin structure 

differs from other globins in size of the heme pocket; it is larger on the distal 

histidine side. This permits the attachment of such large ligands as acetic or 

nicotinic acids to the molecule, and seems to explain the high affinity of 

leghemoglobin to oxygen. 
Let us consider the structure of some other proteins and the general prin¬ 

ciples of their organization. The folding of the polypeptide chain is determined 

by the successive disposition of its units. The permissible rotations through 

angles cp about the Ca-N bond and ip about C-Ca are determined by the 

conformation plot (Fig. 2.117). A small side group, for instance in glycine 

(R = H), allows a wide range of angles cp, i/q larger side groups, for instance in 

tryptophan, reduce the range. 
There are several possible ranges for different residues R, and different values 

of <p and t// are possible for them. Therefore, an immense number of conforma¬ 

tions are possible for the polypeptide chain, whose number of units in globular 

proteins runs into the hundreds. If we assume that each unit can occupy only 

two angular positions relative to its neighbors, then each of them is character¬ 

ized by two angles, and for n units the number of chain conformations is ~ 22n. 

However, all the molecules of a given protein with a definite intrinsic 

primary structure are absolutely identical, i.e., one and only one conformation is 

actually formed. Under given thermodynamic conditions and in a given medium 

(i.e., under conditions of a cell) this conformation arises by itself and is equilib¬ 

rium for this medium. In other words, a biological molecule is constructed 

according to the self-organization principle. This term does not have any specific 

biological meaning; indeed, the formation of crystals, too, is essentially self¬ 

organization, and in the case of folding of a polypeptide chain the process is 

much more complicated only quantitatively. 
The transitions in solution filament <-► helix <-> disordered globule are well 

known in polymer physical chemistry, but where proteins are concerned it is 

necessary to explain the origin of the unique and definite globular structure. 

In other words, if we take a surface of equal energy in a space of about 22" 

dimensions (n being the number of units), by analogy with Fig. 2.117 it will show 

a global minimum which exactly corresponds to the conformation of the protein 

globule. Denaturation of protein molecules by heating causes their transition to 

conformations in which they are no longer capable of performing their biological 

functions. 
What are the factors determining the appearance of equilibrium conforma¬ 

tion in the allowed ranges of the angles cp and i/z for all the units? One of them is 

the possibility of forming hydrogen bonds stabilizing a or /J structures. Inves¬ 

tigations into model polypeptides, and also an analysis of the structure of 

molecules already determined by X-ray diffraction techniques demonstrated 

that some amino-acid residues fit well into the a helix and promote its formation 

(alanine, leucine, lysine, methionine, and tyrosine), while other residues, which 
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often contain large side groups (valine, isoleucine, cysteine, serine, and 

theronine) are antihelical, and still others (proline and histidine) are character¬ 

istic of kinks of a helices. All these regularities are statistical, however, and 

cannot serve as a basis for fully reliable conclusions. 

An important organizing factor during the formation of a protein globule is 

the interaction of the chain radicals with the solvent, i.e., water. It has been 

estabilished that there is a trend towards the collection of nonpolar (hydropho¬ 

bic) residues inside the molecule, where they are attracted to each other by van 

der Waals forces, and of polar ones on the globule surfaces, so that they contact 

the water molecules, as shown in Fig. 2.110b. The formation of a protein globule 

corresponds to the minimum of free energy and an increase of entropy in the 

globule + water system, rather than in the molecule as such. Some hypotheses 

hold that the globule is formed stage by stage: at first, the chain is collected into 

more stable parts, for instance, a helical segments, and then these segments are 

assembled into a globule. 
Proteins similar in function nevertheless differ greatly in their primary 

chemical structure. In myoglobin-hemoglobin type proteins the number of 

residues replacing each other in the corresponding sections of the chain may 

reach 60%-90% of their total number, and only three amino-acid residues 

remain unaltered in the entire set of these proteins. The similarity of the tertiary 

structure (see, for instance, Fig. 2.132a, b) is amazing. This indicates that the 

invariant features of R in the chain, primarily their polarity or nonpolarity, 

rather than their uniqueness, are essential for the formation of a definite tertiary 

structure. Thus, analysis shows that about 30 nonpolar residues, making up the 

hydrophobic core of the molecule, play the main part in maintaining the basic 

tertiary structure of the myoglobin type, and the residues replacing each other in 

the chain at these sites are always nonpolar in various proteins of this family. 

A similar nonpolar core exists in cytochromes, proteins (Fig. 2.134) which 

transport electrons in the energy system of the cells. 
As we have already mentioned, in a crystal the molecule of a globular protein 

as a whole experiences translational and rotational vibrations, but the protein 

molecule itself is also a dynamic system. The motion inside it is due to the 

thermal vibrations of its atoms and the conformational mobility of the main 

chain and the side chains of the amino-acid residues. The intramolecular 

component can be determined by X-ray analysis [2.78]. For myoglobin, the 

root-mean-square value of intramolecular displacements ^Ju is about 0.3 A, 

but this value differs for the various parts of the molecule. It is smaller for the 

atoms of the main chain and larger for those of the side ones; also, it is smaller in 

the central part of the molecule (in its hydrophobic core) than on its surface 

(Fig. 2.130d, see also Sect. 6.8.3). 
By 1992 the number of globular proteins investigated up to the resolution of 

a tertiary structure is about six hundred. 
These investigations have revealed some fundamental features of the struc¬ 

ture of globular proteins. They include, first of all, the presence of certain 

standard building blocks - fragments consisting of a helices and ft strands, and, 
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1 

hydrophobic, aromatic o hydrophilic, basic 

hydrophobic, not aromatic • hydrophilic, acidic 

ambivalent o glycine 

Fig. 2.134. Model of the molecule of cytochrome C, a typical representative of the family of the 
molecules of electron-carrying proteins [2.84] 
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Fig. 2.135. The structure of the piruvat-kinase molecule, consisting of three domains [2.85] 

secondly, the presence in many proteins of large isolated parts consisting of one 

segment of the polypeptide chain; such parts are called domains. A protein 

globule may contain two or three domains (Fig. 2.135, see also Figs. 2.142, 143, 

146). Finally, the structures of many proteins (or their domains) including those 

not only with similar but also with different functions show a strong similarity in 

the folding of the polypeptide chain. This is called the homology in the structure 

of protein molecules. 
An analysis of the course of the polypeptide chain in numerous globular 

proteins revealed a number of definite patterns in the formation and mutual 

arrangement of a helices and ft strands. Three commonly occurring folding units 

of the polypeptide chain are singled out as (aa), (/?/?), (j8a/J) (Fig. 2.136a). The (aa) 

unit is formed by two adjacent a helices, connected by a loop at the common 

ends. The strand connections in /? sheets may be formed either by simple 

bending (reentering) of the chain - “hairpin” (/?/?) connections - or by joining the 

ends of two parallel strands by irregular chain loops or an a helix - ‘crossover” 

(/fa/?) connections. Combinations of these types of connections permit one to 

describe all the topologically different /? layers observed in globular proteins. 

Some of these structures are shown in Fig. 2.136b. 
If the /? structure is formed by several parallel strands, its plane is usually 

twisted in propellerlike fashion (Fig. 2.137) (the twist is right-handed when 
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Fig. 2.136a, b. Folding units of globular proteins, 
their combinations and schematic representation, 
(a) 1 - (aa) units; 2 — (/?/?) unit (“hairpin”); 3 - (pap) 
unit (“crossover”), (b) some topologically different 
variants of ^-structures in globular proteins: 
1 - pancreatic inhibitor of trypsin; 2 - bacterio- 
chlorophyll; 3 - ribonuclease; 4 - cytochrome b5; 
5 - papain; 6 - phosphoglyceratemutase; 7 - 
immunoglobulin; 8 - carboxypeptidase; 9 - gly- 
ceraldehydephosphatdehydrogenase [2.86] 

Fig. 2.137. Phosphorilase b, structure of domain 2. Twisted p sheet surrounded by a helices [2.87], 

(Pictures Figs. 2.137, 2.138a, 2.139 - courtesy of J. Richardson) 
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Fig. 2.138a. Triosephosphate isomerase, cylindrical /1-barrel surrounded by a helices [2.88] 

Fig. 2.138b, c. Stereo diagrams of cylindrical /1-barrels (a-carbon backbone), (b) triosephosphate 

isomerase; (c) domain A of piruvat-kinase, cf. Fig. 2.135 [2.85] 
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Fig. 2.139. Bacteriochlorophyll protein. Wide antiparallel /J sheet, which serves as a support for 

chlorophyll molecules [2.89] 

viewed along the strands). Remarkable twisted cylindrical barrel configurations 

were also found (Fig. 2.138a-c). At the same time antiparallel P strands do not 

exhibit a twist (Fig. 2.139). 
If we consider the structures of globular proteins from the standpoint of the 

presence and arrangement of a and P regions, we can single out four principal 

classes [2.90]. These classes may be described schematically by two-dimensional 

topology-packing diagrams (Fig. 2.140a-d). Class I consists of a proteins made 

up of a helices joined by chain segments in irregular conformation (Fig. 2.140a); 

a helices are not always parallel. Examples of such proteins are globins, 

hemoerythrin TMV subunits; they usually have two layers of a helices. Class II 

consists of P proteins, which are built of p sheets stacked to form a layer 

structure; they do not have, or have only a very small part of, a helices. Examples 

are rubredoxin and chymotrypsin; they usually have two P layers (Fig. 2.140b). 

The proteins in which both the principal types of secondary structure are 

observed can be divided into two classes. Class III comprises a + P proteins, in 

which the a and P regions are present, within the same polypeptide chain, as in 

ribonuclease and thermolysine; they are also “double layered” in most cases 

(Fig. 2.140c). In class IV, <x/P proteins, the a helices and P strands alternate along 

the chain. These more complicated and larger proteins are usually “three 

layered”; they generally exhibit the sandwich oc/?a structure. The P layer is 

flanked by a layers (adenylate kinase and carboxypeptidase) on both sides, but 
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Fig. 2.140a-d. Examples of topologically different variants of packing of a helices (O) and /? strands 
(□) in globular proteins (the axes of the a helices are not necessarily parallel to each other and to the 
/? strands), (a) oc-proteins: - hemoerythrin, 2 - myoglobin; (b) /1-proteins: 3 - rubredoxin, 4 - preal¬ 
bumin, 5 - chymotripsin; (c) a 4- p proteins: 6 - insulin, 7 - lysozyme, 8 - papain; (d) a//J proteins: 
9 - flavodoxin, 10 - adenylatekinase, 11 - triosephosphate isomerase, 12 - lactatedehydrogenase, 
13 - hexokinase [2.90], 14 - catalase Pen. Vitale [2.91] 
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other variants are also possible (for instance, triosephosphate isomerase, 

Fig. 2.140d). In these proteins, as in 0 and in a + 0 proteins, the globule is 

sometimes subdivided into two distinctly different domains, for instance (ocpoc) 

(a/?) in glyceraldehyde-phosphate isomerase. 
Some rules that govern the mutual packing of a helices and pleated ft sheets 

in the formation of the tertiary structure of protein globule have been estab¬ 

lished [2.92]. The helix-helix packing requires that the surface ridges of the helix 

pack into grooves between the ridges on the second one, which results in some 

definite angles between the axes of the a helices. Helix-sheet contacts are the best 

when their axes are nearly parallel. Sheet-sheet contacts depend on the degree of 

their twist. 
Let us consider the homology in protein structures. The homology is 

observed in the families of proteins which are more or less similar in function; 

examples are myoglobin-hemoglobin (see Figs. 2.130-132), cytochrome (Fig. 

2.134), and trypsin-chymotrypsin (Fig. 2.141) families. Proteins showing almost 

no correlation as regards the primary structure were, however, also found to 

have domains very similar in structure (see Fig. 2.140a-d). Thus, dehydro¬ 

genases (Fig. 2.142), phosphoglyceratekinase, aspartate-transaminase [2.95], 

catalase Pen. vitale (Fig. 2.143), and some other proteins have a structurally 

similar domain (Fig. 2.144). The structural fragments (aa, ft ft, /Jaj3, etc.) and the 

various domains, which have lost their similarity as to the primary structure in 

the course of evolution, but which have proved to be stable as regards their 

three-dimensional structure, can evidently play a part in the crystallography and 

biochemistry of proteins, somewhat analogous to that of standard radicals in 

Fig. 2.141. Course of the polypeptide chain 
in chymotripsin (the structures of trypsin 

and elastase are homologous to it) [2.93] a 
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Fig. 2.142. Structure of a sub¬ 
unit of lactatedehydrogenase; 
the subunit consists of two do¬ 
mains, one of which is nucleo¬ 
tide binding. Four such 
subunits form a tetramer of 
this protein [2.94] 

Fig. 2.143. Catalase Penicillium vitale. The structure of upper domain is similar to that shown in Fig. 

2.144 [2.96] 
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Fig. 2.144. Scheme of a domain found 
in dehydrogenases, flavodoxin, and 

other proteins [2.97] 

inorganic (for instance, silicon-oxygen tetrahedra) and organic crystal chem¬ 

istry. 
At the same time, proteins that are similar in function, for instance, proteases 

(to which the trypsin-chymotrypsin family belongs, Fig. 2.141), are not all 

homologous; carboxypeptidase (Fig. 2.145), as well as pepsin (Fig. 2.146) have 

a different design, although some similarity does exist in the structure of the 

active center. 
Attempts have been made to predict the spatial structure of protein mole¬ 

cules from the primary structure on the basis of theoretical calculations, by 

taking into account hydrogen bonding and hydrophobic interactions, through 

calculation of the conformation of simple peptides, and through consideration 

of the empirical relations between the primary and tertiary structure. The 

Fig. 2.145. Polipeptide chain of carboxypeptidase 
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Fig. 2.146. Pepsin. The molecule is built up of two domains of similar structure [2.99] 

Fig. 2.147a-d. Calculated probabilities of a-helical (-) and /J-strand (-) states of the 
polypeptide chain in some proteins. The number of the amino-acid residues is laid off on the x axis, 
(a) myoglobin (a protein); (b) superoxide dismutase (/? protein); (c) ribonuclease (a + /? protein); (d) 
flavodoxin (a//? protein). The real localization of the a and /? parts in the structure is shown as 

rectangles and arrows, respectively [2.100] 
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enormous complexity of this task has so far prevented any positive advance in 

predicting the tertiary structure as a whole, but there are algorithms which make 

it possible to predict the secondary structure, i.e., the localization of a helices and 

/? structure along the chain, to an accuracy of ~ 80 90% (Fig. 2.147). 
The highly intricate spatial structure of the protein molecules is meant 

to fulfill specific biological functions. For most of the globular proteins, as 
indicated above, this is the enzymatic function, i.e., catalysis of definite chemical 

reactions, for instance, the splitting of bonds or, on the contrary, the joining of 

some molecules, as well as the transport of small molecules, radicals, or elec¬ 

trons. These reactions are extremely selective and proceed at high rates; some of 

them are accelerated by enzymes by a factor of 103-107. The reaction takes place 

in a definite place in the molecule, namely at the active site. 
By way of an example, we can consider the structure and function of 

lysozyme. This protein, which is present in the tissues of many animals and 

plants, carries out a defensive function — it attacks many bacteria by lysing their 

polysaccharide cell wall. The hen-egg white lysozyme molecule (Fig. 2.148a, b) 

has a kind of frame made up of a polypeptide chain in the /) form, around which 

the remaining part of the chain is wound in a complicated manner, so that the 

surface of the molecule has an elongated crevice. The catalytic effect of lysozyme 

consists in breaking up the polysaccharide molecules. Their shape is such 

(Fig. 2.148b) that they snugly fit in the indicated crevice, which is the active site 

of the molecule; this has been established by X-ray diffraction studies. Near the 

chemical bond in the polysaccharide which has to be broken there are active 

radicals of lysozyme: glutamate, aspartate, tryptpphane, methionine, tyrosine, 

and some others. They weaken this bond by changing its electron structure. The 

lysozyme molecule tears the polysaccharide in two by a slight (1-2 A) shift of the 

atoms at the active site, ejects both halves, and then returns to its initial 

configuration and is prepared for activity again. The structure of the TA phage 

lysozyme, which is homologous in structure (but has an extra loop in the chain) 

and similar in functional activity to the hen-egg lysozyme, is shown in Fig. 2.149. 

In another enzyme, e.g., carboxypeptidase (Fig. 2.145), the displacements of 

some groups on the molecular surface may exceed 10 A as a result of this action, 

i.e., the rupture of the C terminal peptide bonds, but most of the atoms - the 

foundation of the active site - remain stationary. Thus, the molecular structure 

of an enzyme has no stable conformation; its functioning results in directional 

displacements of atomic groups at the active site. 
Many proteins possess a quaternary structure. They are built up of not one, 

but of several globules (subunits) joined together. For instance, the haemoglobin 

molecule consists of four pairwise identical subunits (Fig. 2.131a, c). Each of 

them contains a haem binding the 02 molecule. A remarkable electron-confor¬ 

mational mechanism operates here. The Fe2+ atom in the nonoxygenated 

hemoglobin has a coordination number 5 (Fig. 2.131b). It is in a high-spin state, 

and its large size prevents it from “squeezing” into the heme plane between the 

four N atoms. Upon addition of a sixth ligand - the 02 molecule - the electron 

shell of the Fe atom is rearranged (the atom becomes low spin) and its radius 
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Fig. 2.148a, b. Structure of hen-egg 
white lysozyme, (a) atomic molecule 
model illustrating the density of 
atom packing in the protein mole¬ 
cule and the “crevice” in the region 
of the active site; (b) skeletal model 
of the active-center area with 
a hexasaccharide molecule incor¬ 
porated into it [2.101] 
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Fig. 2.149. Stereo view of a 74-phage lysozyme molecule with a tetrasaccharide lactone substrate 
analog. The structure of the binding site of the molecule is very similar to that of hen-egg lysozyme 

[2.102] 

decreases, allowing it to enter the heme plane entraining the residue of His F8. 

This results in slight mutual shifts of the a helices of the given subunit, which, in 

turn, changes the quaternary structure (Fig. 2.131c) - the subunits approach 

each other to a distance of about 6 A. In this way the addition of oxygen to one 

subunit increases the oxygen-binding ability of the others. 

Let us consider other examples of the quaternary structure of proteins. 

Figure 2.150 shows the structure of a dimer of aspartate-transaminase (mol. wt. 

94,000, the structure of one subunit is given in Fig. 2.141). The subunits of this 

molecule in the crystal are connected by a twofold noncrystallographic axis. 

Figure 2.151a, b shows the quaternary structure of the molecule of another 

protein, leucineaminopeptidase, which was established by electron microscopy. 
It consists of six subunits and has symmetry 32. The molecule of phosphofruc- 

tokinase may serve as an example of a complicated quaternary structure 

(Fig. 2.152). A number of globular proteins form very complicated symmetric 

structures made up of one or several kinds of subunits with a total molecular 

weight up to about a million daltons or more (Fig. 2.153a, b). If a molecule 

contains several sorts of subunits, they may perform different functions, some 

being regulatory, others substrate-binding, etc. 

The slight movements of parts of molecules or their subunits in enzymes 

promote the process of reactions. But the function of the movement itself is basic 

to other protein molecule associations. The simplest organs of this type are 

bacterial flagella which are a helical array of globular molecules (see also 

Figs. 2.178-180). 

The universal molecular force apparatus of all living organisms, the muscle, 

has a more complicated structure. The molecules of the two principal muscle 
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Fig. 2.150. Dimeric molecule of aspartate-transaminase (model at 5 A resolution) [2.103] 

Fig. 2.151. (a) model of a leucineamino- 
peptidase molecule consisting of six 
subunits; (b) electron micrograph of the 
packing of molecules in crystal (op¬ 

tically filtered) 
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Fig. 2.152. Quaternary structure 
of phosphofructokinase. The 
molecule consists of 4a and 4/? 
subunits, point symmetry 222 

[2.105] 

Fig. 2.153. (a) electron micrograph of lipoyltranssuccinylase 
nucleus of an intricate dehydrogenase complex; (b) model of 
the arrangement of the protein subunits in the nucleus 

[2.106] 

Fig. 2.154a-c. Structure of the sarcomer of a muscle (a, b); (a) 2 discs (membranes) joined by actine 
protofibrils (about 50 A thick) with myosine protofibrils (100 A thick) arranged between them; 
(b) sarcomer in cross section, two types of protofibrils are disposed hexagonally; (c) structure of the 
actine protofibril. The mechanism of muscle contraction consists in the movement of two types of 
protofibril into the gaps between them, thus drawing the z disks closer together 

proteins, actin and myosin, have distinctly elongated shapes, and are packed in 

a strictly hexagonal order (Fig. 2.154). The muscle contraction process consists 

in the myosin filaments being drawn into the space between the actin molecules. 

Another important class of biological structures, membranes, consists of 

lipids and special proteins. Intricately built membrane layers can let certain ions 

or molecules through in one direction, either selectively or by active transport, 

thus organizing their spatially ordered motion in the cell. One of this type of 

structures, the bacterial purple membrane of rhodopsin, has been studied by 

electron microscopy and electron diffraction techniques (Fig. 2.155a, b). Its 

framework is built by seven parallel a-helices. At present a resolution of 2.8 A is 

achieved. This allows the establishment of the tertiary structure of the protein 

[Ref. 2.2, Sect. 4.9.5, Fig. 4.115], 
Concluding this brief survey of the protein molecule structures, we wish to 

stress that the primary structure of the polypeptide chain and the levels of the 
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Fig. 2.155. (a) Fourier projection of the rhodopsin purple membrane, nine clusters represent the 

projection of a helices; (b) their spatial arrangement [2.107] 
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three-dimensional structure - secondary, tertiary, and quaternary - correspond¬ 

ing to it and forming by self-organization, are not accidentally produced 

chemical and spatial combinations of amino-acid residues. The structure of 

protein and other biological macromolecules has been improved and perfected 

by the evolutionary process at the molecular level throughout billions of years of 

life on Earth. The criterion of this natural selection is the stability of the 

structure and its ability to perform a specific biological function. 

2.9.5 Structure of Nucleic Acids 

Another important class of biological macromolecules consists of nucleic acids 

(Table 2.3). Their function is to store and transfer the genetic information 

necessary for the reproduction and existence of biological systems. Like pro¬ 

teins, the nucleic acids are chain molecules. The chain has a phosphate - sugar 

backbone. 

The phosphate-sugar group with base R is called nucleotide. In 

deoxyribonucleic acid (DNA) the sugar is the molecule of deoxyribose, and in 

ribonucleic acid (RNA), that of ribose. In all, there are four sorts of bases in the 

polynucleotide chain of DNA. They are the purine (cytosine C and thymine T) 

and pyrimidine (adenine A and guanine G) bases. In RNA, the cytosine is 

replaced by structurally similar uracil (U). These four letters A, G, T, C (U) 

comprise the alphabet of the “nucleic-acid” language. The thickness of a single 

polynucleotide chain is about 7 A, on the average. 

The structure of DNA was established on the basis of X-ray diffraction 

investigations carried out early in the fifties by Franklin, Gosling [2.108] and 

Wilkins et al. [2.109]. Proceeding from biochemical and X-ray data, Crick and 

Watson [2.110] proposed their famous model of this complicated molecule, 

which explains the biological mechanism of the replication (self-reproduction) 

of DNA. 
Figure 2.156a represents an X-ray photograph of the gel of wet DNA in 

B form, in which the molecules have paracrystalline hexagonal packing (see 

Fig. 2.99a), and Fig. 2.156b, an X-ray photograph of the crystalline A form of 

DNA. Both patterns, especially the first, reveal the crosslike arrangement of 

reflections and vacant zones in the meridional region characteristic of helical 

structures [Ref. 2.2, Fig. 4.41], The DNA molecule has two chains. The joining 

of the chains is due to the hydrogen bonds between the pairs of bases aden¬ 

ine-thymine A-T, and guanine-cytosine G-C (Fig. 2.157a, b) because of the 

suitable disposition of the hydrogen bond donors and acceptors on the indicated 
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Fig. 2.156a, b. X-ray photographs of DNA. (a) wet B form, (b) crystalline A form [2.111] 

molecules. These bonds are formed precisely as shown in Fig. 2.157a, which has 
been confirmed by investigations of modelling structures (Fig. 2.157b). In other 
words, pairs A-T and G-C, and only these pairs, are complementary. The 
presence of two (in the A-T pair) or three (in the G-C pair) H bonds ensures the 
arrangement of each of the pairs of these bases in the same plane. It is due to 
the contact of such pairs that the double-strand molecule of DNA can be held 
together. 

Joining up with each other selectively, the bases are stacked in the DNA 
molecule in B form in a plane perpendicular to the helix axis with spacing 
~ 3.4 A (the thickness of a flat organic molecule), and the phosphate-sugar 

backbones of the two chains remain outside (Fig. 2.158a,b). The backbone 
chains (which are polar) are antiparallel; they are symmetrically related by axes 
2, which are perpendicular to the axis of the helix. The helix in the B form makes 
a complete revolution after each 10 base pairs, so that the period of the molecule 
c = 34 A. The symmetry of the DNA molecule is SM/2. The molecule is about 
20 A thick and can be observed directly with an electron microscope 
(Fig. 2.158c). The period of the DNA molecule in the A form is 28.2 A; with 11 
base pairs for period; and the planes of the bases are inclined to the axis of the 
molecule at ~ 19°. More varieties of DNA structure are known, differing in 
parameters and structure of the double helix. For instance, in the Tform (DNA 
from T2 bacteriophage) there are 8 base pairs for the 21.2 A. period [2.113]. 

A double DNA helix is hydrated and surrounded by ions of alkali metals. 
The arrangement of ions and water molecules is determined by the X-ray 
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Fig. 2.157a-c. Complementary Watson-Grick base pairs in the structure of nucleic acids, (a) 
adenine-thymine; (b) guanine-cytosine; (c) difference Fourier map of the structure of a molecular 
compound 9-ethylguanine with 1-methylcytosine showing the arrangement of the H atoms of 
hydrogen bonds in the G-C complex [2.112] 

technique with the use of synchrotron-radiation sources and also by neutron 

diffraction [2.114], 
In all these forms of DNA the double helix is right-handed. An unusual 

left-hand double-helical conformation, Z-DNA, was also found (Fig. 2.158d) 

[2.115]. 
The DNA chains in chromosomes (apparently in B form) are actually the 

storage of genetic information, which is written as a sequence of nucleotides in 

the chains: 

. . . AGCATCCTGATAC ... (a) 

. . . TCGTAGGACTATG . . . (a ) (213^ 

Fig. 2.158a-c. Structure of DNA molecule (a) molecule model; (b) molecule skeleton; (c) electron 
micrograph of a fragment of a DNA molecule (x 100,000) 
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Fig. 2.158d. Structure of DNA molecule in Z form 

Because the nucleotides are complementary, both a and a' chains of the 

DNA molecule are also complementary. It can be said that they are antiequal to 

one another. This complementarity explains the reproductive mechanism of 

DNA molecules. The double helix aa' unbraids into single chains a and a' 

(Fig. 2.159). With the aid of special proteins, the free nucleoside-3-phosphates 

available in the cell nuclei are added to them one after another, as if crystallizing 

a' a 

Fig. 2.159a-d. Unbraiding of the double DNA chain and the formation of two new chains identical 
to the initial one. (a) initial chains; (b) partial unbraiding of chains; (c, d) two new chains 
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on matrices a and a'. Owing to the A-T, G-C rule, a new sequence a', the same 

as the former a', crystallizes on matrix a (it is antiequal to that matrix) and 

a sequence a, the same as the former a, crystallizes on matrix a'. As a result, the 

two newly formed molecules aa' and a’a are exactly equal to one another and to 
their precursor. 

In precisely the same way, the RNA molecule formed on DNA “reads out” 

the sequence of nucleotides with one of the DNA chains (in RNA the thymine 

T is replaced by uracil U, which is also complementary to A). Now RNA 

becomes a single chain. The principal function of this, so-called messenger RNA 

is the delivery of information stored in DNA into the particles of the cells which 

perform the synthesis of the protein - the ribosomes. At present, no data are 

available on the secondary and tertiary structure of m-RNA, which is relatively 

short lived and evidently exists in combination with special proteins. This 

m-RNA passes through the ribosome like a punched tape and amino acids are 

joined in the ribosomes in stepwise fashion, forming a protein. 

A code has been established, which determines the correspondence between 

the nucleotide and protein alphabet; it is called the genetic code. Since the 

former alphabet has fewer letters, it is clear that only their combination can 

correspond to the characters of the latter alphabet. It is a triplet code: the 

nucleotide triplet (codon) determines the amino acid. For instance, UUU, UUC 

assigns phenylalanine, GGU, GGC, GGA, GGG, glycine, UAU, UAC, thy- 

rosine, and AUU, AUC, isoleucine. The code also has a “fullstop”, UAG (UAA, 

UGA), i.e., a symbol indicating the end of the synthesis of the polypeptide chain. 

Amino acids are delivered to the ribosome by comparatively small molecules 

of still another variety of nucleic acids, transfer RNA (t-RNA, mol. wt. 30,000). 

The chemical structure of this molecule, which consists of about 80 nucleotides 

and whose separate sections are complementary, is described as a “clover leaf” 

(Fig. 2.160a). X-ray diffraction analysis of crystals of phenylalanine t-RNA, 

which contain a very large amount of solvent, has established the structure of 

the molecule (Fig. 2.160b) [2.116,117]. It is L shaped, its complementary sec¬ 

tions are double helical, and the molecule has at its center a stabilizing “lock” 

composed of three H bonded nucleotides. Three free nucleotides project at one 

end of the molecule with their bases turned outwards: they form an anticodon, 

which is joined complementarily to the codon of the m-RNA in the ribosome, 

while an amino-acid molecule is attached to the other end. 

The ribosome joins the amino acids into a polypeptide chain with the aid of 

a yet unknown mechanism. Here, the text written in the nucleotide alphabet, 

consisting of four letters, A, C, G, and U, is “translated” into that in the protein 

alphabet of twenty letters - amino acids - and the genetic information is 

embodied in the concrete primary structures of the protein, i.e., a polypeptide 

chain is formed in the ribosome by successive addition of amino acids. The 

chain, as mentioned above, then self-organizes into a three-dimensional struc¬ 

ture of protein molecules. Thus, a definite section of DNA (the gene) determines, 

via m-RNA, the synthesis of one protein, and the whole DNA of the given 

organism (its chromosomes) determines the entire enormous set of its proteins. 



256 2. Principal Types of Crystal Structures 

Fig. 2.160a, b. Structure of f-RNA. (a) primary structure; “clover leaf”; (b) space structure, riboso- 

phosphate backbone of the molecule 

Ribosomes, as well as chromosomes, viruses etc., belong to another impor¬ 

tant class of biological objects, nucleoproteins (last line of Table 2.2), in which 

nucleic acids, combining with the proteins, form complicated structures. 

Ribosomes are complex molecular structures built by two subunits (30S and 

50S for bacterial ribosome, 40S and 60S for ribosome of lower and higher 

eukaryotes). Ribosome consists of a number of globular proteins (about 50 in 

bacterial ribosomes and about 70 in eukaryotic ribosomes) and a few different 

ribosomal RNA (rRNAs). Two rRNAs with high molecular weights play an 

active role of a framework in vivo assembling of subunits with the subsequent 

accumulation into intact ribosome. There are some close morphological models 

of ribosome particles based on electron microscopy data and the data of 

three-dimensional reconstruction, that are in good agreement with the observed 

ribosome images [2.118-121], A rough model of the arrangement of side and 

small subunits is depicted in Fig. 2.161. It shows electron microscopy images of 

a large subparticle and its model in two projections. The most detailed images of 

ribosome subunit projections were obtained by separating of several thousands 

of images into separate classes and averaging the images within each class 

[2.122, 123], see [Ref. 2.2, Sect. 4.9.4], 
Genetic information is stored in chromosomes. According to present-day 

concepts based on electron microscopy and neutron diffraction analysis the 

simplest component of the chromosome is a so-called chromatin filament 
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Fig. 2.161a-d. Electron micrographs of individual 70S ribosomes of E. coli (x 400 000) (a, b) and 
their model in two different views (c, d). Black-large subunit, white-small subunit. (Courtesy of 
V. D. Vasiliev) 

Fig. 2.162. 

0 

Fig. 2.163. 

Fig. 2.162. The image of a side projection of small ribosome subunit (40S) from rat liver obtained by 
processing of 300 electron micrographs. Resolution: 20 A. (Courtesy of Elena Orlova) 

Fig. 2.163. Structure of the nucleosome core consisting of turns of the DNA superhelix. Numbers 
of nucleotide pairs are indicated [2.124] 
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consisting of double-helical DNA with nucleoprotein globules, or nucleosomes, 

which are regularly repeated along it. 
Nucleosomes have been successfully crystallized, and the principal features 

of their structure studied. It has been found (Fig. 2.163) that the double helix of 

DNA (a section of 140 pairs of nucleotides) itself bends, and its chain forms 

a gently sloping superhelix with l| turns around the protein core. 

2.9.6 Structure of Viruses* 

Regular virus particles are made up of nucleic acid and globular protein 

molecules. A virus has no reproduction mechanism of its own, but by penetrat¬ 

ing into a cell of the host organism, it makes its protein-synthesizing apparatus 

work for it according to the program of its own nucleic acid, rather than that of 

the host cell. 
Let us consider the structure of the so-called “small” regular viruses which 

consist of nucleic acid and one or two varieties of protein. The function of 

protein is the formation of a coat or framework containing and protecting 

nucleic acid, the infection agent of the virus. Two types of such viruses are 

known, rod-shaped and spherical. 
The rod-shaped viruses show a helical symmetry, according to which their 

constituent protein subunits are packed. The classical, best-studied representa¬ 

tive of this class of virus is the tobacco mosaic virus TMV; the other viruses of 

this type (the punctate mosaic virus of barley, Adonis, etc.) also cause plant 

diseases. Figure 2.164 shows an electron micrograph of TMV. The virus con¬ 

tains an RNA chain. It is possible to break the virus down into separate protein 

subunits and RNA, and to repolymerize the former into the helical packing 

typical of the virus, but already without RNA. X-ray structure analysis of the 

initial virus and the repolymerized particles made it possible to construct the 

radial distribution of the electron density for them (Fig. 2.165). The maximum at 

a distance of 40 A from the particle axis, which is present on the first distribution 

and absent from the second, evidently localizes the position of RNA. A TMV 

model shown in Fig. 2.166 was constructed on the basis of X-ray diffraction and 

also electron microscopic data. TMV has the shape of a rod, 3000 A long and 

170 A in diameter, with a 40-A-diameter channel inside it. The molecular weight 

of each protein subunit is 17,420; all of them are identical. There are about 2140 

such subunits in TMV. The TMV symmetry is sM, where M = 49/3, i.e., there 

are 49 subunits per three turns of the helix. The pitch of the helix is 23 A, and its 

period, corresponding to three turns, is 69 A. The distance between the nucleo¬ 

tides in RNA is about 5.1 A, i.e., the chain is not extended. Obligatory inter¬ 

mediates in the assembly of TMV are TMV disks. A disk consists of two layer 

rings of 17 protein subunits each. A stack of disks serves as a precursor of the 

virus, which is assembled in a helical structure with the help of viral RNA. 

* See also Sect. 6.8.6. 
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Fig. 2.164. Electron micrograph of the tobacco mosaic virus 

Fig. 2.165. Radial electron density distribution of TMV 
(solid line) and of a repolymerized protein without RNA. 
Maxima at 40 A on the TMV curve show the position of 

RNA [2.125] 

l> 

Fig. 2.166. Model of the packing of protein subunits and the RNA 
chain in TMV [2.126] 

RNA 
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It is possible to crystallize disks in three-dimensional crystals under specific 

conditions. X-ray structure analysis of disk crystals [2.127] has established the 
structure of the protein subunits and the details of their packing. The electron 

density map of a protein subunit is given in Fig. 2.167a. Figure 2.167b shows 

schematically the structure of a subunit; the chain is folded in four approxi¬ 

mately parallel a helices. Figure 2.167c shows the shape of the polypepetide 

chain in one subunit in side projection. 
The packing of the subunits in rod-shaped viruses is predetermined by their 

shape (they narrow down towards the cylinder axis) and by the disposition of the 

active groups on the surface. So, self-assembly is ensured, first in disks and, then, 

in a stable helical structure. 

Fig. 2.167a-c. TMV structure, (a) electron density distribution in a portion of TMV; (b) arrange¬ 
ment of a helices in the subunit [2.128]; (c) side projection of the polypeptide chain in the subunit 

[2.127] 
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In another type of viruses, spherical, or, more precisely, icosahedral, the 

nucleic acid is located in a closed protein shell. Because of their regular structure 

and approximately spherical shape many viruses of this class form good crystals, 

which often show a cubic symmetry (see Figs. 1.1, 19). The periods of such 

crystals may reach 2000 A. The arrangement of strong reflections on X-ray 

photographs indicates the presence of fivefold axes in the virus particles 

(Fig. 2.168) forming such a crystal (not in the crystal itself, of course). The 

structure of spherical viruses was studied by means of electron microscopy 
(Fig. 2.169). 

Let us consider a geometric scheme illustrating the possibility of the forma¬ 

tion of icosahedral closed shells, capsides, from certain protein units. A close- 

packed plane layer of such units with a sixfold coordination (Fig. 2.170) may 
serve as a flat two-dimensional model of the material for such a shell. The 

triangles shown in Fig. 2.170 may be used as the “pattern” elements; the bends in 

the protein shell would correspond to their sides. A polyhedron whose faces are 

equal-sided triangles and shape is closest to spherical is the icosahedron, its 

volume-to-surface ratio being the most advantageous (Fig. 2.171a). Thus we 

arrive at the icosahedral symmetry inherent in “spherical” viruses and other 

pseudospherical shells (Fig. 2.171b, see also [Ref. 2.2, Fig. 2.50]). An individual 
protein molecule is asymmetric; therefore, the morphological protein unit, 

which is conventionally depicted as a ball in Fig. 2.170, must consist of six 

protein molecules in a flat layer, i.e., it must be a hexamer (Fig. 2.172a). At the 

same time, the explanation of the formation of a closed icosahedral shell requires 

the assumption that the same molecules are aggregated into pentamers, as can 

be seen from Fig. 2.172b. The pentamers correspond to the points where axes 

5 emerge at the surfaces of icosahedral symmetry (Fig. 2.173, cf. Fig. 2.171b and 
[Ref. 2.2, Fig. 2.50]). 

Fig. 2.168. X-ray photograph of the polio¬ 
myelitis virus. The arrangement of the 
intensive reflections along the marked di¬ 
rections is defined by the symmetry axes of 
the icosahedron [2.129] 
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Fig. 2.169a-e. Some spherical viruses, (a) human wart virus (x 300,000) [2.130]; (b) particles of this 
virus in different orientations; (c) computer simulation of the image of these particles which 
establishes precisely the emergences of the axes 2, 3 and 5 [2.131]; (d) herpes virus; (e) its model made 
up of 162 balls 
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Fig. 2.170. Close packing of balls on 
a plane. Triangles depicted in the figure 
illustrate possible variants of the formation 
of protein capside faces: (a) the face passes 
through the centers of the balls limiting the 
morphological units, (b) through the cen¬ 
ters of the balls and between them, and 
(c) skew face 

Fig. 2.171. (a) Icosahedron; (b) football sewn according to icosahedral symmetry 

Fig. 2.172a, b. Hexagonal packing of symmetric combination of asymmetric subunits, (a) joining of 
subunits into hexamers (H) (each hexamer corresponds to one ball in Fig. 2.170); (b) during the 
formation of an icosahedron face, pentamers (P) also arise in addition to hexamers (H) 
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Pentamers and hexamers are morphological units of the virus shell readily 

distinguishable in electron micrographs (Fig. 2.169). (Trimer or dimers are also 

found in certain viruses.) The possible schemes of the packing of pentamers and 

hexamers in the shell of a virus particle are given in Fig. 2.173. In some cases one 

can observe the intrinsic structure of pentamers and hexamers in high-resolution 

electron micrographs (Fig. 2.169d). Figure 2.174 illustrates the shell structure of 

the turnip yellow mosaic virus (TYMV) based on electron-microscopy and 

X-ray data. This virus is about 300 A in diameter; the capside is composed of 180 

subunits joined into 32 morphological units (12 pentamers and 20 hexamers). 

The molecular weight of the virus is 5.5 min. All the subunits are identical, their 

molecular weight is about 20,000. The virus crystallizes in a cubic lattice with 

“diamond” packing, a = 700 A. The thickness of the protein shell is about 35 A. 

The RNA chain inside it is so folded that it forms 32 dense packets closely 

connected with the morphological units. 
The general regularities in the structure of icosahedral shells are as follows 

[2.126]. The icosahedron faces cut out of the flat surface of close-packed 
morphological units can be divided into unit triangles (Fig. 2.170). The packing 

units corresponds to the vertices of these triangles. An icosahedron has 20 faces, 

Fig. 2.173. Arrangement of morphological 
units - hexamers and pentamers - in the lower 
members of the two icosahedral classes P = 1 
(on the left) and P = 3 (on the right). The 
numbers of morphological units in a shell are 

indicated [2.126] 

Fig. 2.174a, b. Structure of the TYMV. (a) ex¬ 
ternal surface of the virus: 180 protein mole¬ 
cules form pentamers and hexamers [2.132]; 
(b) scheme illustrating the possible arrange¬ 
ment of the RNA [2.133] 
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Fig. 2.175. Different deltahedra with an icosahedral symmetry (“icosadeltahedra”). Each deltahedron 
has on its surface 20 T equilateral triangles [2.126] 

and if T is the triangulation number, i.e., the number of triangles per face, then 

the total number of triangles is 20 T. The icosahedral polygons thus obtained 

are called deltahedra; some of them are shown in Fig. 2.175. The triangulation 

number T depends on the different possibilities of selecting the triangular face of 

the icosahedron on the surface depicted in Fig. 2.170: T = pf2 (/ is an integer), 

P = h2 + hk + k2 (h and k integers having no common multiplier). A list of 

possible classes is: P — 1, 3, 7, 13, 19, 21,... . The following classes of delta¬ 
hedra exist: 

Class T values 

P= 1 1 4 9 16 25 
P = 3 3 12 27 
Skew classes 7 13 19 21 

In the class P = 1 the generating face of the icosahedron runs through the 

centers of all the units of the flat layer (triangle a in Fig. 2.17 and the first 

structure in Fig. 2.175). In the class P = 3 the bend goes in another convenient 

direction, also through the centers of the units (triangle b in Fig. 2.170 and the 

second structure in 2.175). In the general case of a skew bend P = 7,13, 19. . . 

(triangle c in Fig. 2.170 and the last six structures in Fig. 2.175). Here, the planes 

of the triangles of the deltahedron are slightly curved; it is not a “polyhedron” in 

the strict sense of the word. The number M of protein molecules (subunits) in the 

shell is 60 T. They are joined into 12 pentamers and 10 (T — 1) hexamers. The 
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total number of morphological units is V = 12 pentamers +10 (7 — 1) hexa- 

mers =10 7+2, M = 60 7 = 12 x 5 + (F - 12)6. For the class P = 1, V = 

12, 42, 92, 162, 262,. . . , for the class P = 3, V = 32, 122, 272 ... . Figure 2.173 

shows models made up of morphological units which correspond to the vertices 

in the deltahedra, for P — 1 and P = 3. 
Most of the viruses belong to the first class, for instance, phase </>Y174: 

7=1, i.e., V = 12, M = 60; the polyoma virus: 7=7, i.e., V = 72, M = 420; 

viruses of herpes and varicella: 7= 16, i.e., V — 162, M = 960; the virus of the 

rabbit hepatitis: 7 = 25, i.e., V = 252, M = 1500. Representatives of the second 

class are the TYMV and the tomato bushy stant virus (TBSV): 7 = 3, M = 32, 

B = 180. Figure 2.176 shows the result of three-dimensional reconstruction of 

the space structure of certain viruses according to electron microscopy data. 

Incidentally, the above-mentioned term “bend” of the flat layer has only 

a formally geometric meaning and indicates the relationship between the struc¬ 

ture of the deltahedron surface and the flat surface divided into triangles, rather 

than the actual character of self-assembly of the shell of spherical viruses. This 

self-assembly is evidently effected by successive joining and crystallization of the 

packing units. According to the presently adopted point of view the icosahedral 

protein shells of some small viruses, for instance TYMV, are formed according 

to the “all or nothing” principle as a result of self-assembly. The larger icosahed¬ 

ral shells are formed step-by-step. For the adenovirus, for instance, it has been 

shown that the faces of its shell are formed first and can exist independently. 

Faces are capable of joining into icosahedral shells similar to virus shells, but 

without the “pentamers”, i.e., those subunits which are located at the fivefold 

axes. There are evidently viruses where a small internal protein capsule is first 

formed, on which the nucleic acid is condensed, with the outer shell formed 

subsequently. 

a b 

Fig. 2.176a, b. Three-dimensional reconstruction of spherical viruses, (a) TBSV (surface lattice 
T = 3 is drawn) [2.134]; (b) the surface of an icosahedral bacteria] <t>X174 virus viewed along the 
two-fold axis. The external diameter of a capside is equal to 260 A [2.135] 
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X-ray structure investigations into virus crystals, carried out in recent years, 

have revealed the packing of the polypeptide chain in shell subunits. Thus, the 

tomato bushy stant virus (TBSV) crystallizes in the cubic space group 723, 

a = 383.2 A, and the unit cell contains two virus particles about 330 A in 

diameter. The virus shell consists of 180 subunits (T = 3) with a molecular 

weight of 41,000 daltons. To obtain a resolution of 2.9 A, about 200,000 

reflections of native crystals were measured, as well as many for two heavy-atom 

derivatives [2.136], The subunits are built of two domains (Fig. 2.177a), domain 

P (projection) and domain 5, connected by a “hinge”, and of the N terminal arm. 
Besides the elements of icosahedral symmetry (axes 5, 3, and 2), the packing has 

additional quasi-symmetry axes 3" and 2\ by which the subunits of the shell are 

Fig. 2.177a-d. Structure of TBSV. (a) shape of a protein subunit consisting of P and S domains and 
an TV-terminal arm. (b) scheme of the packing of the subunits and their domains in one asymmetric 
region of icosahedral packing; P domains protrude outwards; 2, 3, 5: regions where the respective 
axes emerge, 2q, V\ regions where the quasi-axes emerge, (c) general scheme of the virus structure, 
(d) scheme of the folding of the polypeptide chain in subunit domains 
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related (Fig. 2.177d). Domains S form the virus surface (Fig. 2.177b, c), while 

domians P stick over this surface, grouping together in pairs. The S domains of 

subunits denoted by A, B, and C are related by quasi-axis 3", subunits A are 

disposed around axes 5, and subunits B and C, around axes 3. The schematic 

course of the polypeptide chain in the subunit is given in Fig. 2.177d; in both 

domains it forms an antiparallel jff structure. N terminals of 60 C subunits have 

been clearly revealed on a Fourier syntheses; they folded together around axes 3, 

connecting three subunits C. The N terminals of the other 120 subunits (B and 

C) are not clearly identified; they are evidently disordered and penetrate deep 

into the virus particle. Their function is, possibly, to connect the protein shell 

with the RNA located inside the virus. 
It is believed that the presence of RNA is necessary for self-assembly of 

certain spherical viruses, since it can serve as a kind of a matrix for protein 

crystallization. Yet it is possible to repolymerize the protein molecules of certain 

spherical viruses in the absence of RNA as well, which points to a high 

adaptability of the shape of the subunits to the formation of icosahedral shells. 

At the same time, under different conditions the protein molecules of some 

spherical viruses can be crystallized into tubes. 
The spherical viruses are the most complicated biological structures which 

obey exact symmetry laws. Still more intricate systems are, for instance, bacterio¬ 

phages and cell organelles; they consist of many varieties of different molecules 

(DNA, proteins, lipids, etc.), and some of their elements show strict structural 

regularities. 
Of great interest are the structures of bacteriophages. They consist of several 

functional elements (Fig. 2.178). The head, containing nucleic acid, is joined to 

the tail by a connector. The head capside has the form of a polyhedron, with 

Fig. 2.178. General scheme of the structure of 
phages with a contractile tail 

Fig. 2.179. Three-dimensional reconstruction [> 
of the noncontractile tail of phage Buturicum 
[1.125] 
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a pseudoicosahedral symmetry; it is built up of hexamers and pentamers. In 

phages with a contractile tail the latter consists of a narrow tubular rodlike core 

surrounded by a sheath. In phages with a noncontractile tail the latter is built of 

protein molecules of one sort. In both cases the tail structure can be described as 

a stack of disks which are laid on one another with a rotation determined by the 

helical parameters p and q. At its end, the tail has a basal plate with branching 
off fibrils. 

The most comprehensive information on the phage structure is provided 

by electron microscopy and the three-dimensional reconstruction method 
[2.137-139] (see also [Ref. 2.2, Sect. 4.9.5]). 

Figure 2.178 shows the structure of the phages (see also [Ref. 1.6, Figs. 4.11, 

112]). Figure 2.179 is a model of the tail of the phage Buturicum with a noncon¬ 

tractile tail. The shell disk has a 6-fold symmetry, and the helical symmetry is 

^30/6)6. Most of the phages have contractile tails; these are the so-called T-even 

phages (T2, T4, and T6), DD6 phage, phage Phy-1 E. Coli K-12, etc. [2.140, 

141], The structure of the latter and the changes in its structure on contraction 

Fig. 2.180. (a, b) electron micrographs 

of the phage Phy-1 E. coli K-12; (a) intact 
state, (b) contracted state; (c, d) three- 
dimensional reconstruction of the tail in 
the intact (c) and the contracted (d) state. 
(Courtesy of A. M. Michailov) 
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Fig. 2.181a, b. Electron micrographs of the basal plate of the Phy-1 E. Coli K-12 phage, (a) intact 
hexagon configuration; (b) star configuration after contraction of the tail. (Courtesy of A. M. 

Michailov) 

o 

are shown in Fig. 2.180a-d. The diameter of the intact tail is equal to 210 A, the 

number of molecules in the disk being 6; the symmetry of the tail is D1/2'6. 

Three-dimensional reconstruction reveals two families of helical grooves on the 

surface of the tail and the dimeric structure of the sheath molecules (Fig. 2.180c). 

The contractile tail of the phages is one of the simplest propulsion devices in 

nature. During the process of contraction of the tail (Fig. 2.180b, d) its diameter 

increases from 210 to 280 A, apparently owing to the rearrangement of protein 

subunits. The symmetry of the contracted tail is Sn/16. In the intact structure, 

the sheath subunits are arranged with their long axes being approximately 

tangential to the circumference, whereas in the contracted state they are rotated 

in the horizontal plane and are found to be close to the radial direction 

(Fig. 2.180d). The rotation of the subunits and their penetration into the 

gaps between the subunits of the neighboring “disks” occur simultaneously 

[2.142, 143]. The process of contraction is initiated by a contact of baseplate 

fibrils with bacteria. The rearrangement of the protein subunits of the baseplate 

takes place during this process, as shown in Fig. 2.181. The contraction of the 

phage tail enables the rod to penetrate the wall of the bacterial cell and “inject” 

the nucleic acid of the phage into it. 
Symmetry plays no part in the cell structure, but at the macroscopic level it 

manifests itself in the structural organization and the shape of plants and 

animals. 
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A number of physical phenomena in crystals are determined by their electron 

energy spectrum. Some phenomena are associated with the motion of electrons 

in the periodic field of the lattice and with their scattering on lattice vibrations. 

The optical, electrical, magnetic, galvanomagnetic, and other properties of 

crystals of dielectrics, semiconductors, and metals are intimately connected with 

the nature of the electron energy spectrum and the geometry of the isoenergetic 

surfaces of the electrons in the crystal, the peculiarities of vibrations of the lattice 

atoms, and the dispersion of the frequencies of these vibrations. This chapter 
discusses the energy spectrum of the electrons in a crystal. 

The most clear-cut physical interpretation of the energy spectrum of elec¬ 

trons and the shape of the electron isoenergetic surfaces can be obtained by 

viewing them in the space of the reciprocal lattice of the crystal, rather than in 

the real space. Like all other properties, of course, the energy spectrum of the 

electrons and the shape of the isoenergetic surfaces intrinsically depend on the 

crystal symmetry. Taking into account the space symmetry of the crystal and 

the wave nature of the electron results in the division of the reciprocal-lattice 

space into energy bands whose boundaries satisfy the conditions of interference 

of short waves in the crystal. Thus, the energy-band structure of the crystal, on 

the one hand, and the scattering of external electron beams or short waves (for 

instance, X-rays) in the crystal, on the other, have a common physical nature. In 

the final analysis, the band spectrum depends on the nature of the chemical 

bond of the atoms in the crystal. The concept of electron energy bands is of 

fundamental importance in modern crystalphysics and quantum electronics and 

is widely used in the study of electron phenomena in solids. This calls for 

consideration of the band-energy structure within the framework of crystallo¬ 

graphy. It should also be emphasized that we discuss the ideal crystal, neglecting 
the defects of the crystal lattice. 

3.1 Electron Motion in the Ideal Crystal 

3.1.1 Schrodinger Equation and Born-Karman Boundary Conditions 

The steady state of an electron in a crystal is described by the Schrodinger 

equation, which is reduced to the following form with the aid of the Hartree 
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self-consistent-field method: 

K - E'l'k- 

Here, the Hamiltonian of the system 

(3.1) 

2m 

where U(r) is the potential energy of the electron in the periodic field of the 

crystal lattice, ipk is the wave function, which describes the state of an electron 

with a wave vector k, and E = e, denotes the eigenvalues of the electron energy. 

The square of the modulus of the wave function \p (r) ip * (r) = | ip \2 is equal to the 

probability of finding the electron at a point of the crystal with a radius vector r. 
Equation (3.1) is often called the one-electron approximation, since here the 

extremely complex problem of interaction of the system of electrons and nuclei 

in the crystal reduces to determining the state of a single electron in an averaged 

periodic external field. It can be demonstrated that if U (r) has the translation 

symmetry of the lattice, the steady-state solution of (3.1) can be represented as 

ipk(r) = Uk(r)exp(ikr), (3-2) 

where amplitude Uk(r) also shows the translation symmetry of the crystal lat¬ 

tice. This statement is called Bloch’s theorem. In the case of a free electron, 

Uk(r) = const, and (3.2) transforms into the expression for the wave function of 

a free electron 

\pk{r) — const exp(iAr). (3-3) 

Let us denote by 

t — P\U\ + P2 @2 + Pi^it H — -+■ ^2^2 T ^3^3’ 

the arbitrary vectors of the direct and reciprocal lattices, respectively, where 

ax, a2, a3 and a*, af, a* are the basic vectors of the direct and reciprocal crystal 

lattices. Substituting kx = k + 2nH for k in (3.2) and taking into account that, 

by definition [Ref. 3.1, Chap. 3], Ht is equal to an arbitrary integer, we find that 

\jjk(r) = 1J/kt(r). Thus, in the reciprocal-lattice space the wave function of the 

electron i//k(r), as well as its energy s(k\ is periodic, with periods a?, a*> and a*■ 
The region of the reciprocal space (or the k space) where the functions of the 

wave vector are defined and which satisfies the condition 

— n ^ ka{ ^ n, (3.4) 

is called the first Brillouin zone (a, is the basis vector of the direct lattice, and 

i = 1, 2, 3). For a cubic lattice, the first Brillouin zone is a cube, whose edges are 

equal to 2rc/a, and according to (3.4) 

n n 
(3.5) ^ hi ^ -I- 

a a 

In Sect. 3.2 we shall analyze the general rule for constructing Brillouin zones, for 

which definition (3.4) is a particular case. 
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In solving the Schrodinger equation (3.1) one uses the Born-von Karman 

conditions for boundary conditions; accordingly, the wave function of the 

electron (3.2) is unaltered on displacement of the radius vector by a whole 

number N of unit cells of the direct lattice, i.e., by JVa,-. Using expression (3.2) and 

the translation symmetry of amplitude t/k(r), the Born-von Karman conditions 
can be represented in the form 

2n 
k<li = ~Hgi- (3-6) 

It is easy to see that condition (3.6) is equivalent to the statement that the 

projection of the wave vector within a Brillouin zone can take only N discrete 
values. Indeed, using (3.4), we get from (3.6) 

N N 

~2^di< +2' (17) 

Since the number N can be chosen arbitrarily large, a Brillouin zone can be 
regarded as quasicontinuous. 

Substituting wave function (3.3) into (3.1) yields the following expressions for 
the energy and momentum of a free electron: 

h2k2 
E = ^. P = M (3.8) 

Thus, the momentum of a free electron coincides in direction with the wave 

vector and is related to it by the simple expression (3.8). A free electron 

corresponding to a wave with a wave vector k moves in space at a constant 
velocity 

hk 1 de 

m hdk 
(3.9) 

According to (3.8), the energy of a free electron satisfies the classic relation 

e — mv2/2. In the space of the wave vector, the isoenergetic surface of a free 

electron is a sphere. 

For an electron moving in a crystal, the dependence of energy e on wave 

vector k is generally more complicated. Since the Schrodinger equation (3.1) is 

invariant to reversal of the time sign, z(k) = e( — k); this means that the isoener¬ 

getic surface of the electron s = s(k), defined in the corresponding Brillouin 

zone, has a center of symmetry. It can be shown that the isoenergetic surfaces of 

an electron in a crystal e = e(k) have all the elements of the point symmetry of 

the crystal and, besides, a center of symmetry as well. In the vicinity of a point of 

minimum or maximum k = k0, which is not a point of degeneracy, energy e can 

be expanded into a series in the powers of the projection of the wave vector, 

accurate up to the quadratic term 

e(*> = + \ § (k‘ ”k,Mkl ” M' 

(3.10) 
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The symmetric second-rank tensor 02e/0k;0/cj is called the inverse-effective-mass 

tensor 

02e 
(3-11) 

h2 \dkidkjJk=ko 

If we reduce tensor (3.11) to the diagonal form with diagonal components 

, 1 / 02s\ 

(mfr =h>{W?) 

and introduce the quasimomentum 

P = h(k- k0), (3.12) 

(3.10) transforms to 

e(/t) = e(A0) ± 
yVk[ 
v 2m f 

— e(Ar0) + (3.13) 

Expression (3.13) is similar to (3.8), from which it can be seen that mf and pt have 

the dimensions of mass and momentum, respectively. Thus (3.13) represents the 

kinetic energy of an electron possessing an “anisotropic” mass. This mass 

“anisotropy” is naturally the direct result of the crystal anisotropy and is just 

a convenient method for describing the motion of an electron in the periodic 

field of the crystal lattice. In the case of a free electron, all the three components 

of the inverse-effective-mass tensor coincide, and the effective mass of a free 

electron 

_ j 1 02£ 1 02£ 1 02£ 

m h2 0/c2 h2 0/c2 h2 0/c2 

is equal to the true mass of an electron and is independent of the wave vector, 

i.e., of the direction of motion. It is thus obvious that the effective mass of an 

electron moving in a crystal does not generally coincide with its true mass. The 

concept of the effective mass of an electron is of fundamental importance in 

semiconductor physics, for instance, in electrical conductivity and other phe¬ 

nomena associated with electron transport in a crystal. 

From (3.13) it follows that in the extreme point region the isoenergetic 

surfaces of an electron in the reciprocal space (in the k space) are closed and are 

ellipsoids near the extreme points (k = k0). If the extreme point does not 

coincide with the symmetry element of the crystal (i.e., in the general position), 

some more such ellipsoids must be located in the Brillouin zone in accordance 

with the symmetry of the crystal. Their maximum number for a cubic crystal is 

48. As already noted, e = e(k) is a periodic function in the reciprocal-lattice 

space. Thus the system of the above-described closed isoenergetic surfaces 

(ellipsoids in particular) must be repeated periodically throughout the recipro¬ 

cal-lattice space. It is self-evident that the closed surfaces surrounding the points 

of energy minimum and maximum must alternate with open surfaces passing 
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throughout the reciprocal-lattice space. In Sect. 3.3 we shall consider in more 

detail some simple types of closed and open isoenergetic surfaces. 

The movement of an electron in a crystal is effected by the periodic field of 

the lattice, which alternately decelerates and accelerates it. Therefore, the instan¬ 

taneous velocity of an electron, which is equal to v* = p/m in accordance with 

(3.9), does not remain constant. If we, however, introduce the concept of the 

average electron velocity, which is equal numerically to the velocity of the center 

of gravity of a wave packet, corresponding to wave function (3.2), this velocity 

will be constant. Indeed, according to the principles of quantum mechanics the 

motion of the center of gravity of a wave packet is equivalent to that of 

a classical particle, which is constantly subjected to the action of a force equal to 

the average value of the force field. Since the average value of the lattice field is 

zero, the average electron velocity thus introduced and corresponding to the 

steady state (3.2) is constant. If we assume that average electron velocity v thus 

introduced is equal numerically to the group velocity of a packet of plane waves, 
then, according to the well-known formula 

0CO 1 0£ 

v=dk=hdk’ (314) 

because e = hco. The rigorous derivation of (3.14) is based on quantum-mechan¬ 

ical averaging of the value of p/m corresponding to the steady state of the 

electron (3.2). A comparison of (3.9) and (3.14) shows that for an electron in 

a crystal the direction of wave vector k does not generally coincide with that of 

velocity v because of the difference between the phase and group velocities of the 

wave (3.2). From the definition of the average velocity of an electron (3.14), it is 

clear that near the energy minimum the direction of velocity v coincides with the 

direction of the external normal to the isoenergetic surface, while near the 

maximum, with the direction of the internal normal, the velocity is directed 

oppositely. Since all the isoenergetic surfaces and their set in the Brillouin 

zone have centers of symmetry, e( — k) = e(k), then, according to (3.14), 

v( — k) = — v{k) and, hence, the sum of the electron velocities for all the values 

of the wave vector in the Brillouin zone is equal to zero. Thus, in the absence of 

an external field the summary electric current through the crystal is zero. 

