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1. An Introduction to Crystallography 

Socrates discusses how far a flea can jump, we discuss why 
snowflakes, when they first fall, always have six corners and sia 
projections, tufted like feathers. J. Kepler (1611) 

The Greek word, krystallos, was used to describe both ice and a 
form of quartz known as rock crystal. This rock crystal was found in 
mountainous regions where the snow was intensely frozen and was 
evidently regarded as a special form of ice. It seems strange that the 
Greeks, who were so keenly interested in discussing form and 
symmetry, did not leave any records concerned with crystal shapes 
and symmetries, other than an attempt by Plato to correlate 
structure and properties by linking four of the regular Platonic 
solids—tetrahedron, octahedron, cube, and icosahedron—with the 

Empedoclean elements, fire, air, earth and water. Thus, he associated 

rock crystal with cubes of earth. In later times the association of 
these geometrical ideas with those of the atomists (Leukippos, 
Demokritos, Lucretius) provided a foundation for theories of the 
structure of matter developed in the 17th and 18th centuries. 
A different approach can be traced back to Aristotle’s discussions 

of matter and form and the association of fire, air, earth, and water 

with the ‘qualities’ hot—-dry, hot—moist, cold—dry, and cold—moist. 
These ideas became linked with animistic notions concerning minerals 
and crystal structure, and a belief that crystals were living organisms 
growing by some kind of vegetative process persisted from antiquity 
into the age of alchemy. Lingering traces of this idea can still be 
found in the association of crystals with the occult. The vegetative 
theory of crystal growth was weakened by the work of N. Steno 
(1638-1686)—anatomist, physiologist, geologist, and bishop—who 
explained crystal growth as a deposition of particles on the faces of 
existing crystals from the surrounding fluid, and who also initiated 
the study of crystal angles. 

Crystals of the same substance may have very different external 
forms, which arise, as is now known, from the different rates at which 
faces grow. Steno examined crystals of quartz which, in the ideal 

state, would have the form shown in Fig. Ja, 1.e. a hexagonal prism 
capped by hexagonal pyramids. He cut sections through different 
specimens in planes normal to the vertical axis, and traced the cross- 
sectional outline to get figures of the type shown in Fg. 1b. These 
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Fic. 1. Steno’s drawings of quartz crystals (a) ideal form, (6) cross-sections 
normal to vertical axis. 

sections were only rarely regular hexagons, but Steno noted that the 
angle between adjacent vertical faces was always 120°, irrespective 
of the relative face development. This work was the precursor of 
the law of constant angle, which states that the angles between 
corresponding faces of all crystals of the same substance have a 
constant value. 
A much more rapid accumulation of crystal angle measurements 

became possible after the invention of the contact goniometer in 
1780 by A. Carangeot (1742-1806). This simple device consisted of 
two straight edges so pivoted that they could be arranged to lie in 
contact with two crystal faces. The angle between the straight 
edges could then be measured on a protractor. A simple contact 
goniometer can be constructed from two pivoted strips of Meccano 
with a protractor bolted to one of them, as shown in Fig. 2. 

Crystal angles are now measured very accurately by the optical 
goniometer invented by W. H. Wollaston (1766-1828) in 1809. The 
crystal is mounted so that a selected face receives a parallel beam of 
light from a collimator. The beam reflected from this face is observed 
in a suitably arranged telescope and the crystal is then rotated until 
the reflected ray from a second face lies in the same direction. The 
principle is the same as in the experiment to measure the angle of a 
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Fie. 2. A simple contact goniometer. 

prism which is performed in many practical physics courses, and an 
extension of this experiment to relate it to crystal angles would be 
valuable in schools where chemistry and physics courses are well 
integrated. 

An essential clue to the internal structure of crystals was clearly 
illustrated by R. Hooke (1635-1703) in his Micrographia (1665). 
He observed the different figures into which spherical shot collected 
when they were allowed to roll on an inclined plane and suggested 
that these could reproduce the known external forms of alum 
crystals: ‘... by these kinds of texture or positions of globular bodies 
you may find out all the variety of regular shapes into which the 
smooth surfaces of Alum are formed . . .’. Some of Hooke’s drawings 
are reproduced in Fxg. 3. 

A somewhat similar idea had been put forward by J. Kepler 
(1571-1630) in his essay on snowflakes published in 1611. He dis- 
cusses the geometrical implications of structures such as the bees’ 
honeycomb and the cells of the pomegranate and this leads him to 
the general problem of space-filling. Kepler illustrates the shapes that 
can be obtained by packing spheres in different ways, and distin- 
guishes between the cubic and hexagonal close-packed forms which 
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Fic. 3. Hooke’s representations of alum crystals. 

are such a prominent feature of modern crystal chemistry (see p 52). 
Although this work of Kepler and Hooke contains the essence of 
crystallography in that it discusses external form in terms of internal 
regularity, it is much too general to provide an adequate description 
of the great variety of shapes exhibited by crystals. D. Guglielmini 
(1665-1710) suggested that crystals are constructed by packing 
small polyhedral units closely together—an idea that was supported 
by the work of R. de l’Isle (1736-1790) and his pupil Carangeot. 
Credit for the polyhedral theory is, however, usually given to the 
Abbé Haiiy (1743-1822), professor of mineralogy in the University 
of Paris and honorary canon of Notre Dame. One of the picturesque 
stories of science concerns Haiiy’s visit to a friend who owned a fine 
collection of minerals. Haiiy accidentally dropped a splendid speci- 
men of calcite, but noted that the resulting debris contained small 
rhombohedral units, whereas the original specimen had the charac- 
teristic form in which the calcite crystals are terminated by pyra- 
midal faces. This accident is said to have supplied the inspiration for 
Haiiy’s theories of crystal structure based on packing small units 
such as the rhombus to fill space completely. Haiiy may well have 
dropped the calcite specimen, but the description of its structure in 
terms of a regular arrangement of polyhedral units had been com- 
mon currency in scientific circles for many years. Thus, C. F. 
Westfield (1746-1823) in 1767 discussed calcite crystals as assemblies 
of rhombohedral cleavage fragments. Haiiy’s great achievements 
were to use this idea of regular stacking of polyhedral units to work 
out precise values for the angles between prominent crystal faces, 
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and to provide the basis for a method of identifying and classifying 

crystals in terms of interfacial angles. 

The requirement that space should be filled completely by regular 
stacking of small identical units puts a limit to the number of possible 
types of unit that can be chosen. There are, in fact, seven possibilities, 

and these seven wnit cells define the seven crystal systems. (The limita- 
tions imposed by the requirement that the units should stack to fill 
space completely can be illustrated in a two-dimensional example. 
Regular pentagonal tiles cannot be fitted together to fill a plane 
surface completely, so that five-sided figures are not possible units 
for developing a crystal structure.) The unit cell, the smallest unit 
which preserves the composition and symmetry of the bulk crystal 
and which can be stacked with similar units to fill space completely, is 
defined by the lengths of its sides, a, b, and c, and by the angles «, B, 

and y between pairs of sides (see Fig. £4). The relationships between 
these six parameters define the crystal system, as set out in Table 1. 

C G 

Fig. 4. The unit cell. 

