
PHYSICAL CHEMISTRY 
_ A Series of ee \ 

ACADEMIC PRESS, IN¢ 
A Subsidiary of Harcourt Brace Jova 



Digitized by the Internet Archive 

in 2022 with funding from 

Kahle/Austin Foundation 

https://archive.org/details/molecularcrystal0000kita 



Molecular Crystals 

and Molecules 



This is Volume 29 of 

PHYSICAL CHEMISTRY 

A series of monographs 

Edited by ERNEST M. LOEBL, Polytechnic Institute of Brooklyn 

A complete list of the books in this series appears at the end of the volume. 



Molecular Crystals 
and Molecules 

! a's 
le og” . . yi - pate aL J : 

A. I. Kitaigorodsky ) 774 /7er eds kK; 
Academy of Sciences 

Moscow, USSR 

| 

ACADEMIC PRESS_ New York and London 1973 

A Subsidiary of Harcourt Brace Jovanovich, Publishers 

AILRBIC_-MT COCYIIEFRE IIADADY 



COPYRIGHT © 1973, By ACADEMIC PRESS, INC. 
ALL RIGHTS RESERVED. 
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR 
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC 
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY 
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT 
PERMISSION IN WRITING FROM THE PUBLISHER. 

ACADEMIC PRESS, INC. 
111 Fifth Avenue, New York, New York 10003 

United Kingdom Edition pyblished by 
ACADEMIC PRESS, INC. (LONDON) LTD. 
24/28 Oval Road, London NW1 

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 78-182616 

PRINTED IN THE UNITED STATES OF AMERICA 



oe 210092 

Contents 

PREFACE ix 

Chapter I Structure of Crystals 

A. Close-Packing Principle 

1. Geometrical Model of a Molecular Crystal 1 

2. Determination of Intermolecular Radii 10 

3. Packing Coefficient 18 

4. Close Packing and Crystal Symmetry a)| 

5. Closest-Packed Plane Groups of Symmetry 24 

6 . Space Groups Suitable for Close Packing of Molecules 33 

B. Typical Structures 

7. Linear Aromatic Systems 38 

8. Nonlinear Condensed Aromatic Molecules of Symmetry mm and mmm 43 

9. Structure of Normal Paraffins 48 

10. Organo-Iron Compounds 62 

11. Tetraaryl Compounds 67 

12. Polymorphic Modifications 71 

13. Hydrogen Bonds in Crystals 74 

C. Crystals with Elements of Disorder 

14. Rigid Disorder 85 

15. Rotational Crystalline State 89 

D. Binary Systems 

16. Conditions for Formation of Solid Solutions 94 

17. Determination of Phase Diagrams 105 

18. X-Ray Diffraction of Solid Solution Crystals 108 

19. Geometrical Analysis and Energy Calculations 115 

20. Molecular Compounds 121 

References 130 



Vi Contents 

Chapter II_ Lattice Energy 

A. Interactions of Molecules 

1. van der Waals Forces 134 

2. Calculation of the Lattice Energy of Molecular Crystals 140 

B. Electrostatic Energy 

3. The Dipole—Dipole Interaction in a Molecular Crystal 144 

4. The Quadrupole Energy 154 

5. Concluding Remarks 160 
x 

C. The Device of Atom—Atom Potentials 

6. The van der Waals Interactions in a Molecular Crystal 161 

7. Potential Curves 163 

8. Energy as a Function of Lattice Parameters 167 

9. Calculation of the Structure and of the Energy Surfaces for Benzene, 

Naphthalene, and Anthracene Crystals 170 

10. The Condition for the Structural Stability of an Organic Crystal and 

the Principle of Close Packing 184 

11. The Effect of the Crystalline Field on the Shape of a Molecule 186 

References 190 

Chapter III Lattice Dynamics 

1. The Equations of Motion 193 

2. Selection of the Coordinate System 196 

3. The Coupling Coefficients 197 

4. The Limiting Frequencies and Their Eigenvectors 202 

5. The Dynamic Problem for a Naphthalene Crystal 213 

6. Calculation of Crystal Dynamics by the Method of Atom—Atom 

Potentials 219 

7. The Mean Vibration Amplitude 227 

8. Reorientation of Molecules 230 

References 232 

Chapter IV Methods of Investigating Structure and Molecular 

Movement 

A. Diffraction Methods 

1. Methods of Structure Determination, Their Accuracy and Objectivity 233 

2. Principles of the Diffraction Method of Studying Crystal Structure 238 

3. Sphericity of Atoms 244 

4. Accuracy of Structural Determinations 247 

5. Comparison of X-Ray, Electron, and Neutron Diffraction Analyses 249 



Contents 

aD 

ee] 

ABWN 

Chapter V Thermodynamic Experiments 

pod. 

Oo ONAN 

. Finding and Elucidating the Structures of Molecular Crystals 

. Heat Wave Scattering 

. Nuclear Magnetic Resonance 

. Theoretical Fundamentals of Nuclear Magnetic Resonance in a Solid 

. Investigation of Molecular Movement in a Crystal by the NMR Method 

. Determining Proton Coordinates in Organic Crystals 

. Theory of Nuclear Quadrupole Resonance 

. Use of NQR in Studying the Structure of Molecular Crystals 

References 

. Measuring Thermal Expansion 

. Measuring the Elasticity Tensor of a Single Crystal 

. Calculating Elastic Constants of Single Crystals from Experimentally 

Measured Elastic Wave Velocities 

. Elasticity Tensors of Naphthalene, Stilbene, Tolan, and Dibenzy] Single 

Crystals at Room Temperature and Normal Pressure 

. Investigation of the Elastic Properties of Polycrystalline Samples 

. Measuring and Calculating Elastic Properties of Polycrystals 

. Calorimetry 

. Isothermal Compressibility 

. Measuring the Heat of Sublimation 

References 

Chapter VI The Theory of Thermodynamics 

il 

N 

Ans W 

General Relationships 

. Specific Features of the Thermodynamics of Molecular Crystals. 

Introduction of the Characteristic Temperature 

. Experimental Characteristic Temperature 

. Thermodynamic Functions of a Naphthalene Crystal 

. Choice of an Optimal Quasi-Harmonic Model 

. Calculation of the Quasi-Harmonic Model by the Atom—Atom 

Potential Method 

References 

Chapter VII Conformations of Organic Molecules 

NYDUAPWN 

. The Mechanical Model of a Molecule 

. Parameters for Conformational Calculations 

. Internal Rotation in Molecules 

. Conformations of Aliphatic Molecules 

. Ethylenic, Conjugated, and Aromatic Systems 

. Geometry of Molecules and Thermochemical Properties of Substances 

. Consistent Force Field 

References 

Vil 

256 

262 

269 

274 
277 

282 
288 

293 

294 

307 

310 

313 
321 

325 
328 
330 
331 

336 

337 

343 

351 

357 

369 

372 

380 

381 
386 
394 
398 
408 
426 
441 
446 



Viil Contents 

Chapter VIII Conformations of Macromolecules and 

Biopolymers 

1. The Structure of Stereoregular Macromolecules in Crystals 451 

2. Conformations of Peptides and Proteins 479 

3. Conformations of Polynucleotides and Nucleic Acids 510 

References 531 

AUTHOR INDEX 537 
SUBJECT INDEX 548 



Preface 

This book deals with some of the problems of molecular crystallography, 

and certain aspects of molecular structure. At first sight the selection of 

material may appear somewhat unsystematic. True, the treatment of mol- 

ecular crystals is restricted to the problems of lattice structure, dynamics, 

and thermodynamics, and molecular structure itself is discussed only from 

the viewpoint of molecular conformation. 

However, the material in the book has by no means been selected at 

random; if anything, it is somewhat one-sided. This book is neither a textbook 

nor a manual. It contains mainly results obtained by the author and this 

makes unavoidable some degree of imbalance in the treatment of the subject. 

The general idea that brings together the entire range of problems dis- 

cussed in the book is the atom-atom potential model. An analysis of the 

electronic structure of molecules is not fundamental to the purposes of this 

book. On the contrary, a much more rational approach is to consider the 

atoms composing a molecule as the basic building blocks of our model. The 

energy of the relationships involved are thus confined to atomic interactions 

only. 

Thus, we deal with a certain type of model which is undoubtedly approxi- 

mate but which, nevertheless, rather successfully deals with the problems of 

the structures and thermodynamic properties of molecular crystals, and also 

those concerning the conformations of small and large molecules. The model 

in question is that of noncovalent interactions, and it is precisely these inter- 

actions that underlie the problems treated in the book. 

The author hopes that the two parts of the book which deal, respectively, 

with crystals and molecules are sufficiently self-consistent. Both parts deal 

with organic substances; inorganic molecular crystals occur but rarely, and, 

conversely, organic crystals, with the exception of organic salts, always belong 

to the class of molecular crystals. The physics of molecular crystals is essen- 

tially organic crystal physics. 

ix 



X Preface 

Until now textbooks on solid-state physics have devoted but a few pages 

to molecular crystals and, as a rule, have not gone beyond the properties of 

nitrogen, oxygen, carbon oxide, and other similar crystals. This approach 

distorts the real situation. Crystals composed of small molecules are by no 

means representative of the class. The “common salt” of molecular crystal 

physics is the naphthalene crystal. 

For a long time solid organic substances have been ignored as materials. 

Therefore, several major problems of molecular crysta! physics are still 

awaiting their investigator. The thermal and mechanical properties of crys- 

tals, their molecular composition, and other problems treated from the point 

of view that organic matter is a solid have, until recently, attracted the atten- 

tion of very few physicists. 

As to chemists, they usually ask merely for information on the structure of 

a molecule, since this information is relevant to chemical reactions. This kind 

of pressure on the part of chemists has resulted in an unbalanced development 

of our subject: organic crystal structures have been studied mostly because 

the only way to establish the structures of complex molecules is to examine 

them in the crystalline state. 

The lack of active interest in the structures and properties of organic 

crystals as such, and the very few publications which seek to correlate the 

arrangement of molecules in a crystal with the crystal’s properties, may be 

excused as long as organic substances are regarded as dissolved chemical 

reagents. In recent years, however, researchers have begun to take a closer 

look at problems associated with solid organic substances. Synthetic poly- 

meric compounds have come to the fore, peculiar features of solid-state 

reactions have been observed and, finally, and this is perhaps the most 

important development, it is becoming obvious that numerous biological 

processes are most intimately linked with the mutual arrangement of organic 

molecules and their parts in protein and nucleic acid crystals. Molecular 

crystal physics will undoubtedly become the basis for research along these 

lines. 

The author began studying the regularities in the mutual orientations of 

molecules in crystals 25 years ago. At the first stage of these studies, a simple 

geometrical model was proposed for the interpretation of crystal structures. 

It was found that if a molecule is bounded by van der Waals’ radii and is 

thus “‘shaped,”’ a crystal can be represented as a close packing of solid mol- 

ecules. This geometrical model—a first approximation model—and its poten- 

tial use for predicting the structures of crystals are dealt with in the author’s 

book “Organic Chemical Crystallography” (Akademizdat, 1955; Consultants 

Bureau, New York, 1961). 

The principle of close packing of molecules in crystals naturally suggests 

the idea of describing the energy of molecular interactions as the sum of the 
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interactions of the component atoms. This idea gave rise to a new improved 
model which can be used to predict a crystal’s structure to a greater degree 
of accuracy, and also to estimate quantitatively the thermodynamic properties 
of a crystalline compound. 

The use of the atom-atom potential scheme does not, however, fully 
define the model of a crystal. Lattice dynamics can be described in different 
ways. We have chosen a quasi-harmonic model. Simple models are more 

approximate, but then they are more general. For the purpose of our research, 

it is probably more important to be able to predict the structure and proper- 

ties (even allowing the predictions to be not quite accurate), than to seek 

ideal agreement between theory and experiment by treating the subject in 

terms of special-purpose models. In my opinion it is more advantageous to 

have a rough theory applicable to most molecular crystals than a fine theory 

useful only for crystals of benzene or urotropin. 

Our studies in the field of intermolecular interactions, i.e., in the sphere 

of the structures and properties of organic crystals, have been developing 

concurrently with our research on molecular conformations since we treated 

them as different applications of the same model. 

Historically, studies of conformations have received considerably greater 

attention than have studies of the structures and properties of organic crys- 

tals. Therefore, the part of the book devoted to conformations of molecules 

is essentially a review of the results published in the literature. It is easy to 

understand the reasons for the spectacular progress of conformational re- 

search which has used the atom-atom potential method as a reliable starting 

point. While experimental structural investigations of small molecules are 

relatively easy to perform, the situation is just the opposite with macro- 

molecules. It is often impossible to determine the conformation of a molecule 

experimentally; in other cases, such as, for example, protein molecules, the 

experiment becomes extremely complicated. Therefore, attempts to determine 

a priori the molecular conformations should be encouraged. It is particularly 

important to apply conformational calculations to biological substances 

since the results that may be expected justify the effort. Science takes an 

interest in all biopolymers since each such molecules has a part in the life cycle. 

This book has been written with the assistance of my younger colleagues. 

I am especially grateful to R. M. Myasnikova for her valuable cooperation 

in writing: the first chapter. The part of the book dealing with molecular 

conformations has been written by V. G. Dashevsky. In other chapters I 

have used material from the publications, reviews, and theses of K. V. 

Mirskaya, A. P. Ryzhenkov, B. V. Koreshkov, V. F. Teslenko, Yu. T. 

Struchkov, R. L. Avoyan, E. Mukhtarov, Yu. V. Mnyukh, E. I. Fedin, and 

G. K. Semin. I. E. Kozlova has been a great help with the calculations and 

in preparing the manuscript for publication. 
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Very special thanks are due to David Harker of the Roswell Park Memorial 

Institute, Buffalo. His generous and able contributions in reading and editing 

both manuscript and proof are greatly appreciated. 

I am greatly indebted to all my colleagues, without whose help this book 

would not have been possible. 
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Chapter | 
Structure of Crystals 

A. Close-Packing Principlet 

1. GEOMETRICAL MODEL OF A MOLECULAR CRYSTAL 

The distinguishing geometrical peculiarity of a molecular crystal is self- 

evident. If it is possible to single out groups of atoms in a crystal in which 

the distance from each atom of the group to at least one other atom of the 

same group is significantly smaller than the distances to the adjacent atoms 

of other groups, the crystal is said to be molecular. Thus, for example, in 

hydrocarbon crystals spacings between H atoms in different molecules are 

not less than 2.2-2.4 A, whereas distances from these atoms to chemically 

bonded C or N atoms are about | A. Intramolecular spacings between bonded 

C atoms are 1.2-1.5 A, while the atoms of different molecules are at least 

3.3 A apart. The order of difference between intramolecular and inter- 

molecular distances in crystals composed of diatomic O and N molecules is 

about the same. 

Organic molecules containing hydroxyl (OH) and amine (NH,) groups 

+ For a detailed description of the principle of close packing of molecules and illustration 

of this principle on a large body of material, see Ref. [1]. 

1 



2, 1 Structure of Crystals 

display a tendency to form so-called hydrogen bonds. In a hydrogen-bonded 

structure, two O atoms, or one O atom and one N atom, or two N atoms of 

adjacent molecules are often so arranged that the proton is situated approxi- 

mately on a straight line drawn between these two atoms. In this case, the 

difference between the intramolecular and intermolecular distances is some- 

what smaller: The proton positioned between two O atoms lies 1 A from the 

O atom of the same molecule, and 1.6-1.8 A from that of a different molecule. 

But in this case, too, the molecule may be quite unambiguously defined as a 

group of closely bonded atoms. 

When speaking about molecular crystals, we shall mean mainly crystals of 

organic substances. Only relatively few inorganic compounds, such as nitrogen 

or oxygen crystals, or molecules built from nitrogen and phosphorous atoms, 

or carbonyls or complex compounds of certain metals, form molecular 

crystals. There are inorganic substances which may be classified as molecular 

crystals only formally, since their intramolecular and intermolecular distances 

do not differ by more than 5-10%. As to organic substances, they are all 

molecular crystals, with the obvious exception of organic salts. The class of 

organic compounds is infinite, and, therefore, the physics of molecular 

crystals is primarily the physics of organic crystals. 

The mutual orientation of molecules in a crystal is conditioned by the 

shortest distances between the atoms of adjacent molecules. In most instances 

the packing of the molecules is determined by the interactions between H 

atoms, or the interaction of H atoms with atoms of other elements. 

In early X-ray analyses, the coordinates of the H atoms were not determined, 

and the summary tables which presented the results listed only the distances 

between the C atoms of adjacent molecules, which is completely insufficient 

for determining the type of packing. 

Recent papers report the coordinates of H atoms obtained by computing 

the smallest R-factor by the least-squares method (see Chapter IV). These 

data should be treated with caution. As a rule, the values of the valence bond 

lengths of a H atom derived by X-ray diffraction analysis are considerably 

underestimated. Apart from such systematic errors, X-ray analysis is also 

often plagued with large random errors. In determining proton coordinates, 

particular attention should be given to neutron diffraction studies. The nuclear 

magnetic resonance (NMR) technique also offers many potentialities so far 

largely unexplored. However, one need not necessarily resort to experimental 

analysis, because the a priori localization of H atoms does not involve any 

particular difficulties. 

Studies of gas molecules have furnished a great body of information on the 

lengths of C-H, O-H, etc. bonds; this enables the correct prediction of the 

bond lengths in a majority of the compounds that have not yet been studied. 

Data obtained from gas molecule experiments can, with a high degree of 



1. Geometrical Model of a Molecular Crystal 5 

certainty, be applied to the crystalline state in molecular crystal studies. The 

crystalline field has no effect whatsoever on bond lengths and influences but 

slightly the valence angles. The only material effect of the crystalline field is that 

it changes the conformation of the molecule whenever the possibility of ro- 

tation about single bonds presents itself. The effect of the crystalline field will be 

discussed in Section II.11, therefore, I will restrict myself to pointing out that this 

effect does not handicap thea priori determination of the coordinates of H atoms. 

After the positions of all the atoms in a molecule have been determined by 

appropriate methods, we can pass on to the analysis of the molecular packing. 

The fundamental result of such an analysis is that the shortest distances 

between the atoms of the same chemical elements vary quite insignificantly; 

this fact graphically demonstrates that a crystal can be, to a fair approxi- 

mation, described by a model, which may be called a geometrical model or a 

first-approximation model. The geometrical model is constructed as follows: 

We start by analyzing spacings between the atoms of neighboring molecules 

to find the shortest interatomic distances for all molecular pairs (e.g., for 

molecules related by translations along the a axis, the c axis, and by the sym- 

metry operations of the twofold screw axis for the group P2,/a). These are 

*“‘determining contacts.”’ Then, we select the values of the intermolecular 

atomic radii whose sums show the closest agreement with experimental data. 

These intermolecular radii are the mean radii for a given structure. With the 

aid of these radii, a volumetric model of the molecule can be constructed. It is 

obvious that since the sums of the mean intermolecular radii differ somewhat 

from the actual distances, the model will constitute a packing in which some 

atom pairs overlap slightly, while other pairs do not touch each other. It will 

always be possible to produce ideal packing (i.e., a packing in which no 

molecules are suspended in empty space and none overlap) by minor trans- 

lational and rotational shifts of the molecules. 

The difference between the ideal and actual packings is usually very small. 

For example, for a naphthalene crystal, the ideal packing with coordination 

number 12 in an experimentally observed cell at room temperature is obtained 

if we take a radius of 1.76 A for carbon, and a radius of 1.18 A for hydrogen. 
The orientations of the molecules in the ideal and the experimentally observed 

structures do not differ by more than 2-3°. A fact essential for the technique of 

X-ray diffraction analysis is that the ideal packing derived from strictly 

geometrical considerations furnishes a structural model that can be employed 

for the initial calculation of structure amplitudes. 

The mean values of the intermolecular radii vary, though within narrow 

limits, from structure to structure. 

Consider several typical examples illustrating the validity of the geometrical 

model, in other words, the possibility of representing an organic crystal 

structure by close packing of molecules connected by intermolecular radii. 
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(b) The designation of the angles. 

(a) The structure seeker apparatus. 

Fig. 1. 

(The projections of one molecule are inserted into the hollows of others.) To 

make such a representation more descriptive, it is desirable to have both 

volumetric models of molecules and a structure seeker, which is an instrument 

enabling the determination of the various types of molecular stacking in a 

unit cell of a given size. Figure | illustrates this operational technique. In 

certain cases the nature of the molecular packing can be clearly seen from 

appropriate figures. For example, Fig. 2 shows the xyO projection of the 

structure of 1,5-dinitronaphthalene [2]. The structure is characterized by a 

rather planar unit cell: a= 7.76, b = 16.32, c= 3.70 A, B = 101° 48’, space 
group P2,/a, Z=2. The plane of the naphthalene nucleus of the molecule 

practically coincides with the ab plane of the unit cell. The N atoms lie in the 

same plane, while the O atoms project from the plane alternately upward and 

downward by about 0.79 A. The planes of the nitro groups make an angle of 

49° with the plane of the aromatic ring, and the molecule retains its centro- 

symmetry. If we position the hydrogen atoms in each molecule and connect 
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Fig. 3. Projection xOz of hexachlorobenzene structure. 
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all the molecules by appropriate intermolecular radii, a peculiar feature of the 

molecular packing becomes obvious: The “‘projections” of one molecule get 

into the “hollows” of adjacent molecules, so that the molecules are closely 

packed with the minimum voids between them possible for the given cell. 
Another simple example demonstrating the projection-to-hollow principle 

is the structure of hexachlorobenzene [3] (unit cell: a= 8.08, b = 3.87, 

c= 16.65 A, B=117.0°, space group P2,/c, Z=2). The plane of the hexa- 

chlorobenzene molecule is inclined to the plane xOz at a small angle (approxi- 

mately 22°), therefore, molecular packing can be seen well in the projection 

on the ac face (Fig. 3). 

It should be emphasized once again that, as is evidenced by the analysis of a 

large number of molecular structures, molecular packing on the dovetail 

principle is a general rule of organic chemical crystallography. Because of 

such packing, organic structures usually have a high coordination number, 

i.e., a large number of contacting molecules. Due to the irregular shape of the 

molecules, this circumstance is not evident and must be proved (see Section I.9). 

One can also refer to the experiment which shows that the coordination 

number 12 is the most common for organic structures (the same as for the 

closest spherical packing). Structures with 10 or 14 contacting molecules are 

less frequent. 

This ‘“‘model” approach to the principles of structure of organic crystals 

permitted the author to develop 25 years ago the geometrical-analysis technique 

that made possible (at any rate for a cell of known dimensions) the a priori 

determination of the structure of a molecular crystal, i.e., before making 

direct X-ray diffraction study. 

The essence of the geometrical analysis will be made clear from the descrip- 

tion of the structure of 2,6-dimethylnaphthalene, which was obtained using 

this method [4]. 2,6-Dimethylnaphthalene crystals are orthorhombic; the 

parameters of the units cell are: a= 7.54, b = 6.07, c = 20.20 A, space group 

Vi> = Pbhca, Z=4. Thus, the 2,6-dimethylnaphthalene molecule (I) takes a 

CH, 

H,C 

(1) 

centrosymmetric position in a crystal. Four models of these molecules con- 

structed by means of approximate intermolecular radii Re=1.72A and 

Ry=1.2 A were arranged on the structure-seeker apparatus so that the 

distances between their centers corresponded to the unit-cell dimensions, It 
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was then found that only one version of initial molecule orientation is possible 

(the orientations of the remaining three molecules are automatically derived 

from that of the first one by means of the symmetry elements of the given 

space group): ¢, = 5°, ¢, = 2°, $3 = 23° (for the notation of the angles see 

Fig. 1). The low accuracy of the operation on the structure seeker was compen- 

sated for by subsequent geometrical calculations. Figure 4 shows the ab cross 

section of the crystal cell drawn through C atoms | and 4 of molecules related 

by the translation 6, i.e., through the most closely packed place. The cross 

section is constructed for angles ¢, = ¢, =0. From this figure it can be seen 

that contacts determining molecule orientation exist, first, between the C4 

atom of one molecule and the H1! atom of the second molecule separated from 

the first one by the translation 5; second, the smallest rotation through angle 

g, will bring the same HI atom into contact with the carbon atom of the 

molecule related to the previous two molecules by the b glide plane which is 

perpendicular to a. 

The first contact is defined by the angles @, and 3, the second contact by 

angles ¢, and $3. The following notation will be used: r¢¢ the length of the 

C-C bond in the naphthalene nucleus, r¢c¢, the internuclear length of the 

bond nucleus carbon—methyl group carbon; rcy the length of the C-H bond; 

é, HCC angle of the methyl group; Ry, and Re, intermolecular radii of hydrogen 

and carbon atoms. Now we write the conditions for the contacts: 

a. for molecules related by the translation b: 

(Ryt+ Rc)? = 6? + (2rec+rcu)? — 2b(rec+rcu) cos 63 — Cos by 

Fig. 4. Cross section ab of 2,6-dimethylnaphthalene unit cell with maximum number 

of contacts. 
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b. for molecules related by a glide plane: 

(Ry t+ Re)” = [46—rencos $3]? + [(a/b) — (2rect+rcu) sin b3 

— 2reccos 30° sin d, | 

Consideration of the cross section drawn through the methyl group centers 

gives the condition of contact for the case of free rotation of the -CH; group. 

Two more conditions of the contact will be derived from consideration of the 

contacts between molecules belonging to different layers (we shall not give all 

the formulas here, but refer the reader to the original paper). 

Putting the bond lengths equal to rec = 1.405 + 0.005, rey = 1.085 + 0.005, 

and rec = 1.54+0.005, we obtain for the angles which determine molecular 

orientation in the cell the following values: ¢, =—3°55’, $, =4°10’, 

3 = 22°45’, and for intermolecular radii values, Ry = 1.19 and Roe = 1.72 A. 

Knowing the values of ¢,, $2, #3, one can readily calculate the coordinates 

of all the atoms in the unit cell. The values of structure amplitudes F,,, calcu- 

lated from these coordinates showed satisfactory agreement with the experi- 

mental data, and thereby confirmed the correctness of the structure so 

obtained. 

In this way, geometrical analysis makes it possible (of course, in not too 

complicated cases) to determine a molecular packing which can be called 

ideal. It should not be very different from the real packing found by direct 

X-ray diffraction studies. 

It must be understood that differences between the ideal and real molecule 

packing patterns are not accidental. A rough model (a first-approximation 

model) quite naturally fails to satisfy the minimum molecular interaction 

energy requirement. However, in certain cases, as, e.g., for an iodoform crystal, 

the reasons for the departure of the real packing from the ideal one can be 

interpreted within the framework of the geometrical model and without 

energy calculations. 

Fig. 5. Projection of iodoform structure on face ab. 
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The crystals of iodoform CHI, belong to space group C,° = C63 with two 
molecules in a cell. The cell parameters are a = 6.83, c= 7.53 A. The C and 
H atoms are positioned on the 3 axis, the I atoms are in general positions [5]. 
Consideration of Fig.,5, which presents the packing of molecules in the ab 

layer, suggests the following question: Why does compression of packing not 

occur through a small rotation of the molecule around the 3 axis, so that each 

iodine atom touches not two iodine atoms of two molecules, but four iodine 

atoms of three molecules, as shown in Fig. 6? The explanation seems to lie in 

the fact that such an arrangement in the layer would involve a considerable 
reduction in the layer stacking density. 

Let us now compare the parameters of the cells of the real structure and the 

ideal structure, which has “incompressible”? packing in the ab layer: actual 

structure: a=6.83, c=7.53A; V=303A°; ideal structure: a=6.67, 
c=7.96 A, V= 307 A>. 

The cell volumes are practically the same; in other words, closer packing in 

the layer does not result in an increase of the density of packing in the cell as 

the layers move apart. The shortest distances I --- I between the molecules in 

different layers increase as follows: 2--- 3” from 4.41 to 4.60 A; 3---3” from 

4.43 to 4.50 A; the distance H --- 3” remains exactly equal to the sum of the 

intermolecular radii. 

Thus, the real structure of iodoform whose molecular packing coefficient 
(see below) k = 0.76 is “‘better”’ than the ideal structure. 

It should be pointed out that the ideal packing, i.e., packing with equal 

intermolecular distances, may not necessarily be optimum from the viewpoint 

of our second-approximation model (atom-atom potential scheme) which 

treats interaction between molecules as a sum of generally valid atom—atom 

potentials (see Chapter II) and considers forces between the atoms to be 

central forces. A pronounced minimum of potential energy for the calculated 

structure of a naphthalene crystal (see Chapter II, 180) need not correspond 

to a structure in which the determining contacts between the atoms of the 

same element are equal to each other. 

Consequently, minor differences between the real and ideal packing patterns 

of molecules in this crystal are adequately interpreted by the second-approxi- 

mation model. In particular, the “short’’ C--- H distance between molecules 

Fig. 6. Hypothetical iodoform structure with incompressible 

packing in layer ab. 
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related by axis 2,, and a somewhat “increased” H.--- H distance between the 

molecules of adjacent layers (see distances in Fig. 35) are obtained auto- 

matically through minimization-of-energy calculated with universal equilib- 

rium distances on the atom-atom potential curves. 

Thus, a departure from the additivity law in the shortest intermolecular 

contacts should certainly not be taken as an indication of “specific” forces. 

From the point of view of our more sophisticated model it may turn out more 

advantageous to compress contacts in certain places and to expand them 

elsewhere than to retain equal contact distances between all pairs of the 

molecules.t The approximation of the geometrical model consists merely in 

the fact that it is concerned only with atomic contacts, though interaction 

between the atoms does not diminish so quickly that this interaction can be 

neglected for atomic pairs separated by distances exceeding the sum of the 

radii. 

It is obvious that the nearest atoms of the adjacent molecules play a key 

role, but differences between the ideal and real packings depend primarily on 

the interaction of atoms lying farther apart. In Chapter II it will be shown 

that the structure is determined by adjacent atoms located at distances up to 

10 A from the initial molecule. 
Now let us turn to the geometrical model of a crystal. 

2. DETERMINATION OF INTERMOLECULAR RADII 

It is required to find the shape of a molecule proceeding from the concept 

of ‘“‘contact”” between each pair of adjacent molecules. Contacts may be 

effected by one pair of atoms or several pairs of atoms, atoms of the same 

species or different species. One should take into account the shortest distances 

between the atoms of each pair of adjacent molecules, which are what we call 

“determining” contacts. 

To avoid ambiguity in the selection of the magnitudes of the intermolecular 

radii from the interatomic distance, investigations must be started using 

structures where the determining contacts are definitely known to involve 

atoms of one chemical element. Proceeding then to structures with two, 

three, etc., types of contacts, one may use data on the intermolecular radii of 

the atoms of one species derived in the previous study for determining new 

radi. 

A sufficient number of molecular crystals is known in which the surface of 

the molecules is composed of the atoms of one species only. The structures of 

tIn particular, I strongly doubt that the introduction of “‘specific forces” is required in 

the interpretation of a structure of the alloxan type (the appropriate reference is [9]). 
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such crystals may serve as standards for determining intermolecular radii. 

The description of some of these structures follows. 

a. Intermolecular Radius of the Hydrogen Atom 

Adamantane (sym-tricyclodecane (CH),(CH,),) is crystallized in a cubic 

face-centered cell with a = 9.426 + 0.008 A, space group: 7,” = F43m, Z = 4; 
Molecular symmetry: point group, 43m; in crystal 43m. Figure 7 illustrates 

the crystalline structure of adamantane (hydrogen atoms are not shown). 

X-ray diffraction studies [6] have given only the coordinates of the C atoms. 

The coordinates of H atoms can be easily found geometrically under the 

assumption that the lengths of C-H bonds in the CH and CH), groups are 

equal (1.08 A) and that all the valence angles C-C-H and H-C-H are tetra- 

hedral. 

The adamantane molecule bounded by hydrogen atoms is approximately 

spherical. Adjacent molecules make contact only through hydrogen atoms: 

The H atom in each CH group touches H atoms in three CH groups in adjacent 

molecuies; each H atom in any CH, group touches one H atom of a 

CH, group in an adjacent molecule. There are no CH-CH), contacts via 

H atoms. 

Of these 24 contacts only two are symmetrically independent, and in both 

cases the H---H distance is found to equal 2.34 A. It follows that the inter- 

molecular radius of a hydrogen atom Ry = 1.17 A. 

No subsequent X-ray diffraction studies have required corrections of this 

value Ry. 

Fig. 7. Crystalline structure of adamantane. H atoms are not shown. 
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Fig. 8. Crystalline structure of graphite. 

b. Intermolecular Radius of the Carbon Atom 

It would be logical to estimate the intermolecular carbon radius from the 

structure of graphite. The structure of graphite displays hexagonal symmetry: 

space group Dt, = C6/mmc, Z=4; a=2.46, c=6.70 A. The structure is 

laminar (Fig. 8). Atoms in each layer are arranged so as to form a net of 

regular hexagons with sides of 1.42 A. In other words, each layer is one 

infinite aromatic molecule. Atoms have no valence bonds across the layer, and, 

therefore, C atoms are located at a distance of one intermolecular diameter. 

The layers are stacked upon each other with a displacement, so that translation 

c equals twice the distance between adjacent layers. The shortest distance 

between the atoms of adjacent layers is 3.35 A. 

Net C---C distances are found from consideration of the structures of 

crystals formed by large aromatic molecules, which may be regarded as 

“fragments” of the graphite layer. In all these cases (a number of structures 

will be discussed in Part B of this chapter) the molecules are packed with 

maximum density so that a largest possible number of atoms of one molecule 

are accommodated between the atoms of the adjacent molecules. But the 

Fig. 9. 
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Fig. 10. 

cellular structure renders unfeasible 100% projection-to-hollow packing. It 

would seem optimum to locate an atom of an adjacent molecule in the center 

of a hexagon. This is just the case of graphite, but then another atom happens 

to be located precisely over the underlying atom (Fig. 9). This means that 

one-half of all the superpositions are optimum; six adjacent atoms are placed 

at an equal distance (3.35? + 1.4)” = 3.64 A, and the other half of the super- 
positions are less advantageous (atom-to-atom) with one distance of 3.35 A 

and three distances of 3.64 A. 
The most logical approach (although logic here is always a relative concept) 

would be to set the mean radius equal to 4(0.9 x 3.64+0.1 x 3.35), that is, 

Rc = 1.80 A. , 
It is not surprising that aromatic molecules present various solutions to the 

stacking problem. In most cases, all atoms assume the same position. It would 

be easy to understand that ail C atoms of two adjacent aromatic molecules 

will take up the same position with respect to their nearest neighbors in the 

case of the stacking shown in Fig. 10. The nearest neighbor will now be 

located at the distance (d* +0.77)”, two at distances (d? + 1.27)”, another two 
at distance of (d? + 1.27 + 1.47)”, and one at a distance of (d?+2.17)%. With 
d= 3.35 A as in graphite, this would give, respectively, values of 1.72, 1.91, 

and 1.98 A. It may be thought that the latter two figures are exaggerated and 

assumed that the corresponding “‘contacts” involve three neighbors (see the 

figure). But a distance of 3.35 A between the planes is never realized in aromatic 

molecules. Usually it ranges within 3.4-3.5 A (see Part B of this chapter), 

confirming a carbon radius Re = 1.80 A. The aliphatic C atom (i.e., an atom 

bonded to four neighbors) is “hidden” and is not involved in such contacts. 

Its radius is consequently not shown in the geometrical model. 

There is a very small number of structures with -C=C—C=C bonds in 

which C---C contact between adjacent molecules occurs. In these structures 

also the same figure, 1.80 A, seems to be most reasonable for the carbon atom. 

c. Intermolecular Radius of the Nitrogen Atom 

The intermolecular radius of a nitrogen atom can readily be determined 

from the symmetric and simple crystal structure of cyanuric triazide (II) [7]. 
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The molecular array makes the crystal structure of this compound completely 

unique. The space group is C2, = C63/m, Z=2, the molecules fully retain 

their 3/m symmetry in the crystal. This may be classified as the rare case of a 

planar molecule lying in a symmetry plane in which a closely packed layer is 

formed with molecular coordination 6 (Fig. 11). The next layer is laid upon 

the first one with a displacement which ensures a high stacking density (Fig. 12). 

The contacts determining the packing pattern are between nitrogen atoms. 

The number of independent contacts of this kind is four; the shortest inter- 

molecular distances N --: N give the radius Ry = 1.58 A. This value is reason- 

ably well confirmed in other structures as well. 

d. Intermolecular Radius of the Oxygen Atom 

Contacts of the type O---O are determining, e.g., in such structures as 

hexanitrobenzene. The crystalline structure of hexanitrobenzene [8] is 

characterized by a monoclinic unit cell with parameters a = 13.32, b= 9.13, 

c=9.68 A, B =95.5°, space group 12/c, Z=4. The molecules occupy the 

Fig. 11. Cyanuric triazide. Close packing in layer ab. 
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Fig. 12. Arrangement of cyanuric triazide molecules in unit cell. 

special position on the twofold symmetry axis. The benzene ring of the molecule 

is planar and coplanar with the C-N bonds. Due to steric hindrances, the 

planes of the nitro groups are turned about the C-N bond through an angle 

of 53°. The molecules are loosely packed in the crystal (packing coefficient 

k =0.64). The molecular array is given in Fig. 13. The structure is built up 

from molecular layers which are parallel to the (101) plane. The arrangement 

of molecules in one such layer can be seen in Fig. 14. The packing of the 

molecules in this layer is practically hexagonal with coordination number 6. 

This highly regular method of packing is dictated by the specific shape of the 

molecule resembling a round tablet. These layers of molecules are stacked 

with maximum density due to the centers of symmetry in the crystal. 

As a result, an initial molecule I lying on the twofold axis [Oy4] is sur- 

rounded by 14 adjacent molecules; i.e., it acquires the maximum coordination 

number for organic crystals. There are no intermolecular contacts C---C in 

the structure since the benzene ring is screened by the nitro groups. Accordingly, 

the distance between the closest-packed layers is large: d,97/2=4.00A 

(usually in crystals of aromatic compounds the molecular planes are spaced 

at 3.4-3.6-A). A large number of intermolecular distances of the O---O 

type lie within the range 3.02-3.42 A. However, an analysis of the molecular 

packing reveals that the contacts of the O---O type involve atoms spaced 

at 3.02-3.12 A. The mean of these distances is 3.07 A, which means that the 
intermolecular radius of an oxygen atom Ry = 1.53 A. 

In the iron pentacarbonyl structure (for the description of the structure 

see p. 65) the nearest O atoms of adjacent molecules lie 3.15 A apart. 
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Fig. 13. Arrangement of molecules in the hexanitrobenzene structure. 
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Fig. 14. Hexanitrobenzene. Closest-packed molecular layer. 
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For determining the oxygen atom radius, we may use the alloxan structure 

(III) [9]. The crystals of this compound are tetragonal; the dimensions of the 

(III) 

unit cell are a= 5.886, c = 14.100, space group P4,2,2,Z =4. The molecule 

is in a special position on the twofold axis. Figure 15 shows the projection of 

the structure on the ac face; contacts are between oxygen atoms of adjacent 

molecules separated by distances of 2.94, 3.05, and 3.07 A. Hence, the mean 

radius Ry = 1.51 A. Bondi [10] gives in his work Ro = 1.52 A. 
The value Ry = 1.36 A given in the author’s book [1] is somewhat too 

small. Recent energy calculations carried out for the CO, structure [11] have 

confirmed the value Ry = 1.52 A. 
The same procedure can be applied for estimating the intermolecular radii 

of other atoms as well. 

It should be emphasized once again that the significance and potentialities 

of the geometrical model should not be overestimated. It is clear that identical 

intermolecular contacts may vary slightly in length both in the same structure 

| 

1 V2 0 Vp 1 

Fig. 15. Projection of alloxan structure on face ac. 
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and in different structures. It is not these variations that should seem surprising, 

but the fact that they are very small. The intermolecular contact distances are 

expressed by the same figures to within only a few percent, and the additivity 

law is also fulfilled with fair accuracy. 

As to the differences themselves, their study is of limited interest, ard is 

warranted only when similar structures are dealt with, in particular, structures 

that form homologous series. Generally, these differences can be attributed to 

the inconsistency of the geometrical model with the molecular interaction 

energy formula as well as to the various roles of molecular vibrations in 

different crystals. Variations in the characteristic temperatures, and the 

differences between the melting points and room temperature—at which most 

experiments are done—motivate a somewhat cautious approach to geometrical 

conclusions about molecular interaction. 

Discrepancies between the ideal and real packing patterns and variations 

in the mean intermolecular radii from structure to structure can be interpreted 

on the basis of the second-approximation model to be described in the following 

chapters. 

3. PACKING COEFFICIENT 

Within the framework of the geometrical model it is worthwhile to investi- 

gate not so much the variations in the distances, as to use average figures for 

describing the packing density. The same intermolecular radii can be used for 

a large group of compounds, and the volume of a molecule calculated from 

these figures. X-ray diffraction experiments give the volume per molecule in a 

crystal. The ratio of the former volume to the latter will be termed the molecular 
packing coefficient. 

It is useful to know the following regularities: The packing coefficients for 

the overwhelming majority of crystals are between 0.65-0.77, i.e., of the same 

order as the close-packing coefficients of spheres and ellipsoids. If the shape of 

a molecule is such that no packing can be effected with a packing coefficient 

above 0.6, it can be predicted that a drop in temperature will cause vitrification 

of the substance. Another interesting regularity is the following: Morphotropic 

changes associated with a loss of symmetry are accompanied by an increase in 

the packing density. Here is an illustrative example: The crystals of Sn(C,Hs)q, 

Sn(C,H,CH3)4, and Sn(C,H,OCH;), are tetragonal. Their packing coef- 

ficients are, respectively, 0.70, 0.68, and 0.62. The Sn(C,H,OC,H;), crystal 

is monoclinic and has a packing coefficient of 0.67. Loss of symmetry is 

balanced by an increase in packing density. 

Experimental studies of benzene, naphthalene, and anthracene have shown 

[12] that when the packing coefficient k is above 0.68 these substances are in 

the solid state. When changing from a solid phase to a liquid phase, & instantly 
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drops to 0.58. A further increase of the liquid temperature up to the boiling 

point causes a decrease of k, e.g., for naphthalene, down to 0.51. At k < 0.5 

these substances become gaseous. 

Another example illustrating the physical meaning of the packing coefficient 

is as follows: The moduli of compressibility of tolane, dibenzyl, and stilberie 

crystals are, respectively, 4.07, 4.54, 6.50 (in 10'° dynes/cm?), and their 
packing coefficients are 9.69, 0.71, 0.72. Thus, for analogous structures, 

compressibility is inversely related to the packing coefficient. 

For calculating the molecular packing coefficient in a crystal, it is necessary 

to know the volume of the molecule. Calculation of the volume of the molecule 

is feasible if one knows bond lengths, valence angles, and intermolecular 

contact distances. 

After bounding the molecule by intermoiecular contact radii, the total 

volume of the molecule is broken up into portions (increments) contributed 

to the total volume by the individual atoms. Figure 16 illustrates the con- 

struction of the model of a 4-chlorodiphenyl molecule. First, a part of a sphere 

with radius Rc = 1.80 A is constructed about the center of each C atom, and a 

sphere with radius Ry = 1.17 A about the center of each H atom (a convenient 

scale is 1 A = 1 cm). The spheres intersect in circles; a plane drawn through the 

Fig. 16. Model of the 4-chlorodiphenyl molecule: (a) initial stage of construction; (b) 

finished model. 
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Table 1 
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circumference will ‘‘cut off” the portions of the spheres which are not involved 
in the external “shaping” of the molecule. The uppermost portion of Fig. 16 
shows such a model of a 4-chlorodiphenyl molecule. . y partitioned into 

separate parts: nine increments CH, two ene z and one Se- Cl 

Such volume increments can be calculated by the an 

where R is the intermolecular radius of the atom concerned; the R; are inter- 

molecular radii of the atoms that are valence-bonded with this atom and are 

positioned at distance d; from this atom; the height of the cut-off segment is 

R2 ae) 
h, = R—- Ri+d) -Re 

2d; L 

The volume increments of some atomic combinations most commonly 

occurring in molecules are listed in Table 1. They can be used for calculating 

the packing coefficient. When estimating the volume of a molecule with the 

aid of increments, it should always be remembered that this scheme disregards 

steric hindrances which often arise between the atoms of one molecule not 

connected by valence bonds (e.g., the cross-hatched portions in the diphenyl 

molecule in Fig. 16b correspond to the overlapping spheres of hydrogen atoms 

which occupy positions called by chemists the ortho positions). 

Appropriate corrections may be introduced if necessary. It has been found 

possible to write a general computer program for calculating the volume of 

any complex molecule. 

4. CLOSE PACKING AND CRYSTAL SYMMETRY 

The analysis of molecular packing in an organic crystal suggests the following 

conclusion: The mutual arrangement of the molecules in a crystal is always 

such that the “‘projections” of one molecule fit into the “hollows” of adjacent 

molecules. It would not, of course, be feasible to carry out one-by-one examin- 

ation of all possible packings of molecules for unit cells of different symmetries 

and different dimensions. Nonetheless, the statement that the real structure 

is one of the most closely packed of all conceivable patterns seems realistic 

enough. 
Zorky and Poraj-Koshitst have made an attempt to verify this hypothesis 

+See, for example, the collection of articles “Modern Problems of Physical Chemistry,” 

Volume I, [13]. 
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Fig. 17. Crystalline structure of hexamethyleneteiramine. H atoms are not shown. 

within the framework of the geometrical model for a two-dimensional case. 

They have calculated all possible packings for several models of molecules. It 

has been found that among them there is a sma!l number of packing patterns 

with high density. The experimentally observed structures have been found 

to be among the closest-packed structures. It can be asserted that the real 

packing has the highest density with an accuracy of about 0.01 of the packing 

coefficient. 
Close packing can exist if the molecular coordination number is sufficiently 

high. The experimental evidence is that the coordination number is usually 12; 

sometimes the specific shape of a molecule provides packing with coordination 

numbers of 10 and, naturally, 14. 

An example of a crystal structure with coordination number 14 is that of 

hexamethylenetetramine N,(CH,),. The crystals of this substance have a 

body-centered cubic unit cell with symmetry T,° =143m and a=7.02 A, 

Z = 2. Figure 17 shows the arrangement of molecules in this structure (H 

atoms are not shown). The molecule positioned in the center of the cube has 

N---H contacts with the eight molecules located at the vertices of the cube; 

besides, the C---C contacts of the CH,- groups relate this molecule with six 

other molecules placed in the centers of the adjacent cells. At coordination 

number 14 the packing coefficient of the hexamethylenetetramine molecules 

has the common value of 0.72. However, the distances between atoms in 

contact are somewhat larger than generally accepted: N--- H =2.86 A in- 

stead of 1.57+ 1.17 = 2.74 A; C-.-C = 3.72 A. The most probable explanation 
is that exceptionally large surfaces of the molecules are in contact. 

Coordination number 10 is to be found, for example, in the structure of urea. 

The crystals of this compound have a tetragonal cel! [14] with space group 
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(IV) 

V,~ =P42,m, Z=2. The molecule fully retains its symmetry mm in the 
crystal. The parameters of the cell are a= 5.67, c= 4.73 A. The molecular 

array in the unit cell appears in Fig. 18. The initial molecule touches two other 

molecules related by translation along c, four molecules related to it by the 

4 axis (or 2, ora glide plane), and another four molecules related to the latter 

by translation along c. 

High coordination numbers may appear if molecules are arranged in a 

crystal with appropriate symmetry. In the publication cited above the author 

made an attempt to predict all possible space groups in organic crystals on 

the basis of the close-packing principle. The space groups that were most 

highly suitable for the purpose were selected as foilows. First, we determined 

the symmetry of two-dimensional layers, which provided conditions for 

packing molecules into a layer with coordination number 6, with the molecules 

tilted arbitrarily relative to the axes of the layer cell. In the general case, there 

are only two such layers of molecules of an arbitrary shape: an oblique net 

with inversion centers, and a layer with a rectangular net cell built up by 

Fig. 18. Crystalline structure of urea. 
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translations and with a twofold screw axis parallel to a translation axis. The 

next operation was to select space groups in which these layers are possible 

and are stacked so as to yield high coordination numbers. It is obvious, for 

example, that the stacking of layers with the aid of a mirror symmetry plane 

is excluded here. 

Detailed consideration will be given to only the planar case. This consider- 

ation will bring to light the main principles underlying the approach to the 

selection of space groups convenient for a molecular crystal. 

5. CLOSEST-PACKED PLANE GROUPS OF SYMMETRY 

Let us consider the possibilities for molecular packing in each of the 17 

plane groups of symmetry. 
A plane layer of molecules is said to be close-packed if it is packed with 

coordination number 6, i.e., if each molecule touches six neighbors. 

A layer of molecules is closest-packed if coordination number 6 is feasible for 

any orientation of the molecules with respect to the axes of the unit cell. 

A layer of molecules will be termed a layer of maximum density for a given 

symmetry of the figure in the layer if coordination 6 is possible at any tilt (at 

any orientation with respect to the axes of the unit cell) compatible with the 

figure’s retaining its symmetry in the layer. 

It is obvious that for generalizing such a consideration, the shape of the 

molecule must be arbitrary. 

As is apparent from Fig. 19, translation t, can always be selected such that 

molecules related through this translation make closest contacts. With the 

heip of a second translation ¢, that is noncolinear with ¢,, a third molecule can 

be adjusted to the first two molecules so that it fits into a hollow between them, 

Fig. 19. Dense layer with symmetry pl. 
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Fig. 20. Dense layer with symmetry p2. 

i.e., touches both these molecules. Since no restrictions were imposed on 

translations ¢, and f,, no obstacles exist for selecting a unit mesh with the 

minimum area for a molecule of a given shape. Thus, in plane group C,' = pl 

the closest-packed layer can be produced by selecting values ¢, and ft, and an 

angle between them, whatever the shape of the molecule. 

The formation of a closest-packed layer is similarly easy in centrosymmetric 

group C,' = p2. Indeed, (see Fig. 20) translation t, which relates two closely 

touching molecules remains the same as in the previous case. By varying f, 

and the angle between f, and t, one can always arrange the third molecule so 

that it touches both initial molecues and is related to them by an inversion 

center. The resulting layer will be closest packed, with coordination 6 and a 

centrosymmetric oblique unit mesh containing two molecules. 

Plane groups C,! = pm and C},, = pmm are not suitable for the formation of 
any layer with coordination 6. Indeed, molecules related by a glide line (the 

= (™M), = 

Fig. 21. Layer with symmetry pm. 
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Fig. 22. Layer with symmetry pmm. 

trace ef a perpendicular glide plane or 2, axis lying in the layer plane) are 

packed “‘projection to projection”’ yielding thereby a layer with coordination 

4 (Figs. 21 and 22). 

Consider plane group Cd = pg. By means of translation ft, we form a row of 

closely touching molecules. 

By varying the origin and the magnitude of translation ¢t, normal to f,, it is 

possible to arrange the glide line aligned with ¢, so that a molecule derived by 

its action from the initial molecule falls into the hollow between two moiecules 

of the first row (Fig. 23). A layer with coordination 6 is obtained that will have 

a closest-packed structure, because no restrictions are imposed on the tilts of 

the molecule to the cell axes and no special requirements are imposed on the 

shape of the molecule. Similar reasoning can be used for the centrosymmetric 

group C}, = pgg if we assume that one “building block” is a pair of closely 

touching molecules mutually related by a center of inversion. Using translation 

t,, a closely-packed row of such pairs can be formed (shown by solid lines in 

Fig. 23. Layer pg with different (a and b) orientations with respect to elements of 

symmetry. 
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Fig. 24. Layer pgg formed by pairs of figures related by inversion centres. 

Fig. 24). The origin in this group is fixed—it is the center of inversion. Varying 

the value of translation ft, normal to ¢, and by the operation of the glide line 

perpendicular to t, and spaced 41, from the origin we may move the next row 

of molecules relative to the initial row so that each molecule in this row 

touches two molecules in the initial row, and a layer with coordination 6 is 

formed. The second glide line perpendicular to the first one and passing 41, 

from the center of inversion originates as a derivative of the combined action 

of the center and the glide line normal to the latter 

Fig. 25. Layer pgg with coordination 4. 
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Fig . 26. Layer with symmetry cm. 

The close-packed layer so obtained is, nevertheless, not a layer of maximum 

density for unsymmetrical molecules in the sense assigned to this term at the 

beginning of this section, because the minimum area of the mesh arises only 

if the requirement of the “optimum” packing of a pair of molecuies related 

by a center of symmetry is satisfied. For example, if a figure has the orien- 

tation shown in Fig. 25, coordination 6 will not be obtained for this 

symmetry. 

In plane groups Ci" = cm and C5’ = cmm, formation of a layer with co- 
ordination 6 is impossible in the general case when the molecule has an arbi- 

trary shape. Indeed, unlike groups pg and pgg where the glide line “promotes” 

close packing, in these groups mirror reflection lines pass parallel to the glide 

lines (Figs. 26 and 27), as a result of which the molecules are packed on a 

“projection-to-projection”’ principle and layers with coordination 4 arise. The 

packing pattern with coordination 6 is also unfeasible for plane group pmg 

(Fig. 28) in the general case of arbitrarily, shaped molecules. 

Fig. 27. Layer with symmetry cmm. 
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Fig. 28. Layer with symmetry pmg. 

In the plane groups of higher crystal systems, tetragonal (p4, p4m, p4g) and 

hexagonal (p3, p3m1, p3lm, p6, p6m), the requirement of the equality of the 

unit cell axes imposed by symmetry (a = b) renders impossible the packing of 

arbitrarily shaped figures without overlapping (see Fig. 29). 

Thus, of the nine plane groups only four are suitable for forming closest 

packing in molecules of arbitrary shape: pl, pi, pg, and pgg; the latter is fit 

only for centrosymmetric pairs of molecules. 

It now remains to consider the packing patterns that we called layers of 

maximum density. 

If a figure retains a symmetry line, in principle it can be accommodated in 

one of the three plane groups of symmetry: pm, pmg, and cm. However, in the 

first group (Fig. 30) coordination 6 will not be feasible for a figure of arbitrary 

shape. In the two other groups coordination 6 is always achievable. It can be 

(a) 

Fig. 29. Inapplicability of tetragonal (a) and hexagonal (b) cells for stacking arbitrarily 

shaped figures. 
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Fig. 30. Layer pm built up from figures with a symmetry line. 

seen from Fig. 31 that with the aid of a translation perpendicular (in group cm) 

or parallel (in group pmg) to the glide line of the figure, one can always form a 

row of figures closely touching each other. Selecting a suitable value of the 

second translation normal to the initial one, the next row can be brought in 

contact with the first row. The glide line ensures a displacement in the stacking 

of the rows so that each figure touches two figures in the adjacent row. This 

gives coordination 6 in the layer. For the formation of such layers, it is requisite 

that the molecules are adjusted to each other in an appropriate manner 

regardless of their shape and depending only on the position of the line of 

symmetry. If this stringent requirement is met, then both groups cm and pmg 

Fig. 31. Layers cm and pmg built up from figures with a symmetry line. 
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Fig. 32. Layers of figures with two lines of symmetry. 

are suitable for forming a layer of maximum density. The figures included in 

the text show that, depending on the shape of the figures, either one or the 

other group can provide the conditions for packing of maximum density. 

If a figure has two symmetry lines and takes a special position in the lattice, 

it loses all its degrees of freedom. From Fig. 32 it is obvious that the figures of 

such symmetry and arbitrary shape form a packing pattern with coordination 

6 in plane group cmm with a centered cell. The figures can also be packed in 

symmetry layer pmm (Fig. 32b,c), however, in this case coordination 6 will 

not be provided for a figure of arbitrary shape; the figures will either overlap 

in the second row or fail to touch each other in the first row. 

Let us consider all possible packing patterns for figures having a center of 

inversion. For an oblique cell (plane group p2) all the above statements 

pertaining to a layer of unsymmetrical figures are also applicable to centro- 

symmetric figures. In fact (Fig. 33) after forming a row of centrosymmetric 

figures by means of translation ¢, we see that the operation of the intermediate 

inversion center (the one located between the figures) is identical to the 

operation of translation f,. 

Consequently, using the second translation with no restrictions imposed on 
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Fig. 33. Layer with symmetry p2 built up from centro- 

symmetric figures. 

its magnitude and direction, it is always possible to provide the contact of a 

given figure with two figures of the adjacent row. Here coordination 6 is 

achieved without any reservations. 

In plane groups pmg and cmm, centrosymmetric figures will be packed by 

means of lines of symmetry, which fails to provide coordination 6 in a layer; 

consequently, these two centrosymmetric groups shouid be rejected. 

The only centrosymmetric group that remains to be considered is pgg. We 

shall proceed from a row of centrosymmetric figures (Fig. 34). The glide line 

cannot be positioned arbitrarily; it passes midway between two adjacent 

centers of inversion. Now, would it be possible to attain close packing in a 

layer with coordination 6 under these conditions? The answer is yes, and this 

Fig. 34. Layer with symmetry pgg built up from centro- 

symmetric figures. 
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without any restrictions on the packing of the figures in the first row, despite 
the fixed position of the glide line. Indeed, let us form the second row of 
figures from the first one with the help of the glide line and move both rows 
toward each other by decreasing the amount of the glide. Each figure of the 
second row will simultaneously come into contact (a) with two figures in the 
first row, because the second row is shifted with respect to the first by half the 
unit translation along this row. As a result, coordination 6 in this layer is 

provided without any restrictions with respect to the packing in the initial row 
of centrosymmetric figures. 

Summarizing the above, packing of maximum density is feasible in a layer 

under the following conditions: in plane groups pmg and cm—if the figure 

retains a line of symmetry; in plane group cmm—if the figure retains two lines 

of symmetry, and in plane groups p2 and pgg—for any orientation of arbi- 

trarily shaped centrosymmetiic figures. The latter statement means that for 

figures with a center of inversion, packing of maximum density is equivalent 
to the closest packing. 

6. SPACE GROUPS SUITABLE FOR CLOSE PACKING OF MOLECULES 

Crystals with the lower syngonies typical of organic compounds are built 

up by stacking layers of three-dimensional figures, the postulated requirement 

being that the layers must be closest packed. This implies, first, that layers 

must not be stacked with the aid of the mirror plane of symmetry. The closest 

stacking of layers can be provided either through a monoclinic displacement— 

translation that forms an arbitrary angle with the layer plane, or by inversion 

centers, glide planes, or screw axes. The formation of closest packing by 

stacking of layers related through twofold axes is hardly probable, but not 

totally excluded, because there may be cases when molecules related by twofold 

axes will not be in contact and, consequently, will not prevent closest packing 

by other symmetry elements. 

Analysis of possible arrays of molecules in each space group made on the 

basis of these considerations has demonstrated [1] that in molecules without 

symmetry elements, closest packing is attainable in the following space 

groups: Pl, P2,, P2,/c, Pca, Pna, P2,2,2,.f For centrosymmetric molecules, 

the number of such groups is still smaller: PI, P2,/c, C2/c, Pbca. 
In these cases of closest packing, coordination 6 in a layer can be provided 

with any mutual orientation of the molecules. 

All the above groups exhibit the following peculiar feature: The close-packed 

+Group P1 stands apart; no special proofs are needed to show that the case of all 

molecules being parallel is in conflict with the requirements of close packing. 
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plane layers considered above are to be found in one, two, or three systems of 

planes. 

Similar relationships are observed between plane layers that have maximum 

density for molecules of inherent symmetry and space groups of maximum 

density. For instance, if a molecule has twofold symmetry and retains this 

symmetry in the crystal, such molecules can be packed with maximum density 

in groups C2/e, P2,2,2, and Pbcn. Table 2 summarizes all possible packing 

patterns according to molecular symmetry in a crystal. 

Table 2 

CLOSEST-PACKED SPACE GROUPS AND SPACE GROUPS OF MAXIMUM DENSITY FOR ORGANIC 

CRYSTALS 

Molecular 

symmetry 1 2 m I mm 2/m 222 mmm 
in crystal 

Closest-packed Pai Pi 

space groups P25 none none P2,/c none none none _ none 

P2,/c C2/c 

Pca Pbca 

Pna 

POO 

Space groups C2 Cee RiIC Fmm C2/m 

of maximum none P2,2,2 Cmc none |Pmma Pbaa 

density Pnma Pmnn Cmca 

Pbcn 

The six space groups that have thus been found possible for molecules 

occupying general positions in a crystal are the groups that are most frequently 

encountered among the structures studied. 

From the point of view of close-packing requirements, a remarkable 

predominance of the space group P2,/c in organic chemical crystallography 

becomes obvious. It is only in this group that closest-packed layers can be 

built on all three cocrdinate planes of the cell. 

Groups P2, and P2,2,2, without symmetry center are also among the 

closest packed. Since their potential abilities for close packing are lower as 

compared with group P2,/c, they are quite logically to be found in cases when 

molecules are in either their right-handed or left-handed configuration. t 

+ These three groups rank first in the list of space groups. 
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As is known, molecules of high-symmetry quite frequently form crystals in 
which these molecules occupy special positions with a decreased number of 

degrees of freedom or even without degrees of freedom (hexamethylentetra- 

mine, di-p-xylylene). It is clear that in this case close packing is somewhat 

hampered because the symmetry of a special position implies certain mutual 

orientations of the molecules. However, close packing is completely feasible 

in a special case—when a molecule occupies a centrosymmetric position in a 

crystal. In this case, similarly to a molecule in a general position, close-packed 

layers can be formed with coordination number 6 for an arbitrary tilt of the 

molecular axes to the axes of the layer mesh. Here, we have again an oblique 

layer mesh with symmetry centers, and a rectangular layer mesh displaying the 

symmetry of the layer bc of the space group P2,/c. 

The space group P2,/c retains its dominant position in this case too, but 

now there are two molecules in the cell. 

Since the preservation of the center of symmetry in a crystal does not 

invOlve a lower packing density, this symmetry element is always present in a 

crystal. For example, molecules with mmm symmetry lose, as a rule, their 

symmetry planes in a crystal and retain the inversion center (a common 

naphthalene structure). 

The preservation of other symmetries in a crystal is indubitably associated 

with a lower packing density. The analysis of concrete examples shows that 

the retention of twofold axial symmetry in a crystal, or occupaticn of the 

mirror symmetry plane by a molecule, may cause a 0.02-0.03 decrease in the 

packing coefficient. The geometrical model obviously cannot explain this 

preference given by Nature to a symmetrical arrangement. Using this model, 

however, it is possible to deduce space groups that provide the highest packing 

density under the supplementary condition that a molecule retain its symmetry 

in a crystal. We have derived these groups and found that, in full agreement 

with experiment, for molecules located on symmetry planes, the first place is 

held by the group Puma, whereas for molecules that exhibit the symmetry of 

the twofold rotation axis the best groups are C2/c and Pbcn. 

It is not difficult to compile a list of space groups suitable for close packing 

of molecules that retain the symmetry of any of the point groups in a crystal. 

It should be emphasized that in all known cases when a molecule preserves 

high symmetry in a crystal at the expense of a certain decrease in the packing 

density, this decrease is not large. If this sacrifice in the packing density must 

be large, the symmetry is partially or completely lost. 

Therefore, the symmetry cases encircled by a solid line in the above table 

are only exceptional cases. It is not very difficult to preserve in a crystal one 

“inconvenient” symmetry element—plane m or axis 2. Conversely, the re- 

tention of higher symmetry does not compensate for a considerable decrease 

in the packing density. 
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The fact that molecular symmetry 2 or m is always retained in a crystal for 

molecules with mm symmetry naturally suggests that a symmetrical arrange- 

ment of molecules is advantageous thermodynamically. 

The molecular array in a crystal is such as to give the minimum free energy. 

But 

F=U+F" 

where Uis the lattice energy. The minimum of the potential energy of molecular 

interaction, i.e., the lattice energy minimum, corresponds to the closest packing 

(see Section II.10). The minimum of the vibrational energy component depends 

onthe freedom of molecuiar motion, which evidently must be larger if molecular 

symmetry is retained in the crystal. This qualitative consideration substan- 

tiates the above rules for selecting space groups. 

There are practically no exceptions to these rules. In other words, we do not 

know any organic crystal structures with packing coefficients below ~0.65; 

in most cases, the closest packings are realized; if a molecule preserves high 

symmetry in a crystal, crystallization occurs in one of the space groups 

providing the best conditions for packing. As an example, we have considered 

all structures of organic crystals described in the “Structure Reports” of 

1952-1956. Of the 315 structures considered, 268 (86%) belong to the closest- 

packed structures, 14 retain high symmetry in the optimum space groups, 

and nine are disordered structures. There are ten structures in which the 

close-packing requirements are, so to speak, overfulfilled. These structure 

have more than one molecule in a general position. Seven or eight structures 

are doubtful cases which need verification, and the remaining structures are 

peculiar rarely encountered packings in which molecules either occupy two 

nonequivalent positions of different symmetry, or are in general positions in 

crystals showing tetragonal or hexagonal symmetry. 

Whereas the latter examples enable close packing despite the restrictions 

imposed by high symmetry of the crystal, the instances when molecules 

occupy two or more symmetrically independent positions (e.g., biphenylene: 

four molecules in general positions, two at symmetry centers) entail an increase 

in the number of degrees of freedom per cell and, consequently, can ensure 

packing of the highest density. 

It would be of interest to discover the failure of “‘simple”’ packing for these 

elegant structures, e.g., to show that all conceivable cells of biphenylene with 

symmetry P2,/c, Z = 2 give packings of lower density as compared with that 

of the experimentally observed structures. 

Thus, we can state that the geometrical model produces results which are 

in excellent agreement with experiment. The reasons for this excellent agree- 

ment of the geometrical model with experiment need some explanation. As 

will be shown subsequently, the geometrical model describes with a sufficient 
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degree of accuracy the effects of the tendency for minimization displayed by 
the potential energy of molecular interaction. The trend to retain symmetry 
must be accounted for by the trend of the crystal free energy toward minimiz- 
ation, and must be principally governed by entropy requirements. It can be 
stated that at absolute zero crystal structures should be in much better agree- 

ment with the geometrical model than at 300°K at which experiments are 

usually made. It is true that in a number of instances we observe phase tran- 

sitions at low temperatures with the result that the molecule loses its symmetry 

in a crystal. But it is equally obvious that very often no polymorphic changes 

occur at low temperatures for kinetic reasons, to say nothing of the fact that 

the behavior of substances at temperatures below the temperature of liquid 

nitrogen has been examined in very rare cases only. 

The geometrical model is unable to explain why a molecule preserves 

symmetry in a crystal (except for symmetry I), neither can it explain why it is 

only very rarely that more than one molecule occupies a general position. 

The geometrical model fails to explain the scatter of intermolecular distances 

within one structure and from crystal to crystal. This model relates the 

structure to the crystal’s properties only in terms of a packing coefficient, 

i.e., qualitatively. Nevertheless, the model is valuable because, first, 

it provides a graphic representation of the mutual orientations of the 

molecules in a crystal, and, secondly, it is an aid in calculating unknown 

structures. 

A number of workers have successfully used the analysis of the molecular 

packing in a crystal in formulating a rough structural mcdel. Preliminary 

calculations of a rough model can be carried out before the analysis of the 

X-ray diffraction intensities. At the present time it has become possible to 

employ electronic computers and molecular models for this geometrical 

analysis; in other words, for calculating the possible orientations of molecules 

compatible with their shape from the known size and symmetry of the unit 

cell. For simple structures, a unique solution can be obtained; in more compli- 

cated instances, several solutions are possible, but, at any rate, the number of 

possible orientations can always be quite definitely determined. The calculated 

structures possible from the geometrical point of view can be used to calculate 

intensities and, thereby, a correct solution may de obtained. There is also 

another alternative: minimization of a certain function which is the sum of the 

conventional R-factor (see p. 241) and an expression that reaches a minimum 

for geometrically correct solutions. This procedure facilitates and speeds up 

the solution of the problem. 

+This does not refer to numerous structures in which molecules are dimeric due to 

hydrogen bonds. 
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B. Typical Structures 

7. LINEAR AROMATIC SYSTEMS 

a. Condensed Systems. Condensed systems are substances with molecules 

of the following shapes: 

He, KOR A. 
The first representative of this class of compounds is naphthalene. The 

naphthalene molecule has the inherent symmetry mmm. 

Naphthalene [15]. In the crystal the molecule retains only an inversion 

center: space group C3, = P2,/a, Z = 2; the dimensions of the unit cell are 

a = 8.235, b = 6.003, c = 8.658 A; B = 122° 55’. The volume of the molecule 

is Vo = 126.8 A, k = 0.706. The closest-packed layer coincides with the ab 

plane of the unit cell; the layers are stacked with a monoclinic displacement by 

translation along the c axis. Figure 35a,b shows the shortest intermolecular 

distances. The adjacent layers make contact through hydrogen stems lying at 

distances H --- H = 2.40 A. This gives the intermolecular radius of a hydrogen 

atom R,, = 1.20 A. In this case, the shortest distances C--- H inside the ab 

layer which are equal to 2.82 A, yield an appreciably underestimated value of 

the intermolecular radius of the carbon atom: Rc =2.82—1.20= 1.62 A. 

However, the contradiction with the hypothesis of the additivity of inter- 

molecular radii appears insignificant for the geometrical model. In fact, if 

instead of the Eulerian angles $,°,#,°, 3° that describe the position of a 
molecule in the real structure, we use angles ¢,, 6, @3 which are derived as a 

result of joint solution of the four equations determining four principal 

contacts in the structure, we find [16] that the only general solution can be 

obtained on condition that Ry = 1.17 A and Ro=1.74 A, and the derived 
values of the Eulerian angles differ from the actual values by not more than 

2-3°. 

Anthracene. The crystalline structure of anthracene [17] is similar to the 

naphthalene structure (IV) (unit cell: a=8.561, b=6.036, c= 11.163, 

B = 124.7°; space group C3, = P2,/a, Z=2). The packing of molecules in 
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(b) 

Fig. 35. Projections ab (a) and ac (b) of naphthalene structure. 

39 
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(VI) 

the ab layer is fully identical to that in the naphthalene structure (Fig. 36). The 

increased number of aromatic rings in the anthracene molecule, as compared 

with naphthalene, causes a corresponding increase of the c axis along which 

the long molecular axis is directed. Stacking of the layers by translation c is 

less close than the molecular packing inside the layer. This explains the perfect 

cleavage typical of naphthalene and anthracene crystals, which permits a 

ready splitting of the crystals along the ab planes. 

Crystals whose molecules contain four or more aromatic rings belong to the 

triclinic syngony, the molecules being positioned on two families of sym- 

metrically unrelated centers, thus forming a two-layer packing. 

All the crystallographic data for this class of substances are given in Table 3 

[18]. Noteworthy is the considerable growth of the packing coefficient with 

increasing number of aromatic rings in the molecule. 

Fig. 36. Projection ac of anthracene structure. 
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Table 3 
eee 

Substance Naphthalene Anthracene Tetracene Pentacene Hexacene 

CioHs CiaHi0 CisHi2 C22Hy4 Cr6Hi6 

Syngony 

Monoclinic Monoclinic  Triclinic Triclinic Triclinic 
Parameters 

a(A) 8.24 8.56 7.90 7.90 7.9 
b (A) 6.00 6.04 6.03 6.06 6.1 
c (A) 8.66 11.16 13.53 16.01 18.4 
a (°) 90.0 90.0 100.3 101.9 102.7 

BC) 122.9 124.7 113.2 112.6 23) 

v2) 90.0 90.0 86.3 85.8 83.6 

V (A3) 360 474 583 692 800 

Z 2 2 2 2 2 

Space group P2,/a P2,/a PI PI PI 

View 126.8 170.2 213.6 257.6 300.4 

k 0.704 0.718 0.733 0.743 0.751 

b. Polyphenyls. Polyphenyls are substances whose molecules have the form (Il): 

/ ; 

(VII) 

The first representative of these substances, diphenyl, has a monoclinic unit 

cell with parameters: a = 8.12, b= 5.64, c=9.47 A, B = 95.4°, space group 

P2,/a, Z = 2 [19]. Figure 37 shows the projection of the diphenyl structure on 

the ac face. Packing in the ab layer is typical of aromatic molecules; the follow- 

ing atoms contact: H2Z---Cl1=2.93 A, H2---C’l1=2.80 A, C3---H6= 

2.91 A. The stacking of the layers by translation along c is less close: H4 --- C3 

= 3.16 A; H4---C5=3.26 A; H4---H3=2.49 A. It should be pointed 
out that the authors, who have refined the structure down to R= 8.9% (for 

the magnitude of R in structure studies, see Chapter IV), introduced the 

H atoms geometrically, assuming that the length of the C-H bond is 1.08 A, 

and used the coordinates of all the H atoms only for reducing the R-factor. 

Their works give only intermolecular C--.C distances, which all exceed the 

sum of the intermolecular radii (3.81 A is the shortest distance). The packing 
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Fig. 37. Projection ac of the diphenyl structure. 

of the molecules is undoubtedly defined by C---H contacts in the ab layer 

and between these layers. 

The crystalline structures of p-diphenylbenzene (terphenyl) and p,p’-bis- 

(phenyl)-diphenyl (quaterphenyl) (IX) change only in accordance with the 

pect aes 
(VII) (IX) 

elongation of the molecule, even though the symmetry center of the terphenyl 

molecule is situated in the center of the middle ring, unlike molecules with an 

even number of aromatic rings. The crystallographic data for this class of 

compounds are listed in Table 4. 

Two series of structures given in this section may serve as examples of a 

specific phenomenon that may be called “homologous isomorphism”’: 

Geometrically similar molecules inside homologous series form identical 

packings. Indeed, in each series one of the cross sections of the unit cell remains 
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Table 4 

Substance Diphenyl Terphenyl Quaterphenyl 

Ci2Hi9 CisHi4 CraHis 

Syngony 

Monoclinic Monoclinic Monoclinic 

Parameters 

a (A) Sie 8.12 8.05 
b (A) 5.64 5.62 5.55 
c (A) 9.47 13.62 17.81 
B(°) 95.4° 92.4° 95.8° 
V (A3) 431.8 621.0 791.7 
Z 2 D D 
Space group P2,/a P2,/a *P2,/a 

Masi 155.4 233.1 310.8 
k 0.720 0.751 0.785 

approximately the same; one of the parameters increases by a value equal to 

the “elongation” of the molecule. In the naphthalene—anthracene—naphthacene 

series the elongation of the molecule equals the width of the benzene ring, i.e., 

2.4 A; the c axis of the anthracene cell is 2.50 A longer than the same axis of 

the naphthalene cell, while the c axis of the naphthacene cell is 2.37 A longer 

than that of anthracene, etc. In the triclinic structures of this series, molecules 

form an ab layer almost as if these molecules were related by a twofold axis; 

in other words, the change of symmetry does not impair the homologous 

isomorphism. A still more perfect similarity is observed in the polyphenyl 

series (see Table 4). 

8. NONLINEAR CONDENSED AROMATIC MOLECULES 

OF SYMMETRY mm AND mmm 

a. 1,12-Benzperylene (X) [20] 
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Fig. 38. 1,12-Benzperylene. Stacking of molecules related by 1. 

Unit cell a= 11.72, b = 11.88, c=9.89 A, B =98.5° space group C3, = 

P2,/a,Z =4. The molecular symmetry is probably 2 (because of steric hind- 

rance (see Chapter 7)), but in the crystal the molecule occupies a general 

position, and thereby loses its element of symmetry. The adjacent parallel 

molecules are stacked on top of each other with a displacement (Fig. 38). 

The distances between their planes are 3.38 A. The intermolecular distances 

are as follows: 
C(S)::-C(S’) 1’ 3.38A 
C(D)::-C(J) 1 3.39 

CH(F)---C(U’) 1 3.39 

C(Q)-:-CH(H’) 1 3.39 

C(D)::-CH(O’) glide on a 3.91 

CH(N)--: CH (F’) 2, 3.84 

CH(N)-::CH(E’) Ds Sesy? 

CH(N)::-C(S’) DBI 

CH (O)--- CH(E’) De SoilP 

CH(O)-:-CH(F’) 2, 3.49 

CH(O)-:-CH(I’) 2, 3.76 

CH(P)---C(J) translation 4.00 

along c 

Some of the intermolecular C---C contacts are somewhat short. 

b. 1,14-Benzbisanthrene (XI) [20] 

Unit cell: @=36.13, b=10.26, c=4.68, B=90°+0.5°, space group 

C,? = Pa, Z=4; i.e., the structure contains two independent molecules in 

general positions, and the molecules totally lose their symmetry. The perpen- 

dicular spacing between the planes of molecules related by translation along 

the b axis is 3.4 A, a common figure for aromatic hydrocarbons with a crystal- 

line structure of this type. 
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(XI) 

c. Pyrene (XII) [21] 

(XII) 

Unit cell: @ = 13:60;b:= 9.24; c = 8.37; 8 = 100.2° sspace group G3, = P2,/a; 

Z=4. The molecular symmetry is mmm, but in the crystal the molecule 

occupies a general position. In the structure, the role of one “crystallographic” 

molecule is played by a pair of molecules related by a center of inversion 

(Fig. 39). The distance between the molecular planes is 3.53 A. Molecules 

Ot. Ceara 5A 
Aang ——bee eed 

Fig. 39. Pyrene. Projection ab. 
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Fig. 40. Pyrene. Stacking of molecules related by 1. 

forming an “island” are stacked with a displacement (Fig. 40). The intermol- 

ecular distances are: C(P)->- C(P’)i=C(M)--- C(iG) =C(©) = Cd) = 

C(K)--- C(E’) = 3.54 A. The other distances are larger: C(D)--- C(O’) = 

3.61, C(D) --- C(P’) = 3.64, C(A) --- C(N’) = 3.96 A. 
This is a rare (if not the only) case of a packing in which a molecule of 

symmetry mmm in the free state takes up a general position in the crystal. 

d. Coronene (XIII) [22] 

Unit cell: a= 16.10, b= 4.695, c=10.15A, B=110.8°, space group: 
C3, = P2,/a, Z = 2. The distance between the planes of molecules related by 

translation along b is 3.40 A. However, these molecules are stacked with a 

displacement (Fig. 41), so that the C--- C distances are larger than the above 

value: J’---J1=G---D1=3.43 A; K---Bl=J---L1=3.44 A. Other 
C---C distances between these molecules are above 3.5 A. For molecules 
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Fig. 41. Coronene. Stacking of molecules related through translation b. 

related by a translation along the c axis, E--- E’ = 3.87, E---G’ =3.93 A. 

For molecules related by the glide plane, I --- B = 3.77, I--- I’ = 3.97 A. All 

other intermolecular separations exceed 4 A. 

e. Ovalene (XIV) 

Unit cell: a= 19.47, b= 4.70, c= 10.12 A, B = 105°, space group: C3, = 

PZija- 2 = 2. 

The molecular symmetry of ovalene, similar to coronene, is mmm. The 

molecules retain only a center of inversion in the crystal. The position of the 

molecule in a unit cell is illustrated in Fig. 42. 

In all the structures described in this section it would be of interest to 

analyze the types of stacking of plane molecular layers. It can be seen from the 

figures that due to the monoclinic displacement, no “‘atom-on-atom”’ stacking 

occurs in the crystal. But the figures also show the absence of a displacement 

that would place certain atoms in optimum conditions (the middle of the 

hexagons of the preceeding layer), while other atoms would stack accurately 

one upon another (as in graphite). The solution chosen by Nature is that all 

atoms are placed in approximately equal conditions. 



48 1 Structure of Crystals 

Fig. 42. Ovalene. Projection ac of the electron-density series. 

9. STRUCTURE OF NCRMAL PARAFFINS 

Normal paraffins belong to a class of substances occupying an intermediate 

position between low polymers and high polymers. Paraffins can with full 

justification be called low-molecular weight polymers, or “oligomers.” 

In the structures of n-paraffins the axes of all molecules always run parallel 

to each other, regardless of the crystalline modification [23]. 

Studies of n-paraffins are of major importance for disclosing the principles 

and laws of organic chemical crystallography. It is obvious that these simple 

structures are highly suitable for the purpose. 

An interest in n-paraffins is also motivated by the fact that they exibit a 

great variety of polymorphous forms. An analysis of the molecular packing 

in the various forms can provide a better insight into the causes and factors that 

render one crystalline modification more stable as compared with another. 

It thus becomes possible to study polymorphism as a function both of the 

temperature and the number of carbon atoms in the n-paraffin chain [24]. 

a. Configurations of Aliphatic Chains 

In all the compounds in which carbon atoms are valence-bonded with four 

atoms of one element, e.g., CH,4, CCly, etc., ideal tetrahedral angles between 
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(XV) 

the bonds are observed. In the case of the simple aliphatic chains (XV) we are 

discussing, each carbon atom joins two other C atoms and two hydrogen atoms; 

but, despite the difference of these four atoms, all the angles are close to the 

tetrahedral angle, although there are certain systematic departures from this 

rule to be described below. 

This circumstance, however, does not fully determine the shape of the chain 

being considered, since each of its links may rotate around single bonds. From 

spectroscopic and thermal data obtained in investigations of vapors, Pitzer 

[25] and Taylor [26] concluded that not all rotations involve the minimum of 

energy. Thus, Taylor in his thermodynamic calculations used a formula 

describing the dependence of potential energy V on rotation angle ¢@ around a 

single bond: 

V = Vo[x(1—cos d) + (1—x)(1 —cos 3¢)] 

where x is a parameter. Taylor’s equation defines the configuration corre- 

sponding to the minimum of potential energy as a flat zigzag of carbon atoms 

(for more details, see Chapter VII). 

In Fig. 43, the axis of the chain passes through the midpoints of the C-C 

bonds. The hydrogen atoms (not shown) lie in planes normal to the chain 

Fig. 43. Configuration of an aliphatic chain and its determining interactions of nonbonded 

atoms. 
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axis. The H—C-H angles are approximately tetrahedral. The minimum of 

potential energy is associated with the trans configuration (@ = 0). 

The structural justification of the advantages offered by such a configuration 

is given by an analysis of the interactions between atoms unrelated through 

valence bonds. The angles between the bonds in the aliphatic chain are fixed 

as a result of the mutual interaction between all the four atoms bonded to each 

given carbon atom. It is of interest to note that according to the X-ray diffrac- 

tion data [27, 28] the C-C-C angle is always larger than the ideal tetrahedral 

angle (~112° instead of 109.5°). This certainly must be so from the viewpoint 

of the mechanical model of the molecule (see Chapter Vil) offered by the 

author [29], in which all the deviations from ideal angies in aliphatic com- 

pounds are ascribed to the repulsion of atoms unrelated by valence bonds. 

The same specific features of intermolecular interaction define the plane 

zigzag shape of a chain of carbon atoms. As can be seen from Fig. 54, the 

cis configuration (¢ = 180°) results in a C1-C’4 distance of 2.7 A, which is 

substantially smaller than 2R-=3.6A. It is natural, therefore, that the 

minimum of energy is associated with the trans configuration (¢ = 0°). The 

same conclusion is suggested by calculations of conformation energy 

(Chapter Vil). 

The hydrogen atoms of methylene groups are positioned in planes passing 

through the carbon atoms perpendicular to the chain axis. They were clearly 

detected in the electron-diffraction study of Vainshtein and Pinsker [30]. The 

H-C-H angle is about 108-109°. 

b. Results of Experimental Structure Studies 

The study of the structures and properties of the elementary chain compounds 

under discussion entails a number of special difficulties. These are, primarily, 

the difficulty of obtaining individual hydrocarbons in a pure form without 

admixture of adjacent homologues, and also the difficulty of growing perfect 

single crystals for suitable X-ray diffraction analysis. 

Classification by Crystal Modifications. The outstanding investigator of the 

structure of n-paraffins is Miiller [31]. His principal findings have been con- 

firmed by later researchers. His first systematic studies used the Debye X-ray 

diffraction technique. Miiller was able to grow a sufficiently good single 

crystal of u-C,,H,¢, and to determine its structure completely. He found that 

the molecules in the crystal have the form of plane-zigzag chains of carbon 

atoms and that their axes are parallel. Planes normal to the axes can be drawn 

through the end groups which separate one layer of molecules from another. 

Every second layer is translationally identical to the previous ones; i.e., the 

structure is composed of two layers. The unit cell is orthorhombic, with 

parameters a = 7.45, b = 4.97, c= 77.2 A. Miiller found the space group to be 
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Vi, = Pnam, however, much later Smith [32] performed diffraction studies on 
specimens with a higher degree of purity and found another space group: 
Vil= Peam. 

Figure 44 shows the ab face of the unit cell perpendicular to the chain axes; 

it was cailed by Miiller a basic (main) plane. The transverse arrangement of the 

molecular chains shown in this figure is highly characteristic of most n-paraffins 

and many other chain compounds, including a number of high-polymers. In 

the latter case there are no difficulties due to the location of the end groups. 

The simplest polymer is polyethylene—an infinite plane zigzag of methylene 

groups. its structure has been investigated by Bunn [33]. It is practically 

identical to the structure of the single layer of paraffin molecules considered 

above if we imagine that the number of carbon atoms in the chain n— oo, in 

other words, if the specific features of end group packing are ignored. 

In order to generalize the similarity detected between distinct structures of 

crystals composed of chain molecules, Vand [34] has introduced the concept 

of a subcell determined by the positions of the methylene groups. The most 

widely encounted type of subcell is the orthorhombic polyethylene cell with 

the parameters dy = 7.45, by = 4.97, co = 2.54 A (the length of a single plane 

aliphatic zigzag), whose a,b, plane is shown in Fig. 44. This is not, however, 

the only type of subcell. Already Miller had previously noticed a certain 

difference between even-numbered z-paraffins with long chains and those 

with shorter chains. To interpret this fact, Miiller assumed that the crystal 

energy is composed of two components, one of which is associated with the 

side interaction of the molecular chains, and the other with the interaction of 

the end groups. The transition to shorter molecules changes the proportions 

of these two components and leads to alterations in the crystalline structure. 

Fig. 44. Face ab of orthorhombic paraffin cell. Mutual arrangement of molecules with axes 

normal to drawing plane is shown. Atoms designated by white and black circles are positioned 

at different levels along co; distance between ievels is co/2 = 1.27 A. 
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In 1948 Miiller and Lonsdale [35] published the results of their studies on 

the unit cell of an n-C,,H3, crystal which was found to be triclinic. Thus, 

the structure of m-C,,H3., is based on another type packing. The presence in 

this subcell of only one molecule indicates that the planes passing through the 

carbon atoms of the zigzag chains are parallel. The triclinic m-C, ,H3, crystals 

have the same type of structure as other members of the homologous series 

with an even number of carbon atoms from C, to C4. 

Apart from the existence of two types of crystalline structure in the series of 

even n-paraffins, physicochemical differences have been established between 

even and odd n-paraffins. Miiller quite rightly pointed out that these lie in the 

structure of the chain itself. He noted a difference in the symmetries of even- 

and odd-numbered molecules, although he does not use this term. Miiller 

arrived at the conclusion that as we move along the c axis, every second mol- 

ecule in an odd n-paraffin crystal will be translationally identical, while in an 

even n-paraffin crystal all molecules are successively related by simple trans- 

lation. 

Along with the identification of the structures of the individual members 

of the homologous series of n-paraffins, certain authors studied the dependence 

of various parameters on the number n of C atoms in the chain. These studies 

helped to classify n-paraffins by their crystalline modifications, without 

detailed investigation of all the members of the homologous series. Thus, 

Piper et als. [36] continued the work on the precise measurement of the large 

spacing started by Miiller. A “‘large”’ or “‘long” spacing is the distance between 

the planes of the crystal lattice passing through the end groups of the chain 

molecules. This distance is of the order of the chain length of one molecule and 

is readily measured because the corresponding lines on the powder X-ray 

diagram can be easily identified, because they lie in the region of comparatively 

small reflection angles 0. 

The results of these studies appear in Fig. 45 which clearly illustrates the 
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Fig. 45. Dependence of interlayer distance on number n of carbon atoms in the chain. 
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various crystal modifications of the members of the homologous series of 
n-paraffins. The points for all the odd n-paraffins lie on the straight line A. 

These paraffins have a structure with an orthorhombic subcell and the rec- 

tangular layers interpreted by Miiller [31] (m-C,)H69) and Smith [32] 

(n-C,3H4g). The crystals of the triclinic paraffins (even members of the 

homologous series up to C4) are built up from oblique layers and the line 

joining the points associated with these layers passes somewhat lower (B). It 

has already been noted that the unit cell of m-C,,H3, as determined by Miiller 

and Lonsdale [35] has the following parameters: a= 4.28, b= 4.82, c= 

23.07 A, a=91°6', B=92°4', y=107° 18’, doo, = 23.04A, Z=1. Even 
n-paraffins from C,, and above have orthorhombic subcells and a packing 

with even more oblique layers, since their respective line in Fig. 45 lies still 

lower (C). In the case of n-C3;H,, the true cell is monoclinic and contains two 

molecules: a = 5.57, b =7.42, c= 48.35 A, B = 119° 6’; space group C3, = 

P2,/a. The orthorhombic subcell and the coordinates of the carbon atoms in 

the subcell are in close agreement with those found for polyethylene. 

Phase Transformations. Apart from the crystalline forms that have already 

been discussed, there is one more stable form in which n-paraffins can exist. At 

a certain temperature close to the melting point Miiller discovered a reversible 

phase transition at which the angle between the diagonals of the ab face in the 

orthorhombic unit cell shown in Fig. 44 becomes 60° upon which the symmetry 

increases to hexagonal. This form corresponds to the close packing of cylinders, 

and is a partial case of the so-called gaseous crystalline or rotational crystalline 

state (see below) which is characterized by rigorous order in the arrangement 

of the centers (axes) of the molecules and disorder in their azimuthal rotations. 

This is a rather frequent occurrence. 

The most complete description of the phase behavior of n-paraffins is given 

by the graph (Fig. 46) compiled by Schaerer, ef a/. [37]. The graph shows the 

melting points and the temperatures of the reversible phase transitions in a 

solid state. 

The domain of existence of the m-modification is designated by a vertical 

line on the graph: T, triclinic structure of the type n-C,,; O, orthorhombic 

structure of the types n-C,3, and n-C,,; M, monoclinic structure with O- 

subcell type n-C3,; H, hexagonal gaseous-crystalline structure. 

As is obvious from the graph, in the members of the series below Cz) the 

melting points alternate, while in the members above Cj there is no such 

alternation, but in the latter case we see alternation of the points of phase 

+As compared with other n-paraffins, C24 and C25, which occupy an intermediate 

position according to their structure, reveal a more complex phase behavior that has not 

yet been fully studied. 
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Fig. 46. Diagram compiled by Schaerer with collaborators summarizing all reliable data 

on phase changes in n-paraffins. 

transition in the solid state. In fact, in the region from n-C, to n-Cy9 the 

melting points of the even members of the homologous series lie on a curve 

which is above the curve representing the melting points of the odd members; 

only odd members of the series have a gaseous crystalline structure in the 

vicinity of the melting point. Now, passing on to n-paraffins with longer chains, 

we see that they all, regardless of whether they are odd or even, display a 

rotational crystalline modification in an appropriate temperature range, and 

that all their melting points fall on one curve. On the other hand, the phase 

transition points in the solid state give different curves depending on whether 

n-paraffins are odd or even numbered. Alternation of the physical and chemical 

properties between even and odd n-paraffins is caused by the alternation of 

the types of their crystalline structure: for shorter paraffins O, H of odd 

members alternate with T of even members, for longer ones O and M alternate 

respectively. As to the absence of alternation in the properties of the H modi- 
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fications of n-paraffins above C,, this seems quite natural, since the structures 

for all the members of the series, whether odd or even, are of the same type. 

c. Close Packing of Chain Molecules 

In the case of chain molecules geometrical analysis can be employed for 

predicting a small number of possible crystalline structures. This set includes 

all the structures experimentally found so far. The analysis is greatly facilitated 

by the following basic statement: The structure always consists of layers of 

flat zigzag molecules whose axes run parallel. The molecular packing problem 

can be broken up into two parts: the packing of the molecules in a layer and 

the packing of the layers. Below follows a general discussion of these two 

types of packing. 

If the chains are azimuthally chaotic (rotate around their axes), their average 

cross sections are circular, which gives rise to a circular (hexagonal) packing. 

For molecules of an arbitrary cross section, two types of close-packed layers 

are possible: one with an oblique and the other with a rectangular cell. If we 

represent the cross section of the chain by an arbitrary contour, all the three 

types of packing will be as shown in Fig. 47. 

The geometrical analysis of a structure implies, primarily, that a three- 

dimensional shape must be attributed to an aliphatic molecule following the 

Fig. 47. Three possible types of close packing of chain molecule (a) hexagonal, (b) 

oblique, (c) rectangular cell. 
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Fig. 48. Types of close-packed arrays of a pair of aliphatic chains (chain axes are per- 

pendicular to drawing plane). 

rules of organic chemical crystallography, 1.e., using the standard inter- 

molecular radii of carbon and hydrogen atoms. The analysis starts with the 

consideration of the closest-packed arrangements of two infinite molecular 

chains. These arrangements occur only if an H atom of one molecule fits into 

a “hollow” formed by three H atoms of the adjacent molecule. Two types of 

such close contacts can be obtained between parallel molecules shifted by 

simple translation. These are the ty and ¢; arrays given in Figs. 48 and 49. 

Configuration fg (Fig. 48) corresponds to case b in Fig. 47 when the zigzag 

planes are not parallel. Each of the three above arrangements of the chain pair 

results in one closest packing. Array ft; gives a structure with a triclinic subcellt 

(T), ty with a monoclinic (M) and fg with an orthorhombic subcell (O). 

The further analytical procedure will be briefly illustrated by the derivation 

of the structure obtained from the ft; array. Two molecules related by trans- 

lation t; define a way of packing an infinite series of molecules in one of the 

crystal directions. Close stacking of two such rows can readily be found by 

geometrical construction or with the aid of molecular models. It is effected by 

a translation by) perpendicular to the molecule axes. We thus find the only 

arrangement yielding coordination 6. This is an ideal structure, i.e., a structure 

in which all intermolecular distances H--- H are equal. 

If we put R,, = 1.3 A, the resulting cell will contain two CH, groups and 

have the following parameters: 

Go =143 IX a 

bp = 4.45A,  B = 107.5° 

C) = 2.54A, «a = 102° 

+The subcell is built up on the vectors which repeat the methylene groups. 
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Fig. 49. Array of a pair of chains types tm (a) and fy (b) illustrated by means of models. 

The ideal parameters of the O and M cells are found similarly. The results 

are given in the first column of Table 5. For molecular chains of infinite 

length, these unit cells are true cells. But a layer of finite-length molecules has 

only a two-dimensional periodicity and, obviously, is not a crystal. In this 

case the cells O, M, and T identified in a layer of molecules are subcells, i.e., 

they characterize the packing of methylene groups. 

For layers composed of finite-length molecules, a new parameter must be 

taken into consideration—the angle of tilt between the plane passing through 

the end groups and the molecular axes. If this angle is 90°, the layers are 

rectangular, in all other cases they will be oblique. This angle cannot assume 

any arbitrary value. The reason is that parallel displacements along the axes 

of the molecules which give rise to different versions of a true cell without 

changing the packing patterns of methylene groups, must be equal to nico, 

where m is an integer. The idea that all versions of the structure for chain 

molecules can be obtained from the initial structure by the above discrete 

shifts of the molecules was put forth 30 years ago by Schoon [38], but quite 

naturally it could not be verified by using the structural data available at that 



58 1 Structure of Crystals 

Table 5 

Subcell Layer Layer cell (A) bo Ge 

H H[00] a=4.8 90 90 0 

O O[0, 0} = 142 Di A963, —=90¢ 90 90 0 

O[0, +2] a=9.0; b= 4.96; y = 90° 90 55.5 34.5 

124.5 

Ao = 7.42 O[+1,0] Gea ab — po = 90g 63 90 27 

117 

by = 4.96 O[0, +1] @= 7.85.01 4.96. y= 902 90 71 19 

109 

Coot Ose, sei] @== WSs == 5.5/8 VSS SY 63 AY SIL 

for O[1, 1] and O[1, 1j=98.5° 117 109 

for O[1, 1] and Of], i] 

M M[0,0] a@=4.2;6=4.4;y=111° 909 90 0 
ao = 4.2 M[+1,0] @=4.9;b=4.4; y=107° 59 90 32 

121 
bo=44 M[0,+1] @=4.2;b=5.1; y=107° 90 60 32 

120 
Co = 42.54 
Yo = 111° 
ay Ti+4,0) @=43;6= 45; 7= 1032 

107 
ao = 4.3 

by = 4.45 TG 
€o = 2.54 a=4,3; b= 5.2; y= 109° 73 120 36 
% = 90°, Bo = 107.5° T[—4, 1] er 60 

Yo = 102° 

time. At present this assertion needs no proof—it suffices to look at Fig. 49. 

If any molecule is shifted along its axis by a whole number of “‘stories”’ (one 

“story” equals the chain repeat length 2.54 A), the convex parts of one mole- 

cule will fit again the hollows of another, and the pattern of arrangement of 

methylene groups will remain unchanged. 

Let us designate the displacement of molecules related by translation ag 

by m and a displacement of molecules related by transiation by by n. The 

two-dimensional cell of the layer is determined by the subcell and numbers 

m,n. In contrast to the O and M subcells, a T subcell cannot give rectangular 

layers by virtue of its structure, since the methylene groups related by the ay 

axis are shifted by co/2. Therefore, possible two-dimensional cells are de- 

scribed by the symbols 

O[m,n], M[m, n], T[m+4,n] 

It is also necessary to recognize that layers with different signs of m and n are 

not equivalent; each pair of numbers m,n gives four layers: m,n; m,n; m,n; 
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Fig. 50. Layers differing only in a displacement sign. 

m,n. This difference is illustrated in Fig. 50. There is no need to consider all 

possible chain displacements. If the displacement of two adjacent chains 

exceeds one period co, the end groups will make contact with methylene 

groups, thus resulting in lower packing density. Therefore, cne will be well 

advised to restrict consideration only to the layers given in the second column 

of Table 5. 

All the layers with a T subcell are oblique layers. If the ab plane of the 

two-dimensional cell of the layer coincides with the ag bg plane of the subcelli, 

the symbols of these layers will be T[4.0] and T[—4.0]. In layers with a T 

subcell each molecule has six neighbors translated by vectors +a, +bo, and 

+€ 9, assuming, as usual, that the angle y is obtuse. Since it is postulated that 

a shift of any of these molecules cannot be above unity, only two more layers 

T[4.1] and T[—4.1] can exist. 

Table 5 gives all the layers thus derived with the parameters of their two- 

dimensional cells and the inclination angles ¢,, ¢,, and @, of the molecular 

axes to the axes a,b, and to the normal of the plane ab, respectively. 

Furthermore, we have considered the possible orthorhombic, monoclinic, 

and triclinic structures arising from layer stacking. In particular, structures 

with triclinic symmetry can be obtained by stacking any types of layers O, M, 

and T with arbitrary displacements. At this point it should be recalled that 

layers are never stacked precisely one upon another, i.e., they cannot be 

related by a mirror symmetry plane, because then the “projections” of the top 

layer would have got onto the “projections” of the bottom layer, and the 

packing would not have been dense as shown in Fig. S5la. Since adjacent 

layers are always stacked with a displacement, the c axis of the true unit cell, 

which passes through identical points of the molecules of adjacent layers, will 

not lie in the same direction as the molecular axis (Fig. 51b). These axes will be 

aligned only in a two-dimensional orthorhombic structure in which the third 

layer is located over the first one (Fig. S5Ic). 
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Fig. 51. Stacking of layers: (a) adjacent molecular layers are never related as shown 

through mirror symmetry plane as it does not produce close packing; (b) in single-layer 

structures axis c of unit cell does not coincide with molecular axis cg; (c) in orthorhombic 

(double-layer) structures axes c and Co are aligned. 

From the poini of view of close packing an arbitrary displacement is more 

advantageous than that preserving the monoclinic and, still more so, the 

orthorhombic symmetry. Nevertheless, a triclinic displacement will not 

always take place, since the attainment of minimum free energy involves not 

only the tendency to a maximum packing density but also the tendency of the 

molecule to preserve the highest possible symmetry in the crystal. The same 

applies to the molecular layers whose stacking forms the crystal. It has been 

shown experimentally that crystals n-C,;gH3, are not built from layers 

T[+4.0], but from layers T[—4.0]. The structures of these crystals formed 

by the only possible close stacking of these layers is shown on models in 

Fig. 52. It should be remembered that the other n-paraffins shown by the 

straight line B (Fig. 45) are of the same type as n-C,,H3g. 

A complete description of the derived structures is given in the author’s 

book “Chemical Organic Crystallography” referred to above. Among these 

are structures investigated by Miller, Schaerer and V. V. Smith, and A. Smith. 

The derived types of structures can probably be discovered not only in n- 

paraffins but also in other long-chain compounds where the aliphatic zigzag 

plays a major role in packing. The geometrical considerations based on the 

close packing principle explain the sources of the structural diversity in 

chain molecules and shows that this diversity is mainly typical of the even 

members of the homologous series of n-paraffins, while for odd numbers 

only two versions of structures with orthorhombic cells can be expected. 
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Fig. 52. Packing of molecules in triclinic n-paraffins. 

Density of O and T Packings. The experimental data enable comparison of 

the packing density of molecules in O and T subcells. The accuracy with which 

the parameters are known is sufficient for the purpose; however, it is necessary 

to point out that this comparison cannot be considered rigorous, since differ- 

ent substances are compared, though of a single-type. 

The parameter cy in both cases is 2.54 A; therefore, the molecular packing 

density in the subcell depends on the area per molecule in the cross section 

perpendicular to the chains. The cross-section area to be found for an O 

subcell is 

So = Ay bo/2 == 18.56 A? 

In order to find a corresponding value for a T subcell, it is necessary to project 

the face ab on the plane normal to the chains and calculate the projected area: 

Sp = bo 410 COS(Yo— 90°) = bo [a7 ar (65/2)? COs — 90°) 
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Substituting values a) = 4.28 A, by = 4.82 A, yo = 107° 18’ in this formula, 
we have Sz = 18.73 A?. 

The small difference in density (less than 1%) probably accounts for the 

natural occurrence of both types of subcell, O and T, since the energetic 

advantage of one or the other structure depends primarily on the molecular 

packing density. 

It is now pertinent to state a problem which is of importance for under- 

standing polymorphism in n-paraffins. How can one explain the stability of 

triclinic structures for even n-paraffins with a number of carbon atoms n < 26 

and the transition to structures with an O subcell at n > 26? The reply can be 

obtained by proceeding from the assumption that the free energy of the T 

subcell itself is somewhat larger than that of the O subcell. In this case triclinic 

structures will have advantages in terms of energy, because the triclinic layer 

stacking is in general denser, as has already been mentioned. On the other 

hand, the longer the molecules, the relatively smaller becomes the effect of this 

gain in the packing density of the ends, and, finally, for a sufficiently large n it 

becomes insufficient to render a structure with a T subcell energetically more 

advantageous than the structure containing an O subcell. We shall return to 

this problem when discussing the experimental data pertaining to the solid 

solutions of n-paraffins (p. 116). 

At any rate it is quite clear that crystals with packing patterns O and T do 

not display a large difference in the amount of crystal free energy. This is 

suggested both by the comparison of their densities given above and by the 

fact that a several percent admixture of adjacent homologues converts a 

triclinic structure into an orthorhombic structure. 

Kabalkina [39] has carried out an X-ray study of the paraffins n-C3)H,,, 

n-C3,H66, n-C34H,7 at pressures up to 15,000 atm. This work established that 

a certain amount of the triclinic phase appeared in the structure and that it 

persisted for several days even after the pressure had been removed. 

10. ORGANO-IRON COMPOUNDS 

a. Sandwich-Type Molecules 

An interesting representative of this class of compounds is ferrocene [40]. 

Ferrocene crystallizes in the monoclinic space group C3, = P2,/a,a=5.91, 

b=7.59, c= 10.51 A, B=121.1°, Z=2; i.e., the centers of the molecules 

(Fe atoms) occupy special positions and the molecule has symmetry I in the 

crystal. Consequently, the ferrocene molecule exhibits an antiprismatic 

arrangement of the five-membered rings. Figure 53 illustrates the configuration 

of a ferocene molecule with the point group D.,. The significant electron 

density in the space between the carbon atoms observed in the differential 
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Fig. 53. Configuration of ferrocene molecule. 

electron-density series is probably due to considerable torsional vibrations cf 

the carbon cycles. 

As can be seen from Table 6, unusual bonds of the ‘‘metal five-membered 

ring” type in the molecule do not inhibit the crystallization of cyclopentadiene 

metal compounds possesing both the antiprismatic (ferrocene type) and 

Table 6 

CRYSTALLOGRAPHIC DATA FOR DICYCLOPENTADIENYL METAL COMPOUNDS 

Parameters 

a(A) oA) ~— eA) pe yee atzet Sass 
Compounds orOUr 

Fe(Cs5Hs)2 5.91 7.59 10.51 121.1 403.6 2 P2,/c 

Co(CsHs)2 5.90 TTA 10.60 isi 412.8 DRAG 

Ni(CsHs)2 5.88 7.86 10.68 121 422.2 2 VeAafke 

V(CsHs)2 5.88 8.02 10.82 ial 436.0 7 Veale 

Cr(Cs5Hs)2 5.92 7.88 10.72 AZ 427.6 wy Ve 

Mg(C;Hs)2 5.98 8.04 10.98 121.9 448.0 72, Welle 

Be(CsHs)2 5.9, Wels 10.86 122 420 De P2aG 

Ru(Cs5Hs)2 Tals 8.59 12.81 — — 4 Puma 

Os(Cs5Hs)2 7.159 8.988 12.800 — — 4 Pnma 

a=99.8 

Hg(Cs5Hs)2” 13a 13.4; 5.84 B= 101.4 993.0 4 PlorPI 

y = 88.8 

Mn(Cs5Hs)2 15.20 11.74 9.96 y= 114.46 — 8 P2,/b 

*At— 90°C. 
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prismatic (ruthenocene type) molecular configuration following the general 

regularities of organic chemical crystallography. 

As an example consider the crystalline structure of diferrocenyl [41]. The 

diferrocenyl molecule (XVI) occupies a centrosymmetric position in the 

AEE 

monoclinic unit cell with symmetry P2,/c (a= 10.17, b = 7.86, c= 12.62 A, 

B = 132°, Z = 2); in other words, it has a trans configuration with respect to 

the C,-C’, bond between the ferrocene residues. The bond lengths (Fe-C = 

2.03; C-C=1.42 A) and valence angles (C-C-C = 108°+2.5°) in these 

residues coincide with those found in ferrocene itself. The length of bond 

C,-C’, = 1.48 A between the ferrocene residues is somewhat shortened. It is 

interesting to note that rotation angle ¢ = 16° of one cyclopentadiene ring in 

the sandwich with respect to the other appears to be intermediate between the 

prismatic (¢ = 0°) and antiprismatic (@ = 36°) configurations inherent in these 

rings. 

(XVI) 

Fig. 54. Packing of molecules in diferrocenyl structure. 
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Figure 54 shows the packing of molecules in the structure. The structure is 
a close packing of layers with coordination 6 which run parallel to (101). It is 
evident that the trans conformation of the molecule ensures a convenient 
shape close to a sphere and provides possibilities for a rather dense packing. 
As a result, each molecule in the structure is surrounded by twelve neighbors 
and the packing coefficient is 0.71. The shortest intermolecular distance 
C---C equals 3.60 A. Some of the C--- H distances are reduced. The shortest 
distance (2.52 A) would become still smaller (~2.3 A) if the ferrocene sand- 
wiches acquired an antiprismatic conformation by rotation of the external 
rings, without changing the cell parameters. 

b. Structures of Some Iron Carbonyls 

In the iron pentacarbonyl molecule Fe(CO); [42] the plane passing through 

Fe and three of the carbonyl groups is perpendicular to the plane drawn 

O 

es 
ec 

ea2533-==- O=C—Fé-—---- e 

c So 
ii 
O 

(XVII) 

through Fe and the two remaining carbonyl groups. In the unit cell of mono- 

clinic symmetry (a = 11.71, b = 6.80, c = 9.28 A, B = 107.6°; space group C2/c, 

Z = 4) the molecules are positioned on twofold axes. Since the entire molecule 

is bounded by oxygen atoms, O-:-O contacts alone are created by the mol- 

ecular packing. Figure 55 represents the intermolecular distances in the 

structure, the determining ones being the contacts O---O=3.15, 3.19, 

3.21 A. The mean intermolecular radius of an O atom is thus 1.59 A; this is 

somewhat larger than that taken above (1.52 A). 
The same O--- O distances (the minimum distance equals 3.1 A) are to be 

found in the Fe,(CO), structure [43]. The crystals of this compound are 

hexagonal: a = 6.45, c = 15.98 A; space group C6;/m, Z =2. 

O O 
{II Ul 

c i | 
O==Cc —Fe—C==0—Fe— C==0 

Z S Ze ~ Ou NO O~ O 

(XVIII) 
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O Fe ‘ 

Oc 

Oo — a 

Fig. 55. Intermolecular distances in iron pentacarbonyl structure. 

The structure of iron tetracarbonyl (acrylonitryl) (CH,CHCN) Fe(CO), 

[44] is monoclinic (a= 12.09, b=11.45, c=6.585 A, B=110.4°; space 

group P2,/a, Z = 4) The molecules have the form 

The intermolecular spacings appear in Fig. 56. The adjacent molecules make 

contact via atoms O---O (the shortest distance is 3.04 A), N---O, C:--N. 

The authors ignore H atoms; therefore, the analysis of the contacts is far from 

complete. 

The general conclusion following from consideration of the structures of 

crystals built up from molecules with “anomalous atom-group of atoms” 

bonds is beyond any doubt: The packing of identical molecules into a crystal 

follows the same rules as the packing of molecules with ‘“‘ordinary”’ valence 

bonds. 



11. Tetraaryl Compounds 

Fig. 56. Intermolecular distances in iron tetracarbonyl (acrylonitrile). 

11. TETRAARYL COMPOUNDS 

Tetraaryl compounds are composed of molecules X(C;H5)4, where X is a 

tetravalent element. The interest in these compounds is dictated, primarily, 

by their high symmetry (4) retained by the molecule in the crystal and, second- 

arily, by the possibilities for studying the steric hindrances between the 

ortho-atoms of two benzene rings lying on one plane. 

It can be seen from Table7 that the structures of the tetraaryl compounds so 

far known form an isomorphous series; therefore, it is sufficient to discuss the 

conformation problem for one member of this series, e.g., for tetraphenyl 

10) 

methane. 

Table 7 

Molecular 

Compound Syngony Celi parameters, We; Space symmetry d,_. 

(A) group in crystal (A) 

C(Ce6Hs)a tetr G—NON86 C= 1-26 2 P42,c 4 1.50 

Si(CeHs)4 tetr a= 11.30: c=7.08 2 P42,¢ 4 1.94 

Ge(C6Hs)4 tetr a= 11.60; c= 6.85 2 P42,c 4 1.98 

Pb(C6Hs)4 tetr 3 WUE? C= G5 2 P42,c 4 P2928 

Sn(C6Hs)4 tetr a= 1.856 =16:65 2 P42,c 4 Qala 
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The structure of tetraphenylmethane [45] was determined from a projection 

on the basal plane and by geometrical analysis. The symmetry of the molecule 

is 42m, 222, m or | (depending on the rotation angles of the benzene rings); in 

the crystal, it is 4. Figure 57 gives the ab projection of the structure (the H 

atoms are not shown). Prior to analyzing the packing of molecules in the 

crystal, consider the configuration of a free molecule. Let the molecule have 

symmetry 4. The short distance between the H ortho-atoms in the benzene 

rings does not allow arbitrary rotation of these rings around the C—-X bond. 

When the rings lie on vertical planes (planes which pass through the 4 axis), 

the distance between the centers of the H ortho-atoms in the molecule benzene 

rings related by the twofold axis is very small, and with X = C (X-C = 1.50 A) 

it does not exceed 0.58 A (Fig. 58). 
Let us take the configuration of the aryl rings when they are positioned in 

pairs on one plane for the initial position and describe the configuration by 

the angle y between the ring plane and the vertical plane. As the ring rotates 

about the C—X bond, the centers of the hydrogen ortho-atoms (positions 2 

and 6) draw circumferences with the radius: 

R => (dec 5 de_y) COs 30° = Delis) A 

where d is a bond length. The same circumferences are drawn by hydrogen 

atoms in positions 3 and 5; the H, atom lies on the rotation axis. 

The center of the circumference traced by the H, and H, atoms lies on the 

diameter of the benzene ring at distance p from the central X atom: 

Pp = [dxct+ doc—dcy)] sin 30° = ty_- + 0.16A 

Using the C-X bond lengths given in Table 7, we obtain the following differ- 

ent values of p: 

Po-c =.7, Psize = 2.1, Psnterae2os Prr-c = 2.39 A 

[eigls am 

} 
Fig. 57. Tetraphenylmethane. Projection ab. 

/\ 
Bese ae ES 
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Fig. 58. Molecule of tetraaryl compound XR4g. Initial position of two benzene rings in 

one plane is shown. 

If the tetrahedral valence angles of the central atom are not distorted, the 

squared distance from the hydrogen atom in an ortho-position to the 4 axis 

passing through the central atom is 

D? = (psin 54° 44’— Rcoswcos 54° 44’)* + R? sin? y 

where 54° 44’ is half of the terahedral angle. For the four X’s given above we 

have 

1.388 

1.715 
D? = —1.24cosw | +2.15* sin? W 

1.903 

1952 
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Distance D must not be less than the intermolecular radius of the hydrogen 

atom Ry, = 1.17 A, otherwise the hydrogen atoms of different benzene rings 

situated in ortho-positions (2 and 2’; 6 and 6’) interfere with each other. For 

this reason, the values of w from 0° to 23°-31.5° (when passing from C to Pb) 

appear to be forbidden. 

However, another restriction is also imposed: The H ortho atoms of two 

benzene rings separated by the minimum distance at wy = 0° move apart as w 

increases, but each of them starts to come closer to the H ortho-atom of 

another benzene ring, 1.e., H, comes nearer to H,’, and H, to H,’. Since, due 

to the 4 symmetry, all the rings rotate similarly, with y = 90° the distance 

between these H atoms will be 2p sin 54° 44’. 

At any wy atoms 2 and 6’ (2’ and 6) are at an equal distance from the initial 

plane and on one side of the plane. The projection of the distance between 

these atoms onto a horizontal plane (normal to axis 4) is constant and equals 

2p sin 54° 44’; only the projection of the distance onto the 4 axis, equal to 

2p cos w sin 54° 44’, varies. Calculations show that the values of wW are 

forbidden in the foliowing ranges: for X = C, 44-90°; Si, 66-90°; Sn, 71-90°; 

Pb, 72-90°. 