Suppose now that an electron in a crystal is subjected to an external force F, 
which changes wave vector k and, hence, average velocity \(k), energy s(k), and 

the state of the electron in the zone, which is described by the wave function (3.2). 

A force F is so small that it does not lead to transitions between the bands. The 

change in the average velocity of the electron, i.e., its acceleration, is 

dv 1 d ds{k) 

dt h dt dk 
(3.15) 

or 

(3.16) 
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On the other hand, from the law of conservation of energy 

dx(k) 0e dk (3.17) 
dt dk dt 

and from (3.14) we obtain the equation of motion in the form 

(3.18) 

A comparison of (3.16) and (3.18) brings us to the equation of motion in its final 

form 

-T- — F, 
dt 

(3.19) 

where the tensor of the inverse effective mass (m*)~ 1 coincides with the above- 
introduced tensor (3.11), provided the dependence of the electron energy on the 
quasimomentum is quadratic (3.10). Thus, it is possible to impart the classical 
form to the equation of motion of an electron in a crystal by replacing the 
inverse scalar mass of the electron by tensor of the inverse effective mass (m*) \ 
and the momentum of the free electron by quasimomentum hk. This replace¬ 
ment actually represents consistent inclusion of the interaction of the moving 
electron with the crystal-lattice field. From (3.19) it is clear that, because of this 
interaction, the direction of electron acceleration does not generally coincide 
with that of the acting external force (it may be, for instance, an electric field 

applied to the crystal). 

3.1.2 Energy Spectrum of an Electron 

The periodicity of the wave function (3.2) leads to the division of the reciprocal- 
lattice space into quasi-continuous bands, to which corresponds the band 
nature of the energy spectrum of the electron in the periodic field of the crystal. 
We shall go into more detail on this further on; here we only note that the 
formation of energy bands, which are generally separated by energy-gap bands, 
is the result of the quantum-mechanical uncertainty relation 

(3.20) AeAf — h. 

where At is the time of localization of the electron near a fixed lattice point, and 
Ae is the band of the possible energy values. In an isolated atom, the electron 
localization time is infinitely large, which results in discrete energy values in 
accordance with (3.20). As atoms draw closer together and a crystal lattice is 
formed, the electron localization time in the atom is limited by the tunneling of 
the electron through the potential barrier separating neighboring atoms. The 
probability of tunneling W can be roughly estimated assuming the barrier to be 

rectangular 

(3.21) 
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Here, u and / are the barrier height and width, respectively, and m is the mass of 

the free electron. For valence electrons, u ^ 10 eV, / ~ 10“8 cm, which leads to 

W ~ 1015s_1 and, hence, to the time of electron localization in the atom 

At ~ ~ 1015s in conformity with (3.21). According to (3.20) this causes 

extension of the level of the valence electron into an energy band of width 

As ~ h/At ~ 1 eV. It can similarly be shown that the electrons of the inner 

atomic shells are delocalized. In the crystal they are associated with an energy 

band of finite width; also, the bands narrow down on transition from the outer 

to the inner shells. Thus, the steady state corresponds to an equiprobable 

distribution of the electrons over all the latice points, which in turn results in the 

splitting of the electron levels into quasi-continuous energy bands. If a level in an 

atom is filled, all the N3 (neglecting the spin) electron states corresponding to 

this band level are also occupied by electrons, i.e., the band is filled completely. If 

the atomic level is vacant or only partly filled, the band arising from it is also 

vacant of partly filled. 
It is easy to see that the electrons of a completely filled band make no 

contribution to the electrical conductivity of the crystal. Indeed, in accordance 

with (3.18) the electric field applied to the crystal changes the state of the 

electron, i.e., its wave vector. If all the states in the band are occupied by 

electrons, then, in accordance with the Pauli principle, the field cannot transfer 

the electron from one state to another, i.e., accelerate it. Thus, only electrons 

belonging to partly filled energy bands take part in electrical conductivity. 

By way of example, Fig. 3.1 shows how energy bands Is and 2s arise from the 

corresponding electron levels during the formation of the body-centered cubic 

lattice of lithium. Since there are two electrons in the lithium atom at level Is, 

and one electron at level 2s, band Is is filled completely, and band 2s only partly. 

(The filled part of band 2s is shaded in Fig. 3.1). In accordance with (3.20), band 

2s is broad, and band Is narrow. Thus, the electrical conductivity of the metal 

lithium is due to the electrons of band 2s. The possible energy-band structure of 

the metals is not restricted to the case just discussed. The metallic conductivity 

of a crystal may be due to the overlapping of energy bands, one of which is 

d 

Fig. 3.1. Formation of energy bands in 

lithium 
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vacant, and the other completely filled. The case where a vacant and a com¬ 

pletely filled band do not overlap corresponds to a dielectric or a semiconduc¬ 

tor. Then, the electrical conductivity of the crystal is due to interband electron 

transitions, i.e., transitions of the electrons from a completely filled to a vacant 

band under the effect of heat or light (internal photoeffect). On transfer of 

electrons to a vacant band from a completely filled one, the latter acquires 

vacant states, which are called holes. Here, the electrical conductivity of the 

crystal may be due, not only to the electrons which have passed to the vacant 

band, but also to a redistribution of the electrons over the states in the nearly 

completed band. It can be rigorously demonstrated that the electron motion in 

a nearly completed band is equivalent to that of positively charged vacancies, 

i.e., holes, whose effective mass is generally different from that of the electrons. 

The division of the crystal electrical conductivity into the electron and hole 

components (n- and p-type conductivity, respectively) and the determination of 

the sign of the main current carriers are achieved by measuring (see [Ref. 1.7, 

Chap. 7]) the Hall effect and also the galvano- and thermomagnetic phe¬ 

nomena. 

3.2 Brillouin Zones 

3.2.1 Energy Spectrum of an Electron in the Weak-Bond Approximation 

It has been shown above that the energy of an electron in a crystal e is a periodic 

function of wave vector k. This results in the division of the reciprocal-lattice 

space into regions in which energy e has the same values. These regions, which 

are called Brillouin Zones, can be obtained on the basis of solution of the 

Schrodinger equation (3.1) in the nearly free-electron approximation. 

Substituting wave function (3.2) into the Schrodinger equation (3.1) and 

reducing the expression obtained by exp(iAr), we arrive at the following equa¬ 

tion of amplitude Uk(r): 

uk= -~V2Uk~ — (kVUk). (3.22) 
2m m 

Since the potential energy of an electron U(r) is a periodic function, it can be 

expanded into a Fourier series 

U(r)= X [/„ exp [2m (//»*)]. (3.23) 
H * 0 

As the summation in (3.23) is performed both in the positive and negative 

direction of the basis vectors of the reciprocal lattice, and U(r) is a real function, 

we have U-H = UH. Besides, in (3.23) U000 = 0. We similarly expand periodic 

amplitude Uk(r) into a Fourier series 

Uk(r) = X a// exp [2m(//'»*)], 
H 

2 1,2 

£fc — 
h2k 

2m 
U(r) 

(3.24) 
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where H' = m^* + m2a* + m3a* is the reciprocal-lattice vector. Substituting 
(3.23) and (3.24) into (3.22), we arrive at the equation 

I 
w 2m 

(,k + 2 kH')2 aH exp[2ni(//>)] 

- E E UHaHexp[2ni(H' + H)r\ = 0. 
H H * 0 

(3.25) 

In (3.25), reciprocal-lattice vector H' + Hcan be replaced by vector //', provided 

the summation with respect to m is replaced by one with respect to m — h. This 

enables us to equate the sum of the coefficients of exp [2rci(//'#•)] to zero. As 
a result we obtain the following set of algebraic equations: 

ek- — (k + 2nH')2 
2m 

E UHdH - H — 0. 
MO 

(3.26) 

from which we can, in principle, determine the energy ek — ek(k, UH) and coeffic¬ 

ients of expansion (3.24) aH = am = am(k, UH). 

Let us now consider an electron in a weak periodic field of a lattice, when the 

potential energy of the electron U(r) in the Hamiltonian of (3.1) is much less than 

its kinetic energy (the nearly free-electron approximation). Here, the coefficients 

of expansion (3.23) of UH can be regarded as values of the first order of smallness. 

In the same approximation, am # 0 (3.24) are also values of the first order of 

smallness, am7i0 a0. Note that al is the square of the modulus of the free- 

electron wave function. Neglecting the terms of the second order of smallness in 

(3.26) under the summation sign, i.e., truncating the terms with the subscript 

h > m, assuming that energy ek — e0 = h2k2/2m is equal to that of a free electron, 

and normalizing a0 — 1, we find 

m_Um 

2nh2 n(H')2 + {H’k) 
(3.27) 

The set of coefficients am # 0 can be regarded as a linear correction to the wave 

function of a free electron (3.3) due to the weak bond of the electron with the 

lattice points. We can similarly obtain from (3.26) the correction Ae to the 

free-electron energy 80(e = £o + A£) 

Ae = — 
m 

2n h2 I 
H *0 

\Uh\2 

n h2 + cmy 
(3.28) 

which is quadratic. 
From (3.27) and (3.28) it can be seen that at wave-vector values satisfying the 

relation 

nH2 + (Hk) = 0, (3.29) 

the corrections to electron energy Ae and coefficients am go to infinity. This 

means that near the plane defined in the reciprocal-lattice space by (3.29) the 

nature of the electron motion changes abruptly. It can be demonstrated that on 
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this plane the electron energy experiences a jump equal to 2\U„\ and that, to 

a first approximation, the dependence of energy sk on the wave vector has the 

form 

(3.30) 

In the one-dimensional case H — + (h/a)k, where a is the spacing of the direct 

“lattice” and (3.29) simplifies to 

k — + — h, h = 1,2, 3 . . . . (3.31) 
a 

Figure 3.2 presents the quadratic dependence of f.k on wave vector k correspond¬ 

ing to (3.30). Within the limits -n/a< k< + n/a, this dependence is parabolic 

and corresponds to a free electron. At points k — + n/a, + 2k/a, ± 3n/a . . . 

the electron energy experiences a discontinuity, which leads to the formation of 

energy bands, as shown in Fig. 3.2. The electron energy is a periodic function of 

the wave vector, permitting division of the axis of wave vector k into segments or 

bands within which the energy has the same values. The boundaries of the first 

band are defined — n/a < k < + n/a. The second band can be obtained by 

subtracting the segment corresponding to the first band from that determined 

by — 2tx/a < k < + 2n/a, and so on. The “volumes” (or lengths) of all bands 

are identical and equal to 2n/a. The bands obtained can be termed one¬ 

dimensional Brillouin zones. Since the energy is a periodic functions of the wave 

vector, the dependence e = e(k) is usually reduced to the first Brillouin zone, 

and the change of the wave vector k is considered only in the range 

— n/a < k < + n/a. This is called the reduced range of the wave vector, and 

vector k itself and the corresponding energy bands are also called reduced. 

In the three-dimensional space of the reciprocal lattice the Brillouin zone is 

a polyhedron with planes satisfying (3.29). The smallest polyhedron in the 

reciprocal-lattice space, which surrounds point k — 0, is called the first Brillouin 

E I I 

Fig. 3.2. Dependence of the electron 
energy in a crystal on the wave vector 

2n_n 
a a 

0 tt 2n 
a a 
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zone. The second, third, and all the subsequent Brillouin zones are defined in the 
same way as in the one-dimensional case. 

3.2.2 Faces of Brillouin Zones and the Laue Condition 

It is easy to see that (3.29), which is satisfied by the faces of Brillouin zones, is 

equivalent to the Laue condition for the interference of short waves in a crystal. 
Indeed, this condition has the form 

k-k0 = 2 nH, (3.32) 

where k0 and k are the wave vectors of the incident and scattered wave, 

respectively; H is an arbitrary vector of the reciprocal lattice; and |Aj = |Ar0| = 

2%/L Transposing k0 to the right-hand side of (3.32) and squaring both sides of 

the equation, we arrive at (3.29). Figure 3.3 depicts the reflection sphere in the 

reciprocal lattice, from which it is seen that reciprocal-lattice vector H is the 

difference between vectors k/2n and k0/2n. It is evident that plane AB, passing 

through the center of the sphere and perpendicular to vector //, is the plane of 

reflection and satisfies (3.32) in accordance with the Wulflf-Bragg equation. 

Since (3.32) and (3.29) are completely equivalent, plane AB is simultaneously 

a face of the Brillouin zone. Thus the face of the Brillouin zone corresponding to 

point H = h{a* + h2a* + h3a* of the reciprocal lattice is the plane of reflection 

of the electron wave; in the direct-lattice space, this plane has indices 

h:k:l = hl:h2'.h3. The drawing of Fig. 3.3 illustrates the rule for constructing 

Brillouin zones. The point which is the origin of the coordinates k = 0 is joined 

by segments to the reciprocal-lattice points nearest to it. Through the midpoints 

Fig. 3.3a, b. The construction of Brillouin zones, (a) scheme of construction of zones in the 
reciprocal-lattice space; (b) Brillouin zones for a plane lattice 
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of these segments pass planes perpendicular to them; the intersection defines the 

first Brillouin zone. The next group of points defines the band boundary, and so 

on. It can be shown that the volume of all the Brillouin zones is identical and 

equal to (2r:)3/f30, where Q0 is the volume of the unit cell. 
We consider, as an example, a primitive plane lattice with spacings ai and a2. 

Substituting the expressions for reciprocal-lattice vector H=(a*/al)hl + 

(,a2/a2)h2 and wave vector k — kxa* + kya* into (3.29), we obtain the following 

equation of the straight lines bounding two-dimensional Brillouin zones in the 

k space: 

(3.33) = - 1. k 

From (3.33) it can be seen that the first Brillouin zone is bounded by lines 

kx = ± n/a, and ky = ± n/a2, and that its “volume” (or area) is equal, accord¬ 

ingly, to (2n)2/S0, where S0 = a^a2 is the area of the unit cell of the direct lattice. 

Figure 3.3 depicts the first three Brillouin zones of the plane lattice for ax = a2. 

In accordance with (3.29) Brillouin zones can be constructed for all fourteen 

Bravais lattices. In Figs. 3.4-6 this construction is carried out for three cubic 

lattices, the primitive, body centered, and face centered; the two first Brillouin 

zones are also represented for each of the lattices. For the primitive cubic lattice 

the reciprocal lattice is also primitive cubic. The first Brillouin zone in this case is 

a cube (Fig. 3.4a), whose faces are formed by planes kx — ky — kz= +nla and 

Fig. 3.4a, b. The first (a) and second (b) 
Brillouin zone for a primitive cubic 

lattice 

Fig. 3.5a, b. The first (a) and second (b) 
Brillouin zone for a body-centered- 
cubic lattice 
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Fig. 3.6a, b. The first (a) and second (b) 
Brillouin zone for a face-centered-cubic 
lattice 

whose volume is accordingly equal to (2n/a)3. The second Brillouin zone for the 

primitive cubic lattice is bounded by a rhombododecahedron embracing the 

cube (Fig. 3.4b). The states of the second band fill the space between the surfaces 

of the cube and rhombododecahedron. The volume of the second, as well as all 

the subsequent bands, is equal to (2n/a)3. For the body-centered-cubic lattice, 

the reciprocal lattice is face centered. Here, each point of the reciprocal lattice is 

surrounded by twelve nearest points, while the first Brillouin zone is accordingly 

bounded by the twelve faces of the rhombododecahedron (Fig. 3.5a). The 

second Brillouin zone for the body-centered-cubic lattice is sandwiched between 

the rhombododecahedron and the cubooctahedron embracing it (Fig. 3.5b). 

Figure 3.6 portrays the first and second Brillouin zones for the face-centered- 

cubic lattice. 

3,2,3 Band Boundaries and the Structure Factor 

As mentioned above, on the plane bounding a Brillouin zone and satisfying 

condition (3.29) the electron energy undergoes a jump. In an individual case, this 

jump may not take place. Then, the electron energy is continuous in transition 

from one band to the next and, hence, two neighboring Brillouin zones overlap. 

Since (3.29) can be regarded as the condition for the interference of an electron 

wave similar to the Laue condition, we can introduce the concept of the 

scattering factor 4>H for electrons in the crystal. We shall now demonstrate that 

in this case the disappearance of <PH is equivalent to the absence of the corres¬ 

ponding boundaries of the energy band. 
If n identical atoms are located in each unit cell of a crystal, the energy of an 

electron can be represented as a sum of energies of its interaction with each atom 

of the cell, 

U(r)= t U'{r-rm). (3-34) 
m = 1 

Expanding periodic potential U' into a Fourier series, we obtain, by analogy 

with (3.23), 

U{r) = Yj UHexp(2niHr), 
H 

(3.35) 
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where 

u„=f£H, (3.36) 

= X exP( ~ 2niHrJ (3-37) 
m = 1 

and/is the atomic-scattering factor. From (3.36) it is seen that if &H — 0, the 

coefficient UH in expansion (3.35) or (3.23) reduces to zero and, in accordance 

with (3.30), electron energy ek does not experience a discontinuity on the surface 

of the Brillouin zone. Thus, the absence of a reflection hkl consisting of identical 

atoms also means that the hkl plane is not the boundary of the Brillouin zone. 

Broadened Brillouin zones, from which the fictitious boundaries are removed, 

are called Jones zones. 

3.3 Isoenergetic Surfaces. Fermi Surface and Band Structure 

The solution of the Schrodinger equation (3.1) is, as a rule, considered for two 

limiting cases, the weak and the strong interaction of an electron with the crystal 

lattice. The weak-interaction case (the nearly free-electron approximation) has 

been considered above. In accordance with (3.30) it is associated with the 

spherical isoenergetic surfaces of the electron. In actual fact, the isoenergetic 

surfaces of an electron in a crystal have a more complex form. Qualitatively, this 

can be illustrated as follows. The normal component of the electron velocity at 

the boundary of the Brillouin zone is zero. According to (3.14) this means that in 

the nondegenerate case the derivative de/dk with respect to the direction perpen¬ 

dicular to the band boundary vanishes at the boundary. Thus, the isoenergetic 

surfaces intersect the boundary of the Brillouin zone at right angles. It follows 

that at a sufficient distance from the zone center the isoenergetic surfaces are 

nonspherical. An analysis of a more general shape of isoenergetic surfaces can 

conveniently be performed by solving the Schrodinger equation (3.1) corres¬ 

ponding to the other limiting case of strong bond of the electron with the lattice 

atoms (the strongly bonded electron approximation). 

3.3.1 Energy Spectrum of an Electron in the Strong-Bond Approximation 

Here, the solution of (3.1) can be represented as a sum of atomic functions each 

of which describes the state of the electron in an isolated atom, the overlapping 

of the wave functions taking place only within a single coordination sphere. The 

wave function of the electron then has the form (Bloch’s solution) 

•Mr) = X exp(iA:a„)<pa(r - an), (3.38) 
n 

where <pa(r — an) is the atomic-wave function describing the behavior of the 

electron in the atom with radius vector a„. The expression for the eigenvalue of 
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energy sk is 

= £a - C - £ £(a„)exp(i/ta„), 
n 

(3.39) 

where is the energy of the assigned state of the electron in the isolated atom, 

and £(a„) and C are the overlapping integrals 

«(«-) = - 1 <Aa*(»* - an)lU(r) - t/a(r)]^a(r)dr (3.40) 

and 

C = -f|^a(r)|2[l/(r)-C7a(r)]dr. (3.41) 

Here, t/a(r) is the electron potential in the field of the isolated atom, and U{r) is 

the periodic potential of the lattice. If £(«„) is identical for all the atoms of the 

coordination sphere, then (3.39) can be represented as 

£* = £a - C - £ X exp(i£a„). (3.42) 

In this case the calculation of the energy spectrum of the electron £ = sk(k) 

reduces to the calculation, in (3.42), of the coordination sum £n exp(iA:a„), where 

n is the coordination number. 

By way of example we consider the primitive cubic lattice (n — 6). Calcu¬ 

lation by (3.42) yields 

sk = £a — C — 2e(cos akx + cos aky + cos akz). (3-43) 

Recall that in this case the first Brillouin zone is a cube with edge 2n/a. From 

(3.43) it is seen that, on formation of a primitive cubic lattice of N atoms, the 

level of an electron in an isolated atom £ splits up into a quasi-continuous energy 

band of N levels of widths 12e. Indeed, assuming that the additive constant in 

(3.43) £a — C = 0, we find that the minimum of sk occurs at the center of the band 

at kx — ky = kz = 0, and the maximum, at the eight vertices of the cube at 

kx = ky = kz = ± n/a; £min = — 6s, and £max = + 6s. Thus, the width of the 

whole band is £max — £min = 12s. Expansion of sk into a series (3.43) in the range 

of low k values with an accuracy to the quadratic term leads to the expression 

sk ~ —6£ + sa2k2. (3-44) 

Consequently, at the center of the Brillouin zone the isoenergetic surface is 

a sphere. This permits introducing the scalar effective mass of the electron in 

accordance with (3.11) 

h2 h2 

m‘ _7eVi 
(3.45) 

Near the cube vertices the isoenergetic surfaces are also spheres. This can be 

demonstrated by expanding sk into a series near the upper edge of the band. The 

scalar effective mass of the hole, introduced for these spheres by analogy with 
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Fig. 3.7. Open isoenergetic surface according 

to (3.43) 

ky 

Fig. 3.8. Section of the isoenergetic surface 
(Fig. 3.7) by plane k2 = 0 

(3.45), is negative, its modulus being equal to that of the effective mass of the 

electron, i.e. = — m*. Isoenergetic surfaces of more intricate shape are 

located between the spherical surfaces corresponding to the extreme points of ek. 

All of them satisfy (2.43), where -6e < ek < + 6e. Some of these surfaces are 

open. Since e — e(k) is a periodic function, closed isoenergetic surfaces repeat 

periodically in all the unit cells of the reciprocal lattice, and the open ones, also 

repeating, traverse the entire space of the reciprocal lattice. Figure 3.7 presents 

an open isoenergetic surface, for which the dependence of energy sk on wave 

vector k is given by (3.43). Figure 3.8 shows the section of isoenergetic surfaces 

(3.43) by plane kz = 0. Here, the open “surfaces” are the isoenergetic lines 

kx + ky — n/a, corresponding to ek = — 2e in (3.43). Isoenergetic surfaces for 

a body-centered and face-centered cubic lattice can be constructed in a similar 

way. Figure 3.9 exhibits an element of an open isoenergetic surface or a face- 

centered cubic lattice located inside a cubooctahedron, i.e., inside the corres¬ 

ponding first Brillouin zone. 

3.3.2 Femi Surfaces 

As indicated in Sect. 3.1, in metals the energy bands are filled only partly. An 

isoenergetic surface which serves as the boundary between the occupied and 

vacant states in the reciprocal-lattice space is called the Fermi surface. Since, in 

conformity with the Pauli principle, only electrons situated near the Fermi 

surface take part in electrical conductivity (and other charge-transfer) phe¬ 

nomena, the topology of this surface essentially determines the electrical, 

galvanomagnetic, and other properties of metals. It can be demonstrated, for 

instance, that in a magnetic field the electron trajectory in the reciprocal-lattice 

space depends on the section of the Fermi surface transversed by a plane 

perpendicular to the direction of the magnetic field. If the Fermi surface is open, 

the trajectory may also be open, while period T and the rotation frequency co of 
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Fig. 3.9a, b. Open Fermi surface for fee metals (a) and its section (b) by the (110) plane 

E, EB 

b wave vector 

Fig. 3.10a, b. Band structure of germanium (a) and 
silicon (b) 
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the electron are equal to infinity and zero, respectively. If the section of the 

Fermi surface gives a closed trajectory, the following expressions hold true for 

period T and the rotation frequency of the electron: 

c a s 
eH 3e’ 

(3.46) 

i as 
2n: 0e ' 

(3.47) 

Here, S is the cross-sectional area of the Fermi surface, e is the energy of the 

electron, and H is the magnetic-field. Comparing (3.46) with the corresponding 

expressions for a free electron, we arrive at the expression relating the effective 

mass m* of the electron to the shape of the Fermi surface. According to (3.47) the 

sign of the effective mass depends on whether the Fermi surface contains the 

energy minimum or maximum. Figure 3.9 depicts the open Fermi surface for 

gold, copper, and silver and its section by the (110) plane. The existence of open 

directions [111], [110], and [001], to which the open trajectories correspond, 

can be observed. 
In semiconductors and dielectrics, the zones are vacant or completely filled. 

Here, it is important to study the structure of the isoenergetic surfaces corres¬ 

ponding to the minimum and maximum energy of the bands separated by the 

energy gap, called the forbidden energy band. The band structure is usually 

characterized by the dependence of the boundary energy on the reduced wave 

vector. The scheme of reduced bands in Fig. 3.10 illustrates a particular case of 

this dependence for elemental semiconductors, e.g., germanium and silicon. 



4. Lattice Dynamics and Phase Transitions 

Vibrations of atoms about their equilibrium position is one of the fundamental 

properties of the crystal lattice. The set of phenomena associated with such 

vibrations and describing their laws is called lattice dynamics. Lattice dynamics 

lies at the basis of the theory of thermal properties of crystals and the present- 

day concepts of the electrical and magnetic properties of crystals, light scattering 

in them, etc. For instance, the anharmonicity of atomic vibrations in the crystal 

lattice determines the ratio between the heat capacity, compressibility, and the 

coefficient of linear thermal expansion (the Griineisen ratio). The concept of the 

thermal motion of atoms and the vibration anharmonicity is the foundation of 

the modern theory of phase transitions in crystals (ferroelectric ones, in partic¬ 

ular, see [4.1]). Here we shall only state the principal conclusions of the theory 

of crystal lattice dynamics and consider, on their basis, the heat capacity, 

thermal conductivity, and thermal expansion of crystals. 

4.1 Atomic Vibrations in a Crystal 

4.1.1 Vibrations of a Linear Atomic Chain 

At not-too-low temperatures, when the amplitude of atomic vibrations in the 

lattice greatly exceeds the de Broglie wavelength corresponding to the atoms, 

the atomic vibrations obey the laws of classical mechanics. The main features of 

the vibrations can be understood simply by considering the vibrations of a linear 

atomic chain (one-dimensional lattice model). Assuming that the spacing of the 

unit cell of such a one-dimensional lattice is the shortest distance a between 

neighboring atoms of the same sort, we shall consider the case where a one¬ 

dimensional unit cell contains two atoms. The crystal lattices of alkali-halide 

crystals and a number of semiconductors can serve as a three-dimensional 

analog of such a lattice. 
Figure 4.1 presents a linear atomic chain consisting of atoms of two sorts 

with serial numbers m' and m" and their nearest neighbors. We denote the 

masses of the atoms by mx and m2 and the coefficients of elasticity for 

the neighboring pairs m', m", and m', m" — 1 by and ji2, respectively. In 

the approximation of elastic forces acting only between neighboring atoms, the 
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m'—l m"—l m'm" m'+l m"+l 
-*-1-*-1-X-1— 

Fig. 4.1. Analysis of the vibrations of a linear atomic 

-•—O-•—O-•—O—chain 

equations of motion of the atoms have the form 

~ ^l(um ~ um) _ ^2(um _ um-l)i (4 1) 

m2«m= - /?l(Um - Um) - p2(u'm ~ n'm+lX 

where u'm and u" are the coordinates of the atoms with numbers m' and m", 

respectively. We seek the solution of (4.1) in the form of a running wave 

u'm - A'exp[i(kam - cot)], u" - A"exp[\(kam - cot)], (4.2) 

where k is the modulus of the wave vector of the atom (k = 2n/X), amplitudes A 

and A" are independent of m, and the role of modulus of the radius vector is 

played by term am (a is the basis vector of the lattice). Substituting (4.2) into (4.1) 

and cancelling the factor exp[i(/cam — cot)], we obtain the following set of linear 

equations for amplitudes A' and A": 

fit + /?2exp( - ia/c)1 A„ = Q 

mi 
(4.3) 

/l, + /?2exp(ia/c) 

m2 

Set (4.3) gives nonzero solutions for A' and A", the corresponding determinant 

being equal to zero. This condition, in turn, leads to a quadratic equation for co2, 

which is satisfied by the following solutions: 

* + L2_Pi±h\A. 0. 

a)2 — 
/?i + ft 2 

A' + 
m. 

co 2 
ac 

CO. opt = (l + 

where 

2 (Pi + Pi)(mi + m2) 
COq = -, 

m. mi 
y2 = 16- 

P1P2 mx m2 

(4.4) 

(4.5) 

4.1.2 Vibration Branches 

Solutions (4.2,4) show that elastic vibrations of atoms can be described with the 

aid of a running monochromatic wave, provided the frequencies of these vibra¬ 

tions satisfy the laws, or branches, of dispersion co = co(/c), one of which 

oj = coac(k) is usually called acoustic, and the other co = coopt(fc), optical. Similar 
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to the Bloch function (3.2), solution (4.2) is periodic in the reciprocal-lattice 

space. Therefore, all the features of atomic vibrations can be understood by 

considering wave (4.2) as a function of wave vector k within the first Brillouin 
zone (3.4) or 

— n/a ^ k ^ + n/a. (4.6) 

Applying the Born-von Karman boundary conditions (3.6) and in accordance 

with (3.7), we conclude that for the volume of lattice with N cells the projection 

of wave vector k can have N discrete values within the Brillouin zone. This 

discreteness or quasicontinuity of the values of the wave vector and of the 

corresponding vibration frequencies is the result of the Born-von Karman 
boundary conditions (3.6). 

Figure 4.2 illustrates the dependence of coac and cuopt on k, defined by (4.4) 

within the first Brillouin zone or, in other words, the dispersion of the acoustic 

and optical vibration branches (for y2 < 1 and m, T m2). With small k (long 

waves), expansion of (4.4) into a series with respect to the small parameter 
ak 1 yields 

1 ( y2a2 \ 
(oac = vk, v ~ -a)0ya, (oopt ~ a>0ll --^-k2 J, (4.7) 

where v is the velocity of sound. This corresponds, as seen from Fig. 4.2, to the 

different nature of dispersion of the acoustic and optical branches at k ~ 0, and 

also to the principal property of these vibrations, namely coac(0) = 0, coopt(0) T 0. 

To elucidate another fundamental property of these vibrations we analyze 

the ratio 

u'm A /?! + 02 exp( — ika) 

A" (0i + 02) ~ mlU>2 ' 

For long waves (k -> 0) we have, with due regard for (4.7), 

( 
It is seen that the acoustic branch is characterized by vibration of the atoms 

in phase, and for the optical, in counterphase. The same result can be obtained 

m2 
i. = -it- 

im/ opt m i 

(4.8) 

TT 

a 
0 

k 

Fig. 4.2. Dispersion of the optical and acous¬ 
tic vibration branches 
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for the shortest waves (k —> n/a or X —> 2d). If atoms with masses and m2 are 

oppositely charged ions, the optical vibrations are naturally associated with 

variation in the dipole momentum of the unit cell, which manifests itself, for 

instance, in the additional absorption of infrared light. Figure 4.2 shows that for 

all the k in the Brillouin zone coac<coopt. Energy wise, this means that at 

sufficiently low temperatures only acoustic vibrations are excited in the crystal, 

while at higher temperatures optical vibrations play the determining role. If 

we denote the limiting frequency of acoustic vibrations by coac = coac(n/a) and 

introduce the characteristic (Debye) temperature 

Td = ha>?e/k0, (4-9) 

then at T ^ TD the contribution of optical vibrations can be neglected (k0 is the 

Boltzmann constant). 
The same features characterize, in principle, the vibrations of atoms in 

a three-dimensional crystal lattice with a unit cell containing S different atoms. 

An analysis of the vibrations of atoms in the crystal volume N3(a1[a2a3]) 

indicates that there are generally 3S different vibration branches, for each of 

which the projections of wave vector k can take N discrete values within the 

Brillouin zone. Three vibration branches are acoustic and (3S — 3) optical; 

o/ac(0) = 0(; = 1, 2, 3) and coJopt(0) 4= 0(; = 3,. . . S). In this general case, too, 

the character of the dispersion of the acoustic and optical branches is reflected 

by Fig. 4.2. In a three-dimensional lattice, the dispersion of all the 3S vibration 

branches can be characterized by surfaces co = co(k) in the reciprocal-lattice 

space. The symmetry of these surfaces depends on that of the direct lattice; 

besides, surfaces co = co(/c) have a center of symmetry. 

4.1.3 Phonons 

In solid-state physics, elementary excitations of the crystal lattice associated 

with atomic vibrations are called phonons. Thus, the phonons can be regarded as 

quasiparticles with a quasimomentum hk and energy hcok. This approach is 

convenient in considering a number of phenomena, such as electron scattering 

on lattice vibrations, thermal conduction, etc. 
Below Debye temperatures T < TD the phonons obey Bose-Einstein quan¬ 

tum statistics, and their average number at thermal equilibrium is determined by 

the Planck function 

exp{hco/k0T) — 1 

Here, n is the equilibrium number of phonons with energy hco in a phase space 

cell of volume (2nh)3. The number of phase space cells per interval dk is equal to 

dnq 
4nk2dk 

(2nh)3 

where V is the volume of the crystal. 

(4.11) 
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Taking into account, at T < TD, only the acoustic-vibration branches and 

assuming, according to (4.7), the dispersion of the acoustic frequencies to be 

linear for all k, i.e., k « co/v, we transform (4.11) to 

dnq 
3V 

2n2v3 
(o2dco. (4.12) 

Here, factor 3 corresponds to three acoustic modes (one longitudinal and two 

transverse), and v is the average velocity of sound. 

Thus, the total number of phonons in the volume V of the crystal is 

ndnq 
3 V co2da> 

2k2v3 exp(hco/k0T) — 1’ 
(4.13) 

and, accordingly, the total energy of the phonons in volume V 

E = 3 Vh <■ aPdoj 

2n2v3 l exp(ha>/k0T) — 1’ 
(4.14) 

where cu™ is the maximum frequency of acoustic vibrations corresponding to 

the boundary of the Brillouin zone. The value of co“ is determined from the 

condition of equality of the total number of vibrations in the three acoustic 

branches to the value of 3N3 

3 V <c 

2 n2v3 
J <x>2 dco 
o 

V«c)3 

2n2v3 
3 N3. 

Therefore 

(4.15) 

/ 6n2N3\i/3 {6n2\113 
(4.16) 

where Q0 is the unit cell volume. Using (4.16) and (4.9), we obtain the following 

expression for the Debye temperature: 

_ f6n2y3h^ 
D~V{Vo k0- 

(4.17) 

At high temperatures, the contribution of the optical vibrations to phonon 

energy E becomes substantial. 

4.2 Heat Capacity, Thermal Expansion, and Thermal 

Conductivity of Crystals 

4.2.1 Heat Capacity 

It is well known that the heat capacity of crystals at high temperatures is 

constant cv ~ 6 cal/deg mol and independent of the type of the crystal (the 
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Dulong-Petit law). Below Debye temperatures the heat capacity strongly de¬ 

pends on the temperature; at 0, cv -*• 0. The temperature dependence of the 

heat capacity can be obtained on the basis of the above-described concepts of 

atomic vibrations in the crystal lattice. By definition, the heat capacity of 

a crystal at a constant volume is 

c.-eE/sr, (4.18) 

where E is the total internal energy of the crystal. It is expedient to consider two 

temperature ranges below and above Debye temperature TD. 
At temperatures T < TD, the expression for E is given by (4.14). Expansion 

of the integrand with respect to the small parameter ha>/k0T and subsequent 

integration in (4.14) yields 

n2V(k0 Tf 

10ft31;3 ’ 

(4.19) 

from which, according to (4.18), we arrive at the Debye equation 

\2n4k0 f T V 

“5”” W ' 
(4.20) 

This equation fairly well describes the temperature dependence of the heat 

capacity in the temperature range of 10-50 K for a number of crystals with 

a simple structure, for instance, for alkali-halide crystals and most of the 

elements. For crystals with a complex structure and, hence, an intricate vibra¬ 

tion spectrum there is a range of characteristic (Debye) temperatures. In addi¬ 

tion, the temperature dependence cv = cv(T) is more complicated, although 

within a sufficiently small vicinity of absolute zero the law T3 is fulfilled in this 

case as well. 
At high temperatures T > TD, the energy of optical vibrations can be 

calculated on the basis of the classical model of a set of linear harmonic 
r 

oscillators. Since the average energy of an oscillator is equal to k0T, and the total 

number of oscillators in volume V is 3SN3, 

E = 3SN3k0T; (4.21) 

thus we have, according to (4.18), 

cv = 3SN3k0. (4.22) 

For a gram molecule of a substance SN3 = N0 ~ 6 x 1023 (Avogadro constant), 

from which the Dulong-Petit law follows. 

4.2.2 Linear Thermal Expansion 

We have so far been considering harmonic vibrations of atoms in a crystal. 

Consequently we have restricted ourselves to the linear terms in the right-hand 

side of the equations of motion (4.1), which corresponds to the quadratic terms 
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in the potential energy equation. Let us now discuss the interaction of two 

neighboring atoms under anharmonic conditions. Then the expression for 

interaction force F and potential energy U as functions of the displacement x of 
the atoms from their equilibrium position has the form 

„ dU 
F= — -3— = - 2/?x + 3yx2, (4.23) 

U(x) = j5x2 - yx3, (4.24) 

where coefficient y is called the coefficient of anharmonicity. Let us calculate the 

average displacement x with the aid of Boltzmann’s distribution function 

+ 00 

j xexp[ — U(x)/k0T~\ dx 
_ — 00 

X = - 
+ 00 

J exp[ — U(x)/k0T~\dx 
— 00 

(4.25) 

Substituting the expression for U(x) (4.24) into (4.25), expanding the integrands 

in the approximation of the smallness of the anharmonic term, and integrating 

lead to an average displacement 

3/c07y 

4/?2 
(4.26) 

and, accordingly, to the coefficient of linear thermal expansion a 

x 3k0y 

aT = 4/?2a’ 
(4.27) 

where a is the interatomic distance. From (4.27) it can be seen that the coefficient 

of linear thermal expansion a is directly proportional to the coefficient of 

anharmonicity y and, hence, in the absence of vibration anharmonicity a = 0. 

This follows from the fact that for a linear oscillator in the harmonic approxima¬ 

tion x = 0. By calculating x for an oscillator in the quantum-mechanical 

approximation it is possible to obtain the theoretical dependence a = a(T); 

a decreases as T-> 0, which corresponds to the Nernst theorem and agrees with 

the experimental data. The coefficient of linear thermal expansion of most 

substances lies in the range of (10-100) x 10“6 deg"1 and shows a strong 

anisotropy in crystals. 

4.2.3 Thermal Conductivity 

Another thermal property of crystals, which is essentially associated with the 

anharmonicity of atomic vibrations, is thermal conductivity. By definition, the 

coefficient of thermal conductivity K relates thermal flux j to the temperature 

gradient in a definite direction 

j = K grad T. (4.28) 
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Debye used for the coefficient of thermal conductivity the following expres¬ 

sion borrowed from the kinetic theory of gases: 

K = ^cvX, (4-29) 

where c is the heat capacity, v is the velocity of sound, and X is the mean free path 

of phonons, which depends on phonon-phonon interaction. It can be shown 

that phonon-phonon interaction does not exist in the harmonic approximation. 

This is understandable if one takes into account that the solution of linear 

equations (4.1) consists of the superposition of harmonic waves and, hence, their 

independent propagation in the crystal. Under these conditions the thermal 

resistance of the crystal is zero and, accordingly, K — oo. The final value of the 

coefficient of thermal conductivity is thus determined by the vibration anhar- 

monicity. The foregoing naturally refers to the ideal crystal. In a real crystal, an 

additional mechanism of phonon scattering on lattice defects operates, which 

makes an additional contribution to the thermal resistance of the crystal. 

Debye showed that at high temperatures T> TD, X ~ T \ In the low- 

temperature range T < TD, the exponential dependence X ~ exp( — T0/2T) 

holds true. Experimental values of K at room temperature vary over a wide 
range from 0.9 for metals to 10“3 cal cm” 1 s~ 1 deg-1 for dielectrics (the above- 

mentioned mechanism of thermal conductivity is not valid for metals). The 

anisotropy of thermal conductivity in crystals is described by a second-rank 

tensor. 

4.3 Polymorphism. Phase Transitions 

It has been indicated in Sect. 1.3.2, that the equilibrium crystal structure 

corresponds to the minimum of the free energy F of the crystals. But there may 

be several such minima within a wide range of temperatures and pressures. Each 

of them may be associated with its own crystal structure, which sometimes also 

differ in the nature of the chemical bond. Such structures are called polymor¬ 

phous modifications, and the transitions from one modification to another are 

called polymorphous transformations or phase transitions. 

It was also emphasized above that in explaining polymorphous transforma¬ 

tions the energy of the thermal motion of the lattice atoms cannot be neglected, 

as in the calculations of the crystal-lattice energy. The reason is that the 

phase-transition mechanism involves changes in the frequencies of atomic 

vibrations in the lattice and sometimes the appearance of an unstable vibration 

mode at a particular temperature or pressure. Thus, ferroelectric phase 

transitions [4.1] are due to the instability of one of the transverse optical 

vibrations, i.e., to the appearance of the so-called soft mode. 

Apart from a change in temperature, phase transitions may be caused by 

changes in pressure, by external fields, or by combinations of these effects. 
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We shall consider only phase transitions in the solid state, although this 

concept is equally well applied in describing solid-liquid and liquid-gas 

transitions, as well as transitions within liquid-crystal phases (see Sect. 2.8) or 

liquids. For instance, the transition of helium to the superfluid state is a phase 
transition. 

A phase transition is a finite change in the microscopic structure and 

macroproperties of the medium due to continuous small change in the external 

conditions (thermodynamic parameters). The changes which structures undergo 

in phase transitions are usually changes in the arrangement or the nature of 

ordering of the atoms (their centers), but there are also phase transitions related 

only to the state of the electron subsystem. Magnetic transitions, for instance, 

are associated with a change in spin ordering, while the transition of some 

metals to the superconducting state is related to a change in the type of 
interaction between conduction electrons and phonons. 

Polymorphism in the crystalline state was discovered by Mitcherlich in 1822 

for crystals of sulphur and potassium carbonate. This phenomenon is wide¬ 

spread. As has been mentioned above, the structures of almost all the elements, 

as well as those of many inorganic (Sect. 2.3.4) and organic (Sect. 1.6) com¬ 

pounds, have polymorphous modifications (Sect. 2.1). For instance, the cubic 

modification of tin with a diamond-type structure (grey tin) is stable below 

+ 13.3°C. Above + 13.3°C, another modification of tin - white tin with 

a body-centered tetragonal lattice - is stable (Fig. 2.5a, e). The physical prop¬ 

erties of these two polymorphous modifications of tin are essentially different; 

for instance, white tin is plastic, while grey tin is brittle. Other classical examples 

are diamond and graphite (Fig. 2.5a, c). Quartz has several polymorphous 

modifications (Fig. 2.23). The hexagonal crystals of the semiconductor CdS 

undergo a phase transition into the cubic modification at room temperature and 

a pressure of ~ 20 kbar. Besides, the cubic phase of CdS is nonphotosensitive, 

as distinct from the hexagonal phase. Another important example is the phase 

transition in the crystal of BaTi03; this crystal is ferroelectric, has a tetragonal 

lattice (in the temperature range of -I- 5°C < T < + 120°C), and transforms to 

the cubic paraelectric phase above + 120°C. 

The phase equilibrium and phase composition of a substance are usually 

characterized by a phase, or state, diagram. The simplest example of a phase 

diagram is the p, T diagram (p being the pressure, and T the temperature). Here, 

each point with coordinates p and T, which is called a figurative point, charac¬ 

terizes the state of a substance at a given temperature and pressure. Curves 

T = T(p) in this diagram separate the possible phases of the substance, which 

include, in particular, the gas, liquid, and various crystal phases (Fig. 2.2). By 

way of example, Fig. 4.3 shows the simplified phase diagram of sulphur. Curve 

OD separates the T and p ranges, respectively, where the rhombic and mono¬ 

clinic phases of sulphur are stable. At atmospheric pressure the transition from 

the rhombic to the monoclinic phase occurs at a temperature of 368.5 K. As seen 

from the phase diagram, the phase-transition temperature increases with the 
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Fig. 4.3. Simplified phase diagram of sulphur 

pressure. Many crystalline solid phases are, however, metastable, i.e., they may 

exist out of their equilibrium regions on the phase diagram (see below). 

4.3.1 Phase Transitions of the First and Second Order 

We distinguish phase transitions of the first and second order. First-order phase 

transitions are accompanied by a jump in such thermodynamic functions as the 

entropy, volume, etc., and hence the latent heat of transition. Accordingly, the 

crystal structure also changes jumpwise. Thus, for the first-order phase 

transitions, curves T = T(p) in the phase diagram satisfy the Klausius- 

Clapeyron equation 

dT/dp — T(AV)/Q, (4.30) 

where AV is the volume jump, and Q is the latent heat of transition. In the 

second-order phase transitions, it is the derivatives of the thermodynamic 

functions that experience a jump (for instance, the heat capacity, compressibility, 

etc., change jumpwise). In a second-order phase transition the crystal structure 

changes continuously. Since a first-order phase transition is, irrespective of its 

structural mechanism, associated with the nucleation process, it is attended 

by a temperature hysteresis. This means the non-coincidence of the phase- 

transition temperatures during heating and cooling, and implies that each 

first-order phase transition involves superheating or supercooling. A typical 

example is the crystallization process, which is a particular case of a first-order 

phase transition. On second-order phase transitions no temperature hysteresis is 

observed. 
For phase transitions of both the first and second order the crystal symmetry 

changes jumpwise at the phase-transition point. There is, however, a substantial 

difference between the change in symmetry on first- and second-order phase 

transitions. In second-order phase transitions the symmetry of one of the phases 

is a subgroup of the symmetry of the other phase (Sect. 4.8). In most cases 

(but not necessarily) the high temperature phase is the more symmetric, and 

the low temperature phase is the phase less symmetric. On first-order phase 
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transitions the crystal symmetry generally changes arbitrarily, and the two 
phases may have no symmetry elements in common. 

4.3.2 Phase Transitions and the Structure 

From the standpoint of the changes in the crystal structure upon phase 

transition it is customary to distinguish reconstruction phase transitions of the 
displacement type and of the order-disorder type. 

In a reconstruction phase transition the crystal structures of the initial and 

the resulting phase differ essentially; the coordination numbers change and the 

displacements of the atoms to the new equilibrium positions are commensurate 

with the interatomic distances. For instance, in graphite the c.n. of the carbon is 

3, in diamond 4, in a-Fe 8 4- 6, in y-Fe 12. In one of the transitions in NH4C1 

the c.n. changes from 6 to 8, etc. In some cases, however, one can find some 

crystallographic agreement between neighboring, reconstructively differing 

phases. The phase structures in reconstruction transformations differ greatly 

at specific volumes. Sometimes the term “polymorphous modifications”, in the 

narrow sense, is applied exclusively to reconstructively differing phases. Recon¬ 
struction phase transitions are always of the first-order. 

Sometimes a polymorphous transition is accompanied by a change in the 
type of closest packing without a change in coordination number; this is called 

polytypy. Polytypy is known for zinc sulphide, rutile, SiC, Cdl2, MoS2, etc. 

In displacement-type phase transitions, which will be considered below, the 

changes in atomic positions are moderate. In the transitions intermediate 

between those of the reconstructive and displacement types the centers of the 

structural groupings do not change their positions, but they (molecules and 

radicals, in particular) turn about or begin to rotate. Thus, the structures of a- 

and /1-quartz differ by a mutual rotation of the Si04 tetrahedra, i.e., by an angle 

Si-O-Si. In a number of crystalline paraffins and alcohols, polymorphous 

transitions are attended by the rotation of molecules about their long axis. In 

other organic compounds a polymorphous transition involves the simultaneous 

rotation of molecules and change in their angle of inclination to the base. In 

many cases a polymorphous transition is associated, not with free rotation of 

molecules, but with their torsional vibrations. Here, the molecules have a lower 

degree of relative orientation at temperatures above the transition point. This 

mechanism was first pointed out by Frenkel; it evidently operates in a number of 

ammonium salts. In crystals with polar molecules (for instance, in solid hydro¬ 

gen chloride or iodide, hydrogen sulphide) a change in the orientation of polar 

molecules results in a polymorphous transformation, which often has the nature 

of a ferroelectric phase transition. An example is the phase transition in HC1 at 

98.8 K. Above this temperature hydrogen chloride has a cubic structure, and the 

chlorine atoms form a phase-centered cubic lattice which corresponds to a sta¬ 

tistically random orientation of the dipoles. At the phase-transition temperature 

the hydrogen chloride shifts to the tetragonal phase jumpwise, with simultan¬ 

eous orientation of the dipoles. Phase transitions involving molecule rotation or 
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Ba O Ti 

Fig. 4.4. Crystalline structure of barium titanate (perovskite type, see 

Fig. 2.16) 

dipole ordering (in particular, ferroelectric) are characterized by temperature 

dependences of the ordering parameter rj — rj(T) which are the same type as 

those presented in Fig. 4.5. 
Let us now consider displacement-type phase transitions. An example of 

such a transition is the above-mentioned phase transition in BaTi03 (Fig. 4.4). 

At temperatures above the Curie point (7c cz + 120°C), barium titanate has 

a cubic lattice. The barium atoms are located at the cube vertices, titanium at the 

cube center, and oxygen at the face centers, thus forming an oxygen octahedron. 

The resultant dipole moment of the lattice is zero, and therefore the crystal is in 

the paraelectric region. At the Curie point, the Ti and O atoms shift jumpwise 

with respect to the Ba atoms in the direction of one of the cube edges. The lattice 

then transforms from cubic to tetragonal and a ferroelectric polarization arises 

in the direction of the atomic shift. 
An example of the displacive transformation is the so-called martensite 

transformation associated with diflfusionless crystal lattice rearrangement. One 

of the well-known examples of martensite transformation is that in iron-carbon 

alloys. It occurs at the quenching of the high-temperature cubic face-centered 

phase of an alloy which, by slight distortion, transforms into a tetragonal 

body-centered martensite phase. Martensite transformations occur in many 

other alloys, such as copper-zinc, nickel-titanium, etc. 

There is a correlation between the crystal lattice of the martensite and the 

parent phase. The latter is characterized by orientation relationships between 

the crystal lattice planes and the crystallographic directions of both phases. The 

crystal lattice of a martensite phase can be obtained from the parent one either 

by a homogeneous strain or by a combination of a homogeneous strain and 

heterogeneous modes of atomic displacements. Owing to these factors the 

typical rate of transformation is very high. It is commensurate with the typical 

rate of propagation of elastic strain perturbation, i.e., with the sound velocity. 

Another feature is that in many cases a martensite transformation does not 

provide the complete transition of the parent phase into a new one. Moreover, 

some alloys can be described by relationships between the volume fraction of the 

martensite phase and the temperature of supercooling. This effect results from 
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the so-called thermoelastic equilibrium which arises when a transformation is 
not accompanied by irreversible plastic deformation. 

All these distinctive features of martensite transformations are caused by 
strong constraints, which necessitate a good crystal lattice correspondence on 
interphase boundaries. 

We shall now consider an order disorder phase transition. An example is the 
ferroelectric phase transition due to the ordering of the hydrogen bonds. The 
difference between the paraelectric and ferroelectric phase is that in the former 
the probabilities of the positions of the H atoms in the hydrogen bond AH ... B 
and A . . . HB are equal, while in the latter they are different. 

Another example of order-disorder phase transition is a phase transition in 
a binary alloy consisting of atoms of two sorts, A and B. Above the transition 
temperature, such an alloy is disordered, which corresponds to a statistically 
random distribution of the A and B atoms at the lattice points. Below the 
phase-transition temperature we observe ordering when regions consisting 
entirely of A or B atoms or of two sublattices A and B appear in the lattice. In 
Ising’s model, two opposite spin directions are associated with A and B atoms. 
Thus, this model describes the ferromagnetic or antiferromagnetic phase 
transitions in binary alloys associated with the ordering of their structure. 

Let us denote by Pa(A) the probability that an atom A will occupy its own 
point in the lattice, and by Pa(B), the probability that this point will be occupied 
by an atom B. Then the following ordering parameter rj can be introduced for 
such a binary alloy as CuZn (/1-brass) with equal numbers of a- and b-type 
points: 

rj = Pa(A) - Pa(B). 

During the transition from the ordered to the disordered phase, parameter 
r] varies from unity to zero. Figure 4.5 presents two types of temperature 
dependence of r/, corresponding to a first- and a second-order transition, 
respectively. /I-brass experiences a second-type phase transition at Tc = 480°C. 
The mechanism of ordering in /1-brass is clear from Fig. 4.6. In the high- 
temperature phase each point of a body-centered cubic lattice is equiprobably 
occupied by a Zn or a Cu atom (rj = 0). At T < Tc, copper atoms settle 
predominantly at the center of the cube, and the zinc atoms, at its vertices 
(;r] = 1). At the phase-transition point itself, parameter rj varies continuously 
with the temperature. Alloy Cu3Au also experiences an ordering-type transition, 

Fig. 4.5. Temperature dependence of the order parameter for (1) 
first- and (2) second-order phase transition 
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Fig. 4.6a,b. (a) low- and (b) high-temper¬ 

ature phases of jS-brass 

but of the first order, at T = 380°C (Fig. 2.9a, b). Here, parameter q changes 

jumpwise at T = Tc. 
When discussing the phase equilibrium and phase diagram we dealt with 

thermodynamically equilibrium phases corresponding to the minimum of free 

energy F. But very often, some crystal phase, thermodynamically disadvantage¬ 

ous at a given figurative point, may exist at that point indefinitely because of the 

low mobility of atoms in a solid. An example is diamond, which forms from 

graphite and is stable at a pressure of ~ 10s kgf/cm2 and a temperature of 

~2x 103oC. If a diamond is cooled to room temperature, it may exist indefi¬ 

nitely at atmospheric pressure, although this phase is metastable. Note that near 

the transformation points the phases show various instabilities (such as critical 

opalescence in quartz). 
The polymorphous transformations are often classified into monotropic and 

enantiotropic. Monotropic transitions proceed only in one direction, and enan- 

tiotropic, in two opposite directions. Examples of monotropic transitions are 

irreversible transitions in arsenic, antimony, and other elements of the fifth 

group, and also the above-mentioned graphite-diamond transition. In actuality, 

the reverse transition from the metastable to the equilibrium phase often 

proceeds very slowly for the reason stated above. One of the examples is metal 

phase quenching. 

One of the relatively rare cases is a so-called homeomorphous transition, 

when the polymorphous transformation and the corresponding change in phys¬ 

ical properties is not accompanied by a change in crystal structure (for instance, 

the a and /? phases of iron have identical body-centered cubic lattices, but 

different magnetic structures). 

4.4 Atomic Vibrations and Polymorphous Transitions 

It is natural to use the thermodynamic approach for a quantitative description 

of polymorphous transformations. According to the Boltzmann theorem the 

probability that at a temperature Tthe crystal is in the a phase with an energy Ea 

is equal to Wa 

= exp 
Eg - TS(Ea)\ 

k0T y 
Wa = exp (4.31) 



4.4 Atomic Vibrations and Polymorphous Transitions 303 

E(S) 

Fig. 4.7 Dependence of the internal energy of a crystal, E, on the 
entropy S 

where Fa — Ex— TSa is the free energy, and S is the entropy. The probability Wa 
is maximum at values of Ea and Sa satisfying the condition 

dEJdSa = T. (4.32) 

Figure 4.7 exhibits the dependence of crystal energy E on entropy S. Accord¬ 

ing to (4.32), at a temperature T the equilibrium state of the crystal corresponds 

to a point with coordinates Ea, Sa, where a line tangent to curve E = E(S) makes 

an angle with the x axis, whose tangent is numerically equal to T. The intercept 

made by the tangent line on the y axis is equal numerically to free energy 

Fa = Ea — TSa. If the crystal reveals polymorphism and, hence, the existence of 

two phases, a and f}, the phase-transition temperature T = T0 can, according to 

(4.31), be found from the condition Wa — Wp or from the equality of the free 

energies Fa = Fp. 
In the approximation of equal frequencies of atomic vibrations the total 

internal energy of the crystal E has the form 

E = E' + ham, (4.33) 

where E' is the internal energy of the crystal at T = 0, and n is the phonon 

concentration. Entropy S can be expressed as the configurational part of the 

energy 

S = k0 In P, (4.34) 

where P is the number of possible distributions of n phonons over 3N degrees of 

freedom (N is the number of projections of the wave vector within the first 

Brillouin zone) 

(3 N + n- 1)! 

(3N - l)!n! ‘ 
(4.35) 

Substituting (4.35), (4.34), and (4.33) into the expression for free energy 

F = E — TS and using the condition for the minimum of free energy dF/dn — 0 

and the Stirling formula In n\ ~ n In n, we arrive at the following expressions for 
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the phonon concentration and free energy F: 

n = 3N- 
1 

exp(hco/k0 T) — 1 

F = E - TS = E' + 3Nk0T\n [1 - exp(—hco/k0T)']. 

(4.36) 

(4.37) 

According to (4.37) the free energies of the a and p phases at temperature 

T satisfy the following expressions: 

Fa(T) = K + 3Nk0 Tin [1 - exp( — ho)a/k0 7")], 
(4.38) 

FP(T) = EP + 3Nk0T\n[\ - exp{-hcop/k0 T)~\. 

Equating energies Fa and Fp, we can determine the phase-transition temperature 

T = T0 from the following equation 

e: 
exp - 

1 - exp( — h(Oa/k0 T0) 
(4.39) 

3Nk0T0J 1 - exp(-h(op/k0T0) 

It is seen that the polymorphous transformation is intimately connected with the 

jumpwise change in the frequency of atomic vibrations. If Ep > E'a, then (4.39) 

has a solution at o)a > top, i.e., phase transition takes place when the p phase is 

more “friable” (with respect to the vibrations of the lattice atoms) than the 

a phase. Figure 4.8 demonstrates curves E = E(S) for both phases. The temper¬ 

ature of transformation from the a to the ft phase T = T0 is equal numerically to 

the slope of the common tangent line to the curves, and the energy difference at 

the points of tangency is numerically equal to the latent heat of transition Q. At 

temperatures T > T0 the P phase is stable, while at temperatures T < T0, the 

a phase is. 
A similar description of the phase transition can be obtained by taking into 

account the dispersion of frequencies in the two phases coa = cox(k) and 

= a>p(k). Here, the expressions for the free energy of the a and p phase have 

the form 

Fa(T) = E'a + - exp[ — ha>sa(k)/k0 T]}, 
k, s 

FP(T) = Ep + /c0r£ln{l - exp[-haffi{k)/k0T]}, 
k, s 

(4.40) 

/ 

Fig. 4.8. Dependence E = E(S) for the a and /? phases 
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where a>s(k) is the frequency of a phonon with a wave vector k and a polariza¬ 

tion s = 1,2,3. Summation in (4.40) is performed over all the discrete values of 

wave vector k in the first Brillouin zone and over all the branches of vibrations s. 

Equating the values of Ftt and Fp at phase transition point T= T0, we have 

— Ep = k0T Y \n --exP[ tjQ>l(k)/k0T] 
t 1-exp l-fUo'fi(k)/k0TY 

(4.41) 

The right-hand side of (4.41) is a function of the temperature E = E(T). Figure 

4.9 presents function E = E(T) and its section by straight line E = E'a — Ep, 
which determines phase transition temperature T = T0. Above Debye temper¬ 

atures T > TD, the right-hand side of (4.41) is a linear function of the temper¬ 
ature 

e = k0 T £ In 
k, s 

<{k) 
(°sp(k) 

k0 Tin 
n«s(*) 
k, s 

fKW 
k,s 

(4.42) 

The right-hand side can be crudely estimated as follows. We can assume that the 

frequency ratio (Dsa/cosp is equal to the ratio of the sound velocities in a wave with 
a polarization s, i.e., 

0)SJcDSp ~ VsJvSp. 

Then, substituting (4.43) into (4.42), we have 

(4.43) 

e(T) ~ /c0Tlnn FI 
s k 

k-o Tin n 
S 

k0 TN In 
VpVpVp 

(4.44) 

Here vl is the longitudinal sound velocity, and v1' and v‘2, respectively, are the 

transverse sound velocities referring to the a or (3 phase. The phase transition 

temperature T — T0 can be obtained by graphical solution of (4.41) using the 

construction illustrated in Fig. 4.9. But, as indicated in Sect. 4.2, the Debye 

approximation is not always good for crystal phases with a complex structure; 

this restricts the possibilities of quantitative description of polymorphous trans¬ 

formations on the basis of (4.41). Besides, (4.41) does not take into account the 

effects related to the vibration anharmonicity. 

T 

Fig. 4.9. The determination of the phase 
transition temperature T0 
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We have discussed the effect of the temperature T on the possibility of the 

appearance of some phase or other, which is taken into account by the thermo¬ 

dynamic function of the free energy F = E - TS. If the pressure changes, the 

thermodynamic potential <P = E — TS + pV is considered. Qualitatively, the 

consideration is based on to an analysis of the behavior of functions similar to 

those depicted in Figs. 4.7, 8. Yet the pressure may shift the phase equilibrium 

points quite considerably, and it can be utilized to obtain phases which do not 

arise on changes in temperature alone. 
In the p-T diagram, the line of first-order phase transitions can merge into 

the line of second-order phase transitions. Such a merger was first predicted by 

Landau in 1935 [4.2], and the transition point itself is called critical. The 

pressure dependence of the phase transition temperature has no kink at the 

critical point, and only the second derivative d2T/dp2 experiences a jump. 