Table 1. The crystal systems 
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The further developments of classical crystallography were con- 
cerned with crystal symmetry and the space lattice. We have already 
seen that crystals of the same substance (e.g. quartz) may have 
different external forms or habits. Sodium chloride provides another 
example; small cubes are obtained on crystallization from aqueous 
solution, but octahedral crystals are obtained if urea is added to the 
crystallizing solution. Both forms have the same cubic unit cell but 

they. are distinguished by different symmetry properties. Sodium 
chlorate provides another good example. It normally grows as cubic 
crystals, but may appear as tetrahedral units if borax is added to the 
solution from which it is crystallizing. The unit cell classification 
of crystal structure was extended (mainly by Victor von Lang) to 
assign crystals to one of 32 crystal classes, differentiated by their 
symmetry elements.* These elements are the centre of symmetry, 
mirror planes and rotational axes. A symmetry operation linked 
with these elements—inversion through a centre, reflection in a 
plane, rotation by a defined angle about an axis—converts the crystal 
into a form indistinguishable from that which it possessed before the 
operation was carried out. 

Inclusion of two further symmetry elements which become possible 
in three-dimensional crystal structures—glide planes and screw 
axes—produces 230 possible combinations called space groups. It is 
rather remarkable that the working out of these possibilities was 
achieved almost simultaneously from about 1890-1895, by three 
men working independently in very different parts of Europe— 
E. S. Federov, a Russian crystallographer and mineralogist, A. M. 
Schénflies, a German mathematician, and W. Barlow, an English 
businessman and amateur man of science. Assignment of crystals to 
their appropriate space groups is an essential step in the determina- 
tion of structure by x-ray diffraction methods, but is not essential in 
a discussion of crystal chemistry at the level we are concerned with. 

The space lattice 

It is mathematically convenient to discuss unit cells and crystal 
structure in an abstract way by linking them with a three-dimensional 
array of points called a space lattice. The development of a lattice 
array is illustrated in Fig. 5. A point O is chosen as origin and three 
axes OA, OB, and OC are defined. A line of points along the axis 
OA with equal spacing a defines a lattice row. Similar parallel rows 

* Excellent discussions of symmetry elements and operations will be found in 
the books by Phillips and Wheatley (see Suggestions for Further Reading 
p 90). 
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a 4 Sal 

Cc 

Fig. 5. The space lattice. 

originating from points along OB with equal spacing b produce a 
two-dimensional net, and parallel nets originating from points at 
spacing c in OC develop the full three-dimensional lattice array. The 
lattice so formed is defined as an array of points such that the en- 
vironment of any one point is the same in arrangement and orienta- 
tion as that of any other point in the array. 

Fia. 6. Possible unit cells. 
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Figure 6 represents a two-dimensional space lattice on which a 
number of unit cells have been drawn. Some units are larger than 
others, and it is often convenient to choose that which has the small- 
est area (or volume, in three dimensions)—e.g. ABCD in Fig. 6. 
Geometrical considerations may also influence the selection of a unit 
cell. Relationships between unit cell dimensions and the spacing 
between various sets of parallel planes going through lattice points 
are much simpler if unit cell angles are right angles. Thus in the 
lattice shown, it might be that a cell such as EFGH would be a better 
choice. This differs from ABCD in that, in addition to points at the 
corners of the unit cell, there is an additional point at the cell centre. 
A lattice produced from a unit cell of type ABCD with lattice 

points at the cell corners is called a primitive or P-type lattice. 
There are, therefore, seven P-type lattices associated with the seven 
crystal systems. In addition to these P-type lattices there are other, 
rather more complex types. Thus the primitive lattice in the cubic 
system can be supplemented by a face-centred or F-type lattice, with 
points at the centres of the six cube faces as well as at the eight 
corners, and the body-centred or I-type lattice with a point at the cube 
centre as well as the eight at cube corners. (The designation J comes 
from the German word for body-centred—innenzentrierte). Figure 7 
illustrates these lattice types. The F- and J -type lattices can always be 

P 

Fie. 7. P-, F-, and I-type lattices. 

' derived from a primitive unit cell with points at the corners only, but 
Fig. 8 shows that the P lattice is less symmetrical than the F- or I- 
types and less suitable for calculations relating-unit cell dimensions to 
possible spacings of sets of parallel planes in the lattice. A. Bravais 
(1811-1863) showed that fourteen lattices were possible when P, F, I é 
and C' (lattice points at the centres of one opposite pair of faces) 
arrangements were considered. At first sight it would seem that there 
should be more possibilities than this, but in some of the seven crystal 
systems there are only two different Bravais lattices and in others 
only one. For example, Fig. 9 shows two unit cells of a tetragonal 
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Fic. 9. F and I unit cells in the tetragonal system. 

lattice. This lattice can be derived equally well from the face- 
centred unit ABCDEFGH or the body-centred unit IBJCKFLG. 
Diagrams of the 14 Bravais lattices are given in the standard texts 
quoted in the bibliography (p 68). At the level of this work, how- 
ever, we need only be concerned with the P, F, and J lattices of the 

cubic system. ~ 
It should be emphasized at this stage that the space lattice is a 

mathematical abstraction—an array of points. Nothing has been 
said so far about the positions of the atoms of a crystal with respect 

to these points. Atoms need not be situated on lattice points but it is 
often convenient to choose an atom or ion as the origin of the lattice. 
In the case of metal structures in particular this often results in the 
location of other atoms or ions on lattice points. Thus the atoms (or 
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ions) in the structure of gold are located on the points of an F-type 
cubic lattice whereas those of «-iron form an J-type cubic lattice. 
We shall see later (e.g. p 43) that many simple inorganic com- 
pounds have structures in which lattice points are the sites for atoms 
or ions, but the atoms of large organic molecules may not be on 
lattice points at all. However, if the positions of the atoms within a 
unit cell can be determined, the crystal structure is then also deter- 
mined, since the unit cell must possess the composition and the 
symmetry of the bulk crystal formed by stacking identical units 
together. 

The law of rational indices 

Figure 10 represents a two-dimensional crystal in which O is chosen 
as an arbitrary origin, and OA and OB as appropriate axes. The 
sides of the unit cell, OA and OB, are of lengths a and 6 respectively, 

and the angle between them, AOB=y. These axes, OA and OB, will 
normally be chosen in directions parallel to prominent crystal planes. 
Removal of unit cells in a regular way may produce new faces. CD, 
for example, represents a direction parallel to one of these new faces. 
If we now draw lines parallel to CD through all the lattice points, 
we shall get a set which makes intercepts on the sides of the unit cell 
defined by OA and OB. We now select the line which is nearest to the 
origin O and note that it makes an intercept of length a/1 on OA, 
and an intercept of length 6/2 on OB. We can extend this construc- 
tion to three dimensions. Figure 11 represents a unit cell, defined 
by the sides OA (=a), OB (=b), and OC (=c), and XYZ represents 

a plane selected as the one nearest to the defined origin in a set, all of 
which are parallel to a given crystal face. The intercepts made by this 
plane on OA, OB, and OC will be, in general, a/h, b/k, and c/l res- 

Fie. 10. Sets of parallel planes in a two-dimensional lattice. 
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Fic. 11. Miller indices for sets of parallel planes, in this case 223. 

pectively, and one way of stating the law of rational indices is that 
for any crystal face, h, k, and | defined in this way are small integers 
(usually not greater than three). Since the sets of parallel planes were 
obtained by drawing them through lattice points this is equivalent 
to saying that important planes in a crystal are those with a high 
density of lattice points. Planes which only go through a few lattice 
points will make very small intercepts on OA, OB, and OC—that is, 
h, k, and 1 would be large integers. 