Thus, a tetraphenyimethane molecule can have configurations with y= 

32-44° aid, of course, = 136-148°; for a tetraphenyllead molecule, y = 

23-90° and 90-157° are possible. 

The angle 6 between the normal to the aryl ring and the 4 axis will be found 

from 

cosé = coswcos 54° 44’ 

In all the tetragonal structures discussed here the translation along the c axis 

is comparatively small. If molecules related by this translation touch the 

carbon atoms of the benzene rings, then ccos 6 = 3.6A or csinw = 2.9A. The 
parameter c ranges from 6.5 to 7.2 A. Consequently, a contact is associated 

with w equal to 24-28°; at larger values of wy there will be no contacts between 

the benzene rings of these molecules. However, as has been shown above, 

these small values of W are forbidden. 

Consequently, there will be no contacts between molecules related by 

translation along the c axis in any of the tetragonal crystals of compounds of 

the type XAry,. 

Detailed investigations of the structures of tetra-p-tolyl tin and tetra-p- 

methoxypheny] tin [46] indicate that the contacts here exist between molecules 

related by the a translations and also by the 2, screw axes. 

Figure 59 shows the structure of Sn(C,H-5),. In all the crystalline structures 

of XAR, type compounds studied, the molecular coordination number is 12. 

Experimental data show that in these crystals, the angle y corresponds approxi- 

mately to the middle of the allowed interval: for C(C,H;),, w = 55°; for 
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Fig. 59. Projection of Sn(C¢H;)4 on face ab. 

Si(CgH;)4, 37°; for Sn(Cs5H5),4, 42°; and for Pb(C,H,;),, 50°. The orien- 

tation of the aryl rings has been established experimentally to within several 

degrees. Nonetheless, the results of the structure determinations are some- 

what uncertain in that the valence angles may deviate from the tetrahedral 

angle; this in no way contradicts the 4 symmetry. 

The packing coefficient of the tetraphenylmethane molecules is 0.73. As 

the X-C bond length increases, the packing coefficient drops with the transition 

to silicon, tin, and lead compounds. The values of the packing coefficient are 

0.71, 0.70, and 0.69. 

12. POLYMORPHIC MODIFICATIONS 

The majority of organic substances seem to be capable of crystallizing in 

several different structures. Most frequently encountered are monotropic 

modifications of the same substance. Suppose that two different crystals, 

A and B, can be obtained by crystallizing a substance from different solvents. 

If by bringing these crystals into contact, we can, sometimes varying only the 

temperature, convert modification A into B, but under no conditions convert 

B into A, then the transition A into B is monotropic. In other words, for any 

parameters of state, the free energy of crystal B is lower than the free energy of 

crystal A. 

An unstable crystal can be quite stable in practice. For molecular crystals, 

this circumstance need not seem surprising, since transition into a stable state 

involves overcoming high barriers: it is easily seen that self-diffusion in a 
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perfect defect-free molecular cr ystal built up from rather large molecules is 

next to impossible. 

Besides, the differences between the free energies of monotropic modifi- 

cations are in all probability also very small and, therefore, the thermodynamic 

pressure difference is insignificant. For example, for normal propylbenzene, 

the free energies of the stable and unstable modifications do not differ by more 

than 70 cal/mole. This is, certainly, a low value, since it amounts to a mere 

fraction of a percent of the total free energy of the crystal (including lattice 

energy). 

Consider a few examples. Several polymorphous modifications are to be 

found for acridine (XX), a substance whose molecule (XX) has a “hollow” in 

(XX) 

the middle and is not, as a consequence, very convenient for packing. By 

X-ray diffraction studies we have measured the unit cells of at least five acridine 

modifications [47] obtained either from different solvents, by sublimation 

(acridine-IV), or from the melt (acridine-II). Table 8 summarizes the crystal- 

lographic data of four acridine modifications designated in a different manner 

by different authors; we give Phillips’ notations, the notations of other 

researchers are bracketed. The most stable of these modifications is acridine-II, 

which is stable from room temperature to the melting point. Acridine-I has 

Table 8 

POLYMORPHOUS MODIFICATIONS OF ACRIDINE AND PHENAZINE 

B 6, Space X-ray 

group density 

(GC 

(A) (A) (A) 

Acridine-II (a) 16.34 18.90 6.08 Sy 8 P2,/a 1.27 
Acridine-III 11.41 5.99 13.69 98°48’ 4S PQ, /n 1.29 
Acridine-IV (5) 15:75 9.43 6.20 ae 12) SP2 Oe od 
Acridine () 16.37 5.95 30.01 141920’ 8 Aa 1.29 

a-Phenazine 13:92 5061 7.088 109913" 2 Piva 1.33 
B-Phenazine 11:64" 1158 6.88 99°19 4° P2,/n 1.28 
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been found to be a monohydrate; the number of molecules of C,;H sN:H,O 
in the cell is 15.75+0.15. When heated, acridine-I loses one H,0O molecule 

and is converted into acridine-II. Acridine-III and acridine-IV are also 

converted into acridine-IT at 45° and 75°C, respectively. It is significant that 

only acridine-III has a “‘normal” number of molecules in the unit cell (Z = 4). 

That the shape of the molecule is inconvenient for packing seems to explain 

why the unit cells of other modifications contain more than one independent 

molecule in general positions. It is interesting to point out that all the poly- 

morphic modifications have completely different structures. 

An example of a polymorphic substance with “similar” structures is 

phenazine [48]. The phenazine (XXI) molecule is more symmetric than the 

(XXI) 

acridine molecule and is probably more suitable for packing, since its two 

“hollows” are located symmetrically. Two polymorphic phenazine modifi- 

cations have been reported; their crystallographic data are given in the same 

table. ; 

In the case of an enantiotropic polymorphic change, a single crystal can be 

converted into a single crystal from both sides. The phase boundary in 

a single crystal can be immobilized and two polymorphous modifications 

of the same substance can indefinitely exist in contact under equilibrium 

conditions. 

The heats of isothermal change have been measured for a large number of 

crystals. If a crystal changes into a rotational crystalline state, the heat of this 

transition is high and exceeds the heat of melting. When one crystal form is 

converted into another the heat of the transition is about 500 cal/mole, while 

the gain in entropy makes up tenths of units of cal/deg mole. 

With only rare exceptions, all polymorphic transitions in organic crystals 

involve sudden changes in the volume. The structures of different 

modifications of the same substance may be “similar” or completely 

different. 

For example, the triclinic modification of p-dichlorobenzene [49], (a = 7.32, 

b = 5.95, c= 3.98 A, a= 93° 10’, B = 113° 35’, y = 93° 30’; space group P I, 
Z=1) “resembles” the monoclinic modification [50] (a= 14.80, b= 5.78, 

c = 3.99 A, B = 113° 0’; space group P2,/a, Z = 2). The tilts of the molecules 

in a layer are practically similar. The only difference is that in the triclinic 
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Fig. 60. Orientation of molecules in the triclinic and monoclinic modifications of 

p-dichlorobenzene. 

crystal (Fig. 60) the layers are transiationally identical, while in the monoclinic 

crystal the adjacent layers are related by a twofold screw axis. 

At this point it should be emphasized that this “similarity” of structures is 

in no way equivalent to a certain cooperative course of a polymorphic change. 

Mnyukh [51] has convincingly demonstrated that the growth of one crystal 

from another crystal follows the same laws as does the growth of a crystal 

from the melt, regardless of whether the polymorphic modifications are 

similar. 

No special significance should be assigned to the similarity of structures. It 

is evident that the free energies of two structures at a certain p, T may be equal 

both in “similar” and “unlike” structures. 

13. HYDROGEN BONDS IN CRYSTALS 

This field of organic chemical crystallography has not yet been systematically 

studied. Information about the nature of hydrogen bonds in certain sub- 

stances has been obtained, so to speak, as a by-product of other research. 

Although some spectral data seem to indicate hydrogen bonds between 

atoms of a number of elements, molecular crystals display such bonds only 

with oxygen and nitrogen atoms. These bonds are sufficiently strong: there is 

indirect evidence to the effect that the energy of each bond is of the order of 

3 kcal/mole. 

Now that significant progress has been made in the computation of lattice 

energies by means of atom-atom potentials it should be quite in order to carry 

out a systematic investigation of the heats of sublimation of hydrogen-bonded 
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organic crystals. The experimental value of the lattice energy minus the 
interaction energy calculated for all atom pairs yields the total energy of the 
hydrogen bonds. (For the purpose of these calculations we “forget” the 
protons responsible for the hydrogen bonds.) An interesting program of 
systematic research into a class of compounds which contain hydroxyl, 
hydroxyl and carbonyl, hydroxyl and amino groups, etc. is still awaiting its 
enthusiast. 

it seems well justified to extend the atom-atom approximation for lattice 

energies to the case of hydrogen bonds as well (see Chapter II). 

The kydrogen bond parameters appear to vary insignificantly from one 

molecule to another. Therefore, it can reasonably be expected that accurate 

results on molecular packing will be obtained even if we assume these par- 

ameters to be practically constant or, at most, differentiate between hydrogen 

atom parameters in the hydroxyl and carbonyl groups (the literature data 

suggest a sufficiently pronounced difference in the equilibrium values of the 

hydrogen bonds in the two groups). 

The formation of each hydrogen bond involves a significant loss of energy 

and it is, therefore, obvious that such structures will display a tendency to 

form all possible hydrogen bonds. If any such bond fails to form, this can be 

due only to geometric restrictions. 

Experimental evidence indicates that, as a rule, nature succeeds in building 

up the unit cell of a crystal so that the hydrogen bonds would affect but slightly 

the molecular packing density. The simultaneous satisfaction of the require- 

ment of maximum packing density (or the equivalent minimization condition 

for the sum of atom—atom potentials associated with conventional interactions) 

and the tendency for maximum formation of hydrogen bonds is facilitated by 

the fact that minor bending of a hydrogen bond entails low energy losses. This 

conclusion is confirmed by the shape of the atom-atom potential for hydrogen 

bonds (see Section [I.6) and the absence of a correlation between proton 

deviations from the bond link and the bond length. 

In order to develop organic chemical crystallography for organic substances 

whose molecules are combined into crystals by means of hydrogen bonds, it 

would be worthwhile to consider all types of hydrogen bonds, and also all 

types of ‘islands’ formed by H bonds inside each type of hydrogen bonding. 

We believe that classification according to types of bonds must be based on 

the groups of atoms forming the hydrogen bonds. 

A. Hydrogen bond O-H-:-O occurs between groups: 

1. COOH and COOH 

246-0 and. COOH 

OH and COOH 
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4-0 and OH 

5. OH and OH 

B. Hydrogen bond N-H---0 

a. Nitrogen atom in NH, group. 

Bonding exists between groups: 

1. NH, and COOH 

2. NH, and OH 

3. NH, and C=O 

b. Nitrogen atom in NH group. 

Bonding is effected between groups: 

1. NH and COOH 

Mes, (ICs 

The geometries of saturated hydrogen bonds may be quite different depend- 

ing on the arrangement of the donor and acceptor groups in the molecule. 

While a pair of molecules usually cannot produce more than two mutual 

hydrogen bonds, hydrogen-bonded molecules can form either rings of two, 

three, or more molecules, or infinite chains. Formally speaking, the latter 

case corresponds to the formation of a large crystalline “‘molecule.” If there 

are three such bonds possible, three-dimensional frame structures may be 

built up from any number of molecules. 

When hydrogen bonds are responsible for the formation of rings or frame 

structures and the interaction between these structures is due to dispersion 

forces, hydrogen bonding may lose some of its characteristic properties 

(e.g., the melting temperature may not rise). 

If molecules can have three hydrogen bonds, the resultant structure may 

fall into clusters of chains or two-dimensional layers. In this case, too, a 

number of crystal properties will be determined by van der Waals forces 

rather than by hydrogen bonds as the former bind clusters of chain and 

layers of molecules to form a crystal. 

Finally, with four hydrogen bonds, double layers and three-dimensional 

arrays can be built up. I the latter case the hydrogen bonds become critical 

for the crystal properties since any disintegration of a crystal requires their 

breaking. 

The program of regular studies on intermolecular H bonding is far from 

being completed. Strictly speaking, it would be required to know the structure 

and properties of at least two or three representatives of each geometrical type 

for all types of bonding. At the present time majority of the boxes of the 
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suggested classification are not filled up. Therefore, pending generalizations, 

which will be made possible only by at least partial fulfillment of this pro- 

gram, we shall give only a few typical examples. 

Hydrogen bonds form infinite bands of molecules in the structures of 

dicarboxylic acids with a common formula HOOC(CH,),COOH (XXII) 

O---H—-O pr HQ 
H,) é t (GHP) FeO oe : (C 2 \ i 2/n \ if 

O=-H 37-0 O—H.::-O 

(XXII) 

(n=0 corresponds to oxalic acid, n= 1 to malonic acid, nm =2 to succinic 

acid, m = 3 to glutaric acid, and n = 4 to adipic acid). These acids can exist in 

two polymorphic modifications with small differences in the internal energy. 

By way of example we shall describe the structures of «- and £-forms of oxalic 

acid. 

a-form of oxalic acid HOOC-COOH [7, p. 8.671; 52]. Unit cell: a = 6.546, 

b = 7.847, c = 6.086 A; space group V;° = Pcab, Z = 4. Molecular symmetry: 

point group 2/m, in crystal I. The molecule is planar and has the configuration 

shown in Fig. 61. 

Intermolecular distances O --- O are (A): 

ORG): OCIS © 2771 O,(1)--- O,(iD = 3.54 

One O,dI)y —=2e1 | 07d) -2°O, (Il).=93.46 

OD OV 229 = «ON O51). = 3.29 

©, F0,lv) =328  O.()'2(0,(1V). = 3.24 

O, (1) --- O, IV’a) = 3.28 O,()-::- O,(I) = 3.22 

©,@): 0,01) =311  ©,()..4/0,(Mla)— 3.32 

O, (1 -- O,(Ma’) = 3.11 

The first of these distances undoubtedly indicates a hydrogen bond. The 

other values are larger than 2R,. Each of the O atoms is involved in only one 

hydrogen bond —O-H-:-O=. These bonds bind molecules into infinite crimped 

layers parallel to bc (Fig. 62). 
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0, 
0; 

Fig. 61. a-Form of oxalic acid. Molecular configuration. 

/ 

0, 0; 

B-form of axalic acid [7, p.S.672]. Unit cell: a = 5.30, b = 6.09, c= 5.51 A, 

B=115°30 Sspace group C, a=) jena — 2. 
Among the intermolecular distances O,:--O,’=2.71: 3.11; 3.48; 

O, ---O,'=3.45 A, there is one reduced distance (2.71 A), which is the 
evidence of hydrogen bonding. Similarly to the structures of the B-form of 

succinic acid and the higher dicarboxylic fatty acids, but unlike the structure 

of the a-form of oxalic acid, hydrogen bonds bind the molecules into the 

infinite chains shown above. The chains are separated by normal intermol- 

ecular distances. 

The structures of the «- and f-forms of resorcinol (XXIII) employ hydrogen 

bonds of the type O-H --- O. 

Fig. 62. «-Form of oxalic acid. (a) projection bc, dashed lines hydrogen bonds; top, 

two superposing layers, bottom, orie layer; (b) projection ac, layers cf molecules formed 

by hydrogen bonds can be seen well; (c) projection ab. 
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OH 

OH 

(XXIII) 

a-form of resorcinol [53]. Unit cell: ¢ = 10.53, b = 9.53, c = 5.66 A; space 

group C3, =Pna, Z=4. Molecular symmetry: point group mm, m, 2, or 1 

(depending on the positions of the OH groups); in the crystal it is 1. 

The molecules are planar, their packing is determined by stable hydrogen 

bonds. Figure 63 shows the projection of the structure onto ab. The inter- 

molecular distances O---O = 2.66 and 2.75 A; the shortest C---O distance 

is 3.49 A and the shortest C---C distance is 3.59 A. 

The £-form of resorcinol [54] is a high-temperature form, the temperature 

of the «— f transformation is 74°. Unit cell: a=7.91, b = 12.57, c=5.50A; 

space group C3, = Pna, Z = 4. 
The difference from the structure of the «-form lies in a somewhat different 

pattern of the hydrogen bond system (Fig. 64). Due to the presence of two 

hydrogen bonds (2.70 and 2.75 A) the molecules form a three-dimensional 

array of hydrogen bonds O-H-:--O. The shortest intermolecular distances 

C=-0=341 A and C---C=3.54A; 

yw 

Te 

b 
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A 

G 
Tw 

ow 

(0 

Fig. 63. «-Form of resorcinol. Projection ab. 
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Fig. 66. Hexamethylenediamine. Projection be. 
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The above examples show that the distance between the oxygen atoms of 
different molecules involved in the formation of hydrogen bonds -O-H---O- 
varies insignificantly near 2.70 A (2.66-2.75 A). 

An example of a structure with the hydrogen bond type NHN is 

the structure of hexamethylenediamine [55] H,N(CH,),NH, (unit cell: 
a= 6.94, b=5.77, c= 19.22 A; space group Vi> = Pbca, Z=4; molecular 
symmetry: point group 2/m, 2, m, I (depending on the rotation around the 
bonds); in the crystal it is I. 

The configuration of the molecule (without hydrogen atoms) is shown in 
Fig. 65. The molecule is planar. One hydrogen bond (Fig. 66), 3.21 A long, is 
formed between the NH, groups of adjacent molecules. Other intermolecular 
distances have conventional values: NH, --- NH, = 3.68 and C, --- NH, = 

3.92 A. All intermolecular distances in the direction of the a axis exceed 4 A. 
The structure of 2-amino-4,6-dichloropirymidine (XXIV) (a= 16.457, 

b=3.845, c= 10.283 A, f = 107°-58'; P2,/a, Z=4) has hydrogen bonds 

H 

(XXIV) 

N-H: . NC with lengths 3.21 and 3.37 A (Fig. 67) which are almost coplanar 

with the rings. Among the other intermolecular distances one finds slightly 

shortened distances Cl--- Cl: 3.44 and 3.56 A instead of 2R,, = 3.60 A. The 

remaining intermolecular distances exceed 4 A. 

There exists a large number of structures with hydrogen bonds N-H- -O-. 

Glycine and other amino acids have such structures. 

Table 9 

CRYSTALLOGRAPHIC DATA FOR THREE FORMS OF GLYCINE? 

Form of a b c B V Space Yh, 

glycine (A) (A) (A) group 

a 5.102 11.971 5.458 AS ADZ 309.7 P2,/n 4 

B 5.077 6.268 5.380 132122 157.4 P2, 2 

y 7.037 a 5.483 — 23521 P3, or 3 

P32 

“VY, litaka. Acta Crystrallogr. 13, 35, 1960. 
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(0.517) (0475) 

Fig. 67. 2-Amino-4,6-dichloropyrimidine. Projection ac. In brackets, y coordinates in A. 

Dashed lines, hydrogen bonds. 

Glycine is available in three crystalline modifications: «-, B-, and y-glycine 

[56]. Crystallographic data for these modifications are given in Table 9. 

Unlike other amiro acids, the molecules of glycine H,NCH,COOH do not 

contain a nonsymmetric carbon atom and therefore display no optical activity 

in solutions. However, the molecules in glycine crystals are not planar and can 

exist as two mirror-related forms. 

Figure 68 shows the configuration of the molecules in the structure of 

a-glycine. The nitrogen atom goes out of the plane of the carboxyl group and 

C, atom by 0.436 A. The molecular configurations in the crystals of the B- and 

y forms differ only by a somewhat different value of the deviation of the N 

atom from the above plane: 0.583 and 0.309 A, respectively. Each molecule 

has four hydrogen bonds with the molecules of four adjacent unit cells, which 

Fig. 68. Configuration of molecules in the «-9!ycine crystal. 
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Fig. 69. Glycine. Close-packed layer ac formed by hydrogen bonds N-H---O (dashed 

lines). 

results in the formation of infinite close-packed ac layers (Fig. 69). The packing 

pattern corresponds to cleavage along (010). Hydrogen bonds N-H-::-O, = 

2.76 A and N-H---O, = 2.88 A in the layer are very strong and form an angle 

of 108.5° with one another. The angles with the C-N bonds are, respectively, 

118 and 120°, i.e. close to the tetrahedral angle. 

The stacking of the ac layers related by inversion centers at Z = 0 and } is 

also found to be very dense due to the hydrogen bonds between these layers. 

Conversely, the distanees between the ac layers related by the n glide planes 

with z = 4 and 3 equal the sums of intermolecular radii, which indicates that 

there are no hydrogen bonds between these layers. Thus, the structure is built 

up from double ac layers formed by hydrogen bonds (Fig. 70). 

The binding of single layers into a double layer (Fig. 71) is effected by the 

bifurcated hydrogen bonds SNH: ei formed by the H(3) atom of the NH; ~* 
is ZO 

group which is actually involved in two hydrogen bonds N-H(3):--0, = 2.93A 

and N-H(3)---0,= 3.05 A (the primes denote the atoms of the adjacent 

layer). 

In the structure of B-glycine [56] hydrogen bonds N-H---O with lengths 

2.758 and 2.833 A bind the molecules into single layers which run parallel to 

the (010) plane. Single layers are bound by bifurcated hydrogen bonds (3.002 

and 3.022 A), but not into pairs as in «glycine, but into a three-dimensional 

array. 
In the structure of y-glycine [56] hydrogen bonds, 2.801 and 2.817 A long, 

bind the molecule into spiral chains around triad screw axes parallel to the 

c axis. The individual spirals are mutually related by hydrogen bonds, 2.970 A 

long, as well as by the electrostatic attractive forces between adjacent NH; * 

and COQO™ groups. 
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Fig. 70. Glycine. Projection ab showing doubling of layers and large distances between 

double layezs. 

In the structure of d,l-alanine H,NCH(CH;)COOH each NH,* group 

forms three hydrogen bonds with the O atoms of adjacent molecules; here the 

distances are equal to 2.88, 2.84, and 2.78 A. These bonds bind the molecules 

into a three-dimensional array (Fig. 72). 

As has already been shown above, organic chemical crystallography has not, 

so far, produced enough data for making general conclusions about inter- 

molecular hydrogen bonds. So far only one significant conclusion suggests 

Fig. 71. Glycine. Stacking of molecules of two single layers to form one double layer. 
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Fig. 72. d,l-Alanine. Association of molecular chains parallel to axis c into a “‘tube.” 

Double lines, hydrogen bonds. 

itself: The formation of hydrogen bonds does not handicap the layout of 

molecules in conformity with the general rules of the packing of molecules in 

the crystals discussed above. 

C. Crystals with Elements of Disordert 

14. RIGID DISORDER 

The arrangement of molecules in the cell established by X-ray diffraction 

analysis is the arrangement averaged over all the crystal cells. If there is a 

certain disorder in the molecular arrangement, inherent in the crystal, the 

X-ray technique detects “the average molecule”’ by the superposition of all the 

+It is recommended that Sections C, D, and E be read after the subsequent chapters 

of the book. 
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molecules located in the same crystallographic position of the average unit cell. 

One of the most elementary and common examples of this kind of disorder is 

the formation of centrosymmetric crystals by molecules without a symmetry 

center. Such crystals are, for instance, p-chlorobromobenzene, p-nitrochloro- 

benzene, and azulene (a hydrocarbon consisting of a five-membered ring 

conjugated with a seven-membered ring). 

In such crystals, the average molecule is actually obtained by centrosym- 

metric superposition of two molecules with half-weight atoms. 

If we construct a hypothetical space lattice of average cells (for all the three 

crystals this is a P2,/c lattice with two molecules in a unit cell), the space lattice 

will have an equal number of points with molecules facing the opposite 

directions. It is quite evident that such a disordered crystal can be formed only 

if both arrangements have similar energies. 

As an illustration, we have made simple calculations for the azulene crystal 

by means of the atom-atom model. The crystailine structure of azulene [57] 

(XXV) is characterized by a monocinlic unit cel! with parameters: a = 7.884, 

ee 
(XXV) 

b = 5.988, c= 7.840 A, B = 101° 33’; space group C3, = P2,/a. The unit cell 

contains two molecules; consequently, the noncentrosymmetric azulene 

molecules must be positioned on inversion centers. Thus, the azulene structure 

is disordered in the sense that the center of inversion is occupied statistically. 

Figure 73 represents the average molecule of the average cell of an azulene 

crystal in the form given in the original publication. We have added the H 

atoms to this drawing. The crystal structure is very similar to that of naphtha- 

lene. It can be easily seen that the inversion of the molecule (a half of the 

average molecule) by the symmetry center practically does not change the con- 

tacts between the molecules of the ab layers. We have considered all possible 

versions of the mutual arrangement of azulene molecules in the nearest- 

neighbor approximation on the ab plane. The calculations have demonstrated 

that 23 arrangement patterns are not favorable because they are associated 

with a higher energy than the interaction energy of molecules located so as to 

form a regular noncentrosymmetric lattice (P2,). Seven arrangement versions, 

however, have been found to be more favorable, and two of these cases in- 

volved energy which was 0.4 kcal/mole lower than that of an ordered crystal. 
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Fig. 73. Azulene. Projection ab. Hydrogen atoms (not shown in the figure) replace each 

other when half of the molécules are inverted. 

The following point is also worthy of note: All the molecular arrangement 

patterns are associated with interaction energies lying within 1 kcal/mole of 

one another. Furthermore, the configurational entropy contribution for 

distribution over two positions RT In 2 at room temperature is 0.42 kcal/mole. 

The calculations show that, first, no second-order phase change should be 

expected, because preservation of order in the same lattice of molecular 

centers is much less favorable. Secondly, the loss in lattice binding energy due 

to unavoidable unfavorable arrangements in an azulene crystal may apparently 

be compensated for by an increase of entropy. 

Of course, the above example in no way proves that azulene must necessarily 

crystallize into disordered crystals. To prove this, it would be required to apply 

the usual procedure i.e., to show that all other conceivable azulene structures 

are “‘worse”’ than the experimentally observed disordered structure. Neverthe- 

less, it has been demonstrated that our physical model offers a correct interpre- 

tation of the phenomenon of disordered structure formation. 

Another interesting example of a disordered structure is p-chloronitro- 

benzene [58]. The monoclinic unit cell with parameters: a = 3.84, b = 6.80, 

c=13.35 A, B =97° 31’ (space group: P2,/c) contains two molecules. The 
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7e~ 
Cl 

(XXVI) 

molecules are noncentrosymmetric and, consequently, being located on the 

centers of inversion, they are in a disordered arrangement in a crystal: roughly 

speaking, the nitro groups of one-half of the crystal molecules face, for instance, 

rightward, and those of the other half leftward. The volume increments of the 

—~Cl and -NO, groupsare 29 A and 23 A?, respectively. In this way, the volume 
of a certain average substituent equals 26 A°. The packing coefficient of such 

“average’’ molecules in the real structure is found equal to 0.62. It can be easily 

understood that disorder in the arrangement of groups of different volumes 

results in a rather loose packing which must probably be compensated for by a 

gain in entropy. 

A very interesting class of disordered structures are those of the hexasubsti- 

tuted benzene derivatives. Using for substitutents halogen atoms, methyl 

groups, and other small radicals, one can obtain a large number of isomor- 

phous crystals of the hexachlorobenzene type (an ordinary centrosymmetric 

monoclinic structure with two molecules in the unit cell). 

According to the results of the X-ray diffraction and nuclear quadrupole 

analyses conducted in the author’s laboratory [59], the type of orientational 

distributions of molecules may differ considerably from one crystal to another. 

Since the average molecule is centrosymmetric, there are three independent 

positions in a crystal over which the benzene ring substitutents are distributed. 

In some cases, the stituation is quite simple. For instance, a monobromo- 

pentachlorobenzene molecule has one-sixth of the Br atoms and five-sixths of 

the Cl atoms in each position. The picture is equally clear for a hexachloro- 

benzene molecule: If two ortho- or meta-Cl atoms in a dibromotetrachloro- 

benzene molecule are substituted by Br atoms, there will be one-third of the 

Br atoms and two-thirds of the Cl atoms in each position. As in many other 

similar cases, the average molecule displays 6/mmm symmetry here. 

The behavior of tetrachloro-p-dibromobenzene molecules is specific. The 

average molecule has mmm symmetry. One of the orientations is strongly 

preferred: Two-thirds of the molecules are oriented similarly, while the remain- 

ing molecules are equally distributed between two other positions. 

These examples show that molecules in disordered crystals of this type may 

exhibit both uniform and nonuniform positional distributions. 

Another subject of interest is the investigation of short-range order in the 

arrangement of differently oriented molecules. However, no work has been 

done to study this problem. 
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Molecules of disordered organic crystals perform the same motions as do 

those in quite ordered crystals. Some molecules only vibrate about an equilib- 

rium position (p-nitrochlorobenzene, azulene), others rotate about one of their 

axes. In the case of small substituents, all hexasubstitution benzene derivatives 

are probably capable of reorientation. The phenomenon of reorientation in 

such molecules containing protons has been demonstrated by French workers 

[60] using the NMR technique. 

15. ROTATIONAL CRYSTALLINE STATE 

Crystals with the disorder elements which have been discussed in the fore- 

going section give good-quality X-ray pictures containing hundreds of re- 

flections. This means that deviations of the size and shape of the unit cells from 

the average value do not exceed too much those for conventional ordered 

systems. This has been confirmed by our calculations for the azulene crystal: 

There is but a slight difference in the energy of various mutual arrangements of 

molecules in unit cells of the same size. A characteristic structural feature of 

disordered crystals of this type is that the inversion of a molecule causes com- 

plete or partial transposition of the atoms; at any rate, certain important 

geometrical elements of the molecule—planes or axes—are aligned. 

We have considered structures in which disorder is brought about by a 

relatively small number of different orientations, while order is retained with 

respect to one of the molecule axes, namely, a normal to its plane. It is quite 

probable that other structures of the same type exist, e.g., low-symmetry 

structures in which disorder is caused by rotations about the long molecular 

axis or several different spatial orientations. 

It should be pointed out that there may be both static and dynamic versions 

of disordered crystals of this kind. In this case, molecular reorientations do not 

generate any structural peculiarities. More than that, no effect is produced on 

the thermodynamic properties of the crystals. If the NMR method were not 

available, no proofs of molecular reorientation could have been furnished. 

Any classification is always arbitrary to a certain extent. Nevertheless, one 

can safely distinguish between the above disordered crystals and a relatively 

wide class of substances commonly called plastic crystals by British authors. 

What we would like to emphasize is that we are speaking about a very peculiar 

state of the substance which always has its own domain of existence in the 

phase diagram. Therefore, we prefer the term rotational crystalline state. The 

specific features of these substances discovered by Timmermans have been 

described in detail in various reviews [61], therefore, we only point out the 

following two peculiarities: high-symmetry cells typical of sphere and cylinder 

packings, and the existence of not more that ten reflections on X-ray photo- 

graphs, i.e., a scatter of the unit cell sizes within | or even 2 A. 
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The rotational crystalline state is characteristic of molecules of an almost 

spherical shape, for instance, methane and ethane derivatives with small 

substituents, or molecules of a shape close to that of a cylinder, e.g., paraffin- 

type molecules. 

The data available on the studied substances of this type are summarized in 

Table 10. 

Table 10 

CRYSTALLINE STRUCTURES OF CERTAIN PLASTIC CRYSTALS 

; Number of Lattice Dest 

Substance Type of lattice: molecules parameter 

OF Space ePCUP. sointuntt cell (A) Dine 

Tetrahedral molecules 

C(SCH3)4 bec 2 8.15 

(CH3)3CCl fcc 4 8.40 

(CH3)3CBr fec 4 8.70 

(CH3)3CSH fee 4 8.82 

C(NO2)4 Ta? (143m) 2 7.08 

SiF4 Ty? (143m) 2 5.41 

Sil4 T° (Pa3) 8 11.99 

Ditetrahedral molecules 

Cl3C-CCl, On? Iim3m) 2 7.43 

(CH3)3C—C(CH3)3 bec w 7.69 

(CH3)3C—C(CH3) Cl bec D 7.38 

(CH3)3C-—C(CH3).2Cl bec 2 7.62 

(CH3)2CIC-—C(CH3)2Cl bec D, 7.58 

(CH3)2CIC-CCl3 bec 2 74 

Br3;C-—CBr3 bee 2 — 

(CH3)3Si-Si(CH3)3 bec 2 8.47 

(CH3)3C-COOH O,° (Fm3m) 4 8.82 

Cyclic molecules 

Cyclobutane bec 2 6.06 Solos 

Cyclopentane hexagonal 2 5.86 5.83 /6.81 

Cyclohexane fee 4 8.76 6.19/6.57 

Thiacyclohexane foc 4 8.69 

Cyclonexanol O,° (Fm3m) 4 8.83 6.24/7.01 

Cyclohexanone fec 4 8.61 

Chlorocyclohexane bec - 9.05 

Cycloheptatriene cubic 8 10.6 

Terpene molecules 

Quinuclidine fec 4 8.977 6.35 /7.22 

Symmetric-Tricyclodecane Ta? (F43m) 4 9.426 

dl-Camphor foc 4 10.1 7.14/8.45 

dl-Camphene bec 2 8.00 

Borneol fec 4 10.25 

Borny! chloride fee 4 10.39 

“Types of lattices: fec, face-centered cubic lattice; bec, body-centered cubic lattice. 
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There may be two cases when a low-symmetry molecule occupies a high- 
symmetry position in a crystal: first, when all orientations with respect to the 
crystal axes are equiprobable (the average molecule displays spherical or 

cylindrical symmetry), and secondly, when a molecule has several fixed 

orientations derived by the crystal symmetry elements from one arbitrary 

orientation. In the latter case, for instance, a nonsymmetric molecule might be 

located at the points of a face-centered cubic lattice in 48 distinct orientations, a 

centrosymmetric molecule in 24 orientations, a molecule showing D,, sym- 

metry in eight positions, etc. 

No matter which of the above hypotheses may be correct, plastic crystals 

obviously have pronounced short-range order in the arrangement of the 

molecules or even a domain structure in which individual ordered do- 

mains merge at the expense of “erroneously” located molecules. It is 

also evident that the short-range order is quite labile, because reorientation 

of molecules takes place in absolutely all substances in the rotational 

crystallin state. 

The existence of short-range order can be deduced from many facts. First, 

the maximum diameter of a molecule is always much larger than the average 

size of an effective sphere, the difference reaching | A. Secondly, according to 

thermodynamic theory, the crystalline part of the heat capacity of a freely 

rotating molecule should be close to 9 cal/deg mole, while actually it is about 

12, as in ordered crystals. Finally, NMR analysis shows that the barrier to 

reorientation amounts to several kcal/mole, and that most of the time each 

molecule exists in a state of vibration around an equilibrium position and 

only sometimes jumps from one equilibrium state to another. 

We now come back to the molecular packing problems. Although much 

work has been done in this field, the foilowing two problems of prime impor- 

tance have not yet been solved: The type of short-range order remains unknown, 

and no data are available for proving the presence or absence of orientations 

fixed with respect to the crystal axes. 

Satisfactory compatibility of the entropy involved in transition from the 

ordered state into the rotational crystalline state with a configurational gain 

in the entropy is often taken as evidence of the finiteness of the number of 

molecular orientations in a crystal. Thus, from symmetry considerations, a 

bicycloheptane molecule must occupy 24 different positions in order to 

simulate the symmetry of a cubic lattice point. The transition entropy has been 

estimated at R In 24 = 6.3 cal/deg mole which agrees with the experimental 

figure. In our opinion, we can hardly rely on such comparisons. It is clear that 

the vibration amplitudes of molecules in the rotational crystalline state are 

considerably larger than those in an ordinary crystal. Therefore, a substantial 

portion of the transition entropy should be attributed to the freedom of 

motion. 
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Nonetheless, the hypothesis about certain preferred orientations with 

respect to the crystal axes seems to be sufficiently logical, despite the fact that 

the more spherical a molecule is, the lower is the probability of orientations 

fixed with respect to the axes of the crystal. 

For solving the short-range order problem within the framework of any of 

the two models described in the text it would be profitable to state the problem 

of mutual molecular arrangement in a group of several molecules. It would be 

worthwhile to consider this problem for two molecules, three molecules, and 

for one coordination sphere, i.e., a group of 13 molecules (one central molecule 

and 12 neighbors). Appropriate calculations can be carried out in terms of the 

geometrical model or by evaluating the minimum energy with the help of the 

atom-atom potential method. 

The problem for two (as well as for three) molecules can be formulated 

as follows: To find the optimum arrangement of a pair of molecules 

whose centers are located at the average distance established by an X-ray 

experiment. 

Calculations for a group of molecules making up a coordination sphere will 

be illustrated on linear paraffins. As is known, at temperatures approaching 

the melting points, paraffin crystals undergo a polymorphic change and pass 

into the rotational crystalline state which is a close packing of cylinders with an 

effective diameter of 4.8 A. 
We know what arrangement of a group of seven molecules (one central 

molecule and six neighbors) is optimum from the point of view of potential 

energy. This arrangement is packing into a rectangular cell with a screw 

symmetry axis typical of organic chemical crystallography. In other words, it is 

the packing that existed with long-range order before the polymorphic change 

had occurred. Let us superimpose this packing on a hexagonal packing. From 

Fig. 74 it follows that there may be six different ways of such a superposition. 

Thus, the proposed model is constructed of identical domains oriented in six 

different ways with respect to the crystal axes. The average hexagonal cell 

Fig. 74. Rotational disorder in paraffins. 
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formed by superposition of six rectangular cells will naturally be somewhat 

smaller than the experimentally observed cell. It can be supposed that a 

material increase of the cell volume which accompanies the transition of the 

molecule to the rotational crystalline state is associated with the transition 

layers which must necessarily exist in such a model of a crystal. Knowing the 

potential energy and free energy of the domains, we could try to predict the 

most probable molecular arrangement by constructing possible transition 

layers. 

The same procedure could be applied to determine the most probable 

arrangement of molecules in the closest spherical packing under the assump- 

tion that on the packing plane (the (111) plane of the face-centered cubic 

lattice) there exist small ordered regions where molecular arrangement is 

governed by the same law of symmetry as on the ab plane of the space group 

P2 aor Poss 

A more rigorous solution of the short-range order problem is given in our 

recent work [62, 62a]. 

Since rotational transitions from one position into another are rather rare, 

we may treat the crystal as a system of molecules whose centers occupy lattice 

points while their orientations are distributed in a certain manner between v 

different orientational states. In the model considered in this book the inter- 

actions of the molecules are pairwise. Therefore, the configurational part of 

the crystal Hamiltonian can be written as 

H =} ¥) Vi (R-R’) C,,(R) CR’) 
RR’ 

where the subscripts m, / denote the v different orientational states of each 

molecule, R is the radius vector of the crystal lattice point at which the mole- 

cule’s center of gravity is positioned, and 

l if the molecule at point R is in state m 

C,(R) = 
0 otherwise 

The random variables C,,(R) obey the normalization condition 

yy C.(R) = 1) dor all/R) 
m=1 

V,,,(0R—R’) is the energy of pairwise interaction of the molecules at points 

R, R’ and in states m, /, respectively (m, / = 1, 2, ..., v). The following relation- 

ships are valid 

Vin (R—R’) = Vim(R’ —R), Vinm (R— R’) = Vi(R-R’) 

i.e., a matrix built up from the values V,,,(R—R’) is a Hermitian matrix. 
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For determining thermodynamic quantities, it is required to calculate the 

statistical sum 
1 

Z= Y expl-4B Y Vin(R-R’)C,(R) C(R’)] 
{C,,(R) } = 0 Poe 

x I 5()) Cn (R) — 1) 

taken over all possible configurations, where B = (kT) ', k is the Boltzmann 

constant, and T is the absolute temperature. The normalization condition is 

introduced in the statistical sum by means of the function 6(x) determined by 

the equation 
l forx = 0 

0(x) = 
0 otherwise 

The calculation of the statistical sum given above is a more complicated 

process than its calculation for the case m, / = (1,2), 1.e., for the Ising model. 

It is necessary to use approximate methods to evaluate it. The statistical cal- 

culations in the publication referred to above are based on the self-consistent- 

field method. This method yields results that seem to be asymptotically 

accurate both at high and low temperatures. 

Calculations show that only at the highest temperatures (when V <kT) are 

all orientations equiprobable. The crystals discussed in this section melt at not 

above 300°K as a rule (RT = 0.6 kcal/mole). The interaction energy of two 

organic molecules, say of the ethane type, is of the same order. Thus, complete 

full disorder in the rotational crystalline state is probably not to be found. 

Theory demonstrates that for lower temperatures one can obtain a number 

of solutions corresponding to partially ordered systems. This means that 

certain orientations exist with probability above 1/v, and others with proba- 

bility below 1/v. It has been found that with decreasing temperatures, the 

transition from complete disorder to full order may involve several partially 

ordered phases. 

Theoretically, one can in principle determine the parameters of the poly- 

morphic changes. It is also found possible to estimate the short-range order in 

the arrangement of the molecules in different orientations, namely, the 

probability that any two orientations exist in pairs. These formulas are fully 

identical to the formulas describing the probabilities of neighborhoods for 

solid solutions and will be given below. 

D. Binary Systems 

16. CONDITIONS FOR FORMATION OF SOLID SOLUTIONS 

The representation of an organic crystal as a packing of solids possessing 

certain shapes and sizes has enabled research into the mechanisms of mutual 
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solubility of organic substances in the solid state. In 1956, the author formu- 

lated geometrical conditions for the formation of solid solutions [63], which 

in their general form proved inapplicable to other classes of compounds where 

interatomic electron bonds can fully suppress the effects of the symmetry and 
close-packing factors. 

It is clear that by mixing two organic substances we may expect the formation 

of solid solutions only by substitution. Indeed, the arrangement of molecules 

with packing coefficient 0.6-0.8 shows that the voids in the structures are so 

small as compared with the sizes of the molecules themselves, that filling up 

these voids by the solute molecules, i.e., by forming interstitial solid solutions 

will probably be feasible only in the rare cases (so far unknown) when the 

solute consists of extremely small molecules. In the following text we shall 

speak only about substitutional solid solutions. 

A necessary and sufficient condition for formation of solid solution crystals 

by two or more organic substances is similarity of the shapes and sizes of the 

component molecules. Only if this condition is satisfied will the substitution of 

certain molecules in the lattice of the matrix (solvent) by alien molecules of the 

solute not cause appreciable changes in the number of contacts of a solute 

molecule with adjacent molecules and also in the intermolecular distances, 

i.e., will not lead to a substantial rise in the free energy of the solution crystal 

as compared with a pure crystal. It has been shown experimentally, for ex- 

ample, that a substance rapidly stops being soluble if two or three of its inter- 

molecular distances are reduced by about 30% (anthracene in acridine). At the 

same time an increase of some intermolecular distances, i.e., replacement of 

larger molecules by smaller molecules occurs much more easily (acridine in 

anthracene, naphthalene in f-chloronaphthalene), as is suggested by the 

asymmetric curve of the potential energy of interaction between nonbonded 

atoms. 
It is obvious that apart from packing factors, other requirements arising 

from symmetry must be met for the formation of a continuous series of solid 

solutions by two: substances: The structures of the substances being mixed 

must be isomorphous, in other words, they must not only have an identical 

space group and the same number of molecules in the unit cell, but also exhibit 

a similar packing of molecules. If, however, these conditions are not satisfied, 

there will necessarily be a discontinuity in the solubility curve. By way of an 

example, consider the system: diphenyl-«, «-dipyridyl (XX VII, XXVIII), with 

Tso oets 
(XXVII) (XXVIII) 
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a 

Fig. 75. Projections onto the rectangular face of (a) the diphenyl structure; (b) the «,a’- 

dipyridy] structure. 

very similar molecules. Both substances crystallize with two molecules in a 

unit cell with symmetry C,4,. However, as is evidenced by the projections of 

the structures onto the rectangular face (Fig. 75a, b), the packing of the mol- 

ecules is extremely different. It has been established experimentally that this 

system reveals only limited solubility (the phase diagram belongs to Rose- 

boom’s type V, Fig. 76) [64]. 

Continuous solubility in the anthrone—anthraquinone system is not an 

exception from the above rule. Though the symmetries of the molecules of 

anthrone (XXIX) and anthraquinone (XXX) are different, the crystalline 

O 20 40 60 80 100 

Mole pct «,«-dipyridyl 

Fig. 76. Phase diagram of the dipheny]-«,«’-dipyridyl system. 
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(XXIX) (XXX) 

structures of these substances are isomorphous (common space group P2,/a, 

Z = 2), the anthrone structure being disordered so that the average of two non- 

centrosymmetric molecules become centrosymmetric. Since the isostructural 

nature of these substances has been confirmed by detailed X-ray diffraction 

studies [66] there can be no doubts as to the capability of these substances to 

mix in all proportions without changing the molecular packing. 

The exceptions from this rule are substances with nonsymmetric molecules. 

The addition of even the first molecule in its right- or left-handed configuration 

to the racemate must change the symmetry of the racemate crystal so that fur- 

ther solubility can be continuous at all concentrations. 

When analyzing the possibilities of formation of solid solution crystals by 

two organic substances within a certain range of concentrations, it is, of 

course, necessary to take into account more than merely the packing co- 

efficient, 1.e., not only the losses in the molecular interaction energy. In the 

general case, changes in the free energy of crystal A when some of its molecules 

are substituted by molecules of solute B are caused by the following factors 

[67]: (1) the difference in the sizes and shapes of the molecules being mixed 

causes ‘“‘strains’’ in the lattice which change the lattice energy by AU; (2) the 

free energy of one mcle drops by 

AF, mix = 7 |AS,| where AS, = R[(1—x)In(1—x) + xInx] 

is the entropy of mixing; (3) as a molecule is substituted, this substitution will 

cause a change in the free energy of the lattice vibrational spectrum by AF’"®; (4) 

it is necessary to take into account possible variations in the conformation of 

the solute molecule as it intrudes into the solvent lattice (AF). 

Let n, and ng be the variable numbers of moles of the components in the 

first phase with structure A so that concentrations 

n n 
x=—3— and (1-x) =—“*— 

Na ap ng LIN + Np 

The free energy of a solid solution composed of n, and ng moles of com- 

ponents A and B can be written as 

Fy = (ny+np) Fy + O(tty) + (14 + Np) AF ix 
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Here F, and AF4., refer to one mole of the substance. The same line can be 

given as 

F, = Fx + o(x) + RT[(1—x) Indi —x) + x Inx] 

Here F, and ¢(x) also refer to one mole. 

The change of the free energy of the matrix due to the solute $(x) (strictly 

speaking, the change minus mixing energy given here in its simplest form which 

disregards the possibility of short-range order in the arrangement of the 

solute molecules) is expandable into a series 

b(x) = 6’) x + 46"(0)x? + 

If x <1, i.e., for dilute solutions when the molecules of the solute are sur- 

rounded in the majority of cases by matrix molecules only, the approximation 

F, = Fy + x¢' + RTx InG@/e) 

is fulfilled for F, sufficiently rigorously. 

Measuring F, and F, calorimetrically, we can also find ¢’. Such measure- 

ments have not yet been carried out. Below it will be shown that conclusions 

about ¢’ can be made by analyzing the type of the phase diagram. 

We can also try to calculate ¢’ by representing this value as a sum of the 

components contributed by the above factors which cause variations of the 

free energy during substitution. It would be logical to put 

xo’ = AV+ AE + AF? 

Using the above simple representation of the free energy of a solid solution, 

the solubility conditions and equilibrium conditions can be written down. 

The solubility conditions will be obtained by taking into consideration that 

at a given temperature a mechanical mixture with free energy x/g+(1 —x) Fa 

can also be formed; consequently, for a solid solution to form it is necessary 

that 

After simple transformations and excluding from both sides of the inequality 

the intramolecular free energy which is not influenced by molecular inter- 

action, the thermodynamic condition for the existence of a solid solution can 

be written as 

TAS )\ > x(Fy Fs) Exp 

A similar inequality can be given for a solid solution of A in B. 

It is obvious that the reasons for limited solubility, i.e., the presence of 

boundaries in the phase diagram, are determined by the solubilities from both 

ends of the diagram. 
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Let us introduce appropriate designations for a solid solution of A in B: 
ny’ and nz’ are the variable numbers of moles of the components so that x’ = 
ng’/Ng’ +ng’ is the concentration of molecules B in crystal B, i.e., is x < x’. 

The free energy of a solid solution crystal with structure B may be written as 

Fy = (ng’ +n’) Fg + nO We (n4' +73’) AF? 

In a melt of the eutectic composition at temperature f, two phases are in 
equilibrium—solid solutions with structures A and B. Sometimes under 
eutectic conditions the crystals of these two phases can be grown simultaneously 
on one inoculating needle (see the following section). 

The equilibrium conditions for these two phases are 

ar) _ (as 
Ong np= const ‘ On, np’ = const 

oF, (OF 

Ong na = const ¥ Ong’ na’=const 

After a number of transformations the equilibrium conditions become 

1—x ei x hcR 
neue ee. € 

1-x 38 

where 

Fa-Fys 1 ow 1 dd 
e = : of = > SS eee > =e Co 

Ware RT 0 -x’ RT-Ox 

From these equations we find 

e(@te)_ OG] 

5h Cally eens te eC 

Thus, the limits of solubility x and x’ depend on the solubilities « and B 

simultaneously from both ends of the phase diagram, and also on the differ- 

ence in the free energies of the components. It is for this reason that we cannot 

“explain” why A dissolves in B irrespective of the extent of solubility of B in 

A; the solubility depends on which is energetically more advantageous: the 

solution of A in B or Bin A. 

It is worthwhile to analyze in detail the conditions of equilibrium of the two 

solid solutions written above. In fact, if the values of «, 6, ¢ are known for 

any two substances with similar molecules, our equations would allow the 
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prediction of the phase boundaries of their composition—-temperature diagram 

without resorting to experiment. 

It would probably be easier to determine the phase diagram experimentally, 

i.e., find x and x’. In this case the two equations describing the equilibrium 

conditions for two solid solutions can be used for estimating the three unknown 

values é, «, B. 

Parameter ¢ is directly proportional to the difference in the free energies of 

the pure components A and B: AF= Fy'— Fx". This parameter can be cal- 
culated if the heat capacities and heats of sublimation are measured for the 

components, and if the intramolecular vibration frequences are known. Thus, 

the two equations describing solubility, in the absence of direct calorimetric 

data on the solid solutions, can be used to determine ¢@ and w: the changes in 

the free energies of the limiting solid solutions (from both sides of the phase 

diagram) compared with the pure components. Now what is peculiar abcut 

these values? The three terms composing @¢ and w include AU, AE, and AF"’®. 
The increment of lattice energy AE due to a possible change in the conformation 

of the solute molecule as it is incorporated into the matrix lattice may be 

neglected if the molecules are rigid (naphthalene, anthracene); for more 

flexible molecules (dibenzyl, stilbene), a value AE can be calculated. AF’'® can 
be roughly assessed if the thermal factors for the structures of the pure com- 

ponent B, and of the limiting solid solution with the structure of this com- 

ponent B, are known from the results of X-ray intensity analysis. After cal- 

culating from the formula u? = B/8n’, the corresponding values of mean-square 

deviations (see Section IV. 2), we may put the ratio between the characteristic 

temperatures of the crystals equal to 

©,/O, = (u,’/Uy”)” 

Then, using the Debye approximation we obtain 

AF"? — 6RT In(©,/6,). 

This procedure gives an undoubtedly correct estimation of the order of mag- 

nitude of this quantity. 

After substituting the estimated values into the initial formulas we obtain 

values for AU, and AU,; these are the variations in the lattice energy. Under 

the assumption that the solutions are dilute this implies the changes caused 

by one solute molecule in the solvent lattice. 

The values for AU, and AU, obtained by means of this empirical procedure 

can be used to analyze the intermolecular interactions, for instance, for 

verifying the correctness of the atom—atom potential method. 

Using atom-atom potentials, AU can be calculated as follows. Let us 

accommodate in the matrix structure instead of one of its molecules a solute 

molecule in an optimum manner, 1.e., with approximately the same number of 
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Fig. 77. Phase diagram of tolane-diphenylmercury system. 

contacts, and then calculate the energy of interaction of this “foreign” molecule 

with all the matrix molecules, e.g., within a radius of 15 A. The energy U, thus 

obtained will differ from the lattice energy of the pure component (matrix) Uy 

by the value U, — Uy. If the matrix lattice contains x percent of the solute, the 

total lattice energy is 

xU, + (1—x) Uy = {x(U,— Uy) + Uy} 

ee 

This, however, is a limiting value, because the calculations have not taken any 

account of the lattice distortions, which unavoidably arise during the formation 

of a solid solution, nor of the interactions between the solute molecules. 

Consequently, the comparison of the calculated value of AU with the exper- 

imentally derived AU, (or AU ,) allows one to judge, first the correctness of 

the selected atom-atom potentials and, secondly, the nature of the redistribu- 

tion of the stresses in the structure of the solid solution. 

By way of example let us make a detailed analysis of the solubility conditions 

in the tolane—-diphenylmercury system. 

The phase diagram of this system has been established by growing single 

crystals of solid solutions [68] (Fig. 77). At the eutectic temperature t, = 56°C 

the solid solutions of (a) the tclane phase, x = 0.14 and |—x = 0.86 and (b) 

the diphenylmercury phase, x = 0.92, 1 — x = 0.08, are in equilibrium. 

The tolane (XXXI) and diphenylmercury (XXXII) molecules are planar 

and have practically the same geometrical dimensions; it can be assumed that 

no changes occur in the solute molecule’s conformation, i.e., AE = 0. 
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The crystalline portions of the free energies of the components included in 

AF can be represented as the sum of the heats of sublimation and the vibra- 

tional parts of the free energies. The heats of sublimation for tolane and 

diphenylmercury have been estimated [69]: AH, =21.2 and AH = 27.0 

kcal/mole. The values of the free energies of the translational and vibrational 

motions of the tolane and diphenylmercury molecules are given by Koreshkov 

[70]: Forvie= —6.3 and Fs" = —6.6 kcal/mole. Consequently, Fx‘ = 
—AH,+ Fe" '!® = —21.2 — 6.3 = —27.5 kcal/mole, and Fa’ = —AH,+ Fy" 
= —27.0 —6.6= —33.6 kcal/mole, whence AF= Fy'—Fx' = —6.1 ~ —6 
kcal/mole. 

Substituting these values into the equilibrium conditions, we obtain ¢’ = 

—4.9 kcal/mole and wy’ = +7.4 kcal/mole. 

Thus, the free energy of the limiting solid solution of the tolane phase will 

differ from the free energy of pure tolane by (x) =x (—4.9 kcal/mole) = 

—0.69 kcal/mole, while for the phase with the diphenylmercury structure the 

difference from the free energy of a pure diphenylmercury crystal is 

W(x’) = (1—x’) (+ 7.4 kcal/mole) = 0.59 kcal/mole 

In order to estimate the vibrational component of the free energy of a solid 

solution crystal we shall take data on the variations of the thermal factor of the 

structure with increase of solute concentration. For the tolane structure phase 

B, =4.7 A? (pure tolane), and B, = 3.7 A~? (solid solution containing 14% 
of diphenylmercury molecules). Since in this example the B(x) curve passes 

through a minimum (Fig. 78), it is possible to separate static shifts 2a: from 

dynamic lattice vibrations uj,,. To a first approximation, however, u2,,, can be 
considered a negligible value because the geometrical dimensions of the 

molecules being mixed are practically equal. Then, Wasa = B/8n* and approx- 

imately 

) anal) BN ee dC 
— = (ayn)s =(—]} =(—]) =0.9 
Oo, (ava) p B, 4.7 

It follows that AFg'> = 6RT In ©,/O, = —0.043 kcal/mole. Thus, assuming 

AE=0, we obtain (x) = —0.69 kcal/mole = AU, —0.43 kcal/mole, whence 

AU , = —0.69+0.43 = —0.26 kcal/mole. 
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Fig. 78. Thermal factor B versus concentration of diphenyl-mercury admixture in tolane 

phase: I—at room temperature; II—at liquid nitrogen temperature. 

No experimental data are available for making similar estimates for the 

phase with the diphenylmercury structure. The maximum values of AU have 

been calculated by the atom-atom potential method. Calculations that have 

been carried out on electronic computers used curves of potential interaction 

between C-—C, C-H, and H-H atoms which are already sufficiently reliably 

established [71]; the same also applies to the interactions between Hg—Hg, 

Hg-C, and Hg-H atoms determined from the crystalline structure of diphenyl- 

mercury [72]. Inthe geometrical substitution of molecules in matrix structures 

it was assumed that the coordinates of the benzene ring atoms do not change so 

that the replacement amounts to that of a -C=C-— bridge for —Hg-, or vice 

versa. These calculations have been carried out for both phases of the system 

under consideration. 

The Solid Solution with the Tolane Structure. Direct X-ray diffraction analysis 

has demonstrated [73] that diphenylmercury solute molecules replace tolane 

molecules only in layer 1, one of the two molecular layers in the tolane 

structure that are not related symmetrically. Figure 79 shows the corresponding 

electron-density projections for whose computation, signs calculated over only 

the 12 C atoms of two benzene rings have been assigned to the experimental 
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Fig. 79. Projections ac of electron density: (a) pure tolane structure; (b) structure of 

solid solution of diphenylmercury in tolane phase. 

values of Fi,o;, The high maximum on the b projection at the point 00 corre- 

sponds to the Hg atom; there is no maximum at the point 04. Energy cal- 

culations have confirmed the results of the X-ray experiment: the replacement 

of one tolane molecule by a diphenylmercury molecule in layer I changes the 

lattice energy by —4.88 kcal/mole, whereas the same substitution in layer II 

only by —2.52 kcal/mole, the difference is A = 2.36 kcal/mole. Using the 

Boltzmann distribution formula, we can estimate the ratio of the probabilities 

of the solute molecules’ distribution over the nonequivalent layers 

O/On = enn = 50 

Since these estimations show that the probability of replacement in layer I is 

50 times as high as in layer II, it shows that practically all the solute goes into 

layer I. As has been pointed out above, the formation of solid solution changes 

the lattice energy by x(U,— Uy). The calculated value of U,—Uy = —4.88 

kcal/mole (solute molecules appear only in layer I), whence AU = 0.14 (— 4.88) 

= —0.68 kcal/mole. This maximum value, disregarding the fact that stresses 

arising around the solute molecule are distributed over the entire crystal 
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volume, is approximately 2.5 times larger than the value found experimentally 
from the solubility conditions. 

The Solid Solution with Diphenylmercury Structure. Diphenylmercury 
molecules form a single-layer packing. According to the results of energy 
calculations, the replacement of some molecules in the structure by tolane 

solute molecules alters the lattice energy of the most concentrated solid solution 

(x’ = 0.08) by AU = +0.30 kcal/mole, as compared with the pure component. 

Compare this figure with value +0.59 obtained from the analysis of the solu- 
bility conditions. 

Thus, the extimates of AU in both solutions seem to be quite reasonable. 

17. DETERMINATION OF PHASE DIAGRAMS 

Physicochemical analysis employs various methods for constructing phase 

diagrams: recording of time-versus-temperature curves (thermography) on a 

Kurnakov pyrometer (often with a differential thermocouple), studies of the 

micro- and macrostructures of the alloys under investigation, X-ray phase 

analysis, measurement of the changes in the physical characteristics (specific 

gravity, thermal expansion, electrical resistance, etc.) and mechanical proper- 

ties as the composition and temperature vary. These methods allow deter- 

mination of the number and structure of the phases in a system, as well as their 

domains of existence, with a high degree of accuracy. 

It should be pointed out that organic substances feature, first, a pronounced 

tendency toward overcooling and, secondly, the thermal effects during phase 

transitions in these substances are small. It is for this reason that the sensitivity 

of the conventional thermographic technique proves to be insufficient for 

studying organic systems. Several dozens of binary systems can be listed whose 

phase diagrams have been shown to be Roseboom type I or II by thermo- 

graphic analysis (Fig. 80 depicts five types of Roseboom phase diagrams of 

solid solution systems). They include, in particular, the following systems: 

acridine—anthracene, anthracene-phenanthrene, naphthalene—S—chloronaph- 

thalene, naphthalene-f—naphthylamine, dibenzyl-stilbene; the components of 

these systems have different symmetries, which makes a continuous series of 

solid solutions in them impossible. Later, after differential recording had 

been introduced in the thermographic method, and after the microscope 

with a heating glass had been developed, some of these phase diagrams were 

corrected. 

Thermal analysis with the aid of a microscope with a heating glass is much 

more senstive than thermographic analysis. Microscopic examinations are 

carried out on specimens placed between the microscope slide and cover glass. 

Two operating procedures may be applied. One consists in studying first the 
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Fig. 80. Five Rooseboom types of phase diagrams of systems with solid solutions: 

I, I, I1J—unlimited solubility in solid state; [V—limited solubility with peritectic point; 

V—limited solubility with eutectic point. 

melting process on a powder specimen, i.e., on a finely ground mixture, after 

which eutectic temperature determination is made. The other procedure 

involves examination of a crystalline film of the melt which has solidified 

between the slide and the cover glass and determination of the primary 

crystallization points. A detailed description of this method is given in the 

book of L. Kofler and A. Kofler [74]. The authors developed the contact 

specimen method for constructing phase diagrams which is described as 

follows. Small amounts of finely ground pure components are placed side by 

side on the microscope slide, covered by the cover glass and heated. When the 

component with the lower melting point has melted, a contact zone with an 

unfused component arises, a certain amount of this component can mix or 

react with the melt, and finally the entire mass melts. Rapid cooling and then 

reheating of the mixture make it possible to study all the phenomena: phase 

changes in the solid state, number of phases in the system, presence of solid 

solutions or eutectic mixture, etc. on one specimen. Thus, using the con- 

tact specimen technique, with simultaneous observation of the melting of 

mixtures with different compositions, we may plot the phase diagram of a 

binary system. 

This method gives a quite reliable qualitative estimate of the phase changes 

in a system, though it cannot claim high accuracy. Thus, the rather complex 

phase diagram of the p-dibromobenzene-p-chloronitrobenzene system (Fig. 

81) obtained by growing single crystals [75] is qualitatively confirmed by 

examinations on the heating glass of a microscope, however, quantitative 

discrepancies reach 10% in composition and 5-10° in temperature. This 

probably can be ascribed to the impossibility of obtaining volumetric equi- 

librium between the liquid and solid phases under the cover glass. 

The method of plotting phase diagrams by growing single crystals used to 

construct most phase diagrams shown in this chapter was developed in the 
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Fig. 81. Phase diagram of p-dibromobenzene-p-chloronitrobenzene system. 

author’s laboratory in 1956-1957 specially for experimental verification of the 

conditions for formation of solid solution crystals by two organic substances. 

The method depends on maximum approximation of the crystallization 

conditions in the melt to equilibrium conditions. A crystallizer containing the 

mixture of two substances of a given concentration is immersed in a thermostat 

with transparent walls to enable observation of crystal growth. The melting 

point of crystal nuclei forming on an inoculating needle plunged into the melt 

of this mixture determines the liquidus line point corresponding to this con- 

centration. Any slight overcooling of the melt (0.1-0.2°) (40.05°) causes 

growth of single crystals of the inoculating needle, the maximum size of the 

crystals reaching 1-2 mm within 5-10 hr of thermostat operation. The number 

of phases in the system is defined both from the external shape of the growing 

crystals and by X-ray diffraction. 

Three to four grams of the mixture produce not more that 10-15 mg of 

crystals, so that, to a first approximation, they may be considered com- 

positionally homogeneous. These single crystals are used for various purposes. 

Since binary crystals melt in a certain temperature range, the determination of 

this range, and of the melting end-point in particular, makes it possible to draw 

a solidus line after the liquidus line of the phase diagram has already been 

determined. The solidus line, i.e., the composition of the grown crystals, can 

also be found by microanalysis for some element present in the molecule of 

one component only. Observation of the disintegration of these crystals with 
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decreasing temperature helps establish the solubility limits in the solid state. 

Finally, solid solution crystals are also employed for the detailed X-ray study 

to be discussed in the next section. 

The above method of determining phase diagrams is rather laborious, but 

its accuracy is high: +0.05° in temperature and not worse than +0.5% in 

composition even in the eutectic or peritectic point regions, where it is often 

required to extrapolate the liquidus lines. Correctness of such extrapolation is 

frequently confirmed when crystals of both phases can be grown simultane- 

ously on the inoculating needle in a melt of a given composition. The com- 

position of the solid solution crystals is estimated with an accuracy not worse 

than 1-2%. 

18. X-RAY DIFFRACTION OF SOLID SOLUTION CRYSTALS 

Solid solution crystals of organic substances usually display low symmetry 

(as a rule, monoclinic), and therefore X-ray diffraction studies cannot be 

carried out on them using the conventional methods of Debye powder patterns 

so widely used in metallography. When low-symmetry substances are dealt 

with, single crystals are necessary even for measuring the parameters of the 

unit cells. It is for this reason that, though laborious, the method of deter- 

mining phase diagrams by growing single crystals proves indispensable for 

studying mixed organic crystals. 

The measurement of the unit cell parameters of solid solution crystals by 

the high-precision X-ray method allows finding for each phase the function 

Vinoi(X), Where x is the concentration of solute molecules, and V,,,3, = Vcey/Z is 
the volume per molecule in the unit cell. 

In most cases the form of the function V,,,,(x) can be interpreted from 

geometrical considerations. For example, the molecules of acridine (XXXII) 

eN 

Soo 
(XXXII) 

in the structure of acridine-II [76]—a modification whose crystals grow from 

the melt—are so packed that the “hollow” near YN is “filled up” by an-H atom 

of the adjacent molecule. On account of the ‘“‘inconvenient”’ shape of the mole- 

cules, their packing is unusual: The unit cell of symmetry C3, contains eight 

molecules, i.e., two independent molecules in d general position; the packing 

coefficient is rather larger k = 0.713. 
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Fig. 82. (a) Acridine side of phase diagram; (b) vari- 

ation of volume per molecule with growing concentra- 

tion of anthracene admixture. 
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Fig. 83. Phase diagram of acridine-anthracene system. (Dashed line, diagram determined 

thermographically previously). 
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When the acridine molecule is geometrically replaced by an anthracene 

molecule (XXXIV) the H---H and C---H distances are considerably re- 

duced. Experiment has demonstrated a substantial “swelling” of the unit cell 

(XXXIV) 

of a solid solution crystal with the acridine structure (Fig. 82), the packing 

coefficient drops to 0.644 and a discontinuity in solubility appears when the 

melt contains 7% of anthracene molecules [77] (Fig. 83). 

Thus, in the acridine—-anthracene system, the high solubility of anthracene 

in acridine is handicapped by a sharp rise of AU. On the other hand, the crystals 

of the solid solution with the anthracene structure may contain up to 72% of 

acridine molecules; in this case the dimensions of the unit cell change accord- 

ingly; the packing coefficient drops from 0.722 to 0.707. Consequently, 

“hollows” increase the free energy of a crystal much less than do densely over- 

packed places. 

The phase diagram of the dibenzyl-stilbene system is shown in Fig. 84 [78]. 

Unlike the stilbene molecule (XXXV) the dibenzyl molecule (XXXVI) is not 

1g Jal 
Nee 

i K 
=e Ss 

a x 

(XXXV) (XXXVI) 

planar and has two additional H atoms. Construction of electron density 

series demonstrates that due to “swelling” of the unit cell (Fig. 84b) probably 

no appreciable changes occur in the conformation of the solute molecules in 

these solid-solution structures [79]. 

Replacement of molecules in the 6-chloronaphthalene structure by smaller- 

volume naphthalene molecules results in decreased dimensions of the ‘““mean”’ 

unit cell (Fig. 85), and in a drop of V,,,,(x) in the dibenzyl phase (Fig. 84b). 

A simple geometrical explanation can be furnished to account for changes of 

unit cells in the «- and f-phases of the p-dibromobenzene-p-diiodobenzene 

system [80]. Figure 86a illustrates the phase diagram of this system, in which 
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Fig. 84. (a) Phase diagram of dibenzyl-stilbene system; (b) variation of volume per 

molecule with growing concentration of stilbene admixture. 
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Fig. 85. Variation of volume per molecule 
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depending on naphthalene admixture concen- 

tration. 
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Fig. 86. (a) Phase diagram of p-dibromobenzene-p-diiodobenzene; (b) Vmor versus 

p-diiodobenzene concentration in all three phases. 

three phases of different symmetries are separated by one eutectic and one 

peritectic point (it should be mentioned that the latter was not detected 

thermographically). The phase diagram is followed by the graph of the 

V,n01(X) relationship for all the three phases (Fig. 86b). 

A maximum on the V,,,)(x) curve for the y-phase is noteworthy. A similar 

maximum is to be found in the tolane phase of the tolane-diphenylmercury 

system, where the geometrical factor is practically absent (Fig. 87). It is rather 

diffcult to account for such fine effects. At any rate, phenomena like these do 

not have a simple geometrical interpretation. 

It would seem reasonable to analyze the dependence of the thermal vibrations 

on concentration. No detailed investigations of this kind have been carried out 

so far. In several works of the author and co-workers attempts have been made 

to analyze the mean thermal factor of X-ray interference. The same investi- 

gations were also conducted for solutions of p-dibromobenzene-p-diiodo- 

benzene which exhibit a very specific shape of the V(x) curve. An analysis of 

the intensities on X-ray diagrams obtained from crystals of these solid solu- 

tions shows that the replacement of the small p-dibromobenzene molecules 
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Fig. 87. (a) Tolane side of phase diagram of tolane-diphenylmercury system; (b) Vmmo1(X) 

relationship. 

by larger molecules causes a growth of the thermal factor («-phase). In the 

B-phase it is interesting that a diminished thermal vibration energy is observed 

(Fig. 88); this is already obvious from the better quality of the X-ray picture. 

In the y-phase the B(x) curve passes through a minimum. For the tolane 

phase, the B(x) curves have been obtained at room temperature and at liquid 

0 20 40 60 80  =100 

p-Br,CgH4 Mole pct p-1,CgH, 

Fig. 88. Values of thermal factor B for hkO and AO/ zones as functions of concentration 

in p-dibromobenzene-p-diiodobenzene system at room temperature. 
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nitrogen temperature (Fig. 78). The minimum on the B(x) curve at room 

temperature is much more conspicuous [81]. 

This result is not trivial. indeed, assuming that the mean square of atomic 

displacements 

where u2,,, depends only on the concentration of solute molecules and ué,, 
depends only on the temperature, one could expect a rise of B with increasing x 

as well as an identical shape of the B(x) curves at two different temperatures. 

oie appears to be dependent not only on the temperature but also on the con- 

centration of the solute molecules. Apparently, dynamic effects are the key 

factors that determine the conditions for forming solid solutions both in the 

tolane phase of the tolane-diphenylmercury system and in the y-phase of the 

p-Br,C,H,4-p-I,C,.H, system. 

Apart from a large number of cases of formation of true solid solutions when 

the replacement of matrix molecules by solute molecules brings about a 

noticeable change in the dimensions of the unit cell, examples testifying to the 

opposite are also available. Substitution of naphthalene molecules by mole- 

cules of 6-chloronaphthalene (XXXVI) and also molecules of 1,5-dinitro- 

NO, NO, NO, 

NO, 

(XXXVID) (XXXVIID) (XXXIX) 

naphthalene (XX XVIII) by 1,8-dinitronaphthalene molecules (XX XIX) does 

occur, as isconfirmed both microanalytically and by observation of the melting 

of crystals of these solid solutions. However, V,,,;(x) remains practically un- 

changed (Fig. 89). It can be imagined that when one molecule differs from 

another by some additional volume this substitution does not occur uniformly 

over the entire volume of a single mosaic block but only in the boundary cells 

so that these “‘additions” are left outside the mosaic blocks and do not in- 

fluence the dimensions of the unit cell. 

In contrast to true solid solutions, this type of solubility has been termed 

interblock solubility. It occurs where there is partial geometrical conformity 

between the matrix and solute molecules. The role of this partial conformity in 

the production of new luminiscent crystals of naphthalene and anthracene with 

various additions has been convincingly demonstrated by Belikova and 

Belyaev [82]. 
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Indirect data obtained when studying the luminiscence and absorption 

spectra of the solute show that a molecule unable geometrically to be in- 

corporated into the matrix crystal lattice is nevertheless somewhat adapted to 

the lattice by using (or forming) defects in the matrix lattice. Particularly 

interesting in this respect are results obtained in the studies of aromatic mole- 

cules added in small amounts to melted paraffins. When such a system is frozen, 

the molecules of the solute are always surrounded in the same manner by 

matrix molecules, as is shown by the appearance of sharp quasi-line spectra 

(Shpolskij effect) [83]. The role of partial geometrical conformity is quite 

apparent in this case. Thus, for instance, the sharpest spectra are produced by 

anthracene dissolved in heptane (the linear dimensions of the molecules are the 

same) [84]. 

19. GEOMETRICAL ANALYSIS AND ENERGY CALCULATIONS 

X-ray measurements are known to display, for a given crystal, the ““mean’”’ 

pattern of the lattice distortions which have appeared in the course of solid 

solution formation. The stress set up by the differences in the dimensions and 

shapes of the molecules being mixed 1s distributed over the entire volume of the 

single crystal block. Indeed, investigations of solid solutions by the nuclear 

quadrupole resonance method allow the estimation of the distortions in the 

matrix lattice caused by the admixture molecules. Due to the high sensitivity of 

the nuclear quadrupole reasonance technique to deviations from the perfect 

shape of the crystal lattice of the specimen, the amplitude of the nuclear 

quadrupole resonance signal diminishes almost exponentially with increasing 

solute concentrations. It has been shown that, depending on the dimensions 

and shape of the solute molecule, the latter upsets the resonance conditions in 

a varying number of adjacent molecules [85]. According to our estimations, 

for example, one p-diiodobenzene molecule in the p-dichorobenzene structure 

causes static distortions in a sphere containing approximately 450 matrix 
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molecules. The smaller-size solute molecules of p-bromochlorobenzene, p- 

bromoiodobenzene and p-chloraniline in the same matrix produce distortions 

in about 105, 330, and 160 surrounding molecules. Thus, the nuclear quad- 

rupole resonance technique also confirms that smaller solute molecules give 

rise to smaller distortions in the matrix lattice, in other words, they are “better 

dissolved”’ in this lattice. 

Geometrical analysis of the process of finding the optimum geometric 

location of a solute molecule on the site of one of the matrix molecules (with- 

out distorting its lattice), followed by complete calculation of all the inter- 

molecular distances, yields a picture of the maximum distortions. For example, 

in the case of the geometrical replacement of an acridine molecule by an anthra- 

cene molecule which has no “‘hollow”’ in the middle ring, the structure shows 

shortened H---H distances: 1.63 and 2.07 A (instead of 2.34 A) and also 
C.---H distances: 2.57 and 2.81 A (instead of 2.97 A). The cumulative action 

of the stress caused by one anthracene molecule changes the interaction energy 

by AU = 1.02 kcal/mole. 

Consider another example: a 1,8-dinitronaphthalene molecule in the 1,5- 

dinitronaphthalene structure is strongly compressed by adjacent molecules: 

two O---O distances equal 1.89 and 1.99 instead of 2.72 A; two O---H 

distances are 1.69 instead of 2.53 A; two C-:-O distances equal 2.91 instead 

of 3.16 A; and one N--: O distance is 1.87 instead of 2.93 A. The total energy 

energy loss for all these shortened distances would reach about 16 kcal/mole 

if the system had true solubility. Similarly, the substitution of one naphthalene 

molecule by a f-chloronaphthalene molecule would require an energy of 

about 9-10 kcal/mole. 

Thus, geometrical analysis allows a classification of true and interblock 

solid solutions in terms of energy: If the substitution of a solvent molecule by a 

solute molecule needs about 1-2 kcal/mole, there will be true solubility in the 

system; conversely, if about 10-20 kcal/mole is required by such a replace- 

ment, only interblock solubility, if any, can be expected. 

The gentle slope of the atom-atom potential curve toward attraction is still 

further proof that but little energy is required to retain hollows in the packing, 

so that the solubility of small molecules among molecules of a somewhat larger 

volume will always be true solubility. 

A convincing example that testifies to this same effect are the solid solutions 

of normal (linear) paraffins [24, 86]. The crystalline structure of n-paraffins 

exhibits a dense parallel array of hydrocarbon chains of the type shown in 

(XL). Figure 52 shows an example of paraffin molecule packing. Free rotation 

BO Bp Fe 
ES Oe 

(XL) 
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Fig. 90. Phase diagram of the n-paraffin system C,5;H32—-C,¢H34. 

of the end —CH, groups enables close stacking of layers formed by parallel 

molecules, 

Simple conditions can be formulated for the formation of solid solutions of 

n-paraffins. Here, the requirement that the shapes and sizes of the molecules 

being mixed must be approximately the same merely implies a small difference 

in their length. Since even- and odd-numbered paraffins have different sym- 

metries, continuous solubility in the ““even+odd” system is not possible; an 

example is the phase diagram of C, ;H3.-C,,H3, (Fig. 90). In the ‘‘odd + odd” 

paraffin systems the type of solubility will depend on the relative length of the 

molecules, because all odd n-paraffins are mutally isomorphous. Even paraffins 

of different symmetry fail to form continuous solid solutions. Examples are 

given in Fig. 91. 

An analysis of‘a large number of the phase diagrams of -paraffins suggests 

the conclusion illustrated by the diagram in Fig. 92: Other conditions being 

equal, dissolution of n-paraffins with a shorter chain in longer-chain paraffins 

involves preservation of a larger amount of the solvent structure than in the 

Fig. 91. Examples of phase diagrams of n-paraffins. 
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Fig. 92. Schematic representation of packing of linear 

molecule ends showing that “projections” are less advan- 

tageous in terms of energy than “‘hollows.” 

RMA 

® 

opposite case. The diagram shows that with B< A undistorted packing is 

feasible ; the solubility limit is achieved when the number of “‘hollows” becomes 

large and the packing density appreciably drops. Conversely, if B> A, the 

replacement of even a small number of A molecules is bound to cause distor- 

tions which quickly stops solubility. 

It should be pointed out that when applied to the replacement of a matrix 

molecule by a solute molecule, the fundamental statement about the resulting 

noticeable loss in lattice energy holds true only when the replacement results in 

a sharp decrease in some intermolecular distances. If, however, there are but 

minor changes in the distances, then only calculation of the total interaction 

energy can give a correct idea of whether the replacement is advantageous in 

terms of energy. Such a calculation has been carried out, for example, for the 

system diphenyl-«, «’-dipyridyi. It has been found that differences in energy 

depend but slightly on the molecular composition of the first coordination 

sphere: In the case of substitution of a diphenyl molecule by an a,«’-dipyridyl 

molecule, U,— Uy = 1.23 kcal/mole with one solute molecule in the first 

coordination sphere, and 1.20 kcal/mole with two, three, and four molecules. 

In the structure of pure «,«’-dipyridyl the molecules are so packed that hollows 
\ ; a ‘ 

near the DN group remain unfilled; therefore, the substitution may be said to 

result in a closer packing, so that the lattice energy of the solid solution crystal 

is even somewhat reduced: U, — Uy = —0.25 kcal/mole. Thus, losses in the 

potential interaction energy cannot hinder solubility. Nonetheless, solubility 

in the system is low from both sides in the diagram. There can be only one 

reason for this phenomenon: a significant effect of the substitution on the 

vibration spectrum of the crystal. 

Now let us turn to the problem of the distribution of solute molecules 

in the matrix lattice, i.e., the problem of short-range order in a solid-solution 

crystal. 

Experimental investigations of this kind are totally lacking for molecular 

crystals. As to the possibility of theoretical calculations, the theory developed 

recently permits computation of the short-range order of molecules on the 

basis of the atom-atom potential technique [62, 87]. 
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As is known, the distribution of particles in a binary solid solution can be 
described by the simple Ising statistical model in which atoms of both com- 
ponents occupy points of a certain crystal lattice and where interatomic 
interaction is pairwise. The Ising problem, however, has a precise solution only 

for one- and two-dimensional lattices in the nearest-neighbor approximation. 

For studying the more interesting three-dimensional case, various approximate 
methods must be used. 

At the present time there are several well-known approximate statistical 

techniques used for the purpose: the Bragg—Williams, Gorsky method, which 

disregards correlation in the solid solution; the Bethe—Peierls theory; the 

Guggenheim and Fowler quasichemicai approximation; and also the Kirk- 

wood technique associated with the expansion of the statistical sum in W/T 

(W, mixing energy for the first coordination sphere; T, absolute temperature 

in units of energy). The limitations of these theories are that they take into 

account atomic interaction only in the nearest-neighbor approximation, make 

preliminary assumptions about the structure of the ordered phase (the crystal 

points are a priori broken up into ‘‘own” and “strange” nodes), they are 

applicable for a rather limited type of crystal lattices (actually, for an alloy AB 

in which, in the ordered state, atoms of one species are surrounded by atoms 

of the other species). 

Some of these limitations have been recently overcome in several of the 

publications which have been mentioned above. 

The object of these publications is the development of particle arrangement 

theory (1) which would take account of the short-range order with particles 

interacting over an arbitrary number of coordination spheres and with an 

arbitrary form of the interaction potential, (2) which would not make a priori 

assumptions about the structure of the ordered state of the crystal, and (3) 

which would be applicable for describing the arrangement of particles for any 

symmetry of the Ising lattice and any type of structure of the ordered phase (if 

any). This theory is a version of the thermodynamical pertrubation theory. 

The configurational Hamiltonian of a binary system with pairwise inter- 

action is given by 

H a 4 Ss ee C, C, 

where the C, are function that can assume the two values | and 0, depending 

on whether point r contains the A or B species molecule, V,,,=Va, (1,1) + 

Von (r,7')—2Vap(r,r’) are the mixing energies connected with the pairwise 

interaction potentials between the molecules of species A, of species B and 

species A and B, V(0)=0. The summation is carried out over all the points of 

the crystal lattice. The tsatistical sum of such a system has the form 

I 
Z= y exp(—4f Me Viv’ Cc Cy) 

C,=0 
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where Z is calculated under the assumption that the total number of molecules 

in the system is retained, and f = 1/T. 

It can be shown that for a disordered solid solution of molecules A in 

structure B the probability that the molecules A are located simultaneously at 

points r andr’ is 

KC, C.> = C1 a 

Ver-r’ i So pt 4 | Penh 

2a eT) At "| ¥; a?" (CS 

+ 6f1* SV" —r") Var" —r) V(r’ - 1’) 
a 

Tr 

fae V BM) aie Tea ts) Of af a (no) 

x V(r —4r') + 66,3 fo? Vr-r) Ni V(r" —r) V(r’ — | 

Here C is the concentration of the molecules of species A, 

fi, = C—O). f.=1-2C,. ¥,= 1664 6c" 

and r” and r” denote all the points except r and r’. 

If the binary solution has the concentration 4, then 

1 V(r-r’) V(r" —r) Vir —r’ 
Kae oe Mage) A 

4 16T 64T 

atone Ea (r—r’) + 3 —r”)- V(r” —r)-V(r'—r’) 

—6V(r—-r') >) V7(r'— rr” 

The theory for multicomponent organic crystals can be stated in the same 

approximation. At sufficiently high temperature (V <7) the simultaneous 

probability that the particles of the species « and f are located at points r and 

r’, respectively, is given by the approximate formula 

GC 
(C(t) CpP')> = Cr Cg — 7 A rage) 

v 

» 
oa 

where v is the number of particles of the different species; c; is the concentration 

y 1 

—2)V,.,(r—1') C, + Vi5(r—r’) c,64| 
y=1 
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of the particles of species i; and V,; (r—r’) is the pairwise interaction energy of 
two particles (atoms, molecules) of species / and jat points rand r’, respectively. 

In conclusion it should be emphasized that the problem of the structure and 
properties of solid solution crystals is far from being solved. Crystals with 
hydrogen bonds have been omitted from consideration. It is clear that solute 
molecules must be selected for such substances so as to adapt these molecules 
into the hydrogen bond net of the crystal matrix. Thus, an attempt to dissolve 
p-dichlorobenzene in hydroquinone has so far failed. The short-range order in 

solid solution crystals has not yet been studied, i.e., no data on the distribution 

pattern of the solute molecules are available. The process of solid solution 

unmixing does not readily lend itself to study because of the sluggish diffusion 

of molecules in the solid state—a supersaturated solid solution can persist for 

years as a single-phase system. If, on the other hand, it becomes possible to 

induce separation into two phases by cooling, or by mechanical effects, the 

unmixing process can hardly be stopped at a certain stage in order to obtain an 

X-ray diffraction photograph, and, even worse, the crystal cannot be brought 

back to its initial state as is often done in metallic alloy investigations. 

20. MOLECULAR COMPOUNDS 

In a sufficiently large number of cases it is possible to grow crystals composed 

of molecules of two distinct species that are arranged, not in statistical disorder, 

but in mutually identical positions in all the crystal’s cells. Such crystals are 

called molecular-compound crystals. They occur in the compositions 1:1 and 

271s.more complex compositions are fairly rare. 

It should be first stressed that the formation of such a crystal does not 

necessarily point to the action of some kind of specific forces between the ““com- 

pound” molecules. The very term “compound” cannot be considered quite 

adequate to describe such crystals. 

Quite obviously, the free energy of a crystal composed of two molecular 

species is lower than the average energy of a monomolecular crystal. It may 

occur that the packing of a bimolecular crystal comes out to have a better 

density (the interaction potential energy is lower) than the packing of its 

components. The molecular compound of triphenylmethane and benzene can 

be taken as an example of this effect. 

The structure of this crystal is unknown, but from purely geometric con- 

siderations it appears logical to assume that the benzene molecules heip in- 

conveniently shaped triphenylmethane molecules to pack more closely. 

Most frequently, the formation of bimolecular crystals may be expected 

where the molecules are capable of producing hydrogen bonds. Here, as was 

shown above, the optimum structure must obey both the close-packing 

requirements and the trend to the maximum saturation of the hydrogen bonds. 
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It may be thought natural that the solution of this difficult problem in many 

cases in nature is obtained more successfully by combining two different 

molecules in one crystal. The examples of such crystals (in which again no new 

component is added to the interaction energy) are many, both among aliphatic 

compounds (fatty acids) and among aromatics, e.g., the system meta- and 

p-cresol (1:1), dichloroethylene-tetrachloroacetylene (1:1), chloroform-ethyl 

ether (— 100°C, 1:1), aldehyde-ethyl alcohol (— 120°C, 1:1), aniline-phenol 

(1:1), urea-nitrophenol (1:1) [88], p-dibromobenzene-p-chloronitrobenzene 

B22 Si: 
A body of physical data has been obtained by optical spectroscopy and 

radiospectroscopy on the specific interactions of molecules in bimolecular 

crystals which contain as one of the components a molecule with nitro groups 

[89]. In this case a molecule possessing a strong dipole moment is assumed to 

polarize the molecule of the other component. This molecuiar pair will have a 

lower electrostatic interaction energy. According to other data, the transfer of 

an electric charge can be effected between the molecules of such a pair. 

Many bimolecular crystals of this type have been subjected to comprehen- 

sive structural analysis. The main result of these investigations is as follows: 

The close packing principle is never violated in the geometry of the mutual 

arrangement of the molecules. Often the molecules of the components alternate 

to form columns. This is the case of the complex formed by the molecules of 

anthracene and symmetric trinitrobenzene in the ratio of 1:1. The structure 

has been established at two temperatures, room temperature and — 100°C [90]. 

The crystals are monoclinic, contain four molecular complexes in a unit cell 

with the parameters: at room temperature: a = 11.70, b = 16.20, c= 13.22 A, 

B= 13238? Pat —=100°C2'@= 11:35) b= 16.27 7c =1 3102 Al 6 =1133.29 espace 

group C2/c. Figure 93 illustrates molecular packing along the c axis: The 

molecules are arranged one after another, each in two distinct orientations, 

forming infinite columns along c so that the intermolecular contacts are 

closest parallel to this directions (Fig. 94). 

a 

Fig. 93. Molecular compound anthracene-symmetric-trinitrobenzene. Packing of 

molecules along axis c. 
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Fig. 94. Shortest intermolecular distances between anthracene and symmetric-trinitro- 

benzene molecules. (In brackets, values at room temperature.) 

Similar columns of molecules are found in the crystal containing p-iodoani- 

line instead of anthracene. The crystals of this molecular compound are also 

monoclinic (space group P2,/c, Z = 4), unit cell parameters: a = 7.43, b = 7.39, 

c = 28.3 A, B = 103° 44’. The structure is built up from rows of alternating 

planar molecules of both components; the normals to the planes of the 

molecules are somewhat tilted with respect to the general direction of the row. 

The cell contains four rows parallel to the a axis (Fig. 95). There are also other 

examples of molecular compounds whose molecules are arranged in columns 

of alternating components, while the columns form close packings of a nearly 

hexagonal shape. 

The recently published work [91] presenting many interesting data and 

useful references is devoted to detailed investigations of the pyrene-pyromellite 

dianhydride system. The C---C distances between the column molecules are 

slightly shortened: two distances equal 3.29 A, i.e., they are only several 

hundredths of an Angstrom smaller than in graphite. This is a common 

peculiarity of binary systems of this kind which evidences that the additional 

interactions are rather weak. 

The authors of the publication referred to above mentioned the following 

interesting phenomenon. There exist such column-type molecular compounds 

whose repeat period along the column axis is close to 7 A (twice the thickness 
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33 
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Fig. 95. Symmetric-trinitrobenzene + p-iodoaniline. Projection ac. 

of an aromatic molecule); there is also a group of binary systems with repeat 

period 14 A. It is shown that the system in question has two modifications, 

one with repeat period 7 A, and the other with period 14 A. 
The low-temperature modification (14 A) changes into the other modi- 

fication in such a way that the crystal remains intact and the direction of the 

column axis is preserved unchanged. The authors suppose that a phase 

transition of the order—disorder type occurs which may be brought about by 

rotations in their plane of the molecules of one or both components of the given 

compound. The inference of the authors that similar transitions are sufficiently 

typical of this class of substances seems fully justified. Most common will 

probably be the case in which molecules of one species assume a fixed position 

with respect to the crystal axes, while the molecules of the other component 

can be in two orientations—ordered at a low temperature and disordered at a 

high temperature. 

In bimolecular crystals in which the polarizing component is 4,4’-dinitrodi- 

phenyl, the component molecules are located at an angle of 90°. Let us give, for 

example, a more detailed consideration to the very astonishing structure of the 

molecular compound of 4,4’-dinitrodiphenyl with 4-hydroxy-diphenyl. Unit 

cell: a = 20.06, b= 9.46, c= 11.13 A, B = 99°, 39’; space group C,? = Cm, 
Z =2 (6:0,NC,H,C,H,NO, and 2:C,H;C,H,OH). 

The 4-hydroxy-diphenyl molecule is planar and positioned in the symmetry 

plane at y=4. The 4,4’-dinitrodiphenyl molecules also have the symmetry m 

in the crystal, but in this case the m is normal to the molecular plane (the 

molecular plane is here the plane of the coplanar benzene rings of the molecule); 

the planes of the three molecules run approximately parallel to each other and 

coincide with plane 206. (X-ray photographs show diffuse reflections that 
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Fig. 96. 4,4’-Dinitrodiphenyl+ 4-hydroxy-diphenyl. Projection ac. Molecules shown by 

dashed line are positioned above or below solid-line molecules by 6/2. Double circles, 

superposing atoms related by symmetry plane. 

indicate strong vibrations of the long planar molecules positioned on these 

planes.) 

Figure 96 shows the ac projection and Fig. 97, the ab projection of the struc- 

ture of this molecular compound. The structure can be regarded as a face- 

centered packing of 4,4’-dinitrodiphenyl molecules. This packing has long 

hollows that also form a face centered pattern and are filled with the hydroxy- 

dipheny! molecules, with their long axes approximately perpendicular to the 

planes in which the molecules of 4,4’-dinitrodiphenyl lie. Each hydroxydi- 

phenyl molecule is surrounded by 2 dinitrodiphenyl molecules at about the 

same distances from the molecule. Thus, it is impossible to single out a “‘mol- 

ecular complex” in the structure. All the intermolecular spacings have con- 

ventional values and the contacts between molecules of the same element 

involve the same distances as the contacts between the molecules of both 

components. 

There is no doubt that molecular compounds with some other geometry of 

mutual arrangement of the component molecules will also be found. Evidently, 

there are numerous ways to diminish the electrostatic interaction energy. 

An important factor must be mentioned: In all these cases the ordinary 

distances between the atoms of adjacent molecules not connected through 

valence bonds are not appreciably reduced (a decrease in the C--- C distance 

by 0.1 A seems to be the limit). 
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Fig. 97. 4,4’-Dinitrodiphenyl+ 4-hydroxy-diphenyl. Projection ab. Designations of 

molecules: @ z= 4; O z=4; Oz=0. 

The fact that the molecular packing principle, even in such bimolecular 

crystals which strongly point to additional molecular interaction energy, is no 

different from the packing principle in monomolecular crystals, was long ago 

demonstrated by the author together with Frolova [92] by calculating the 

packing coefficients for bimolecular crystals and components. Table 11 taken 

from this little-known publication is given below. 

So, the main energy component, the sum of the universal atom-atom 

potentials, appears to remain practically unchanged. As to the formation of a 

bimolecular crystal, its cause is probably the fact that mixing of dipole mole- 

cules with molecules with an induced dipole moment results in a decrease of the 

electrostatic part of the interaction energy. It seems doubtful that a transfer of 

the charge would significantly affect the lattice energy. 

It would be of interest to verify the above conclusions experimentally, i.e., 

to make thermodynamical measurements and calculations of lattice energy. 

A large group of crystals composed of molecules of two or more elements are 

the so-called clathrate compounds. Here, hydrogen bonds play a decisive role. 

Hydrogen-bonded molecules form extremely different framework structures 

with hollows of different sizes. These hollows may be filled by molecules of 

other species. The interaction between the molecules filling the hollows with 

the molecules forming a framework structure can be analyzed in terms of both 

the geometrical and the physical models. 

Thus, the packing coefficient of a small molecule in a framework structure 
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Table 11 

PACKING COEFFICIENT OF BINARY CRYSTALS 

Compound Packing coefficient Packing coefficient 

of bimolecular 

A B crystal A B 

Naphthalene + trinitrobenzene 0.72 0.70 0.64 

Naphthalene + trinitrochlorobenzene 0.68 0.70 0.65 

Naphthalene +trinitrophenol 0.68 0.70 0.65 

Naphthalene + a-trinitrotoluene 0.68 0.70 0.63 

Naphthalene + y-trinitrotoluene 0.78 0.70 0.62 

Acenaphthene + trinitrophenol 0.68 0.70 0.65 

Acenaphthene-+ a-trinitrotuluene 0.64 0.70 0.63 

Acenaphthene-+ f-trinitrotoluene 0.63 0.70 0.70 

Acenaphthene + j-trinitrotoluene 0.63 0.70 0.62 

Phenanthrene + trinitrobenzene 0.71 0.68 0.64 

Phenanthrene + trinitrochlorobenzene 0.7 0.68 0.65 

Phenanthrene + trinitrophenol 0.56 0.68 0.65 

Phenanthrene + «-trinitrotoluene 0.70 0.68 0.63 

Phenanthrene +-trinitrotoluene 0.65 0.68 0.70 

Fluorene + a-tronitritoluene 0.67 0.69 0.63 

can be calculated. Calculations show that the incorporated molecules do not 

move apart the “walls of the jail’ in which they are confined. Sometimes 

incorporated molecules are conveniently packed in the cell hollow and make 

only minor motions about the equilibrium position. In other cases, as is revealed 

by both X-ray diffraction analysis and thermodynamic studies, an incorporated 

molecule is in a free rotational state. 

By way of example consider the molecular compound of hydroquinone with 

sulfur dioxide SO, (unit cell: a= 16.29, c= 5.81 A; space group C3, = R3). 

It contains three formula units with composition 3-C,H,(OH),M where M 

can be the small molecule, in our case SO,, but also H,S, HCOOH, HCN, 

HC1, HBr, CH;CN, or CH,OH. 

In the structure the hydroquinone molecules are connected by hydrogen 

bonds, 2.75 A long, and form an infinite three-dimensional skeleton. The six 

O atoms of six hydroquinone molecules form a plane hexagon parallel to ab; 

the central O---O lines of these six hydroquinone molecules are directed 

alternately upward and downward from the plane of the hexagon. The angle 

@ between the above O-:-O lines and ab equals 44.5°; the angle between the 

benzene ring plane and ac has the same magnitude. Figure 98 gives a repre- 

sentation of such a system of hydrogen bonds. 
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Fig. 98. Perspective representation of the hydrogen 

bond system. 

The second O atom of each of the six hydroquinone molecules is included in a 

similar hexagon and forms a second skeleton parallel to that shown in Fig. 98 

but shifted with respect to the former along the c axis by half the distance 

between the two hexagons lying one above the other. Both skeletons are inter- 

laced and penetrate into each other without interfering with intermolecular 

distances. In this interlaced structure there are three hollows per cell; the 

hollows being framework structures (“‘cages’’) of an approximately spherical 

shape and diameter 7.5 A as measured from the centers of the atoms surround- 

ing the hollow. Taking into account intermolecular radii it can be easily seen 

that a molecule filling a hollow is allowed free space with a diameter about 4 A, 

i.e., a volume quite sufficient for accommodating a small molecule. 

Figure 99 shows the projection on (110) of the structure of the clathrate 

compound of hydroquinone with SO,. The size of the hollow prevents free 

rotation of the SO, molecule but large thermal motions are possible. 

It is interesting to point out that the cages of this skeleton structure are 

completely closed. A molecule, however small, can neither enter the cage of a 

formed crystal nor leave it. Therefore, although SO, is volatile and there are 

no additional bonds between the hydroquinone and SO, molecules, they form 

a stable molecular compound. 

Very interesting investigations of clathrate compounds in which water 

layers surround large molecules, and the crystal hydrate problem in general, 
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Fig. 99. Clathrate compound 3 CsH4(OH),-SO 2. Projection on (110). 
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are intimately linked with the clathrate problem and deserve special atten- 

tion. Interesting and important regularities in this sphere have been established 

by Jeffrey et al. [93]. 

We believe that the consideration of this problem will be still more in- 

triguing if simple examples are used for studying the applicability of the atom— 

atom potential technique for describing hydrogen bonding. 

Consider in more detail the structure of a clathrate compound of the 

“gaseous hydrate” type. The crystalline hydrate of composition 6,4C,H,O- 

46H,O [94] displays high symmetry: space group P/m3n, unit cell parameter 

a= 12.03 A at —25°C. The 46 water molecules are hydrogen-bonded into a 

skeleton of polyhedrons shown in Fig. 100. The O---O distances in the hydrogen 

bonds range from 2.766 to 2.844 A. The ethylene oxide molecules occupy six 

equivalent hollows in this skeleton and, judging from the electron-density 

distribution, there may be two statistically equiprobable orientations (Fig. 101) 

of this molecule on a 4 axis. The structure is a normal crystalline hydrate in 

the sense that the atoms of the main skeleton and of the molecule incorporated 

into this skeleton are spaced at normal intermolecular distances, the shortest 

ones being O---O = 3.18 A, O---O = 3.70 A, so that we cannot speak about 
any specific bond between them. 

Both in “‘gaseous hydrate”’ structures and in structures of the type of per- 

alkylated cation hydrates, e.g., 5(n-C,H,) N* F~ -16H,O [95] the matrix lat- 

tices formed by the hydrogen bonds include pentagon-dodecahedrons H4904, 

without hydrogen bonds between these lattices and the incorporated molecules 

or cations. Crystalline hydrates of another type can also exist [93]; e.g., in the 

12(C,H;),NH-104H,O structure the amine is hydrogen-bonded in the 

hollows of the water lattice containing polyhedrons with 12 pentagonal and 

Fig. 100. Skeleton of polyhedrons formed by water molecules. 



130 1 Structure of Crystals 

Fig. 101. Arrangement of an ethylene oxide molecule in one “hollow” of the skeleton. 

Symmetry and dimensions of this polyhedron are shown in the right-hand figure. 

six hexagonal faces but including no dodecahedrons; in the(CH3),NOH:-5H,O 

structure the cations are accommodated in the hollows of a water—anion 

lattice composed of distorted truncated octahedrons. 

The studies of the binary crystals of organic substances are a key for studying 

intermolecular ineractions. There can be no doubt that investigation in this 

sphere will grow and intensify. 
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Chapter II 
Lattice Energy 

A. Interactions of Molecules 

1. VAN DER WAALS FORCES 

The interactions between uncharged atoms and molecules, in the absence 

of an appreciable exchange of electrons, consist of weak forces which are 

generally known as van der Waals forces. In most organic crystals the mol- 

ecules are held together by these forces. 

The structures of organic crystals in which the van der Waals forces operate 

is characterized by close packing. When in the solid state, the inert elements 

form crystals of a closely packed cubic or hexagonal structure. 

The heats of sublimation of such crystals are very small as compared with 

those of ionic and valency crystals. The heats of sublimation of the inert 

gases Ne, Ar, Kr, and Xe are 0.6, 2.0, 2.8, and 3.9 kcal/mole, respectively [1]. 

For organic substances, the heats of sublimation are also very low, of the 

order of 10-20 kcal/mole. Even in the case of crystals with very large mol- 

ecules, the heat of sublimation is only about 40—SO kcal/mole (e.g., 37.5 and 

53.5 kcal/mole for 9,10-diphenyl anthracene C,,H,g and violanthrene 

C,,H,., respectively). A large number of data on the heats of sublimation 

of organic substances may be found in a review by Westrum and McCullough 

[2] (see also p. 335). 

134 
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a. London’s Theory of van der Waals Forces 

The origin of the van der Waals forces was not completely understood for 
a long time although information about this type of interaction was not 
difficult to obtain by studying such simple physical phenomena as, for 
example, the capillarity in nonpolar liquids and the nonideal behavior of 
real gases. 

Some simple ideas about the nature of the van der Waals forces were 

developed long before the appearance of a rigorous theory (concerning this 

subject see Margenau’s review [3]). The interaction between polar mol- 

ecules was partly explained in the theories of the Keesom orientation effect, 

also called the alignment effect (the electrostatic attraction of permanent 

multipoles) and the Debye induction effect (caused by the polarizability of 

molecules). The principal effect, which consists of the mutual attraction 

between neutral particles, independently of their polarity, still needed ex- 

planation. A strict and consistent interpretation of the van der Waals forces 

first appeared in the works of London [4] who reduced them to electrical 

interactions. 

The physical meaning of the attraction of neutral particles separated from 

one another by large distances may be described as follows. Even in such 

atoms or molecules; whose electrical multipole moments are on the average 

equal to zero, there exist certain fluctuating multipole moments which depend 

on the instantaneous positions of the moving electrons in the atoms. The 

instantaneous electric field associated with these moments leads to the ap- 

pearance of induced multipole moments in neighboring atoms. The averaged 

interaction between the electrical moments of the initial atom or molecule 

and the induced moments of neighboring atoms or molecules gives rise to 

attractive forces between the particles. London has shown that the dominat- 

ing part of this effect is due to the outer, most loosely bound electrons—the 

same electrons that are responsible for optical dispersion. This explains why 

the effect of interplay between electrically neutral particles was called the 

dispersion effect.: This term is now generally accepted. 

The Interaction of a Pair of Particles. London has derived a rigorous for- 

mula for the energy of the dispersion interaction of two molecules on the 

basis of the quantum-mechanical theory of second-order perturbations. The 

two interacting molecules are regarded as quasielastic oscillators having an 

energy different from zero even in their lowest energy states (the quantum- 

mechanical zero-point energy). If the electrical potential energy of the inter- 

action of the two molecules is expanded in a multipole series with respect to 

the coordinates of the charge elements and only the dipole-dipole term used, 

the interaction energy averaged over various orientations of the molecules 

with respect to the vector R joining them varies with the inverse sixth power 
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of the distance R between the centers of the two molecules: 

U(R) = —A/R® 

where A is a constant given by 

ae SS [ila a lI Cilmal 71 
3 7 Fo E, + Ej —E;—E; 

Here we designate the ground states of the unperturbed molecules by i, jand 

the excited states by i’, j’ respectively; E;, E;, E;, Ej are eigenvalues of the 

molecules, and <i|u,|i>, <j|u2|j> are the matrix elements of the dipoles 

between the states i,i’ in molecule 1 and between the states /, j’in molecule 2. 

The primes on the summation signs exclude i’ = i and j’ = 7. We see that the 

energy U(R) is negative. Hence the corresponding van der Waals force is 

attractive. 

In addition to the rigorous formula, which is too complicated for actual 

calculations, London proposed an approximate formula correlating the van 

der Waals force with the polarizabilities of the molecules («,, «,) and the 

ionization potentials (J, and /,): 

3 Ye gv 
Eas aig = 5) A, X eas R® 

Slater and Kirkwood [5] obtained a similar relationship for long-range 

interactions by using the variational method. This method does not possess 

the same generality as the London perturbation method, but it is applicable 

to many nonpolar molecules in the normal state. The Slater-Kirkwood 

formula has the form 

1 3eh (/Na>\2 

Fai-oio = 5 Be om 
where N is the number of electrons in the outer shell, and & the polarizability of 

the atom (or molecule). The interacting systems are assumed to be spherically 

symmetrical. 

The agreement between these two formulas is not always good; it is, how- 

ever, difficult to give preference to either one of them since both contain errors 

caused by approximations; these errors cannot be estimated. 

Similar considerations of the dipole-quadrupole and quadrupole—quad- 

rupole interactions lead to additional van der Waals potentials —A’/R®, 

—A"/R'° varying, respectively, with the inverse eighth and tenth powers of 

the distance. From estimates of the constants A’ and A” by Margenau it 

follows that even for nearest neighbors the dipole-quadiupole potential is 

only a relatively small fraction of the dipole-dipole potential. For molecules 
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farther apart, all terms in the interaction potential other than the dipole— 
dipole term rapidly become insignificant. For instance, let us regard the 
CH, molecule as a center of attraction: If the distance between the centers 
of the molecules were 1.66 A, the dipole-dipole and dipole-quadrupole 
energies would be equal; but it is known that the actual distances between 
nearest neighboring molecules are never less than about 4 A. 

The expression for the van der Waals force appearing in the second-order 
approximation of the perturbation theory is quite satisfactory for the case of 
atoms (molecules) farther apart. For distances comparable with the size of 

particles, the multipole expansion proves to be less rigorous, although in this 

case too the potential of the dipole-dipole interaction probably gives the 

correct order of magnitude of the full interaction. When the particles approach 

each other to a distance smaller than the equilibrium distance, the electron 

shells begin to overlap one another, which gives rise to a strong repulsion 

(overlap force). These additional repulsive forces due to the overlap are not 

considered in London’s theory. There is as yet no simple theoretical expression 

for calculating the repulsive energy, and therefore for the van der Waals 

interactions, as well as for the short-range interactions of ions, one has to 

resort to simple representations of the energy of repulsion in the form of 

inverse power (B/R") or exponential (ae */?) dependences. The constants 

entering into these expressions must be determined empirically. 

The Interaction of a Group of Particles and the Additive Rule. When London 

applied his method to a group of molecules, he obtained the sum of the energies 

of interaction between the molecules taken in pairs. In other words, in the 

second-order perturbation the dispersion effect possesses the property of 

additivity. 

It was shown later that by carrying on the perturbation procedure for 

nonoverlapping molecules to an approximation of order higher than the 

second, the strict additivity of the van der Waals forces vanishes. The dis- 

persion forces in that third-order perturbation for three particles were first 

deduced by Axilrod and Teller [6]. These authors made an attempt to deter- 

mine the role of the nonadditivity effect in calculations of the conditions for 

stability of the crystal lattices of rigid inert gases and of the third virial co- 

efficient of gases. This effect appeared to be negligible. Similar results for 

rigid inert gases were obtained by Jansen [7], who, by introducing a number 

of simplifying assumptions, estimated the nonadditivity effect in the region 

of overlap of electron clouds. 

A somewhat more rigorous calculation of the nonadditivity for small 

distances has been carried out by Wojtala [8]. From the results of his estimate 

for hydrogen atoms it follows that the nonadditive contribution to the repul- 

sion potential would be great if the particles were separated by distances of 

the order of 0.5-1 A (for a group of particles separated by a distance of 1 A, 
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this contribution would constitute up to 20%). In real liquids and solids the 

distances between the hydrogen atoms of neighboring molecules are nerve 

less than 2 A. For such distances, the rapidly decreasing nonadditive con- 

tribution reduces to zero. 

A greater effect may be expected for three bodies when one of these is of 

a very large size. The presence of a surface in the immediate vicinity of the 

two interacting molecules can change the energy of their interaction so that 

either a stronger attraction or a stronger repulsion may occur. 

b. The Potential Formulas Including Repulsion between Particles 

The first field of application of the London theory of intermolecular forces 

was an investigation into the equation of state for an ideal gas. As is known, 

the second virial coefficient appearing in this equation depends on the poten- 

tial of interaction of a pair of gas particles. Calculation of the second virial 

coefficient and comparison of the results obtained with the experimental data 

have made it possible to establish the shape of the potential. 

As far back as 1903 Mie [9] suggested writing the interaction energy shared 

between two atoms as the sum of two terms, repulsion ®, and attraction ®,, 

varying inversely with distance. Later on the following formula was proposed : 

De es (1.1) 

where n> m> 0. This form was called the (m:n) interaction for short. 

In subsequent years other analytic expressions were also proposed. They 

are often written in the form 

® = eu(z), Pai ph 

where ¢ and r,, are convenient “‘scale”’ factors, and the function u(z) describes, 

in fact, the shape of the curve and can itself contain one or several parameters. 

After the works of London the exponent m in Eq. (1.1) was taken equal 

to 6. Lennard-Jones [10] has shown that if the potential curve is taken in 

the form of 6: and the second virial coefficients of gases are calculated with 

the help of that curve, good agreement with experiment can then be secured 

for a wide range of the values of n (from 8 to 15). Buckingham [11] tried to 

use the potential in the form of 6-exp (the exponential law for the repulsive 

potential), but he also found that the sensitivity of the second virial coefficient 

to the shape of the potential curves is low.' This was also confirmed by the 

results of other later works. 

t+ The potential curve in the form of 6:n is generally known as the Lennard-Jones 

potential, and that in the form of 6-exp, the Buckingham potential. 
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Attempts have been made to apply the theory of the van der Waals forces 
to the solid state for the purpose of obtaining additional data on the form of 
the potentials. This makes it possible, first, to investigate the nature of the 
interaction between particles at so-called intermediate distances and, secondly, 
to employ new experimental quantities, mainly the lattice parameters and the 
heat of sublimation of crystals, for comparing theory with experiment. 

c. arly Applications of the Theory to Molecular Crystals 

The fact that the theory of van der Waals forces was first applied to the 
simplest crystals possible, namely crystals consisting of atoms of the rare 
gases, is quite natural. These crystals are highly symmetric, and the atoms 
situated at their lattice points satisfy, with great accuracy, the requirements of 
London’s theory. By the way, such crystals continue to draw attention up to 

the present time. : 

Approximate estimates of the cohesive energies of rare gas crystals had 

already been carried out by London, who had in mind obtaining only a correct 
order of magnitude. 

The first consistent work devoted to the description of the behavior of 

crystals over a wide temperature range with the aid of atomic interaction 

curves was performed by Rice [12]. He wrote down the full energy of an 

argon crystal in the form of a sum of the attraction energy 

U. attr = =—cor Ser * 

calculated by him with the help of the lattice sums of Lennard-Jones and 

Ingham [13], the repulsion energy 

UT. = Uo + I b(r—1o)' 
i=2,3,4 

taken into account only for the 12 nearest neighbors, a term depending on 

the temperature change of the lattice parameters, and a term taking account 

of the energy of zero-point vibrations. To describe his potential Rice had to 

choose five constants (c,¢, Cg, b>, 63, b4). As a result, he obtained a curve 

that described satisfactorily the then known properties of the solid phase of 

argon within the temperature range from 0°K to the melting point, and also 

the second virial coefficient for the gaseous phase. 

As new experimental data accumulate, potential curves taking account of 

the properties of the solid phase of the rare gases are made more exact by 

various authors using varicus modifications of the procedures commonly 

employed and lead to quite reasonable results over rather wide limits. 

Crystals composed of di-, tri-, and polyatomic molecules bound together 

by van der Waals forces have been studied but little. 

As we have seen, the London theory and all the succeeding supplements 
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to it are based on the assumption of central forces. London himself has 

applied his theory not only to crystals built up of atoms of the rare gases, 

but also to the simplest molecular crystals (N,, O,, CO,, CH,, NO), assum- 

ing that each molecule is a point center of attraction. The central force model 

has been applied to the interaction between the molecules N,, Hz, O,, and 

CH, by Slater and Kirkwood [5]. 

It was, however, clear that this approximation is applicable only in the 

simplest cases. The interaction energy even for H, molecules depends on 

mutual orientation; the orientation effect may amount to 25% of the mean 

energy. A very much greater effect may be expected in the case of short 

distances where the interaction is extremely sensitive to the degree of over- 

lapping of electron clouds. 

All these limitations are evidently present, to a very great extent, in crystals 

in which the molecules are in fixed positions and in close contact with one 

another. 

As far as a molecular organic crystal is concerned, the consideration of a 

molecule as a point center is obviously completely meaningless. 

2. CALCULATION OF THE LATTICE ENERGY OF MOLECULAR CRYSTALS 

A rigorous approach to the problem should consist in investigating the 

Schrédinger wave equation which is obtained by substituting the Hamiltonian 
of the system of interacting particles into the general wave equation 

ihoWw/ot= AY, A = A,+ 0(r,,%,...) (2.1) 

The first term is the sum of the Hamiltonians of the individual molecules, 

and the second term is the potential energy of their interaction in the crystal 

lattice. 

Molecular crystals possess certain specific features which facilitate, to some 

extent, their theoretical consideration. In view of the weak binding forces 

between the particles, one may regard the potential energy in the Hamiltonian 

(2.1) as a small correction to the operator Hy and use the quantum-mechanical 

theory of perturbations in order to solve the Schrédinger equation. 

In the general case of nonsymmetrical molecules the desired correction to 

the energy of an unperturbed system appears already in the first approxima- 

tion of the perturbation theory and is determined by the mean values of the 

multipole moments of interacting particles. If the dipole or quadrupole 

moments of the molecules are different from zero, the interaction energy then 

decreases, respectively, with the third (1/R*) or the fifth (1/R°) power of the 
distance and depends on the relative orientation of the molecules. 

If the interacting particles do not exhibit permanent electrical moments, 
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their interaction energy in the first approximation of the perturbation theory 

vanishes. In this case a nonzero result, which is quadratic with respect to the 

matrix elements of the potential energy operator, appears in the second order 

of the perturbation theory. Here the term most slowly decreasing with distance 

in the expression for the energy of interaction between the particles is pro- 
portional to 1/R°®. 