According to Landau the heat capacity, the compressibility, and the coefficient 

of thermal expansion of a crystal near the critical point Tct show a temperature 

dependence of the type (Tcr — T)~“, where a = 1/2 (in the current literature the 

Landau point is often called tricritical). Near the critical point, light scattering 

similar to critical opalescence is observed. As shown by Ginzburg [4.3], fer¬ 

roelectric crystals exhibit dynamic light scattering near the critical point; this 

scattering is associated with the Rayleigh scattering on polarization fluctu¬ 

ations. The Landau critical point was first revealed experimentally in a ferroelec¬ 

tric crystal SbSI by Volk et al. [4.4], Later on, critical points were revealed 

in NH4C1 by Garland and Weiner [4.5] and in a number of other crystals 

(KH2P04, BaTiOa). 

4.5 Ordering-Type Phase Transitions 

In the preceding section we considered the mechanism of first-order phase 

transitions associated with the predominant contribution of the vibration en¬ 

ergy of the atoms to the entropy. We shall now discuss phase transitions of the 

ordering type, when the increase in crystal entropy in order-disorder transition 

is mainly due to the configurational energy directly related to the ordering 

mechanism. We assume that the contribution of the atomic-vibration energy 

can be neglected. Consider the mechanism of ordering in a binary alloy. The 

results obtained can be generalized for the other cases of phase transitions of the 

order-disorder type. 

Let us take a look at the simplest case, where the binary alloy consists of two 

sorts of atoms A and B arranged in the ordered phase at points “a” and “fc” with 

a definite degree of probability, the number of a and b points being identical and 

equal to N. Then, by virtue of the definition given in Sect. 4.3, we can introduce 

the ordering parameter 

b — Pa{A) — Pa{B). 
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Proceeding from the definition of Pa(A) and Pa{B), we find that Pa{A) + 
Pa{B) — 1 and, consequently, 

ri = 2Pa(A) - 1 = 2p — 1, (4.45) 

where p stands for Pa{A). 

Let us determine the entropy of the ordered phase as a configurational 

energy associated with the motion of atoms A and B. We take into account that 

Np atoms of type A can be distributed over N points of type a in the following 
number of independent ways 

JV! 

(N — Np)\(Np) \' 
(4.46) 

It is easy to see that the remaining (N — Np) atoms of type A can be 

distributed over N points of type B (“foreign” points) in the same number of 

independent ways n. Therefore the total number of independent ways for 

distributing atoms A is equal to n2 and, hence, according to (4.34) the entropy of 
the ordered phase is equal to 

S = C — 2iV/c0[(l — p)ln(l — p) + p\np — j\n 2], (4.47) 

where constant C is independent of p. The energy of the unordered phase with 

respect to the ordered is thus 

E = UN( 1 - p), (4.48) 

where N( 1 — p) is the number of atoms transferred from proper to improper 

points, and U stands for the energy required for the transfer of atom A to point 

b, or of atom B to point a. Expressing now, with the aid of (4.47) and (4.48), the 

free energy F — E — TS from the free-energy-minimum condition, we obtain the 

final equation relating U, p, and T. Replacing parameter p in it by ordering 

parameter rj according to (4.45), we arrive at the equation 

r, = th(U/k0T). (4.49) 

Now we recall that energy U depends on rj. Since in the unordered phase the 

difference between points a and b is lost, it is clear that U = 0 at r] = 0. At 

the same time, U + 0 at r\ 4= 0. In the theory of unordered distributions of atoms, 

the dependence between U and y\ is assumed linear 

U =U0rj. (4.50) 

This leads to the temperature dependence of the ordering parameter 

r1 = Xh{U0r]/k0T). (4.51) 

From (4.51) it follows that rj = 1 at T = 0 and rj = 0 at T = T0, where 

T0 = V0/2k0. (4.52) 

As follows from (4.51), in the range of the phase transition temperature T0 = T, 
parameter rj varies continuously and, hence, solution (4.51) describes a second- 
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order phase transition, for instance, an ordering-type transition in /1-brass 

(Figs. 4.5, 6). When deriving (4.51) the number of atoms of type A and B was 

assumed equal. It can be shown that precisely this assumption leads to a second- 

order phase transition and, conversely, at any other ratio between the numbers 

of atoms of the two types of theory of the ordering of binary alloys leads to 

first-order transitions. Thus one can describe phase transitions of the type 

observed in alloy Cu3Au. 
Figure 4.8 shows the curves for the dependence of the energy E of the crystal 

on its entropy S, which illustrate a first-order transition from one polymorphous 

phase to another. It is easy to imagine what the dependence E = E(S) in 

order-disorder phase transition must look like. If we assume that the ordered 

phase corresponds to lower temperatures and that a rise in temperature in¬ 

creases the system energy, dependence E = E(S) is a monotonically increasing 

function (Fig. 4.10). In the case of a first-order phase transition, curve E = E(S) 
has an inflection point. This enables one to draw a tangent to the curve, which 

has two points of tangency. Hence, for one and the same temperature T = dE/dS 
at the points of tangency there are two different corresponding values of 

entropy. An entropy jump corresponds to a release of latent heat and, conse¬ 

quently, to a first-order phase transition (Fig. 4.10a). The absence of an inflection 

point on curve E = E(S) corresponds to a second-order phase transition 

(Fig. 4.10b). In the former case, the ordering parameter r\ experiences a jump at 

the inflection point. In the latter case, the parameter r\ varies continuously in the 

phase transition region, and for the phase-transition temperature and for rj = 0, 

there is a corresponding point on curve E = E(S), at which the curvature 

changes its sign. 
The real mechanism of an order-disorder phase transition includes both 

a change in entropy due to the mixing of atoms and a change in entropy 

associated with the energy of atomic vibrations. Therefore the real mechanism is 

much more complicated than the one considered above. Allowance for the 

vibration energy in the mechanism of an ordering-type phase transition may 

change not only the dependence rj = rj(T), but the very nature of the transition. 

In conclusion we also note that a similar approach is possible with respect 

to ordering-type phase transitions whose mechanism involves a change, the 

freezing of the free rotation of molecules, or the ordering of polar molecules. For 

a 

Fig. 4.10a, b. Dependence E = E(S) for (a) first- 
and (b) second-order transitions of the order- 
disorder type 
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these cases Pauling and Fowler developed a quantitative theory, which leads to 

a dependence rj = rj(T) similar to (4.51) and to analogous solutions correspond¬ 

ing to first-order phase transitions. Finally, it should be emphasized that we do 

not consider here the theory of second-order phase transitions according to 

Landau, because this theory describes, among other things, pyroelectric or 

ferroelectric phase transitions, where the ordering parameter rj has the meaning 

of spontaneous electric polarization of the crystal. This theory is discussed in 
[4.1], which deals with the electric and, in particular, the ferroelectric properties 

of crystals. 

4.6 Phase Transitions and Electron-Phonon Interaction 

When considering the phase transition mechanism one usually ignores the 

contribution of the electron subsystem (or the free energy of the electrons) to the 

total free energy of the crystal and thus assumes that the phase transition 

mechanism has no bearing on electron excitations in the crystal. This assump¬ 

tion is based on the fact that at above-Debye temperatures the contribution of 

the electron heat capacity to the total heat capacity of the crystal can be ignored. 

Let us discuss this point in more detail. 

4.6.1 Contribution of Electrons to the Free Energy of the Crystal 

From the free-energy expression (4.37), it is possible to obtain the Gibbs 

Helmholtz equation by taking into account that S = — 0F/0T, 

F = E + F(0F/0F). (4-53) 

On integration this can be represented as 

T 

F = —T \ (E/T2)dT. (4-54) 
o 

By definition (4.18), integral energy E can be expressed via heat capacity cv 

E(T) = F(0) + j cv(T)dT. (4-55) 
o 

Substituting (4.55) into (4.54), we obtain the final expression for the free energy F 

T JT1 T 

F = £(0) + T\—2 \cv(T)dx. (4-56) 
0 ' 0 

It can be seen that the free energy of the crystal is completely determined by the 

temperature dependence of the specific heat capacity. It is known from solid- 

state physics that for a nondegenerate semiconductor or dielectric, at an above- 
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Debye temperature T > TD the ratio of electron heat capacity c®1 to lattice heat 

capacity is 

cf/c\ = NJn0 <? 1, (4-57) 

where Nc = (2nmk0T/h3)3'2 is the density of electron or hole states in the band; 

m is the effective mass of the electron or hole, and n0 is the number of atoms in 

1 cm3. For metals at T > TD 

cev/c\ ^ k0T/E( 1, (4.58) 

where the Fermi energy E( is of the order of several electronvolts, and 

/c0F~ 0.025 eV at room temperature. Thus, both for metals and for semi¬ 

conductors and dielectrics at T > 7b the contribution of the electrons to the free 

energy of the crystal should be neglected. The electron contribution may become 

substantial only near T = 0, where, according to (4.20), cv tends to zero as ~ T3. 
Nevertheless, it turns out that in addition to the absolute-zero range the 

temperatures in the vicinity of the phase transition temperature also form the 

special temperature range, where the contribution of the electron subsystem to 

the free energy of the crystal may be substantial. The physical meaning of this 

statement consists in the fact that near the phase transition temperature the 

electrons may make an appreciable contribution, not to the heat capacity itself, 

but to its anomaly at phase transition. This conclusion was drawn for the first 

time for ferroelectric phase transitions within the framework of the phenom¬ 

enological theory of Landau-Ginsburg [4.7], The effect of electron excitations 
on phase transitions of a different nature was investigated in a number of 

independent papers. Later it was shown that, at least for ferroelectric phase 

transitions, interband electron-phonon interaction is the microscopic mechan¬ 

ism responsible for the effect of electrons on phase transitions. Since the theory 

of ferroelectric phase transitions based both on the lattice dynamics and on the 

phenomenological theory of Landau-Ginsburg will be considered separately in 

[4.1], here we shall only briefly consider the role of interband electron-phonon 

interaction in the phase transition mechanism. As a corollary, we shall discuss 

some new effects due to the influence of electron excitations on phase 

transitions. 

4.6.2 Interband Electron-Phonon Interaction 

In Sect. 4.4 of this chapter the mechanism of polymorphous transformations in 

crystals was related to the change in atomic vibration frequencies. This change 

was introduced in the form coa > cop, and the question of the vibration anhar- 

monicity and- the relevant instability mechanism remained open. The mechan¬ 

ism of ferroelectric phase transitions in modern dynamic theory is usually 

associated with the instability of one of the transverse optical vibrations at the 

center of the Brillouin zone k = 0, and the anharmonicity of the corresponding 

vibration branch is considered to be responsible for the instability, see [4.1]. 
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One of the mechanisms possibly responsible for the vibration instability and, 

hence, for the phase transition is interband electron-phonon interaction [4.8]. 

This mechanism consists of interaction of the electrons of two neighboring 

bands of the crystal with one of the optical vibrations; one of the bands is vacant 

(or almost vacant), while the other is completely filled with electrons. Such an 

interaction, or “mixing” of neighboring energy bands, leads, on the one hand, to 

a change in the frequency of the interacting optical phonon and, on the other, to 

a change in the electron spectrum (the energy gap width). This interaction of the 

filled and vacant bands results in the instability of the “mixing” optical vibra¬ 

tions and, accordingly, in phase transitions from the more symmetric to the less 

symmetric phase. It is known from quantum chemistry that the disappearance of 

the orbital electron degeneracy in a molecule leads to its transition from the 

symmetric to the nonsymmetric configuration (Jahn-Teller effect). Hence, 

the phase transition due to the interband electron-phonon interaction is called 

the Jahn-Teller pseudoeffect. 
Let us consider two neighboring energy bands of a crystal denoted by the 

indices a — 1,2, with boundary energies and e2 and with a corresponding 

energy gap width £g0 = e2 — £i- Suppose some active optical vibration with 

a coordinate u and a frequency co interacts with the electrons in the bands. 

Neglecting the dependence of e and u on k, i.e., the band dispersion, we write the 

Hamiltonian for the crystal 

„ . 1 
3# = Lgoao aa + - 

2^2 h2d 
+ Mco2u2 ) + £ V„, 

a„ a„u. (4.59) 

Here, a„ and a„ are the operators of electron production and annihilation, 

Vaa, are the constants of interband electron-phonon interaction, M is the 

corresponding mass factor, and N is the number of electrons in the lower band 

(equal to the number of unit cells by the order of magnitude). 
An analysis of this solution shows that taking interband interaction into 

account leads to the renormalization of the electron spectrum 

(4.60) 

where V = Vl2. From (4.60) it follows immediately that interband elec¬ 

tron-phonon interaction changes the energy gap width 

(4.61) 

Here, Eg is the energy gap width in the presence of the Jahn-Teller pseudoeffect, 

and u0(T) is the active-vibration coordinate corresponding to the minimum of 

the free energy of the crystal. The latter can be defined as the sum of the 

vibration energy Fm, corresponding to the active optical vibration, and the 

energy of electron subsystem Fe. In the approximation of a completely filled and 
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a vacant band we obtain the following expression for free energy F 

NE.n. l r ./I 
F(T, u) = 

+ 

go 

Mco2 

Nk0T\n {2 1 + cosh 
k0T- 

l^k + Klu2 
4 N 

(4.62) 

It is seen that taking into account interband electron-phonon interaction leads 

to anharmonicity of the vibration branch under consideration, since, along with 

quadratic term u2, (4.62) contains terms with higher powers of u [cf., for instance, 

(4.24)]. We denote by u = u0 the coordinate of the vibration corresponding to 

the minimum of free energy F 

f -<*■ 
U = UO 

Then we obtain the following expression for u0 from (4.62): 

ul = N T/i («o) ■/2(w0)]2 ,7; 
M2 CO4 

(4.63) 

(4.64) 

where the amount of filling of the bands by electrons fx and f2 are Fermi 

functions 

/l,2(Mo) 
2 T -Un 

N 

- i 
(4.65) 

Solutions (4.64) and (4.65) define the temperature dependence u0 — u0(T), which 

is presented in Fig. 4.11. At T = 0,/j = 1 and f2 = 0, and from (4.64) it follows 

that at T = 0 

u& 0) = N 
■ v2 

(Mco2)2 
(4.66) 

With increasing temperature, ul decreases monotonically from Uo(0) to zero. 

Function ul(T) vanishes at temperature T — Tc, which plays the role of the 

50 100 150 

T, K 

Fig. 4.11. Temperature dependence of the active-vibrations coordi¬ 
nate in the quasi-Jahn-Teller model of a ferroelectric phase 
transition (BaTi03) 
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phase transition temperature 

k0 Tc = (arcth t)~ \ (4-67) 

where 

t = 2V2/Mco2Eg0. (4.68) 

The nonzero solution (4.63) has the corresponding condition 

T > 1. (4.69) 

The nature of the phase transition based on the mechanism discussed above 

depends on the type of active vibration. If we take into account the dispersion, 

the solution u0 = u0(k), which is related to an arbitrary point of the Brillouin 

zone, may correspond to condition (4.63). If u0 0 for k = 0, this corresponds to 

a change in crystal structure and symmetry due to the relative shift of the 

sublattices. If the crystal is ionic and the shift of the sublattices results in 

spontaneous polarization, the phase transition is ferroelectric, and point T — Tc 
is the Curie point. If u0 + 0 at the boundary of the Brillouin zone, then the 

transition to the antiferroelectric phase takes place at T = Tc. If the phonon 

inside the Brillouin zone is active, the phase transition may be different in 

nature; in particular, it may not be ferroelectric. 
For ferroelectric transitons, expansion of free energy F, determined in (4.62), 

into a series in even powers of u near u = 0 leads to a similar series, which is used 

in the phenomenological theory of Landau-Ginsburg, see [4.1]. Then the 

relationship between the spontaneous polarization Ps and u0 is given by the 

simple expression 

Ps 
JL u° 
fio yiv’ 

(4.70) 

where e is the effective charge corresponding to active optical vibration, and Q0 
is the unit-cell volume. Thus, the temperature dependence shown in Fig. 4.11 is, 

in the case of a ferroelectric phase transition, the well-known temperature 

dependence of the square of spontaneous polarization (see [1.7]). The coeffi¬ 

cients in the expansion of free energy F with respect to polarization P (or to u) 
can be expressed in terms of the parameters of microscopic theory, in particular, 

via the constant of the interband electron-phonon interaction V. 
Renormalization of the coefficient at u2 in the free-energy expression (4.62) 

leads to a change in the frequency of the active-vibration mode at. For a high- 

symmetry phase 

2 V2 
<w')2 = <»2 + TJ— [/2(0)-/,(<>)]. (4.71) 

ME g0 

From (4.71) and (4.67) it follows that at the phase transition temperature T = Tc 
the frequency o' reduces to zero. The temperature dependence of o' is presented 

in Fig. 4.12. 
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Fig. 4.12. Temperature dependence of the “soft” vibration mode 
due to interband electron-phonon interaction 

T T 

Thus the interband electron-phonon interaction results, on fulfilment of 

condition (4.69), in the instability of the vibration interacting with the bands. In 

the case of a ferroelectric phase transition the active optical mode with a fre¬ 

quency (o' at k = 0 is called “soft”, see [4.1]. We thus see that the presence of the 
“soft” vibration mode is due to the anharmonicity near the phase transition, but 

the anharmonicity itself is, in the model at hand, the consequence of elec¬ 

tron-phonon interaction. 
The above-described mechanism makes it possible to investigate, on the 

basis of (4.62, 64, 65), all the basic properties (ferroelectric, in particular) of the 

crystal near the phase transition. Since the ferroelectric properties are specially 

considered in [Ref. 4.1, Chap. 13] we restrict ourselves to two new effects, which 
are the direct consequence of interband electron-phonon interaction. 

4.6.3 Photostimulated Phase Transitions 

The model just discussed explains the experimentally observed effect of non¬ 

equilibrium electrons on the phase transition temperature. Let us consider 

a photoconducting crystal undergoing a phase transition at T = Tc; a high- 

symmetry phase corresponds to temperature T > Tc. It is known from experi¬ 

ment that illumination of a crystal in the spectral region where it shows 

photoconductivity reduces the phase transition temperature. Suppose the illu¬ 

mination of a crystal transfers the electrons from the lower to the upper energy 

band, and the electron concentration in the upper band increases by An. Then, 

according to (4.87), the phase transition temperature shifts towards the lower 

temperatures by 

- i 

— (arch x) 1 (4.72) 

The physical meaning of this effect is that photoactive absorption of light 

changes the filling of the band with electrons and, hence, the contribution to the 

free energy due to interband electron-phonon interaction. Note that photo¬ 

active illumination changes not only the concentration of free electrons in the 

band, but also the filling of all the levels in the forbidden band due to impurities 

or defects. In many cases the photosensitive shift in phase transition temperature 

must be of an “impurity” nature, because the concentration of electrons on 
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e 103 

Fig. 4.13. Photostimulated phase transition in 
barium titanate. (7, 2) temperature depend¬ 
ences of the dielectric constant in the dark 
under heating and cooling conditions, respec¬ 
tively; (3,4) same dependences, but under illu¬ 
mination of the crystal in the spectral region of 

its photosensitivity [4.9] 

Fig. 4.14a, b. Photostimulated nature of the 
transition of Hgl2 from the tetragonal D\l to 
the orthorhombic C\l phase at 400 K. Pseu- 
dopyrocurrent at the phase transition point in 
the dark (a) and under illumination at the 
spectral photosensitivity maximum (b). The 
larger current maximum corresponds to heat¬ 

ing, the smaller, to cooling [4.9] 

impurity levels and its change under illumination may be several orders of 

magnitude higher than in the band. Photostimulated phase transitions have 

been observed in a number of independent investigations [4.6]. 
Figure 4.13 illustrates the shift in Curie temperature on illumination of 

BaTi03 crystals in the intrinsic absorption field. These data indicate that 

illumination affects the phase transition in BaTi03 from the tetragonal to the 

cubic phase; the shift occurs towards the lower temperatures and is equal to 

several degrees. 
Figure 4.14 illustrates the same phenomenon in photosensitive crystals of 

Hgl2 experiencing a nonferroelectric phase transition from the tetragonal to the 

orthorhombic phase. Since in this case the low-temperature phase is more 

symmetric, in accordance with theory the photoactive illumination increases the 

phase transition temperature. A considerable body of experimental material on 

photostimulated phase transitions in the crystals of aromatic hydrocarbons and 

elemental semiconductors of group V has been accumulated. 

4.6.4 Curie Temperature and the Energy Gap Width 

It should also be noted that (4.67) relates the Curie temperature of a ferroelectric 

Tc to the energy gap width £g0. The results agree qualitatively with experiment. 

It will suffice, for instance, to compare the Curie temperature of the narrow- 

band ferroelectric semiconductor GeTe and the broad-band dielectric BaTi03. 

Proceeding from (4.61), we can expand the energy gap width £g of the crystal 

into a series in even powers of Uq or Ps. Restricting ourselves to the quadratic 
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term, we have 

£g ~ £go 
a r, 

+ ~P. 
2 

2 
S 5 

(4.73) 

where the constant 

Qq V2 

T Ee0 
(4.74) 

is proportional to the square of the constant of electron-phonon interaction V. 
Equation (4.73) enables one to predict the nature of the temperature anomaly of 

£g in the range of first- and second-order ferroelectric phase transitions. Indeed, 

in first-order phase transitions P2 experiences a jump and, accordingly, the 

energy gap width undergoes a finite jump A£g = £g — £g0 —i ps- 1° second- 

order phase transitions Ps~ (£ — Tc)112, and therefore it is the temperature 

coefficient of the energy gap width that experiences a finite jump. The experi¬ 

mental dependence £g = £g(£) near the phase transition, for instance, for 
BaTi03 (first-order phase transition) and triglycinesulphate (second-order 

phase transition), agrees with these conclusions. As we see, measurements of 

£g = £g(£) directly confirm the existence of the Jahn-Teller pseudoeffect in 

ferroelectrics. From the jump A£g and with the aid of (4.73, 74) it is possible to 

estimate the constant of electron-phonon interaction for BaTi03 V ~ 0.6 eV/A 

(A£g ~ 0.02 eV Ps ~ 18 x 10“ 6 C/cm2, Q0 ~ 64 A3, e ~ 2.4 e). 

4.7 Debye’s Equation of State and Griineisen’s Formula 

The “equation of state” means the relationship between the volume V, the 

pressure p, and the temperature £ of a solid. Here, one proceeds from the 

thermodynamics equation 

P= — (dF/dV)T. (4.75) 

To express free energy £ we use (4.40) for the sum of free oscillator energies 

£(£) = £' + feoT’Z lnD - exp(-ha)s{k)/k0T)l 
k, s 

With due allowance for the Debye frequency distribution we replace the sum in 

(4.40) by the integral 

3 V "m 

£ — £0 + k0T -2 3 j In[1 — exp( — ha>/k0T)]co2da> 
Z7[ D q 

= £0 + 9Nk0T^Y j J In [ 1 — exp( —x)]x2dx, 

(4.76) 

where, according to (4.9), the relationship between limiting vibration frequency 
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com and Debye temperature TD is given by the expression TD = ha>m/k0. Taking 

a derivative of (4.75), we assume that the Debye temperature or the limiting 

frequency is a function of volume V 

P = 
6£o 

dV 
3Nk0TD 7b V 07b 

T JTd dV 

Here, D = D(z) is the Debye function 

exp(x) — 1 
dx. 

(4.77) 

(4.78) 

It can be shown that in the harmonic approximation dTD/dV = 0 and the 

vibration anharmonicity leads to dTD/dV < 0. The Griineisen constant is the 

temperature-independent relation 

V dTD dcom/<x>m d\ncom 

%~dV= dV/V = _ dIn V 
(4.79) 

In the harmonic approximation constant yG = 0. Since the temperature-depend¬ 

ent part of the internal energy is ET = 3Nk0TD(TD/T) (see Sect. 4.2), the final 

Debye equation of state takes the form 

P = 
0£o 

dV 

1 
+ 7g^Et, (4.80) 

where dE0/dV is temperature independent. 
From (4.80) we can obtain Griineisen’s formula relating the linear coefficient 

of expansion a with isothermal compressibility k. By differentiating with respect 

to the temperature and allowing for (4.18) we obtain from (4.80) 

Introducing the linear coefficient of expansion 

1 /0F\ 1 (0p/dT)v _ 1/0F\ 1/0p\ 

*-3V\dT)- 3 V (0p/0 V)T 3\dp )TV\dT)v 

and the isothermal compressibility 

(4.81) 

(4.82) 

1/0F\ 

k V\Qp )t 

we get Griineisen’s formula in its final form 

1 kyGcv 

a = 3~r- 
(4.83) 

By investigating the compressibility of crystals at high pressures it is possible 

to determine Griineisen’s constant yG and compare it with the value of 
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Table 4.1. Griineisen’s constant 

Substance Calculated value Experimental value 

Na 1.25 1.50 
K 1.34 2.32 

Fe 1.6 1.4 

Co 1.87 1.8 
Ni 1.88 1.9 
NaCl 1.63 1.52 

KC1 1.60 1.26 

yG calculated by (4.83). For cubic crystals, the agreement is particularly good. 

The values of Griineisen’s constant for some substances are given in Table 4.1. 

4.8 Phase Transitions and Crystal Symmetry1 

4.8.1 Second-Order Phase Transitions 

We have so far considered the basic features of phase transitions and their 

relationship with the thermodynamic characteristics and the vibration spectrum 

of crystals. We focused our attention on first-order phase transitions, when 

a change in thermodynamic parameters results in a considerable rearrangement 

of the structures and changes in phase properties. A certain correlation between 

the structures of the initial and the newly formed phase may, or may not, take 

place. One cannot generally predict the relationship between the structure and 

the symmetry of the phases lying on the different sides of the phase-equilibrium 
line. 

This section treats transitions accompanied by such a small change in the 

atomic structure of the crystal that uniform description of the structure and 

thermodynamic potential of the two phases is possible. The most prominent 

examples of this are second-order phase transitions, when the atomic structure 

of the crystal varies continuously, but at the transition point the crystal sym¬ 

metry changes jumpwise. Indeed, the symmetry can be either the one or the 

other; continuous change in symmetry is impossible. For instance, on very small 

displacements of atoms in the cubic structure, tetragonal or rhombohedral 

distortion may take place, i.e., the cubic symmetry is lost at once. Thus, at the 

point of second-order phase transition the structures and states of the two 

phases coincide. As we have already noted, this is not so for first-order 

transitions, when two phases with different structures and properties are in 
equilibrium. 

1 This section was written by E. B. Loginov. 



4.8 Phase Transitions and Crystal Symmetry 319 

A characteristic feature of a second-order phase transition is the fact that the 

symmetry group of one of the phases is a subgroup of the symmetry group of the 

other phase, because during the displacement of atoms only some symmetry 

elements are lost, while the others remain, and they form a subgroup. The more 

symmetric phase corresponds, as a rule, to the high-temperature modification. 

There is always a certain quantity (the transition or order parameter) equal to 

zero in the high-symmetry phase which increases continuously from zero to the 

final value as it recedes to the lower-symmetry phase; such a change in the 

transition parameter is sufficient for a complete description of the change in 

symmetry on phase transition. By taking into account the dependence of the 

thermodynamic potential on the transition parameter one can achieve uniform 

description of the two phases. The structure and thermodynamic potential of the 

equilibrium phase are obtained as a result of finding the minimum of the 

thermodynamic potential. 
By way of example we consider the possible ferroelectric phase transitions in 

triglycinesulphate2. The transition parameter is the vector of electric polariza¬ 

tion P. The crystal symmetry imposes certain limitations on the character of the 

dependence of thermodynamic potential <P on the components of vector P. Since 

<t> must remain unaltered on all transformations of the symmetry group of the 

crystal, it is a function of invariant combinations of components Pt. 
The point symmetry group of the high-temperature phase is C2h-2/m. The 

z axis is directed along the twofold axis. Then there are four invariant combina¬ 

tions of the components of the polarization vector, P2X, P2, PxPy, and Pi. Thus, 

from the crystal symmetry it follows that the dependence of the thermodynamic 

potential on the polarization must have the form 

<P = <P(P2X, P2, PxPy, P2Z, T, p), (4.84) 

where T is the temperature, and p is the pressure (it is assumed that the 

dependence of <P on the other variables, for instance, deformations, is excluded 

by finding the minimum with respect to these variables). Expression (4.84) 

contains all the information that can be obtained from the symmetry. We must 

now find the minimum of expression (4.84). To do this, we take advantage of the 

fact that in the high-temperature phase the minimum falls to the value P = 0. 

We also assume that there is a second-order phase transition; hence, near the 

transition point all the components of vector P are small, so that we can use an 

expansion of <P in powers of their invariant combinations. To begin with, we 

restrict ourselves to consideration of invariant-linear (quadratic in P,) terms in 

expansion (4.84) 

CP = 4>0(T, p) + An(T, p)P2x + 2Ai2{T, p)PxPy + A22{T, p)P2 
(4.8 j) 

+ A33(T, p)pI- 

2 The thermodynamic theory of ferroelectric phase transitions is considered in [1.7], 
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In the high-symmetry phase (and at the transition point) the minimum of 

(4.85) falls to the value Pt = 0, i.e., the quadratic form of Px, Py, and Pz must be 

positive valued. Consequently, the following inequalities hold true in the high- 

temperature phase and at the transition point: 

An ^ 0; A11A22 — A2 2 ^ 0; A33 ^ 0. (4.86) 

At the transition point T = Tc one of the inequalities (4.86) turns into an equality 

(otherwise all three inequalities would have held true in the vicinity of the 

transition point as well, i.e., no transition would have taken place). In the 

low-symmetry phase this inequality is violated, and the minimum of the thermo¬ 

dynamic potential falls to the nonzero values of Px, Py (if the second inequality is 

violated) or to Pz (if the third inequality is violated). 
Let us first consider the case of the change of sign of coefficient A3i. Since the 

second inequality (4.86) is fulfilled for the low-symmetry phase, the minimum of 

the thermodynamic potential falls to the values Px — Py = 0. Substituting these 

values into (4.84) and expanding 0 in powers P2 with an accuracy to the 

second-order terms, we obtain 

& = <P0 + ot{T — TC)P\ + ^P 4 
Z * (4.87) 

Here, Ai3 — <x(T — Tc). The values of a, /?, and 0O only slightly depend on the 

temperature, and this dependence can be neglected. For definiteness sake we put 

a > 0 and assume that P > 0 (the case /? < 0 corresponds to a first-order phase 

transition). Then, at T > Tc, the minimum of expression (4.87) falls to the value 

Pz = 0 (high-symmetry phase), and at T < Tc, to the value 

P2 = (4.88) 

i.e., the polarization appears beginning with T — Tc and increases continuously 

with a further decrease in temperature. Thus, at T = Tc, a second-order phase 

transition actually takes place. The point symmetry of the low-temperature 

phase is described by group C2-2, and the thermodynamic potential of the 

equilibrium phase is given by the expression 

0 = 0Q — 

a2(Tc - T)2 

2p (4.89) 

At the transition point entropy S = d0/dT is continuous (i.e., the heat of 

a second-order transition is equal to zero), while the heat capacity experiences 

a jump AC = a2TJp, the heat capacity being higher in the low-symmetry than 

in the high-symmetry phase. The dielectric susceptibility (polarizability) is 

X = {d20/dp2)~1 — 2\_cr(T— Tc) + [iP2~\~l. In the high-temperature phase / — 
2/ol(T — Tc)(the Curie-Weiss law), and in the low-temperature phase, x~ 
4/a(Tc — T), i.e., the susceptibility goes to infinity at point Tc. Precisely such 

a phase transition occurs in triglycinesulphate at temperature Tc = 49°C. 
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Investigation into the case of the violation of the second inequality in 

(4.86) (which does not take place in triglycinesulphate) after diagonalization of 

the quadratic form from Px, Py in (4.85) is carried out similar to that considered 

above. The symmetry of the low-temperature phase would, in this case, be 
described by group Cs-m. 

The example just discussed reveals many features of second-order phase 

transitions, although in transitions with multicomponent order parameters 

there may also be qualitative differences, which are indicated below. 

4.8.2 Description of Second-Order Transitions with an Allowance for 

the Symmetry 

Before we proceed to the general description of second-order phase transitions it 

is necessary to introduce a more rigorously unified description of the thermo¬ 

dynamic potential of both phases [4.10]. To do this, we consider the potential as 

a function of the crystal structure which can be characterized by the density 

function p(x, y, z). In a crystal consisting of atoms of the same sort p(x, y, z) can 

be considered the probability distribution of the positions of the atomic 

(nuclear) centers; in a multiatomic crystal it is more convenient to use the 

electron density for this purpose; additionally, in magnetic crystals one should 

take into account the distribution of the current j(x, y, z) or the spin orientation. 

As we know, the symmetry group of a crystal [Ref. 4.11, Chap. 2] is a set of 

operations (transformations of the coordinates) leaving p(x, y, z) unaltered. 

Let G0 be the group which the crystal possesses at the transition point, and 

p(x, y, z) is the density function in some phase (generally speaking, this function 

depends on the temperature and pressure). If we perform all the transformations 

gt e G0 over p(x, y, z), we obtain a set of functions which transform linearly 
through each other as a result of the operations gt, i.e., the representation of 

group G0. Expanding this representation into irreducible ones [Ref. 4.11, Sects. 

2.6.7, 6.8, 8, 15], we obtain the following expansion of function p(x, y,z) with 

respect to the basis functions iA-n)(x, y, z) of irreducible representations: 

(4.90) 
n i 

where n is the number of the irreducible representation, and i is the number of 

the function at its basis. Hereafter we assume functions ip\n) to be normalized in 

some definite way. 
Among the functions i/dn) there is always one which is in itself invariant to all 

the transformations of group G0 (it realizes the identity representation of the 

group). Denoting this function by p0 and the remaining part of p by Ap, we can 

write 

P = Po + Ap, Ap = Z c)n)iA)n). (4.91) 
n i 

The prime after the symbol of the sum means that the identity representation is 

excluded from the summation. Note that if Ap 4= 0, the symmetry group Gj of 

the crystal does not coincide with G0, but is its subgroup G0 e G0. 
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Since function p(x, y, z) is real, the sum (4.91) must contain a conjugate 

complex representation along with the complex one. A pair of conjugate 

complex irreducible representations can be regarded as a single physically 

irreducible representation of a double dimension. Accordingly, functions 

i/r)n) can be selected as real. 
The thermodynamic potential of a crystal with a density function p(4.91) is 

a function of the temperature, pressure, and coefficients c\n) (and naturally 

depends on the concrete form of functions i/dn) themselves). The values of 

c-n) which are actually realizable (as a function of p and T) are determined 

thermodynamically from the equilibrium conditions, i.e., from the conditions of 

the minimum of <P. This also assigns crystal symmetry G0, since it is clear that 

the symmetry of the function p, described by functions i/dn), whose laws of 

transformation are known, depends on the values of the coefficients c\n) in 

expansion (4.91). 
Since the expansion (4.91) of function Ap in irreducible representations 

contains no identity representation, either Ap = 0 (i.e., all the cjn) = 0) or Ap 

changes on certain transformations from group G0, and hence the symmetry of 

function Ap (and p) is lower than G0. Consequently, at the transition point itself 

all the c)n) are zero. Since the state changes continuously during a second-order 

phase transition, all the cjn) also reduce to zero continuously and take infinitely 

low values near the transition point. Accordingly, let us expand potential 

<P(T, p, c[n)) near the transition point into a series in powers of c|n). 

ft should be noted that since in transformations of group G0 functions 

i//|n) transform through each other (within the basis of each irreducible repres¬ 

entation), it can be imagined that coefficients cjn), rather than functions are 

transformed (by the same law). Further, since the thermodynamic potential of 

a body evidently cannot depend on the choice of a reference system, it must be 

invariant to transformations of group G0. Therefore, each term of expansion of 

<P in powers of cjn) may only contain an invariant combination of the values of 

dn) of the corresponding power. 

A linear invariant cannot be compiled from values which transform accord¬ 

ing to an irreducible representation of a group (except for the identity repres¬ 

entation). A second-order invariant always exists; this is the sum of the squares 

of coefficients cjn). Thus, in the approximation quadratic with respect to c[n> the 
expansion of (P has the form 

<P=<P0 + YJ’AM I(c|n))2, (4.92) 
n i 

where A{n) are functions of p, T. 
Since at the transition point itself the minimum of (4.92) falls to c)n) = 0, all 

the A{n) at this point are nonnegative, ff all the AM at the transition point were 

positive, they would also be positive in some vicinity of this point, i.e., we could 

have c|n) = 0 on both sides of the transition, and the symmetry would remain 

unaltered. It is obvious that at the transition point one of the coefficients A(n) 
must reverse its sign (two coefficients can vanish at the same point only if it is an 
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isolated point on the p-T diagram which corresponds to the intersection of 
several lines of a second-order phase transition). 

Thus, on one side of the transition point all the A(n) > 0, and on the other one 

of the coefficients Ain) is negative. Accordingly, on one side of the transition 

point all the c|n) = 0, and on the other side nonzero c|n) appear, which corres¬ 

pond to one and the same irreducible representation. Here, a phase with 

a symmetry group Gr c G0 is formed, where G0 is the symmetry of the initial 

phase. Hereafter we omit index n denoting the number of the representation. 

We introduce the notation rj2 = £(<?;), cf = rjyh so that £yf = 1, and expand 
i i 

$ as 

<p = <p0(p, T) + r]2A{p, T) + Ba{p, T)/a(3)(y;) 

“ (4.93) 
+ >74X ca(p, r)/i4)(y,) + . . . , 

a 

where /(3) and /(4) are invariants of the third, fourth, etc., orders compiled from 

values ysums over a have as many terms as there are independent invariants of 

the corresponding order which can be made up from yt. 
Since at the transition point A = 0 and the potential must have a minimum 

at ri = 0, a second-order phase transition requires that no third-order invariance 

be present and that the minimum of fourth-order invariants with respect to 

■y, give coefficients at f/4. 

Assuming these (so-called Landau) conditions to be fulfilled, we write the 

expansion of the thermodynamic potential with an accuracy to the fourth-order 

terms 

<P = <P0 + A(p, T)r,2 + n4X ca(p, T)ff\yt). (4.94) 
a 

The second-order term does not contain yf; these values are determined from 

the condition of the minimum of the coefficient at vf. The obtained values of 

y, define the symmetry of the function 

Ap = n^y^i, (4.95) 
i 

i.e., the symmetry of the density function and the symmetry group Gt of the 

phase arising from the phase with symmetry G0 as a result of a second-order 

transition. The temperature variation in the parameter of the order t] = rj(p, T) 

is found by minimizing equation (4.94) with respect to r\ (with given y,) precisely 

as we did in considering the example with the ferroelectric phase transition in 

triglycinesulphate. 

4.8.3 Phase Transitions Without Changing the Number of Atoms 

in the Unit Cell of a Crystal 

ft is known [Ref. 4.11, Sect. 2.8.15] that in the basis functions of irreducible 

representations of space groups it is possible to isolate factor exp(i/cr), where k is 



324 4. Lattice Dynamics and Phase Transitions 

the wave vector lying in the first Brillouin zone. It is easy to see that the 

functions ijj with k =h 0 in the expansion (4.91) correspond to an increase in 

lattice spacings by two or by any multiple number of times in general, and that 

the initial unit cells subsequently turn into a multiple number of distinct 

“subcells” of a new, large cell. In other words, in the lattice being formed, it is 

possible to isolate sublattices corresponding to the initial lattice. 

Indeed, at Ac 4= 0 the initial lattice retains only those points for which 

kr — 2nn where n is an integer. Figure 4.15 illustrates a wave vector lying at the 

boundary of the Brillouin zone. The lattice splits up into two sublattices. The 

principal spacing along the x axis doubles, and so do the volume of the unit cell 

and the number of atoms in it. 

If k = 0, all the translations are preserved. This means that all the transitions 

with the preservation of the number of atoms in the unit cell must be described 

by representations with £ = 0 [4.12]. Then, both a change in cell spacings and 

a mutual shift of the sublattices may take place. Figure 4.16a depicts a case 

where the lattice undergoes shear deformation accompanied by the disappear¬ 

ance of two symmetry planes perpendicular to the drawing. In Fig. 4.16b, two 

sublattices shift relative to each other so that the center of symmetry is lost and 

the lattice becomes polar. In Fig. 4.16c, three sublattices merging into each other 
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Fig. 4.15. The simplest scheme of a phase 
transition with a change in the number of 
atoms in the unit cell of the crystal 

k = bll2, a\ = 2a, [4.12] 
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Fig. 4.16a-c. Phase transitions with reten¬ 
tion of the number of atoms in the unit cell. 
(a) shear deformation of the unit cell; 
(b) mutual displacement of the two sublatti¬ 
ces without a change in cell parameters; 
(c) same for three sublattices. In all cases 
k = 0 [4.12] 
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on rotation through 120° shift by equal distances so that the sixfold axis 

disappears. 
It is worth noting that under the effect of symmetry operations of space 

group <P = G| the functions with k = 0 transform precisely in the same way as 

do the basis functions of the representations of the corresponding point sym¬ 

metry group K = Gq . Indeed, the basis functions of the representations of 

groups k depend exclusively on direction and transform under the effect of the 

rotational components of the operations of group G] in the same way as they do 

under the effect of operations of group Gq. In other words, although group K is 

not a subgroup of the & = Gl (being its homomorphous mapping, [Ref. 1.6, 

Sect. 2.8.4], all the representations of group K are representations of the given 

group (and all the other <P homomorphous to K, i.e., belonging to the given 

crystal class) corresponding to k = 0. 
Thus, in order to investigate structural changes not involving a change in the 

number of atoms in the unit cell of the crystal it will suffice to take into account, 

in expansions of the type (4.91), the irreducible representations of point groups 

K [Ref. 4.11, Table 2.8]. An analysis of these representations leads to the scheme 

given in Fig. 4.17 for all the possible second-order phase transitions between 

crystal classes K (corresponding transitions are possible in all the space groups 

Fig. 4.17. General scheme of all possible second-order phase transitions with retention of the 

number of atoms in the unit cell of the crystal [4.12] 
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<P of the given class K). Each line corresponds to some representation. The 
straight lines denote one-dimensional representations, and the curves, multi¬ 
dimensional. The branching of the lines means that the given representation can 
(depending on the ratio between the factors at the invariants in the expansion of 
the thermodynamic potential) give a transition to different crystal classes. For 
instance, in group O^-Pm^m a ferroelectric phase transition of the second order 
(representation Fiu) can give a tetragonal group C{v-PAmm (polarization along 
a cube edge) or a rhombohedral group C\v-P3m\ (polarization along the body 
diagonal of the cube). 

4.8.4 Changes in Crystal Properties on Phase Transitions 

Let us assume that a phase transformation involves the introduction of addi¬ 
tional degrees of freedom C, corresponding to an irreducible representation T, 
and consider the physical implications of such a change in structure. To do this 
we have to find out which invariants can be composed from coefficients C, and 
the external parameters of the system. If we restrict ourselves to the invariants 
linear in C, (and hence to the physical characteristics depending linearly on these 
coefficients), it will be sufficient to find all the physical quantities which trans¬ 
form according to representation T. To find quantities depending on coefficients 
C, in a more complex way, we must consider the symmetric degrees of repres¬ 
entation r. 

Ferroelectric Phase Transitions. Suppose that representation T belongs to the 
vector representations V of a given group, i.e., that one or several components of 
the polar vector transform according to representation T. Then the crystal 
symmetry permits us to compose invariant where £, are the components 
of the vector of the electric field tension; the phase transition with inclusion of 
the degrees of freedom c; causes the appearance of spontaneous polarization 

1 00 

471 0£,-’ 
(4.96) 

i.e., is ferroelectric, the polarization depending linearly on coefficients c,. If, 
however, some symmetric degree (for instance, the second) of representation 
r contains a vector representation, there is invariant Y,ijk<xijkcicjPk, and the 
transition results in a polarization to Pk ~ YJaijkCicJ. Such ferroelectrics are 
called improper [4.13, 14], In particular, all ferroelectrics which form as a result 
of transitions according to representations with k = 0 are improper. In contrast 
to the proper ferroelectrics, the improper ones do not obey the Curie-Weiss law, 
while the dielectric constant experiences a jump at the transition point. 

Ferromagnetic Phase Transitions. If vector representations induce phase 
transitions with the appearance of a polar vector of electric polarization, 
pseudovector representations V induce transitions with the appearance of an 
axial vector, for instance a magnetization vector, i.e., ferromagnetic phase 
transitions. 
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Ferroelastic Phase Transitions. Expansion of symmetric square [E]2 of a vector 

representation in irreducible representations gives a set of all representations 

according to which the components of the deformation tensor (as well as of the 

stress tensor, the dielectric-constant tensor, etc.) are transformed. The relevant 

phase transitions involve spontaneous deformation (namely, the component 

which is'transformed according to the given representation) and a change in 

optic indicatrix. Such transitions are called ferroelastic, and the substances, 

ferroelastics. Ferroelastic phase transitions are accompanied by the vanishing of 

the elastic moduli corresponding to the deformation components which are 

transformed according to the given representation. 

Elastic Constants. Similarly, expansion of [[E]2]2 (i.e., the symmetric square of 

the symmetric square of a vector representation) in irreducible representations 

gives a set of all the representations according to which the tensor components 

of elastic constants are transformed. The corresponding phase transitions will 

involve a change in the elastic constants of the crystal. 

The list of physical properties can be supplemented by the piezoelectric 

(representation Ex[E]2), piezomagnetic (representation Ex [E]2), piezoopti- 

cal, electro- and magnetostrictive (representation [[E]2]2) characteristics, etc. 

By way of illustration we note that the transition depicted in Fig. 4.16a is 

associated with the representation E, which appears in [E]2, i.e., is ferroelastic; 

and in Fig. 4.16c, with representation E belonging to [[ E]2]2, i.e., the transition 

involves a change in elastic constants. 

4.8.5 Properties of Twins (Domains) Forming on Phase Transformations 

The values of the quantities y{ determining the symmetry of the low-temperature 

phase are found from the condition of the minimum of the factor at rf in (4.94). 

But to the minimum of this factor there correspond several solutions for yt (at 

least replacement of yt by — yt does not affect its value), and since a phase 

transition begins independently in different regions of a crystal, it results in the 

formation of regions with different values of yt. These regions are called domains 

or twins. We shall indicate the properties distinguishing twins which form as 

a result of different phase transitions. If a phase transition is ferroelectric 

(representation E belongs to vector representation E) or ferromagnetic (E 

belongs to pseudovector representation E), the domains formed as a result of 

the transition differ in the direction of the electric polarization or magnetization. 

If a transition is ferroelastic (E belongs to [E]2), the twins formed undergo 

different spontaneous deformation (those components are different which trans¬ 

form according to representation E) and have different (differently oriented) 

optic indicatrices. These are ordinary twins, which can be characterized by the 

twinning planes (the planes along which the ellipsoids of spontaneous deforma¬ 

tion of the twin components intersect) and the twinning directions (directions 

lying in the twinning planes and perpendicular to the line of intersection of the 

adjacent twinning planes). 
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If r does not belong to representation [V]2, the twins differ neither in 

spontaneous deformation, nor in optic indicatrices. The concepts of a twinning 

ellipsoid and of twinning planes and directions are inapplicable to such twins. 

Two cases are possible depending on whether representation F appears in 

representation [[F]2]2. If it does, the twin components differ in elastic con¬ 

stants. Under the effect of stress such twins experience only second-order effects; 

for instance, the direction of forced displacement of the twin boundary remains 

unaltered on change in the sign of the stress. An example are Dophinais twins, 

which form on j? transformation of quartz (Fig. 4.16c). 

If r does not appear, not only in [F]2, but also in [[F]2]2, the twin 

components differ neither in optic indicatrices, nor in elastic constants. Such 

“masked” twins may not be noticed at all unless the structure or the physical 

properties of the crystal are thoroughly investigated. The twins of the described 

type include all the inversion twins and some types of rotation and reflection 

twins. If representation T corresponds to a nonzero value of wave vector k, 

translation twins form as a result of the corresponding phase transition. 

4.8.6 Stability of the Homogeneous State of the Low-Symmetry Phase 

Until now we assumed that at neighboring points on the line of second-order 

phase transition the transition occurs according to one and the same representa¬ 

tion. This problem requires more detailed consideration. The fact is that irredu¬ 

cible representations of space groups are classified not only by discreteness (the 

number of small representations), but also by the continuous value of wave 

vector k. Therefore coefficients A(n) in expansion (4.92) must depend, not only on 

discrete number n, but also on continuous variable k. 

Suppose the phase transition involves the vanishing (as a function of p and 

T) of coefficient A{n\k) with a definite number n and a definite value of k = k0. 

Then the coefficient A(n)(k) must have a minimum with respect to k at k — k0, 

i.e., the first derivatives with respect to k must be equal to zero at this point. If 

the vanishing of dA^/dk is not due to the crystal symmetry, these derivatives are 

nonzero (although small) at a neighboring point, and the minimum of A(n){k) 

falls on a value of k different from k0, although close to it. Here, the value of 

k changes continuously along the line of second-order phase transitions. 

If, however, the crystal symmetry requires that dA(n)/dk = 0, then the 

transition occurs according to one and the same representation at different 

points on the phase-transition line. We shall indicate the group-theoretical 

criterion of the vanishing of dA(n)/dk. To do this we allow for the fact that the 

value of k of the wave vector defines the translation symmetry (periodicity) of 

a new phase. Then a structure with a vector k close to k0 can be regarded as 

a structure with a wave vector k0 and with coefficients C,(r) slowly (by virtue of 

the smallness of k — kc) varying in space. The required absence of linear term in 

the expansion of A(n\k) in powers of k - k0 leads to the absence of invariants in 

the products of the values c, and their gradients in the expansion of the 

thermodynamic potential. Since terms of the type c,Vc, + CyVc; reduce to the 
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divergency of some vector, they make no contribution to the volume energy. 

Hence, for the transition according to the given representation to occur along 

the entire line on the phase diagram it is necessary that no invariants be 

composed of the combinations CjVc7- — c^Vc, [4.15], In the language of repre¬ 

sentation theory that means that the antisymmetric square of representations T, 

responsible for the phase transition, may not contain a vector representation. 

If, however, Lifshits invariants do exist, the value of k varies along the 

phase-transition line, and, as noted above, this variation can be represented as 

a variation of coefficients c, in space, which means that the so-called incommen¬ 

surate, or modulated, structure arises as a result of the corresponding phase 

transition. It is easiest to describe such a structure in the case of a ferromagnetic 

or ferroelectric phase transition, when the incommensurate structure is due to 

the change of the vector of electric polarization or magnetization in space; this 

structure is usually helicoidal, and the helicoid period is not necessarily a mul¬ 

tiple of (commensurate with) the lattice spacing. Structures of this type are 

observed in the most diverse materials: in quasi-one-dimensional and two- 

dimensional conductors, magnetics, ferroelectrics, alloys, liquid crystals, etc. 

We remark in conclusion that the predictions of the phenomenological 

theory as to the nature of the temperature dependence of physical quantities are 

valid for regions which are neither very close to the phase transition point (in the 

vicinity of a phase transition an essential role is played by fluctuations of the 

transition parameter), nor very far from this point (since the theory uses 

expansion of the thermodynamic potential into a power series). The fluctuation 

range may be either very narrow (for instance, in superconductors and mag¬ 

netics) or rather wide (for instance, in quartz and most of the ferroelectrics). The 

predictions relating to changes in symmetry evidently hold true for second-order 

phase transitions. 



5. The Structure of Real Crystals 

The regular, strictly periodic structure of the crystal discussed in the preceding 

chapters is just an idealized picture. In nature, even under conditions of ideal 

thermodynamic equilibrium, crystals must show various deviations from this 

structure, which are called crystal lattice defects. Equilibrium lattice defects 

should by no means be interpreted as crystal defects. They can be regarded as 

elementary excitations of the ground state of the crystal, being just as inherent 

in the crystal as phonons or electrons, etc. While phonons and electrons are 

elementary excitations in the phonon and electron subsystems of a crystal, 

which were considered in Chaps. 3,4, lattice defects are elementary excitations in 

the atomic subsystem of a crystal, whose ground state was described in Chap. 1. 

Apart from equilibrium lattice defects, real crystals exhibit nonequilibrium 

defects due to the nonideal conditions of the origin and life of the crystal. These 

defects do not disappear completely, even after a very long time, from thermal 

motion alone: they are in a “frozen” state. Nonequilibrium lattice defects are 

often stabilized by electric, magnetic, or elastic fields arising in the course of 

crystal growth, phase transformations, or under external influences. The density 

of nonequilibrium lattice defects can be considerably reduced by improving the 

methods for the preparation and treatment of crystals. 

All the so-called structure-sensitive properties of crystalline materials are 

due to the presence of equilibrium and nonequilibrium lattice defects. A crystal 

responds to external influences by changing its real structure through the 

generation, rearrangement, motion, and annihilation of lattice defects. The 

plastic deformation of crystals, for instance, consists completely in the motion of 

various lattice defects. The thermal expansion of crystals is caused, not only by 

the anharmonism of atomic vibrations, but also by an increase in the density of 

the lattice defects. An electric current in ionic crystals i$ mainly due to the 

migration of charged lattice defects, while the most important properties of 

semiconductors depend on the number of electrically active defects of the 
lattice, etc. 

5.1 Classification of Crystal Lattice Defects 

Because of their low mobility and long life time lattice defects lend themselves to 

a pictorial geometric description (the only exception being quantum crystals, 
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such as those of helium, where zero quantum vibrations are so intensive that the 

localization of the lattice defects is disturbed and they behave as quasiparticles, 

i.e., similar to phonons and electrons). By “lattice sites” we mean the positions 

which the atoms must occupy in a crystal having an ideal atomic structure. 

Strictly speaking, not a single atom in a real crystal is located at a lattice site. 

The description of the atomic structure of real crystals is, however, greatly 

facilitated by the fact that it does not differ substantially from the ideal structure; 

the arrangement of most of the atoms can, therefore, be described with reference 

to the network of the lattice sites. It is convenient to classify the lattice defects 

according to a purely geometric feature - their dimensionality, i.e., the number 

of dimensions in which the qualitative disturbances of the ideal structure of the 

crystal (the absence or anomalous disposition of neighboring atoms) extend to 
macroscopic distances. 

Zero-dimensional (point) defects are vacant sites of the lattice, interstitial 

atoms, atoms at lattice sites of a “foreign” sublattice, impurity atoms in various 
positions, etc. 

One-dimensional (linear) defects are chains of point defects, and also 

dislocations, i.e., specific defects disturbing the regular succession of atomic 
planes. 

Two-dimensional (surface) defects are the crystal surface, stacking faults 

(irregularly packed atom layers), grain and twin boundaries, domain walls, etc. 

Three-dimensional (volume) defects are pores, inclusions, precipitations, and 

similar macroscopic formations. 

Local distortions of the atomic structure of a crystal, similar to lattice 

defects, are sometimes caused by electron-type elementary excitations, which 

strongly interact with the lattice. In semiconductors, electrons and holes distort 

(polarize) the lattice around them, forming polarons. In ionic crystals, local 

excitation of the electron state may be transmitted from one ion to another, thus 

migrating through the crystal in the form of an exciton. Theory also predicts the 

existence offluctuons, i.e., local fluctuations of the density, electric polarization, 

or magnetization, which are stabilized by electrons. On the other hand, lattice 

defects distort the electron and phonon structure of the crystal; the levels of the 

electron and phonon spectra are displaced, new levels and local vibrations arise. 

Accumulation of lattice defects may result in their coalescence leading to 

precipitation of a new phase inside the crystal (condensation of vacancies, 

excitons, etc.) and in overall instability throughout the crystal, which leads to 

a phase transformation of whole crystal (ordering with respect to vacancies, 

stacking faults, etc.). 

5.2 Point Defects of the Crystal Lattice 

5.2.1 Vacancies and Interstitial Atoms 

Vacancies, or unoccupied lattice sites, and interstitial atoms, or the atoms 

implanted into the interstices, are defects antipodes: the filling of a vacancy or 
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the removal of an interstitial atom restore the regularity of the crystal lattice. 

The energy necessary for the formation of a vacancy is defined as the work 

necessary to shift an atom from a lattice site to the crystal surface and is usually 

of the order of one electron volt. The energy of formation of an interstitial atom 

is defined as the work done in shifting an atom from the crystal surface to an 

interstice and may be as high as several electron volts because of the large 

contribution of the energy of local distortions arising on incorporation of an 

atom into an interstice1 * *. 

The possibility of the existence of defects with such a high energy and under 

conditions of thermodynamic equilibrium is due to the fact that the formation of 

point defects greatly increases the crystal entropy. From a crystal containing 

N identical atoms one can remove n atoms in 

C n _ 
N ~ 

N\ 

n\(N — n)\ 

different ways. According to the Boltzmann equation, the corresponding 

increment of the configurational entropy is 

AS = k In 
N\ 

n\(N — n)l 
(5.1) 

If the energy of formation of one defect is E, the formation of n defects at 

a temperature T changes the free energy of the crystal by 

AF = nE- TAS. (5.2) 

Minimization of free energy (5.2) taking into account only configurational 

entropy (5.1) and using Stirling’s formula lnm! ssmlnm for evaluating the 

factorials of large numbers gives the following estimate for the equilibrium 
number of point defects: 

n — N exp ( — E/kT). (5.3) 

For copper, for example, the energy of formation of a vacancy is about 1 eV, and 

that of an interstitial atom, 3.4 eV. According to (5.3) the concentration of 

vacancies at the melting point (T = 1356 K) has the magnitude 2 x 10"4, and of 
interstitial atoms, only 2x 1CT13. 

It should be noted that in deriving (5.3) the change in the vibration entropy 

of the crystal was neglected. Near point defects the atoms vibrate with changed 

frequencies and amplitudes, which increases the crystal entropy by some value 

nAS', proportional to the number of defects. Therefore, (5.3) must have 

a correlation factor exp(AS'//c), which, however, does not affect the results as 

regards the order of magnitude. As an example we give the data on the density of 

1 In calculating the energy of formation of vacancies and interstitial atoms, possible changes in the 
surface energy of the crystal must be excluded. Therefore, only those surface atoms which are 
located at kinks of atomic steps on the crystal can take part in the point defect formation. 
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Table 5.1. 

c x 104 £[eV] AS'/k 

Au 2.7 ± 0.6 0.98 1.22 
Ag 1.7 ± 0.5 1.04 0.9 
Cu 2.0 ± 0.5 1.07 0.5 

vacancies c = n/N at the melting point for gold, silver, and copper, and the 

relevant values of E and AS'/k (Table 5.1). 

It is clear that the simple equation (5.3) already yields a completely reliable 

estimate of the equilibrium density of defects. 

Similar calcualtions can be carried out in more complicated cases. Let us 

consider, e.g., an ionic crystal. During the formation of point defects the 

condition of electric neutrality of the crystal as a whole must be fulfilled. 

Therefore defects are born in pairs (Fig. 5.1) consisting either of a vacancy and 

an interstitial ion (Frenkel defects) or of two unlike vacancies (Schottky defect), 

or else of the antipode of the Schottky defect, i.e., two unlike interstitial ions. For 

the equilibrium concentration of these pairs, the following formula, similar to 

(5.3), is applicable: 

n = yjN\N~2 exp( - E/2kT\ (5.4) 

where E is the pair formation energy, and Nt and N2 are the number of points at 

which the first and second partners of the pair can reside. Since the energy of an 

interstitial ion greatly exceeds that of a vacancy, the equilibrium concentration 

of point defects in ionic crystals usually depends on that of Schottky defects. 

The formation of point defects is accompanied by appreciable displacements 

of the atoms surrounding the defect. The atoms around a vacancy mainly shift 

towards the vacant point. An interstitial atom, on the contrary, crowds out the 

surrounding atoms. As a result, an interstitial atom usually even increases, 

rather than decreases, the crystal volume, while a vacancy increases it by less 

than one atomic volume. Thus, for instance, in aluminium an interstitial atom 

increases the crystal volume by 0.5 Q (where Q is the atomic volume) and 

a vacancy, by 0.8 Q. The X-ray density corresponding to the mean interatomic 

distance changes then as if a dilatation center with a volume of H- 1.5 O were 
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Fig. 5.1. Point defects in a NaCl-type crystal, (a) Frenkel defect; 
(b) Schottky defect; (c) antipode of the Schottky defect. The 
vacancies are denoted by squares, and interstitial ions by circles 
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implanted into the crystal in the case of an interstitial atom, and — 0.2 Q in the 

case of a vacancy (i.e., vacancies increase the X-ray density of the crystal). 