The three integers, h, k, 1, are called the Millerian or Miller indices 
of the plane [after the crystallographer W. H. Miller (1801—1880)]. 
They are written down without interposing commas, but they are 
read as separate numbers, so that 321 is described as a three, two, 
one plane. 
A plane that is parallel to one or more of the axes (say, e.g. OA) 

will make an infinitely long intercept; thus a/h= 00, so that h=0. 
The origin O will always be chosen in the interior of the crystal, so 
that some intercepts may be on negative axes. The Miller index is 
then written with a bar above it, viz. 321. Figure 12 shows a cubic 
erystal with the origin taken at the centre and principal axes OA, 
OB, and OC. The six faces are indexed as 100, 100, 010, O10, 001, 
and 001. 

A set of equivalent faces can be described collectively by using 
curly brackets { }; 7.e. {100} implies the six cube faces described in the 
diagram. It will be seen from Fig. 12 that 010, 010, 001, and OO! are 
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100 

001 

010 

ooT 100 

Fia. 12. Miller indices for the faces of a cubic unit cell. 

all faces parallel to the OA axis. They are classified as belonging to a 
zone and are represented conveniently by a notation using square 
brackets, [010]. 

With the advent of x-ray crystallography, assignment of Miller 
indices to particular crystal faces has become of less importance. In 
x-ray crystallography the essential feature of crystal structure is the 
presence of sets of equally spaced parallel planes on which atoms are 
located. The Miller indices are now used to represent sets of parallel 
planes, rather than a particular crystal face. Thus the indices 111, 
222, 333 may all be important in x-ray work. They represent sets of 
planes which are parallel to a particular plane labelled 111 in classical 
crystallography. The spacing of the 222 set is however only half that 
of the 111 set, likewise the spacing of the 333 set is one-third that of 
the 111 set. In general, when the Miller indices are used to denote 
sets of parallel planes, high index values imply closely-spaced planes, 
low values indicate planes which are relatively far apart. 

This nomenclature for crystal planes is not at all necessary in 
elementary courses. Particular planes can easily be identified in the 
normal way by letters. Sooner or later, however, students will come 
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across diagrams with Miller indices and it is the author’s experience 
that this method of discussing them, in terms of intercepts made by 
parallel planes, is accepted much more readily than that adopted in 
many textbooks of optical crystallography which is concerned mainly 
with labelling crystal faces. 
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2. Crystal Growth 

In discussing the shapes of crystals and the geometry of unit cells 
we draw idealized diagrams—regular polyhedra such as the cube 
and the octahedron with a limited number of well-defined faces. Real 
crystals with shapes approximating to these ideal forms may be found 
in mineral collections, or they may be grown artificially under 
carefully controlled conditions but, in general, crystals look very 
different from the ideal form. Cubic crystals of sodium chloride may 
be obtained from a well-stirred solution, but the crystals lying on the 
bottom of the crystallization dish will probably have a ‘tablet- 
shaped’ appearance. Some crystals grow in thin needles; others, 
the so-called dendritic forms, shoot out tree-like branches. Any 
theory of crystal growth must give some explanation of these dif- 

ferent external forms. 
Crystals can be grown from melts, from saturated solutions (using 

aqueous or non-aqueous solvents) or by direct deposition from a 
gaseous phase on to a cooled surface. In each case, growth starts 
on a small nucleus. (In the discussion that follows we are going to 
assume that some nuclei are always present. The way in which the 
nuclei are formed in the first place presents some quite difficult 
problems which are outside the scope of this work. We recall the 
words of the eminent Scots divine, who in the course of a sermon 

said ‘here, O Lord, as thou knowest, we come to a difficulty, and 
having looked it boldly in the face we pass on’). 

Crystallization in melts starts from nuclei which tend to be formed 
close to the walls of the mould where the rate of heat loss is greater 
than in the bulk material. Growth then proceeds fairly easily in a 
direction normal to the mould surface with the production of needle- 
shaped crystals. Growth parallel to the walls is, however, inhibited 

by mutual obstruction, and the net result is the production of a 
grain structure as the melt solidifies. Physical properties such as 
tensile strength are greatly affected by grain size, and control of this 
factor is an important aspect of the metallurgist’s art. In general, 

slow cooling, which allows nuclei to be more widely dispersed 
throughout the melt, promotes small grain size. A similar grain 
structure is seen in igneous rocks such as granite which have crystal- 
lized from a silicate melt. 

It should perhaps be emphasized that the geometry of these grains 
is not necessarily related to the structure of the individual crystals. 
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The grains in metals, alloys and rocks sometimes have a very regular 
hexagonal cross-section, and the hexagonal pillars of the Giant’s 
Causeway and Fingal’s Cave illustrate this on a grand scale. The 
geometry in these cases results mainly from the mechanical con- 
straints that arise when growing crystals meet each other in a 
confined space. 

Another factor that affects crystal growth is the requirement that 
new material must be brought up to the crystal surfaces to replenish 
the solution from which material has already been deposited. Needle- 
shaped growth probably arises from the fact that replenishment 
will occur most readily at the corners and edges of the growing 
crystal. Another factor is the heat or enthalpy of crystallization. 
Crystallization can only continue if this heat of crystallization is 
dispersed; otherwise there will be a temperature rise and solution of 
the crystal. This heat will be dispersed more readily from the edges 
and corners of crystals, and this will again favour needle-shaped or 
dendritic growths. 

Mechanism of crystal growth 

The essential features of crystal growth can now be discussed in 
relation to crystal structure. For this purpose it is not necessary 
to specify the precise location of atoms, ions, or molecules in the 
crystal structure. We can use as a model an assembly of unit cells, 
held together in a regular arrangement by forces arising from the 
particles present in each cell. 

Nuclei are presumably formed in the first place by chance collisions 
of several units, and the probability that these units will be present 
simultaneously in a small volume will depend upon both concentration 
and temperature. Increasing supersaturation should therefore pro- 
mote the formation of crystal nuclei and hence speed up the rate of 
growth, whereas an increase in temperature will tend to disrupt 
nuclei by thermal motion, with a reduction in the rate of nucleation 
and a corresponding reduction in growth rate. 
We must now consider in more detail the way in which a new unit 

may attach itself to the crystal surface. Figure 13a represents a 
crystal surface. One layer, AB, has been partially covered by a new 
layer CD, thus forming a step or ledge at D. Figure 13b represents 
two possible ways in which a new unit might attach itself to the 
surface. In position (7), one face of the arriving unit is attached to 
one face of the crystal surface, whereas unit (72) is in contact with 

two units at the step or ledge in the surface layer. In this way we get 
a (somewhat naive) interpretation of the experimental observations 
that crystals tend to grow in surface layers—new units preferring to 
complete existing layers before starting new layers. 
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Fie. 13. Crystal growth (a) layer CD partially covering layer AB; (0) possible 
locations of new units arriving at the crystal surface. 