At shorter distances, when the electron clouds of the atoms comprising the 

molecules overlap, the first approximation of the perturbation theory leads, 

by the exclusion principle, to a strong repulsive interaction which depends on 

the symmetry of the interacting particles. For spherically symmetrical particles 

at short distances, the quantum theory leads to a decrease of the energy with 

distance according to an exponential law. 

What are the principal terms? Computation of the energy of the electro- 

static interactions in a crystal lattice, taking account of the multipole moments 

of the molecules, does not yield even approximately, as we shall see below, 

the values of the cohesive energy that are observed in experiment; this energy 

appears to be extremely small. Thus the major role in the cohesive energy of 

molecular crystals must be played by the effects of the second-order ap- 

proximation of the perturbation theory for large distances and by the repulsion 

due to the overlap of electron clouds for short distances; we call these inter- 

actions the van der Waals interactions. We shail see below to what extent 

this supposition is justifiable. 

The methods of perturbation theory appear to be of little use for any 

detailed calculation aiming at correlating the lattice energy with crystal 

structure. Significant progress becomes impossible without information about 

the potential energy of interaction. 

Interpretation of the potential energy of interaction between molecules is 

realistic only on the basis of the adiabatic approximation introduced into 

quantum mechanics by Born and Oppenheimer. 

These authors have shown, first, that the Schrédinger equation for a system 

of N atomic nuclei and n electrons can be transformed to the form 

Ie P? Jee ely ; 
k elec kao kao k,aa’ +k ‘ 

(Hs ats Jos iF yi fil 4 + > (es M, ral Wa = 1 Wa 

k,a’(#a) 

& is the kinetic energy of the nuclei; Es'** is the eigenvalue of 

the electronic state for a system of nuclei with the coordinates X, (k=1,...,N); 

w, is the wave function of the nuclear coordinates; Pe mandn Pee, 

are the matrix elements of the relatively intrinsic electronic functions. 

where H* 

+ It should be noted that some authors use the term van der Waals forces to denote 

jointly the electrostatic interactions, dispersion forces, and repulsive forces. 
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The adiabatic approximation consists in neglecting the second term of the 

left-hand side of the equality. Such simplification is permissible if we ignore 

the connection between the states of the nuclei belonging to different excited 

electronic states. 

Further, if, because of the large mass of the nuclei, we also ignore the sum 

in the first parentheses (as compared with E,), the Schrodinger equation then 

assumes the form 

(Hive + Ez) Wy = ih, 

Thus the electron—nuclear system is transformed into an atomic one. The 

role of the potential energy of interaction ®(YX,) is played by E£,. In the case 

of the ground state of the electronic configuration 

®(X,) = Eo (X%) 

i.e., the potential interaction energy of the atoms is equal to the eigenvalue of 

the lowest electronic state. 

There exist theoretical calculations showing that for dielectrics in which 

the energy difference between the zeroth and first states is of the order of 

1 eV, the approximation holds quite well. 

The adiabatic approximation allows us to “forget” about electrons and 

to reduce the problem to atomic interactions. The configuration of the 

potential ®, however does not follow from theory. Further steps along this 

line can be made only with the aid of new simplifications and additional 

hypotheses. 

The fact that the molecules in an organic crystal form close packings and 

that in this case the atoms of each molecule tend to arrange themselves be- 

tween the atoms of the neighboring molecules and as close to them as possible, 

suggests the idea of additivity of the interaction energy not only with respect 

to the interaction between the members of each pair of molecules, but also 

with respect to the interactions of atoms with one another. 

The possibility of representing the energy of interaction of molecules as 

the sum of the interactions of their constituent atoms will of course be of 

heuristic value if it appears that an energy increment is characteristic of two 

species of atoms independently of what molecules these atoms are part of. 

Indeed, in this case the main peculiarity of organic compounds—that enor- 

mous classes of compounds, such as, for example, the hydrocarbons, are 

made up of only two species of atoms—makes it possible to predict the 

properties and structures of thousands of substances with the help of empirical 

constants determined on the basis of the analysis of the structure and the 

properties of a few reference substances. 

The increment of interaction must of course be found from a curve of the 

atom-atom potential rather than by stating a number. The principal question 
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to be answered is the degree of universality of this curve. This approach would 

be of little value if these curves were essentially different, for example, for 

each hydrocarbon. The proof of the universality of such curves would already 

be of sufficient interest for aliphatic hydrocarbons, aromatic hydrocarbons, 

etc. And, finally, of greatest interest would be a result showing that the 

structure and properties of all hydrocarbons could be described, with reason- 

able accuracy, with the aid of identical curves. 

May we hope that in calculations of the interaction energy, the peculiarity 

in the electron distribution and the absence of the spherical symmetry of the 

electron distribution in the atom which occurs. strictly speaking, in an organic 

molecule, may prove unimportant in computing the interaction energy? It is 

difficult to give an answer to this question beforehand, and the final solution 

can be provided only by experiment. However, two circumstances are en- 

couraging as regards the solution of this question. Precision X-ray structure 

studies show that excellent agreement with experiment can be secured by 

calculations using isotropic atomic factors of X-ray scattering, and that the 

patterns of electron density can be represented, with experimental accuracy, 

as the superposition of spherically symmetrical atoms. And, further, the 

residual electrical charges at the atoms which result in a molecule’s possessing 

a certain electrostatic multipole moment, lead to electrostatic energies of 

interaction negligible as compared with the heats of sublimation of such sub- 

stances as the hydrocarbons, and to relatively small values even in the cases 

of molecules with large dipole moments. The latter circumstance, however, 

is not obvious and must be proved by straightforward calculations. 

On the basis of the foregoing qualitative considerations we have proposed 

the following model of the potential energy of interaction between molecules: 

1. The energy of interaction between molecules is equal to the sum of the 

interactions of the constituent atoms (additivity). 

2. Central forces operate between atoms. (A somewhat more complicated 

model taking account of the ellipticity of the atoms may be introduced, if 

necessary.) 

3. The interaction potential of two atoms ¢;, can be broken up into two 

terms 

= electrost 
Pix = Uy + Pix 

The term u,, takes account of the forces of repulsion and dispersion at- 

traction. 
4. The potentials u;, are universal, i.e, depend only on the species of the 

atoms, no matter what molecule they are part of and what their valence states 

may be. 

5. For the u,,, we may adopt various analytical expressions of the type of 
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6-exp or 6:n potentials with arbitrary parameters which must be determined 

by experiment. The most direct verification of the method is likely to be 

provided by the calculation of the lattice energy of a crystal as a function of 

the lattice parameters. The coordinates of the minimum of such an energy 

surface give the values of the heat of sublimation and of the structure’s par- 

ameters at the absolute zero of temperature. This method can be rather 

convincingly verified by establishing the fact that the real structure at the 

absolute zero of temperature corresponds to a minimum on the energy surface. 

It is also natural that it is this method that can be employed for selecting the 

best atom-atom potential curves, by the use of which we can proceed, if we 

are successful, to the calculation of the properties of crystals. 

B. Electrostatic Energy 

3. THE DipcLe—-DIPOLE INTERACTION IN A MOLECULAR CRYSTAL! 

In expanding the intermolecular potential energy for electrically neutral 

molecules into a series with respect to the coordinates of the charge elements, 

the terms with the lowest nonvanishing multipole moment must be most 

important. In a lattice consisting of dipole molecules, the contribution of 

electrostatics to the lattice energy is determined mainly by the dipole-dipole 

interactions. 

The energy of interaction of two identical point dipoles with moments pu 

joined by the vector r,, and having directions S, and S, is equal to 

FE: (Fs 2 Se) 

In2/° (r42)° 

Taking the dipole wS, as the origin of coordinates, we find its energy in 

the field of the dipole lattice as the sum of the interactions with all the other 

dipoles of the lattice 

E in (3.1) 

E 
w oe Fa = oreo 

(3.2) 

2 n Intnl? (ae 

The sum (3.2) is a conditionally convergent alternating infinite series. The 

magnitude of the sum and the rapidity of convergence of the series depend 

on the choice of the order of summation. 

The summation of the series (3.2) can be performed most simply in the 

general case for lattices of cubic symmetry. The procedures for calculating 

=2 

+ The problems of this section and Section 4 are treated in Kitaigorodsky and Mirskaya [14]. 
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these sums for dipole and quadrupole cubic lattices have been discussed 
earlier by Kornfeld who accepted the order of summation proposed by 
Ewald [15] for ionic lattices. However, as has been shown by Campbell [16], 
Kornfeld’s reasoning in carrying over the summation method from ionic 
lattices to multipole ones contains an error in logic leading to wrong results. 
In particular, Kornfeld came to the conclusion that the energy of a simple 
cubic dipole lattice is different from zero, whereas it is, in fact, strictly equal 
to zero (see below). 

Calculation of lattice sums for molecular crystals in a general form is very 

difficult because of the large diversity in the modes of symmetrical arrange- 

ment of the molecules in the lattice, and in the ratios of the parameters 

describing the unit cell. As a rule, computations of the multipole energy are 

made for concrete crystals and are performed according to general formulas 

(3.1) and (3.2) with the aid of electronic computers [17, 18]. An attempt at 

a more general consideration of this problem has recently been made by 

De Wette and Schacher [19]. Here, in each particular case, one has to find 

the whole set of distances and the orientations of the dipoles at all the lattice 

points. 

However, nothing can be said beforehand about the set of distances in an 

arbitrary lattice. As regards the relative orientations of the dipoles, we know 

that they obey quite definite laws; namely, they depend on the space group 

of the symmetry of a crystal. The question of the dependence of the dipole 

energy of a crystal lattice on the orientation of the dipoles can therefore be 

stated in a general form. 

In an attempt to solve this problem we shall compare different dipole 

lattices, in which the centers of the dipoles are arranged identically, namely, 

according to the mode of spherical close packing. Keeping the mutual arrange- 

ment of the centers unchanged, we assign different space symmetries to the 

arrangements of dipole vectors. Such considerations make it possible to 

obtain for each space group an analytic dependence of the electrostatic 

lattice energy on the orientation of the dipole vector taken at the origin of 

the coordinates. The resulting analytic dependences can be used to construct 

polar maps that will give a graphic representation of the orientation depen- 

dence of the dipole energy, including the regions of the most favorable orienta- 

tions of the molecules in the lattice from the viewpoint of its electrostatic 

energy. A comparison of the results obtained with real structures will show 

the contribution of the electrostatic interactions to the establishment of the 

equilibrium structure of the crystal. Moreover, by comparing the analytical 

expressions with the polar maps for different space groups, it is possible to 

elucidate the effect of the symmetry of a crystal lattice on its electrostatic 

energy in “pure form.” 

We shall limit ourselves (if necessary, this limitation can easily be eliminated 
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and the suggested procedure of calculation can be worked out in a com- 

pletely general form) to a symmetry of arrangement of dipole vectors not 

higher than the orthorhombic one and consider cells in which there is only 

one independent vector. In this case all the possible symmetric arrangements 

of dipole vectors can be obtained on the basis of the two simplest closest 

packings—cubic and hexagonal. 

For lattices built up according to the principle of close packing of spheres 

we may suggest a summation procedure which, making successful use of the 

symmetry inherent in such lattices, turns out to be rather simple and provides 

good convergence of the series (3.2.) 

Let us consider a rectangular lattice with periods a(3}”/6 along the x axis, 

a/2 along the y axis and a(2/3)” along the z axis (a is the shortest distance 

between the centers of the dipoles). We denote the lattice points by the sub- 

scripts m, n, and p; the radius vector of any lattice point will be equal to 

r = a[(37/6) mi+ (1/2) nj+(2/3)2pk]. The length of the vector is r= 
[a/(12)”] (m + 3n* + 8p)”. The dimensionless ratio r/a is designated by R. 

By filling some of the points of this lattice we can obtain closest sphere 

packings with any recurrence along the z axis (dense layers are formed in the 

xy plane). The closest hexagonal (two-layer) packing (Fig. la) is formed by 

filling even iayers (p = 0,2,4,...) according to the pattern m as a multiple 

of 6 for n even and of 3 for n odd, and odd layers (p = 1,3,5) according to 

the pattern m = —2,4,10,... for n even and m = 1,7, 13,... for n odd. The 

closest cubic (three-layer) packing (Fig. 1b) arises from the filling of layers 

with p = 0,3,6,... according to the same mode as the even layers in the 

hexagonal close-packed structure, of layers with p = 1,4,7,... according to 

the same mode as the odd layers in the hexagonal packing, and of layers with 

Y 

Fig. 1. Selection of coordinate axes in two- and three-layer spherical packing schemes. 

Identical symbols designate points of the same layer. 
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p =2,5,8,... according to the pattern m = —4,2,8,... for n even and m = 
—1,5,... for n odd. In this way one can describe any more complicated 
closest packing. We place dipoles in the lattice points, and on summation 
the end of the vector r, the origin of which is at the zero point, runs through 
all the filled lattice points. 

Let us break up all the dipoles in the lattice into groups connected with 
the zero dipole by one family of elements of symmetry. The dipoles joined by 
parallel elements of symmetry—the axes 2 and 2, or reflection and glide 

planes—are included in one group. The reason for this division will im- 
mediately be clear. 

If the basic vector is S, = xi+yj+zk, where x,y,z are direction cosines, 

then the vectors connected with it by various elements of symmetry are 

written down in the form: for the center of inversion 1: S, = —xi—yj—zk; 

for the axis 2||Y: S,=—xi+yj—zk; for the plane mLY: S, = xi—yj+zk; 

for the axis 2||Z: S, = —xi—yj+zk, and so on. The distinctions between the 

axes 2 and 2, and the reflection and glide planes are unimportant. 

According to the general formula (3.1) the energy of interaction between 

two dipoles—the zero dipole and the dipole located in the point mnp—when 

they are, for example, translationally identical, is equal to (we write the 

energy referred to one dipole): 

Fiel4 aah agesind Fei 1 2\% 7 
Es aR? 2RS ey ON EY 3 PZ (3.3) 

In case the dipole situated in the point mnp is connected with the zero dipole 

by a second-order axis parallel to Y, the energy of their interaction is equal to 
ents Z i 

pa \2yn= 33) (il a6 2 \2 
E,ayy = oa ae ane lan? —| “= mx oF Bue (3.4) 

Similar formulas can be obtained for other cases as well. 

Now we remark that in the lattices under consideration, we can, owing to 

their intrinsic symmetry, single out lattice points of two types (see Fig. 1): 

lattice points of type A having in the general position a multiplicity of eight 

(this means that there are eight points, the indices of which differ only in 

signs—mnp, mnp, mip, mnp, mip, mip, Mnp, mnp); in special positions these 

lattice points have a multiplicity of four or two; lattice points of type B 

exhibit a multiplicity of four in the general position (mnp, mnp, mnp, mnp for 

cubic packing and mnp,mnp,mnp,mnp for hexagonal packing), and in 

special positions they have a multiplicity of two. 

If we designate the totality of points whose indices differ only in sign as 

“a point of the form {mnp},” then the contribution of such a “point” to the 
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dipole energy of the lattice when, for example, the dipoles of the “point” 

are translationally identical with the zero dipole, is found, on the basis of 

(3.), to be equal to 

Z 2 2 2 

Big = (ZB at — ay? 0 
GRR hi) Ro aes 

z2 sys tRP x2] (3.5) 

The coefficient y takes into account the multiplicity of the point {mnp} and 

is equal to 1, 4, or Lif the multiplicity equals eight, four, or two, respectively. 

We notice that for lattice points of type A and also for those of type B in the 

hexagonal framework, the last term in the sum (3.5) is equal to zero. The 

contribution of the entire group of dipoles, translationally identical to the 

zero dipole, to the energy is equal to 

Eye = (uw? /a*)(4Ao— Am x? — 34, y? — 84,27 —4(2)? Amp XZ) 

where 

Ay = Vales An = Yi ye (RPS A, = nt RP 

: 2 _ 4 (3.6) 
A, = Di ViPi /R; > 7, a = Lv pi R: 

The summation is carried out over the points constituting the group. Here it 

suffices to write only one representative of each point of the form {mnp}. 

This means that for lattice points of type A, we may limit ourselves to the 

positive octant; and for lattice points of type B, to the positive quadrant 

(n>0, p>0). The sum 4,,, is calculated only for lattice points of type B in 

the cubic framework. 

Proceeding in a similar way, that is, introducing y and summing over the 

points of the form {mmnp} in case the group of dipoles is connected with the 

zero dipole by the 2||Y axis, we obtain, on the basis of (3.4), 

mp 

Ey ayy = (w/a?) [4A (2y?—1) + An x? — 3A, y? + 84,27 + 4/24 uw xz] mp 

As we see, the contribution of this group of dipoles to the energy is expressed 

with the aid of similar sums (3.6), with the only difference that the summation 

is performed over other groups of indices. It is evident that the contributions 

of other groups of dipoles is expressed with the help of the same sums. 

Now we write the contributions of all possible groups of dipoles to the 

energy: 

by | = (u?/a*) (4A — A, x? — 3A,” ~ 8A, 27 — 4(2)” Any XZ) 

Eq Hag 

= (u?/a°) [4Ay (2x? — 1) — A, x? + 3A, y? + 84,27] by te 
| 
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Ee eix = Ey (S77) 

E,oyy = (u7/a*) [449 (2y?—1) + A, x? — 3A, y? + 8A,2z7 + 4(2)4A,,, XZ] u 

Fe pate = — Ey ayy 

E aie = (u?/a*) [4.4, (227 - 1) + Apa =f 34 ye — 84,27] Lu 

Erez ae E,,2 |Z 

Let us now try to split the points of the cubic and hexagonal lattices into 
the following four groups: 

Group I peven, neven 

Group II peven, nodd 

Group III podd, neven 

Group IV podd, nodd 

(3.8) 

If the points of these groups are filled with differently oriented dipoles, we 

can obtain a rather large number of examples of symmetrical arrangement 

of dipoles characteristic of molecular crystals. 

It is clear that in the case of such a division the set of values of R and indices 

mnp within the same group for three- and two-layer packings will be different. 

Therefore the sums Ao, A,,, A,, A, and A,,, should be computed for each of 

the four groups for both the two- and three-layer variants. The limits of 

summation are determined by the rapidity of convergence of the series (3.2). 

In the work cited use has been made of the distances exceeding fivefold the 

shortest distance between the dipoles. 

Having calculated the sums, we immediately obtain, from formulas (3.7), 

the expressions for the energy of dipole interaction for all the space groups 

of symmetry, not higher than the orthorhombic ones, with a multiplicity of 

the general position of not higher than four. Some symmetrical arrange- 

ments can be obtained on the basis of both the two- and the three-layer 

packings. Others can be effected only in one of them (with the limitations 

mentioned above). 

The results for space groups satisfying the above requirements are col- 

lected in Table 1. It has been found that for each case of symmetrical arrange- 

ment of dipoles the lattice sums E,’ = E,/(u7/a*) can be represented as 
E,,, = Kf(x,y,z) where the quantities x,y,z characterize the orientation of 

dipoles in the lattice. The form of the functions f(x, y,z) does not depend 

on the radius of summation, and the values of K reduce to certain limiting 

values given in the corresponding column of Table 1. The rapidity of con- 

vergence is illustrated in Fig. 2a and b. The extremal values of the lattice 

sums for each space group, corresponding to the extremal values of the 

functions f(x, y,z), are presented in the last two columns of Table 1. 
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Table 1 

DIPOLE ENERGY OF CRYSTAL LATTICE VERSUS 

ORIENTATION OF DIPOLES AND SPACE SYMMETRY 

Symmetry operations 

Lattice Pack- by groups 

symmetry ing os S (XY; Z) K Ej. min 1Bire max 

— i = = =| = = — 

Pl Citak t t 0 0 0 0 
et t t t 3z7—-1 0 0 0 

Pi Co stan ns I I 327-1 257 —257 5.14 
Ho fer wet I I 327-1 257 —=257 9) 5.14 
Cotas t i (/2x—z)?-1 1.50 -1.50 3.00 
Hote t I 9x?-6y?-1 0.21 -1.50 1.71 
Ge Wal I t (/8x+z)?-3 0.86 -2.57 5.14 
Hee I t lix?+z7-4 064 -257 4.50 

P2, Cc ei ir t 2\IY x?—2,/2xz 15507 5= 1.50' 43.00 
Pa © iw jadi t mLY —y? 1.50 —1.50 0 

A2 Oe eh ee AE t 5x?-2774+4,/2x2 086 »—2.57 5.14 
Aa tk AL plo” t shee 2.57 —2.57 0 

P2,/c Ga tee I mLY¥  (f8x+z)?-3 0.86 —2.57 5.14 
P2272, He tix iz ei 11z?—12 0.21 —2.57 —0.21 
P2,2,2) H ‘t! QR 2 VIZ 53238377 10 Os 
Pca2; Ht) milY milX 2212 aye d22 47) MORN, 2.570 
Pna2, Leet 772 ley aueee 2) || Zemin XG z7—1 2.57 —2.57 0 

“C, cubic packing. 

> H, hexagonal packing. 

It is seen from Table | that the symmetry PI and PI can be achieved both 

in the two- and in the three-layer packing. Calculations have shown that for 

the three-layer packing each coordination sphere consisting of translationally 

identical dipoles gives a zero contribution to the energy, no matter whether 

the dipoles of this sphere are parallel or antiparallel to the zero dipole. There- 

fore, in the case of Pl symmetry the dipole energy of the lattice built up on 

the basis of the three-layer packing is strictly equal to zero. In the case of 

other symmetrical arrangements of dipoles (as, for instance, in the example 

given in Fig. 2b) some coordination spheres also have no contribution to E, 

since their points belong only to one of the four groups (3.8) and hence contain 

mutually parallel dipoles. In the case of the two-layer packing the dipole 

energy of a lattice of symmetry PI is not strictly equal to zero, but tends to 

zero as the number of coordination spheres taken into account increases 

(Fig. 2a). Passing over in formulas £,’ = Kf(x,y,z) from cartesian 
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Fig. 2. Convergence of lattice sums for dipole lattices: (a) symmetry P1, hexagonal 

packing; (b) symmetry PI, cubic packing. 

co-ordinates to spherical ones (x = sin@ cos¢, y = sin@ sing, z = cos@), we 

can construct polar maps showing the dependence of the dipole energy on 

the orientation of dipoles relative to the symmetry elements. Such maps are 

presented in Fig. 3. Here the polar angle 6 is measured from the Z axis 

perpendicular to the plane of the drawing, and the angle g from the X axis 

which is directed leftward. The “‘equal-potential”’ lines are clearly seen. The 

directions in which the dipole energy has a maximum or minimum value are 

designated by dots. Comparing the polar maps we notice that in lattices of 

different space symmetry the orientations of dipoles leading to the extremal 

values of the energy are not equal, but the extremal values of the lattice sums 

E,,’ themselves often coincide even for lattices with different recurrence of 
dense layers. The dipole energies of lattices of orthorhombic symmetry for 

almost all orientations of the dipoles are negative, which, as a rule, is not 

observed in lattices of lower symmetry. 

The formulas given in Table 1 make it possible to estimate approximately 

the values of the dipole contribution to the lattice energy of various mol- 

ecular crystals without carrying out a complete calculation on the basis of 

formulas (3.1) and (3.2). This method of estimation is convenient to use in 

those cases when no exact result is required. Of course, the quantity a entering 

into the energy formula cannot be calculated directly from structure data, 

because the ratios of the parameters in real unit cells do not coincide with 

those ratios which are obtained on the basis of spherical packings. We may, 

however, proceed as follows. We first calculate the volume of a unit cell per 

one molecule (V,,,;) and then assume that we dea! with a close packing of 

spherical molecules, each of which has the same volume V,,,.,. Taking into 

account the packing facior for spheres, we find that the quantity a= 

2“V.,.1- In this way we arrive at a certain ‘“‘average” lattice which crudely 

corresponds to the original one. We do not know the exact direction of the di- 

poles in this lattice, but it is clear that the value of the dipole energy should be 

within the range between the maximum and minimum values corresponding 



152 2 Lattice Energy 

Fig. 3. Polar maps of dipole energy E,,(@,) for crystal lattices of different space sym- 

metry (compare Table 1). 

to the given space group. Some examples of such estimates for crystals 

composed of molecules with large dipole moments are given in Table 2. An 

exact calculation based on formulas (3.2) has been made for nitrobenzene: 

E,, = —1.4 kcal/mole (it has been assumed that the center of the dipole co- 

incides with the position of the carbon atom to which the NO, grouping is 

linked). 
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Table 2 

APPROXIMATE VALUES OF DIPOLE INTERACTION ENERGY 

IN SOME CRYSTAL LATTICES 

E, (kcal/mole) 
Substance - Symmetry L, D Visi 

(A3) min max 

Nitrobenzene 

CsH;NO, P2,/c 3.96 148.2 —2.8 5.6 
Nitroanthracene 

C,4H»NO, P2;/a 3.96 267.0 —1.5 3.0 
m-Dinitrobenzene 

CeH4(NO2)2 Pbn2, 3.96 Wd.) —2.3 0 

Acenaphthenequinone 

Ci0H2(CO2)2 P2,2,2; 4.90 203.0 —3.6 0.3 

The heats of sublimation of the substances listed in Table 2 are of the order 

of 20 kcal/mole. It is seen that the values of the dipole energies constitute a 

relatively small fraction of this figure even if the dipole moment of the mol- 

ecule is considerable. For crystals whose molecules have moments p lower 

than 1 D, the value of the dipole contribution to the lattice energy must be 

quite negligible since this contribution is proportional to the square of the 

dipole moment. ‘ 

From what has been said above it does not follow, however, that the dipole 

interactions do not affect the properties of a molecular crystal, in particular, 

the establishment of its equilibrium structure. Since, as is seen from Table 2, 

the differences between the extremal values of the dipole energy are not 

negligible, though not very large, if may be supposed that the equilibrium 

structure will be set up near the minimum E,. At the same time, according 

to the principle of close packing, the real structure should satisfy the minimum 

of energy U due to the van der Waals interactions (see below). The dipole 

energy E,,, however, varies slowly with the structure parameters, and it there- 

fore cannot bring the structure out of the position of the minimum energy of 

van der Waals interactions. As an example, let us make extreme estimates of 

the angle by which dipole interactions could change the position of minimum 

energy U for a structure with strongly dipolar molecules. To do this, we make 

use of the method employed by Craig [20] for similar estimates in the lattice 

of quadrupoles. If it is assumed that the variations of U in the vicinity of the 

minimum are described by the quadratic law U = 4k(0—0,)’, and the electro- 

static term varies linearly E, = 40, the change in the equilibrium angle 0 

due to electrostatics will then be equal to —A/k. The values of the force 
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constants k for “nondipole” structures of the naphthalene type are evaluated 

approximately as 20cm! deg *. From the formula given in Table 1 we 

find that the greatest value of (a°/u”)(0E,/00) for the group P2,/c is equal 
to 0.13 deg. '. Let us suppose that we deal with a molecule of the nitro- 

naphthalene type (= 3.96 D). The largest value of A will then be about 

30 cm~! deg! and the shift of the minimum about 1.5°, which is, of course, 

an unimportant effect on the packing. 

Evidently, the molecules in real crystals are arranged so that the 

structure is in one of the lowest possible minima of the energy of the 

van der Waals interactions, with E, also simultaneously as close as possible 

to the minimum value. Calculations verifying this assertion have not yet 

been made. 

In calculating the dipole energy it is quite legitimate to consider a lattice 

consisting of point dipoles, since in crystal lattices even the shortest distances 

between the dipoles exceed their size by three or four times at least. As cal- 

culations based on exact formulas show, with these ratios the error com- 

mitted is insignificant. The difficulty lies not in this, but in the localization of 

the dipole. 

4. THE QUADRUPOLE ENERGY 

The quadrupole interactions become important in those cases when the 

sum of charges in a molecule and its dipole moment are equal to zero. The 

quadrupole interactions for some simple molecules (N,, N,O, CO,, CO), 

crystallizing at low temperatures in the face-centered cubic lattice, have been 

considered by Nagai and Nakamura [21]. The regions of lowest quadrupole 

energy have been found and have turned out to be close to the actual orienta- 

tions of the molecules in these crystals. 

Let us consider a more general case of the quadrupole interactions in a 

crystal using the method described above for dipole lattices. We shall employ 

the results so cbtained to assess approximately the role of these interactions 

in a molecular crystal. 

As is known, the energy of interaction between two quadrupoles for an 

axial or cylindrically symmetrical distribution of charges in the molecules is 

given by 

3 2 

~ 16 = {1 + 2(S, +82)? — 5(S7,+S3,) — 208, S2-(Sy +S.) + 3587, $3} ° 16 
(4.1) 

where r is the vector joining the centers of the quadrupoles; S, and S, are 

those unit vectors with components x, y, z, characterizing the directions of 
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the axes of quadrupoles relative to the lattice axes; S,, and S,, are the pro- 

jections of S, and S, ontor; and Q isa scalar quantity completely determining 

the tensor of the quadrupole moment of the axial quadrupole (in the generally 

accepted notations Q = Q,.). 

We shall number, as previously, the points of a rectangular lattice with 

periods a(3)”/6 along the X axis, a/2 along the Y axis and a(2/3)” along the 

Z axis (a is the shortest distance between the lattice points) as indices m, n, p, 

and write the radius-vector of any point in the form 

pee Eee eee Spells 2 eed Set 

For groups of quadrupoles joined with the zero quadrupole by different 

symmetry elements, we shall then obtain formulas for contributions to the 

energy, analogous to formulas (3.7). In distinction to the dipole variant, the 

interaction energies of the quadrupoles joined by the 2||Y¥ axes and mLXY 

planes (analogously for Y and Z) coincide, whereas for dipoles they differ in 

sign. This is natural because a quadrupole is an axial vector, and a dipole is 

a polar vector. The differences between the axes 2 and 2, and the reflection 

and glide planes are unimportant, as before. 

The formulas for the contributions to the energy of all possible groups of 

quadrupoles in the case of triclinic, monoclinic, and orthorhombic sym- 

metrics have the form: 

Q? (9 15 45 
Fo, = Hor = Q 13 = 7 Bm x? — qu —30B,z? 

35 105 10 
— 15(2)” By» Xz + 96 bmn ~ 3 Bin? + 5 Booz 

35 105 
ie iba + > Bmp x°2* ae =p npy V4, 

35(2)7 s 70 (2)? 3 
12 m(mp)* 2 3 Bonpyp 

105(2)” 
af = Bann 32} 

oi : Dnt a Eo,2x = -omix = ie 5 Boll + Cxs—1)5) 

15 
= = Byx*T +2(2x?—1)] - qe Ol —2(2x*—1)] 
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Bot 105 
— 10B,2z7[1—2(2x7-—1)] + 96mm - 35 Bin y" 

70 35 05 
as 3 Boot" = ebm tire BrypX?2* + = Bays? 

Or 3 242 
Egy = Eomiy = as 5 Poll 2p Va] 

15 — 2 B,x* 1-20)? -1)) - 2B? +20y?- 0) 
24108, 77 [1-2] = 5) Bee clad 

35(2)% 
mp) 2 12 

70 (2) 35(2)% 
oc 3 (mp)p wee bas 4 n(mp) NVA : 

3 
Bian Bo 

72 Ons 

Lie) ES I ie ae 5 Boll +2(22*—1)*] 

5 15 
sg Bret? 2 Cet moll ergo DNs 2 Ozne)T 

35 105 
- 108,27 [1 +2(2z27 — 1)] + 96 bmn = Ae ebay te 

70 105 35 35 
+ 3 Bonz + Te Ban X°y? — a Bi yer = = B,,yr27h 

In these formulas 

Bo = oy yiRP Bn = ay ym [R,", B, = »y yiny [Ry 

BS = ys "Di | Ris Bump) = Ms yim p;| Ri’, 1B an = ey ym | Ry 

Bin = ys yn (Re, Byp = y yipilR?, Ban = » yim nj? /R° 

Bun = Ss ym, pi? |R?, Bae = » yin? py /Ry’, DB cnp) = YY yim; pi|R? 

eae a » Vi mip; /Ry Betas) = 3S ymjn,? pilR? 
t l 

(4.3) 
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The summation is carried out over the points constituting a group. The 
coefficient y takes account of the multiplicity of a point of the form {mnp}. 
The sums Bon,,), Bimpyp>» Bncmp)> Bmimp) ate evaluated only for fourfold points in 
the cubic packing. 

In order to obtain, with the help of formulas (4.2), expressions for the 
quadrupole energy in the case of lattices having different space symmetry, it 
is convenient, as before, to break up the points of cubic and hexagonal close 
packings into four groups (I—p even, n even; II—p even, n odd; HI—p odd, 
neven; 1V—p odd, n odd) and work out the sums (4.3) for each of these groups, 
for the two- and three-layer variants separately. In working out the sums we 

can restrict ourselves, as in the case of dipoles, to distances not exceeding 

five times the shortest distance between the lattice points. 

With the help of the sums (4.3), the calculation of which is a rather time- 

consuming task, we can easily obtain expressions for the energy of quadrupole 

lattices of different space symmetry as a function of the angles 6 and g formed 

by the quadrupoles, situated in the point [000], with the axes of the rectangular 

lattice. These expressions have the form 

Eg = 3(Q?/a°)f(6, 9) 
where the function f(@, ~) depends on the symmetry of the mutual arrange- 

ment of the quadrupoles. In Table 3 are given formulas for the functions 

J(@, p) and also the extremal values of these functions for various space groups. 

Table 3 

QUADRUPOLE ENERGY VERSUS ORIENTATION OF AXIAL QUADRUPOLE 

Lattice 

symmetry Packing S(O, 9) Fuax(O, 9) Med. 9) 

: 1.33 —6.67 sin? 0+ 5.84 sin* 0 1.33 —2.00 
Pip | UP 4. 70sin? 6 cos 6 cos (1 —4sin9) 

hexag. 1.35—6.75sin?0+5.90sin* 0 1.35 —0.58 

P2,, 1.33 —sin? (6.67 + 11.47 sin? 9) 
Pa cubic + sin* 6(5.84—4.22 sin? g+ 15.67sin* ¢) 

P2,/¢ +sin* 8 cos @ cos (4.70— 6.91 sin? ¢) 35 — 3.98 

A2 | cubie | 1:33—sin? (6.67 —7.04 sin? 9) 
iN ie + sin* 0(5.84—21.46 sin? 9+ 14.42 sin* 9) 

+sin? 6 cos wy cos y(4.70— 11.89 sin? ¢) 1.41 —3.15 

P2,2,2,  hexag. 1.35—sin? 6(4.90+ 11.72 sin? g) 

+ sin* 0(4.05 — 3.97 sin? 9+ 15.69 sin* ¢) 123) —3.52 

P2220, hexag. 1.35—sin? 0(—13.49+ 30.11 sin? 9) 

+sin* 0(—14.33+ 15.70sin? g+ 14.41 sin* ¢) 4.51 — 3.10 

Pca2, hexag. 1.35—sin? 0(16.62+ 1.59 sin? g) 

+sin* 0(15.77— 12.82 sin? 9+ 14.41 sin* g) 1235 —4,50 

Pna2, hexag. 1.35—sin? 0(16.62— 16.92 sin? 9) 

+ sin* 0(15.77— 32.62 sin? 9+ 15.69 sin* g) 135) —3.42 
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As seen in Table 3, some coefficients in the formulas for f(0, g) coincide for 

different lattices. The equality of the coefficients means degeneration of the 

symmetry in some definite directions (e.g., in the direction perpendicular to 

dense layers, for which 8 = 0). Rapid convergence of the values of /(0, ¢) 

is observed when the radius of summation is increased. It is clear from Fig. 4 

that in practice it is sufficient to carry out the summation up to distances 
three or four times the shortest distance. 

Polar maps (Fig. 5) have been constructed according to the formulas for 

E,' = f(9,¢), which help us to find immediately the regions of the lowest 

quadrupole energy for each group of symmetry; comparison of these maps 

reveals the effect of the symmetry of a lattice on its quadrupole energy. 

The evaluation of the order of magnitude of Eo for a particular molecular 

crystal can, of course, be made only approximately, as in the dipole case. For 

this purpose, the true cell is replaced by a face-centered cubic or hexagonal 

cell of equivalent volume. Besides, to calculate Eg it is necessary to know the 

quadrupole moment of the molecule. The quadrupole moments have, how- 

ever, been determined experimentally only for some simple molecules (on the 

basis of data on the widening of the microwave spectra due to pressure 

[22-24]). If the spatial distribution of charges in a molecule were known, the 

quadrupole moment could be calculated from the formula 

Q:; = 3 d e,(x;X;—4176;;) 

where e, is the magnitude of charge k; r are the radius vectors of the individual 

charges; x; are the components of the vector r; and 6;, is the Kronecker 

symbol. 

Unfortunately, only very crude estimates are possible in this case too. For 

the benzene molecule, for instance, if we assume that the dipole moment of 

the C-H bond is equal to 0.4 x 10~'® esu [25] and suppose that the positive 

and negative charges are concentrated on the carbon atoms and on the 

0.66 x—- 

0.58 

F (0,9) 

i\ 7 i x xx xx Sa e298 xX XXX 0.50 sI LW Vien seca wae acer 
xx 

1 2 3 4 5R 

Fig. 4. Quadrupole lattice energy versus summation radius: (a) f(0,@) for space group 

P2,/c (@=0); (b) f(@, g) for group P2,2,2, (¢@=0, 0=90°). 
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Pca2, Pna2, 

Fig. 5. Polar maps of quadrupole energy E9’(8,¢) for crystal lattices of different space 

symmetry. 

hydrogen atoms, respectively, we shall have Q x 2A”. According to the 

experimental data obtained by Hill and Smith [22], this value is equal to 

1.3A?. If we adopt an analogous model for the naphthalene molecule, 

i.e., if we suppose that the nondiagonal components of the tensor Q;; 

are equal to zero and also that Q,,=Q,,=—4Q,,, we shall obtain 

approximately Q = 3A”. These estimates provide, in any case, the correct 

order of magnitude. 
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Using a naphthalene crystal (space group P2,/a) as an example, we can 

gain an idea of the order of magnitude of the quadrupole part of the lattice 

energy for an organic crystal. Knowing the size of the unit cell of a naphthalene 

crystal, we find the dimensions of an equivalent face-centered cubic cell 

(a x 6.3A). In Table 3 we find the extremal values of the function /(0, ¢) 

for the group P2,/a. From these data it follows that the value of Eg for 

naphthalene must be within the range of —0.7 to 0.2 kcal/mole. This result 

agrees well with the value recently obtained by Craig et al. [20] (—0.4 

kcal/mole) which was calculated for a naphthalene crystal with the aid of 

exact lattice sums and approximate values of the components of the tensor 

Q,,. It is clear that the quadrupole contribution to the lattice energy, which is 

equal to — 16.7 kcal/mole according to the experimental data, is negligible. 

The quadrupole energy varies much more slowly with the structure par- 

ameters than does the dipole energy. For naphthalene, for example, the largest 

value is 0E)/00 ~ 7cm~' deg” ', which can shift the minimum of the energy 
of the van der Waals interactions quite insignificantly, by not more than 0.3°, 

according to approximate estimates. 

5. CONCLUDING REMARKS 

It is obvious that the role of the electrostatic interactions, caused by the 

presence in molecules of moments higher than the quadrupole moment, is 

even less significant. Thus, we see that the electrostatic multipole interactions 

play a very insignificant part in a crystal lattice, though, for instance, in the 

case of dipole lattices, they decrease with distance much more slowly than the 

nondirected interactions of the dispersion type. This can be explained by the 

strong dependence of such interactions on direction. In a crystal lattice each 

multipole is surrounded by a great number of neighbors having very different 

orientations; but, as is known, the static interactions when averaged over 

various orientations reduce to zero. 

That the electrostatic interactions appear to be insignificant for many 

problems and many substances is a quite fortunate circumstance. It is not the 

computational difficulties that present a problem; they are easily overcome by 

the use of electronic computers. The main obstacle is the absence of infor- 

mation about the site of localization of the dipole, in the case of dipole 

molecules, which is associated with the fact that we know nothing about the 

nature of the charge distribution in a molecule. 

This uncertainty is still greater when we are dealing with molecules con- 

taining several bonds, to which dipole moments may be ascribed, since 

experiment yields only the general moment of the molecule. It should also be 

recalled that the distribution of dipole moments over bonds is conventional, 

and rather arbitrary. 
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The schemes for calculation of the electrostatic energy may be different. 

If it is possible to ascribe a “‘residual’”’ charge e (i.e., an excess or deficiency of 

electrons compared with the neutral atom) to each atom, then 

Us = > Seni 
ik 

Errors that occur in such calculations due to small deviations of the elec- 

tronic distributions of the atoms from the spherical are negligible. The 

difficulty lies solely in the absence of information on e;. Attempis to calculate 

the residual charges by the methods of quantum chemistry seem not to be 

convincing. 

It is, of course, possible to evaluate the dipole-dipole interactions for 

dipole molecules and the quadrupole—quadrupole interactions for other 

molecules. In the first case the main difficulty consists in localizing the center 

of the dipole. It is also unclear how significant will be the other terms of the 

series expansion of the electrostatic energy (the dipole-quadrupole and 

quadrupole—quadrupole interactions). 

The most rigorous calculation should be based on the integral representation 

of the energy, 

-| P1P2 4V, dV, 

(6) r 

Here again the difficulties arise not in the calculation, but are due to our 

lack of knowledge of the charge distribution. 

C. The Device of Atom—Atom Potentials 

6. THE VAN DER WAALS INTERACTIONS IN A MOLECULAR CRYSTAL 

Since the electrostatic contribution to the lattice energy of a molecular 

crystal is not a determining factor, the problem of calculating this energy must 

be reduced mainly to the investigation of the van der Waals interactions— 

the dispersion attractions of the London type and repulsion caused by the 

overlap of electron clouds. 

The —A/R° law for attraction and the exponential law for repulsion are 

obeyed only when the interactions between particles are averaged over ali 

possible orientations, i.e., when it is assumed that the symmetry of the particles 

is spherical. If the complete molecules in a crystal are regarded as interacting 

+ Here and elsewhere, the review article “General View on Molecular Packing” by the 

author [26] is widely used. 
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particles, as was done by London in his first calculations, it becomes clear that 

the assumption of spherical symmetry will be too crude for the overwhelming 

majority of molecules. If we try, as Muller [27], to break up a molecule into 

force centers, the most rigorously averaged London formula must then 

probably be satisfied by individual atoms of which the molecules are composed, 

rather than by groups of atoms or bonds. (The latter approach has been adopted 

in a few works devoted to the discussion of this problem.) The arguments in 

favor of the former approach are as follows: First, as is known, the average 

magnitude of the dipole moment for the electronic system of an atom in a 

stationary state is always equal to zero—a statement that cannot be made with 

respect to a group of atoms [28]. Secondly, as the results of crystallochemical 

studies show, the electron density of the atoms in molecular crystals can be 

represented, with high accuracy (0.1-0.2 electron) by spherically symmetrical 

functions. As regards their polarizabilities, atoms may also be regarded as 

being almost isotropic, as has been indicated in Pitzer’s review [29]. More- 

over, the application of perturbation theory to individual atoms does not 

require special assumptions as to the form of the function for the electron 

density of a molecule, or of its constituent parts. And, finally, the ratio of 

particle size to particle separation is always more favorable for atoms, even 

for the shortest distances encountered in a crystal, than for entire molecules or 

any groups of atoms. 

The interaction potential for a pair of atoms i and / separated by the distance 

r,; can be written in the form 

Qi; = —Arz® + Be~*s 

The way this formula is written means that in the second order of the per- 

turbation theory we limit ourselves to the dipole-dipole approximation and 

adopt the exponential law for the repulsion potential. Then, following the 

model described in Section 2, we must find the constants A, B, and « for each 

species of atoms, in order to calculate the interaction energy of the molecules 

as the sum of the interaction energies of their constituent atoms. 

A theoretical formula for the coefficient A is too complicated for actual 

calculations in all but the simplest cases. It requires a knowledge of the eigen- 

values of the unperturbed atoms which could be obtained by solving the 

Schrodinger equation for each atom separately. It is known, however, that in 

the case of multielectron systems even the best functions, resulting from the 

solution of the Schrédinger equation by any approximate method usually 

yield values of the energy differing noticeably from the experimental data. 

Therefore, in practice, in order to calculate the constants in the attraction 

potential one has to resort to more or less crude approximations, the relative 

accuracy of which is difficult to gauge. 

We did not employ theoretical methods at all in calculating the constants 
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B and « in the repulsion potential; instead, these constants are chosen em- 

pirically. The theoretical calculation of the interaction energy for a crystal 

lattice is further complicated by the presence of the region of so-called inter- 

mediate distances, for which no rigorous quantum-mechanical calculations 

exist that would permit expressing this energy with sufficient accuracy. 

From what has been said above it seems expedient to apply a purely empirical 

approach to the choice of the constants of the potential curves for both the 

long and the short interatomic distances. Molecular crystals, especially organic 

ones, can furnish an abundance of data for this purpose. 

7. POTENTIAL CURVES 

The principal advantage of the atom-atom potential method for studying 

organic substances is that it permits the selection of atom-atom potentials 

from the experimental data for only a few representatives of a class of com- 

pounds; the curves thus obtained can then be used for predicting the properties 

of all the other compounds of this class. Thus, for example, if C-C, C-H, and 

H-H interaction potentials are known, it is possible to calculate the properties 

of the vast class of hydrocarbons. 

A tremendous body of experimental data can be employed to verify the 

method and the potential curves obtained. Such physical parameters as the 

elasticity tensor, expansion tensor, and normal crystal vibration spectrum 

can be used for this purpose. However, the most straightforward verification 

and, consequently, the initial checking stage, is calculation of the heat of 

sublimation and the crystal structure. This technique may be applied to select 

the optimum atom-atom potential curves to be used in calculating the other 

properties of crystals. 

The constants A, B, « of the 6-exp potential of neutral atom interaction can 

readily be expressed through the following three parameters: the equilibrium 

distance rg, the potential well depth Uy, and the second derivative at the 

point of minimum D. 
r, and U, can easily be included in the potential formula, which then assumes 

the form 

6—Aaro id 

U, Wi 

U(r) = g (-55 aye seen) 

As to a, it is related to all three physical parameters through the equation 

Dro” _ 6(aro)” —42aro 

Uo i 6—<arp 

It is worthwhile to compare the analytical and experimental data with respect 

to these physical parameters, because, first, their magnitudes lie within a 
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rather narrow range, and, secondly, each parameter is particularly sensitive 

to certain properties. Thus, the equilibrium distances are mainly responsible 

for the lattice constants; the potential well depth for the heat of sublimation; 

and the parameter D for the molecular vibration frequencies and the crystal 

elasticity tensor. 

Preliminary calculations have shown that, as could well be expected, the 

values of ro exceed the mean distances between the nearest atoms of adjacent 

molecules which we find in crystals by about 15%. In the publications by the 

author and Mirskaya [30], the values used for C---C, C---H, and H-:-H 

interactions are, respectively, 3.8, 3.3, and 2.8 AS 

The parameters U,) have not yet been carefully studied. Probably, their 

values do not differ much for different pairs of atoms. At any rate, for hydro- 

carbons the values of U, lie in the vicinity of 0.06 kcal/mole. The values of the 

product of the parameters ar, also vary insignificantly, namely, within 12-16. 

Figure 6a shows the atom-atom potentials used in several different experi- 

ments. Figure 6b gives a comparison between our curves and those determined 

1.0 

0.9 

U, kcal/mole 

2.0 24 28 32 36 40 44 48 5.2 
r,A 

Fig. 6a. Pairwise interaction energy of atoms of different elements as a function of 

interatomic distance. (1) He—He [C. Vittorio, G. Colin, and S. Leopoldo, Rev. Mexic. Fis. 

12, 69-83 (1963)]; (2) H-H [K. V. Mirskaya. Thesis., Moscow, 1966]; (3) F-F [M. Lwasaki, 

J. Polym. Sci. Part A. 1, 1099 (1963)]; (4) C-H_ [K. V. Mirskaya, Thesis, Moscow, 1966]; 

(5) O-O [A. I. Kitaigorodsky, K. V. Mirskaya, and V.V. Nauchitel, Kristallografiya 14, 

900 (1969)]; (6) C-C [K. V. Mirskaya. Thesis., Moscow, 1966]; (7) CI-Cl [T. L. Hill, 

J. Chem. Phys. 16, 399 (1948)]. 
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Fig. 6b. Potential curves of Kitaigorodsky (solid line) and Williams (dashed line): (a) C-C 

interactions; (b) C-H interactions; (c) H-H interactions. 

by Williams [31], which are so far the only atom-atom potentials specially 

selected for calculating lattice energy. 

At present there appears to be no need to complicate molecular interacticn 

energy calculations by allowing for the noncentrality of the atom-atom 

potentials. Furthermore, attempts at using the atom-atom potentials for 

calculating the barriers to rotation of one part of a molecule with respect to the 

other about single bonds show that the atom interaction energy depends 

on the angle between the interatomic distance and the valence bonds. 

This dependence compelled some authors to introduce into the calculation 

scheme an additional energy component which is interpreted as bond inter- 

action energy. However, another procedure can also be applied; namely, it is 

possible to make a reasonable assumption (which is independently confirmed 

by organic chemical crystallography) about the dependence of the equilibrium 

radius of a monovalent atom on the angle with a valence bond. 

Assuming r, equal to a and a/e along and across the bond respectively, we 

have calculated the energy of interaction between the H atoms of an ethane 

molecule from our 6-exp potential expression. The only supplementary con- 

dition is: The equilibrium radius ry is assumed to be given by 

ro = fa[(esin? py, +cos? W,) 4 + (esin? y,+c0s7 pW) 7] 
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where w, and wW, are angles between the interatomic vector and the bonds. 

A new parameter appears in the equation. For ¢ = 0.82, the experimental 

value of the barrier to rotation is estimated at 3 kcal/mole. 

It is quite sufficient to introduce such ellipticity for monovalent atoms. 

Interaction between C atoms can be thought to remain central; there is no 

conflict with experiment. 

As to the hydrogen bond, it is reasonable to include it in our atom-atom 

potential model in the following way. Allinteractions are determined according 

to the above formulas, except for the interaction of an H atom associated with 

an O or N atom through a hydrogen bond. For this atomic pair, we introduce 

a short-range potential. 

A potential well for the hydrogen bond can be described by a parabola 

cut off at the point of intersection with the abscissa or a curve of the Morse 

potential type, etc. 

It appears probable that the arbitrary configuration of the potential will 

affect but slightly the results of the calculation of optimum molecular con- 

formations or packings. The coordinates of the potential-well bottom are the 

only important parameters. 

In our atom-atom potential model the dependence of the hydrogen bond 

energy on the O-H---Q angle is effected automatically. It can be easily seen 

that a deflection of this angle from 180° at constant O-H and H--- O distances 

results in a sharp rise of energy due to O atom repulsion. In this way, using our 

“universal” potential and assuming the equilibrium radius for the oxygen atom 

to be 1.46A, we obtain an energy loss of 0.05 kcal/mole for a 160° angle, 

0.15 kcal/mole for a 140° angle, and above | kcal/mole for 100—120° angles. 

This calculation takes into account the steric interaction of the O atoms 

alone. Actual energy loss may be higher than the above figures. This calculation 

scheme has not yet been used for determining molecular interaction energy. 

Another aspect of the hydrogen bond potential curves has been studied by 

Lippincott, Shroeder, and, particularly thoroughly, by Reid [32]. 

The O-H---O potential was treated as a sum of the three components: 

O-H interaction, H---O interaction, and O--: O interaction. Thus, the authors 

were interested in a relation between the O-H and H---O distances. 

Reid’s potential has the form 

V(r, R) = Dal us exp( e cba - ee | 

259.5 
nea ee OM 

e€ 

where R, is the equilibrium O---O distance; r is the O-H distance; and 

r, 1s the H---O distance. The constants are selected empirically. 
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8. ENERGY AS A FUNCTION OF LATTICE PARAMETERS 

The calculation of the lattice energy of an ordered crystal with a known 

structure by the atom-atom potential method amounts to the compilation of 

tables listing all possible distances between atomic pairs in different molecules 

and in the calculation of lattice sums Sir ° and ).e 2". The lattice sums for 

simple cubic structures whose points contain atoms interacting according to 

the ar” law have been calculated by Lennard-Jones and Ingham [13] and 

generalized in publication [33] for the case when the initial point is not a 

lattice point. For molecular crystals, lattice sums can, in the general case, be 

computed only by straightforward summation, which is facilitated by the 

use of electronic computers. Since the dispersion energy and, in particular, 

the repulsive energy of atoms quickly decrease with distance, it is sufficient to 

use distances up to about 15 A in such a summation. Calculations for a number 

of organic crystals show that the lattice energy error is below 1%. Figure 7 

shows an example of the dependence of the lattice energy on the summation 

radius for crystalline benzene. 

For calculating the lattice energies of molecular crystals, we use information 

on structures obtained by X-ray diffraction analysis. The coordinates of 

hydrogen atoms that cannot be found by this method can in many cases be 

fairly accurately computed from the arrangement of other atoms, the direction 

of the valences, and also the length of the C-H bonds determined by electron 

diffraction and neutron diffraction techniques. 

The interaction energy of a pair of nonbonded atoms is a function of the 

distance r between their centers. Distances in a crystal lattice of a given 

symmetry seem to depend on the lattice parameters and mutual disposition of 

the molecules in the crystal. Therefore, for the theoretical study of the crystal 

properties, it is convenient to take into account all possible changes in the 

U, kcal/mole 

R,A 

Fig. 7. Lattice energy of crystalline benzene versus summation radius. 
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lattice geometry while treating lattice energy as a function of the spacings 

a,b,c, the unit cell angles «, B,y, the Eulerian angles 0,9, describing the 

position of the main molecule with respect to the crystal axes, and the co- 

ordinates of the center of gravity of this molecule x, y,z. If there are only 

small variations in the above parameters, the arrangement of the atoms inside 

the molecule can in very many cases be taken as constant. 

In this way, instead of the lattice energy at one single point, we obtain a 

multidimensional surface whose abscissae are the geometrical parameters 

of the lattice, and whose ordinate is the amount of its energy: 

U = UG, 0,00. 8, 30.0.5 Xi Vs) (8.1) 

In principle, for given dimensions and shapes cf the molecules, such a 

surface has a multitude of minima, one of which must correspond to the 

equilibrium structure of the crystal. It cannot be asserted that this will 

necessarily be the deepest minimum, as far as its absolute value is concerned, 

because the energy surface may have several minima of similar values and the 

establishment of the final structure may be influenced both by electrostatic 

interactions and finer effects which we ignore in our proposed scheme of 

lattice energy calculations. 

Investigation of the surfaces (8.1) requires computer programs which allow 

computation of the energy at any surface point, the amount of energy as a 

function of one, two, etc. geometrical parameters with other characteristics 

being unchanged—the so-called one-dimensional, two-dimensional, etc. cross 

sections of the energy surface, the positions of the surface minima in any of 

these cross-sections, and the total surface minimum over all variables. 

The ordinate of the potential-well bottom furnishes information on the 

heat of sublimation. Under given ambient conditions the sublimation heat of 

a crystal equals the difference between the internal energies of the crystal 

and gas plus the expansion work. Since sublimation pressures are not large, 

the heat of sublimation is practically equal to the difference between the 

internal energies of the gas and the crystal. Of particular interest is the heat of 

sublimation extrapolated to the absolute zero of temperature. Since, according 

to quantum mechanics, at this temperature a lattice is not in a static equi- 

librium state, due to the zero-point vibrations, the heat of sublimation at 

absolute zero (AH,) is a sum of two terms: the potential energy of particle 

interaction in the lattice and the zero-point vibrational energy Ko, 

—AH) = Uo Si Ko (8.2) 

The contribution of the second term to AH, depends on the particle sizes and 

on the nature of the cohesive forces in the crystal lattice. Zero-point energy is 
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the largest for crystals built up of light-weight molecules with small moments 
of inertia; it can also be significant if strong directional interactions (hydrogen 
bonds, etc.) exist in the crystal. However, with increasing mass of the particles 
and growing moments of inertia, and also with decreasing intermolecular 
forces, particularly directional, the ratio of the zero-point energy to the heat 
of sublimation drops sharply. According to different estimates for such atomic 

crystals as He and Ne, and also in a crystal of molecular H,, the zero-point 

energy contributes significantly to the heat of sublimation AH, (for He and 

H, this contribution is found to be predominant). According to Walley [34], 

for water (ice), the intermolecular zero-point energy makes up 31% due to 

the presence of hydrogen bonds. But already for such crystals as N,, O,, and 

CO, the zero-point energy is only 10%, while in solid CO, it does not exceed 

2% of the heat of sublimation AH . It is obvious that for large molecules 
composed, for example, of ten or more atoms the contribution of the zero- 

point energy to the total crystal energy must be negligible. 

For molecular crystals without hydrogen bonds, the problem of calculating 

the sublimation heat at the absolute zero of temperature must obviously 

amount to the calculation of the first term in (8.2), the potential energy of 

the crystal lattice. This energy must be minimum for the lattice in the static 

equilibrium state. Therefore, the heat of sublimation AH, is calculated with 

an accuracy equal to the zero-point energy as the ordinate of the total surface 

minimum (8.1) over all the variables. Since no experiments can separate the 

zero-point energy from the total energy of the lattice, it is usually included in 

the definition of the lattice energy, and is added to the theoretical cohesive 

energy prior to comparing the theoretical and experimental results. 

It must be noted that the heats of sublimation are not actually measured 

at O°K but at higher temperatures. Nevertheless, as the temperature depen- 

dences of latent heats of transition are usually small, the differences between 

AH, and AH, are not large, and it is rather easy to allow for these differences 

in a sufficiently reasonable way (see, e.g., [35]). 

The equilibrium crystal structure is determined by the abscissae of the 

potential-well bottom. The structure of a crystal at temperature T is defined 

by the minimum of the free energy which can be writtenas F = U,,,+ £\;,—TS. 

At lower temperatures the role of the vibrations and the entropy factor for 

lattice equilibrium is diminished, and at absolute zerc the equilibrium structure 

of a crystal is determined by the minimum potential lattice energy accurate 

to the zero-point vibration effects. 

The effect of the zero-point vibrations is that they somewhat expand the 

lattice as compared with the completely static equilibrium state. This expansion 

is usually not large, even for crystals composed of small light-weight particles. 

According to Herzfeld and Goeppert-Mayer [36] it equals about 0.05A for 
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argon and about 0.15A for neon, of which the unit cells are 3.83 and 3.20A, 

respectively. The approximate estimates of the zero-point vibration effects 

can be given, provided one knows the characteristic temperature-versus- 

volume relationship and the crystal compressibility at low temperatures. The 

pressure required to compensate for the zero-point vibrations in naphthalene 

(see Chapter VI) must be of the order of 250 kg/cm’. Such a pressure is able 

to change the unit cell volume by less than 1 A? (the compressibility of naph- 

thalene at low temperatures is approximately 10° ° cm? kg” ') which practically 

does not affect the lattice parameters at all. 

It is obvious that in other crystals composed of large molecules the effect of 

zero-point vibrations on the establishment of the equilibrium structure at 

0°K must also be very small. Therefore, the crystal structure corresponding to 

the minimum of its potential energy must coincide very accurately with its 

structure at the absolute zero temperature. 

9. CALCULATION OF THE STRUCTURE AND OF THE ENERGY SURFACES FOR 

BENZENE, NAPHTHALENE, AND ANTHRACENE CRYSTALS 

Calculations directed toward finding the position and depth of the lattice 

energy surface minimum as functions of the parameters of the unit cell and the 

Eulerian angles, and for investigating the shape of this surface in the vicinity 

of the minimum, have been carried out for benzene [38], naphthalene, and 

anthracene [38] crystals. All these calculations were based on the atom-atom 

potential method without taking into account electrostatic interactions, be- 

cause such interactions, as has been shown in Sections 3 and 4, make a 

negligible contribution both to the lattice energy of hydrocarbon crystals and 

to the establishment of the equilibrium orientations of the molecules in the 

crystal. The C-C, C-H, and H-H potential curves we use are written in 

the form 

gy = —Ar-° + Bexp(—ar) 

The parameters A, B, and « have the following values: 

A (kcal/mole/A) —_B (kcal/mole) — « (A~!) 

C-C 358 4.2 - 10* 3.58 

C-H 154 4.2: 10* 4.12 

H-H 57 4.2 -10* 4.86 

The summation radius in the lattice energy calculation is assumed to be 15 A. 

The procedure for selecting the energy surface minimum is described in 

publication [39]. 
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BENZENE C,H, 

The calculations used the structural data obtained by Cox et al. [40] at 

— 3° and data on the thermal expansion tensor of benzene obtained by Kozhin 

and Kitaigorodsky [41] and Bacon et al. [41]. 

a. The Crystal Structure at Temperatures T > 0°K 

Let us find the position of the benzene molecules in the lattice of symmetry 

Pbca with four molecules in the unit cell and lattice parameters a = 7.46, 

b = 9.666, c = 7.033 A corresponding to the structure of this crystal at —3°C. 

The C-H bond lengths in the molecule are assumed equal to 1.08 A. 

Let us suppose that we do not know anything about the magnitude of 

angles @, y, and w which describe the rotation of the coordinate system 

x’, y’,z’ associated with the molecule, with respect to the system of coordinates 

of the crystal (Fig. 8). As a starting point we put these values equal to 0 (the 

zero molecule will in this case lie totally on the ab plane). We change the 

mutual arrangement of the molecules so that the angle 0 assumes all values 

from 0 to 180° and calculate the lattice energy variation curve for this process 

(Fig. 9a). As can well be expected, this curve is symmetric with respect to 

@ = 90° and has two equivalent minima with a depth of —8.4 kcal/mole, of 

which we take, for example, the left-hand minimum with abscissa 0 = 24°. 

Then we hold @ fixed at 24° and find the optimum arrangement of molecules 

Cc 

Fig. 8. Orientation of coordinate system associated with benzene molecule with respect 

to crystal coordinate system. 0,9, /, Eulerian angles. 
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Fig. 9. Determination of equilibrium orientation of molecules in lattice with given 

parameters of unit cell: (a) U(@) with p=0, Wy =0; (b) U(W) with 0 = 24°, g=0; (c) U(g) 

with @ = 24°, y = 20°(1) and w = 90°(2). 

as angle w varies from 0 to 180° (Fig. 9b). For each of the two symmetrically 

independent minima of the curve U(w) (Ww = 20 and 90°) which have similar 

depth (—9.4 and —8.8 kcal/mole, respectively, find curve U(@) (Fig. 9c, 

curves | and 2). In both cases the optimum molecular arrangements are 

associated with angles ¢ close to 0, 60, 120°, etc. (within 0-360° six equivalent 

positions are derived due to the sixfold symmetry axis in the benzene molecule; 

select any value of this angle, e.g., @ = 180°). 

In this way the steepest descent has yielded sets of Eulerian angles (0 = 24°, 

oy = 180°, W = 20° and 6 = 24°, m = 180°, y= 90°), which we treat as approxi- 

mations for a more accurate determination of the equilibrium structure. 

A further descent to the minimum will be carried out by varying all Eulerian 
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angles simultaneously. In the first case the minimum abscissae are 22, 180, 20° 

and the ordinate is 9.6 kcal/mole, in the second case the equilibrium angles 

0, p, w amount to 47.6, 178, and 104.7°, respectively, while the value of the 

energy at the minimum is 11 kcal/mole. Thus, the second of the possible 

structures has been found to be more advantageous in terms of energy. The 

physically observed structure agrees very accurately with this more advan- 

tageous second structure we have derived (0.x, = 47.3°, Pexp = 178°, Wexp = 

107.5°). This calculation can be regarded as a physical justification of the 

determination of the molecular packing using the method of so-called geo- 

metric analysis carried out with the aid of models on a structure seeker 

apparatus [43]. 

It is interesting to investigate which of the three types of interaction, CC, 

CH, or HH, makes the basic contribution to the establishment of the equi- 

librium orientation of the molecules in the crystal. Analysis of the contri- 

butions made by the different atomic species shows that equilibrium in a 

benzene crystal depends primarily on the CH and HH interactions (Fig. 10). 

Even in cases when neither Ugy nor Uy}, separately passes through a minimum 

U, kcal/mole 

| 
iS) tt Ww 

—11.53 
46 47 48 49 50 176 177 178 179 103 104 105 106 107 

e° pe ge 

Fig. 10. Contributions of C-C, C-H, and H-H interactions to establishment of equili- 

brium molecular orientation in crystal. 
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in the vicinity of the equilibrium point, the equilibrium structure is determined 

by the sum of these interactions. As to the interaction energy of the carbon 

atoms near the equilibrium point, it varies so slowly that practically no effect 

is produced on the position of the total minimum of the energy curve. This 

result is in agreement with the well-known assertion that a benzene crystal 

has a larger number of intermolecular CH and HH contacts than carbon atom 

contacts. In this connection the conclusion of Craig et al. [20] that the primary 

role in the establishment of the intermolecular orientations in benzene is 

played by hydrogen atom repulsions cannot be considered indisputable, since 

the interaction of C and H atoms was not considered in this work. 

b. The Crystal Structure at 0°K 

To determine a crystal structure at the absolute zero temperature it is 

necessary to find the surface minimum U(a, b,c, 0, @,W) over all the six vari- 

ables (the angles «,f,y are held equal to 90° for a crystal of orthorhombic 

symmetry). It would be logical, from the physical point of view, to divide these 

variables into two groups: the Eulerian angles 0 ,g, w and the lattice parameters 

a, b, c, and to carry out a minimization for each group separtealy. 

Since the accuracy of the determination of the position of the energy surface 

minimum depends on the accuracy of calculating the energy at each surface 

point and on the derivatives of the parameters when finding the direction of 

the steepest descent, descents to the minimum from different points of the 

surface do not give absolutely identical values of the minimum coordinates. 

Therefore, for locating the minimum, the authors used a descent from different 

surface points close to the minimum with subsequent averaging of the results 

obtained. First, the mutual equilibrium orientation of the molecules was found 

for a certain, generally speaking, arbitrary point on the energy surface (in our 

case it coincided with one of the experimentally derived values of the structural 

parameters) for selected a,b,c by minimizing the lattice energy as a function 

of the Eulerian angles 0,¢,. After that, keeping the obtained values of the 

Eulerian angles unchanged, the authors performed a descent to the surface 

minimum (a,b,c). A similar procedure was carried out for an additional one 

or two starting surface points, and then the lattice parameters obtained from 

the various descents were averaged. By holding the average magnitudes of the 

parameters fixed, the authors determined corresponding values of equilibrium 

Eulerian angles and, finally, the position of the minimum was accurately 

specified by descent from the mean point first along a,b,c and then along 

0,~,w. The above procedure can be schematically shown as follows: 

a,b,c, By Ar bz C2 By 

Ue Cie Vanta(rei6) 
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a,b,c, Bi 9, 1%, Ay by C2 Br A. G22 
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Table 4 lists the calculated equilibrium Eulerian angles at three surface points 

corresponding to the crystal structure at three temperatures. The lattice 

parameters for this calculation have been taken from the data of Cox et al. 

at —3°C and Bacon et al. at —55 and 135°. The bracketed figures are the 

experimentally obtained angles of the normal to the molecular plane with the 

axis c (angle @). Calculations in full agreement with experiment show that 

the equilibrium Eulerian angles are but weakly dependent on the temperature 

variations of the lattice parameters. Values of a,b,c averaged over the three 

subsequent descents with respect to the lattice parameters were taken as 

initial figures for the final location of the surface minimum over all the vari- 

ables. The coordinates of this minimum are as follows: a, 6, and c are equal, 

respectively, to 7.26, 9.41, 6.75A, the equilibrium Eulerian angles are 47.3, 

178.3, 104.3°. 

In order to compare the calculated coordinates of the energy surface 

minimum with the experimentally derived data, it is necessary to extrapoiate 

Table 4 

EQUILIBRIUM ORIENTATION OF MOLECULES IN 

BENZENE CRYSTAL AT DIFFERENT TEMPERATURES 

(°C) Cell parameters (A) Eulerian angles (°) 

a b c 7) Q y 

—3 7.46 9.67 7.03 47.6 178.0 104.7 

(48.1) 

—55 7.44 9.55 6.92 47.1 178.2 104.0 

(47.1) 

— 135 7.39 9.42 6.81 46.7 178.2 104.2 
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Table 5 

PARAMETERS OF UNIT CELL OF BENZENE CRYSTAL 

AT ABSOLUTE ZERO TEMPERATURE (A) 

Experiment 

Cell 

parameters Theory [41] [42] 

a 7.26 UP 7.36 

b 9.41 9.43 9.32 

Cc 6.75 6.71 6.75 

the structural data at low temperatures to the absolute zero of temperature. 

The results of such an extrapolation and the calculated lattice parameters at 

the potential surface minimum are given in Table 5. 

It can be seen that the experimental and analytical results are consistent to 

within 1-1.5% accuracy. 

The good agreement of the calculated and experimentally obtained cell 

parameters and Eulerian angles indicates that the equilibrium distances rp 

between the atomic pairs C-C, C-H, and H-H in the interatomic potential 

curves, which primarily determine the results of the equilibrium structure 

calculation, have evidently been selected sufficiently close to the actual values. 

As to the lattice energy of benzene, it has been estimated at — 11.73 kcal/mole 

at the point of the energy surface minimum, but the experimental heat of 

sublimation is 10-10.5 kcal/mole [44, 45]. This result cannot be thought of as 

quite satisfactory, all the more so in that the latent energies at the potential 

surface minima for other hydrocarbons as well are found to be below the 

experimental values of the heats of sublimation. 

It is sufficiently clear that the heats of sublimation depend mainly on the 

depths of the energy wells in the interatomic potential curves. In the above 

C-—C, C-H, and H-H curves the depths of the potential wells were assumed 

equal to 0.067 kcal/mole. If we decrease the depth of the potential well of the 

C-H curve to 0.057 kcal/mole and of the H-H curve to 0.048 kcal/mole 

without changing the positions of the minima, and the value of « in the 

potentials, then for benzene, for example, we obtain 10.5 kcal/mole lattice 

energy at the potential surface minimum in good agreement with experiment. 

c. The Configuration of the Energy Surface in the Vicinity of the Minimum 

Figure 11 shows the two-dimensional cross sections of the three-dimensional 

energy surface of benzene U(0,y,W) through the energy minimum point 

in the three main projections. The cross section is calculated with an accuracy 

of 3° for the angles 0,g, varying within +9° from the equilibrium values. 
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Fig. 11. Cross Section U(6,9, W) through the energy surface minimum point. Values of 

energy on equipotential lines are given in kilocalories per mole. 

Besides, 1°-accuracy calculation has been made in the immediate vicinity of 

the minimum, with a view to studying in more detail the surface near the 

minimum. The three-dimensional potential well in this range is quite smooth 

and is gently sloping with respect to variations of the angle w (near the mini- 

mum ¢U/dw =0.011 kcal/mole deg), but is steeper in the directions of 0 

and @ (dU/00 = 0.018, d6U/ég~ = 0.023 kcal/mole deg). The cross section has 

no special features (local minima, ‘‘rough”’ walls) in the entire range of 

Eulerian angle yariations we have considered. This range, by the way, fully 

covers all possible amplitudes of the angular vibrations of the molecules in 

the lattice which, for example, vary at different temperatures from 2.5 to 7.9° 

[41] for benzene molecule vibrations in the ring plane. 

As long as lattice distortions do not cause changes in the space group and 

in the mutual orientations of the molecules, the lattice energy is a three- 

dimensional function of the unit cell spacings U = U(a,b,c). The three 

main cross sections of this surface U(a, b), U(a,c), U(b, c) through the energy 

minimum point over all the variables calculated with 0.5 A accuracy are shown 

in Fig. 12. The surface U(a, b,c) differs from the surface U(6, ~, W) in that, in 

principle, it can have only one minimum whose position depends on the size 

and orientation of the molecules in the lattice and on the selected interatomic 
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Ab,A 

Fig. 12. Cross section U(a,b,c) through the energy surface minimum point. 

potential curves. The configuration of the surface is similar to that of the 

interatomic potential—steep ascent from the equilibrium point towards de- 

creased lattice spacings, i.e., distances between the molecules, and more 

gentle ascent in the opposite direction. A cross section obtained with a higher 

accuracy (0.1 A) indicates that near the minimum the surface U(a,b,c) is 

rather flat; variations in the lattice parameters of about 0.1 A are accompanied 

by changes in the lattice energy of the order of several hundredths of one 

kilocalorie per mole. Then the potential well becomes steeper. With a simul- 

taneous increase of al] the benzene lattice parameters corresponding to the 

transition from the surface minimum point to a point close to the melting 

temperature (270°K), the lattice energy, according to these calculations, varies 

by approximately 0.6 kcal/mole, i.e., within reasonable limits. 

NAPHTHALENE C, Hg [46] 

The crystal is monoclinic, space group P2,/a, two molecules in a unit cell. 

Theoretical prediction of the equilibrium structure is based on the initial 

structure derived by Abrahams et al. [47] at room temperature. The co- 

ordinates of the H atoms were estimated by putting the length of the C-H 
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bond equal to 1.08 A. Data on the parameters of the lattice at low temperatures 

obtained by Ryzhenkov and Kozhin [48] were also used. 

The calculated equilibrium orientation of the molecules at three surface 

points corresponding to the structure of these crystals at three different 

temperatures is described by the Eulerian angles shown in Table 6. The 

results obtained at room temperature can be compared with experiment: 

Dexp = 29°, Dexp = 40°, Wexp = 296°. 

Table 6 

EQUILIBRIUM ORIENTATION OF MOLECULES 

IN NAPHTHALENE CRYSTAL AT DIFFERENT TEMPERATURES 

Cell parameters (A) Euierian angles (°) 

dae) a b c B 6 9 y 

78 8.081 5.955 8.630 124°30’ 30.3 47.0 292.6 

173 8.138 5.971 8.649 124°11’ 30.3 46.6 293.0 

293 8.240 5.997 8.666 122 75>) 28.8 44.2 294.7 

A further descent along the lattice parameters and then determination of the 

Eulerian angles in accordance with the scheme in Section 9,b has yielded 

the following result: at the minimum point a = 7.94, b = 5.95, c= 8.57A; 

B = 123°32’, 6 = 29.2, p = 46.0, w = 293.8° (monoclinic angle f has also 

been taken here as a minimization parameter). Experiment (extrapolation of 

the data obtained by Ryzhenkov and Kozhin to 0°K) gives the parameters 

of the unit cell, a,b,c, B equal to 8.06, 5.95, 8.62A, 124°36’, respectively, 

at the absolute zero of temperature. Thus, for naphthalene, as well as for 

benzene, the equilibrium lattice parameters calculated by means of atom—atom 

potentials are consistent with the experimental data to an accuracy of about 

1-2%. 
The function U(0,%,) in the vicinity of the minimum for naphthalene 

has been. studied in the range of + 12° deviation of Eulerian angles from the 

equilibrium position. With minor deviations from the equilibrium (+4°), 

the potential well has an approximately equal slope (0.2-0.3 kcal/mole deg) in 

the direction of 0,g,w. If the angles g and w change simultaneously, it is 

much steeper (0.06 kcal/mole deg). The cross section U(g,) at an equi- 

librium value of 6 is shown in Fig. 13. The same cross section with 0 = 0) + 8° 

(Fig. 13) shows that in the vicinity of the main minimum, — 17.9 kcal/mole 

deep, there are two additional, much more shallow, minima (about — 13 

kcal/mole). 
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Similar to benzene, the cross section U (a, b, c*) through the energy surface 
minimum point (c* in this case implies the distance between dense molecular 
layers) can be regarded as a three-dimensional analog of the interatomic 
potential function ~(R). Variation of ccos f, a displacement of the layers, 
adds nothing to the total picture; it only shifts the position of the total mini- 
mum of the crystal potential energy surface. 

ANTHRACENE C,4H jo 

Space group P2,/a, two molecules in a unit cell. The structure at room 

temperature has been determined by Mathieson et al. [49] and specified by 

Cruickshank [50]. The coordinates of hydrogen atoms taken from Cruick- 

shank’s work are such that they give a 1.09 A C-H bond length in the molecule. 

The Eulerian angles relating the molecular coordinate system to the crystallo- 

graphic system are 66.3, 110.2, 61.7°, respectively. Variations of the lattice 

parameters at low temperatures for anthracene have been made in publications 

[51, 52] and by Myasnikova [53]. In his work Mason [52] gives the angles of 

inclination of the molecular coordinate axes to the crystallographic axes at 

two temperatures, 290 and 95°K. From these data it can be inferred that 

temperature variations cause insignificant changes in the Eulerian angles. 

Angle 0 exhibits the largest change (1°). The calculations show the variations 

of the Eulerian angles with temperature (Table 7). 

Table 7 

EQUILIBRIUM ORIENTATION OF MOLECULES 

IN ANTHRACENE CRYSTALS AT DIFFERENT TEMPERATURES 

TECK) Cell parameters (A) Eulerian angles (°) 

a b c B 6 Q y 

78 8.439 5.992 iWL js 125°05’ 65.2 109.4 64.0 

300 8.550 6.028 7S 1242355 66.0 109.2 64.3 

425 8.685 6.059 11.240 W334 67.7 109.4 63.8 

The agreement of the theoretical and experimental values is satisfactory; 

the temperature dependence of the tilt of the molecules to the coordinate 

axes is not strong and is mainly manifested in a change of the angle 0. 

Applying the above procedure for locating the minimum, the authors have 

obtained the following values of the equilibrium lattice parameters and the 

Eulerian angles for anthracene: a = 8.39, b = 5.95, c = 11.02 A; B = 124°30’, 
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6 = 66.3, 9 = 109.6, w = 64.9°. The extrapolation of the low-temperature 

experimental data to the absolute zero of temperature has given the following 

lattice parameters: 8.44, 5.99, 11.11 A, 125°05’. The good agreement between 

the calculated equilibrium structure and the experimental one is another 

proof that the interatomic potential curves selected by the authors are a 

sufficiently good approximation for the prediction of the packing of hydro- 

carbon molecules in a crystal. 

The cross section U(0,@,) for anthracene calculated within + 12° vari- 

ations of the Eulerian angles from the equilibrium values has a peculiar shape. 

Figure i4a,b,c represents three main cross sections of this surface, and Fig. 14d 

gives the cross section U(g,W) at A@ = —4°. These contour maps show the 

main minimum of —23.2 kcal/mole, energy “hills” and “valleys” and also 

a local minimum (Fig. 14d) with a depth about 20 kcal/mole. 

Italian and American researchers have carried out a number of experiments 

based on the above concept of representing lattice energy as a sum of atom— 

atom potentials and prediction of the packing of molecules by varying their 

positions in the cell. 

In the light of these concepts, Giglio and Liquori [54] considered a structure 

of hexamethylbenzene convenient for calculations. The structure easily lends 

itself to calculations because the compound crystallizes in group PI with one 

molecule in the unit cell. They calculated the crystal’s potential energy which 

is here a function only of the orientational rotational degrees of freedom. 

It was found that in the three-dimensional energy distribution the deepest 

minimum is quite consistent with the actual molecular arrangement. 

Corradini et al. [55] have made structural analyses of a number of di- 

carboxylic acids and have calculated the lattice energies of these crystals. 

The objective of the authors was to verify the heuristic possibility of applying 

the densest-packing principle for predicting the type of molecular packing. 

As an example, they describe the case of meso-f,f’-dimethyladipic acid. The 

analysis gave the only version of the structure suitable from the viewpoint of 

the densest-packing principle. The same results have been obtained in calcu- 

lating the lattice energy by means of the atom-atom potential technique. 

This result, confirmed by subsequent determination of the structure, shows 

that it is possible to predict the structure of an organic crystal. 

In Williams [31, 56] the packing of the molecules in a crystal was calculated 

by minimizing the energy with respect to the positions of the molecules by 

using the method of steepest descent. The minimization involves the variation 

of the three translational parameters that determine the coordinates of the 

center of the molecule, three orientational parameters, six or fewer lattice 

constants and, if necessary, the parameters describing rotations around single 

bonds inside the molecule. The crystal lattice energy was calculated by means 

of the technique developed by the author and Mirskaya. Potential] functions 
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Fig. 14. Contour maps of anthracene lattice energy as a function of Eulerian angles: 

(a), (b), (c) cross sections U(@,g), U(0,w), U(y,) through the energy surface minimum 

point (the position, of the minimum is designated by x); (d) cross section U(g,w) at 

6 =) —4°. Contours with energy above — 13 kcal/mole are not shown. 

in the form of 6-exp, with parameters given by the author and Bartell [57], 

were tried. In order to avoid cumbersome calculations, summing is terminated 

when interatomic distances exceed the position of the potential function 

minimum by more than 2 A. It has been found that such a discontinuity in the 

series strongly affects the magnitude of the lattice energy, but only slightly 

the molecular packing. Good results have been derived for naphthalene 

crystals (the positions of the carbon atoms agree with the experimental figures 

within +0.04A), anthracene, and phenanthrene crystals. Somewhat poorer 

results are available for 1,3,5-triphenylbenzene. 
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10. THE CONDITION FOR THE STRUCTURAL STABILITY OF AN ORGANIC 

CRYSTAL AND THE PRINCIPLE OF CLOSE PACKING 

The actual structure of a crystal is characterized by minimum free energy. 

To explain why a crystal has a specific molecular packing pattern means to 

show thai all packings other than the actual one display a higher free energy. 

In this discussion I shall disregard the effects of the crystalline field on the 

shape of the molecule, and the intermolecular vibrations. Generally speaking, 

these effects are insignificant and will be considered in the next section. 

If the mutual molecular orientation is given, the free energy can be calcu- 

lated on the basis of the law governing intermolecular interaction. The crystal 

free energy is a function of the symmetry and size of the unit cell, the co- 

ordinates of the center of gravity of the molecule and the Eulerian angles 

which define the molecular orientation [58]. 

The condition of stability of a crystal structure which implies that the free 

energy variations must be zero can be written 

oF =0U +0F"* =0 

At absolute zero the intermolecular vibrational energy is about 0.2 kcal/mole. 

Variations of this value from structure to structure do not exceed hundredths 

of a kilocalorie per mole. Since the potential-well depth is much larger than 

that, a crystal structure at absolute zero must be consistent with the minimum 

energy of intermolecular interaction; in other words, a stable structure must 

satisfy the condition 

0U oU oU 
OF =0U = 

OR; 0; 0a; 

where the R; are the radius vectors of the centers of the molecules; ~; are the 

Eulerian angles; and a; are the unit cell parameters. 

If our considerations are restricted to centrosymmetric structures of the 

naphthalene type, the first term of this equation is omitted. Crystals of mono- 

clinic symmetry exhibit a seven-dimensional energy surface. Modern com- 

puters make the construction of such a surface quite feasible. This problem has 

been partially solved by us for orthorhombic benzene (see above), and also 

by Giglio and Liquori for triclinic hexamethylbenzene [54]. In both instances, 

the energy surface (meaning, of course, the part of the surface which corre- 

sponds to the symmetry of only one of the possible space groups) displays one 

deep minimum which is associated with the actual structure. 

Comprehensive investigation of the energy surface, including consideration 

of different symmetries, has intrinsic interest, because it helps understand the 

phase diagram of a substance in the solid state. The energy surface must show 

a multitude of minima. Shallow minima are of no interest because, due to 
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thermal fluctuations, they cannot generate a structure. First, we choose the 
lowest-lying minimum among all the deep minima. This minimum should 
correspond to the structure that is stable at absolute zero. Other deep minima 
lying above the lowest minimum represent actual high-temperature modi- 
fications only if they correspond to minimum free energy. 

Let us consider two minima: the deepest minimum with energy Uy and the 
minimum that follows the deepest one and has higher energy U,. At absolute 
zero the stable structure Uy and the metastable structure U, are characterized 

by the abscissae of their potential-well bottoms. As the temperature rises, 

the representative point shifts to the saddle point between the wells. At a 

certain temperature 7, the lattice binding energies become U,+AU, and 

U, + AU,, and the vibrational parts of the free energy Fy'° and Fy'®. A poly- 
morphic change occurs if the total free energy of structure 1 becomes equal to 

the total free energy of the structure stable at 0°, i.e., if 

Up + AUy + Fei = U, + AU, + FP 

Only very few potential wells, if any, can satisfy this condition. It is clear 

from the above discussion that a polymorphic change is possible only if the 

entropy increases with temperature faster in the metastable structure. This 

condition is, however, not sufficient because the crystal may melt before the 

loss in the potential energy has been balanced in this way. 

It is known that the heat required to convert a crystal into another crystal 

(but not for the transition into a rotational crystalline state) rarely exceeds 

1 kcal/mole. It may be supposed that the free vibrational energy also changes 

during this transition by approximately the same value. This means that if a 

structure stable at absolute zero is represented by a potential well lying deeper 

than the others by about the same value, no polymorphic changes can occur 

in this substance. 

Because the potential energy of molecular interaction changes but slightly 

under the effects of crystal heating, the minima of the energy surface are 

representative of all structures possible in the substance, several of these being 

the actual structures. In other words, each actual structure is given by its own 

minimum on the energy surface of our model. 

As was shown in Sections 3 and 4, the coordinates of a minimum are only 

slightly displaced by electrostatic interactions. This means that the mutual 

molecular arrangement is characterized by a minimum of the energy surface 

that can be calculated by means of the atom-atom potential model. Of course, 

this minimum may not necessarily be the deepest, but only one of the deepest. 

The fact that every crystal structure has its own minimum on the energy 

surface which represents the sum total of the atom-atom interactions is 

suggestive of the geometrical concept of the close-packing principle. Only one 

additional simplifying assumption is required to effect transition to the 
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geometrical model: It is necessary to consider the molecules as being abso- 

lutely rigid, i.e., to substitute the repulsive portion of the curve by a vertical 

line. In this case, the trend toward minimization of the potential energy is 

evidently analogous to the requirement of locating a maximum number of 

atoms at the shortest distances from each other. 

11. THE EFFECT OF THE CRYSTALLINE FIELD ON THE SHAPE OF A MOLECULE 

In order to estimate correctly the objective nature of the X-ray diffraction 

technique for studying organic crystals, and to understand the differences in 

the experimental determinations of interatomic distances and valence angles, 

one must have a clear idea of the effect of the crystalline field on the structure 

of a molecule. 
If we consider a molecule to be sufficiently labile, the condition of crystal 

structure stability must be written not in the form given in the previous section, 

but as 

OF = 6U+ oF’ + 6E=0 

where OE denotes the molecular energy variation. This means that when 

evaluating the comparative advantages of several different packing patterns, 

it is necessary, strictly speaking, to estimate the variations in the energy of 

the molecules themselves. 

It is self-evident that these variations cannot be very large. It may perhaps 

seem at first glance that where high accuracies are implied, the effect of the 

crystalline field must always be taken into account. If this were true, it would 

immensely complicate the problem of calculating an appropriate structure by 

energy minimizations; the number of parameters would greatly increase if 

the parameters of the molecule itself had to be added to the lattice parameters. 

The solution of our problem is considerably facilitated by the fact that in 

most cases it is not necessary to a!low for the effect of the crystalline field at all 

while in certain specific instances it is sufficient to consider only the parameters 

associated with the rotation of the parts of the molecule about single bonds. 

There are two principal consequences of the influence of the crystalline field 

on the shape of a molecule: its deviation from the optimum conformation, 

and the selection of one of the possible conformations. 

We shall first consider molecules having only one conformation and try to 

answer the following question: What is the difference between the geometry 

of these molecules when in a crystal from when they are free molecules? 

A great body of experimental information now available can help evaluate 

the extent of the molecular deformations under the effects of the crystalline 

field. There are four approaches to the solution of this problem. First, we may 

compare the structures of gaseous and crystalline molecules; secondly, we 
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may make comparative studies of the geometries of crystallographically 

independent molecules in the same crystal; thirdly, we may analyze the 

structure of a molecule whose symmetry in a crystal is lower than that of the 

free molecule; and, finally, we may compare molecules of different poly- 

morphic modifications. 

Consider several examples. Studies of gaseous benzene molecules have 

established that the structure of a benzene molecule is a regular plane hexagon 

formed by C atoms with a distance of 1.397+0.001 A between the carbon 

atoms, and the length of the C-H bond equal to 1.084A. X-ray diffraction 

analysis of crystals yields the following values for this molecule [40]: bond 

lengths: 1.379, 1.374, 1.378 A; valence angles: 119°50’, 120°42’, 119°28’. 

A phenanthrene molecule occupies a general position in the crystal. It is, 

however, obvious that this molecule exhibits at least twofold symmetry. The 

direct experimental results [59] are shown in Fig. 15a. The equivalent angles 

differ by several degrees, the difference between equivalent distances ranges 

from 0.01 to 0.03 A. 
Figure 15b shows the experimentally determined sizes of the two halves of 

1.540 1.540 S 1.398 w 

1,0] 

1403 19.6? 18.4° > : £0.11 +19° ‘; : 

120.7]1194 120.6 

Fig. 15. The difference in bond length due to experimental errors. 
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an acenaphthene molecule [60]. The molecules in a crystal occupy two 

independent positions with mirror symmetry. The order of difference is here 

about the same as above. 

The above data are typical enough. A question which now arises is as 

follows: Should these differences be ascribed to experimental errors or do 

they reflect actual differences in the molecular structure caused by the effect 

of the crystalline field? 

It will be now shown by simple calculations that in all these cases the 

difference is due to experimental errors or to artifacts. 

For each concrete case it would be necessary to point out the following. 

If the atoms are displaced so as to eliminate distortions, the molecular energy 

is bound to decrease by AE, and the lattice binding energy to increase by AU. 

The distortion of a molecule may be energetically justified if |AE| «< |AU]. 

On the contrary, distortion is impossible if |AE| > |AU|. Strictly speaking, 

changes in free energy rather than in potential energy should be calculated. 

Nevertheless, the contribution of minor distortions to variations in molecular 

vibrations seems to be quite insignificant. 

AE can be calculated for each particular case, for example, using a mech- 

anical model; AU can be obtained by the atom-atom potential method. It is, 

however, by no means necessary to discuss concrete cases. It is quite sufficient 

to consider the curves given in Fig. 16. The figure shows the changes in the 

molecular energy which are caused by changes in the C—C bond length (a), 

displacement of an H atom in an aromatic molecule in the plane and per- 

AU, kcal/mole 
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AU, kcal/mole 
ee) —~ ©» OW DAD 
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0 0.010.020,030.040.05 Ar.A 

SS aA 

{ 
> = 
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So 
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Q Ww 

Ss 

0 
0 BS Ee [i =A Ds th (0) Tf PA GH teh Gy aio 

——— nl =o ae A AeEO aL GORE 
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Fig. 16. The changes in molecular energy caused by different distortions. 
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pendicular to the plane (b, c), and changes in an HCH angle in an aliphatic 
molecule calculated from [61, 62]. 

For comparison, we have taken a typical example of a benzene srystal and 

calculated the variations in the lattice binding energy caused by the displace- 

ments of different Cand H atoms in various directions from their true positions. 

The results have indicated that a 0.03A displacement of an atom from its 

true position always changes the lattice binding energy by less than 0.01 

kcal/mole. In other words, in the scale of the figure which illustrates the energy 

of molecular distortion at the expense of variations in bond lengths, the curve 

describing lattice binding energy variations practically coincides with the 

X axis. 

Thus, we arrive at the following conclusion: The crystalline field does not 

affect bond lengths. It should be pointed out, by the way, that from my point 

of view, the best measures of the accuracy of the X-ray diffraction analysis of 

organic crystals are the discrepancies in bond lengths that should be equal 

from the chemical viewpoint. With this criterion applied, there seems to be no 

experiment that can claim an accuracy above 0.01 A. 

It now remains to discuss the possible effects of the crystalline field on the 

valence angle energy and the nonbonded atom interaction energy. 

From Fig. 16 it follows that the changes in the valence angles are not 

balanced by a gain in the lattice binding energy. The results are equally obvious 

a priori in cases where changes in a molecule are associated only with variations 

of the distances between nonbonded atoms, i.e., in the case of rotation about 

a single bond. Here, the major role is played by the steepness of the walls of 

the potential well representing the conformation of the molecule. Cases may 

be encountered when the nonbonded atoms of a molecule in an optimum 

conformation are located at distances close to equilibrium distances. The 

steepness of the potential well near an equilibrium will then be small, and the 

amount of interaction between the atoms of the two parts of the molecule 

will be of the same order as the interactions between them and the non- 

bonded atoms of adjacent molecules. In these conditions, the crystalline field 

is obviously quite able to cause considerable rotation of the parts of the 

molecule about the single bond. Therefore, calculation of an optimum structure 

should involve not only consideration of variations in the packing pattern, 

but also changes in the molecular energy which must be expressed in terms of 

angular rotation about single bonds. If the distance between nonbonded atoms 

decreases as the molecule rotates, the relevant energy quickly rises. After the 

parts of the molecule have rotated through a certain angle, intramolecular 

repulsion is balanced by the crystalline field forces. 

Thus, the crystalline field can bring a molecule out of the optimum con- 

formation by means of rotation about a single bond, but only if the free 

molecule has not been strained. On the other hand, if the optimum con- 
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formation of the free molecule exhibits an appreciable decrease in the distances 

between nonbonded atoms, this molecule is rigid with respect to the crystalline 

field, because the conformational well is very steep. 
’ A classical example of the influence of the crystalline field on a molecular 

conformation is biphenyl which is nonplanar in the gaseous state and planar 

in the crystal. The flattening of the molecule involves loss of the ortho-atom 

repulsive energy, and an increase of the packing density (planar systems are 

more convenient for packing). 

Molecules displaying relatively easy rotation of the benzene rings are 

generally good objects for studies of this problem. 

An example appears in publication [63] which reports the results of the 

calculation of the structure of a 2-bromo-1,1-di-p-tolyl-ethylene crystal. The 

observation has been made that a phenyl ring located close to the bromine 

atom is turned 67° out of the ethylene plane, while the second phenyl ring is 

24° out of plane. Calculations have shown that an optimum conformation is 

obtained at angles of 45° and 35°, respectively. Using the formula for the 

atom-atom potential model given above in Section 7, the authors have cal- 

culated the energy of interaction of a given molecule with adjacent molecules 

as a function of these rotation angles. It has been found that, with due allow- 

ance for molecular packing, the optimum ring rotation angles are 67 and 25°, 

which is fully in agreement with the experiment. 

To summarize, it must be emphasized once again that the crystalline field 

does not change the bond lengths and valence angles of organic molecules. 

The major effect of the crystalline field on the shape of a molecule consists in 

provoking such rotations about single bonds as are most favorable for packing. 

However, these rotations can take place only if the optimum conformation 

of the molecule is unstrained. 

Since the crystalline field compresses the molecule, then, other conditions 

being equal, a conformation is selected in which the molecule occupies the 

least volume. 

If the energies of several conformations of one molecule differ to a more or 

less considerable degree, the crystal is composed of optimum molecules. The 

reason is that in this case large possibilities are provided for formation of 

different packing patterns, and, therefore, a decrease of the molecular energy 

by 2-3 kcal/mole can hardly be balanced by an increase of the lattice binding 

energy. 
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Chapter III 

Lattice Dynamics 

1. THE EQUATIONS OF MOTION 

In most cases the molecules of an organic crystal execute slight libration 

about their equilibrium positions. The vibration amplitudes of the centers of 

gravity of molecules are of the order of a few tenths of an angstrom, while the 

amplitudes of angular librations are 2-3°. 

Intramolecular displacements have much smaller amplitudes. One may 

therefore assume that the crystals of a fairly representative class of organic 

compounds have much in common with systems of rigid molecules. It follows 

then that the lattice dynamics of such a crystal are determined by small 

vibrations described in terms of six coordinates, e.g., three coordinates of the 

molecular center of gravity and three Eulerian angles that specify the spatial 

orientation of the molecule. Molecules shaped like a disk, cone, sphere, or 

cylinder may execute more complicated types of motion, such as reorientations. 

These phase states of organic compounds should be considered separately. 

The problem to be discussed now is a special case of a well-known problem 

of classical mechanics. Let us recall that the acceleration calculated for each 

coordinate of a system is defined by the sum of the generalized forces acting on 

this coordinate; these forces result from coordinate displacements, provided 

that such displacements of the coordinates of the system from their equi- 

librium values are small [1]. Under these conditions, the contribution to the 
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total force along each coordinate is proportional to the first power of its 

displacement ¢. 

Analytically this theorem can be formulated as 

i= Se (1.1) 

where the values of the subscript J label all the coordinates of all molecules. 

As is well known, particular solutions of this set of equations are given by 

functions describing harmonic oscillations with the same frequency for all 

coordinates: 

—iot 
ty = éey;e 

Substitution in Eq. (1.1) gives 

wren =), Arp er “(122) 
5 

If 

|Ar —@7 Oy, | = 0 (1-3) 

then, in accordance with a general theorem of algebra, >°/,,; is equal to the 

sum of all the roots of Eq. (1.3). It follows then that 

o? = (I/n) Ay (1.4) 

where n is the number of the system’s coordinates. Thus the mean square of 

the system’s frequencies depends only on the diagonal matrix elements, i.e., 

it is uniquely determined by the forces “acting on the coordinate” and causing 

deviations of the same coordinate from its equilibrium value. 

Looking into the construction of the general solution of Eq. (1.2), we may 

note that its form (1.3) is of no interest; we should make use of the fact that 

we are concerned here with a crystal structure. If the periodic character of the 

structure is taken into account, it will be easily seen that the vibration ampli- 

tudes of equivalent coordinates for translationally coupled molecules are 

equal. In other words, it is the planewave type solutions of (1.1) that are to be 

sought. 

Let the index y refer to the molecules within one cell (all molecules having 

the same y are translationally identical). We shall use the index s to specify 

various displacements of molecules from their equilibrium positions. The 

values taken by this index are integers between one and six, and these values 

specify three linear displacements x,y,z and three angular displacements 

y,wW,n. Since, in the case under discussion the displacements are small, the 

increments of the Eulerian angles are for all practical purposes equal to the 

angles of rotation about the corresponding axes. Now, the sth displacement 
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of the th molecule belonging to the mth cell [a particular solution of (1.1)] 
may be written as 

be = Cus exp[i(K-R,,,,—?)] (135) 

where e,, is the vibration amplitude and R,,,, is the vector extending from the 
center of inertia of molecule zero to the center of molecule my. Substituting 
(1.5) into (1.1) leads to 

ee 
O° Cne = >, Tieng Cys! (1.6) 

u's’ 

where 

DT saty = 2 Art exp(iK-R,,,,) 

Here the coupling coefficient refers to two molecules: molecule y with its 

center at the origin and molecule y’ displaced from the position of equilibrium 

by a six-dimensional vector with the components ¢,, and t,,,,. The coefficient 

ae refers to one and the same molecule of the type y that has two displace- 

ments s and s’. The coefficient 2?.,,,,. refers to two molecules in the same cell. 

The coefficient 2/,,,, couples two molecules of the same translationally 

identical set, the molecules zero and h. 

The summation over / is carried out in the following way: Taking the pth 

molecule as molecule zero we derive the terms corresponding to all pairs 

formed by the molecule with molecules yw’ (of all sets) belonging both to the 

same and to all other cells of the crystal. Since the meaning of the vector 

R,,,,," 18 quite clear, we shall subsequently drop the indices yz and p’ wherever 

it is possible to do so without risk of ambiguity, so that the notation becomes 

simply R,,. The secular equation is 

(7 2 epee 
Gave ee | = 0 

The left-hand side is a polynomial of the order 6Z in w*, Z being the number 

of molecules in a cell. In general the equation should be solved for all 6Z roots 

corresponding to every wave vector K. Thus we see that the normal vibration 

modes of a system are described by 6Z dispersion “hypersurfaces,” which 

characterize the dependence of the vibration frequency on the wave vector. 

It follows from general considerations that there will be three acoustic 

branches (see below) among the 6Z vibrational branches, which implies that 

if the wave vector is zero three frequencies out of all 6Z vanish. 

There is no need to determine the type of hypersurfaces for comparison with 

the optical data on the frequencies of intermolecular vibrations. it is sufficient 

to solve the equations for the case of the zero wave vector and find the limiting 

values of the optical frequencies. 

Besides the frequencies, the relative vibration amplitudes of the coordinates, 



196 3 Lattice Dynamics 

i.e., the vibrational modes, may be determined for each wave vector. To do 

this one has to find the value of e,, from the set of homogeneous linear 

equations for all the 6Z values that w can take. Then the displacement 1,, 

(the general solution of the equation) is the sum of harmonic vibrations having 

frequencies wy (K = i,...,6Z). The harmonic (normal) vibration at the 

frequency @ x is obviously oriented along the vectors with components 

€,;(@x). Thus the vibration of molecules in the lattice is characterized in 

general by 6Z vectors in a 6Z-dimensional vector space. A certain frequency 

@,x corresponds to each vector. It is customary to normalize the components 

€,,;(@ x) of the vectors in such a way that the length of each multidimensional 

vector is equal to unity. 

2. SELECTION OF THE COORDINATE SYSTEM 

In order that the equations of the coordinate vibrations may be written in 

the form of Eq. (1.1), each molecule should be described in a coordinate system 

having the inertial axes of the molecule in the equilibrium position: u; are 

displacements along and Q; are angular rotations about these axes. The axes 

of translationally identical molecules will be parallel. The axes of molecules 

which are not translationally coupled, but have common symmetry elements 

will transform in accordance with the symmetry elements of the crystal. 

The equations of motion of a molecule now take the form 

Mii; => —oU/0u,, TEROY = —0U/0Q,, i= 2.3) 

or an equivalent form 

= —9U/0t,, (2.1) is 

where reduced coordinate displacements (s = 1,...,6) are introduced in such 

a way that 

t, = Mu,, tp = Mu, f= 24, 

eI Oe Ia SOE 

In the special case of a molecule in a crystal the potential energy U is a 

function of the displacements of all the molecules. We now expand U in a 

power series of the displacements. In the harmonic approximation 

aU _ 6?U 
Oty, Ht, Ot, ath, ** 

From (1.2), (1.6), and (2.1) we get 

Ke = d7 U/er sores 
bsp's’ Lu 
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Here the second derivative is calculated at the equilibrium point. The following 
formulas are obvious: 

Phe er as iN ag for linear displacements 
ek GU Ou. 

ae so for angular displacements usy's’ any ag ip iy 2 AQ? 0Qh 

l 6?U 
Wee = (MI, (Mi,.)% a 00H, for the mixed case 

We shall use these relations to rewrite Eq. (1.4) in an explicit form. Recalling 

that the summation in Eq. (1.4) may be restricted to the molecules of one cell 

and that the values of /;, are equal for molecules which are crystallographically 

equivalent, the following expression is derived for a crystal with any number 

of crystallographically equivalent molecules in a cell 

sade aU aU eu fis au | UMC a?U eS 

ie Cie i, ous) OO eT Oe Ce ee 

3. THE COUPLING COEFFICIENTS 

The calculation of the intermolecular coupling coefficients, which are by 

definition the second derivatives of the potential energy of interaction with 

respect to the displacements ti, and th... calculated for the zero values of the 
other displacements, and for the E libetan position taken as 

6? U/at®, ott.,, 

is rather straightforward if the atom-atom potentials are known. The calcu- 

lation is facilitated by the existence of a number of relationships between the 

coupling coefficients. To start with, let us consider a crystal in which two 

molecules displaced by vectors with components ¢,, and ¢,,,, are at a distance 

R,, apart. If we apply to the crystal its symmetry operations, it is displaced or 

rotated as a whole, and the relative positions of the molecules will not be 

changed; the potential energy of their interaction will therefore remain 

constant. In consequence, various relationships arise among the coupling 

coefficients. The simplest of these is obtained as a corollary of the invariance 

of the potential energy under displacements by the translational vector 

defined as 

6?U O20) 0?U 
oe ei eae as 3.1) 

0 h h 0 0 h ( Otel ow MCh Clee Oty Olas 
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Symmetric relationships between the coupling coefficients are conveniently 
derived for the following two cases. In the first case the relationships result 

from the existence of symmetry elements coupling the molecules that are not 

translationally identical. All open-type symmetry operations will yield re- 

lationships of this kind; this is also true in the case of closed-type symmetries, 

provided the molecule occurs in a general position. In the second case the 
relationships arise from the existence of symmetry elements that couple 

translationally identical molecules. For simple Bravais groups, such symmetry 

transformations are effected only by closed-type symmetry operations, with 

the symmetry element belonging to the molecule. First, we shall specify two 

molecules y and yp’ in a crystal which are not translationally identical and are 

displaced from the position of equilibrium by vectors with the components f,,, 
and t,,, (the first case). The origin is at molecule y. The transformation pro- 

duced by a symmetry element will shift the displacements ¢,, and t,,,,, to two 

other molecules, the new vector R,, replacing the vector R, which connected 

the centers of the displaced molecules. It is self-evident that |R,| = |R,,|. 
Now let us shift the origin, so that it coincides with the molecule obtained 

by the application of the symmetry element to former molecule zero. Thus the 

origin of the new system of coordinates of the crystal will be at molecule yp’. 

Under a symmetric transformation, molecule py’ (which is now molecule zero) 

will obviously be displaced in exactly the same way as was its predecessor, 

i.e., by a vector with the components ¢,. On the other hand, molecule p, 

which is at the end-point of the vector R,,, will be displaced by a vector with 

components f,. In other words, a crystal in which molecules y and yp’ at 

distance R, apart are displaced by vectors with components ¢, and f¢,, is 

identical to a crystal in which molecules yw’ and yp at distance R,, apart are 

displaced by vectors with components f, and f,,. Hence 

G User. ol, = 0 Clot ote (3.2) 

The same discussion is also applicable to a crystal in which two translation- 

ally identical molecules, both having index , are displaced by vectors with 

components ¢, and ¢,. The symmetric transformation converts them into 

molecules having the index yw’. Similarly, the vector R, becomes the vector 

R,,, and the origin may be shifted in such a way as to coincide with the molecule 

that was molecule zero before the transformation. Thus 

CUlet cl = COOL Ole (3.3) 
Hu Hu 

Symmetric transformations may be simplified for some special positions of 

the molecules. 

This is the case, for instance, when the vector R, is parallel to axes 2, or 2,, 

or to either an m plane or a glide plane, where we have R,, = R,,, or when the 

vector R, is perpendicular to the axes or to the planes, when R,, = R,;, will 
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hold. Thus, we have for the parallel case 

UG, Oy = 7 U/Ore,, Of, 
oe A 

G U/Oty, Of =e U/0re or Met) 

and for the perpendicular case [here we use Eq. (3.1)] 

OUfet Chie = 0 UlClrCl 

O° Ulett, Ot, = GO Uso, or, 

The simplification is quite substantial if there is an inversion center which 

may act as a transformation symmetry element. An arbitrary vector R, is 

transformed by the inversion center into the vector R,. = R;. Consequently 

Eqs. (3.2) and (3.3) in this case take the form 

0” UlOti, Oty = O° Uldty,, Oth, = O’U/er)., dth, = 0? U/At?,, dt, 

0’ U/Oth, Othe, = OU/Oth., Ati. = O’U/atp,, Oth, = 6 U/At®.,. dtr. 

The second equation is also valid in the special case h = 0 (h is always 

different from zero for the first equation). 

We shall now take up a different type of symmetric relationship among the 

coupling coefficients, the relationships that arise owing to a special position 

of the molecule. According to the general principles of symmetry of the space 

lattice, if the symmetry elements I, m, 2 are located at the lattice points, they 

are also located at midpoints in between. Here are some of the conclusions 

that may be drawn from this fact. 

Let us consider a crystal in which two molecules designated by the indices 

wand yw’ are at distance R, apart and have the displacements t?, and ths! 

Apply a symmetry transformation, assuming for reasons of simplicity that ane 

transformation is effected by a symmetry element passing through molecule 

zero. The molecules 0 and 4 become molecules 0 and do, their indices remaining 

unchanged since the molecule / is translationally identical to the molecule ho. 

But the axes of the systems of coordinates connected with translationally 

identical molecules are parallel. For this reason, in contrast to the first case, 

when Eqs. (3.2) and (3.3) were obtained, the displacement vectors are affected 

by the symmetry transformation in such a way that some components f¢, 

will change their sign, while the signs of other components remain unchanged. 

Thus we see that in the general case the following equation holds true (the 

indices 4 may coincide or differ) 

OU 0?U 
0 ha oe o ALA cho? Obys ys’ Ot ys Ons 
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where S is equal to +1 or —1 depending on whether the signs of appro- 

priate displacements before and after the transformation are identical or 
different. 

We have to consider in this case the behavior of all six components of the 

vector ¢,, for which we adopt the notation x, y,z, 9,W,n; here g, W,n are the 

angles of rotation about the axes x,y,z. The transformation rules for three 

important cases of symmetry are as follows (Fig. 1) 

J xyYZQOWHnrOXYZoOWY 

— <I! 2 xyzownrxyzown 

MX VON > x ZO Wey 

The last two transformations appear due to the fact that one of the molecular 

axes of inertia coincides with the y axis of the crystal. 

Fig. 1. The changes of signs of translational and rotational displacements under symmetry 

operations I, 2, and M (top to bottom). 

The case which involves an inversion center is particularly simple, since R, 

is then always equal to R,. Therefore, for an arbitrary pair of molecules, we 

obtain [using (3.1)] 

a? U/at?, ath. = Sd?U/ér®,,, ath, (3.4) 
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the value of S being equal to +1 if both displacements are linear or angular, 
and to —1 for the mixed case. 

For a second-order axis, in the general case we have 

O U/oth, Oth, = Sd?U/At0, att? (3.5) 

with S equal to +1 for xz, xw, zw, yg, yh, on. 

We see that 

OCU OU Oh. = iS 0. Ujot ot (3.6) 

if the vector R, is parallel to the symmetry axis, and that 

OU Clos = 50° Ujote. on (3°7) 

if the vector R, is perpendicular to it. 

For a mirror plane, in the general case we have 

0? U/ath, Oth... = Sd? U/ér?, ar (3.8) 

with S equal to +1 for the same pairs of coordinates as in the case of axis 2. 

Eq. (3.6) is valid for the m plane parallel to the vector R, and Eq. (3.7) holds 

true for the m plane perpendicular to the vector R,. 

Note that the coupling coefficients, satisfying Eqs. (3.4)-(3.8), vanish at 

S=-—1 when h=0, i.e., in the case when both displacements refer to the 

same molecule. 

Thus, for molecules occupying position I in a crystal, Eq. (3.4) for h =0 

takes the form 

OU/ot, Oly = SO Uso. ore. us 

As we know, S = —1 if one of the two displacements is angular and the other 

is linear; on the other hand, the derivatives on the right and the left side of 

the above equation are identical. Hence all derivatives of the type 

d?U/Ox,° dg}. 

vanish. 

Similarly, in the case of molecules occupying positions 2 and m in a crystal, 

a number of derivatives with respect to displacements of a particular molecule 

also vanish. 

It is obvious that additional relationships may appear if a lattice has a 

number of symmetry elements at the same time. As an example, let us consider 

the crystal of naphthalene, group P2,/a, Z = 2. 

Equations (3.2) and (3.3) hold, due to the existence of the 2, axis in the 

lattice: 

Bape ae THC) ho gh(21) A = Asus"? Ausus’ = Au'sn's’ usp’s’ 
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Equation (3.4) follows, in this case, from the existence of an inversion 

center which is occupied by the molecule 

Mee So maa =1S17 s’us (u = ps LU # HW’) 

Combining these formulas we get 

h(2 h(2, h 
A ire ‘Se =x eu. ae Sais! = <a SA's’ sus 

h mh 2.) Mee ze h Ausus’ = Dei = Si) = Sis'us 

We shall not concern ourselves with other properties of the coupling co- 

efficients. It is not the coefficients but rather the elements of the dynamic 

matrix 7)... [Eq. (1.6)] that are of particular interest; furthermore, the 

expressions for the matrix elements are simplified in view of Eqs. (3.2), (3.3) 

AB age = Abe ea (3.9) psp's’ bu’ sps’? usps’ h’su's 

which are valid if the lattice incorporates a symmetry element o coupling the 

molecules that are not translationally identical, and also by virtue of Eq. (3.4) 

jie =esah (3.10) bsp's’ p's’ ws 

for the case when molecules occupy a special position. In the latter case the 

simplification is quite remarkable, if the position of a molecule coincides with 

a center of inversion. 

4. THE LIMITING FREQUENCIES AND THEIR EIGENVECTORS 

The theory of lattice vibration can best be checked by measurements of 

infrared absorption frequencies or Raman frequencies. Since the wavelengths 

of light exceed intermolecular distances by approximately three orders of 

magnitude, the resonance light absorption frequencies correspond to the 

optical vibration frequencies of the lattice for the case of K = 0. The acoustic 

frequencies are equal to zero. It would be worthwhile at this stage to pay 

particular attention to the solution of Eq. (1.6) for the limiting case. The 

dynamic matrix is considerably simplified, since 

1 SAS =) Aisn's’ ‘s’ 

The matrix of coefficients 7, is symmetric. To show this we write psp’s’ 

h 
Dea Mees SUL a 2g Cha Su ona Ane Se ) 

and 

Tys'us = AO ‘sus ar by Gis s’us cL Me Sy oe) 

But by virtue of Eq. (3.1) every term of T,,,.,, is equal to the term of T,,.,-¢ 
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written directly above, Hence 

SH = fiers (4.1) 

The existence of relationships between the coupling coefficients 4 for various 
space groups and the numbers Z of molecules in a cell, as well as for specific 
symmetry positions of the molecules, permits further simplifications. 
Now we shall prove that in the case of crystals with one independent molecule 

in a cell, which are described by a simple Bravais group, the matrix of co- 

efficients breaks down into four equal blocks for Z = 2, into 16 equal blocks 
TOlZ— 40 etc: 

For this purpose, we write oe < 

Dis Asi yt is Chae s’ TA se s ) 

where, depending on the symmetry class of the crystals considered, each part 

of the h summation is identified with one of the two sums over symmetrically 

independent regions (molecule zero being in the same position for both terms). 