A Frenkel pair, which consists of an interstitial atom and a vacancy, reduces the 

X-ray and dilatometric density of the crystal in the same way: the volume change 

is +1.3 Q. The difference between the dilatometric and X-ray density 

corresponds to an increase in the crystal volume by exactly Q for a vacancy and 

a decrease by exactly Q for an interstitial atom. Therefore, a comparison of the 

dilatometric density of a crystal with its X-ray density makes it possible, in 

principle, to determine the difference between the number of interstitial atoms 

and vacancies, which is equal to the difference between the number of atoms and 

lattice sites. The elastic field arising around point defects as dilatation centers 

and elastic dipoles exerts the determining influence on the interaction of point 

defects among themselves and with other lattice defects, particularly with 

dislocations [5.1]. 
Knowing the interatomic-interaction law, one can calculate with the aid of 

a computer the atomic structure of a point defect and pinpoint the site to which 

each atom moved on appearance of the defect. In a macroscopic description of 

the displacements of the atoms around the defect one assigns the vector field 

of displacements «(x) which depends continuously on coordinate x. Corres¬ 

ponding to the change in interatomic distances is the distortion field 

Uij = ujyi = duj/dxi. (5.5) 

The symmetric part of the distortion tensor gives the deformations 

%(*) = U“u + +,;), (5.6) 

and the antisymmetric part, the lattice rotations 

1 
2 • (5.V) 

Corresponding to the interatomic interaction forces is a stress field which 

can be found from deformations e0 with the aid of Hooke’s law 

aij = cijklekl = Cijkl Ukl> (5.8) 

where cijkl is the elastic-moduli tensor. The following notation is adopted in 

(5.5-8): summation is carried out over repeated indices; subscripts placed after 

a comma mean differentiation with respect to the corresponding coordinates 

according to the type (5.5); tensor eijk is the antisymmetric unit tensor, and its 

nonzero components are equal to + 1 or - 1, depending on whether subscripts 
i,j, k form an even or odd permutation of numbers 1, 2, and 3. 

The set of equations (5.5-8) is an ordinary set of equations of the theory of 

elasticity of anisotropic bodies, see [5.2], It is inapplicable for the description of 

distortions in the core region of a point defect. It is not correct, for instance, to 

assume that vector u for an interstitial atom and for a vacancy corresponds to 

the distance to the crystal boundary, since the theory of elasticity presupposes 
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that vectors « are small compared to the interatomic distances. Hereafter, 

in describing the elastic field of lattice defects we have to resort to the internal- 

stress theory which introduces the concept of proper-distortion tensor ug and 

proper-deformation tensor eg = i(ug + u%), which describe the defect structure 

in macroscopic terms. Equations (5.6-8) are now preserved for elastic-distortion 

tensor uy and elastic-deformation tensor e0-, except that the sum of tensors 

Uij and ufj corresponds to the gradients of the distortion field, i.e., 

uj'i = uy + ufj. (5.9) 

In a macroscopic description, point defects are characterized by local proper 

deformation eg (or) concentrated in a volume of atomic order. For a dilatation 
center with extra volume SV 

j (dx)efj(x) = Sij(SV/ 3). (5.10) 

Here, (dx) is the volume element, <5y is the symmetric unit tensor (<5y = 1 for i = j 
and dij = 0 for i 4= j). 

To calculate the elastic field of a point defect we use the Fourier transforma¬ 

tion. It can be shown that the Fourier components of stress tensor o-y are 

proportional to those of the tensor of proper deformations eg 

Gi}{k) = - c*jkl(n)-sfi(k). (5.11) 

Here, cfjki(n) is the so-called plane tensor of the elastic moduli related to the 
ordinary tensor of the elastic moduli cijkl by the expression 

C ijkl(ft) C ijkl np MqCpqkb (5.12) 

where A~p is a tensor reciprocal to tensor Anp = nmc„,npqnq, n = k/\k\ is a unit 

vector along the direction of wave vector k. Convolution c*kl(n) with vector 

n with respect to any index is equal to zero, which ensures the fulfilment of the 

equilibrium conditions for stresses njd^k) = 0. Substituting the Fourier image 

of the proper deformation for the dilatation center into (5.11) and performing 

the reciprocal Fourier transformation, we obtain for the stress field 

Gijir) = 
1 

(2rcp J (dk)e'krc*ki(n) £kl(k). (5.13) 

At large distances r from the dilatation center the stresses decrease as r 3, and 

lim r3Oij(r) — 
r-> oo 

SV 

24n2 
dn lim ~ c (5.14) 

where, in distinction to (5.13), the variable n is orthogonal to r, and ski(Q) is taken 

to be equal to Ski(SV/3) in accordance with (5.10). In the elastic-isotropic case 

c*jU = 2G(1 + v)(l — v)-1(<5y — n,n7), where G is the shear modulus, and v is the 

Poisson coefficient. Hence, in a spherical coordinate system (r, 9, (p) it follows for 

stresses outside the dilatation center that 

(1 + v)GSV 

3ti(1 — v)r3 
<pq> 

1 

2 
<7 rr • Gee — G, (5.15) 
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The energy of interaction of the dilatation center with an external field is 

determined, to a first approximation, by the value of pV0, where p = — ai;/3 

is the pressure at the site of the defect. As a result, vacancies, as dilatation cen¬ 

ters with a negative extra volume, are drawn into compressed regions, while 

interstitial atoms, as centers of dilatation with a positive extra volume, tend to 

shift into negative-pressure regions. In the elastic-isotropic approximation 

the dilatation centers do not interact because from (5.15) it follows that 

p = — (<rrr + ae0 + <7w)/3 = 0. Consideration of the elastic anisotropy gives, for 

the interaction energy, nonzero corrections decreasing with the distance as r ~3. 

In analyzing the balance of the fluxes of vacancies and interstitial atoms 

towards dislocations under irradiation one has to take into account stress- 

nonlinear effects of interaction of point defects with the external field and to 

allow for changes in the rigidity of bonds near defects, which bring about elastic 

polarization of the defect in the stress field. Polarization of vacancies with 

decreased rigidity helps them to be drawn into high-stress regions. Polarization 

of rigid interstitial atoms produces the opposite effect. The energy of interaction 

of the dilatation centers, with due regard for the elastic polarization of the 

defects in the elastic-isotropic approximation, is not equal to zero and decreases 

with the distances as r~6. In some cases (for instance, for pores) this polarization 

interaction is considerable. 
The interaction of point defects gives rise to various complexes. The forma¬ 

tion and decomposition reactions of complexes can be considered by analogy to 

the general rules of reactions in gas mixtures or dilute solutions [5.3]. The 
simplest example is the formation reaction of bivacancies in metals V + V+± V2. 

According to the mass action law the concentrations of vacancies [F] and 

bivacancies [F2] are related by the condition 

[F2] = K[F]2. (5.16) 

Reaction constant K — <xexp(U/kT), where a is the number of possible orienta¬ 

tions of bivacancies in a crystal, which is equal to half the coordination number 

(i.e., the number of nearest neighbors for a given lattice site) and U is the binding 

energy of the vacancies in a bivacancy. This binding energy is usually appreci¬ 

ably less than the energy of formation of a single vacancy. Therefore, the 

concentration of bivacancies does not exceed that of single vacancies. 

A further joining of vacancies may give either a three-dimensional formation 

(cavern, pore) or a plane (of atomic thickness - “pancake”), depending on the 

type of the crystal and the environmental conditions (Fig. 5.2a). The pancake 

may become unstable and collapses on attainment of a certain critical size. 

A defect of quite a different type - a prismatic dislocation loop - arises (Fig. 5.2b). 

This lattice defect will be discussed in more detail in Sect. 5.3. Here, we shall only 

note that the T-shaped symbols in Fig. 5.2b indicate the breaking off of the 

atomic plane. Hereafter we use these symbols for schematic description of the 

dislocation structure of a crystal. 

Passing on to interstitial atoms it should be mentioned that this term is not 

quite suitable. Interstitial atoms are far from being always settled in interstices 
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a b c 

Fig. 5.2a-c. Formation of prismatic 
dislocation loops, (a) Flat vacancy 
pancake; (b) vacancy loop; (c) inter¬ 
stitial loop 
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Fig. 5.3. Interstitial atom in a dumbell 
configuration [(110) plane of an fee lattice] 
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Fig. 5.4. Crowdion along the <110) axis. The 
{001} plane of an fee lattice is shown 

characteristic of the lattice of a given crystal. In face-centered-cubic metals, for 

example, an interstitial atom is not incorporated into tetrahedral (1/4, 1/4, 1/4) 

or octahedral (1/2, 1/2, 1/2) interstices, but displaces some atom from its lattice 

site (see Fig. 5.3), forming a pair (dumbbell) with it oriented along one of the 

<100) directions. In bcc metals, interstitial dumbbells also arise, but in the 

<110) direction. Both in fee and bcc metals the interstitial atoms can form 

configurations of another type, so-called crowdions. An example of a crowdion 

in a bcc metal is presented in Fig. 5.4. A single extra atom is located over a length 

of several interatomic distances in the <110) direction. Plane clusters of inter¬ 

stitial atoms (Fig. 5.2) form dislocation loops similar to those formed upon the 

collapse of plane clusters of vacancies (but of opposite sign). 

In crystals consisting of atoms of several sorts, the atoms occupying lattice 

sites of a foreign sublattice may serve as point defects. An increase in the 

concentration of such defects corresponds to the initial stage of disordering. 

5.2.2 Role of Impurities, Electrons, and Holes 

Impurity (foreign) atoms, both incorporated into interstices and located at 

lattice sites, are themselves point defects of the lattice and affect the 

concentration of the intrinsic lattice defects considerably, sometimes increasing 

their concentration by several orders of magnitude. Thus, in pure crystals of 
NaCl the concentration of vacancies FNa and VCI is determined from the mass 

action law for the reaction of the formation of Schottky defects 

[FNa] [FC1] = A exp( — U/kT). (5.17) 
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From the condition of electric neutrality 

[^Na] = [KC1] = yJ~A exp( - U/2kT). (5.18) 

Comparing the above expression with (5.3) and considering that in a NaCl 

crystal the number of lattice sites for Na and for Cl is the same, i.e., 

IVi = N2 = N, we find that in our case A = 1. 

In a NaCl crystal with a CaCl2 impurity the Ca2+ ions replace Na+ and 

must be additionally neutralized by cation vacancies FNa (the formation of 

interstitial Cl" ions is energetically less favourable). The condition of electric 

neutrality takes the form 

[^Na] = [f/c.] + [Ca2 + ], 

and from (5.6) there follows for the concentration of cation vacancies 

[CNa] = i[Ca2 + ] + Vi[Ca2 + ] + >4exp (-U/kT). (5.19) 

As the temperature decreases, the concentration of [FNa] approaches that of the 

impurity, while the concentration of [FC1] becomes lower than in pure crystals 

of NaCl. The effect of the impurity on the vacancy concentration becomes 

negligible only in the case of high temperatures and slightly doped crystals, 

when the concentration of Schottky defects exceeds that of the impurity. For 

heavily doped crystals, up to the melting point, the concentration of cation 

vacancies is equal to that of a divalent impurity, and anion vacancies are 

practically absent. 

The change in concentration of anion and cation vacancies on doping 

sharply affects the electrical and mechanical properties of crystals. The ionic 

conductivity usually depends on one of the types of vacancies. Therefore the 

investigation into the temperature behaviour of the ionic conductivity of crystals 

helps to find the vacancy concentration and to determine, with the aid of 

equations of the type (5.19), the concentration of impurities of other valencies. 

During plastic deformation, dislocations sweep out charged vacancies and set 

up considerable volume and surface charges in the crystal (A. V. Stepanov's 

effect). These charges, in turn, exert the determining effect on deformation and 
fracture. 

The neutralization of charged point defects can be achieved not only with the 

aid of other lattice defects, but also by using the corresponding disturbances in 

the electron structure of the crystal, predominantly electrons in the conduction 

band or holes in the valence band. In the former case, a charged point defect 

serves as an acceptor (the capture of an electron produces a hole in the valence 

band capable of migrating through the crystal), and in the latter, as a donor (an 

electron is added in the conduction band). In semiconductors, the value and type 

of conductivity can be controlled in this way. 

In ionic crystals, complexes of point defects of electrons and holes form 

different color centers. The simplest example is an F center, which is an anion 

vacancy compensated by an electron smeared over all the surrounding cations. 
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Schemes of the structure of some other color centers in ionic crystals will be 

discussed in [Ref. 5.1, Chap. 15]. 

5.2.3 Effect of External Influences 

As a rule, point defects can occupy several equivalent configurations in the unit 

cell of a crystal. Under external influences defects gradually assume positions 

which have become energetically more favourable (for instance, the dumbbells 

of the interstitial atoms turn to lie along the extension axis). An induced 

anisotropy arises, which does not disappear at once upon termination of the 

external influence. The crystal “memorizes” the direction of the external 

influence for a certain time, responding with delay to each influence by the 

appropriate redistribution of the point defects. This is called the effect of 

orientational or directed ordering. It is also observed in internal friction (Snoek 

effect), elastic and magnetic aftereffect, stabilization of magnetic and 

ferroelectric domains (defects capable of reorienting help the domain to 

memorize the direction of polarization), and rubberlike elasticity of 

polysynthetic twins and martensitic alloys (on heating, a crystal spontaneously 

resumes the shape lost as a result of previous deformation). 

External influences may lead not only to redistribution of point defects, but 

also to the appearance of new defects in concentrations greatly exceeding the 

thermodynamic equilibrium value. The nonequilibrium concentration of point 

defects can be attained (frozen) in the course of rapid quenching from a high 

temperature. 

During the growth of crystals from the melt, nonequilibrium defects have 

no time to diffuse to the crystal surface and either settle on dislocations or 

precipitate (coagulate) in the crystal bulk, forming various clusters. In large 

dislocation-free silicon ingots, clusters of interstitial atoms are the main source 

of deterioration in crystals and devices based on them. The thermal stability and 

yield stress of such crystals directly depend on the size of prismatic dislocation 

loops arising on the basis of interstitial clusters. 

If a change in crystal temperature is accompanied by the decomposition of 

the solid solution, the impurity atoms leaving the lattice sites strongly increase 

the vacancy concentration (and those leaving interstices, the concentration of 

the interstitial atoms). The concentration of the vacancies (or the interstitial 

atoms) then increases until the decomposition of the solid solution ceases or 

until the point defects begin to coagulate. In a wide range of ionic crystals, the 

heating results in such a rapid increase in the number of cation Frenkel pairs 

that this process can be interpreted as a phase transformation with a shift of the 

cations to interstitial positions. The number of allowed interstitial positions 

usually greatly exceeds the number of ions in the unit cell, the cations are 

distributed statistically among these positions and move through the crystal 

very easily, thus ensuring a very high (10“2 cm-1 and higher) ionic con¬ 

ductivity. Both in the phase transformation and in the passage of the ion current, 

cooperative phenomena play a substantial role; the cations “help” each other to 
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move to interstitial positions in the former case, and to migrate from one 

interstice to another in the latter. Typical examples of this class of crystals, which 

are referred to as superionic (or solid electrolytes) are zirconium oxide, silver 

iodide, silver chalcogenides, copper halides, sulphates of univalent metals, poly- 

aluminates, and various compounds based on them. 

In the course of plastic deformation, extra vacancies and interstitial atoms 

are produced by the intersection of dislocations, decomposition of dislocation 

dipoles, and nonconservative motion of dislocations [Ref. 5.4, Chap. 12]. Prefer¬ 

red formation of both vacancies (for instance, in torsion of plastic crystals) and 

of interstitial atoms (on uniaxial deformation at high stresses and moderate 

temperatures) may take place, depending on the deformation conditions. In the 

former case the activation energy of the process of plastic deformation may be 

reduced to the energy of vacancy migration, and in the latter it may be increased 

to the energy necessary for the formation of interstitial atoms. 

A high concentration of point defects of various types can be achieved by 

irradiating a crystal with fast particles, as well as with X- and gamma rays. In 

materials used in critical parts of nuclear reactors, up to 1016-1017 new Frenkel 

pairs per second appear in each cubic centimeter, i.e., each atom is knocked out 

of its lattice site more than once a week, on the average. Further, the interstitial 

atoms and vacancies recombine, settle on dislocations, and also coagulate with 

the formation of new dislocation loops and pores. Mass formation of pores 

results in radiation swelling of the material. The volume of the construction 

elements then changes by tens of per cent. The main cause of swelling is a small 

(about one per cent) difference in the interstitial and vacancy fluxes towards 

dislocations. Since interstitial atoms are stronger dilatation centers than va¬ 

cancies, they are preferentially segregated on dislocations, whereas the vacancies 

are preferentially absorbed by pores. The swelling reduces if the interstitial 

atoms are captured by impurity atoms and have time to recombine with the 

vacancies and also if the pores form a regular lattice (usually an fee lattice in fee 

metals or a bcc lattice in bcc metals). When some anisotropic crystals, especially 

fissile ones, are irradiated, the crystals change their shape considerably (up to 

1000%) without an appreciable change in their volume. This phenomenon, 

which is called the radiation growth of crystals, is due to the diffusion transport 

of atoms from planes with one orientation to planes with another. The dissolu¬ 

tion and growth of atomic planes is achieved through the precipitation of 

vacancies and interstitial atoms, respectively, on dislocations. The selection of 

the direction of radiation growth depends on the anisotropy of 1) the elastic 

fields of differently oriented dislocations, 2) the elastic field of the cascades of 

radiation defects due to fast particles, and 3) the interaction of point defects with 

dislocations. The chemical composition of the material changes under irradi¬ 

ation because of nuclear reactions; transmutant atoms appear, which can be 

regarded as new point defects. By such radiation doping it is possible to control 

the amount of the donors and acceptors in semiconductors. Among other 

examples of defects of typically radiation origin, mention should be made of the 

thermal peak (the region of local superheating in which the atoms experience 
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high-amplitude vibrations for some time) and the displacement peak (a small 

region with a completely disordered crystal lattice). These peaks may be the 

source of Frenkel defects, crowdions, pores, and dislocation loops. 

5.3 Dislocations 

Dislocations in crystals are specific linear defects disturbing the regular 

alternation of the atomic planes. In distinction to point defects, which disturb 

the short-range order, dislocations disturb the long-range order in a crystal, 

distorting its entire structure. A crystal with a regular lattice can be depicted as 

a family of parallel atomic planes (Fig. 5.5a). If one of the planes breaks off inside 

the crystal (Fig. 5.5b), its edge forms a linear defect, which is called an edge 

dislocation. Examples of edge dislocations arising on collapse of a vacancy 

pancake or on incorporation of a layer of interstitial atoms are given in Fig. 5.2. 

Figure 5.5c illustrates another simple type of dislocation, the screw dislocation. 

Here, none of the atomic planes terminates inside the crystal, but the planes 

themselves are only approximately parallel and merge with each other so that 

the crystal actually consists of a single helically bent atomic plane. On each 

circuit around the dislocation axis this “plane” ascends (or descends) by one 

screw pitch equal to the interplanar distance. The axis of the helical stair forms 

the dislocation line. 

5.3.1 Burgers Circuit and Vector 

The principal geometric characteristic of a dislocation is the so-called Burgers 
vector. To find the Burgers vector, one must compose, from translation vectors, 

a circuit so that it would close in the ideal lattice. Then this (Burgers) circuit, 

constructed around the dislocation line, is broken (Fig. 5.6). The translation 

vector drawn to close both ends of the circuit is called the Burgers vector of the 

dislocation. It can be ascertained that the Burgers vector is independent of the 

concrete choice of the Burgers circuit (it suffices to take into account that all 

the circuits which do not enclose the dislocation remain closed). In the case of an 

Fig. 5.5a-c. Arrangement of atomic planes in the perfect crystal (a), and in the crystal with an edge 

dislocation (b) and with a screw dislocation (c) 
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Fig. 5.6a, b. Scheme for determining the Burgers vector of dislocations, (a) edge dislocation; 

(b) screw dislocation 

edge dislocation (Fig. 5.6a) the Burgers vector is perpendicular to the dislocation 

line, and its length is equal to the extra interplanar distance corresponding to the 

broken-off plane. In the case of a screw dislocation (Fig. 5.6b) the Burgers vector 

is parallel to the dislocation and equal in length to the screw pitch. At other 

values of the angle between the dislocation line and the Burgers vector, 

dislocations of mixed orientation are obtained. The choice of direction of the 

Burgers vector is conventional and depends on the choice of the direction of the 

dislocation and the direction of the scanning of the Burgers circuit. The circuit is 

usually assumed to be drawn in a clockwise direction (looking along the 

conventional direction of the dislocation), so that the dislocations in Fig. 5.6 

should be assumed directed towards the reader. The screw dislocations shown in 

Fig. 5.6b can be called left-handed; the atomic planes around them turn as 

a left-handed screw and the Burgers vectors are antiparallel to the direction of 

the dislocations. Around right-handed dislocations, the atomic planes turn as 

a right-handed screw, while the Burgers vectors are parallel to the direction of 

the dislocations. 
Generally, a dislocation is an arbitrary space curve around which the 

Burgers vector remains constant (and equal to some translation vector of the 

lattice), although the orientation of the dislocation may change. Thus, 

dislocation loop ABCDEA in Fig. 5.7 consists of an edge dislocation (more 

precisely, a segment with an edge orientation) AB, a right-handed dislocation 

BC, a mixed (“45-degree”) dislocation CD, a left-handed dislocation DE, and 

a helicoidal dislocation EA. 

Fig. 5.7. Dislocation loop with parts of 
different orientation. (AB) edge, (BC) screw 
(right-handed), (CD) mixed (45-degree), (DE) 
screw (left-handed), and (E/1) mixed 
(helicoidal) dislocation. For straight portions, 
the construction of the Burgers vector is 
sketched 
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bl b bl 

Fig. 5.8a, b. Dislocation reactions in a triple 
node, (a) node as a point of dislocation 
branching; (b) node as a merger point of three 
dislocations 

The condition for the conservation of the Burgers vector along the 

dislocation means that the dislocation may not terminate or originate inside the 

crystal (particularly on an inclusion) and must either close on itself forming 

a loop, or emerge at the free surface, or branch out to other dislocations. In the 

last case the sum of the Burgers vectors of the dislocations after the branching 

must be equal to the Burgers vector of the initial dislocation. This can be 

ascertained by constructing a Burgers circuit around all the dislocations after 

the branching point (Fig. 5.8a). By analogy with the Kirchhoff theorem for 

branching lines of electric currents, the result can be formulated as follows: if we 

assume that all the dislocations are directed towards the branching point (node), 

the sum of their Burgers vectors must be equal to zero (Fig. 5.8b). The 

construction of Burgers circuits shows that the atoms of a crystal with 

a dislocation cannot be brought into one-to-one correspondence with the atoms 

of the perfect crystal so that the neighboring atoms of the ideal lattice also 

remain neighbors in the crystal with the dislocation. Only one point in the initial 

perfect crystal corresponds to the first and last atoms in the circuit constructed 

in the real crystal. If, however, we attempt to describe the structure of the real 

crystal by assigning vectors u which define the displacement of a given atom 

from a lattice point, we inevitably find that on travelling around the dislocation 

a misfit of the magnitude of the Burgers vector b is accumulated. Assuming the 

displacement field u(r) to be continuous, we discover that the dislocations are 

branching lines of this field. In tracing any circuit around the dislocation, the 

displacement vector acquires an increment of magnitude of the Burgers vector 

(5.20) - b. 

In distinction to (5.5), tensor Uy = ujti is no longer eddy free and corresponds 

to the elastic-distortion tensor, which satisfies the following condition in 

accordance with (5.20): 

(5.21) 

i.e., the circulation of the elastic-distortion tensor around dislocations yields 

the Burgers vector. To eliminate the ambiguity in the description of the 

displacement field of the dislocation, one can construct any surface S bounded 

by the dislocation line and require that on this surface the displacement vector 
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experiences a jump by the value of the Burgers vector. This condition is 

equivalent to introducing the proper distortion 

u°j = bjdSi (5-22) 

localized on each elements dS of surface S, or the proper deformation 

eg = {bidSj + bjdSi)/2. (5.23) 

The formation of a dislocation can now be represented as the result of the 

following operations: 

a) in the perfect crystal, a cut on surface S is made; 
b) the sides of the cut are displaced by Burgers vector b, and extra atoms are 

removed or additional atoms introduced in order to close up the cut 

sides, if necessary. 

The displacement of the cut sides by the Burgers vector leads to discontinu¬ 

ity in the Burgers circuits and circulation of the elastic-distortion tensor (5.21). 

Relations (5.20, 21) show that the role played by dislocations in the theory of 

elasticity is similar to the role of vortex lines in hydrodynamics or flux lines in 

magnitostatics: the field becomes complicated, and linear singularities arise, 

characterized by the curl corresponding to the velocity vector or the magnetic 

vector. The velocity and magnetic potentials become multivalued functions of 

the coordinates which branch round the vortex and flux lines. 

In the case of dislocations the role of the potential is played by displacement 

vector «, which is found to be an ambiguous function of the coordinates and 

changes, according to (5.20), by the value of the Burgers vector on each tracing 

of a circuit drawn around the dislocation line. Determining the circulation of 

tensor according to (5.21), the dislocations serve as eddy lines of the elastic- 

distortion field. A peculiarity of dislocations in crystals is the discreteness of the 

set of possible values of the Burgers vector; from the very method for construct¬ 

ing the Burgers circuit it follows that the Burgers vector is equal to one of the 

translation vectors. In this respect dislocations in crystals are similar to quan¬ 

tized eddies in superfluid helium or quantized currents in type II superconduc¬ 

tors, for which the circulation of velocity or magnetic field must be a multiple of 

Planck’s constant. 

5.3.2 Elastic Field of Straight Dislocation 

From relation (5.20) it follows that the field of displacements around a straight 

dislocation contains the branching term 

ut = (bi/i^d, (5.24) 

which increases linearly with azimuth 9 and is indepenent of the distance to the 

dislocation axis. For a screw dislocation in an elastic-isotropic medium, (5.24) 

completely describes the elastic dislocation field. 
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In a cylindrical system of coordinates (r, 9, z) with the z axis running along 

the dislocation, only the component 

uez — b/2nr (5.25) 

is different from zero in the distortion tensor. Accordingly, in the stress tensor, 

only two components 

oz6 = Gez = Gb/2nr, (5.26) 

where G is the shear modulus, are different from zero. A similar calculation for 

an edge dislocation yields 

@rr = °ee= - Gb sin 9/2n(\ - v)r, 
^ J.Z /) 

are = Cgr — Ghcos0/27t(l — v)r 

where azimuth 9 is measured from the Burgers vector in the direction of the 

extra half plane. As follows from (5.26, 27), the stresses increase approaching the 

dislocation axis as r~1 and reach values of the order of 10"1 G at a distance of 

the order of the lattice spacing. To calculate the stress field of a straight 

dislocation in an anisotropic medium we expand the field of the proper deforma¬ 

tions of the dislocation into a two-dimensional Fourier series and use (5.11). In 

a cylindrical system of coordinates (r, 9, z), whose axis coincides with the 

dislocation line, we introduce unit vectors n and m = Sn/d9 corresponding to 

axes r and 9 and express proper distortion (5.22) as 

ufj{x) = bjmid(mkxk) {riiXi)/2 \ ntXi \. (5-28) 

Relation (5.28) implies that the cut has been made along a plane with the normal 

m, and the cut sides are displaced by half the Burgers vector; the positive (with 

respect to the azimuth) cut side is displaced by A/2 along the half plane lying on 

the side of the positive direction of unit vector n, and the remaining part of the 

cut by A/2 in the opposite direction. For wave vector k = kn, the Fourier 

component of field (5.28) has the form 

1 bjirii 

(2k)2 ik 
(5.29) 

Because of the arbitrary orientation of the cut, it can be assumed that all the 

Fourier components u?(x) have the form (5.29). Considering the symmetry of 

tensor cfjkl as regards the interchange of subscripts k and /, we substitute into 

(5.11) the proper distortion u,°k for the proper deformation e?,. For the Fourier 

components of the stress tensor we obtain 

Sij(k) 
1 cfjkl(n)bkm, 

(2n)2 ik 

The inverse Fourier transformation yields 

(5.30) 

b °° 2n 
Oij(r) = -—^2 J dk J d9m,cfjkl(n) sin(/crn) 

(2rr) o o 
(5.31) 
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CO 

0 

mjCfjkl{n) 

(n-r) 
(5.32b) 

The form (5.32a) is obtained by expanding sin (krn) into a series with respect to 

the Bessel functions and by term-by-term integration of this series. The form 

(5.32b) corresponds to the conventional replacement 

/sin(fcr • n)dk — (r • n) 1 
o 

which holds true for a sufficiently smooth integrand. 

In the elastic-isotropic case 

cfjki(n) = G Sij + 5ik5j + dHSjk (5.33) 

where, with one of the axes chosen parallel to unit vector n, subscripts i, j, k, l 

run through only two values corresponding to unit vectors orthogonal to unit 

vector n. As a result, convolution retains only the following three com¬ 

ponents of the plane tensor of elastic moduli: 

ctmzm = G; c*mmm = 2(1 - v)~xG; c* mm = 2v(l - v)_1G. 

Substituting these equations into (5.32) we can obtain the familiar equations 

(5.26, 27) for a screw and an edge dislocation in an elastic-isotropic medium. 

Since the stresses decrease with distance from the dislocation as r-1, the 

energy of the elastic dislocation field enclosed in a hollow cylinder with an outer 

radius R and an inner radius r0 depends logarithmically on R and r0, 

E = E0\n(R/r0). (5.34) 

Orientation factor E0, which depends on the Burgers vector, the dislocation 

orientation, and the elastic properties of the crystal can be calculated with the 

aid of (5.32). 
For the components of the stress tensor acting on plane P, which passes 

through the dislocation line, (5.32) must be multiplied by normal pj. Projecting 

unit vector p onto the directions of unit vectors n and m and taking into account 

that the convolution of tensor cfjkl{n) with vector n with respect to any subscript 

gives zero and that n-r = {m• p){q • r) if radius vector r and unit vector q, 

orthogonal to the dislocation, lie in plane P, we obtain from (5.32b), 

PjOij(r) =_(qry'bjBij (5.35) 

where 

Bu = 
1 

(2nf 
$ ddm^umi. (5.36) 
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Since the dislocation energy is determined by the work of stresses (5.32) on 

proper deformations (5.23) arising on the formation of a dislocation, 

E0 = biPjOijiq)/2, (5.37) 

when it follows, with due regard for (5.35), that 

E0 = biBijbj/2. (5.38) 

The calculation of the interaction energy of two parallel dislocations is quite 

similar to that for the proper dislocation energy. Suppose the former has 

a Burgers vector bw, and the latter, a Burgers vector bm. To calculate the stress 

field a\j(x) of the first dislocation we use (5.35), replacing bj by b(j\ The orienta¬ 

tion factor £12 of the interaction energy of the dislocations is numerically equal 

to the interaction force of dislocations situated at a unit distance and can be 

found by the following expression, similar to (5.37): 

E12 = (5.39) 

whence it follows, with an allowance for (5.35), that 

E12 — E2\ bVBijbW. (5.40) 

By summing the stresses caused by individual dislocations we can construct 

the stress field induced by dislocation ensembles. Thus, for a series of parallel 

dislocations lying in a common plane P, the stress tensor components acting on 

this plane are given, according to (5.35), by the sum 

PNij(x) = X 
n 

b\n)Bu 

x - x„’ 
(5.41) 

where x = (q • r) is the distance in this plane in the direction perpendicular to 
dislocations, and b(N) and x(N) are the Burgers vector and the coordinate of the 

Nth dislocation, respectively. Expression (5.40) serves as the basis for the theory 

of dislocation pile-ups, thin twins, plane cracks, and other stress sources which 

consist of rows of parallel dislocations or can be modelled by such rows (see 

Chap. 12). If the parallel dislocations are closely spaced, their distribution can be 
described macroscopically by assigning, not the coordinates of the individual 

dislocations, but their distribution density p(x) on the given portion of plane 

P = (x, y, 0). Then sum (5.41) turns into an integral, and the dislocation 

equilibrium equation into an integral equation. The dislocation density p(x) 

makes it possible to directly judge the difference between the macroscopic 

deformations and stresses on the two sides of plane P. Denoting the difference 

by brackets, we have for elastic distortions, by (5.21), 

Oij] = p(x)qibj (i, j = 1, 2). (5-42) 

Hence, for the stress difference 

[ffy] = p(x)c*k,(p)qkbl, (i,j = 1, 2, 3). (5.43) 

Equation (5.43) describes, in particular, the stress bands framing the misfit grain 
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boundaries, slip bands, twin boundaries, growth bands, and other similar crystal 

defects. 

Quite unexpectedly, (5.43) proves useful in calculating the interaction force 

of nonparallel (crossing) dislocations. Let us consider two crossing straight 

dislocations of Burgers vectors b' and bu along unit vectors t(I) and t(II), which 

make a certain angle 6 with each other and are parallel to plane P. To calculate 

the interaction force of these dislocations, we take into account the translation 

symmetry of the problem and note that the addition to the first dislocation of 

another N-1 dislocations of the same type and disposed parallel to the first one 

in the common plane with normal P increases the sought-for force F, acting on 

the second dislocation, exactly by a factor of N. Passing to the continuous 

distribution of dislocations of the first type with density p, we ascertain that 

a unit length of the second dislocation will be acted upon by a force/ = pF sin 9. 

On the other hand, according to (5.43), the second dislocation lies, in this 

limiting case, in the uniform stress field 

0$ = [>S))]/2 = pcfjuqW :)/2 (5.44) 

and experiences the following force directed along unit vector p: 

f= b\n)qlj (t\j. (5.45) 

A comparison of the expression obtained for / yields the formula 

F = (2sin0)-1hiI)^,)C^(/»)tf,)hj,) (5.46) 

which transforms, in the elastic-isotropic case (5.33) into the Kroupa equation 

F = (2 sin 0)_1 g|y^(^(I)6(,,))(<?<II)6(1I)) + (qmbw)(qmbm) 

+ (<7<VII))[(A(I,6(,,)) - (£(»(A(I»]J, 

(5.47) 

derived by integrating the interaction force along the dislocation. The plus sign 

in (5.46,47) corresponds to the repulsion, and the minus sign, to the attraction of 

dislocations. The magnitude of the force is independent of the distance between 

the dislocations, which could be predicted before the calcuations of similar 

considerations. Repulsion of crossing dislocations plays the determining role in 

the effects of elastic interaction of gliding dislocations with so-called forest 

dislocations, which cross the slip plane at different angle and interfere with 

plastic deformation. In the case of attraction, the elastic interaction stimulates 

the drawing of dislocations closer together, the formation of isolation nodes, and 
the progress of dislocation reactions. 

According to (5.34, 38) the elastic energy per unit length of dislocation is 

proportional to the product of the elastic modulus by the square of the Burgers 

vector and depends logarithmically on the inner and outer truncation radii r0 

and R. The inner radius corresponds to a region of the order of several 

interatomic distances, which is called the dislocation core, where the lattice 
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distortions are large and cannot be described in terms of the theory of elasticity. 

The energy density of the dislocation core may reach a value of the same order 

as the latent heat of fusion of the crystal; therefore, sometimes dislocations with 

a hollow core are formed. The dislocation energy is made up of the energy of 

inelastic distortions in the dislocation core and the energy of elastic deforma¬ 

tions around the dislocation. As a rule, the basic contribution comes from the 

second term, which can be estimated by assuming the value of R in (5.34) to be of 

the order of the crystal radius, and the value of r0, of the order of the radius of 

the dislocation core (it is usually taken that r0 ~ b). The dislocation energy is 

about 0.5 Gb2 per centimeter of dislocation length, which corresponds to one or 

several electronvolts per interatomic distance. 

5.3.3 Dislocation Reactions 

As dislocation energy is proportional to b2, one can formulate a simple rule for 

evaluating the energetic advantage of the formation of different types of disloca¬ 

tions. Suppose, for instance, that a dislocation has a Burgers vector (by + b2), 
where by and b2 make an acute angle, i.e. (by • b2) > 0. Then (by + b2)2 > b\ + b\, 
and (neglecting the effect of the elastic anisotropy on the dislocation energy) the 

total energy of two dislocations with Burgers vectors by and b2 turns out to be 

lower than the energy of the initial dislocation. In particular, dislocations with 

a large Burgers vector find it energetically favorable to split into several unit 

dislocations with Burgers vectors equal to one of the minimum translation 

vectors. Although crystal growth is sometimes accompanied by the appearance 

of giant dislocations with a Burgers vector equal to several tens and hundreds of 

lattice spacings, the main bulk of dislocations in crystals consists of dislocations 

of unit strength and the specific dislocation structure of a given crystal strongly 

depends on the set of minimum translation vectors. In crystals of the type, Csl, 

for instance, the minimum vectors of translation a <100) are arranged along the 

edges of the unit cube. It is easy to see that in these crystals dislocations cannot 

form triple nodes of the type depicted in Fig. 5.8: dislocation reactions (branch¬ 

ing and dislocation fusions) can proceed only with the participation of at least 

four dislocations according to a scheme of the type by + b2 *=> b3 + b^. In face 

centered cubic crystals and in crystals with a diamond lattice the minimum 

vectors of translation a/2 <110) form the tetrahedron shown in Fig. 5.9 (the 

D 

c 

Fig. 5.9. Thomson tetrahedron. The tetrahedron edges correspond to 
the minimum translation vectors a/2 <110). Points a, (I, y and <5 lie at 

the centres of the tetrahedron faces 
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Thompson tetrahedron). The edges of each face of this tetrahedron correspond 
to a reaction of the type 

(a/2) [llO] + a/2[011] (a/2) [101] 

(for instance, AB + BC = AC for face (5), which ensures the possibility of the 

appearance of a dislocation net with triple points, and also of two dislocations 

merging into one. The energetic advantage of such a reaction follows from the 

calculation of the sum of the squares of the Burgers vectors: before the reaction 

b\ + b2 = a22 + a2/2 = a2, and after it b2 — a2/2, which corresponds to halving 
the energy. 

By taking into account the effect of the elastic anisotropy on the dislocation 

energy one can carry out a more comprehensive analysis of the dislocation 

structure of the crystal. By calculating the orientation factor of different direc¬ 

tions of the dislocation it is possible to construct the indicating surface charac¬ 

terizing the energetic advantage of differently oriented dislocations. As in the 

analysis of the anisotropy of the surface with the aid of the Wulff diagram 

[Ref. 5.3, 1, Chap. 9], it is convenient here to construct the indicating surface for 

the value Eq 1. Then the surface points farthest from the center define the most 

favorable orientations of the dislocation in an infinite crystal. The concave parts 

of the surface correspond to energetically unstable orientations. The disloca¬ 

tions disposed along these directions acquire a zigzag shape, and the orientation 

of the straight segments making up the zigzags corresponds to the ends of the 

concave parts (more precisely, to the points lying on the common tangent to 

indicating surface £q 1). It can also be shown that the equilibrium orientation of 

dislocations intersecting the surface of the growing crystal corresponds to those 

points of the surface Eq 1 which are determined by the normal parallel to that of 

growth surface, and during the crystal growth the angular dislocations can only 

arise on faces whose orientation corresponds to the concave parts of the sur¬ 
face Eq 1. 

The construction of indicating surfaces corresponding to different compo¬ 

nents of tensor (5.36) enables one to investigate the energetic advantage of 

such dislocation configurations which simultaneously involve dislocations with 

different Burgers vector. Thus, two dislocation rays with Burgers vectors bw 

and b(2) having their origin in a common dislocation node do not affect one 

another if, and only if, their orientations correspond to points with a common 
tangent on the indicating surface [h)1)B0fif2)]“1. 

5.3.4 Polygonal Dislocations 

The above statements concerning equilibrium configurations of dislocation 

nodes, angular dislocations, and dislocations intersecting the free surface of the 

crystal are based on investigations of the relevant three-dimensional elastic 

fields. At the vertex of an angular dislocation, at the node, or at the point of 

emergence of the dislocation at the free surface a specific feature of an elastic 

field arises: along the rays issuing from the pole, the stresses and deformations 



5.3 Dislocations 351 

are inversely proportional to the distance. Accordingly, the forces F of inter¬ 
action and self-action of the dislocations also vary as r-1, and the moments of 
these forces with respect to the pole 

m — r x F (5.48) 

are independent of the distance and are determined exclusively by the orienta¬ 
tion of the dislocation ray. This permits us to dispense with unwieldy calculation 
of the intricate three-dimensional field and to investigate directly the orienta¬ 
tional dependence of the interaction and self-action moments of the dislocation 
rays. The most effective method for solving such probems, based on taking into 
account the similarity and symmetry of elastic fields induced by differently 
oriented dislocations, is called the straight-dislocation technique. Regarding 
dislocations of any configuration we only have to know that the small element of 
the dislocation line, when viewed from point M at angle dcp, makes the following 
contribution to the component u, under investigation, of the stress tensor or the 
distortion tensor 

du(M) = <p(^^-, (5-49) 

where r is the radius vector of the dislocation element, which is measured from 
observation point M. Orientation factor <P{r/r) depends on the crystal aniso¬ 
tropy and can be described by an arbitrary antisymmetric directional function, 
i.e., <P(r/r) — — <P( — r/r). Two important conclusions follow from (5.49): 

a) the dislocation segments lying along the beams issuing from point 
M make no contributon to w(M); and 

b) the summation of the contribution of dislocation lying in one plane P and 
possessing an identical Burgers vector b amounts to the summation of 
reciprocal distances r_1, and all the dislocations r^1 ((p), where i is the 
dislocation number and (p is the azimuth in a polar system of coordinates 
with center at the observation point, can be replaced by a single disloca¬ 

tion whose shape is given by 

r{(p) = !>,)» (5.50) 

When summing the reciprocal distances, it is necessary to ascribe to function 
r(7( 1 (cp) a sign depending on that of the dislocation, assuming, for instance, the 
elements directed towards increasing azimuth cp to be positive. 

Considering that the equation of a straight line in polar coordinates has the 

form 

r l—X 1cos((p — (p0) (5.51) 

and that the summation of expressions of the type (5.51) again yields an 
expression of the same type, we conclude that the equivalent source of stresses 
for polygonal dislocations is a polygonal dislocation. According to (5.50) the 
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form of this dislocation is defined by the following simple rules: 

Rule 1. All the nonintersecting segments remain unmoved. 

Rule 2. The point of intersection of like (with respect to their direction) disloca¬ 

tions approaches the observation point by half the distance. 

Rule 3. The point of intersection of unlike dislocations recedes to infinity. 

Using these rules, it is possible to express the elastic field of polygonal 

dislocations lying in a common plane P via the field of straight dislocations lying 

in the same plane. (Observation point M must then also lie in plane P). Let us 

consider, for instance, an antisymmetric dislocation cross consisting of two 

semiinfinite rays issuing from point 0 at azimuths ot1 and n + ct1, and two rays 

entering point O at azimuths a2 and n + oc2- For observation point M deter¬ 

mined by radius vector r = OM with azimuth cp the elastic field of the antisym¬ 

metric cross is equivalent to the field of a single straight dislocation A with 

azimuth cp located at a distance d = rsin(cp — (x1)sin((p — a2)xcosec(a1 — a2). 

If we add to the antisymmetric cross two straight dislocations B and C with 

azimuths oq and a2 passing through pole O, the cross will turn into an angular 

dislocation with a doubled Burgers vector. The elastic field of this dislocation at 

observation point M will coincide with the sum of the fields of three straight 

dislocations A, B, and C with a single Burgers vector. With the aid of (5.35) the 

obtained result for the field of the angular dislocation can be written as follows: 

(5.52) 

where Btj{a) stands for tensor (5.36) of a dislocation lying in plane P at azi¬ 
muth a. 

A plane dislocation node consisting of n rays issuing from the common pole 

O at azimuths ak which possess Burgers vectors b(k) can be composed of 

n angular dislocations with Burgers vectors b(k). Performing the appropriate 

summation of expressions of the type (5.52) with due regard for the vanishing of 
the sum of all the vectors b(k\ we obtain 

(5.53) 

In a similar way, a polygonal loop can be composed from angular dislocations. 

If the loop apices are specified by radius vectors r(k) with azimuths cpk, the 

summing of expressions (5.52) gives for stresses at the origin 

(5.54) 

where afc+ and ak are the azimuths of the polygon sides which adjoin the fcth 
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vertex (transition from ak to ak+ is performed in the direction of increasing 
azimuth). 

The calculation of the interaction and self-action forces of the dislocation 

requires a limiting transition cp -» <xk for convolutions of the type bia^pj. Then in 

the formulae the expressions of the type (5.38, 40) appear as well as the 

derivatives with respect to dislocation direction. For the moment acting on the 

ith ray of the dislocation bundle from the side of the ;th ray we get from (5.52) 

jVftfN-j) £(i)0)(oq) cosec (oq - otj) + £(i)(j)(a{)ctg(oq - a,-) 

(5.55) 

where £(i)(J) is the orientation factor (5.40) for the interaction of parallel disloca¬ 

tions with Burgers vectors bM and b(j). Moment (5.55) reduces to zero if the 

following condition is met: 

0 
E(i)U){Xj) = sin (a,- - a,-) — [cosec (a, - oq) £(i)(j) (oq)]. (5.56) 

The tangent to polar diagram £(7)(j)(a), constructed at the point with azi¬ 

muths oq, intersects, subject to condition (5.56), the diagram at the point with 

azimuth oq. Hence it is clear that the ith and ;'th rays do not interact only when 

a common tangent top diagram E[i)lJ) passes through the points with azimuth oq 

and oq. In the particular case n = 2, the so-called first Lothe theorem on the 

moment of interaction of the arms of an angular dislocations follows from (5.55): 

the arm with azimuth (xx is acted upon by the moment 

0 

M12 = £0(a2)cosec(at - a2) - £0(ai)ctg(a1 - a2) + -r- £0(«i)- (5-57) 

Since the equilibrium of the two arms of an angular dislocation requires the 

fulfillment of condition Ml2 — M2i = 0, corner points on the dislocation arise 

if, and only if, there is a well on the indicating surface Eq 1 (a). The equilibrium 

orientation of the arms of an angular dislocation corresponds to the azimuths of 

the points lying on the common tangent to diagram Eq ^a). The sectors of 

forbidden dislocation orientations lie between these points in diagram Eq1 (a). 

Dislocations whose average azimuth occurs in such a sector acquire a zigzag 

shape, so that the orientation of the arms of the angular dislocations corres¬ 

ponds to the boundaries of the sectors of the forbidden orientations. For a large 

number of crystals of different symmetry, the orientational factors £0(a) have 

been calculated both analytically and numerically, the sectors of forbidden 

orientations have been determined, and good agreement of theory with experi¬ 

mental data has been obtained on zigzag and polygonal dislocations with stable 

corner points. 
For a dislocation parallel to the crystal surface the stress relaxation on this 

surface gives rise to a force pushing the dislocation out of the crystal. The force is 
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found to be exactly equal to that of interaction of the given dislocation with 

the “image dislocation” obtained by mirror mapping of the dislocation from the 

surface. Using (5.38), we obtain for the image force per unit length of the 

dislocation 

F = {2d)-1biBijbJ = d-1E0, (5.58) 

where d is the distance to the surface. The analog of force (5.58) is the interaction 

force of the dislocation with a grain, phase, or twin boundary. For a dislocation 

spaced distance d from the boundary of an anisotropic bicrystal, 

F = d~1(E0 — Es), (5.59) 

where E0 is orientation factor (5.38) for a dislocation in an unbounded medium 

with the same elastic moduli as in a semiinfinite medium containing the disloca¬ 

tion, and Es is the orientation factor of an identical dislocation placed on the 

interface. At Es = 0, (5.58) follows from (5.59) as a particular case. These 

interaction forces of dislocations with interfaces manifest themselves most 

prominently in whiskers and thin films, where they may reach values of several 

per cent of Gb and lead to effectively pushing the dislocations out of the crystal 
or, conversely, pulling them into the crystal. 

If a dislocation intersects the free surface of a crystal, the stress relaxation on 
the surface gives rise to an orienting moment 

0 
M = cos a — [£0(a) sec a], (5.60) 

where azimuth a is measured from the normal to the surface (second Lothe 

theorem). If the self-energy of the dislocation is independent of the direction, 

moment (5.60) orients the dislocation perpendicularly to the surface. Equilib¬ 

rium orientations of dislocations are generally found by drawing tangent planes 

to indicating surface Eq1^). Indeed, the vanishing of moment (5.60) corres¬ 

ponds to the minimum of linear energy E0(<x)-sec a per crystal layer of unit 

thickness, or the maximum of quantity Eo^-cosa corresponding to the 

maximum distance from the center of polar diagram Eq 1 (a) to a plane parallel 

to the crystal surface. The reliability of the theoretical prediction of the equilib¬ 

rium orientations of dislocation rays arising during the synthesis of crystals was 

checked most thoroughly in practice by comparing data on the orientation of 

dislocations as obtained with the aid of X-ray diffraction topography with the 

calculation results. Discrepancy between theory and experiment was observed 

only when surface Eq 1 (a) had flattened areas and, hence, taking into account the 

elastic part of the dislocation energy did not ensure the finding of energetically 

favorable orientations. Usually, deviations from theory can be explained by the 

effect of the orientation on the energy of the dislocation core. 

Inspection‘of dislocations in nonplastic crystals (quartz, calcite, fluorite, 

topaz, diamond, etc.) shows that nucleation of dislocations during crystal 

growth usually occurs on small inclusions, and that the dislocations acquire 

a V shape. The apex of the V accommodates the inclusion, the sides of the 
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V form dislocation rays terminating on the growth surface. It is easy to see that 

the configuration described requires that (5.60) should have two solutions 

M(a) = 0 corresponding to different azimuths and, consequently, diagram 

EoX(y) must have two points with tangents of the same orientation. Since this is 

impossible if surface £0“ is convex, it can be concluded that F-shaped 

dislocations arise only when indicating surface Eq J(a) contains concave por¬ 

tions, and they form at those orientations of the growth surface which corres¬ 

pond to the sectors of forbidden orientations of dislocations. In the case of 

quartz and calcite this prediction of anisotropic dislocation theory has been 
confirmed by experiment. 

5.3.5 Curved Dislocations 

The diagram technique for polygonal dislocations used in the preceding section 

can be generalized for the case of curved dislocations. Although (5.54) can be 

used directly for numerical calculations of the elastic field of a plane dislocation 

loop, the construction of the field of an elementary source (5.49) is of definite 

interest. We proceed from expression (5.52) for the angular-dislocation field and 

take the limit at cp -*■ a2. Putting oq = a and a2 = (p, we have 

PjCTijir, <jp) = - (bj/2d) <fly(a) + £;,(<p)cos(<p - a) 

(5.61) 

where d = r sin (a — cp) is the distance from the observation point to a arm with 

azimuth a = oq. Field (5.61) can be interpreted as the field of dislocation arm 

with azimuth a, since the second arm of the angular dislocation, which is 

directed along the radius vector of the observation point, does not, by (5.49), 

make any contribution to the elastic field at the observation point. Elementary 

source (5.49) corresponds to the difference of two proximate angular disloca¬ 

tions so arranged that their vertices lie on a common arm with azimuth a, while 

the second arms, when extended, pass through the observation point. The field 

of this source is found by differentiating (5.61) with respect to azimuth cp, which 

yields 

(5.62) 

Comparing (5.62) and (5.49) and taking into account that d<p in (5.49) corres¬ 

ponds to the change in the azimuth of a point lying on the dislocation, rather 

than in the azimuth of the observation point, we obtain for the orientation factor 

of the elementary source 

(5.63) 
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Hence, for the field of a plane closed loop considered in the plane of the loop, the 

following Brown formula follows: 

PjOij{x) = (bj/2) Bij(cp) + (5.64) 

where r = |x — x'| is the distance from the observation point x to point x' 

running through the loop contour, and cp is the azimuth of the radius vector 

r = x — x'.ln particular, for the self-action force follows 

F(x) = biOijPj 
dcp 

r 
E0((P) + (5.65) 

where point x is located on the loop contour. It is significant that the elastic field 

of the loop (5.64) is built up of the fields of dislocations disposed, not along the 

tangents to the loop, but along the secants passing through the observation 
point. 

The results obtained can be generalized for the three-dimensional case by 

passing from the consideration of stresses (5.35) acting on the plane containing 

the dislocation line to the study of all the components of the elastic field of the 

dislocation and, accordingly, from the derivatives with respect to the azimuth in 

a fixed plane to those with respect to directions along arbitrarily oriented 

vectors. In place of (5.61) we have for the dislocation ray 

«(*) = T) “ T« 
_d_ 

0Xa 
u(t, x)]. (5.66) 

Here, u(x) is any component of the stress, deformation, or distortion tensor; 

radius vector x is measured from the apex of the angular dislocation to the 

observation point; u(x, r) is the field of the dislocation passing through the 

origin in the direction of vector t. From (5.56) it follows for an arbitrary (not 
necessarily plane) polygonal loop 

u(x) = (4* + 1) ~ 4k))^- 0(x(* + 1) - x<*>, x - x(k + 1)) 

4=1 ** (5.67) 
— u(x(fc + 1) — x(k), x — xw)]. 

The limiting transition to a curved space loop gives 

«W = ^V,g^-«(T.V-X)iS, (5.68) 

where ds{x') is an element of the dislocation loop disposed along unit vector 

t(x'). Accordingly, the orientation factor of the elementary source has the 
following form instead of (5.63): 

02 

u(r, r). (5.69) 
1 

W = x ray 
2 oxacx p 
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Assuming u = we obtain the following general formula for the stress field 

of an arbitrary dislocation loop from (5.68) 

1 f 32 
~ ——Gijir, x' - x)ds 
^ 0 X/? 

(5.70) 

which is called the Indenbom-Orlov equation. 

5.4 Stacking Faults and Partial Dislocations 

The ordinary (perfect) dislocations with a Burgers vector equal to that of lattice 

translation, which were discussed in Sect. 5.3, are purely linear defects. The 

atomic structure of the crystal around them in any local area corresponds to an 

elastically distorted structure of the perfect crystal. Quite a different type of 

dislocation is formed by the boundaries of stacking faults terminating inside the 

crystal. Imagine the structure of a monatomic close-packed crystal in the form of 

the successive layers of spheres (Fig. 5.10). Each next layer can be stacked on the 

substrate, where the spheres occupy positions A, in two ways B and C. Layer 

B can be covered by A or C, and layer C by A or B. The face-centered-cubic 

structure corresponds to the sequence . . . ABCABC . . . , and the hexagonal 

close-packed structure to . . . ABABAB .... 

By reversing the normal alternation of atomic planes we obtain a mirror- 

symmetric configuration, i.e., a twin. Thus, sequence . . . ABC j BAC . . . cor¬ 

responds to the twin boundary along (111) in the face-centered-cubic lattice 

(the arrow indicates the position of the boundary). In the case of a twin inter¬ 

layer the sequence of stacking at the second interlayer boundary is reversed 

again. 
In the limiting case of a single-layer twin of the type . . . ABC j B ] CAB . . . 

we have only one irregularly stacked layer, which is an intrinsic-type stacking 

fault. Such a defect appears either when one layer is withdrawn from a face- 

centered cubic crystal as in Fig. 5.2a, b (i.e. the atoms in this layer are replaced by 

vacancies, and then the formed slit closes) or when a layer and all layers above it 

are shifted to the adjacent position (for instance, if layer A lying on layer C is 

A A 
Fig. 5.10. Close packing of atoms in cubic and hexagonal 
crystals 
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moved to position B). A double-layer twin of the type . . . ABC j BA f BCA . . . 
forms a stacking fault of the extrinsic type and is obtained by forcing an extra 

plane into the crystal (assembling interstitial atoms in the same plane as in 

Fig. 5.2c). 
The edges of stacking faults which break off inside the crystal form linear 

defects, which are called partial dislocations. For a partial dislocation the misfit 

of the ends of the Burgers circuit corresponds to a displacement of atomic layers 

on contraction (or expansion) of the area occupied by the stacking fault. 

Therefore the Burgers vector of a partial dislocation constitutes only a fraction 

of the minimum translation vector. 
Figure 5.11 illustrates diagrammatically the structure of partial dislocations 

in a face-centered-cubic lattice. The edge of an intrinsic-type stacking fault forms 

a dislocation either with a Burgers vector a/2 <112) lying in the plane of the 

fault (Shockley dislocation, Fig. 5.1 la) or a dislocation with a Burgers vector a/3 

<111) perpendicular to the fault plane (negative Frank dislocation, Fig. 5.11b). 

The edge of an extrinsic-type stacking fault always forms a positive Frank 

dislocation (Fig. 5.11c). On a Thompson tetrahedron (Fig. 5.9), the Burgers 

vectors of partial dislocations correspond to segments joining the vertices of the 

tetrahedron to the centers of the adjacent (for Shockley dislocations) or oppo¬ 

site (for Frank dislocations) faces. It can be clearly seen that the length of all 

these vectors is less than that of the minimum translation vectors corresponding 

to the edges of the Thompson tetrahedron. 

In crystals permitting the formation of stacking faults, perfect dislocations 

lying in close-packed planes can split into partial dislocations bounding ribbons 

of stacking faults. For instance, a dislocation with a Burgers vector AB lying in 

the d plane of the Thompson tetrahedron can split into two Shockley disloca¬ 

tions 

AB = AS + SB 

(see Fig. 5.12). A similar dislocation lying in the /? plane can split into a Shockley 

and a Frank dislocation 

AB = A/i + pB. 

In both cases the intermediate stacking faults linking partial dislocations are of 

the intrinsic type. When two dislocations with Burgers vectors Ay + yB and 

Fig. 5.11a-c. Partial dislocations in an fee crystal, (a) Shockley dislocation; (b) Frank negative 
dislocation; (c) Frank positive dislocation. Stacking faults are hatched 
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Fig. 5.12. Splitting of a total dislocation 
into partial Shockley dislocations. The 
stacking fault is hatched. Burgers vectors 
are denoted by arrows. The corresponding 
translation vectors are given in the left- 
hand side on the atomic scheme 

Fig. 5.13a, b. Formation of the 
Lomer-Cottrell barrier. Split disloca¬ 
tions in intersecting splitting planes 
y and <5 (a). “Dislocation top” 
(Lomer-Cottrell barrier) (b). Stacking 
faults are hatched 

BS + SC split in slip planes y and 5, respectively, meet according to the scheme 

of Fig. 5.12, the partial dislocations with Burgers vectors yB and BS merge 

together according to the reaction 

yB + BS = yS 

to form an energetically favorable “stair-rod dislocation” of the type (a/6) 

<110). This results in a characteristic two-face defect called the Lomer-Cottrell 

barrier (see scheme of Fig. 5.13). 

In face-centered metals and crystals with a diamond lattice, stacking-fault 
tetrahedra occasionally arise from such defects. Suppose, for instance, the 

vacancies are considered into a flat layer lying in the 5 plane and bounded by 

segments parallel to AB, BC, and CA. When the vacancy layer is closed 

according to the scheme of Fig. 5.2b, a dislocation loop with Burgers vector SD 
(Frank dislocation) arises, which encloses an intrinsic stacking fault. Further on, 

the dislocations can dissociate according to the reactions 

along AB SD -> Sy + yD 

along BC SD -> Sot + aD 

along CA SD -> Sp A- fD. 

Partial Shockley dislocations with Burgers vectors yD, aD, and pD can move 

in the y, a, and P planes, respectively (see Fig. 5.14), and, meeting along the 

tetrahedron edges parallel to AD, BD, and CD, react according to schemes of the 

type of Fig. 5.13. As a result, a tetrahedron with edges from partial edge 

dislocations of the stair-rod type arises from the intrinsic stacking faults (the 

dislocation along AB has Burgers vector Sy, the characteristic of the other 

dislocations being obtained by circular permutation of the indices). 
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D 

Fig. 5.14. Formation of a tetrahedron from stacking faults 

The specific features of stacking faults and partial dislocations in a hexa¬ 

gonal close-packed structure are analyzed similarly to the above-discussed case 

of a face-centered-cubic lattice. Here we have only one system of close-packed 

planes (parallel to the base) in which stacking faults can arise. Accordingly, no 

sessile dislocations or tetrahedra from stacking faults can form in hexagonal 

close-packed metals. Stacking faults correspond to interlayers with a face- 

centered-cubic structure; a single-layer stacking fault is described by a sequence 

of stacking of planes of the type . . . ABAB \ CBCB a double-layer by 

. . . ABAB | C | AC A . . . , a triple-layer by . . . ABAB \ CA \ BA . . . , etc. (viola¬ 

tions of the sequence of stacking of the planes are indicated by separation lines). 

In face-centered-cubic metals, the collapse of single-layer vacancy “pancakes” 

shown in Fig. 5.2a gives a stacking fault surrounded by a Frank partial disloca¬ 

tion with a Burgers vector orthogonal to the plane of the loop, which means that 

the prismatic loop arising on collapse (Fig. 5.2b) corresponds to a partial 

dislocation of edge orientation. In hexagonal close packed metals such a col¬ 

lapse must be accompanied by a displacement so as to ensure tight closing of the 

atomic planes. As a result, a loop with a partial dislocation is formed whose 

Burgers vector is tilted relative to the basal plane. The collapse of a double-layer 

vacancy pancake naturally produces an edge prismatic loop, without a stacking 
fault. 

Multilayer close-packed structures permit a great diversity of stacking faults. 

Atoms in one layer or a group of layers, atoms of one or several sorts, etc., may 

be stacked irregularly. Perfect dislocations in such structures may split, not only 

into two partial (half-) dislocations, but also into four (quarter-) dislocations or 
even six partial dislocations. 