A more detailed treatment of crystal growth involves considera- 
tion of free-energy changes. New material will attach itself to the 
surface in positions for which there is a maximum decrease in free 
energy for the change: 

substance in solution — substance in crystalline solid 

Two important factors that influence the magnitude of this free- 
energy change are the interaction energy between the units and the 
change in surface energy. This second factor is a consequence of the 
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fact that a unit in the interior of the crystal is completely surrounded 
by neighbouring units, whereas a unit in the surface layer has an 
incomplete environment. When a unit arrives on the surface in 
position (7) of Fig. 13b one face of the unit is in contact with one unit 
in the crystal surface, with the result that the surface area of the 
crystal increases by four units—the four vertical faces of the newly 
arrived unit. (The top surface of the new unit replaces the surface 
area on which it is sitting.) There is therefore an increase in surface 
free energy, and this will be an unfavourable factor for stable attach- 
ment to the surface. 

In position (iz), however, two faces are in contact and ‘hie surface 
area only increases by two units; this produces a free-energy change 
more favourable for crystal growth. An even more favourable free- 
energy change situation arises if a new unit arrives at the ledge in 
Fig. 13b and occupies the position adjacent to unit (2). There will 
then be three faces in contact and no net increase in surface area. 
Crystals can therefore grow if new material is deposited at steps in 
the surface until the layer is completely covered. But what happens 
when the layer is complete? We have already seen that there is a 
most unfavourable free-energy situation for a unit arriving in posi- 
tion (7) of Fig. 13b to start a new growth layer. It would tend to 
bounce off again, or be knocked off by collisions with other units in 
the surrounding medium. The calculated growth rate would be in- 
finitesimally small—a result strikingly at odds with experimental 
observation. 

One way of getting out of the difficulty is to realize that the argu- 
ment has been developed for a surface of close-packed units. In fact, 
many crystals have surfaces that are far from close-packed. Some 
molecules may protrude from the surface while at other parts of the 
surface there may be cavities. There will therefore be many sites 

where an incoming unit can be attached without creating an im- 
possibly large increase in surface free energy. 

Another way out of the difficulty which accounts for growth on 
close-packed surfaces was suggested in 1949 by F. C. Frank. He 
pointed out that real crystals are not perfect or ideal structures, and 
that certain types of defect in the crystal structure could provide 
a mechanism whereby steps or ledges in the surface are continuously 
created. New material arriving at the surface would then always 
find a ledge on which to anchor. The particular defect which provides 
this haven is called a screw dislocation, defined as follows. 

Figure 14a represents a crystal lattice into which a vertical cut in 
the plane ABCD has been made. If the lattice is sheared along the cut 
in the directions shown by the arrows a dislocation is produced as 
shown in Fig. 14b. The line AB is called the axis of a screw disloca- 
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Fia. 14. Serew dislocation. 

tion since it effectively converts a multilayer crystal structure into a 
single-layer ‘ramp’ spiralling around the axis AB. A journey from 
point M in the lattice to a point P vertically above it can be made 
along the circuit MNOP without jumping over a step or starting an 
entirely new layer. The helical ramp formed by the addition of new 
material is shown in Fig. 14c. Spiral development of crystal faces 
was in fact observed experimentally by both electron microscope 
and optical microscope examination of crystal surfaces shortly after 
Frank had published his theory. 

Students often find it difficult to visualize the formation of a 
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growth spiral from a two-dimensional diagram. A very convenient 
model can be made by using sugar cubes as the constructional units 
for the crystal structure (the wrapped variety has a slightly smaller 
wastage rate). A cardboard wedge can be inserted under a portion of 
a stack of cubes to provide the dislocation. New units can then be 
added at the ledge which winds round the dislocation axis which 
can be defined by removing a column of cubes from the centre of the 
stack. 



3. The Discovery of x-Ray Diffraction 

Munich in 1912 seems now to have provided an ideal conjunction of 
time, place and persons for the discovery of the diffraction of x-rays 
by crystals. Some of the people concerned, in particular A. Sommer- 
feld, Max von Laue and P. P. Ewald, were members of a group of 
physicists who frequently adjourned after lunch to the Café Lutz 
near the Hofgarten in Munich, and it was here that a chance remark 
by Ewald gave von Laue the idea that crystals might act as a diffrac- 
tion grating for x-rays. Elementary textbooks of chemistry and 
physics often state that von Laue, with the assistance of his research 
students, observed the effect of allowing a beam of x-rays to fall on a 
crystal of zinc blende. The rays leaving the crystal were intercepted 
by a photographic plate which, on development, revealed a sym- 
metrical pattern of spots demonstrating that the x-rays had been 
diffracted. Statements like this represent rather less than the truth. 
The first crystal diffraction experiments were done with copper 
sulphate, and the first plates to be developed showed no signs of any 
diffraction effects at all. Fortunately, however, some of the people 
linked with this story are still alive, and they have recorded their 

impressions of what in fact happened. 
In 1912 the great wave of new discovery in atomic physics, launched 

by J. J. Thomson with the electron theory, was still sweeping 

forward with a splendid momentum. The discovery of radioactivity 

and of x-radiation in the closing years of the 19th century had been 

closely followed by the revolutionary quantum theory of Max Planck 

in 1900. One of the keenly debated questions concerned the nature of 

the x-rays. These rays were produced from discharge tubes not unlike 

those used for the production of cathode rays, many of the properties 

of which are also possessed by x-rays (e.g. ability to ionize gases by 

collision). At the same time, investigators from Réntgen onwards 

were strongly inclined to support a ‘wave’ hypothesis for the radia- 

tion, and they realized that an experimental demonstration of 

x-ray diffraction effects would be required. Some particularly 

thorough experiments were devised and carried out by Sommerfeld, 

professor of physics in Munich, in 1912. He was not able to detect any 

diffraction effects, but he was careful to point out that his failure 

did not necessarily disprove the wave theory of x-radiation, but 

showed, rather, that if x-rays were electromagnetic radiations, they 
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must have a very small wavelength (ca 10-1° m). Any longer wave- 
lengths should have given diffraction effects with the equipment he 

was using. 
Von Laue had come as a lecturer to Munich from Berlin in 1909, 

attracted by the strong school of theoretical physics that Sommerfeld 
was building up. During part of 1911 and early 1912 he was working 
on a chapter concerning wave optics in a many-volume encyclopaedia 
for which Sommerfeld was one of the editors. He was, therefore, 
immersed in the classical theories of light diffraction at a time when 
the possible diffraction of x-rays must frequently have been dis- 
cussed. Ewald was concerned with some purely mathematical prob- 
lems in crystal optics, and a discussion with him reminded von Laue 
that classical crystallography was based on the assumption of an 
internal regularity in the crystal structure. Nothing was then known 
in detail about this internal regularity, but by using some recent 
measurements of the Avogadro number by Perrin and by Millikan 
together with the value of the density of a crystal such as diamond. 
von Laue was able to work out a value for the ‘atomic volume’ of 
carbon atoms in diamond. The distance between the atoms could 
then be determined if close packing of carbon atoms in diamond was 
assumed. This rough calculation gave a value of about 2x 10-1 m 
for the distance between adjacent atoms, a value which Sommer- 
feld had suggested already for the wavelength of x-rays, if they were 
indeed electromagnetic waves. 