We have for Z = 2 

Tists) = = aay ats y CHG Meas)» T5259 = Ao sae! av } Cee a7 25 528") 

According to Eq. (3.9) every term in the second equation is equal to the cor- 

responding term of the first equation. We have the same for two other rows 

of the matrix: 

Tis19° = ’: (Mi sas + fees Trs19° = ss (Axis + Apia) 

Taking note of Eq. (4.1), we obtain finally 

tsae = Ty 525'» T 525" = T2515’ a T2515 aa T1525 (4.2) 

i.e., the matrix of coefficients breaks down into four equal blocks, which are 

symmetric submatrices of the original matrix. Now we turn to the case 

Z = 4. For iwo translationally identical molecules numbered by the index 1, 

which are displaced by the vectors ¢,, and ¢,,, symmetric transformations 

that produce equivalent positions for the crystal may be defined, with the 

molecules displaced by the vectors f,, and f¢,,,, t3, and f3,,, t4, and ¢t4,. In 

this case the vector R, will transform in accordance with the symmetry of the 

space group. Thus 

MM sts’ = Mibs = > May = = Misis 

In the special case of h = 0 we have 1}... = A)-.y’- Let us consider now 

two displaced molecules that are not translationally vette If the indices 

1 and 2 are used to number the molecules, a symmetry operation may be 

specified which permutes the indices, as in 12<>21, or transforms them into 
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34 or 43. Clearly, there are no other possible transformations. Hence 

h — hor — jho2 — hes 
Ki 528° = Axis’ — M345" aa Nagas’ 

Similarly, 

h eran 2s thee Se thes 
Ais3s’ =F N3si8' = Anas’ aa Nagy 

h — jhe; — the2 — thes 
Ni sas’ iat Nazis’ ca Aas! ai A335" 

A technique similar to the one used just now, i.e., breaking down a sum into 

terms corresponding to symmetrically independent regions, may be applied 

to prove the validity of the following formulas: 

TM 515' a T2528 = T3535' = TU sax’ 

T1525" = T2515 a T3545' a T4535' 

T1535" = T3515 = T2549 = T4525 

Das) = Taste = Daas 

Now we see from Eq. (4.1) that the matrix falls into 16 symmetric blocks. 

Another essential simplification of the problem is achieved if the molecular 

position coincides with the crystal’s center of inversion. In this case Eq. (3.10) 

makes it possible to define the elements of the T,,,.,,,, matrix blocks, correspond- 

ing to two linear or two angular displacements as 

A 5 Fe Sey Sie) 
T 's! = A tel + y) tot 

fs a neh) 5,5 =4,5,6 

All elements of the matrix blocks for the mixed case vanish: 

G2 1,7,3, Ss =4. 5,6 

Tsu’? = 0 

Sa we ee — OO 

We have considered so far two basic simplifications of the dynamic matrix 

that are imposed by symmetry. Two major types of information—the multi- 

plicity of the general position of the space group, and whether or not the 

position of the molecule coincides with a center of inversion—may indicate 

the principal features of the optical spectra of the lattice of molecular crystals. 

Having made these general observations we shall now consider some 

examples. 

The Group P1, Z=1. This is probably the simplest case. A number of 

crystals of this symmetry are known, e.g., hexamethylbenzene, to mention 

one of the most common compounds. In this case Ty = Tisis = Ts 

since Z = 1, 1.e., the coefficients form a 6 x 6 matrix. Due to the existence of 

the inversion center, the matrix breaks down into two blocks. Both blocks 
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have a diagonal form, since 7,,,=0 for the quadrants corresponding to 
mixed indices. 

Equation (1.6) canthen be written as two 3 x 3 eigenvalue problems: 

ORFs ye Pea RS eke 

Chala) ees, eal Si 455, 6 

The first equation corresponds to translational vibrations. As we know, the 
three acoustic frequencies vanish. Translational vibrations are acoustic 
vibrations, and for this reason all the three roots of the first secular equation 

should vanish. This follows immediately, in the case of the group PI, Z = 1 

under discussion. Indeed, as a corollary of the general theorem, we have 

that a parallel shift of all the molecules by segments of equal length cannot 
create a force acting on any separate molecule. 

In the present case all molecules in the crystal are parallel. Assume that the 

crystal is shifted along either the x, y, or z axis. The generalized force com- 

ponents along the inertial axes of the molecule are T,,,e,,, and hence T,,, = 0 

(s = 1,2,3). Thus all translational frequencies are seen to vanish. Conse- 

quently, the dynamic problem is reduced to just one third power secular 

equation, which describes the angular rocking motion of the molecule 

we, = y Tee, s, 5° = 4, 5,6 

By way of illustration, the matrix element 7,,,, may be determined from 

6?U 

esa 22? 
oU i 

49) 2 xprage  (h # HC) 

As will be shown below, in practice it is usually sufficient to take into account 

only the interactions of molecule zero with its nearest neighbors. The molecular 

coordination number as a rule ranges from 10 to 14, and is usually 12. In our 

case it will be sufficient to account for 5-7 pair interactions. The reader may 
recall the meaning of the derivatives that occur in the expressions for the 

dynamic matrix elements. Thus, 67U/@? is the second derivative at g = 0 

calculated for the curve U = U(@) where U is the lattice energy and ¢ is the 

displacement of molecule zero about the x axis in the molecular system of 

inertial axes. 0?7U/dp° de" is the second derivative at p° = 0, gy" = 0 is cal- 
culated for the surface, U = U(@°, 9"), etc. 

As is clearly seen from this argument, the calculation of the matrix elements 

by the method of atom-atom potentials is a rather cumbersome procedure, 

and it therefore requires a computer. It is obvious that to evaluate the second 

derivative at point zero a section of the surface U(~°, g') should be repro- 

duced in at least 24 points. Consequently, to evaluate a single coupling 

coefficient the lattice energy must be computed 24 times. 
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Three vibration frequencies w,, @,, and w,3 may be found from the appropri- 

ate secular equation. The successive substitution of the values of these three 

frequencies makes it possible to determine the relative amplitude of each 

frequency. Normalizing the values e, by means of the equation e,7 +e,7 +e,” 
= | we obtain a three-dimensiona! unit vector e(w,) which is the eigenvector 

of w,. A similar procedure is used to determine the eigenvectors corresponding 

to the frequencies w, and w 3. Vibrations of molecules along their eigenvectors 

are harmonic; these vibrations are normal vibrations. To define completely 

the libration of a molecule in a crystal of the hexamethylbenzene type one 

should specify the directions of three unit vectors e(@,), e(@2), e(@3) and the 

frequencies @,, @2, 3 of harmonic vibrations referred to the appropriate 

axes of a molecule (or a crystal). Vibration about the axes of inertia is clearly 

nonharmonic. For example, from Eq. (3.2) we have 

ips _ eae. af €,(@) e717" zs e@pen 

It is obvious that the values of these amplitudes are of no interest, since in the 

problem as formulated, determination of the phase shifts between different 

terms is meaningless. 

The Space Group P1, Z = 2. Now we shall take up the case of molecules 

occurring in a general position. Although the symmetry of the lattice in this 

case is the same as in the case discussed above, the relationships between the 

coupling coefficients are different; the coefficients now satisfy Eqs. (3.9). We 

have two molecules in a cell, and in this case Eq. (4.2) follows from Eq. (3.9). 

Let us write Eqs. (1.6) in the form 

2 = 
@ Cts = Sy Ls C15" IP > Ms: €25' 

(4.3) 
a C25 rae S My C15" a6 y. Ls C25! 

with the notations 

1, =T am T3525" Ms: = T1525" i T5195 Isis’ 

We shall also introduce new coordinates, which are the sums and the differ- 

ences of the original coordinates. Vibrations in the new coordinates will have 

the amplitudes 

Ss Ares 
es = 1s te C255 i 2 Kae 2 2 

The addition and subtraction of Eqs. (4.3) will lead to two independent sets 

of equations 

Oe = YT en Oley Te, (4.4) 

in which we use the notations: TS, = T,,15 + T1525 and TA, = Ty 16 —Tis29' ss’ 
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As an example we give the value of the coefficient 7$,: 

6?U A 6?U i Ce it 6?U 0?U 

6z°d~° 6z°dg! az dp! ~— 4z° dg? ‘ 62° dp?’ ras 

and of the coefficient T3,: 

67U acl 6?U 6?U 0?U 
Bien Oh Sor INFERS It ins AnD lal AAD Tee 0z 0p Oz’ do . dz’ dp 0z 0g” dz’ dp 

(MI,)* TS, = 

EY FS see 

Unprimed indices refer to the molecules that are translationally identical to 

molecule zero. In practice the sum usually consists of about 10 to 14 terms 

representing the nearest neighbors’ contributions. Equations (4.4) make it 

possible to calculate nine nonvanishing frequencies and their nine eigen- 

vectors (the total number of vibration branches is 12; at K=0, w =0 for 

the three acoustic branches). Joint variations of the sums or the differences of 

appropriate molecular coordinates lead to harmonic (normal) vibrations. 

The vibrations labeled by S may appropriately be called symmetric 

vibrations. In this case the symmetry of mutual arrangement of the molecules 

is maintained when two molecules with a common inversion center approach 

each other remaining in phase and then move apart. The difference of co- 

ordinates vanishes identically; it is the sum of coordinates that executes 

harmonic vibrations. Conversely, the A vibrations may conveniently be called 

antisymmetric. The sum of coordinates vanishes identically at all times, and 

the difference of coordinates vibrates harmonically provided the molecules 

with a common inversion center always move in the same direction. 

Equations (4.4) yield the values of 12 frequencies and their 12 eigenvectors. 

. Thus we see that harmonic (ncrmal) vibrations produce combined changes 

of six sums or six differences of appropriate molecular coordinates along the 

directions defined by six-component vectors. Translational vibration of the 

molecule along a certain axis or molecule libration are examples of a com- 

posite form of motion, described by the sum of components of twelve vectors 

e§(«w,), e&(@2),..., (We), e(w,), e* (a2), ...,€* (6) 

It should be emphasized again that the mode of such vibrations cannot be 

determined since the phase shifts of normal vibrations are unknown. In con- 

trast to the simplest type of molecular vibrations in a crystal of the hexa- 

methylbenzene type, in the present case there are no directions in the cell 

which can be defined as directions of pure vibrations or rotations. 

The number of frequencies considered in the above discussion is 12. This 

applies to the case when K # 0. For K = 0 there are three vanishing frequen- 

cies (the acoustic frequencies). These frequencies should be sought among 

the antisymmetric vibrations. The procedure is easily seen io account for 

the existence of zero solutions. 
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From Eq. (4.3) the force can be written as 

Tia Xb Lista Vit Uisia ence fate tis a te! stella 

+ T1521 X2 + T1522 V2 + T1523 22 + T1524 P2 + T1s25W2 + T1526 2 

Let us shift the whole crystal along the x, axis in the system of inertia axes of 

the molecules labeled by the index |. In the case of the group PI, Z = 2 for 

the axes, the molecules with the subscript 2 will shift by antiparallel vectors 

of equal length. The requirement that the generalized force be equal to zero is 

Dicis = Lio, = 0 

which can be rewritten, using the notations adopted in Eq. (4.4), as 

Tev=t0 (4.5) 

Shifting the crystal along the y and z axes, we shall similarly get T4 = 7,4 = 0. 
Since this reasoning holds true for a generalized force acting on any coordi- 

nate, only the lower diagonal block of the matrix 7%, is different from zero. 
Three frequencies out of the six which occur in the general case for K = 0 

vanish. Nonvanishing frequencies belongingtoclass A correspond to librations. 

In the calculation of dynamic elements by the method of atom-atom 

potentials the accuracy check of Eq. (4.5) in the nearest-neighbor interaction 

scheme is of special interest. 

The Group P2,, Z = 2. Simplification of the form of the dynamic matrix 

is the same for all cases of two symmetrically coupled molecules in a cell. 

Equations (4.4) hold true for Z = 2 and for the space groups PI, P2, P2,, 

Pm, Pc. The vibrations are classified as class S and class A vibrations. 

The S and A vibrations may again be called symmetric and antisymmetric, 

respectively. The symmetry for the groups P2, and P2 is axial symmetry, 

while for the groups Pm and Pc it is symmetry with respect to a plane. 

We would have 12 vibration frequencies for K =0; however, three of 

these vanish. The conditions of vanishing for the group P2, (and other groups) 

are different from those for the group PI. The feature of the group PI, Z = 2 

that is responsible for the difference is the fact that the inertial axes x, y, z of the 

first molecule are antiparallel to the inertia axes of the second molecule. This 

is not the case when the molecules have a common axis or a plane of symmetry. 

The requirement that the generalized force acting on the coordinate 1, 

when the crystal is shifted as a whole, should vanish, has the following form: 

Psat Xa Lisi a Vi Masia 20+ 1 soo + 2 ean Vo as 2 OO) 

Here x,,),,Z, and x, ,Z, are the components of the shift along the inertial 

axes of the first and second molecules, respectively. These expressions cannot 

be substantially simplified for the group P2, (and other groups) and for 

arbitrary mutual positions of the inertial axes and the crystal axes. 
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Equations (4.5) are not valid in this case. It is also not clear a priori which 

three frequencies vanish and whether they belong to class A or S, since the 

result depends on the’ mutual orientation of the inertial axes and the crystal 

axes. 

Equations of the type (4.6) obviously produce various relationships between 

the matrix elements. These relationships may conveniently be derived in the 

crystallographic system of coordinates. 

The Group P2,/a, Z = 2. This symmetry, which may be called the naph- 

thalene class symmetry, is encountered quite often. A remarkable fact is that 

almost all symmetric aromatic molecules adopt this symmetry when crystal- 

lizing. As the crystal contains molecules coupled by the 2, axis that are not 

translationally identical, the matrix T,,,,. breaks down into four blocks, 

which are equal in pairs: 

LS sie = T2525'> T1528 = T5195 

But, besides these formulas, we have to take into account the relationships 

arising from the existence of the center of inversion occupied by the molecules 

in the crystal, i.e., the situation when Eq. (3.4) applies 

ME StSH usit’s’ p's’ us 

Hence, reasoning similar to that for the group PI, Z = 1 which we considered 

earlier, leads to 

08 = ISAs 

#h(1) So =a, 
T 1 528' a Ai ste at A At gts 

Se Noe Si 4555 6 

CESS Ge yi bad 
Tis19 = 0 

In an analogous way we get for 7).9. 

; ie — eS) 

‘i she = 2 A s2s’ 
ie oe sat SS = AE SNC 

Sawa oe ESO 

T1525 = 0 
Sao). Ose) Sh 

The equations of motion 7e,, = DY Tysys' uss May assume the form 

7 e1, = AS Dig oue me y Tea C25 F (sus) 18293) 
we, Cae y Oa es i DS T2525 C25 

2 Gis ie IS Team n, DOR ar 1s \ UKya Gy” ea ly sy s2s Ss (s,5’ ae 4, 5,6) 

We, oe y T4515’ 1s" at y T 525’ €2s' 
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and, applying the aa used to derive Eq. (4.4), we obtain 

ee 

ee i Oe Sho) 

< (4.7) 
are, = y) Tye: 

A a, ISX A | (s,8° 
we, =) Tse? 

The vibrations in crystals such as that of naphthalene are characterized by 

twelve frequencies and the eigenvectors corresponding to these frequencies. 

The eigenvectors fall into four categories: S translation, A translation, 

S libration and A libration. The labels S and A specify the symmetry of 

vibrations with respect to the 2,-axis. Each category is described by a vector 

in a three-dimensional vector space, whose orientation relative to the axes of 

a molecule (or a crystal) may be determined. 

When we say that the total number of vibration frequencies is 12 we neglect 

the fact that at K = 0 these frequencies include the vanishing acoustic frequen- 

cies. There can be only nine nonvanishing frequencies at K = 0 for crystals 

like that of naphthalene. The vanishing frequencies are seen to be defined by 

the roots of the first two equations in (4.7). Depending on the value of the 

angle between the inertial axes and the crystal axes, the frequencies belonging 

to either of the two classes A or S may vanish. This is also true for one of the 

frequencies A(S) and two frequencies S(A). 

By way of example we shall calculate some of the matrix elements. For 

translation vibrations 

MT?, = M(T4412+71122) 

eee, i a?U ange Ole a?U ee GPU fe 0?U is 

Dioxlay” Oxe Oy. Tox ey: Ox’ Oy" 0x? dy~ 

For libration 

(Li )2 T36 = ae (1,1, ie (T1516— T1526) 

a eu fi 6*U = 0?U 
= oy én° oy? én} ay én? 

62U 02U 
= 2 lao) eae me 

Oy” on” OW" On 

Unprimed coordinates refer to the molecules that are translationally identical 

to molecule zero. All the terms in parentheses account for the contributions 

from the half-space, which implies that the contributions of molecules situated 

at distance R, and R, from molecule zero need not be taken into account 

separately. 

4, 5,6) 
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The Group P2,/a, Z = 4. As follows from the detailed discussion above, 

this symmetry is most convenient for the packing of molecules that do not have 

a center of symmetry: This situation is quite common and, if only for this 

reason, it deserves to be considered separately, all the more so because, for 

the lower systems, and for the case of molecules that are crystallographically 

equivalent, the relationships that apply to this group are also valid for all 

groups of symmetry. 

The equations of motion (1.6) may be written as 

we,, = ee Cis uP My C25’ ee Ng C35 Tt ages C45 

we, Fi My €19 BE Ly C25' = Va C35’ + Ng: C4s’ 

w7e3, ae No C15 1% Pro C25" a5 | Bee C35’ 3a M,y €4s/ 

we4, = Mies C1" ba Neg C25! oF My €35' a Ly C45" 

where obvious notations have been introduced for the equal coefficients T. 

This set of equations may be arranged into smaller independent sets by the 

introduction of the following new variables 

eS — ¢,, + C2, + C3, + Cae 

Cees. = 15 + €25 — €35 — Cds 

ees = 45 — 25 + C35 — Cas 

ee = €1, — €25 — C35 T Cas 

Then the equations of motion take the form 

Ww" es =—)3 Le ae w?tSA“ = »s T SAA SAA 
Ss ss Ss 

Ogee = > Toe =, wine = Dy Toiees 
(4.8) 

(s4sa—.12...36) where 

Te Fae T i515 + T1528 3F I Bove tg Lee 

TSh4 a = 
# 1s1s! 5 T1528 a T 153° T taae 

ASA __ — 
‘h a Diste’ a T1525" Sig Tress! T\ sas’ 

“AAS __ Pe 
ff == tere as T1528 T1539 a9 Wgeag 

Thus, we see that of the four molecules in the cell, the molecules of each pair 

having common symmetry elements (as in the case, e.g., for the group 

P2,/a, Z = 4), yield 24 frequencies classified into four groups with different 

vibration modes. The eigenvectors in the present case have six components, 
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i.e., libration and translation are not separated. There are 21 nonvanishing 

frequencies. It is not obvious, a priori, to which group the vanishing frequen- 

cies belong. 

The Group Pbca, Z = 4. We shall now proceed to discuss the results for the 

case of the benzene crystal. The regularities observed in the examples given 

earlier are well-enough defined to enable us to formulate the results im- 

mediately. 

Since a cell contains four molecules, we see that Eqs. (4.8) are valid for this 

case. Since the molecule now is not in a general position, but occupies a center 

of inversion, each of the equations breaks down into two: one for translation 

and the other describing libration. The vanishing frequencies are to be looked 

for in the four translation groups. 

Table 1 summarizes the results of the discussion. It includes the lower 

systems and lists data only for simple cells containing one independent 

molecule. 

Table 1 

LIMITING FREQUENCIES FOR THE SPACE GROUPS OF LOWER SYSTEMS 

Number Is the molecule The number 

of molecules ina special Space groups The number of limiting List of 

in a cell position of branches frequencies frequencies 

1 no Pl 6 3 o 

1 yes PI 6 3 Miiv Orr 

Pi P2 

2 no P2, Pm 12 9 as w* 

Pc 

2 yes P2,/a 12 9 Or Or 

P2/m Orin Ori» 

4 no P2,/a 24 72) OSS Oe 
P22 @44 @*4s 

Olin Obs 
4 yes Phca 24 21 oris* aries 

Pmma** Or ae 

Cons 
8 no Pbca 48 45 six groups 

Pmma** of frequencies 

* All groups of the V and C>, classes that have a simple cell. 

** All P groups of the Class Vj. 
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5. THE DYNAMIC PROBLEM FOR A NAPHTHALENE CRYSTAL 

In this section we give a detailed discussion of the equations of lattice 

dynamics for a crystal of naphthalene, which has the type of packing very 

often encountered for centrosymmetric molecules. 

Let us write the equations of motion (1.6) in a general form specifying, 

however, that a cell contains two molecules. 

Dele ee , ’ ! ! 
we, =D) (Tiss Cis + Tiszs 28) 

QS Via ees / ' , r 
et » (T515 Cis + T2525 C25’) 

There are no simplifications for K 4 0 and, for arbitrary orientation, the 

Hermitian matrix 7)... has no zero elements. Thus the matrix does not have 

a block form. We shall now give the values of the dynamic elements (the 

formulas are considerably simplified by symmetry) and show that the matrix 

becomes real after the introduction of the vector e,, with components 

LEG C12» e413, ie44> ie455 ie16> 

C21» €225 C23, 1€54, 125, ler6 

instead of the 12-component eigenvector with components 

Cir ion Cia Siar Cuss Caes 

C21» €22» €23» C24» C25» C26 

This will also prove that the libration components of the 12-component vector 

are shifted by 2/2 with respect to the translation components. 

Now, the elements of the dynamic matrix have to be calculated 

i 's’ =) Misy’ rs° CXP (iK- R,) 

We have already discussed the restrictions imposed on the coefficients A/,,,,, 

by the symmetry of the group P2,/a, Z = 2. These restrictions assume the 

form 

h eek oy ’ A gts = SAng, fOr H= Hh, PAP 

and also 

h = he h = h2, 
KasKiy Ss = his ‘ss’? sus An’ sp's’ 

The submatrices 7;,,,, and 7},,, have the same structure. If we write the 

expression for the matrix element in the form 

=) [An ew’ s' ©XP (iK- R,) ee A ae, s/ ©Xp (iK-R;)] i ier “Ss” 
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and take note of the fact that the molecular position coincides with the center 

of inversion, we obtain 

y 

S S 

‘ (1,2, 3)(1, 2, 3) Tiny Puasa boa os ORME (5G) (45 (0) 

(1, 2, 3) (4, 5, 6) 
Tisus’ aay Mens San (4, 35 6) (1, 2, 3) 

(1,2, 3) (1,2, 3) Od) 
Tsu “Sy ae MSH’s’ cos K- R, (4, >; 6) (4, D5 6) 

h, Geikeicho aca (1,2, 3) (4, 5,6) Lea ie 2h Dae uae sinK-R,, (4, 5,6)(1, 2, 3) 

The matrix 77... 18 Hermitian, but its elements in the present case are either 

real numbers or pure imaginary numbers. For the real elements we have 

/ 
& S 

, a / (125.0) (23) 
Tisu's’ = Lvs'ns (4, 5, 6) (4, 5, 6) 

and for the pure imaginary elements 

Seka (1,2,3)(4, 5, 6) 
Dons Sar? IT ys s’us (4, 5, 6) (1, 2, 3) 

These formulas follow from the general treatment and directly from (3.4). 

The validity of the statement made at the beginning of the section is now 

obvious: All elements of the matrix of coefficients will be real for the vectors 

in which the libration components are shifted by 90°. Let us write the basic 

equations in the form: 

Si— ler 

2h eae ’ , / , / , 
wei, = Tig C16 E > stg Sige > Ti 525’ C25" 

S723) s’=4,5,6 s’=1,2,3 

, / 

a5 oy Tio Cds 
s’=4,5,6 

Ge ASC 

Pa Ee Pee ’ , ! t 1 , 

oe, = y 1 RR Tie Cig Ti 525" C25’ 
s'=1,2 s'=4,5,6 st=132,3 
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GS il, Bie 

2S , ' , , 

@ es a Dri Cig uh y Ty 515° Cis’ a » T).28' Cbs 
s’=1,2,3 s'=4,5,6 Side? 3 

r ' 
ot ¥ T3525 C25 

s’=4,5,6 

5 = 4,5,6 

226 , te ’ , ! 
wer, = y T3515' Cis’ iz SS T3515 C18’ ze > T4528 Cbs 

s’=1,2,3 s'=4,5,6 s’=1,2,3 

/ , 

ay, » T3525 C25 
s’=4,5 

Introduce a real, symmetric matrix T,,,,,. (unprimed), which is related to 

usu’s’ aS follows: T’=iT and T’=~—iT for the mixed elements of the 

matrix that are situated to the left and to the right from the principal diagonal, 
respectively, and 7’ = T for the nonmixed case. 

We now rewrite the equations, multiplying the second and the fourth 

equation by i and introducing some new unprinied quantities. The resulting 

equations have the same form as the original ones, i.e., 

7 a a. 2 as 
mers = ) (Mists Cis + Tsay Cae’), UE » (T2515 Cis + T2525 €25') 

The expressions for T,,,,.. are given by Eq. (5.1) with the is dropped. We 

shall repeatedly refer to these equations later. 

The matrix cannot be simplified if a complete solution of the problem is to 

be obtained, i.e., if the behavior of all the 12 dispersion surfaces @(K) is 

examined. The above equations, which can now be written only formally, 

do not break down into two sets. The frequencies are given by the roots of a 

12 x 12 secular equation, and the eigenvectors have 12 components. All the 

required coupling coefficients should be evaluated prior to the calculation of 

the dynamic matrix elements, and the matrices T7,,,,-,, should be obtained at 

the mesh points defined by the vector K. Twelve frequencies and 144 com- 

ponents of twelve 12-component vectors are to be found. 

It will be noted, however, that the solution of the problem is facilitated by 

the fact that only the nearest-neighbor interactions are needed. For a crystal 

of naphthalene, an appreciable contribution comes from the following neigh- 

bors (Fig. 2): molecules with a common index yz that occupy the center at 

[G10], ic., R=b, or at [001]. ie., R=c, and molecules with a different 

and the coordinates [440], [£10], ie, R=4(a+b), R=4(—a+b) or 

411), (£41), ie, R=4(atb)+e, R=4(—a+b)+e. 
The matrix elements have the following form: for the unmixed indices s 

Tysus’ =Apsys' + 2Ap os COSK+Roo, + 24038 COSK-Ro1o usps’ MSHS’ HSHS 

+ 21229 cosK+Ry vo + 202° cosK-Riyo sus’ 

hi pe + 2124) cosK-Ry,y, + 2422) cosK-Ryy, 
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Fig. 2. The crystal lattice of naphthalene. The nearest neighbours of molecule zero taken 

into account are shown. 

while T7,,,,-s iS given by the same expression with the term 2° dropped; for 

the mixed indices s 

T — Deo sin K-Roo,; ae 27) or site Rare pss’ sus’ sus 

+ 212749 sinK-Ryyo + 242/49 sinK-Ryv,o 
1 

usps’ sus’ 

while T,,,,s' is defined by the same expression. 

There is one special case when the problem is essentially simplified, viz. 

when we consider the cross section of the dispersion surfaces by the plane 

K||b. 

Any sum involved in (5.1) includes the terms related to molecules with the 

centers of gravity at m,n,p and m,n, p or m+4,n+4, p and m+4,n-+4, p. 

The first sum may be rewritten, as 

2 ¥ (am’cosK-R 
h#h(1) 

+ 2”? cosK-R_ mn p inp) 

For K||b we have 

K-R = K-R-_ 
mnp = KR, mnp 

and hence both terms have the same factor cos KR,. 

Equation (5.1) has the form (recall that the imaginary unity disappears 

after the transformation of 7’ into T) 

/ 
Ss S 

(1, 2, 3)(1, 2, 3) 
(4, 5, 6) (4, 5, 6) Usps’ SMS Due pace 2 ag (A eats) COs IR 

h#h(1) 
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(ip ae 3) (4, 2) 6) — mnp mn : 

(4,5,6)(1,2,3) Taw =? 2 Ae + Aan) sin KR, 
(12,3); 2,3) a m+l¥nt+%4p m+Y%nt+y 

(4 5,6)(4,5,6) — Zase’s’ = Wee U ee ne 
(1, 2, 3) (4, 5, 6) 

s, = m+ ‘Ant Ap wee : 

(4,5,6)(1,2,3)  Zas’s 2d Vaan’? +2 )sin KR, 

For 0n0, mOp and similar indices the second term in brackets does not 

appear. The matrix will consist of four equal blocks. As is easily seen 

4,0 cad 22 jmnp, — mnp mp Jmnp 
TRC Se PPA LS tse ewes2s 1 A ESHIKE er AD AC IISE 

Hence for the two upper rows we have 7,,,,. = 72,2, Furthermore, 

Amt Ant hp pate Jmt Ant AP Amt Ant hp = Amt Ant 'Ap 
1s2s’ mee 2suis’ > 1s2s’ eee SIG 4 

and hence = ,. The behavior of the equations of motion in this dh Po 155 ke bel f th t f mot th 

case is known from the preceding section. Vibrations are classified as sym- 

metric or antisymmetric and satisfy two equations that are mutually in- 

dependent: 

ee 

we," = My De ee 

The matrix elements for the unmixed indices s are 

(s,5’ = 1,2;.04,6) 

TS = Mery +2 Dd) ists + ATSf) Cos KR, 
h#h(1) 

Pee erence 2?) cos KR, 
h#h(1) (62) 

Ty = Mis Pee d CATSts + ATsfs) COS KR, 
#h( 

SOM Ai a COE KR, 
h#h(1) 

and for the mixed indices s 

Te, = 2 ), MP + AM2.) sin KR, 
h#h(1) 

te) lite, ene SID AR, 
h#h(1) 

eae ya Atte tiie) SID ey 
h#h(1) 

=2 te" 7? + Ate" 2?)sin KR, 
h#h(1) 
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Note that 4 with a negative index is dropped if the position of the molecule 

coincides with some point on the b axis or in the ac plane. 

For K = 0 the matrix elements which have inixed indices vanish, and both 

matrices break down into two—libration and translation matrices. As a 

corollary, we obtain the results that were discussed earlier. 

The resulting equations lead to 12 curves w(K), three of them running 

from the origin (which particular curves behave in this manner depends on 

the angle between the molecular axes of inertia and the crystallographic axes, 

as discussed earlier) and the other nine branches start from their limiting 

values which may be obtained from optical data. 

Within the framework of the nearest-neighbor approximation (the neigh- 

boring molecules were listed earlier) we get the following simplified formulas 

instead of (5.2): 

For unmixed indices 

i = Mae! ae Ai cis’ AE QAP sis’ COS Kb 

= + 2(A%49 4 2249 4 2%! 4 2%%!1) cos Kb/2 

ite = he ee cn Aiea 75 Dee: COs Kb 

— 2(A2%9 4 12% 4 14%! 4 1%%!1) cos Kb/2 

and for mixed indices 

TS, = 209! sin Kb + 2(A4%9 +1249 4 14%! 4 1'%2%!) sin Kb/2, Isls’ 

TA, = 20910 sin Kb — 2(A2%° 4 1249 4 14%! 4 124!) sin Kb/2. Isis’ 

At K = 7/b we have 

Ty aah = AP eo een 0 Tsitis’ TESuisa 

for unmixed indices and 

S —~ _TA = 9(7%%94 9%4%04 HHL, 7% fhe f ipa 84 +2 +A +4 ) 

for mixed indices. The signs of TS, and 7“, are seen to be different for the 

mixed-index matrix elements. This fact may be interpreted in the following 

way: 

At K = 7/6, 1.e., at 2 = b/2 the equations for symmetric vibrations and the 

equations for antisymmetric vibrations become identical if the rotational 

components of either class are shifted by 7/2. 

At K=n/b the antisymmetric and symmetric branches always merge 

pairwise. We have only six frequencies at this value of K. Then, with the curves 

diverging, this behavior of w(K) will recur at greater values of K. 
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6. CALCULATION OF CRYSTAL DYNAMICS BY THE METHOD OF 

ATOM—ATOM POTENTIALS 

The whole problem of comparing the theoretical and experimental data 

on lattice dynamics is fundamentally changed if the atom-atom potentials 

scheme is employed for the calculation of the molecular interaction energy. 

As was pointed out by the author [2], the success that accompanied the 

application of the scheme for the calculation of the lattice energy gives every 

reason to believe that the method will also prove valuable for the evaluation 

of the dynamic coefficients. For this purpose, computer programs should be 

written, capable of handling calculations of the lattice energy as a function of 

two displacements of two molecules (or of one molecule if the zero coefficients 
are to be evaluated). 

Variations of the dimensions of an elementary cell that can be prog- 

rammed into the algorithm for the calculation of the dynamic coefficients will 

make it possible to examine the temperature behavior of lattice vibration 
frequencies. 

A variety of computer programs may be written, differing in the degree of 

complexity. A master computer program should be capable of determining 

the dispersion surfaces for preassigned cell dimensions and for a series of cells 

extending along the isobaric section of the energy surface. 

One may also construct a computer program that will calculate and mini- 

mize the free energy. The simplest way to do this is to use the general formula 

of the quasi-harmonic approximation (Chap. 6). 

A simpler program would handle the limiting frequencies, which couid 

also be calculated in the quasi-harmonic approximation as functions of 

temperature. 

Finally, the simplest problem is the calculation of the rms spectrum fre- 

quency, which is uniquely determined if the values of as few as six (zero type) 

dynamic coefficients are avaliable. According to (2.2) we have 

= ifteuv [rou ee. hear Ui 1. ou ea Uh 
2 ee 

NOU (Mou, e WM ous @T, CO 6 1, 00300 al, 00.8 rae 6 
Thus, we see that only six coupling coefficients need to be evaluated for a 

given elementary cell. If the lattice energy is plotted against each of the six 

displacements of molecule zero in the vicinity of equilibrium, the values of 

the second derivatives calculated at a lattice point will give all terms of the 

above expression for w?. 
The first numerical calculation of the dynamic problem by the method of 

atom-atom potentials was made by the author and his co-workers. For a 

series of molecular crystals the values of w* were obtained as a function of 

temperature. The results for w* cannot be compared with the experimental 
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data on the behavior of limiting frequencies versus temperature, owing to the 

fact that the averaging in Eq. (1.4) is carried out over the whole spectrum and 

for the entire range of the wave numbers. However, as is shown on p. 372, 

the value of w? is, but for a constant factor, equal to the characteristic temper- 

ature 0, which can be determined from experimental thermodynamic data. 

The calculated values of w* are discussed and compared with 6 in Chapter 6, 

Table 6. 

The calculation scheme suggested by the author was used by Oliver [3], 

who calculated the limiting frequencies and their eigenvectors for the benzene 

crystal. His results are summarized in Table 2. Similar calcuiations for the 

naphthalene and anthracene crystals are reported by Pawley [4] and Weulersse 

[5]. Mukhtarov [6] and the author have calculated the intermolecular 

vibration frequencies for the crystals of naphthalene, anthracene, diphenyl, 

and also obtained the K||b sections of the dispersion surfaces. 

We shall describe the results of this paper, since the calculations are quite 

thorough and comprehensive, giving frequency versus temperature data (the 

calculations were made for a series of cells measured at different temperatures). 

The symmetry group for all of these crystals is P2,/a, Z = 2. The dynamics 

of such lattices was discussed in detail in the preceding sections. The 

quasi-harmonic model and atom-atom potentiais were used for the calcu- 

lation of the matrix of dynamic coefficients; the values of the potential 

parameters involved are given in Ch. 2 on p. 170. Numerical results on the 

libration of the naphthalene molecule [7] (frequencies and eigenvectors) at 

Table 2 

FREQUENCIES AND EIGENVECTORS OF THE BENZENE CRYSTAL 

SSS ASA 

@ U V W o U V Ww 

100 0.978 —0.015 0.002 996 0.899 0.2374 0.035 
85 0.013 0.950 0.050 82 0.196 0.985 —0.020 
69  —0.001 0.045 0.915 65 0.030 0.016 0.875 

SAA AAS 

@ U V Ww @ U V WwW 

89 0,898 —0.063 0.005 83 0,956 0.078 —0.099 
55 0.058 0.916 0.015 51 ‘0.074 0.986 0.013 
46 0.004 = O03 0.959 40 0.089 —0.013 9.975 
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Table 3 

FREQUENCIES AND EIGENVECTORS OF MOLECULAR LIBRATIONS 

FOR THE NAPHTHALENE CRYSTAL 

os U V Ww Wiehe tiaras 29 V W exp cale 

126 109 0.947 —0.298 OMS eel ell On 02997, —0.077 0.012 

79 74 0.298 0.954 —0.017 (6S 0075 0.896 0.438 

Si 51 0.113 —0.018 0.993 46 40 0.022 0.437 0.899 

T = 293°K are summarized in Table 3. The table also lists the frequency 

values obtained experimentally [8]. The values of @ are given in inverse 

centimeters. 

The relative orientation of the axes of symmetric and antisymmetric 

librations and of the inertial axes of the molecule is shown in Fig. 3. As can 

be seen from the figures and the table, close as the vibrational axes are to the 

inertial axes of the molecule, they do not coincide. It is appropriate to note, 

nevertheless, that until now all studies of intermolecular vibrations by means 

of Raman spectra have assumed that the axes of normal vibrations should 

coincide with the inertial axes. The origin of this error, resulting in mis- 

assignments of the frequencies, is difficult to trace. The results of our cal- 

culations suggest the following conclusions. 

The angle between the inertial axes and the eigenvectors of the symmetric 

and antisymmetric vibrations corresponding to the frequency of 116 cm™' 

does not exceed 10°; however, there are two modes of low-frequency asym- 

metric vibrations whose eigenvectors form an angle of about 30° with the 

inertia axes V and W. 

Fig. 3. The orientation of vibrational axes relative to the inertial axes of the molecule 

for the naphthalene crystal. 
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Table 4 

FREQUENCIES AND EIGENVECTORS OF MOLECULAR TRANSLATIONS 

FOR THE NAPHTHALENE CRYSTAL 

exp WMeate a b Cc Dexp Qene a b G 

0 0 — — — 98" 85 0.857 0.04 0.515 

73 51 0.012 0.993 0.017 0 0 — — =. 

0 0 — — — 39 41 —0.513 —0.028 0.857 

Table 4 compares the calculated values of translation vibration frequencies 

for naphthalene with the experimental results [9]. The temperature is 

T = 293°K, the same value as in the case of librations. 

The table demonstrates that the directions of translation vibrations are 

close to the crystal axes (also cf. Fig. 3), and therefore, terminologically, we 

may refer to the vibrations of types a, b, and c. Of the three curves correspond- 

ing to translation vibrations, which vanish at K = 0 (acoustic branches), 

two (a and c types) belong to the asymmetric mode and one (b type) to the 

symmetric mode. The C axis’ in Table 4 is the third axis orthogonal to the 

crystallographic a and b axes, which are mutually orthogonal. 

Table 5 

ANTHRACENE: LIBRATIGNS OF THE MOLECULE 

ws ws U V W wo we U V W 
exp cale exp cale 

121 See OLO69) —0.156 SW} 11255113) 0.995 —0.074 —0.067 

70 Ss) WEI) 0.956 0.217 65 62 —0.038 0.899 — 0.437 

39 34. 0.150 —0.248 0.957 45 47 0.093 0.432 0.897 

Table 5 gives the results of our calculations of the libration frequencies 

and eigenvectors for anthracene [10], in comparison with the frequencies 

available from experimental measurements [8]. The temperature is T = 293°K. 

Here, as in the case of naphthalene, deviations of the axes of normal librations 

from the principal inertia axes of the molecule are insignificant. 

The results of calculations of the translation vibrations at T = 293°K are 

t There is no assignment of frequencies to the symmetric or antisymmetric modes in 

the paper referred to earlier. 
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Table 6 

ANTHRACENE: TRANSLATIONS OF THE MOLECULE 

@oatc a b Cc | one a b c 

0 — — — 101 0.893 0.051 0.582 
59 0.065 0.982 0.035 0 _ _: — 
0 — — — 42 —0.579 —0.060 0.810 

summarized in Table 6. There are no published data on experimental measure- 

ments of the translation vibrations spectrum of anthracene. Experimental 

data on the spectrum of translations and librations of diphenyl are given in 

Ref. [11]. However, some frequencies of the spectrum are missing. Table 7 

contains the experimentally measured libration frequencies and the frequencies 

Table 7 

DIPHENYL: VIBRATIONS 

DWexp atc U V W QWexp (ene U V Ww 

_ 94 0.956 0.121 0.266 — 50 0.970 0.242 0.022 

43 36 ©—0.256 0.784 0566 — 82 -—0.232 0.951 — 0.265 

94 119 -—0.140  —0.609 0.780 59 88 -—0.070 0.194 0.978 

and eigenvectors calculated at T = 220°K. In this case deviations of the 

inertial axes from the vibration axes for the V° and W* normal vibrations are 

so large that assignment of either type to any inertia axis is no longer feasible. 

Calculated and measured values of the translation vibration frequencies at 

T = 293°K are given in Table 8. The assignment of the frequencies of trans- 

lations in paper [11] is apparently erroneous. 

The calculated’ results for the spectra of the naphthalene, anthracene, 

and diphenyl crystals that are given in this section agree quite well with the 

Table 8 

DIPHENYL: TRANSLATIONS 

exp Weatc a b c Wexp (Ore a b Cc 

ae 0 == — — — 80 0.892 —0.515 —0.275 

56 57 0.323 0.735 —0.020 — 0 = = ia 

— 0 — — _— WG 2 OSS Syl 0.805 
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experimental data. Noteworthy in this respect is the remarkable agreement 

between experimental and calculated values of frequencies for the naph- 

thalene and anthracene crystals, reported in a paper of Suzuky, based on 

comprehensive research of a high experimental standard. 

Discrepancies between our figures and the experimental data, which are 

observed at high frequencies, appear to be largely due to failure to include the 

interaction between the intramolecular and crystal vibrations. 

The temperature dependence of the frequencies of the optical branches in 

the quasi-harmonic approximation is discussed by Mukhtarov and the author 

in the paper referred to earlier. As an example, we give the numerical results 

for the spectrum of the naphthalene crystal; the calculation was carried out 
for the temperature range 0°-300°K. The calculated and experimental fre- 

quency versus temperature curves for the naphthalene crystal are plotted in 

Fig. 4a for librations and in Fig. 4b for translations. The dotted lines are 

experimental curves, while the solid lines give the theoretical results. The 
letters A and S refer to the antisymmetric and symmetric vibration modes 

respectively, u,v, w,a,b,c are the types of vibrations. As can be seen from 

Fig. 4, the experimental and calculated curves agree quite well for the low- 

frequency branches (discrepancies are less than 10%), approaching each other 

at low temperatures. The fact that the calculated curves fall more steeply at 

high temperatures is apparently due to the anharmonic character of vibrations, 

which cannot be fully accounted for within the framework of the quasi- 

harmonic approximation. We also note that there is considerable disagreement 

between the calculated and the experimental curve for a b-type translation of 

comparatively low frequency. Apparently the accuracy of the experimental 

curve should be improved. 

Considerable disagreement between the calculated and experimental curves, 

which tends to increase (up to 20%) in the low-temperature range, is observed 

for the high-frequency branches of uv“, uS, v’ librations. This situation may well 

be due to the interaction between the intramolecular and lattice vibrations. 

There are two low-frequency bands of 176 and 195 cm“ in the vibrational 

spectra of the naphthalene molecule (the frequency next in magnitude is 

359 cm~'). The existence of low-frequency vibrations of this kind, naturally, 

renders incorrect the approximation in which a molecule in the lattice is 

treated as rigid. Moreover, relatively small frequency increments of low- 

frequency intramolecular vibrations and high-frequency lattice vibrations, as 

is well known from the theory of vibrations in classical mechanics or from 

perturbation theory in quantum mechanics, result in substantial changes of 

the frequencies of interacting vibration systems even if such systems are 

engaged in weak kinematic or potential interaction. Both types of interactions 

play a part in the present case. 
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—— — theory 

——— —experiment (Suzuky et al.) 

u,v,w—the main inertia axes 

O 100 200 300 

ee COT 

——— experiment (Bazhoulin and Rakhimov) 

a,b,c — crystallographic axes (see Fig.2) 

Fig. 4. The temperature behavior of libration (a) and translation (b) frequencies of 

molecular vibrations for the naphthalene crystal. 
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In the high-temperature range the experimental and calculated curves come 

closer together. Insofar as the assumption concerning the interaction between 

intramolecular and lattice vibrations is valid, the fact that the curves approach 

each other at higher temperatures may naturally be explained by the an- 

harmonic character of the lattice vibrations, all the more so that this factor, 

as the low-frequency branches show, reduces the frequencies with the growth 

of vibration amplitudes, while the interaction between the intramolecular and 

lattice vibrations must clearly lead to greater disagreement between the 

frequency of a true lattice vibration and the result calculated in the quasi- 

harmonic approximation. 

An analysis of the behavior of the frequency versus temperature curves for 

the anthracene and diphenyl crystals also indicates good agreement with the 

experiment. Such an analysis is in many respects similar to the treatment of 

the naphthalene crystal that we have discussed. 

The same paper gives the sections of the dispersion surfaces w(K) for K||b for 

the naphthalene, anthracene, and diphenyl crystals. The plots for naphthalene 

(T= 293°) are given in" Bie 5: 

To calculate the sections of the dispersion surfaces the matrix of dynamic 

coefficients was diagonalized for every value of K. It proved sufficient to take 

the K increment equal to 0.05 in the cases studied; to make sure that the 

assignment of frequencies to vibration modes was correct, the step value was 

reduced to 0.01 in the regions where different branches came too close together 

or in the vicinity of the points of intersection. Comparison of the calculated 

and experimental frequencies, as well as the study of frequency versus temper- 

140 

Fig. 5. A section of the dispersion surfaces for the naphthalene crystal. S.A.: symmetric, 

antisymmetric; u, v, w: libration; a, b,c: translation frequencies. 
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ature curves, reveals a good fit to the experimental data. However, it is quite 

obvious that the calculated results can be substantially improved if a better 

choice of the atom-atom potential curves is made. Besides, it is quite possible 

that the formulation of the problem should be refined by the introduction of 

intramolecular vibrations. It is not unlikely, for example, that the reversed 

order and excessively high values of the calculated S and A frequencies for the 

strongest pair in the naphthalene crystal spectrum are due precisely to the 

interaction between the intermolecular and intramolecular vibrations. 

7. THE MEAN VIBRATION AMPLITUDE 

According to the fundamental principles of statistical physics, the frequency 

of a normal vibration determines its mean energy 

] h ho 

Tae Ceeen(faik ici 

On the other hand, the translation mean energy is equal to 4mm*a?. We can 

thus find the vibration amplitude. However, we are concerned with the mean 

displacement along a certain axis. The solution of the dynamic probiem yields, 

for every frequency, normalized eigenvectors with components e; (i= 

1,2, ...,6z). To calculate the quadratic mean displacement along the X axis, 

the quadratic mean displacement produced by a normal vibration with a 

frequency «, i.e., €/mm*, should be multiplied by e,* (which, of course, is the 

square of the direction cosine). Thus, in the system of molecular coordinates, 

the quadratic mean displacements along the x, y, and z axes are, respectively, 

given by 

e,7e/mw*,  e,7e/mwm?, —e37e/ma”. 

To find the contribution made to a displacement along the unit vector e by 

the vibration frequency w with the eigenvector e we have to calculate 

(e/mo*)(e-1)? = (e/mo*) e, eI; 

It is seen that the pattern of a translation displacement is determined by 

the tensor 

(e/maw”) e;e; 

This contribution comes from a single normal vibration. There are 6Z 

vibrations per cell. Hence, the tensor sought is given by 

T;; = > (elma) e;e; 
6Z 

If the data available for the calculation include not only limiting frequencies 
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but also dispersion surfaces, the averaging for 7;; should be carried out over 

a reciprocal space unit (i.e., over the Brillouin zone). 

We have discussed the calculation of the molecular translation displace- 

ments. It is remarkable that the tensor elements are expressed in terms of the 

translation components of eigenvectors. 

In very much the same way, for rotations about the x, y, and z axes, the 

mean angular displacements from equilibrium positions are given by 

0, == e4é/1, ow’, 0, = RI Bsriekn 0, = €5 8/1, 07 

where J,, /,, [, are the corresponding moments of inertia. 

The contribution to the angular rotation about the axis I that comes from 

the vibration w with the eigenvector e is: 

(0-1)? = 6:0; 051; 

The tensor w,; = 0,0; is calculated as follows: 

6Z 

where e and e; are the libration components of eigenvectors. 

The only calculation that has been carried out so far in accordance with this 

scheme is described by Pawley in the paper referred to above. He studied the 

naphthalene and anthracene crystals at room temperature. 

For naphthalene the tensors have the numerical values 

4.14 0.08 —0.05 

T= 4.14 —0.18 | x 10~7A? 

3.44 

2129 2.0 0.6 

oO = 1537 2.5 degree 

| Wie? 

Referring as they do to an organic molecular crystal, these figures are quite 

representative: the mean displacement of the center of gravity is of the order 

of 0.02 A, the mean libration angle is 4°. 
The T and @ tensors may be calculated from an analysis of the X-ray 

crystal data, since the structural amplitude of X-ray scattering, given by 

F=) fre “exp(hx;+ky,+/z;) 

includes the so-called Debye-Waller temperature factor e-“/. The quantity 

M , is directly related to the quadratic mean displacement of the atom 

M, = 8n7u;? (sin? 0)/A? 
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where 6 is the X-ray scattering angle (the Bragg angle) and 1 is the X-ray 

wavelength (cf. p. 244). The value of u; is largely dependent on intermolecular 

vibrations. The amplitudes of intramolecular vibrations may be estimated 

in various ways, e.g., by electron diffraction from gases. Their rms amplitudes 

are at least one order of magnitude smaller than those of the intermolecular 

vibrations. pnt 

The calculation of u;* by means of the tensors 7;; and w;; is therefore of 

particular interest. It is clear enough that, when engaged in all normal 

vibrations, an atom vibrates anisotropically. One may put 
aes) 3 3 

Ue, ty U, 1,1; 
i=1j=1 

where U;, is a symmetric tensor having six independent components and 1 is 

the unit direction vector. Using a technique which is now quite common in 

X-ray studies, we can determine the U;; tensors by the least-squares method. 

An oriented ellipsoid is assigned to every atom. A typical pattern, which is 

obtained by using X-ray diffraction data from a sucrose crystal, is presented 

in Fig. 6. Patterns of this kind can be produced as visual displays by modern 

computers. 
It is obvious that 

ides 3 3 3 3 

ur = by y U3 1:1; = Y » (7; ,4,/, +o; 0x4); xr);] 

i=1 j=1 i=1j=1 

The formula assumes that the molecule vibrates as a rigid body. The vector r 
is directed from the center of gravity of the molecule to a constituent atom and 

its length gives the distance. Trueblood and Shoemaker [12] have shown that 

Fig. 6. An X-ray analysis pattern for the sucrose crystal. 
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this formula is valid for molecules occupying a symmetry position in the 

crystal. One more tensor should be introduced in the general case. 

The atomic tensors U;; are determined, as a rule, with insufficient accuracy, 

and in many cases the conclusions concerning the character of the atomic 

vibrations based on the values of these atomic tensors may be somewhat risky. 

The computation accuracy for the tensors 7;; and w;; is considerably better, 

since measurements of all the atomic tensors are utilized. For a molecule 

having, say, 20 atoms, the atomic vibrations are characterized by 60 rough 

experimental measurements. The least-squares method is then applied to those 

60 numbers and 12 new numbers (six components of T;;, six components of 

«;;) are obtained. This will clearly improve the computation accuracy. Yet even 

here it would be unrealistic to hope for an improvement of several percent. 

One should therefore be satisfied if the values of the diagonal elements of 

the tensors 7;; and w;; calculated by the method of atom-atom potentials and 

measured by X-ray diffraction techniques agree by about 20-30%, while the 

off-diagonal elements agree in their order of magnitude. 

8. REORIENTATION OF MOLECULES 

So far we have discussed the vibrational motion of molecules. However, 

this is not the only type of motion possible. Reorientational motion of 

molecules in a crystal, which was predicted earlier, has been confirmed by 

NMR techniques. This type of motion may occur if reorientation barriers are 

not much higher than kT. This implies in its turn that reorientation is possible 

only for appropriately shaped molecules, e.g., for molecules shaped something 

like disks, cones, spheres, or cylinders. Reorientation of molecules is quite 

compatible with rigorous crystallic ordering. A distinct electron density 

X-ray map shows the average positions of atoms. If reorientation occurs in 

such a way that atoms retain their average positions, the X-ray experiment will 

not be affected in the least. 

This is exactly the situation in the benzene and hexamethylbenzene crystals. 

Reorientation of each molecule is effected by a rotation about the sixth-order 

axis belonging to the molecule. 

The frequency of reorientation should satisfy the equation 

On yews 

where U is the activation energy of reorientational motion. When the temper- 

ature rises the frequency of reorientation gradually increases, starting from 

zero. At a fairly typical height of the barrier of about 3 kcal/mole the number 

of reorientational steps per second is approximately 10° at 85°K, while it is 

of the order of 108 at 170°K. The vibration frequency of the benzene molecule 

is of the order of 101. It is thus clear that the molecule is in a state of vibration 
for most of the time. Even at temperatures close to the melting point, one step 
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will occur in about a thousand vibrations. Hence it follows that for ordered 

crystals thermodynamic quantities are insensitive to molecular reorientation. 

As pointed out above, data on molecular reorientation in a crystal are 

obtained from the studies of NMR line widths. Typically it is the resonance of 

protons that is observed. At low temperatures the test substance produces a 

broad line. At a certain temperature the reorientation frequency reaches the 

value corresponding to the line width. According to theory, at this temperature 

the line width will rapidly shrink. 

O 20 40 60 0° 

U, kcal/mole 

aad Uyit Uo-ct Uo 

—8 

=| 

=O) 

Fig. 7. The energy of interaction between an isolated rotating molecule and neighboring 

molecules which are at rest. Not only the integral curve is shown in the figure, but also 

curves illustrating the behavior of the individual terms of the total energy which arise due 

to the interaction between atoms of different kinds. 
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It is not infrequently suggested that the instant of NMR line narrowing 

corresponds to a phase transition. The suggestion is erroneous, and the line- 

narrowing temperature is actually the temperature at which the method 

becomes sensitive to molecular reorientation. 

Considering that reorientation is a rather rare phenomenon, its discussion 

in terms of some geometrical or physical model should proceed from the 

assumption that the neighbors of a rotating molecule are at rest. A rough 

estimate (without any calculations) of the possibility of reorientation can be 

obtained by examining the situations brought about by various rotations of the 

molecule between different positions of equilibrium. Rotation is impossible 

if at any instant the distance between the nearest atoms belonging to different 

molecules is reduced, say, by half. 

The energy curve corresponding to reorientational rotation may readily be 

calculated by the method of atom-atom potentials. 

We have made such calculations for the benzene crystal. The results are 

shown in Fig. 7. The 4.9 kcal/mole barrier appears when the molecule swings 

away from the equilibrium position by 35°. The values seem to be somewhat 

greater than the experimental figures. There is no point in seeking a model 

that would give better agreement with the experiment, since the experimental 

data are rather conflicting. It may be appropriate to point out that the rotation 

barrier becomes substantially lower if one assumes that reorientational 

rotation involves two or three neighboring molecules simultaneously. The 

rotation barrier is found to be close to 3 kcal/mole, if reorientation of a 

molecule is assumed to involve its neighbors belonging to the first coordination 

sphere. It is noteworthy that the use of the method of atom-atom potentials 

may lead to a better understanding of the mechanism of such delicate phenom- 

ena as the reorientational steps of molecules in a crystal. 
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Chapter IV 
Methods of Investigating Structure 
and Molecular Movement 

A. Diffraction Methods 

1. METHODS OF STRUCTURE DETERMINATION, THEIR ACCURACY, AND 

OBJECTIVITY 

The properties of a substance are determined unambiguously by its struc- 

ture. For this reason, structural data form the basis of any classification of 

substances and serve as a test of theories used for predicting properties. 

The structure of a molecule can be described by the mutual arrangement of 

its constituent atoms, meaning their time-average positions. In addition, to 

understand a number of the properties of matter requires information on the 

nature of the vibrations; i.e., their amplitudes and frequencies need to be 

known. 

Despite the fact that a molecule is an electron-nuclear system, the con- 

ception of the atom as a structural unit retains its full sense. The electron 

density of a molecule can be broken up, with high accuracy, into spherical 

distributions about the corresponding nuclei. Hence, it is usually permissible 

not to distinguish between the location of the center of the atom and the 

atomic nucleus. 
Thus, one of the expedient descriptions of a molecule consists in stating 

233 
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the coordinates of the atomic centers and indicating the number of electrons 

associated with each atom. The number of electrons associated with an atom 

differs little from the electrical charge on its nucleus. In other words, the 

atoms of a molecule are more or less electrically neutral particles. However, 

if these differences are substantiai or are of fundamental interest, one may 

speak of atomic charge, meaning the corresponding difference. 

The model of a molecule as a point system in which each point is character- 

ized by a chemical species of atom and by an atomic charge located at that 

point is the principal model in problems connected with the structures of 

organic substances. 

Of course, a molecule can be described more accurately by imposing its 

electron density cnto a system of atomic nuclei. But there are unfortunately 

no objective methods of determining electron density with any considerable 

accuracy, whether by experiment or by calculation. Theoretical calculations 

made by the approximate methods of quantum chemistry hardly give an idea 

of the accuracy and authenticity of the results obtained. Since the possibility 

of comparing these calculations with experiment is problematic, the use of 

the results of these calculations evokes little confidence. 

Even the determination of atomic charges from experiment is a very complex 

problem. There are a number of fine methods for determining the properties 

of an atom in a molecule. The most important of these are the nuclear mag- 

netic and nuclear quadrupole resonance methods. However, the chemical 

shifts of frequencies of these resonances cannot be interpreted unambiguously. 

The former measures the screening of the atomic nucleus by the electron cloud 

of the atom, and the latter measures the gradient of the electric field at the 

site of the nucleus. Recalculations to atomic charges are difficult primarily 

because the frequency shifts of these resonances may be caused not only by 

changes in atomic charge, but also by changes in energy level distribution of 

the electrons. 

As to determination of electron density or at least atomic charges by X-ray 

diffraction methods, the accuracy of these methods is simply not high enough. 

In the very best investigations even the number of electrons per atom can be 

determined only to a few percent. 

Assessments of atomic charges from measurement of the dipole moments 

of the molecule are naturally highly indefinite, because the measured value is 

the dipole moment of the whole molecule. The distribution of this moment 

over the separate parts of the molecule, and, even more so, the localization 

of the dipole centers of individual parts of the molecule, or of the whole 

molecule, is arbitrary. 

Only the determination of the fraction of the electron density due to an 

unpaired electron stands somewhat apart. In this case, i.e., when the molecule 

is a radical, the distribution of such an electronic charge over all the atoms of 
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the molecule can be judged successfully from the fine structure of the electron 
magnetic resonance spectra. 

In contrast to the unsatisfactory situation regarding experimental methods 
of determining the electron density of a molecule and even atomic charges, 
experiment offers great possibilities in determining the structure geometry. 
There are also fairly satisfactory methods of judging the dynamics of a 
molecule. 

The structure of a free molecule, i.e., of a substance in the gaseous state, is 

determined by gas electron diffraction methods and by molecular rotation 

spectra. The latter are measured both by optical spectroscopic procedures 

and by microwave spectroscopy. Radio spectroscopic measurements are very 

precise. But the number of independent parameters that can be determined 

by such a method (any method of rotational spectroscopy) is very small. For 

ihis reason, interesting results are obtained only for simple molecules or for 

molecules in which only a small number of structural details have to be 

established. 

Gas electron diffraction methods can also be recommended only for mol- 

ecules consisting of small numbers of atoms, due to the relatively poor ex- 

perimental data. Information on gas scattering is contained in the location 

and intensities of about a dozen diffraction rings. It is clear that in this case 

problems involving only a few parameters (not more than three or four with 

complete confidence) can be tackled. 

The principal methods by means of which practically all the material on 

molecular geometry and crystal geometry has been accumulated are the dif- 

fraction methods of studying single crystals. X-ray diffraction studies are 

much more popular for this purpose than neutron diffraction (owing to the 

complexity and cumbersomeness of the method) and electron diffraction 
(owing to methodological difficulties). 

Rather complex instruments yield a great deal of experimental material 

constituting data on several thousand diffracted rays. The diffraction angle 

and intensity of a ray are the experimental data which, after math- 

ematical processing, carried out at present almost exclusively by electronic 

computers, gives information on the coordinates of the atoms in a crystal 

unit cell. 

To judge the possibilities and precision of the method it must be remem- 

bered that the higher the atomic number of the atom in question, the stronger 

are the X rays scattered by it. For this reason, light atoms are difficult to 

detect and are found with less precision in the presence of heavy ones. On 

the other hand, molecules that contain a small number of heavy atoms 

(one or two) are incomparably easier objects of study because in a rough 

approximation such a structure scatters as if it were built up only of heavy 

atoms. 
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If the molecule contains very many atoms, determination of its structure 

is practically possible only if it contains one or two heavy atoms. In many 

cases heavy atoms are specially introduced into the molecule under the as- 

sumption that this causes no change in the part of the structure not associated 

directly with this “extra”? atom (the isomorphic substitution method employed 

in biological crystallography). 

It is fortunate that the introduction of one heavy atom for a large number 

of light ones decreases only slightly the accuracy of determination of the 

light-atom cocrdinates. 

The situation is different if we are interested in the coordinates of the carbon 

atom in tetraiodoethylene or those of the hydrogen atom in any hydrocarbon. 

In this case the ratio of heavy and light atoms is such that the experimental 

determination of the coordinates of the light atoms becomes practically 

senseless. This means that on the basis of general crystal-chemical and 

structural chemical principles the coordinates of the light atoms can be 

established beforehand to a much greater accuracy than experiment is 

capable of doing. 

The problem of determining the coordinates of hydrogen atoms in organic 

substances is of substantial interest. Until now the only direct experiment by 

which this problem could be solved was that of neutron diffraction. Neutron 

scattering is not related directly to atomic number, and hydrogen atoms 

scatter neutrons better than many other atoms. By this method the coordin- 

ates of hydrogen atoms can be determined quite objectively to a good 

accuracy. 

A good accuracy in a diffraction experiment is 0.01 A. A number of workers 

claim to have determined interatomic differences to a better accuracy. But 

comparison of investigations carried out by different workers, or comparison 

of structural data obtained independently with respect to distances which 

should unquestionably be identical, show that in estimating the accuracy of 

experiment it is injudicious to rely on general theoretical formulas. 

There are a number of errors in X-ray diffraction studies that cannot be 

estimated practically. That is why the only solid basis for judging the possi- 

bilities of the method is not theoretical calculation of the error, but simple 

comparison of different measurements of the same substance. Such a com- 

parison leads to the figure 0.01 A, which, incidentally, is not at all bad, taking 

into account that it amounts to less than one percent of the magnitude of any 

interatomic distance. The inevitable errors just mentioned, that cannot be 

estimated properly in practice, are related to the difference between the 

crystal model for which the theory of X-ray diffraction intensities is built 

(and by means of which the computer calculates the final result) and the real 

crystal. In diffraction theory it is impossible to take into account the specific 

dislocational structure of a concrete object. It is also impossible to deal with 



1. Methods of Structure Determination 237 

absolutely pure preparations. Furthermore, even an insignificant impurity 

may seriously distort the average unit cell structure determined by diffraction 

methods. 

It goes without saying that structure determination methods involving single 

crystals are much more effective than those involving investigations of the 

gaseous state (not to mention the study of liquids, since determination of 

the structure of a molecular liquid by diffraction methods is practically an 

impossible task). Apart from the fact that the structure of the molecule is 

determined much more accurately by crystallographic investigation, one ob- 

tains, in addition, valuable information on the relative placement of the 

molecules in the crystal. 

A great deal of experimental material has been accumulated to date, 

enabling us to make numerous generalizations. A large number of regularities 

can be formulated on the basis of structural experiments alone, concerning 

bond lengths, valence angles, optimal molecular conformations, the nature of 

their mutual arrangement, etc. 

Reverting to the determination of the coordinates of hydrogen atoms, note 

that this problem can be soived not only by neutron diffraction studies. A 

very sensitive method of determining the coordinates of protons of a single 

crystal is low-resolution nuclear magnetic resonance. It can be shown (see 

below) that the anisotropy of breadth of NMR lines is related unambigu- 

ously to the proton coordinates in the unit cell. This new method is now 

under development. 

In a number of cases nuclear quadrupole resonance (NQR) is of great help 

in determining the structure of crystals. As will be discussed below, if the 

molecule has nuclei with quadrupole moments, this method enables un- 

ambiguous determination of the number of independent molecules in the unit 

cell, and when studying a single crystal it makes it possible to determine the 

orientation of the moecule in the cell. 

Both radiospectroscopic methods are also valuable supplements to optical 

methods of investigation in studying lattice dynamics. 

Nuclear magnetic resonance (and NQR) methods positively establish the 

presence or absence of molecular reorientation in the unit cell. The tem- 

perature dependence of NQR frequencies can be put in direct relation to the 

vibration amplitudes of the molecules in the cell. 

Determination of the vibration frequencies of molecules still remains 

mainly a task to be solved by infrared absorption and Raman spectrum 

methods. 
As to the determination of the type of the so-called dispersion surfaces 

(dependence of the vibration frequency on the wave vector), the main methods 

are those involving measurement of diffuse neutron scattering; measurement 

of diffuse X-ray scattering is also helpful. 
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2. PRINCIPLES OF THE DIFFRACTION METHOD OF STUDYING CRYSTAL 

STRUCTURE 

Crystal structure is determined by diffraction studies. These include X-ray, 

electron, and neutron diffraction. The first of these is by far the most popular. 

The physical principles of the methods do not differ essentially, and in the 

following, for the sake of definiteness, we shall discuss only X-ray diffraction. 

X-rays are scattered by atoms in all directions. But the scattered waves 

travel in the same phase and enhance one another only in certain selected 

directions. The directions of the diffracted beams can easily be determined 

with the aid of Bragg’s law, which reduces essentially to the following. 

If the unit cell is represented by a point (node, as crystallographers some- 

times call it), the crystal will be a space lattice of such nodes. Planes can be 

drawn through the lattice points in innumerable ways. If one plane can be 

drawn, there will infallibly be other planes parallel to it: the ‘“‘nodal’’ planes 

of a space lattice fall into equidistant families. Each family is characterized 

by the direction of the normal to the crystal axes and by the interplanar 

distance. Figure | illustrates the division of a lattice into systems of planes 

with the indices (230) for a two-dimensional case. 

Wa | 

Fig. 1. Set of nodal planes (230). 
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Evidently a strong diffracted beam can arise only if it is “‘reflected”” by some 
family of planes. However, this condition is only a necessary one. For the 
resulting beam to be perceptible, it is required in addition that the different 
planes of the same family give “reflected” beams with a path difference of a 
whole number of wavelengths. 

Thus we come to the Bragg equation 

2d sin@ = nd 

The left-hand side of this equation, as is evident from Fig. 2, represents the 

path difference between beams as a function of the interplanar distance d and 
the glancing angle 0. 

To obtain all the possible diffracted beams, the crystal must be set at all 

possible angles to the incident beam. Then different families of planes will fall 
into the “‘reflecting”’ position. 

The number of diffracted beams the crystals give rise to may be very large. 
Evidently reflections will be given by all the families of planes with inter- 

planar distances ranging from the maximum distance for the crystal in question 

to a minimum value, which we find from the condition sinO <i; we get 

Amin = 4/2. 

The geometry of the diffraction pattern unambiguously determines the 

geometry of the space lattice. Determining the angles 0 and the directions of 

the reflected beams relative to the crystal axes, one establishes (to the order 

of 0.0001 A in the best experiments) the edge lengths and the angles between 

the edges of the crystal’s unit cell. As to the structure of the crystal, it is derived 

by analyzing the intensities of the “‘reflected’”’ beams. This relation is demon- 

strated below. 
The fundamentals are illustrated by Fig. 3, which is a schematic projection 

of the structure of hexamethylbenzene. The “‘nodes” of the unit cell are 

selected at the centers of the molecules, a certain system of planes is drawn 

Fig. 2. Graphical interpretation of Bragg equation. 
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Fig. 3. Interplanar distances in hexamethylbenzene. 

(their traces are visible, and the “‘nodal” planes should be imagined perpen- 

dicular to the plane of the drawing), on which an X-ray beam is incident at 

the required angle, i.e., that which satisfies Bragg’s law. 

The plane drawn through the nodes (solid lines) serves as the origin for 

reckoning the phases of the scattered waves. To make the phase relations 

between the waves scattered by atoms visible, planes are drawn through the 

atoms (broken line). 

Consider any atom of the unit cell, the position of which is characterized 

by the radius vector r. The path difference between the wave scattered by this 

atom and the wave that would be scattered by an atom situated at the node 

is calculated in exactly the same manner as in deriving Bragg’s law. This path 

difference is equal to ZA sin@ where A = u-r (u being a unit vector). Thus, 

the phase of a wave scattered by any atom with respect to the coordinate 

origin of the unit cell (i.e., the path difference multiplied by 27/2), equals 

a =S-r, where s is a vector perpendicular to the reflecting family of planes, 

and |s| = (4zsin @)/A. 

It can be shown that the vector s introduced in this way is equal to 2nH 

for a crystal in a reflecting position, where H is the reciprocal lattice vector 

H — hy aa +h,a,* +h,a,* 

where the 4; are whole numbers, and the unit cell edges of the reciprocal 

lattice are determined by the equations 

(6;; is the Kronecker symbol). 

The intensity of the diffracted beam depends on the geometry of the ex- 

periment and the structure of the crystal. If F is the amplitude of scattering 
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of one unit cell (in the general case F is a complex quantity), the intensity 

I(hkl) = k |F|? 

where k depends on the size, shape, and absorption of the crystal, on the 
intensity and wavelength of the incident beam, and on the geometry of the 
experiment. This coefficient is, of course, a function of the angle of scattering. 

Formulas for k for different experimental conditions can be found in hand- 
books. The square of the amplitude modulus F is determined by the crystal 

structure, and for this reason F is called the structure amplitude. 

The sensitivity of the beam intensity to structure is due to the fact that 

the atoms of the unit cell scatter in various phases depending on their mutual 

arrangement. The phase for the kth atom, as we have just seen, is equal to 

2nH-r,. Hence, the structure amplitude 

N 

F=) jf, exp2niH:1, 
1 

where f, is the amplitude of scattering by the kth atom, which will be dis- 

cussed below. 

For the centrosymmetric case 

N/2 

F= 2 fj, coslaHer, 
1 

If f, and r,, i.e., the structure, are known, the intensity of each reflected beam, 

i.e., for any H, can be calculated. It equals n?|F|*, where n is the number of 

unit cells in the crystal volume involved in the scattering. 

X-ray diffraction studies solve the reverse problem, namely, the structure 

is determined from many hundreds and thousands of measurements of |F|? 

values. 

The first stage of the work consists in searching for the crude structure of 

the crystal. One judges the correctness of the direction of search by com- 

paring the structure amplitude values measured experimentally with those 

calculated for the model accepted by the formula just given. The most difficult 

are the first steps. After there is confidence that the model selected is correct, 

at least with respect to the majority of structure amplitude signs (phases), 

the calculated and measured structure amplitudes are brought closer together 

by the least-squares method, by minimizing the expression 

»» (Vides | ri [Feaiel| 

De | Fore 

Selection of a structure model involves primarily selection of the correct posi- 

tions of atoms, of course. However, besides this, it is necessary to seiect the 

correct atomic amplitude values /. 

ee 
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Another method, generally equatable with the least-squares method, is the 

so-called “‘Fourier” method. 

For a centrosymmetric crystal, the electron density inside the unit cell has 

the form 

p(t) = 2) Fycos2nH-r 

Thus, if the structure has been “guessed” and the signs of Fy are mainly 

correct, p(r) can be plotted, its maxima found, the signs of *, recalculated, 

a new p(r) plotted, and the maxima of p(n), i.e., the coordinates of the maxima, 

can be finally determined. 

Now let us consider in greater detail what the quantity fin the expression 

for the structure amplitude is. Each electron is characterized by its own 

“distribution function” p;(x, y,z), which indicates the density of the “‘electron 

cloud”’ that appears when an infinite number of its paths are imposed upon 

one another. The total electron density in the atom (in numbers of electrons 

per unit volume) is given by 

Z 

p(x,y,z) = a pi(X, y,Z) 
= 

The quantity p dv, where dv is an element of volume, is the average number 

of electrons per volume dv. 

Scattering by the volume element dv is obviously expressed as follows: 

pdve's’", where r is the radius vector connecting the coordinate origin with 

the element dv. In accordance with the definition of the atomic scattering 

factor we have 

f(s) = I pets? dy (2.1) 

Knowledge of the function p(x, y,z) determines the atomic factor. In the 

general case the atomic factor is a function of the vector s; this means that 

atomic scattering depends on the argument (sin 9)/A and on the orientation 

of the atom in the scattering position. We introduce the main simplification 

always introduced when computing atomic scattering, namely, the assump- 

tion that the electron distribution is spherically symmetrical. It is quite ob- 

vious that in this case the value of fis independent of the orientation of the 

atom, and its scattering becomes a function of the scalar argument f= 

J ((sin @)/A). Obviously, this assumption conforms to the electron distribution 
of a free atom quite well. 

In the case of spherical symmetry the expression (2.1) of the atomic factor 

can conveniently be transformed by introducing the function 

U(r) = 4nr7p(r) (2.2) 

The origin of coordinates is taken at the center of the atom. 
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Obviously, U(r) is the number of electrons enclosed between spheres of 

radii r and r+dr. The function U(r) is called the radial distribution and, as 

we shall see in the following, characterizes the atom very vividly. 

As is known, an element of volume in spherical coordinates equals 

dv = r’ sina da dr dp 

Selecting the direction of s as the sphere radius from which « is measured, 

one obtains 2 sr = «. Substituting the value of p from (2.2) and making use 

of the above expression for dv, one gets 

SYA As4n) i rf | i { Gels (ycleaetticiheetiodend 
(0) 0 JO 

Integrating over the angles, there is no difficulty in finding 

if(S)= | U(r) [(sin sr)/sr] dr 
0 

Thus, the atomic factor is a function of (sin 8)/A; the form of this function 

is determined by the radial distribution of electrons in the spherically sym- 

metrical atom. 
The dependence of fon the scattering angle is shown in Fig. 4. 

Let f, be the scattering amplitude of an atom in an equilibrium position. 

Suppose the thermal shift of the atom is A. Then the scattering amplitude 

willibesy, 7". 0-4 

f (electrons) 

H 

(6) OZ OAR OC OS COR M2, 

a7 sin@(A") 

Fig. 4. Dependence of f on scattering angle for H, C, and F atoms. 
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Let the projection of vector A on the vector H be denoted by z. 

It is just this projection that determines the scattering at the given angle. 

Then the instantaneous scattering amplitude can be written as 

ve ei2nHz 

Let the probability of an atom shifting a distance of z be w(z). We accept 

a Gaussian distribution for the shift of the atom, i.e., we assume that 

w(z) = (2nD) %e~ 77/2? 

where the standard deviation of the distribution D designates the mean 
quadratic deviation u,” in the direction of the reciprocal vector. 

The average amplitude of interest equals 

fo| weet de = foe™ 
=100 

where 

— /sin0\7 = 
M= 8x7 ib (=) => Qn? (A-H)* 

The latter expression can also be rewritten as 

M = 2n?(A, H, +A, H,+A, H,)” 

where A,, A,, and A, are constants having the meaning of projections of the 

vibration on the axes of the reciprocal lattice. This is the expression for a 

crystal of orthorhombic symmetry. 

It is not difficult to grasp that in the general case the expression for M can 

be reduced to 

M = (h?a+k?B +l? y +2hk6 + 2kle +2hIn) 

thus characterizing the anisotropy by six constants. 

Of great importance is the following circumstance, well known to practical 

workers using X-ray diffraction. Quite exact coordinates of atoms can be 

found by assuming the atom-temperature factor to be isotropic. In this way 

we first find the correct structure with respect to atomic arrangement, estab- 

lishing the insignificant anisotropy of the atomic scattering factor indepen- 

dently (and then only in very precise experiments). 

3. SPHERICITY OF ATOMS 

By direct computation (namely, by evaluation of the Fourier integral) one 

can obtain the scattering function of the electrons of a given atom from the 
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dependence of the atomic factor on the scattering angle and direction. The 
absence of any substantial dependence of the atomic factor on the scattering 
direction is proof of spherical symmetry of the electron density of the atom. 
Thus it follows from X-ray diffraction practice that to a fair accuracy the 
electron density of a molecule and of a crystal is the superposition of spherical 
atoms. Of course, this refers to time-and-space-averaged electron density, 
since only such an electron distribution can be found by experiment. 

This result is rather surprising. It might have been thought that a sub- 

stantial part of the electrons belong to the molecule as a whole and participate 

in the chemical binding. However, it turns out that the establishment of the 

chemical binding consists mainly in the juxtaposition of atoms, and in the 

additive overlapping of the electron clouds of adjacent atoms. 

Atoms owe their principal deviations from sphericity to their heat motion 

and, as experiment shows, mainly to the vibration of the molecules as a whole. 

A substantial role in the vibrations of atoms in crystals is played by the swing- 

ing of molecules about their centers of gravity. For this reason, the vibration 

amplitudes of atoms located near the center of gravity of a molecule should 

be considerably smaller than that of “outer” atoms. It appears, accordingly, 

that the electron density of atoms remote from the center is always more 

diffuse than that of the central atom. Naturally, due to the swinging of the 

molecules as mentioned above, the electron density of the outer atoms is 

““smeared”’ anisotropically, being more diffuse in the direction perpendicular 

to the radius connecting the atom in question with the center of gravity of 

the molecule. An indirect idea of the magnitude of this anisotropy can be 

obtained from the fact that the angular swing amplitudes are usually between 

4° and 5°. 
The deviations of the electron density of an atom from spherical symmetry 

due to intramolecular vibrations are evidently substantially smaller. Reliable 

determination of this anisotropy is very difficult. 

It is quite obviously very complicated to separate the deviations from 

spherical symmetry due to movement of the atom from deformation of the 

electron cloud due to chemical bonding. More or less strict ideas of their 

respective contributions were obtained from a study of diamond crystals. 

It may be considered established that an upper estimate of the “bonding 

charge” located midway between two adjacent carbon atoms, disturbing the 

additivity of the spherical electron densities is 0.2 electron. In other words, 

the electron density of diamond should be imagined as spherical atoms which 

yield about 0.4 electron for the formation of a condensed electron density in 

the centers of the bond lines. 
Thus, the deviation of the carbon atom from spherical symmetry is in- 

significant. It follows from other studies that similar percentage deviations 

occur in other light atoms, in particular, in a valency-bonded hydrogen atom 



246 4 Methods of Investigating Structure and Molecular Movement 

having only one electron. As to heavy atoms, their deviation from sphericity 

probably cannot be detected by present-day experimental techniques. 

The scheme of atom-atom potentials widely used in this book is based on 

the following assumption: To within a few percent the electron densities of 

the atoms in a molecule and in a molecular crystal can be represented as the 

sum of the spherically symmetrical densities of the individual atoms. 

We see no grounds to make exception from this rule for aromatic systems 

and for multiple bonds. The structure of the anthracene crystal has been 

studied very accurately; to the accuracy of the experiment the electron density 

of the molecule can be represented by the sum of the densities of spherical 

atoms (Fig. 5). Thus, neither the movements of electrons along aromatic rings, 

nor the presence of bonds formed by p-electrons, perceptibly disturbs tne 

sphericity of atoms. 

Fig. 5. Anthracene. Section of three-dimensional electron density series, coinciding with 

plane of molecule. 
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4. ACCURACY OF STRUCTURAL DETERMINATIONS 

Two main circumstances determine the accuracy to which interatomic 
distances can be determined from the electron density distribution of a sub- 

stance. The first is the limited resemblance of a real crystal to the ideal crystal 

model for which the principal formula relating the structure to the intensities 

of the scattered X-rays (or other radiations) is valid, i.e., the limited accuracy 

of computing the structural amplitudes F.,,,. The second circumstance is the 

difficulty of measuring and taking into account various experimental factors, 

primarily beam absorption, i.e., the limited accuracy to which the observed 
structural amplitude values F.,, are known. 

The experimental difficulties can be minimized by preparing crystal samples 

of spherical shape, exposure to strictly monochromatic radiation, and record- 

ing the integrated intensities by ionization methods. By employing these, and 

other, measures the amplitudes can be measured, generally speaking, to about 

1 or 2%. Note that in most structural studies, however, the accuracy is much 

worse, probably not better than 10 or 20%. The practice of X-ray diffraction 

analysis has shown that improvement of the accuracy of measurement of 

structural amplitudes very often affects the accuracy of the results obtained 

only to a very insignificant extent. This is due primarily to the fact that it is 

almost always possible to accumulate such extensive experimental material 

that there are several score structural amplitude values for each geometrical 

parameter of the structure. For example, in the study of the naphthalene 

crystal the intensities of 644 reflections were measured. The molecule occupies 

a position with a center of symmetry in the crystal. Therefore five radius 

vectors of carbon atoms have to be determined. This makes 43 reflections for 

each coordinate. 

In view of the fact that the intensities of reflections may differ from one 

another by thousands of times (and that these differences can be established), 

a measurement error of the order of 10% does not seem so large. 

Theoretical calculations of the probable accuracy of measurement of the 

electron density of atoms and of interatomic distances have shown that with 

very roughly measured reflection intensities fairly accurate values of the 

quantities interesting the crystallographer can be obtained by increasing the 

amount of experimental data. 

However, there is another reason why exact intensity measurements may 

turn out to be inadequate. The formula for structural amplitude given above 

is valid for an ideal crystal of small size—of the order of 1000-10,000 A. 

Only in this case is it possible to neglect secondary phenomena, i.e., scattering 

by one atom of a wave already scattered by another (the so-called dynamic 

scattering effects). 

It is very fortunate for X-ray diffraction practice that crystals possess block 
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structures as a rule. The size of the blocks is just about that necessary to allow 

one to neglect the dynamic effects. However, it is not simple to make sure 

that the crystal blocks are of the required size. The usual practice is to do no 

more than attempt to enhance the block structure of the crystal by quenching 

in liquid air, or by other such means. 

The mosaic (block) structure of a crystal arises as a result of the presence 

in the crystal of a large number of linear and helical dislocations. 

Dislocation displacements of one part of the lattice relative to another may 

result in a great variety of shifts and rotations of neighboring regions. There 

is no good way of taking into account completely the nature of the distortions, 

and of estimating their effect on reflection intensity. Furthermore, if one block 

is turned but slightly with respect to its neighbor, a beam reflected by one of 

them wiil be partly reflected by the other in the reverse direction, and this will 

make the intensity lower than it would be if the blocks were greatly disoriented. 

It is clear from the above that it is practically impossible to take this pheno- 

menon into account. Since dislocational movements are crystallographically 

regular, block disorientation may have different effects on beams reflected 

from different systems of planes. 

Finally, another consequence of crystal mosaic structure is that the unit 

cells at the block boundaries are distorted. The structure we measure is that 

of an average unit cell, to which deformed cells also make their contribution. 

The number of boundary cells with a block about 1000 A in size will equal 

approximately 1% of the number of cells in the block. Impurities, which are 

always present, may increase this percentage. 

The inevitability of the error we make in calculating structural amplitude 

by means of the main formula relating it to structure renders attempts at 

gaining maximum accuracy in estimating reflection intensities not always 

justified. Experience shows that a measurement accuracy of more than 10% 

is often useless for the goal in mind. 

What then is the accuracy to which interatomic distances and electronic 

densities are established in the best investigations, i.e., in those where many 

score reflections are measured for each unknown structural parameter? 

Numerous attempts have been made to calculate the probable errors, but 

the most convincing estimates can be made from the data of X-ray diffraction 

studies, since a great deal of experimental material has been accumulated 

which therefore allows the comparison of many independent estimates of the 

same values. 

Above we emphasized an important feature of organic crystals, namely, 

that in them intermolecular interactions are much weaker than intramolecular. 

The bond energy of atoms not connected by valency bonds is two orders lower 

than that of those that are. The properties of a free molecule differ only in- 

significantly from those of a molecule that is part of a crystal. As to the most 
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rigid parameter, the bond length, it may be considered firmly established that 
bond lengths in a free molecule and in a crystalline molecule coincide within 
limits better than the experimental accuracy of a crystal-structure investigation 
(cf. Chapter I). 

Accordingly, we can get a good idea of accuracy by comparing chemically 

equivalent bond lengths occupying different positions in the crystal and there- 

fore determined independently of one another. An example of such a com- 

parison for naphthalene, anthracene, and acenaphthalene is shown in Fig. 16, 

Chapter II. Comparison of bond length of the same molecule in different 

polymorphic modifications is also fairly indicative. For example, Litaka gives 
the following table for three crystalline forms of glycine [1]: 

N-C 1.491 1.484 1.474 

C-C 1527, S21 1.524 

[C—O], 1.254 1.233 E252 

[C-O], 1237) I(725)7/ E255 

N-O 2.687 2.701 2.690 

On the basis of a large number of structural investigations (including inves- 

tigations of the same objects by different authors) it can be stated that the 

probable error of interatomic distance determination is about 0.01 A in the 

best studies. 

The accuracy of determining electron density has been discussed above: 

The number of electrons per atom can be determined to 0.2-0.3 electron even 

for such atoms as C, N, and O. 

5. COMPARISON OF X-RAY, ELECTRON, AND NEUTRON DIFFRACTION 

ANALYSES 

The procedures of X-ray, electron, and neutron diffraction techniques differ 

considerably. But the methods of treating the results of observations are almost 

identical because of the full analogy between the formulas relating scattered 

intensity distribution to structure. 

Similar methods can be used to calculate, from intensity measurements, 

the electron density of a substance from X-ray diffraction data, the electro- 

static potential from electron diffraction data, and the arrangement of atomic 

nuclei from neutron diffraction data. 

It will be readily appreciated that all the diffraction methods supplement 

each other and their joint use for solving the structure of one and the same 

object may be of great interest. Let us consider the specific features of neutron 

diffraction and of electron diffraction studies. The theory of structure deter- 

mination by these methods is, on the whole, universal. The difference regards 

mainly the atomic scattering factor /. 
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a. Electron Diffraction 

The motion of electrons is described by Schrédinger’s wave equation 

V2P + (827m/h*)(E—V)¥ = 0 (5.1) 

where (x, y,z) is a wave function, the squared modulus of which gives the 

probability of an electron being at a given point. The total energy of an 

electron beam E is given by the accelerating voltage p: E = ep (e being the 

charge of an electron) and determines the wavelength 4 of the primary mono- 

chromatic wave incident on the object 

WY, = Aeitor (5.2) 

so that 47! = k,/22 = (2mE/h)”; Wo is the solution of Eq. (5.1) in the absence 

of the term V (potential energy), which begins to play a part only when the 

wave falls upon some object—an atom, a molecule, or a crystal, in the potential 

of which g(r) the electron acquires the potential energy V(r) = g(r)e. This 

is what causes scattering. Thus, the “‘scattering matter’ for electron diffrac- 

tion is the electrostatic potential g(r), which plays the same role here as 

electron density p(r) in X-ray diffraction. This analogy, as will be seen below, 

is complete and applies also the main formulas of the theory of scattering. 

Schr6dinger’s equation is solved in the kinematic approximation, i.e., under 

the condition that the secondary beams are weak, by representing the function 

sought ¥ as the sum of the primary wave Vy and a small scattered one W’: 

Y= +e’ 

Substituting this expression into (5.1) and bearing in mind that Vp is the 

solution of (5.1) without the term V, one gets the following equation for ‘Y’: 

VY +k = Ur) YO); U(r) = (82?me/h?) g(r) 

In mathematical form this is the so-called generalized Poisson equation 

describing, in particular, the propagation of an electromagnetic disturbance 

in a medium containing charges, which is further evidence of the analogy 

indicated above. Its solution 

Y'(r) = (1/4n) | U(e,) Wr) Rte do, 

where R= |r—r,| (r, being the vector inside the scattering volume). Here the 

integrand contains ‘VY = ‘¥,+'¥’. Making use of the basic condition of the 

kinematic theory of scattering, namely, the weakness of secondary waves 

YW’ < Vo, Le., substituting Wo for ‘, which signifies that further scattering 

Y’ of once-formed secondary waves is neglected, one obtains 

ne (1/4n) | U(r) Ae™ Ree ay, (5.3) 
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A similar approximation is made in the kinematic theory of X-ray scattering. 
There, its admissibility is still better grounded since the absolute amplitude 

values of the secondary X-ray waves are much smaller than those of electrons, 

which interact much more strongly with matter. The removal of this approxi- 

mation is the main feature of the dynamic theory of X-ray, as well as of 

electron scattering. Exchanging R for r—(n-r,) in (5.3) (m being the unit 

vector in the direction k), so that e!*® = ee", and bearing in mind that 
k) —k = 27H, 1.e., introducing the reciprocal space vector, one finds 

,  2nme e'*™ 
= Gp AFD 

This means that at a large distance from the object ‘¥’ is a spherical wave, 

the amplitude of which is proportional to the initial amplitude 4 and to the 

Fourier integral F(H) (over the potential of the object) 

F(H) = Je (ries std (5.4) 

The factor 2xme/h? is analogous to e/mc? in X-ray diffraction studies, and it 
may be regarded as the scattering of a certain unit. It is convenient to express 

scattering in these arbitrary units, as scattering is similarly expressed in 

electron units in X-ray diffraction studies. 

Considering the separate atom as the scattering object and transferring 

(5.4) to spherical coordinates, one obtains the following expression for the 

atomic scattering amplitude 

sin 2x Hr 
Su(A) =| or ar 

which is similar to the expression for the X-ray atomic factor. 

Representing the unit cell potential as the sum of the potentials of its 

constituent atoms 

g(r) = ) gr-n) 

the structural amplitude can be written in the usual form as the sum of atomic 

amplitudes with phase factors 

FED = fae (5.5) 

By analogy with the formula for electron density we get the following 

representation of the crystal potential g(x, y,z) as a Fourier series 

0:93z) =m. Y Ben 

As in X-ray diffraction studies, the moduli |F,,| are found from the reflection 
intensities on the electron diffraction pattern. Thus, processing experimental 
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electron diffraction data by the Fourier method yields the potential pattern 

of the crystal lattice (x, y, z). 

The full analogy of the mathematical apparatus makes the theory of crystal 

structure determination and the concrete methods of interpretation (e.g., 

F3 series, etc.) the same for X-ray, electron, and neutron diffraction studies. 

However, the differences in the physical nature and character of the function 

determining scattering give rise to some physical distinctions between the 

methods. 

Note the following main features of the potential function (x, y, z). 

The potential of a crystal consists of the positive potential of its nuclei 

~, = Ze/r and the negative potential of its electron shells p_ 

P= 91 t+9- 

Owing to the concentrated nature of the nuclear charge and the diffuseness 

of the electron shells, 9, > @_, 1.e., g>0O. The role of the electron shells 

reduces to a screening the nuclear potential, and the course of the atomic 

potential depends not only on the number, but also on the nature of the 

electron distribution in the shell. A crystal potential formed by superposition 

of atomic potentials is a positive continuous periodic function, the maxima 

cof which correspond to atoms. 

The potential p(x, y,z) is a more diffuse function than the electron density 

p(x,y,z); this follows from the well-known relation of Thomas—Fermi- 

statistic atomic theory 

ROE ES ey (5.6) 
This is illustrated by Fig. 6. Hence it follows that the atomic scattering 

curves for electrons f,, decline faster than the corresponding curves for X-rays, 

J,.. Furthermore, from expression (5.6) and Fig. 6 it will be seen that the ratio 

of the peak heights of light and heavy atoms in X-ray diffraction differs from 

that in electron diffraction, and is more favorable to the light atoms in the 

latter case. 

Pp (xy2) 

aye) 

Fig. 6. Comparative diagram of electron density (p(x, y, z)) and potential (g(x, y, z)). 
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The distinctive feature of F., and F2 series in electron diffraction studies is 

that the number of terms is from two to four times smaller than in X-ray 

diffraction studies, which follows from the faster decline of the atomic scatter- 

ing curve. For the same reason, electron diffraction series converge faster 

than in the case of X-ray diffraction; the break-off error in them is smaller, 

but the resulting function is less sharp. It may be noted in conclusion that 

since the potential and charge distributions in the crystal are related by the 
Poisson equation 

V’9 = —4n(p,—p-) 

the structural amplitudes for electrons F.,, and for X rays Fy are also con- 

nected by the relation 

Fy = (F'—Fx)/nH? 

where F’ = 3, Z,;e?™""™ (Z is the nuclear charge). 

b. Neutron Diffraction 

Schrédinger’s equation (5.1) is valid not only for electrons, but for micro- 

particles in general; in particular, it can be used to examine neutron scatter- 

ing. Let us first consider the scattering of a monochromatic neutron beam by 

a separate nucleus. Here the primary wave ‘¥y has the same form (5.2). The 

wavelength of the slow (thermal) neutrons used in structural neutron dif- 

fraction analysis is approximately 1 A. When it hits a nucleus, the neutron is 

scattered to an extent depending, according to (5.1), on the shape and nature 

of the potential function V(r) of the nucleus, the initial energy E of the neutron, 

and the reduced mass m of the system. Like electron scattering, which depends 

on the electrostatic potential of the object, neutron scattering depends on 

the nuclear force potential. The specific feature of these forces is that they 

diminish very rapidly with distance. The nuclear field is concentrated in the 

immediate vicinity of the nucleus and has a radius of ry ~ 107'* cm. The 
solution again has the form of the sum of the initial and scattered waves, 

which is spherically symmetrical, and is quite analogous to the case of electron 

diffraction: 

Y= 2 +/,(A) e™/r (5.7) 

[cf. (5.2)]. Strict solution of Eq. (5.1) for neutrons after substitution of (5.7) 

gives, as is known, an important and very simple result, which we will now 

obtain qualitatively from general reasoning. Both in the theory of X-ray 

scattering and in that of electron scattering the dependence of the atomic 

scattering amplitude on the angle 0 (or on H) comes as a result of taking into 

account the phase relations between the secondary waves in the Fourier 

integral (5.2). The scattering volume is of the same order of magnitude as 
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b 

Fig. 7. Illustration of specific nature of atomic scattering factor of neutrons. 

the length of the primary wave (Fig. 7a), and the secondary waves emitted 

from different points of it have different phases. In the case of slow neutron 

scattering 1 > ro (Fig. 7b), and the phase shift is also very small, i.e., all the 

secondary waves emitted from the nucleus are in the same phase when scat- 

tered in any direction, and therefore neutron scattering by the nucleus is 

spherically symmetrical, and the amplitude f,(@) is independent of the angle 

of scattering 0; it is a constant value. Hence, the f, ““curve’’ does not decline. 

Thus, neutron scattering by nuclei is the ideal case of scattering from “‘point”’ 

atoms. The structural amplitude of coherent scattering by the crystal will 

have a form similar to (5.5) 

F, = Dal é e2ti(rjH) 

i 

and here, in contrast to fy and f,,, the nuclear amplitude f, has a constant 

value, as we have just established. Formally, the Fourier integral of the 

nuclear scattering power of the entire unit cell could be introduced in this 

case also, presenting this power as the sum of f,-weighted 6 functions, each 

of which describes a point scattering center 

n(r) = Y faj 9-8) 

' (5.8) 
F,= [nw en Bh 

However, this idea acquires real physical sense only if the heat motion of 

the atomic nuclei in the crystal is taken into account. Then the point nucleus 

spreads out into a certain region y(r), in accordance with which the constant 
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J, Should be multiplied in the usual way by a temperature factor and as a 
result turns out to decline in the case of nuclei in crystals, and depends on 
(sin 6)/A according to,the law of this temperature factor. For example, in the 
case of spherically symmetrical vibration 

te = const e~ BL(sin 9/41? 

The superposition of nuclei spread out by heat motion is a certain con- 
tinuous function 

nt) =) faxi—4) 

known as the nuclear scattering power function, or nuclear density function 

for short (but not literally because this function has nothing to do with actual 

density). This function is also periodic, like p(r) or g(r). By reversing the 

Fourier integral (5.8), we get the Fourier-series representation of n(r) 

IRA Ly) ne fat 

where |F,| is found from a neutron diffraction experiment. Thus, the ex- 

perimental data obtained by studying crystals by neutron diffraction tech- 

niques can also be treated by the Fourier method, the mathematical apparatus 

of all three diffraction methods being identical. 

However, as in the case of electron diffraction, the difference in the physical 

nature of the scattering gives rise to a number of specific features of Fourier 

series in neutron diffraction studies. The most important of them is that some 
nuclei have positive scattering amplitudes f,, and some negative (most f, are 

positive). For example, for potassium f,, = 0.351071? cm, for carbon 

foc = 0.64 x 107!” cm, and for hydrogen f,,, =—0.38 x 10-1? cm. If the 
crystal contains nuclei with negative f,, they are represented in the “nuclear 

density” pattern by dips, rather than peaks. In these cases the general con- 

dition of nonnegativity of scattering power, valid for X rays and electrons, 

does not hold. 

f, values have no systematic dependence on atomic number. This makes it 

possible, for instance, to determine the hydrogen atom positions very well 

by neutron diffraction, even in the presence of the very heaviest (in the usual 

sense) atoms, to investigate structures consisting of atoms that cannot be 

distinguished by X rays and electrons owing to the closeness of their atomic 

numbers (e.g., alloys of the type of Fe—-Co, etc), to study phenomena related 

to differences in isotopic compositicn. The presence of a magnetic moment in 

the neutron makes it also possible to study the magnetic structure of crystals. 

An essential feature of the Fourier series in neutron diffraction studies is the 

sharpness of the peaks in the “‘nuclear density” function n(r). However, owing 

to the slow decline of amplitudes, which depend only on the temperature 

factor, the break-off effects affect neutron diffraction series very strongly. 
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The figures below will give an idea of the different scattering power of 

matter with respect to X rays, electrons, and neutrons. 

The scattering by electrons, X rays, and neutrons, respectively, for zero 0 

angle, is characterized in units of 10 '* cm as follows: 

H atom: 5.3 0.28 — 0.38 

C atom: 24.5 1.69 0.66 

Cl atom: 46.0 4.79 0.99 

These are the scattering amplitude values a. f values are recalculated to a by 

the formula 

a = (e7/mc’)f = 0.28 x 10° '2f 

6. FINDING AND ELUCIDATING THE STRUCTURES OF MOLECULAR CRYSTALS 

a. General Approaches. Heavy Atom Method 

The determination of the structure of any crystal falls into two stages: 

Determination of the phases (signs in the case of centrosymmetry) of the 

structural amplitudes, and the elucidation of the structure. 

The second stage is always automated and carried out on electronic com- 

puters by standard programs. The first stage still requires creative interven- 

tion on the part of the researcher, but has also already been developed suffi- 

ciently to be entrusted mainly to the computer. 

By far the most popular method is that of building Patterson series, known 

also as F? series. Denoting electron density by p(r), we calculate the integral 

hoe ir) | p@) p(e+u) # (6.1) 
bearing in mind that p(r) can be represented as a Fourier series (discarding 

the coefficient 1/V) 

+0 ; 

PO) =e Day Awe Ge, 
h,k,l= — co 

Substitution into (6.1) gives an integral of the form 

a 

; 0, nem 
| e2ti(n—m)x/a dx = (6.2) 

Ile, n=m 
co) 

where n and m are integers. Hence, 

+ 00 

Aca) ee tere aren) 
h,k,l=— © 

+00 
= Foon +2 >, FA,c0S 2n(u-H) (6.3) 

h,k,l=1 
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The function A(u) may be called an F? series. This series A(u) can be built 
on the basis of experiment (since knowledge of the signs or phases of the 
series’ terms is not necessary). For this reason we must try and see what 
structural data can be extracted from the function A(u). 
We make use of the conception of electron density as the sum of N atomic 

functions 

p(r) = oy pet) 

Each of the atomic functions can be expanded in a Fourier series 

+0 

pp(t—r,)= > f,exp[—2zi(r—r,)-H] (6.4) 
h,k,lL=— © 

where f, is the atomic factor of the pth atom, and thus the electron density 

can be represented as 

N + 00 

p@®= > * iD f,exp[—2ni(r—r,)-H] (6.5) 
p=1 h,k,l=— © 

Substituting this formula for p(r) into the integral of interest A(u), one gets 

A(u) = (1/V) pe oi f,exp[—2ni(r—r,)-H] 
k,l=-o0 

N +o 

ay > fexp[—2zi(r—r, +u)-H] dV (6.6) 
s=1 h,k,l=-@ 

The integral A(u) breaks down into separate terms, which, owing to the con- 

dition (6.2) of orthogonality of exponential functions, equals zero whenever 

functions with different H are multiplied. In all other cases the integral results 

in the expression 

N N +0 

> > £sAexp{—2xi[u-(r,—1,)]-H} (6.7) 
s=1 p=1h,k,l=-@ 

which need only be summed with respect to p and s. Separating the expres- 

sions p = s out of this sum, we obtain 

A(u) = 3 i fo exp(— 2niu-H) 
p=1 4h,k,l 

+o 

ay aes Spf,ePi—2ni[u—(r,—r,)]-H} (6.8) 
Se k,J==00 ue 

Each sum (6.7) resembles an atomic function in structure, coinciding with 

it formally if the scattering power of the “‘atom’” /,f, is at the point r,—r, 
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of the u space. The function (6.7) may be called the interatomic vector func- 

tion, because its form depends on the atomic factors of the two atoms s and p, 

and on the vectorial distance r,—r, between them. 

This circumstance determines the properties of interest of the function 

A(u), i.e., of the F? series. Obviously, the F* series can be represented as the 

sum of interatomic functions for all possible pairs of atoms in the crystal 

unit cell. This means that maxima should form in the F? series for u values 

encountered in the crystal as interatomic vectors. 

It follows from the last formula of the series A (u) for a crystal containing N 

atoms in its unit cell, that it consists of N? maxima, of which WN are trivial 

(distance between an atom and itself, i.e., the interatomic vector equals zero). 

This maximum at the point [000] is called the zero maximum. All the other 

maxima of the F? series should, in principle, make it possible to facilitate 

the solution somewhat, and sometimes to solve the structural problem entirely. 

If the unit cell contains 20 atoms, the F? series consists of 380 nontrivial 

interatomic functions. Obviously, these maxima will overlap in complex 

structures, and analysis of the F* series will be of hardly any use. 

However, the situation is different if one of the 20 atoms is a heavy one 

(say, Cl, Br, or [in an organic molecule). Since the interatomic functions have 

a height proportional to the product of the atomic numbers, the 19 inter- 

atomic vectors connecting light atoms with the heavy one will stand out 

sharply among the rest (not to mention maxima of the type CI-Cl). 

It can easily be seen that in the presence of one or two heavy atoms per 

molecule interpretation of the F* series is a quite feasible task. If the crystal 

symmetry is known the interatomic vectors will mostly result in a uniform 

scheme and in any case in an insignificant number of possible schemes of 

placement of these heavy atoms in the unit cell. 

Since the heavy atoms give the predominant contribution to the structural 

amplitude, it may be assumed, to a first approximation at least, that the 

phases of the structural amplitudes are determined by these heavy atoms. 

Then, the electronic computer calculates the electron density series p(r) = 

> Fy exp(—2ziH-r) where the moduli F, are derived from experiment, 

and the phases from calculation for a structure composed of heavy atoms 

only. 

Among the maxima of this series there will appear peaks corresponding to 

the light atoms. In some favorable cases with fortunate structure geometry 

and an advantageous ratio of heavy to light atoms, the structure will become 

manifest immediately. In other cases, only part of the structure may be dis- 

closed since a large number of false maxima may appear. Then the structure 

has to be “guessed” on the basis of crystal chemical experience. The phases 

of the structural amplitudes are determined again and a new electron density 

series is built. This work continues until the false peaks vanish and each p(r) 
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maximum acquires unambiguous interpretation. It is this crystal chemical 
experience that is difficult to program. 

The heavy-atom method is the main technique in structural analysis. If the 
molecule does not contain heavy atoms and is more or less complex, the 
investigator prefers to solve the same structural problem on another object 
containing a heavy atom. 

The introduction of a heavy atom does not solve the problem in all cases. 

If it is necessary to determine the structure of a crystal made up of atoms of 

the same weight, the general approach consists in making use of the relation- 

ships between structural amplitudes for different H of the same crystal. 

We shall not dwell upon this question here, since it cannot be dealt with in 

brief; so we shall restrict ourselves to general remarks, referring the reader to 

a monograph by the present author [2]. 

There are two types of relations between amplitudes, namely, authentic and 

probability relations. The basic equation of the relation between amplitudes 

arises because the structural amplitudes of certain indices can be represented 

as elements of the Gramm determinant, which possesses the property of 

nonnegativity. As to the probability relations, they arise, because the phases 

of the trigonometrical functions contained in the expressions for the structural 

amplitudes are distributed uniformly in a circle. 

On the basis of the theory of the relations between structural amplitudes, 

programs can be drawn up for computers, by means of which the signs and 

even the phases of all the structural amplitudes can be found, provided their 

moduli are known (these are given by experiment). 

A number of successful cases of the use of this method for rather complex 

structures consisting of atoms of one species have been published [3]. Still, 

this method has not gained very great popularity. In the author’s monograph 

cited above it is shown that the possibilities of determining the signs of 

structural amplitudes from measured intensities decrease rapidly with 

increasing number of atoms in the unit cell. The limit is about 50-100 atoms 

per unit cell. 

b. Special Methods for Molecular Crystals. Structure Seeking in the Absence of 

Heavy Atoms 

A number of new possibilities in searching for a crystal structure arise if a 

crude structure of the molecule is known and the mutual arrangement of 

molecules in the crystal is to be determined. 

Of considerable help, first, is the geometrical model of a molecular crystal, 

described in detail in Chapter I, i.e., the fact that in the first approximation 

an organic crystal may be regarded as a close packing of rigid molecules. 

With the aid of a computer one seeks such a mutual arrangement of the 
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molecules that all the determining contacts between them are the same for 

identical atom pairs. Of course, there must not be any molecules that pene- 

trate into others or “‘hang in midair.” 

Of great help in carrying out such geometrical analysis is work with 

models [4]. 

When the molecule has only three degrees of freedom, geometrical analysis 

is, as a rule, unambigous. Many examples are given in the author’s book 

“Organic Chemical Crystallography” [4a]. 

By way of illustration of the possibilities of geometrical analysis, the 

structure of 2,6-dimethylnaphthalene was discussed above in Chapter I. 

If the number of degrees of freedom of the molecule is not large, work with 

a computer will not require much time either. It is quite possible to scan all 

the molecular orientations. (To begin with it is sufficient to calculate the 

distances between the atoms of neighboring molecules for points in the space 

of ~, w, and n, every 5 or even every 10° apart, immediately discarding vari- 

ants in which, say, Ryy is less than 2.0 A, Roy is less than 2.7 A, etc.) This 
work usually results in a few (and perhaps even only one) allowed regions. 

Then, continuing work with the geometrical crystal model, one can find a 

molecular placement which gives an ideal packing. 

The search for ideal packing in the case of a molecule in a general position 

takes much more time. If we work blindly and divide the unit cell edge into 

30 or 50 parts, the number of points in the six-dimensional parameter space 

for which distances have to be figured out is of the order of 10°-108. 
Apparently, such a “‘frontal’’ attack on the solution of the problem is not 

always expedient with the present-day capabilities of computers. A group of 

Soviet authors [5] have employed the gradient descent method successfully 

in solving a similar problem. The program is compiled so as to move from an 

arbitrary point of parameter space toward a decreasing number of forbidden 

contacts. 

Quite obviously, the geometrical model can be replaced by the physical one. 

Then the intermolecular distances will be only intermediate data. They are 

used to calculate the energy surface, among the deepest minima of which the 

correct structure is to be sought. These methods of work are quite clear from 

the contents of Chapter II. 

Finally, it is of great interest to combine the geometrical (energy) approach 

with an analysis of a diffraction experiment. One may, say, as has already 

been done in several studies, minimize the sum of the A-factor and the 

potential energy. The difficulty lies in the arbitrariness of selecting the weight 

factor. 

The structural amplitudes of a molecular crystal can always be regarded as 

a function of the degrees of freedom of the molecule (three in the case of the 

type P2,/a, Z = 2; six for one molecule in a general position, etc.). 
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Thus, the search for the structure consists in calculating either 

(a) the structural amplitudes, or 

(b) the intermolecular distances, or 

(c) the molecular interaction energies 

as functions of these three or six degrees of freedom of the molecule. 

Various versions of combined programs can be made up to carry out these 

calculations in various sequences. We believe that the most expedient method 

of searching for a structure is to calculate a small number (30-50) of structural 

amplitudes and simultaneously to analyze the molecule’s geometrical place- 

ment. It is always worthwhile to begin the work by examining the models of 

possible packings on a structure-finder (see Chapter I). 

Other special methods for finding the structures of molecular crystals are 

isomorphous substitution, diffraction by optical masks, and the method of 

molecular transforms, which is the mathematical analogue of the latter. 

These methods have long been among the tools used by X-ray crystallo- 

graphers. The structural investigation of protein molecules containing many 

thousands of atoms, an epoch-making event in biological physics, became 

possible only with the aid of specially synthesized protein derivatives con- 

taining heavy atoms. 

In this case the study is made possible by the isomorphism of the structure 

of a protein crystal with that of its derivative. Suppose these two structures 

are identical in all respects except for substitution at the X position of a light 

atom by a heavy atom. We can write the Patterson function for these two 

crystals as 

P(A) =f, 0(n) Te VL fa fOO—Txi) x. d Safi O(—Tix) ae LAF Oe-M)) 

P(B) = fy’0(r) Te > fa fi Ot —xi) a > fe fi 6 Tix) a VAs O—-%)) 

Here A is a light atom, substituted in the other crystal by the heavy atom B. 

The subscripts i and / indicate all the other atoms of equal weight and position 

in both crystals. 
Reducing to a common scale and subtracting, one can build the series 

AP = tre — fz’) 5(r) a e (fn —Se) fi L6 (8 —Fx;i) + 6(t—Tix)] 

With the exception of the zero peak, this series gives the structure and its 

inversion through point X as seen from the position of, i.e., “visible” from, 

the substituted atom, i.e., the totality of the vectors r;x and rx;. Of course, 

the scheme of isomorphous substitution just described may be found useful 
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not only in the case of protein structures, but for other organic substances 

as well. 

The optical mask method, due to Taylor and Lipson, is well known to the 

English reader and has been described in detail in a number of monographs 

(see, e.g., [6]). Holes arranged like the atoms of a molecule are marked on a 

black screen to the scale 1 A = 0.65 mm. Such optical masks can be prepared 

for different projections of the molecule onto the screen plane. By observing 

the Fraunhofer diffraction from such a screen, one gets the Fourier transform 

of the molecule. 

It is not difficult to show the validity of the following statement: At a point 

of reciprocal space where the Fourier transform of the molecule equals zero, 

the structural amplitude should also equal zero. 

With the aid of this theorem alone this or that mutual arrangement of the 

molecules can be discarded by comparing the experimental intensities of the 

reciprocal lattice points with the Fourier-transform pattern of the molecule. 

Comparison of experiments with diffraction on optical masks is also possible, 

and this can even be carried out by machine. 

The molecular transform method unquestionably speeds up the trial and 

error method for molecular crystals. A total program can be set up, combining 

all the methods mentioned above for the trial and error method, for use in a 

single computer program. 

7. HEAT WAVE SCATTERING 

Lattice dynamics have a substantial influence on diffractional effects. 

Moreover, the study of X-ray and neutron scattering by matter is essentially 

the only experimental method of establishing the shapes of the surfaces w(k) 

(vibration frequency versus wave vector) over the entire range of wave vectors. 

The effect of thermal motion on X-ray diffraction reduces to two pheno- 

mena: a decrease of the intensity of the reflected beams, which we discussed 

above; and the generation of a diffuse pattern of its own. 

Owing to thermal motion, the placement of the crystal atoms no longer 

corresponds to an ideal lattice at each instant. Suppose the atom in the kth 

position of the th unit cell has shifted by the vector A,” from its ideal posi- 

tion. This atom gives an elementary wave of the same amplitude f,. However, 

the phase of the wave will change relative to that which existed in the ideal 

lattice by.the value (k—k,)-A,” =s-A,". Thus, the amplitude of the wave 
sent by an atom displaced from its equilibrium position should be represented 

by 

Ge = f,exp(is- A,”) 

At the same moment of time the shifts of the kth atom in the different unit 
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cells may have a great variety of values. Accordingly, the values of g," will 
differ for the kth atoms of different unit cells. The average scattering for kth 
atoms will be 

9 = (I/N) % gt = A(l/N) ¥ exp(is- Ax") = frexp(is- Ay) 

This average value can be presented in the form e ™* where M, is a pure 

number. The quantity e ™”* is known as the temperature factor. 

The calculation of the quantity M from lattice dynamics data was dis- 

cussed in Chapter III. It was shown that the temperature factor of X-ray 

coherent scattering takes lattice dynamics into account in purely integral 

form and is of little use in studying molecular movements. 

On the other hand, as will now be shown, a great deal of information is 

contained in the diffuse scattering of rays, determined not by the average 

structural amplitude 

fe YS” gx exp(i2nH-r,) 

but by the instantaneous values 

Fi = >: 9x” exp (is-r,) 

The experimentally determined intensities are, of course, related to the 

average values of the structural factor, since the time of measurement is fairly 

large compared to the period of vibration of the atom (~ 107 '? sec); and this 

vibration period is very large compared to the period of an electromagnetic 

X-ray wave (10° '® sec). Hence, we are indeed justified in considering the 

electromagnetic field of the instantaneous distribution of matter in the lattice 

(the crystal matter is immobile relative to the incident wave). 

This makes it possible to regard scattering by vibrating molecules as dif- 

fraction by standing waves. 

Let us consider a simple example, namely the diffraction of X rays by a 

cubic crystal in a state of stationary transverse vibration along the [100] axis. 

Essentially, the standing wave of thermal vibrations imposes a superlattice 

on the static pattern, with a period equal to the length of the thermal wave. 

In Fig. 8 the length of the thermal wave is about 3a. 

The letters denote the points of the new superlattice. This lattice will con- 

tain, for example, sets of planes of the type AB’, slightly inclined with respect 

to the basic plane AA’ and possessing almost the same period. Only these 

superlattice planes, those closest to the basic plane, need be taken into con- 

sideration, for only they give reflections and these only in the first order. 

This being so, the main reflection should be accompanied by two “diffuse 

reflections” occurring at angles of 0+a where « is a small quantity. 

Each of the waves has its own superlattice. Thus, the diffracted beam will 

be surrounded by numerous “‘diffuse”’ beams. A hazy spot of rays “‘reflected 



264 4 Methods of Investigating Structure and Molecular Movement 

Fig. 8. Thermal vibration of wavelength AJ’ traveling along AJ’ gives rise to additional 

nodal planes AB’, BC’, CD’, and BA’, CB’, DC’. 

from heat waves” will appear around the diffraction spot on the film. This 

intensity distribution (of diffuse rays around the diffracted one) is not neces- 

sarily symmetrical. Symmetry will occur in very rare cases (theoretically, only 

upon complete isotropy of vibration). 

We are dealing with reflections of only the first order, and only from AB’. 