Even in comparatively simple structures, dislocations splitting simultan¬ 

eously in several equivalent or nonequivalent planes are sometimes observed. In 

particular, screw dislocations in bcc metals, when splitting, form intricate stars 

from ribbons of stacking faults, which are rearranged under external effects. If 

a screw dislocation with a Burgers vector (a/2) [111] lying in slip plane (llO) 
splits according to the reaction 

l[lll] = f[110] + l[112]+l[U0], 



5.4 Stacking Faults and Partial Dislocations 361 

three partial dislocations arise which lie in the same slip plane, the dislocation 

with a Burgers vector (a/4) [112] being situated in the center. The Burgers 

vectors of all three dislocations lie in the slip plane, therefore the split dislocation 

is a glissile one. If the initial screw dislocation splits according to the reaction 

[[in] = | D10] + ‘[ioi] + [[oil] + i[iii], 

a star arises consisting of three ribbons of stacking faults which adjoin the 

central dislocation with Burgers vector (a/4) [111]. Only one of the ribbons lies 

in slip plane (llO), thus the split dislocation is a sessile one. The transition from 

the glissile configuration to the sessile one under the effects of stresses and 

thermal fluctuations determines the mobility of the dislocations and the plastic 
properties of the crystal. 

The magnitude of the dislocation splitting depends on the stacking-fault 
energy y and can be found from the equation 

d = y~1E12, (5.71) 

where £12 is the orientation factor of the energy of interaction of partial 

dislocations bounding the stacking fault. The stacking-fault energy usually 

varies from 10 “3 Gb to 10“ 1 Gb, i.e., from several ergs per cm2 to hundreds of 

ergs per cm2. In the latter case the surface tension of the stacking fault draws the 

partial dislocations together so strongly that the distance between them is of the 

same order as the size of the dislocation core, and one should rather speak of 

the splitting of the dislocation core than of the splitting of the perfect dislocation 

into two partial ones. The stacking-fault energy changes appreciably on crystal 

alloying. In fee metals, the introduction of impurities of other valences may 

reduce y by one order or more. As the point of phase transition from the cubic to 

the hexagonal close-packed phase is approached, the stacking-fault energy tends 
to zero, and the splitting of dislocations sharply increases. 

A phenomenon similar to dislocation splitting arises in crystals of ordering 

alloys. Let us consider the simple case of ordering illustrated in Fig. 5.15. Atoms 

of two sorts A and B form two face-centered lattices inserted in one another (as 

in NaCl). When atoms A and B are interchanged, an antiphase domain will 

appear, which is a structure differing from Fig. 5.15a by a shift by the vector of 

translation a <100) of the unified cubic lattice. At the boundary of the antiphase 

domains identical atoms settle opposite each other. In the absence of disloca¬ 

tions the boundaries of antiphase domains form closed surfaces, but on each 

dislocation with a Burgers vector a <100) the antiphase boundary breaks off 

(Fig. 5.15b). Conversely, each such dislocation serves as a source of a new 

antiphase boundary and disturbs the superstructure. Thus, as a result of order¬ 

ing (or any other phase transformation with a change in the number of atoms in 

the unit cell) an ordinary perfect dislocation may turn into a partial one, whose 

Burgers vector is no longer the translation vector of the crystal in the new phase, 

and the role of the stacking fault will be played by the antiphase boundary. An 

analog of split dislocations here is “superdislocations”, i.e., dislocation pairs 
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Fig. 5.15a, b. Effect of dislocations on the superstructure due to ordering: (a) ordering in the perfect 
crystal; (b) break-off of the antiphase boundary on a dislocation 
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Fig. 5.16. Superdislocation in an ordered alloy of the 
AuCu3 type 

joined by the antiphase boundary and possessing a summary Burgers vector 

equal to the translation vector of the crystal in the new phase. As an example, 

Fig. 5.16 shows schematically the dislocations in an ordered alloy of the type 

AuCu3. An ordinary dislocation of the type (a/2) <110) disturbs the superstruc¬ 

ture and is associated with the termination of the boundary of the antiphase 

domains. Only a superdislocation with Burgers vector a <110), consisting of 

a pair of ordinary dislocations, can serve as a complete dislocation for the 

superstructure. Dislocations (a/2) <110) making up the superdislocation are 

partial dislocations for the superstructure and are related by the stacking fault, 

i.e., the antiphase boundary. 

Consideration of dislocation splitting is just the first step towards getting 

a detailed account of the atomic structure of the dislocation core, which cannot 

be rendered by assigning a Burgers vector. Many properties of dislocations, such 

as their ability to move in a crystal, to absorb and emit point defects, etc. 

[Ref. 5.3, Chap. 12], are due to various atomic-scale kinks and jogs on the 

dislocation line. Even atomically smooth dislocations with identical Burgers 

vectors may have different nuclear structures and, thus, also different properties 

if the extra plane can be broken off along crystallographically nonequivalent 

sections. By way of example we consider the diamond lattice (Fig. 5.17). Net¬ 

works {111} are here arranged in pairs, (aa'), (bb'), (cc'), etc. In each pair the 

atomic planes are spaced at 1/3 the interplanar distance between the pairs and 

are linked by'a tripled number of bonds. If we form an edge dislocation by 

inserting an extra plane from above (Fig. 5.17), the termination of this plane at 

the upper or lower network of the pair (for instance, at level b' or b) will yield 

edge dislocations with a different structure of the core and with different 
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Fig. 5.17. Structure of the diamond lattice in 
projection onto the (110) plane 

properties. In the second case, for instance, when the dislocation moves in slip 

plane {111}, three times fewer bonds have to be broken than in the first case, i.e., 

the second type of dislocation will be more mobile. The number of broken bonds 

determining the efficiency of the influence of the dislocation on the electrical 
properties of the crystal will also be different. 

In the case of equidistant atomic planes, different dislocations with an 

identical Burgers vector can also be formed. Examples are the edge dislocations 

with Burgers vectors (a/2) <110) lying in the <100) planes of the diamond 

lattice. Figure 5.18 shows the mutual arrangement of the successive networks 

{100}. It can be clearly seen that the direction of the slight shift for neighboring 

networks differs by 90°, because a fourfold screw axis, and not a simple one, runs 

along the cube edge. Accordingly, breaking off the extra plane on different 

storeys gives edge dislocations with different gliding abilities. 

In multicomponent crystals, dislocations may differ in the type of atoms 

filling the edge of the extra half plane. In crystals of InSb, for instance, both In 

and Sb dislocations, which differ drastically in their mechanical, chemical, and 

electrical properties, can be distinguished on this basis. In Fig. 5.19 the structure 

of InSb is shown in the same projection as the diamond structure in Fig. 5.17. If 

O 

O 

\®\®v 
zvv\ 
[100] 

Fig. 5.18. Structure of the diamond lattice in 
projection onto the {001} plane. Nodes of net¬ 
works located at different heights are labelled 1, 

2, and 3 

Fig. 5.19. Atomic structure of InSb in projec¬ 
tion onto the (lTO) plane. In contrast to Fig. 5.17 
the adjacent networks a and a', b and b', c and c' 
are filled with atoms of different sorts 
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Fig. 5.20. Movement of In and Sb dislocations Fig. 5.21. Preferential formation of In and Sb 
dislocations on plastic bending of an InSb beam 

we restrict ourselves to easily gliding dislocations, then in In dislocations extra 

planes must be inserted from above, and in Sb dislocations, from below. In 

a homogeneous field of stress t, In and Sb dislocations lying in parallel slip 

planes will move in different directions (Fig. 5.20). On plastic bending of a cry¬ 

stalline beam (Fig. 5.21) a crystal of InSb will contain predominantly either In or 

Sb dislocations, depending on the sign of bending (during bending the extra 

planes must naturally enter from the convex side of the beam). As a result, the 

mechanical, electrical, and chemical properties of the crystal will depend on the 
sign of bending. 

5.5 Continuum Description of Dislocations 

5.5.1 Dislocation-Density Tensor 

In a macroscopic examination of a crystal with dislocations, (5.20) must be 

applied to circuits enclosing a large number of dislocations; by b is meant the 

total Burgers vector of all the dislocations crossing the area bounded by this 

circuit. Using Stokes’s theorem, the integral relation (5.21) is rewritten in the 
differential form 

h = (5.72) 

Here, is the dislocation-density tensor describing the macroscopic distribu¬ 

tion of dislocations. The components of the ith line of this tensor are numerically 

equal to those of the summary Burgers vector of all the dislocations crossing 

a unit area perpendicular to the ith axis. The operation assigned by (5.72) and 

familiar to us from (5.21) is called the circulation of the tensor, in this case of the 

elastic-distortion tensor. Recall that elastic-distortion tensor uu is composed of 

the symmetric tensor of (macroscopic) elastic deformations (5.6) and the 

antisymmetric tensor of elastic rotations co0, which is equivalent to the axial 
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vector of rotations o (5.7) 

uu = Eij + cOij = Eij + eijka>k. (5.73) 

The diagonal components of tensor uy correspond to elastic extensions (contrac¬ 

tions) of the lattice along the coordinate axes, and the nondiagonal components 

describe elastic shears along the coordinate planes (the first subscript stands for 

the plane, and the second for the direction of the shear). If uu has been found 

from experimental (for instance, X-ray) data, the macroscopic dislocation den¬ 
sity can be calculated from (5.72). 

Using relation (5.73), we can separate out in (5.72) the dependence of the 

dislocation density on the elastic deformations and rotations of the lattice 

6 8tO; 8 cok 

Pij e‘kl dxk £° dxj Sij <jXk' 
(5.74) 

Of special interest is the case of an unstressed crystal (e(j- = 0), when (5.74) relates 

the distribution of dislocations with the lattice-curvature tensor = dcOi/dxj 

Pij ^ij bijKkk. (5.75) 

As an example, Fig. 5.22 shows a crystal plate cut out perpendicularly to the 

y axis and bent around the z axis. In the curvature tensor, one component 

k = kzx is not equal to zero. According to (5.75), only the corresponding 

component fizx = kzx in the dislocation-density tensor is different from zero, 

which can be interpreted as a uniform distribution in the crystal of edge 

dislocations with a Burgers vector along the x axis situated parallel to the 
bending axis with a density 

N = K/b= 1 /bR, (5.76) 

where R is the curvature radius of the bent plate. Equation (5.76) can be derived 

from simple geometric considerations by counting the number of extra planes 

with interplane distance b, which must be introduced from the convex side of the 

plate being bent in order to obtain its curvature radius R. 
In principle, integration of (5.72) enables one to solve the reverse problem 

and construct the field of stresses and rotations of the lattice for a given 

distribution of dislocations. Here, (5.72) must be supplemented by the equation 

y 

Fig. 5.22. Bending of a crystal plate containing parallel 
edge dislocations 
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of equilibrium of stresses a in the bulk of the body 

dan 
= 0 (5.77) 

OX; 

and on its surface 

GijKj = 0, (5.78) 

where n is a normal to the free surface of the body. 

5.5.2 Example: A Dislocation Row 

We restrict ourselves to the one-dimensional problem of dislocations arranged 

with a uniform density in some plane P with a normal n, i.e., 

Pij(r) = P?jS(rknk), (5.79) 

where are constants characterizing the orientation and Burgers vectors of 

dislocations lying in plane P, and radius vector r is reckoned from any point of 

plane P. In our case, the stresses throughout the crystal volume satisfy (5.78), 
while (5.72) takes the form 

Pij = ~eikink[uij], (5.80) 

where the brackets denote the difference between the values of the given 

quantity on the different sides of plane P. The solution of the sets of equations 
(5.78, 80) with due regard for generalized Hooke’s law, is 

^ ijkl^kmn^m P nh (5.81) 

To ascertain this, it will suffice to multiply both sides of (5.80) from the left 

vectorially by normal n and calculate the convolution of the expression obtained 

with the plane tensor of elastic moduli (5.12) introduced in Sect. 5.2, taking into 
account the equilibrium equation (5.77). 

By analogy with (5.81), we can obtain expression (5.11) for the Fourier 

components of the stress tensor, which was used in Sects. 5.2, 3. Directly from 

(5.81) follows (5.32) for the stress field of a straight dislocation. Equation (5.81) 

0- — — p— p— —< p— p— —9 

A ^ 
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Fig. 5.23. Horizontal row of edge dislocations 
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changes to (5.43) subject to the condition p(x) — const. Let us consider, by way 

of example, a horizontal row of edge dislocations parallel to the z axis and lying 

in common plane y = 0 (Fig. 5.23). In this case the dislocation-density tensor has 

one nonzero component /3ZX = b/h, where h is the distance between the disloca¬ 
tions. From (5.81) we obtain for jumps of macroscopic stresses 

I>y] = c*xx(b/h). (5.82) 

The same result follows from (5.43) at p = h~l and with the above-indicated 

choice of orientations of the Burgers vector and dislocations. Other similar 
examples will be considered in Sect. 5.6. 

5.5.3 Scalar Dislocation Density 

A macroscopic description of the dislocation structure of a crystal with the aid of 

the dislocation-density tensor is insufficient in many cases. Thus, in uniformly 

deformed crystals the macroscopic stresses and the macroscopic lattice curva¬ 

ture are nonexistent and, hence, the dislocation-density tensor reduces to zero in 

accordance with (5.72), although the crystal may contain a large number of 

dislocations. In such cases the dislocation structure of the crystal is best 

characterized by a scalar quantity, the total length of the dislocation lines in 

a unit volume of the specimen. This quantity is called the scalar dislocation 
density, or simply the dislocation density. In practice, it is usually measured by 

counting the average number of dislocation lines crossing a unit area within the 

specimen. Averaging of the results obtained over areas of different orientation 

yields an estimate of the average dislocation density. In many cases such an 

estimate is an important characteristic of the crystal quality (for instance, in the 

semiconductor technology). A more detailed analysis of the dislocation structure 

of a crystal requires isolation of the density of dislocation of different types, 

which is achieved by using modern diffraction methods of investigating the real 
structures of crystals (Sect. 5.8). 

5.6 Subgrain Boundaries (Mosaic Structures) in Crystals 

5.6.1 Examples of Subgrain Boundaries: A Tilt Boundary and a 
Twist Boundary 

The presence in crystals of misoriented regions (subgrains) tilted at small angles 

to each other was noted even in the early investigations on crystal morphology. 

Soon after X-ray diffraction by crystals was discovered, it was established, that 

inside visible grains the crystal does not have an ideal structure. Contrary to 
theory (i.e., dynamic theory, see [Ref. 5.2, Chap. 4]), the diffracted beams 

propagated in the angular range of several minutes, rather than several seconds, 

and had an intensity exceeding the calculated value by two orders. The re¬ 

searchers had to assume the presence in the crystal of a mosaic of small (about 
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1 (am across) slightly misoriented subgrains, which had not manifested themsel¬ 

ves in morphological investigations, but which affected the coherence of the 

diffracted waves. The origin of mosaics in crystals was not established until 

methods for investigating the dislocation structure of crystals were developed. It 

turned out that subgrains are comparatively dislocation-free regions, and sub¬ 

grain boundaries consist of dislocation networks. Dislocations inside subgrains 

and at their boundaries proved to be elementary sources of the summary field 

of rotations of the crystal lattice, which characterizes the mosaic pattern of 

the crystal. The interpretation of the structure of dislocation networks along the 

subgrain boundaries is a decisive step towards general interpretation of the 

dislocation structure of the crystal and an analysis of the mechanism of its 

formation. 

Figure 5.24 demonstrates the simplest dislocation model of a symmetric 

boundary of two single-crystal subgrains, typical of polyganization subgrains, 
kink boundaries, and strain and accommodation bands [Ref. 5.3, Chap. 12]. 

Through faces AB and BC more atomic planes enter the subgrains than leave 

them through faces DE and EF. All the extra planes terminate inside the 

bicrystal in the only disturbed region, i.e., at the subgrain boundary. The edge of 

each broken-off plane forms an edge dislocation, so that the entire subgrain 

boundary is represented as a “vertical” row of edge dislocations. As can be seen 

from Fig. 5.24, the angle of misorientation of subgrains co is determined by the 

ratio of Burgers vector b to distance h between the dislocations at the boundary 

co = b/h. (5.83) 

The dislocation structure of a subgrain boundary can generally be judged 
from relation (5.75). There it is necessary to switch from lattice curvature 

0 cOi/'bxj to the local bending of the curvature at the subgrain boundary «;«,• (co is 

the misorientation, and n is a normal to the boundary) and from the bulk to the 
surface distribution of dislocations, 

Pij = co* rij - dij cok nk. (5.84) 

A _ C 

F E D Fig. 5.24. Vertical row of edge dislocations 
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If the misorientation axis of the subgrains is parallel to their boundary, then 
o)knk = 0, and for the dislocation density if follows 

hj = mtnJ- (5.85) 

Such a boundary is called a “tilt boundary.” It may be represented by a row of 

dislocations parallel to the rotation axis which have a Burgers vector directed 

along a normal to the boundary. This row of dislocations should be distrib¬ 

uted along a boundary with a linear density p = b~lco, i.e., at distances 

h = b/p = b/a> from each other. This model is illustrated in Fig. 5.24. 

Suppose now the misorientation axis of the subgrains is perpendicular to 
their boundary (“twist boundary”). Assuming co; = conh we obtain from (5.84) 

Ptj = a>(ntnj - Stj). (5.86) 

If we choose coordinate axes 1 and 2 in the boundary plane, then n1 = n2 = 0, 
and only two diagonal components, 

Pn = P22 = -co, (5.87) 

will be nonzero in the dislocation-density tensor, which can be interpreted as 

a square network of screw dislocations arranged at the boundary at distances 
h = b/co from each other. 

5.6.2 The Dislocation Structure of the Subgrain Boundary in General 

The above-mentioned schemes of structure with tilt and twist boundaries are 

just the simplest examples. In each particular case the structure of dislocation 

networks realizing the surface density of dislocations, which is given by equa¬ 

tions of the type (5.84-86) should be refined depending on the arrangement of 

the boundary and the misorientation axis relative to the Burgers vectors of 

dislocations typical of the given crystal. Suppose, for instance, that a normal to 

the tilt boundary in a face-centered cubic crystal does not coincide with any one 

if the close-packed directions of the type <110). Then this boundary cannot be 

made up of single dislocations of the same type, since these dislocations must 

have a Burgers vector equal to one of the minimum translation vectors (a/2) 

<110), and (5.85) requires that the average Burgers vector of the dislocations be 

perpendicular to the boundary. If the normal to the boundary lies in the {100} 

or {111} planes, the tilt boundary can be constructed from two families of 

parallel edge dislocations. In the general case of the tilt boundary it is necessary 

to use three families of dislocations with noncoplanar Burgers vectors, along 

which the vector of the normal to the boundary could be resolved. 

Such three families permit constructing a dislocation model, not only of an 

arbitrarily oriented tilt boundary, but also of any boundary of the general form. 

To prove this, we construct three vectors b(l), b(2\ and b(3) reciprocal to the 

above-mentioned three noncoplanar Burgers vectors b(1), b{2), and b(3), so that 
the following orthonormalization condition is fulfilled: 

b(i)’b(J) = Su. (5.88) 
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Vectors bU) are actually unit vectors of the lattice, which is reciprocal to the one 

constructed on vectors b(l), and are found according to the familiar rule 

eijkbj2)bi3) 

eiZb?JWW) 
(5.89) 

(relations for b(2) and b{3) are obtained from (5.89) by circular permutation of 

superscripts 1, 2 and 3). Scalar multiplication of the dislocation-density tensor 

from the right by vectors b(n) yields vectors Vi(n) = Pijb("\ with the aid of which 

the dislocation-density tensor can be written as 

Pu = K(1)h/1) + Vt2)b^ + K(3)V3), (5.90) 

which is equivalent to isolating three bundles of dislocations with Burgers 

vectors b{1), b(2), and b(3); the density and direction of these bundles are given by 

vectors V(1), V(2), and F(3), respectively. 

For tilt boundary (5.85) 

Vt™ = afyijlf), (5.91) 

i.e. all the dislocations are arranged along the rotation axis with densities 

proportional to misorientation angle co and to the projection of vectors b(n) onto 

the normal to the boundary. For twist boundary (5.86) 

Vi(n)= - co[%n) - niibf'nj)], (5.92) 

i.e., the dislocations are arranged along the projections of vectors b(n) onto the 

interface with a density proportional to this projection and the misorientation 
angle. 

According to (5.90), for the three families of dislocations with noncoplanar 

Burgers vectors the dislocation structure of an arbitrary boundary is interpreted 

unambiguously. As a rule, however, the crystal structure permits a more diversi¬ 

fied set of possible Burgers vectors. In this case analysis of the structure of 

subgrain boundaries requires additional consideration. If, for instance, it is 

known that the subgrain boundaries are formed as the result of plastic deforma¬ 

tion by gliding [Ref. 5.1, Chap. 12], additional conditions arise, which limit the 

orientation of the dislocations in the subgrain boundaries (the dislocations must 

lie in glide planes). We shall also note the limitations associated with the 

condition concerning the energy minimum of the dislocations making up the 

boundary. As a first (and rather crude) approximation, this condition can be 

replaced by that for the minimum of the summary length of the dislocation lines 

making up the subgrain boundary. As a result, quaternary nodes in dislocation 

networks are, as a rule, energetically unfavorable and dissociate into pairs of 

triple nodes joined by dislocations with a Burgers vector defined according to 
the general rule of Fig. 5.8. 

Let us consider, for instance, the twist boundary in the close-packed plane 

(111) of a face-centered-cubic crystal. By (5.86), such a boundary can be com¬ 

posed of two families of screw dislocations forming a rhombic network of the 

type shown in Fig. 5.25a. There are, all in all, three Burgers vectors of the type 
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Fig. 5.25a c. Formation of a hexagonal dislocation network, (a) initial rhombic network of two 
families of screw dislocation; (b) splitting of quaternary nodes into tertiary nodes; (c) splitting of 
tertiary nodes (stacking faults are hatched) 

Fig. 5.26a d. Splitting of nodes in Fig. 5.25. (a) quaternary node; (b) splitting of a quaternary node 
into two tertiary nodes; (c) splitting of perfect dislocations into partial dislocations; (d) result of 
reaction between partial dislocations. {1—4) Numbers of the boundary unit cells adjoining a quater¬ 
nary node (a) or tertiary nodes (b). Relative shifts of the crystal parts separated by the plane of the 
drawing in adjacent regions 1 and 2, 2 and 3, 3 and 4, 4 and 1 (a); 1 and 2, 2 and 3, 3 and 4, 3 and 1, 
4 and 1 (b) differ by the Burgers vector of the perfect dislocation separating them. The corresponding 
relative shifts in regions 5, 6, and 7 (stacking fault ribbons) differ from the shifts in the adjacent 
regions 1 -4 by the Burgers vectors of the partial dislocations separating them 

(a/2) <110) lying in the boundary plane: (a/2) [110], (a/2) [10T], and (a/2) [Oil], 

i.e. AB, BC, and CA in the notation of Fig. 5.9. Accordingly, three different 

versions of a rhombic network consisting of two dislocation families are pos¬ 

sible. But it is energetically more advantageous to use all three dislocation 

families simultaneously, split the quaternary nodes of the type depicted in 

Fig. 5.26a into triple nodes according to the scheme of Fig. 5.26b, and form 

a hexagonal network of screw dislocations (Fig. 5.25b) with nodes correspond¬ 
ing to a dislocation reaction of the type AB + BC — AC. 

If the perfect dislocations making up the subgrain boundary dissociate into 

partial ones to form intermediate ribbons of stacking faults (Fig. 5.26b), addi¬ 

tional reactions between partial dislocations near the network nodes are pos¬ 

sible. As a result, the stacking fault ribbons either broaden and merge together 

(extended nodes) or constrict (constricted nodes). Figure 5.26d illustrates such 

reactions between partial Shockley dislocations in the scheme of Fig. 5.26b 
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Fig. 5.27a-c. Relations between the Burgers vectors for the scheme of Fig. 5.26. (a) quaternary 

node 0; (b) splitting of node 0 into two tertiary nodes P and T, (c) rearrangement of tertiary nodes 

on splitting of the dislocations into partial ones 

and shows that extended and constricted nodes in the hexagonal scheme of 

Fig. 5.25b must arise alternately (Fig. 5.25c). 
To any irregular and nonuniform dislocation network at the subgrain 

boundary can be correlated a two-dimensional net in a regular lattice construc¬ 

ted from Burgers vectors of the dislocations forming the network. To each 

polygon in the dislocation network is correlated a lattice site, to each node, 

a polygon constructed from Burgers vectors of the dislocations forming the 

given node, and to each dislocation forming a segment of the dislocation 

network, the Burgers vectors of this dislocation. In Fig. 5.27 such a construction 

is carried out for the dislocation nodes and meshes of the dislocation network 1, 

2, 3, 4 (5, 6, 7) shown in Fig. 5.26. In the analysis of various irregularities in the 

structure of dislocation networks the technique for reconstruction of the net¬ 

work of the Burgers vectors, illustrated in Fig. 5.27, often serves as an effective 

means of investigating the mechanism of subgrain formation. 
Two-dimensional dislocation networks can form subgrain boundaries with 

different degrees of misorientation within the range from several seconds to 

several degrees. In very slightly misoriented subgrains (cells), the distance 

between dislocations is of the same order as the subgrain size, the dislocation 

network transforms from a plane to a three-dimensional form, and the indi¬ 

vidual contribution from each dislocation to the lattice-distortion field must be 

taken into account. For strongly misoriented subgrains (fragments), the above 

equations must be refined allowing for the finiteness of the misorientation angle. 

In place of (5.83), for example, we obtain 

co = 2 arcsin (b/2h). (5.93) 

With very large (several tens of degrees) subgrain misorientation angles, 

the dislocations in the boundaries draw so close together that analysis of the 

boundary structure requires taking the atomic structure of the dislocation core 

into consideration. The use of some analogy between grain and twin boundaries 

(Sect. 5.7) proves more effective here. 

5.6.3 Subgrain Boundary Energy 

The subgrain boundary energy is made up of the elastic energy of the stresses 

around the dislocations forming the boundary. The stresses caused by indi- 
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vidual dislocations are so superimposed on each other that the total stress 

rapidly relaxes at distances of the order of spacing h between the dislocations in 

the boundary. As a result, in the dislocation energy equation (5.34) the crystal 

size must be replaced by h, which reduces the dislocation energy to 

E = E0 In (h/r0) (5-94) 

and explains the energetic advantage of polygonization, i.e., uniting the disloca¬ 

tions initially scattered throughout the crystal volume into plane walls and 

networks dividing the crystal into unstressed blocks. The surface energy of the 

block (subgrain) boundaries y is found by summing the energy of the dislocations 

making up the boundary. The total length of the dislocation lines is of the order 

fi_1 cm per cm2 of the boundary and the surface energy of the subgrain 

boundary is 

y = E0h~x \n(h/r0) = £0^_1 (b/(or0), (5-95) 

where £0fi_1 usually reaches values of the order of 103 erg/cm2. 
The calculated absolute values of the subboundary energy and of its func¬ 

tional dependence on the misorientation angle are in good agreement with 

experiment. A more comprehensive theory, taking into account the specifics of 

the contribution from different dislocation families making up the boundary, 

explains the anisotropy of the surface energy (the dependence of y on the 

boundary orientation). Allowance for the dislocation structure of the subbound¬ 

aries also explains the accelerated migration of point defects along the bound¬ 

aries, the segregation of impurities at the boundaries, the effect of the boundaries 

on the electrical properties of semiconductors and ionic crystals, the mobility of 

boundaries under external influences on the crystal, and also the different effects 

of interaction of individual dislocations with subboundaries. 

5.6.4 Incoherent Boundaries 

So far we have been discussing coherent subboundaries which were constructed 

from dislocations in such a way that [in accordance with (5.84)] the superposi¬ 

tion of the fields of individual dislocations did not yield macroscopic stresses. If 

the relation between the orientations of the dislocation lines and the Burgers 

vectors, required by (5.84), is not fulfilled, an incoherent boundary arises, which 

causes macroscopic stresses, i.e., stresses arising from the interaction of the 

blocks separated by this boundary. Suppose, for instance, the boundary shown 

in Fig 5 24 deviates from the symmetric position by turning through a small 

angle q> in a clockwise direction (Fig. 5.28). Of the co/b planes terminating on 

a unit segment of the boundary, b~l((o/2 + cp) planes will pass through segment 

AB and b-1(co/2 — (p), through segment BC. As a result the left-hand block will 

be contracted, and the right-hand one extended; the difference between the 

deformations along the boundary will be 

[e] = co(p. 
(5.96) 
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B 

Fig. 5.28. Formation of stresses on deviation of the vertical 
wall of edge dislocations 

The general case of incoherent subgrain boundary can be obtained from (5.74) 

by passing on from the volume to surface distribution of dislocations and 

replacing the gradients of lattice deformations and rotations by the differences of 

their values on the two sides of the boundary 

= - eik,nt[A,-] + (Otrij - SijWknk. (5.97) 

The expression obtained differs from (5.80) only by the division of the distortion 

jump into a symmetric part (deformation jump [£(J]) and an antisymmetric part 

associated with misorientation of the blocks co. The stress jump at the interface is 

again determined by (5.81), and therefore it is possible to eliminate the strain 

jump from expression (5.97) by expressing it via the stress jump with the aid of 

the generalized Hooke’s law. Some simple relationships for incoherent block 

boundaries, however, follow immediately from (5.97). Calculating the trace (sum 

of the diagonal elements) of tensor equality (5.97), we obtain 

= - 2pu, (5-98) 

i.e., the rotation about an axis perpendicular to the boundary is determined by 

the average density of screw dislocations, as in the case of a coherent boundary 

(5.87). Performing scalar multiplication of (5.97) from the right by the vector of 

the normal to the boundary, we obtain for rotations about axes lying in the 

boundary plane 

a>i - ni(a)knk) = pijUj + eiklnk[_eij'] rij, (5.99) 

i.e., the contribution to this rotation is made by the boundary components of the 

Burgers vectors perpendicular to the boundary and by the jumps of tangent 

deformations. For boundaries parallel to the symmetry plane or perpendicular 

to the twofold (four- to sixfold) axis there are no such jumps because of the 

continuity of the tangent stresses acting on the subgrain boundary. In this 

particular case (5.99) agrees with the expression (5.85) found previously. 

A typical example of incoherent boundaries are so-called “irrational twins” 

(Brilliantov-Obreimov bands), which outwardly resemble slip bands and, there¬ 

fore, have for a long time puzzled investigators probing into the mechanisms of 

plastic deformations in ionic crystals, see [Ref. 5.1, Chap. 12]. In crystals of the 

type NaCl these “twins” can indeed be easily confused with slip bands (in both 

cases the boundaries are arranged in (110} planes, the strain jump and the 

internal stresses are similar). The slip bands, however, are characterized by 
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condition = 0 (the Burgers vectors of all dislocations lie in the slip band) 

and, by (5.99), there are no lattice rotations about axes parallel to the slip band 

[{110} planes in NaCl are planes of symmetry; for them, from the continuity of 

tangential stresses the continuity of tangential strains follows, and the second 

term in the right-hand side of (5.99) is equal to zero]. “Irrational twins”, on the 

contrary, form incoherent tilt boundaries (the summary Burgers vector of 

dislocations is nearly perpendicular to the boundary) and cause stresses because 

of the deviation of the boundary from the correct position, as in the scheme of 

Fig. 5.28. The irrational-twins mystery was resolved when components parallel 

and perpendicular to the boundary were isolated from the edge components of 

the dislocations forming the boundary. According to (5.43, 81), the first compo¬ 

nents caused stress bands framing the boundary, and, to (5.99), the other 

components caused a rotation of the lattice about an axis lying in the boundary 

plane. As in (5.96), the ratio of the deformation jump to the misorientation angle 

depended on the angle of the deviation of the boundary from the symmetric 

orientation corresponding to the {110} plane. 
In analyzing stresses associated with subgrain boundaries one must specially 

consider the case of boundaries consisting, not of plane, but of three-dimen¬ 

sional dislocation networks. It is possible to single out in the structure of such 

networks dislocation dipoles and loops determining the difference in the strain 

of the boundary area with respect to adjacent subgrain and corresponding to the 
boundary-subgrain-interaction stresses localized in the boundary area. These 

stresses are sometimes called oriented microstresses. The subgrain-interaction 

stresses (so-called second-kind stresses) cause broadening of the lines of the 

X-ray spectrum, which oriented microstresses result in a general shift of the lines 

to the side corresponding to the stresses in the subgrain volume. 

5.7 Twins 

A twin is a crystal with consistently mutually misoriented regions (twin compo¬ 

nents) whose atomic structure is related geometrically by some symmetry 

operation (twinning operation). Twinning operations include reflection in 

a plane (reflection twins), rotation about a definite crystallographic axis (axial 

twins), reflection at a point (inversion twins), translation for a part of the lattice 

spacing (translation twins), and combinations of these. Each twin component 

can occupy in the crystal one continuous region or several scattered regions 

simultaneously, forming a so-called polysynthetic twin. In a narrow sense of the 

word a twin must possess two components related by a single second-order 

operation (reflection in a plane, rotation through 180°, inversion, translation by 

half the lattice spacing), so that a repetition of the operation restores the 

structure of the initial component. There are, however, also multicomponent 

twins (“triplets”, “quadruplets”, “sixtuplets”, etc.), for which twin operations are 

rotations about three-, four- and six-fold axes, translations by a fractional part 
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of the lattice spacing, and also combinations of several crystallographic opera¬ 

tions. 
Twins may appear during the growth of crystals and their intergrowing, 

during recrystallization, phase transformations, and also under mechanical, 
thermal, electrical, magnetic, etc. effects on single and polycrystals. Twin com¬ 
ponents may differ in optical, mechanical, electrical, magnetic, and other proper¬ 
ties if the anisotropy of the relevant characteristics is not invariant to twinning 

operations. 

5.7.1 Twinning Operations 

A complete set of operations relating the components of a given twin depends 
not only on the mutual orientation of the components, but also on their own 
symmetry. Two symmetry operations of a twin are equivalent if they differ by an 
operation inherent in a given crystal. Therefore a reflection twin may simultan¬ 
eously be an axial twin, etc. 

Suppose component I is transformed to component II by twinning operation 

/; then the product 

f =f9i- (5.100) 

(where gt - an operation belonging to symmetry group Gi of component I) again 
gives a twinning operation transforming structure I to structure II. Here, the 
different operations gt and gj correspond to the two operations f and fjt and for 
the finite groups the number of twinning operations is equal to the order of 
group Gp Generally, if we neglect the multiplication twinning of translations, the 
number of twinning operations will be equal to the order of the point symmetry 
group of the twin components. 

Operations gj constituting symmetry group Gn of the second component of 
the twin are found by the rule 

9 k =f9kf~\ (5-101) 

where any one of operations (5.100) can be used as twinning operation f If the 
twinning operation commutes with all the operations of group G,, i.e.,/#; = gtf, 
it follows from (5.101) that symmetry groups G, and G„ coincide, g'j = gj. If, 
besides, a repetition of the twinning operation restores the structure of the initial 
component, i.e., if/ = /_1, an addition to group Gx of twinning operations 
(5.100) forms a supergroup 

G = Gl+fGu (5.102) 

for which G\ serves as a subgroup of index 2, and the set of twinning operations 
serves a conjugate class. An addition to group G, of operations Rf, where R is 
the operator of the sign change, forms the antisymmetry group 

G' = G, + RfGu (5.103) 

describing the change in the structure of the components on application of the 
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twinning operation. Operation jR may be taken to mean, in particular, an 

operation of changing the sign of the deviation of the atomic coordinates from 

their average for components I and II. 
By way of example we consider Dauphine twins in /1-quartz (Fig. 5.29a). The 

symmetry group of /1-quartz D2-P3121 (or D3-P3221) includes rotations about 

a threefold screw axis C3 and three twofold axes u2 perpendicular to it. Twinn¬ 

ing operations for Dauphine twins are rotations about a sixfold axis C6 and 

twofold axes C2 parallel to axis C3, and also rotations about each of the three 

twofold axes perpendicular to it and positioned between axes u2. Superposition 

of all operations gt and f forms supergroup Di~P6222 (or Dl~P6422), which is 

the symmetry group of a-quartz. Operations gt and Rfi form the antisymmetry 

group P6'422 (or P6'222). 
Figure 5.29b illustrates another type of twins in ^-quartz, the so-called 

Brazilian twins, arising on the intergrowth of left-hand quartz along prism plane 

(1120), which serves as a reflection plane. In addition to a reflection in this plane, 

twinning operations include a reflection in prism planes (1210) and (2110), and 

an inversion and a rotation about sixfold mirror-rotation axis S6. The space 

symmetry groups of component (D3 and D3) are not identical here, but the point 

symmetry groups (classes) of component do coincide, which permits describing 

the point symmetry of the Brazilian twins in terms of antisymmetry classes. 

Supplementing the point symmetry group of /1-quartz with twinning operations 

according to (5.102), we obtain supergroup D3d = 6:2, and - for twinning 

operations as antisymmetry operations according to (5.103) - the sought-for 

antisymmetry group 6': 2. 
In the case of multicomponent twins (triplets, quadruplets), whose compo¬ 

nents I, II, III . . . have a common symmetry group G, and are coupled pairwise 

by cyclic operations/i>n»/ifin»/ii,iii. etc., supplementing group Gx with all pos¬ 

sible twinning operations (5.100) yields the supergroup 

G = G\ +/i,hGi +/i,hiG] + . . . , (5.104) 

for which G, is a subgroup of index 3,4, etc., and the twinning operations for 2, 3, 

etc., conjugate classes, respectively. 
Generally, multicomponent twins with identical symmetry components can 

be considered with the aid of representation theory. A deviation of the structure 

Fig. 5.29a, b. Twins in 0-quartz. (a) Dauphine twins; 
(b) Brasilian twins. One of the twin components is 

shaded 
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of the components from the average is described by representations of the 

supergroup (5.102, 104). One-dimensional real representations can be inter¬ 

preted in terms of antisymmetry, and one-dimensional complex representations, 

in the language of color symmetry, etc. An analysis of the structure and 

properties of twins based on representation theory is especially fruitful in the 

case of twins formed on phase transformations, when supergroup G has a simple 

physical meaning and describes the structure of a more symmetric phase, and 

the twinning operations are symmetry operations vanishing on phase trans¬ 

formation. In particular, if the transformation is accompanied by an inverse in 

the number of atoms in the unit cell of the crystal (formation of a superstruc¬ 

ture), the resulting twins (antiphase domains) are translation twins. 

As an example we consider twins (domains) in ferroelectric Cd2(Mo04)3. In 

the paraphase the crystal structure is described by space group Did■ On fer¬ 

roelectric transformation the volume of the unit cell doubles, and axis S4 and 

two twofold axes u2 perpendicular to axis S4 are lost. As a result, a “quadruplet” 

arises, all the components of which have symmetry Cf„. Expansion of (5.104) has 

the form 

(5.105) 

Twinning operations S4Cf„ and S4Cf„ relate domains of opposite polarity 

(positive and negative ferroelectric domain). Twinning operations S4C|„ relate 

antiphase domains of the same polarity. These operations include translations 

by the length of vectors equal to the paraphase translation vectors lost on 

transformation. 

5.7.2 Twinning with a Change in Crystal Shape 

In twinning, the unit cell often changes its shape; this, in turn, changes the 

external shape of the part of the crystal which has flipped to the twin orientation. 

Figure 5.30 illustrates one of the classical examples of twinning with a change in 

\c' 

\ / 

/ c Fig. 5.30. Calcite twinning 
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shape, the twinning of calcite CaC03. Here, the twinning operation is a reflec¬ 

tion in the (110) plane (twinning plane). The flipping of the lattice to the 

symmetric position is accompanied by a macroscopic shear strain along 

the twinning plane in twinning direction [001], the shear angle being 34°22'. The 

shape of the unit cells changes identically in all the sublattices, but the motion of 

the atoms cannot be thought of as simple shear; a mutual displacement of the 

sublattices occurs, which transfers the atoms into a configuration symmetric to 

the initial (for instance, mirror symmetric in the case of reflection twins). In 

calcite, the mutual displacement of the sublattices results in a rotation of groups 

of three oxygen atoms through 52°30' about the axes passing through the 

carbon atoms parallel to [llO]. 
Macroscopically, the motion of atoms during twinning with a change in 

shape can be represented as the result of a uniform shear without a change in 

crystal volume 

ufj = spitj. (5.106) 

Here, p is a normal to the twinning plane, t is the unit vector of the twinning 

direction lying in this plane, and s is the value of the twinning shear (see 

Fig. 5.31). Angle <p = arctan s is called the twinning angle. Each point at 

a distance d from the twinning plane moves by a distance sd along the twinning 

direction upon a twinning shear. The twinning shear transforms a sphere of unit 

radius into an ellipsoid (twinning ellipsoid). 
Owing to distortion (5.106), in the field of external stress the potential 

energy of the twin components differs by 

A W = (Tijufj = a^j. (5.107) 

The twinning process is thus affected only by the tangential stress acting on the 

twinning plane in the twinning direction. The value AW determines the thermo¬ 

dynamic force acting on the twin boundary. The change in the sign of the stress 

changes the sign of A IF and reverses the force. Accordingly, twinning is replaced 

by detwinning, which displaces from the crystal the twin component for which 

AW <0. If domains differ not only in twinning shear, but also in electric or 

magnetic polarization, expression (5.103) must be supplemented by the product 

of polarization times the corresponding electric or magnetic field. 
Even for a small twinning shear the physical properties of a twin component 

may differ significantly. Twinning with a change in shape is inevitable accom¬ 

panied, in particular, by a rotation of the optic indicatrix. This rotation is 

[001] 

Fig. 5.31. Twin shear in twinning with a change in shape 
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Fig. 5.32. Rotation of optic indicatrices in 
twinning with a change in shape (the twins 
are domains in Rochelle salt) 

usually more prominent than the shear. For Rochelle salt, for instance, a rota¬ 

tion of the indicatrix exceeds the twinning shear 30-fold, and therefore the twin 

components (domains) differ drastically in their extinction positions (Fig. 5.32). 

Circular sections of the twinning ellipsoid determine two possible orienta¬ 

tions of the twin boundary which do not cause macroscopic stresses. With an 

intermediate orientation of the twin boundary the contact of the twin compo¬ 

nents is equivalent to the disposition on the twin boundary of the dislocations 

whose macroscopic density at a small twinning shear can be calculated by the 
formula 

Pu = eik,nkUij = s[n x/»];(,-, (5.108) 

where n is the normal to the twin boundary. 

The macroscopic relation (5.108) corresponds to a model in which the 

dislocations are disposed at the twin boundary parallel to trace [n x p] of the 

twinning plane and possess Burgers vectors along the twinning direction t. 
The thermodynamic force (5.107) acting along the normal to the boundary can 

be converted to the force acting on these dislocations in a direction tangent to 

the boundary (and perpendicular to the dislocation). From (5.108) it is possible 

to calculate, with the aid of (5.81), the stresses caused by the twin boundary 

L^ij] — — Cijklukl- (5.109) 

The actual structure of the twin boundary depends on the concrete type of 

crystal. In the case of ferromagnetic domains - twin components differing in 

spontaneous magnetization - there is, at the boundary, a broad (several hundred 

interatomic distances) transition band along which the direction of magnet¬ 

ization changes continuously from one domain to the next. In ferroelectrics, the 

boundaries of twin (domains) have a broad transition band only near the Curie 
point. 

More often, however, the interaction forces of atomic layers with different 

orientations are weak as compared with the orientation forces due to the 

energetic dis_advantage of the intermediate (nontwin) configurations. The 

transition band is also practically absent, i.e., the twin boundary is sharp, even 

on the atomic scale. Here, a twin with a boundary parallel to the twinning plane 

must have an equilibrium configuration without any stress concentration. The 

energy localized in such a twin amounts to the surface energy proportional to 
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Fig. 5.33. Atomic steps (twinning dislocations) 
at the boundary of a wedgelike twin interlayer 

the area of the boundary. If the twin boundary deviates from the twinning plane, 

the interface must have a stepped shape, i.e., microscopically, the boundary must 

consist of parts parallel to the crystallographic twinning plane, and the bound¬ 

ary must deviate in a jump by the thickness of one atomic layer (Fig. 5.33). To 

each step corresponds a “twinning dislocation” with a Burgers vector of value 

b = sa, (5.110) 

where s is the twinning shear and a is the distance between the atomic planes 

parallel to the twinning plane. It is easy to see that the scheme of Fig. 5.33 

corresponds precisely to the macroscopic expression (5.108). 
The concept of the fitting of twin components with the aid of twinning 

dislocations permits broad generalizations for the case of grain boundaries and 

different phase boundaries separating crystals with different orientations or 

different structures (different lattice spacings). Here, too, parts with a good 

coherence are revealed which are separated by transition steps resembling 

twinning dislocations and are called grain boundary and epitaxial dislocations, 

respectively. The density of these dislocations and the macroscopic stresses are 

defined by equations similar to (5.108,109). Generally, ordinary perfect disloca¬ 

tions may weaken the macroscopic stresses caused by the boundary and exert 

a substantial effect on the course of twinning, phase transformation, or the 

movement of grain boundaries. 
The orientation and shape of twin, domain, and phase boundaries mainly 

depends on the stresses (5.109) caused by these boundaries. Since the convolu¬ 

tion of tensor c*■*,(«) with vector n in respect to any index gives zero, no stresses 

should arise when the boundary is parallel to the plane preserved on distortion 

of uu- Such an invariant plane by no means exists for any arbitrary distortion. 

During twinning, there are two invariant planes corresponding to circular 

sections of the twinning ellipsoid. In the general case of distortion with an 

invariant plane, tensor u°, can be represented in the form (5.106), where p is 

a normal to the invariant plane, and t is a unit vector making an arbitrary angle 

with unit vector p. 
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In practice, twins usually have the shape of parallel-side interlayers and flat 

wedges parallel to the circular sections of the twinning ellipsoid. In the case of 

distortion with an invariant plane, phase precipitations also have a platelike 

shape, and the platelets orient themselves parallel to the invariant plane. If the 

distortion of u°; does not have an invariant plane, phase precipitations form at 

first thin platelets, whose orientation corresponds to the minimum of the elastic 

energy 

W=^cTjkiUijuii (5.111) 

caused by stresses (5.109) in a unit volume of the platelet. With a further 

development of the phase transformation, thicker platelets arise, which are 

either divided into layers of different orientation so that the average distortion 

receives an invariant plane parallel to the platelet surface, or lose the coherent 

bond with the matrix because of the expitaxial dislocations (misfit dislocations) 

forming on the platelet surface and smoothing out the difference in the spacings 

of the lattice of the contacting phases. In a plastic matrix, stresses (5.109) can 

also be eliminated by plastic deformation with emergence of perfect dislocations 

at the boundary, which serves as the source of stresses, and by formation of 

dislocation walls and networks compensating these stresses. Usually, the bound¬ 

aries of nuclei in the early stages of growth of a new phase contain only epitaxial 

dislocations. In later stages, they are joined by perfect dislocations, the result 

being an appreciable decrease in stress and a qualitative change in the kinetics of 
the phase transition. 

The mutual arrangement of twins and phase segregations also obeys the law 

of the elastic-energy minimum. The sides of twin platelets and those of the new 

phase induce elastic fields similar to the fields of dislocation loops with an 

effective Burgers vector. The association of platelets of different orientation is 

often due to the condition of mutual compensation of these vectors. Consistent 

allowance for elastic fields similar to the fields of dislocation loops with an 

effective Burgers vector. The association of platelets of different orientation is 

often due to the condition of mutual compensation of these vectors. Consistent 

allowance for elastic fields induced by phase boundaries helped to formulate the 

elastic domain theory, which explained many details of very complex hetero¬ 

phase structures arising on martensitic and diffusion phase transformations. 

Generalization of this theory for the case of domain structures consisting of 

domains inducing not only elastic, but also electric or magnetic fields is an 
urgent task for the theory of imperfect crystals. 

5.7.3 Twinning Without a Change in Shape 

When there is no twinning shear and the twinning ellipsoid degenerates into 

a sphere, the macroscopic shape of the crystal does not change in twinning, and 

a twin boundary of any orientation does not cause macroscopic stresses. The 

boundaries of such twins usually have smooth rounded outlines. A crystallo- 
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Fig. 5.34a-c. Atomic structure of twin components in twinning without 
a change in shape, (a) antiphase domains (translation twins); (b) inversion 
twins of the type of 180° domains in triglycine-sulphate; (c) axial twins of 
the type of Dauphine twins in quartz. (/, //) twin components 

II 

c 

graphic-habit arises only in the case of a very pronounced anisotropy of the 

boundary energy. In twinning without a change in shape, the optic indicatrices 

of the components coincide. 
The structure of the components in twinning without a change in shape 

differs only in the mutual displacement of sublattices, with the shape of the unit 

cells preserved. Characteristic examples are illustrated in Fig. 5.34. In Fig. 5.34a, 

a small displacement of two identical sublattices leads to the formation of 

a translation twin; identical cells are shifted by half the lattice spacing. The 

components of a translation twin have the same physical properties. This does 

not mean, however, that such a twin can only arise on phase transformation. It is 

readily apparent from Fig. 5.16 that the movement of ordinary dislocations in 

the superlattice of an ordered alloy always forms a translation twin, whose 

components (antiphase domains) are related by translation by the length of the 

Burgers vector. 
Figure 5.34b demonstrates a twin arising on mutual displacement of two 

different sublattices. In twinning, the polar direction reverses, so that the twin 

components may be 180° ferroelectric domains with opposite electrical polariza¬ 

tions. The twinning operations include inversion. Therefore, not only the optic 

indicatrices, but all the elastic constants of the components coincide. Examples 

are 180° domains in triglycinesulphate. 
In Fig. 5.34c, three hexagonal sublattices merging into each other on rota¬ 

tion about a threefold screw axis perpendicular to the drawing shift by equal 

distances along twofold axes, so that the component “rotates" through 180 or 

60° in the plane of the drawing. This axial twin is absolutely similar to the 

Dauphine twins of )3-quartz (Fig. 5.29a). The optic indicatrices of the compo¬ 

nents coincide; there is no twin shift, but one can distinguish elastic constants 

s14 corresponding to shears in the basal plane (the plane of the drawing) caused 

by tangential stresses acting on this plane. As a result, in distinction to the 

preceding case, a twin can be obtained (and destroyed) by applying definite 

mechanical stresses. The elastic energy of the Dauphine twins of /1-quartz in 
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a given external stress field differs by 

AW = -2s,4[<T23(ff11 - a 22) + 2ot2<713]. (5.112) 

Twinning in quartz is thus affected only by tangential stresses acting on the 

basal plane and on the planes parallel to the optic axis. The value of AH7 

determines the thermodynamic force acting on the boundary of the Dauphine 

twins and causing its' displacement. In contrast to twins with a change in shape 

(5.107), a change in the sign of the stresses here does not affect the direction of 

boundary displacement. To change the sign of A IT it is necessary to change the 

type of the stressed state. With a uniaxial stressed state 

AIT = — 2s14(72 sin3 9 cos 9cos 3cp, (5.113) 

where the polar angle 9 and azimuth q> of the loading axis are measured from the 

z and y axes of the crystallophysic coordinate system, respectively. The sym¬ 

metry of A IT is described by antisymmetry group 6': 2, as would be expected. 

Note that in a given stress field, those components of twins without a change 

in shape are energetically favorable which show the minimum rigidity and, 

hence, have the maximum elastic energy. This seemingly strange statement 

follows from the fact that the complete potential energy of twins in an external 

field, calculated with an allowance for the work of the given forces on displace¬ 

ments of the specimen surface is precisely equal to the elastic energy taken with 

the opposite sign. Accordingly, the component of the Dauphine twin for which 

AIT > 0 proves energetically favorable. For quartz, s14 < 0, and consequently 

mechanical twinning is also favorable for uniaxial loading along the directions 
satisfying the condition cos 9 sin 3cp > 0. 

General analysis of the physical properties of twin components requires 

a comparison of their twinning operations with the anisotropy of their corres¬ 

ponding characteristics. If the twinning operations coincide with the symmetry 

elements of the optic indicatrix, no twin shear occurs, and the components do 

not differ in their refractive indices, but may differ in the sign of optical activity 

(Brazilian twins, domains in triglycinesulphate, etc.). If the twinning operations 

(for instance, inversion) coincide with the symmetry elements of the elastic- 

constant tensor, then the elastic properties of the components are identical, etc. 

5.8 Direct Observation of Lattice Defects 

One of the most important achievements of modern crystallography is the 

development of a number of methods for studying the arrangement and princi¬ 

pal characteristics of dislocations, stacking faults, and even point defects of the 

lattice. Some of these methods found immediately industrial application in the 
quality control of single and polycrystals. 



5.8 Direct Observation of Lattice Defects 385 

5.8.1 Ionic Microscopy 

Atomic resolution was first achieved with the aid of an ionic projector, which 

gives on a fluorescent screen an image of the proper anode in the form of a very 

fine needle. The projector is filled with hydrogen or helium at very low pressure. 

The gas atoms are ionized near the anode needle point, where the electrostatic 

field may reach 107 V/cm, and move further in the radial direction, creating on 

the screen image of the inhomogeneities of the electric field which are present at 

the anode surface. If the anode is cooled to the temperature of liquid nitrogen or 

helium, resolution of the atomic structure of the needle point is achieved 

[Ref. 5.2, Fig. 1.19]. Such images reveal subgrain boundaries, individual dis¬ 

locations, and even individual point defects (vacancies, interstitials and impurity 

atoms). 

5.8.2 Electron Microscopy 

Direct resolution of the atomic structure of a crystal is also provided by 

transmission electron microscopes. They enable the observation of atomic rows 

and planes disposed along the direction of transmission [Ref. 5.2, Fig. 4.108] 
and the location of sites at which the mutual arrangement of the atomic planes 

indicates the presence of dislocations, where atomic planes break off (edge 

dislocations) or bend, shifting to the next storey (screw dislocations). As an 

example, Fig. 5.35 shows a image of a single-crystal silicon film with a single 

dislocation. The spacing between the atomic planes is 3.138 A. Some electron 

microscope observations have shown a sharp diffraction contrast from clusters 

of point and individual heavy atoms. 
When using low-resolution microscopes it is possible to investigate the real 

structure of crystals by the moire method proposed by A. V. Shubnikov. If 

Fig. 5.35. Direct electron micrograph of 
a unit dislocation in silicon [5.2] 
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a beam passes through crystal platelets with different lattice spacings or orienta¬ 

tions placed on each other, the screen shows periodically arranged moire bands 

corresponding to sites with increased summary density. The distance between 

the moire bands is equal to a/e, if platelets with a relative difference between the 

lattice spacings e = A a/a are used, and a/a> if the platelets are turned through an 

angle co (in both cases a is the lattice spacing). The distortions of the moire bands 

help to judge the distortions in the crystals. In particular, under certain condi¬ 

tions dislocations cause “dislocations” (band terminations) in the moire pat¬ 

terns. The moire method proved to be most convenient in investigating the real 
structure of epitaxial films. 

The method most widely used for investigating lattice defects in thin 

(10 5 10 4 cm) crystal platelets is diffraction electron microscopy. Owing to the 

small wavelength of the electrons (0.04 A for microscope with a working voltage 

of 100 kV) the lattice defect pattern can be studied in the column (beam) 

approximation. According to the kinematic theory of diffraction the amplitude 
of diffracted wave Ex varies along the beam as 

dEx/dz = F exp (2nisz), (5.114) 

where F is the structure factor, and parameter s is equal to the z component of 

vector s, which characterizes the deviation from the condition of regular 

Wulff-Bragg reflection, ..., see [Ref. 5.2, Fig. 4.26], The amplitude of the passing 

wave is taken to be unity. In the perfect crystal s = const, and in the phase plane, 

relation (5.114) corresponds to the motion of the terminus of the vector of 

complex amplitude along a cricle of radius R = F/2ns (Fig. 5.36). By integrat¬ 

ing expression (5.114) or by direct inspection of Fig. 5.36 we ascertain that the 

intensity of the diffracted wave on emerging from a crystal of thickness t 

I = \ Ei 
, sin2 nts 

F -=— 

(res)2 
(5.115) 

As the crystal thickness increases, / changes periodically from zero to (F/ns)2 

with a period tk = s~*. If the specimen is bent or is not uniform throughout its 

thickness, extinction bands of equal slope (s = const) or equal thickness 

(t = const) appear on its image. An allowance for the interaction of the incident 

and the diffracted wave required by the dynamic theory of diffraction leads to 

Fig. 5.36. Trajectory of the terminus of the complex amplitude vector 
on the phase plane for the perfect crystal 
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Fig. 5.37. Trajectory of the terminus of the com¬ 
plex amplitude vector on the phase plane for a 
intrinsic-type stacking fault in a fee crystal 

Fig. 5.38. Distortion of phase diagrams on 
smooth change in displacement vector near a 
dislocation 

a formula similar to (5.115), the only difference being that s is replaced by 

s* = ,/s2 + to2, (5.116) 

where t0 is the extinction length for a given reflection. As a result, when 

s diminishes, the period of intensity oscillations t* = (s*)_1 tends to t0. 

If the scattering centers are shifted by vector u, the diffracted-wave phase will 

change by an angle a = 2ng • u, where g is the reciprocal-lattice vector corres¬ 

ponding to a given reflection. As a result, in place of (5.114) we have 

dE! /dz = F exp {Inisz + 2nig •«), (5.117) 

and for crystals distorted by lattice defects (u 4= const) the phase diagrams are 

distorted. Thus, in a face-centered cubic crystal an intrinsic stacking fault shifts 

the crystal parts that it separates by u = (a/6) <112). For reflection (hkl), vector 

g = (\/a) [Zi/cZ] and the beam crossing a stacking fault with u = (a/6) [112] 

acquires a phase difference a = n/3 (h + k + 21), i.e., either a = 0 and the 

stacking fault does not give a diffraction contrast, or a = 2rt/3 as on Fig. 5.37, 

and the trajectory of the terminus of the amplitude vector on the phase diagram 

experiences a kink by an angle of 120° and shifts to a different circle on the same 

radius1. The diffracted-wave amplitude varies from 0 to F(1 + ^3/2)/ns de¬ 

pending on the beam path length before and after the stacking fault (t, and t2, 

respectively, in Fig. 5.37). As a result the tilted stacking faults induce a series of 

extinction bands parallel to the trace of the wave front. 

Smooth changes in displacement vector near dislocations cause smooth 

distortions in phase diagrams of the type shown in Fig. 5.38. As is seen from 

Fig. 5.5, the atomic planes perpendicular to an edge dislocation or parallel to 

a screw dislocation are not curved. On reflection from these planes g • u = 0; 

dislocations do not give a diffraction contrast. As a first approximation, one 

1 The values a = n and a = + n/6 are not possible since a face-centered-cubic lattice does not give 

reflections with an odd sum h + k + l. 
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may take into account only the branching term (5.24) of the displacement field 

around a dislocation. Then for a dislocation perpendicular to the beam and 

situated at a distance x from it 

a = 2ng • u « g • b arctg (z/x). (5.118) 

The intensity of the dislocation contrast is, accordingly, determined, as a first 

approximation, by scalar product g • b. For reflections with g • b — 0 the diffrac¬ 

tion image of dislocations disappears, and this indicates the direction of the 

Burgers vector of the dislocation. Finer details of the diffraction pattern indicate 

the sign and magnitude of the Burgers vector as well as the inclination of the 

dislocation relative to the wave-front plane. 

The width of the diffraction pattern of a dislocation for reflections with g • b 

values of the order of unity is about t0/3 (from 70 to 300 A for different crystals). 

As a result, the electron microscope makes it possible to investigate the disloca¬ 

tion structure of even severely deformed metals, resolve the dislocation structure 

of subgrain boundaries misoriented by angles of about one degree, observe the 

dissociation of dislocations and dislocation nodes, etc. 
To narrow down the dislocation image and improve the resolution, diffrac¬ 

tion electron microscopy resorts to various techniques for reducing extinction 

length f0. An example is the so-called weak-beam method, where the specimen is 

set in a position corresponding to a strong reflection n(hkl), but the dislocation 

image is observed in a weak beam {hkl), where the image width is only of the 
order of 10-20 A. 

In high-voltage microscopes (1-3 MeV) the image is, as a rule, formed by 

series of beams of the type n(nkl) and is as narrow as in the weak-beam method. 

A still more important advantage of high-voltage microscopes is the possibility 

of transmission through crystal platelets of comparatively large (up to several 

micrometers) thickness, which eliminates a number of difficulties resulting from 

the disturbance of the real structure of crystals in the course of the preparation 

of specimens for electron-microscopic investigation. 

A rigorous analysis of the diffraction image of a real crystal requires the use 

of dynamic, rather than kinematic, diffraction theory. In this theory the wave 

field of the electrons inside the crystal is resolved along the Bloch waves 

•A* = exp(i*r)£i4fcexp(i*fcr), (5.119) 
h 

where kh are the reciprocal-lattice vectors. The Bloch waves satisfy the 

Schroedinger equation for the potential field induced in the crystal by ions and 

electrons and propagate freely in the crystal. With a given electron energy the 

resolved values of the wave vectors obey some dispersion equation F(k) = 0, 

which in the k space corresponds to a multibranched dispersion surface. Since 

a dispersion surface can be interpreted as an isoenergetic surface in the recipro¬ 

cal-lattice space, an analysis of its shape does not differ in the least from an usual 

analysis, for instance that of the shape of a Fermi surface. In particular, the 

dispersion surface branches are normal to boundaries of the Brillouin zone, the 



5.8 Direct Observation of Lattice Defects 389 

splitting of the sheets Ak depends on the intensity of the relevant Bragg 

reflection (i.e., on the value of structure factor F), etc. 

From the condition of continuity of the wave field it follows that a plane 

wave with a wave vector k, incident on a crystal surface with a normal n, induces 

inside the crystal Bloch waves with wave vectors k{ satisfying the condition 

nxk = nxkx (5.120) 

i.e., all the points of the dispersion surfaces which are intersected by a straight 

line passing through point k towards n are excited. It can be shown that the 

group (beam) velocities of the Bloch waves are directed along a normal to the 

dispersion surface at points k{. To the various branches of the dispersion surface 

there correspond different types of Bloch waves. Near the boundary of the 

Brillouin band one branch corresponds to s-type waves with intensity maxima 

superimposed on the lattice points, and the other branch to p-type waves with 

nodes coinciding with lattice points. F-type waves are absorbed relatively 

weakly and cause an anomalous propagation of the radiation (Borrmann effect). 