The development of the story now takes us from the Café Lutz 
in Munich to the Bavarian Alps. Sommerfeld, Wien, von Laue and a 
few other physicists were in the habit of taking a ski-ing holiday in 
the Easter vacation. The proposed experiment—diffraction of 
x-rays by regularly placed atoms in a crystal—was much discussed, 
and both Sommerfeld and Wien (two very distinguished professors) 
decided that there were no prospects of success. Their main objection, 
a very reasonable one, was that the thermal motion of the atoms 
would destroy the regularity essential for the diffraction effect. (It 
is now known that thermal effectsdo havea profound influence on the 
diffraction intensities, but they do not destroy the pattern com- 
pletely.) 

Fortunately, however, the group contained two young research 
workers with sufficient enthusiasm to try the experiment even though 
there was little encouragement to do so—von Laue’s research assist- 
ant, W. Friedrich, and P. Knipping, one of Réntgen’s research 
students. The only x-ray machine available was a not very powerful 
medical set, and they anticipated that exposures of at least 10 hours 
would be needed to record any diffraction effects. It is hard to appre- 
ciate today, when x-ray outfits can be bought over the counter, that 
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to keep an x-ray tube running for 10 hours in 1912 required experi- 

mental skill of the highest order. 

They chose a copper sulphate crystal for their first experiment, 

partly because it was a crystal that even a department of physics 

might have around the place, but mainly for a good scientific reason. 

It was well known in 1912 that when copper was irradiated with 

x-rays, so-called ‘secondary’ x-rays were emitted by the copper. 

Friedrich and Knipping therefore assumed that diffraction effects 

would most likely be observed from the secondary x-rays emitted 

from regularly spaced copper atoms in a copper sulphate crystal 

exposed to a primary beam. They arranged a photographic plate 

between the x-ray tube and the crystal, a position which seems 

strange to us, but one which seemed the only logical one in the light 

of what was known in 1912. No diffraction effects were observed, 

and it was only when they put the photographic plate in what was to 

them a most unfavourable position on the far side of the crystal 

from the x-ray tube that diffraction effects were recorded for the 

first time. 

Von Laue heard the news of the successful experiment and worked 

out the theory of the effect—three fold diffraction by linear gratings. 

It now became easy to get facilities for further experiments. A new 

and more powerful x-ray tube was presented, and soon beautifully 

symmetrical diffraction patterns from zine blende crystals were 

obtained. 

Two new fields of study of far-reaching importance—x-ray spectro- 

scopy and x-ray crystallography—came into being with the success 

of the von Laue, Friedrich and Knipping experiment. 

The early development of x-ray crystallography was to take place 

very largely in Great Britain through the work of W. H. and W. L. 

Bragg. Von Laue himself was content with the knowledge that the 

experiment worked. He left Munich for Zurich in December 1912 

and in later years he said he could never understand the excitement 

produced by the demonstration of x-ray diffraction by crystals. He 

always regarded it as a demonstration of the obvious. 

The rapid development of x-ray crystallography stemmed from 

W. L. Bragg’s treatment of the diffracted rays as reflections from 

parallel planes of atoms in the crystal structure. This theory, com- 

bined with results obtained with the x-ray spectrometer designed by 

his father, W. H. Bragg, enabled them to work out, during the years 

1912-14, the structures of substances such as sodium chloride, 

potassium chloride, zinc blende, iron pyrites, and diamond. This had 

an immediate impact on chemistry. The structure of sodium chloride, 

for example, showed that there were no molecules of NaCl but that 

each atom of sodium had six chlorine atoms around it at equal dis- 
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tances, and each chlorine had six sodium atoms around it. (The 
subsequent development of the electronic theory of valency from 
1916 onwards showed that the structural units were ions rather than 
neutral atoms). The diamond structure, in which each carbon atom 
has four nearest neighbours tetrahedrally disposed around it, pro- 
vided the starting point for the very many subsequent structure 
determinations of carbon compounds. 

The development of quantum chemistry from 1925 onwards 
introduced the concept of charge density, 7.e. electronic charge per 
unit volume, into chemistry and development of the Fourier analysis 
method of structure determination enabled the x-ray crystallo- 
graphers to compute this charge density at given points within the 
unit cell from the positions and intensities of diffracted beams. The 
results are normally illustrated by contour diagrams—lines of con- 
stant electron density. Figure 15 shows one such diagram for sodium 

Fie. 15. Electron density contours for sodium chloride (after W. Witte and E. Wolfel). 

chloride in which the contour lines are concentric circles centred 
on the sodium and chorine nuclei. The density increases to a maxi- 
mum at each nucleus but falls to a minimum value in the region 
between the nuclei. A boundary surface can be drawn around each so 
that the structure becomes a three-dimensional one of spheres in 
contact with each other. The total amount of charge within each 
sphere can be calculated, and for sodium chloride it approximates 
to that expected for Na+ and Cl- ions. 
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The Fourier method, unfortunately, is not of general applicability 
and it becomes less reliable when applied to heavier atoms. It has 
been outstandingly successful for organic compounds in which the 
important atoms are light elements such as carbon, nitrogen and 
oxygen. 
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4. Crystal Lattice Energy 

a I EE INE EE 

By the year 1918 the structures of a number of simple compounds 

had been worked out from x-ray diffraction experiments. Many of 

these structures (e.g. the alkali-metal halides) could best be considered 

as regular arrangements of ions, and the cohesion of the solid com- 

pounds was attributed to electrostatic interactions between these 

ions according to the Coulomb law. M. Born and his collaborators 

developed a theory of ionic crystals from 1918 onwards. and the 

applications of this work have proved to be extremely useful for 

chemistry in general and inorganic chemistry in particular. 

Lattice energy is defined as the energy liberated when one mole of 

gaseous cations and one mole of gaseous anions are brought together 

from infinite distance apart to their equilibrium position in the 

crystal lattice at 0 K, i.e. the change in internal energy, AU, for the 

reaction 
M*+(g) + X(g) — MxX(solid) 

(Some authors define lattice energy as the increase in internal 

energy resulting from the separation of ions from their position 

in the crystal to infinite separation: this will give a different algebraic 

sign. The equation defining AU should always be quoted, otherwise 

arithmetical errors in crystal energy calculations are easily made.) 