The reasons for this are obvious: Reflections from planes drawn through A 

and D’ and other such planes come into the vicinity of a different basic re- 

flection. As to the reflections of the second, third, etc., orders from a thermal 

wave of given length, they are equivalent to the first-order reflections from 

thermal waves of one-half, one-third, etc., the length. 

The condition of diffraction from heat waves should have the usual form 

2nH’ = k — ky 
where H’ is a vector with the direction of the normal to the reflecting planes 

and a magnitude of 1/d. It is evident from Fig. 9 that H’ = H+t, where t 

is the thermal wave vector. Indeed, it is obvious from che figure that ON/H = 



7. Heat Wave Scattering 265 

Fig. 9. Condition of diffraction due to heat waves. 

d/A and hence, ON = Hd/d =. Thus the condition of diffraction has the 

form 

2n(H+1) = k—ky 

Figure 10 illustrates the geometrical sense of the condition that diffraction 

from the thermal waves of a crystal in a given direction occurs if the thermal 

wave vector joins the end of the vector k with the nearest reciprocal lattice 

point. 

None of the t vectors extends beyond a parallelohedral zone built around 

the reciprocal lattice point. Indeed, 

t= T,a* +7, b* +7,¢c* 

Suppose there is a vector t’ which extends beyond this zone. There will always 

be a vector t which ends at the point lying within the zone, and 

t =t+H 

Fig. 10. Interpretation of diffraction due to heat waves by means of reciprocal lattice. 
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where H is the reciprocal lattice vector. From the wave formula 

A,’ = U,exp[i2n(t-r,")] exp (iat) 

it follows that the vector t’ gives no new solutions owing to the periodicity 

of the lattice because 

H-r,’ = H-r, +H-R, = H-r, +m 

where m is an integer and r,“ = R, +r,.Thus, t and t’ give the same waves 

(differing only in initial phase, but not essentially). 

This limitation is easily understood. The vector can be of any order of 

smallness, i.e., the length of the standing waves can be, generally speaking, 

of any order of largeness for an infinite crystal, but the vector t cannot 

be greater than the size of the elementary reciprocal unit cell. This means 

that the wavelength cannot be smaller than the size of a direct lattice unit 

cell. 

The maximum length obviously depends on the size of the crystal as a 

whole. As with any proper vibrations of a limited body, half of the maximum 

length of the standing wave equals the size of the body. The assortment of 

wavelengths cannot be continuous owing to boundary conditions: The 

boundaries of the crystal must be nodes of the standing wave. 

Thus, only one order of reflection from the thermal waves falls into the 

zone of each given reciprocai lattice node. 

Translating the condition of diffraction 2x(H+t) = k—k, “‘into the lan- 

gusge of the true crystal lattice,” gives the following meaning: By varying 

the angle of incidence 0 over a wide range we can get a diffuse “‘reflection”’ 

from a given region Ak/ at an angle of 06+¢ = 20,. The angle 0+¢@ varies 

only within 1—2°. As long as the angle 6 varies within 30°, the diffuse spot will 

be visible on the film. 

The condition 2x(H+t)=k—k, can be derived more rigorously 

by investigating the expression for the diffuse intensity /,, which has the 

form 

I, — £ ) (FL— F) exp (is-Rz) = 

L 

From the same equation also follow conclusions concerning the intensity 

distribution of the diffuse scattering. 

The zone of each of the reciprocal iattice points can be characterized by 
the scattering intensity as a function of H+t. The surfaces of the function 

(H+), called equal scattering (isodiffusion) surfaces, can be plotted in 

reciprocal space. Here we use the reciprocal space for representing the inten- 

sity of the thermal scattering /,(s), which, like /,(s), can be presented as a 

function of the reciprocal lattice coordinates «, y, €. The function J, (s) declines 
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from its maximum value very slowly; the corresponding regions around 
the reciprocal lattice points are therefore considerable in size and may even 
merge. 

Measurement of diffuse scattering is a rather troublesome task. Such measu- 

rements have been carried out for only an insignificant number of molecular 

crystals. By way of example, Fig. 11 shows the isolines of an anthracene crystal 

for a unit cell of its reciprocal lattice (plane section only), formed by the 

points 5-0-10, 4-0-10, 509, and 409. 

The above discussion of the conditions of the diffraction geometry of 

rays on thermal waves shows that waves with wave vectors t contribute 

intensity to the reciprocal space at points distant by the vectors t from the 

lattice points. 

The expression for the structural amplitude 

F, = © fjexpLis-(t, +A;)] = ¥ fpexp[i2n(H +1)-(r; +A;')] 

can be considered for each mode (each frequency) and wave vector t. 

Expanding in a series of shift powers, one obtains 

F(H +t) = > f, Uj,-22(H +1) exp[i27(H +1)-r,] 

Here U,, is the shift the jth atom receives on participating in the yth mode 

of vibration with the wave vector t. 

All the vibration modes make their contribution to the scattering intensity 

at the same reciprocal space point. Nevertheless, it is quite possible to deter- 

mine all the dispersion surfaces, since scattering intensity values can be 

analyzed at points displaced by the value of the vector t relative to different 

reciprocal lattice points. The contributions of different modes will be different 

for different points. This enables a large number of equations to be written, 

Fig. 11. Anthracene. Experimental isodiffuse lines. 
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from which the displacements can be determined and then recalculated to 

vibration frequencies by means of ‘expressions relating the displacement, 

energy, and frequency. 

To make clear the possibilities of the method, we write the formula for the 

intensity of X-ray scattering by the thermal waves of a simple single-atom 

lattice: 

= 3 
_ |H4+2|?f7e°"™ = E,cos*[H+7]-e, 

2 m =F vy" (t) 
I(t) 

In this case the intensity is created by three acoustic waves. If, for instance, 

the wave vector coincides with the crystal symmetry axis and is parallel to 

the diffraction vector, only longitudinal acoustic waves will contribute to the 

intensity, because for transverse waves 

cos*TH+t]-e, = 0 

For high temperatures, the intensity has a very simple expression 

_ (Hi fre NRT 1 

m Ve. (7) 
(Ge) 

Studies of thermal diffuse X-ray scattering—theory, experiment, and ex- 

haustive references—can be found in a monograph [7]. Similar information 

in the field of neutron diffraction studies can be found in another useful 

collection [8]. 

A complete investigation of the dispersion surfaces for a naphthalene 

crystal has been undertaken by British workers (Pawley, private communi- 

cation). For molecular crystals of this type, formulas can be compiled relating 

experiment and all the twelve dispersion surfaces (frequencies and proper 

vectors) calculated by means of the atom—atom potential scheme. 

12 
[CH +1)-n,}? I 1 

Le) = » mo, elos(/kT _Y po. h 
s=1 

where 

Ns ae SS Cn (aie em eer 
n 

and the e, are proper vectors, which can be calculated by the atom-atom 

potential method, as was described in Chapter III. 

In the formulas written above the r, are the coordinates of the atoms in 

the unit cell, m is the mass of the unit cell, and H is the reciprocal lattice vector 

of the lattice point about which scattering is being studied. 



1. Nuclear Magnetic Resonance in a Solid 269 

B. Nuclear Magnetic Resonance 

1. THEORETICAL FUNDAMENTALS OF NUCLEAR MAGNETIC RESONANCE IN 

A SOLID 

NMR lines in the solid are very broad, hundreds of thousands of times 

broader than is natural for an isolated spin. The main reason for their dis- 

tention is the local magnetic field set up on a given nucleus by the precessional 

magnetic moments of the surrounding nuclei. As a result of this precession, 

the local field h at the point R is determined by the component p, of the 

magnetic moment in the direction of the constant magnetic field H 

= 3 (HW, °T) Tp, 
h RR (1.1) 

where r=R/R. By means of not very complicated transformations and 

taking into account that 

p, = yn (1.2) 
where n= H)/Hy, we write out the components of the vector h in the 

following form 

h, = p,R-*(r.?—-1)n, + 3r,r,ny + 3r,r,n,] 

hy, Hon (rer Nhe (3r,? — ity etl ya. | (1-3) 

hy = My RF ([3rg hz My + 3ryr,ny + Br,2—1)n,] 

It is evident from (1.3) that the vector h can also be represented as the 

product of a certain symmetrical matrix ||A,,|| by the vector n: 

b= 4, [Aylin (1.4) 
The matrix 

[Aull = R~* (37, 1;— Ox) (1.5) 

is called the dipole-dipole interaction tensor, and 6,, is the Kronecker symbol. 

With the aid of either of the above representations of the vector h, (1.1) or 

(1.4), the value of the local field can easily be obtained by scalar multiplication 

of h by the vector n. In the case of (1.4) one has 

Ayo = hen = py Ay hy h, loc 

Directing the field H along the z axis and passing over to spherical coordinaies, 

we get the quantity /,,, as a function of the angle between the vectors H and R 

hice oan HeReaG cos? y— 1) 
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Allowance for quantum-mechanical interaction between nuclei of the same 

species results in corresponding additions to the value of h,,, on the given 

nucleus. For example, for an isolated pair of protons an elementary quantum 

calculation carried out by Pake showed that one-third of the measured value of 

h,,. is due to the resonance exchange of energy between protons. 

In the general case, with random configurations of the nuclei, the absorption 

line is a broad, shapeless hump. 
The shape of NMR lines in solids can be described theoretically by the 

moment method. In this method the shape of the line g(A) is characterized 

by a set of numbers (moments) which describe the behavior of the function g 

more and more remote from the point =O as their ordinal numbers 

increase. We remind the reader that the nth-order moment of the function 

g is the quantity 

S, = iy = [salty dh [ {aan 

NMR lines are symmetrical about the point A = 0. This means that all 

the odd moments become zero (the number of negative terms in the integrand 

equals the number of positive terms). Thus, only the second, fourth, and 

higher even moments need be calculated. The second moment can be estimated 

as the average square of the local field 

So = [aay dh / [aw dh 

Van Vleck has shown [9] that the second moment of a single crystal con- 

sisting of resonating nuclei with the spin quantum number / and the gyro- 

magnetic relation I at a distance r from one other is given by 

So = Cer UE ULN The  Gcoss yaar 
j>k k 

+ (N1h2/12n2) OY 1p + DT 7 Boos? yjp—1)? 77° + 1.6) 
j of 

here I’, and /, refer to nuclei of different species, r;, is the length of the vector 

connecting the jth and kth nuclei, y,, is the angle between H, and the vector 

r;,, and N is the total number of resonating nuclei. If nuclei of a third species 

are present in the crystal, the formula becomes one term longer, etc. In the 

case of a polycrystalline sample this expression should be averaged over all y 

values. Van Vleck also obtained a formula for the fourth moment. 

The ratio of the second moment to the fourth gives information on the 

shape of the line. For a Gaussian shape, this ratio is 1.32, for a rectangular 

signal it is 1.16. The totality of all the even moments should, in principle, 

enable complete characterization of the line contours. However, owing to 
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computational difficulties and insufficient experimental accuracy one is 

obliged in most cases to restrict oneself to calculating only the second moment. 

In its initial form the Van Vleck formula is suitable for use in structural 

analysis by the NMR method. Obviously, the trial-and-error method can be 

used for this purpose. The second moment is calculated for a certain trial 

structure. The result is compared with experiment. If necessary, the trial 

structure is then modified and the calculation is repeated until satisfactory 

agreement between the experimental and calculated second moment is 

achieved. Owing to the very sharp dependence of the calculated results on 

distance, they can very often be completed successfully without resorting to 

electronic computers. The predominant contribution to the second moment 

is that of the immediate vicinity of the proton (or other nucleus) in question, 

within a radius of the order of 5A. The contribution of a nucleus situated on 

the surface of this sphere to the second moment is three orders smaller than 

that of its closest neighbor. For this reason, allowance for angles and distances 

is made only inside this sphere. To allow for the more remote interactions in 

the calculation, the following integral is used 

oo 

2 Soy -—4 he 4 —3 [az drnor ° = mo | 4nr~* dr = nofar; 
To 

where n = N/r? is the number of protons per unit volume. It can be seen that 

this integral contains neither proton—proton line orientation nor C-H bond 

length. In investigating the Van Vleck formula many authors have made use 

of the formal separation of the moment into its intra- and intermolecular 

parts. This technique is especially popular when using NMR for analysis of 

polymer crystallinity. 

The next major advance in the development of the theory of structural 

analysis of single crystals by the NMR method was due to McCall and 

Hamming [10]. They were the first to examine in the general case the problem 

of the experimental volume required and the maximum number of parameters 

obtainable from the complete experiment. The iine of reasoning followed by 

these authors is simple. It is necessary to express a direction in the Van Vleck 

formula (1.6) by the polar angles 6 and g. Making use of the relation 

COS ),, = cos Ocos O,, + sin sin 8,, Cos (~ — Px) 

they found that 

(3cos? y,,— 1)? = 9at + 9b*c* + 9b4d* + 54a7b?c? + 54a*b7d? 

+ 54b2c?d? + 108ab>cd* + ab>c?d + 108a*b*cd 

+ 36b4*cd? + 36b*c3d + 36ab*d* + 36a°be 

+ 36a°bd — 6a* — 6b*c? — 6b*d* — 12abc 

— 12abd — 12b?cd + 1 
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where 

a 

b 

After cumbersome transformations the second moment can be expressed 

as a function of the angles 6 and @: 

cos 0 cos 0,,, C = COS PCOS Py, 

sin 8 sin 0,,, d = SINQSIN Px, 

22 

AH? (0,9) =T Y RF.) 

The authors divided the total second moment into two parts: R,—the co- 

ordinate part, and F,—the angular part; they are given by 

R, = M3 yy Seay eel oe cee AD 

= (1.7) 
F,,(8, 0) = sin*@cos? @ sin‘ g cos’ 0 

The constants w, r,s, and tand a, b, c, and dare listed in the original work [10] 

for values of k from 1 to 22. 

McCall and Hamming called the functions R, lattice sums. Only 15 of the 

22 lattice sums can be independent in the case of lowest crystal symmetry. 

The other seven are related to the 15 independent sums by 

Rio = -9R, ORS oR e 

Row 9 Rea Bhat Re 

[Reet Vip Mike 

Re = —27R) —9R, — 3h pOR = OR OR 

Rie = 21R; FOR, oRio OR OR: 

Rig 21Ru= 3h ORs ROR. 

Ry =—R, + 6R, = R; 

This means that a complete NMR experiment enables the values of not 

more than I5 structure parameters to be found. 

A very essential question is that of the necessary and sufficient volume of 

experiment. Fifteen independent equations with respect to the 15 unknown 

R, can be obtained, according to McCall, from five settings of the crystal, for 

each of which a ~-dependence is registered at an assigned small pitch and 

constant 0. g-dependence is preferable to 0-dependence for experimental 

reasons: Satisfactory sensitivity is usually attained only with cylindrical 

samples compactly filling the coils of conventional NMR spectrometers. 

Dereppe and co-authors [11] have demonstrated that structural analysis by 

the NMR method encounters a number of limitations: 
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1. owing to insufficient sensitivity the accuracy of the experimental second 
moment values is low in many cases. 

2. the effect of movements in the lattice may distort observed 0-dependen- 
cies in a complex manner. 

3. 15 structural parameters can be determined only for crystals of the 
triclinic system. 

With increasing crystal symmetry n lattice sums cease to be linearly in- 

dependent of the 15—n others. This decreases the number of determinable 

parameters to 15—n, and the maximum number of atoms whose coordinates 

can be obtained by NMR turns out to be: 

42+1=6, for triclinic crystals 
aie, for monoclinic crystals, and 

£ = 2, for orthorhombic and cubic crystals. 

Thus, the possibilities of the NMR method may seem rather low. But 

taking into account the difficulties of the neutron diffraction method and the 

very small capabilities of X-ray diffraction analysis in determining the co- 

ordinates of hydrogen atoms, the aid afforded by the NMR method appears 

very valuable at the concluding stages of structural analysis of organic crystals. 

On the other hand, the high sensitivity of the NMR method to various kinds 

of molecular movements (vibrations, reorientations, rotations, diffusion) 

makes it a fairly independent method of analyzing lattice structure and 

dynamics. 

In the presence of internal mobility at a frequency of = 10* Hz, the nucleus 

in question is subjected to the action of the time-averaged value of the local 

field ¢<h{t)> rather than its instantaneous value h(t), which results in a change 

in breadth and shape of the absorption line. Analysis of the temperature and 

angular dependence of the spectrum characteristics makes it possible, in 

principle, to calculate nuclear movement, given the structure geometry, or to 

solve the reverse problem. This problem is practically impossible to solve in 

the general form, but is simplified considerably if the spin system consists of 

isolated groups of nuclei. In such a case it becomes unnecessary to calculate 

the function g(h), and the problem is solved by calculating the value and 

angular dependence of the splitting appearing in the NMR spectra. 

Such calculations were carried out for various concrete ‘““movement figures”’ 

and the corresponding angular dependencies of the value <h> were obtained. 

In the general form the problem can be examined for an isolated proton pair. 

All imaginable ‘““movement figures” of a p-p vector, independent of the 

physical nature of the mobility, are contained in the set of all the trajectories 

which can be assigned on a sphere. This gives a foundation on which the 

calculation formulas can be systematized, and by which the general elements 
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in concrete calculations can be expressed. It can be shown that, in the general 

case, the value of the average local field can be represented in a quadratic 

form with respect to the variables n,, n,, and 1, (n = Ho/Ho) by 

<h> = +3uR 7 (4,02 +4,,n, +4,,n,? ++) (1.8) 
yy 

with the coefficients 

ayy — y pide: k,l — X,Y, Z (1.9) 

i=1 

for discrete movement figures with m positions of the p-p vector, and by 

ae | | eee a (1.10) 

for continuous movement figures, with the probability density distribution 

function of p-p vector orientations equal to p(r); the coefficients a,, are the 

components of the unit vector r': 

oe iia 
a, = 3r,'F Ont 

All possible angular dependencies of the value <A> differ from one another 

in the elements of the matrix ||/@,,|| of coefficients of the form (1.8). There is a 
correspondence between the class of symmetry of the movement figure and 

the form of the matrix ||@,,||. The particular simplicity of the NMR spectra 
of organic substances containing water (since one p-p vector is much shorter 

than all the others) gives rise to special possibilities. For example, one can 

determine the symmetry of the orientations of the water molecules in fibrous 

proteins, study diffusional and vibrational mobility in hydrates, etc. 

It should be pointed out that the capabilities of NMR for studying angular 

vibrations of molecules are limited. The change in the splitting value 2 AA is 

related linearly to the average square amplitude 

2Ah ~ <a?) 

Therefore, if 2 Ah has the quite perceptible value of 1—-1.5G for a deviation 

angle of about 10° (e.g., the water molecule), the effect is practically un- 

noticeable in the case of heavy molecules with « ~ 1°. 

2. INVESTIGATION OF MOLECULAR MOVEMENT IN A CRYSTAL BY THE 

NMR: ME7HOD 

Gutowsky and Pake [12] have studied the temperature dependence of the 

NMR line breadth for nuclei of spin 4 in some molecular crystals. The temper- 

ature was varied between 90°K and the melting point of the substance. In 

some cases it was found possible to compare the observed line structure and 
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the breadth transitions of these lines with the existence and frequency of 
definite types of hindered rotation in the solid state. An examination was made 
of the quantitative effect of this type of movement on the structure and the 
second moment of the absorption line. It was found that comparatively slow 
movements (at a frequency of ~10°Hz) already caused perceptible line 
narrowing compared to their breadth in the absence of movements. 

In 1,2-dichloroethane, 1,1!,1-trichloroethane, and perfiuorethane the breadth 

jumps of the lines are close to phase transitions and heat capacity anomalies. 

In 1,2-dichloroethane these jumps correspond to rotation about the longi- 

tudinal axis of the molecule. Many molecules (acetonitrile, methyl iodide, 

nitromethane, dimethylmercury, ammonia) give an NMR line at 90°K 

corresponding to proton rotation about a third-order axis. Data have been 

obtained on the movements of the molecules of 2,2-dimethylpropane, 

ethanol, methanol, acetone, methylamine, and ethyl halides. 

Powles and Gutowsky [13] have studied CH,-group reorientation in a 

number of organic crystals at low temperatures: in methylchloroform, 2,2- 

dinitropropane, and 2-chloro-2-nitropropane. They studied the molecular 

movements in the solid by observing the temperature dependence of the shape 

of the NMR lines. The authors point out two aspects of these observations. 

First, it can be established whether the CH, group is actually reoriented about 

the corresponding third-order axis. If such reorientation occurs, the breadth 

of the NMR line will decrease with increasing temperature within a certain 

temperature interval. They succeeded in showing that these’movements are 

thermally activated hindered rotation. Powles and Gutowsky derived an 

expression relating the line breadth to the frequency of reorientation, which 

in its turn gives the rate of reorientation as a function of temperature; by 

means of this function the height of the reorientation barrier can be estimated. 

Secondly, studying the dependence of the shape of the NMR line on the sample 

temperature gave the authors a number of ideas concerning the mechanism 

of reorientation. The simplest reorientation model is the classical passage of 

the particle over the potential barrier £). But if only protons participate in the 

movement, a tunnel effect is quite possible owing to the small mass and low 

barrier height. 

Since the shape of the line may vary simultaneously with its breadth, the 

most satisfactory measure of the temperature effects is the second moment. 

Using the general reasoning given at the beginning of the previous section, 

there is no difficulty in writing formula (1.8) and the corresponding formula 

for the second moment in the case of an isolated triplet of protons situated 

at the vertices of an equilateral triangle. 

If a given state of nuclear spin has a lifetime long enough for the local fields 

responsible for the line breadth to fluctuate, the resulting line broadening will 

be the average over this lifetime. In its turn, in accordance with the principle 
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of inderminacy of lifetime the dt of the given state is related to the spectral line 

breadth by the expression (Adv) dt ~ h/2x. For this reason, the interval $2dv 

will be a suitable time for averaging. For an immobile CH; group, ov is 

approximately 2 x 10* Hz. Actually this interval is itself a mean value, because 

the lifetimes of nuclear spin states have a distribution pattern. Movement 

decreases line breadth only when the frequency of reorientation begins to 

exceed the resonance line breadth dy. 

Powles and Gutowsky [13] have shown that the experimental results for 

the CH, group can be described equally well by three different models: 

(1) random reorientation of the Brownian movement type, (2) classical 

movement across a threefold potential barrier, (3) tunnel effect. In their work, 

Powles and Gutowsky are inclined to favor the assumption that the tunnel 

effect plays the predominant part in methylchloroform, 2,2-dinitropropane, 

and 2-chloro-2-nitropropane crystals. 

A study of the CH, group rotation in hexamethylbenzene within the 

temperature interval from 1°K to room temperature gave the following results. 

Above 95°K, S, = 13 G?, and in the temperature interval 1-38°K, S, = 19 G?. 
Calculation gives 32.7 G? for a rigid lattice. Thus, methyl group rotation does 

not cease even at 1°K. 
The work of Powles and Gutowsky was developed further by Waugh and 

Fedin [14], who showed that the barriers hindering the rotation of molecules 

or groups in the system can be estimated on the basis of a very simple experi- 

ment. If Tis the temperature at which the line starts to narrow, the potential 

barrier 

Vo = kT(2.5)log(n/A)(kT/21)” (CAD) 

where J is the moment of inertia, 7 is the barrier multiplicity factor, and A is 

the line breadth in a rigid lattice. 

The fact that the potential barrier depends on n and A logarithmically means 

that a still simpler approximate formula may often give quite satisfactory 

results. Calculations show that, for the molecules usually encountered, the 

right-hand side of Eq. (2.1) logn/A(kT7/2/)” varies from substance to sub- 
stance by not more than 10%. If not very high accuracy is required, one may 

write 

Vo (kcal/mole) ~ 377, (°K) 

This linear dependence was first established for three concrete molecules, 

but it is clear from what has been said above that it is of much more general 

significance. 

It is interesting to note that formula (2.1) gives estimates of the potential 

barrier height in good agreement with those obtained by measuring the spin— 

lattice relaxation time. Since (2.1) is derived from a purely classical model, 

the agreement indicated is evidence that the tunnel effect plays a minor part 
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in the mechanism of hindered rotation. An additional thorough analysis will 
have to be made before final conclusions can be drawn on this point. 

Reorientation of a molecule as a whole was first detected by Andrew [15] 
in solid benzene. The second moment of the NMR signal in benzene decreases 
one and a half times when the temperature is raised from 77 to 110°K. This 
jump was identified with hindered rotations about the sixth-order axis. 

McCall and Douglass [16] studied the temperature dependence of S§, in 

an adamantane crystal and established that above — 130°C, S, = 0.9G?, and 

below that point S, = 40G’. Theoretical estimates of the intramolecular 

contribution showed 31.5G’, and of the intermolecular contribution (in a 

rigid lattice) 7G”. The authors considered tat the agreement between theory 

and experiment was good. The pronounced line narrowing on passing into 

the rotational crystalline state was explained quantitatively by assuming 

isotropic rotation of the adamantane molecules; the calculated value was 

S, = 0.95G?. However, careful calculations of the intramolecular contri- 

bution to the second moment of adamantane showed that it could not be 

greater than 16G’. The intermolecular contribution was found to equal 

6.63 G”, and the total second moment, 22.4 G’. After finding out about these 

results, McCall recalculated the intramolecular contribution and “‘reduced”’ 

it to 20.16 G?. At the conclusion of the subsequent discussion it was decided to 

repeat the experiment. The low-temperature second moment in adamantane 

was actually found to equal 22G?. This is an instructive example of the 

magnitude of the errors which may arise if the second moment of NMR 

signals in molecular crystals are measured’without sufficient care. 

3. DETERMINING PROTON COORDINATES IN ORGANIC CRYSTALS 

A large number of studies of this type have been published. However, the 

value of some of them is reduced considerably, it seems to us, by the fact that 

dynamic effects are superimposed on geometrical effects. The first study in this 

field was made by Andrew and Eades [17] in 1953. They were the first to 

combine X-ray diffraction and NMR of broad lines for more exact location 

of hydrogen nuclei in benzene. The authors solved this problem in a non- 

trivial way by making use of a preliminary study of 1,3,5-deuterobenzene. 

A simplified scheme of their reasoning was approximately as follows: Let S, 

be the observed second moment in an ordinary benzene molecule; it consists 

of an intramolecular part S,’ and an intermolecular part S3 due to the inter- 

action of all the other nuclei in the crystal 

S» = So’ + $3 

The change in S,’ and S%5 due to deuterium substitution was calculated 

theoretically. To a first approximation the deuterium nuclei may be considered 



278 4 Methods of Investigating Structure and Molecular Movement 

nonmagnetic. Therefore the main term, corresponding to the interaction of the 

protons with their closest neighbors, is eliminated from the intramolecular 

part of the second moment. The term characterizing interaction with the 

diametrically opposite nucleus is also eliminated. Then only interaction with 

two protons is taken into account in S,’. As to S3, this quantity decreases to 

half and the following system of equations appears: 

Se aes 

S32 = as,’ AF 485 

where a < 4. Andrew and Eades had to do with a more complex system of 

equations, since they made allowance for the fact that the magnetic moment 

of deuterium differs from zero if taken very exactly. S,’ and S53 were found 

by solving this system, and from these rg, was determined, i.e., the length of 

the C-H bond in benzene. The determination was accurate to 0.02 A. 

In 1955 Andrew and Hyndman [18] studied the structure of urea (NH,),CO 

by the NMR method. It had been known from X-ray diffraction data that the 

four heavy atoms were in the same plane. Figure 12 shows the arrangement of 

the heavy atoms; it possesses C,,, symmetry. The interatomic distances and 

angles were found by X-ray diffraction methods. What was not known was 

whether all four hydrogen atoms were in the same plane as the heavy nuclei 

(a) or arranged symmetrically above and below this plane (b) or whether the 

molecular configuration was of lower symmetry than C,,. 

Urea crystals possess tetragonal symmetry and crystallize as needles of 

square cross section, elongated along the tetragonal axis. At first the crystal 

was mounted with its tetragonal axis (001) vertical. Then the (110) axis was 

set vertical. Since the crystal was elongated in the (001) direction it had to be 

cut up into four pieces and these pieces put together. Then the angles between 

the direction of the field and the (001) axis were varied. Several records were 

taken for each setting. The second moment was calculated for each record, 

and the average was found for each setting. The probable error was 0.3 G?. 

The minimum value of the second moment was found to be 13 G’, and the 

maximum 29 G?. 
The theoretical values of the second moment were calculated for planar 

and nonplanar models by the Van Vleck formula. 

Fig. 12. The arrangement of the atoms in area. 
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To find the parameters more exactly, the theoretical value of the second 

moment was expanded in a Taylor series. The comparative influences on the 

second moment of the various structural parameters were estimated. The 

problem was reduced to three equations with three unknowns. The final result 

was: length of N-H bond 1.046A, H'N'H? angle 119.1°, OC N! angle 
120.5°. Bond length determinations were accurate to +0.01 A, and angle 

determinations to +2°. The proton—proton distance in both amino groups 

was 1.803 A. The protons are arranged as in Fig. 12a. 

Emsley and Smith [19] studied single thiourea crystals and repeated part 

of the results of Andrew and Hyndman for urea. 

Dereppe, Touillaux, and Van Meersche determined the structure of oxalic 

acid dihydrate C,H,0,-:2H,O, paying most of their attention to precision 

proton placement. 

The proton resonance spectra were taken at room temperature with a 

Varian spectrometer (56.6 MHz) under the following conditions: modulation 

frequency 0.99 Hz, modulation amplitude 0.99 G, time constant 3 sec, rate of 

passage, 3.78 G/min. The crystal was set in a Teflon goniometer. Figure 13 

shows typical S, versus 0, 9 dependencies. 

When a polycrystalline sample was cooled, S, increased to a value 1.391 

times greater than the second moment at 25°C. The authors assumed that the 

temperature dependence of the second moment would be the same with any 

orientation of a single crystal. According to this hypothesis, the lattice sum 

(1.7) for a rigid structure would be 1.391 times higher than the experimental 

values. Then a ‘“‘coarse” structure was selected and its lattice sums were 

calculated. The linear divergence factor for this structure was found to equai 

rs Rio Ral [E Pole? 
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Fig. 13. The typical S2(or AH2) curves. Three curves S2(g) for 6 = 0°, 50°, 90° are shown. 
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After this the proton structure was refined. The authors had at their disposal 

nine lattice sums (differing from zero) for determining the values of nine 

coordinates. In principle, nine equations with nine unknowns of the form 

AR, = yy (OR,,/6u;) Ax; => eS Ak; Ax; 

ie = eo: = lbgeeatgeste AR, = Ry, — Ry 

can be written. The structure-refining corrections to the trial coordinates can 

be found by solving this system of equations. 

Figure 14 represents the change in the divergence factor during successive 

refining of the coordinates by the least-squares method. It is evident that with 

Ip = 0.22 already J, = 0.12 and /,3 = 0.07, and the last six steps practically 

dic not change the structure. 

TiO cmos 

QO ft Be eh G6 BG eg Of WO jh 1B 18 

Fig. 14. The change in the linear (I) and quadratic (J) divergence factor during refining. 

This study can hardly be called very convincing because the “‘trial”’ and final 

structures differ very little. Besides, the final structure does not coincide very 

well with that obtained by neutrcn-diffraction methods. In any case, the 

difference between the neutron-diffraction structure and the final NMR 

structure is of the same order as that between the final and trial structures. 

Gorskaya and Fedin [20] studied the dependence of the NMR signal in 

naphthalene on the orientation of the single crystal in a magnetic field. The 

sample was in the shape of a cylinder cut out of a large single crystal. Figure 15 

compares the experimental y-dependence of the second moment with three 

calculated dependencies. Curve | was obtained under the assumption that the 

C-H bonds in the precisely established structure of naphthalene are 1.08A 
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Fig. 15. The theoretical g-dependence of the second moment for the naphthalene crystal. 

Experimental data are shown also. 

long. Curve 2 corresponds to a C-H distance of 1.03 A, and curve 3 to 1.13 A. 

1.08 A is the average of a large number of data on C-H bond length accumu- 

lated in organic crystal chemistry. Figure 15 shows distinctly that NMR data 

are, In the main, in agreement with this value, but the noticeable difference 

between curve | and the experimental ~-dependence indicates that NMR may 

enable determination of minor deviations of the molecular geometry from the 

ideal model. 

An NMR spectromer designed for determining the placement of protons in 

the crystal structure should meet a number of specific requirements. First, the 

spectrometer must be furnished with goniometric devices for exact orientation 

of the crystal in the magnetic field. Secondly, special measures should be taken 

to ensure sufficient sensitivity when observing NMR in single crystals of small 

volume. The sensitivity requirements are expecially high when molecular 

crystals are to be studied ; owing to large relaxation times, high radio-frequency 

field intensities H, cannot be used. Thirdly, the magnetic field and repro- 

ducibility of its change must be highly stable. This requirement is due to the 
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fact that in some cases sufficient sensitivity is ensured only if the method of 

signal accumulation is used. Fourthly, the instrument should give a zero line 

of extreme stability, because stability of the zero guarantees the accuracy of 

measurement of the second moments. 

The first to achieve orientation of a crystal in the magnetic field of an NMR 

spectrometer was Pake [21]. The goniometer device he used was a very simple 

one. A radio-frequency coil was set vertically in the magnet gap; the upper 

face of the single crystal placed in the coil was glued to a cylindrical Teflon rod. 

A pointer at the upper end of the rod swinging against a large-diameter circular 

scale made it possible to establish the crystal orientation to 0.5°. The short- 

coming of this system is that the crystal must be cylindrical in shape because 

arbitrary shape greatly decreases the filling factor. 

The shape of the radio-frequency coil can be adapted to that of the available 

crystal by winding it tightly on the crystal. The coil then becomes rectangular 

in cross section. A brass box with a radio-frequency bridge is placed on the 

upper end of a vertical brass tube, the lower end of which is set at the center 

of the magnet gap; the coil is fixed rigidly to this part of the tube. 

There is no need to prove the great possibilities of the NMR method in 

investigating lattice dynamics. On the other hand, it is still difficult to say how 

good this method can be in studying the geometry of organic molecules. 

It seems important to us to investigate further the usefulness of the NMR 

method for studying proton coordinates and in cases where no reorientation 

of molecules, or parts of molecules, and no proton exchange occur. 

4. THEORY OF NUCLEAR QUADRUPOLE RESONANCE 

Nuclear quadrupole resonance was first observed by Dehmelt and Kriiger 

[22] in 1949. Nuclear quadrupole resonance is a division of spectroscopy that 

studies the energy levels in solids, when the distances between these levels 

correspond to emission or absorption of electromagnetic vibrations with 

wavelengths in the decimeter and meter ranges (frequencies from 1 to 1,000 

MHz). What is the nature of these energy levels? 

The nuclei of many elements have shapes other than spherical. The measure 

of deviation of the shape of a nucleus from spherical is its quadrupole moment 

O = (l/e) [ (32,272) dx dy dz (4.1) 
ey 

where e is the charge of an electron, p is the density of charge distribution in 

the nucleus, r? = x*+y*+2?, and z,, is an axis coinciding with the direction 
of nuclear spin J. 

It is evident from (4.1) that Q is positive if the nucleus is drawn out 
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Spin axes 

Fig. 16. Atomic quadrupole nuclei. 

along the spin vector (a), and negative if it is compressed in this direction 

(b) (Fig. 16). 

The quadrupole moment is related to the nuclear spin J: If 7=0 or 4, 

Q =0; Qcan differ from zero only if J> 1. 

Consider an atom with a nucleus having a quadrupole moment different 

from zero, contained in a molecule located in a crystal. In Fig. 17, A is an 

atom containing a nonspherical nucleus and A, is an atom linked to A witha 

covalent bond. The electric field is nonuniform along the direction of the 

chemical bond, and the measure of this nonuniformity is the intensity gradient 

9zz = 0’V/6z?. Here V is the electrostatic potential at the center of the nucleus, 
set up by all the surrounding charges. Strictly speaking, q is a tensor value with 

nine components, and the mathematical description of the interaction energy 

of such a nonuniform electric field with a nucleus in which the symmetry of 

charge distribution differs from spherical is very complicated. It is usually 

assumed that.g is axially symmetrical relative to the z axis, i.e., 0°V/dx? = 

6?V/éy? and coordinate axes are selected in which the tensor is diagonal in 
form. Then it is shown by quantum-mechanical methods that the energy of a 

nucleus with the quadrupole moment Q situated in an electric field with a 

Fig. 17. Quadrupole nucleus in a nonuniform electric 

field set up by the electron cloud of a molecule; z axis 

along direction of bond. 
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gradient g axially symmetrical relative to the direction of the chemical bond 

has the form 

En = Ce, Q[3m? — (I+ 1)]/41(2T-1) (4.2) 

In Eq. (4.2) mis the magnetic quantum number at the given nuclear spin J; 

it varies a unit at a time from /to —/J,i.e., has 27+ 1 values. It is evident from 

(4.2) that the quadrupole energy levels are twice degenerate with respect to m, 

since E,, depends only on the absolute value of m and not on its sign. For 

instance, there are only two different energy levels for IN and Cl nuclei. It is 

clear that passages between them can result in the appearance of only one 

absorption or emission line. To stimulate transitions between the levels (4.2), 

an electromagnetic field with the quanta 

Ay = Eqn) a Eig 1) 

has to be applied to the crystal. 

The formula for the frequencies at which nuclear quadrupole resonance 

may occur has the form 

3eQ4.. 
Yeon = Gry om) 

where m, is the larger in absolute value of the two magnetic quantum numbers 

involved in the transition. In the radiospectroscopic literature the term 

“quadrupole interaction constant” is usually used to denote the values of 

eQq/h expressed in millions of hertz, the Planck constant being omitted from 

the formula. Then we get v,,,= #eQq for J = 1, v,., = 4eQq for I = 3, etc. 

Very often the electric field gradient g has no axial symmetry. Then the 

asymmetry parameter 7 = (4,.—4,y)/q,, 18 taken into consideration. 

The quadrupole interaction constant eQq,, and the asymmetry parameter 4 

are the information nuclear quadrupole resonance experiments give about a 

chemical compound. 

The characteristic feature of quadrupole resonance is that the chemical 

effects on eQq,, and y are not small. Thus, the quadrupcle frequencies of 

°C] in tri- and dichloromethane are 38.2809 and 35.9912 MHz, respectively ; 

i.e., differ in the second significant digit, whereas the accuracy of measurement 

of the frequency may be as good as six or seven correct significant digits. The 

values of y obtained from experiment vary from 0.05 to 0.8. 

Nonequivalent placement of the molecules in a crystal’s unit cell gives a well- 

resolved line structure. For example, CHCl; shows a two-component quad- 

rupole resonance spectrum with the frequencies 38.3081 and 38.2537 MHz, 

which indicates that there are two crystallographically different species of 

molecules in the crystal. The magnitude of these crystalline effects exceeds the 

line breadth by one or two orders. 
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Fig. 18. Precession of a nucleus in the presence of a constant 

magnetic field Ho. 

If an external constant magnetic field Hg is applied to the crystal, the state 

(Fig. 18) characterized by the precession angle @ will have a higher energy than 

that characterized by the angle 180° — 0. Since the energy difference E,-—E, = 

AE <kT between the states where p, has the same direction as the constant 

magnetic field and opposite to the field, these new levels will be populated as a 

result of thermal motion, and degeneration with respect to m will be eliminated. 

Thus, simple qualitative reasoning shows that if a constant magnetic field is 

applied to the crystal the quadrupole resonance lines from each nucleus will 

be split (Fig. 19). 
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Fig. 19. Zeeman splitting of quadrupole energy levels (J = 3). 
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The overall effect of this splitting in a polycrystalline sample will differ 

from that in a single crystal. In a single crystal the signals from all the nuclei 

add up and give a split multicomponent quadrupole resonance spectrum. In 

a polycrystal the application of the magnetic field causes substantial broaden- 

ing of the lines owing to the unordered crystal grain orientation which 

accordingly lowers the signal height. This property of quadrupole resonance 

lines is utilized for identifying the signal: If the line broadens when a weak 

magnetic field is applied, the phenomenon observed is quadrupole resonance; 

if it does not, the signal is of a different origin. 

In the simplest case the magnitude of level splitting on application of a 

field Ho is equal to 

where @ is the angle between the direction of H, and the symmetry axis of q, 

and ,// is the gyromagnetic ratio, equal to 417.214 Hz/G for the *°Cl nucleus. 

It follows from this formula that no splitting will occur if the external magnetic 

field Ho is at right angles to the symmetry axis of g. A more complex case is 

that where Hy removes degeneration from the level E,,. The states with 

m=+4 and with m=—4, being neighbors Am=1 apart, interact with 

respect to the field H,. Calculations show that in this case the perturbing 

field Hy gives rise to mixed levels described by the formula 

€04.. Sie oesnes a ee [cos? 6 + (I-+4)? sin? 6] 5 ito (4.3) 

It follows from (4.3) that zero splitting is impossible at any 0 angle. Con- 

sidering Fig. 19 we see that at a nuclear spin of / = } Zeeman splitting of 

quadrupole resonance results in the appearance of four observable lines. With 

the fields Ho usually used no E, @ E_ transition is observed in the quad- 

rupole resonance spectrum: The frequency corresponding to it is two orders 

lower than v,,,. Making use of Fig. 19 and of Eqs. (4.2) and (4.3), we find that 

the internal lines of the Zeeman quadruplet are separated by the frequency 

interval 

Vou = 3(U,/1) Hy cos @ + (11;/1) Ho [cos? 6 + (I+ 4)? cos? 6]” 

It follows from this formula that the internal, most intense lines of the Zeeman 

multiplet coincide at a certain orientation of the magnetic field, falling on the 

frequency v,,,. The angle @ at which this occurs for the spin J = 3 can be 

determined from the condition tan@ = 2”, i.e., 0 = 54°45’. This is utilized 

for structural studies of single crystals: By varying the orientation of the 

crystal in a constant magnetic field, one finds the directions of Hy which do 

not split the signal; these directions form a cone, the axis of which indicates 
the orientation of the chemical bond (see below). 
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Nuclear quadrupole resonance lines are often greatly broadened, which 

decreases their amplitude accordingly, and this sharply raises equipment 

sensitivity requirements. The nuclei surrounding the one under study may 

have magnetic moments. If so, the nucleus under investigation is in an environ- 

ment of local magnetic fields. Depending on the magnitude of these local 

magnetic fields and their orderliness in the crystal, such an internal Zeeman 

effect may either result in the appearance of fine structure in the quadrupole 

resonance line or, more often, in broadening it. 

Important static factors affecting line breadth are defects and stresses in the 

crystal. Crystal lattice defects cause unordered spreading of the electric field 

gradient values qg, thus drawing the corresponding nuclei out of the main 

resonance region; this broadens the line. A similar effect is caused by stresses 

arising in the crystal upon rapid crystallization or cooling, local heating, etc. 

The quantitative theory of line broadening due to stresses and defects in the 

crystal can be built only when the law of intermoiecular interaction and the 

effect of the interaction on the electric field gradient in the crystal become 

known. This interesting problem has still to be solved. 

The shape of quadrupoie resonance lines may be affected by vibration of the 

molecules in the crystal. Thermal vibrations limit the lifetime of the quad- 

rupole energy levels and thus determine the “‘natural”’ line breadth. It is clear 

from the above that this contribution is much smaller than the effect of static 

factors. However, it is qualitatively quite clear that, besides their effect on the 

lifetime of energy levels, thermal vibrations may also exert an influence similar 

to defects and stresses, causing additional spread of the g values from nucleus 

to nucleus, i.e., broadening the line. 
The lifetime of the levels is characterized by the spin-lattice relaxation time 

T,. Interaction of the radio-frequency field quanta with the system of quad- 

rupole energy levels evens out the populations of these levels. If the radio- 

frequency field is removed from the sample, thermal vibrations will cause the 

difference of populations created by the action of that field to tend to the 

initial difference of populations n, (depending on the experiment temperature) 

according to the law 

An = Ano(1—e/™) 

where t is the time elapsed from the moment of removal of the radio-frequency 

field, and 7, is the spin-lattice relaxation time. 

If 7, is large, the lifetime in the excited state will also be large. Under 

such conditions prolonged action of a radio-frequency field may prevent the 

thermal vibrations from restoring equilibrium in the numbers of transitions 

from the upper level to the lower one and vice versa; there comes a moment 

when the populations of the upper and the lower levels become equal. After 

this the amount of energy absorbed from the radio-frequency field per unit 
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time will be exactly equal to the amount of energy emitted by the system of 

nuclear spins, i.e., the presence of the sample in the circuit stops being per- 

ceptible. This is known as resonance saturation, which has to be prevented in 

NMR experiments by using minimal energy densities in the circuit. In nuclear 

quadrupole resonance experiments saturation is much more difficult to reach. 

For p dichlorobenzene, T, equals 2x 10~* sec. Nevertheless, at a certain 

energy density in the circuit this phenomenon may result in substantial line 

broadening. 

For more direct characterization of line shape, the concept of spin-spin 

relaxation time J, is introduced into NQR. Let the function g(v) describe the 

resonance frequency distribution resulting from the action of all static and 

dynamic factors. This function is normalized by the usual condition 

f°... 9() dv = 1. Then, by definition, the spin-spin relaxation time is 

T, = 29 (res) (4.4) 

Therefore, observation of line shape makes it possible to judge relaxation 

processes. The values of T, for p-dichlorobenzene vary from 5x 10~* to 

7x 10~° sec when impurities are added to the crystal, whereas T, does not 

change. 

5. Use oF NQR IN STUDYING THE STRUCTURE OF MOLECULAR CRYSTALS 

a. Determining Molecular Orientation in the Unit Cell 

A consistent investigation of the Zeeman splitting of the NQR spectrum 

was carried out by Dean and co-workers [23] for 1,2,4,5-tetrachlorobenzene. 

In this work a specially designed semiautomatic apparatus was used, by means 

of which the crystal structure of the object could be studied in full. The authors 

concluded that quadrupole resonance may be of substantial help in X-ray 

diffraction studies of certain objects. The accuracy of bond direction determin- 

ation was slightly higher than in the X-ray method, the error not exceeding 

+1°. 

Splitting of a line into its components depends on the orientation of the 

crystal in the magnetic field. Splitting is the same for all translationally 

identical atoms but differs, generally speaking, for atoms bound by symmetry 

elements. However, there is a special direction which remains unchanged or is 

inverted by symmetrical operations peculiar to the crystal. In this case 

the splitting pattern is the same for both crystallographically nonequivalent 

atoms. Note that any direction satisfies this requirement in a centrosymmetric 

crystal. 

Zeeman splitting is utilized to find the directions of the electric field gradient, 
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by searching, in the case of each line of the zero field (i.e., for each nucleus), 

for the direction of the magnetic field relative to the crystal axes, where 

splitting does not occur. It can be shown that, for a spin of 3, zero splitting 

occurs with the field directions lying on the surface of a double cone with the 

direction of the field gradient as its axis. The directions of the zero fields form 

an angle of 54°44’ with the cone axis. The structural investigation carried out 

by this method consists in searching for zero splitting cones. A very important 

circumstance is the possibility of measuring the electric field asymmetry at 

the atomic nucleus. The cone is circular only in the ideal case of absence of 

asymmetry. 

b. Studying Lattice Dynamics 

Bayer [24] examined the effect of torsional vibrations of molecules on q,,, 

i.e., on the frequency of quadrupole resonance. Infrared and Raman spectra 

showed that the lowest frequencies of these vibrations are not less than two 

orders higher than the possible frequencies of quadrupole resonance. Bayer 

showed that in reality the nuclei are in an electric field, the parameter g of 

which differs from what it would be if the molecules were completely im- 

mobile, and that the effective value of g depends on the temperature. Calcu- 

lation gave the following temperature dependence of the quadrupole resonance 

frequency for J = 3: 

1 dy = : 3h2 eltvx/kT # eltVy/kT | 

A, (e=/*T — iy A, (e947 — ie eects ia Merle STs ae 

where v,,, is the quadrupole resonance frequency at 7 = 0, v is the frequency 

under study, 7 is the temperature, v, and v, are the frequencies of torsional 

vibrations relative to the x and y axes of the tensor g, and A, and A, are the 

corresponding moments of inertia. The torsional vibrations relative to the z 

axis do not contribute to g, but change only y. Figure 20 is the frequency 

versus temperature curve calculated from (5.1). It is evident that the resonance 

frequency grows substantially with declining temperature. The temperature 

coefficient of the quadrupole resonance frequency equals 18.7 kHz/deg for 

p-dibromobenzene, and 2.7 kHz/deg for p-dichlorobenzene. Owing to this 

strong dependence on temperature the specimen has to be thermostatically 

controlled. Even a slight temperature drop (2-3°) over the specimen may 

broaden the line manyfold. 
The temperature variation of the quadrupole resonance frequency predicted 

by Bayer holds well for most of the compounds studied. Detailed investi- 

gations of the temperature dependence of NQR frequencies and verification 

of the applicability of Bayer’s theory and its more complicated versions were 

carried out by Babushkina [25] in the author’s laboratory. 
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Fig. 20. Temperature dependence of quadrupole resonance frequencies of 7°Cl and 3’Cl 

according to Bayer theory. 

c. Solid Solutions 

Of some significance among the applications of quadrupole resonance are 

investigations of solid solutions. Monfils [26] was the first to suggest character- 

zing the influence of animpurity molecule on the NQR signal ina solid solution 

by the number N of adjacent molecules of the matrix, brought out of resonance 

by the impurity molecule. At low impurity concentrations it may be supposed 

that N is a property of the impurity molecule in the given lattice and is in- 

dependent of concentration. Then it can easily be shown that the signal 

intensity decreases with increasing impurity concentration according to the law 

A = Aceus 

where A, is the amplitude of the signal in the pure sample. Three types of 4 

versus c dependencies are observed in experiments (Fig. 21). Curve 1 is 

characteristic of unlimited solubility within the given interval of concentration 

c; curve 2 indicates limited solubility; and curve 3 corresponds to the case 

where the shape and size of the impurity molecule entirely prevents the 

formation of a solid solution. 

Fedin and the present author [27] showed that the matrix molecules in 

solid solutions of a number of compounds in p-dichlorobenzene displayed no 

perceptible shifts of NQR frequency. They also attempted to predict the value 

of N for several systems on the basis of organic crystal chemical data, pro- 

ceeding from the assumption that the lowering of A in a solid solution is due 
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Fig. 21. Dependence of ampltiude of NQR signal on concentration of impurity in 

p-dichlorobenzene. Curves: (1) unlimited solubility; (a) impurity molecule larger than 

matrix molecule; (b) impurity molecule smaller than matrix molecule; (2) limited solubility; 

(3) no solubility. 

to static lattice distortions. This assumption was based on spin-lattice relax- 

ation times 7, measured in a solid solution, which indicated that T, was 

independent ofc. At the same time, according to the data of Hirai, T, depends 

very greatly on temperature (Fig. 22). It may therefore be considered that at 

low c the lattice dynamics remain unchanged to a first approximation, and 

conclusions may be drawn as to the static effect of the impurity on the quad- 

rupole resonance signal. 

d. Polymorphism 

The main regularities of this phenomenon should be displayed in NQR 

spectra. The spectral manifestations may depend on whether an enantiotropic 

or monotropic transformation is occurring. 

Investigation of phase transitions in a number of molecular crystals, namely: 

o-dichlorobenzene, chloranil, trichloroacetamide, dihalomethanes, dichloro- 

dinitromethane, trichlorogermane, iodobenzene, etc., discloses an increase in 

multiplicity of the NQR spectrum in the low-temperature phase. This estab- 

lishes unambiguously a transition of the first kind involving a jumpwise 

change in symmetry (NQR registers changes in the number of independent 

molecules in the unit cell). 

When the multiplicity of the NQR spectrum does not change, phase 
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Fig. 22. Temperature dependence of 7, in p-dichlorobenzene. 

transitions in NQR may still be accompanied by a frequency jump, as well as 

by a change in slope of the frequency versus temperature curve. Examples of 

such behavior are the « > f transition in p-dichlorobenzene, where the NQR 

frequency of the *°Cl of the B-phase is 24 kHz lower than in the «-phase at a 

phase transition temperature of 32°C, and the « > f transition in tetrabromo- 

benzene. The phase transition at 32°C in tetrabromobenzene is characterized 

not only by a 0.15% jump in the NQR frequency, but also by a change in 

slope of the frequency versus temperature dependence before and after the 

phase transition, (1/v)(dv/dT) equaling 3.9x 10~° deg~* above the phase 
transition and 5.9 x 107 > deg” * below it. 
When slow phase transitions are observed by the NQR method, the peculiar- 

ities of the mutual arrangement and movement of the same molecules in 

different crystal lattices at the same temperature can be studied. 

Reviewing the collection of all available experimenta! data, it may be 

concluded that the difference between the average NQR frequencies of two 

modifications at the same temperature does not, as a rule, exceed ~1.5% 

of the average signal frequency. These frequency shifts do not differ in value 

from the usual differences for chemically identical, but crystallographically 

nonequivalent atoms. : 

Investigation of the effect of crystal fields on NQR frequency encounters 

major difficulties. There are practically no special studies in this field. 
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Chapter V 
Thermodynamic Experiments 

1. MEASURING THERMAL EXPANSION 

The most precise way of finding the expansion tensor or the coefficient of 

volume expansion is the X-ray diffraction method of measuring the unit-cell 

parameters of a crystal. 

For exact measurements, one selects several interplanar distance. d,,,, to 

which correspond iarge Bragg angles 0,,,, and measures their values as a 

function of temperature. There is no difficulty in obtaining X-ray reflections 

of the unknown and of a standard (say, common salt) on the same X-ray 

diagram. 

In the monoclinic system the unit cell is described by four parameters. 

Therefore, it is generally sufficient to follow the behavior of four reflections. 

An alternative method is to measure a large number of reflections and treat 

the results by the least squares method. 

Thermal expansion is usually described by means of the principal co- 

efficients of expansion %,,;, %22, and «33. These values are numerically equal 

to the change in unit length of the crystal in the direction of the principal 

axes of the thermal expansion ellipsoid, caused by a 1° rise in the temperature 

of the crystal. 

The thermal ellipsoid appears as a result of deformation of a sphere of unit 

radius. Hence, each radius vector of the ellipsoid has the value 1+A, where 

294 
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A is the coefficient of linear expansion in the direction of the radius vector in 
question, equal to 

A = Oy4 xa xP Opa = Baa 

In this equation the thermal expansion is referred to the ellipsoid’s main axes. 

The thermal expansion of a crystal may be expressed relative to its lattice 

axes as 

A = A,a? + A,B? + A377? + Ag By + Asya + AaB 

where A,, A>, A3, Ag, As, and A, are constants characterizing the expansion, 

and a, #, and y are the direction cosines of the given direction relative to a 

rectangular coordinate system fixed to the crystal. 

For a monoclinic crystal, owing to symmetry requirements, the directions 

a, B,y; a, By; &, B,y, and «, 8,7 are equivalent. Hence A, = A, = 0, and the 

formula becomes 

A = A,a? + A,B? + A377 + As po 

To find the constants A,, A,, A3, and A; we consider the directions lying 

in the crystal planes ac and bc’, where c’ is the normal to the plane ab. 

For plane ac we have (f = 0) 

A= A,0*7+A;y? + As you 

Instead of presenting A as a function of the two related values « and », we 

introduce the angle w between the direction in question and that of the a axis, 

then 

A = A, cos?y + A;sin*W + A,cosysiny 

Trigonometric transformation gives 

A = 4{(A,+A;) + (A, —A3) cos 2 + A, sin 2p} 

or 

A = m+ncos2w + psin2y 

where m = 4(A, +43); n=43(A,—A3), and p = 44s. 

Determining from experiment a series of A; values for different y;, one 

finds the optimum values of m, m, and p by the least-squares method. For 

this purpose, one seeks the minimum of the expression 

V, = ¥ (A; —m—ncos 2; —p sin 2y;)* 

Equating 0V,/0A;, 0V,/dm, etc., to zero, one obtains 

m> itn) cos2y,+p)> sin2y; = ¥ A; 

mY. cos 2p; +n >. cos? 2p; + p > sin 2p, cos 2p; = )) A; cos 2y; 

mY sin2y; +n >. sin2p,cos 2p, + p > sin? 2p; = }' Ajsin 2y; 
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Solving three equations with three unknowns, one gets the best values of 

A,, A3, and As. 

For plane bc’, we have (« = 0) 

A, = A,B? + 437° 

Denoting by g; the angle between one of the directions of expansion and 

the b axis, one obtains 

A; = A,cos? g; + A3sin? g; 

The optimum values of A, and A; are found as above by minimizing the 

expression 

Vy = ) (Ai- 42 cos p;— A; sin? ¢)’ 

Equating 0V,/0A, and 0V,/0A, to zero, one obtains 

A, > cos* g; + A3 ), cos? g; sin? g; = ¥ A; cos? 9, 

A, >, cos? sin? p; + A3 > sin* g; = > A;sin? g; 

In this way the best values of the expansion constants 4,, Az, A3, and A, 

can be found. The constant A; is found independently from two measurements 

made in the ac and bc planes. 

The principal coefficients of thermal expansion «,,, 22, and «3, and the 

angle of slope Wo of the ellipsoid axis of length «,,, relative to the crystal’s 

a axis is found from the equations 

A, + Az = 4, +433 

A, — A3 = (411-4533) COS 2Po 

As = (%11—%33) Sin 2Wo 

A, = 2 

In monoclinic crystals the ellipsoid axis «,, coincides with the 5 axis. 

The expansion tensors of organic crystals have been determined over a wide 

range of temperatures only in a small number of cases. 

Typical data for several cases are illustrated by parameter versus temper- 

ature graphs, by temperature curves of expansion tensor elements, and by 

expansion patterns and their cross sections. 

Direct comparison of the expansion tensor with crystal structure cannot, 

of course, be expected to be very successful. To explain expansion one has to 

resort to calculations. These show, quite naturally, that crystal structure is 

determined by the joint behavior of the expansion and elasticity tensors and 

the heat capacity. 
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Nevertheless, some simple relationships strike the eye when examining the 

above experimental results. It is clear, for instance, that from purely geo- 

metrical considerations expansion will always be minimal in the directions 
for which the contribution of the intermolecular distances is small. It is also 

clear that expansion will be smaller in the direction of the long axes of the 

molecules. In crystals of aromatic compounds the direction normal to the 

planes of the carbon networks often becomes important; in such directions 

the contribution of intermolecular distances is large and expansion will be 

maximal. 

Expansion patterns can be coordinated with structures relatively simply 

when there is only one molecule per unit cell. But if there are two, four, or 

more, and they are turned relative to one another in a complex manner, the 

relationship between the expansion tensor and the structure is no longer 

obvious. 

The almost complete absence of thermal expansion in the directions in 

which molecules are linked by hydrogen bonds is an expected fact. This effect 

is especially prominent in pentaerythrite crystals. 

Thus, in themselves, investigations of the expansion tensor are of limited 

value for understanding the interactions of molecules. However, without 

information on the expansion tensor, the search for and testing of models of 

solids is impossible. 

Cell parameter versus temperature curves, expansion tensor element curves, 

and the appearance of expansion patterns are shown for several crystals in 

Figs. 1-20. These data were obtained by Ryzhenkov and are reproduced from 

his thesis [1]. 
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Fig. 1. Temperature dependence of unit cell parameters of tetraphenylsilicane. 
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Fig. 2. Temperature dependence of unit cell volume of tetraphenylsilicane. 
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Fig. 3. Density versus temperature for tetraphenylsilicane. 
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Fig. 4. Temperature dependence of linear expansion coefficients of tetraphenylsilicane 
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Fig. 5. Temperature dependence of volume expansion coefficient of tetraphenylsilicane. 
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Fig. 6. (a) Structure of tetraphenylsilicane and (b) plane and three-dimensional expansion 

figures at 140 and 295°K (black area, region of negative expansion). 
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Fig. 7. Temperature dependence of parameters a and b of pentaerythrite. 
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Fig. 8. Temperature dependence of parameter c of pentaerythrite. 
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Fig. 9. Temperature dependence of unit cell volume of pentaerythrite. 
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Fig. 11. Structure of pentaerythrite and three-dimensional expansion figure at 300°K. 
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Fig. 10. Density versus temperature for pentaerythrite. 
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Fig. 12. Temperature dependence of unit cell parameters of naphthalene crystal. 
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T.°K 
Fig. 13. Temperature dependence of volume expansion coefficient of naphthalene crystal 

(broken line, measurements with quartz dilatometer). 

Fig. 14. Structure and three-dimensional expansion figure of naphthalene at 300°.K 
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Fig. 15. Expansion figures of naphthalene: (1) in plane (A0/); (2) in plane perpendicular 

to main a-axis. External figures constructed for 308°K, internal figures for 90°K. 



1. Measuring Thermal Expansion 305 

inal 

Fig. 16. Temperature dependence of volume expansion coefficient of anthracene 
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Fig. 17. Temperature dependence of unit cell parameters of dibenzyl. 
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Fig. 18. Temperature dependence of unit cell volume and density of dibenzyl. 
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Fig. 19. Structure of dibenzyl and three-dimensional expansion figure at 295°K. Shaded 

area is negative expansion along 6. 
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Fig. 20. Polar expansion patterns of dibenzyl in planes (40/) and (Ak0). 

2. MEASURING THE ELASTICITY TENSOR OF A SINGLE CRYSTAL 

The elasticity tensors of molecular crystals of low symmetry have been 

studied very little. These measurements can be made in practice only by deter- 

mining the velocity of sound traveling in different crystallographic directions. 

A fairly satisfactory method of measuring coefficients of adiabatic elasticity 

is the ultrasonic pulse method. The measurements are made so as to enable 

examination of the crystal without reference to its crystal faces. 

The basic relationships are corollaries of the equation of motion of plane 

waves, which can be written (neglecting gravitational forces) as 

06 jx,/OX, = p 07U,/dt? (2.1) 

here ¢ is the density of the medium, and JU; is the ith component of shift 

along the x; axis. 

If the elastic properties of the medium obey Hooke’s law, the system of 

equations (2.1) may have a solution in the form of a plane wave 

U; = A;exp {i(22/A)(x+my+nz—p, t)} 

where A; is the amplitude of shift of particles along the coordinate axes x, y, 

and z; /, m, and n are the direction cosines of the wave propagation direction; 

v, is the rate of propagation of the wave in the direction [/, m,n], and / is the 

wavelength. 

After mathematical transformations, the system (2.1) can be rewritten 

as [2] 

Wis —pv)A,+Ti2 A,+I,34, =0 

I. A, + In2—p0;”) A,+1,34, =90 (2.2) 

T,3A4, + 133 4, + (I;3—pv;) A, = 0 
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where I ;, is a function of the elastic constants and direction cosines 

Ty, = ey, + m7 Cog + n2c55 + 2mNC56 + 2nlc,5 + 2mci¢ 11 11 66 55 

Lr = l?¢ + mc 2 + Oe + 2mNnC 4 + 2nle46 ST 21m 46 me 66 2 

T33 = [?e55 + m7Cgq + 17C33 + 2mncz4 + 2nlc35 + 2imcy, 33 55) 33: 

Ty2 = Pes6 + m7Cyq4 + 17C34 + MN(C234+- C44) + I(C356+Ca45) + l(Cr5+ C46) 

Ts = Peis —- MC + Hicas + mn(C35+ C46) + nl(c,3+¢55) = Im(cy4+Cs56) 

Tyg = eig +m Cy6 + 172 Cq5 + mN(Cr5 4+ Cag) + M(Cy4 +056) + Im(c124+ C66) 

It is known that (2.2) can have nonzero solutions only if the determinant of 

this system equals zero, 

T,,—pv,7 Th. Ty; 

Ye T,.— py, T,3 = 0 (2.3) 

I\3 [3 T33—pv,? 

The roots of this equation correspond to the three velocities of plane 

elastic waves propagating in a random direction in an anisotropic medium. 

One of these waves is longitudinal and two of them are shear waves. But the 

waves will be purely longitudinal or purely shear only if they are traveling in 

singular directions [3]. Then the polarization vector of one of the waves 

coincides with the wave normal, and those of the other two waves are at 

right angles to it owing to their mutual orthogonality. However, in the general 

case the polarization vectors of all three waves, while remaining orthogonal 

to each other, will be oriented randomly to the direction of propagation of 

the wave front. Such waves are known as quasi longitudinal and quasi-shear 

waves. An intermediate case is also possible, where the polarization vector of 

only one of the waves is at right angles to the wave normal. The polarization 

vectors of the other two waves are then at random angles to the direction of 

wave travel. Then the first wave is purely shear, and the other two are quasi 

iongitudinal and quasi shear, respectively. 

The vectorial characteristic equation (2.3) known in the theory of elasticity 

as Christoffel’s equation, is usually used in solving the problem of finding, 

given the elastic constants of the crystal, the phase velocities of the plane 

waves, and the polarization directions in each of these waves for any selected 

direction in the crystal. 

We are interested in the reverse problem, namely, in determining the 

elasticity tensor from the elastic wave velocities measured experimentally in 

various crystallographic directions. 
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The uniform stress o,, and uniform strain ¢,; are tensors of rank two. 

Hooke’s law, generalized for a single crystal, has the form 

Ej = Sijxr TK (2.4) 

where the S;;,, tensor of rank four is called the compliance tensor. For any 

deformation component ¢;;, the right-hand side of the equation consists of 

nine terms. There are altogether also nine equations, and therefore 81 S;;,, 

coefficients. 

Equation (2.4) can be reversed, i.e., written in the form 

= Ci jx Ex (2.5) 

C;;,, 18 called the elasticity tensor. It can easily be shown that 
L 

Si int = Sixt and Cia = Cyir 

Of the 81 components, 36 are independent; the same is true of the elasticity 

tensor. 
To avoid cumbersome equations it is customary to use so-called matrix 

notation. The transition is accomplished according to the schemes 

O11 G42 931 0, G6 G5 

Org) Urry Wore || =e || 5 Way Wn 

G3 On38 933 | O05 G4 G3 

and 

1 1 
€31; &23 &33 ZEs 2&4 3 

Thus, the subscripts in the rank-four tensor are substituted according to the 

scheme 

W335 25.52 O03. 12.1 

|e ORE SE a 5 6 

Here 

Sixt = Sinn when m and n equal 1, 2, or 3 

2S; jx = Sin when either m or n equal 4, 5, or 6 

4S; x1 = Sinn when both m and n equal 4, 5, or 6 

Hooke’s law acquires the form 

€; =— S559; or 0; c= Ci; 
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The factors 2 and 4 are introduced in the S;; term, and hence need not be 

introduced in C;;. 

Thus, compliance and elasticity are characterized by square 6 x 6 matrices. 

But the matrices are symmetric, 

This follows, in particular, from formulas (2.4) and (2.5), where the elasticity 

coefficients can be expressed as second derivatives with respect to energy. 

The order of differentiation is immaterial. Hence the symmetry. Thus, in a 

triclinic crystal elasticity and compliance have 21 independent elements each. 

The transition from C;,; to S;; is accomplished by inversion of the matrix 

es =i 
Ci; = Si; 

The number of independent elements of the tensor decreases further with 

increasing crystal symmetry. 

Monoclinic crystals have 13 independent elements. The matrix (axis 2||Y) 

has the form 

Crt (Cy, Gy MO PCr st BO 

Coz Cry O Cys 0 

Cy, 0m C= 0 

Cya 09 Cae 

Cé6 

Orthorhombic crystals have nine, and cubic crystals three independent 

elements. 

To obtain an expression for compressibility, both volume and linear, it is 

necessary to invert the elasticity tensor. 

3. CALCULATING ELASTIC CONSTANTS OF SINGLE CRYSTALS FROM 

EXPERIMENTALLY MEASURED ELASTIC WAVE VELOCITIES 

In studying the elastic properties of crystals one usually uses an orthogonal 

coordinate system fixed to the crystal. We shall deal with monoclinic crystals 

whose crystallographic [b] axis is a second-order axis of symmetry and in 

which the form of the elasticity tensor |C;;| does not change on rotating about 

it. Therefore the y-axis is superposed on the crystallographic [b] axis. The 

choice of x and z axes is arbitrary in the crystallographic plane [ac]. For 

convenience in orienting the crystal, the x and z axes are selected so that the 

x axis coincides with the crystallographic [a] axis, and the z axis, with the 
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normal to the [ab] plane. (This is especially convenient if the crystais under 
study have distinct cleavage along [ab]). 

To determine all 13, independent elastic moduli of a monoclinic crystal by 
the pulse ultrasonic method, one measures the velocities of propagation of 

elastic waves in at least six arbitrary nonequivalent crystallographic directions 

[4]. As has already been said, three waves propagate in each of these directions, 

one of them being quasi longitudinal and the other two quasi shear. 

Measuring all the 18 velocities of these waves and substituting into 

Christoffel’s equation (2.3) one gets a system of 18 equations with 13 un- 

knowns. Since the velocities are found experimentally with a certain error 

(due to the apparatus used), the equations will be somewhat incompatible. 

It is necessary, therefore, to find the probabilities of the constants, and the 

accuracies of the resulting constants will differ. 

Consider the solution of this system for a concrete choice of directions of 

elastic wave propagation. 

The problem of determining the elastic constants from the experimentally 

measured velocities v, is greatly simplified if at least one of the three waves 

propagating in the prescribed direction is a pure one. 

For convenience in orienting and preparing samples, it is good practice 

with monoclinic crystals to measure sonic velocities in the direction of the 

following edges of a cube constructed on the x, y, and z axes: 

[001], [110], [010], [101], [100], [011] 

The [010] direction is singular, and all three waves propagating in it are 

pure waves. Of the three waves propagating in each of the directions [001], 

[101], and [100], one is a purely shear wave. It has a polarization vector 

extending along the singular direction [010]. Finally, only quasi-longitudinal 

and quasi-shear waves propagate in the last two directions. 

Table | lists the symbols of all the 18 measured velocities of propagation of 

the elastic waves together with the polarization for each of the waves, and 

shows the orientation of the samples. 

Having selected the directions indicated for measuring the propagation 

velocities of plane elastic waves in the crystals, Christoffel’s general equation 

(2.3) can be reduced to a maximally simple form, convenient for determining 

the tensor components |C;,|. 

For example, for propagation of the elastic waves in the direction [001], 

the direction cosines are / = m = 0, and n = 1, and hence 

Cs5— PY, 0 C35 

0 Cag — Pq 0 = 0 

C35 0 C33— pny? 
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Table 1 

DESIGNATION OF VELOCITIES OF ELASTIC WAVES DEPENDING ON DIRECTION 

OF PROPAGATION AND DISPLACEMENT DIRECTIONS. 

ORIENTATION OF SPECIMENS IN SELECTED ORTHOGONAL COORDINATE SYSTEM 

Direction Orientation of specimen 

Vv; Type of wave of propagation Polarization in coordinate axes 

v, Quasi longitudinal 001 001 

V2 Quasi shear 001 100 

v3 Shear 001 010 

v4 Quasi longitudinal 110 110 

Us Quasi shear 110 110 

V6 Quasi shear 110 001 

v7 Longitudinal 010 010 

Vg Quasi shear 010 001 

Vo Quasi shear 010 100 

Vio Quasi longitudinal 101 101 
V;, Quasi shear 101 101 

Vi2. Shear 101 010 

¥;3 Quasi longitudinal 100 100 See 

vi4 Shear 100 010 f c : 
Vis Quasi shear 100 001 LA 

Vie Quasi longitudinal 011 011 <Q 
) Vi;7 Quasi shear 011 O11 

Vig Quasi shear 011 100 sat 
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The roots of this equation are the velocities v,, v, and v; (in the notation of 
Table 1). 

For propagation of the elastic waves in the direction [110] the direction 
cosines equal / = m = ,/2/2, and n = 0. Equation (2.3) has the form 

Cy1+Co6—2p,7 Ci2+ Cee Cist+ Cue 

Ci2t+ Cee C22 + Coe —2pv,” Cr5+ C46 = 0 

Cist Cy Crst+ Cue Cs5+Cyq—2pv,” 

Here k = 4, 5, 6, i.e., the roots of this equation are the velocities v4, v,, and U6. 

We have altogether six secular equations of the third order with respect to 

the velocity of propagation. All 18 velocities are connected with the 13 C, 
coefficients. 

The calculation of C;, from the velocities of sound propagation is a very 

cumbersome task and has to be done with computers. Owing to the limited 

accuracy of the experiment, the equations may turn out to be incompatible. 

Evidently the best way is to reduce the problem to the reverse. In other words, 

the C;, are determined very roughly at first, and then refined by the least- 

squares method to yield the sonic velocities that coincide best with experiment. 

Algebraic transformations yield several simple relations between the sonic 

velocities and the elements of the elasticity tensor. For example, 

Cr2 = pv7, C33 — Cy, = pv,” + pv,” — pris — pris 

If the problern at hand is to test the theory by means of which the C;, are 

calculated, it is best to check relations similar to those written against 

experiment. 

4. ELASTICITY TENSORS OF NAPHTHALENE, STILBENE, TOLAN, AND DIBENZYL 

SINGLE CRYSTALS AT ROOM TEMPERATURE AND NORMAL PRESSURE 

Table 2 gives the velocities of propagation of longitudinal and shear waves 

measured by Teslenko [5] in single crystals of naphthalene, stilbene, tolan, 

and dibenzyl at room temperature and normal pressure. The measurements 

were accurate to about 1%. The wave propagation velocities were measured 

several times for each of the directions enumerated and for different samples. 
Some of the velocity values in a few of the samples sometimes displayed a 

spread exceeding the tolerable error of measurement. This may evidently be 

attributed to internal sample defects: heterogeneity, block structure, cracks, 

etc. The data given in the table are averages of several measurements. The 

table also indicates the absolute error involved in measuring each velocity. 
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Table 2 

VELOCITY OF SOUND IN NAPHTHALENE, DIBENZYL, TOLAN, 

AND STILBENE CRYSTALS AT ROOM TEMPERATURE AND NORMAL PRESSURE 

Velocity of sound in multiples of 10° cm/sec 

Vi, 
Naphthalene Dibenzyl Tolan Stilbene 

V, 3.34+0.02 2.56+0.02 2.48 + 0.02 2.64+0.02 

V2 1.06+0.01 1.50+0.01 2.09+ 0.02 2.32 +0.02 

V3 1.70+0.02 1.67+0.02 1.60+0.02 1.68 + 0.02 

Ve, 3.13+0.02 2.84+0.02 2.62 +0.02 2.86+0.02 

V; 1.25+0.02 1.26+0.02 1.38 +0.02 1.40+0.02 

Ve 1.44+0.02 1.60+0.02 1.85+0.02 2.03+0.02 

V, 2.94+0.02 2.49 +0.02 3.10+0.02 2.89 +0.02 

Vs 1.64+0.02 1.83 +0.02 1.66 +0.02 1.81+0.02 

Vo 1.96 + 0.02 1.40+0.02 1.27+0.02 1.40+0.02 

Vio 3.22+0.02 2.29 +0.02 3.10+0.02 3.32+0.02 
Van 1.46+0.02 1.38+0.01 1.07+0.01 1.12+1°01 

Vi2 1.63+0.01 1.82+0.02 1.45+0.02 1.70+0.02 

Vi3 2.63 + 0.03 3.04+0.02 2.64+0.02 2.84+0.02 

Via 1.91+0.02 1.54+0.01 1.28+0.01 1.45+0.01 

Vs 1.33+0.02 1.28+0.01 2.20+0.02 2.34+0.02 

Vie 2.96 + 0.03 2.68 +9.02 2.82 + 0.02 3.06+0.03 

Vas 2.26+0.02 1.08+0.01 1.20+ 0.02 1.20+0.02 

Vis 1.20+0.02 i.60+0.02 1.80+ 0.02 1.85+0.02 

It is evident from the data of Table 2 that the velocities of elastic waves in 

the crystals under study are considerably anisotropic. A complete picture of 

the velocity anisotropy in a given crystal can be obtained by constructing the 

normal velocity surface. 

In the case of monoclinic crystals the section of the normal velocity surface 

cut by the plane xz is especially important since it is a symmetry plane. 

Solving Christoffel’s equation for a wave propagating in this plane, one gets 

a triplet of numbers for each direction, corresponding to the three velocities 

of propagation of elastic waves in that direction. 

Figures 21-24 show the sections of the normal velocity surface cut by the 

plane (ac) for naphthalene, stilbene, tolan, and dibenzyl. 

It can be seen from these sections that the anisotropy of velocities is very 

considerable. Therefore, any slight error in orientation will give an incorrect 

velocity value. 
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V, 10° cm/sec 

Fig. 21. Sections of normal velocity surfaces in naphthalene single crystal cut by plane 

(ac). Here and in the following (in Figs. 22-24) circles indicate experimental points of 

velocities V, of propagation in the direction of [001], [101], and [100]. Meaning of velocities 

is given in Table 1. 

V, 10° cm/sec 

Fig. 22. Sections of normal velocity surfaces in stilbene single crystal cut by plane (ac). 
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V, 10° cm/sec 

Fig. 23. Sections of normal velocity surfaces in tolan single crystal cut by plane (ac). 

V, 105cm/sec 

Fig. 24. Section of normal velocity surfaces in dibenzyl single crystal cut by plane (ac). 

The results of recalculation of the velocities to find the elastic constants for 

naphthalene, dibenzyl, tolan, and stilbene at room temperature and normal 

pressure are listed in Table 3. The experimental error is about 2% for C,., 

C44, and Co,, and 3-4% for C,,, C33, Css, and C,3. For C,, and C,,, the 

error is about 10%, and the values of the constants C,5, Cy5, C35, and C4, 

can only be considered tentative. 
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Table 3 

ELASTIC CONSTANTS AND COMPLIANCE MODULI 

OF NAPHTHALENE, DIBENZYL, SILBENE, AND TOLAN AT ROOM TEMPERATURE 

Elasticity constants, Compliance moduli, 

units of 101° dyne/cm? units of 10-11 cm?/dyne 

Naphtha- Dibenz- Naphtha- Dibenz- 

lene ene Stilbene Tolan lene ene Stilbene Tolan 

11 7.80 9.45 9°30) 97285 1.90 2.06 2.26 1.58 

22 9.90 6.80 §.20 8.55 5.63 2.15 1.90 2.06 

33 11.90 7.20 7.90 6.45 4.72 2.09 2.44 2.01 

44 3.30 3.10 32251 2-90 3.09 3.54 3515 3.46 

55 2.10 DISS 6.40 5.45 37.85 5.25 1.57 2.14 

66 4.15 2.60 2.45 1.85 2.45 4.16 4.22 5.41 

12 2.30 3.95 5a) mes 50 — 0.46 —0.65 —0.81 —0.75 

13 3.40 4.15 570 ee —0.67 —0.74 —1.13 0.09 

23 4.45 555 4:85 3.50 — 4.05 — 0.64 —0.58 —0.88 

15 —0.6 —2.4 —0.3 0.3 0.88 1.56 —0.55 0.25 

25 —2.7 —0.8 —0.5 2 22 —0.14 0.63 —0.74 

35 2.9 —0.7 —0.5 0.9 — 11.92 —0.35 1.07 0.07 

46 —0.5 0.8 0.5 0.1 O37 a — 10 — Ooi —O13 

Table 3 also contains the compliance moduli S;; for the crystals studied. 

The matrix of elastic compliances is the reciprocal to that of C;;. In the C;; 

matrix a number of nondiagonal elements are measured with a large (up to 

30-50%) error. On passing from C;; to S;;, as shown by a direct estimate, 

the error of the initial matrix elements is distributed somewhat over all the 

elements of the S;; matrix. For this reason, great care must be exercised in 

dealing with questions of accuracy of the S;;. 

It is interesting to use the compliance tensor for characterizing the anisotropy 

of strains in the crystals, studied upon uniform compression. We are able to 

calculate compressibility in any direction under the action of unit hydrostatic 

pressure. Linear compressibility depends upon the direction. We can character- 

ize it by.a vector of definite length, which describes a certain surface repre- 

senting uniform compression. 

Linear compressibility B is related to the compliance tensor S;; by the 

expression 

B= Sill Ug] 

where the /’s are the direction cosines. 
For the monoclinic system, this pattern can be presented in the form 

B = Aalie + A,1,? A wie aE Asl, 1, 
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Table 4 

TENSOR COMPONENTS A; FOR DIBENZYL, 

STILBENE, TOLAN, AND NAPHTHALENE 

A, (10-1! cm?/dyne) 

Dibenzyl  Stilbene Tolan Naphthalene 

A, 0.67 0.32 0.92 0.78 

Az 0.86 0.51 0.42 1.12 

A; 0.71 0.73 1.21 —0.01 

As 1.08 1.15 —0.43 1.67 

here /,_, are the direction cosines of the given direction relative to the 

orthogonal coordinate system we have chosen. The tensor components 

A are expressed as follows through the compliance tensor (in matrix 

notation): 

A, = S814, + Si2+S8)3, A, = Si. + S22 + S23 

A; = S13 + S23 + S33, As = Si5 + So5 + $835 

Table 4 gives the values of A,, 45, A3, and A, calculated from the com- 

pliance moduli S;; for dibenzyl, stilbene, tolan, and naphthalene. 

1 2 3 4 

C CG GC c 

Cc Cc! Cc’ Cc’ 

b b b b 

0 10 20-10”cm?/dyne 
Sy 

Q 

> 

Fig. 25. Section of uniform compression figure of stilbene (1), dibenzyl (2), naphthalene 

(3), and tolan (4) cut by coordinate planes. 
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fy) 5 10 - 10%cm®/dyne 0 5 10A 
ae ee 

Fig. 26. Uniform compression figure of dibenzyl and arrangement of dibenzyl molecules 

in unit cell. 

An idea of the uniform compression can be obtained by examining the figure 

sections cut by the coordinate planes. Such sections are shown in Fig. 25. 

Figures 26-29 present the three-dimensional uniform compression figure and 

the arrangement of molecules in the unit cell for the crystals under con- 

sideration. 

In dibenzyl the direction of greatest compression coincides with that of the 

major axis of the molecule. This result seems fairly natural. Indeed, the inter- 

molecular vectors pointing in the direction of the major axis of the molecule 

are larger than the corresponding transverse vectors. 

0 5 10-10"? cm®/dyne 
(ee 

Fig. 27. Uniform compression figure of stilbene and arrangement of stilbene molecules 

in unit cell. 
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0 5 10-10 cm?/dyne 024 6 8 10 12 14 16A 
| [Coe Lal ee IE eS) 

Fig. 28. Uniform compression figure of tolan and arrangement of tolan molecules in 

unit cell. 

Attention is also drawn to the fact that the direction of best compressibility 

is not the normal to the cleavage plane (ab) of the crystal. Hence, the maximum 

shift of molecules upon hydrostatic compression should be interpreted as 

approachment of the closely packed layers 2, a with simultaneous slip of the 

surfaces relative to one another. In the case of stilbene and tolan, the direction 

of greatest compression is more difficult to relate to molecular arrangement, 

because their structures consist of two symmetrically independent layers of 

0 5 10-10" '""cm?/dyne 
SS 

Fig. 29. Uniform compression figure of naphthalene and arrangement of naphthalene 

molecules in unit cell. 
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identical packing. Nevertheless, in these cases, as in that of dibenzyl, the 
uniform compression figures obtained suggest that the maximum molecular 
shift due to hydrostatic pressure will occur on approachment of the closely 
packed layers 2,a with simultaneous displacement of one relative to the 
other. 

The flat naphthalene molecules are arranged in the unit cell in such a way 
that the direction of best compression corresponds to approachment of the 
molecular planes with slip along these planes. 

In the cases under consideration the uniform compression figures have the 
same appearance and differ only in size and orientation with respect to the 
coordinate axes. 

Table 5 

PACKING FACTORS OF STILBENE, 

DIBENZYL, NAPHTHALENE, AND TOLAN 

Crystal K 

Stilbene 0.720 

Dibenzyl 0.705 

Naphthalene 0.702 

Tolan 0.685 

The fact that the absolute compressibility values are symbatic with the 

packing coefficients, as follows from the data of Table 5, is of great help in 
giving the “geometrical” interpretation of these results. 

We believe that symbasis of compressibility and looseness of molecular 

packing in organic crystals is a general rule, corresponding to the undirected 

nature of intermolecular interaction. 

5. INVESTIGATION OF THE ELASTIC PROPERTIES OF POLYCRYSTALLINE 

SAMPLES 

A large number of papers have been devoted to the elastic properties of 

polycrystals. One of the crucial problems dealt with in them is that of deter- 

mining the elastic constants of a polycrystalline aggregate from the elastic 

properties of its component crystallites. Of some interest also is the reverse 

problem: How far is it possible to determine the elastic characteristics of a 

crystal from measurements made on polycrystalline samples? 

The simplest case is that of random orientation of the small crystallites 

composing the polycrystal. 
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Such an elastically isotropic medium is characterized by two independent 

elastic constants. The matrix of elasticity coefficients in this case has the form 

Ge Cio Cy of 0 0 

Gis Ca Oe) 0 0 

Ci, Can Ca, 0 0 (5.1) 

0 0 Obs @gas EO 0 

0 0 0 On aC ra: al 

0 0 0 0 Orr Cay 

The following condition of isotropy must be fulfilled 

Cag = 3(Ci1—Ci2) (5.2) 

But even in this simple case no strict way of calculating the elastic properties 

of a polycrystal from known properties of a single crystal has as yet been found. 

One of the main difficulties is due to grain boundary phenomena, consisting 

of variation of stresses and strains from grain to grain when an external stress 

is applied to the crystal. There is no exact way of taking these phenomena into 

account. 
Methods of calculating the elastic characteristics of polycrystals from the 

corresponding elastic properties of crystallites (averaging methods) are based 

on the assumption that there are no internal stresses in the unstrained 

aggregate. 

Let us consider briefly some of the methods of averaging. The first and 

simplest averaging methods were suggested by Voigt [6] and Reuss [7]. In 

both methods interaction between the crystallites composing the polycrystal 

is neglected. This makes it possible to find directly the elastic constants 

Cijx: (in Voigt’s method) and of the compliance moduli S;;,; (in Reuss’s 

method) of the polycrystal as the averages of the corresponding values of 

Cj, and S;,,, of the individual crystallites. 

Voigt’s method is based on the assumption that the strains are uniform 

(continuous) over the entire polycrystal. In Reuss’s method all the components 

of the stress tensor at the grain boundaries are assumed to be continuous. 

For real crystals, these assumptions are not true, and Voigt and Reuss 

averages can be suitable only for special models. For example, Voigt averaging 

is fulfilled for a stack of single-crystal anisotropic plates, randomly oriented 

relative to one another, and Reuss averaging, for a pack of anisotropic single- 

crystal rods with their axes at random directions [8]. In the cases indicated 

the conditions of equality of strains and stresses are fulfilled only if loading is 

in one definite direction. In other words, such models are only ideal one- 

dimensional analogues of aggregates that do not exist in reality. 
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If a polycrystal is regarded as a nonuniform elastoanisotropic medium, the 

expressions for the elasticity and compliance tensors at any point of a randomly 

selected crystal will have the form 

Cin = lip big lhe hs Cras (5.3) 

Sin = Lele her his Dyes (5.4) 

Here the quantities with primes denote crystallite constants in a coordinate 

system common to the entire sample, and those without primes, constants of 

the crystallite in its principal coordinate system. The symbols /;, denote the 

cosines of the angles between the principal axes of the crystallite in question 

and the coordinate axes. The elastic constants and compliance moduli of a 

polycrystal are obtained by integrating (5.3) and (5.4) over the entire orien- 

tation region defined by the Euler angles 

Cia = (1/827) | Ci sin 6 dO de dy 

Sia = (1/87?) | S{yasin 6 dO de dp 

After transformations, Voigt averaging gives [9] 

Ci, = $(3A4+2B+4C) =A4+ 2p 

C1. = 4(A+4B-2C) =4 (55) 

Cy, = $(A—B4+3C) = p 

Here 4 and pw are Lamé’s constants. 

The condition of isotropy, 

Cha = 4(C,,—Cy2) (5.6) 

should be fulfilled. 

The following notation is used in (5.5) and (5.6) 

3A — Cy, + Con + C33 

3B = Cy2 + C13 + Cr3 

3C — C44 + C55 + C66 

Given below are the expressions for some important elasticity characteristics 

of a polycrystal, obtained as a result of Voigt averaging, which we shall require 

in the following. 

The modulus of volume contraction 
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The shear modulus (17) 

Gy = +(A—B+3C) 

Quite similarly, Reuss averaging gives 

S,, = 4GA’'+2B'+C’) 

Sag = +(4A’—4B'+3C’) = 1/Gp (5.8) 

1/Kg = 3A’ + 6B’ 

Here 

3A’ = S,, + Sy. + S33 

3B’ = 8,3 + S3, + S12 

3C’ = Sy4 + S55 + See 

It should be emphasized again that Voigt averaging presumes uniformity of 

the deformation components at the crystallite interfaces. Actually, on passing 

across crystallite interfaces only the stress components normal to the interface 

and the shear strain components remain constant. 

Since the grains are arranged at random in a polycrystal aggregate and their 

elastic properties are anisotropic, the stresses in different grains should be 

different, and additional forces must arise to preserve equilibrium at the 

grain boundaries. In real crystals such conditions do not generally exist. 

It is clear from what has been said that Voight results will agree satisfactorily 

with experiment only if the anisotropy is very small. With increasing crystallite 

anisotropy, Voigt averaging departs from the real values, giving figures that 

are too high. 

Reuss averaging presumes that all the stress components are continuous at 

the interfaces of differently oriented crystallites, though this is true only of the 

stress components normal to the crystallite interfaces. As a result of this, Reuss 

averaging gives too low a value of the quantity measured, and the greater the 

anisotropy of the crystallites constituting the aggregate, the larger will be the 

discrepancy. 

These circumstances, namely, the excessive values obtained with Voigt 

averaging and the deficient values with Reuss averaging, were studied by 

Hill [10], who showed strictly that the rea! macroscopic values of the elasticity 

moduli lie between the average values obtained by Voigt and by Reuss averag- 

ing. The most probable values of the elasticity moduli of a polycrystal are the 

arithmetical or geometrical means of the elastic constants determined by these 

methods. The following formulas should be approximately correct: 

K = 7(Ky+Kp), = G = 3(Gy + Gp) (5.9) 
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If the measurements are carried out properly on the polycrystal (effects of 

porosity and texture eliminated) the experimental values of the constants do 

not differ from those calculated after Voigt, Reuss, Hill by more than 1-2%, 

even in the case of such strongly anisotropic materials as copper [11], corun- 

dum, etc. [12, 13]. There is reason to expect that this method can also be 

successfully applied to organic substances. 

6. MEASURING AND CALCULATING ELASTIC PROPERTIES OF POLYCRYSTALS 

In the simplest case, where the crystallites are uniformly distributed, the 

matrix of elasticity coefficients has the form of (5.1). 

The elastic constants of such a sample (there are altogether two of them) 

can easily be found from the rate of propagation of longitudinal and shear 

waves in it. 

The elastic constants are determined by the following commonly known 

formulas 

2 we 2 
PV iong = Ci; pis = C44 

The constant C,, is found from the condition of isotropy (5.2). 

If the samples are prepared from a thoroughly ground powder compressed 

into a pellet, compression under a piston wil! result in a texture of hexagonal 

symmetry [14]. Such a texturized sample is characterized by five independent 

elastic constants. The elasticity coefficient tensor in this case will be written as 

Ci1 Ci2 Ciz3 9 OO OD 

PUTCO tin eel 
13 13 C33 0 0 0 (6.1) 

0 0 06 Cz, 20 0 

0 0 0 On "Ci, 20 

0 0 0 0 OF Cee 

Here 

66 = $(Ci1 —Cj2) (6.2) 

(The elastic moduli of the texturized samples are denoted with a prime.) 

In this notation the direction of compression of the powder in the cylindrical 

mold is taken as the z axis. 

The elastic constants are determined by measuring the velocity of sound in 

three nonequivalent directions: along the compression axis (along the z axis), 

perpendicular to the compression axis (perpendicular to the z axis) and at 



326 5 Thermodynamic Experiments 

45° to the compression axis (45° to the z axis). The symbols used to denote 

the velocities depending on the direction of wave propagation and polarization 

are given in Table 6. 

Table 6 

DESIGNATION OF ELASTIC WAVE VELOCITIES IN 

GRAIN-ORIENTED SPECIMENS DEPENDING ON DIRECTION OF 

PROPAGATION AND POLARIZATION 

Direction 

Type of wave of propa- Polari- Orientation of specimen Velocity 

gation zation designation 

Longitudinal Along z Along z rf 

axis axis v1 

A. 

Shear Along z ‘ 
axis 10z v2 

Longitudinal Along y Along y 

axis axis ae, U3 
}-—~y 

Shear Along y Along z 

axis axis V4 

Shear Along y Along x 

axis axis Vs 

Quasi longitudinal Along Along 

ab ab U6 

Quasi shear Along Along 

ab cd y v7 
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The elastic constants of the resulting samples of hexagonal symmetry are 
connected with the above velocities by the relations 

2... , > pee 2 

poy” = C33, poz = Ci, pox = yy 

he , 7M tee 
pg = Cy,, pus’ = Cee 

where p is the density. 

From (6.2) we find 

Sg al ’ , 
12 ee Cit —i2C 66 

To determine the constants C/;, it is necessary to consider propagation of 

the waves in the sample with the 45° xz cut (see last line of Table 6). 

Solving the Christoffel determinant for this cut, one gets the following 
expressions for C;;: 

Cis = (—Cya) + ((Ci + Cha) — 200,71 (Ci4 -— C33) — 2p0,2T}* (6.3) 

or 

Cis = (— Cag) (Ci + Cy 4) (Chg + C53) — 2pv,"- 2pv,"}” 

By means of Eq. (6.3), C3 can be obtained from measurements of the velocity 

V7 OF U6. 

Using reduced formulas, all the elasticity moduli (6.1) of a texturized sample 

with hexagonal symmetry can be determined from the experimentally 

measured velocities v,—v,. 

To get an idea of the elastic properties of an isotropic polycrystal, the result 

should be averaged by the Voigt-Reuss—Hill method. Note that this method 

should give very accurate results in this case, because the anisotropy of elastic 

properties of the pellet is not great. The modulus of volume compression k 

and the shear modulus G are calculated from formulas (5.7). To find the same 

values in the Reuss approximation one first calculates the compliance matrix 

S;; which is the inverse of the matrix C;; (6.1), and then applies formula (5.8). 

The resultant values are found from (5.9). The elasticity of polycrystalline 

naphthalene was studied by Teslenko. The naphthalene pellets for this experi- 

ment were compressed under a load of 30 tons. The density of the pellet, 

determined pycnometrically, was 1.16, gm’/cm*. The results of measure- 
ments of the velocity of sound in the corresponding directions are listed in 

Table 7. The components of the elasticity tensor C;, and the compliance 

tensor S;, of the texturized sample, calculated from the velocities of wave 

propagation in this sample, are given in Table 8. The results of averaging of 

the compression and shear moduli (K and G, respectively) are shown in 

Table 9. 
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Table 7 

SONIC VELOCITIES IN GRAIN-ORIENTED NAPHTHALENE 

PELLET AT ROOM TEMPERATURE (10° cm/sec) 

v1 v2 v3 U4 Us V6 v7 

Table 8 

ELASTICITY AND COMPLIANCE MODULI OF 

TEXTURIZED NAPHTHALENE SPECIMEN AT 20°C? 

i 11 33 44 66 12 13 

eM 9.44 9.30 Zale 3.63 2.18 4.48 

S’ 1.38 1.71 3.68 Dells) 0.00 —0.66 

“Cj, units 101° dyne/cm?; $7, units 10~'* cm?/dyne. 

Table 9 

VOLUME COMPRESSION MODULUS k AND SHEAR 

MOoDULUS G IN VoIGT—REUSs—HILL APPROXIMATION 

AT ROOM TEMPERATURE (10!° dyne/cm?) 

ke he ka Ge GPa CH 

7. CALORIMETRY 

This classical method, of fundamental importance for investigating thermo- 

dynamic regularities, is described in a large number of books and reviews. 

In application to organic solids calorimetry is described in an extensive review 

by Westrum and McCullough [15]. For this reason, we shall restrict ourselves 

to a few remarks. 

To study thermodynamic functions it is necessary to have a C,, versus T 

curve at one’s disposal. As a rule, the heat capacity is measured at the pressure 

of the saturated vapor. This value is practically equal to C,. 

Since the internal pressure of a crystal is a value of the order of hundreds of 

thousands of atmospheres, it is quite legitimate to consider the experimentally 

measured C, referred to zero external pressure. Thermodynamic potentials 
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are determined from the calorimetric experiment by integrating the function 

C,(T). Theenthalpy equals H = |} C,, dT (to the accuracy of the term at T = 0), 

and the entropy S = Ks (C,/T) dT. The thermodynamic potential is also calcu- 

lated from information about only the C, versus T curve. At p = 0, the thermo- 

dynamic potential equals the free energy, and the enthalpy is equal to the 
internal energy. 

Thus, for normal (i.e. zero) pressure, all the thermodynamic potentials can 

be found from calorimetric experiments. 

The derivatives of the thermodynamic functions with respect to volume 

can be determined only by measuring the expansion and elasticity (cf. Chapter 

VI). 

Since the C, versus T curve has to be integrated to obtain correct values of 

the thermodynamic functions, it is essential to make measurements at low 

temperatures. This is because the possibilities of extrapolating C, to zero by 

means of the T° law are limited by the low values of the characteristic tem- 

perature. The low-temperature approximation can be carried out with 

sufficient accuracy only below the temperature of liquid helium. 

In the experiment the average heat capacity is measured for some temper- 

ature interval AT. As a rule, this gives no errors provided A7 is less than 0.1T. 

The main difficulty in designing a precise measuring instrument is creating 

adiabatic conditions. The design should be such that the only heat delivered 

to the sample is that from a special heater. There should be no heat exchange 

with the medium when the equilibrium temperature is established. 

As the calorimeter temperature rises during the measurements, the calor- 

imeter shell is also heated to minimize heat exchange. When the influx of 

energy to the sample ceases, a new temperature equilibrium is established. 

This requires a time period of the order of tens of minutes; in special cases 

(say, near a phase transition point) the time period may increase even to days. 

Apart from the adiabatic calorimeter, heat measurements are sometimes 

made in an isothermal calorimeter. 

Calorimetry experts believe that the adiabatic calorimeter has substantial 

advantages over the isothermal, in application to organic substances, at any 

rate. 
Heat capacity is a property which cannot be measured with high accuracy. 

Most authors give heat capacity values to four significant figures. However, 

the spread of heat capacity values in carrying out measurements with the same 

instruments and with the same samples is within +0.2% The measurements 

of different authors very often coincide to only 1%. Besides the inaccuracies 

of measurement, of great importance in this respect is the evidently faulty 

control of sample purity. Unless special precautions are taken, an organic 

substance obtained from a synthesist usually contains up to 1% impurities. 

Of course, this may tell strongly on the heat capacity values. 
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The unbiased errors of heat capacity measurements are more or less 

obliterated during calculation of the thermodynamic functions. For this 

reason, the entropy values may be given to four significant figures. In reality, 

the entropy (order of value 50-100 cal/deg mole) can be determined to 0.1 unit. 

An important element of thermodynamic measurement is the calorimetric 

measurement of phase transitions. The foremost requirement in such studies 

is that highly pure substances be used. A great variety of types of behavior of 

substances on passing through transition points has been described in the 

literature. McCullough [15] suggests dividing transitions into seven types 

according to the nature of the C, versus 7 curve in the transition region. 

It seems to us that many contradictions and misunderstandings would be 

eliminated if measurements of the heat of transition could be made simul- 

taneously with microscopic observation of the shift of the transition boundary 

as it moves along a single crystal. 

8. ISOTHERMAL COMPRESSIBILITY 

Compressibility measurements at constant temperatures are carried out 

directly by determining the decrease in volume caused by exerting a given 

pressure on a piston. A large number of substances have been studied. The 

results and methods have been described exhaustively by Bridgman [16]. 

Compressibility measurements of organic substances are simplified by the 

fact that their compressibilities are at least an order higher than that of 

crystals in which the atoms are linked by valence bonds. Miller showed in his 

time that the linear compressibility of paraffin at right angles to the valence 

chain is from 3 to 12 x 10° '* cm?/dyne whereas along the chain it is less than 
31 Ome 

To obtain the compressibility values corresponding to changes in size of 

the unit cell of a crystal, one either has to resort to X-ray measurements under 

pressure or to squeeze the samples thoroughly before measurements to 

eliminate possible voids (cf. Section 5). 

The direct result of the measurement is the volume contraction AV relative 

to the initial volume Vo. In published data one usually finds plots of the ratio 
AV/V against pressure. 

From these data, generally speaking, one can calculate directly the volume 

compressibility in the form —(1/V))(eV/ép);. The true compressibility as 

found in thermodynamic formulas —(1/V)(0V/dp),; can also be calculated 

from experiments. As might have been expected, the volume compressibility 

always decreases with increasing pressure. 

Direct measurements of volume contraction under pressure at constant 

temperature are especially interesting when studying the dependence of com- 

pressibility on volume. Ultrasonic measurements are both more accurate and 
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incomparably simpler in application to the elasticity tensor. However, it is 

not easy to make them at high pressures. For this reason, adiabatic com- 

pressibilities and elasticity tensors are known only for zero pressure. 

At the same time, there is no need to prove the great importance of measure- 

ments at variable pressure for the study of molecular interaction. Only in this 

way can one establish the equation of state of a body and with its aid calculate 

the derivatives of internal energy of the crystal with respect to volume at 

constant pressure and at constant volume. 

One of the main thermodynamic relations is 

(GE/V) 7 = T(a/B) — P 
At a temperature of absolute zero, the internal energy is equal to the lattice 

energy and we get a direct method of determining the dependence of lattice 

energy on pressure, and hence on volume. 

Unfortunately, no such studies have been carried out owing to great experi- 

mental difficulties. Measurements at JT > 0 give the dependence of energy on 

volume but do not enable separation of the lattice energy from the vibrational 

components unless additional assumptions are made (see also Chapter VI). 

Table 10 

ISOTHERMAL COMPRESSIBILITY £ OF SOME CRYSTALS [(cm?/dyne) x 107 14] 

P (kbar) 

t OPE MO IP IEG IRS AAU Ip? 

Substance 

Naphthalene 1.88 1.28 1.05 0.89 0.74 0.60 0.50 0.45 0.41 0.38 0.36 0.36 

Anthracene 1.73 1.06 0.88 0.76 0.66 0.58 0.52 0.45 0.41 0.36 0.34 0.33 

Urea 1.44 0.79 0.64 0.73 0.59 0.52 0.47 0.43 0.40 0.37 0.36 0.34 

Hexamethylene- 

tetramine 1.22 0.88 0.76 0.68 0.61 0.55 0.50 0.45 0.43 0.39 0.35 0.33 0.29 

0.28 0.28 

Anthraquinone 1.18 0.95 0.76 0.64 0.58 0.52 0.48 0.44 0.40 0.36 0.34 0.34 

Some of Bridgman’s data on measurements of the volume isothermal com- 

pressibility of organic substances are given in Table 10. Comparison of the 

data for naphthalene with the value of 6;, measured ultrasonically and re- 

calculated to 8, shows that these values agree satisfactorily. 

9. MEASURING THE HEAT OF SUBLIMATION 

Comparatively few results of direct measurements of the sublimation heat 

of organic crystals have been published. Sublimation heats can be determined, 
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as a matter of principle, by direct measurement of the amount of energy 

required to evaporate a given amount of substance in calorimeters similar to 

those used for determining heat capacity. In these measurements sublimation 

should be effected in such a manner as to maintain thermodynamic equi- 

librium. Delivery of electric energy and removal of the vapor should be so 

balanced that the calorimeter is always approximately at a constant temper- 

ature. Besides, the system should operate so that there is no dead space in it; 

the volume initially occupied by the solid specimen should not be filled with 

vapor at the end of the process and no changes in temperature should occur. 

The problems involved in direct determination of sublimation heat still remain 

unsolved. Usually sublimation heats are determined from the temperature 

dependence of vapor pressure above the crystalline phase, meaning the 

pressure of the gaseous phase in equilibrium with the condensed phase. To 

distinguish between vapor pressure in equilibrium with a solid and equi- 

librium pressure above a liquid one uses the term “sublimation pressure.” 

The most popular of the existing methods of measuring saturated vapor 

pressures are: 

(1) Static methods, which reduce directly to measurement of the saturated 

vapor pressure at a given temperature, there being practically a constant 

equilibrium between the condensed phase and the vapor. The equilibrium 

pressure is determined directly by means of a mercury, ionization, spiral, 

membrane, or other pressure gauge. 
(2) Method of vapor transfer by a flow of inert gas (streaming method). 

A flow of an inert gas is passed over the substance, preheated to a definite 

temperature, which carries the vapors of the substance into a condenser. The 

velocity of the stream is adjusted so that the gas becomes saturated in the 

vapors of the substance under study. Since complete saturation of the gas is 

difficult to achieve, this method does not give very accurate results. 

(3) Method of evaporation from an open Langmuir surface. This method 

is based on determining the rate of evaporation of the substance from an open 

surface under vacuum. The mass loss per unit surface area of the substance 

per unit time is given by the relation 

G = ap(M/2nRT)” 

where a is the coefficient of accommodation on evaporation (Langmuir 

coefficient). A disadvantage of this method is that the coefficient « must be 

known. 

(4) Knudsen effusion method, based on measuring the rate of efflux of 

the vapor through a small opening from the space containing the saturated 

vapor. The disadvantage is the difficulty of constructing a cell with definite 
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parameters. If possible errors are taken into account, the Knudsen method is 

the most reliable one for low vapor pressures. 

The initial equation for calculating the vapor elasticity at any temperature 

is the Clapeyron—Clausius equation based on the second law of thermo- 

dynamics. This equation gives the relation between the pressure and temper- 

ature along the phase equilibrium curve. From the condition of phase 

equilibrium in a two-phase, one-component system follows the equation 

dP/dT a (S, —Si)/V; —V3) 

where S,, S,, V;, and V, are the molecular entropies and volumes of the 

two phases. In this formula the difference S,—S, can conveniently be ex- 

pressed through the heat of transition from one phase to the other. This 

transition occurs at constant pressure and temperature. 

Substituting H = 7(S,—S,), we find the Clapeyron—Clausius formula 

dP/aT = H/T(V,—V,), | dP/dT = H\(TAV) 

In the case of vaporization (evaporation or sublimation) this formula can be 

simplified. Consider the case of equilibrium between a solid or liquid and its 

vapor. Since the volume of gas V; is usually much larger than that of the 

condensed phase V,, the latter may be neglected, 1.e., 

dP/aT = H/TV> 

Further, considering the vapor an ideal gas, one may put V, = RT/P, which 

results in 

dP/aT = HP|RT? 

or 

dP Ve di. HN 
— = ——,, InP =—-—-+8 
1 ee ed B RT 

In temperature intervals wherein the heat of transition may be considered 

constant, the quantity H/R can be denoted by A, and then the formula 

fiers aye 

determines the change in pressure of the saturated vapor with temperature. 

This formula is employed in experimental determinations of sublimation 

heats. 
The experimental determination of the saturated vapor pressure dependence 

on temperature from the rate of efflux of the vapor through a small orifice 

reduces to the following. It is supposed that the amount of gas passing out of 
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a small orifice in the vessel wall is equal to the amount of gas exerting pressure 

on an equal area. If the number of molecules contained in unit volume is n 

and their mean velocity is 6, the number of impacts of the molecules per unit 

area of the wall can be calculated by integrating the Maxwell distribution [17]. 

The total number of impacts per unit wall area per unit time equals 

y = P/)(Q2QnMT)” 

where M is the molecular weight and T is the temperature. The corresponding 

mass of molecules (mass of gas) is obtained by multiplying by the mass of one 

molecule. The amount of substance in grams will be 

G = 5.833 x 1072P(M/T)* 

The pressure in this formula should be in millimeters of mercury. 

If the orifice allows all tiie molecules incident on its area to pass through it, 

then G in the previous formula is equal to the mass of substance passing 

through the orifice. Evidently, the smaller the wall thickness compared to 

the diameter of the orifice, the better will this condition be fulfilled. At the 

same time, the presence of an orifice iri the vessel containing the substance 

disturbs the condensed-phase—vapor equilibrium. The deviation from equi- 

librium, i.e., the difference between the saturated vapor pressure and the 

pressure found by the effusion method, depends on the diameter of the effusion 

orifice. To reduce or entirely eliminate the deviation from equilibrium, it is 

necessary for the flow through the orifice to be “‘molecular,”’ i.e., for the free 

path of a molecule L to be equal to or greater than, in order of magnitude, the 

orifice radius: L > r. Under such cenditions the rate of flow of the gas is no 

longer determined by collision of the molecules with each other (as at ordinary 

pressures) but by their collision with the tube walls. But if the area of the orifice 

is so large and the pressure so high that the flow of the gas ceases to be a 

molecular flow, Knudsen’s formula cannot be used. 

Thus the orifice is made small and a correction is introduced to make 

allowance for part of the molecules, those obliquely incident on the orifice, 

being reflected back from the inner side wall. 

The correction coefficient can easily be calculated by assuming elastic 

collision. For 0 <//r < 1.50 (/ being the wall thickness and r the orifice 

radius) it is equal to 

K=(1+4@2r))~ 

But the impact is not elastic and complex absorptional interactions are 

possible. This is the weak spot of the Knudsen method, which makes it 

necessary to introduce one more coefficient into the formula, with no hope of 

determining it theoretically. Most authors assume it equal to one. 
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Table 11 

SUBLIMATION DATA FOR ORGANIC CRYSTALS 

Compound Formula APA) H, (kcal/mole) 

Normal paraffins 

Methane CH, 90 2.20 

Ethane C2H¢s 90 4.90 

Propane C3Hs 86 6.81 

Butane C4Hi0 107 8.57 

Pentane Cs5H,2 143 10.03 

Hexane CeHia 178 PATS 

Heptane Cr7Hi6 183 13.83 

Octane CsHig 216 16.27 

Nonane CoH20 219 17.82 

Decane CyoH22 243 20.26 

Undecane C,,H24 236.6 21.82 

Dodecane (Chal ely: 263 24.30 

Hexadecane Ci6H34 291 32.24 

Cycloparaffins 

Cycloprepane - C3H. 145 6.99 

Cyclobutane , C,Hs 145 8.71 

Cyclopentane CsHio 122 10.19 

Cyclohexane CeHi2 186 1S 

Cycloheptane Cr7Hi4 134 12.78 

Cyclooctane CsHie6 166 14.05 

Cyclotetradecane C14H30 320 32.0; 21.0 

Polycyclic aromatic compounds 

Benzene CeHe 10.7 

Azulene CioHs 16.2 

Naphthalene — Crous STEVE 188 MOS 

Anthracene C,4Hi0 24.4: 23.3: 22.8 

Phenanthrene C,4Hio 20.7 

1, 2-Benzanthracene CisH;2 28.8 

Tetracene CisHi2 29.8; 28.1 

Triphenylene CisHi2 25.6 

Pentacene Co2Hi4 BUA Sees 

Coronene C24Hj2 30.7 

Tribenzonaphthalene Cr6Hie 33.9 

Tetrabenzoperylene C34His 28.2 

a nn LUE 
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Thus, the pressure of interest in millimeters of mercury is found from the 

loss in weight of the sample G by means of the formula 

P = 17.14(G/aKAT)(T/M)” 

where A is the area of the orifice in square centimeters; G is the change in 

weight, in grams; ¢ is the time of effusion; and « is a coefficient depending on 

adsorption of molecules on inner walls of orifice. 

By varying the temperature of diffusion we get the experimental dependence 

of saturated vapor pressure on temperature. The experimental points are 

treated by the least-squares method, bearing in mind the equation In P = 

—(A/T)+B, given above. Here A = H/R, and hence the sublimation heat 

in calories 

H = 4,575A 

The heat of sublimation thus found is in the following relation to lattice energy: 

—L = AH, +2RT + 3RO 

where 3RO is the energy of the zero-point vibrations in the Debye approxi- 

mation; 2RT is the difference between 6RT, the energy per molecule of solid; 

and 4R7, the energy per molecule of gas. 

In concluding this section we give in Table 11 data on the sublimation of 

some groups of organic crystals. 
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Chapter VI 

The Theory of Thermodynamics 

1. GENERAL RELATIONSHIPS 

a. Scalar Form 

The thermodynamic properties of a substance, i.e., the behavior of a body 

when energy in the form of heat or work is transferred to it, are fully described 

if the directly measurable quantities are known, such as volume V and any of 

heat capacities, say C,,, both these quantities being functions of two parameters 

of state, for example, p and T. 

As is known from statistical physics, the functions V(p, 7) and C,(p, 7) 

are not independent. For a complete description of the behavior of a body, it is 

sufficient to have information about one of the thermodynamic potentials 

given as a function of two variables of state. It is most convenient to start by 

considering the so-called free energy of a body F specified as a function of 

volume (per mole or molecule) and temperature. The function F(V, 7) is 

convenient because it is associated with the structural model of a body in the 

simplest way. Namely, 

F=-—-kTInZ 

where the sum over states Z can be calculated if the values of the energy 

levels of the system E,, and also the dependence of all the £,, on volume 

337 
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are known: 

a y e Em \/kT 

m 

If F(V, T) is specified, then the values of all the thermodynamic quantities 

measured can be obtained by differentiation. As is known, these relations are 

arrived at in the following way. 

The first law of thermodynamics states that a change in the internal energy 

of a body is equal to the sum of the work done on it and the heat supplied 

to it: 

dE =dQ+dA 

The amount of heat absorbed by a body is an inexact differential, but 

dS = dQ/T is an exact differential according to the second law of thermo- 

dynamics; the state function S is called the entropy. Introducing the free 

energy F = E—TS, we get 

dF = —SdT — pdv 

From this we have the equalities 

S=—(F/0T), ._p=-—(OF/eV)7, and (dS/OV); = (Cp/eT)y 
(1.1) 

If F = F(V,T) is known, the second relation in (1.1) will give the state 

equation for a body p = f(V, 7), and from the first equation we can find any 

heat capacity by way of further differentiation 

C, = T(@S/0T),, Cy = T(@S/@T)y (1.2) 

etc. 

An experimental investigation of the state equation for a body is a difficult 

undertaking. At best we have at our disposal data on the linear cross sections 

of V(T) and V(p). These functions are generally characterized by their 

derivatives: the isobaric coefficient of volume expansion 

= V (CVE), 

and the isothermal compressibility 

Br = —V~*(@V/6p)z (1.3) 

Among the heat capacities, we choose C, for measurement. Here, again 

because of practical difficulties, we usually have information on these quan- 

tities as functions of one variable. The quantities « and C, are known, as a 

rule, as functions of temperature. Isothermal comrressibility measured on a 
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press is determined as a function of pressure, and adiabatic compressibility 

Bs = —V~* (6V/ép)s 

measured from the velocity of sound is known to be a function of temperature. 