Because of the difference Ak between the vectors of s- and p-type waves the 

interference of these waves causes spatial oscillations of the wave field (extinc¬ 

tion modulations) with a period t0 = 2n/Ak, which is called the extinction 

length. As the wave vector deviates from the boundary of the Brillouin zone, 

i.e., with growing deviation from the strict Wulff^Bragg condition, the spacing 

between the shoots of the dispersion surface for s- and p-type waves increases: 

(5.121) 

and the extinction length t* — 2n/Ak (i.e., the oscillation period) diminishes in 

accordance with (5.116). 
In slightly distorted crystal regions the Bloch waves manage to adapt 

themselves to the shifts of the network of the lattice sites. The wave vector of 

each Bloch wave changes in accordance with the change in the value of (gu), 

which characterized the displacement of the reflecting plane. The phase shift of 

Bloch waves of the s- and p-type increases proportionally to the difference of the 

wave vectors (5.121), which is no longer constant along the beam. The summary 

phase shift of Bloch waves emerging from a crystal of thickness t 

(5.122) f = J Akdz = 2rc J dz/t* 
o o 

determines the extinction contrast of the image. On the so-called dark-field 

image of the crystal, which is produced by the diffracted electron beam, the 

extinction bands are defined by condition T = 2nn, where n is an integer, and 

may correspond not only to lines of equal thickness or equal inclination, but 

also to lines of equal deformation. 
As the absorption level rises, the extinction contrast decreases. When the 

amplitude of the s-type waves becomes small as compared with the p-type, the 

latter makes a contribution to the image (Borrmann effect). The image contrast 

then acquires an amplitude character and depends essentially on the conditions 
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of decomposition of plane waves into Bloch waves (and vice versa) at the 

entrance and the exit surface of the crystal. These conditions depend on the 

inclination tp of the reflecting planes relative to the crystal surface. If angle (px on 

the entrance surface of the crystal is not equal to angle <p2 on the exit surface and 

if the difference between these angles A<p — cp2 — q>\ is commensurate with the 

dynamic width of reflection Ad = d/t0, where d is the interplanar distance, the 

so-called halo contrast is observed, which is characteristic of lattice defects 

causing the bending of the reflecting planes. This effect is particularly prominent 

in the case of prismatic dislocation loops observed when g- b = 0. 

The short-range dislocation field, stacking faults, and subgrain and domain 

boundaries disturb the free propagation of the Bloch waves and make them 

scatter. The s-type waves give rise to p-type, and vice versa, i.e., interbranch 

scattering arises. In the above-discussed case of a stacking fault, the crystal 

regions are separated by the fault shift by a certain value u. If (g • u) is an integer, 

the reflecting planes remain undistorted, and the Bloch waves propagate freely, 

i.e., the stacking fault does not produce a diffraction pattern. If (g-u) is a half¬ 

integer, the reflecting planes over the stacking fault are disposed precisely 

opposite the interplanar spaces beneath the stacking fault. As a result, the p-type 

waves which have survived due to the Borrmann effect, on passing the stacking 
fault hit the atomic planes again and are absorbed, etc. 

It can be shown that the short-range dislocation field is equivalent to 

a dipole of stacking faults with shift vectors ± b/2. As a result, with an odd 

integer (# • b) the image of a dislocation in a strongly absorbing crystal acquires 

a shadow which corresponds precisely to the dislocation contour. With an even 

(g • b), in contrast, the reflecting planes are not displaced along the dislocation line, 
the Bloch waves pass freely, and the dislocation contour produces a bright 

image. The dimensions of the strong-distortion region increase with distance 

from the dislocation, and weakly absorbed p-type Bloch waves manage, by 

scattering, to give rise to new Bloch waves adapted to the lower-lying region of 

the crystal. On the whole, the contrast of the image near the dislocation depends 
on the amplitude of interbranch scattering of the p-type waves. 

5.8.3 X-Ray Topography 

X-ray methods for investigating the real structure of crystals are also based 

on the use of dynamical-scattering-induced diffraction contrast, see [Ref. 5.2, 

Sect. 4.3],the two-beam contrast occurring most frequently2. The most diverse 
techniques are employed here depending on the quality of the crystal, its size, 

and the absorption. The best resolution is obtained by using monochromatic 

radiation from narrow (point or line) sources. Figure 5.39 illustrates the basic 

methods of X-ray diffraction topography which reveal, not only the mosaic 

2 Dynamical scattering in an ideal crystal in the case of a simultaneous appearance of three beams 
may be used for direct experimental determination of their phases [5.5], see also TRef 5 2 
Sect. 4.7.6], 
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Film 

Fig. 5.39. Basic methods of X-ray topography, (a) Berg-Barrett method; (b) Lang method 

structure of the crystal, but also individual dislocations. Figure 5.39a schemat¬ 

izes photography of the surface of a crystal in a monochromatized beam 

reflected at the Bragg angle (Berg-Barrett method). The photoplate is placed 

near the surface irradiated. Due to extinction, only a thin surface layer (1 pm for 

aluminium and 50 pm for lithium fluoride) takes part in the reflection. If this 

layer contains dislocations, the primary extinction is weakened near them, and 

the diffracted wave is enhanced. Subgrains are revealed by the diffraction 

contrast. 

Figure 5.39b illustrates the scheme of photography of a weakly absorbing 

crystal in the passing beam (Lang method). A crystal brought into a precisely 

reflecting position is scanned under the incident beam, and the photoplate is 

moved synchronously with it. Such an X-ray diffraction topograph pictures the 

distribution of the dislocations in the bulk of large crystals with a surface up to 

several square centimeters. By taking two photographs with the use of reflec¬ 

tions (hkl) and (hkl), one obtains a stereocouple, which helps to judge the 

spatial arrangement of dislocations. 
When photographing strongly absorbing crystals in the transmitted beam, 

use is made of anomalous passage of X-rays (Borrmann effect). As with elec¬ 

trons, the wave field propagating along the reflecting planes is composed of two 

waves. In the s-type wave the intensity maxima coincide with the lattice points, 

and in the p-type wave they are disposed interstitially. As a result, the s-type 

wave experiences considerable photoelectric absorption and damps out rapidly, 

whereas the p-type wave passes through the crystal almost unhindered and 

produces a shadow pattern of all the defects encountered en route on a photo¬ 

plate placed behind the specimen. The contrast of the image then mainly 

depends on the effect of the interbranch scattering, rather than on the change in 

the level of photoelectric absorption of X-rays in the distorted regions. Disloca¬ 

tions with (g-b) = 1 interfere most effectively with the propagation of p-type 

waves and produce the deepest shadows on X-ray diffraction topographs. With 

a special position of dislocations, when the dislocation lines are parallel to the 
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diffraction vector, the image contrast is similar to the electron-microscopic 
dislocation contrast. 

The theory of the X-ray image of lattice defects is generally constructed 

similar to the theory of the electron-microscopic image. One can, as a rule, 

restrict oneself to the two-wave approximation, but it is necessary to take into 

account, not only the dynamic effects of the transmitted and the reflected wave, 

but also the difference in the directions of their propagation. Local perturba¬ 

tions of the X-ray wave field propagate in all the directions between those of the 

wave vectors of the transmitted and the reflected wave, which results in the 

smearing out of the images of the lattice defects in the direction of the diffraction 
vector. 

The rigorous solution of the image theory problems requires the considera¬ 

tion of space-inhomogeneous problems corresponding to exitation on disper¬ 

sion surfaces, no longer of individual points, but of extended regions. In place of 

individual Bloch waves, wave packets have to be considered as well as the wave 

equations found for the amplitudes of these packets from the Maxwell equation. 

The two-wave approximation yields Takagi equations relating the amplitudes of 
the transmitted E0 and the diffracted El wave 

(5.123) 

Here, t0 is the extinction length, 9 is the Bragg angle, the z axis is perpendicular 

to the crystal surface, and the x axis is parallel to the reflection vector. For 

simplicity, the symmetric Laue case is considered, where the reflecting planes are 
perpendicular to the crystal surface. 

In slightly distorted parts of the crystal, the wave field can be decomposed 

into Bloch waves corresponding to the solution of set (5.123) for a coordinate- 

linear field u = u(z, x). The adaptation of the Bloch waves to the atomic 

structure of the distorted crystal results in bending of the trajectories of the 

Bloch waves. Introducing the notation tan 9 = c and dx/dz = v for the tangent 

of the Bragg angle and for the angular coefficient of the trajectories y = y(z) of 
the Bloch waves, we get equations 

(5.124) 

similar to those for the trajectory of relativistic particles in the external field. 

Here, signs ± correspond to different branches of the dispersion surface (s- and 

p-type waves behave as particles and antiparticles and deflect in different 

directions in the external field). The “rest mass” m0 is determined by the splitting 
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of the dispersion surface at the Brillouin zone boundary 

n 
m0 = — ctg0. (5.125) 

“External force” /depends on the curvature of reflecting planes or of the density 

of their distribution 

(5.126) 

To calculate the sectional image of a lattice defect in the beam approximation, 

one has to construct the beam trajectories (i.e., the trajectories of the Bloch 

waves) by (5.124) and find, for each point of the exit surface, two trajectories (for 

an s- and a p-type wave) arriving at this point from the illuminated point on the 

specimen surface. The initial angular coefficients of the trajectories then have to 

be varied. Further, the Bloch wave phases are calculated along the trajectories, 

and the phase shift is determined at the point where the waves meet and 

interfere. In the axial section of the topograph, for small (g u), the result differs 

but little from the electron-microscopic (5.122). For dislocations in a special 

position the limiting value of integral (5.122), with the scattering plane tending 

to the dislocation, equals F0 = n(g • b), which corresponds to (g • b)/2 additional 
extinction lines on each side of the dislocation. Investigation into the shape of 

the extinction contours makes it possible to determine the Burgers vector of 

dislocation with high accuracy. For surface films, growth bands, and subgrain 

and domain boundaries, a beam approximation (5.124) also helps to reveal the 

important details of the X-ray pattern. Calculation of the trajectories then 

reveals the effects of total internal reflection, the effect of beam focusing for 

different types of waves, and the wave-guide effects. The first-named effect leads 

to long-range surges of the field from strongly distorted regions, the second, to 

an increase in image brightness and in the high sensitivity of the X-ray diffrac¬ 

tion topographic detection of band- and column-type distortions, while the 

third effect explains the experimentally observed channeling of the radiation 

along the dislocations and stacking faults. 
In the region of strong distortions, beam approximation (5.124) is inappli¬ 

cable because of strong interbranch scattering. Investigation into the wave field 

requires here the solution of Tagaki equations (5.123). 
For the simplest stacking fault it suffices to consider the generation of a new 

wave field as a result of the interbranch scattering of Bloch waves. As with 

electron microscopy, on crossing a stacking fault the diffracted wave acquires an 

additional phase shift a = 2n{g-u). This shift is equivalent to a change in the 

amplitude of the Bloch waves. If the stacking fault plane lies between the 

directions of the transmitted and the diffracted waves, the stacking fault serves 

as a mirror reflecting the wave field, and as a waveguide. If the stacking fault 

plane intersects the direction of the transmitted and the diffracted waves, the 
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stacking fault may serve as a diffraction lens creating a bright image of the 

source (slit) at a point symmetric across the fault plane. The short-range 

dislocation field can also serve as a diffraction lens for the Bloch waves and 
produce a bright spot on sectional topographs. At high (g • b) values this spot 

reveals an internal structure in the form of a bundle of {g’b)/2 interference 

bands corresponding to spatially modulated interbranch scattering. 

To increase the sensitivity of X-ray diffraction topographic investigations of 

distortions, wide use is made of various double-crystal devices using the interfer¬ 

ence of wave fields scattered by different crystals or different parts of one and the 

same crystal. The sensitivity of these methods to deformations and rotations of 

the lattice is of the order of the ratio between the wavelength of X-radiation and 

the beam width. The effect of diffraction focusing of the Bloch waves enables one 

to measure rotation angles of 10 “3 angular second and to clearly detect lattice 

rotations from a single dislocation at distances of about 1 mm. The opportuni¬ 

ties offered by the X-ray moire technique can be evaluated as follows. If the 

difference in the structure of two adjacent crystal blocks is described by displace¬ 

ment vector u, then the additional phase shift arising at block boundaries is 

characterized by an angle a = 2ng-u, as in a stacking fault. With uniform 

deformation, u depends linearly on the coordinates, and phase factor exp(ia) 

undergoes periodic changes, restoring its value each time the product g • u varies 

by unity, i.e., u changes by an interplanar distance d = g~x corresponding to the 

given reflection. As a result, oscillations in image intensity {X-ray moire) arise 

and make it possible to investigate small (of the order of d/D, where D is the 

distance between the moire bands) deformations and rotations of the lattice. At 

d = 3 A and D = 3 mm, the moire corresponds to a change in lattice parameter 

A d/d = 10“ 7 or to a misorientation co = 0.02". 

Various effects influence the formation of an X-ray diffraction pattern, 

depending on the geometry of the lattice defects and the photography condi¬ 

tions, namely: diffraction smearing-out of beams by local distortions and diffrac¬ 

tion focusing of beams by stacking faults and dislocations, geometric reflection 

of X-rays by two-dimensional defects and complete internal reflection with field 

channeling along the defect, etc. Therefore, image analysis often involves con¬ 

siderable difficulties. 

The width of an X-ray dislocation image usually equals tens of micrometers, 

which exceeds by three orders the width of the electron-microscopic dislocation 

image. Therefore, resolution of the dislocation structure of crystals by means of 

X-ray techniques is possible only for comparatively perfect crystals with a dislo¬ 

cation density not higher than 105 cm2, and resolution of dislocations in sub¬ 

grain boundaries is possible only for very slightly (not more than by several 

seconds) misoriented subgrains. 

By way of example, Fig. 5.40a shows an X-ray diffraction topograph of the 

mosaic structure of MgO obtained by the Lang method. The dislocation 

structure of boundaries in a mosaic of 200-500 pm subgrains misoriented by an 

angle of several seconds has been resolved. Larger subgrains misoriented by 

angles of about one minute clearly differ in contrast and have sharp boundaries. 
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Fig. 5.40a, b. Mosaic structure, (a) X-ray topogram of an MgO crystal, x 15 (Courtesy of 
V. F. Miuskov); (b) electron micrograph of a Ge crystal, x 20,000 (Courtesy of N. D. Zakharov) 

Subgrains turned by large angles drop out of the image altogether and seem to 

be white. For comparison, Fig. 5.40b shows an electron micrograph of subgrains 

in a single crystal of silicon. Here, the dislocation structure of subgrain bound¬ 

aries misoriented by tens of minutes is resolved. Figure 5.41a presents a picture 

of dislocation in silicon obtained by the Borrmann method. The distortion field 

around the dislocation can clearly be seen, the areas with stresses of opposite 

signs differ qualitatively. For further comparison, Fig. 5.41b presents a sectional 

topograph of a dislocation in a silicon crystal. Here, the distortion field can be 

characterized quantitatively by the pattern of interference (extinction) bands. 
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Fig. 5.41a, b. X -ray topogram of 
a dislocation in silicon (Courtesy of E. 
V. Suvorov), when viewing (a) along 
the dislocation, (b) normal to the dis¬ 
location 

5.8.4 Photoelasticity Method 

The stress field around isolated dislocations parallel to the direction of observa¬ 

tion is revealed still more clearly by the use of the photoelasticity method based 

on the effect of stresses on the light-wave velocity. In an initially isotropic 

medium the stresses cause birefringence, whose intensity is proportional to the 

difference between the principal stresses in the wave-front plane. Proportionality 

factor C is called the photoelastic constant of the material. In crystals, changes 

in the coefficients of the optic indicatrix are expressed linearly in terms of the 

components of the stress tensor with the aid of photoelastic coefficients forming 
a fourth-rank tensor [5.1]. Figure 5.42 gives photos of stresses around edge 

dislocations in silicon obtained with the aid of a polarization infrared micro¬ 

scope equipped with an electron-optical image converter, which permits obser¬ 

vation of the image in a visible light. For comparison, the same figure presents 

calculated birefringence rosettes. When the rays are directed along the disloca¬ 

tions, the difference between the principal stresses in the plane of the wave front 

is, by (5.27), 2ar0 = Gb/n(l — v)-cos 6/r, whence the birefringence 

A = nx — n2 = C 
Gb cos 6 

7t( 1 — v) r 
(5.127) 

When a crystal is observed in crossed nicols, the intensity of the propagated light 

is defined by the difference between the diffractive indices for oscillations along 

planes disposed at an angle of 45° to the polarizer and analyzer axes. If the axes 

of the crossed polarizer and analyzer make an angle cp with the Burgers vector, 

the observed birefringence is weakened by a factor of sin 2(9 — cp). As a result, 

the shape of the intensity rosettes is given by the equation 

r — const cos 6 sin 2(6 — cp). (5.128) 

For (p = 0 we obtain the rosette of Fig. 5.42a, and for cp = 45°, that of Fig. 5.42b. 
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Fig. 5.42. Stress rosettes around edge dislocations in silicon. (Courtesy of V. I. Nikitenko) 

Determination of the sign and value of the birefringence near the dislocations 

gives the sign, direction, and magnitude of the Burgers vector. 

The photoelasticity method also helps to investigate the elastic field of 

dislocation ensembles, growth bands and pyramids, slip bands, twins, incoher¬ 

ent subboundaries, as well as to obtain information on spontaneous deforma¬ 

tion of individual domains in a polydomain specimen, and sometimes on the 

structure of the domain boundaries. 

5.8.5 Selective Etching Method 

During the dissolution of a crystal, the dissolution nuclei are formed more 

readily in regions with higher energy. Since high internal stresses around 
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Fig. 5.43. Jumpwise movement of 
dislocations in a NaCl crystal. 
(Courtesy of V. N. Rozhansky, 
A. S. Stepanova) 

dislocations cause local increases in crystal energy, the ends of the dislocation 

lines on the crystal surface can sometimes be revealed by the action of various 

etchants on the crystal. An efficient choice of an etchant and etching conditions 

produces pronounced etch pits at the dislocation ends whose shape helps to 

judge the inclination of the dislocation to the crystal surface. Repeated etching 

with repolishing and continuous etching in polishing solutions permits tracing 

the position of dislocations in the specimen bulk. Repeated etching without 

repolishing and continuous etching under load are helpful in studying the 

kinetics of dislocation movement. As an example, Fig. 5.43 gives a photo 

illustrating the jumpwise movement of dislocations in a NaCl crystal. After 

a dislocation leaves the etch pit, the latter ceases to deepen and, spreading out, 

acquires a flat bottom. The size and shape of the etch pit therefore indicate the 

moment when the dislocation arrived at the given point and the time it has been 
there. 

The possibility of the formation of clearly defined dislocation pits on etching 

low-index (close-packed) faces is ensured by the anisotropy of the crystal 

dissolution rates. Detection of dislocations on an arbitrarily oriented surface 

usually requires preliminary deposition of some impurity on the dislocations, 

which facilitates the formation of etching nuclei. Such decoration (coloring) of 

dislocations in transparent crystals enables one to observe directly the three- 
dimensional arrangement of dislocations. 

The selective etching method is also used to detect various clusters, precip¬ 

itates, domain and twin boundaries, fast-particle tracks, and other similar 
defects. 

5.8.6 Investigation of the Crystal Surface 

The points of emergence of dislocations at a crystal face can be detected by 

investigating the atomic structure of the face. By constructing a Burgers circuit 



5.8 Direct Observation of Lattice Defects 399 

on the crystal surface as in Fig. 5.5, it is easy to ascertain that the end of the 

dislocation (not necessarily of a screw one) corresponds to the end of a step, 

whose height is equal to the normal component of the Burgers vector. By 

observing steps on crystal faces with the aid of an optical, electron, or ion 

microscope directly or after decoration with foreign particles one can judge the 

density and the arrangement of the dislocations in the crystal. Decoration of the 

crystal surface permits direct observation of the dislocation ends, precipitates, 

and fine details of domain structure. The possibilities for decorating individual 

point defects are being investigated. The effect of dislocations on the microrelief 

of crystal faces and the importance of this effect for crystal growth and dissolu¬ 

tion (evaporation) are studied in detail in the dislocation theory of crystal 

growth [5.3]. 
In recent years new data on the structure of a real crystal have been 

obtained, using various methods for the investigation of defects in the crystalline 

structure, see [5.6, 7] and [5.2, Sects. 4.9,10, 5.3, 4]. Further development of the 

theory of real crystal took place, including the problems of internal stress, 

dislocations and their mobility, surface waves, defects in irradiated crystals, 

etc. [5.8]. 



6. Advances in Structural Crystallography 

In recent years the theory and the experimental techniques of structural crystal¬ 

lography were developed very actively and provided numerous new data on the 

atomic structure of various crystals. The number of determined structures 

amounts up to 180,000. Among the crystals studied recently there are new 

classes of compounds such as fullerenes, high-temperature superconductors, 

Langmuir-Blodgett films, etc. New results obtained for inorganic, organic, and 
biological structures are characterized by a higher accuracy and provide better 

understanding of fine mechanisms governing the structure formation and crystal 

properties. Therefore, we considered it necessary to describe in brief the ad¬ 

vances in the analysis of those classes of structures which, in our opinion, are of 

particular interest. 

6.1 Development of Structure Analysis. Data Banks 

Rapid development of structural crystallography in recent years is due to the 

appearance of automatic techniques for measurements of the diffraction and 

reflection intensities, the progress in computer technology and the successful 

implementation of direct methods to decipher crystal structures. At the present 

(1993) about 180,000 structures have been determined, most of them have been 

solved after 1980. This boom of information brought out many new valuable 

data on various classes of compounds. At the same time the search for informa¬ 

tion in different literary sources became rather complicated. The basic numeric 

results of X-ray structure investigations: unit cell parameters, symmetry, coordi¬ 

nates, and parameters of thermal motion - allow to obtain the necessary 

structural information - coordinates of atoms, interatomic distances, molecule 

stereochemistry, etc. No wonder that crystallographers were among the first 

scientists to use computers for the solution of informational problems. 

This was also promoted by the data system already existing in crystallogra¬ 

phy. Already in 1929, i.e. only 16 years after the publication of the first result on 

structure analysis, “Strukturbericht” appeared. It was followed by “Structure 

Reports” - the official edition of the International Union of Crystallography. 

Because of the tremendous volume of structural information and the appearance 

of computer data banks, in 1991 the publishing of “Structure Reports” was 
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stopped. At present there are four major crystallographic banks [6.1]: 

1) Inorganic Crystal Structure Database (ICSD). This bank contains informa¬ 
tion on the structure of compounds that have no C-C and C-H bonds and 
include at least one metallic element. The first-listed structure was NaCl (Bragg, 
1913). By 1993 the bank contained more than 35,000 structures. There is 
extensive computer software for the search of references and data processing. 

2) NRCC Metal Crystallographic Data File (CRYSTMET). This bank stores 
data on metal phases and alloys. Now it had the data on about 7,000 structures 
determined since 1913, and, besides, about 6,000 publications (since 1975) in 
which metals and alloys are classified as belonging to a certain structural type. 

3) Cambridge Structural Database (CSD). This bank contains information on 
organic and metal-organic compounds, and complexes of metals with organic 
ligands, the structures of which were determined on the basis of single-crystal 
X-ray or neutron diffraction data. It covers the period from 1935 till the present. 
By March 1992 it contained data on the structure of 100,000 compounds. The 
annual accumulation of entries equals about 8,000 publications (Fig. 6.1). In¬ 
formation on the structure also contains bibliographic data, data on the chem¬ 
ical bonds, i.e. structural formulae of the compound and structural numerical 
data: atom coordinates, unit cell parameters, space group, R-factor, etc. The 
abundant computer software allows the search and classification of structures 

Year 

Fig. 6.1. The number of organic-crys¬ 
tal structures determined over years 
(Cambridge Structural Database). 
n is the number of the studied struc¬ 
tures per year, Ln is the total number 
of investigated structures by the 
given year 
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according to different parameters and furthermore makes it possible to calculate 

geometrical characteristics of the structure and obtain the image of the molecule 

or the whole unit cell. 

4) Protein Data Bank (PDB). Established at Brookhaven Nat’l. Lab. in 1971. It 

contains exact data on the structure of biological macromolecules. By 1993 it 

listed atomic coordinate entries for more than 1,000 proteins, DNA, etc. 

National Institute of Standards and Technology (NIST) is creating a data 

bank of chemical, physical and crystallographic information on all types of 

substances. The data bank is subdivided into two banks: 

(a) NIST Crystal Data Base, which contains crystallographic and chemical 

data for more than 170,000 crystalline materials. It stores unit-cell parameters 

and space groups, and some other data (as, e.g., crystal properties, color, etc.) 

both for inorganic and organic compounds with a special indication whether the 

atom’s coordinates have been determined. 

(b) NIST/Sandia/ICDD Electron Diffraction Data Base (EDD) which con¬ 

tains structure-chemical and crystallographic data for 71,000 substances. 

Data banks for materials-science applications (phase diagrams, etc) and the 

study of superconductivity have also been created. 

There is also a data bank on crystallization of biological macromolecules, 

namely the NIST Biological Macromolecule Crystallization Database. It com¬ 

prises information on crystallization conditions and unit-cell parameters of 

crystals of biological macromolecules. 

Diffraction data for powders are accumulated in the Powder Diffraction File 

(PDF). It has tables of interplanar distances and relative intensities and, if the 

information is available, on Miller indices and physical characteristics. The 

bank stores data for about 60,000 (1993) samples, about 2,000 powder patterns 
are added annually. 

The computer software available permits the search on the basis of a set of 

parameters, like diffraction or other data (coloring, etc.). 

Data base of OD (Order-Disorder) Structures (ODDB) contains informa¬ 

tion on crystal properties of substances which possess polytype and disordered 

packing of layers; the theory of OD structures of Dornberger and Schiff is being 
used for structure description. 

In the literature there are about one thousand publications on the structure 
of different liquid crystalline phases. 

6.2 Fullerenes and Fullerides 

6.2.1 Fullerenes 

In 1985 a previously unknown allotropic modification of carbon C60 was 

discovered [6.2], This was an unexpected addition to the two classical carbon 

modifications - graphite and diamond (Sect. 2.1.1; Fig. 2.5) that had been 
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Fig. 6.2a, b. A truncated icosahedron (a) and the fullerene structure (b). Five-fold axes pass through 
12 icosahedron vertices. The vertices are truncated normally to these axes and 12 pentagonal faces 
are formed, whereas 20 triangular faces are transformed into hexagons. Pentagons and hexagons are 
indicated by solid lines (a). The vertices out off from the icosahedron are drawn by dashed lines (a). 
Only the front part of the polyhedron (a) and atoms of the C60 molecule occupying its vertices (b) are 

shown 

studied in full detail by physicists, chemists and crystallographers. The dis¬ 

covered C60 molecule is a pseudospherical construction of 60 carbon atoms 

forming a cage-like network of bonds with icosahedral symmetry (Fig. 6.2). 

Carbon atoms form pentagons and hexagons. The hexagons of C atoms are well 

known - graphite and an enormous number of aromatic compounds are built of 

them; pentagons are also present in many aromatic compounds. 

Other closed C„ molecules with the number of atoms other than 60 have 

been found. 
Fullerenes are formed in a gaseous plasma of carbon during laser evapo¬ 

ration of graphite, in an electric arc between the two carbon electrodes, and 

during soot transformation in flames in the gaseous phase. To ensure that only 

C-C bonding, but not bonding with other atoms, arises in the molecules being 

formed, the process is carried out in the atmosphere of an inert gas - helium 

[6.2-4]. Such conditions are hardly possible in natural processes and therefore 

fullerenes are the creation of man. (However, it is suggested that fullerenes may 

exist in interstellar dust.) 
The discovery of C60 gave rise to a vast number of works in many countries 

where spectroscopic, mass-spectroscopic, NMR, X-ray and neutron diffraction 

investigations and other physical and chemical methods were used. 

Let us consider the structure of the C60 molecule. Carbon atoms are placed 

at 60 vertices of a truncated icosahedron (Fig. 6.2b). An icosahedron has 12 

vertices formed by 20 triangular faces. If each vertice is truncated, there appear 

12 pentagons, and the remaining parts of triangles turn into hexagons, 20 

in number. The C-C distances in bonds of adjacent hexagons are of about 

1.391 A, in the bonds within the pentagon (each of which is shared with 

a hexagon) it is of about 1.455 A. Let us recall that in graphite the length of C-C 

bonds (with the order 4/3) equals 1.42 A. In diamond the length of single C-C 

bonds equals 1.54 A. Graphite possesses sp2 hybridization of the carbon atoms, 

diamond - sp3 (Sect. 1.2.4). We see that bonds in fullerene are close to “graph¬ 

ite-type” ones, but as each of the C atoms is at a vertex and therefore is 
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surrounded by atoms not lying in one plane, we can therefore speak of partial 

sp3 hybridization of the electron orbitals. The truncated icosahedron has 90 

edges corresponding to the 90 u-bonds between carbon atoms. The diameter of 

the “ball” on which the C atoms in C60 are located is of about 7.1 A. This “ball 

is built in the same way as the icosahedral soccer ball (Fig. 2.171). The icosahed- 

ral point group m5m (also denoted by Ih) has the maximum group order, 60, of 

all the classical point groups listed in [Ref. 6.5, Fig. 2.49] with all the 60 atoms of 

the C60 molecule being symmetrically equivalent. 
Mass spectra from closed C„ clusters have maxima not only if the number of 

atoms in a cluster is n = 60, but also for other n values both smaller and larger 

than 60 [6.3]. Closed maxima occur for even values n = 24, 28, 32, 50, 60, 70, 76, 

78, 84 ... . For the values indicated the closed polyhedra of pentagons and 

hexagons can be built, although not so symmetrical as C60 [6.6, 7]. Some of 

them are ions with 2+ or 2“ charge. 
Hypotheses have been put forward that the C60 molecule can be “dressed” 

by consequent closed icosahedral shells with the number of C atoms n = 240, 

then 540, then 960. In all of them the number of pentagons is always 12, and the 

remaining part is formed by hexagons. (Icosahedral constructions with an 

enormous number of atoms having the same symmetry as C60 exist in spherical 

viruses, see Sect. 2.9.6). 
The most stable configurations are C60 [6.2, 3] and C70 [6.8, 9]. The C70 

molecule, as compared to C60, has a belt-like insertion of 10 carbon atoms, the 

symmetry of this ellipsoidal molecule is 52. 
When the structure of the C60 molecule with its icosahedral network of 

bonds was established, scientists found a macroscopic analog of it - the domes 

of Buckminster Fuller, an architect [Ref. 6.5, Fig. 2.50a], Therefore, the mole¬ 

cule was called buckminsterfullerene or just fullerene. Later on, this name - 

fullerene - was spread to other cage-like molecules of this family. The C60 

molecule is also called a “buckyball”. 
The surface approximating the shape of fullerenes has a positive curvature 

due to the presence of pentagons with C-atoms. Graphite has a zero curvature as 

its planar networks are built of hexagons. Some other geometrical forms of 

carbon have also been found. Thus the techniques for the synthesis of fullerene 

C60 can also be used for obtaining cylindrical crystalline needles consisting of 

tubular graphite layers. Such a needle is built by concentric tubules, or else 

a graphite layer is rolled like a rolled carpet [6.10]. Under the influence of 

intense electron beam irradiation in an electron microscope, quasi-spherical 

particles composed of concentric graphite shells which can be regarded as 

onion-like relatives of fullerene are formed - Fig. 6.3a [6.11]. 

It was also suggested that carbon networks can form periodic minimum 

surfaces with negative curvature [6.12, 13]. 

Hypotheses on the icosahedral form of C60 carbon had been put forward 

long ago along with the ideas about chemical bonding of other atoms or 

chemical groups [6.14], Every carbon atom should then form a single pseudo- 

tetrahedral bond. Such molecules are called fullerides. For example, C60H60, 
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C60F6o compounds were discussed. New compounds have been synthesized in 

which only some of the C60 atoms are connected with other atoms, the so-called 

buckyball with thorns, like {[(C2H5)3P]Pt6}C6o, or C60(OsO4) [6.6]. 

6.2.2 C60 Crystals 

In 1990 it was discovered that considerable amount of fullerenes is formed in an 

electric arc, and their solutions in benzene were obtained, from which small C60 

and C70 crystals were seeded (Fig. 6.3b), [6.3]. Fullerite C60 is mustard-colored. 

Its structure has been studied by X-rays and neutrons [6.15-17] using a pow¬ 

der-diffraction technique. Three crystal modifications have been discovered: 

C60 I- 260 K-C60 II-86 K-C60 III 

(the temperatures of phase transitions are indicated). All three modifications are 

cubic with the lattice period slightly exceeding 14 A. 
Above temperatures of 260 K there exists phase I with the space group 

Fm3m, a = 14.1501 A. This is a close-packed face-centered structure (fee). 

Buckyballs are pseudospherical icosahedral molecules and the fee structure can 

be explained with a very good approximation by the fact that C60 molecules in 

this phase I are orientationally disordered, i.e., are almost freely rotated and 

their time-averaged electron density is like spherical shell (Fig. 6.4a). Still, 

application of a number of techniques permitted to establish that in phase I with 

its almost free “spherically-symmetrical” rotation of molecules, hindered rota¬ 

tional diffusion also takes place: expansion of orientational distribution function 

with the aid of spherical harmonics showed that this function has° several 

maxima [6.18, 19]. The distance between the balls centers is 10.04 A, intra¬ 

molecular contacts of C atoms in the neighboring spheres are of about 3.2 A. 

The transition to phase II occurs at 260 K. In this phase molecules undergo 

a uniaxial jump reorientation of molecules with steps ~ 5° around the <111) 

Fig. 6.3. (a) onion-like concentric graphitic shells, distance between layers 3.4 A [6.1 l];(b) transmis¬ 

sion micrograph of crystals of the fullerene C60 [6.3] 
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Fig. 6.4a-c. Phase transitions in structure of C60. (a) close-packed (111) plane of spherically- 
averaged C60 molecules depicting the orientationally disordered phase I above 260 K; (b) schematic 
representation of phase II depicting uniaxial reorientation about <111) directions; (c) close-packed 
(111) plane of ordered C60 molecules in phase III, T < 86 K 
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directions takes place. The space group is Pa3, a = 14.1015 A. Four C60 mole¬ 

cules with the centers at 000, ^00, 0^0, 00^ that were translationally equivalent 

in phase I, are now related by glide plane a. 

Let cp be an angle of anticlockwise rotation from the ideal Fm3m configura¬ 

tion about [111] direction, then the most energetically favorable, major orienta¬ 

tion will have <p = 98°, but a less energetically favorable, minor orientation of 

cp = 38° is also observed. The ratio of the occurrence of the first orientation 

increases with the temperature decrease. Thus in phase II shuffling of C60 

molecules between positions related by 60° rigid orientational jumps about 

(111) directions occurs. This is shown in Fig. 6.4b. The dimples correspond to 

the faces of electron-depleted pentagons or hexagons. Edges between the hexa¬ 

gons are electron-rich bonds and form protrusions during rotation. 

At temperature T < 86 K the rotational motion is frozen, the molecules stop 

rotating and give rise to phase III, space group Pa3, a — 14.057 A (Fig. 6.4c). As 

in phase II, the angles q> — 98° and (p = 38° are possible, and the structure 

actually consists of a static mixture of these configurations with the ratio of 

0.835 (98°) and 0.165 (38°) [6.16, 17]. 
Thus for the static molecules in crystal phase III the ideal point icosahedral 

symmetry I-mSm is changed to the rhombohedral S6-3. Such deformation is 

connected with the interaction of neighboring molecules and their electron-rich 

and electron-depleted parts. 
Thus phase transitions in crystalline fullerene present an interesting example 

of transformations of an (almost) free spherical rotation of molecules (phase I) to 

reorientational jumps - around fixed directions (phase II, and finally to freezing 

of these jumps in phase III. 
Fullerites are crystal structures A„C60 [6.20] in which the atoms A are 

placed in the holes of the buckyballs close packing. These are mainly C60 

compounds with alkali metals, e.g., K.3C5Q [6.21], K4C6o, K6C6o> Cs6C60, 
compounds with Li, Na and Rb are also formed. A6C60 are body-centered cubic 

structures with the atoms A in tetrahedral voids. In the K3C60 structure 

(Fig. 6.5, see also Fig. 6.17) K atoms occupy all tetrahedral and octahedral 

interstitials in the fee packing of the C60 molecules, space group Fm3m, 

a = 14.24 A. Similar structures arise with Rb, Cs and mixtures of these atoms. 

The structure of A4C60 [6.20] is body-centered tetragonal, a = 11.886 A, 

c = 10.774 A sp.gr. /4/mmm, the C60 molecules are orientationally disordered. 

Figure 6.5 shows the similarity of all A„C60 structures, n = 3, 4, 6. 
A„C60 compounds exhibit a wide range of electroconductive properties - 

from those of insulators to those of semiconductors or metals. 

Electrons in a free C60 molecule are shared. Wave functions are described by 

a combination of spherical harmonics with an icosahedral symmetry, molecular 

orbitals are ns-tln, this orbital is overlapping with n and a electrons. Ions of 

alkali metals K+, Rb+ or Cs+ provide C60 with additional electrons [6.21], 

For n < 4 the A„C60 compounds are metals, with the bands corresponding 

to the lowest empty state of C60 half-filled with additional electrons [6.20, 23], 
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Fig. 6.5a-c. Structure of A3C60 (a), A4C60 (b) and A6C60 (c). The fee cell has been rotated through 

45° and depicted as an equivalent bet cell with abc, = afcJs/2 [6.20] 

Fig. 6.6. Scheme of the TDAE-C60 
structure. Views along the mono¬ 
clinic c-axis [6.28] 

Scientific sensation caused by the fullerenes is that these structures possess 

superconductivity, even high-temperature superconductivity [6.21,24,25], 

Thus, for K3C60 Tc = 19 K, for Rb3C60 - 29 K, for Cs2RbC60 - 33 K, for 

Rb2.7Tl2.2C60 - 42.5 K. However, the A4C60 compounds loose their metallic 
properties and become insulators. The occurrence of superconductivity is con¬ 

nected both with the electron-electron and the electron-phonon interactions 

[6.26], 

Fullerites with ferromagnetic properties were also found [6.27, 28]. Among 

these is the TDAE-C6o compound, where TDAE is shorthand for tetra- 

kis(dimethylamino)ethylen C2N4(CH3). Its crystal structure is centered mono¬ 

clinic, the most probable space group - C2 (Fig. 6.6). Such a formation should be 

characterized by a very anisotropic band structure which, evidently, gives rise to 

ferromagnetic ordering of the spins. 
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6.3 Crystal Chemistry of Silicates and Related Compounds 

This section reports on recent achievements and thus extends the discussion of 

Sect. 2.3.2. 

6.3.1 Main Features of the Silicate Structures 

The main structural feature of silicates is the presence of Si atoms in a tetra¬ 

hedral oxygen-atom coordination. Bond lengths and bond angles in the 

Si, O tetrahedra tend to be close to their mean values: d(Si-O) = 1.62 A; 

L O-Si-O = 109.47° and ASi-O-Si = 140° [6.29], 

The major concept of the silicate structures states that in the silicate struc¬ 

tures the Si04 anionic tetrahedron complex is adjusted to the cation-oxygen 

polyhedron fragments [6.30,31]. In particular, this principle was confirmed 

with structures having big cations (K, Na, Ca, rare earth elements), where 

pyrogroups [Si207] are commensurable with the edges of the cation-oxygen 

polyhedra [6.31], 

Several quantitative correlations actually complete this qualitative ap¬ 

proach. For example, there are more than 60 compounds with the general 

formula Ma[T207]5, where T = As, Be, Cr, Ge, P, S, Si [6.32]. In connection 

with their ionic radii ratio rM: rT, they can be subdivided into two groups: 

a) thortveitite-like with angle AT-O-T > 140°, and b) bichromate-like with 

AT-O-T < 140°. 
For the purposes of comparative crystal chemistry, the recognition of tet¬ 

rahedron fragments is very useful if the tetrahedra share corners. If a condensa¬ 

tion of tetrahedra does not occur, the analysis of the structures and their 

classification is more effective in the frame of the concept of mixed complexes. 

The predominant structural fragments are cation-oxygen polyhedra - where the 

bond strengths are comparable with those of the bonds between silicon and 

Fig. 6.7a-e. Mixed insular complexes in sulphate structures: (a) starkeyite MgS04-4H20; 
(b) V0S04 5H20; (c) astrakhanite Na2Mg(S04)2-4H20; (d) Fe2(S04)3-9H20; (e) Mause’s salts 
A5Fe30(S04)6nH20, where A = Li, Na, K, Rb, Cs, NH4, T1 and n = 5-10 
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oxygen - and Si, O tetrahedra. This approach was recently extended to other 

kinds of compounds and has been used during the last years for the classification 

of carbonates, sulphates, tellurates and so on [6.33]. 
The structural classification of sulphates on the basis of this concept proves 

that the variability of mixed complexes in sulphates [6.34] is comparable with 

the diversity of the anionic tetrahedron complexes in silicates (Fig. 6.7). 

6.3.2 Insular Anionic Tetrahedron Complexes in Silicates 

The biggest insular tetrahedron complex, built up of 48 Si, O tetrahedra, was 

found as the main structural unit of ashcroftine K10Na10(Y, Ca)24(OH)4- 

(C03)16[SiS6014o] • 16H20. 
Pyrophosphate groups [P2O7] were discovered in canaphite, the only 

mineral with linked P,0 tetrahedra. 
At the present time the number of known isolated, linear tetrahedron 

complexes has been considerably increased. The first known complexes of this 

type were triple tetrahedra [Si3O10] in ardenite Mn4Al6[(As,V)04][Si04]2- 

[Si3O10](OH)6 and Na, Cd silicates (Fig. 6.8). In Ag10[Si4O13] complexes of 

4 tetrahedra and in Na4Sn2[Si5016] H20 complexes of 5 tetrahedra have been 

found. Several Mg, Sc silicates contain linear tetrahedron complexes, formed by 

8, 9 and even 10 Si, O tetrahedra. 
New ideas on the structures of olivine (Fig. 2.25) and humite mineralogical 

groups based on the analysis of cationic distribution in their structures were 

developed [6.35]. The forsterite structure can be described as association of the 

isolated columns built of trigonal prisms with shared edges. Mg atoms form the 

vertex and Si atoms are situated in the centers of such prisms. In norbergite 

Mg2Si04-Mg(OH, F)2 similar prisms are isolated. In humite 3Mg2Si04- 

Mg(OH, F)2 the triple trigonal prisms can be recognized. 

Fig. 6.8. Triple tetrahedra in (a) Na4Cd2[Si3O10] and (b) Na2Cd3[Si3O10]. Linear tetrahedron 
complexes in (c) tiragalloite and (d) medaite. The As, O tetrahedron (tiragalloite) and the V, O 
tetrahedron (medaite) are dotted 
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6.3.3 Anionic Tetrahedron Complexes in the Form of Rings and Chains 

There are nine types of tetrahedron rings in silicate, phosphate and germanate 

structures. The biggest 18-membered ring (Fig. 6.9) was found in the natural 

y 
Fig. 6.9. 18-membered tetrahedron 
ring of megacyclite KNa8[Si9018- 
(OH)9] 19H20 

Fig. 6.10a-e. Branched tetrahedron complexes in the structures of (a) astrophyllite NaK2Mg2- 
(Fe,Mn)5Ti2[Si4012]2(0,0H,P); (b) aenigmatite Na2Fe5Ti[Si6018]02; (c) saneroite HN1)5Mn5- 
[(Si5 5V0.5)O18]OH, (d) tienshanite KNa9Ca2Ba6(Mn, Fe)6(Ti,Nb,Ta)6B12[Sii8054]2015(0H)2; 

(e) uralborite Ca2 [B404(0H)4] 
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Fig. 6.11a-e. Different types of [Si205] band silicate structures: (a) vinogradovite; (b) caysichite; 
(c) tuhualite; (d) fenaksite; (e) the double band in the structure of Cs4(Nb0)2[Si8021] 

K, Na silicate KNa8[Si9018(0H)9] • 19H20. Unlike the simple tetrahedron 

rings [Si03]„, the double rings have the composition [Si205]„. The 3-mem- 

bered and 4-membered double rings are rather rare, while 6-membered double 

rings, first discovered in the milarite structure KCa2Be2Al[Si1203o] • H20, were 

later found in quite a large group of silicates. 

15 different types of tetrahedron chains are known. In 1989, a new type of 

spiral chain with 16 tetrahedra in the period was found in KEr[P03]4. 

The ratio Si:0 = 1:3 is also typical for a specific group of silicates, which, 

according to Liebau [6.29], belongs to the so-called branched chain or ring 

silicates. The basis of these complexes is formed by a tetrahedron chain or ring 

linked with additional tetrahedron “branches” (Fig. 6.10). Some silicate struc¬ 

tures contain the bands formed by double chains. 

The new types of bands were found in biopyribols, which contain construc¬ 

tion elements common also with pyroxenes, mica (biotite) and amphibols. There 

are bands formed by 2, 3 and sometimes by even more than 10 pyroxene chains, 

which gradually become layers. There is another group of bands, the so-called 

tube-like, which contain sections with rings. The different bands are depicted in 

Fig. 6.11, [6.36], 
A new silicate band is present in Cs4(Nb0)2[Si8021] (Fig. 6.11). It can be 

described as a condensation of two vlasovite-like bands. 
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The most common tetrahedron layers found in clay minerals are polar and 

contain 6-membered rings. It is possible to consider them as the result of the 

condensation of pyroxene-like chains. 5- and 7-membered rings are also known. 

6.3.4 Framework Silicates 

Three-dimensional tetrahedral networks have very diverse configurations 

(Figs. 2.23, 30). They can be subdivided into three groups according to the 

character of interaction between the tetrahedral framework and the inserted 

cations: 

In picnolites structures even small water molecules are linked firmly with 

their framework and can only be removed after its reconstruction. Most of Si02 

modifications, feldspars and some other minerals belong to this group. 

In klatrasils structures the guest molecules or atoms are linked with a 

tetrahedral framework by van der Waals forces. 
Zeolites group includes about 50 mineralogical types + 120 synthetic com¬ 

pounds with general formula: M"/t[(A102)x(Si02)] zH20, where M"+ is the 

cation, which balances the negative charge associated with the framework A1 

ions. About 30 types of tetrahedron frameworks were found in structures of 

zeolite minerals. 
A new type of tetrahedron framework was noted in the structure of gruman- 

tite Na[Si204(0H)] H20 (Fig. 6.12). 

Fig. 6.12. Structure of grumantite in projection on to (001). Spiral tetrahedron chains with 4 tetra- 

hedra in period are perpendicular to the plane of projection 
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Table 6.1. (Si, O) anions, found only in structures of synthetic compounds 

Formula Shape of (Si, O) anion Compound 

l-
1 

V© 

o
 

c/5 
i—

i linear group, built of 5 tetrahedra Na4Sn2[Si5016]H20 

[Sio3] chains with the \ 22 tetrahedra 
periodicity 1 24 tetrahedra 

Mgo, 8^Co, i Li0, i [Si03] 
Na3Y[Si309] 

[Si5o13] bond, built of 5 pyroxene-like chains Ba3[Si5013] 

[Si12013] bond, built of 6 pyroxene-like chains Ba7[Si12031] 

[Si306] layer with 6- and 10-membered rings 
layer with 6-, 8- and 12-membered rings 

Na2Cu[Si3Og] 
K8Yb3[Si6016]2(0H) 

[Si205] double 3-membered ring 
layer with 4-, 5-, 6- and 8-membered rings 
layer with 4-, 5- and 12-membered rings 

Ni(NH2CH2CH2NH2)3[Si6015]H20 
NaNd[SieO, 3(OH)2] nH20 
LiBa9[Si10O25]Cl7CO3 

The unusual framework with a similar formula was discovered in synthetic 

compound K2Zn4[Si802o] [6.37], It can be considered as a condensation of 
tetrahedral layers with 10-membered rings. 

The comparison of natural and synthetic silicates shows that the diversity of 

mineral structures is much richer than that of synthetic ones, which is in 

accordance with greater variations of crystallization conditions in nature. How¬ 

ever, about 10% of all known (Si, O) configurations were revealed only in 
structures of synthetic compounds (Table 6.1). 

These configurations are characterized by a definite energetic disadvantage, 
which is connected with their complicated geometry and atypical shape if one 

takes into account the value of the average negative charge per one tetrahedron. 

It is obvious that only on the basis of both groups it is possible to understand 
silicate crystal chemistry. 

6.3.5 Theoretical Methods for the Calculation of Silicate Structures 

In recent years the computational methods for calculating crystal structures and 

their properties under various thermodynamical conditions have received great 

attention. This is associated with the development of new theoretical approaches 

and possibilities provided by modern computers. Such new methods allow, in 

particular, the analysis of the properties of various minerals at very high 

temperatures and pressures and the interpretation of the behavior of silicates 
from the Earth’s lower mantle [6.38]. 

As has already been stated (Sects. 1.2.5, 1.2.6, 1.3.2, 3.1, 3.2), in such cases an 

approximate Schrodinger equation for the system under consideration is solved 

or else a structure is simulated with the aid of an effective interaction potential of 

the atoms. When solving an approximate Schrodinger equation, models consist¬ 

ing of a rather large number of atoms (or clusters of atoms), that approximate 
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Fie. 6.13. (a) The response of the density of valence electrons to the formation of an Mg vacancy in 

MgO. The contours show the variation in the electron density in the (100) plane (in e 
[6.40a]. (b) The phase diagram to the magnesium orthosilicate system calculated using free-energy 

simulation methods employing lattice-dynamical techniques [6.38] 
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quite well the crystal structures, are used. Then the quantum-mechanical prob¬ 

lem for such a system is usually solved by the Hartree-Fock method. As in 

molecular calculations, the wave function is a linear combination of atomic 

orbitals. A new technique in which the local-density approximation is used 

[6.39-42] provides allowance for the effects of electron correlation [6.43]. 

In addition to the cluster technique, the method of periodic boundary 

calculations has been developed. 

Theoretical consideration of defects in a crystal lattice is also possible. Ab 

initio calculations of the energy of defects in crystals with the use of the density 

functional and pseudopotential theory have been performed. Thus the Schottky 

energy and the migration energy of cation and anion vacancies in MgO 

(Fig. 6.13a) and the Frenkel energy in Li20 have been established [6.44]. 

Simulation of nonstoichiometric sodium-^"-alumina, Na2_*Mg1_,cAl10+JC- 

017, with the use of the molecular dynamics method in the range 200-1200 K 

provides better understanding of the behavior of diffusion ions and ionic 
conduction in these crystals [6.45], 

All the above-mentioned approaches were applied for calculating various 

polymorphic modifications of SiO and other silicates. As an example, Fig. 6.13b 

exhibits the phase diagram for Mg silicates. The computational methods are 

also used for studying lattice dynamics, elastic constants of the lattice, viscosity, 

and the behaviour of various lattice defects under the action of various external 
factors. 

6.4 Structure of Superconductors 

6.4.1 Superconductivity 

The phenomenon of superconductivity was discovered in 1911 by G. Kamer- 

ling-Onnes in the course of studying electric resistance of mercury. For 

T < Tc = 4.15 K the resistance dropped down to zero. It was demonstrated 

thereafter that at the critical temperature Tc a second-order phase transition 

occurs. Later it was found in a series of other materials. The new phenomenon 

was called superconductivity. A fundamental property of superconductors is the 

Meissner effect. It consists of the fact that external magnetic field does not 

penetrate the bulk of the superconducting material while strong fields destroy its 

superconductivity. The generalized phenomenological theory of superconduc¬ 

tivity was developed by V. L. Ginzburg and L. D. Landau in 1950. There are two 

groups of superconductors: first- and second-order ones. In the former super¬ 

conductivity is destroyed by a magnetic field in the entire bulk. The latter 

superconductors were predicted in 1952 by A. A. Abrikosov. These supercon¬ 

ductors are characterized by two values of the critical magnetic field. At 

intermediate values of the external magnetic field a second-order superconduc¬ 

tor is pierced by the Abrikosov swirls whose density increases with the field, the 

superconductivity being retained only beyond these swirls. 
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A rigorous macroscopic theory of superconductivity was developed in 

1957-1958 by J. Bardin, L. Cooper, G. Schiffer (BCS theory) and N. N. 

Bogolyubov. Its essence is the following: electrons of a Cooper pair, exchanging 

phonons with the lattice, are attracted and form a particle with a zero spin. Bose 

condensation of such particles and their superfluidity takes place. Superfluidity 

of a quantum-electronic liquid leads to superconductivity. 
Before 1985 superconductivity was found experimentally in a number of pure 

metals, various alloys and intermetallic compounds (Fig. 6.14). An unrivalled 

superconductor was Nb3Ge with Tc = 23.2 K. Its structure is displayed in 

Fig. 6.15. Superconductivity was discovered in some strongly doped semicon¬ 

ductors and even in polymers. Organic superconductors are now also known 

[6.46]. Molecular blocks in organic superconductors should have a charge 

delocalized over the crystal [6.47], For example, there are such compounds as 

selenfulvalene TMTSF or BEDT-TTF (ET) 

Fig. 6.14. The years of discovery of various superconductors and their Tc. The upper line relates to 

HTSC [6.47] 
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(TMTSF)2PF6 Fig. 6.16. Scheme of structure of 
organic SC(TMTSF)2PF6 

These molecules play the role of electron donors, the rc-bonds directed normally 

to the molecule’s plane overlap. The role of acceptors is exercised by other 

molecules. The examples here are (TMTSF)2PF6 (Fig. 6.16), or (ET)2X, where 

X = I3, Cu(SCN)2, and other compounds (see also Sect. 2.6.3, Fig. 2.73). 
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Fig. 6.17. The structure of K3C60. Polyhed¬ 
ron - C60 molecule. The open and hatched 
spheres represent potassium at the tetrahed¬ 
ral and octahedral sites, respectively [6.21], 
See also Fig. 6.5a 

Recently new very interesting type of SC was discovered in fullerides A3C60 

crystals, A-alkali metals (Fig. 6.17), (see 6.2). 

6.4.2 High-Temperature Superconductors (HTSCs) 

The theory admits the existence of superconductors with a high critical temper¬ 

ature Tc but such compounds have not been found until 1986. In 1986 Bednortz 

and Muller discovered superconductivity in ceramic (La, Ba)2Cu04 with 

Tc = 36 K [6.48]. 
The La2Cu04 compound of stoichiometric composition does not possess 

superconductivity. This property appears only on replacement of some La 

atoms by Ba or Sr. Suffice it to obtain samples with some lanthanum deficiency, 

La2_^Cu04 or with oxygen redundancy La2Cu04 + 3. In other words, the 

stoichiometry should be violated, which results in the appearance of current 

carriers in the material. All copper containing high-Tc superconductors are 

formed by plane Cu02 layers alternating with alkaline earth metals (Fig. 6.18) 

[6.50], In 1987 HTcSC YBa2Cu307_3 with Tc = 93 K was discovered [6.51]. 

In the following years about twenty various superconductors were obtained 

(Table 6.2). The total amount of superconducting compounds, including iso- 

structural ones which differ greatly in their chemical composition, now exceeds 

500-600, and the number is increasing. The superconducting transition temper¬ 

ature Tc reaches 125 K in the compound Tl2Ca2Ba2Cu3O10. All these materials 

have hole conductivity [6.52], 
In 1988 compound with the perovskite structure (Ba, K)Bi03 and Tc = 30 K 

was synthesized (Fig. 6.19) [6.54], This compound did not contain copper 

atoms. 
The HTSC structures may result from hole or electronic superconductivity. 

The first high-Tc material that exhibited electronic conductivity was (Nd, 

Ge)2Cu04, which was discovered in 1989 [6.55]. 
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Table 6.2. High-temperature superconductors (HTSC), differing in their atomic structure and their 
maximum superconducting transition temperatures 

Chemical formula Symmetry a[ A] bl A] c[A] T„[K] 

(La, Ba)2Cu04 I4/mmm 3.782 — 13.249 36 
(Nd, Ce)2Cu04 I4/mmm 3.948 - 12.088 24 
(Nd, Ce)(Nd, Sr)Cu04 P4/mmm 3.856 - 12.49 20 
YBa2Cu307 Pmmm 3.820 3.886 11.688 94 
YBa2Cu4Os Ammm 3.842 3.871 27.240 80 
Y2Ba4Cu7015 Pmmm 3.842 3.881 50.50 40 
(Ba, Nd)2(Nd, Ce)2Cu3Os 14/mmm 3.875 - 28.60 40 
Bi2(Sr, Ca)2CuOe Alfa 5.362 5.362 24.30 40 
Bi2(Sr, Ca)3Cu2Og Amaa 5.408 5.413 30.871 80 
Bi2(Sr, Ca)4Cu3O10 14/mmm 3.811 - 37.08 100 
TlBa2Cu05 P4/mmm 3.847 - 9.60 17 
TlBa2CaCu207 P4/mmm 3.847 - 12.73 91 
TlBa2Ca2Cu309 P4/mmm 3.853 - 15.913 116 
TlBa2Ca3Cu4On P4/mmm 3.847 - 18.73 122 
Tl2Ba2Cu06 14/mmm 3.866 - 23.225 85 
Tl2Ba2CaCu2Og - 14/mmm 3.856 - 29.186 110 
Tl,Ba2Ca2Cu30,n 14/mmm 3.850 - 35.638 125 
Tl2Ba2Ca3Cu4012 14/mmm 3.850 - 41.940 108 
Pb2Sr2YCu3Os Cmmm 5.394 5.430 15.731 70 
(Ba, K)Bi03 Pm3m 4.288 - - 30 
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(Ba, K) O 
Fig. 6.19. Structure of Bai_.,KABi03 

6.4.3 Structure of MeCu04 High-Tc Superconductors 

Crystal structures of (La, Ba)2Cu04 and their derivatives are shown in Fig. 6.20. 

(LaBa)2Cu04 has hole conductivity. The (La, Ba) cations are located in nine- 

cornered polyhedra, while Cu atoms are located in greatly elongated octahedra. 

In the (Nd, Ge)2Cu04 the geometry of cations arrangement is the same. As for 

oxygen atoms, half of them occupy totally different sites as compared to the first 

structure, that leads to the arrangement of (Nd, Ce) cations in cubes, while 

copper atoms are confined to plane square coordination. The third structure is 

a combination of the first two ones. Copper atoms in this structure are located in 

semioctahedra. High-Tc conductivity was investigated both in ceramics and 

crystalline materials. The structural studies of single crystals with Sr content 

ranging from (La0.97Sr0 03)2CuO4_^ to (La0.88Sro.i2)2Cu04-,5 permitted one 

to find reasons why there is no regular Tc dependence on Sr content in single 

crystals [57,58], The X-ray analysis of the symmetry with an account of 

twinning showed that all the samples belong to one of two orthorhombic space 

groups: Abmci and Pbtna. The crystals with low Sr content have a centered 

Nd 

Cu02 

Nd 
02 
Nd 

Cu02 

Nd 
02 
Nd 

Fig. 6.20. Structure types of La2-^SrxCu04, (Nd, Sr, Se)2Cu04 and Nd2Cu04 
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Fig. 6.21a-c. The atomic structure of (La, Sr)2Cu04.-,5 crystals with various Sr atoms distribu¬ 
tion over La sites, (a) (La0.97Sr0.03)2^04-a - even Sr atoms distribution over all La sites; 
(b) La(La0.76Sr0 24)Cu03.92 - fully ordered Sr atoms replace La only at one of its sites; 
(c) (La0 94Sr0.06)(La0.86Sr014)CuO4_3 - partial order in Sr atoms distribution [6.59] 

Bravias lattice space group Abma. For samples with higher Sr content the space 

group is Pbma. Fig. 6.21 presents three structures with various Sr distribution 

over La sites. In crystals of (Lao.97Sr0.o3)2Cu04_a La is replaced by Sr at any La 

site with an equal probability. In crystals of (La0.94Sr0.o6)(Lao.86Sr0.i4)- 
Cu04_5 there is partial order in the Sr distribution over La sites. Full order in 

the Sr-atom distribution was observed in La(La0.76Sro.24)Cu03.92. In this case 

one crystallographic site is fully occupied by La atoms, all Sr atoms are 

concentrated at the second La site. So, the result of replacement of trivalent La 

atoms by divalent Sr atoms when the latter are concentrated in double layers is 

a deficiency in the positive valence forces in these layers. As a result, some 

O atoms from parts of the structure enriched with Sr, leave the crystal, and the 

oxygen deficiency in such layers where all Sr atoms are concentrated takes place 

(Fig. 6.21). Thus, the Tc of (La, Sr)2Cu04_5 crystals depends not only on the Sr 

content in the sample but also on the Sr-atom distribution over La sites. 