Lattice energy can be calculated for structures consisting of spherical 

ions. The interaction energy between two ions of charge zte and z27e 

separated by a distance Ff is, according to the Coulomb law, 

—ztz-e?/R (in egs units; or —ztz-e2/47eR in SI units). Figure 16 

shows part of a sodium chloride structure. Consider the interaction 

energy between a particular cation C and all other ions in one mole 

of crystalline NaCl. In this structure C has 

6 nearest neighbours (Cl-) at a distance R, 

12 second neighbours (Nat) at a distance /2k, 

8 third neighbours (Cl-) at a distance / 3k, 

6 fourth neighbours (Na*) at a distance /4R, etc., etc. 

so that the Coulombic interaction energy at C becomes, 

— (6z+2-e2/ R) + [12(z+)?e?//2 RF] — (82t+z-e2/4/3R) + [6(2*)?e?/+/4R]. .. 

or —ztz-e?/R x [6 — (122+ /(4/2)2-) + (8/+/3) — (624/227) + mae 

The ratio of the ionic charges is constant for a given structure, 

(e.g. zt/z-=1 for NaCl, 2 for TiO,), so that the Coulombic energy 
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Fre. 16. The sodium chloride structure; closed circles, Nat; open circles, Cl-. 

term can be written Uy= —ztz-eA/R, where A, called the Madelung 
constant, is written for the series enclosed within the square bracket 
above. 
We can now repeat the analysis to get the Coulombic interaction at 

a particular anion A in the sodium chloride structure. This will also 
be —z*z-e?A/R since cations and anions have the same arrangement 
of neighbours in the sodium chloride structure. The total Coulomb 
energy for a lattice of N cations and N anions, where N is the 
Avogadro number, is then given by 

—2ztz-e2 AN 
=a paces 

The factor } is needed because Ug+U, includes the interaction: 
between each pair. 

U=}(Ug+U,)= 

Table 2, Madelung constants 
ee ee Ss ae ee 
Caesium chloride structure 1.763 
Sodium chloride structure 1.748 
Zine blende structure 1.638 
Wurtzite structure 1.641 
Rutile structure 2.408 
Fluorite structure 2.519 
—_: eee 

Madelung constants have been calculated for a large number of 
structures (not without difficulty) and Table 2 lists some of them. 
The Madelung constant is a measure of the additional interaction 
energy resulting from a three-dimensional lattice of ions. It may 
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be compared with the interaction between a single pair of ions— 
there is a 75 per cent increase in Coulombic energy when we go from 
the ion-pair (Nat)(Cl-) to crystalline NaCl. 

The Coulombic interaction energy, which represents a net attrac- 
tion between the ions, must be opposed by a repulsion energy since 
the ions maintain an equilibrium separation in the crystal structure. 
A number of expressions have been suggested for this repulsion, 
which arises partly from the effects of overlapping charge-clouds 

_ and partly as a consequence of the Heisenberg uncertainty principle. 
Born and Landé first suggested the expression BN/R” so that the 

lattice energy becomes 

U=—ztze-eAN/R + BN/R” 

The constant B can be eliminated if we make use of the fact that, 

at R=R,, the equilibrium separation of the ions in the crystal, 

(8U/5R) =0. 
+2024 

This gives B=———_ R= 

h vy —z2tz-eAN 1 1 + 
whence = R, “ih (cgs units) 

—2tz-e AN 1 
i aie eg (ey Ste it reas (1 “) (SI units) 

The integer n, which depends upon the nature of the ions, can be 

estimated from compressibility measurements. A value of n=9 

is obtained for alkali-metal halide structures. Later, when the 

development of quantum mechanics showed that electron wave 

functions decreased exponentially with increasing distance from the 

nucleus, Born and Mayer used the expression B’Ne-*/e for the re- 

pulsion term. The constant B’ can again be eliminated by putting 

(SU/SR)p-p, =09 and the expression for the lattice energy now 

becomes 

—2ztz-e® AN U=— — (1-p/R,) 
é 

The constant p, for ions with inert-gas electron configuration, is 

about 0.35 x 10-1°m. A typical value of R, is about 3 x 10-m, so that 

the repulsion term amounts to about 12 per cent of the Coulombic 

interaction. 

In very precise calculations of lattice energy, allowance has to be 

made for additional interactions. Polarization of one ion by its 

neighbours introduces a ‘dipole-induced dipole’ attraction NC/K*® 

(when OC is an empirical constant) and the residual (or zero-point) 

energy—vibrational energy retained by the lattice at 0 K—must 
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also be included. These terms are, however, small (from 4-40 

kJ mol!) compared with the total lattice energy which may be 
several hundreds of kilojoules per mole. 

Unfortunately, Madelung constants become increasingly difficult 
to calculate as the complexity of the structures increases, and in 
recent years a semi-empirical expression for lattice energies, due to 
Kapustinskii, has often been used. This is 

+. _ ie ip wae (1- =) 

r+re r,+r— 

where v is the number of ions in the formula of the substance con- 
sidered (e.g. v=2 for NaCl, 3 for CaF, etc.) and r, and r_ are the ionic 
radii. Values for the lattice energies of a number of crystals are 
quoted in Table 3 on p 32, where they are compared with values 
obtained indirectly from thermochemical data, using the Born- 
Haber cycle, which we must now discuss. 

The Born-Haber cycle 

There is no experimental method for the direct determination of 
lattice energy. A value can be obtained indirectly, however, using a 
method developed by Born and Haber which we will discuss using 
sodium chloride as an example. The enthalpy of formation of one 
mole of crystalline sodium chloride, NaCl(s), can be measured ex- 

perimentally: 

Na(s)+3Cl,(g) —> NaCl(s); AZ = —410kJ mol- ( 298 K) 

This process can be broken down into a number of stages: 

1. Na(s) — Na(g); AH,=108 kJ mol-! (298 K) 

This is the enthalpy of sublimation of sodium. 

2. 3Cl,(g) — Clg); AH,=121kJ mol-! (298 K) 

Here AH,= [enthalpy of dissociation of Cl,(g)]. 

3. Na(g) — Na*+(g); AH,=489 kJ mol-! (298 K) 

AH, is the ionization potential of sodium*. 

4. Cl(g) — Cl-(g); AH,= —365k Jmol" (298 K), (i.e. exothermic) 

AH, is the electron affinity of chlorine.* 

5. Na*(g)+Cl-(g) — NaCl(s) 

* N.B. Ionization potentials and electron affinities are usually recorded in 
volts at 0 K. They are internal energy changes and when inserted as stages in 
the Born—Haber cycle the values have to be corrected to enthalpy changes 
(in kJ mol-?) at 298 K. 
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AH, for this reaction* at 298 K can now be obtained by using 
Hess’s law, since the enthalpy change for the total process, AH is 
independent of the route by which NaCl(s) is formed from Na(s) 
and 4Cl(g). Perhaps the safest way to apply Hess’s law is to plot 
enthalpies on a vertical scale in a diagram of the type shown in 
Fig. 17, where an arrow pointing upwards indicates an increase in 

Fia. 17. The Born—Haber diagram for sodium chloride. 

AH kJ mol 

Nat(g) + Cl(g) 

Nat (g) +Cl7(g) 

1108 1 

Na(s) + 9 Clo(g) 

NaCl(s) 

*N.B. The heat needed to vaporize crystalline NaCl is considerably less 

than the lattice energy since there is an appreciable concentration of ion-pairs, 

NatCl-, at temperatures just above the boiling point of NaCl. 
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enthalpy (AH positive) for the particular stage. The vertical dis- 
tances on the two sides of the diagram [i.e. from the NaCl(s) datum 
to the Nat(g)+Cl(g) datum] must be numerically equal, so that 

410+ 108+ 121 +489 = — (365+ AH,) 

whence AH; = —763 kJ mol~ at 298 K. 

This enthalpy change is often called the lattice energy in Born— 
Haber calculations. However, it should be corrected to give the true 
lattice energy, which is AU at 0K for Nat(g)+Cl-(g)>NaCl(s). 