Having a model of a body, we shall work out an expression for the free 

energy Fas a function of volume and temperature. By direct differentiation we 

obtain the values of the isothermal compressibility, expansion coefficient, and 

heat capacity C, as functions of V and 7, after which we can compare theory 

with experiment. Thus, using the second equation from (1.1), we get 

1/By = V(@?F/OV*)y (1.4) 

The quantities F, V, and heat capacities are convenient to determine per mole 

of a substance. The first of Eqs. (1.1) yields 

Cy = —T(@F/0T?)y (1.5) 

And, finally, the third equation from (1.1) is transformed, with the help of the 

relation 

(OV /ap)7 (Op/OT )y (OT/0V), = —1 

which is valid for any function V(p, T), into the form 

_(dS/V) 7 = —0°F/aV OT = a/Br (1.6) 

We thus have * 

1 ?F/OV OT 
= —— —_—___ Iled/ 

* FeV? ern 

If the values of B; and C, are needed for comparing with experiment, we 

shall resort to the auxiliary equations 

Cr- Cy = T(a?/Br)V (1.8) 

Bs/Br Fe Cy/C, (1.9) 

Bs = Br- (Tx?V/C,) (1.10) 

To find a relation between C, and Cy, we pass over from the variables p 

and T to V and T. Let V = f(p, T). We-write the function S(V, T) in the form 

S = S[f(p,T),T]. We have 

(8S/8T), = (0S/@f)r GOT), + (8S/2T), 

= (0S/AV)7(QV/OT), + (AS/0T)y 

Substituting (1.6) into the last expression yields (1.8). Similarly, writing 



340 6 The Theory of Thermodynamics 

V=V(p,T)asV=V[p,f(S,p)], we get 

(oV/dp)s = (OV/Of), (Af/Op)s + (OV /ep) 

= (6V/0T),(6T/Op)s + (6V/Op) 7 
Considering that 

(0T/0p)s (OpldS)7(0S/6T), = —1 

and, taking into account (1.6), 

(0S/dp)7 = (0S/0V)7 (GV /Op)r = —(OV/0T), 
we obtain 

(7) _ (V/6T), 
op];  (AS/0T), 

(=) = (OV/dT),° , (=) 

dp/s (dS/0T), Op /r 

which coincides with (1.10), as follows from the definition (1.3). Equation 

(1.9) results from (1.8) and (1.10). 

In this section we summarize all the principal scalar relations that will be 

needed to verify theory or to calculate the quantities that have not been 

measured directly. 

Indeed, if the proposed model gives the free energy as a function of V and T, 

we can compute, by means of Eqs. (1.4), (1.5), and (1.7), the isothermal 

compressibility, the heat capacity C,, and the expansion coefficient. By using 

these quantities and Eqs. (1.8) and (1.10), we can also determine adiabatic 

compressibility and heat capacity C,. 

We can solve the reverse problem, i.e., find any thermodynamic function 

from the measured data, with an accuracy of up to the value of the energy at 

the absolute zero of temperature. For this purpose, the quantities C,, «, 

and £ must be measured over the entire interval of temperatures and pressures. 

For processes taking place at normal pressure, 

that is 

Te Te 

= [“(c,/T) at, ji SI, i C, dT 
JO 0 

The values of C,—Cy obtained by experiment according to (1.8) permit 

us to find the work of expansion. Indeed, for p = 0 

dQ = dE = C,dT + (0E/aV) dV 

It is the second term that represents the work of expansion. It is given by 

(GE/AV) dV = (C,—Cy) aT 
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When a crystal is heated from zero to 7, this work is equal to 

| (Ta2V/B) aT 

If we assume that the crystal energy may be represented by the sum of 

E*'* and the lattice energy U(V), the measurement of C,—Cy as a function 
of T will make it possible to compute the increment of the lattice energy 

(provided the variation of the vibration frequencies with temperature is not 

great) since 

| @evien dT = U—U, + AVE” (1.11) 

b. Tensor Form 

When a substance in the form of a single crystal is used, we can carry outa 

considerably more fruitful experiment than the one described above. The 

expansion tensor can be measured relatively easily at constant (zero) pressure: 

Oy = (0¢,,/0T), 

as well as the adiabatic tensor of elasticity cjj,, (also at p = 0) by measuring 

the velocity of sound. 

In the anisotropic case the work per unit volume is determined from the 

expression > 0;;dé;;. The internal-energy and free-energy differentials there- 

fore have the form 

The following thermodynamic relations arise in this case: 

ay = VN OF|eeipr, — (B64)0T)g=VN(ASI00)r 
V-1(0S/6e;;)r = —(00;/0T). . 

Since the isothermal elasticity 

Cit = (06; ;/0&i)7 

we have 

Chie = V-'@ Foe; O&x1) 7 

On the other hand, 

Op = V~* (GE/0e,a)s 

and, consequently, the adiabatic elasticity 

Cr V—* (07 E/0€;; 0€,1)s ijk 
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A relation analogous to (1.6) is obtained by substituting the expression for 

Hooke’s law into (1.12) for (0S/d¢;;)7. We get 

0S/de;; = —V YD) Cha Ms (rig) 

Thus, knowing, as earlier, how the free energy varies as a function of 

temperature as well as the shape and size of the unit cell, we can compute all 

the properties of the crystal. 

The isothermal elasticity and entropy are obtained by direct differentiation. 

By differentiating the entropy, we arrive at relation (1.13) from which the ex- 

pansion tensor is found. The heat capacity is also determined by direct 

differentiation of F: 

C, = —T(@*F/éT”), 

Here knowledge of the relations between the heat capacities c, and c, 

(heat capacities at all constant stresses and at constant volume and shape, 

respectively) as well as between the adiabatic elasticity c® and the isothermal 

elasticity c’ is also required. 
The derivation of these relations is quite analogous to that of Eqs. (1.8) 

and (1.10). For convenience, not only the elasticity tensor c;;,, but the inverse 

tensor 

Sijkt = Cina 

should be used. 

After appropriate calculations we get 

pu = VI oc non en (1.14) 

Sixt — Sijr = — %ij %Xa(TV/C,) (1.15) 

Equation (1.10) can readily be arrived at through the summation of (1.15). 

To do this, use should be made of a formula where f is represented in terms of 

the elements of the tensor of compliances. The derivation of such a formula 

presents no difficulty. 

For triaxial compression, Hooke’s law assumes the form 

oS = Pei jx Ox = —PSijxi 

But volume compression is equal to ¢;;, 1.e., 

big = — PSiikk 

whence 

B= Siti1 + $2222 + $3333 + 281122 +82233 + 53311) 
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2. SPECIFIC FEATURES OF THE THERMODYNAMICS OF MOLECULAR CRYSTALS. 

INTRODUCTION OF THE CHARACTERISTIC TEMPERATURE 

a. Splitting up the Free Energy into Intermolecular and Intramolecular Parts 

To predict the behavior of an organic molecular crystal, it is expedient to 

split up its thermodynamic functions into intermolecular and intramolecular 

components. 

The free energy of a crystal may be written as 

f= U+KT ¥ In(i=e**"") (2.1) 

This is the so-called lattice component of free energy. For molecular crystals, 

however, the total free energy is reduced to the lattice component of free 

energy f because of the absence of electron exchange. The lattice energy U is 

equal to the potential energy of interaction between molecules. This quantity 

was discussed in detail in Chapter 2. The lattice energy is a function of the 

parameters of the unit cell of a crystal (at a given symmetry of the arrangement 

of molecules). 

The summation in (2.1) is carried out over all the frequencies w of normal 

vibration. We can always easily separate intramolecular frequencies from 

intermolecular ones and write 

f= PD A 

where F is the.intermolecular or crystal part of free energy; and f,,,, is the 

intramolecular part which can successfully be calculated, as is known, from 

the oscillator formula. 

Evidently, to the crystal part of the free energy belong 6NZ frequencies 

(N = number of cells and Z = number of molecules in a cell), and to calcu- 

late F it is necessary to know the path of the 6Z dispersion surfaces w(k). 

Neglecting the zero-point energy of the vibrations, which is much lower than 

the lattice energy, we may write F as 

Fea ete yin (= ef Sees
) 

= Us + kT Y In[2 sinh(ho,(k)/2kT)] (2.2) 
k,s 

where s stands for the enumeration of the branches of the dispersion surfaces. 

In practice, in order to compute the vibrational part of F, its contribution to 

F must be calculated for a relatively small number of points of reciprocal 

space and an average value taken. 

A theoretical calculation of the dispersion surfaces is a time-consuming 

procedure; the same also refers to experimental research (e.g., by the method 

of neutron scattering). Investigation of the possibilities of simpler models 

therefore acquires importance. 
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b. Debye’s Expressions for the Thermodynamic Functions 

It is well known that the so-called Debye approximation is very useful in 

the physics of crystals. The essence of Debye’s approximation consists in 

replacing the seemingly quite individual spectrum of lattice vibrations by a 

simple one-parameter dependence. The free energy (2.1) may be written in 

the form 

j= Oe, + kT | flo)in( =e" dw 

In this equation f(@) dm signifies the number of frequencies lying in the interval 

from @ to w+dw. Debye showed that at very low temperatures f(@) ~ w?. 

At high temperatures all kinds of waves are excited. An attempt may there- 

fore be made to replace a real spectrum by a parabola Aw? which is cut off 

at a certain frequency @,,,,. In this case 

Omax 

A I w? dw 
0 

is an integral with respect to the spectrum which must be equal to the total 

number of normal vibrations. Debye considered atomic lattices and set this 

integral equal to three times the number of atoms. The crystal part of the 

energy of a molecular crystal refers to molecules each of which has six degrees 

of freedom instead of three. Consequently, in our case 

A } oO dae = 6N 
0 

where WN is the number of molecules in the crystal (in one mole). Hence the 

constant A = 18N/o3,,. and 

Omax 

F=U,,, + I8RT/o-,,. I w? In(1—e7 PT) dey 
0 

The only spectrum parameter is the maximum frequency @,,,, Or, what is 

more convenient, the characteristic temperature 

oO = hOmax/k 

Integrating by parts and introducing the Debye function 

Seis 
D(x) ey i SST dz 

x 0 eé —| 

we get for the free energy of a crystal, composed of particles with six degrees 
of freedom, 

F = Uy, + 2RT[3In(1—e7®/7) — D(@/T)] 
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After differentiation we obtain 

E = U,,, + 6RT D(O/T) 

S = 6RIn(1—e ®/7) + 8R D(O/T) (2.3) 

Cy = 6RLD(O/T) — (O/T) D'‘(O/T)] 

The behavior of the Debye functions at high temperatures (@/T < 1) and 
at low temperatures (O/T > 1) is of interest. 

The characteristic temperatures of many organic crystals are close to 100°K. 

Thus “high” temperatures are, strictly speaking, unattainable—the crystal 

begins to melt. The high-temperature tendencies of the quasi-harmonic 

functions, however, show up quite distinctly in experiments, as will be shown 
below. At O/T <« 1 

D(@/T)=1 and In(1—e~®/7) = In(@/T) 

Consequently, 

F = U,, + 6RT1n(O/T) — 2RT, Cy, = 6R 

E = U,, + 6RT, S = —6RIn(O/T) + 8R 

The approximation for low temperatures becomes valid only at temperatures 

lower than the boiling point of liquid hydrogen. At O/T > 1 

Doz majo. but? sin(l—e- °'7)'~ 0 

Consequently, 

2 RT* GieRiT a 
F= U,, fee? Pe feller sees 3 

he a 24n*RT* 
S=—=K, C= 5 9 50 

It is important to note that the low-temperature formulas must be fulfilled 

rigorously. Unfortunately, the exact fulfillment of these formulas takes place 

for temperatures considerably lower than 0/4, i.e., for temperatures lower 

than the boiling point of liquid helium. 

The high-temperature approximation would be better in the absence of 

anharmonicity. 

If © is assumed to be a constant, it will mean that the vibrational spectrum 

is invariable with respect to the state parameters. Such a crystal model may be 

described as harmonic. This approximation is hardly of any interest. If 

© = const, then C, = Cy and thermal expansion does not occur. It is, how- 

ever, not difficult to dispense with this restriction. 
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c. The Quasi-Harmonic Model. Scalar Form 

We have said that the crystal spectrum is replaced by a curve with one 

parameter. This is what was done by Debye. There is no need, however, to 

consider © a constant. The energy levels and hence the frequencies of the 

normal vibrations, and, consequently, the characteristic temperature, may be 

regarded as functions of the size of a unit cell. This model is called quasi 

harmonic. It may be described in two variants. First, in scalar form: The 

characteristic temperature and the lattice energy are treated as functions of 

volume per molecule. And second, in tensor form: The quantities © and U 

are functions of the parameters of the crystal cell. 

Naturally, we shall start with the simpler model. Since the entropy and heat 

capacity Cy are derivatives of the free energy at constant volume, the quasi- 

harmonic functions for E, S, and C coincide with Debye’s expressions (2.3), 

namely, 

E = U+ 6RTD(O/T) 

S = —6RlIn(1—e 97) + 8RD(O/T) (2.3’) 

Cy = 6R[D(O/T)—(9/T) D'(O/T)] 

(We remind the reader that these expressions are written for the crystal parts 
of the thermodynamic functions.) 

Let us now find the bulk modulus (the modulus of uniform compression) 

1/B; =V(6?F/dV7),. We are to seek the first derivative of the free energy 

OF e YT GO ©\cO aU 
—]} = 6R——_—~— — —- 2RD'| —)— + — 
(7), jays dara) (2) OV as OV 

For Debye’s function D(x), however, the following relation holds true: 

D(x) = 
xX D’ 

paar) (2.4) 

Using (2.4), we get 

OF oU 10 (3) 0U 0In® oO 
Se ee ORT Da eae sateen yp) (2k (Fr), V" OV (7) aa 0 AR: o( ) 

We now introduce the Griineisen constant 

y = —(V/©)(dO/dV) = —Valn@/aVv 

6F\ _0U 6RTy (© Py 
OV aor V E C> 

Then 
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Differentiating again with respect to volume and multiplying by V, we obtain 

the isothermal bulk modulus of elasticity: 

fee (S) 
Br ov*}r 

a?U #In©  /e éne\  /e = V| —5 + 6RT— D( —) +6 (= ; ase ontop A(z) +e80("G) °(F)| 9 
Let us now calculate the volume expansion coefficient. According to (1.6), 

a = B,(0S/0V) 7 

But 

(0S/0V)7; = (0S/0©) (6O/aV) 

The entropy S, like a number of other thermodynamic functions, depends 

only on the relation x = ©/T. For such functions, the following equation 

holds: 

ate or 
30. © oT CoN 

Using this relation for evaluating the entropy, we get 

That is, 

“= YBa — — B,C, dln O/ov 

Finally, we have 

: ; C) ain@\? _ /@\]"3 re er Cae! nO (2) + 6x0 n ) »(2)| 
VW |av? av 7 OV 7 

[o8)- 200) 
Heat capacities at constant pressure can be expressed in terms of Cy and a. 

Indeed, 

os 0S 00 (eV d\lnO 

ote (7) 80 aV (=) i 
It follows, incidentally, from this equation that © falls with increase of 

volume (y>0). This constitutes an indispensable feature of the quasi- 

harmonic model. 
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The heat capacity C, can, of course, be expressed in terms of the functions 

@(V) and U(V) with the aid of the thermodynamic relation (1.8) as well. 

The adiabatic compressibility is defined as 

Bs = By — aV/Cyy (2.8) 

One can also deduce directly an expression for (1/f8;)—(1/f,7) (see below). 

Thus, knowing the dependence of the lattice energy on the volume per 

molecule U(V) and the volume dependence of the characteristic temperature 

©(V), we can compute in the quasi-harmonic approximation all the thermo- 

dynamic functions of a crystal. 

The functions O(V) and U(V) are not, however, independent. In fact, it is 

the state equation (2.5) for a crystal 

au éne /e Se ORG ed Ye les a (7) 
that gives this relation. 

Most experiments are conducted at atmospheric pressure; since 0U/0V > 

1 atm, the following relationship between O(V) and U(V) holds true: 

dU one (2) --Ee 

if 
— = —6RT 

OV 
D ay av bE (2.9) 

where E” is the Debye energy for particles with six degrees of freedom. 

In spite of the fact that room temperatures are not quite “thigh” for the 

majority of organic crystals, this relationship is still valid with an accuracy of 

up to 10-20% (for 7/O ~ 2-4). It is therefore useful to write down simplified 

relations for the high-temperature quasi-harmonic approximation. For 

D(@/T) = 1, In(l—e~®!7) = In(@/T) we have 

F = U+6RT In(@/T)—2RT,  S=—6RIn(O/T)+8R 

E> 0 ORT, Cy = 6R 

I aU 6? In© 
— = V| —~ + 6RT—_—— By EF <= wy? | (2.10) 

_ 6RéIn© ae Pe ie In@ |7! 

TF Sa a av? 

The state equation now assumes the form 

oU 0In® 
— = —6RT 
OV OV 

i.e. U=—6RTIn(©/@,) + Up. 
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Taking a naphthalene crystal as an example, we will show below the degree 

of validity of the quasi-harmonic approximation and check the usefulness of 

the formulas given in this section. 

Their successful application for the deduction of the thermodynamic 

functions of crystals by the atom-atom potential method will be possible only 

for cubic crystals. Only in this case can the functions U(V) and O(V) be 

unambiguously computed from the law of interaction of molecules. Knowledge 

of these two functions enables us to introduce the temperature, for example, 

with the aid of Eq. (2.9). And this gives us a knowledge of all the thermo- 

dynamic relationships. 

d. The Quasi-Harmonic Model: Tensor Variant 

An investigation of the model in which the expressions for the free energy 

and its temperature derivatives are in the same Debye form, while the lattice 

energy U and the characteristic temperature © are treated as functions of the 

parameters of a crystal unit cell, is of interest. It is common practice to specify 

the size of the cell at absolute zero and to regard U and © as functions of the 

elements of the cell strain tensor ¢;,. Thus, U and © will be functions of six 

variables in the case of a triclinic crystal, of four variables for a monoclinic 

crystal, of three variables for an orthorhombic one, etc. 

We are to find expressions for the tensors of expansion and elasticity 

(isothermal as well as adiabatic). This problem is solved by methods similar 

to those just described. 

Using property (2.4) of Debye’s function, we obtain 

dF) _ 80 , gpp2n® p(2 
OfinJr OF i Obi i 

0InO O ES ge ee 
O€i4) 7 omy ei, I 

For the isothermal tensor of elasticity, we get 

ae OF 

ae GE, Ob) Ob) 7 

eu #ino© cove 0lIn® dInO (3 
———. 6RT D 6RO D'| — 

~ 6; j OF i 06; ; Cy Ge 0; Ob ip 

We now pass to the computation of the adiabatic elasticity. For the difference 

i» = E-U, the following relation holds: 

Ona a ian tied oT 

a0 /; 60 éT \GO/s 

E vi 
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If the process is isentropic, we have 

dS = (0S/0©@) dO + (0S/0T)dT = 0 

from which it follows that 

(6T/0©), = T/O 

By differentiating E,,, = 6RT D(©/T), we get 

(OE, ;,/09)s eas Ey in/O 

Now we have 

OEvin _ 0E,i,\ 0O = 0lInO 

dé,  \ 00 /5 de, Boss 

Ein *In@ | din@ din 

eee Cen Genn cee Coes 06, O& 

Hence 
s __@U | (#In® An@eno)\,_(@ 
ijkl — OE, OF 1 OE, OF j1 OE, 0&) T 

The difference between the adiabatic and isothermal moduli of elasticity is 

written in the form 

oln© dlnO 

0&, 081 

By using the above reasoning one can, of course, obtain a formula for the 

adiabatic bulk modulus of elasticity: 

1 of OSes d*In© | éin®\? pt 2) 

Ben OV av? 6V T 

and a formula for the differences in the moduli: 

| | éIn®\? 
— —— = V| ———]} TC 
Bs Br ( av i 

This formula is of course equivalent to (2.8). 

Expression (1.13) for the quasiharmonic model becomes 

aS 60 
80 a6, 

ECS Ss Tio 
Cixi ma Cine = 

=-V XY, Cina Get 

oln® 
Cy ad Vo Cina Gen 

ij 

The last expression may be used for comparing the tensor ln ©/¢;; calculated 

by the atom-atom potential method with the experimental data. 
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3. EXPERIMENTAL CHARACTERISTIC TEMPERATURE 

The concept of the characteristic temperature of a solid body appears when 

we introduce the Debye model. There is of course always the possibility of 

representing the actual spectrum of a crystal by a parabola cut off at a certain 

maximum frequency, so that the areas of the actual and Debye spectra are 

equal. The characteristic temperature © = haw/k obtained in this way will 

be a state function, like any thermodynamic function. 

Determination of © by experiment through the measurement of the actual 

spectrum of a crystal, however, is a very inexpedient procedure since the 

evaluation of a spectrum is generally a highly complicated task. 

At the same time an investigation into the behavior of the characteristic 

function is of unquestionable interest, because it clearly shows the degree of 

applicability of the harmonic and quasi-harmonic models. 

With this purpose in mind it is useful to introduce © as an experimental 

quantity with the aid of a thermodynamic function for which the Debye 

expression remains true. 

The experimental characteristic temperature OP may be introduced, 

without any restriction of generality, either as a function of V, 7, or as a 

function of the cell parameters and T. It is necessary only to agree as to which 

of the thermodynamic functions will be selected for determination of 

OF .E): 
An investigation of @°%?(V, T) determined by means of the Debye formula 

for the entropy 
exp (2) 

S = —6RIn(1—e~7-) + 8R D(O™’7) 

has been carried out by the author in collaboration with Koreshkov [1]. 

In determining O°” as a function of two variables from the expressions for S, 

formulas (2.3) for E and Cy are no longer valid. Indeed, if S= SLO*?(V, T)], 

the formulas for other thermodynamic functions change their form. The 

relation between free energy and entropy will now take the form 

OF=00°% __ oF 

S= “39% aT * aT 

The heat capacities will be given by 

‘2 ros, 75 or” 
0 T OOl! Ne Olas) 7 

Fe ea OO 
Ei 200 OTe); 

The last formula (for C,) coincides with the quasi-harmonic model. 
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Let us now consider the behavior of the function O*?(V, 7) introduced 

through the Debye expression for the entropy (but for particles with six 

degrees of freedom). 

Detailed investigation of this physical quantity [2] is unfortunately possible 

only for a small number of cases. The substances that are really suitable are 

those for which C, has been measured over the entire temperature interval 

(so that S = J§(C,/T)dt may be computed), and for which the frequencies 

of the normal intramolecular vibrations are known so that S,,,, can be calcu- 

lated and S., = S—S.,., found. These data, necessary as a minimum, allow 

us to investigate the isobaric cross section (for p = 0) of the characteristic 

temperature. A more complete description of the function O°? (V, T) requires 

a knowledge of the coefficients of thermal expansion and the compressibility 

factor as functions of temperature. Crystals that have been examined as 

thoroughly as this are few in number. We will therefore first consider more 

extensive data on the isobaric cross sections of O° for various crystals. 

Figure | illustrates the behavior of the characteristic temperature for one of 

the crystals with rigid molecules. A common regularity for these as well as 

for other crystals is the fall of O*? with rise of temperature. This refers to 

temperatures higher than the temperature of liquid nitrogen. At low temper- 

atures a slight increase of O°? with temperature is observed. Here we should 

recall the results (see Chapter III) of measurement of the vibrational inter- 

molecular frequencies obtained by the Japanese authors. They have found 

that the fall of the frequencies begins from about the temperatures of liquid 

nitrogen. At low temperatures the frequencies do not change, within the 

accuracy of their experiment. It is noteworthy that the rapidity of the fall of 

©”? and lattice frequencies with temperature is of the same order (15-20% 

within the range from nitrogen temperature to room temperature). This 

coincidence of the results and, in general, the character of this temperature 

150 8calc 
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Fig. 1. Theoretical and experimental values of the characteristic temperature for 

naphthalene. 0°, see Table 5. 



3. Experimental Characteristic Temperature 353 

change await interpretation. It is believed, however, that it predicts the 

success of the quasi-harmonic model, because at temperatures in the last 

hundred degrees down to absolute zero the cell dimensions change but very 

slightly. 

The range within which lies the temperature ©, and the nature of its 

variation in the isobaric process, are typical of rigid molecules of the naphtha- 

lene type. 

The frequencies of the vibrations along intermolecular hydrogen bonds are 

somewhat greater than those of intermolecular vibrations. Therefore, if the 

vibrations along hydrogen bonds are assigned to the crystal vibrations, it is 

natural to expect only slight differences in the behavior of O°”. The calculation 

of O*? has been made for crystals of urea, glycine, and hydrazine (see Fig. 2). 

Comparing the behavior of ©? of these crystals and of crystals without 

hydrogen bonding, we see that the picture has changed. O°? has become 

greater, which is quite natural, because the hydrogen bond is highly rigid. 

At high temperatures O? falls more abruptly, and at low temperatures a 

sharp rise of O°? is observed. It is still not clear to what extent these results 

can be interpreted within the framework of the quasi-harmonic model. 

In the work cited above similar graphs have been plotted for about 20 

substances. The isobaric cross sections of O*?(V, 7) shown in the figures 

have proved to be typical. In all molecular crystals without exception the 

300 ; “Yara, 
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Fig. 2. The characteristic temperature of crystals with hydrogen bonds. 1, hydrazine; 

2, glycine; 3, urea. 
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@*?(T) curves at p = 0 are curves with a maximum lying in the region of 

100°K (i.e., in the region of the values of the characteristic temperature). 

The rate of decrease of O°*? in the region of fall varies within narrow limits for 

very different substances (AO/AT ~ 0.07-0.15). 

Large differences are observed in the low-temperature region of rise of O. 

This rise, as has been indicated above, is less distinct in the case of rigid 

molecules. For flexible molecules the derivatives dO/dT are approximately 

identical on the left and on the right of the maximum. 

The hydrogen bonds, as we see, play a part, but the presence of dipole 

moments (in full agreement with the results of Chapter II on the interaction 

of dipole molecules) does not affect the behavior of the isobaric cross section 

of the characteristic temperature. 

We shall now discuss a method for a more complete description of the 

behavior of O%?. Let us consider the procedure of analysis for scalar and 

tensor cases. 

a. Scalar Form 

In the harmonic approximation the characteristic temperature is a constant; 

while in the quasi-harmonic approximation, it is a function of volume only. 

The experimental characteristic temperature is a function of two variables: 

o*? = O(V,T). An explicit dependence of O*? on temperature is a con- 

sequence of anharmonicity. To evaluate the magnitude of the anharmonicity, 

it is necessary to know the dependence ©**?(T) in the isochoric process. If 

such a dependence does not exist, then the quasi-harmonic approximation 

does hold. 

Let us consider the derivatives of the characteristic temperature for various 

parameters in various processes. By differentiating the expression for the 

crystal part of the entropy with respect to temperature at constant pressure, 

we find, after certain transformations, that 

(| — €,= Cp Co 

me T(8S/6®) 

This formula may be conveniently written in the form 

CEP @©°P G& — Crs 

=—(1-~—™ (3.1) 
Cree an CG 

where Cp = T(0S/CT) is given by Eq. (1.2). 

The determination of (CO?/éT), with the help of Eq. (3.1) must, of course, 

lead to results that agree with the isobaric cross section of O%? found from 

the entropy. Equation (3.1) is more expedient to use, as will be seen below. 

Differentiating the entropy with respect to volume at constant temperature 

and taking into account that the molecular contribution to the entropy 
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depends on temperature alone, i.e., (0.S,,.,/OV)¢ = 0, we get 

oor? " 4 

OV ), ~ B,(dS/00) 

Here « is the coefficient of thermal expansion and £,; the isothermal com- 
pressibility. 

Using Eq. (1.8), we also obtain 

co?’ WV oor — ee se a oe Pe pce 3.2) OV Je OL WV dr Cp fi 

Since ©? is a function of two variables, only two derivatives are in- 

dependent, no matter which, e.g., those written above. All the remaining 

derivatives are expressed in terms of these two and «, B;: 

(FF) pal (=) 

Vig SAGO COLE ys 

0@*P i” 0@”P y c@rP 3 3 

IRA ibe le eta SCI ee) 
Taking irito account Eqs. (3.2) and (3.1), we have 

: oO” a Cr 1 Cy Carel 

ee eae p Ge 

eo") By do” go Br (20° 
CE NCO (a ea) Fencallt haa WoW! fa fe 

It is clear that if the characteristic temperature O™? is regarded as a function 

of two variables, we must distinguish two Griineisen “‘constants”’ 

Yr = —V/O)(CO/W)7, yp = —(V/O)(CO/OV), 

The thermodynamic behavior of a crystal is determined by these two 

“constants.” 

We can, of course, express all the requisite thermodynamic quantities with 

the aid of O*%?(V, T). Equations (3.1) and (3.2) are the most significant. The 

expression for the heat capacity at constant volume can easily be calculated: 

AO ee aes eis as aor” 
ESET Py Pa NGF PN CON ol Jy 

or, taking into account (2.6), which remains valid for the entropy not only 

in the quasi-harmonic case, 

Ti COr”. = free |e SPS) 
as cof = oT ),| a 

(3.4) 
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This result as well as the expressions for other thermodynamic functions can 

however be obtained from (3.1) and (3.2). 

For high temperatures, Eq. (3.5) is transformed into 

@ tae oe 
haa OP OT 

In the quasi-harmonic approximation we have 

exp 

(< ) =) and C= OR 
Vv oT 

Our attention should of course be focused on Eq. (3.4), since it is this equation 

that determines the difference between reality and the quasi-harmonic model. 

It is expedient to determine the degree of quasi harmonicity by the formula 

T (oo 
a= sa( a7 i (3.6) 

that is, 

Cie Cal 
= G 

b. Tensor Form 

In a general case the characteristic temperature is a function of the unit cell 

parameters and temperature. It is convenient to assume that O°? = O(¢,, T), 

where ¢; is the relative change of a;. Let us again assume that O°*? is determined 

from the experimental values of the crystal part of the entropy. Evidently, the 

entropy as well as ©“? may be represented by surfaces in the multidimensional 

space ¢;, T. As in the isotropic case, the data of the isobaric experiment make 

it possible to investigate one of the cross sections of this surface. 

Two experiments are of interest: thermal deformation at p = 0 and triaxial 

isothermal compression. In the first experiment the behavior of 0 is estab- 

lished with the aid of the derivatives (CO?/de;;),, and in the second by 

(60/0; ;). We can now introduce the corresponding Griineisen tensors 

in,cOw d 1 (eo 
=—-— an =-x i Oe) Ol a, J, 

In the quasi-harmonic model y; is equal to y,. Determination of the tensors 

yr and y, from directly rneasurable quantities can be made with the help of 

the following relations. 

From (1.13) we obtain 

CO V : 
( a ), = (05/00); a Cyijnt %et (3.7) 

tJ 
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The necessity to know the isothermal elasticity is a vexing complication. 
It is the adiabatic elasticities that are usually measured in experiments, and 
recalculation of C* into C7 is somewhat difficult. 

For estimating y,, we have no formula similar to (3.7). The relation with 
experiment is provided by the formula 

(0@/6T), = } (O/0€;;),%;; 

Equation (3.1) remains valid for (@@/éT),. For this quantity we have, by 
analogy with (3.3), 

(O""/6T), = (CO"/AT)y + ¥ (6O"?/06;,;)7 04; Ge 
Having determined the sum in (3.8) on the basis of (3.7), we find the experi- 

mental value of (0O%?/0T), which characterizes the degree of departure of a 

crystal from the quasi-harmonic model. The degree of quasi harmonicity can 

still be computed with the help of (3.6), but the value of y determined from 

(3.8) will not exactly coincide with (3.6), because the derivatives (6O°*?/6T), 

in formulas (2.8) and (3.3) have different meanings: we have supposed above 

that © depends only on the unit cell volume, whereas in calculations carried 

out with the aid of (3.8) the quantity © is considered to be a function of the 

cell parameters. In other words, (60/07), in (3.6) is a derivative with reten- 

tion of volume, and in (3.8) it is a derivative with retention of volume and 

shape. 

4. THERMODYNAMIC FUNCTIONS OF A NAPHTHALENE CRYSTAL 

a. Scalar Quantities 

The crystal of naphthalene plays the role of rock salt in the physics of 

molecular crystals. It is a typical representative as regards both structure and 

properties. We have more than once noted both explicitly and implicitly that 

molecular crystals having no intermoJecular hydrogen bonding are very 

similar to one another. A careful investigation of the thermodynamic functions 

of a naphthalene crystal will provide us with a clear understanding of the 

behavior of a large class of substances. Our choice in this respect is very 

limited. For an exhaustive analysis, we must have a crystal whose heat capacity 

has been measured from the temperature of liquid helium. Such substances are 

perhaps several tens in number. Furthermore, it is necsesary to know the 

expansion tensor and the tensor of elasticity, again from a very low temperature 

to the melting point. And such substances are only a few in number. Even in 

the case of naphthalene, the measurement of elasticity and expansion has not 

yet been extended to the very low temperatures. Besides, we need a crystal, 

for the molecules of which the spectrum of intramolecular vibrations is 
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known; not to mention that we should have at our disposal experimental data 

concerning the dynamics of the lattice in order to check the models under 

study. Intermolecular frequencies of vibrations have been measured for a 

very limited number of cases, and a complete study of dispersion surfaces 

(in the case of naphthalene) has been started only recently by English in- 

vestigators. 

The principal data for a naphthalene crystal are collected in 39 columns of 

Table 1. The values of the physical quantities are given as a function of temper- 

ature at atmospheric pressure. The data on the heat capacity C, have been 

reported in the literature [3]; the heat capacity C,,,, has been computed 

from the values of the frequencies of the intramolecular vibrations [4]; the 

cell dimensions have been measured and the thermal expansion tensor com- 

puted by Ryzhenkov [5]; the tensor of adiabatic elasticity has been obtained 

by measuring the velocity of sound by Afanassieva [6]; the compliances have 

been computed by inversion of the matrix c;;,, and from them the values of 

the adiabatic compressibility 6; have been obtained. The thermal expansion 

coefficient has been measured up to the temperature of liquid nitrogen, and 

the compressibility factor, up to 100°K. 

It is not always easy to estimate the accuracy of experimental data. The low- 

temperature data available are incomplete. Interpolation and extrapolation 

procedures therefore acquire great importance. The temperature dependence 

for the greater part of the physical quantities presented in Table | may be of a 

rather complicated nature and cannot be expressed in terms of simple temper- 

ature polynomials. Nevertheless, it is hardly probable that the curves would 

have a large number of frequently occurring points of inflection. Where 

possible, the curve was smoothed out by the displacement of one or two points, 

thereby changing the values of the physical quantities by 2 or 3%. 

An especially crucial step is extrapolation to zero. This procedure is 

additionally complicated by the fact that a number of peculiarities may be 

expected at temperatures lower than 0/4 (i.e., lower than 20-30°K). The low- 

temperature Debye behavior of the thermodynamic functions may manifest 

itself, as has been shown by a number of authors, at temperatures T < ©/50. 

Thus, Debye’s formulas may sometimes prove inapplicable for extrapolation 

to zero. 

The introduction of the function O%?(V, 7) may be of substantial use in 

extrapolation and interpolation of experimental data. 

We can probably rely on the following features in the behavior of O°? (V, T). 

At very low temperatures, as follows from the theory of Born and von Karman 

that has been confirmed for many simple crystals, 

© = @,(1—bT?) 

The initial fall of © may not continue for a long time. In many cases for simple 
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crystals (and also in our case) the curve passes through a minimum, bends, 

runs through a maximum, and then falls almost linearly with rise in temper- 

ature. The linear (or almost linear) fall of © (in an isobaric experiment) usually 

begins at temperatures close to the characteristic temperature. 

The derivative (6©/07), determines the departure of a crystal from quasi- 

harmonic behavior. It is natural to assume that (0@/dT), should fall smoothly 

to zero as T—0. In the case of the quasi-harmonic model (60/éV); = 

(C@/cV),. It may be supposed that these derivatives become equal to each 

other at temperatures lower than, say, 20°K. 

These specific features in the behavior of the derivatives have been used to 

extrapolate the expansion coefficient to zero. As seen from the graph for a 

naphthalene crystal given in the preceding chapter, extrapolation to zero is 

extremely difficult—at temperatures of the order of 70-100°K the «(T) 

curve becomes horizontal, and it is completely impossible to predict where 

its fall and transition to the « ~ T? law will begin. 

Setting (00/0V), and (C@/eV), equal to each other at low temperatures, 

we can find a, since extrapolation to zero of the other quantities entering into 

the expressions for these derivatives presents no difficulty. 

Some remarks concerning Table 1 remain to be made. 

We resort to integration and use the theorem of the mean to match the 

integral quantities with the corresponding functions. If this is not done, then, 

for example, the O(7) curve determined with the aid of the table of Debye’s 

functions from the values of the entropy S will be found unmatched with the 

values of the derivatives (CO/0T),. Column 7 in Table | has been computed 

from the formula AS = (C,—C,,o1)In(T2/T,). The data in columns 9, 10, 

and il are based on the table of Debye’s functions. The derivative (CO/0T), 

has been calculated from the formula 

60) _ Of, _ Cp-Crnat 
Oly) a G 

Column 15 and the succeeding columns have been compiled first for 

temperatures 100°K and higher. The value of f£; can readily be extrapolated 

to zero, and the values of «, as was indicated above, for 20 and 60°K were 

written later, by equating (6O/cV), and (CO/0V), for the lowest temperatures. 

Column 18 contains the data on the difference B,—f,. In column 20 the 

following is written: 

(0S/OV)7 = o/Br 

From this value and the figure of column 11 we calculate 

1/60\ _(ém®\ a 

O\OV)- Never, Br Op 
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Column 24 contains the values 

6@\ 1 (20 
OV an tay NO Ta) 

Equating for the lowest temperatures 

1 (30) ___« 
OVNOT),. UbRCS 

helps us to extrapolate the quantity « to zero. 

The values of y; and y, in columns 25 and 26 are equal by definitions to 

V (dO V (00 
——| — and ——| — 
© \ OV /r ONE) 

In column 27 are given the calculated and slightly rounded values of 

C,—Cy = 0° VT/Br. 
Column 29 gives the values of A(AU) = (C,—C,) AT; AU is the work of 

expansion of a lattice. 

In compiling column 32, one can check the correctness of the figures and 

the unambiguity of interpolation. Column 32 is calculated, on the one hand, 

as a product of columns 23 and 16, and on the other, 

aes Vn ee 2 Spey aw | T. Cs 
i.e., it is equal to the product of columns 10 and 31. 

The values of Cy — C,,.; must lie on a smooth curve, since the C, — C,,,, and 

C,—Cy curves have been smoothed out. In column 35 are given the values of 

(Cy —C noi) AT. In our case the enthalpy is equal to the internal energy (since 

the table has been compiled for atmospheric pressure). Column 36 for H = E 

can be computed either from column 5 or as 

T 

> (Cy —Cmor) AT + AU 
10) 

The free energy (the vibrational crystal part) F = E—TS is included in 

column 37. 

Finally, column 39 is calculated by the formula 

aS) aS 1 — Gor 

Ch) an GR 

As we have said above, these results are of interest because they are typical. 

It is quite clear that molecular crystals have their own specific features. To 

these belong the high values of C,— Cy. The smoothing of the crystal part of 
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the heat capacity Cy is characteristic of them. The value 12 cal/mole, which is 

ideal for a lattice composed of particles with six degrees of freedom, has not 

been reached because of the deviation from quasi harmonicity. Indeed, 

T (co 
Cy — Cro = col = aa (sr), | = Con 

where y is the degree of quasi harmonicity. 

It is worthy of notice that the vibrational parts of the crystal energy consti- 

tute, at temperatures below 100°K, only a small part of the lattice energy 

20 : 

0 

eo 

e' 

—5 O 
O 

Oo 

NI 0 O O C33 : : s 0 ; 
& 0 
=> O 

iS O O Cop 0 
° » 
2) 10 O 

= -<—-— OT — 6 SOO
T 

0? <O O- 

O POSE ORS eee ee ean et 

C35 a tin iat ceo Bae of 
== 

O 20 60 100 140 180 220 260 300 340 

Fig. 3. The temperature dependence of the components of the tensor of adiabatic 

elasticity moduli for naphthalene. 
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(which is equal to 16,700 cal/mole for naphthalene); they do not play a 

leading role at room temperature either. 

It is interesting that a small percentage of the departure from the quasi 

harmonicity at low temperatures can lead to the passage of © through a 

minimum and a maximum. The rise of © within a certain interval of low 

temperatures is not caused by the quasi-harmonic effect. In fact, as has already 

been pointed out, C,—Cy > 0, but in the quasi-harmonic model 

cee De 0@! meso? 0@? 

PS TO ORCO ole), 2 BO euNeelas 

i.e., ©7 must fall over the whole temperature range. 

b. Tensor Quantities 

On the basis of measurements of the adiabatic elasticity tensor (Teslenko 

and Afanassieva) and of the expansion tensor (Ryzhenkov), we can give tables 

and graphs of a number of tensor quantities characterizing the behavior of a 

naphthalene crystal. Figures 3 and 4 show the temperature dependences 

x10" dyne/cm? 
Ss 
Sij 

O 20 60 100 140 180 220 260 300 340 

ical 

Fig. 4. The temperature dependence of the components of the tensor of adiabatic com- 

pliance moduli for naphthalene. 
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Table 2 

DIFFERENCE BETWEEN ADIABATIC 

AND ISOTHERMAL COMPLIANCES 

(MODULI OF FLEXIBILITY) OF NAPHTHALENE 

TV 
Oy Oy aa 10~'° (cm?/dyne) 

Pp 

ij 100°K 220°K 300°K 

11 0.001 0.002 0.006 

22 0.000 0.000 0.000 

33 0.001 0.003 0.006 

44 0.000 0.000 0.000 

55 0.000 0.002 0.005 

66 0.000 0.000 0.000 

12 0.000 0.001 0.002 

13 0.001 0.002 0.006 

23 0.000 0.001 0.002 

15 0.001 0.002 0.006 

25 0.000 0.001 0.001 

35 0.001 0.003 0.005 

46 0.000 0.000 0.000 

of the adiabatic tensors of elasticity and compliance. Table 2 gives the 

values of the differences between the elements of the isothermal and 

adiabatic tensors of compliances calculated with the aid of Eq. (1.15) for 

three temperatures. 

The tensor s;;;,, has been calculated from the values of these differences and 

the isothermal elasticity tensor obtained by inversion of the matrix. 

In Table 3 are presented the values of all the four tensors for the following 

temperatures: 100°, 200°, and 300°K. 

Formula (1.13) was used to compute the tensor 0S/0e;;, and the tensors 

(0©/0e,;)7 and y; were obtained by the use of (3.7). The path of the four 

elements of these tensors versus temperature is plotted in Fig. 5. 

The considerable difference in the diagonal components of the tensors y, 

points to the large anisotropy of lattice vibrations. 

And, finally, in Fig. 6 we compare the curves of the derivatives (CO/0T), 

and (00/0T),. The derivative (00/07), is also given in Table 1, and the 

derivative (00/07), is computed from formula (3.8). 

We thus compare the effect, on the degree of quasi harmonicity, of the 
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1=5 

—60 
100 200 220 300 

Fig. 5. The tensor of strain derivatives of entropy for naphthalene. 

retention of the cell volume only with that of the retention of the cell volume 

and shape. 

The behavior of these derivatives is very specific. One would expect that 

they would rise smoothly. The “jump” of anharmonicity at low temperatures 

cannot yet be explained within the framework of the quasi-harmonic model. 

0.10 

0.05 

20 60 100 140 180 220 260 300 340 

Fig. 6. The isochoric temperature derivative of the characteristic temperature of 

naphthalene: (a) in scalar variant; (b) in tensor variant. 
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5. CHOICE OF AN OPTIMAL QUASI-HARMONIC MODEL 

The thermodynamic functions can be calculated in the quasi-harmonic 

approximation, without any special difficulty, by the use of atom-atom 

potentials. Further development of these investigations, however, will acquire 

meaning only when analysis of a thermodynamic experiment indicates that the 

quasi-harmonic model is sufficiently effective. The success of the quasi- 

harmonic model is by no means obvious a priori since it may be assumed that 

the anharmonicity in organic crystals is high (because of the small mass of 

molecules and weak intermolecular forces). 

Anharmonicity in the atom-atom potential model can also in principle be 

taken into account by expanding the lattice energy according to low powers 

of the displacements of the molecules and by the use of higher (following the 

second) powers of these displacements. The complications involved in this 

approach however make it almost unsuitable for practical applications. It is 

for this reason that the quasi-harmonic approximation, which makes use of 

the harmonic equation of motion and takes into account the anharmonicity 

through the dependence of the force coefficients on the lattice parameters, is of 

particular interest. The characteristic temperature is calculated from the 

crystal part of the entropy by the Debye formulas 

S.. = —6R In(1—e 9/7) + 8R D(©/T) 

The computed © is a function of two variables in the general case, e.g., 

© =O0(V,T). 
If a real crystal were quasi harmonic, there would be no explicit dependence 

of © on temperature, i.e., explicit anharmonicity. In this case O = O(V). 

It has been shown above that a real crystal is not described quite satisfactorily 

by the quasi-harmonic model. 

In this section we wish to give an answer to the following question [7]: 

What function O(V) will be optimal, i.e., will provide the best agreement 

with experiment, if Debye’s expressions are used for all the thermodynamic 

functions? Let us set the Griineisen coefficient for the optimal model equal to 

yor = yr 

where y; = —(V/©)(6O/@V);. The point is that y; describes the variation 

of © in an isothermal process, which corresponds to the absence of explicit 

anharmonicity. The behavior of y, or +(yr+y,) proves, however, to be in- 

compatible with the quasi-harmonic model. 

The model becomes completely defined if the initial conditions are specified 

at 0°K, but, from the practical point of view, it is convenient to specify them 

for 20°K. After doing this, we can compute any thermodynamic function 

using the general formulas, for instance, the isothermal compressibility By, 

the difference of the heat capacities (C,— Cy), the work of expansion of a 
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crystal by AV which is equal to the increment of the lattice energy on thermal 

expansion of a crystal, and also the thermal quantities—entropy, S,,, heat 

capacities C, and Cy, and others. 

For a model, which we have called the optimal quasi-harmonic model, 

a number of thermal and calorific quantities have been computed. 

Tables 4 and 5 present the results of calculation of a number of quantities 

for the optimal model; the corresponding experimental values are also in- 

cluded for comparison. The thermal quantities practically coincide with 

experiment. 

It is natural that, in spite of the excellent agreement of the value of 

(C,—Cy)°4 with experiment, the heat capacities themselves, both experimental 

and calculated, may differ greatly, since in the optimal quasi-harmonic model 

Cy’ = Cp, which is not the case for a real crystal. The quantity Cp is only 

slightly dependent on the form of the function O(V), particularly when 

T > O, and it is therefore impossible to improve, to any extent, the agreement 

between the heat capacities themselves by the variation of that function. This 

is the argument which justifies our modifying the name of the proposed model 

by the word “optimal.” 

From the foregoing it follows that the calculated values of the enthalpy, 

entropy, and free energy may also differ strongly from the experimental data 

(up to a few percent). Thus, in calculations using atom—atom potentials within 

the framework of the quasi-harmonic model, excellent agreement can be 

Table 4 

THERMAL CHARACTERISTICS OF NAPHTHALENE 

Cp— Cy Br x 101° 

T (°K) (cal/mole deg) AU (cal/mole) (cm3/erg) 

exp.” 0.q. exp. 0.q. exp. 0.q. 

0 0 0 0 0 0.095 y 

20 0.006 0.006 0.06 0.06 0.097 0.097 

60 0.240 0.248 4.98 5.14 0.109 0.104 

100 0.596 0.604 ed, 222 0.115 0.113 

140 0.948 0.950 52.6 Sots 0.121 0.120 

180 1.413 1.445 100.1 101 0.132 0.130 

220 DOS 2.28 178s) 176 0.143 0.141 

260 Sl 3.76 292.7 296 0.170 0.168 

300 6.15 6.15 489.9 495 0.207 0.208 

340 9.53 9.53 803.5 808 0.260 0.261 

> * Here and in Table 5 the abbreviation exp. signifies ‘“experimental values,’ 

the values calculated for the optimal quasi-harmonic model. 

and o.q. 
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By/2. 6 The Theory of Thermodynamics 

expected between the thermal quantities and experiment. At the same time it 

is clear that the computation of the heat capacity requires that anharmonicity 

should be taken into account explicitly. 

It should be noted that the analysis just made refers only to a single isobaric 

cross section (p = 0). At pressures of the order of thousands of atmospheres 

the characteristic temperature and its dependence on the parameters of state 

may undergo a substantial change. 

6. CALCULATION OF THE QUASI-HARMONIC MODEL BY THE ATOM—ATOM 

POTENTIAL METHOD 

In the rigorous approach, such a calculation must be carried out through a 

full computation of the vibrational problem. The dispersion surfaces @(k) 

permit strict (“‘strict”’ in the quasi-harmonic approximation) calculation of the 

vibrational part of the free energy with the aid of formula (2.2); the lattice 

energy is computed independently by using the methods outlined in Chapter II. 

Despite the possibility of performing the most laborious calculations by 

means of computers, the wide use of such computations, however, is hardly 

justifiable. They are too cumbersome to be applied to a model that cannot 

claim (as is evident from the preceding section) to provide a precision higher 

than a few percent. 

The quasi-harmonic model may be given a Debye form. This means that 

the variation of the spectrum with crystal cel) dimensions is reduced to the 

change of the frequency of the cut-off of the Debye parabola wp, i.e., the 

characteristic temperature © = hap/k. 

As has already been shown (see Chapter III), we can compute, by the use 

of the atom—atom potential method, the mean square of the spectrum frequency 

co” as a function of unit cell dimensions. There exists a simple relation between 

Wp and w*. Since the density of the frequency distribution is given by the 

expression 

(3@?/@p*) dw 

then 

ae Op 

@* = Glen?) | @* do = 20p” 
10) 

or 

(w?)*% = 0.7750 

A comparison of the calculated values of w? with the values of © found 

from thermodynamic experiments has been carried out by Kitaigorodsky and 

Mukhtarov [8]. 
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The choice of the crystals, for which the characteristic temperature has been 
calculated, is explained, on the one hand, by the availaiblity of structural data 
for as wide a temperature range as possible, and, on the other hand, by the 
availability of data on © determined for these substances by means of 
calorimetric measurements. For these reasons, we selected crystals of naphtha- 
lene, anthracene, diphenyl mercury, benzene, and ethylene for our study. 
These compounds are very typical representatives of molecular crystals. The 
characteristic temperatures and constants y for these crystals have been 
computed with the aid of a program providing for the computation of © for 
crystals with molecules each containing up to 80 atoms of up to five different 
species. 

A comparison of the calculated and experimental values of the characteristic 

temperature and constant y shows (Table 6; see also Fig. 1, where data on © 

are given for naphthalene only; these data are rather typical) that the maximum 

difference between theory and experiment does not exceed 20%. Such differ- 

ences are observed in the region of low temperatures; at moderate and high 

temperatures they are considerably lower and are of the same order as the 

experimental errors. The qualitative nature of the experimental and theoretical 

temperature dependence curves is the same, the only exception being the 

region of temperatures below 100°K for a naphthalene crystal [9]: The 

calculated © increases in this region with rise of temperature, whereas the 

experimental © decreases. This circumstance, as well as the increase of the 

difference between the experimental and theoretical curves with fall of 

temperature observed for all the crystals studied, may probably be attributed 

to the deterioration of the accuracy of the Debye model in the region of low 

temperatures. 

In the work cited the elements of the Griineisen tensor have also been 

computed for crystals of naphthalene and anthracene [10]. 

Comparison of the calculated values of y,, with the experimental values 

reveals rather large discrepancies, which amount to 30% in different regions 

Table 6 

Naphthalene Anthracene Diphenyl mercury Benzene 

V (A) Veale Yexp v (A?) Veale Yexp Vv (A) Veale Yexp v(A?’) Veale Yexp 

345 2.41 2.05 461 4.10 3.51 445 5.04 4.52 492 4.45 4.32 

350 2.48 2.15 463 4.18 3.83 450 5.45 5.03 495 4.30 4.25 

3b ASS BS 472 4.25 4.02 455 5.89 5.57 501 4.25 4.05 

360 2.60 2.35 487 4.30 4.25 460 6.37 6.09 508 4.20 3.85 
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Fig. 7. Experimental and calculated values of the components of the Griineisen tensor 

for naphthalene. 

of the temperature interval (see Fig. 7). However, taking into account the 

number of assumptions underlying the theoretical model, as well as the 

procedure for determining y;, from the experimental data, we may regard the 

resulting agreement as quite satisfactory. 

The problem of comparing the results of calculation of the lattice energy 

by the atom-atom potential method with the thermodynamic data has been 

considered in the literature [11]. We shall discuss the comparison with the 

experimental data in the scalar aspect. If, as considered above, the energy 

surface of a crystal has been constructed, we can imagine any thermodynamic 

process as the movement of a point on the surface from the bottom of the 

energy well (the absolute zero of temperature) along a certain curve U 

(a, b, c, x, B, y). Since we have in mind only the comparison with scalar thermo- 

dynamic quantities, it is sufficient to represent this curve as U(v). It is con- 

venient to compare with isobaric data not only U(v), i.e., the change in the 

lattice energy in the process of thermal expansion, but also the first and second 

derivatives of the lattice energy with respect to the unit cell volume, namely, 

dU/dv and 6*U/év?. The character of the agreement between the theoretical 
and experimental U(v) curves and the two derivatives 0U/év and 6?U/dv? 
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must clearly indicate the possibilities of the atom-atom potential method in 
predicting various thermodynamic quantities. 

The values of the lattice energy and its derivatives cannot be found from the 

thermodynamic measurements alone. In order to compare the U(v) curve 

calculated by the atom-atom potential method with thermodynamic data a 
model of the solid has to be used. 

Let us assume, as above, that the crystal part of the internal energy can be 

represented as a sum 

E(v, T) = U(@) + £,,,(v, T) 

where £,;,(v. 7) is the energy of the intermolecular vibrations. Since the 

zero-point energy of the intermolecular vibrations is negligible for the over- 

whelming majority of molecular crystals, we may assume that Ey = Up. 

Furthermore, it is evident that the derivatives (OE/dv), and (é7E/év”), must 

not differ greatly from 0U/év and 67U/dv*, because the explicit dependence 

of the vibrational energy on the unit cell volume characterizes the deviation 

from the harmonic approximation which must be valid, at least roughly. 

From these general physical considerations it is also clear that the lower the 

temperature (or the smaller the volume) the better the agreement between 

the values of the corresponding derivatives of E and U. 

In the work cited above a comparison of the thermodynamic data obtained 

by integration and differentiation of the experimental curve (dE/dv)7 = 

(C,—Cy)/av with the results of calculation by the atom-atom potential 

method was carried out for naphthalene and anthracene crystals. 

The results obtained for the naphthalene crystal are presented in Fig. 8. 

The values of AU and A, E are measured (according to the available data) 

from 78°K. The main result of this comparison is rather encouraging: The 

experimental and theoretical curves are close to each other. Without perform- 

ing additional computations we cannot say whether this discrepancy is due to 

a poor choice of the potentials or is a consequence of neglecting the vibrational 

part of the energy in the calculations. However, the fact that the AU(v) curve 

lies above the A, E(v) curve can only be associated with an inexact choice of 

the potential curves, which must be corrected according to these results. 

Let us now consider the procedures for calculating the vibrational com- 

ponent of the crystal part of the internal energy. Let us assume that we have 

succeeded in finding the exact atom-atom potentials and the values of 

A, Ey; (CEyip/Cv) and 67£,;,/6v? from the difference of the ordinates of the 
curves of the type given above. An independent estimate of these quantities 

can be carried out in the following ways: 

1. The dynamic (and consequently thermodynamic) problem can be solved 

quite strictly on the basis of the atom-atom potentials. 
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Fig. 8. Comparison of the lattice energy and its volume derivatives calculated by the 

atom-atom potential method with the internal energy and its derivatives obtained from 

experimental data for a naphthalene crystal. 1, AU; 1’, AyE; 2, (@U/év); 2’, (CE/év)r; 

3, (6?U/dv?); 3’, (0? E/dv”)r. 

2. The vibrational spectrum of a crystal and also the crystal parts of the 

thermodynamic functions can be calculated in the quasi-harmonic approxi- 

mation. 

3. And, finally, use may also be made of the quasi-harmonic [O = O(v)] 

Debye approximation for the crystal parts of the thermodynamic functions. 

In this case there are four ways of calculating the O(v) curve. First, it can be 

computed through the average square of the frequencies of the intermolecular 

vibrational spectrum 7, which is determined by the atom-atom potential 

method, followed by calculation of the tensor (6w7/@e;), the expansion tensor, 

and the introduction of temperature with the aid of this tensor, (a). Secondly, 

the computation may be made through the same average square of frequencies 

w? determined for different cell volumes and by the use of the experimental 

curve of v(7), (b). Thirdly, the O(v) curve may be chosen in an “‘optimal”’ 

way directly from the thermodynamic data, (c). And, finally, (d), if the curve 

(0U/év) has been calculated by means of the atom-atom potential method 

and the value of © is known from the thermodynamic data at least for a single 

temperature point, the O(v) curve can be computed from the equation of state 



6. Calculation of the Quasi-Harmonic Model Sy) 

for the crystal, which has the following form in the Debye approximation: 

0U T (®\cO 

Gage ~6r5 (2) 2 
(here we ignore the atmospheric pressure as compared with 0U/dv). 

In cases 1, 2, and 3(a) the thermodynamics of a crystal is calculated suc- 

cessively by the atom-atom potential method without using any data from 

experiment. Problem | is too complicated. The possibilities of the second 

variant are not yet evident. In cases 3(b), (c), and (d) the experimental data 

on the thermal expansion of a crystal are to be used for comparing the 

theoretical and experimental values of the energy. We have tried the last three 

methods of case (3) for the naphthalene crystal. The results obtained may be 

considered negative. 

The vibrational components of the internal energy of a crystal and its 

derivatives are very sensitive to the choice of the ©(v) curve, and since the 

curve itself is determined on the basis of a number of assumptions, the com- 

putations discussed above can only yield an estimate of the order of magnitude. 

The use of the atom-atom potential method for calculating a number of 

thermodynamic quantities, however, need not wait for precise methods of 

estimating the vibrational components, because, as the curves of Fig. 8 show, 

the vibrational corrections to the values of the lattice energy and its volume 

derivatives are small. The general validity of this calculation must, of course, 

be confirmed by calculations for other crystals. 

The question of the role of the vibrational corrections to the values of the 

strain derivatives of the free energy arises in calculations of the elasticity moduli 

of molecular crystals made by the atom-atom potential method [12]. Express- 

ing the free energy of a molecular crystal as a sum of the potential energy of 

the interaction of molecules (the lattice energy U) and the energy of vibrations 

(E,;,), we can rewrite formula (1.13) for the isothermal moduli of elasticity 

as follows: 

0 foU Cn Obs 
ree a | pees a w 6.1 

Ci =(2) i mal dE; ) oy 

where U and E,;, are energy per unit volume and ¢; is the relative strain. 

Since the intramolecular frequencies vary with volume approximately two 

orders of magnitude more slowly than the intermolecular frequencies [1], 

the energy of the intramolecular vibrations at small deformations may be 

considered invariant and hence the second term in expression (6.1) refers 

only to the change in the energy of the intermolecular vibrations during the 

process of deformation. 
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The effects of the zero point intermolecular vibrations are usually ignored 

[12] at the absolute zero of temperature and the elasticity tensor is determined 

by the second strain derivatives of the lattice energy density. The temperature 

dependence of the elastic properties of a crystal is associated both with the 

change of the lattice ‘‘statics,”’ i.e., of the unit cell dimensions and the orien- 

tation of the molecules in the lattice, and with the change of the free energy of 

the intermolecular vibrations. Since the vibrational part cannot be found 

directly from the experimental data and, as indicated above, it is a very time- 

consuming procedure to find it theoretically (though in principle this can be 

done with the help of the atom-atom potential method), it is probably reason- 

able first: (1) to choose the interatomic potential curves, with the aid of which 

we can compute, with sufficient accuracy, the elasticity tensor for a molecular 

crystal at the absolute zero of temperature (this problem is quite strict); 

and (2) knowing the thermal expansion tensor for a crystal, and using the 

potential curves chosen for absolute zero, to calculate the variation of the 

elasticity moduli with temperature without taking into account the vibrational 

terms. From the discrepancy between the theoretical and experimental curves 

c,;(T) it will be possible to establish the effect of lattice vibrations on the values 

of the elasticity moduli. 

The changes of the dimensions and angles of the unit cell of a molecular 

crystal in the process of homogeneous deformation—the so-called external 

deformations ¢;, coinciding with the parameters of the macroscopic theory of 

elasticity—are accompanied by a change in the position of the centers of 

gravity and orientations of the molecules in the deformed cell, i.e., the trans- 

lational and orientational internal deformation U,. Internal deformations 

are induced in such a manner as to reduce to a minimum the changes in the 

lattice energy caused by the external deformations, i.e., 

aU™/aU, = 0 (6.2) 

From the condition (6.2) it follows that the internal deformations are 

independent of each other and are functions of external deformations: 

U, =f(é;). Taking into account that on double differentiation of v(é;, U,) 

with respect to ¢;, we obtain 

62v d?v dU,\ (OU, 7 = ae 
: 

. ee al (; ill 0g; me de; ) iat 

The subscript o signifies that the values of the derivatives refer to the point of 

equilibrium. 

If the surface of the lattice energy U(a;,x,, ,) has been calculated, where 

a; are the parameters of the unit cell, a,b,c,«,B,y;x. (e = 1,2,3) are the 

coordinates of the centers of gravity of the molecules, and q, (k = 1,2, 3) 



6. Calculation of the Quasi-Harmonic Model 379 

are the Euler angles characterizing the orientation of the inertial axes of the 

molecules relative to the crystallographic axes, the elasticity moduli of the 

crystal can be found directly from this surface. We shall now show how this 

can be done for monoclinic crystals, the molecules of which are located at the 

center of inversion. In such crystals translational internal deformations do not 

arise (the center of inversion remains intact if the lattice undergoes a homo- 

geneous external deformation [14]. The internal deformations are therefore 

reduced to changes of the three Euler angles g,. The lattice energy is a 

function of the seven variables a, b, c, B, ~;, P2, and ~3. Using these variables, 

we can describe four of the six elements of the relative external strain tensor 

£1, €), €3, and é, and the orientational internal strains U, (kK = 1,2,3) as 

follows: 

Pee a—ad, ee b—b, ae C'—Co 
i, = = 3 = 

eo ba Cs GR 

rs. S—So Gi eed ey 
&5 =k i 2 | ae 

Co Px, 

where c’ = ccos(B—90°), s = csin(B—90°), and the subscript o refers to 

the equilibrium point. 
Differentiating in expression (6.3), the energy density U with respect to the 

strain components as a complex function 

“(U = 9, (6; U,), & = f2 (ai), Ur = Ss Lf.(a,)]), 

we obtain, with the help of (6.4), a formula for calculating the elasticity 

moduli of a crystal in the form 

D?U 
-. = Ce 

ee el ainay 

Py, et ARLE Waa SEN Ra (6.5) 
NN Ga; 0a;)o <4, \OPn" Jo\ Dai }o\ Da; /o 

The quantities D?U/Da;Da,; and Dg,/Da; are derivatives of the lattice 

parameters along the surface of equilibrium Euler angles ~, [see condition 

(6.2)]. Formula (6.5) is suitable for calculating, from the energy surface, the 

elasticity moduli for crystals of monoclinic and any other higher system, 

except the moduli for C44, C46, and Cg. 

Such a calculation has been carried out for the naphthalene crystal. The 

theoretical moduli for C,,;, C,, C33 as functions of temperature are shown in 

Fig. 9, where they are compared with the experimental data reported in the 

literature [15]. The interatomic potential curves are selected for this calcu- 

lation so that at absolute zero there is but a slight difference between theory 
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Fig. 9. Moduli of elasticity for a naphthalene crystal 

as a function of temperature (—— for theory and 

A-A-—A for experiment). 

Cy, 10’°dyne/cm? 

and experiment. This discrepancy increases as the temperature rises, which 

probably is an indication of the increasing role of the intermolecular lattice 

vibrations. At a temperature of 323°K, which is close to the melting point of 

naphthalene, the static term in expression (6.1) makes up 60-70% of the 

experimental values of C;,. 

REFERENCES 

is 

2) 

. J. Timmermans, “‘Physico-Chemical Constants of Pure Organic Compounds.” Elsevier, Ww 

113); 

A. I. Kitaigorodsky, Kristallografiya 7, 195 (1962); A. I. Kitaigorodsky and B. D. 

Koreshovy, Fiz Tverd. Tela 8, 62 (1966). 

B. D. Koreshkov, Thesis, Univ. of Moscow, 1968. 

Paris, 1950. 

. See the reference in M. Suzuki and M. Ito, Spectrochim. Acta Part A 24, 1091 (1968). 

A. P. Ryzhenkov and V. M. Kozhin, Krisjallografiya 13, 6, 1028 (1968). 

. G. Afanassieva, Thesis, Moscow State Univ., Moscow, 1970. 

. A. I. Kitaigorodsky and B. D. Koreshkov, Fiz. Tverd. Tela 11, 3203 (1969). 

. E. I. Mukhtarov, Thesis, Univ. of Baku, 1970. 

I. Kitaigorodsky and E. I. Mukhtarov, Fiz. Tverd. Tela 10, 3474 (1968). A. 

. A. I. Kitaigorodsky and E. I. Mukhtarov, Kristallografiya 13, 889 (1968). 

A. I. Kitaigorodsky and K. V. Mirskaya, Mol. Cryst. 4, (1969). 

. K. V. Mirskaya, Fiz. Tverd. Tela “Soviet Physics—Solid State’’. 

. H. Huntington, Solid State Phys. 7, 213 (1958). 

. M. Born and K. Huang, ““Dynamical Theory of Crystal Lattices.’’ Oxford Univ. Press, 

London and New York, 1954. 

G. Afanassieva, Synopsis of Thesis, Moscow State Univ., Moscow, 1970. 



Chapter VII 

Conformations of Organic Molecules 

1. THE MECHANICAL MODEL OF A MOLECULE 

In the preceding chapters the problems pertaining to the mutual positions 

of the molecules in a crystal have been discussed. This chapter deals with the 

mutual positions of the atoms in a molecule, i.e., the conformation of the 

molecule. Conformational concepts have become one of the most important 

fields of organic chemistry. The properties of the molecule, e.g., reactivity, 

reaction rate, bond strength, the heats of formation and hydrogenation of 

unsaturated compounds, etc., are ascribed by chemists to the molecular 

geometry. Thus they disguise the relationship between geometry and properties 

of the molecule by the somewhat indefinite term “‘steric effects.’” Nowadays 

the theory of conformational analysis makes possible quantitative evaluation 

of these steric effects. 

If a molecule is looked upon as a system of electrons and nuclei, then, by 

solving the Schrodinger equation in every case, we may derive all the properties 

of the molecule, including its geometry. But, nonempirical calculations involve 

extremely complicated, sometimes insurmountable, mathematical difficulties ; 

hence the attempts to find more expedient—empirical—solutions. The success- 

ful application of atom-atom potentials to the estimation of intermolecular 

forces gives us grounds to believe that this approach will be no less fruitful in 

the case of the interatomic potentials within molecules. 

381 
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The concept of the theoretical conformational analysis of organic molecules 

was put forward as early as late forties and early fifties independently by Hill 

[1, la], Westheimer [2-6] and Kitaigorodsky [6-8]. These early contributions 

are analyzed in [9, 10]. The mechanical model underlying theoretical con- 

formation analysis is based on the Born—Oppenheimer approximation. This 

means that the potential energy of a mo!ecule may be represented with sufficient 

accuracy as a continuous function of the nuclear coordinates. The problem is 

to find empirically such potential functions as can adequately describe the 

geometry of a molecule. An essential condition for such potential functions 

is to employ the smallest possible number of empirical parameters; other- 

wise the method will lose its predictative ability. 

The following assumptions are made in the method of atom-atom potentials 

to be applied within molecules: 

1. A molecule may be viewed as a system of interacting atoms; for a large 

class of problems the atoms may be assumed to be connected by absoiutely 

rigid bonds (rods). 

2. The interatomic interactions in a molecule may be described by the 

potential curves (6-exp, 6-12 etc.) used to characterize intermolecular inter- 

actions. These interactions are generally of a central nature, although in some 

cases it is advisable to take into account deviations from centrality (see page 

398). 

3. For each atom, there exist “ideal” bond angles, i.e., from the center of 

each atom, valence lines may be drawn just as they would have been directed 

had there been no nonbonded interactions, or bonds between neighboring 

atoms. 

4. Generally speaking, ideal bond angles should be found empirically. But 

it is only the simplest valency schemes of quantum chemistry that may serve 

as initial values, i.e., the 90° angle between the O, S, Se, N, P, and As bonds, 

the tetrahedral angle for the aliphatic carbon atom, the 120° angle for the 

trigonal and aromatic carbon atoms. 

5. Any deviation of the bond angles from the ideal values requires some 

energy. 

6. The sum of the angular deformation energy and that of nonbonded inter- 

actions will be called strain, or conformational, energy 

Of, a Ong a1 U onbended (1.1) 

By varying the atoms’ mutual positions in the case of rigid bonds, we may 

build up the U,, surface as a function of independent geometrical parameters. 

This surface will have one or several minima corresponding to one or several 

conformations. If one minimum is by far deeper than the rest of them, the 

molecule may have one stable conformation. If there are several minima 



1. The Mechanical Model of a Molecule 383 

separated by R7T-commensurate barriers, there should exist some conformers 

capable of interconversion, and, in the gaseous or liquid phases, conformational 

equilibrium will be achieved. 

This model is of no particular interest if one believes that there are no 

universal methods to calculate U,, and also that U,,, and U,oatondea are 

different in each molecule. But the mechanical model, like any semiempirical 

theory, is of value if it can predict the conformational and strain energies of a 

great number of molecules using some theory in which the required parameters 

are to be determined experimentally. For this scheme to be feasible, the number 

of values to be determined should exceed the number of theoretical parameters 

by at least two or three orders. 

The energy of the nonbonded interactions is calculated like that for the 

crystal, i.e., it is equal to the sum of the interactions of all pairs of nonbonded 

atoms: 

LD ennonded a > dV Salis) (2) 
i>j 

where f,, are the atom-atom potentials (the index m indicates the type of 

interaction); r;; is the distance between atoms i and j; as in the case of inter- 

molecular interactions, if the 6-exp potential is used, then 

f(r) = —Ar~*° + Bexp(—Cr) (1.3) 

where A, B, and C are empirical parameters. 

As to the angular deformation energy, when the ideal bond angles are 

equal to %) and the true ones are equal to a, this energy will be 

» Sa-4%) (1.4) 
all angles 

i.e., it is assumed to be additive (the sum of the energies of all the bond angles). 

For small deviations («—4 9), it is possible to confine ourselves to the 

quadratic term of the expansion of the function f(«—a ), and, presented as 

quasi-elastic energy, the formula will look like 

Uses as $ DL C,(%— %0)" GY5) 

where the C; are elastic constants. 

Kitaigorodsky and Dashevsky [11, 12] made an atiempt to use the smallest 

number of constants. Therefore, C and aw were considered to be universal 

constants for a wide range of compounds. It is believed that good agreement 

with experimental results may be attained by assuming that all carbon atoms 

could be divided into tetrahedral (sp*-hydridization) and trigonal (sp). For 

the former, &) = 109°28’, for the latter a» = 120°. 
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The values of the constants C lie in the 20-90 kcal mole’ rad~? range. The 
C constants for O and N atoms are also within this range, the ideal angles 

being assumed to be 90°. (It may also be assumed that in the case of pyramidal 

nitrogen the ideal angle is 90°, while for planar nitrogen it is 120°). 

The C, constants are associated with K, spectroscopic deformation force 

constants. By definition 

1 (eeu, 
AoW (7) (1.6) 

where N is the number of equivalent interactions and a, is a bond angle of the 

equilibrium conformation (i.e., essentially not an ideal angle). Introducing 

into (1.6) the strain energy we have 

Of(r) (or > Mae )rer 

Ou x) ci au? Oat 
K, = C+ (i24) 

In (1.7) summation signs are omitted for the sake of simplicity; equivalent 

interactions are not taken into account either. 

Calculations have shown that the spectroscopic deformation constants are 

approximately twice as large as the ‘“‘conformation” elastic constants, because 

the former, in accordance with Eq. (1.7), takes into account the nonbonded 

interactions. 

Expressing the strain energy by means of independent geometrical par- 

ameters ¢, one may find the minimum of this energy, either by solving the 

system of equations 

oe 0Aa,; pela 
me CNG; 7s, + dD In (r;;) ze, (1.8) 

(where Aa; = %;— 49), or by minimizing a function of several variables with 

the help of acomputer. The energy minimum will correspond to an equilibrium 

conformation that is established as a result of a compromise between the 

tendency of nonbonded atoms to move apart to equilibrium distances and that 

of bond angles to maintain their ideal values. 

So far, we have considered two terms in the potential function of an organic 

molecule: the energy of the nonbonded interactions and the bond-angle 

deformation energy. In the following sections, dealing with applications of the 

mechanical model to various types of molecules, we shal] discuss other com- 

ponents of the potential function. The term “nonbonded interactions” will be 

used tentatively, i.e., meaning only the terms involved because of dispersion 

attractions and the repulsions of atoms due to the overlap of their electron 

shells; these effects are usually described by potentials of the 6-exp or 6-12 type. 

It is evident that electrostatic energy and torsion interactions, etc., should 
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also be classified as nonbonded interactions. But, since they have analytical 
forms which make them different from the atom—atom potentials indicated 

above, they will be classed among other components of the potential function. 

It should be stated a priori that the role of the electrostatic interactions in 

forming the optimal geometry (but not its relative stability) is, as a rule, 

very small. But in a simple molecule, as, e.g., H,0, NH3, H,S, Cl,O, F,0, 

PH;, (CH3;),0 etc., the contribution of the electrostatic forces to the 
equilibrium conformation may be quite significant. 

Obviously, it is possible to elaborate a semiempirical analysis of the 

deformations of simple inorganic molecules, but this analysis is bound not 

to be too convincing, because many empirical parameters are indispensable. 

However, to analyze large classes of organic molecules, a comparatively small 

number of empirical parameters is required. For example, knowing only the 

potential curves for C---C, C---H, and H---H, and the elastic constants for the 

bond angles, one may estimate the conformation of many thousands of 

hydrocarbons; hence, the great importance of semiempirical methods of 

conformational analysis for making predictions in organic chemistry. So, it is 

quite natural that the majority of the papers on theoretical conformational 

analysis deals with organic molecules. 

As arule, intermolecular forces are smaller by one order than those of non- 

valent repulsion in molecules. Even in macromolecules whose helical con- 

formation is determined by the 0.5 kcal mole~* per monomeric unit energy 

difference between the trans and gauche forms, the role of the intermolecular 

forces in attaining optimal geometry is almost always insignificant, as will be 

shown below. In so-called ‘‘overcrowded’’ molecules, whose ideal model 

contains pairs of too closely located atoms, intermolecular forces may be 

neglected also. The sublimation energy of most organic crystals is approxi- 

mately 10-25 kcal mole~'; taking into consideration that each molecule is 

surrounded with at least 10-14 neighboring ones, the contribution of each 

molecule should. be estimated as 2-3 kcal mole~’. Since the strain energy 

exceeds that value by one-two orders, the conformational calculation may be 

restricted to estimating only intermolecular forces. 

Exception should be made only for those molecules in which the order of 

the strain energy difference between any two conformations is comparable 

with the intermolecular interaction energy. For example, in crystalline di- 

phenyl, the planar conformation exists [13, 14], whereas in the vapor phase, 

the phenyl rings are turned to each other by 42°, as is shown by an electron- 

diffraction investigation [15]. 

Adrian [16] calculated the energy difference between the planar and non- 

planar diphenyl conformations to be 0.8 kcal mole~ ', hence the intermolecular 

forces play the decisive role in determining the optimal conformation of this 

molecule. 
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2. PARAMETERS FOR CONFORMATIONAL CALCULATIONS 

Since the method described is empirical, special attention should be paid to 

the parameters to be used. First, it is sensible to assume that the atom—atom 

potential parameters are determined only by the type of interacting atoms. 

These parameters should describe both the intra- and intermolecular inter- 

actions (i.e., the potentials do not depend on the kind of atomic interactions 

analyzed—those between atoms of different molecules or between atoms 

belonging to one molecule); they should be transferable from one molecule to 

another. Thus, the energy of interaction of any pair of atoms not bound with 

a covalent bond depends only on the distance between them. Otherwise, the 

predicting power of the method would be very low. 

The present physicochemical literature deals with a great number of 

parameters put forward by various authors. Unfortunately, no preference 

may yet be given to any of them, because the aim of every paper is to investigate 

one or two features of a definite class of substances. For example, the potentials 

of Scott and Scheraga [17] were verified only by calculations of the internal 

rotation barriers in simple molecules containing single bonds and polypeptide 

conformations [18, 19]; the potentials by Poltev and Sukhorukov [20], were 

checked only by calculations of the sublimation heats of several organic 

crystals; the potentials suggested by Williams [21], were used only in a 

comparative analysis of 70 estimated and experimental constants—the par- 

ameters of the unit cells of several hydrocarbons, and their sublimation 

energies (the number of such parameters may be increased by one order). 

For the reasons described above, it is very important to determine the 

parameters of the atom—atom potentials based on all the available physico- 

chemical data and using definite mathematical criteria. Universal potentials 

are used to estimate quite different properties, such as, the parameters of the 

unit cells of crystals, their sublimation heats, the thermodynamic functions of 

crystals, the thermochemical properties of gases, the conformations of 

molecules, the frequencies of the vibration spectra of molecules and crystals, 

the second virial coefficients and transport properties of polyatomic gases, 

and evidence on the dispersion of molecular beams. What should optimal 

potentials be like? What will be the error of optimal three-parameter potentials 

in determining the above properties? Will quite different parameters be useful 

to any degree to describe inter- and intramolecular interactions? Is there any 

sense in discriminating between aliphatic and aromatic carbon atoms? Un- 

fortunately, none of these questions has received a clear answer. Ramacha- 

dran’s attempt to calculate the conformations of polypeptides and poly- 

saccharides using the potentials of different authors is stimulating [22], but 

is still not sufficiently decisive to answer any of the above questions. 

Molecular conformations are chiefly determined by the repulsions between 
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nonbonded atoms at small distances; but for making up a crystal both 
attraction and repulsion are essential, the principal role belonging to the 

position and depth of the potential well. Therefore, when calculating con- 

formations, to use potentials derived from the analysis of intermolecular 

interactions will mean taking chances. Consequently, there arises the problem 

of obtaining potential curves from the data on the geometry of overcrowded 

molecules [23] or the data on their energies of formation [24]. One may 

expect that in the future attempts will be made to ““combine”’ potential curves 

to make them operative over a wide range of internuclear distances. A brief 

survey will now be made of the methods for obtaining and refining the atom— 
atom potentials used by some authors. 

The simplest atom-atom potentials are walls of infinite height corresponding 

to just one empirical parameter: r = r,;,. If r > rin, Contacts between atoms 

are allowed, otherwise they are forbidden. Such potentials, corresponding to 

the method of rigid spheres in conformational analysis or to the principle of 

dense packing of molecules in crystal, furnish only information on allowed 

or forbidden regions in the space of the independent geometrical parameters 

describing the geometry of the molecule. These potentials provide neither the 

accurate position of the minima, nor the relative stability of different con- 

formations; but the shape of the potential wells can be roughly estimated. 

It should be noted that the method of rigid spheres is not a very useful one in 

the case of small overcrowded molecules possessing no internal rotation. But, 

for molecules like peptides, in which conformational freedom is rather high, 

these methods may be used to interpret some interesting facts. For example, 

the points corresponding to real polypeptides and proteins should not get into 

forbidden regions of conformation maps of dipeptides; that this is very often 

the case is shown in the next chapter. 

Ramarandran and Sasisekharan [25] analyzed extensive experimental 

evidence on the structures of amino acids, peptides, and similar substances; 

they established characteristic distances between the atoms corresponding to 

the shortest intra- and intermolecular contacts. These distances are shown in 

Table 1; in the first column the “‘normal’’ distances encountered in many 

compounds are given; in the second, “‘extreme,” rare distances are given, 

but which do occur, especially in the case of H bonds. As a rule, extreme 

distances are shorter by 0.5-0.8 A than equilibrium ones (corresponding to the 

minimum of the 6-exp or 6-12 potential curves). Of course, it should be taken 

into account that conformations in which H bonds arise may fall into forbidden 

regions. In fact, the average O---H distance for the C-O---H bond is as low as 

1.8A which is less by 0.4-0.6 A than the allowed distance. 
Now, let us discuss potential curves which have no discontinuities in their 

derivatives, e.g., 6-exp or 6-12. The most common potentials of this kind 

now used are those of Kitaigorodsky [26], Hendrickson [27], Liquori and 
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Table 1 

VALUES OF MINIMUM CONTACTS BETWEEN NONBONDED 

ATOMS? 

Type of contact Normal limits (A) Extreme limits (A) 

H::-H 2.0 iQ) 

H:-:-O 2.4 Ded, 

H::-N 2.4 Dee, 

H::-C 2.4 DD 

O::-O 2,1) 2.6 

O:--N Pell 2.6 

O::-C 2.8 Dell 

N::-N ed 2.6 

N::-C 19) 2.8 

CC 3.0 2.9 

“G.N. Ramachandran and V. Sasisekharan [25]. 

co-workers [28], Scott and Scheraga [18], Flory [29], and Dashevsky [30]. 

There exist about ten other independent procedures for obtaining potential 

curve parameters, but they are less reliable and are not sufficiently verified by 

a priori geometric calculations. 

The universal potential of Kitaigorodsky 

f(r) = 3.5[8600 exp(—137/ro) — 0.04(ro/r)°] (2.1) 

contains just one parameter, the equilibrium distance rp. Ramachandran et al. 

[22] have shown that, even with such strict limitations on the 6-exp potential 

parameters, conformational calculations of peptides and, especially, sugars 

yield quite good results. Two sets of parameters were considered: A, B, and C 

[see (1.3)], satisfying Eq. (2.1), i.e., K, and K,, Table 2. The first set, K,, was 

found assuming that f(r) = 0 when r is equal to the sum of the van der Waals 

radii (1.e., the mean intermolecular distances found by Bondi [31] as a result 

of an analysis of extensive crystallochemical data). The second set, K3, is 

found on the assumption that in that point the potential curve has its 

minimum. 

Liquori et al. [28] tried to find in different papers suitable potentials for 

various types of interactions. But this attempt did not prove successful, and 

the system of potentials proved inconsistent. In any case it was shown in [22] 

that with dipeptides these potentials give an additional minimum in the region 

which is intermediate between the conformation corresponding to the right- 

hand «-helix and the one corresponding to the f-structure; this does not 

agree with the experimental evidence, e.g., with the IR spectra. Hence, at least 

one of the curves should be reconsidered. 
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Table 2 

EQUILIBRIUM DISTANCES FOR THE UNIVERSAL POTENTIAL 

OF KITAIGORODSKY® 

Interaction ro(A) Interaction ro(A) 
K, K2 K, K 

H::-H 2.66 2.40 N--- CH; 3.78 3.40 

H:---N Si06m 22/5 O:--O 3.33 3.00 

H::-O 3002510 O:.-C 3.56 3.20 

H:--C 3.22 2.90 O.---CH3 S7P2 Byehs} 

C--- CH3 SSkn SOS) C:-C 3.78 3.40 

N:---N 3.44 3.10 C:-. CH; 3.94 3.55 

N::-O 3539 aS O5 CH; --- CH; 4.11 3.77 

N::-C 3.6179 °3-25 

2C. M. Venkatachalam and G. N. Ramachandran [22]. 

As was shown in the case of the universal potential (2.1), it is most important 

to choose the rp equilibrium distance. If the choice is good it only remains to 

find two parameters for the 6-exp potential and one for the 6-12 potential. 

Taking account of the fact that in a crystal the closest atoms belonging to 

different molecules are, as a rule, located at distances shorter than equi- 

librium ones, Scott and Scheraga [18] and Flory et al. [29] obtained ro by 

adding 0.2A to the mean value of the intermolecular contacts found by 
Bondi (this difference is likely to be 0.30.4 A). 

These authors derived the second parameter indispensable to their potentials 

from some experimental data based on the theory of dispersion forces. They 

used the Slater-Kirkwood equation [32] for the energy of dispersion inter- 

actions 

$e (h/m) a; o; 
4 = GIN)*+@IN)* eg) 

where A is the coefficient at r~° in the 6-exp or 6-12 potentials, «; and «; are 

the polarizabilities of atoms i and j. N; and N; are the effective numbers of 
electrons capable of being polarized (sometimes this is said to be the number 

of electrons in the outer shell); h, e, and m are the fundamental constants: 

the Plank constant, the charge, and the mass of the electron. Polarizabilities 

of atoms were taken from the table in [33] containing the experimental results; 

the dependence of N on the atomic number was found by Scott and Scheraga 

who used the data on inert gases, and interpolated it for other atoms. 

In the case of the 6-12 potentials the constants found, i.e., A and rg are 
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il sufficient, since the B coefficient of r~‘” is determined by the condition that 

f(r) is a minimum at r=7rp: 

B = 5SAr,° (2.3) 

Flori et al. who used the 6-exp form, also dealt with only two empirical 

parameters, assuming C in (1.3) to be equal to 4.60. 

It is important to note that the optimal conformations and their relative 

stabilities depend not so much on the attractions between the nonbonded 

atoms as on their repulsions. Therefore, it is advisable to pay attention to the 

parameters describing repulsion, rather than attraction (whereas Scheraga 

and Flory derived their potentials based on the empirical values characterizing 

attraction). Equation (2.2) is very approximate and, which is the main thing, 

the values of this equation cannot be obtained directly from experiment. 

Hence the inevitability of a considerable error in the value of the repulsion 

forces obtained automatically by minimization of the potentials at r = ro. 

Dashevsky in some of his papers [11, 23] tried to refine the potential curves 

of nonbonded atoms using structural and thermochemical data. The 6-exp 

potentials were used; to simplify parametrization the Cry product was 

assumed to be equal to 13, and the values of the equilibrium distances were 

borrowed from the crystallochemical data, using the same principle as [18]. 

Thus, every potential contained but one variable parameter. For interactions 

of atoms of different kinds, combination rules were found empirically, thus 

enabling one to obtain, e.g., the C---Cl curve by using the data on C---C and 

Cl---Cl interactions. 

If 

fir = —Ay,r° + By exp(—C,17) (2.4a) 

and 

Soar = —A, 4 ° + By, exp(—C 2) (2.4b) 

then 

BY, +BY,\7 Gre 
By = (4) » Cy = Senne Ay, = 23.63B,2/C}, 

(2.4c) 

These relationships were obtained as a result of several attempts, and the rule 

for B given in (2.4c) gives more satisfying results in estimation of the energies 

of formation and isomerization, than the B,, = 2B,,B,,/(B,,;+B,,) rule 

used previously in conformation calculations [12] and known to other 

authors [34]. The somewhat unusual expression for A in (2.4c) is due to taking 

Cro— 13 

Table 3 lists the parameters of the Dashevsky potentials and in Fig. | are 
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Table 3 

THE POTENTIALS OF DASHEVSKY 

Interaction A(kcal mole! A®) B(kcal mole~*) G(AgS) ro(A) 

H::-H 40.1 2.86 - 10* 5.200 2.43 

C-.-C 476 3 LO Bole 3.70 

(Eipoadl @ 121 3.28 - 10+ 4.130 B15 

O::-O 354 9.65 - 10* 4.333 3.00 

N---N 395 162 10" 4.063 3.20 

F::-F 183 6.23 - 10+ 4.483 2.90 

Cl--- Cl 2900 2.29 - 10° BES 3.70 

Br--- Br 3350 1.62 - 10° 3.250 4.00 

I---I 6020 2.42 - 105 3.025 4.30 

“The parameiers of the C-:-H curve were determined independently without using 

combination rules. 

given calculations of the conformations of several simple hydrocarbon 

molecules which were used to refine the potential curve parameters. 

The 6-exp potentials without limitations are not very convenient for com- 

puter calculations since lim, 9 f(r) = 00 (see Fig. 2). Itis clear that the minimum 

r, Values for each curve should be such that at r <r,, it is prohibited to use 

the 6-exp potentials. The r,, values should be so chosen that: (1) they corre- 

spond to the diminishing parts of the potential curves; and (2) they do not 

exceed the distances between the “pressed”? atoms in the overcrowded 

molecules. Let us add the parabola 

f(r) = ar? +br+c (2.5) 

to the 6-exp potential at point r,,, demanding that both the values of the 

function and of its derivatives should coincide at this point (which is some- 

times essential for minimization). Then 

a=f"(r,,)/2 

P= Codey Wn)ia (2.6) 

c = f (1m) ot (im) ar ea pes he 

where f(r) is the 6-exp potential considered. If, for example, in minimizing 

the potential function, one has some distance between the nonbonded atoms 

less than r,,, expressions (2.5) and (2.6) should be used instead of the usual 

6-exp potentials. 

For computer calculations, the 6-12 potentials are much more convenient 
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Fig. I. Equilibrium conformations of some hydrocarbon molecules calculated with 

Dasheysky’s potentials and elastic constants. In square brackets, accepted values of bond 

lengths; in round brackets, experimental data. 

Fig. 2. Curve of interaction between nonbonded atoms (6-exp). Parabola is shown with 

broken line. Proportions are not observed: the peak of the f(r) curve exceeds by three or 

four orders the depth of the minima at ro. 
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because, first, lim,o f(r) = 00 and, secondly, r~'? takes less time to cal- 
culate than the exponential. Therefore, the 6-exp potentials were transformed 

into 6-12 potentials [35] and were then used by some authors to calculate 

peptide conformations [36]. In search of the A and B parameters for the 
Lennard-Jones potential 

f(r) = —Ar~® + Br-}? 

the 

s= | [—A’r~° + B’exp(—C'r) + Ar” ° — Br7}?}? ar (2.7) 

integral was minimized, where A’, B’ and C’ are constants corresponding 

to the Dashevsky potentials, the a values were chosen so as to ensure ~5 
kcal mole~* energy at r = a. The results are listed in Table 4. 

One should mention also the potentials of Hendrickson [27] which are 

used to calculate the conformations of cycloalkanes [37, 38]. These potentials 

were derived from intermolecular potentials obtained from the experimental 

data on the scattering of He and Ne molecular beams; the H---H curves were 

compared with He---He, C---C with Ne---Ne; the C---H curve was obtained by 

means of the combination rules. 

Some authors made their conformation calculations using spectroscopic 

deformation force constants. But, as is clear from Eq. (1.7), such a procedure 

is basically wrong. In [23] the author attempted to refine independently the 

elastic constants. As a result of a simultaneous variation of the elastic constants 

and parameters of the potential curve, and application of the experimental! 

data on some “standard”? hydrocarbon molecules, Dashevsky and Kitai- 

gorodsky [11] obtained the following constants: Ce atipn = 30, Coethytene = 70, 

and Coarom = 52 kcal mole~' rad~*. These values were used to calculate the 
conformations of the molecules shown in Fig. 1. It should be emphasized that 

these values of the elastic constants are valid only for the potentials listed in 

Table 4 

THE 6-12 POTENTIALS 

Interaction A (kcal mole-! A®) B (kcal mole~! A??) ro (A) 

Wen 31.4 2.97 - 108 2.40 
fon te 95 2.24 - 105 4.06 
SATE 164 6.25 + 104 3.03 
N--N 228 1.35 - 105 3.25 

CH; --- CH; 5069 1.267 - 107 4.16 
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Tables 2 and 3, i.e., they are reliable only when being used with this set of 

potentials. However, it is possible to elaborate such a scheme operating both 

with the atom-atom potentials and the constants derived from the vibration 

spectra frequences of the molecules by solving the reverse problem. (Of course 

the question of whether these constants are unambiguous and transferable 

from molecule to molecule should be discussed specially.) For example, 

Allinger et al. [39], using spectroscopic deformation constants, did not include 

the | --- 3 interactions, i.e., the nearest nonbonded interactions, and thus met 

the requirements of Eq. (1.7). 

3. INTERNAL ROTATION IN MOLECULES 

It is well known that rotation around ordinary C-—C bonds in ethane, 

butane, and other aliphatic molecules is not free; passing through the eclipsed 

conformations the molecules have to overcome a potential barrier. The 

question arises whether it is possible to describe the height and form of these 

barriers by means of the potential functions dealt with above? 

It turned out that the potentials of nonbonded interactions obtained from 

various physicochemical data provide no rotation barrier values for small 

molecules which are comparable with the experimental ones. Mason and 

Kreevoy [.40, 41] were the first to demonstrate this when they made an attempt 

to use the potentials they had obtained from experiments on the scattering 

of inert gases for estimating the internal rotation barriers in haloid derivatives 

of ethane, and also in molecules of the Cl,B-BCl, and H3Si-SiH; type. The 

calculated barriers proved to be almost twice smaller than the experimental 

ones, and the values for methane and methylsilane were equal to zero. Hence 

the conclusion that atom-atom potentials depending only on the distances 

between the nuclei are not sufficient for a correct description of these barriers. 

The data by Mason and Kreevoy gave impetus to a number of suggestions 

and concepts as to the “‘nature”’ of the internal rotation barrier which were 

considered in detail in some monographs [42, 43]. Ab initio calculations for 

simple hydrocarbons in terms of the Hartree-Fock method allow one to 

obtain values of the barriers close to the experimental ones, in spite of the 

fact that the difference between the calculated total energy and the true energy 

exceeds by about two orders of magnitude the value of the barrier. Pitzer and 

Lipscomb [44] used the usual Slater functions and computed over 1000 

integrals in order to calculate the barrier in ethane to be equal to 3.3 kcal 

mole! (the experimental value is 2.9 kcal mole~'). Later Goodisman [45] 

showed that the energy difference between the eclipsed and staggered forms 

exceeds the true one by 500 kcal mole~', which is 150-fold higher than the 

height of the barrier. Clementi and Davis [46] used a Gaussian basis to 
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calculate a 3 kcal mole~* value for the barrier in ethane. These authors de- 
monstrated that the barrier value does not depend on the basis set chosen, 
which added to the validity of their results. 

Hoyland [47] obtained excellent results for the internal rotation barriers 

in butane. Using Gaussian functions, he estimated the barrier to be equal to 

3.54 kcal mole’ * and the energy difference between the trans and gauche form 

to be equal to 0.82 kcal mole~', which is in complete agreement with the 
available experimental data [48]. 

Unfortunately, the ab initic calculations in all these examples show how 

they can be made to work, rather than make a real contribution to empirical 

conformational analysis, since the question of what interactions give rise to 

a barrier remains obscure. By way of example, we should like to note that the 

rotational barrier in as simple a molecule as HO, is still a stumbling block 

for theoreticians dealing with ab initio calculations [49-51]. Some of them 

believe the unshared pairs of the oxygen atoms play a specific role in this 

molecule.f 

The question arises: How, by adding a certain term to a potential function, 

or by modifying it, does one obtain values and forms of the barriers com- 

parable with the experimental data? There seem to be three possibilities: 

1. To introduce into the potential function not only a term which depends 

on the distances between the nuclei (the sum of atom—atom interactions) but 

also a term depending on the mutual positions of the vectors connecting the 

nuclei, to be more precise, on the angles between groups of certain vectors. 

2. To change the interaction potentials of nonbonded atoms so as to make 

them automatically give internal rotation barriers without introducing torsion 

energy. The potentials will still remain central, i.e., depending only on the 

distances between the nuclei, but they will not be universal any longer. For 

example, it will not be possible to use these potentials to predict the con- 

formations of aromatic molecules, energy of intermolecular interactions, etc. 

3. To use only atom-atom interaction potentials, but to make them non- 

central, i.e., to assume that atoms have forms other than spherical, for example, 

that of rotational ellipsoids. 

The Born—Oppenheimer theorem does not say anything about what the 

molecular potential function should be. It is essential that it should be a con- 

+ Recently, significant progress has been made both in calculation and revealing of the 

physical origin of the barriers to internal rotation; see, e.g., F. M. Lehn in ‘““Conformational 

Analysis. Scope and Present Limitations” (G. Chiurdoglu, ed.). Academic Press, New York 

and London, 1971. Also, A. Veillard, Chem. Phys. Leit. 4, 51 (1969); T. H. Dunning, Jr., 

N. W. Winter, Chem. Phys. Lett. 11, 194 (1971). 
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tinuous function of the nuclear coordinates. Therefore all three possibilities 

above are correct from the point of view of quantum mechanics. 

The majority of investigators chose the first possibility. It has been experi- 

mentally proved that a staggered conformation is more favorable than an 

eclipsed one, and the shapes of the barriers are roughly cosine-like [48]; 

hence for ethane, its haloid derivatives, and, in general, for molecules of the 

A,A,A3X-YA,A;A, type the additional energy of interaction of the 

A,A,A,;-A,A;Ag groups (i.e., bond orientation energy) is usually described 

as 

U(@) = (U/2) 1 + cos 3¢) (3.1) 

where U, is an empirical constant and ¢ is the rotation angle measured from 

the eclipsed conformation. This expression is usually called a torsion potential. 

In fact, by expanding the rotation potential function into a Fourier series 

and having in mind that in the case of ethane and its analogues this is a periodic 

function with period 27/3 (the bond vectors A,—X, A,—X, etc. have three- 

fold symmetry in relation to the X—Y rotation axis), we shall have 

U(g) = (U 9/2) (1+ cos 3@) + (U9'/6) (1 +cos 6¢~) + -: (3.2) 

The microwave spectra [48] of small molecules show that in most cases 

it is only the first harmonic of the series which is really essential; therefore 

all terms except the first one are usually neglected. 

The above approximation makes the following formula useful in calculat- 

ing the internal rotation barriers of ethane-like molecules: 

U(~) = (Up/2) (1 + cos 3g) + LSC) (3.3) 

It should be added that the bond angles are assumed not to change in the 

course of the rotation. In [17, 52] good agreement with the experimental 

data was obtained for the H;C-CH;3, H,C—SiH;, and H3Si-SiH,; molecules 

and their haloid derivatives. The bond angles were assumed to be tetrahedral, 

the Up, values were taken equal to 3.0 kcal mole’ for the C-C bond, 1.5 kcal 

mole! for the C—Si bond, and 1.1 kcal mole! for the Si-Si bond. 

It should be noted that without taking into account variations of the bond 

angles it is hardly possible to obtain precise barrier values, especially in the 

case of large substituents. That was shown in paper [53] with haloid deriv- 

atives of ethane. For example, in hexachloroethane the barrier calculated for 

tetrahedral bond angles equals 26.7 kcal mole’ ', whereas on minimization 

of the potential function by varying the bond angles it decreased to 13.7 kcal 

mole‘ (the experimental values are approximately 10.8 [54] and 17.5 kcal 

mole‘ [55]). 
It is of interest that in ethane the HCH bond angle practically does not 
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Fig. 3. Staggered and eclipsed conformation of hexachlorethane molecule. 

change on rotation; both in the eclipsed and staggered forms it is 107.67° 

(the experimental value [56] is 107.8°). In molecules with large substituents 

the bond angle deformation amounts to several degrees. For example, the 

CICC bond angle in hexachlorethane is 114° for the eclipsed and 110° for the 

staggered conformations. In pentachlorethane the equilibrium angles of the 

eclipsed form have the following calculated values (Fig. 3): a; = 106.8°, 

4 = a5 = 112.7°, a; = 109.3°, a, = a, = 111.4°; and in the staggered form: 

Ge = 108:5*) ofa. = 111:8°, oe, =2, = 110,3°,0, = 111/42) Such seemingly 

insignificant deformations of bond angles result in a decrease in the barrier 

height from 19.5 to 12.4 kcal mole~! (the experimental values are 14.2 [56] 

and 12.8 [57] kcal mole~'). 
Let us return to potential functions in which, besides the interaction energy 

between pairs of nonbonded atoms and bond angles deformation, we intro- 

duce torsion energy as (3.1), i.e., 

Us, re Uconvonded ate enn it Urs (3.4) 

All further examples concerning conformations of aliphatic molecules, 

including vinyl polymers will be based on potential functions of this kind. 

The second possibility was made use of by Magnasco [58]. Having intro- 

duced the Morse potentials, he selected for them such parameters that the 

calculated barriers of 30 molecules with one rotational degree of freedom 

were in almost complete agreement with the experimental values. Such pre- 

cision was unprecedented, but it should not be forgotten that the universality 

of atom-atom potentials was sacrificed. 

Finally, the third possibility was recently put forward by Kitaigorodsky 

[59]. It is possible to obtain internal rotation barriers in molecules in terms of 

atom-atom potentials, but they will not be spherically symmetric potentials 

any more. It is assumed that the equilibrium radius of the univalent atom 

depends upon the angle formed by this radius and the valence bond. Assum- 

ing that ry is equal to a and a/e, respectively, along and across the bond, and 

assuming thereby the univalent atom to have the form of an ellipsoid of 
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rotation, we can readily derive an equation for the equilibrium radius: 

ry = (a/2) [(esin? W, +c0s* W,) # + (esin? f.+cos* 2)" 4] ~~ (3.5) 

where w, and yw, are the angles between the intraatomic vector and the 

bonds (pp. 165, 166, Chapter 2). 

In this formula there is one empirical parameter ¢ just like Up in (3.1). 

Assuming ¢ = 0.82 and utilizing the universal Kitaigorodsky potential [26], 

we shall obtain a value of 3 kcal mole~’ for the barrier to internal rotation in 

ethane. No calculations were carried out to verify the transferability of the 

empirical constant ¢ from one molecule to another; therefore it is difficult 

to predict the validity of this approach. 

4. CONFORMATIONS OF ALIPHATIC MOLECULES 

Equation (3.4) is quite sufficient to calculate the conformations of aliphatic 

molecules; if the necessary parameters are known, the optimal geometry of 

the molecule can be obtained by minimization of the potential function. But 

in some cases the problem of numerous minima becomes a serious handicap. 
One should start by deciding what result is sought. Keeping this in mind, 

one can divide all conformation problems into two types. The first type com- 

prises the problems where the true geometry is to some extent known and 

may be assumed to be a zero approximation in the search for the local minimum 

of potential energy: the conformation so estimated may be compared with 

the results of structural investigations. The potential functions of the over- 

crowded aromatic molecules, which will be considered in the next section, 

have, as a rule, one deep minimum, and hence it is reasonable to find it by 

means of minimization of a function of several variables so as to obtain the 

geometry a priori. 

In molecules with internal rotation there are always several or many minima 

in the potential surface. In this case it is interesting not only to find the precise 

coordinates of the atoms of the various conformers (i.e., to solve the problems 

of the first type) but also to predict the population of the various conforma- 

tions and the energy differences of the rotation isomers, since this is very 

important for the configuration statistics of polymer chains. Finally, it is also 

essential to find the absolute minimum, so as to predict the most probable 

conformation of the molecule in the crystal. 

In the potential energy surfaces of open hydrocarbon chains there is a 

great number of local minima corresponding to various conformations; it 

rapidly increases as the number of C atoms in the chain rises. 

The absolute energy minimum of normal alkanes always corresponds to 

the trans conformation of neighboring units, i.e., the C atoms form a planar 

zigzag (since we count rotation angles from the eclipsed cis conformation, 
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for the optimal conformation 9, = 9, = g; = -:: = 180°). But besides this 
conformation, there may exist ones in which at least some rotation angles 
differ from 180°, and, as follows from the torsion energy expression (3.1), 
conformations with g = 60° and 300° should make a considerable contribu- 
tion. The latter should, evidently, correspond to local minima of the potential 
surface, their depths being comparable to that of the absolute minimum, and 
their percentage occupancy may be calculated by means of the Boltzman 
factor: 

n/n, = exp[—(U,—U,)/RT] (4.1) 
where n, and nj are relative populations of the two conformers, U, and U, 
their strain energies, R is the gas constant, and T is absolute temperature. 

Bartell and Kohl [60] used electron diffraction data to estimate the percent- 

ages of the various conformations of lower n-alkanes at room temperature: 

~o % 
n-butane T (trans) 59.1 n-hexane TTT 24. 

G_ (gauch) 40.9 TGS33:6 

n-pentane TT 38.4 TGT 16.8 

TG 5257 TGG 11.6 

GG 9.0 GTG 11.6 

GGG 2.0 

McCullough and McMahon [61] investigated theoretically the rotational 

states of n-hexane. For the sake of simplicity they assumed that g, = g, = 
P4 = Ps = Py and @3 = @,y (i.e., a two-dimensional potential surface). All the 

C---H and H-:-H interactions were calculated using the curves of the same 

authors [62], (C---C interactions were not taken into account) the bond 

angles were assumed to be ideal. It was found that, besides the trans form 

Py = Yq = 180°, corresponding to the absolute energy minimum, there are 

two more pairs of structures corresponding to the local minima: 168°-168°- 

60°—168°-168° and 185°-185°-80°-185°-185°, their energy exceeding by 1 kcal 

mole‘ that of the planar zigzag. These conformations are similar to the 

Bartell and Kohl’s TGT forms. Finally, one more conformation is possible: 

52°-52°-160°-52°-52° (GTG) with a higher energy. It is interesting that the 

equilibrium rotation angles in these conformations differ from pure trans and 

gauche ones; this means that both torsional forces tending to realize pure 

conformations and nonbonded interaction potentials responsible for some 

small deviations play their role. 

Scott and Scheraga [63] calculated with much higher precision the con- 

formations of the lower alkanes—pentane, hexane, heptane, and also poly- 

ethylene. For bond lengths and bond angles the experimental values were 

used [64], the rotation angles around the C—C bonds were varied, and for 

pentane, hexane, and heptane four-, five-, and six-parameter problems, re- 

spectively, were solved (for all possible rotation angles). 
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It was proved that even lower alkanes have a great number of rotational 

states corresponding to local minima in the potential surface (there are 11 in 

pentane and 43 in hexane). In the case of heptane, the 28 most important 

states were analyzed; the energy differences for the majority of conformations 

are not great. 

It is of interest that no energy minima were found in the @ range indicated 

by McCullough and McMahon. Their suggestion that in hexane gy, = yg, = 

~4 = Ps does not seem to be correct. 

Conformation calculations of saturated cycles have been very numerous; 

this is understandable, because the strain theory for them was elaborated as 

early as in the works of Bayer, and the thermochemical data made it possible 

to estimate the energies of angle strains. 

In cycloalkanes, owing to the conditions of cyclization, there are not as 

many strain energy minima as exist in open chains. Besides, as is shown by 

calculations, in small (m = 3-7) and medium (n = 8-12) rings the population 

of the most favorable conformation is rather high. 

For a long time there has been no unanimous opinion about the conforma- 

tion of cyclobutane; but recently IR specroscopy data allowed some authors 

[65-67] to make an unambiguous conclusion about the nonplanar conforma- 

tion of the ring. The potential function of this molecule depends on the dihedra! 

angle, as is shown in Fig. 4. g = 30° corresponds to the energy minimum, and 

at g = Othe barrier is about | kcal/mole. It is easy to conclude that the pucker- 

ing of the ring is due to torsion energy, whereas the nonbonded repulsions of 

the opposite C atoms hinder puckering. It is interesting to note that the 

potentials of many authors predict cyclobutane to have a planar equilibrium 

conformation and it was only Allinger et a/. [68] who could offer the par- 

ametrization which gave an energy minimum for the nonplanar ring and the 

correct value of the barrier at g = 0. 

0 y 

Fig. 4. Dependence of potential energy of cyclobutane upon dihedral angle. 
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Cyclobutane derivatives are of great interest. For example, the microwave 

spectra of chloro- [69] and bromocyclobutanes [70] showed both cyclo- 

butane molecules to have a puckered ring, the angles being equal, respectively, 

to 20° and 29.3°. A nonplanar ring was also found in octachlorocyclobutane 

[71], anemonine [72], 1,2-dibromo-1,2-dicarbomethoxycyclobutane [73], 

octafluorocyclobutane [74], and 1,1-difluorocyclobutane [75]. But the four- 

member ring in tetraphenylcyclobutane [76], the photodimer of cyclopenta- 

none [77], tetracyanocyclobutane [78], and trans-|,3-dicarboxicyclobutane 

[79] was proved to have a planar conformation. It is not easy to predict the 

conformation of the four-member heterocycles. For example, trimethylene 

oxide [80] has a planar molecule, whereas trimethylene sulphide [80] and 

silanecyclobutane [81] have nonplanar conformations. No predictions of 

equilibrium conformations for these compounds have been made. 

Cyclopentane drew the attention of many investigators as early as at the 

end of the forties when its nonplanar conformation had been unambiguously 

established from entropy measurements [82]. Assuming that the equilibrium 

conformation of this molecule is the result of competitive angular and torsion 

tensions, Pitzer et al. [83, 84] found two equilibrium conformations for cyclo- 

pentane: C, and C, (Fig. 5). The interactions of the nonbonded atoms were 

not taken into account since for bond angles, spectroscopic deformation 

constants were used. Uy was assumed to be equal to 2.8 kcal mole™ ' and the 

puckering of the ring was described by the formula 

z; = (2/5) qcos[(2n/5)+@] (4.2) 

where z, is the displacement of the jth atom normal to the plane of the ideal 

ring, g is the amplitude of puckering, and ¢ is the phase angle of puckering. 

It was shown by calculations that the energy minimum has the correspond- 

ing value of g = 0.50 A, the C, and C, conformations having approximately 

the same energy, 4 kcal/mole less than that of the planar conformation. Thus, 

in cyclopentane the planar conformation is obviously unfavorable due to 

torsion strains. It was also shown that the conformation transition C,— C, 

occurs without overcoming the potential barrier. 

Hendrickson [27] calculated in detail the conformations of five-, six and 

seven-membered cycloalkanes. According to his estimation, the half-chair 

conformation, C,, is by 0.53 kcal more favorable than the envelope C,. It is 

oe 
(a) (b) (c) 

Fig. 5. Conformations of cyclopentane: a, planar; b, envelope; c, half-chair. 
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Fig.6. Three possible conformations of cyclohexane: (from ieft to right) chair, boat, 

and twist-chair. 

interesting that in cyclopentane derivatives, e.g., in furanose rings [85], a C,- 

like conformation occurs more frequently. Ribose and deoxiribose in nucleo- 

tides and nucelosides have on an average 80% of C, and 20% of C, conforma- 

tion (see Section VIII.3). 

There is rich experimental and theoretical data on the conformations of 

six-membered rings. For example, the monograph [9] describes mostly 

cyclohexane and its derivatives. Therefore we shall not discuss this problem 

here. However, the fundamental result of Hendrickson which was later con- 

firmed by other authors should be mentioned. He found that the energy 

difference between the chair and boat conformations is 6.93 kcal mole” ' and 

the potential barrier of transition from one conformation to the other is 

14 kcal mole” '. However, this is not because the classical boat conformation 

corresponds to the energy minimum, as was believed by some authors, but it 

arises in the course of the transition from the chair to the twist form having 

C, symmetry (Fig. 6), the twist form being more favorable than the boat by 

1.60 kcal mole~*. Thus, the energy difference between the chair and twist 

conformations is 5.3 kcal mole! (the experimental value is 5.9 kcal mole™ 4 

[86]). As to the optimal geometry of the cyclohexane molecule, Kitaigorodsky 

[87] predicted it to have CCC bond angles larger than tetrahedral ones (112°, 

according to the calculation). This was later confirmed experimentally [88, 89] 

and by calculations of other authors. 

For cycloheptane, Hendrickson analyzed five conformations, two of them 

being traditional: boat and chair. The energy minirnum corresponds to the 

chair conformation with the CCC bond angles increased to 112° (which 

agrees with the X-ray data [90]). 

Later Hendrickson applied his method to medium cycles: cyclooctane (1), 

cyclononane (II) and cyclodecane (III). The most stable conformations of 

these molecules (Fig. 7) are not the only possible ones; there exist several 

other conformations slightly differing in strain energy. 

Wiberg [37], using the same parameters as Hendrickson, found the equilib- 

rium conformations and strain energies for cyclooctane, cyclononane, and 

cyclodecane. It should be noted that he also succeeded in finding a convenient 

way of introducing independent geometrical parameters: instead of the com- 

monly used internal coordinates he employed the Cartesian atomic coordinates. 
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Ib II III 

Fig. 7. Optimal conformations of cyclooctane, cyclononane, and cyclodecane. 

la 

The transition from the latter to the former coordinates was achieved by 
means of comparatively simple formulas. Minima were sought by the steepest 
descent method using cartesian displacements of the atoms. 

Figure 8 shows six possible conformations of cyclooctane. Ideal conform- 

ations were assumed as initial approximations in the search for the minimum. 

#5 Rex HE 
2 

oon ae =a 
Fig. 8. Six possible conformations of cyclooctane after Wiberg. 

The energies of these six conformations after minimization are listed in 

Table 5. 

Thus, (5), (1), and (2) are the most favorable conformations. The bond 

angles of the equilibrium conformations are essentially different from the 

Table 5 

STRAIN ENERGIES OF DIFFERENT CONFORMATIONS 

OF CYCLOOCTANE 

Nonbonded Torsion Total energy 

Conformation interactions energy (kcal mole~ *) 

1 —9.85 19.99 3.62 

2 —9.79 5.00 4.03 

3 —8.89 1.91 5.06 

4 —9.50 13.78 9.40 

5 —9.57 9.25 2.65 

6 —9.61 13.06 D215) 
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ideal tetrahedral ones. For example, the calculated CCC angles for conform- 

ation (5) are 116.9° and 110.1° and for conformation (2), 117.7°, 109.6°, 

114.0° and 114.4°. 
Bixon and Lifson [38] made an attempt to find the optimal parametrization 

for conformation and enthalpy of formation (see Section 6) for (6-12)z- 

cycloalkanes. Varying Cycy, Cucc, and Cece as well as Up in expression (3.1) 

they obtained geometry which agrees with the experimental data and also 

quite reasonable values for the enthalpies of formation. It is quite natural that 

in their calculation scheme these authors used various elastic constants for 

the bond angles with tetrahedral C atoms at their vertices: the angular con- 

stants had values similar to the spectroscopic deformation constants. How- 

ever, interactions with adjacent nonbonded atoms were not taken into account, 

which is roughly in agreement with Eq. (1.7). These authors varied the torsion 

component and showed that better agreement with the experimental data is 

achieved if the value for U, is 3.4 kcal mole~* (instead of 2.8 or 3.0 kcal 

mole‘). 
As to the calculation procedure, it goes without saying that a computer is 

required to calculate conformations of complex molecules with sufficient 

accuracy; otherwise the calculations are too labor-consuming and their low 

accuracy renders them useless. The most important step in making up a 

program is to express the atomic coordinates via chosen independent geo- 

metrical parameters. (Sometimes it is possible to express the required distances 

between the nonbonded atoms without calculating the coordinates.) Then one 

calculates interatomic distances, bond angles, dihedral angles, and draws up 

the expression for strain energy. Calculation of the potential function makes 

up a special block, if the program is written in machine code, or it is a pro- 

cedure if algorithmical language is used. Then there is the problem cf mini- 

mization of a potential function with several variables. 