6.4.4 Atomic Structure of Y-Ba-Cu Phases 

Depending on the conditions for synthesis and treatment of the samples, 

Y1Ba2Cu306+:c phases with various oxygen contents and related to it Tc were 

observed [6.60], (For simplicity, notation 1,2, 3 is used). A marked anisotropy of 

the properties is observed in the ab planes and in the direction perpendicular to 

them along c. This anisotropy and superconductivity is usually associated with 

the presence of Cu atoms in the O layers (Fig. 6.18). Figure 6.22 depicts atomic 

structures of two orthorhombic and a tetragonal phase of the compositions, 

respectively, YBa2Cu307, YBa2Cu306 5 and YBa2Cu306. The structures of 

single crystals with the O content ranging from 6.24 to 6.97 per unit cell were 

investigated [6.61]. All the samples with orthorhombic structure are, in fact, 

twins with (110) and (llO) twinning planes which imitate the initial tetragonal 
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Fig. 6.22. Structure types of Y-Ba cuprates 

phase. Volume ratios of twin domains are different for different content of 

oxygen. A strictly tetragonal phase YBa2Cu306 (Fig. 6.23a) is not supercon¬ 

ducting. If such a structure is enriched with oxygen the -Cu-O-Cu-O- chains 

appear in the plane of Cu atoms (Fig. 6.23b). Each such chain alternates with 

a -Cu-Cu- chain. The orthorhombic phase has Tc = 60 K with the chemical 

composition YBa2Cu306.5. With an increase in oxygen content the relative 

value of this region, as compared to the initial tetragonal phase YBa2Cu306, is 

increased too. 
A further increase in oxygen content results in the appearance of an ortho¬ 

rhombic YBa2Cu307 phase with Tc = 93 K (Fig. 6.23c). Superconductivity 

in the entire sample takes place when regions of orthorhombic phases of 

YBa2Cu307 become connected. 

6.4.5 Atomic Structure of Tl-Phases of High-Tc Superconductors 

The highest Tc = 125 K was found in 1991 in the phase Tl2Ba2Ca2Cu3O10. The 

family of Tl-phases is the largest one among the HTSCs (Table 6.2), [6.62,63], 
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b 

O Y Ba • Cu o o 

Fig. 6.23a-c. Atomic structures of YBa2Cu307_,5 with various oxygen content, (a) tetragonal 
phase YBa2Cu306 which is not SC; (b) orthorhombic SC phase-II YBa2Cu306 5 with Tc = 60 K; 
(c) orthorhombic SC phase-I YBa2Cu307 with Tc = 93 K 

It can be divided into two classes, with the general chemical formulae TlBa2 

Ca„_ 1Cu„02„ + 3 (Fig. 6.24) and Tl2Ba2Ca„_1Cu„02n + 4 (Fig. 6.25). The main 
structural difference between these two classes consists in the fact that in the 

first case there are single TIO layers, while in the second one there are double 

(T10)2 layers. The compounds of the first class contain crystals with n = 1 5, 

in the second class n is equal to 1 4. The chemical composition of all these 

compounds can be expressed by the common formula TlmBa2Ca„_1- 

Cu„02n + m + 2, where m— 1,2 and n=l,2,3,4. A conditional notation 

m2(n - 1 )n was adopted for the T1 phases, which indicates the number of 

appropriate cations in the chemical formula. The easiest way to fix the feature 

which identifies compounds of the Tl-phases is the c period of the unit cell. It is 

defined by the (m, n) indices which fix the number of atomic layers in the unit 

cell. The c periods are 9.69, 12.73, 15.87, 19.10, 23.15, 29.39, 36.26, 42.00 A and 

correspond, respectively, to the compounds 1201, 1212, 1223, 1234, 2201, 2212, 

2223, 2234. In this case the a and b periods practically coincide in all the 
structures and are about 3.85 A. 

A specific feature of superconducting T1 phases is the fact that they are 

nonstoichiometric in cations. This influences the number of current carriers in 

the compound and determines the Tc. For instance, in the 1212 compound some 
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Fig. 6.24. Structure types of the T1 phases with the formula TlBa2Ca„_ ,0^,0^ +3; c = 6.3 4- 3.2n 

Ca cations are replaced by T1 cations. In 2212 crystals some T1 atoms are 

replaced by copper and, like in the case of 1212 T1 atoms, partially replace Ca 

atoms. Similar replacements were found in 1223 and 2223 compounds. Isomor- 

phous cationic replacements in T1 phases by cations of higher or lower valencies 

enable purposeful variations of the oxidation degree of Cu atoms practically 

from Cu2+ to Cu3 + , that is responsible for superconductivity and the value 

of Tc. 
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Fig. 6.25. Structures of Tl(Bi) phases with the formula Tl2Ba2Ca„_ 1Cu„02n + 4; c = 16.4 + 6.4n 

It is interesting to consider an example of the compound TlBa2-x- 
La^CuOs-,*. At x = 0 and 1 copper is in the oxidation states Cu3+ and Cu2 + , 
respectively, in TlBa2CuOs and TlBaLaCuOs. Neither of these compounds 
undergo a superconducting phase transition. At x = 0.8 the mean oxidation 
degree of copper is Cu2 2+ and the appropriate compound becomes a supercon¬ 
ductor at Tc = 52 K. A correlation between the structure and superconductivity 
was found in the T1 phases of TlBa2CaCu207 type (Fig. 6.24), [6.53], 

The phase transition into the superconducting state in the Tl-phase is not 
accompanied by the changes in the crystal symmetry. Anomalous behavior in 
the phase transition is reflected in the geometry of the Cu polyhedron which in 
this structure is a tetragonal pyramid with the Cu-O distances equal to 1.93 A to 
the four oxygen atoms of the pyramid base. But the distance between Cu and the 
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oxygen atom at the pyramid apex is varying depending on the temperature: it is 

2.68 A at 296 K, reduces down to 2.66 A at 160 K, and then increases up to 

2.67(7) A upon the phase transition at 60 K. Of interest are also the changes in 

the atomic arrangement the Cu02 layers. Copper atoms deviated from their 

positions in the oxygen layer, the distance decreases with a decrease of temper¬ 

ature, being 0.042 A at 296 K, 0.041 A at 160 K, and 0.036 A at 60 K. The 

Cu-02 distance and the deviation of copper atoms from their positions in the 

oxygen layer correlate with the temperature of the phase transition into the 

superconducting state and are determined by the valence state of copper and 
oxygen. 

Recently new superconductor families have been discovered (Fig. 6.26). 

Compounds with mercury, with the structure analogous to that of thallium 

a = 3.85 A 

Fig. 6.26a, b. Structure of: (a) YPb2Sr2Cu308 [6.64]; (b) Yb6Ba4Ce2Cu90;t [6.65] 
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compounds, have also been found, namely Hgl201, Hg 11212, Hgl223 (see 

Fig. 6.24). The latter have the record Tc of 133.5 K [6.66, 67]. 

6.4.6 Specific Features of the Structure of HTSCs 

A common property of all known HTSCs is the presence of at least one element 

with alternating valency. Chronologically, high-temperature superconductivity 

was discovered in compounds containing copper, bismuth, thallium. Their 

common crystal chemical feature is as follows: they are characterized by 

distorted polyhedra of their first coordination sphere. For copper this is a semi¬ 

octahedron or an octahedron with the Cu-O distances 4 + 1 or 4 -1- 2, respec¬ 

tively. The shape of oxygen polyhedra of bismuth and thallium also differ 

significantly from the regular shape (Jan-Teller effect) [6.68]. 

Practically all the superconducting materials with Tc > 30 K are non- 

stoichiometric phases, which are frequently metastable under normal condi¬ 

tions. These phases are characterized by a nonstoichiometry with respect to 

the cations (substitution of a rare-earth element Ln with an alkaline earth or 

the Ln3+-Ln4+ replacement) as well as by the oxygen nonstoichiometry. The 

random disordering of the original matrices and the change in the carrier 

density usually result from an introduction of isomorphous impurities during 

growth. These impurities have a typical valence state different from the host ions 

(heterovalent isomorphism of the La-Sr, Ba-K, Nd-Ce, Nd-Sr, etc. type) or 

such disordering is due to an introduction of an excess number of the O atoms 

by special post-growth treatment. 

All the compounds have perovskite-like layer structures with different num¬ 

bers and different sequences of the metal-oxygen layers. The structures permit 

isomorphous substitutions within fairly wide limits without a change in the 

structure type. Modification due to changes in the structure type occurs as 

a result of the addition of new layers of the M, MO, Cu02, CuOj-x, or 02 type, 

where M represents an element with one or more (two, three, four) charges. The 
. o 

crystallographic parameter c of such structures can reach 50 A. 

All the compounds with Tc > 30 K belong to the cuprate class, i.e., the main 

element has a variable valence 1 -f- 3, has in crystals the local environment 

consisting of two, four, five, or six oxygen atoms, and is a typical metal. The 

complex superconducting cuprates with Tc > 10 K known up to June 1990 can 

be described by 21 structure types of perovskite-like compounds. 

All the high-temperature superconducting compounds contain an element 

capable of forming peroxide compounds (Ca, Sr, Ba, K), i.e., they are able to 
form Ol~ pairs. 

However, superconductivity is found in (Ba, K)Bi03 with Tc = 30 K 

(Fig. 6.19) characterized by purely perovskite scheme of atomic arrangement. 

A complete absence of copper prevents the interpretation in terms of the 

above two-dimensional Cu02 nets. 

Thus we see that understanding of the properties of a new class of HTSC 

materials is tightly related to the investigation of their crystal structures [6.69]. 
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6.5 Modular Structures, Blocks, and Fragments 

6.5.1 The Notion of Modular Structures (MS) 

Many crystal structures may be considered as being composed of some standard 

building modules (BM) differing in their combination, distribution and stacking. 

This approach permits to combine the analysis of many true crystalline (i.e., 

three-dimensionally periodic) structures and their various modifications, as well 

as pseudocrystalline formations which have no true three-dimensional peri¬ 

odicity, but are built of BM which can have two-, one-, or zero-dimensional 

periodicity. The notion of MS is also very useful for the classification of various 
structures. 

The simplest case of MS is that of close packing of equal atoms. Single 

atomic planes serve as BMs forming different structures by variation of two 

possible positions of a succeeding plane (B or C relative to the preceding one (A) 
(Sects. 1.5.10-12) [6.70, 71]. 

Different associations of Si tetrahedra into BMs of different kind (blocks, 

rings, chains, sheets, etc.) form the basis for classification of silicates (Sects. 2.3.2, 

6.3) [6.72, 73]. The phyllosilicates (micas, chlorites, kaolinites, etc.) are com¬ 

posed of octahedral (O) and tetrahedral (T) sheets which separately constitute 

the structures of gibbsite-brucite and tridinite, respectively. Various superposi¬ 

tions of layer BM (fragments) are observed in the structures of high Tc supercon¬ 
ductors. 

Baumhauer [6.74] has introduced the notion “polytypie” (polytypism) for 

different modifications of carborundum SiC the structures of which are similar 

to those which were also established for ZnS compounds [6.75], Later the term 

polytypism was adopted for a wide range of different structures on the reason 

that like silicon carbide they are built of definite BMs having several alternatives 

for their stacking [6.76, 77]. 

Different examples of polytypism are presented by halogenides of cad¬ 

mium and lead, oxides and hydro-oxides of di- and trivalent metals consisting of 

closely packed octahedral layers (Figs. 1.71, 72). The molybdenum, rhenium 

and tungsten disulphide polytypes consist of close packed prismatic layers 

(Fig. 6.27). Other examples are the graphite polytypes (Fig. 2.5c, d). Polytypism 

is well known for micas and other phyllosilicates (Fig. 6.28, see also Fig. 2.34). 

Dornberger-Schiff [6.78] has introduced the notion “OD-structures” 

(order-disorder) for the case when layer BMs are related by some partial 

symmetry operations so that only adjacent layer pairs are symmetrically equiva¬ 

lent (the condition of 3D-space group symmetry which transforms the whole 

structure into itself is not fulfilled). Close packings of equal atoms are both 

polytypes and OD-structures since layer pairs AB and AC are related by 

coincidence symmetry operations. 

X-ray mineralogy has revealed the existence of unusual structures composed 

of different kinds of layers alternating in a random or ordered fashion. They 

were found in clays and marine sediments. The term “layer” has been introduced 
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Fig. 6.27. Scheme of one of the MoS2 polytype struc¬ 
tures formed by closely packed prismatic layers which 
may differ in relative positions (A, B, C) and orientations 
(same and opposite) 

30 
2 T 
2 O, 1 OH 
2 M3+(3 M2+) 
3 OH 

Fig. 6.28. Scheme of phyllosilicate 
layers composed of T- and O-sheets in 
ratios 1:1 (for kaolinites and serpen¬ 
tines), 2:1 (for micas, smectites, talc 
and pyrophyllite) and combination 
0:1 +2:1 (for chlorites). The relative 
numbers of oxygen atoms, tetrahedral 
(T) and octahedral (M) cations are in¬ 
dicated at the respective levels 

for them. In micamontmorilloni mixed-layer structures the tetrahedral-octahed¬ 

ral-tetrahedral (TOT) 2:1 layers are separated by either water cation or potas¬ 

sium containing interlayers. In the so-called asbolanes there is an alternation of 

continuous Mn-octahedral sheets with discontinuous (Ni, Co)-sheets [6.79, 80], 

A special term “hybrids” was adopted for mixed-layer structures with an 

unambiguous sequence of layers (i.e., excluding the combinations AAB for an 

alternation of two kinds of layers, A and B). The alternating layers may be both 

commensurate and incommensurate forming corresponding substructures. 

Thompson [6.81] has revived the term “polysomatism” referring to a diver¬ 

sity of structures built of structural fragments which separately belong to 

different substances. He applied it to a polysomatic series ranging from the chain 

silicate pyroxeme, to the mica biotite, and including the ribbon silicate- 
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amphibole. Therefore, the members of this series (polysomes) were called 
biopyriboles. 

Intercalated MS where the intermodular space may be filled with variable 

quantities of water or organic molecules represent a special case realized both in 

natural and synthetic compounds (e.g., in the clay minerals, smectites, and 

intercalated graphites). The common feature of all these particular kinds of 
structural sets is the existence of BMs. 

The BMs present in different structures should not be identical exactly. The 

size and shape as well as the relative orientations of polyhedra composing the 

BMs may depend, to some extent, on compositional variations, kind and 
arrangement of the BMs. 

The octahedral structures (A, Bi) Te (A = Ag, Ge, Pb) described in Fig. 2.46 

demonstrate a close relationship between the structural and compositional 
variations of the BMs. 

BMs are usually recognized as some common parts (fragments) present in 

different structures. Usually they are described as associations of single atoms or 

structural polyhedra. In general, BMs may be periodic in 2-, 1- and 0 dimen¬ 

sions, as it is the case for layers (sheets, planes), rods (ribbons, chains) and blocks 
(polyhedra islands, rings). 

6.5.2 Relationship Between Different Types of Modular Structures 

The diversity of (MS) [6.82] may systematically be considered according to the 

number of determinative features arranged in a succession from more general 

and wide to particular and narrow. 

1) Kind of module: The same or different. So, the diversity of MS is 

subdivided into two main parts: single-module structures and mixed-module 

structures. 

2) Dimensionality of BMs: For the mixed-module structures it may be the 

same or different. E.g., in palygorskite sepiolite structures T-sheets are combined 

with 0 ribbons (Fig. 6.29). 

3) Type of module: layers, rods, blocks. This concerns both single- and 

mixed-module structures. The majority of already established polytypes are 

composed of layer BMs. Rod BMs are a feature of biopyribole, polysomes 

[6.81]. T-ring (blocks) are combined with 0-sheets in polytypes of pseudowollas- 

tonite CaSi03 and isostructural with SrSi03 and SrGeO (Fig. 6.30) [6.83]. 

4) Modules: Fragments of one or different structures. Fragments of differ¬ 

ent structures constitute polysomes. It may happen that no substance solely 

composed of one kind of BMs is yet known. This is the case with Ca-ferrites 

[6.84], One kind of its BMs presents slices of the spinel-magnetite structure. 

However, the other is a layer of trigonal bipyramids and no substance is known 

to be composed of such layers only. 

5) Proportions of module: Variable module proportions are usual for differ¬ 

ent mixed-layer structures. MS with constant module proportions depend on 

the next determinative features. 
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b 

Fig. 6.29. Scheme of the combination 
of O ribbons with T sheets by means of 
inverted tetrahedra in the palygorskite 
structures 

Fig. 6.30. Structural pattern of Sr3(Ge03)3 down [001]. Left: lower sheet of germanate rings; right: 
upper sheet of germanate rings. Octahedral Sr cations in between are shown as circles, SrOs 
octahedra are indicated in the central part 

6) Periodicity of the sequence of modules: MS with constant module pro¬ 

portions may be both periodic and aperiodic. 

7) Succession of adjacent modules: ambiguous or unambiguous. If there are 

layers of two kinds, A and B, a succession AAB is ambiguous, while unambigu¬ 

ous successions may be only AAA . . . , BBB . . . and ABAB .... As mentioned 
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above, mixed module structures with an unambiguous module sequence are 
specified as hybrids. 

8) Stacking of adjacent modules: It may be both ambiguous and unambigu¬ 

ous. If it is unambiguous the single-module structure is unique, while the 

diversity of mixed-module structures is completely defined by the alternation 

order of different BMs. This is the case with layer sulphide semiconductors 

(A, B) S (n > 3, A, B = Cd, In, Ga, Zn). The former consist of closely packed 

TOT layers (p, q > 1) (Fig. 6.31). The same is with the O layers in the octahedral 

structures (A, Bi)mTe„ [6.85], and high-Tc superconductors also belong to the 

family of unambiguous stacking BM (fragments) (Sect. 6.4, [6.86]). 

9) Crystallochemical equivalence of module-stacking variants: In case of 

ambiguous module stacking the variants equivalence defines polytypes. Non¬ 

equivalent stacking is a feature, e.g. of turbostratic structures and intercalated 

MS, although there are some reasons to consider the material of the intermodu¬ 
lar space as belonging to a separate BM. 

10) Symmetry equivalence of adjacent module pairs: The equivalence con¬ 

dition defines such polytypes which have OD structures. The evaluation of 

polytypes as OD structures depends on the module choice [6.87], 

11) Periodicity of the stacking-variants succession: It may be both periodic 

and aperiodic. 

12) Homogeneity or inhomogeneity of the stacking-variants sequence: 

While the aperiodic polytypes and OD structures are always inhomogeneous, 

the periodic structures may be either homogeneous or inhomogeneous. 

There are only two homogeneous close packings (cubic and two-layer 

hexagonal; the same is true for SiC and ZnS modifications). The homogeneity 

condition is satisfied also for the six simple mica polytypes deduced by Smith 

and Yoder [6.88]. The violation of the inhomogeneity condition by stacking 

faults results in BM successions where stacking features of different modifica¬ 

tions are combined [6.77], 

Fig. 6.31. Scheme of a ZnIn2S4-structure composed of TOT 
layers with consecutive S-planes in the sequence hhkh 
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According to the succession of the determinating features 1 h- 12 the MSs 

are presenting an hierarchic sequence of notions: modular structures - poly¬ 

somes and monosomes - hybrids (commensurate and incommensurate) - poly¬ 

types (simple and complex) - OD structures (MDO and disordered, more or 

less). Such an hierarchy is clearly displayed by chlorites. These layer silicates are 

built of two kinds of layers TOT or 2:1 and 0-or 0:1 (Fig. 6.28) which are 

separately characteristic for mica-pyrophyllite (talc) and brucite (gibbsite), re¬ 

spectively. 
Layer pairs may form OD structures if only they belong to one and the same 

group. 

6.5.3 Symbolic Notations of MS 

The use of symbols has accompanied the development of particular branches of 

MS studies. Thus, the letters A, B and C, h and c, the signs “ + ” and “ — ”, and 

the Zdanov’s symbols [mn] are the most known example of such symbols 

convenient for description and specification of closely packed structures 

[6.70, 71, 89], 
The polytype notations can be divided into two groups: The short one 

indicates the number of layer BMs per repeat and a letter indicating the crystal 

system, e.g. 1M, 2H, 3T, 15R, etc. [6.76, 90, 91]. The fully descriptive notations 

are specifying the stacking sequence of the layer BMs. In general, they include 

letters and numbers designating the layer kind, layer position or displacement, 

layer orientation or rotation [6.77,83,90,91]. Additional marks may design 

alternation of mirror-like or inversionally equal BMs if reflection-inversion 

operations also influence the polytype diversity. As a rule these notations may 

be simplified when applied to particular polytypes. Thus, all the diversity of 

phyllosilicate BMs (Fig. 6.28) and polytype structures formed by them is de¬ 

scribed by means of the indices of 6 orientational and 9 displacements vectors 

(Fig. 6.32), [6.77, 92]. 

In general, the MS notations have to include the BM symbols especially in 

the case of variable BM sequence order. Operations of BMs are to be specified 

for ambiguous BM stackings. 

Symbol notations are not only a simple means for description of MS. It is 

possible to establish transformation rules for the symbols which correspond to 

different symmetry operations subjected to structures. Thus, it is possible to 

consider the BMs in different settings and after symmetry transformations. 

+ 

Fig. 6.32. Vectors defining 9 intra- and 6 interlayer 
displacements of adjacent sheets and 6 possible layer 
azimuthal orientations in phyllosilicate structures 
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With the use of symbols it is most convenient to apply the homogeneity 

condition in order to derive the system of homogeneous modifications and 

predict possible structures. It enables the simulation of dififractional features for 

a subsequent identification of both already known and not yet found modifica¬ 

tions. Such a combination of experimental data with theoretical consideration of 

structures is widely applied in the electron-diffraction studies of mineral poly¬ 
types [6.92, 93], 

6.5.4 Structure-Property Relations for MS 

Modular crystal substances are bearings of important properties. Thus, it has 

been shown that MS of SnS and SnSe consisting of closely packed octahedral 

layers have structures depending on the electronic properties. The band gap is 

wider for rhombohedral polytypes than for the hexagonal ones. For both of 

them it is decreasing with increasing layer repeat, signifying a transfer from 

dielectrics to semiconductors. Under the influence of different doping atoms 

either p- or n-conductivity is realized. Different polytypes may be combined to 

form solar batteries promising an efficiency approaching 25% [6.94], It is also 

well known that the anomalous behaviour of HTSCs is also dependent on their 
modular structure [6.86]. 

The structure-property relationships in case of MS may be subdivided into 

several functional dependences concerning: (i) separate BMs, (ii) intermodular 

bonds, (iii) order and periodicity of the BM stacking, (iv) distortions inside 

separate BMs, and (v) BM stacking faults. The contributions of these factors 

depend on the relative volumes occupied by the BMs and the intermodular 

space, on the interactions inside single modules, modules pairs, triples, quadru¬ 

ples, and so on. They depend also on variations in the composition and 

distribution of isomorphous substitutions stabilizing or decreasing the instabil¬ 

ity of some MS in comparison with others. Therefore, the indicated structural 

features of MS not only influence the properties but may also serve as sensitive 

indicators of special crystallization conditions occuring both in nature and in 

experiments. 

6.6 X-Ray Analysis for Studying Chemical Bonding 

Determination of the electron density (ED) in and around the atoms allows us to 

draw a number of conclusions on the nature of chemical bonding in crystals. 

These investigations with the use of difference Fourier maps can give data on 

ionic or covalent chemical bonding, the structure of atomic orbitals, etc., see 

[Ref. 6.5, Sect. 4.7.10], Sect. 1.2.7, and Figs. 1.13, 20, 30, 31 and 2.24. This 

requires prolonged high-precision experiments and special techniques for data 

processing [6.95]. 

Integral intensities are measured on spherical samples with the use of 

four-circle automatic diffractometers with a statistical accuracy of 1%, which is 
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achieved through repeated measurements. Experimental data are corrected for 

polarization, absorption, thermal diffuse and anomalous scattering and extinc¬ 

tion. Both the Zachariasen bloc-mosaic model and the Kato dynamical-statis¬ 

tical model can be used to evaluate extinction. On the contrary, thermally 

diffuse scattering can be evaluated with sufficient reliability. 
Experimental electron density (ED) p(r) is interpreted by comparing it with 

a certain model, i.e., reference ED pmod. For example, the difference-deformation 

electron density is considered: 

Ap(r) = p(r) - pZdAr). (6.1) 

To obtain p(r) we should achieve the maximum experimental accuracy and to 

collect experimental data with the highest resolution. Naturally, the best result 

can be achieved if an X-ray experiment is carried out at low temperatures - 

below 100 K. 
According to (6.1) the obtained Ap distribution and, consequently, its inter¬ 

pretation, depends on the choice of pmod(r). Thus, expanding (6.1) into a Fourier 

series, we obtain 

Ap(r) = -£ M [Fobs(H) - Fcalc(H)]exp( - 2tuHt). (6.2) 
v s 

As the experiment gives p(r) for a set of atoms whose electron shells have been 

changed by chemical interactions, we obtain, in the first approximation, the 

deformation density p(r). Standard deformation density can be obtained if for 

Fcalc a superposition of neutral, spherically symmetrical pat>sph atoms in the 

ground state is selected. 

To obtain the coordinates of atomic centers (nuclei) the refinement of the 

model with high-order (HO) reflections | Fexp, HO| (with large sin 0/2) is used. 

These reflections are formed due to X-ray scattering by inner (backbone) 

electrons for which the spherical approximation is valid. This allows us to 
o 

determine the coordinates of non-hydrogen atoms with an accuracy of 0.002 A 

or higher, and the harmonic thermal vibration parameters with an accuracy 

of 3-4%. 

Another way to determine the coordinates of nuclei is the use of the neutron 

scattering Fneutr data [Ref. 6.5, Sect. 4.9.2], 

The use of the X-ray radiation with the wavelengths 2MoK 0.7 A or 2AgKa 

0.5 A yields pexp with a resolution of about 0.35-0.25 A. In this case (6.2) for 

Ap(r) yields the electron density with aspherical features characterizing chemical 

bonding. 

To make the superpositional model more flexible, valence shells of atoms are 

sometimes described with the use of the complementary factor x that describes 

their expansion or contraction. Knowing only two parameters of an atom - 

electron occupancy of the valence shell and the x factor - one can describe 

partial charge transfer and the modification of valence shells of atoms (ions) in 

the crystal and thus evaluate atomic charges. A more detailed account of the 

electron-shell structure can be made with the use of an expansion of the basis 
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functions (1.40). The most widely used multipole model is that of a multicentre 

expansion of p into a series of spherical harmonics which agree with the local 

symmetry of the environment of each atomic position: 

P(r) = Z I c?m RUr) Yl(0, q>). (6.3) 
a Im 

Here R?m are radial density functions, c“m is the occupancy of the expansion 

terms (multipoles), / and m - are the orbital and magnetic quantum numbers, 

respectively. The parameters of the model are given by the coefficients ctm and 

exponential factors in the radial functions of the type Rim ~ r,. Expression (6.3) 

allows us to present p in an analytical form. The accuracy of the parameter 

determination of the multipole model decreases with an increase in /; at l — 4 the 

error reaches 25%. The quadrupole components (/ = 2) of the expansion (6.3) 

determine the value of the electrical-field gradient in the nuclei. The accuracy of 

the ED determination from diffraction data equals 10-15%. It becomes possible 

to calculate the quadrupole-interaction constant - a typical characteristic of 

NMR, NQR, NyR theory. 

Thus, series (6.2) and the use of the multipoles (6.3) allow us to determine the 

redistribution of electrons caused by chemical bonding in the system of spherical 

atoms. 
The positional and thermal parameters used to obtain Fcalc are taken from 

fobs (HO) or from neutron diffraction data. The summation (6.2) includes the 

remaining experimental reflections, most of which belong to the “near” region of 

the reciprocal space. 
It is Fobs of the near region with large spacings d that are responsible for 

smooth changes over the Ap. In fact, these are electrons responsible for valence 

bonds. Since p represents the difference of two large values with statistical 

errors, the summation of (6.1) is not stable. To improve the reliability of 

the calculation, a filtering (regularization) factor M is introduced. It depends on 

the signal-to-noise ratio of the data [6.96], If systematic errors are eliminated, 

the random error in the area of chemical bonding on the p maps can be 

estimated as ~ 0.04-0.06 e A-3 while around the nuclei it can be considerably 

higher, 0.5-1.0 e A~3. 
Other ways of calculating Ap are also possible, see (6.2). If in the calcula¬ 

tion of Ecalc only harmonic vibrations are taken into account, anharmonisity 

[Ref. 6.5, Sect. 4.1.5] can be revealed. 
The concept of chemical bonding is one of the most important in chemical 

crystallography and has a strict quantum-chemical foundation only for simplest 

diatomic molecules. In a general case, the formation of molecules and crystals is 

considered in terms of interpenetration and interference of atomic orbitals, 

transfer of electrons from one atom to another, and modifications of the ED in 

the vicinity of the nuclei. Thus, ED maps can be considered as an integral effect 

of the changes in ED caused by atomic interactions. 

ED maps for molecules are interpreted on the basis of the Born-Oppen- 

heimer approximation in which electrons move in an effectively stationary field 
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of a nuclei. Then, the Coulomb potential of nuclei is determined by their 

equilibrium configuration. The movement of electrons is consistent, every single 

electron moves in the field of all other electrons and the density of one electron, 

p(r) = il/?(pe, is a squared wave function. 
By 1993 chemical bonding in terms of electron density has been investigated 

for about 600 crystals. Among them there are organic, metalloorganic and 

coordination compounds, and crystals of many structure types: diamond, 

graphite, copper, rock salt, wurtzite, sphalerite, perovskite, corundum, spinel, 

garnet, etc. (Figs. 1.27, 30). 

As has been shown in Sect. 1.2.5, covalent bonds are classified in accordance 

with the symmetry properties of their molecular orbitals (MO). Due to the Pauli 

exclusion principle, the formation of one a, two n and two S bonds between pairs 

of atoms is possible. Thus we can assume that the regions of constructive 

interference coincide with the regions of superposition of atomic orbitals, and 

regions of destructive interference coincide with antibonding MO. The MO of 

unshared electron pairs are localized fairly well (Fig. 1.23). 

Different atoms interact forming ionic or ionic-covalent bonds in which the 

electron density is shifted towards one of the atoms. On the Ap maps the 

excessive (positive) deformation ED in the internuclear space is revealed as 

peaks in the region of wave-function superposition, as well as the regions of 

unshared electron-pair localization. For an ionic bond positive peaks are in the 

region to which electrons flow. Regions of negative p correspond mainly to the 

non-bonding molecular orbitals of electrons, and to cations. The form of the 

peak in the internuclear space and its shift permits one to estimate the character 

of chemical bonding. For example, peaks of covalent n bonds tend to elongate 

normally to the bond line (Sects. 1.2.6, 7; Fig. 1.32). In bonds which are supposed 

to have considerably high ionicity, the p peak is shifted towards the negatively 
charged atom. 

As an example, let us consider the investigation of nitroprusside 

Na2 [Fe(CN)5N0]-2H20[6.97], The Fe atom of the complex anion lies 

0.815 A higher than the plane formed by the equatorial C atoms and has 

a distorted octahedral coordination with nitrosole and cyanogroups in axial 

positions, and with four cyanogroups in equatorial positions (Fig. 6.33). The 

equatorial section of p is shown in Fig. 6.33. The section coinciding with the 

plane of the molecule is exhibited in Fig. 6.33b. The minimum Ap ~ 0.4 e A-3 is 

observed in the position of the Fe atoms (the Fe atom is positively charged). 

Close to the Fe atom perpendicular to the z axis there are two redundant peaks 

0.3 e A-3 high, and Ap peaks of 0.2 e A-3 from Fe-N bonds. There are also Ap 

peaks due to covalent bonds: Fe-C(I), N-O, C-N. Behind the N(I) atom, i.e., in 

the area of the localization of unshared electron pairs, a peak with a height of 

0.16 eA-3 is observed. The extended maxima along the bonds formed by Fe 

atoms correspond to dz2 and dx2_y2 orbitals which participate in the do¬ 

nor-acceptor interaction with ligands. An Fe-N bond can be described as 

a triple bond, which is revealed as the redundant p peak in the Fe-N line. Other 

features of Ap distribution have also been interpreted in terms of MOs. 
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a b 

Fig. 6.33a-c. Deformation electron density in a complex anion of sodium nitroprusside, 
Na2[(FeCN)5N0]-2H20. (a) cross-section coinciding with the crystallographic plane m; (b) cross- 
section through the equatorial ligands and the scheme of the orbital description of a chemical bond 
between the central atom with only one of the equatorial ligands; (c) solid lines connect the points 
with excessive density and dashed lines - with deficient density. The spacing between the lines is 

0.1 e A ~ 3 

From the experimental Ap map we can conclude that the Fe atom in sodium 

nitroprusside is in a low-spin state. This agrees with magnetic measurements. 

Now let us analyze corundum-type (A1203) compounds [6.98]. The Ap maps 

have revealed in the MeAl4-tetrahedra (Fig. 6.34) multicenter partially covalent 

chemical bonds for which the Ap peaks close to the O atoms are shifted towards 

cations of the second coordination sphere. This displacement reveals rather 

strong electrostatic ionic interactions in the structure that distort the tetrahedral 

coordination of O atoms and cations. Corundum-type crystals, Ti203, V203 

and a-Fe203, were investigated at 295 K. They have similar metal-oxygen 

chemical bonding. ED is shifted towards O atoms, while Ap peaks are slightly 

shifted from the lines connecting the nuclei, but in the vicinity of cations the Ap 

distribution is different [6.99], The Ap maps indicate the possibility of a direct 

exchange between the magnetic ions in Ti203 and a-Fe203 due to the overlap¬ 

ping of their 3dzi-, 4s- and 4pz-orbitals along the c axis. As was indicated, the 
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Fig. 6.34a-e. Deformation electron 
density in sesquioxides with the 
corundum structure: (a) a-Al203; 
(b) Ti203; (c) V203; (d) a-Fe203 
(295 K); (e) a-Fe203 (153 K). The 
contours are spaced by 0.05 (a) and 

0.2 e A"3 (b-d) 
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calculation of deformation ED is associated with the choice of the basis state of 

the crystal revealed in the structure amplitude F with Ral sph. From the view¬ 

point of chemical bonding, there is another approach to ED based on Bader’s 

theory of quantum topology [6.100, 101] that analyzes the ED Laplacian 

V2p(r). In the formation of a covalent bond the curvature of ED along the line 

connecting the atoms diminishes, but at the same time increases in two other 

directions. Therefore, in the vicinity of a covalent bond we have V2p < 0. The 

ionic bond in internuclear space gives V2p > 0. 

There are three ways for calculating the ED Laplacian from X-ray structure 

amplitudes [6.102], The first consists of differentiation of the Fourier series that 

allows to minimize the effect of series termination. In the second technique, 

the ED is presented as a sum of Ap and ED of spherical atoms. Then, both 

components are differentiated. The third technique consists of a calculation of 

the ED Laplacian using the characteristics of the multipole model. The latter 

technique is evidently preferable, since it almost eliminates the effect of thermal 

motion in the crystal. 

The conclusions on the character of chemical bonding derived from defor- 

mational ED and ED Laplacian are in good agreement [6.102], Thus, in fluorite 

CaF2, the Ap maps show a pronounced shift of ED towards anions, which is 

characteristic of an ionic bond (Fig. 6.35). In the center of internuclear Ca-F 

distance, Ap is minimum ( ~ 0.1 e A-3). The ED Laplacian has a positive value. 

Thus, the chemical bond in fluorite can be objectively characterized as ionic. The 

Ca Ca 

Fig. 6.35a, b. Deformation of the electron density (a) and the electron density Laplacian (b) in CaF2: 
cross section by the (110) plane. The isolines are separated by 0.1 e A ~ 3 (a) and 10 e A ~3 (b). On the 
map of the electron density Laplacian solid lines correspond to positive values of this function 
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investigation of various silicates has established that the ionicity of silicon 

ranges from 0.85 to 2.3 e, that of metallic ions and negatively charged oxygen 
anions being in the 0.8-1.5 e range. 

And yet, Tsirelson et al. [6.99] stated that due to a large smearing of 

transferred charge in ionic bonding the reliable determination of its value is 

rather difficult if the unit cell is small. 

The determination of ionicity of positively or negatively charged atoms 

forming ionic bonds can be carried out by the method of electron diffraction 

[Ref. 6.5, Sect. 4.83] since the ionicity is especially sensitive to the difference of 

charges between the nucleus and the atomic shell. Thus, it was found that in 

MgO the charge of Mg is + 0, 9 e, the charge of O is — 1, 1 e and in CsBr 

charge of Cs is + 0, 4 e, and of Br — 0, 6 e [6.94], 

6.7 Organic Crystal Chemistry 

Recent achievements are presented to complement the discussion of Sect. 2.6. 

6.7.1 Organic Structures 

There is an estimated number of 70,000 investigations on atomic structures of 

crystals (Fig. 6.1). The main aim of X-ray analysis is to define the spatial 

structure and the conformation of the molecules in the crystal; the packing of 

molecules is of considerable interest, too. The major classes of organic structures 

and the principles of organic crystal chemistry are described in Sect 2.6. Here we 

shall consider some new data obtained in the recent years. 

6.7.2 Large Organic Molecules 

An important place in present-day investigations is occupied by the studies of 

large organic molecules with molecular weights of 1-2-3 kDa or higher. Solu¬ 

tions for structures of “small” organic molecules which contain up to several 

tens of non-hydrogen atoms are readily found by direct methods. However, for 

the large molecules mentioned above the direct methods do not render imme¬ 

diate results as the task lies close to the limit of the methods’ performance. At the 

same time the techniques of “heavy atoms” and isomorphous replacement (as in 
proteins) are not always applicable. 

As an example, let us consider the structure determination of ionophoric 

antibiotics - peptides gramicidins S and A, which are important due to their 

function as transmembrane ion channels. The first of them - cyclic decapeptide 

cyclo[-(Val-Orn-Leu-DPhe-Pro)2-], C6oH9oN12010-9H20, consists of 2 re¬ 
current pentapeptides and contains 2 phenylalanine residues in D-configura- 

tion. The second one is the linear pentadecapeptide HCO-Val-Gly-Ala- 

D-Leu-Ala-D-Val-Val-D-Val-(Trp-D-Leu)3-Trp-NHCH2CH2OH, which 
contains alternating L- and D-residues. 
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Fig. 6.36. Molecular conformation of gramicidin S in a crystal. View along the molecular 
pseudoaxis 2 

Fig. 6.37. Channels in the structure of gramicidin S. View along the crystallographic axis c 
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The approximate structural model of gramicidin S in a complex with urea 

was determined in 1978. In 1992 a complete structure investigation of this 

substance was carried out [6.104], The gramicidin molecule in a crystal has 

a ^-structure (Fig. 6.36), its slightly twisted 30-membered cycle is formed by two 
o 

antiparallel peptide chains and has the form of a rectangle, 4.8 x 13.6 A. Smaller 

sides of the rectangle are formed by the main chain atoms of proline and 

D-phenylalanine residues. The molecule length is ~ 23 A. 

The distinguishing feature of the molecule is the position of elongated side 

chains of ornithine residues on one side of the molecular cycle as peculiar 

“tentacle” legs. One of these legs is fixed by an H bond at the carbonyl oxygen 

atom of the nearest phenylalanine residue, while the other is free. The presence 

of hydrophobic radicals, on the other side of the molecule, leads to its bipolarity. 

There are twenty water molecules per one antibiotic molecule in the struc¬ 

ture which is characterized by a complicated system of H bonds. Four cross- 

cyclic H bonds stabilize the elongated conformation of the molecule. 

Of considerable interest is the packing of structural units in the crystal. The 

molecules are placed around the 3j axis in a left-handed double helix forming 

channels with hydrophobic outer surfaces and hydrophilic inner ones (Fig. 6.37). 

The outer diameter of the channel equals 30-35 A, the inner diameter may 

vary, depending on the conformation of ornithine “tails”, from 3.3 to 6.2 A. The 

formation of such channel permits to understand the role of the molecule in ion 

Fig. 6.38. Channels in the structure of gramicidin A 



6.7 Organic Crystal Chemistry 445 

transport. Indeed, fairly large ions and particles can pass through the channel, 

which is in agreement with the results of biochemical investigations. 

Gramicidin A in a crystal [6.105] forms a left antiparallel double-helical 

dimerwith 5.6 amino acid residues per turn (Fig. 6.38). Total length of the helix 

is 31 A, the average inner diameter 4.8 A. Its inner surface is hydrophilic, the 

outer one hydrophobic. Ion transport through the channel can proceed only 

after certain widening of the inner diameter, which should cause breaking and 

reorganization of the H bonds, which stabilize the double helix. In the cesium 

complex of gramicidin A [6.106] the dimer chains also form a left double-wound 

helix, but of larger diameter and with 6.4 residues per turn. Each channel 

contains two cesium ions and three chlorine ions in the order Cl-Cs-Cl-Cs-Cl. 

6.7.3 Secondary Bonds 

In Sects. 1.4.5 and 2.6.1 it was noted that the main type of bonds between the 

molecules are van der Waals bonds (Table 1.10), and hydrogen bonds. In recent 

years it has been found that interactions similar to hydrogen bonding are 

characteristic not only for the H atoms, but also for some other elements. It was 

suggested to call these bonds “secondary bonds” [6.107]. Like hydrogen bonds, 

the secondary bonds are also directional. They arise on the overlapping of 

atomic orbitals of the neighbouring atoms. But, as in H bonds, a substantial 

contribution to the bonding energy is made by electrostatic interactions. 

Secondary bonds between non-metallic atoms have been studied in detail. 

Secondary bonds of, e.g., the type X-S . . . O = Y, are widely spread in crystals 

[6.108]. The S . . . O distances vary from 1.8 to 3.0 A, being intermediate values 
o o 

between the covalent bond length ( ~ 1.68 A) and van der Waals contact (3.2 A). 

An important role in the formation of a number of crystals is played by 

halogen-halogen interactions. Thus, the packing of large asymmetric organic 

molecules with a small number of chlorine atoms is similar to that of the 

corresponding derivatives which, in place of Cl atoms, contain CH3 groups; 

such compounds form continuous series of solid solutions. For small molecules 

with a large number of Cl atoms the contribution of Cl-Cl interactions is 

increased (secondary bond length 3.51 A), leading to the different packing of, 

e.g., C6C16 and C6(CH3)6 molecules. 

C-I. . . O interactions play an important role in binding the protein with 

thyroid hormones: a short contact of such type as I... O 2.96 A or C-I. . . O 

1.61 A was discovered between the proximal atom of the tyroxine I outer ring 

and the carbonyl O atom of prealbumine Ala 109 [6.100], 

In the structures of compounds of non-transition metals, e.g., Hg, Sn, Pb 

secondary bonds M . . . X are widely spread [6.110], Bonds of this type exhibit 

the strongest similarity to hydrogen bonds. Thus, the secondary bonds 

Sn . . . Cl join the (CH3)2SnCl2 molecules in the crystal into an infinite chain 

(Fig. 6.39). The Sn . . . Cl distance equals 3.54 A, which is less by ~ 0.5 A than 

the sum of van der Waals radii. At the same time, as in the hydrogen bond, the 
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Fig. 6.39. The structure of an infinite chain in (CH3)2SnCl2 

formation of a secondary bond causes an elongation of the covalent Sn-Cl bond 

to 2.40 A. 
The similarity to hydrogen bonds is also revealed in the systems YC6H4XH 

and YC6H4MRn 

x = o, s, N 
M = Hg, Sn, Pb, Sb 

Y = COR, N02,C5H4N etc. 

Formation of the hydrogen bond H . . . Y and the secondary bond M . . . Y 

leads to a decrease in the vibration frequencies vXH and vXM in IR and Raman 
spectra and the widening of the corresponding bands. 

In crystals of the compounds of several post-transition metals, e.g., Cu, 

Au, besides the secondary M . . . X bonds, the M . . . M interactions are often 

observed. 

Being, like hydrogen bonds, intermediate in energy value between the 

covalent bond and the van der Waals interaction, secondary bonds reflect the 

state of the matter during a chemical reaction that breaks one bond and gives 

rise to another. This allows to simulate the chemical process by a set of crystal 

structures of similar compounds with a common fragment, the secondary bond 

length in which depends on the chemical and crystallochemical environment. 

This way of mapping the chemical-reaction pathway has been called the method 

of structural correlation and is being widely used now [6.111]. It is most effective 

when applied to the investigation of processes characterized by a smooth energy 

curve with a fairly low activation energy. In one of such systems secondary 

bonds C . . . C, not usually present in crystals were observed [6.112]: 

The C(l)-C(6) distances in the investigated crystalline structures with differ¬ 

ent R and R', and in various polymorphous modifications at different temper¬ 

atures vary from the normal length of a covalent bond 1.539 A to 2.269 A, 



6.8 Structure Investigation of Biomolecular Crystals 447 

determined by the tetrahedral valency angle at the C(7) atom in the absence of 

attractive C(l). . . C(6) interaction. The intermediate values of this distance 
between 1.64 to 2.23 A have been established. 

6.8 Structure Investigation of Biomolecular Crystals 

Recent advances are outlined, which complement the discussion of Sect. 2.9. 

6.8.1 Progress in the Methods of X-Ray Macromolecular Crystallography 

The number of investigated biomolecular structures has considerably increased 

in recent years. By 1993 more than 900 proteins have been investigated, and, if 

we take into account their various modifications (with different ligands and 

pseudosubstrates), the number will reach 1800-2000. Structure determination of 

biological macromolecules is in itself an important problem but the obtained 

data are also widely used for the study of interactions of biomolecules with small 

molecules, e.g. ligands, substrates, or drugs, the latter being especially important 

for medical research. This is also important from the viewpoint of the develop¬ 

ment of protein and genetic engineering. Scientists nowadays not only study the 

biomacromolecules, but can make deliberate changes in its structure, e.g. by 

replacing certain amino acid residues in the protein, thus improving their 
enzymatic, regulatory or some other function. 

As regards small protein molecules with molecular mass of 10-15 kDa, 
o 

a resolution of 1-1.3 A has been reached [6.105]. Individual atoms are thus 

revealed (Fig. 6.40). For larger proteins a resolution of 2-2.5 A allows to solve 

the majority of problems regarding their tertiary structure and protein function¬ 

ing. Very large protein molecules have been investigated. Widely spread are the 

studies of macromolecular interactions. For example, DNA complexes with 

different protein molecules interacting with it are crystallized, their structure is 

being determined and thus conclusions being made on functioning of these 

complexes. 

Methods for growing macromolecular biocrystals are being developed. 

Besides the ordinary methods, special automated systems monitoring the pro¬ 

cess of crystallization are created. Crystallization of biomolecules in micro¬ 

gravity has been studied in automatic and piloted spaceships [6.113], 

Methods for X-ray investigation in macromolecular crystallography are 

rapidly developed, especially in connection with the use of synchrotron radi¬ 

ation and position-sensitive detectors [6.114], 

The synchrotron radiation permits one to investigate crystals with very large 

unit cells with hundreds of thousands of reflections registered, for instance, 

in studying virus crystals with the unit cell of 400-1000 A. 

When the protein contains metal atoms, synchrotron radiation makes it 

possible to employ various wavelengths close to the absorption edge for these 
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Fig. 6.40. Part of electron density map of ribonuclease Pb! with pGp complex, 1.24 A resolution 

atoms, and to determine phases of structural factors of the protein crystal using 
anomalous scattering [6.115], 

Synchrotron radiation can also be applied to the study of rapid processes in 

proteins (time-resolved X-ray experiments). The rates of various biological 

processes are sketched schematically in Fig. 6.41; it can be seen that the 

possibilities of X-ray crystallography in the application of synchrotron radiation 
to such investigations are rather promising. 

An extremely high intensity and the broad effective spectrum (0.2-2.0 A) of 

the white synchrotron X-radiation from wiggler magnets allows to record the 

Laue-diffraction photographs in the millisecond time scale, data collection rates 

of 100,000 reflections per second or even faster are possible (Fig. 6.42). 

The main method of protein crystallography is still that of multiple isomor- 

phous replacement (MIR), but of importance is the method of molecular 

replacement, based on calculation of rotation and translation functions [6.117], 

Refining the phases of structure factors of the protein on the basis of non- 

crystallographic symmetry in the protein molecule packings is used, too. 

In the determination of phases of the structure factors for protein crystals it 

is helpful to use various modifications of the electron density that take into 
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Fig. 6.41. Time intervals, characterizing different biological processes and methods of their investi¬ 

gations [6.116] 

account the regions in the crystal filled by the solvent (solvent flattening method) 

[6.118], 
Methods of protein structure refinement are being developed. It is usually 

assumed that refinement of atomic coordinates by the least-squares technique 

requires at least 10-15 observations for each of the parameters to be refined. As 

a rule, good-quality protein crystals allow us to reach the resolution of about 

2.0-1.5 A, consequently, 6 observations per parameter are being made. There¬ 

fore, in protein refinement the number of “observations” is artificially increased 

by counting as such the values of interatomic distances, valence and torsional 

angles, which are obtained from the data on amino acid and peptide structures 

with high accuracy. It is then possible to place the restriction of absolute 

equivalence of standard and observed geometrical parameters (constrained 

refinement). At present constrained refinement is utilized only at low resolution. 

But for attainment of higher resolution a certain weight scheme (restrained 

refinement) is introduced. Refinement can be carried out either in real or in 
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Fig. 6.42. Laue photograph 
of endonuclease serrata 
marcescens crystals, wave¬ 
lengths interval 0.5-2.5 A. 
DESY-Doris synchrotron. 
(Courtesy of H. D. Bartunik) 

reciprocal space (CORELS technique). For restrained refinement the Hendrick- 

son-Konnert and Jack-Levitt programs of (PROLSQ) are often used. In pro¬ 

grams of this type the X-ray term I(Fobs - Fcalc)2 + X (geometrical terms), such 

as Z(dobs — dideai) + angular terms + ... are minimized simultaneously with 
one or another kind of weighting term. “Geometrical terms” can be substituted 

by “energy terms” - tension, bond angles, etc. 

For structure refinement in real space, instead of syntheses with 

Fobsexp(iacalc), the difference synthesis is employed. 

[2Fobs Fcaic] sxp (iacaic) 

These syntheses are also used for calculating structure amplitudes by the fast 

Fourier transform (FFT) program [6.119, 120], In structure refinement the 

methods of molecular dynamics are applied too [Ref. 6.5, Sect. 8.3], 

Widely employed is the technique of phase determination based on continu¬ 

ously spreading diffraction data from 3-3.5 A to 2.5-2 A with account of the 
conformational characteristics of the molecule. 

Most operations of structure determination, its refinement and data pre¬ 

sentation are carried out with the use of computer graphics. Computer graphics 

allows one to analyse the distribution of electron density, interprete it in terms of 

the atomic model and to achieve the best agreement between model and electron 

density data (FRODO program). The interatomic distances and bond angles are 

measured, the position of hydrophobic and charged groups in the molecule is 

analyzed, the interaction of the protein molecule with the molecules of the 
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substrates is modelled, comparison is made of the spatial structures of related 
proteins. Different theories for the prediction of the spatial structure of proteins 
are being developed. Various methods of computer graphics for the representa¬ 
tion of the surface and the internal structure of biomolecules are created. 

6.8.2 Investigation of Protein Structure by the Nuclear Magnetic Resonance 
(NMR) Method 

Recently, NMR has been applied to the structure determination of biological 
molecules - proteins, nucleic acids and liposaccharides [6.121], The investiga¬ 
tions of molecules is carried out in solutions but not in crystals, like in the X-ray 
analysis. 

A number of atoms, including hydrogen atoms 1H, have a magnetic moment. 
In a strong magnetic field, the spins of these atoms are oriented along the field. 
But if the sample is subjected to the influence of short and strong radio 
frequency field, desorientation of the spins occurs. The transition into the initial 
state is accompanied by emission of a characteristic radiation at radio frequen¬ 
cies. This spectrum is specific for each 1H atom depending on the surrounding 
atoms and the interatomic distances. 

Determination of the structure of macromolecules by NMR techniques 
became possible due to the progress achieved in the techniques of NMR 
spectroscopy [6.122, 123], 

In a one-dimensional NMR experiment all the spins are excited simultan¬ 
eously, and the free induction decay is measured immediately after the pulse. 
The Fourier transformation of the fall-off produces a one-dimensional NMR 
spectrum. In the two-dimensional NMR experiment time gaps between the 
exciting pulse and the registration time are used, with one or a series of radio 
frequency pulses, which change the spin system state in between. A series of 
experiments with different time gap between the first pulse and the following 
pulses was conducted. Two-dimensional Fourier transformation converts the 
data into a set of discrete frequency values depending on free induction decay on 
the delay and the registration time. In such a way, two-dimensional NMR 
spectrum is obtained. Such spectra contain peaks like a one-dimensional NMR 
spectrum, and the peaks corresponding to interactions between the two spins. 
Sequences of pulses can be varied to obtain information on the interactions in 
the spin system. 

Two types of NMR spectra of signals from 'H atoms are used. Correla¬ 
tion-spectroscopy (COSY) spectra allow one to obtain information on the 
distances between the protons that are covalently bound through one or two Ca 
or N atoms. Nuclear Overhauser effect (NOE spectra) permit to observe inter¬ 
actions between protons that are closer than 5 A in space. COSY spectra 
contain signals from the interactions of protons in one amino acid residue and 
are therefore to identify the type of residue. Thus NOE spectra also contain 
signals corresponding to the proton interactions of the adjacent residues of the 
neighboring chains. 
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After identification of the signals in NMR spectra with the aid of pri¬ 

mary-sequence data, the analysis of the NOE spectra, which characterise differ¬ 

ent elements of a-helices and /2-strands, can establish the secondary structure of 

the protein. 
The signal in the NOE spectra is strongly dependent on the distance between 

the interacting protons (as 1 /r6). This permits to divide signals seen in the 

spectra into three types according to their amplitude. Accordingly, one may 

divide the interval of possible interprotonic distances (from 1.8 to 5.0 A) into 

three intervals. On the basis of these data, a matrix of interprotonic distances for 

the object under study can be derived. Therefore, as the hydrogen atoms, which 

cannot be visualized in the protein X-ray experiment, in the NMR method serve 

as the reference points in the structure determination. The H,-H, distances are 

displayed in a square matrix, the distances on the diagonal are obtained from 

one-dimensional NMR spectrum, other peaks are obtained from two-dimen¬ 

sional NMR spectra (Fig. 6.43). 
The starting model for further refinement can be built on the information of 

the secondary structure. Structure determination on the basis of NMR data 

alone is possible, but the task is considerably facilitated if the X-ray model of the 

structure is available. Various procedures for structure refinement or computa¬ 

tion by molecular dynamics programs (Sect. 8.3), where the interprotonic dis- 

Sequence 

0 10 20 30 40 50 60 70 

Fig. 6.43. Interresidue nuclear Overhauser enhancement (NOE) map for kringle 4 domain from 
human plasminogen [6.122] 
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Fig. 6.44. Stereoview of 7 distance geometry structures of kringle 4 domain from human plas¬ 
minogen [6.122] 

tance matrix is regarded as a single term, can be applied. The result of such 

a refinement is a set of similar structure models each of which satisfies the 

interprotonic distance matrix equally well (Fig. 6.44). After averaging of these 

models with consequent energetic refinement an averaged model can be derived. 

Mean square deviation of atomic coordinates obtained by NMR from the X-ray 

structure analysis data is usually of about 1-2 A. 

By now, the NMR technique has been used to determine about 100 protein 

structures. 
Among the principal limitations of the method are the restriction on the 

proton number, i.e. the number of residues in the protein to be investigated 

(it should not exceed 100) and the necessity to work with highly concentrated 

protein solutions (of the order of 1-2 mM) on the condition that there is no 

aggregation of molecules, the additional requirement is that the pH-value of the 

protein solution should be lower than ~ 6. 
At present new modification of the method - isotropic labelling, extension of 

two-dimensional NMR to three dimensions - permit one to investigate proteins 

with 200 or even more residues. 

6.8.3 Dynamics of Protein Molecules 

X-ray structure analysis of biomacromolecular crystal presents a picture of the 

electron density averaged in time and space. The values of atomic coordinates 

obtained during refinement of the protein structure indicate the preferential 

position and distances between the atoms. At the same time a protein molecule 

is a mobile formation, and though the distances between valence-connected 

atoms are fairly stable, rotation around single bonds, weakness of van der Waals 

bonds between atoms of neighboring chains, etc. permit greater freedom of 
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intramolecular motions of chains and side-chain amino acid residues. In the 

X-ray diffraction pattern this can be revealed because of the fact that protein 

crystals usually have a very high temperature factor B = Sn2u2, often amounting 

up to about 10-30-50 A-2. This corresponds to the mean square displacements 
/- o 

of atoms from their equilibrium position u2 of about 0.36-0.62-0.80 A, which 

is considerably higher than that in ordinary organic molecules. Thus, X-ray data 

reveal that thermal motion is different in different parts of the molecule 

(Fig. 6.45) - there are “cold”, “warm” and “hot” regions. Atoms in the cold 

regions usually form the hydrophobic nucleus of the molecule. Warm and hot 

regions are those in which atoms are more mobile. Hot regions often occur on 

the surface of the molecule; in addition, the substrate-binding site (active centre) 

is often “hot”. 

As the neighboring atoms in the chain are bonded covalently, their vibra¬ 

tions are interdependent. Thus, the averaged picture of the type shown in 

Fig. 6.45 should be interpreted as a superposition of a set of similar conforma¬ 

tions of the molecule. 

It should be noted that calculations of the temperature terms B, and the 

corresponding ^/u2 in X-ray protein crystallography are carried out with the 

isotropic approximation [Ref. 6.5, Sect. 4.7.8]; it is almost impossible to take 

into account the anisotropy of the vibrations and their anharmonicity as in 

structure determination of organic and inorganic crystals. 

The starting model for the molecular-dynamics computations of the protein 

molecule is its X-ray structure which, as was discussed above, is the result of 

averaging over all the conformations. Empirical force functions are introduced, 

which characterize the elasticity of covalent-bond lengths and torsional angles. 

Parameters characterize the energy of the neighboring groups of amino-acid 

residues rotation about single bonds; force constants account for the van der 

Waals interactions of atoms of the neighboring chains not bonded covalently 

Fig. 6.45. Ribonuclease C2 atomic model. Differ¬ 
ent colors indicate atoms with different temper¬ 
ature factors, B and the corresponding mean 

square displacements. Blue: B < 10 A2, ^/if2 < 
0.36 A; green: 10 < B < 20 A2, 0.36 < 

^/t)2 < 0.50 A; red: 20 < B < 30 A, 0.50 < v/fi2 

< 0.62 A; yellow: B > 30 A2, y/iB > 0.62 A 
[6.123] 
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and the energy of hydrogen bonds, see Sect. 2.6.1, in particular (2.5-9). Then, 

taking into account the masses of each of the n atoms in the molecule, Newton’s 

equation of motion for the dynamics of the whole system is solved. Due to the 

enormous complexity of the problem, its solutions requires powerful computers. 

The vibrational frequency of the protein molecules is of about 1013 Hz), so 

the characteristic time interval for the nearest different conformations is about 

10“12 s and the rotation about the covalent bonds 10“13 s. The computations 

are carried out by steps of about 10“13s, the total “observation” time is 

10“u-10“10 s. 

Thus, the pictures of a set of subsequent states of the protein molecules is 

obtained (Fig. 6.46), like in the NMR method (Sect. 8.2, Fig. 6.43). Changes in 

the structure inside the main chain of a-helices are relatively small, i.e., these 

elements of the secondary structure can be regarded as vibrating as a whole, 

while side radicals of the a-helices are more mobile. 

Fig. 6.46. Myoglobin mole¬ 
cule motion in crystal. Su¬ 
perposition of 7 successive 
(in 5-10“12 s interval) vari¬ 
ants of myoglobin structure 
obtained by molecular-dy¬ 
namics calculations [6.124] 
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Computations of the protein dynamics reveal that fluctuations inside the 

molecule equal ~ 0.5 A, which agrees with the X-ray data on temperature 

factors, but at the surface they can reach up to 2 A for some side residues. (We 

should note here that in some proteins the terminal regions of the chains are so 

mobile or disordered that they are not observed in the Fourier maps of electron 

density). 

It is interesting to note that if we consider the molecule as a rigid framework 

of averaged atomic positions, we shall sometimes have difficulty in following the 

ways of substrate penetration into the active site - the path between the 

side-chain amino-acid residues is too narrow. But, if molecular dynamics is 

taken into account, it becomes clear that the substrate molecule can pass 

between the spread side-chain amino-acid residues of the protein. (This is also 

true if, for example, we consider the motion of 02 molecule to the heme iron in 

myoglobin and other globins). Moreover, the fluctuation of the structure can 

promote directional motion of the substrate into the active site, and the removal 

of the product from it. 

Calculations of the dynamics of a protein molecule are most often carried 

out on the assumption that the protein molecule is an isolated system of atoms, 

but sometimes the solvent water molecules bound to the protein are also taken 

into account. With the aid of dynamics calculations one can also simulate the 

interaction of the protein with the substrate and the course of enzymatic 

reactions. In this case calculations are to be carried over a prolonged time 

period. To facilitate the calculation, it is carried within a certain reaction zone 

which includes the substrate, the active centre and the adjacent amino-acid 

residues. 

Dynamical modeling is also utilized for the analysis of proteins with a com¬ 

plex quarternary structure when the domains, observed during enzymatic and 

some other reactions, are studied. 

Computations employing the methods of molecular dynamics can be used 

not only for the conformational analysis of the protein-molecule behavior, but 

also as a tool for the refinement of the preliminary model of the protein. 