This correction (AH = AU -2RT) is about 8-12 kJ mol- for simple 
compounds, and so can usually be neglected. 

In Table 3 lattice energies obtained by the Born—Haber cycle are 
compared with those calculated assuming the solid is essentially an 
ionic structure. It will be seen that there is very good agreement for 
the alkali halides, reasonable agreement for halides such as MgF, 
and CaF,, but no agreement for CdI, where the assumption that the 
structure is ionic is clearly not valid. 

Table 3. Lattice energies* (kJ mol-') 

Compound . Calculated value Born—Haber value 

LiCl — 825 —8I7 
NaCl — 764 — 764 
KCl — 686 —679 
KI — 617 — 606 
Cdl, — 1996 —2 410 
MgF, —2915 —2 908 
CaF, — 2 584 —2 611 
CaO —3 485 —3 464 
Al,O, —15 514 — 15 326 

The very high values for CaO and AI1,O, reflect the importance of the ionic 
charges; the product ztz~ in the expression for the calculated lattice energy 
is 4 for CaO and 6 for Al,O3. 

* Values taken from M. P. Tosi, Solid St. Phys., 1964, 16, 54; and T. C. 
Waddington, Adv. Inorg. and Radiochem., 1959, 1, 157, converted from kcal 
mol- to kJ mol using the conversion | kcal= 4.184 kJ. 

Applications of the Born-Haber cycle and 
lattice energy calculations 

Ionic character of bonding in crystal structures 

Lattice energy calculations of the type described above are based 
on the assumption that there is an interaction between ions according 
to the Coulomb law. Good agreement between these calculated values 
and those obtained indirectly from the Born—Haber cycle therefore 
provides strong support for this assumption. Conversely, the fact 
that the two values do not agree, e.g. for CdI,, indicates that the 
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bonding in this case has appreciable covalent character. The small 
doubly-charged cation Cd*+ has a considerable polarizing power, 
and it distorts the charge cloud of the large iodide ion, I-, which has 
a high polarizability. These polarization effects are equivalent to a 
partial electron-sharing between the ions, i.e. the bond acquires 
some covalent character. This, in turn, influences the geometry of 
the structure. Cadmium iodide has a layer structure which is des- 
cribed on p 57. 

Determination of electron affinities 

Electron affinities are extremely difficult to measure experimentally. 
However, if there is good reason to suppose that a particular struc- 
ture MX is essentially ionic, a lattice energy can, in principle, be 
calculated and the value used in a Born—Haber cycle in which energy 
changes are known for every stage except that for the electron 
affinity: 

X(g) + e > X(g) 
Hess’s law can then be used to obtain the electron affinity. This 
method has been applied with great success to a rather unusual 
substance—the compound O,PtF,—with the unexpected result that 
a whole new field of inorganic chemistry has been opened up. In the 

AH kJ mol7! 

1200 = OF) + Pt (9) 

O2(g) + Pth(g) 
Op Pt Fy(S) 

Fia. 18. The Born—Haber diagram for O,PtF.. 
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course of some work on the properties of platinum hexafluoride, 
PtF,, N. Bartlett obtained the compound O,PtF,, a brown-yellow 
crystalline solid. A crystal structure determination showed that this 
compound was an essentially ionic structure with OF cations and 
PtF,; anions. The Kapustinskii formula was used to obtain a lattice 
energy of —523 kJ mol. A Born—Haber diagram as shown in 
Fig. 18 can now be constructed. There are two unknowns: the en- 
thalpy of formation of O,PtF, and the electron affinity of PtF,. 
However, since O,PtF, is a stable compound it seems reasonable to 
assume that its enthalpy of formation from O, and PtF, will be 

negative. The datum line for OF [PtF,]- (s) in Fig. 18 will therefore 
be below that for O,(g)+PtF,(g). Simple application of Hess’s 
law then shows that the electron affinity of PtF, must be at least 
653 kJ mol-1. The release of so much energy in the reaction 

PtF,(g)—>[PtF.]“(g) 
means that platinum hexafluoride is a very powerful oxidizing agent. 
Bartlett then used this Born—Haber diagram as a basis for selecting 
other substances that might be oxidized by PtF,. A survey of ioniza- 
tion energy values at once revealed that the inert gas xenon has an 
ionization energy of 1172 kJ mol-!, which is almost identical with 
that of O, (1176 kJ mol-!). Xenon would not have been an obvious 
choice for an experiment on possible combination with PtF,, but 
_the Born—Haber approach revealed that it would be worth trying. 
The experiment was performed. An orange-yellow solid obtained im- 
mediately the two gases were mixed contained the compound 
XePtF, among others. This discovery initiated a period of intensive 
research on the heavier inert gases, and several such compounds are 
now known (e.g. XeF,, XeF,, XeFs). 

Stabilities of hypothetical compounds 

The Born—Haber approach to solid structures is particularly useful 
in providing answers to questions such as: why ionic crystals are 
formed at all; and why sodium chloride is NaCl and not NaCl, 
whereas magnesium fluoride is MgF, and not MgK? The usual answer 

‘given in elementary accounts is that the atoms attain a stable 
inert gas electronic configuration by forming Na+ and Mg?* res- 
pectively. However, ionization is never an easy operation. It re- 
quires more energy to convert Mg(g) into Mg?*+(g) (2201 kJ mol-}) 
than it does to convert neon into Ne*(g) (2088 kJ mol-'). Compounds 
of Mg** are well known; no compounds of neon are known. The thermal 
stability of hypothetical compounds can conveniently be discussed 
in terms of Born—Haber cycles, at least so far as enthalpies of forma- 
tion are concerned. Strictly speaking, stability is measured by the 



CRYSTAL LATTICE ENERGY 35 

free-energy change (AG) accompanying formation of a compound 
from its elements in their standard states. 

There may be cases where the entropy change (AS*) (in AG*® = 
AH* —TAS*) is great enough to confer stability on a compound for 
which the enthalpy change is endothermic, 7.e. AH positive, but in 
many cases a large, negative enthalpy change will imply the forma- 
tion of a stable compound. 

Figure 19 illustrates a Born—Haber cycle for the hypothetical ionic 
compound NetCl-(s). The lattice energy is computed using the 

Fig. 19. The Born—Haber diagram for NeCl. 

AH kJ mol"! 

Net+(g) + Cl(g) 

1-365 

Ne+(g) + CI7(g) 

1-753 

Ne Cl(s) 

Ne(g) + 3Cl,(g) 
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Kapustinskii equation assuming a sodium chloride type structure 

for NeCl and a radius for Ne+ approximately the same as that of the 

neutral atom. This gives 

Net(g) + Cl(g) ~ NeCl(s); AU~ AH=—753 kJ mol-t 

and from the Born—Haber cycle we then get a value for the enthalpy 

of formation of NeCl 

Ne(g) + 4Cl,(g) — NeCl(s); AZ=+1091 kJ mol", 

i.e. an endothermic reaction. 

On the other hand, a corresponding diagram for MgF,(s) gives 

Mg(s) + F,(g) — MgF,(s); AH=—1100 kJ mol-}, 

so that the formation of MgF, is an exothermic process. The stage 
which is essentially responsible for the difference between the two 
examples is that involving lattice energy: 

Net(g) + Cl(g) — NeCl(s); AH~ —753 kJ mol} 

Mg*+(g) + 2F-(g) — MgF,(s); AH = —2908 kJ mol-. 