Formulas required for calculating atom coordinates will be given in Section 

VIII.1. These formulas, or their modifications, have often been used to calcu- 

late cycloalkane conformations. However, an important requirement is that 

the cycle be closed, since in this case the number of independent parameters 

decreases by six. If, besides the three terms indicated in Eq. (3.4), one intro- 

duces into the potential functions the deformation energy of the valence 

bonds 

UU, = Nie > K,Al? (4.3) 

where A/; is the change in the bond lengths from their ideal values, and K; 

are elastic constants approximately equal to the spectroscopic constants for 

valence vibrations, then closing of the cycle will occur automatically in the 

course of the minimization. 
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Deformations of the lengths of valence bonds, as is shown by relevant 
calculations, do not exceed 0.01-0.02 A, and are very rarely interesting from 
the structural point of view. Therefore, to decrease the number of independent 
parameters by which the function is minimized, it is usually feasible to assume 

the lengths of the valence bonds to be perfectly fixed. However, for cyclic 
molecules a ‘‘cyclization”’ potential, like 

Uy = K(I—1p)? (4.4) 

should be introduced, where /, is the bond length, / is the distance calculated 

for this bond in this set of independent geometric parameters, and K is a 

constant ideally equal to oo. The latter constant must be varied in the course 

of minimization, otherwise potential (4.4) prevails over the other components 

of the potential function.+ 

Below, methods of minimization will be briefly described (they are dis- 

cussed in detail in reviews [91-93]). If minimization begins far from the 

minimum, it is advisable to use linear methods, e.g., that of the steepest 

descent. But in the vicinity of the minimum these methods give slow conver- 

gence and quadratic methods prove to be more effective. The majority of 

authors engaged in conformational calculations have employed the steepest- 

descent method. Scheraga et a/. [94] succeeded in using the method of 

Davidon [95] for minimizing the potential functions of oligopeptides; this 

method is in principle a quadratic one, though it does not require the calcula- 

tion of second derivatives. Generally speaking, it is desirable to have a 

complex of programs using both linear and square methods; in this case it is 

possible to solve conformational problems of various kinds. Such programs 

have been written in ALGOL-60 [96]. 

Returning to the conformations of cycloalcanes, it should be mentioned 

that not only the precise position of the potential function minimum, but also 

the isomerization paths, e.g., the paths of conversion from one conformer to 

another, should be found by an appropriate technique. 

The most favorable isomerization paths correspond to movement along 

the bottoms of potential-surface valleys. They may be found in the following 

way.t Let A, be a point belonging to a bottom of a valley (it may be found 

+ Another procedure was put forward by A. A. Lugovskoy and V. G. Dashevsky [ZA. 

Strukt. Khim. 13, 122 (1972)]; the authors found expressions for dependent geometrical 

parameters through independent parameters provided the bond lengths are fixed and bond 

angles are soft (this algorithm is especially useful in searching for conformational isomeriza- 

tion paths). On the other hand, N. Go and H. A. Scheraga [Macromolecules 3, 178 (1970)] 

elaborated the algorithm for cyclic systems with fixed bond lengths and angles. 

t Transition states of cyclohexane and its analogues have been investigated theoretically 

in the papers [97, 98]. V. G. Dashevsky and A. A. Lugovskoy [99] employed an automatic 

procedure for finding the isomerization paths and the corresponding barrier heights. 
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going from a local minimum). Choosing the most important parameter x; 

(for which AU/Ax; is the least) and giving it an increment A, execute a local 

descent over n—1 variables, excluding this one, and find a point A, which 

belongs to the bottom if / is sufficiently small. The next step is made in the 

direction of the vector A, A,, after which local descent proceeds with the 

exclusion of the most important variable. The most effective minimization 

technique in this case is quadratic; the increment / may be selected in such a 

way that the process is of a relaxation character. The saddle points thus found 

correspond to the barriers to interconversion. Application of the above pro- 

cedure to «-D-glucose arrived at the lowest barrier to chair-to-chair isomer- 

ization (IC=Cl) of 10.8 kcal mole~ (with Dashevsky’s functions) which 

agrees with the experimental values. 

In the simple cycles considered above (except cyclobutane) the bond 

angle deformations are not very great, and even with ideal values of bond 

angles one can always choose conformations without inadmissibly short 

a=154A 

b=1.50 

c = 1.08 

Experiment 
<6 = 96.5° <a, =114° 

<= 103° 
< Bp = 109.5° <O3= 31° 

<P 1 =106° 

<B2=112° 

<B 3 =14° 

Experiment 

<3 =117° <Ba= 1077 
<4 =112° <Ba= 108° 

Fig. 9. Equilibrium conformations: a, nortricyclene; b, norcamphane; c, norpinane, 

calculated by Kitaigorodsky. 
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contacts between nonbonded atoms. The situation is different in bi- and 

polycyclic systems: as a rule, the ideal models of these molecules have very 

high values of strain energies and repulsions of nonbonded atoms result in 

serious deformations. 

Kitaigorodsky [87] was the first to calculate such “‘tied-up” molecules. 

Figure 9 shows the results of calculation of equilibrium conformations for 

nortricyclene, norcamphane, and norpinane. In spite of the fact that the 

calculations were simplified (no torsion strains were taken into account, 

since they are nct very important in determining the conformations of mol- 

ecules of these types), rather good agreement with the experimental data was 

obtained. Attention should be paid to the great deformations of the bond 

angles as compared to ideal tetrahedral models. 

Zaripov, et al. [100] calculated conformations of many “‘tied-up” mol- 

ecules using the expression for the potential functions given above. In Table 6 

there are calculated and experimental data for four molecules of this type. 

(The table includes one molecule with double bonds: bicyclo-[2,2,1]-hepta- 

diene-1,2 to be discussed in Section 6 in connection with thermochemical data.) 

Instead of U,,, US are given; this indicates that only interactions of neighbor- 
ing nonbcnded atoms and C---C interactions of type 1---3 were taken into 

account in the calculations; the values of the bond and dihedral angles ob- 

tained thereby are rather accurate and U* > U,, by approximately 8% for 

cyclic systems (only the attraction of atoms the distance between which 

exceeds Ip is rieglected). 

One more remark can be made about the calculation of the conformations 

of polycyclic compounds: If expression (3.1) is used for the torsion energy, 

there could be no unambiguity in choosing the rotation angles (e.g., for the 

Cl-C2 bond in bicyclo [2,1,1]-hexane the dihedral angle can be determined 

either as C3C2C1C5 or as C3C2C1C6). Therefore the following expression 

was suggested. 

9 
Use=) > >; (0333/2) (140s 39)) (4.5) 

CC bonds i=1 

where Q; is one of the nine dihedral angles of the CCCC, HCCC, or HCCH 

type. In the case of acyclic hydrocarbons, in which the bond angles are almost 

tetrahedral, the latter formula automatically becomes (3.1). 

It is interesting that in polycyclic systems the deviations of the bond angles 

from the ideal values may amount to 30°; nevertheless, the simple expression 

(1.5) for the angular deformation energy works well. But if agreement between 

the structural and thermochemical data is desired, some more complex ex- 

pressions may be required, as is shown by certain authors [68, 101]. For 

example, in the case of great deformations deviations from Hooke’s law 

should be taken into consideration. 



408 

Table 6 
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CONFORMATIONS OF SOME POLYCYCLIC SYSTEMS 

Molecule 

Use 
(kcal 

mole~') 

Value of the angle 

Angle Calcu- _Experi- 

lated mental 

Refer- 

rence 

1 wo 

151.1 

146.3 

141.5 

163.9 

Bicyclo-[2, 1, 1] hexane 

0 132532 129.5° 

C,C.C3 99.3° 100.5° 

HC;H 108.6° 98.8° 

HC,H 107.8° ig 

HC,C; 119.2° 119.6° 

Bicyclo-[2, 2, 1] heptane 

a) iil sigake 113.0° 

C,C7C, 93.5° OB} ae 

HC,H 108.8° 110° 

HC,H LOS? 110° 

HC,C, 119.2° 

Bicyclo-]2, 2, 1] heptadiene-2, 5 

6 114.6° 115.0° 

C,C7C4 94.4° 92.0° 

HC,H 108.6° ie 

(assumed) 

HC,C3 Pale 1232 

HC,C, 119.2° 

Tricyclo-[1, 1, 1,0*'*] pentane 

C2C,C, 90.3° ORS 2 

C,C.C3 Slee SIe52 

HC,H 110.8° 

HC,H, 119220 

HC,C, 119.2° 

“G. Dallinga and L. H. Toneman. Rec. Trav. Chim. Pays-Bas 86, 171 (1967) 

’Y. Morino, K. Kuchitsu, A. Yokozeki. Bull. Chem. Soc. Jap. 40, 1552 (1967). 

°C. S. Gibbons, J. Trotter, J. Chem. Soc. A p. 2027 (1967). 

“J. Trotter and C. S. Gibbons. J. Amer. Chem. Soc. 89, 2792 (1967). 

5. ETHYLENIC, CONJUGATED, AND AROMATIC SYSTEMS 

Grd. 

Hill [1] calculated the equilibrium conformation and strain energy of cis- 
and trans-2-butene as early as 1948. The bond angle deformations were 
estimated by using the force constants obtained from an analysis of the 
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H H 

\Weae, Fig. 10. Equilibrium geometry 
126 8° of cis-2-butene, calculated by Hill. 

cH. CH, 

propylene spectrum [102]. The methyl groups were assumed to be two inter- 

acting atoms for which a semiempirical potential was calculated; in addition, 

the H---H and CH,-:-H nonbonded interactions were taken into account. 

(As was mentioned above, it is not consistent to employ both spectroscopic 

constants and nonbonded interaction potentials.) The geometry of cis-2- 

butene calculated by Hill is shown in Fig. 10. The calculated energy difference 

between the cis and trans configurations is 1.852 kcal mole~‘; this is com- 

parable with the difference in their heats of formation, which is 1.288 kcal 

mole! [103]. 
Cycloalkenes are undcubtedly very interesting, since considerable bond 

angle deformations are very likely to occur in them due to the conditions of 

cyclization and the tendency of the ethylene group to maintain planar 

geometry structure.-High strain energies are responsible for the specific 

thermo-chemical properties of these systems. Some of the simplest cycloalk- 

enes are described in the paper [104]; let us consider their conformations. 

The potential functions required for the conformational analysis of cyclo- 

alkenes include expression (3.4) and an additional term to take account of 

the rigidity of the ethylene system: 

Unin = (US"*/2) (1 —cos 26) (5.1) 

where @ are the dihedral C-C=C-C angles; the U§'" constant may be assumed 

to be equal to 60 kcal mole™' (the activation barrier for the cis-trans con- 

version of ethylene-like compounds). The introduction of (5.1) decreases the 

number of possible cycloalkene conformations. For example, for cyclo- 

octatetraene only conformation (III) out of the five possible nonplanar ones 

has the angles 0 equal to zero; this corresponds to the minimum of (5.1); the 

four other conformations have very high strain energies: 

VPee 
(I) (III) (IV) (Vv) 
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It is difficult to take into account the torsion strains arising from the mutual 

orientations of the single and double bonds. In [105] this effect, in polymers 

of the diene type, was taken into account by the expression 

1.01 —cos 3) (5.2) 

where w is the C=C-—C-C dihedral angle measured from the cis orientation 

of the single and double bonds, i.e., the one which corresponds to the energy 

minimum. (Expression (5.2) describes the rotation potential in propylene.) 

However, it was shown by reievant caiculations that, in practice, the use of 

(5.2) does not change the optimal geometry; neither does this term affect 

the strain energy, with the sole exception of cyclohexene for which the agree- 

ment between the calculated and experimental isomerization energies for the 

half-chair—boat conformations is a little worse. Therefore in the examples 

given below expressions of the type (5.2) are not considered; further investi- 

gation is required to discover whether they should be taken into account. 

Thus, the following expression was used when the potential functions of 

cycloalkenes were minimized: 

Us, = Ur eaenied oF U an Cas a Gem (3:3) ang 

with the Dashevsky parameters; for bond lengths the standard values were 

used (see the classification of bonds in Section 6). Results of some of the 

calculations are given below. 

a. Cyclopentene and Cyclopentadiene 

Figure 11 shows the calculated conformations of these molecules. The 

molecule of cyclopentene is nonplanar (the dihedral angle is 165°) due to the 

torsion strain (in the equilibrium conformation it is 4.86 kcal mole~'). The 

energy difference between the planar and nonplanar forms (for the planar 

conformations the equilibrium bond angles have the following values: 

2) 
{/108.3° lios.N 

A 

(a) (b) 

Fig. 11. Calculated conformations of: a, cyclopentene; b, cyclopentadiene. In parentheses, 

experimental data. 
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Fig. 12. Conformation of cyclohexene. Electron diffraction results in parentheses. 

C1C2C3 = 112.2°, C2C3C4 = 104.1°, and C3C4C5 = 107.4°) is 0.55 kcal 

mole~'; this agrees with the measured value of the inversion barrier, 0.66 

kcal mole~ ' [106, 107]. Thus, inversion of cyclopentene occurs rather readily; 

at room temperature the C4 atom vibrates in relation to the C1C2C3C5 plane 

and since no other conformations are possible, pseudorotation does not 

occur, unlike the case of cyclopentane. 

In the cyclopentadiene molecule the equilibrium conformation is a planar 

one, and the bond angle deformations inside the cycle are rather high—108° 

and 111° instead of 120°, also 101.6° instead of 109.5° (the angular deforma- 

tion energy is 6.3 kcal mole™‘). 

b. Cyclohexene 

In [108] the equilibrium conformations of the two possible forms of this 

molecule, C, and C, (Fig. 12), were calculated. The half-chair (C,) proved to 

be more stable by 5.4 kcal mole~ ‘than the boat (C,){; similar results were 

obtained earlier by French authors [109]. An electron-diffraction investiga- 

tion of this molecule carried out simultaneously [108] showed that the calcu- 

lated bond angles of the half-chair conformation agree with the experimental 

radial distribution curve within the limits of error of the experiment; the boat 

conformation was found to be entirely unsatisfactory. 

c. 1,4 and 1,3-Cyclohexadienes 

The equilibrium conformations of these molecules calculated in [104] are 

shown in Fig. 13; for the former molecule both the nonplanar form corres- 

+ As shown in [99], the boat form is the transition state on the interconversion path from 

chair to chair. 
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116.3° (111.5°) 
\ / 
\ / 
\ v8 

120.6° x’ (118.2°) 
og x 

vA N 
Ag Me 

122.8°(121.8° 

a b 

(123.4°) || (123.4°) 

Fig. 13. Calculated conformations of (a) 1,4- and (b) 1,3-cyclohexadienes. Bond angles 

for planar and nonplanar forms of the former are obtained by minimization of the 

potential function. 

ponding to the energy minimum and the planar one are shown. The energy 

difference between them is 0.1 kcal mole~! and, due to the small barrier, 

1,4-cyclohexadiene exists in a continuous spectrum of conformations with 

the planar form most prevalent. From this point of view it is easy to interpret 

the results of the electron diffraction study [110], whose authors came to the 

conclusion that the planar conformation is the most probable but nonplanar 

forms are also likely to exist and cannot be unambiguously found from the 

electron intensity curve. The electron-diffraction data do not agree with 

Herbstein’s [111] estimation of the equilibrium dihedral angle, 140°; the 

change of this angle requires several kcal per mole. 

The C, symmetry of 1,3-cyclohexadiene was established from the micro- 

wave spectra [112, 113] and the electron diffraction study [113a]. In this 

paper the dihedral angle between the C2C3C4C5 and C3C2C1C6 planes was 

found to be 17°. Calculation confirmed the C, symmetry (the dihedral angle 

was 18°) and proved it to be 0.25 kcal/mole more stable than the planar form. 

However, large out-of-plane displacements require but small amounts of 

energy, and therefore the atomic coordinates of this molecule should be rather 

“diffuse.” This may account for the incomplete agreement between the cal- 

culated and experimental values of the bond angles. 

d. 1,3,5-Cycloheptatriene 

The following conformations of this molecule were studied by electron 

diffraction [114]. It was shown that the experimental scattering intensity curve 

corresponds best of all to the nonplanar conformation (VIII) (boat) with 

0, = 139.54+2°, 0, = 143.5+2° (Fig. 14). Ancther investigation [115] has 

lead to rather different angles, 150.5+4° and 130.0+5°. Potential-function 

minimization gives the two equilibrium conformations (VI) and (VIII), the 

latter being more stable by 6.85 kcal mole. Its parameiers are: 0, = 148.4°, 
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GO OF Os 
(VI) (VI) (VIM) 

6, = 131.2°, LC,C3C, = 125.0°, LC,C,C, = 110.8°, g =1.0°; These are 
very close to Butcher’s data and differ substantially from Traetteberg’s. Note 
that Traetteberg’s data correspond to ~ = 22° which is quite unfavorable. 

Fig. 14. Planar and nonplanar equilibrium conformations of 1,3,5-cyclohepatriene. 

e. Cyclooctatetraene 

Figure 15 shows the optimal conformation of this molecule calculated in 

[104]. The results of this calculation are in complete agreement with the 

experimental data obtained by the electron diffraction method [116]. 

The examples given above show that the mechanical model of the molecule 

predicts fairly well the structures of such systems, which could not have been 

described earlier without the concepts of resonance and conjugation. More- 

over, as will be shown in the next section, the thermochemical properties of 

these systems can also be derived from strain energies corresponding to the 

potential function minimum, without any additional assumptions. 

Now let us consider the conformations of the aromatic molecules. These 
systems are interesting in that steric hindrance in them (close interatomic 

contacts in ideal models) may result in deformations of various types: changed 

bond angles, out-of-plane distortions, rotations of polyatomic groups around 

the bonds connecting them with the benzene nuclei. Structural evidence on 

overcrowded aromatic molecules is discussed in detail in review [117]. 

It is obvious that, besides nonbonded interactions and bond angles defor- 

mations,f the potential function should account for nonplanar deformations 

+ Planar deformations of aromatic molecules were calculated for the first time by 

Kitaigorodsky on the example of acenaphthene [87]. 
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Le 
[) A 

antl 7 
(136.9 Di ee os See (117.6°) 

((126.1°, 
| 

Fig. 15. Conformation of cyclooctatetraene. In parentheses, experimental data. 

of the benzene nuclei, and also the energy of departure of the substituents 

from the mean plane of the benzene ring. In terms of quantum chemistry this 

means a decreased overlapping of p-z-electrons of neighboring bonds, or a 

decrease in the delocalization energy, which is obviously unfavorable for 

aromatic molecules. This is also the reason rotation around bonds that are 

conductors of conjugation is unfavorable. 

Coulson et al. [118, 119] suggested a calculation scheme for the nonplanar 

deformations of aromatic and some other conjugated systems. Let us analyze 

the fragments of the molecules presented in Fig. 16a,b,c. For example, the 

ethylene molecule may correspond to a; to b, a fragment of the benzene mol- 

ecule, its derivatives, naphthalene etc.; to c, certain fragments of the naph- 

thalene, acenaphthene, or phenanthrene molecules etc. If Z,,...,Z, indicate 

the departure of the atoms from the plane; K,, the spectroscopic force con- 

stant for nonplanar vibrations; K,, the torsional force constant for rotation 

around the C-C bond (an assumption is made at this point that all types of 

atomic displacements can be described by these two constants alone); then 

the strain energy for the cases a, b, and c, without accounting for the repulsion 

Fig. 16. Fragments of ethylene, conjugated, and aromatic molecules after Coulson and 

Senent. 
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between the nonbonded atoms, may be presented as 

1 a a 2a ~ Wiese eS 2 ry (a) ; | §2s + 22042, (: ee 52 

1 a a 2a . 

1 +5K2[Zs-Zs-Zs+ZoP (5.4) 

(b) U = 5K: 52+ Z+Z,-(2+ +i)z | 

] a 
+5Ki] $25 4 Ze +21 (2+ +5)z | 

1 a q ang 52s + Zo+ oe 5) Za z.)| (5.5) 

| 

] 

li Ceol te Kole ZLe Lyi Ze te Zet ll —— |Z, (5.6) 
z b b 

(a and b are bond lengths). 

It is easy to derive Eq. (5.4)-(5.6) if the molecule is considered to be dis- 

torted at random (i.e., all Z,,...,Z, are not equal to zero) and all the atoms 

are transferred into ideal planar position by means of several consecutive 

operations. The constants K, and K, were estimated from the spectra of 

ethylene and benzene: for ethylene, K, = 0.131 x 10° dynes cm~', K,= 
0.157 x 10° dynes cm~'; for benzene, K, = 0.1474 x 10° dynes cm™*, K, = 
0.00553 x 10; dynes cm7?. 

The determination of an equilibrium conformation consists of a search for 

the minimum of the potential energy surface which is expressed by Eqs. 

(5.4)-(5.6) for the molecular fragments. To obtain unambiguous results, 

additional assumptions must be introduced, because Eqs. (5.4)-(5.6) do not 

contain independent geometrical parameters of the molecule, and the number 

of equations determining the position of the minimum is always less than the 

number of unknown quantities. 

This difficulty is overcome by application of the rigid-sphere method to 
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Fig. 17. Equilibrium conformation of dibenzophenanthrene molecule calculated by 

Coulson and Senent (the view of the molecule in the direction of the mean plane). 

definite fragments of the molecule. If the molecule is overcrowded due, 

chiefly, to the interaction of some two atoms localized in its periphery, these 

atoms, in accordance with the above approximation, should deviate from 

their ideal positions enough to make the distance between them equal to the 

sum of their van der Waals radii. Then the positions of the other atoms can 

be found on the assumption that all potential function derivatives of dis- 

placements of atoms are equal to zero. The rigid-sphere method has an 

essential limitation, viz, even the interaction of the above peripheral atoms is, 

in fact, less rigid than that described by the rigid-sphere method. All other 

interactions are assumied to be soft, and that is why the method is inconsistent. 

Figure 17 shows the conformation of the 3:4-5:6 dibenzophenanthrene 

molecule as calculated by Coulson and Senent. The ideal model of this mol- 

ecule contains impermissibly short H28---H29, C6---C7, and C7---H28 

contacts. An X-ray study [120, 121] has proved the C6---:C7 distance to be 

equal to 3.0 A. If this is the case, the van der Waals radius of the ‘“compressed”’ 

carbon atom system may be assumed to be equal to 1.5 A, and, if the hydrogen 

radius is !.2 A, then r(C7--- H28) = 2.7A. Now it is easy to obtain the values 

of the displacement of the C6, C7, H28, and H29 atoms from the mean plane 

of the molecule: Z, = —Z, = 1.32A; Z,, =—Z = 1.36A. Having made 

these assumptions, Coulson and Senent solved 32 linear equations of the 

0U/éZ = 0 type to find the z;, the departures of the remaining 32 atoms from 

the plane; these authors obtained in this way carbon atom coordinates which 

agree well with the experimental data. 

The calculations of the following five polynuclear condensed hydrocarbons 

made by Ali and Coulson [122, 123] by the same method are worth mention- 

ing: 5:6-7:8 dibenzoperylene (IX), 1:12-5:6-7:8 tribenzoperylene (X), 

tetrabenzoperopyrene (X]J); chrysene (XII) and 20-methylcholanthrene (XIII). 
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(EX) (X) 

(X11) (XTII) 

For tetrabenzoperopyrene two conformations are possible: (1) on one side 

of the } axis the atoms have positive displacements, on the other side, negative 

ones; this conformation is symmetrical with respect to the a axis; (2) the 

upper half of the molecule is turned relative to the lower half around the a 

axis; this could be called a “‘propeller” conformation. Calculations showed 

that conformation (1) has a corresponding strain energy of 41.5 kcal mole! 

while the ‘“‘propeller’’ conformation has 36.3 kcal mole~'. Thus the latter 

conformation is more favorable. 

The strain energies for the following molecules were calculated: dibenzo- 

phenanthrene, 17.9; dibenzoperylene, 18.54; tribenzoperylene, 18.60 kcal 

mole‘. Naturally, the strain energy of tetrabenzoperopyrene proved to be 

almost twice as high as that of the above molecules. 

In a later paper Coulson and Haigh [124] developed a general analysis 

using potential curves of nonbonded interactions. 

Let us assume that in an overcrowded molecule there are ¢ equivalent inter- 

actions of nonbonded atoms, U,, is the deformation energy of the bond angles 

and U, is the energy change for nonplanar deformations. Then the strain 

energy may be expressed as 

US Rye eu. (5.7) 

where f(R) is the interaction potential of the nonbonded atoms localized at 
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the distance R from each other; 

U,, = 4x'Kx, U, = 42'Az (5.8) 

where x is the vector corresponding to the bond angle’s deviation from 120° 

and the change in bond lengths as compared to their standard values in the 

absence of strain; z is the vector of displacement normal to the mean plane; 

K and A are symmetrical square matrices of force constants. 

The deformation effect is expressed by the change in the distance between 

the nonbonded atoms as compared to the ideal distances 

R= Re Ree RR. (5.9) 

where Ro is the ideal distance; R, and R, are, respectively, the planar and 

nonplanar displacements of the atoms; R,, is a term accounting for the 

mutual influence of these displacements (when the atoms depart from the 

mean plane the projection of the molecule onto this plane is somewhat dis- 

torted). If we assume that the departures of atoms from the plane do not 

depend on the in-the-plane deformations (which is valid for small nonplanar 

deformations), then the &,, term may be neglected. Then the following 

equations may be derived from (5.8) and (5.9) 

H(R,x,2) = a’x + 42'Bz — (R—R,) = 0 (5.10) 

where B is a symmetrical square matrix, and a’ is some constant. 

In addition, a relationship can be found between the angles and bond 

lengths. Using the rectangular /x m matrix C (/—the number of bond con- 

ditions, »—the order of the x vector), and the vector d this equation may be 

expressed in a general form as 

g(x) = Cx+d (12) 

For further analysis, the Lagrangian method of indefinite coefficients will 

be employed with p and o’ as the multipliers 

W = U(R,x,z) + pH(R,x,zZ) + o’g(x) (312) 

Now, if U(R, x, z) is substituted by its value from (5.7), the problem will be 

confined to a search for the minimum of the function 

W = tf(R+4x'Kx + 42'Az + pa’x + 4pz'Bz — p(R— Ry) + o'(x+0'd)) 

(5.13) 
with respect to x, z, and R. 

Differentiating (5.13) with respect to R, all x and all z, we shall derive an 

equation in matrix form, from which, by means of nontrivial operations, the 

values of the geometric parameters may be estimated and the meaning of the 

indefinite multipliers may be ciarified. Coulson and Haigh [124] suggested 

an inequality which is a criterion for the atom’s departure from the plane. 



5. Ethylenic, Conjugated, and Aromatic Systems 419 

This inequality means that if the value of df/dR, i.e., the repulsion forces 
between the nonbonded atoms are great enough, departure of the atoms from 
the plane occurs; if df/dR does not exceed some critical value, the molecule 
maintains its planar conformation. 

This analysis and, especially, Eq. (5.7) should be extended to the non- 
equivalent interactions, i.e., repulsions between the members of all the pairs 
of nonbonded atoms should be accounted for. In this case the equations 
become extremely complicated, without being new in principle. 

The K matrix is considered diagonal (bond angle interactions are left out 
of account) and spectroscopic force constants are its elements; according to 

Syvin [125] they have the following values: C-C, 6.40, C-H, 5.8; CCC, 0.740, 

CCH, 0.849 mdyne A7?. 
The elements of the A matrix are constants analogous to K, for out-of- 

plane atom displacements (see equations (5.4)-(5.6)) and K, for torsion move- 

ments. These constants are refined in paper [126]. 

(XIV) > (XV) (XVI) 

Using essentially the above method Coulson and Haigh calculated the 

equilibrium conformations for phenanthrene (XIV), triphenylene (XV), and 

chrysene (XVI). In all the three molecules the ideal model is distorted due to 

repulsion of hydrogen atoms localized close to each other. (It is also probable 

that the C---C and C---H interactions left out of account also play some 

role.) The conformation of each molecule was calculated using the eleven 

H---H curves described in the literature. The phenanthrene conformation 

was shown to be always planar, independent of the potential curve chosen. 

In the case of triphenylene and chrysene with ten of the H--- H curves (exclud- 

ing the most rigid one) the planar conformation is obtained. X-ray studies 

carried out after the calculation had been published proved the phenanthrene 

molecule to be in fact planar [127]. In triphenylene [128] the peripheral 

benzene nuclei are slightly displaced with respect to the central nucleus plane. 

It is interesting to note that the changes in the bond lengths are on an average 

several thousandths of an angstrom, and it is only for the most rigid curves 

of nonbonded H-::-H interactions that the changes are 0.01-0.02 A, ice., 

beyond the accuracy of the X-ray experiment. This proves the practical possi- 

bility of using absolutely rigid valence bonds. 
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In the studies of Kitaigorodsky and Dashevsky [12, 129] a somewhat 

different approach was employed. The potential functions of aromatic systems 

are essentially similar to those discussed above and it is only for the non- 

planar deformations that additional terms were introduced. 
For the nonplanar deformation energy, the following expression was used: 

Unonpt = $),C;* sin? B; (5.14) 
j 

where £, are bond deflection angles and C;* are the respective elastic 

constants. 
The parameters f; are introduced in the following way. For the peripheral 

atoms, the f,; are the angles formed by the peripheral bond and the plane of 

the two adjacent bonds of the benzene nucleus. (If we deal with naphthalene 

or polynuclear aromatic systems, every benzene ring is a peripheral one with 

respect to the adjacent nuclei.) For the disp!acements of the benzene nuclei, 

fi; are the angles formed by the planes of the neighboring bond pairs, e.g., 

the angles between the planes C1C2C3 and C2C3C4. 

Parameters determined in this way, unlike those of Coulson, are more 

convenient, because they can be applied to complicated molecules of low 

symmetry. Coulson’s parameters require the mean plane of the molecule, and 

it is not always possible to draw it. With small out-of-plane deformations and 

high symmetry £; may be easily compared with Coulson’s parameters. 

(Coulson uses the atoms’ departures from the mean plane in angstroms as 

independent parameters.) 

It should be noted that, for small out-of-plane bond distortions, (5.14) 

becomes Hooke’s law: 

Oey a ere B,? (eMby 

j 

Now consider the potential functions for rotations of the polyatomic 

groups in relation to the benzene nuclei planes. It is known only that this 

function must be periodic, because, when the group makes a complete turn 

(360°), the energy remains unchanged. Besides, it is an even function as 

rotations in two opposite directions are energetically equivalent. An even 

periodic function expanded in a Fourier series will be 

U(g) = U,/2+ > U,cosna@ (5.16) 
n=1 

where Up, U,,..., U,, are the coefficients of the expansion of the energy U(¢) 

in terms cf the angle of rotation, @ = 27/T; T is the period of rotation. (For 

even functions, all the expansion coefficients of sinusoidal harmonics are 

equal to zero.) It is obvious that for nitro, amino, and phenyl groups with 

their twofold symmetry T= 7z, and that for the asymmetric COOH groups 

T=2n. 



5. Ethylenic, Conjugated, and Aromatic Systems 421 

To simplify parametrization, only one harmonic of the Fourier series was 
used, i.e., expressions like 

Uo = (Uo/2) (1 — cos ¢) (5.17) 
or 

Yrot = (Uo/2) (1 — cos 29) (5.18) 

which are derived from (5.16). 

The Uo, obviously, should be different for different polyatomic groups; in 

terms of quantum chemistry this means that these groups have different con- 

jugations with the benzene nucleus. There are many examples in the literature 

where parameters for the rotations of polyatomic groups have been determined 

by the method of molecular orbitals [16, 130-132]. 

With the above assumptions, the strain energy of an aromatic molecule is 

defined as 

U,, == UC eabended a sea nF UU engl a Us: (5.19) 

All the components of the potential function should be expressed via 

independent geometric parameters, and the problem of determining the opti- 

mal conformation is confined to the search for the minimum in (5.19) by 

varying these parameters. 

The use of Dashevsky’s potentials for calculating the conformations of 

overcrowded aromatic molecules requires the knowledge of several elastic 

constants. In papers [11, 12, 30] it was shown that if C,* = 128 kcal mole™ 4 

rad”? for nonplanar deformations of the benzene rings, C,* = 64 kcal moje~ 

rad? for the dihedral angles formed by the peripheral bonds with the planes 

of the adjacent bonds of the benzene ring, and Up is of the order of 2-10 

kcal/mole (U, = 3.6 for phenyl rings, see (5.18), 6.7 for nitrogroups, see 

(5.18), and 2.4 for the carboxyl groups, see (5.17)); the calculated conforma- 

tions have fairly good agreement with the experimental data. It should be 

added that C,* does not depend upon the nature of the atom associated with 

the benzene ring (the elastic constants of the bond angles were indicated 

above). Let us consider some examples from the paper [11]. 

1 

ff. Octachloronaphthalene 

The calculated conformation of the molecule is shown in Fig. 18. Within 

the limits of experimental! error, the bond angles and those of the departure 

of the bonds from the adjacent bond planes agree with the experimental 

vaiues [133], the C>C,Cl and CIC,C, angles being the only exception. 

It should be noted that parameters £,, B,, 63, and B, are introduced for the 

deviations of the C)—Cl, C,-Cl, C,-C,, and C,-Cl bonds from the adjacent 
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119.5°) 

OA 

(116.79) 

(Cl) (+15.2°) \\ 

Fig. 18. Geometry of octachlornaphthalene molecule. In parentheses, experimental data. 

For nonplanar deformations, the values of independent parameters are given. 

planes. Atomic deviations from the mean plane determined in the X-ray 

experiment can be easily calculated by means of these parameters: 

Z(C,) = 1.42sinB,,  Z(C,) = 1.42sinf,+1.75sinB>, ete. 

Naphthalene derivatives obtained by substitution of all H atoms by halogens 

and also 1,4,5,8-substituted derivatives can have the two conformations shown 

in Fig. 19. Regardless of the zero-order approximation chosen, the search for 

the minimum always leads to the conformation obtained experimentally. The 

depth of the minimum is very great: the strain energy of the ideal planar model 

of octachloronaphthaiene is 188 kcal mole~’ whereas for the equilibrium 

conformation it is 136 kcal mole7?. 
It is of interest that if one fixes the C,C,Cl bond angle assuming it to be 

Fig. 19. Two possibie conformations of octa- and 1,4,5,8-haloidnaphthalenes. The 

sign of + indicates displacement of the atom out of drawing plane. 



5. Ethylenic, Conjugated, and Aromatic Systems 423 

124.8° (experimental value) and minimize the remaining parameters, the 

resulting conformation turns out to be very close to the experimental one, 

with an energy exceeding that of the strain energy of the conformation in 

Fig. 18 by only 80-100 kcal mole~*. Hence the conclusion that the optimum 

conformation is not very sensitive to the value of the C,C,Cl angle, or, to be 

more exact, the minimum in the cross section of the potential surface with 

respect to the deformations of this angle is rather flat and the small effect of 

molecular packing can affect the value of the C,C,Cl angle. 

g. Dichloracenaphthene 

According to calculations, this is a planar molecule (Fig. 20). Mutual 

repulsion of the Cl atoms results in pronounced planar deformations, the 

C3;C4C;, CyC;Cl, and CIC;C, bond angles being distorted most of all. 

There is very good agreement with the experimental data [134], but for one 

detail: The calculation gives an entirely planar molecule, while experiments 

have shown the Cl atom to deviate from the mean plane by 0.05 A. If the C,* 

is decreased to 60 kcal mole™! rad~?, i.e., by 6% only, then the calculated 

deviation of Cl atoms will be identical to the experimental one. This exempli- 

fies the fact that the out-of-plane deformations of aromatic systems are very 

sensitive to the values of the constants C,* and C,*. 

Fig. 20. Conformation of dichloracenaphthene. In parentheses experimental data. 
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Paracyclophane Olephine 

&=12.7°(113°) — & = 118.6°(118.7°) 

B = 13.9° (15°) B = 14.6°(13-14°) 

<C,G26,=118.1°  <C, C203 = 118.0° 
(117.6°) (117.4°) 

Fig. 21. Conformation of 2,2’-paracyclophane and its unsaturated analog. 

h. Paracyclophanes 

The molecules of paracyclophanes and their unsaturated analogs with 

C,-C,, and C,-Cg,, double bonds (olefine) are interesting in that no ideal 

models can be devised for them: If one assumes their benzene rings to be 

planar with the exocyclic C,-C, bond localized in that plane, then the bond 

angles in the bridges are bound to be distorted; and vice versa; with ideal 

bond angles no planar benzene nuclei can exist. The mutual repulsion of the 

benzene nuclei in these molecules causes both deformations of the nuclei 

themselves (they acquire the boat conformation) and deformations of the 

bond angles in the bridges (Fig. 21). 

The deformations of these molecules may be interpreted in terms of the 

mechanical model. Three independent geometric parameters will be enough 

for the calculations: «, the bond angle in the bridge; f, the distortion angle 

of the benzene ring; and «, the change of the bond angles in the nucleus 

(ZLC,C,C, = 120°—2¢). Then the angle of departure of the C,—C, bond (y) 

from the C,C,C; plane is equal to «=— B — 90°. Figure 21 shows the calculated 

and experimental [135, 136] data. 

Though the positions of the H atoms were not calculated, the deformations 

of the HCC and HCH bond angles were taken into consideration. (The con- 

stants for the bond angles’ deformations were increased approximately 

twofold.) 

The equilibrium conformation corresponds to a rather deep energy mini- 

mum. For the quasi-ideal model of paracyclophane (the benzene nuclei are 

planar and the bond angles in the bridges are tetrahedral), the strain energy 

is 178.8 kcal mole~ ' whereas for the equilibrium conformation it is 155.3 kcal 

mole ?. 

i. Dichlorodiphenylnaphthacene 

In the molecule of 5,6-dichloro—11,12-diphenylnaphthacene the steric hin- 

drances are due to the proximity of phenyl rings and chlorine atoms in the 

ideal models. The carbon atoms of the phenyl groups are superimposed upon 

each other. Though rotation of the phenyl groups around the single C—C 
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bonds attaching them to the naphthalene nucleus sharply decreases the strains, 

it is quite clear that one type of deformation will not be sufficient. Even if 

the phenyl rings turn by 90°, the nonbonded distances between the carbon 

atoms of the two phenyl rings will still be impermissively small, 2.42 A. 

Therefore several types of deformations should be expected. 

The conformational problem in the case of dichlorodiphenylnaphthacene 

was to search for the minimum in a function of ten variables. In fact, complete 

elucidation of the geometry requires a still greater number of variables. But 

as this number increases, the computer time required to search for the mini- 

mum will grow rapidly. (The square method was used which is 2 modification 

of the well-known procedure of Newton—Rafson.) Ten independent geo- 

metric parameters are sufficient to reveal the main features of the geometry 

of this molecule. These geometric parameters were introduced in the following 

way: four parameters for the deformations of the bond angles, C,,C,C), 

C,C,Cl, Cy-C, 9Co, and C,9C,C,,, respectively (the atoms are numbered 

“*structurally’’) [137]; five parameters for the out-of-plane deformations, i.e., 

the departures of the C,-C,, C—Cl, C,9—-Cy, Cy—C,,, and Cg—C, bonds from 

the adjacent planes; and, finally, the angle of rotation of the phenyl nuclei 

with respect to the main plane of the adjacent benzene ring. Some insignificant 

assumptions had to be made to fix some of the structural details. For example, 

it was assumed that the C,—-H bond lies in the plane of the extreme benzene 

nucleus, and that the nucleus itself was planar. For bond lengths, the experi- 

mental values were used [138]. 

Fig. 22. Conformations of 5, 6-dichloro 11, 12-diphenylnaphthacene. In parentheses, 

experimental data. 
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Figure 22 shows the calculated and experimental data. In some cases the 

discrepancy between the calculated and experimental results exceeds the 

experimental error (e.g., for the C,C,C,, and CIC,C, bond angles); however 

the calculation may be considered to be satisfactory. The calculations describe 

not only the main features of the conformation of this molecule, but also 

some of its finer details: The central benzene rings in the naphthacene nucleus 

are almost planar; the phenyl rings are mutually turned, and the rotation 

angle coincides with the experimental value; the C,-C,, bond is consider- 

ably out of the plane of the adjacent benzene ring, etc. 

Kitaigorodsky and Dashevsky [12] studied a number of interesting poly- 

nucleic aromatic molecules. In papers [30, 139] the conformations of aromatic 

molecules containing nitro groups were predicted; the conformations of 

halide derivatives of naphthoic acids are analyzed in [140]; in [141] the de- 

formations of these molecules are correlated with their electronic spectra. 

The examples described above, and all the available data, lead to the con- 

clusion that the mechanical model makes it possible to interpret and predict 

the conformation of overcrowded aromatic molecules with various types of 

deformations. 

6. GEOMETRY OF MOLECULES AND THERMOCHEMICAL PROPERTIES OF 

SUBSTANCES 

Heats of combustion of a great number of organic compounds have been 

measured in calorimetric bombs with 0.02% accuracy. Using these results, 

one can easily calculate [142] the energies of formation of molecules from 

atoms (atomization energies) which can furnish rather useful information on 

the properties and structure of the molecules. To a first approximation, the 

energy of formation from atoms may be expressed as the sum of the bond 

energies; to this end each bond (C—C, C=C, C-H, etc.) should be assumed 

to have a definite energy and this value should be considered universal. But 

it has long been known that the additivity rule is not accurate enough [143- 

145], the discrepancy being several kilocalories per mole, i.e., large enough, 

so that they cannot be neglected in view of the high accuracy of the measure- 

ments. 

The most important factor producing the deviations from additivity of the 

thermochemical properties are the strain energies; it therefore seems natural 

that these properties can be calculated with the help of the mechanical model. 

The methods of calculations of the thermochemical properties of molecules, 

e.g., the formation energies of open hydrocarbon chains, have been developed 

for twenty years now. According to the method of Tatevsky et al. [146, 147], 

four types of C-H and ten types of C-C bonds should be distinguished, 
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depending on their immediate environment. In this case one can obtain 
equations containing nine constants which can be determined from the heats 
of formation of lower alkanes. The heats of formations of higher alkanes are 

calculated with the help of these nine constants, the accuracy of calculation 

being almost equal to that of measurement. This is an excellent way to explain 
the different heats of formation of structural isomers. 

Another approach, developed by Allen [148], consists in assuming that 

the C-C and C-H bond energies are equal in all paraffins, and that the dif- 

ferences in heats of formation are accounted for by interactions between 

nonbonded atoms. When interactions between the adjacent atoms were taken 

care of, a 0.2 kcal mole ' per bond average difference was established between 

the calculated and experimental heats of formation. A more refined theory, 

accounting for the interactions between more distant atoms also, suggests an 

average difference of 0.14 kcai mole~' per bond, a figure that practically 

coincides with the average accuracy limits of the experiment. 

The latter approach has more in common with theoretical conformational 

analysis, because it enables one to estimate the nonbonded interactions directly 

from the thermochemical daia. 

The schemes of Bernstein [149] and Skinner [150, 151] are essentially 

similar to that of Allen. It should be noted that all the authors used constants 

determined from heats of formation to describe the nonbonded interactions. 

So it is only logical (as was proved by Tatevsky and Papulov [152]) that both 

approaches, being based on equivalent classifications of bonds and inter- 

actions, yield equivalent equations for the energies of atomization of alkanes. 

In other papers dealing with this problem one or another approach is 

developed. For example, Laidler [153] distinguished four types of C-H bonds 

and one type of C-C bond, hence there is less accuracy in his predictions as 

compared to the data of Tatevsky; group additivity [154, 155] is essentially 

equivalent to a rough estimate of the total energy, that of the bonds and 

interactions; the interactions of the valence bonds [156] are mathematically 

equivalent to the interactions of nonbonded atoms. 

It is quite probable that the successful application of the two above ap- 

proaches to prediction of the atomization energies of alkanes is due primarily 

to the similar geometry of molecules of homologous series. In the case of 

molecules in which steric hindrances cause strong deformations as compared 

to the ideal models, neither Tatevsky’s nor Allen’s scheme will be expedient. 

Therefore an aitempt to devise a more generai scheme, applicable to any 

molecule, is welcome. 

Deviations of additivity are due not only to nonbonded interactions, but 

also to bond angle deformations. Jt is on the basis of the angular strains that 

the thermochemical properties of the cycloalkanes [157] were previously 

calculated; the nonbonded interactions were entirely neglected or estimated 
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too crudely. Pedley [158] ascribed the deviations from additivity in the atom- 

ization energies of alkanes to bond-angle deformations, but failed to obtain 

adequate parametrization. It is quite obvious that a general calculation scheme 

should take into account both bond-angle deformations and nonbonded 

interactions. 
Based on this conclusion, Dashevsky [24] calculated the atomization 

energies of alkanes on the assumption that the C-C and C-H bond energies 

are transferable from one molecule to another, and that strain energies are 

responsible for the deviations from additivity. The principal equation de- 

scribing the thermochemical properties will be 

—AH = ler = U,, (6.1) 

where —AH,, is the atomization energy, >}' Eyong, 18 the sum of the bond 

energies, and U,, is the strain energy corresponding to the optimal conforma- 

tion. (If the molecule has several conformers or a continuous conformation 

spectrum, the averaging over all possible conformations should be carried out 

using the Boltzman statistics.) 

The C-H bond energy was estimated from the heat of formation of methanet 

—AH2°§ 19% = 397.17 = 4E(C-H) — 6fy...1(1.496A) (6.2) 
and 

E(C-H) = 101.27 kcal mole™! 

Then, calculating the equilibrium conformation of propane (Fig. 1) and 

estimating its strain energy (40.18 kcal mole ') from the equation 

954.30 = 2E(C-C) + 8E(C-H) — U,, (6.3) 

we shall have 

E(C-C) = 92.16 kcai mole™ ‘+ 

Using these values of the bond energies, one can calculate the atomization 

energies of any saturated hydrocarbon. For example, for n-butane, whose 

equilibrium conformation is shown in Fig. 23, the nonbonded interaction 

energy will be 53.81 kcal mole‘ and the angular deformation energy, 1.60 

kcal mole '. Then, it is possible to show that the torsion contributions from 

the nonbranched chains are additive with quite good accuracy, and are equal 

on the average to 0.29 kcal mole”! per C-C bond. (This contribution is due 

to the fact that the Boltzman statistics at 298.15°K correspond to a continuous 

conformation spectrum; of course, the probability density is greatest for the 

planar zigzag, but the “‘average’’ conformer corresponds to a rotation angle 

+ For the energies of formation of H and C atoms the values 170.92 and 52.03 

kcal mole", respectively, were assumed; values for energies of formation of molecules 

were borrowed from “‘Physico-Chemical Properties of Individual Hydrocarbons,” [159]. 

t Less satisfactory results are obtained if the C-C bond energy is found from the atom- 

ization energy of ethane. 
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106 .3° 

(110°22")* 

(112°9’) 

106.2° 

Fig. 23. Equilibrium conformation of n-butane. In parentheses, experimental data. The 

asterisk shows the mean value of the HCC angle. (R. A. Bonham, L. S. Bartell, D. A. Kohl. 

J. Amer. Chem. Soc. 81, 4765 (1959)). 

of 168°.) Using the figures given above and Eq. (6.1) we find a value of 

1234.64 kcal mole~' for the atomization energy of n-butane, which is close 

to the experimental value of 1234.73 kcal mole™?. 

Such calculations are laborious. Consequently, the author of the above- 

cited paper obtained approximate expressions allowing the prediction of 

the atomization energies of n-alkanes, and of their structural isomers, with 

good accuracy (the method becomes thereby one of the versions of Allen’s 

scheme). For the atomization energies of 15 isomers with three to six C-C 

bonds, a 0.21 kcal mole~’ average difference between the calculated values 

and the experimental ones was obtained. 

Furthermore, in paper [160] it was shown that even in the case of small 

saturated cycles, as well as bi- or polycyclic systems (not to mention the 

medium cycles for which other authors [38, 68, 161] have obtained good 

results), the value of 92.16 kcal mole~! for the C-C bond and 101.24 kcal 

mole! for the C-H bond will give satisfactory agreement with the experi- 

mental data. For example, for cubane (XVII), whose strain energy is 275.50 

kcal mole~!, the calculated atomization energy is 1640.1 kcal mole~*, which 

is only 5 kcal mole~! more than the experimental value of 1635.4 kcal mole ' 

[162]. 
Similarly, for hexamethylprismane (XVIII) the calculated strain energy is 

CH, 

H,C CH, 

H,C CH, 

(XVID) (XVIII) 
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284 kcal mole~! and the atomization energy is 2921 kcal mole~', which is 

again very close to the experimental value [163] of 2923.4 kcal mole’. Thus, 

even for systems with great angular deformations, there is quite satisfactory 

agreement, though not as good as for the alkanes, between the calculated and 

experimental atomization energies; the difference does not exceed several 

kilocalories per mole. 

Let us now consider systems with multiple bonds. Generally speaking, the 

atomization energies of hydrocarbons with multiple bonds also obey additive 

schemes. But if one assumes transferability of individual bond energies from 

molecule to molecule, the deviations from additivity will be greater than for 

saturated hydrocarbons. This is why such notions as additional stabilization, 

conjugation, or resonance energies are also usually invoked when dealing 

with multiple-bond systems. 

In paper [164] the above principles were generalized to be applied to 

systems with multiple bonds. The calculations are again based on Eq. (6.1), 

and the following two assumptions are made: (1) the length and energy of an 

X-Y bond is determined only by the sort and hybridization of the X and Y 

atoms; (2) there is mutual and unambiguous correspondence between the 

energies and lengths of bonds. 

The first assumption was made by Coulson [165] and Walsh [166]; Dewar 

and Schmeising [167] as well as Bernstein [168] based their bond energy 

systems on these assumptions. 

The validity of the second assumption may be verified only by calculation. 

Dewar and Schmeising’s system of bond energies does not cover all hydro- 

carbons (e.g., the atomization energy of allene calculated by means of their 

scheme exceeds the experimental value by 8.5 kcal mole '). The lengths and 

energies of bonds were mutually and unambiguously correlated, but strain 

energies were never included in calculations by such schemes. On the other 

hand, Bernstein [168], having calculated the atomization energies of a great 

number of hydrocarbons, and having compared them with the relevant ex- 

perimental data, arrived at the conclusion that there is no unambiguous 

dependence between the bond length and its energy; his E(/) curve branches 

into two at/> 1.30 A. 
It is clear that if only Eq. (6.1) and the two assumptions above are used in 

calculations, the resonance energy of any molecule will be equal to zero, i.e., 

the conjugation concept can be ignored when dealing with the motecule’s 

geometry and energy of formation. This is not a new point of view. Dewar 

[169], for example, distinguished between the properties of molecules con- 

ditioned by the behavior of individual electrons (ionization potentials, elec- 

tron spectra, etc.) and properties arising due to “collective” interactions of 

electrons and nuclei (geometry, energies of formation, vibration spectra 

frequencies, etc.). In calculating properties of the latter type we probably 
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may consider a molecule as a system of interacting atoms without involving 

electronic concepts. 

Table 7 is a classification of the C-C and C-H bonds based on structural 

data (the procedure for obtaining the energies of individual bonds indicated 

in the fourth column will be described later). 

To find the dependence of the bond energies on their lengths, let us choose 

such “standard” molecules as contain almost all the bonds indicated in 

Table 7. The strain energies and equilibrium conformations of 14 standard 

molecules calculated by Dashevsky are given in Table 8. 

Table 7 

Bond energy 

Bond structure Designation? Bond length (A) (kcal mole~*) 

C-C bonds 

20 Ce Si 1.535 92.16 

Sc—cZ% Se 1.507 98.83 

Sc—c= SZ 1.459 111.83 

SC— CR Soo 1.476 107.22 

pv—Cc= Sos 1.426 120.01 

=c=c= Sz 1.376 129.18 

Sc=co Pe, 1.333 133.78 

Ste Di, 1.305 135.95 

= C20 D22 1.284 137.85 

—c=c-— T 1.205 160.82 

C—Carom A 1.396 126.04 

C-H bonds 

>C—H hy 1.100 101.27 

>c—H h2 1.085 105.10 
eae 

=C—H hs 1.059 115.51 

“§ stands for the single bond, D for the double bond, T for the triple bond; 

A means aromatic; the two indices indicate the maximum bond multiplicities on 

the left and right. 
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Now the problem is to find the E(/) function for C-C and C-E bonds. Let 

us assume the AHi,,, to be the atomization energy of the molecule calculated 

from Eq. (6.1) using the set of bond energies and strain energies given in 

Table 8. 
The E(/) functions are to be found from the expression 

yg [AH bate — AH iper)/ AH experl” (6.4) 

where the g' are weight factors. Ideally, one should have searched for the 

minimum of this expression not for the 14 molecules chosen, but for all the 

molecules whose heats of formation are known. But one may believe that the 

introduction of new molecules will not affect the results too much. In the 

paper cited all the g' were assumed to be equal to unity, with the exception 

of benzene for which g = 3.; The following dependences were obtained when 

expression (6.4) was verified and minimized: 

E(C-C) = 857.6341,5 + 10264.689/; + — 6606.481 1,3 

+ 13212.531/,? + 20194.8337, — 10562.740 (6.5) 

E(C-H) = 1615.109/5 2 + 2222.1951, — 3678.000 (6.6) 

(the values of 92.16 and 101.27 kcal mole~ * for ordinary C-C and C-H bonds, 

respectively, were used). The corresponding curves are given in Fig. 24a,b, 

and the energies of the individual bonds appear in the fourth column of 

Table 7. The E(/) curves are different from those given in the literature [167, 

168, 170-172]; it is obvious that simple functions like /~* or /~* do not agree 

with the experimental data. At all points of the curve given in Fig. 24a 

dE/dl < 0, i.e., the energy of the C-C bond decreases monotonically as the 

bond length increases. 

The atomization energies of the 14 standard molecules agree very well with 

the experimental values, the average difference is less than 0.5 kcal mole~', 

and the only exceptions are the 1-2 kcal mole™' discrepancies for allene and 

1,2-butadiene. This system of bond energies allows one to calculate the 

atomization energies for any hydrocarbon with sufficient accuracy. Let us 

consider two examples. 

a. Cis-1,3-butadiene 

The calculated optimal conformation is shown in Fig. 25a. With the strain 

energy of the equilibrium conformation of 37.58 kcal mole ', the atomization 

energy will be 967.80 kcal mole” ', more than the experimental value by only 

0.2 kcal mole~’. The cis-trans isomerization energy for 1,3-butadiene is, 

+ With g = 1 the difference between the calculated and experimental atomization energy 

of benzene was 1.5 kcal mole. 
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Fig. 24. Dependence of bond energy upon bond length: a, for C-C bonds; b, for C-H 

bonds. 

according to calculations, 1.82 kcal mole‘; the experimental value is 2.3 kcal 

mole’. 

b. 1 3-pentadiene 

The bond angles of the equilibrium conformation of the cis and trans forms 

are given in Fig. 25b,c. The strain energies of these forms are equal to 52.69 

and 51.08 kcal mole~', respectively; the atomization energies are 1251.84 

and 1253.45 kcal mole~‘; the experimental values are 1251.55 and 1253.21 

kcal mole~1. The calculated value for the cis—trans isomerization energy 

(1.61 kcal mole~') almost coincides with the difference in the formation 

energies of these molecules (1.66 kcal mole~'). 

The results obtained show that the geometry and atomization energies of 
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a b 

H H H H 

x 116. a \ joey pee 10.4° 116.6° 116.57 
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Fig. 25. Calculated equilibrium conformations of the molecules of: a, cis-1,3-butadiene; 

b, cis-1, 3-pentadiene; and c, trans-1,3-pentadiene. 

hydrocarbon molecules may be interpreted in terms of the scheme adopted 

without any additional concepts. One may believe that these properties of 

molecules are determined by the so-called “steric” effects (i.e., nonbonded 

interactions, angular deformations, etc.) and by hybridization (1.e., types of 

bonds). But it is hardly sensible to state what factors are “‘decisive’’ since the 

scheme is empirical. 

Although the resonance energies in the scheme are considered to be equal 

to zero, it is easy to answer the question about the relative stabilities of the 

real and hypothetical molecules. The molecules of benzene and 1,3,5-cyclo- 

hexatriene will be good examples. In the latter molecule the strain energy is 

67.44 kcal mole! (it is a planar molecule, the C-C bond lengths are 1.476 

and 1.333 A, all CCC angles are equal to 120°) and the atomization energy is 

1286.18 kcal mole~*. Hence benzene (Table 8) is more stable by 31.8 kcal 

mole‘ than cyclohexatriene which agrees with well-known values of the 

resonance energy of benzene. 

Besides atomization energies, there are other thermochemical properties 

of compounds connected with strain energies which can be of interest to 

theoreticians. 

1. To estimate isomerization energy it is not necessary to determine atom- 

ization energies by summing up bond energies; it is sufficient to compare the 

strain energies obtained by potential function minimization. 

Kitaigorodsky and Dashevsky [12] have given calculations of this kind. 
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The molecule of 2,7-dimethylphenanthrene (XIX) is planar, according to 

calculations; the strain decreases owing to the insignificant deformations in 

the plane. The spatial proximity of the methyl groups in the molecule of 

4,5-dimethylphenanthrene (XX) causes serious out-of-plane deformations. 

The C4 and C5 atoms depart from the plane by 0.25 A in opposite directions, 

and methyl groups are shifted even more. The difference in the strain energy 

between 2,7- and 4,5-dimethylphenanthrene is 14.2 kcal mole~', which agrees 

rather well with the difference in the combustion heats (i.e., isomerization 

heat) of these compounds, 12.6 kcal mole! [173]. 

Similar calculations were made for 1,12- and 5,8-dimethylbenzophenan- 

threne, (XXI) and (XXII). Both molecules are nonplanar, but the latter one 

is distorted more, due to steric hindrances. The isomerization energy is 

11.5 kcal mole~*, according to calculations; the experimental value is 11.0 

kcal mole~? [173]. 
Finally, the maximum isomerization heat of dimethylbenzophenanthrene 

(XXIII) is as low as 4.3 kcal mole™ *, while that of dimethylhexahelicene (XXIV) 

H,C CH, 

H,C CH, 

(XIX) (Xx) 

H,C CH, 

H,C CH, 

(XXI) (XXII) 

(XXIII) (XXIV) 



438 7 Conformations of Organic Molecules 

is about 2 kcal mole~'. (The CH; groups, which are not indicated, are in 

positions corresponding to the maximum strain.) 

Such low values of isomerization heats are due to the specific geometry of 

these molecules: the existing deformations are so strong that new substitutions 

do not invoive high energy losses on deformations. (It should be noted that 

the combustion heats of these compounds have not been determined.) 

2. If exo- and endo-isomerization energies are to be calculated, it is in- 

dispensable to determine the atomization energies since exo- and endo- 

isomers contain bonds of very different hybridization. 

It is known, for example, that the isomerization heat of 1,4-pentadiene 

(XXV) into 1,3-pentadiene (XXVI) is —6.7 kcal mole™?. 

yy 
\ VX / ag yi 
Cat =e aoe / 

pa ar C=C 
je, 

(XXV) (XXVI) 

Rough calculation of the atomization energies of these molecules gives 

figures of 1245.12 kcal mole~! (experimental value, 1245.91 kcal mole ') 

and 1250.07 kcal mole~'; therefrom one derives the value of the isomeriza- 

tion energy —4.2 kcal mole™'. 
Of great interest are calculations of the exo-endo isomerization heats of 

various cyclic hydrocarbons, since these systems are associated with two 

competitive effects: the change in hybridization and the change in strain 

energy. For example, the measured heat of isomerization of 1,3-dimethylene- 

cyclobutane (XXVIIa) 1-methyl-3-methylcyclobutene (XXVIIb) is —5.0 kcal 

mole [157]: 

(XXVII) 

The sums of the bond energies of these two compounds are equal to 1461.68 

and 1477.86 kcal/mole, respectively, i.e., by bond energies (XX VIIb) is more 

stable by 16 kcal mole~’. On the other hand, the strain energy of molecule 

(XXVIIb) is less by several kilocalories per mole, since in it there is a more 

favorable situation for trigonal atoms of the cycle. (Instead of 90°, due to the 

valence bonds being unequal, the angles in the cycle are 82° and 98°; the 

latter are situated at the double bonds.) A simple calculation for planar models, 
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without minimization of the potential functions, yields strain energies of 132 
and 122 kcal mole” * for (XX VIIa) and (XXVIIb) respectively, and the isomer- 
ization heat will be —6 kcal mole™!; this agrees well with the experimental 
figure. 

3. The method also makes it possible to calculate hydrogenation heats of 
unsaturated compounds. If C,H,, is the initial compound and CEip isthe 
reaction product, then the equation for the hydrogenation heat will be 

— Aya, = —AHa (C,H) — [—AHa (C,H) ] — (p—n)52.09 (6.7) 
in which (6.1) is valid for the atomization energy of each substance. For 
example, when benzene is hydrogenated into cyclohexane: 

— (1680.22 — 317.80 — 52.09 x 6) = 49.88 kcal mole™?, 

which coincides with the experimental value of —49.8 kcal mole! [174]. 

Similarly, for the hydrogenation of CH,C=CCH,; into n-butane the value 

will be — 64.59 kcal mole~'. (The experimental value is —- 65.12 kcal mole~! 
lve 

Several examples of hydrogenation heat calculations for bi- and polycyclic 

systems are given in paper [101]. For hydrogenation of bicyclo-[2,2,1]- 

heptadiene-2,5 into bicyclo-[2,2,1]-heptane, using the data of Table 4, the 

value of — 66.2 kcal mole~' was obtained; the experimental result was — 68.1 

kcal mole~! [176]. 

(XXVIID 

Cycloalkenes whose conformations were considered in the preceding 

section will be good illustrations of this method of calculation of thermo- 

chemical properties. Using the values of U,, obtained when calculating the 

equilibrium conformations, one can easily estimate the thermochemical 

properties of these molecules (Table 9). 

The data listed in Table 9 display the satisfactory agreement between the 

calculated and experimental results, the average difference being 2 kcal mo!e™*. 

But it should be noted that the calculated atomization energy for the majority 

of molecules is less than the experimental; this means that either the values of 

the bond energies are too low, or the strain energies are too high (the latter 

depend on the potential function parameters). However, it should be borne 

in mind that both the bond energies and the parameters of the potential 

functions were obtained from the analysis of acyclic compounds. Therefore, 
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in the case of the cycloalkanes, the fairly good agreement between the calcu- 
lations and the experimental results testifies to the fact that the valence bonds 
in these molecules have almost the same properties as those in cyclic com- 

pounds; the specific physicochemical (including thermochemical) properties 
of these compounds are due to their higher strain energies and, primarily, 
to angular deformation energies. 

Hitherto we have been discussing the application of the mechanical model 

to calculation of the thermochemical properties of hydrocarbons. In the paper 

[177] the atomization energies of the halogen derivatives of methane are 

given. It is shown that minimization of the potential functions using indepen- 

dent geometrical parameters gives much better agreement between the cal- 

culated values and the experimental results. (Earlier, in paper [178], Allen’s 

scheme had been applied to the same compounds. The increments for the 

nonbonded intreactions had been taken into account, but this had practically 

no effect on the results. Other additive schemes for this homologous series are 

presented in [179-181].) 

Thus, the scheme of atom-atom potentials has proved to be quite acceptable 

for calculating the thermochemical properties of such different systems as 

alkanes, olefines, aromatic molecules, cycloalkanes and cycloalkenes, bi- and 

polycyclic systems and, finally, halogen derivatives. Will this approach still 

be as fruitful in calculations of the atomization energies of more complex 

molecules, e.g., oxygen-containing compounds, heterocycles, nitro com- 

pounds? Certainly this question cannot be answered unless detailed calcula- 

tions have been carried out, but, since rough additive schemes have proved to 

be fairly good with complex systems, there is a hope that the atom-atom 

potential scheme will also be successful. The advantage of this scheme over 

others is self-evident: The relationships between the geometry of the molecule 

and the thermochemical properties of the compound can be understood. 

7. CONSISTENT FORCE FIELD 

Hitherto we have been discussing in detail the atom-atom potential scheme 

as applied to calculation of the optimum geometries of molecules and the 

atomization enthalpies. Vibration spectra frequencies can also be discussed 

from this point of view. Research along this line has only just been started, 

and we have only a few remarks to offer. 

The molecule’s potential energy U(x), where x consists of independent co- 

ordinates, may be expanded into a Taylor series near the equilibrium position 

U(x) = U(Xo) + )) (0U/OX;)x=x0 OX: 

+4) YP U/OX; 0X))y = 19 X41 OX; + °° (7.1) 
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where xX, is a vector of independent geometric parameters corresponding to 

the equilibrium conformation, and 0x; are small displacements of the atoms 

from their equilibrium positions. The first term of the expansion gives the 

atomization enthalpy, which is the sum of the bond and strain energies. The 

second term is zero in the case of the equilibrium conformation, since the 

condition of the minimum of the potential function corresponds to the vanish- 

ing of the first derivatives 

(0U/0X;)x=x0 = 9 (7.2) 

Finally, the third term, which includes the second derivatives of the 

potential function, is necessary in order to calculate the harmonic frequencies 

of the molecules’ vibration spectra; the following expansion terms, neglected 

in our case, carry information about the anharmonicity. 

As is known [182], the solution of the Lagrangian equations for the mol- 

ecular vibrations is finally given by the secular equation 

|GF—Al| = 0 (7.3) 

where G is the matrix of kinematic coefficients accounting for the molecule’s 

geometry and the mass of the atoms; F is the matrix of the dynamic coeffi- 

cients, with components 

Fi = (07 U/0x; 6x, =x, (7.4) 

The vibration spectra frequencies are 2nv; = (A;)* where v; is the frequency 

of the ith vibration (A; are the eigenvalues), I is the unit matrix. 

The matrix G is determined unequivocally from the geometry of the mol- 

ecule and all the necessary expressions are known for its elements, whereas 

the matrix F causes much controversy. Spectroscopists see their chief task in 

finding all the elements of the matrix F from the experimental data on the 

vibration frequencies of the molecule, i.e., by solving the inverse vibration 

problem, spectroscopists obtain information about the force field of the 

molecule. But it is not possible, in principle, to obtain all the elements of the 

matrix F from the spectrum of any given molecule, because the number of 

equations is always less than that of the unknown quantities. The way out is 

then the following: Besides the spectrum of the given molecule, the spectra of 

its isotopic derivatives are investigated, because they have the same force 

field (this assumption is true to a great degree of accuracy). Thus, additional 

equations are obtained allowing one to find all the elements of the matrix F. 

Unfortunately, such a procedure is only practical for the simplest molecules. 

In almost all interesting cases the number of equations is very insufficient, 

and one is compelled to resort to criteria for the transferability of force con- 

stants from one molecule to another. 
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The problem of the transferability of the F matrix elements for force fields 

of various kinds is discussed in detail in [182-184] and will not be dealt with 

here. The only relevant remark to make is that force constants for stretching 

vibrations of certain bonds usually change very little from one to another 

similar molecule, on the other hand, the constants corresponding to angular 

deformations change to a greater degree, and the greatest changes occur in 

the force constants describing skeletal and other low frequency vibrations. 

The potential functions used for calculating conformations and thermo- 

chemical properties allow one, as is seen from (7.4), to estimate unequivocally 

all the elements of the matrix F. For example, in the case of the aliphatic 

systems we may, using the above designations, write the following expression: 

U= Ue toned + Ute + ios Sie Ue onda 

= ¥ Slr) + FY, C(Aa)? + $Uo Y (1 +008 39,) + 4 K,(Al,)? (7.5) 
i>J t Ss J 

adding the deformation energy of the valence bonds as 45°, K,(Al,)* (K, are 

the elastic constants; A/, are the changes in bond lengths from their ideal 

values). Then, differentiating (7.5) twice with respect to the independent 

geometrical parameters, we derive all the elements of the matrix F. 

The analytic expressions for the second derivatives are known to be ex- 

tremely complicated, but Galaktionov [36] suggested a handy method for 

their calculation by means of a computer. Instead of analytical differentiation 

one may use the finite difference approximations: 

67 U/Ox;? = [U(xo) + U(x; 4+ 2h) — 2U(x; +h) ]/h? (7.6) 

0? U/Ox, Ax; = [U(xo) + Ul +h, x; +h) 

— U(x; +h) — U(x, +A) /h? (7.7) 

where / is the small increment in the argument. If h is of the order of 0.001- 

0.0001, energies are expressed in kilocalories per mole, angles in radians, and 

distances in Angstroms, then such an approximation will give quite satisfactory 

results, as was shown by Dashevsky and Dakhis [185]. 

It has been emphasized more than once that it is allowable to neglect 

changes in the bond lengths when calculating conformations. This term may 

also be excluded from calculations of the vibration spectra frequencies if one 

is interested in noncharacteristic low-frequency vibrations depending on the 

conformation of the molecule. And it is only when a complete description of 

the vibration spectra frequencies is required that changes in bond lengths 

should be included since otherwise the high frequencies are impossible to 

obtain. 
The method of calculation described above is not new. As early as in 1931 

Urey and Bradley [186] suggested expressions similar to (7.5) for tetrahedral 
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molecules of the CX, type; the repulsion of the nonbonded atoms was de- 

scribed by potentials of the K/r” type where K and n are constants, and r is 

the interatomic distance. For n, a range of values was tried and n ¥ 9 was 

found to give satisfactory agreement between the calculated and experimental 

frequencies. Later Heath and Linnett [187, 188] introduced potentials for the 

interactions of nonbonded atoms when analyzing tetrahedral and nonlinear 

three-atom molecules. 

The modified force field of Urey—Bradley [189] which has gained wide 

recognition, also contains terms corresponding to interactions of nonbonded 

atoms. For example, for tetrahedral molecules the usual expression will be 

4 

U = ¥. [K/I,Al, +4K,(Al)?] 
i=1 

+> (Hj i Aa; a 4H,,;(,,A%;;)7] (7.8) 
i>j 

a) LF Ys 4: AGijs + 4F,,(Aq;;)7] 
i>j 

where A/, are bond length changes, Ax;; are bond angle changes, Aq;; are 

changes in the distances between nonbonded atoms; K;, K;’, H;;, Hj;, F;; and 

Fj, are the corresponding force constants. 

When using this formula in calculations, one usually derives force constants 

from an analysis of the experimental data; it is at this stage that the question 

of the transferability of atom-atom potentials becomes that of changes in the 

constants F;, and F;; from one molecule to another. Not everything is clear 

about the terms which are linear with respect to changes in bond lengths, 

bond angles, and distances between the nonbonded atoms. In the equilibrium 

conformation these terms should have turned out to be zero, if there had been 

no dependence between the parameters of (7.8). Therefore it seems more 

logical to calculate the vibration frequencies of molecules in a general har- 

monic force field, including no linear terms. To this end any dependent 

geometrical parameters employed in the potential function expression should 

be expressed via independent ones; then the matrix of force coefficients could 

be found from Eqs. (7.4), (7.6), and (7.7) unequivocally for any chosen set of 

independent parameters. 

Vibration spectra frequencies are very sensitive to the parameters of poten- 

tial functions, much more sensitive than the optimal conformations or the 

enthalpies. This is why it seems reasonable to refine the atom—atom potentials 

and the other parameters of the potential function using the experimental 

data, i.e., the vibration frequencies. On the other hand, spectroscopists may 

benefit from the potential functions, for example, in the case of assignment of 

frequencies, especially in the low-frequency range. 
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Lifson and Warshel [161] made an attempt to find the potential function 
parameters giving the best agreement with the experimental data on the 
geometries, enthalpies, and vibration frequencies of cycloalkanes and n- 
alkanes. As is known, the strain energy in such systems may be expressed as 

U, = Ld Sy) + 4Coce 2 Gi a5 > 

+4Cuce My (Chee este) = 

+4Cycn pS (CHa 

+4Up >) (1 +cos 3¢;) 

+4Ke cD (lee 18-) 
$end USF 1S-% (7.9) 

In this equation the first term corresponds to the energy of interaction of 

nonbonded atoms for which use was made of the 6-12 potentials 

f(r) = e(to/r)'* — 2e(ro/r)° (7.10) 
(é is the depth of the potential well, ro is the equilibrium distance); the second, 

third, and fourth terms give the angular deformation energy, the elastic con- 

stants for the CCC, HCC, and HCH angles being different; the fifth term 

describes the torsion energy, and the last two terms are the deformation 

energies of the C-C and C-H bonds, with Kc_¢ and Kce_y the corresponding 

elastic constants. 

Besides, to achieve better agreement between the calculated and experi- 

mentally observed enthalpies of formation, the authors included electrostatic 

interactions; they believed that on the C and H atoms there are equal and 

opposite charges, @.,, interacting in accordance with the Coulomb law. 

In Table 10 are the parameters of the consistent force field which gives the 

best description of the enthalpies of formation, the geometries and the vibra- 

tion frequencies of saturated hydrocarbon molecules. 

In another paper Lifson et a/. [190] obtained a consistent force field for 

Table 10 

PARAMETERS OF CONSISTENT FORCE FIELD 

kcal mole~! A kcal mole~! rad? kcal mole~! A~? 

Ec...c 0.0196 — (Fo)c...c 4.228 Cece 44.0 Kee 222.0 Uo 2.836 kcal/mole 
Ec...H 0.00939 (To)c.-H 3.582 Cucc 53.58 Ke_n 573.8 Cete = 0.144e 

€n..-H 0.0045 (Yo) H.-H 2.936 Cucu 76.28 
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some systems containing amide groups. Their parameters will be useful for 

calculating the conformations and vibration spectra frequencies of dipeptides, 

polypeptides, and proteins (see Section VIII.2). 

The examples described above are but the first steps along these lines; it 

should be expected that the atom—atom approach will enrich the theory of 

molecular vibration spectra. Besides, investigations of this kind will elucidate 

the question of whether the atom—atom potentials are universal and transfer- 

able when used to describe different properties of molecules. 
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Chapter VIII 

Conformations of Macromolecules 
and Biopolymers 

1. THE STRUCTURE OF STEREOREGULAR MACROMOLECULES IN CRYSTALS 

This chapter describes the application of the atom-atom potential scheme 

to macromolecules—natura] and synthetic. It is appropriate to warn the 

reader at once that the language of the interactions between atoms is not 

always sufficient to describe all the properties of polymeric molecules; some- 

times less sophisticated models are more effective for such complex systems. 

For example, it is hardly possible that the structure of t-RNA or m-RNA in 

solution could be comprehensively described by means of atom-atom poten- 

tials only; as to protein, prediction of its complete three-dimensional struc- 

ture is also doubtful, though some theoreticians have different opinions about 

that question. 

We are going to confine ourselves to the aspects of the conformations of 

macromolecules which can be interpreted in terms of the mechanical model 

of the molecule discussed in Chapter VII. This refers primarily to the helical 

conformations of stereoregular macromolecules that can be crystallized. 

Stereoregularity implies the equivalence of the monomeric units, hence the 

geometric parameters describing the conformation are repeated in every 

monomeric unit. Therefore, the theoretical conformational analysis of a 

macromolecule is the investigation of a potential surface in a small number of 

variables, even though the number of monomeric units may be great. 

451 
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If the molecule is not stereoregular, e.g., a globular protein, conformational 

analysis allows one to find useful regularities in the interactions of adjacent 

monomeric units. Again, molecules of nucleic acids—DNA and RNA and 

those of fibrillar proteins—are not, strictly speaking, stereoregular but they 

are sequences of geometrically similar monomeric units and in the first ap- 

proximation may be looked upon as stereoregular macromolecules. 

Synthetic regular macromolecules, whose conformations will be discussed 

in detail here, are very handy models to verify the effectiveness of the scheme 

of atom-atom potentials. We shall limit ourselves to crystalline polymers 

alone, since in solution the potential energy of a macromolecule depends 

upon a great number of variables. For the theoretical investigation of the 

conformations of macromolecules in solution, approximate methods [1, 2] 

have been elaborated allowing one to obtain average characteristics of the 

molecules, and among others, <h?>, the mean square of chain length. Most 

effective for this purpose is rotation isomer theory, which is based on the 

energy differences of rotation isomers. The rotation isomer model is, of course, 

a rougher approximation than that of a continuous conformation spectrum, 

which includes the interactions of all the atoms in terms of atom—atom poten- 

tials; nevertheless, it is quite good enough to describe almost all the properties 

of macromolecules in solution. (If one uses the rotation isomer model in cal- 

culations, the atom-atom potentials may give the differences in the energies 

of the rotamers.) 

Stereoregular synthetic polymers have become widely known during the 

past 15 years. Ziegler et a/. [3] did the pioneering research and reported the 

polymerization of ethylene at low pressure. These authors used a new catalyst, 

a mixture of solutions of Al(CH3)3 and TiCl,. In the same year (1955) Natta 

et al. [4, 5] used Ziegler’s polymerization method to synthesize some poly- 

“-olefines, including polypropylene and polystyrene. Thereafter innumerable 

stereoregular crystalline polymers have been synthesized. In only one paper, 

(Natta et al. [6]) the structures of about 30 vinyl isotactic polymers with 

aromatic side groups are described. It should be emphasized that Natta was 

the first not only to synthesize numerous stereoregular polymers but also to 

determine their three-dimensional structures by means of X-ray studies. 

Besides, Natia [7]} was one of the first investigators who employed the 

methods of theoretical conformational analysis. 

The nomenclature of stereoregular polymers is dealt with in several papers 

and summed up in the paper [8] and review of Corradini [9]. Special rules 

have been suggested for indicating the order and position of atoms in an 

isolated polymer chain, and also for the mode of packing of neighboring 

chains. Let us take as an example the vinyl polymers, i.e., (-CR,-),, 

{ The papers by Natta and the members of his school are collected in Ref. [7]. 
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R 

Fig. 1. Structures of vinyl polymers. a, isotactic; b, syndiotactic; c, threo diisotactic; 

d, erythro diisotactic. The trans chain of the C atoms is in the plane of the diagram, the 

side chains are in the normal plane; the larger circles indicating side radicals protrude 

forward from the diagram plane; smaller circles, backwards. 

(-CH,—CHR), and (-CHR-CHR-.),,. The first type consists of carbon-chain 

polymers with identical side groups, such as polyethelene, R = H, or poly- 

tetrafluoroethylene, R = F. Another widely known group is (-CH,-CHR-.),. 

These may have two different configurations, isotactic and syndiotactic shown 

in Fig. la and 1b. If the polymer is tentatively represented as a planar trans 

chain, then isotactic polymers will exhibit parallel transfer of adjacent mono- 

meric units, while the syndiotactic ones will have a mirror plane combined 

with the parallel transfer. Polymers of the (-CHR-CHR-), type are called 

diisotactic, being threo- or erythrotactic depending on the positions of the 

substituents (Fig. Ic, d). 

It is not difficult to conclude that regular polymers should crystallize into 

helical structures. Indeed, their adjacent units are equivalent and the mutual 

position of each pair of the adjacent monomeric units is identical. This seems 

to be a necessary and sufficient condition for the formation of a helical struc- 

ture. In some cases the helix may degenerate into a planar zigzag. For example, 

the polyethylene molecule is a chain in which all the carbon atoms lie in one 

plane, owing to the fact that all the hydrogen atoms are located at equilibrium 

distances from each other (2.5 A). Such macromolecules as polyvinyl] chloride, 
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polystyrene, polyvinylidene chloride, etc. cannot have their carbon backbone 

planar, due to the mutual repulsions of atoms in the side chains. Thus, if the 

carbon backbone of polyvinylidene chloride had been planar the shortest 

H---Cl distance would have been less by 0.6 A than the equilibrium one. 

Obviously, if adjacent monomer units rotate with respect to each other form- 

ing thereby a helix, this distance increases. 

Natta and Corradini [10, 10a] have put forward the basic principles of the 

geometric organization of stereoregular macromolecules. These they formu- 

lated as three postulates: 

1. The axis of a macromolecule (i.e., that of the helix) is parallel to a crystallo- 

graphic axis, and all the monomer units occupy geometrically equivalent posi- 

tions in relation to this axis. This experimental fact is confirmed by a great 

deal of X-ray evidence, and has been called the equivalence postulate. 

2. The conformation of the polymer chain in a crystal approximately 

corresponds to one of the minima of potential energy of the isolated chain. 

This means that the mode of packing of the molecules in the crystal is of 

secondary importance in determining the chain conformation, but some small 

deviations from the conformation of the isolated chain are possible. 

3. The chains of the macromolecules are parallel and are separated from 

each other by distances characteristic of low molecular weight compounds. 

This postulate means essentially that the principle of close packing applies to 

macromolecules. 

X-ray analysis of crystalline polymers may, in general, furnish evidence 

about the atomic coordinates in the unit cell; but, since the order is not 

absolutely perfect, the number of reflections is small, and no direct solutions 

of the structural problem are usually possible. X-ray diffraction patterns of a 

stretched sample give information about the identity period c along the fiber 

axis. The trial and error method is usually employed to obtain the parameters 

of the helix, i.e., the translation of the monomer unit along the axis (d) and 

the angle of rotation in the plane normal to the helix axis (0 = 2xm/n, where 

m is the number of turns and n is the number of monomer units per period); 

i.e., certain suggestions are made as to the symmetry of the helix, or (which 

is the same thing) as to the number of monomer units per turn. For example, 

it is suggested that the helix has the symmetry 3, (i.e., three monomeric units 

per turn, n/m = 3), the symmetry 4,, or 7,, etc. Some types of symmetry 

of helices are shown in Fig. 2. A theoretical calculation of the intensity is then 

made for the chosen type of symmetry, and this is compared to the experimental 

results. The theory of X-ray scattering from helices has been developed by 

Cochran ef a/. [11] for application to the X-ray diffraction patterns of helical 

polypeptides; it has been used later to predict the structures of DNA, regular 

polymers, etc. 
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Fig. 2. Some types of helical structures occurring in crystalline polymers: I, 3, helix; 

II, 72; I, 44. 

To obtain information about the mutual positions of the atoms of the 

chain from X-ray fiber patterns, one should determine the relationships be- 

tween the parameters of the helix and those pertaining to the mutual positions 

of the atoms. As was mentioned above, the conformation of the molecule in 

the crystal is determined, first and foremost, by the intramolecular inter- 

actions. Consequently, choosing potentials for the atoms’ interactions and 

minimizing the potential function by varying independent geometric par- 

ameters, one can obtain the optimal conformation; the parameters of the 

helix are thus obtained automatically. 

Let us consider a regular polymer as a polyatomic chain and find out what 

parameters describe the conformation of such a molecule. Figure 3 shows a 

“‘diatomic’’+ chain of the (-M,—M,-), type. Such a chain is a model for all 

the vinyl polymers with single-atom side groups, and also for polyaldehydes. 

It is clear that the geometry of this chain without side groups will be fully 

described by only six independent parameters. They can be chosen in various 

ways, but the natural coordinates accepted in structural chemistry, and in 

the theory of molecular vibration spectra prove to be the most suitable. These 

+ This term is hardly a good one, but it is widely used in the literature. 
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Fig. 3. Necessary designations and local coordinate systems in a double-atom chain: 

a, cisoid conformation; b, transoid conformation. 

parameters are the bond lengths /,, (or /,) or /,, (or /,), the bond angles, 

a, and a, and also the dihedral angles ~,, (or @,) and @, (or @2). 

The measuring of dihedral angles (rotation angles) should be clarified. 

Authors of the Italian school stick to the conformation nomenclature of 

Natta et al. [12]. According to this nomenclature the rotation angles are 

measured from the cisoid conformation (i.e., g =0 in Fig. 3a) clockwise 

regardless from which side the polymer chain is viewed, from either the right 

or the left; the range of variation of ¢ is the semisegment from 0 to 2z. 

In the configurational statistics of polymer chains (authors belonging to 

Voikenstein’s [13, 14] and Flory’s schools [2, 15]) different designations are 

employed. Dihedral angles are measured from the transoid conformation 

(g = 0 in Fig. 3b and g = 180° in Fig. 3a), and both positive and negative 

signs of angles are possible. These designations seem to be more natural, 

since trans conformations of adjacent monomer units frequently occur in 

macromolecules, whereas cis conformations are forbidden. However, for con- 

formational maps this nomenclature is not convenient, because in this case 

the energy minima occur on the boundaries of the maps. Therefore, we shall 

use the nomenclature of the Italian school. 

One can assume that the bond lengths in macromolecules are constant and 

transferable from one molecule to another, but deformations and bond angles 

should be dealt with more carefully. Of course, to make a rough prediction 

of the form of the helix one can assume all CCC angles to be tetrahedral or 

equal to 114°, as is done by many authors, but if higher accuracy is required 

for the helix parameters and, especially, for the atomic coordinates for calcu- 

lating intensity distributions in X-ray pictures, the assumption of unchanging 

bond angles is too rough. This question will be discussed in detail below. 

Undoubtedly, the rotation angles are the most important parameters. Thus, 
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the conformation of a macromolecule may be presented, to a good approxi- 
mation, as a sequence of internal rotation angles: y for monoatomic chains of 
the (-M-), type (polyethylene, polytetrafluoroethylene); ~, and gy, for 
diatomic chains (-M,—M,-), (vinyl polymers, polyaldehydes); ¢,, ~,, 93 for 
triatomic chains (-M,-M,-M,-), (polypeptides); 91, @2, @3, and @, for 
tetraatomic chains (-M,-M,—M;-M,-), (diene polymers), etc. It should be 
noted that owing to the planar structure of the amide groups (I) in polypeptides 

0 Cc 
\ / 
CoN 
/ \ 

Cc H 

(1) 

~, = Oor7; therefore, roughly, the potential function can be two-dimensional. 

In diene polymers, due to the planar structure of the group (II) there are three 

(11) 

rotation angles instead of four. In polypeptides, and, possibly, in diene poly- 

mers, these groups may be slightly nonplanar, but the rotation angles within 

them change approximately within the same range as do the bond angles. 

For a priori calculations of the geometries of macromolecules and also to 

calculate the parameters of the helices, one should know the coordinates of 

all atoms within one coordinate system. It is quite easy to find coordinates of 

atoms in their “proper” systems. For example, for the monoatomic sub- 

stituents one can write, using the designations of Fig. 3, 

M,‘(0, 0, 0), 

P,(—P 1 COS; COS FH, —P1 COSY SiN F4,, Py SiNY;) "T 

P,(—p2 cos y2 Cos $4, —p2 C08 y sin}a,, —p, sin) a 
For polyatomic substituents the expressions will be more complicated (one 

should transfer consecutively the coordinates of side group atoms into the 

system of coordinates of the main chain); but this difficulty is not one of 

principle. 

The procedure for calculating the atomic coordinates in one system is the 

following. After Eyring [16] one chooses the ith coordinate system so that 

the x axis is directed along the main axis; the y axis lies in the plane of the 

three atoms of the main chain; and the z axis, so that the coordinate system 

is right-handed (Fig. 1); the system is centered on the ith atom of the main 
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chain. Then by means of the transformation 

X;-1 = A, X; + B, (2) 

where X are the coordinate vectors, A, is a matrix (3 x 3) and B, is a vector, 

—COS 0, —sin a, 0 lio 

A, =| sina,CcoS@,, —COSH,COS@;, —SING;2 |, B, = |20 

sina, SiIN@,, —COS%,SINP;2 COS 12 0 

(123) 

the coordinates are transferred into the ith system. In fact, this trans- 

formation corresponds to a rotation of the M,—M, bond by the angle 

which is given by the rotation matrix 

1 0 0 

An =9|0 cosm —sing (1.4) 

0 sin p cos @ 

by a further twist through an angle complementery to the bond angle given 

by the rotation matrix 

—cose —sing 0 

A* =| sina —cosa 0 (1.5) 

0 0 1 

and, finally, by a translation along bond / by its length. Thus, 

A, = AA? (1.6) 

Similarly the atomic coordinates are transferred from the (i—1)th system 

to the (i—2)th system, and then to the next monomeric unit. 

Analogous expressions can be easily found for a p-atomic chain (i.e., a 

chain in which every monomeric unit has p rotation angles) (see formulas 

(1.17)-(1.21) below). 

Having obtained the coordinates of the monomer unit, let us recall the 

transformation for the monomer unit, 

Vx-1 = AY, + Bx Cis7) 

where Y are the coordinates of the monomer unit’s atoms, A and B are trans- 

formation mairices related to the A,, B,, A, matrices in the following way: 

A=A,A,~-A, (1.8) 

B = B, + A, B, + A, A, By + + + A, Ap A,-1 BB, (1.9) 



1. Stereoregular Macromolecules in Crystals 459 

and, determining the coordinates of the helix atoms, we use transformation 

(1.7). Other modifications of this method have also been suggested. For 

example, Galaktionov [17] developed the method of dual quaternions; 

Eddy [18] suggested another coordinate system. In some cases the method of 

dual quaternions somewhat reduces the machine time, but it is essentially a 
more concise representation of the above transformation. 

Now let us consider the parameters of the helices of stereoregular polymers. 

The following values were mentioned above: c, the identity period; m, the 

number of turns; and n, the number of monomer units per period. These 

parameters are obtained from analysis of X-ray diffraction patterns. One 

more convenient parameter K = n/m, the number of monomer units per turn, 

is introduced. Now, for the general case, the (-M,-M,—---—M,), chain, we 

shall have the foliowing set of helical parameters 

P1> P2> s+» Pp-1> Pp 

di», dy3, els =4\9s Ops (1.10) 

O10, 93, ecg Oe type O54 

and then the translation d along the axis of the helix and the rotation angle 0 
on transition from one monomer unit to another will be expressed as 

d = dip + daz +++ + Up—1yp + Apt (1 11) 

0 = O12 + O23 + ++ + Op-1)p + Opt 

For example, for the diatomic chain (Fig. 4) we have six parameters of the 

helix «(4 05, 419,031,012.0243 it is, seen in the Fig. 4 that d=d,5+d,,, 

0 = 0,,+0,, (as mentioned above, the conformation of a diatomic chain is 

characterized by six independent parameters—two bond lengths, two bond 

angles, and two rotation angles). 

The parameters d and @ are associated with c, M, andnina simple relation- 

ship: 

d= <CG, OG = 2K (Ki= mijn) (1.12) 

So, on the one hand we have the set of helical parameters of the macro- 

molecule; on the other hand, the set of “internal”? parameters—bond lengths, 

bond angles, rotation angles, etc.; 1.e., 

lia, 13, sieiera) lip ayes La 

(pe Prgnony ce penlycas (1.13) 

Pi2> P23. +++» P(p-1)p> Poi 

Shimanouchi and Mizushima [19] have suggested a general method for 

calculation of the helix parameters via the internal parameters, and have 
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Fig. 4. Helical and internal coordinates of a diatomic chain. 

derived general formulas for monoatomic chains. Later these formulas were 

generalized so as to apply to chains of any structure [20-24]. General expres- 

sions for the helical parameters are 

cos(9/2) = (1+a,;+4,2+433)7/2 (1.14) 

; b by( De a 
dsin(0/2) = See 3( meu 77 +433) 

(1 — ay; — ay +433) 
(1.15) 

2p,°(1—cos 6) +d? = by? + by + by = RB? (1.16) 
where R is the distance between equivalent atoms M, of two adjacent mono- 

meric units, and a and 4 are elements of the A and B matrices: 

G1, 42 443 

A =| 41 42 43 = Af, A,°A$,A,*--- AZ_, Ad, A," (led) 

43; 432 433 
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by 

B=| 5, | = B,, + Af, A,"B23 + ++ + Af, Ay"A9, A,* 

bs 

+ Alp —2)(p-1) Ap-2 Bop- typ + Af2 ArA$3 Ao” ++ AG — 1p Ab- 1B, 
(1.18) 

—cosa, —sing; 0 

Aj’ =| sina, —cosa; 0 (1.19) 

0 0 1 

1 0 0 

Af =| 0 COSg;; —SING;; (1.20) 

0 sin Q;; COS Qj; 

I; 

B, =| 0 (1.21) 

0 

Introducing corresponding elements of the matrices into Eqs. (1.14)-(1.16) 

and solving the system, one can obtain expressions for helical parameters. 

Given below are the final expressions for the monoatomic and diatomic chains. 

Monoatomic chain (-M-),, 

cos(0/2) = cos(@/2) cos («/2) (22) 

d = Isin(@/2) sin (a/2)/sin (0/2) (1.23) 

p = [0.5(/?—d”)/(1 —cos 0) ]” (1.24) 

Diatomic chain (-M,-M.,),: 

cos(0/2) = cos(@,2/2+ @2,/2)sin(@,/2) sin(«,/2) 

. — C08 (12/2 — 21/2) cos («/2) cos («2/2) (1.25) 

[sin(@,2/2+ @2,/2) sin(@,/2) sin(«,/2) 

—sin(P 12/2 — 21/2) cos(a,/2) cos(,/2)] - /,2/sin (6/2) 
(1.26) 

diy 

dy, = [sin(P12/2+ 21/2) sin («,/2) sin(«,/2) 

+ sin (12/2 — 24/2) cos(«1/2) cos(2/2)] - /,2/sin(6/2), 
(1.27) 



462 8 Conformatiors of Macromolecules and Biopolymers 

Tees ie (1.28) 

p, = [0.5(1?, —21,21,, cosa, +13, —d”)/(1 —cos 6)]” (1.29) 

p2 = [0.5(1?, —21,.1,, cosa, +17, —d’)/(1—cos 6)]” (1.30) 

cosO,. = (917+ p27 +47, —17,)/(2p; P2) (1.31) 

cos Oz, = (p17 + p27 +43, —13,)/(2p; 22) (1.32) 

Thus, knowing the internal parameters, and solving Eas. (1.22)-(1.24) con- 

secutively we obtain the parameters of a monoatomic chain; or solving Eq. 

(1.26)-(1.37) we get the parameters of a diatomic chain. Sugeta and Miyazawa 

[24] have developed the algorithm for computing the helical parameiers of 

any chain (including hex-atomic chains, for nucleic acids). 

Let us determine now how the parameters of a helix depend upon bond 

angles and rotation angles. This will be exemplified by the monoatomic chain. 

Figure 5 shows a plot of K versus gy. The curves for the different bond angles 

of the main chain merge in the transoid conformation range. This means that 

the main parameters of the helix, e.g., K = 27/0 do not depend greatly upon 

bond angle variations, but, for chains of the “‘cisoid type” (helices 4,, 5,) the 

deviation of K in some cases exceeds the experimental error. 

For diatomic chains, diagrams are not as convenient for determining the 

helical parameters as for the monoatomic chains. It is not difficult to present 

on a plane the lines of equal @ (Fig. 6) or d values (Fig. 7) with fixed bond 

Fig. 5. Relationship between the number of monomeric units per turn of the helix and 

the rotation angle of the monoatomic chain for three values of the CCC bond angles; 

[=a54 Ay 
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360, 

120 

Fig. 6. The lines of equa! 0 values (@ is the angle of helical rotation) at different g,,2 for 

diatomic chain with 114° bond angles (/= 1.54 A). 

angles, in our case «, = #7, = 114°. But, in general, «, is not equal to «,; and 

if this is taken into account, the corrections to the helical parameters may be 

quite significant (they are different in different regions of the maps of 0(@,, @2) 

Fig. 7. The lines of equal d values (projection of a monomeric unit on the axis of the 

helix, in angstroms) at different 91,92 for diatomic chain with 113° bond angles (P. De 

Santis, E. Giglio, A. M. Liquori, and A. Ripamonti. J. Polymer Sci. Al, 1383 (1963)). 
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or K(@;,@>)). Hence, to determine the parameters of a diatomic chain from 

the bond and rotation angles, it is desirable to solve the system of equations 

(1.26)-(1.32) numerically. 

Let us now consider the conformational analysis of stereoregular macro- 

molecules. The potential functions for conformation calculations were 

discussed in the preceding chapter. For vinyl polymers, the expression for 

strain energy is the same as that of alyphatic molecules, viz. 

Us, me Uoatonded a Ung nF Ohirs (1.33) 

For the sake of completeness, it should be noted that qualitative character- 

istics—the principles of staggered bonds and of maximum number of van der 

Waals contacts—may also account rather well for certain peculiarities of the 

geometry of helical macromolecules. Bunn and Holmes [25] and Natta and 

Corradini [10a] using these qualitative principles, have explained the main 

features of the structures of vinyl polymers. But, as will be shown below, the 

potential functions are finer instruments for the analysis of the conforma- 

tional states of macromolecules than are the mere geometrical characteristics. 

Let us consider the conformations of polymers of different types. 

a. Vinyl Polymers of (-CX,-), Type 

Polyethylene (X = H) and polytetrafluoroethylene (X = F) are well-known 

representatives of this type which have found wide commercial application. 

Bunn [26] was the first to interpret the X-ray diffraction patterns of poly- 

ethelene fiber, and concluded that the macromolecule has the form of a planar 

zigzag. Later Huggins [27] suggested that the polyethelene molecule is not 

planar but slightly helical, since between hydrogen atoms there exists some 

repulsion, though very weak. But an analysis of the IR spectra of crystalline 

polyethelene [28] did not confirm this suggestion. A planar molecule has 

higher symmetry than a helical one; therefore in it some absorption bands are 

forbidden by symmetry, and this is confirmed by the experimental data. (It 

should be noted that the X-ray diffraction patterns furnish no unequivocal 

proof of the planar configuration of the chain.) 

Figure 8a shows the results of three calculations of the polyethylene potential 

function with respect to the rotation angle @ around the C-C bond, those of 

Liquori et al. [29], Scott and Scheraga [30], Dashevsky and Murtasina [31]. 

In spite of the fact that in these three calculations different potentials of non- 

bonded interactions were used, all these authors predicted the optimal con- 

formations to be a planar zigzag. It should be noted that Liquory er al. made 

their calculations without using a torsion potential. Nevertheless, their results 

for polyethylene, as well as for other vinyl polymers, agree with the experi- 

mental data. Thus, the energy minimum of the nonbonded interactions (if 
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Fig. 8. a, Potential energy of polyethylene (kcal/mole per CH, group): (-——) Dashevsky 

potentials, Uo = 3.0 kcal/mole; (——) Scott and Scheraga potentials, Up = 2.8 kcal/mole; 

(+: ) Liquori potentials without torsion term. b, Potential function of n-butane (V. G. 

Dashevsky. Z. Struct. Khimii 9, 289 (1968)). 

only central atom-atom potentials are meant) predetermines the conforma- 

tion of the molecule, whereas the torsion term only slightly changes the 

position of the minimum. 

It is interesting to compare the results of the calculations of the potential 

function for polyethelene with that for n-butane (Fig. 8b) which is the simplest 

analogue -of the latter, because it has C,---C, interactions. The n-butane 

function has as few as three minima (in accordance with the staggered bonds 

principle), whereas the polyethylene curve has either five minima or inflection 

points in the range ~ ~ 60°-80°. Additional minima, or features, are due to 

more distant interactions than | ---4. 

Crystalline polytetrafluoroethylene has the 13, helix (K = 2.17) [32], its 

rotation angle is 163.5°, i.e., owing to the repulsion of the fluorine atoms, the 

deviation from planarity (180°) is significant. At temperatures exceeding 19°C 

the helix is likely to acquire the symmetry 15, (K = 2.14). Potential functions 

for polytetrafluoroethylene are calculated in [29, 33-36]. 
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Iwasaki [33] at first calculated the conformation of polytetrafluoroethylene 

only with 6-exp atom-atom potentials to obtain a rotation angle of 162.5°; 

then he introduced dipole-dipole interactions, f and the optimalconformation 

slightly shifted—the rotation angle was then 161°. Similar values were obtained 

by De Santis et al. [29], according to whose calculation g = 165°. It is note- 

worthy that the hump at 180° is very small; this fact is used by the authors to 

account for the ready transition of the right handed helix into left handed 

above 20°C [35]. Iwasaki’s value for the barrier was | kcal/mole. It should 

be noted that neither De Santis, nor Iwasaki, nor the authors of papers [35] 

included torsion potentials. 

Bates [36] carried out an interesting investigation of the potential function 

of polytetrafluorcethylene. He suggested that one and the same force field 

should be valid for describing the internal rotation in hexafluoroethane (the 

barrier, 4 kcal/mole), a number of the properties of perfluoroalkanes, and the 

helical conformation of polytetrafluoroethylene. These properties are deter- 

mined primarily by the relative effects of the torsion term and the F-:-F 

interaction. Using the value of the equilibrium radius of fluorine borrowed 

from [37] and having estimated the parameter A (see formula (1.3), Chapter 

VIL) from the Slater-Kirkwood equation (formula (2.2), Chapter VII), Bates 

varied only the parameter B of the 6-exp potential. The dipole-dipole inter- 

actions of the C-F bonds [38] were also taken into account. It turned out 

that, if the U, constant is about 3 kcal mole™! (i.e., that in ethane), and B is 

chosen so that the value of the internal rotation barrier is equal to the measured 

one, then a planar zigzag will be the equilibrium form of polytetrafluoro- 

ethylene, which does not agree with the experimental data. Having analyzed 

possible combinations of the F---F potentials and U, constants, the author 

concluded that the potential f,...=—118/r°+ 1.042 x 10° exp(— 4.607) and 

a constant Uy equal to 1.5 kcal mole~’ are the best to describe the above pro- 

perties. Furthermore, the equilibrium angle ¢ in polytetrafluoroethylene lies 

between 163-169°. 

The calculations made by Bates showed that the constant Up may prove to 

be untransferable. If this is the case, the predictability of a potential function 

containing a torsion term would not be so great, since every time one needs 

to choose a new constant U. But it is too early to make a final conclusion, as 

the restriction Bates imposed on the F--- F potential is too rigid: In the first 

place, one could vary the F--- F equilibrium distance within reasonable limits 

and, secondly, a deviation from the semiempirical rule of Slater-—Kirkwood 

is also quite allowable. Also, the parametrization of the electrostatic com- 

ponent is not quite convincing (which affects the value of the internal rotation 

t The role of electrostatic interactions will be discussed in greater detail in connection 

with conformations of peptides. 
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barrier of hexafluoroethane); finally, all calculations were made with tetra- 
hedral bond angles though variations in bond angles can affect the results. It 
could also not be ruled out that the helical conformation of polytetrafluoro- 
ethylene is maintained by intermolecular interactions. 

b. Vinylidene Polymers 

Let us consider the structure of three well-known vinylidene polymers 

(-CH,-CX,-),:X = F, Cl, and CH3. These polymers are diatomic chains; 

their potential energy vs. (~;,2)+ maps at fixed bond angles give a good idea 

of the positions of minima. But if precise atomic coordinates are required, a 

minimum for at least four parameters must be sought, i.e., the two rotation 

angles, and the two nonequivalent bond angles of the main chain. (Still more 

precise atomic coordinates may be achieved by also varying the bond angles 

in the side groups.) 

Polyvinylidene fluoride is only slightly more overcrowded than poly- 

ethy!ene, and it should be expected to have a slightly less tendency to twist 

than that of polytetrafluoroethylene. Since conformational freedom is great 

in this molecule, the structure of the polymer chain is affected to a greater 

extent by intermolecular interactions. Indeed, depending on the kind of treat- 

ment, polyvinylidene fluoride may have two crystalline modifications [39-41], 

in one of which (f) the molecule has the form of a planar zigzag and in the 

other (a) it may.be a slightly wound helix. According to the authors of [40] the 

deviation angles from the planar zigzag are close to 10°, but the authors of [39] 

have objected that such angles are incompatible with the space group estab- 

lished. Thus, the f form of polyvinylidene fluoride requires further verification. 

Figure 9 shows the potential map of polyvinylidene fluoride [31] (a similar 

map was given in [42]) with three symmetrically nonequivalent minima. The 

first one corresponds to a planar zigzag, the second to a helix with K ® 3, 

and the third to.a helix with K x 2.15. Structural realization of the third 

minimum is less probable, because its depth is less by 0.5 kcal mole~! than 

that of the first two minima and it has steeper walls, i.e., in addition, it yields 

to them in entropy. As to tke first two minima, they are practically equally 

probable. It is possible that the 6 form of polyvinylidene fluoride corresponds 

to the Ki~ 3 helix. 

It is interesting that the position of the minima for this molecule are in 

almost complete agreement with the principle of staggered bonds; the opti- 

mum roiation angles (180°, 180°), (170°, 60°), (55°, 55°), and other angles 

determined from the symmetry conditions, correspond, respectively, to the 

+ In what follows the CH,-CR’R++ CH,-CR’R’ dihedral angle in all vinyl and vinyledene 

polymers will be designated as g, and the CR’R’—CH2 ¢ CR’R’-CH) as @2. 
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Fig. 9. Potential map of polyvinylidene fluoride. Bond angles of the main chain are 

assumed to be 114.6°; energy contours are given with | kcal/mole intervals per monomeric 

unit (two CC bonds). 

trans—trans, trans-gauche, and gauche-gauche conformations of the monomer 

units. It is not so much that the torsion term predetermines these conforma- 

tions, but that these conformations are also favorable for central nonbonded 

interactions. 

Let us consider now a more overcrowded macromolecule, polyvinylidene 

chloride. The analysis of X-ray diffraction patterns of polyvinylidene chloride 

fibers [43] yielded rotation angles close to 0 or z, but for conformational 

calculations the structure of this polymer should, undoubtedly, be studied 

more thoroughly. 

Liquori et al. [29] draw (¢,, 2) potential maps for polyvinylidene chloride 

with CCC bond angles of 114° and 120° and showed that the main conforma- 

tional conclusions do not depend upon the bond angle chosen. But the two 

independent bond angles in this molecule should not be equal, since repulsion 

between the Cl atoms is stronger than that between the H atoms; hence it 

should be expected that the CCC angle will be close to tetrahedral at the CX, 

group and will be much larger at the CH, group (in this case the X---X 

distance increases). The search for the absolute minimum of the potential 

function [31] (for minimization, the valley method was used [44]) yielded 

the following values of the independent parameters: 2 CCC(CH,) = 125°, 

LCCC(CX,) = 113°, g, = 44°, @, = 113°. Figure 10 shows potential maps 

for this macromolecule for the bond angles: (a) «, = a, = 114.6°; (b) «, = 
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Fig. 10. Conformational map of polyvinyledene chloride. a, in the main chain 

ae CC (CH) — ACCC (CCl) =N1F6zab woreaC CC (GH) 1252-54 CCl(CEl) = 1132; 

Equipotentials are drawn with 4 kcal/mole intervals per monomeric unit. 

125°, a, = 113°. The first map is (owing to the equality of the bond angles of 

the main chain} symmetrical across the diagonal, g, = 2n—@, (the right- and 

left-handed helices are equipotential) and the absolute minimum gives a helix 

with K x 3.0. The equipotentials of the second map are close to the level lines 

of the potential surface. But it should be born in mind that the true level lines 

can be obtained only when every point of the equipotentials corresponds to 

the energy minimum of parameters other than @, and @), i.e., the a, and «, 

minima. To build up true level lines is a very time-consuming problem, even 

with high-speed computers, and the information such lines furnish is not 

always important. But it is significant that near the minima isoenergetic 

contours are close to the true level lines. 
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Polyisobutylene is the most comprehensively studied vinylidene polymer, 

but its true conformation in the crystal has not been elucidated. 

After the identity period had been determined (c = 18.6 A) from the 

analysis of a stretched sample [45], attempts were made to clarify its structure. 

Bunn [46] suggested that crystalline polyisobutylene has the helix of 8, 

symmetry. Liquori [47] made the same suggestion and, by assuming that 

both rotation angles are the same and that the CCC bond angles of the back- 

bone are equal to 114°, found that y, = g, = 97°. But the Japanese authors 

[48] pointed out that in such a conformation the distance between the CH, 

groups of the adjacent monomer units would be too short, 2.3 A. (The calcu- 

lations of numerous overcrowded molecules decsribed in Chapter VII, and 

the X-ray evidence shows that the minimum distance between the methyl 

groups must be 2.9-3.0 A). Hence, the structure suggested by Liquori is 

unrealistic. 

It is interesting to discuss the conformational calculations of polyiso- 

butylene. The (~,,@,) potential map calculated by De Santis et al. [29] is 

shown in Fig. 11. Without taking into account enantiomorphous helices, the 

potential map has six minima (there could have been more minima, should C 

and H atoms have been considered instead of effective potentials of the 

methyl groups). The deepest minima correspond to the rotation angles 

(45°, 155°), (45°, 85°), and (85°, 85°), all of which have approximately the 

0° 60° 120° 1802 924020) 2002 am 3602 

F, 

Fig. 11. Conformational map of polyisobutylene. Equipotentials are drawn with 10 

kcal/mole intervals per monomeric unit. Bond angles in the main chain, 114°. 
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same energy. The authors of this paper chose a conformation with two equal 

rotation angles (85°, 85°) and ascribed to it symmetry 8.. 

The Japanese authors [48] proposed a different conformation. Assuming 

the helical symmetry 8; and 120° angles in the backbone, they calculated the 

rotation angles g, = 48° and ~, =180°. Moreover, they believe that this 

conformation has lower energy than that corresponding to the 8, helix. In 

the map of Fig. 11 this conformation is near to one of the local minima. These 

authors aJso calculated the intensity distribution of the X-ray diffraction 

patterns for the 8; and 8; helices. They came to the conclusion that for both 

helices the observed layer intensities agree with the theoretical values. 

It is noteworthy that, as was established in paper [25], better agreement 

between the theoretical and experimental intensity distributions is achieved if 

the bond angles are assumed to be different in the 8, helix: In the main chain 

of polyisobutylene the CCC angle at the CH, group is taken to be 126° and 

that at the C(CH;), group to be 107°. In this case the rotation angles will be 

@, = 51° and @, = 102.5° which is a rather unfavorable region on the map 

in Fig. 11. 

Polyisobutylene exemplifies the difficulties encountered if the bond angles 

are not varied. It would be interesting, first, to calculate the polyisobutylene 

conformations by minimization of a potential function depending on several 

variables, e.g., two bond angles and two rotation angles; second, to take into 

account the C and H atoms of the methyl groups; third, to calculate the X-ray 

intensity distribution from the atomic coordinates obtained from the con- 

formational calculation. + 

c. Isotactic Vinyl Polymers 

The isotactic poly-a-olefines (-CH,-CHR-CH,-CHR-),/. have been the 

subject of extremely intensive study. Their most characteristic conformation 

is the 3, helix, in which half the C-C bonds (every other one) are parallel to 

the helix axis (Fig. 2). The rotation angles are about 180° and 60°, i.e., the 

conformations of the monomer units are close to trans or gauche conforma- 

tions (the principle of staggered bonds is at work). If the side groups are not 

bulky or branched, the 3, type of helix is always realized; otherwise the con- 

formation is somewhat nearer to cisoid, because in this case the conformation 

is determined to a great extent by the repulsion of the side group atoms. With 

very large substituents, the symmetry of the helix is 4, or even 5,; sometimes 

an intermediate, e.g., the 7, type of helix is encountered, as is shown in Fig. 2. 

+ Recently Italian authors (Allegra er al. [48a]) made calculations clearing up all the 

above problems. They found the following coordinates of the potential function minimum: 

Z CCC(CH,)=124°, Z CCC[(CH3)2]=110°, g1 = 47.5°, g2=156.7°. This conformation 

is not far from the 83 helix and gives an excellent fit to the X-ray intensity distribution. 
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Fig. 12. Conformational map of isotactic polypropylene. 

Isotactic polypropylene is the simplest polymer of this series. Natta et al. 

[49] introduced a potential function for isotactic polypropylene, the one 

earlier suggested to describe the conformational states of 1,1’-dimethyl- 

propane: 

U(¢) = 3(1+cos 3¢) + 3[2 + cose + cos(p+3z)] kcal mole™! 

with effective CH3,—-CH; potentials by Mason and Kreevoy [50]. In the map 

of Fig. 12 the minima are close to (@,,@,) equal 60° and 180°, which cor- 

responds to the 3, helix. Similar optimum conformations, slightly different 

in detail, was obtained by De Santis et al. [29]. Excluding enantiomorphous 

conformations, the map of De Santis contains three minima: (183°, 62°), 

(80°, 100°), and (60°, 160°); the first minimum is the deepest and corresponds 

to the helix with K = 3.1 (the bond angles were all assumed to be the same 

and equal to 114°). 

A comparison of the polypropylene maps with those of polyvinylidene 

chloride and polyisobutylene shows that in the former the minimum occupies 

a wider region. (In the maps of the vinylidene polymers mentioned the | kcal 

mole~* contour would have been practically a point.) Consequently, in 

isotactic vinyl polymers the rotation angles and helix parameters may vary 

considerably. Rough calculations and an analysis of the known structures 

shows ¢, to vary from 55° to 95° and @, from 180 to 205°-210°. 

The bond angles in isotactic polymers, like those in vinylidene polymers, 

should be different: Due to the repulsion of substituents the CCC angle at 

the CHR group should be less than that at the CH, group. In this connection 
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it is interesting to note that the identity period of isotactic vinyl polymers, 

which have been unequivocally proved to have the 3, helix, varies over a very 

wide range, from 6.3 A, (e.g., poly-N,N’-di-n-butylacrylamide Pols Ras 

C(O)N(CH,CH,CH,CH;),) to 6.55 A (eg., poly-5-trimethyl-silyl-pen- 

tene-1 [52], R = CH,CH,CH,Si (CH3)3). 

Considering the structures of isotactic vinyl polymers, one may divide 

them into three groups, i.e., those having aromatic side groups, alicyclic side 

groups, and branched aliphatic side groups. (Polyesters may be left out of 

consideration, since all of them form the 3, helix.) 

Benzene is the smallest aromatic substituent. Polystyrene (R = C,H,) 

crystallizes in the 3, helix. If the benzene ring has substituents, the type of 

helix usually changes, but the type of helix for a given substituent is usually 

rather difficult to predict only on the basis of the intramolecular interactions. 