Refinement with the aid of molecular dynamics regards the full energy of the 

molecule E as a summation of the “X-ray energy” £(Fobs — Fcalc)2 and the 

dynamical energy of the model; E = £x.ray + EempiIical. The temperature of the 

system is raised to the value of the order of 2,000-4,000 K and then slowly 

“cooled’ to 300 K - the so-called simulated annealing ([6.125] see also [6.5, 

121-128]). Certainly, such a high “temperature” of the molecule does not 

correspond to any physical reality. At high temperatures atomic displacements 

by 6-8 A are possible, local minima of the energy are easily surpassed and the 

slow cooling (“annealing”) creates the global minimum in the configurational 

space, which corresponds to the true structure (X-PLOR program) [6.125, 
129-131], 

Structure refinement of the proteins by the methods of molecular dynamics 
is also used in NMR data processing (Sect. 8.2). 
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6.8.4 Data on the Structure of Large Proteins 

We shall consider several examples characterizing modern X-ray determina¬ 

tions of very complicated structures. 

The study of glycogen phosphorylase allowed the determination of many 

functions of this very interesting molecule [6.132], The molecular mass of this 

protein is 190 kDa, with two subunits containing 842 amino acid residues each. 

Glycogen phosphorylase is an allosteric enzyme. It catalyses, in the first step, 

the breakdown of glycogen: 

Glc„ + P, <=> Glc„_ ( + Glc-l-P, 

where Glc„ and Glc„_! are a(l-4)-linked glucosyl residues, P, inorganic phos¬ 

phate and Glc-l-P glucose 1-phosphate. The enzyme is a key control protein of 

glycogen metabolism and is regulated by allosteric and covalent modification. 

Crystals of glycogen phosphorylase b have the space group 

a = b — 128.6 A, c — 116.6 A. There is one subunit per asymmetric unit, the two 

subunits of the functionally active dimer are connected by a two-fold axis. 

The atomic model consisting of 6640 non-hydrogen atoms was refined to 

a 2-A resolution. The structure of T-state glycogen phosphorylase is depicted in 

Fig. 6.47. Three domains can be distinguished in the subunit: the N-terminal 

domain comprising the first 310 amino acid residues, the glucogen-binding 

domain of about 160 residues, and the C-terminal domain containing 360 

residues. The tertiary structure of the phosphorylase subunit possesses charac¬ 

teristically two elongated /Mayers. One of them goes through the N-terminal 

and glucogen-binding domains and contains 7/Z-sheets, the other is in the 

C-terminal domain and contains 6 parallel //-chains. The pyridoxal phosphate 

cofactor is placed inside the subunit in the hydrophobic part and is connected 

with the molecule environment by a narrow channel. The catalytic centre (c) is 

placed in the centre of the subunit close to pyridoxal phosphate. The allosteric 

effector (N) binding site is at a distance of about 30 A from the catalytic center 

close to the contact region between the subunits. The glucogen (G) binding site is 

located on the molecule surface. 
Fairly interesting are time-resolved catalytic reaction experiments with crys¬ 

tals of phosphorylase b. The investigation was carried out at the Daresbury 

Synchrotron [6.133]. 
The reaction used was the transformation of heptenitol into heptulose-2- 

phosphate of catalytic site - close to pyridoxal phosphate. Data sets of 12 states 

were collected by the photo method. In the experiment an active substance was 

injected into the crystal to initiate the reaction - transformation of the substrate 

into the product and the consequent structural changes. Each data set was 

collected at 1-s exposure time. Changes in electron density revealed the reaction 

course; the local changes in the molecule structure were fixed by difference 

electron-density maps. The shift of the Arg569 residue was fixed (Fig. 6.48a). 

Changes in the allosteric and glucogen binding sites were also observed. 
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Fig. 6.47. Schematic ribbon diagram of T-state phosphorylase b dimer viewed down the 2-fold axis. 
The regions of polypeptide chain corresponding to al :cap: start-of az-helix and the loop-tower- 
280s-loop: start-of-a8-helix are shown shaded in the lower subunit. These regions together with the 
loop connecting /?7 and /?8 are important in subunit - subunit contacts [6.23] 

In another experiment the difference Fourier maps were obtained from the 

Laue photographs of protein [6.134]. The crystal was kept in a thermostat- 

controlled flow cell, and the Laue data sets of three exposures were taken at 

different angular settings before, during, and after addition of the ligand. 

The data collection time was 3 s. The process of the attaching of the 

substrate - oligosaccharide (maltohepatose) was fixed. One of the difference 
Fourier maps is displayed in Fig. 6.48b. 

Of major interest is the structure investigation of the photochemical reaction 

complex protein by Michel, Huber, Daisenhofer and coworkers [6.136-138], 

A photochemical reaction centre is a membrane complex of proteins and 

pigments that is present in photosynthetic membranes and performs the primary 
separation of charges under the influence of light. 



Fig. 6.48. (a) difference Fourier synthesis in the vicinity of the catalytic site for the heptenitol to 
heptulose-a-phosphate conversion. The pyridoxal phosphate is in upper left. The positive contours 
indicating the movement of Arg 569 are apparent at bottom left [6.126]; (b) Laue difference Fourier 
map showing maltoheptose in phosphorylase b crystal (9,029 reflections). Movements of Glu 433, 
Lys 437 and Glu 408 produce the two extra density lobes on either side of the oligosaccharide 

[6.135] 
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Space group of crystals from photosynthesizing bacteria Rhodo- 

pseudomonas viridis is T43212, unit cell a = b — 223.5 A, c= 113.6 A. The 

protein contains 4 different protein subunits: H subunit, L subunit, M subunit 

and cytochrome-.C-subunit with molecular mass 24, 28, 35 and 38 kDa, respec¬ 

tively. Cytochrome-C-subunit consists of 4 covalently bonded heme groups, 

L and M subunits contain as prosthetic groups 4 molecules of bacterio- 

chlorophyll, 2 molecules of bacteriopheophytin, 2 quinones and non-heme iron 

(Fig. 6.49). The overall size of the molecule is 30 x 70 x 130 A3. 

The central part of the reaction centre is formed by L and M subunits 

containing 274 and 320 amino-acid residues, respectively. Each of the subunits 

Fig. 6.49. The structure of the bacterial photosynthetic reaction complex. Blue: protein chains 
shown in the backbone representation; yellow: “special pair” of chlorophyll molecules, the primary 
electron donor of the photosynthetic light reaction; green: chlorophyll molecules; purple: 
pheophytin molecules; orange: quinones; yellow dot, iron-ion [6.139] 
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has 5 long helical regions about 40 A. It is supposed that it is these helical 

regions together with the helical segment of the H subunit that contact the 

membrane and pass through it. Cytochrome-C-subunit covers the L and 

M subunits from the periplasmatic side of the membrane. It comprises 332 

amino-acid residues and 4 heme groups connected with the protein in the same 

way as in other c-cytochromes. It is proposed that primary photosynthesis 

reactions lead to the transfer of electrons from one end of the reaction center, 

which acquires a positive charge, to the other end. First the photon is absorbed 

by a special chlorophyll molecule pair and its energy is transferred to the 

electron of the special pair. Then the electron is transferred to the pheophytin 

molecule, and after that goes to the quinone molecule. At this stage the 

cytochrome protein molecule freely moving in the solution comes close to the 

special pair and transfers the electron to it, so the pair becomes neutralized and 

the cytochrome itself acquires a positive charge. Later on, the excited electron 

which was transferred to the quinone molecule passes to the second quinone 

molecule. The accumulation of energy consists in the spatial division of charges. 

Naturally, this remarkable structural investigation gives the foundation for 

a number of basic conclusions, but the whole mechanism of photo reaction 
requires further research. 

Fig. 6.50a, b. The structure of the GAL-4/DNA complex. Protein residues (blue) are numbered. The 
DNA recognition module consists of 8-40 residues. Metal atoms are shown by yellow and DNA by 
red. (a) general scheme; (b) space-filling model [6.140] 
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At present numerous X-ray investigations of macromolcular interactions 

have been made. Recently, the interaction between DNA and various protein 

molecules - Cro repressor, glucocorticon repressor, transmission factor, etc. - 

have been studied. As a rule, in such investigations use is made of an appropriate 

DNA oligonucleotide crystallized together with a protein. 

As an example, consider the protein GAL-4-DNA complex [6.140]. GAL-4 

contains 65 residues, it is a terminal fragment of the yeast transcriptional 

activator. The protein is bound to symmetric 17-base-pair oligonucleotide. The 

DNA-binding region in GAL-4 that recognizes the CCG DNA-triplet has two 

Zn2 + atoms. The resolution is 2.7 A. The protein fragment is bound to DNA site 

to form a symmetrical dimer. The mutual arrangement of DNA and the protein 

is illustrated by Fig. 6.50, the dimer diode being located horizontally. Two 

recognition modules lie in the major grove separated by one and a half turns of 

the DNA helix and are centered over the CCG triplet. The upper and lower 

parts of the protein dimer, each containing a portion of a-helix and two metal 

atoms, enter the respective DNA region. 

X-ray investigations of such kind provide the construction of the complete 

picture of the macromolecule interactions that cannot be obtained by any other 

method. 

6.8.5 X-Ray Investigation of Ribosomes 

In recent years a number of investigators managed to obtain crystals of ribo¬ 

somes 70s and ribosomal subparticles 50s and 30s [6.140]. Unit cells of these 

giant macromolecular formations are rather large, e.g., Thermus thermophillus 

ribosomes crystallize in the space group P422 with the unit cell size 
° - o 

524 x 524 x 306 A , experimental resolution: 15-20 A. Crystals are highly sensi¬ 

tive to radiation. For X-ray analysis cryocrystallography is used - crystals are 

shock-cooled to about 85 K, and kept cold during data collection. 

The determination of phases is carried out on the basis of three-dimensional 

reconstruction from electron microscopy data (Fig. 6.50). These phases are 

attributed to X-ray reflections. Fig. 6.51 depicts a 3D reconstruction of the 50S 
subpart [6.142]. 

Further investigations may be carried out with the use of multiple isomor- 

phous replacement. But, in this case individual heavy atom additions have 

proved insufficient due to the giant molecular mass of the ribosome, and there is 

the search of additions that consist of clusters of heavy atoms. 

6.8.6 Virus Structures 

Recently the use of X-ray analysis provided major advances in the understand¬ 

ing of viruses'functioning in life organisms. At present, besides the Tomato 

Bushes Stunt Virus (TBSV) structure described in Sect. 2.9.6, the structures of 20 

more icosahedral viruses, among which are plant, animal, insect and bacterial 
viruses, have been studied. 
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Fig. 6.51. The models of 70s (top) and 50s (bottom) 
subunits of bacterial ribosome from E. coli obtained 
by three-dimensional image reconstruction. Compare 
Figs. 2.161, 162 [6.141] 

Investigation of the atomic structure of protein capsid helps to solve the 

problem of creating synthetic gene-engineering vaccines that work on the 

principle of complementarity with the virus surface. 

The surface icosahedral lattice of the viruses with the triangulation number 

T (Sect. 2.9.6) can contain 60 T subunits. Caspar and Klug [6.144] examined 

quasi-equivalent positions of identical subunits. At present it has become evi¬ 

dent that the same rules are valid for viruses whose shell is formed by several 

(usually three) different proteins. These structures are regarded as pseudosym- 

metrical, for them triangulation number is replaced by the number of 

pseudosymmetrical units P. 

An icosahedral shell of type T = 1 was observed in natural viruses farely 

rarely, mostly in virus-satellites such as satellite tobacco necrosis virus (STNV). 

TBSV, Southern Bean Mosaic Virus, Blok Betetle Virus, Turnip Crinkle 

Virus (TCV) belong to the viruses with T = 3 icosahedral shell. This type of 

capsid is often observed in plant isometric viruses. 

The capsids that follow that rules of pseudosymmetry are most often met in 

small isometric plant and human viruses. An example is presented by capsids of 

various rhino viruses, polio virus, foot and mouth disease virus, and mengo 

virus, the structures of which are also known. Each of the three proteins located 

in the asymmetric unit of the icosahedron, has the motif of 8-strand antiparallel 

/I-barrel (Figs. 6.52, 53). The main structural differences of these proteins are 

observed in the loops which connect the /?-strands region. 
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Fig. 6.52. The ribbon model of the protein 
subunit of CM,V (subunit C) 

SA - domain 

Sr - domain SB - domain 

Fig. 6.53. S-domains of the icosa- 
hedral asymmetric unit CM,V with 
3 quasi-equivalent protein subunits 
A, B and C. Two sulfate ions are 
located between A/B and A/C sub¬ 
units, Ca2+ ion is located between B 
and C subunits 

The similarity of the tertiary structure of subunits of various viruses allows 

to employ in the analysis of new viruses the method of molecular replacement 

with consequent refinement, in which pseudosymmetry of subunits and point 
icosahedral symmetry of the capsid are exploited. 

Let us consider the structure of capsid of the plant Carnation - Mottle Virus 

(CMtV) [6.144, 145], The diameter of the particle is 340 A, molecular weight 

about 8 million dalton, 20% of the weight is taken by RNA. The virus capsid is 

formed by 3 x 60 = 180 chemically identical protein subunits m.w. 37787 dal- 
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ton, subunit consists of 347 amino acid residues. Initial data on the structure of 

the capsid were obtained by small-angle scattering. The crystalline modification 

most suitable for investigation has space group 123, a = 382 A. Diffraction data 

from CMtV crystal were collected at DESY by the synchrotron EMBL 

outstation using image plate technique. A data set at 3.2 A resolution was 

collected from four crystals in 10 hours. For structure determination at 3.5 A 

107000 reflections were used. Calculations were carried out with the method of 

molecular replacement using TBSV protein subunit structure (Fig. 2.177d). 

Protein subunits, as in TBSV, are built of two main domains: S-domain - cover¬ 

ing the shell and P-domain forming projections on the surface of the virus 

particle (Fig. 6.52). The domains are connected by a flexible hinge of 3 amino- 

acid residues and can have two configurations. Chemically identical subunits A, 

B, C differ very slightly in the /1-sheets configuration; in the capside structure 

Fig. 6.54. External view of CM,V- A - subunits (blue) organize the pentamer around 5-foldaxis, 
B - subunits (red) - dimers near quasy 2-fold axis, C - subunits (yellow) - dimers near icosahedral 

2-fold axis 
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they are disposed around the pseudo-threefold axis (Fig. 6.53 - only S domains 

are shown). 
The model of the capsid is presented in Fig. 6.54. In the electron density map 

a sharp peak is seen, which was interpreted as a Ca ion. The S domain is 

a 8-strand antiparallel ^-barrel with two short a-helical regions; the P domain 

has a sandwich structure containing two /i-sheets. 
The structure of the P and S domain is similar to those found in protein 

shells of other viruses. The interesting difference lies in the absence of a S domain 

of CMtV of the N-terminal ordered part (80 amino-acid residues) which was 

observed in all virus structures investigated before; it forms ^-annulus structures 

around the icosahedral 3 axes. 
On the basis of X-ray structural investigations of various representatives of 

the picornavirus family Rossmann [6.146] put forward a “canyon” hypothesis of 

the interaction between the virus particle and host cells (Fig. 6.55). According to 

this hypothesis, the interaction of the virus particle with cellular receptors 

occurs in the region of the “canyon” located around the icosahedral 5-fold axis 

of the particle. Amino acid residues to which the cellular receptor is bonded, are 

placed at the bottom of the canyon and are very conservative and stable to the 

influence of antibodies induced by the immune system of the host organism. 

This hypothesis allows to understand the selective infectious activity of virus 

particles even in the presence of surface mutations, and evaluate the size and 

properties of cellular receptors. The results obtained by Rossmann and other 

scientists allowed to synthesize a number of drugs which inhibit binding of virus 

Fig. 6.55. The “canyon” hypothesis schematic representation of the binding site in HRV14 in which 
antiviral agents are bound [6.147] 
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Fig. 6.56. The electron-density map of the inside of the 
polyomavirus virion [6.146] 

particles to the cells and block the release of nucleic acid, i.e. propagation of an 
infection in the body. 

It should be noted that X-ray investigations have not permitted as yet to 

determine the structure of nucleic acid inside the virus. The virus particles in 

crystals have similar capsid orientation, which allows to determine the structure 

of protein shell and its subunit. At the same time particles are orientationally 

disordered relative to the internal part of the virion. Therefore until now the 

electron density of the inner tertiary structure of nucleic acid appears as 

homogeneous media, though sometimes some structuring is revealed in places of 
contact with the capsid. 

An interesting attempt to determine inner structure of poliomavirus virion 

averaged along icosahedral orientations has been made [6.146], For the X-ray 

analysis complete virion particles are usually crystallized, but it is known that it 

is also possible to obtain and crystallize empty capsids. Such crystals of 

poliomavirus capsid consisting of VP1 protein, were obtained and appeared to 

be isomorphous with virion crystals [6.148]. The difference Fourier analysis of 

X-ray data at 25 A resolution was carried out. The capsid contains 72 penta- 

mers, i.e. 360 molecules of VP1. The obtained picture of the virion interior 

(Fig. 6.56) presents an almost uniform electron density which has 72 prongs 

extending to the internal centers of protein capsid pentamers. It is known that 

poliomavirus contains minor proteins VP2 and VP3, which are similar in 

structure. The prongs in the electron-density map were identified as these 

proteins. The virion core consists of close-packed nucleosomes (Sect. 2.9.5, 

Fig. 2.163). The possible function of the VP2/VP3 prongs in the nucleohiston 

core is to guide the assembly of the protein molecule. The ordering inside the 

core was, naturally, not revealed because of the orientational averaging. 

6.9 Ordering in Liquid Crystals 

New types of ordering are presented to complement the discussion of Sect 2.8. 
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6.9.1 Smectic A Polymorphism in Liquid Crystals (LC) Containing 

Polar Molecules 

As we know, liquid crystals are characterized by three main types of ordering. 

They are nematics, smectics and cholesterics (Sect. 2.8). The simplest state of 

ordering is the nematic one. In nematics elongated rod-like molecules are 

arranged parallel or antiparallel to one another, but their centres of mass are 

randomly distributed. This is a sort of an oriented liquid in which short-range 

order characteristics can be determined using X-ray diffraction. 

Smectics exhibit a wide variety of phases. Smectic LC consist of layers. The 

molecules forming a layer are collinear to the layer normal or are tilted and 

make an angle with the plane. The layers can be superimposed with a certain 

periodicity d, which is usually close to the length of the molecule d, i.e., 

one-dimensional translational ordering takes place. The correlation in the layer 

superposition, i.e. in directions coinciding with the plane of the layer, is small or 

absent (liquid two-dimensional order) (Fig. 2.99). 
In recent years data on new modifications of smectics have been obtained. 

Such modifications arise in cases when the rod-like molecules forming a smectic 

have no center of symmetry [6.149]. Such molecules are made up of aliphatic 

chains with one strongly polar group of the CN or N02 type at its ends. In this 

case, along with usual smectic phases of the type having the layer period of 

about the length of the molecule dx = L (Fig. 6.57), bilayered smectics A2 with 

the period d2 = 2L have been found (Fig. 6.57b). Partially bilayered smectics Ad 

with the layer period incommensurate with the length of individual molecules 

(real space) 

m mm 
(reciprocal space) 

711 
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Fig. 6.57a-c. Smectic A phases formed by molecules with a strong polar group at one of its ends: 
(a) monolayered A,; (b) bilayered A2, (c) with partial overlap of Ad molecules. • Bragg reflections, 
O diffuse scattering 
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Fig. 6.58a, b. Modulated A (a) and C (b) smectic phases and vector diagrams characterizing the 
specific features of their periodicity. The dashed line indicates the level of equal density associated 
with dipole polarization [6.150] 

L(L < d2 < 2L) have been found as well (Fig. 6.57c). There are also smectic 

phases A and C in which the density wave is modulated in the direction 

perpendicular to the orientation of director n (Fig. 6.58). Thus, in contrast to 

usual smectic liquid crystals, the smectics built of polar molecules have not one 

but two characteristic lengths, the length of the molecule L and the length of 

antiparallel dipole pairs L'(L < L' < 2L), which determines the recurrence 

period of local polarization states of the environment (Figs. 6.57, 6.58). 

Energy minimization of the elastic distortion of smectic layers in liquid 

crystals having polarized layers reveals that a simultaneous coexistence of 

collinear incommensurate density waves is energetically disadvantageous. This 

accounts for the fact that the smectic incommensurate phase (Aic) with two 

collinear density modulations of wavelengths ql = In/L and q2 = 2n/L'* is 

rarely observed on phase diagrams of polar liquid crystals. More preferable is 

the situation when the structure vector corresponding to the polarization lattice 

q2 = 2n/L deviates from the direction given by the normal to the plane of the 

layer, thus leading to the formation of modulated structures of the A or C types. 

For such smectic phases, in contrast to Aic, the translation invariability condi¬ 

tion <?i + q2 + <?2 = 0, is fulfilled (Fig. 6.58). 

* In the literature on diffraction from liquid crystals the reciprocal space vector is denoted by 

q, not by s as in [6.5], 
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An interesting feature of LC forming polarization layers is reentrant poly¬ 

morphism, i.e., the reappearance of a high-symmetry phase with lowering 

temperature, for instance, nematic-smectic A-entrant nematic. 
The above-mentioned numerous phases in liquid crystals built of polar 

molecules and the entrant behavior are accounted for by antiparallel dipole 

correlations in the mesophase. The structural organization of the smectic-A 

phase according to the Als A2 types, etc., is due to a fine balance between the 

contribution of dispersion and steric interactions to the free energy, as well as 

dipole-dipole interaction of localized or distributed molecular dipoles, and the 

entropy effects of packing of rigid and flexible molecular moieties. 

6.9.2 Smectic Lamellar Crystalline Phases and Hexatics 

Upon temperature drop smectics A and C undergo a transition to lower- 

symmetry modifications, possessing various degrees of positional order in 

layers, namely, smectics B, G, I, etc. To obtain information on the molecular 

order in these smectic mesophases the diffraction geometry is used, in which the 

scattering vector q lies in the plane of the smectic layers q = q± (Fig. 6.59a). 

Upon a phase transition to the smectic-B type, the diffuse ring typical of the 

scattering from the smectic-A phase in the plane of the layer (Fig. 6.59b) is 

replaced by a discontinuous arrangement of reflections having, as a rule, 

hexagonal symmetry (Fig. 6.59c). The hexagonal symmetry confirms the long- 

range order in the orientational ordering of molecular axes in the plane of a LC 

layer. In other words, a regular system of nodes of a two-dimensional set which 

characterizes the arrangement of molecular centres of mass in the plane of 

smectic layers is continuated at large distances. It does not mean, however, that 

the long-range positional order is also present in smectic layers one should 

measure the structure factor of smectic S(q±) in the direction along qL (Fig. 6.59). 

Then, proceeding from the dependence S(qL) one can draw a conclusion about 

the character of the positional correlations in the plane of the smectic layer. 

In the case of crystalline, two-dimensional layers the structure factor is a 

Fig. 6.59a-c. The geometry of X-ray scattering by a smectic liquid crystal. The scattering vector 
q = k2 - fc, = g, lies in the place of smectic layers (a), smectic A (b), lamellar smectics and hexa¬ 
tics (c) 
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<5-function: S(tjr±) ~ d(q± — q10) but in the absence of the long-range transla¬ 

tional order S(q±) will be described by a Lorenzian of the form S(q±) ~ 

[(<?i — <7±o)2 + £l2]~\ where is the correlation length in the plane of the 
layers. Moncton and Pindak [6. 151] first showed that in most cases the phases 

formerly classified as smectics B are, in fact, not liquid crystals but crystals with 

the true long-range order in three dimensions. In some cases, however, even 

when there is hexagonal symmetry in the plane of layers, the correlation length 

< 200 A. Such phases with the short-range positional order in the plane of 

the layers are three-dimensional analogues of hexatic two-dimensional phases 

and are therefore called hexatics. The theory of two-dimensional melting sugges¬ 

ted by Galperin and Nelson [6.152] has played an important role in elucidation 

of the nature of these intermediate phases. According to this theory, along with 

the correlation density function g2(r) — <p(r)p(0)> the correlation function 

0(r) = <<p(r)<p(0)> is considered. This function determines the order in the 

orientation of the vectors between molecular axes in layers (in the case of 

hexagonal symmetry the orientation parameter cp is expressed by cp = exp(i6(9), 

0 being the angle between a random direction in the plane and the direction of 

molecular bonds). The following sequence of phases can occur in two-dimen¬ 

sional systems: a crystalline phase with quasi long-range translational order and 

long-range orientational order, an intermediate hexatic phase with short-range 

positional order and quasi long-range orientational order, and, finally, a liquid 

phase with the short-range orientational and translational order. A three-di¬ 

mensional crystal structure is formed as the number of crystalline layers in¬ 

creases. It is an analogue of a crystalline smectic B. The stacks of hexatic layers 

form a hexatic with O(r) = const and the short-range translational order, the 

packing of the liquid layers corresponds to the smectic A. At present, one can be 

sure about the fact that there are two types of smectic with positional correla¬ 

tions in the plane of the layers - crystals and hexatics. 

A question may arise how the above crystalline phases are related to liquid 

crystals. The answer is as follows. In all crystalline smectic phases the aliphatic 

molecular chains are in a melted state. Flexible chains of LC molecules are 

characterized by the conformational mobility which manifests itself in differ¬ 

ences in the orientational disorder for fragments of aliphatic chains located at 

various distances from the rigid central core of the molecule. The conforma¬ 

tional mobility of the carbon-hydrogen chains is accounted for by the fact that 

the energy required for the trans-gauche rotations about the carbon-carbon 

bonds is comparatively small. As the temperature goes down, the probability of 

the trans-gauche isomerization of the aliphatic chains becomes smaller. In the 

true crystalline state the carbon-hydrogen chains of LC molecules are in a full 

trans-configuration. Thus, in crystalline smectics and hexatics the flexible 

aliphatic chains and cores form two mutually interacting subsystems, divided in 

space. In this sense these phases, apparently, should be called lamellar. These 

considerations are confirmed by the fact that some shear elastic moduli in 

crystalline smectics are smaller by several orders of magnitude than those in 

usual crystals. It should be noted here that the observed diversity of smectic 
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Fig. 6.60a-c. Various lamellar smectic phases differing by the inclination of the long axes of the 
molecules relative to the faces and edges of the unit cell, (a) smectic B; (b) smectic 6; (c) smectic I 

Fig. 6.61. Preparation of freely suspended smectic films. (7) substrate with a hole; (2) plate for 
extending the film; (5) freely suspended film; (4) a drop of a liquid crystal [6.146] 

phases (F, G, I) is due to an inclination of the long molecular axes with respect to 

unit cell edges in various ways (Fig. 6.60). 

6.9.3 Freely Suspended Smectic Films 

Freely suspended smectic films are quasi two-dimensional smectic films, sus¬ 

pended in the hole of the supporting plate. The smectic planes in them are 

oriented parallel to the plane of the hole (Fig. 6.61). By gradually increasing the 

number of layers, N, in the freely suspended films one can transfer from quasi 

two-dimensional to three-dimensional objects. Depending on the molecular 

structure, temperature, number of layers, the freely suspended films can contain 

smectic-A type layers (purely liquid), hexatic ones with a short-range positional 

order and crystalline ones with a long-range translational order. Results of 

investigations reveal that the positional order in the plane of the layer depends 

both on the film thickness and the temperature of LC. At low temperatures and 

small (TV < 10) number of layers the hexatic phases with tilted molecules in layers 

are stable. At comparatively high temperatures the hexatic-B phase is thermo¬ 

dynamically stable. Upon a transition to the three-dimensionality (TV >20) 

liquid crystals usually exhibit a series of crystalline phases differing in the 

unit-cell type and the sequence in layer packing. To some extent freely 

suspended smectic LC and smectics, in general, are similar in structure to 
Langmiur-Blodgett films (Sect. 6.10). 

6.9.4 Cholesteric Blue Phases 

These phases occur in cholesteric systems with a small helical pitch ( < 5000 A) 

and exist in a narrow temperature range, of the order of degree, between an 
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isotropic liquid and a usual cholesteric phase. Investigations by various physical 

techniques showed that blue phases present the thermodynamically stable state. 

There are three different blue phases BPI, BPII and BPIII (with ascending LC 

temperature). They all exhibit a marked optical hyrotropy (rotation of the 

polarization plane) with no birefringence, i.e., they are optically isotropic. 

Selective light scattering is observed in the visible part of the spectrum for the 

blue phases. This results in the blue colouring of the phases, hence the name. 

Since the ordering periods are comparable with the visible-light wavelengths, 

these LC are studied by optical diffraction technique. Several orders of optical 

Bragg scattering are observed. BPI is a space-centered cubic lattice (space group. 

74^2 — O8), BPII - a purely cubic lattice (P4232 — O2). Lattice periods are of 

the order of a helical pitch of a cholesteric. The blue phase BPII is, apparently, 
amorphous. 

The helicoidal structure of the cholesteric phase cannot be topologically 

continuously transformed to cubic structure without formation of singular lines 

in which the orientation of the director n changes abruptly (such defects are 

called disclinations by analogy with dislocations in crystals). A possible form of 

the unit cells of the blue phases BPI and BPII, containing disclination networks, 

is depicted in Fig. 6.62. Thus, the blue phases are an unusual example of the way 

a regular three-dimensional lattice built on disclinations can be realized. 

6.9.5 Other Liquid Crystalline Phases 

The above kinds of mesophases do not include all possible liquid-crystalline 

structures. Various types of ordering are realized in liotropic liquid crystals 

(Fig. 2.110). Recent developments in chemistry have yielded mesogenic mole¬ 

cules of markedly branched shape, bowl-like and plate-like molecules producing 

unusual types of smectic phases, including phases with incommensurate periods, 

as well as molecules containing paramagnetic metal complexes. Planar disklike 

molecules form nematics-discotics (Fig. 2.104). Such liquid crystals are formed 

by columns of stacks of disklike molecules [6.154], Discotics exhibit a unique 

feature predicted by Landau and Payerls. The system possesses properties of 

a liquid in the direction along the column axes, whereas in the other two 

directions, i.e., perpendicular to the column axes, the columns have a two- 

dimensional hexagonal arrangement. 

Fig. 6.62. Unit cells of disclination lattices of 
blue phases of liquid crystals, tubes denote the 
disclination lines [6.153] 
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Fig. 6.63. Schematic representation of a smec- Fig. 6.64. Schematic representation of a smec¬ 
tic A phase of ridge-like polymers. (7) main tic A* phase. (/) regular portions of layers; (2) 
chains; (2) flexible connections and circular defect or liquid-like regions [6.155] 
aliphatic chains; (3) mexogenic nuclei 

In recent years thermotropic polymeric liquid crystals have become a most 

interesting subject to study. In such LC, mesogenic groups are introduced into 

flexible polymeric chains. At present, all types of mesophases encountered in 

low-molecular compounds have been discovered in thermotropic polymers, in 

particular comb-shaped polymers. In contrast to low-molecular thermotropic 

liquid crystals with a molecule as the main structural unit, specific structural 

features of thermotropic polymers are due to the properties and mutual arrange¬ 

ment of the main polymeric chain, the attached mesogenic groups and flexible 

spacers between them (Fig. 6.63). Depending on the relation between the lengths 

of the flexible spacers and the aliphatic chains of mesogenic molecules, struc¬ 

tures with separately packed fragments of macromolecules are formed within 

a smectic layers. X-ray diffraction patterns from polymeric smectics reveal 

information on such “microphase” separation. It should be noted that the 

presence of a flexible polymeric chain results in significant differences in struc¬ 

tures of polymeric and low-molecular smectics. Since the main polymeric chains 

are located not only in the plane of a separate smectic layer, but also go 

throughout the bulk of LC, this leads to distortions in the translational order 

a new type of smectic-A order in chiral systems - the A* phase. In the smectic-A* 

phase the molecules are arranged in layers as in the usual A phase. However, the 

direction of no'rmals to smectic planes changes regularly in space, resulting in 

the formation of a helicoidal structure with the spiral axis lying in the plane of 

smectic layers (Fig. 6.64). The existence of such structures is possible only if there 

arise defect (liquid-like) regions which separate parts of the LC having homo¬ 

geneously oriented smectic planes. 
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6.10.1 Principles of Formation 

Langmuir-Blodgett films (LB films) are artificial mono- and multi-molecular 

layers consisting of the amphiphilic surfactant molecules [6.156-159]. 

The LB film-formation technique is as follows: a monomolecular layer of 

surfactant molecules, the so-called Langmuir layer, is formed on the water 

surface. It is then transferred, monolayer by monolayer, to a solid substrate by 

movements of the substrate down and up through the air-water interface. This 

technology provides the formation of very thin (15 k-n-103 A) films of various 

composition on smooth surface at room temperature and at atmospheric 
pressure. 

LB films containing two or more sorts of amphiphilic molecules form the 

one-dimensional superlattices. Here monolayers of the various kinds of mole¬ 

cules are arranged in the required order across the thickness of the film. There is 

also a possibility to combine two or more sorts of molecules in each layer. In 

such a manner the Langmuir-Blodgett technique permits to prepare a “con¬ 
struction” at the molecular level in one dimension. 

The amphiphilic molecule consists of a hydrophilic group and a relatively 

long hydrophobic hydrocarbon chain (Fig. 6.65). The hydrophilic group, such as 

COOH, is placed into the water subphase near its surface. The hydrophobic, 

insoluble, part is located outside the interface. To obtain a Langmuir-Blodgett 

film, a solution of such molecules is dropped onto the water phase. The material 

concentration is chosen in a way to form a floating “two-dimensional” gas after 

solvent evaporation. With an increase of the amphiphilic molecule concentra¬ 

tion in the monolayer the surface pressure builds up. In the process, the system is 

transformed into the two-dimensional “liquid” and then two-dimensional 

“solid” (Fig. 6.55). The monolayer is compressed up to the surface pressure 

of about 15-50mN/m, which is much higher than the equilibrium one 

(1-10 mN/m). 
At a certain surface pressure a solid substrate is transferred through the 

air-water interface. Crystallization of the monolayer is caused by its contact 

with the substrate and the two-dimensional crystallites are formed. The crystalli¬ 

zation front moves with the substrate motion. The second monolayer, then the 

third, etc. are deposited during the reverse motion. Such a technique (“vertical 

lifting”) permits one to get centro-symmetrical films (Fig. 6.65). Any odd number 

of monolayers can be deposited on the hydrophilic surface, and any even 

number on the hydrophobic surface, respectively. 

Polar LB films are usually obtained by transferring the “solid” monolayers 

by repeated contacts of a substrate with the monolayer (“horizontal lifting”). 

6.10.2 Chemical Composition, Properties and Applications of LB Films 

For a long time fatty acids CH3(CH2)„COOH and their bivalent metal salts 

have been used to obtain LB films. (One can get stable films if the hydrocarbon 
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Fig. 6.65a-c. Stearate acid molecules on the water surface (a); n-A isotherm for this acid (b); and 
schemes of the monolayer deposition onto a solid substrate (c) 

chain length satisfies the condition: 15 < n < 25). For these molecules the 
projections of the “head” and the chain on the substrate plane are roughly the 
same. The fatty acid LB films exhibit quite perfect structure, are stable in time 
and usually have dielectric properties. 

Since the 60-ies LB films have been obtained for a variety of different kinds 
of molecules. These are: various fatty acids derivatives, polymers and polymeriz¬ 
able compounds, lipids and even proteins and nucleic acids. It should be 
emphasized that relatively long chains (CH2)„ provide the structure stability of 
LB films, whereas a variety of physical properties is determined by chemical 
compositions of polar groups. This is why a lot of amphiphilic and quasi- 
amphiphilic molecules are successfully tested to form LB films. 

Some examples are given below. So, molecules which contain diacethylen 
groups in the hydrophobic chain like C12FI25-C=C-C=C^CF[2)8-COOF[, are 
often used. These molecules are very sensitive to ultraviolet and electron irradia¬ 
tion and are able to polymerize topochemically, which conserves the film crystal 
structure. LB films containing inorganic semiconducting inclusions have been 
fabricated recently. Polar films with a large pyroelectric coefficient are obtained 

using such molecules as 

OABS) which have a significant dipole moment 

(18- 
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Several kinds of polymers which withstand temperatures up to 300-400°C 

and possess high mechanical strength are used to form LB films. So, the 

electrically conducting polymer films have recently been obtained with poly- 

tiophens. A conductance modulation by external electric field has been dis¬ 
covered. 

Lipid LB multilayers are employed for simulating biological membranes. 

The preparation of highly-ordered protein and DNA LB films is one of the most 

interesting, recent results. This discovery may open up the way to create the 
artificial biologically active systems. 

LB films can widely be applied in science and technology. This is connected 

with a variety of physical properties, structural homogeneity, and the relative 

simplicity of fabrication. Examples of such applications are: monochromators 

for soft X-ray scattering, orienting coasts for the liquid-crystal displays, high- 

resolution resists for electron and light lithography, standards of thickness, coats 

for optical lenses, molecular lubricants for optical and magnetic disks, high- 
capacity electrical condensers, etc. 

LB films are coming into use for microelectronic devices. The first field-effect 

transistors have been made recently. LB films are employed as sensors, specifi¬ 

cally as biosensors. A sophisticated pyroelectric detector system for thermal 

radiation has been proposed which can be applied, for example, in fast infrared 

TV cameras. Many opportunities for the LB technology in molecular and 

biomolecular electronics are in sight. 

6.10.3 Structure of LB Films 

A number of two-dimensional phases for monomolecular layers on the 

air-water interface depend on the surface pressure, temperature and the area 

occupied per molecule. These phases partly correspond to the smectic phases of 

three-dimensional liquid crystals. The number of such phases may reach 10-15. 

These phases may be divided into three groups. 

The first group contains pure “liquid” phases, the second contains structures 

with the densely packed molecule heads, and the third one contains the most 

ordered phases with the densely packed hydrocarbon chains. Sometimes the 

fourth group, the truly two-dimensional crystals, is revealed. The most import¬ 

ant structural results in the field are obtained with the use of synchrotron 

radiation [6.160]. 
Crystallization starts along the whole contact line of a substrate with the 

water phase during the deposition of a monolayer (Fig. 6.65). Often crystallites 

of LB films reveal the “lammellar” structure. The thickness of the crystallites is 

300-600 A, the spacing in this direction equals 30-60 A and the mosaic angle in 

the monolayer plane is 2-5°. Crystallographic correlation between adjacent 

monolayers is frequently absent and the film consists of quasi-two-dimensional 

crystallites. In this case the diffraction patterns look like powder-scattering 

diagrams. 
One of the pioneering structural studies by means of electron diffraction was 

performed for a lead stearate [6.161], The Ii/cO-reflections were analyzed. Reas- 
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Fig. 6.66a-c. Pb stearate LB films, (a) oblique texture of 
an electron diffraction pattern 20 bilayers; (b)- and (c)- (yz) 
and (xy) projections of the film structure (without hydro¬ 
gen atoms) c 

y 

onable models of the film structure were built on the basis of combined 

electron-diffraction data and X-ray single-crystal and powder data for the lead 

stearate. The unit cell is orthorhombic (Sp. gr. P212121), a — 4.96 A,b = 7.38 A, 

c = 47 A, /? = 90°. Electron-diffraction patterns of an oblique-texture type of 

lead stearate Langmuir-Blodgett film was obtained and the structure analysis 

was performed (Fig. 6.66) [6.162], 

Another approach [6.163] was elaborated for monolayers. The polarity of 

the monolayers and the low symmetry of the amphiphilic molecules reduce the 

potential number of symmetry groups from 80 to 9. Also, if the necessary close 

packing of the molecule is taken into consideration, the number of possible 

groups is 6. These groups include pi, pi 12, plal, clml, pbma, pba2. The 

parameters of a two-dimensional unit cell a, b, G are determined from elec¬ 

tron-diffraction data (Fig. 6.67). The number of molecules Z in a unit cell is 

calculated by considering the area occupied per molecule. The thickness of the 

monomolecular layer is determined by optical methods. The model is refined on 

the basis of possible packings and by minimizing the energy of molecular 
inter-actions (Fig. 6.68). 

The structure of LB films in the direction perpendicular to the substrate 

plane was studied by X-ray and neutron-reflectometry techniques. The scatter¬ 

ing-intensity data for 1(0, 0, sz) are analyzed, s2 being normal to the film. From 
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Fig. 6.67. Electron diffraction ob¬ 
lique texture pattern of 21 mono- 
layers BL films of 4-n-octadecyl- 
phenol 

Fig. 6.68. Molecular packing in monolayers of 4-n-octadecylphenol: 1 - projection on xz plane, 
2 - projection on yz plane. Rectangular unit cell a = 8.25 A, b = 5.35 A, Z = 2, = 30°, f'j = 6°, 

(pz = 29°, (py = 16°, y0 = 2.6 A [6.163] 
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this evidence, the electron (or nuclear) density distribution p{z) is calculated. 

A distribution p(z) is a projection of p{x, y, z) on the z axis. There are two kinds 

of structural information available by this technique: 
One on the structure of “ideal” Langmuir-Blodgett films built by many 

periodically repeated layers, established, in the limit, from pu(z) being the density 

profile for the unit cell. 
The other on the structure of non-periodic LB films which consist of a small 

number of monolayers or of badly ordered alternation of such monolayers, 

containing different kinds of molecules. 
The scattering density distribution pu(z) for the centro-symmetrical case is 

described by the Fourier series 

where h is the number of peak, D is the spacing. Determination of the signs for 

the scattering amplitudes, in one way or another, permits one to solve the 

structure problem. 
X-ray study of Cd stearate LB films [6.164] is one of the first of its type. The 

electron-density distribution (Fig. 6.69) shows some characteristic features of LB 

film structure, namely: location of metal ions, the hydrocarbon-chain region and 

the space between the ends of the chains. The choice of the sign combination is 

made according to the minimum for the mean-square deviation of p{z) from its 

average value along the hydrocarbon-chain regions. This kind of density distri¬ 

bution is a typical one for the majority of LB films [6.163]. 

In some cases a minimum of scattering density between the expected con¬ 

tacts of the end methyl groups of the hydrocarbon chains of the adjacent 

monolayers is absent. Such a distribution function was found for conducting LB 

films of ion-radical salt C22-TCNQ doped by iodine (Fig. 6.70), [6.159], It 

means that the penetration of the hydrocarbon chains from the neighboring 

monolayers, the so-called interdigitation, takes place. Similar results were re¬ 

cently obtained for LB films containing the complex fatty acid salts with TaOFs 

CL Fig. 6.69. Electron density dis¬ 
tribution p(z) of two unit cells of 
LB film of cadmium stearate 
containing 60 monolayers. The 
Fourier summation was calcu¬ 
lated from 17 reflections [p(z) in 
relative units] 

-30 -20 - 10 0 10 20 30 
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Fig. 6.70. Electron density distribution 
p(z) for LB film C22-Py-TCNQ after dop¬ 
ing with iodine. Different curves show am¬ 
biguity of the structure solution [6.165] 

[6.166]. Interdigitation takes place for the relatively short hydrocarbon chains 

(less than 18 CH2 groups). Two kind of structures, with and without interdigita¬ 

tion, are known for LB films of the arachidic-acid salt (CH3(CH2)i6COOH). 

Interdigitation is not observed for longer hydrocarbon chains. 
The Langmuir-Blodgett film with a small number of layers may be con¬ 

sidered as a combination of the periodically repeated unit cell, a lattice, and the 

near-surface layers which are structurally different from the internal layers. For 

these kind of films the density distribution is found from continuous diffraction 

intensity. In this case modelling is the only reliable technique for determination 

of the film structure. The scattering intensity for a Langmuir-Blodgett film with 

a small number of layers may be represented as an interference of two systems of 

waves - the lattice scattering (Bragg maxima), and two waves scattered by the 

film interfaces (upper and bottom) which interfere with each other giving rise to 

a series of fringes of equal inclination, so-called Kiessig fringes. 
For such an object the Bragg peaks permit to calculate the size of the unit 

cell only. The total thickness of the film is determined from the positions of the 

Kiessig maxima. The information about the near-surface regions can be ob¬ 

tained from the shifts of the Bragg peaks and Kiessig maxima from their ideal 

location due to the interference of these two systems of waves. 
Such an approach using X-ray [6.167] and neutron [6.168] reflectometry 

was applied to study the structure of Langmuir-Blodgett Mn stearate film 
containing 11 monomolecular layers. It was found that the lower layer is 

essentially different from other layers. In this layer the molecules are more tilted 

towards the substrate plane, the thickness is smaller and the density is higher 

than for other layers. Using synchrotron radiation the structure of extremely 

thin Langmuir-Blodgett films, even monolayer films, was investigated. X-ray 
reflectivity has been applied to characterize the structure of silicon, i.e., sili¬ 

con-oxide surface coated with hydrocarbon monolayer (alkylsiloxanes) [6.169], 

Structural changes in Langmuir-Blodgett films occur under a temperature 

treatment. Thus polar films built from molecules of p-(p-octadecyloxyphenylaso) 

benzenesulfonamide (18-OABS) with a large dipole moment at 90°C undergo 

the irreversible transition to the unpolar state. At this temperature (Fig. 6.71) the 
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Fig. 6.71. Intensities of X-ray scattering in the 
meridian direction for an LB film (18-OABS, 
7 monolayers) at different temperatures, °C: 
1-20, 2-60, 3-80, 4-95, 5-100 [6.170] 

spacing jumps from 39 A to 69 A, and the pyroelectric coefficient decreases 

down to zero. During further heating, several phase transitions are observed: at 

124°C (the spacing decreases from 69 A to 63 A), at 136°C (from 63 A to 41 A) 
and finally at 155°C the film is melted [6.170], 

6.10.4 Multicomponent Langmuir-Blodgett Films. Superlattices 

A possibility to fabricate films with different kind of molecules is an important 

and promising feature of the Langmuir-Blodgett method. The analysis of the 

“molecular construction” by Kuhn [6.172] demonstrates some possibilities of 

molecular machines ’ built from elements of various chemical composition. 

Preparation of the Langmuir-Blodgett film superlattices is one of the most 
advanced technology to built Kuhns machines and the like. 

The multicomponent Langmuir-Blodgett films appeared almost ten years 

ago. The variety of types of prepared films is large enough and will grow even 

richer in the near future. The possibilities of the Langmuir-Blodgett molecular 

construction are really unlimited. The structure investigations of such objects 
are in an earlier stage and only some examples are given below. 

The monocomponent LB films from tetra-3-sulphoniloctadecyl phthalo- 
cyanine vanadyl (Ph-VO) show very poor X-ray diagrams. There are practically 

no Bragg peaks on them. But high-ordered Langmuir-Blodgett films are formed 

if phthalocyanine bilayers are alternated with Ba behenate bilayers. In such 

cases X-ray scattering curves display up to 19 reflections. The structures of these 
superlattices are presented in Fig. 6.72. 

A similar technique is used to form the protein Langmuir-Blodgett films 

[6.173]. Thus X-ray patterns of the alternating system of cytochrom containing 
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Z, A 

Fig. 6.72. Electron-density profiles of Lang¬ 
muir-Blodgett superlattices, p(z), and the 
position of barium behenate molecules 
(circles) and VO-phthalocyanine molecules 
(rectangles) in unit cells across the films 

Z, A 

the reaction center Chromatium minutissimum (RC-Ch.m) and arachidic acid 

(Fig. 6.73) contain 7-8 Bragg maxima. For pure protein films there is only one 

broad maximum. The thickness of RC-Ch.m equals 90 A, which correlates with 

the “height” of the protein molecule. It means that in the Langmuir-Blodgett 

layers protein molecules are oriented in such a way that the long molecule “axis” 

is parallel to the substrate normal. 
A formation of Langmuir-Blodgett films with alternating polymeric and 

monomeric layers is another possibility to create “molecular” devices. The 

researcher can easily vary the structure to produce materials with unusual 

properties. For example, for film of Ba behenate and octadecylphenol (ODPh) 

there is a possibility to cross-link the ODPh molecules by electron irradiation 

(Fig. 6.74). But such treatment gives rise to distortion of the lamellar structure of 
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Fig. 6.73a, b. Small-angle X-ray diffraction pattern of 15 unit cells of reaction centre - arachidic acid 
superlattice (a) and a model of the Langmuir-Blodgett superlattice (b) 

Fig. 6.74. Electron-density profiles p(z) superlattices (double-layer Ba behenate -I- double-layer 
ODPh): before electron irradiation (solid line) and after polymerization (dotted line) 

the film. Layer-by-layer irradiation with low-energy electrons is used to elimin¬ 

ate such distortions. In each irradiation step electrons penetrate into one ODPh 

monolayer only and thus we obtain a film with well-organized Ba behenate 

bilayers divided by stable cross-linked ODPh bilayers [6.163]. 

Another example is the system with predetermined order of the alternation 

of conducting (donor-accepter system) and dielectric (Ba stearate or behenate) 

layers. Electrically isolated conductive layers ensure electron transfer in the film 

plane. This technique greatly facilitates the production of electrically connected 

elements. 

Thus Langmuir-Blodgett superlattices are a new material which permits to 

obtain the lamellar devices with alternating physical properties in the nano¬ 

meter range. 
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6.11 Photo- and Thermostimulated Phase Transitions 
in Ferroelectrics 

Considering in Sect. 4.6 the phase transitions and electron-phonon interaction 

we took into account the contribution of the electron subsystem to the free 

energy of the crystal. This approach describes the phenomenon of the photo- 

stimulated phase transitions in crystals, in particular the effect of nonequilib¬ 

rium electrons on the phase-transition temperature. This effect was recently 

investigated in detail and we want to complete Sect. 4.6.3 by a thermodynamic 

consideration and some new experimental results for ferroelectric crystals. The 

nonequilibrium electrons cause two groups of phenomena. The first group are 

phenomena connected with photostimulated shift of the Curie point in ferroelec¬ 

tric crystals. The second ones are phenomena, caused by the filling of the deep 

traps in the ferroelectric crystals (thermostimulated phase transitions in fer¬ 
roelectrics). 

6.11.1 Photostimulated Phase Transitions in Ferroelectrics 

The effect of nonequilibrium electrons (or holes) on phase transition and 

properties of ferroelectrics are described in the literature as photostimulated phase 

transition [6.173]. While photostimulated phase transition (PPT) can occur 

in all semiconductors that undergo phase transitions, investigation of ferroelec¬ 

trics has the advantage that it permits PPT to be correlated with the basic 

phenomenological parameters of ferroelectrics, such as the Curie-Weiss con¬ 

stant, the spontaneous polarization, the heat-capacity discontinuity and other 

independently measured parameters. The relatively high concentration of 

nonequilibrium carriers in the illuminated ferroelectric necessitates taking into 

account the free energy of the electron subsystem, in the expression for the free 

energy of crystal near the phase transition temperature. We do it with the 

following assumptions: 
The free energy of the electron subsystem, F2, is everywhere (except in the 

vicinity of the Curie point) low compared with the free energy of the lattice, fq, 

and that the phase transition itself is associated with an instability in the lattice 

vibration (otherwise we have a purely electron phase transition, as in the 

vanadium oxides). 
Ferroelectricity is assumed as property of the medium. 

The anisotropy of the dielectric properties can be neglected. 
Under these assumptions the free energy F consists of the free energy in the 

paraelectric region F0, the free energy in the ferroelectric region F2, and the free 

energy of the electron subsystem F2: 

F = F0 + F i + F2, 

F0(T) = F(P = 0, ak = 0, Nt = 0), 

(6.4) 

(6.5) 



486 6. Advances in Structural Crystallography 

Fig. 6.75. Energy-band diagram of the illuminated ferroelectric 

Fi=\a/>2 + + 7yp6 - \ZZsikOi°k - p2Yu vk°k- (6.6) 
Z 4 Z i k k 

Here a, /? and y are known coefficients in the expansion of the free energy Fx in 

terms of the polarization P; ok denotes the components of the mechanical stress 

tensor; Sik the components of the elastic constant tensor and vk the components 

of the electrostriction tensor. The free energy of the electron subsystem is 

F2 = Z NtEt(T> ak), (6.7) 

where Et and are the energies of the levels and the respective electron (hole) 

concentrations in the crystal. The configuration energy is neglected in (6.7). In 

(6.6) the polarization has been assumed uniform, and the correlation term has 

been ignored. To be specific, let us consider an n-type ferroelectric, whose 
energy-band diagram is presented in Fig. 6.75. 
Assuming N, p > n, 

F2 = nEg + N(Eg -U1)-pU2~ N(Eg -Uk- U2) = NE, (6.8) 

E(T, P, ak) = 
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(6.9) 

(6.10) 

Combining (6.4-10), we obtain the expression for the free energy of the fer¬ 
roelectric with nonequilibrium electrons: 

F(T,P, Gk,N) = FON + \ P2 
n 

9 Z Z ^Nik^i^k — P2 Z VNkak, 
Z i k k 

(6.11) 
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Fon = F0 + NE0, otjv = a + aN, = ft + bN, 

Tn = y + cN, vNk = vk — E'kN, SNik = Sik — E"kN. (6.12) 

The stationary equations (6.4-12) must be supplemented by the kinetic equa¬ 

tions, describing the time dependence of the nonequilibrium carriers in the traps 

N and the spontaneous polarization P. In connection with Fig. 6.75 the kinetic 
equation for N is described by 

= ynPoklT„(M — N) — y„NCMN. (6.13) 

Here yn is the kinetic coefficient, NCm = Ncexp( — UJkT), Nc is the density of 

states in the conduction band, /J0 is the quantum yield, k is the light absorbtion 

coefficient, / is the light intensity, and x„ is the life time of the electron in the 

conduction band. Equation (6.12) assumes that the life time of the trapped 

electrons is much longer than t„: 

< 1. T.y„M < 1. (6.14) 

By analogy with (6.9) the trap energy Ux can be expanded into a series of even 

powers of P: 

Ul = U,0 + ^P2 + .... (6.15) 

The kinetics of the order parameter P is described by the Landau-Khalatnikov 

equation 

dP _ rSF(T,P,N) 

d t SP 
(6.16) 

where F is kinetic coefficient, and the free energy F is given by (6.11). 

Combining (6.11, 12, 15 and 16) we obtain the two equations which describe 

the change of the free energy and the Curie temperature due to the trapping of 

the nonequilibrium electrons 

— = — r{\jx'(T — T0) + aN~\P -F /?P3 + yP5} (6.17) 

and the connection between the thermal activation of the trapped electrons and 

the spontaneous polarization 

d N 

d t 
- J(M — N) — NynNcexp 

u -> 

Ul0+ 2P 

kT 
(6.18) 

where J — ynp0klTn. 
The illumination increases the concentration N of the nonequilibrium elec¬ 

trons in the traps and decreases the Curie temperature. This leads, in turn, to the 

decrease of the spontaneous polarization and to the decrease of N. 
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a) The Stationary Phenomena 

The analysis of (6.17 and 18) leads to the phase diagram of the PPT shown on 

Fig. 6.76 [6.174, 175], The coordinates of the PPT diagram are the gain of 

nonequilibrium electrons J and temperature T. 
The solid line shows the boundary of the absolute instability of the paraelec- 

tric phase described by 

J = a'(T- T0)ynNc exp | [a'(T- T0) + aMy\ (6.19) 

At a low light intensity the shift of the Curie temperature \TN is linearly 

proportional to N 

A Tn 
C 

2 n 
aN, (6.20) 

where C is the Curie-Weiss constant, and a is given by 

a ~ 
AE, 
kP2 ' 

(6.21) 

Here AEg = E — E0 is the energy-gap jump in a first-order phase transition. 

The relation (6.21) coincides with (4.73) and (6.20) coincides with (4.72), 

which was obtained from a microscopic model of the interband electron- 

phonon interaction (Sect. 4.6.3). If the trap concentration M is large 

M > M0 
4/?T0fl,(oc/)2 

a(a'(x.' — p)2 ’ 
(6.22) 

on the curve given by (6.19) there are two tricritical points A and B: 

^ aM 
Ta.b — Tq — ——- 

2a 
(6.23) 

The dashed lines in Fig. 6.76 show the boundary of the absolute instability of the 

ferroelectric phase. The numbers I and II denote the phase-coexistence regions 
(temperature hysteresis). 
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b) Dynamic Phenomena 

If the photostimulated shift of the Curie point A TN exceeds the value of the 

temperature hysteresis or 

aM |> 
y 2r,ivc(i/i 

rpr0_ 

^io)exp( — U10/kT) 
(6.24) 

the PPT leads to the oscillation of the values of P and N in the region of the 

Curie point. This unstable region is indicated in Fig. 6.76 by the shaded oval. 

The oscillation are described by (6.17 and 18). The oscillation frequency is 

determined by the life time of the trapped electrons 

<D = 7 n^CM ynNc exp (6.25) 

c) Experimental Observation of the PPT 

The photostimulated phase transition (PPT) was first observed for crystal of 

SbSJ and later in an extensive series of investigations [6.173], In Sect. 4.6.3 we 

have discussed some experimental observation of PPT in the ferroelectric 

barium titanate crystal and in photosensitive crystal of HgJ2 with a nonfer- 

roelectric phase transition from the tetragonal to the orthorhombic phase. All 

these data belong to the right-hand side of the phase diagram of Fig. 6.76, 

limited by the point A. Here we shall show that the additional experimental data 

belonging both to the right-hand side of the phase diagram of the PPT and to 

the tricritical point A. First let us consider the PPT experiments which are far 

from the tricritical point A. 
Figure 6.77 depicts the PPT in the ferroelectric SbSJ crystals as a function of 

the shift of the Curie temperature ATN on the concentration n of the nonequilib¬ 

rium electrons. The solid curve gives the experimental values of A 7^; the dashed 

curve - theoretical values of A TN, calculated by (6.20 and 13). The saturation of 

the curves in Fig. 6.77 is due to the complete filling of the traps in SbSJ. 

Substituting into (6.20 and 21) the experimentally measured value A TN ~ 1°C 

1018 

5T017 

6 
O 

0 2 4 6 

f 10'14, photons/cm2 sec 

Fig. 6.77. Dependence of the Curie point 
shift A Tn in SbSJ on the concentration of the 
nonequilibrium carriers n 
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Fig. 6.78. Spectral distribution of photo¬ 
conductivity (1) and of temperature 
hysteresis (2) for SbSJ 

and P ~ 10 |iCcm~2, C ~ 1.1T05 K, AEg ~ 1.0-10“2 eV gives N ~ 1.2-1018 

cm-3. The same order of value of N was obtained from independent measure¬ 

ments of the thermostimulated currents. Figure 6.78 illustrates the coincidence 

of the maximum of the spectral distribution of photoconductivity o and the 

minimum of the value of the temperature hysteresis ATh in SbSJ. It is seen from 

Fig. 6.78 that in the agreement with the phase diagram of the PPT (Fig. 6.76) the 

increase of the photoexcitation J leads to the decrease of the temperature 

hysteresis. Figures 6.76 and 78 display, that the PPT in SbSJ corresponds to the 

right-hand side of the phase diagram of Fig. 6.76, where T > TA (low values of 

the photoexcitation J). 

The PPT was observed in the ferroelectric crystals of Ag3AsS3 (proustite) at 

25-30 K [6.176], In this crystal the tricritical point A and oscillations with 

co ~ 1 Hz were observed for the high photoexcitation J. The substitution into 

(6.25), the measured value of the trap energy Ul0 ~ 8T0-2 eV and typical values 

y„ ~ 3T0-9 cm3 s“1 and Nc ~ 1019 cm-3 give for T = 30 K a good agreement 
of co and the experimental value. 

Thus, when a ferroelectric is illuminated, one observes a shift of the Curie 

point and a change in the character of the phase transition and in the physical 

properties of the ferroelectricity due to the change in the concentration of the 

nonequilibrium carriers. As indicated above, the thermodynamics describes 

both the stationary PPT and the dynamical PPT, although it does not reveal 
their microscopic mechanism. 

6.11.2 Thermostimulated Phase Transitions in Ferroelectrics 

In many ferroelectrics the measured Curie temperature depends on the kinetics 

of the change of the temperature. For example, in proustite Ag3AsS3 there are 

three phase transitions: 60 K (incommensurate phase), 49 K (commensurate 

phase), 28-30 K (ferroelectric phase). If rapid cooling ( ~ 7 K/min) shifts these 

equilibrium temperatures to a high values ( ~ 15 K). This phenomenon is 

connected with kinetics of the thermostimulated filling of the traps in the crystal 
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[6.177, 178], i.e., 

A Tn = Tn — T0 = — —— aN. 
2k 

(6.20) 

The value N depends on the kinetics of the thermostimulated filling of the traps 

(Fig. 6.75) The dynamics of the concentration of the electrons in the traps is 
described by 

dN ( Ut\ 
— = y„n(M — N) — ynNNcexpi - —J. 

The solution of (6.13) for T= T(t) is 

N — C(t) exp[— A(t)t~\, 

where 

A{t) = y„n + ynNcexp( - ^j, 

(6.13) 

(6.26) 

C(r) = N0 + j y„nMexp\_A(t')t'] dt', (6.27) 

where N0 is the concentration of electrons in the traps at t = 0, N0 = N{t — 0). 

Thus 

Tn — T0 — aj^o + ynnM J exp [/l(t')] t'dt'jexp [— N(t)f]. (6.28) 

The equilibrium value of N(T) is determined by the stationary solution of (6.13) 

(i.e., dN/dt = 0) 

NAT) = 
nM 

, vA’ 
n + Nc exp — — 

kT. 

AN = N - Nst(T) = \n0 + y„nM j exp[A{t')t'dt' >exp( - A(t)t) - 

Thus the thermostimulated shift of the Curie point is given by 

T\ = Tq — —- aAN, 
2k 

y„nM 

(6.29) 

(6.30) 

where a > 0, AN < 0 and thus TN > T0. The rapid heating leads to a decrease of 

the Curie point TN < T0. At stationary conditions there is a transient process 

Tn -*■ Tq- 



. 

. 
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