For example, it is natural for poly-o-methylstyrene [54, 55] to crystallize in 

the 4, helix, because its CH; group is close to the main chain. (However, one 

should first prove that the most favorable position of this group in relation to 

the chain will not be as favorable for the interactions of the benzene rings of 

adjacent monomer units). It is also clear why poly-o-methyl-p-fluorostyrene 

[55], poly-2,5-methyl-styrene [12] have the 4, helix and poly-m-methyl- 

styrene [56, 57] or poly-p-trimethyl-silylstyrene [56, 58] have the intermediate 

11, helix (K = 3.67) or 29, (K = 3.62) for the former polymer and 29, 

(K = 3.22) for the latter. But there are exceptions; e.g., poly-m-fluorostyrene 

[51, 55] has the 4, and poly-o-fluorostyrene [51, 53, 55] the 3, helix. Polymers 

having large aromatic substituents, such as polyvinylnaphthalene [59], have 

4, helices. 
Intermolecular interactions play an important role in the structures of 

isotactic vinyl polymers. They are responsible for the type of helix in poly-m- 

and poly-o-fluorostyrenes. It is not very rare that two or three polymorphous 

modifications of a crystalline polymer have different helix parameters. For 

example, polyvinylcyclohexane [60] (cyclo-C,H,,) has, depending on the 

temperature and conditions of synthesis, two crystalline forms, one with the 

4, (K = 4) helix; the other, 24, (K = 3.43). In this case, again, intermolecular 

interactions are at work. 
Vinyl isotactic polymers with large cycloalkyl side chains crystallize, as a 

rule, into a 4,, or 4,-like helix [60]. At usual temperatures and reaction con- 

ditions polyvinylcyclopentane, -hexane and -heptane also have the 4, helix. 

Polyvinylcyciopentane has the smallest volume of them all, therefore at low 

temperatures there arise in it crystalline modifications in which the 113, 

103 [60], or even 3, [61] helix is realized. This is one more example of inter- 

molecular interactions. 
Finally, polymers with branched side chains have been comprehensively 

studied. The 3, helices are the most typical for the nonbranched chains, or 
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those with branched side chains. If the branching begins at the second atom, 

intermediate helices occur at first, the 4, helices. In the chains of such structures 

polymorphous modifications with various types of helix are quite frequent. 

Such cases are considered in detail in paper [60]. 

Intramolecular interactions play by far the greatest role in regular hydro- 

carbon chains with branched side chains. Borisova and Birstein [14] succeeded 

in proving by relevant calculations that branching is bound to bring about 

changes in the type of helix. According to their data on polypropylene, the 

rotation angles should be (60°, 180°), if the bond angles in the chain are equal 

to 114°. Furthermore, if, in the hydrocarbon side chains, the branching begins 

at the first atom, the rotation angles in the main chain will be (84°, 204°), 

which is almost the 4, helical conformation; if the branching begins at the 

second atom of the side chain, the calculated rotation angles are (70°, 193°), 

which corresponds to an intermediate helix. Thus, the main features of the 

structures of regular crystalline hydrocarbons may be elucidated, without 

taking into account intermolecular interactions; however, a more thorough 

investigation is required in some cases (e.g., to explain conformational poly- 

morphism). 

d. Syndiotactic Vinyl Polymers 

The planar zigzag is the most typical conformation of syndiotactic poly-a- 

olefines (-CH,-CHR-CH,-CHR-),,, In fact, in this conformation the side 

groups are ai the greatest distance from each other, and, at the same time, the 

torsion energy has a minimum value. But it should be born in mind that an 

alteration to gauche conformations also corresponds to a minimum of the 

torsion energy, since the substituents are fairly far from each other. A gauche 

conformation of the all C-C bonds of the main chain is excluded, since then 

all the far-off atoms would bump into each other. Hence, there are two possi- 

bilities: (1) the helix is a planar or planarlike diatomic chain and (2) the 

molecule has a helical conformation; but the latter cannot be a diatomic one 

as the sequence (~,,(2,~,,@2) would result in considerable overlap of the 

atoms. One of the crystalline modifications of syndiotactic polypropylene [62], 

is likely to have a tetraatomic helix with the sequence of rotation angles 

((1,P2,P2, 1). Helices with a greater number of nonequivalent rotation 

angles have not been found in syndiotactic polymers; however, their existence 

is not excluded in principle. Perhaps higher symmetry (fewer independent 

rotation angles) is favorable for moiecular packing. 

Polychlorvinyl (R = Cl) [63, 64], polyacrylonitryl (R = C=N) [65], and 

polybutadiene-1,2 (R = CH=CH,) are examples of syndiotactic vinyl polymers 

with planar trans chains. 

Natta et al. [49] drew the (~,,@ 2) potentiai map for polypropylene. As 
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was to be expected, the (180°, 180°), (180°, 60°) and (60°, 180°) bond pairs 
correspond to potential wells. Miyazawa [22], using the experimental data 
(c=7.3 A, K = 2), assuming the angle sequence (P1,P2,P2,9;), and 114° 
bond angles, calculated the rotation angles to be ~, = 57° and ~, = 189°. 
Thus, roughly speaking, the conformation of syndiotactic polypropylene cor- 
responds to the gauche and trans forms of the monomer units. Borisova and 

Birstein [14] made detailed calculations of the conformations of syndiotactic 
vinyl polymers taking into account the internal rotations in the side groups. 

They showed, in complete agreement with the experimental data, that the 

planar trans form of polybutadiene-1,2 is somewhat more favorable as com- 

pared to the helical one, and that for polypropylene the helical conformation 
should be more stable. 

Thus, the syndiotactic vinyl polymers of the (-CH,-CHR-.), type are not 

“overcrowded.” Their potential functions have no deep wells; the freedom 

of movement about the minima is rather great, which accounts for the higher 

flexibility of these polymers in solution. 

e. Diisotatic Vinyl Polymers 

More than ten years ago Natta [62] was the first to synthesize diisotactic 

polymers (see Fig. 1). Using catalysts of the TiCl,-AIR; type he polymerized 

cis- and trans-deuteropropylene (CHD-CHCH;); the first isomer yielded 

erythro- the second, threo-diisotactic polydeuteropropylene. The existence of 

these two polymers was confirmed by IR spectroscopy [66]. As is shown in 

[67] Natta’s method should, in principle, allow one to prepare diisotactic 

polymers of 1,2-substituted ethylene derivatives with the same side chains; 

but this has not been done. However, similar polymers with different side 

chains have been obtained. For example, diisotactic polymers have been 
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synthesized from cis- and trans-chlorovinyl esters (III) [68] and also from 

trans-methyl and trans-isobutyl—-propenyl esters (IV) [69]. 

Nothing is yet known about the structure of these polymers in crystals. 

Though diisotactic polychloroethylenes, probably, have not been obtained, 

their potential maps [31] should give some idea about their possible helical 

structures. As is shown in Fig. 13a,b, the conformational maps of threo 

diisotactic polymers with the same side chains have a plane and a symmetry 
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Fig. 13. Conformational maps: 1, threo diisotactic polychlorethylene: b, erythro diiso- 

tactic polychlorethylene. Equipotentials are drawn with 4 kcal/mole intervals per two 

C-C bonds. Bond angles in the main chain, 114.6°. 

center (g, = 2m—@,), whereas the erythro, has only a mirror plane. The 

deepest minimum of the threo diisotactic polymers corresponds to rotation 

angles of (170°, 70°) and the K = 3.0 helix. For the erythro diisotactic polymer, 

the rotation angles are (57°, 180°) and a helix with K = 2.8. Thus, both poly- 

mers are likely to be able to crystallize into the 3, helix in spite of their dif- 

ferent chemical structures and dissimilar conformation maps. 

f. Polyoxides 

Polymethyleneoxide (O-CH,-),, is the simplest example of the polyoxide 

polymer series (O-(CH;),,-),. Two crystalline modifications of this polymer 



1. Stereoregular Macromolecules in Crystals AH 

10 

E,(4°) 

0 40 80 120 160 200 240 280 320 360 
° 

Fig. 14. Potential energy of polymethylene oxide versus rotation angle. 

have been found to exist. One of them contains nine monomeric units in five 

turns [70, 71] and, if one assumes the bond length in the chain to be equal to 

1.43 A and both bond angles to be the same and equal to 111°, the rotation 

angle for such a monoatomic chain will be 77°. In another modification [72], 

by assuming the bond angles to be equal to 112°, one calculates the rotation 

angle to be equal to 63°. It may be expected that the freedom of movement 

in this molecule is rather high, and the rotation angle depends upon the 

molecular packing. - 

Calculations [29] made with rather rough assumptions about the O---O 

interactions actually revealed great conformational freedom (Fig. 14). The 

energy minimum corresponds to g = 67° and a helix with K = 1.92, a value 

just between two experimental ones for different crystalline modifications. 

The planar zigzag has a higher energy of intramolecular interactions, and, 

evidently for this reason, is not realized in the crystal. Actually, the distance 

between the H atoms of the adjacent monomer units in the planar zigzag of 

polymethyleneoxide would be much shorter than in polyethylene, therefore 

the formation of a helix is justified. 

Although polyethyleneoxide [73, 74] has the helical conformation, the 

higher homologues are frequently planar [25]:—oxygen is, in fact, incor- 

porated into the planar chain of polyethylene. It does not require much energy 

as the close H-:-H contacts in the CH,-O-CH, fragments are rarer than in 

polyethyleneoxide. 

Tadokoro [75] made a detailed analysis of polyoxide conformations based 

on the experimental data and qualitative speculations. Polymethyleneoxide 

is a chain consisting of monomer units having gauche conformations slightly 

shifted due to nonbonded interactions (77° compared with 60° in “‘pure”’ 

gauche conformations). It is interesting that variations of the bond angles 

resulted in better agreement between the calculated and measured intensity 
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distributions of X-ray diffraction patterns. The following chain parameters 

gave the best agreement: /(C-O) = 1.43 A, LCOC = 112°24’, LOCO= 
110°49', @ = 78° 13”. 

In the next polymer of this series, polyethyleneoxide (m = 2), the most 

favorable conformation is the combination of one gauche (G) and two 

trans (T) conformations: 

—-CH,-—(-O CH, CH, ) n 

ee Tee  G 

It is not difficult to estimate that such a conformation will give a helix, similar 

to the experimentally found 7, [74]. 

In polyoxacyclobutane the following conformations are possible: 

=CHs2(O=GH;-GHy-CH, = 

Til, Gon (1) 

Te ee en G (II) 

Ghd eee eae (II) 

The two crystalline modifications of this polymer evidently correspond to 

conformations (I) and (IL). Indeed, in one of them the identity period is 7.21 A; 

whereas the calculated period of trans—trans-gauche—gauche combinations of 

the ‘nonshifted’’ conformation is near that value (6.86 A). For the other 

modification the calculated and experimental periods are the same (8.40 and 

8.41 A respectively). 
Finally, in polytetrahydrofurane (m = 4) only the T-T-T [76, 77] conform- 

ation was found, which seems to be the most favorable for close packing. 

Summing up the analysis of the conformations of molecules of crystalline 

polymers, it is necessary to emphasize that in the majority of cases it is the 

intramolecular interactions that are the most important in determining the 

optimal structure. Valuable information about optimum conformations may 

be derived even from the nonbonded interactions alone. Some of the details 

of the structures of polymer chains may be understood, if the possibility of 

bond angle variations is taken into account. The role of the torsion term, 

and, consequently, of the staggered bond principle, seems to be but secondary: 

Almost always the energy minima of the central nonbonded interactions are 

close to the minima relevant to this principle, and, if these two factors ever 

compete, the first one usually wins. Finally, when the conformational freedom 

of the macromolecule is high, the effect of intermolecular interactions should 

not be overlooked. Therefore, calculations whereby the energy minimum is 
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sought not only by varying the parameters of the polymer chain, but also 
those of the elementary unit are of special interest. 

2. CONFORMATIONS OF PEPTIDES AND PROTEINS 

During the last five or ten years theoretical calculations of conformations of 

peptides have been numerous and intensive; the number of papers published 

and ideas put forward in this field seems to be not less than that on the con- 

formations of all small molecules taken together. The calculations pertaining 

to peptide conformations allow one to understand the nature of the intimate 

interactions in proteins, hence the great interest in peptides. Also, there is a 

hope, though not very strong, that the theoretical analysis developed for small 

peptide fragments will make it possible to predict the complete three-dimen- 

sional structures of globular proteins. 

Four groups of investigators are engaged in the elucidation of peptide con- 

formations: the groups of Ramachandran, Liquori, Flory, and Sheraga. 

Ramachandran and co-workers were the first to begin conformational calcu- 

lations of peptides [78, 79], they found allowed and forbidden regions in the 

conformational maps [80, 81]. Liquori [82] was the first to apply atom-atom 

potentials to draw conformation maps. Flory [83] proved that electrostatic 

interactions should be taken into account in predicting the relative stability 

of the various conformations, and elaborated a method of calculating the 

flexibility of model peptides and copolymers. Scheraga has extensively studied 

the conformations of dipeptides and polypeptides using the method of hard 

spheres [84-88] and potential functions [89-91]; he has also made an attempt 

to find a method of calculating the optimal structures of cyclic peptides and 

irregular peptide fragments [92-94]. 

Recently two excellent reviews have been published analyzing the investi- 

gations of these four groups of theoreticians. The first, larger, review is by 

Ramachandran and Sasisekharan [95] and deals with the conformations of 

peptides and proteins. The second review, by Scheraga [96], analyzes only the 

calculations of oligo and polypeptides. Therefore we shall discuss in some- 

what greater detail a number of papers dealing with the interactions of amino 

acid residues with each other and with the peptide chain. In addition, we shall 

consider the results obtained in the laboratory of Popov in Moscow which 

were not mentioned in the reviews [95, 96]. 

A polypeptide chain is a sequence of monomer units of the -NH-C*HR- 

C’O- type called amino acid residues, which, when connected, form a regular 

polymer if R! = R? = --- = R", or an irregular polymer if the residues are not 

equivalent. As is clear from the general formula 

(NH,-C*HR'-C’0)-(NH-C*HR?-C’0)- --» -(NH-C*7HR"-C’OOH) 
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Table 1 

STANDARD PARAMETERS OF A PEPTIDE UNIT 

Bond angle 

(degrees) Bond (A) 

CC’N 114 C’-N 1.32 

OC’N 125 N-C 1.47 

CC’O 121 (Oe 1.53 

C’NC 123 C=O 1.24 
C’NH 123 N-H 1.00 

CNC 114 

XC Y 109.5 

a polypeptide has an N-terminal (on the left) and a C-terminal (on the right). 

Proteins are irregular polypeptides. In natural polypeptides no branching is 

possible, since when a protein is being synthesized on a ribosome, peptidyl- 

tRNA adds every residue directly to the previous one. 

As early as in 1953 Corey and Pauling [97] made a detailed analysis of all 

data available at that time on polypeptides and amino acids; they found the 

mean geometric parameters for a monomeric unit (Table 1). These parameters 

were confirmed by later structural investigations [98, 99]. Of course, the data 

of Table 1 are by no means absolute—in real molecules the bond lengths and 

bond angles may vary, but not significantly. The rotation angles around the 

bonds of the polypeptide chain are the most important conformational pai- 

ameters, just as in the case of synthetic polymers. 

According to the accepted nomenclature of polypeptide conformation [100], 

the rotation angles around the N—C’%, C*-C’, and C’-N bonds are designated 

oy, w, and , respectively; these angles are measured from a fully extended 

trans chain (p = W = @ =0); o = 0 if the C’-C’ bond is in the cis position 

with respect to the N-H bond and w = 0 if the C*-N and C’-O bonds are 

also in the cis position. The angles are counted clockwise, in the direction 

from the N-terminal to the C-terminal along the corresponding bond of the 

main chain.t 

As the properties of the C’-N bond are intermediate between those of a 

single and double bond, the rotation around it (w-deformation) requires con- 

siderable energy. Hence, the two essential parameters are g and y, i.e., the 

+ Recently another way of conformational assignment was offered [100a]. Now only 

cisoid conformations (as in the case of synthetic macromolecules) are considered as corres- 

ponding to zero rotation angles, i.e., g = wy =180° for the extended form of Fig. 15. To 

take these rules into account, it is not necessary to redraw conformational maps; correcting 

the figures at the coordinate axis is sufficient. 
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Oi-1 Ch) 

Fig. 15. A fragment of peptide chain with accepted designations; broken lines cut off 
one residue. 

angles of rotation around the N-C* and C*-C’ bonds describe the conforma- 

tion of dipeptide fragments with sufficient accuracy (Fig. 15). It should be 

also noted that the trans conformation of the C*-C’O-NH-C group is more 

favorable by at least 2 kcal mole’ than the cis conformation; therefore, it 

exists in the open peptide systems and proteins. 

A few words about the nomenclature of the conformations accepted for 

the R chain groups. The carbon atoms of the side chains, attached to C*, are 

designated as B, y etc.; the C"-C’, C’-C’, ... bonds as 1,2,..., the angles of 

rotation around these bonds as y,,7,..., these angles are again measured 

clockwise from C* to C’, from C* to C’, etc. But here the measuring is done 
from the eclipsed cis conformation. For example, for glutamine 

N 
CRUOATE EONE 

O 
the x,, 2, and yx, angles correspond to rotations around the bonds |, 2, 3. 

The chemical formulas of amino acid residues are given in many textbooks 

on biochemistry and molecular biology, e.g., [101-103]. In [101] the authors 

give abbreviated designations for the residues and their space-filling models; 

designations of atoms, the numeration of bonds, and the rotation angles of 

side chains are given in the review of Scheraga [96]; Ramachandran and 

Sasisekharan [95] suggested extending the nomenclature with the aim of 

determining the coordinates of the hydrogen atoms also. 

Knowing the geometric parameters of a monomer unit and the rotation 

angles, one may, by means of the matrix method described in the preceding 

section, express the coordinates of all the angles via the geometric parameters: 
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bond lengths, bond angles, and rotation angles. Ramakrishnan [104] was the 

first to do this for peptide chains. The transformation of atomic coordinates 

has become a standard procedure of computer calculations. Some details of 

such transformations are described in [83, 84, 91, 105]. 

The potential energy of a polypeptide may, with good accuracy, be pre- 

sented as a sum of several terms: 

U= U nonbonded tp Oot bi U. ai Un 0 U, ra Oe a Usa (231) 

where U,.nbondea 1S the energy of interaction of the nonbonded atoms; U,,,, 

is the torsion energy (i.e., an additional term to the interactions of the non- 

bonded atoms, which ensures better agreement between the calculated and 

experimental results); U,, is the energy of the electrostatic interactions; Uy, is 

the energy of formation of the hydrogen bonds; U, and U,,, are, respectively, 

the energy of deformation of bonds and bond angles; and, finally, U,yg, 1s 

the hydration energy, 1.e., the interactions between the molecules of dissolved 

compounds and those of the surrounding water or other solvent. 

As is seen, there are many terms and, before discussing each of them, it 

should be mentioned which properties of the molecule depend on each term 

and to what extent. 

The energy of interaction between the nonbonded atoms furnishes important 

information about the possible conformations of the polypeptide chain, 

namely, about “allowed” and “‘forbidden” regions in the space of the geo- 

metric parameters. Moreover, the precise positions of the minima in the space 

of these parameters is also determined by this component which, therefore, 

can be called the “number one’? component. However, with regard to the 

relative stabilities of the different conformations, serious errors may be ex- 

pected if one uses only the nonbonded interaction potentials. 

The electrostatic interactions cannot, as a rule, change the positions of the 

minima, since they are functions that change slowly as the distances between 

the atoms change; but they may greatly increase or decrease the energy that 

corresponds to a certain local minimum. The nonbonded and electrostatic 

interactions play an approximately similar role in determining the relative 

stabilities of the different conformations. 

Hydrogen bonds are stronger interactions than the attractions and repul- 

sions between nonbonded atoms. Their energies depend to a greater degree 

on the nature of the solvent, because hydrogen bonds may arise between the 

molecules of the dissolved compound and the solvent. 

The torsion energy is not great, but it has a definite (though small) effect 

on both the positions of the minima and the relative stabilities of the con- 

formations. 

Angular deformations in polypeptides do not play such an important role 

as in overcrowded polymers (e.g., as in polyvinylidene chloride). But, it should 



2. Conformations of Peptides and Proteins 483 

be born in mind that if the angular deformations are not taken into account, 
the energies of the nonbonded interactions corresponding to the local minima 
of the potential surface may be estimated incorrectly, and, in the regions 
between the local minima, higher energy values are then inevitable. 

Changes in bond lengths may be safely neglected, because they require too 
much energy. 

Finally, interactions with the solvent are not essential for small oligo- 

peptides, but in polypeptides and proteins they can prove to be more important 

than all the other interactions taken together (if one speaks about the com- 

plete three-dimensionai structure). 

Let us now consider each term. 

a. Nonbonded Interactions 

To calculate the peptide conformations both rigid spheres and the 6-exp 

and 6-12 potentials, as well as the potentials of Liquori, of Scott and Scheraga, 

of Flory, and of Dashevsky have been used. For a detailed analysis of atom— 

atom potentials see Section VII.1. 

b. Electrostatic Interactions 

Any attempt to include the electrostatic energy into a potential function 

gives rise to a number of difficulties, and it is this component that is responsible 

for the greatest indeterminacy in the total energies of the different con- 

formations. The first difficulty consists in the fact that the spatial distribution 

of electronic density in real molecules is continuous, and that since we do not 

know what it is, we are compelled to resort to rather rough approximations: 

dipole-dipole or monopole. The second difficulty is associated with the role 

of the solvent. The molecules of the solvent that penetrate into the space 

between the atoms of the peptide, or even those localized far from the peptide, 

change the electrostatic force field, and this change depends largely on the 

nature of the solvent. All these effects are difficult to take into account with 

high accuracy, and the approximations that will be described below may 

result in considerable error in determining the relative stabilities of different 

conformations. 

It is known that the dipole moment of the amide group is 3.7 D [83]; those 

of the ester groups in aspartate and glutamate are 1.7 D, and that of the phenol 

group of tyrosine is 1.7 D. Knowing the directions of the dipole moment 

vectors, one could calculate the electrostatic energy in the dipole-dipole 

approximation. But, because these directions are not well known, and also 

because the dipole-dipole approximation gives wrong results when the inter- 

atomic distances are small, it is the monopole approximation that has found 

wider application recently. The electrostatic energy in this approximation is 
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the sum of the Coulomb interactions of partial charges centered on the atomic 

nuclei 

i op eee (2.2) ij 

i>j ej; 

where q;,q; are the charges; r;; is the distance between atoms i and j; ¢ 1s 

effective dielectric permeability of the medium. 

The partial charges are determined from the dipole moments of the bonds 

[38], which, in their turn, are determined from the experimental dipole 

moments of various compounds by means of an additive vector scheme. As 

is shown in Table 2, the values of the partial charges estimated by a number of 

authors do not differ very much. In the first three columns are the values 

(in e units) for the atoms of the amide group obtained from the bond dipole 

moments; in the fourth column are the values calculated by the Hiickel method 

with the parametrization suggested by Del Re [106] and also by Berthod and 

Pullman [107]; in the fifth column are the values recommended by Rama- 

chandran [95]. 

Table 2 

PARTIAL CHARGES ON PEPTIDE ATOMS 

Atom I II Ill IV Vv 

€ +0.43 +0.450 +0.394 +0.318 +0.4 

O —0.39 —0.417 —0.394 —0.422 —0.4 

N —0.30 —0.304 —0.281 —0.202 (03) 

H +0.26 +0.271 +0.281 +0.204 +0.3 

But, although one can somehow estimate the partial charges, it is almost 

impossible to estimate the effective dielectric permeability. Generally, ¢ is 

determined by the atomic polarizabilities of the interacting atoms, the effect 

of the surrounding field, and the solvent. At small distances, ¢ should be close 

to, but always more than unity. In reality, force lines pass mostly from atom 

to atom (in vacuum), but some of them will cross other atoms in the peptide 

and in the molecules of the solvent; as the distance increases, ¢ should increase 

as well, but it is not clear to what value. For example, if water is the solvent, 

one may believe that even with great distances ¢ should not reach the macro- 

scopic value of 81. 

It goes without saying that one should not ascribe to the factor ¢ in formula 

(2.2) a specific physical meaning; it has nothing to do with the macroscopic 

dielectric permeability. As a matter of fact, ¢ is a ‘‘fudge factor’; by varying 
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it one can sometimes improve the agreement between the calculated and 
experimental results. The only correct way to present the problem is the 
following: In terms of the monopole approximation one should consider the 
interactions of point charges centered on the atoms of the dissolved com- 
pound and of the solvent. This requires averaging over all possible orienta- 

tions and positions of the solvent molecules. Then, for interactions described 

by expressions of the type (2.2), ¢ should be, naturally, equal to unity. Since 

this problem is practically impossible to solve, the only way out for theoreti- 

cians is to introduce some arbitrary value of ¢ in (2.2) and to vary it depending 
on a solvent. 

Brant and Flory [83], like other authors, considered ¢ to be a constant 

independent on the distance between a pair of atoms and to have a value of 3.5 

i.e., close to that of the high-frequency dielectric permeability of peptide. 

Scheraga et al. [85, 91] used values from | to 4 for «. Ramachandran [95] 

suggested that ¢ should be assumed to be equal to unity based on the successful 

calculations of the lattice energies of ionic crystals with the vacuum value of 

the dielectric constant. 

The question of the value of ¢ will be considered in detail for the case of 

alanine dipeptide. 

So, from the above it is clear that the results of calculations are sensitive to 

changes in the parameters of the electrostatic term of the potential function; 

hence any changes should be made very carefully; in some cases one may 

vary the parameters within reasonable limits to find out how much the results 

depend upon the assumptions made. 

c. Hydrogen Bonds 

The nature of the hydrogen bond has been widely discussed and it was not 

until recently that it was assumed to be a donor-acceptor, i.e., a weak chemical 

bond. Lippincott and Schroeder [108, 109] were the first to suggest a hydrogen 

bond potential that had a complex analytical form. Ooi et al. [91] slightly 

changed this potential and estimated the parameters for the N-H--- O-C bond 

which often arises in peptides, 

Un» = Aexp(—bR) — (A/2)(Ro/R)° exp(— bRo) 

ey" eg CE ame ee i —h*(R—r—1*)* 

1+6” 1+67% 2(R—-r) 
(2:3) 

Here 44941-10648; D* 82:4 eh = 13:15, r= 1.01, n* = 0:97, 

Ro = 2.85, R is the N—O distance, 0, and 0, are the angles formed by the 

H---O direction and those of the unshared pairs of the oxygen atoms. 
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The number of parameters included in this potential is unsatisfying; another 

objection is the behavior of this function when R increases, 1.e., when R > ©, 

U — —2 kcal mole~'. Therefore, Lipkind et a/. [110] suggested for the hydro- 

gen bond potential the well-known Morse curve 

Uy, = D[1 —exp(—nAr)]? — D (2.4) 

where D is the dissociation energy of the hydrogen bond, Ar = r—nr, fro is 

the equilibrium H---O distance, n is an empirical parameter. 

Formula (2.4) seemingly does not include an angular dependence of the 

hydrogen bond energy, which is usually believed to be very important. But, 

as was shown by Kitaigorodsky [111], by taking into account nonbonded 

interactions we automatically take into account the angular dependence of 

the hydrogen bond energy (see also Chapter II). Indeed, when the four atoms 

N-H.--:O-C deviate from a straight-line, strong N—O interaction arises, to 

say nothing about the interactions with other atoms. 

For the equilibrium distance r(H --- O) the value of 1.80 A has been accepted 

based on X-ray data [112]; for D, the value of 4 kcal mole~ +, from thermo- 

chemical estimates (if hydrogen bonds are formed in organic solvents, like 

CCl,); finally, n = 3 A~', from spectroscopic data. The curve is shown in 

Fig. 16. As r increases, the curve asymptotically tends to zero; in the 2.7— 

E, kcal/mole 

Fig. 16. O---H potentials of the hydrogen bond (A) and nonbonded interactions (B). 

Points correspond to experimental data: 1-N-methylacetyl amide, 2-N-methyl-formamide, 

3-acetoamide (E. M. Popov, V. G. Dashevsky, G. M. Lipkind and S. F. Arkhipova. 

Molek. Biol. 2, 612 (1968)). 
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2.9 A range it practically coincides with the curve of nonbonded interaction 

(B). This fact allows one to use the (A) curve as a universal O-:-H potential 

in peptides. The available experimental data on the lengths of hydrogen bonds 

in amides [113] are in the region of the minimum of this curve. In addition, 

some experimental results indicate the absence of an activation barrier in the 

hydrogen bond if the O---H distances are between 2.2-2.45 A [114]. 

However, one should bear in mind that hydrogen bonds, like electrostatic 

interactions, are responsible for great indeterminacies in energy, because their 

contributions to the total energy depends greatly upon the nature of the solvent. 

Also, it is not yet clear if at least a portion of the electrostatic interactions 

should be included in the effective potential of the hydrogen bond. 

d. Torsion Potentials 

In peptides there are three bonds for which potentials of this type are 

necessary: N—C*, C*-C’, and C’—N (the respective rotation angles: g, w, and 

@). In addition, for the side chains one should introduce potentials for rota- 

tions around the C-C and certain other bonds (the rotation angles ). 

Unfortunately, it is impossible to measure the internal rotation barriers in 

peptides with sufficient accuracy, and one has to resort to analogy with small 

molecules. Scott and Scheraga [89] suggested the following parametrization 

U(~) = (U,/2) (1 + cos 3@) @35) 

U(W) = (U,/2) (1 —cos 39) (2.6) 

U, = 0.6, U, = 0.2 kcal/mole. These authors also used U, = 1.5 kcal/mole; 

it was shown that even if the maxima and minima are exchanged (the plus 

and minus signs in expressions (2.5, (2.6)), the main conclusions will not be 

affected. Hence, the U values of Brant and Flory [83] (U, = 1 kcal mole’, 

U, = 1.5 kcal/mole) and the minus in (2.5) can be justified; it is also under- 

standable why Popov et al. [110], after having analyzed the role of the torsion 

terms in the optimal conformations, did not include them at all. 

As to side groups, it is obvious that for the aliphatic ones the following 

expression is valid: 

U(x) = (U,/2) (1 +008 34) (277) 

and U, = 3 kcal/mole. A more detailed analysis of the torsion terms can be 

found in the review of Sheraga [96]. 
Special attention should be paid to rotation around the C’-N bond, or, to 

be more exact, the energy required for the C*-C’-N-C’ peptide group to lose 

its planarity. As was shown in a number of papers published recently by 

Ramachandran [115-117] w-deformations are not only possible, but actually 

inevitable in small cyclic peptides; no cyclization can occur without them. 
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For the torsion energy associated with changes in @, it is reasonable to 

assume the expression: 

U(@) = (U,,/2) (1 —cos 2a) (2.8) 

where U,, = 20 kcal mole™' (cf. formula (5.18), Chapter Vil). It is clear that 

nonplanar deformations of up to 10° correspond to an increase in energy of 

only 0.6 kcal/mole. 

e. Bond Angles’ Deformations 

Using expression (1.7) from Chapter VII and spectroscopic data [118, 119] 

one can obtain a value of 80 kcal mole! rad~? for the average C value for 

peptides. This same value was also recommended by Ramachandran [95]. 

But, as has been indicated above, one should not use spectroscopic deforma- 

tion constants together with nonbonded interaction potential. The authors 

of [110] give values of the elastic constants sufficient for calculations of peptide 

conformations, i.e., for tetrahedral carbon, 30; for trigonal carbon, 70; and 

for nitrogen, 50 kcal mole! rad~?. Calculations taking into account the 

deformation energies of bond angles allowed Gibson and Scheraga [120] and 

Lipkind ef a/. [121] to reveal some interesting facts. 

f. Hydrophobic Interaction Energy 

It is well known that it is these interactions that determine the three-dimen- 

sional structures of proteins [123]. Native protein exists in aqueous solution; 

therefore the polar amino acids are localized at the surface of the globule and 

interact with the water, whereas the nonpolar ones are hidden inside the 

globule, and come into contact with each other. A similar situation may occur 

in polypeptides; if the solvent is polar (water), the polar amino acids tend to 

be outside; in nonpolar solvents the opposite picture should be expected: 

the nonpolar amino acids will tend to get to the surface. 

What is, then, the physical nature of these hydrophobic interactions? Let 

us consider a cube which contains 1000 molecules of water and two molecules 

of methane (the volume of the cube is such that its average density is close to 

1 gmcm_*). Probably, one can demonstrate, operating only with atom-atom 

potentials, that the minimum of free energy of such a system will correspond 

to the configurations in which two methane molecuies are not in different 

regions of the cube, but are in close contact with each other. As a matter of 

fact, thermodynamic measurements show that dissolution of one molecule of 

methane in water requires several kilocalories per mole. It is obvious that for 

two molecules the loss of free energy of solution will be less if these molecules 

are in contact and, consequently, occupy less volume. Hydrophobic residues 
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in proteins, such as alanine [R=CH;], valine [R=CH(CH;),], etc. are like 

methane in our example; consequently, the above is also true for them. 

It goes without saying that the energy of the hydrophobic interactions 

should not be considered as one of the equal terms of the potential function 

because it is a contribution to the free energy of the system polypeptide— 

solvent. But, if one is interested in the conformation of a polypeptide, one 

may make an attempt to find appropriate expressions to add to the potential 

function of a peptide to take into account, roughly, the tendency of nonpolar 

residues to come into contact in aqueous solution. 

In [123, 124] it was shown that it is interactions with the nearest molecules 

of the solvent that make the main contribution to the free energy of the 

system polypeptide—-solvent. Roughly speaking, if dis the diameter of a water 

molecule, and the distance between a given pair of atoms is ¢ < d+/ (Ff is 

the sum of the van der Waals atomic radii), the water molecules are forced 

out, and the contribution to the free energy becomes equal to zero. On the 

other hand, if one atom is brought close to another, the former will force out 

a definite number of solvent molecules proportional to the volume of this 

atom, V; but, when the distance becomes less than d+r), the quantity of the 

solvent driven out essentially does not increase. Reasoning of this kind made 

Gibson and Scheraga [94] seek analytical expressions for the hydration 

energy. Out of the abundant data reported in this paper we would like to 

mention here that calculations of the conformations of the cyclic peptides, 

oxitocin, vasopressin, and the cyclic octapeptide of ribonuclease [94] showed 

that the contribution of the hydration energy to the total energy is not small; 

but the search for the minimum without taking this energy into account 

results in the same optimal structure. This fact, obviously, shows that the 

molecules in question do not belong to systems containing external and 

internal sites; hence, unlike globular peptides, in these structures the hydro- 

phobic interactions do not play a decisive role. 

Now let us discuss the conformations of peptides. Fragments consisting of 

two peptide units, or the corresponding molecules with methyl groups at the 

ends, will be called dipeptides (see Fig. 15). 

Almost all the most interesting and important features of the structures of 

polypeptides and proteins that depend on the mutual positions of the separate 

atoms (but not those of polyatomic structures, such as the a-helices or B- 

structures) may be revealed by analyzing, first, the conformations of di- 

peptides, and, secondly, the interactions of adjacent residues with each other, 

and with the peptide chain. This is why we are going to describe in detail some 

conformational calculations of dipeptides and certain fragments that include 

some of the above interactions. Unfortunately, space does not permit dis- 

cussion of many interesting features of the spatial arrangements of the various 
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helical structures of polypeptides, the f-folded form, some fragments of 

lysozyme, myoglobin, etc. All these data may be found in the review by 

Ramachandran and Sasisekharan [95], which is little less than encyclopedic. 

We are going to dwell on the problems pertaining to the allowed and for- 

bidden regions in the space of the parameters describing the geometry of 

molecules, the forms of the potential wells, and the relative stabilities of 

various conformations. Of course, if some regions are forbidden in dipeptides, 

they will be forbidden in polypeptides and proteins. Furthermore, there is no 

difference in the forms of the wells and the relative stabilities of conformations 

of dipeptides and of the corresponding conformations of fragments of large 

molecules; hence, what is true for dipeptides will be true for other molecules. 

The conformations of dipeptides are determined by the nature of the side 

radical R. It is reasonable to analyze in detail only the four radicals: glycine 

(R= H); alanine* (R= CH>),7 “valine: [IRoe='CH(CH. >| Mand proline ithe 

latter incorporates into the peptide chain to form the group shown in (Y). 

(Vv) 

On the addition of glycine the chain retains its symmetry and, as in the 

case of polymers with symmetrical side chains (see the preceding section), the 

conformational map of glycine dipeptide (or a molecule of N-acetylglycine 

methylamide) should be centrosymmetric (the center of symmetry is at 

y = Ww = 180°). Alanine is the residue with a C? atom having the least volume. 

Its map should have no symmetry elements and, due to the CH; group, the 

conformational freedom of the corresponding dipeptide is restricted as com- 

pared with that with glycine. The greater the volume of the side chain, the 

less the conformational freedom; it is least for the large valine radical. 

Other amino acids are intermediate in this sense, and are close to alanine; 

only isoleucine is an analogue of valine. Finally, proline and hydroxyproline, 

another imino acid, have a specific feature: Their conformation has only one 

rotation angle, w. 

Dipeptides may have both stretched (without H bonds) and bent forms. 

One of the bent forms, the form of Midzusima (M), corresponds to formation 

of the hydrogen bond N-H---O2-C2 (the indices 2 mean that the atoms 

belong to the second peptide unit from the N-terminal) and has the angles 

(~, ¥) 120° and 240°; the other, Huggins form (H), has the same hydrogen 

bond but the (g, ) angles are ~ 240°, 120°. 

+ Unless otherwise stated, L-amino acids, i.e., those occurring in nature, are meant. 
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Bent forms are usually more favorable from the point of view of enthalpy 

(especially in organic solvents), but less favorable as far as entropy is con- 

cerned (the region where formation of H bonds is allowed is rather small). 

As is proved by experiments, in nonpolar solvents bent forms are usually in 

equilibrium with stretched ones (the percentage of the former in polar solvents 

is negligible due to weak H bonds). Conformations corresponding to bent 

forms of dipeptides do not occur in polypeptides and proteins; hence, it is 

the stretched forms that are of interest. 

g. Glycine 

Figure 17 shows the conformational map of glycine dipeptide [96]; the 

authors use allowable limits for the interatomic contacts (Ramachandran, 

Table 1, Chapter 7) and Corey and Pauling’s parameters (Table 1). Com- 

pletely allowed regions amount to 45% of the whole space, 61% are within the 

extreme limits. Almost al] the points corresponding to glycine residues in 

peptides fit into these regions. 

Figure 18 shows the conformational map of N-acetylglycine methylamide 

[121]. This is the same dipeptide, but with methylated terminals: Instead of 

Fig. 17. Conformational map of glycine dipeptide. Completely allowed conformations 

are in the regions shown by the solid line, partially allowed by the broken line; circles 

correspond to conformations found in small unclosed peptides containing Gly; black dots 

show conformations of Gly in some cyclic peptides (G. N. Ramachandran and V. 

Sasisekharan. Adv. Protein Chem. 23, 283 (1968)). 
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Fig. 18. Conformational map of N-acetylglycine methylamide. Nonbonded interactions 

and hydrogen bonds are taken into account (E. M. Popov et al. Molek. Biol. 2, 622 (1968)). 

C* atoms there are CH, groups. This map was drawn not with the Corey— 

Pauling parameters, but with bond angles estimated by minimization of the 

potential function by varying independent geometric parameters. Comparing 

Figs. 17 and 18, one can see that the level lines in the latter, especially the 

1 kcal/mole line, are quite similar to the allowable limits in Ramachandran’s 

map. For this and for the other molecules described in [121] the conforma- 

tional energy corresponding to the righthanded «-helix (R) is assumed to be 

Zero; i, OM Caseit 1s-o = 115.9", v= 122.1 he region of oo and 

Ww ~ 180° corresponds to an energy slightly above | kcal mole~' and, hence, 

is quite permissible. (In Ramachandran’s map this region is forbidden, but 

some experimental points get into it.) The space within the | kcal mole™* 

contour occupies 60% of the whole map; so it is not surprising that this 

contour almost coincides with the extreme limits encircling 61% of Rama- 

chandran’s map. 

Bent forms, which are symmetrical in the case of glycine, possess the lowest 

energy. Of course, if the H bond had not been taken into account in the cal- 

culation, there would have been no minima corresponding to such bent forms. 

h. Alanine 

Let us consider the conformational map of alanine dipeptide. In Fig. 19 

one can see the normal and extreme limits of Ramachandran and the | kcal 
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mole~' potential energy contours [96]. It is clear that the incorporation of 

the C’ atom greatly hinders the conformational freedom of this dipeptide. 

The allowed region now covers only 8% of the whole area of the map, and the 

extreme limits include only 23%. The extreme limits are close to the 3 kcal 

mole‘ contour. 
The map of alanine dipeptide has three allowed regions which are desig- 

nated as R, B and L. R corresponds to the righthanded «-helix which is 

apparently inherent in polypeptides and proteins, although R sometimes 

contains other types of helices. The large B region contains the f-structure, 

which is typical of many proteins and of some other structures, e.g., B-keratin, 

and silk. Finally, the region of the lefthanded «a-helix, L, is partially allowed. 

It is clear from Fig. 19 that it is due to the asymmetry of the amino acid resi- 

dues that the righthanded «-helix seems to be more favorable than the left- 

handed one; this is confirmed by extensive experimental evidence. Of course, 

for right amino acid residues (at least the nonpolar ones, like alanine) the 

lefthanded helices would be more favorable. 

Figure 20 shows the conformational map of N-acetylalanine methyl-amide 

180 

120 

60 

O 60 120 180 240 300 360 
Pp ° 

Fig. 19. Conformational map of alanine dipeptide. Allowed (solid line) and partially 

allowed (broken line) regions are shown and also energy contours calculated with atom- 

atom potentials (G. N. Ramachandran and C. M. Venkatachalam, and S. Krimm. 

Biophys. J. 6, 849 (1966)). 
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Fig. 20. Conformational map of N-acetyl-L-alanine methylamide (electrostatic energy 

is not taken into account). 

made with Dashevsky’s potentials and those of Morse for H bonds (D = 

4 kcal mole~'). Besides the above three regions, there are two bent forms, 

one of which, M, is on the boundary of the B region, the other, H, is in the 

absolutely forbidden region. Yet, such a conformation is possible in non- 

polar solvents due to deformations of the bond angles and the formation of 

H bonds; this conformation has been proved experimentally [125]. 

It is seen in the map in Fig. 20 that R has somewhat less energy than B (the 

absolute minimum is shown by a cross). Since B has a larger area, these two 

forms may be considered equally probable. Now it is understandable why the 

frequency of occurrence of these two forms in polypeptides and proteins is 

about the same. 

Similar maps have been drawn by Flory et al. [126, 129] using his own 

potentials; in their maps the absolute minimum also corresponds to the R 

region. But if one takes into account the electrostatic energy (see charges in 

Table 2 and ¢ = 3.5), the absolute minimum will be shifted to the B region. 

The reason for this is that the dipoles of the two peptide groups in conforma- 

tion B are antiparallel and they attract, whereas in R they repel one another. 

Lipkind et al. [128] using general considerations and comparing the ex- 

perimental and calculated results, made an attempt to find a parametrization 

which would adequately describe the conformations of alanine dipeptide in 

various solvents. They varied only the values of the constant ¢ and the depth 

of the well, D, in the H-bond potential; the other parameters remained 
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Fig. 21. Conformational map of N-acetyl-L-alanine methylamide for nonpolar solvents. 

constant: Dashevsky’s nonbonded interaction potentials and elastic con- 

stants, the torsion potentials, and the partial charges of Scheraga. 

Three solvents were considered, CCl,, CHCI,, and water. The first solvent 

is nonpolar arid forms no hydrogen bonds with peptide atoms; the second 

solvent is a polar one; it forms weak hydrogen bonds; water is an extremely 

polar solvent and the bonds it forms with a peptide are almost as strong as 

those of the peptide itself. 

It is obvious that the effect of the solvent is not directly accounted for. 

Actually, one uses only the empirical parameters ¢ and D to improve the 

agreement between the calculated and experimental results. This procedure 

does not have a clear physical meaning; but it is useful for explaining and 

predicting some experimental data. 

In [128] the dissociation energy D of the hydrogen bond was assumed to 

be equal to the energy of dimerization of N-methylacetamide, which, accord- 

ing to the authors of [129] is 4 kcal/mole in CCl,, 2 kcal mole~! in CHCl, 

and about zero in water (in the calculations it was 0.5 kcal mole ' for water). 

Furthermore, D was assumed to be 4 in CCl, 10 in water,t and 6-7 in CHCl,. 

Figure 21 shows the map of alanine dipeptide in CCl,. One can see a wide 

B region, with a lower energy than the R region, and an especially deep mini- 

mum in the M region. Hence, the conclusion that a nonpolar solvent should 

contain mostly a bent form, a few stretched forms of the B type, and there 

+ The same value was used in the paper of Krimm and Mark [130]. 
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should be no R conformations at all. Calculation of the thermodynamic 

functions in accordance with the conformation map resulted in 60-70% of 

bent forms, a figure in good agreement with the experimental one. 

The conformation of alanine dipeptide in water is readily visualized from 

an analysis of the map in Fig. 20. (In fact, in water the electrostatic interactions 

do not greatly influence the general picture, and this map does not take them 

into account.) The minima corresponding to bent forms should not be taken 

into consideration in this case. First, in water, according to the calculated and 

experimental results, the quantity of bent forms is practically equal to zero; 

secondly, the energies of the R and B forms are equal and the areas of the 

corresponding regions are comparable. 

CHCl, is in an intermediate position; the proportion of bent forms is not 

great, but is not equal to zero. IR spectroscopy gives a figure of 25%, whereas 

the calculated value is 20%. 

The examples considered above show that the relative stability of the 

various conformations largely depends on the choice of parameters and, 

primarily, on the parametrization of the electrostatic component of the 

potential function. However, many authors do not specify to what solvent 

their parametrization applies. 

The map of alanine dipeptide is the most suitable for an analysis of the 

dihedral angles g@ and w in known proteins. (Tables of g and w values are 

given in review [96].) This is because all their residues, except glycine and 

proline, which is rather special, contain C’ atoms which hinder the conforma- 

tional freedom of each dipeptide fragment. In [96, 131] the following analysis 

was made: The points corresponding to some fragments of lysozyme and 

myoglobin were plotted on the maps; it turned out that the majority of these 

points really are in allowed or partially allowed regions. In the map of Fig. 19 

all the points are within the 3 kcal mole~' contour and in the map of Fig. 20, 

the 2 kcal mole~' contour. 
To sum up all this discussion of the conformation of alanine dipeptide it 

should be said that conformational maps are very important for the elucida- 

tion of the structure of proteins. However, they assist in interpreting rather 

than predicting, since first, their prediction of relative stability is rather 

questionable, and, secondly, the three-dimensional structures of proteins in 

toto depend also on distant interactions, although the interactions of adjacent 

peptide units, as has been shown above, diminish the number of possibilities. 

i. Valine 

Valine and isoleucine limit the freedom of rotation of a peptide chain to a 

greater degree than any other residues, because the side radical branches off 

as early as at the C’ atom. (In this sense one may compare them with the 

isotactic polymers which branch off at the first atom of the side chain, so that, 
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Fig. 22. Allowed regions of the conformational map for various dipeptides. Conformations 

for Gly are allowed in regions 1-4; for Ala, in regions 2-4; for other C’-containing residues, 

in regions 3-4; for Val and Ileu, in region 4. Circles indicate R and L regions, corresponding 

to standard a-helix. 

owing to steric hindrances, in the crystal the macromolecule acquires a 4, 

helix conformation instead of 3,.) 

In [88] allowed and forbidden regions in the dipeptide conformational map 

were found for some residues and, among them, valine (Fig. 22). The area 

occupied in this map by valine (or isoleucine) is very small. As was mentioned 

above, other residues are intermediate between alanine and valine, but, as 

one can see in Fig. 22 and will see in the case of phenyl alanine, they resemble 

alanine more; the reason for this is evident—no branching at the C’ atom. 

Figure 23 shows the conformational map of N-acetyl-L-valine methylamide 

[121] calculated with the Dashevsky potentials without the electrostatic 

component. There are, as in the previous cases, five conformations: R, B, L, 

M, and H. It is interesting that here, as in alanine dipeptide, the B form has 

no minimum of its own; from any point of the B regiona search for a minimum 

leads to a point corresponding to the M conformation. 

The conformational map in Fig. 23 shows that the energies of the R and B 

forms are approximately equal, and that the electrostatic component would 

have decreased the energy of the B form. It should be noted that the relative 

stability of the different conformations depends not only on the electrostatic 

energy but also on the freedom of movement of the side radicals. Greater 

freedom of the side group corresponds to greater entropy and, consequently, 

to a gain in free energy. 

Galaktionov [132] had calculated the free energy of the valine side radical 

(—RTInz) at all (y,w) values of the conformational map (Fig. 24). This 

unusual map shows that the R conformation has limited freedom whereas the 
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Fig. 23. Conformational map of N-acetyl-L-valine methylamide; electrostatic inter- 

actions are not taken into account. 

B conformation has great freedom; there turns out to be a 0.5 kcal mole™' 

free energy gain for the B form. The same conclusion was made by Ooi et al. 

[91], who studied poly-L-valine. The greater stability of the B form accounts 

for the stretched conformation of poly-L-valine. However, in proteins, due to 

the small energy difference between the R and B forms, a valine residue may 

readily be incorporated into the helix. 
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Fig. 24, Free energy levels of valine side radical in the conformational map (¢, y). 

Thus, most amino acid residues are similar to alanine in that the peptide 

chain has limited freedom (but not in the sense of the relative stability of 

conformations). This is also demonstrated by the detailed study [133] of 

N-acetyl-L-phenylalanine conformations. The map shown in Fig. 25 is drawn 
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Fig. 25. Conformational map of N-acetyl-L-phenylalanine methylamide with optimal 

conformations of side radical. Points in the map correspond to conformations of phenyl 

alanine residues in lysozyme. 

so that every point in it has a corresponding optimum conformation of the 

side radical. Out of nine possible conformations responsible for a local mini- 

mum, the optimum conformation was chosen in all cases. The authors used 

parameters meant for aqueous solutions (see above). It is obvious that this 

map is similar to that in Fig. 20, if the bent forms are left out of consideration 

in the latter. The maps of N-acetyl-L-tyrosine and probably, tryptophan 

methylamides, must be also similar to the above maps. Unfortunately, it is 

difficult to predict the relative stability of the R and B forms. As we have just 

seen, not only the parametrization, but also the freedom of movement of the 

side radical is of importance here. 

j. Proline 

In proline rotation around the N-C* bond is impossible, and the C*-C’ 

angle is the only conformational parameter. The energy versus W curve for 

L-acetyl-L-proline methylamide (Fig. 26) reveals two wells, one of which 

corresponds to the stretched form ( = 132°) and the other to the bent form 

(w = 266°). The ~ dihedral angle is approximately 120°. In this molecule the 

bent form is more favorable (of course, in nonpolar solvents), but in poly- 

peptides and proteins, certainly, stretched forms are realized. 

Theoretical calculations make it possible to predict not only the conforma- 

tions of small fragments, like dipeptides, but also those of rather big mol- 

ecules: cyclic oligopeptides, irregular oligopeptides possessing bioiogical 

activity, and also polypeptides. Besides, one can predict the structures of 
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Fig. 26. Dependence of conformational energy of N-acetyl-L-proline methylamide on 

the w angle (E. M. Popov et al., Molek. Biol. 2, 622 (1968)). 

fibrillar proteins whose amino acid sequences are close to regular. These 

questions are discussed in detail in reviews [95, 96, 134]. 

Let us consider, by way of example, a rather complex depsipeptide cycle: 

enniatine B (Fig. 27) which is a transmembrane ion-carrier. In [136] it was 

experimentally proved that the molecule of this six-member ring may have, 

depending on the polarity of the medium, two conformations, “‘nonpolar’’, 

N; and “polar,”’ P. Conformational calculations [136] unequivocally predict 

these two structures and help to analyze extensive experimental evidence on 

this compound (including its NMR spectra). 
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Fig. 27. Structural formula of enniatine B. 

+ Depsipeptides are intensively studied in the Institute for Chemistry of Natural Com- 

pounds of the USSR Academy of Sciences. See, e.g., [135]; their conformations are theoreti- 

cally calculated in the laboratory of Popov. 
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Fig. 28. Conformational maps of fragments of the depispeptide enniatine B: a, map of 

N acetyl-N-methyl-L-valine; b, map of O-acetyl-D-L-oxyisovaleric acid dimethylamide. 

Conformational maps of N-acetyl-N-methyl-L-valine (I) and O-acetyi-D- 

L-oxyisovaleric acid dimethylamide (II) which are models of two peptide 

fragments of enniatine B, are shown in Fig. 28. Fragment (I) may have four 

conformations of approximately equal energy, whereas fragment (II) has only 

one conformation. To search for the optimal conformation of the whole 

enniatine B molecule it is not necessary to minimize the potential function 
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over many variables: It is sufficient to build skeletal models with allowed 

conformations [combinations of the four conformations of fragment (I) and 

the one conformation of fragment (II)]. Analysis of these models shows that 

the molecule may really have two conformations if the six-member ring is 

closed. One of them is the “polar” form shown in Fig. 29 together with a 

K* ion incorporated into the molecule and forming coordination bonds with 

oxygen atoms. If the ions are absent, the molecule of enniatine B acquires a 

different conformation, a “nonpolar” one. Thus, both the calculations and 

the experimental data (not presented here) show that it is the conformational 

rearrangements that are responsible for the ion transport. 

Nevertheless, the successful prediction of the enniatine B structure is an 

exception. The problem of numerous minima is the main difficulty encountered 

by theoreticians engaged in conformational calculations of irregular oligo- 

peptides, to say nothing of proteins. If for every peptide unit the three con- 

formations, R, B, and L, are possible, in a decapeptide there can be 3!° con- 

formations. In cyclic molecules the number of conformations is somewhat 

smaller, since it is limited by the cyclization conditions; it is much smaller in 

symmetrical cyclic peptides (gramicidine S or enniatine B described above), 

but is still sufficient to make the problem of the search for the optimal structure 

extremely difficult. 

This is exemplified by gramicidine S (L-Val-L-Orn-L-Leu-D-Phe-L-Pro),. 

An X-ray study [137] of this molecuie revealed it to have a twofold symmetry 

axis. Unfortunately, this structure was not fully elucidated; however, the 

geometric model was suggested on the basis of some indirect data. Ten years 

later Liquori [138] and Scheraga [92, 96] used the stereochemical data 

(allowed contacts) to obtain their structures. Scheraga had to choose from 

282 different conformations by minimizing potential functions. 

All the three structures suggested are quite different. Balasubramanian [139] 
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Or 
Fig. 29. Three-dimensional model of enniatine B-potassium ion complex. 
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analyzed the extensive experimental evidence on gramicidin S and came to the 
conclusion that neither Liquori’s, nor Scheraga’s structure can account for 
all of what is known about this compound. 

In spite of the fact that nonlocal methods of search for minima have found 
wide application during recent years [140-142], it is scarcely possible to solve 
the problem of determining the absolute minimum of functions with 15-20 
essential variables. The trouble is that as the number of variables increases the 

computer time required for seeking the absolute minimum grows exponen- 

tially, as does also the time required for calculating the potential function. 

Therefore it is more expedient to confine oneself to the most favorable con- 

formations of very small fragments (dipeptides or tripeptides) according to 

the given primary structure. Then the optimal structure can be chosen from 

several versions by searching local minima. 

Furthermore, one should bear in mind that not only the depth, but also the 

shape, of the well is important when choosing the optimal structure, since 

this choice depends not on the enthalpy, but on the free energy; the shape of 

the well gives the entropy portion of the free energy. 

But even if the best versions have been found, the problem of the relative 

stability of the various conformations remains a stumbling block. As we have 

seen, the error in relative stability calculations, caused by all kinds of approxi- 

mations and parametrizations may amount to 0.5 kcal mole~' per peptide 

unit. That will mean 5 kcal mole~’ per molecule of a decapeptide, which is 

enough to make the choice of the optimal structure difficult. It is quite probable 

that it will be more difficult to solve the problem of the conformations of 

medium-size oligopeptides that to predict the structures of globular proteins, 

since, in the latter case, some general principles may suggest themselves. 

Let us now discuss the conformations of the globular proteins, large irregular 

peptides. As has been shown above, the conformational maps of dipeptides 

furnish a good explanation of the distributions of the rotation angles in 

myoglobin and lysozyme. Now we shall discuss the considerations and con- 

formational calculations which help predict the structures of macromolecules. 

It was suggested long ago that the primary structure of protein, its amino 

acid sequence, determines its three-dimensional structure [143, 144]. In recent 

years the structures of three proteins: myoglobin, lysozyme and «-chymo- 

trypsin have been unraveled. X-ray study has made it possible to reveal the 

secondary and tertiary structures of four or five other proteins; therefore, 

many investigators try to establish a correlation between the amino acid code 

(i.e., the composition and sequence of the amino acid residues) and the con- 

formational code (i.e., the three-dimensional structure).f 

+ By the middle of 1972 the three-dimensional structures of more than 25 proteins had 

been elucidated. 
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Attempts to find this correlation are limited, due to the difficulties, at present 

insuperable, which make prediction of a complete protein structure from its 

amino acid sequence scarcely possible. Therefore it seems useful to elucidate 

some of the details of a protein structure associated with its amino acid code. 

Of great interest is the theoretical estimation of the percentage of helical 

structure, and the establishment of the helical and nonhelical sites. There are 

grounds to believe that in the future such an approach will allow one to predict 

structures of proteins with a large fraction of a-helices or /-structures. In this 

case the problem of prediction of protein structure may be divided into two 

parts: first, determination of the helical and nonhelical sites, then one chooses 

such mutual positions for the helical and nonhelical sites as give a minimum 

energy for a protein with the secondary structure so formed. 

For prediction of the secondary structure it is natural to make use of the 

known protein structures. Knowing which residues are encountered in the 

helical and nonhelical sites, and having analyzed the available structural 

evidence, one can obtain some quantitative characteristics indicating the 

ability of some residues or their combinations to make or disintegrate regular 

sites of the secondary structure. The figures obtained may be used to predict 

the secondary structures of other proteins. 

k. Statistical Approach 

In some papers [145-149] the experimental data or a statistical analysis of 

protein structures are used to distinguish between “‘helix-making”’ and “‘helix- 

breaking” residues. For example, in [145] it was shown that proline randomly 

incorporated into a helical polypeptide completely despiralizes it as soon as 

its content reaches 8%. In [146] the residues, Ser, Thr, Val, Ileu, Cys were 

assigned as antihelical, based on the experimental data. Cook [148] made 

statistical calculations for whale myoglobin, the «- and f-chains of horse 

hemoglobin, and the albumen lysozyme, and pointed out that Ala, Leu, Val 

are helical residues, while Arg, Asn, Pro are antihelical ones. Recently Ptitsin 

[150] made statistical calculations for six proteins, i.e., about 1000 residues. 

Besides the above three proteins analyzed by Cook, he also included bovine 

ribonuclease A and «-chymotrypsin; as a result, the helical residues were 

identified to be: Leu, Ala, Glu, and the antihelical to be: Thr and Asn; it is 

interesting that the fact that two homologous proteins—(globins)—were left 

out of account did not influence the results. 

There are some papers in which more complex criteria are suggested for 

the helical and nonhelical sites in proteins. The Italian authors [157, 152] 

introduce for every residue (based on its environment) the so-called helical 

potentials. Statistics pertaining to the ability of some residues, or their com- 

binations, to form helices is developed in [153-156]. For example, Prothero 
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[153] suggested a rule that any site of a polypeptide chain consisting of five 

amino acids will be helical if three residues in it are Ala, Val, Leu or Glu. 

Unfortunately, the results of statistical analysis of the data on several 

proteins are not satisfactory. For example, all theories predict a great per- 

centage of helical structure for chymotrypsin, however, it contains only 4°% 

of helical structure. Things are still worse in the case of f-structures; no 

generalisations can be made in this case. The reason for this is, probably that 

the available experimental data are insufficient for reliable statistics ; secondly, 

that all the calculations resulting in this or that criterion apply to homologous 

proteins—(globins) whose secondary structures are, as yet, unrevealed, and 

last but not least, that secondary structure partly depends on long-range 

interactions. 

l. Interactions of Adjacent Structural Units and Their Role in the Formation of 

the Three-Dimensional Structures of Proteins 

The statistical approach is not the only one for determining the helical and 

nonhelical sites; a method based on atom-atom potentials may be applied 

as well. To this end one should consider the interactions of adjacent structural 

units; these interactions are operative in the dipeptides, or other fragments 

making up the protein. 

Kotelchuck and Scheraga [157] analyzed “nonstandard” fragments of 

polypeptide chain (VJ) in which the rotation angles w; and 9;,, (instead of 
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~; and w;) are the essential parameters. Calculations for such fragments give 

important information about interaction between the side radicals, R’ and R”, 

and their interaction with the peptide chain. The main conclusion that these 

authors drew from calculations with various R’ and R” is that the conforma- 

tion of this fragment depends only on the nature of R’ and does not depend 

on R”. 
The calculations were carried out in the following way: For various com- 

binations of R’ and R” the potential function was calculated which accounted 

for the nonbonded and electrostatic interactions, the torsion potentials 

(C,* --» C%, , were included in the torsion potential to reduce computer time), 

and the hydration energy. Then the function was minimized over w, 9 

and y (yz are the rotation angles in the side groups) from three zero points 
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corresponding to the R, B, and L conformations in the main chain. It turned 

out that if R” is replaced or even neglected, the character of the calculated 

optimal conformation of a given fragment of the main chain will not change 

(i.e., it will be still R, B, or L.) 

All amino acid residues may be divided into two groups: helix-making (h) 

and helix-breaking (c) judging from the conformation R, B, or L that cor- 

responds to the deepest minimum. The h group includes: Ala, Val, Leu, Ileu, 

Met, Gln, Phen, Cys, His, Arg; the c group: Ser, Asp, Asn, Try, Tyr, Lys. 

For all residues, except Arg and Lys, the energy difference between the abso- 

lute and the second-deepest local minimum exceeds 0.5 kcal mole~’. The 

division given in the paper cited corresponds to that obtained as a result of 

the statistical analysis of proteins, but the latter could not be comprehensive 

because of insufficient statistical material. 

Gly (certainly, if Gly is the R’ residue) and Pro are rather peculiar. As was 

to be expected, Gly is insensitive to spiralization, 1.e., it is as much h as c 

(R, L, and B conformations have approximately equal energies). Pro, unlike 

other residues, interacts more with the atoms localized closer to the N terminal 

than to the C terminal. If R’ = Pro, Pro belongs to the h group (in fact, in 

proteins helices often begin with Pro), if R” = Pro, Pro belongs to the c group. 

(It has been noticed that Pro is never encountered in the middle of a helix; 

besides, helices break at Pro.) 

The results obtained by Kotelchuck and Scheraga are in good agreement 

with the concepts underlying the configurational statistics of polypeptide 

chains, and also with the experimental values of (h?/n/?). This ratio charac- 
terizes the flexibility of a macromolecule; h? is the mean square of the chain 

length, is the number of peptide units, and /is the virtual bond length, or the 

length of a vector drawn from a C* atom to an adjacent one (3.80 A); this 

ratio has been shown theoretically to have a limit as n>00. According to 

Brant and Flory [83] who were basing their thinking on the analysis of spatial 

models, the R’-R” interaction does not play any role, should both radicals 

contain C’ atoms. The measured value of (h?/nl?) for all polypeptides con- 
taining such residues is close to 9, regardless of the nature of the side groups; 

it is much lower only for polyglycine and for Gly copolymers. In the case of 

the proline copolymers which were studied by Schimmel and Flory [158] the 

configurational statistics are different. It should be noted that these authors 

came to a conclusion about the role of Pro in the helix before Kotelchuck 

and Sheraga. 

Can one infer from an analysis of fragments beginning with R’ and ending 

with R” anything new for understanding the interactions in a peptide chain, 

as compared with those in dipeptide fragments? 

Figure 30 shows the conformational map of the NR’C*H-CO-NH-C* 

HR"C’ fragment for R’ = R” = Ala drawn with Dashevsky’s potentials and 
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Fig. 30. Conformational map of the R’---R” fragment of Ala—Ala. 

without taking into account the electrostatic interactions and the hydrogen 

bonds [134]. Comparing this map with that shown in Fig. 20 one can see 

that the energy contours are similar but, instead of three minima (R, B, and L 

typical of dipeptide maps), there are four minima, the fourth being in the H 

region (Huggins’ conformation). 

The R --- R” fragment differs from the dipeptide fragments described above 

in that the latter includes the interactions of two amide groups; this renders 

the H conformation unfavorable for the stretched forms and also distorts the 

energy contours and changes the positions of the minima. 

It is probable that a conclusion similar to that of Kotelchuck and Scheraga 

about the stability of the helical and nonhelical conformations may be obtained 

with dipeptide fragments by minimization of their potential functions. In fact, 

it is the dihedral angle w which determines the R or B conformation; this angle 

is contained in both fragments. The L conformation, which is rarer than R 

or B, depends upon both angles. However, the difference between the absolute 

energy values of the R and B forms is higher in the case of a dipeptide, because 

in the latter the strong Coulomb interactions between the amide groups are 

taken into account. Therefore, if only dipeptide fragments are to be considered, 

much greater numbers of residues, including Ala, belong among the anti- 

helical ones. Nevertheless, there is no doubt that dipeptide fragments show 

more correctly the relative stabilities of different conformations (due to includ- 

ing the interactions of amide groups which exist in proteins) than the R’--: R” 

fragments. That is why one is apt to think that the parametrization used by 
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Scheraga somewhat overestimates the electrostatic interactions. Maybe, ¢ 

should be taken close to 10, as was done in the papers of Lipkind ef al. 

[128]. 
Thus, the main conclusion to be made from an analysis of the two types of 

fragments is that the conformations of adjacent monomer units are practically 

independent and an irregular peptide may be assumed (with some accuracy) 

to consist of fragments having independent conformations. If that were 

the case, the problem of numerous minima for proteins or, at least, for 

oligopeptides would be solved. Then, for molecules like gramicidin S, a 

zero approximation could be found unequivocally, and minimization of the 

potential function by varying several parameters would not cause serious 

difficulties. 

The simplified model, which takes account only of the local conformations 

of the R’--- R” fragments gave about 75% correct predictions of the conforma- 

tions of the peptide units in four proteins [157]. In fact, however, one cannot 

deny the presence of weak long-range interactions along the chain, and these 

make any predictions much less accurate. 

m. General Principles of Formation of Protein Structure 

As has been shown above, conformational calculations of small fragments 

may furnish much information useful for predictions of protein structure, but 

still it is not exhaustive. Ideally, having information about the optimal geom- 

etry of each peptide fragment, or their tripeptide combinations, one could 

predict the conformation of an irregular polypeptide from its amino acid 

sequence. But it is not so simple for several reasons: (a) for some residues two 

conformations of the R’--- R” fragments are almost equally favorable (accord- 

ings to calculations [153] these residues are Arg and Lys); (b) Gly, owing to 

its conformational freedom, causes much indeterminacy ; (c) even insignificant 

scatter in the rotation angles (3—5°) and bond angles (1—2°) result in a decreas- 

ing role of the unit-to-unit interactions as the length of the chain grows; 

(d) at some optimal combinations of rotation angles far-off residues may 

‘“‘bump” into closer ones—in configurational statistics this phenomenon is 

called the excluded volume effect. All this is, obviously, sufficient for the three- 

dimensional structure of protein to be formed as a result of interactions of 

distant sites along the chain, at the expense of hydrophobic effects. 

Does the native structure of protein correspond to the absolute minimum 

of the potential function or to one of the local minima separated from the 

former by a high potential barrier? This question is very important for predic- 

tions of the spatial structures of proteins. Scheraga’s [159] working hypothesis 

is that the native structure corresponds to some narrow distribution of con- 

formations close to the absolute minimum, this distribution having the greatest 
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statistical weight. Otherwise, according to Scheraga, a priori calculations 
would have been hopeless. 

In reality most proteins do not recover all their properties after renatura- 
tion; the fact that their functional activity is preserved does not mean that 
their conformation is unchanged. For example, in [160] it is shown that in 
many proteins (arginase, hexaginase, deoxyribonuclease, chymotrypsinogen, 
urease, pepsin, lysozyme, etc.) denaturation proceeds via two stages, the first 
corresponding to increased freedom of movement of the side radicals, the 
second to an irreversible rearrangement of the protein’s structure. So far, only 

one of the proteins, myoglobin, the most helical one, is known to recover 

almost entirely its physicochemical characteristics [161]. Evidently, most 

proteins, particularly those in which irregular sites are large, lose some of 

their properties after renaturation; therefore it may be suggested that their 

native structure corresponds to a metastable conformation developed during 

the course of protein synthesis in the ribosome. 

Does that mean that any prediction of the structures of such proteins is 

hopeless? No, probably not, because the criteria derived from an analysis of 

the interactions of adjacent peptide units not only facilitate this task, but even 

make it simpler than the search for the absolute extremum. The idea that the 

structure of a protein is formed as it comes out of a ribosome has been put 

forward more than once [162, 163]. Phillips [164] has suggested a speculative 

scheme for the formation of the spatial structure of lysozyme from the N to 

the C terminal. 

All the above considerations are hypothetical and, certainly, not sufficient 

to solve this problem in toto. As was mentioned above, the indeterminacy due 

to the specificities of the conformations of some residues, and the decreasing 

role of unit-to-unit interactions as the length of the peptide chain grows, makes 

hydrophobic interactions the major ones in determining the formation of the 

tertiary structures of proteins. If one suggests that these interactions are the 

only ones active in forming the three-dimensional structure, quite different 

criteria will be required for the search of the optimal conformation. For 

this purpose, a protein molecule should be roughly visualized as a thread of 

beads with a more or less random sequence of white and black ones corres- 

ponding to the hydrophilic and hydrophobic residues. The optimal conforma- 

tion in this case will be a three-dimensional structure in which the greatest 

possible number of white beads are localized on the surface of the globule, 

and the greatest possible number of black beads inside the globule and in 

contact with each other. Of course, the concept that the structure is formed 

from the N terminal will require a search for the corresponding metastable 

state. This is not an easy problem, since it necessitates mathematical expres- 

sions for the ‘‘inside’”’ and “‘outside”’ criteria; in addition, the effects of the 

volumes of the residues should be taken into account, and suitable algorithms 
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should be found for calculation of the function and its optimization (for this 

purpose, the combinatorial method and discrete programming might be 

expedient). 

In reality, both mechanisms are likely to be operative in the formation of 

the spatial structures of proteins; on the one hand, the tendency of a peptide 

unit to maintain its specific conformation (the secondary structure consisting 

of helices, B-structures and irregular sites is formed thereby), and on the other 

hand, the interactions between certain sites of the secondary structure creating 

optimal conditions for hydrophobic forces. That is why in this field of knowl- 

edge there exists a rare situation in which the scientists have good experimental 

evidence (the known spatial structures of some proteins) but no constructive 

theory to interpret the known and to predict the unknown. 

3. CONFORMATIONS OF POLYNUCLEOTIDES AND NUCLEIC ACIDS 

The structure of the DNA molecule, which has been established by Watson 

and Crick as a result of an analysis of three-dimensional models and the X-ray 

evidence, consists of two chains; it is only in the course of replication that sites 

not connected with H bonds are formed in these chains. Double-stranded 

nucleic acids make up the genetic material of most organisms; their structure 

is known well enough, since they have been crystallized and subjected to 

X-ray study. 

However, some phages have been shown to contain single-stranded DNA in 

which the content of adenine and thymine, and of guanine and cytosine are 

not equal [165]; as to RNA, its single-stranded form is well known [166]. 

Hence, the question of the conformations of single-stranded polynucleotides 

is important, not only from the point of view of understanding the structures 

and functions of “common” nucleic acids, but it also has a special interest. 

Three questions pertaining to the conformations of polynucleotides will be 

considered below: (1) unravelling the structures of the smallest structural 

elements determining the conformations of macromolecules; (2) unravelling 

the conformations of single-stranded polynucleotide chains and the conditions 

affecting them; (3) the structural evidence on double-stranded nucleic acids 

and the possibility of its theoretical interpretation. 

It should be noted that in both the single- and double-stranded poly- 

nucleotides, beginning from dinucleosidephosphates, the usual van-der- Waals 

and electrostatic forces (i.e., the nonbonded interactions), result in an ‘“‘un- 

usual” strong base stacking responsible for the three dimensional structure of 

polynucleotides consisting of several, or even of two, monomer units. Since 

the bases are stacked together, there is no empty space between them for 

molecules of the solvent. 
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Naturally, as long as we are dealing with mononucleotides and nucleosides 

containing a single base, this effect does not reveal itself, and the conformation 

is determined by the mutual attraction and repulsion of the nonbonded atoms 

of the molecule itself; in this case the effect of the solvent may be neglected. 

What is the difference between polynucleotides and the usual polymers and 

polypeptides? First, the hydrophobic interactions, which in the latter emerge 

only when the chain is rather long and “inner” and “‘outer”’ regions can form, 

make a considerable contribution to the stacking interactions even in di- 

nucleotides, which, as will be shown below, practically does not increase as 

the chain becomes longer. Furthermore, it is the interactions of the nearest 

monomer units that play the decisive roles in the conformation of poly- 

nucleotides, whereas the interactions of more distant units may be considered 

negligible. This is why the dinucleosidephosphates, for example, may furnish 

important evidence about the conformations of single stranded polynucleo- 

tides. 

In this sense mononucleotides and dinucleotides are widely different: the 

former possess very high conformational freedom, due to rotations around 

the five single bonds of the ribose phosphate backbone and the glycosidic 

bond between the base and the furanose ring; in dinucleotides the conforma- 

tional freedom is limited, because the bases tend to be located one under 

another. For this reason, an analysis of the conformations of the smallest 

structural units of nucleic acids (i.e., fragments whose size does not exceed 

that of a mononucleotide) does not imply a complete understanding of the 

conformations of macromolecules. 

a. Structural Units of Nucleic Acids 

A nucleoside is a five member sugar ring connected to a base with a glyco- 

sidic bond. Any single stranded polynucleotide consists of a number of 

mononucleotides, i.e., a nucleoside with a phosphate group, which is its 

monomer unit. A nucleotide is called for example, a nucleoside-2’-phosphate, 

a nucleoside-3’-phosphate, or a nucleoside-5’-phosphate, depending on the 

atom of ribose or deoxyribose 2’, 3’ or 5‘'—to which the phosphate group is 

bound (Fig. 31). 

The conformation of a monomer unit is determined by the geometry of the 

furanose ring, the structure of the base, of the phosphate group, and, finally, 

by the relative positions of the base and the five-membered ring. 

Let us begin with the conformation of the five-member ring. The structure 

of 2-deoxyribose was first roughly determined as a result of an X-ray study of 

5’-bromo-deoxythymidine [167]. This was the only structure Spencer [168] 

could use in 1959 for building a model which revealed some of the struc- 

tural peculiarities of the furanose ring. For example, he found that the most 
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Fig. 31. Structural formulas of nucleotides. a, nucleoside-2’-phosphate; b, nucleo- 

side-3’-phosphate; c, nucleoside-5’-phosphate. 

favorable conformations correspond to a displacement of the C,, and C,, 

atoms from the plane of the other four atoms. 

The conformation of the furanose ring is chiefly determined by repulsion 

between the nonbonded atoms of the ring itself, plus torsion strains, and, to 

some extent, by interactions with more distant atoms. A furanose ring re- 

sembles cyclopentane in which the nonplanar conformation is more favorable 

owing to the torsion energy. 

The potential function for ribose and deoxyribose may be presented, to a 

rather good approximation, as 

U = YY Smltiy) + $Co Ato + $Coy Atte” 
i>j 

3 5) 

+4Ué_¢ ¥ (1400839) +4Ué_9 ¥ (1+c0s3¢ ) 
i=1 i=4 

where f,,(7;;) are the potentials of the nonbonded interactions, Av is the 

deformation of the C,,O,-C,, angle, Ag, is the deformation of other bond 

angles whose vertices are carbon atoms; the last two are torsion terms depend- 

ing on the dihedral angles. Also, an electrostatic term in the monopole ap- 

proximation may be included in the expression for the potential function. 

In Kitaigorodsky’s laboratory the optimal conformations of ribose [169] 

were calculated using the following potential function parameters: Dashevsky’s 
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potentials, Co = 30 and Cg = 65 kcal mole~! rad~? (the ideal value of the 

COC angle is 90°),:Ué_. = 3 kcal mole™?, Ué_5 = 1.1 kcal mole~?. It was 
shown that the energy minimum corresponds to a conformation in which 

either the C,, or the C3, atom is displaced by 0.3-0.6 A from the mean plane 

of the four other atoms. (If the differences in substituents are not taken into 

account, departures from the plane of one or the other atom are equally 

probable.) The four other atoms do not lie exactly in one plane: for example, 

if the C,, atom departs from the C,O,C, plane by 0.5 A, the C3, atom will 

be located at a distance of 0.1 A from this plane, but on the opposite side 

(Fig. 32). So, a furanose ring acquires an intermediate conformation between 

the envelope and half-chair (C, and C,) typical of cyclopentane, being close 

to the C, form. 

If the C,, (or C3,) atoms are localized together with C., on one side of the 

C,05C, plane, one will have an endo conformation; and if the two atoms are 

localized on different sides, an exo conformation (Fig. 32). The latter con- 

formation has been found only in two structures: deoxyadenosine [170] and 

thymidine [171]; in all the other nucleosides and nucleotides the endo con- 

formation has been established. 

The detailed structural data on nucleotides and nucleosides accumulated 

in recent years has allowed Sundaralingam and Jensen [172, 173] to suggest a 

classification of furanose conformations and to reveal some regularities. The 

following compounds were analyzed: cytidylic acid [174], 5-fluoro-2’-deoxy- 

B-uridine [175], adenylic acid [176], calcium thymidylate [177], deoxy- 

adenosine [170]. 

Nonplanar deformations of the furanose ring seem to affect to some (though 

not a very great) extent the bond lengths and bond angles; for example, the 

(c) (d) 

Fig. 32. Four conformations of the sugar ring: a, Cz--endo; b, C3--endo; c, C2--exo; 

d, C3--exo; the C,Os5C, plane is normal to the plane of drawing. 
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internal CCC angle for a carbon atom deviating from the ring plane is, on an 

average, 100.9°, i.e., 1.6° less than if the furanose ring were plane. The mean 

value of the CCC angles is 105.8° and the COC angle is the only one close to 

tetrahedral (109.3°). It should be noted that the same figures are derived from 

conformational calculations. 

The bases are additional very important elements of nucleic acids. From 

all the X-ray studies of the purine and pyrimidine bases of nucleic acids it is 

clear that the atoms of which the rings are composed lie approximately in 

one plane (deviations from the mean plane are within the limits of experi- 

mental error). But the exocyclic bonds form small angles with the plane. For 

example, in the molecule of adenosine-5’-phosphate [176] the plane of the 

amino group forms a 25° angle with the base, the C;, atom lies 0.043 A lower 

and the N, atoms, 0.051 A higher than the base plane. In all nucleoside and 

nucleotide structures the deviation of the C,, sugar atom from the base plane 

is rather significant, of the order of 0.2 A; due to this fact the angle between the 

glycosidic bond and the base plane is 5-8°. 

Figure 33 shows the estimated values of the mean bond lengths and bond 

angles in bases [178]. The great differences in the values obtained by different 

authors for one and the same base depend in many cases upon whether the 

base is protonated or nonprotonated [173]. Other important factors are the 

presence of intermolecular hydrogen bonds and the mode of packing of the 
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Fig. 33. Mean values of bond lengths and bond angles of heterocyclic residues of nucleic 

acids. 
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molecules in the crystal. In spite of all this it is advisable to use averaged values 

to calculate the conformations of mono- and polynucleotides. 

Some authors [178, 179] have made a detailed analysis of the structure of 

the phosphate group. Thus, rather accurate mean values of the bond lengths 

and bond angles in nucleotides and the respective polymers are already known. 

Figure 34 shows the structural parameters for nucleotides used by Arnott 

[179] in the X-ray studies of nucleic acids. One can expect no more than a 

0.02 A difference in bond lengths and a 1—2° difference in bond angles between 

the values given in Fig. 34 and those in real nucleotides and nucleic acids. 

It is obvious that bond lengths and bond angles are indispensable for an 

understanding of polynucleotide conformations. But the dihedral angles: The 

rotation angles around the single bonds of the riboso-phosphate backbone, as 

well as the angle of rotation around the glycosidic bond, are also essential 

parameters of the potential functions of these macromolecules, both in the 

case of stereoregular polymers and polypeptides. 

Fig. 34. Bond lengths and bond angles of a fragment of polynucleotide chain for 

C,--endo conformation of sugar (for C2--endo conformation bond angles at C2, should 

be substituted by the angles at C3, and vice versa). Primes in atom designations are omitted. 
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Fig. 35. a, Numeration of atoms and nomenclature of conformational angles of poly- 

nucleotide monomeric units (no primes in atom designations); b, three conformational 

angles responsible for the shapes of ribose and deoxyribose rings. 

Arnott and Hukins [180] have suggested a handy nomenclature for poly- 

nucleotide conformations. Figure 35 shows a monomer unit of a polynucleo- 

tide (of course, it is not a simple mononucleotide) with designations of the 

rotation angles. 

According to this nomenclature the movement along the polynucleotide 

chain is from Cs, to C;,. The conformational angles for the ith residue are 

designated as 9, W;, 0;, €;, 0;, @;. Rotation angles are counted from the cis- 

conformations (similarly to the nomenclature for the stereoregular macro- 

molecular conformations described in Section 1); the positive direction is a 

clockwise rotation; the o angle is counted from the cis-conformation of the 

N-C, (or the N-C,) bond of the pyrimidine or purine bond with respect to 

the C, —C,, sugar bond. Some ambiguity arises when the conformation of 

the sugar ring is described: if the C; —-C, —C,;-—O,, dihedral angle is designated 

as o, and the C;,-C,,-C3,-C,, as o’, then o’ = 125°+<a. 

Let us consider first the dihedral vy angle characterizing the mutual positions 

of the furanose ring and the base. Before the above nomenclature of con- 

formations had been suggested, the @cy angle was used to designate the rota- 

tion around the glycosidic bond; Donohue and Trueblood [181] had suggested 
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that it be defined as the angle formed by the trace of the base plane and the 
projection of the ribose (or deoxyribose) C,-O, bond. Positive angles are 
counted clockwise in the direction of the C,—N bond from C,, to N. @en is 

considered to be equal to zero when the angle between the projections of the 

C,—O and No-C, bonds in purine (or the N,—C, bond in pyrimidine) is 
equal to 180°. 

These authors inferred from an analysis of molecular models that there are 

two favorable torsion angle regions: the first, from @cy = — 30+ 45° (the anti 

region); and the second, from @cy = 150+45° (the syn region) (Fig. 36). 

The data will be discussed below in terms of @cy, and one should bear in 

mind that y and @ey are related in the following simple way: cy © 7+ 63°; 

to be more exact, for the C,,-endo-sugar conformation @cy = 7+ 64.8° and 

for the C3,-endo-conformation @cy = ¥ + 61.6°. 

It follows from the X-ray data that, in most nucleotides and nucleosides, 

the bases are anti-oriented, the only exception being deoxyguanosine [182] 

in which @cx = 138°. The conformations of nucleotides and nucleosides in 

solution may be established by using optical rotatory dispersion techniques. 

In [183] it was confirmed that the pyrimidine mononucleotides are in the 

anti-conformation. 

Haschemeyer and Rich [184] have studied in detail the problem of the 

dihedral angles in nucleotides. It was supposed that freedom of rotation and 

allowed conformations are determined by distances between the atoms of the 

bases and the sugar ring. The regions of allowed values were found using 

Ramachandran’s conditions. It should be noted that in some cases the atomic 

radii were somewhat diminished to improve the agreement between the 

calculated and experimental data. 

It has been shown by calculations that in pyrimidine nucleosides steric 

anti H 

Fig. 36. Guanine in syn- and anticonformation in relation to furanose ring. 
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hindrances to rotation around the glycosidic bonds arise chiefly from the 

interactions of side substituents at the sugar carbons with the C,-O, and 

C,—H base bonds. In purine nucleosides rotation is limited by shortened con- 

tacts with the N; atom of the six-membered ring. In this case @eyn May acquire 

any values in the range between the syn and anti conformations if diminished 

van der Waals radii are used. The results of calculations are presented in 

Table 3. 

Table 3 

ALLOWED REGIONS OF TORSION ANGLES IN PYRIMIDINE AND PURINE 

NUCLEOSIDES OBTAINED BY THE RIGID-SPHERES METHOD USING 

VAN-DER-WALLS RADII AND NONBONDED INTERACTION POTENTIALS 

Regions determined with Values 

Conformation Regions determined with nonbonded interaction found in 

of sugar normal van-der-Walls radii potentials the crystal 

Purine nucleosides 

C,’ endo from —85°to —60° from —150° to —36° + 138° 

from +110° to — 155° from + 100° to + 163° 

C3’ endo from —140° to —85° —. —20° 

from —69°to +10° 

C3’ exo from —85°to +25° from —20°to +30° — 3° 

from +115° to +171° 

Pyrimidine nucleosides 

C3’ endo from —80°to —50° from —35°to —65° — 24° 

from + 143° to + 166° 

C,’ endo from —80°to —25° from —60°to +23° — 42° 

from +125° to + 145° from +128° to + 142° 

from — 140° to —120° from —177° to — 165° 

In [185-187] the energy of rotation around the glycosidic bond was calcu- 

lated using nonbonded interaction potentials. It was shown that for uridine, 

adenosine, and cytidine the anti conformation is the most favorable one; in 

guanosine the syn conformation is the most stable. According to the authors 

of [185], the energy difference between the syn and anti conformations for 

adenosine and guanosine is 1-2 kcal mole~' and for uridine and cytidine, 

5-7 kcal mole~'. Thus, pyrimidine nucleosides and nucleotides always possess 

the anti conformation, whereas the purine nucleosides, both the syn and anti. 

Figure 37 shows the potential functions for rotation around the glycosidic 

bond for the ribose conformations which have been established in the various 

nucleosides (the calculations were made with Dashevsky’s potentials). Table 3 

contains the optimal values of the torsion angle cy obtained by the rigid 
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spheres method [182] and by calculating the potential energy of the base- 

sugar interaction [187]. The region of allowed rotation angles may be believed 

to correspond to the RT range near the minimum of the energy function. 

It is interesting that the energy of the electrostatic interactions does not 

appreciably affect the character of the curves; hence the indeterminacy of the 

parametrization (due to the monopole approximation and the charges cal- 

culated after Del Re) is not very significant. A more detailed analysis of the 

rotation potentials for various conformations of the sugar ring is to be found 

in [186]. 
Assuming now that the rotation around the glycosidic bond and the di- 

hedral angles in the riboso-phosphate backbone are independent, let us con- 

sider the possible conformations of polynucleotide chain fragments. Figure 38 

shows a fragment which has been thoroughly investigated by Ramachandran 

et al. [188] with the help of the rigid spheres method. One can see that it is 

somewhat different from the monomer unit suggested by Arnott and Hukins, 

Fig. 35. It should be noted that a complete description of the conformation 

of a nucleoside-3’-phosphate will require information about the g angle and 

of a nucleoside-5’-phosphate about the w angle. But, since the rotations are 

not correlated, at least within the accuracy limits of the rigid spheres method, 
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Fig. 38. Ribose phosphate unit and conformational parameters: 0, €, a. 

and ~ and w are not very important in the case of a monomer, one may believe 

that this fragment furnishes information about the allowed and forbidden 

regions of mononucleotides. 

To find the allowed conformations every rotation is presented as a matrix, 

and the coordinates of the rotamer atoms are calculated as described in 

Section | of this chapter. Hydrogen atoms markedly affect the allowed regions. 

Furthermore, it is essential that the addition of a purine or pyrimidine base 

does not change the conformational rotation freedom of the fragments, hence 

the independent rotation angles in the riboso-phosphate backbone and the 

QYcn Or x angles. The possible conformations have the following set of torsion 

angles: 8, about 180°; ¢, about 60°, 180°, and 300°; w in the range of 210°-260°. 

Lakshminarayanan and Sasisekharan [189] made a conformational analysis 

of the above fragment using atom-atom potentials. They plotted energy 

against each rotation angle (8, €, and w) with fixed values of the other angles; 

in addition, two-dimensional conformational maps (W,@) and (6,é) were 

drawn. It is noteworthy that the fragment in question has many minima: 

There are nine minima in the (W, 0) map with energy differences not exceeding 

| kcal/mole, and there are four minima in the (0, €) map. Thus, the search for 

the absolute potential energy extremum of the fragment presented in Fig. 38 

is no trivial problem, to say nothing of the fact that its choice is determined by 

the parametrization. 

In the regular single-stranded polymer (e.g., poly A) the riboso-phosphate 

backbone contains as many as five independent parameters, i.e., in addition 
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to the angles described above g and w should be added. These angles are 
operative as early as in dinucleoside phosphates; therefore the allowed con- 
formations of the macromolecule may be found from an analysis of dinucleo- 
side phosphates. (A similar situation exists for oligo- and polypeptides; all 
the main regularities can be derived from an analysis of the conformational 
maps of dipeptides). 

Sasisekharan and Lakshminazayanan [190] applied the atom-atom poten- 
tials method to the conformations of a dimethyl phosphate which consists of 

two sugar rings connected with phosphoesteric bonds. The (¢,) potential 

map, according to their calculations has seven minima comparable in depth, 

the choice of the optimal minimum depending almost entirely upon the par- 

ameters selected, i.e., the partial charges, the ¢ constant and the “immanent” 

potentials of the P-O bonds. One may only state that it is preferable to use 

gauche conformations with the following (¢, w) rotation angles: (60°, 60°) or 

(300°, 300°); other gauche conformations are less favorable. This type of 

conformation was proved to exist by experimental investigations of such 
molecules. 

To sum up the above, it should be noted that, unlike the case with peptides, 

for which the two-dimensional conformational maps make it possible to find 

the positions and forms of the monomer unit minima, when dealing with 

nucleotides one has to face the problem of numerous minima, and this is not 

very easy to solve. However, polynucleotides may be looked upon as stereo- 

regular polymers, as stereochemically the two purine, as well as the two 

pyrimidine bases, are very much alike. Hence, one can expect that a con- 

formational analysis of small polynucleotide fragments will result in the 

prediction of the three-dimensional structure of the macromolecule. (It is 

appropriate to recall that the conformational analysis of dipeptides and 

similar fragments is no key to disclosing the three-dimensional structure of a 

protein.) 

b. Conformations of Single-Stranded Oligo- and Polynucleotides 

When monomer units, or fragments containing not more than one base 

were being considered, we could confine ourselves to atom-atom potentials 

only. When dealing with oligomers and polymers one is compelled to take 

into account hydrophobic, or, to be more exact, solvophobic interactions. 

In fact, native nucleic acids with their stacked bases can exist only in aqueous 

solutions over a certain temperature range; in organic solvents or at higher 

temperatures they undergo denaturation. 

Sinanoglu and Abdulnur [191] were the first to emphasize and explain the 

role of hydrophobic interactions in the formation of the spatial structures of 

oligo- and polynucleotides. This role is due to the fact that in the polynucleo- 

tide-solvent system there arise forces which prevent contacts between the 
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nonpolar bases and the polar liquid (water); these forces are responsible for 

bringing the bases together and stacking them up (similarly to the tendency 

of nonpolar residues in proteins to come into contact). 

It should be also noted that for estimating the free energy of a polynucleotide, 

its configurational entropy should be taken into account. In principle this 

could be calculated with the help of the potential functions, as was done by 

Flory et al. for polypeptides; the only difference will be that the integration 

should be done not for two-dimensional but for six-dimensional space. The 

great role of the configurational entropy follows from the fact that in a rigid- 

stacking conformation rotation around the single bonds is severely limited. 

In any case, it is the configurational entropy which is chiefly responsible for 

the free energy difference between the double-stranded nucleic acids (in which 

internal rotation around ten bonds is practically totally blocked) and the single- 

stranded polynucleotides formed in the course of denaturation. 

The change in the free energy of a polynucleotide as a result of any con- 

formational rearrangement (e.g., violation of the ordered base-stacking) can 

be formulated thus 

AF = EY oabenaed a AE. = TAS, 

where AE, onbondea IS the energy of the nonbonded interactions provided by 

the atom-atom potentials, AZ,, is the electrostatic energy, and AS in the 

change in entropy including the solvation entropy (i.e., the hydrophobic 

interactions) and the configurational entropy. 

De Voe and Tinoko [192] were the first to raise the question about the 

quantitative contribution of the various conformation-building forces to the 

total energy of a polynucleotide. The nonbonded interactions were estimated 

in a rather complex and questionable way; nevertheless, the values so obtained 

were of the same order of magnitude as those presented in later investigations. 

The electrostatic energies were calculated in the dipole-dipole approximation; 

the entire bases were taken as point dipoles. The value of the entropy change 

(AS = + 28 entropy units per mole) was borrowed from the paper of Kauz- 

mann [193] who studied the solvation of benzene in water. The configura- 

tional entropy change was estimated from the formula AS =—RTInZ 

where Z is the ‘“‘sum over states” which amounts to —4.6 or — 13.1 entropy 

units, according to different authors, depending on the number of stable 

conformational states occurring in the polynucleotide on rotation around the 

single bonds. 

Later quantitative estimates of De Voe and Tinoko have been criticized by 

many authors [194-197], one of the items being the point-dipole approxi- 

mations; instead, these authors took into account the Coulomb interactions 

between charges centered on the base atoms. It is almost impossible to prove 

at present whether any of the parametrizations suggested for the components 
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contributing to the free energy of a polynucleotide is correct. Meanwhile it 
is still De Voe and Tinoko who put forward the fundamental ideas and 

established theoretically the strong stacking interactions which stabilize the 

structure of single- and double-stranded polynucleotides; it seems that the 

hydrogen bonds of the Watson—Crick model are of the secondary importance. 

An analysis of the results of the calculations of the different authors leads to 

the conclusion that, regardless of quantitative differences between some 

of their results, the idea of De Voe and Tinoko that stacking interactions play 

the predominant roles in stabilizing the conformations of dinucleoside- 
phosphates, oligomers, and single- and double-stranded polynucleotides is 

qualitatively correct and supported by all the authors. 

Let us consider some figures pertaining to the interactions of stacked bases 

[197]. For two adenine molecules, located one under the other, the electro- 

static interaction energy is 0.98 kcal mole~', the attraction energy of non- 

bonded atoms is — 10.96 kcal mole~! and the repulsion energy is 2.47 kcal 

mole‘; for thymines the respective values are 0.62, —7.00, and 2.34 kcal 

mole’, etc. Thus, the greatest contribution is made by the dispersion inter- 

actions, which depend only slightly on the base sequence, and decrease rapidly 

with distance. (For bases separated by but one nucleotide the dispersion energy 

is 30-40-fold less than the interaction energy of adjacent bases.) The electro- 

static energy in almost all versions has a positive sign, i.e., it tends to counteract 

the stacking of the bases. 

Of course, such estimates are not totally valid since they do not account 

for the effect of the solvent; the data so obtained are true only for vacuum 

conditions. In aqueous solutions of polynucleotides the base stacking is 

additionally stabilized by hydrophobic interactions. Indeed, the stabilization 

provided by the nonbonded interactions (5-8 kcal mole~’ per base) is in- 

sufficient to render the energy of the polynucleotide-solvent system minimal 

for the given conformation: In organic solvents (e.g., poly C in ethyleneglycol 

[198]) which are known to be effective denaturing agents, the free energy 

minimum corresponds to the disordered conformation of the polynucleotide. 

This conformation is due to the configurational entropy, which sharply in- 

creases when rotations around the single bonds of the ribose—phosphate 

backbone are suddenly allowed. 

There is rich evidence in favor of the idea that strong stacking interactions 

are responsible for the ordered arrangements of purine and pyrimidine bases 

in aqueous solutions: NMR investigations [199-206]; optical rotatory dis- 

persion [207-212]; circular dichroism [213-215]; and uv absorption [216, 

217] spectral data, measurements of osmotic pressure [218, 219], etc. Finally, 

it is worthwhile to mention that the only existing structural data for adenosine- 

phosphateuridine [220] was obtained from an analysis of X-ray diffraction 

patterns. In this structure both bases are in the anti conformation which they 
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Fig. 39. Molecular structure of adenosine-phosphateuridine. 

possess in nucleosides, both bases are approximately parallel (15° accuracy), 

and are located one under the other at a distance of about 3.4 A (Fig. 39). 

Polynucleotides and nucleic acids possess an interesting peculiarity, i.e., 

although various, rather strong, interactions are at work in them, they subtract 

from one another to produce a difference in free energy between the helical 

and disordered molecule close to zero. According to Brahms ef al. [221, 222] 

the AH of the order—disorder transition in dinucleoside phosphates ranges 

from 6 to 8 kcal mole‘; AS, from 21 to 28 entropy units; and AF at 0°C is 

0.2-0.7 kcal mole’. This small free energy difference (see also Table 4) ac- 

counts for the specific behavior of nucleic acids in small pH and temperature 

ranges; it is for this very reason that double helices are capable of replicating 

when the conditions in the cell change. 

Table 4 

THERMODYNAMIC PARAMETERS OF THERMAL DENATURATION 

OF ADENYLIC OLIGOMERS AT NEUTRAL pH 

(in 0.1 M NaCl, pH = 7.4) 

H (kcal mole~? S (entropy units F (kcal mole7! 

Oligomer per base) per mole of base) _ per base at 0°C) 

Dimer 8.0 28 0.4 

Trimer 8.0 28 0.4 

Pentamer 8.1 28 0.5 

Heptamer 8.1 LY 0.6 

Dodecamer Wat 26 0.7 

Poly-A 7.9 25 Ll 
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It is interesting that the stacking interactions in polynucleotides are essen- 

tially not cooperative. This means that the energy of interactions of, say, 10 

bases stacked together is approximately nine-fold greater than the interaction 

energy of a single pair of bases in a dinucleosidephosphate. The absence of 

cooperativity in adenine oligomers is clearly shown in Table 4 which contains 

the thermodynamic parameters from paper [213]. Furthermore, Poland 

et al. [209] came to the conclusion that if the process of formation of ribo- 

nucleotides is absolutely noncooperative, then, in the case of deoxyribonucleo- 

tides it is to some extent anticooperative, i.e., the energy of formation of the 

ordered stacked structure of deoxyribonucleotides is even somewhat less than 

the total energy of the stacking interactions of the base pairs. 

Of course, one could hardly expect that atom-atom potentials alone will 

be able to account for all details of the conformations of oligo- and poly- 

nucleotides in solutions. The most difficult problem will be, naturally, to take 

into account the hydrophobic interactions and the configurational entropy; 
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Fig. 40. One of the versions of the alanine tRNA secondary structure (two hairpins) 

established by means of the combinatorial method with the maximum pairing criterion. 

The complementary bases are opposite to each other. 
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therefore, sometimes, simpler models, for example, combinatorial, may be 

more tractable. 

The above-said is largely true of predictions of the secondary structures of 

single-stranded polynucleotides in solutions. Several years ago it was believed 

that the equilibrium conformation of a single-stranded polynucleotide, like 

that of double-stranded native DNA, should necessarily involve base pairing 

in the same chain [223, 225], to form the so-called “‘hair-pin”’ structure. 

These were the ideas underlying the combinatorial models intended for 

predicting the three-dimensional structures (or the secondary, “‘hair-pin,” 

structures) of RNA and mRNA. These models proceeded from the concept 

of maximal base-pairing in the hair-pin structures. Tumanyan [226] suggested 

a general algorithm for obtaining structures with maximum pairing with any 

base sequence in polynucleotides and applied it to calculate the optimal 

structure of alanine ~RNA (Fig. 40). 

Thus, it has become clear nowadays that it is not H bonds between the bases 

that determine the polynucleotide structure, as was postulated by Watson and 

Crick. Instead, it is the maximum length of a regularly complementary frag- 

ment with stacked bases which should be the true criterion for the secondary 

structures of RNA and mRNA. The maximum base-pairing criterion with 

random sequences gives rather defective structures, as is shown in Fig. 40. 

It is still better to use these criteria together with their respective weights in 

such combinatorial calculations. 

c. Double Helices of Nucleic Acids 

In the sixties alkaline metal salts of nucleic acids were intensively studied by 

X-ray crystallographic methods. Depending on the humidity and the content 

of metal salts DNA may exist in three crystalline modifications with different 

conformations of the polynucleotide chain. If the humidity exceeds 92% DNA 

acquires the B conformation [227] regardless of the salt. At a relative humidity 

of 75% DNA sodium salt acquires the A conformation [228], although the 

lithium salt still has the B conformation at 66% relative humidity. At 44% 

humidity the lithium salt has the C conformation [229]. Native DNA exists 

in the cell under high relative humidity conditions and, probably, has a B-like 

conformation though in this case no strict long-range order of bases is main- 

tained. 

Before discussing the similarities and differences among these crystalline 

structural modifications, designations characterizing the conformations of 

double helices should be agreed upon. Like crystalline stereoregular polymers, 

a nucleic acid crystal has an axis; X-ray diffraction patterns of its fibers 

furnish evidence about the identity period and the number of monomer units 

per period (in our case it is the number of Watson—Crick base pairs). These 
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data are not, of course, sufficient to establish all atomic coordinates; as was 

indicated above, the conformation of a stereoregular polynucleotide is charac- 

terized by six independent rotation angles. 

In structural investigations, polynucleotide conformations are usually 

described by ihe mutual positions of the bases. Arnott er al. [230] have sug- 

gested five parameters to describe the mutual positions of bases: 6,, the angle 

of rotation around the y’ axis; 63, the angle of rotation around the x’ axis; 

D, the distance of the origin of the primed coordinate system from the axis; 

and two helix parameters, viz, d, the translation along the axis, and 1, the 

angle of rotation around the axis of the helix. The last two parameters have 

the values t = 27/n, where n is the number of base pairs per period, and 

d = c/n, where c is the identity period (see Fig. 41). The system of coordinates 

in Fig. 41 is chosen so that at 0, = 0, = 0 the x’ axis passes through the C, 

atom of a pyrimidine and is parallel to the line connecting the carbon atoms 

of the glycosidic bonds. The bases are assumed to be planar, and the Watson— 

Crick base pairs are assumed to have average parameters which seem not to 

change appreciably as one conformation turns into another; for example, the 

line connecting the carbon atoms of the glycosidic bonds is 10.85 A long. 

Certainly, to determine the positions of all the atoms these parameters should 

be supplemented with at least one more (we assume, as Arnott [230] did, 

that the bonds and bond angles in polynucleotides are absolutely rigid). This 

parameter may be the y or @cn angle or, for example, one of the cylindrical 

coordinates of the phosphorus atom. Arnott gives all three of them. 

DNA in the A form is a double helix with the 28.15 A identity period and 

11 Watson—Crick base pairs per period. According to Arnott e¢ al. [230] who 

recently made accurate calculations of the DNA molecule structure based on 

the concept of constant bond lengths and bond angles in all forms of RNA 

Fig. 41. Parameters determining the positions of bases: 60,, tilt; 02, twist; and D, the 

distance between the axis of rotation and the helix axis. 
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and DNA double helices, the A form has the following 0,, 0, D, d, and t 

parameters: 20°, 8°, 4.25A, 2.56A and 32.7°; the r, 0, z cylindrical phosphorus 
atom parameters in the xyz system of Fig. 41 are: 8.84A, 67.2A, —3.93°. 

The B-conformation has the following base parameters: — 2°, — 5°, —0.63A, 

3.38A and 36°: the coordinates of the phosphorus atom: 9.05A, 94.8°, 2.04A. 

Thus the A and B conformations are quite different: in the B form the bases 

are located close to the double helix axis and almost normal to this axis, 

whereas in the A form they are located at some distance from the axis and are 

inclined toward it. In addition, in the B conformation the furanose ring has 

the C,,-endo conformation, and in the A form, C3,-endo.f 

The C form of DNA is close to the B form. It has the following base par- 

ameters: —6°, 5°, —2.13A, 3.32A and 38.6°; the’position of the phosphorus 
atom is (9.05A, 107.5A, 2.95A); the sugar conformation is C3,-endo. 
RNA molecules have several crystalline modifications which seem to con- 

tain double helices; Arnott [179] believes that all the investigated types of 

RNA have 11-fold helices (earlier some RNA types were suggested to have 

also 10-fold helices). The geometric parameters refined by Arnott are the 

following: 14°, 0.0°, 4.25A, 32.7°, 2.73A; the phosphorus coordinates are: 
(8.84A, 68.5°, —3.62A). Thus, the RNA molecule has a conformation similar 

to that of A-DNA. 

Figure 42 shows the relative positions of the bases in A-DNA, B-DNA and 

RNA. It is seen that the planes of the bases are in contact with each other, 

which is one more proof of the significance of stacking interactions in poly- 

nucleotides. In A-DNA and RNA the bases overlap to a greater degree than 

in B-DNA;; this seems to be the reason why DNA molecules, which in the 

cell have a conformation close to B, are less stable than RNA molecules— 

the former exists in the form of double helices in a narrower temperature range. 

It is interesting to elucidate the question: is the base overlapping in DNA 

and RNA molecules optimal and does it determine the geometry of the double 

helices? Recent calculations [231] in which the potential function of base 

interaction was minimized over five parameters (0,, 0,, D, d, and t) have 

shown that, first, the known structures of nucleic acids, though close to local 

minima in the base interaction energy, do not correspond to them; and 

secondly, there are rather deep minima far from the parameters typical of 

real polynucleotides: for example, with large D (of the order of 10-12A) the 

base interaction energy may have a rather high absolute value. Thus, the 

geometry of nucleic acids is determined not only by the base interactions— 

a great role is played by limitations due to the riboso—phosphate backbone of 

+ Recent refinement of crystallographic data [230a] showed the preference to the C3:-exo 

conformation of the sugar residue in B-DNA and confirmed the C3-endo conformation in 

A-DNA. 
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Fig. 42. Some molecular structures: a, A-DNA; b, B-IDNA; c, RNA projected across and 

along the fiber axis; the point shows the position of the helix axis. 

the double helix; that is why prediction of the structure of nucleic acids will 

require a search for an energy minimum in the interactions of all the atoms of 

a polynucleotide chain over all the most important geometric parameters, 

and primarily over 9, w, 0, €, a, x. 

Arnott and Hukins [180] distinguished some important features of the con- 

formations of nucleotides, monomers and polymers, which are most valuable 

in theoretical conformational analysis. The conformational angles of mono- 

mers and polymers, unlike those of polypeptides and proteins, have small 

ranges of values. Moreover, the angles are almost identical in both monomers 

and polymers. 

For ¢, the rotation angle around the P-O,’ bond (Fig. 35a), there are three 

ranges of values: 63°+17°, 196°+25°, and 294°+14°; in double-helical 

polymers there is only one range of values: 290°+ 14°, coinciding with the 

third range in monomers. 

A similar situation is observed for w, the rotation angle around the O,-P 

bond: there are three ranges for monomers: 64° + 16°, 182 + 5°, and 306° + 11°, 

and one range for polymers: 294° + 8° corresponding to the last conformation 

of monomers. 

The angle of rotation around the C,’—O,’ bond, 6, has two ranges of values 

for monomers: 262°+ 14° and 181°+22°, the former range arising only in 

nucleosides. The polymer range, 188°+4°, corresponds to the latter range of 

values. 
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For rotation around the C,’—C,’ bond in monomers there is just one range 

of values € = 48°+7°; almost similar values, 51°+ 4°, are typical of polymers. 

It is only in the rotations around the O,’—C,’, w, that the angles in monomers 

and polymers do not correspond to each other; the former have the 252° + 16° 

range, and the latter, 196°+ 10°. It is possible that the second range of values 

has not been found in monomers because only three structures of nucleoside- 

3’-phosphates are known. 

Finally, rotation around the glycosidic bond, y, (its dependence upon the 

angle Ycx was mentioned above) has the 299°+31° range of values for the 

syn conformation in monomers and two ranges for the anti conformation: 

y = 84°+7° and vy = 110°+ 10°; the former range arises when the sugar ring 

is in the C,’-endo and C,’-exo conformations; the second range, in C,’-endo- 

conformation. In polymers with the C,’-endo conformation of the sugar ring 

(A-DNA, RNA and also in some synthetic polynucleotides), the y angle has 

a very narrow range (77°+3°) whereas in B-DNA and C-DNA, with their 

C,’-endo-conformation of the sugar, y is 173° and 139° respectively. 

The sugar conformations which have the angles (0’, 0”, 0’) (Fig. 35b) 

have the following ranges of values in monomers: (204° + 2°, 37°+ 4°, 97° + 6°) 

for the C,, endo conformation and (266°+4°, 323°+4°, 152°+3°) for the 

C,, endo confomration. In polymers there is almost no scattering in the values 

of these angles, i.e., (a’, 0”, 0”) = (205°, 38°, 94°) for the C3-endo sugar con- 

formation and (0’, 0”, 0”) = (266°, 323°, 158°) for the C,’-endo conforma- 

tions. 

Thus, the conformational angles of monomers and polymers have rather 

small ranges of rotation angles (established experimentally) and the ranges 

are much smaller in polymers. It is remarkable that values of (g, W, 0, €, a, 

xy, 0’, 0", 0”) approximately equal to (290°, 294°, 188°, 51°, 196°, 77°, 205°, 

38°, 94°) give a rather adequate description of the conformations of all the 

polynucleotides studied by X-ray crystallography, with the exception of B- 

and C-DNA. In these two conformations only changes in the values of the 

angles (o’,0”,o” and x) corresponding to discrete alterations in the sugar 

conformation, and the accompanying change in the value of y, are indis- 

pensible. Almost all the conformations so far investigated have mostly stag- 

gered bonds in the riboso—phosphate backbone; however, nothing is known 

as yet about the factors responsible for the range of values in each case. 

The sum of all the above data constitutes comprehensive experimental 

evidence on which to base the thecretical conformational analysis of poly- 

nucleotides and nucleic acids. The following questions which can be clarified 

by the atom—atom potential method seem to be the most interesting: (1) Do 

the local and absolute energy minima of dinucleoside-phosphates and single- 

stranded polynucleotides correspond to the geometry of the double helices 

of nucleic acids? (2) What relative energies of the A and B forms of double 
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helices and what calculated parameters give energy minima corresponding to 

these forms? (3) In what way does the conformational transition B > A occur, 

and is there a potential barrier to be overcome in the course of transition? In 

addition, the atom—atom potential method may be useful in obtaining some 

quantities pertaining to the properties of nucleic acids in solution, for example, 

the persistent length of DNA and RNA which is known to characterize the 

flexibility of this type of macromolecule. 
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METHODS !N 
X-RAY CRYSTALLOGRAPHY 
J. W. JEFFERY 

1972, 580 pp., $35.00 

Professor Jeffery has produced an extensive 

work on X-ray crystallography while simulta- 

neously keeping mathematical manipulation to 

a basic minimum in the main text. The concen- 

trated formulae have been removed to the ap- 

pendices, together with the full development of 

a number of mathematical problems which arise 

especially in crystallographic computing. 

On this basis, the techniques required for the 

interpretation of single crystal X-ray diffraction 

are covered in detail up to the production of a 

set of observed structure factors for use in 

structure analysis. Dealing primarily with pho- 

tographic methods, this book contains detailed 

descriptions of the construction and use of 

X-ray cameras and ancillary equipment. 

CONTENTS: 

THE THEORY OF X-RAY DIFFRACTION 

The Uses and Limitations of X-ray Diffraction. The 

Geometry of X-ray Diffraction from Crystals. The 

Reciprocal Lattice; a Geometrical Tool for the Inter- 

pretation of 3-Dimensional Diffraction. The Photog- 

raphy of the Reciprocal Lattice (RL). The Reciprocal 

Lattice and Divergent Beam Photographs. The Recipro- 

cal Lattice and White Radiation. Diffraction by Poly- 

crystalline Material. Electron and Neutron Diffraction. 

The Intensity of X-ray Reflection. Further Aspects of 

Lattice Theory. 

INSTRUMENT GEOMETRY AND 

INTERPRETATION 

Single Crystal Cameras. Initial Stages in Photographing 

the Reciprocal Lattice. Setting the Crystal and Mea- 

suring Cell Parameters. The Production and Interpre- 

tation of Oscillation and Rotation Photographs. The 

Production and Interpretation of Weissenberg Photo- 

graphs. The Production and Interpretation of Reti- 

graphs. Measurement and Interpretation of Preferred 

Orientation. The Measurement and Weighting of the 

Intensities of X-ray Reflections and Their Reduction 

to F% values. 
Examples. Appendices. Answers. 

Subject Index. 



R&LAXATI °°" a , SOLIDS 

_S. NOW kitaigoroucs 

MUR ek TMi 
solids. The basic theory is sresenteei in Recast, style meres 2 joe 

coursework; problems are also included. 

AN ELAS! =) 

ae gra OI FZ 

1972, 698 pp., $27. Shice: = 

The first six chapters of this book contain a comprehensive presentation of the formal 

theory of anelasticity, most of which is not restricted to crystalline materials. In this 

treatment, various types of anelastic response to mechanical stress (e.g., recoverable creep 

and internal friction) are described and related to each other and to the spectrum of 

relaxation times characterizing the material. Relaxation is then considered from the view- 

point of a time-dependent change in one or more internal variables, which are used to 

develop the thermodynamic theory of relaxation. The final topic of the formal theory is 

the effect of crystal symmetry on elastic and anelastic behavior. 

‘The remaining chapters concern the physical origins of anelasticity and deal systematically 

with the specific mechanisms that occur in crystalline solids. Particular emphasis is placed 

on those relaxations that reveal the structure (particularly the defect structure) of a 

material at an atomic level or that can be applied to the study of the kinetics of atom or 

defect movement. Topics covered include relaxations associated with relatively simple 

point defects; dislocation phenomena; relaxations associated with internal boundaries and 

with phase transitions; thermal, magnetic, and electronic relaxations; and experimental 

methods. 

CONTENTS: 

Characterization of Anelastic Behavior. Relations among the Response Functions: The Boltzmann 

Superposition Principle. Mechanical Models and Discrete Spectra. Continuous Spectra. Internal Vari- 

ables and the Thermodynamic Basis for Relaxation Spectra. Anisotropic Elasticity and Anelasticity. 

Point Defects and Atom Movements. Theory of Point-Defect Relaxations. The Snoek Relaxation. The 

Zener Relaxation. Other Point-Defect Relaxations. Dislocations and Crystal Boundaries. Dislocation 

Relaxations. Further Dislocation Effects. Boundary Relaxation Processes and Internal Friction at High 

Temperatures. Relaxations Associated with Phase Transformations. Thermoelastic Relaxation and the 

Interaction of Acoustic Waves with Lattice Vibrations. Magnetoelastic Relaxations and Hysteresis 

Damping of Ferromagnetic Materials. Electronic Relaxation and Related Phenomena. Experimental 

Methods. Appendices. References. 
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