The high value for the MgF, lattice energy indicates the important 
effect of the doubly-charged ion Mg+ and of the Madelung constant 
(2.408 for MgF, which has the rutile structure). It is instructive to 
apply the cycle to the hypothetical compound MgF. If we assume 
that it has a sodium chloride lattice and a Mg* radius equal to that of 
Na+ (which has the same arrangement of electrons) we get a cal- 
culated value of —904 kJ mol! for the lattice energy. This in turn 
leads to an enthalpy of formation of only —105 kJ mol-! for MgF (s). 
MgF may have a transitory existence in certain circumstances, but 
it readily undergoes disproportionation to Mg and MgF,, for which 
AH =—619 kJ mol-?. 



5. A Survey of Crystal Structures 

Crystal structures can be classified in a number of ways, one of which 
is essentially geometrical. Mathematical topology is applied to dis- 
cover the possible structures that might be developed given the 
immediate, nearest neighbour environment of a given atom. We 
shall discuss some simple aspects of this approach later in this 
chapter (p 59) where structures are described in terms of close 
packing of polyhedral units, or of open packing where edges or 
vertices of polyhedra are shared. This classification is, however, 
mathematically sophisticated and not really suitable for students 
beginning a study of the subject. For them, a classification based on 
bond types seems more directly linked with chemistry. Although it 
must always be emphasized that descriptions of bonding in terms of 
extreme types of bond are very much an oversimplification, a great 
many structures do fall naturally into categories based on these bond 
types. (As is always the case, the really interesting examples are those 
that do not fall neatly into these categories.) We shall therefore first 
of all discuss structures in terms of ionic, covalent, van der Waals, 

hydrogen, or metallic bonds between an element and its nearest 

neighbour. Table 4 shows one such classification based on these bonds 

with a summary of the characteristic features of each type of 

structure. 

lonic structures 

The structures of ionic compounds are determined in the main by 
geometrical considerations—the relative sizes of cations and anions— 
and by the requirement for overall neutrality. There are no preferred 
directions for bond formation since the electric field around simple 
ions is spherically symmetrical. Electrostatic theory predicts that 
stable structures will be those in which there is cation—anion contact 
with anions arranged in a symmetrical way to minimize anion—anion 
repulsion. The co-ordination number—the number of nearest 
neighbours of opposite charge in contact with a given ion—will 
depend on the relative radii. A co-ordination number of 12 should be 
possible if cations and anions have the same radii—see Fg. 20. 

Ionic structures are not found with this arrangement, however, since 

it is not possible to construct a regular three-dimensional array of 

ions in which each has a co-ordination number of 12. If the ions 

are of very different sizes the co-ordination number is less than 
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Table 4, Classification of crystal structures 

Structural 
Type unit Bonding Characteristics Example 

Ionic Cations and Electrostatic, Strong, hard Alkali 

anions non-directional crystals of high halides 
mp. Moderate 
insulators. Melts 
contain ions and 
are conductors. 
Some are soluble in 
liquids of high 
dielectric constant. 
Optical and mag- 
netic properties are 
largely those of the 
constituent ions. 

Covalent Atoms Covalent— Strong hard Diamond 

limited no. of crystals of high mp. 
electron-pair Insulators. 
bonds, spatially 
directed. 

Molecular Molecules Mainly covalent Soft crystals of low Iodine; ice; 

between atoms mp and large crystalline 
in molecule. coefficient of organic 
Van der Waals expansion. compounds. 
(or hydrogen) Insulators. 
bonding between 
molecules. 

Metallic Metal ions ‘Metallic’; Single crystals are Iron 

delocalized soft; strength 
valence electron depends on 
orbitals. structural defects 
Non-directional. and grain. 

Variable mp. Good 
conductors. 

12; a small cation can only accommodate a small number of 
large negative ions around and in contact with it. Possible co- 
ordination numbers in ionic crystals are often discussed in terms of 
the radius ratio, 7,/r_, and many books contain diagrams of the 
type shown in Fig. 21, which shows the immediate environment of a 
cation in contact with six larger anions. In (a), the cation A* is in 
contact with six anions B-, octahedrally arranged. If the radius ratio 
is now changed, in this case by keeping A+ the same but changing to 
larger anions C- or D-, the co-ordination may change. In (c) the 
large anions D~ are in contact with each other, and not with the 
cation A+. This represents an arrangement that would be less stable 
than one of tetrahedral co-ordination in which there was cation— 
anion contact. The structure AC, shown in (bd), is a limiting case for 
octahedral co-ordination. The anions are in contact with each other 
as well as with the central cation. The limiting value of the radius 
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Fic. 20. Co-ordination of ions of 
equal radius. Each ion is in con- 
tact with six coplanar ions in 
layer B, with three in layer A, C 

and with three in layer C. 
Layers A and C have been dis- 
placed vertically to show the 
geometry more clearly. 

Fig. 21. Co-ordination and radius 

ratio r/r_- 

ratio for any given co-ordination number can readily be calculated 

using diagrams of the type shown in (b). Table 5 gives some of these 

limiting values. 

It is possible that this approach to co-ordination has been over- 

stressed in recent years. Students readily grasp the relation between 

co-ordination number and limiting radius ratio. Ionic radii can be 

obtained from data books; the radius ratio is calculated and the co- 
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Table 5, Co-ordination and radius ratio 

Limiting value of 
Co-ordination no. Geometry radius ratio 7; /r_ 

ze 8 Cubic 0.732 
6 Octahedral 0.414 
4 Tetrahedral 0.225 

ordination number for the structure is predicted. Unfortunately, the 
method is normally tried out first of all on the alkali halides where it 
often predicts a structure different from that found from x-ray 
diffraction methods. Cubic co-ordination (co-ordination no. 8) should 
be possible for KF (radius ratio 0.98) for example but, in fact, it has 
the octahedral sodium chloride structure. The Madelung constants 
for the CsCl and NaCl structures are very similar (see p 28) so that 
the structures do not greatly differ in lattice energy, and other factors 
such as polarization or van der Waals forces may determine which 
structure is the more stable in a given case. Some substances change 
structure if external conditions are altered. Thus, caesium chloride 
has ‘the cubic structure (described on p 43) up to 469 °C and the 
octahedral sodium chloride structure above this temperature. At 
very high pressures some potassium halides change from the sodium 
chloride to the caesium chloride structure type. 

The radius ratio method is more successful in predicting co-ordina- 
tion numbers for compounds of formula AB,. Calcium, strontium, 
and barium fluorides, of radius ratio 0.79, 0.91, and 1.08 respectively, 
have the fluorite structure in which the cation co-ordination number 
is eight. TiO,, SnO,, and GeO,, however, (7,,/r-=0.48, 0.51, 0.38) 
have rutile (TiO,) type structures in which the cation co-ordination 
is six. 

It is also quite easy to get involved in a circular argument. Pauling 
values for ionic radii are normally used (see p 41). These are based 
on structures of octahedral co-ordination, but corrections can be 
made for structures of different co-ordination. Thus a knowledge of 
the structure is needed to obtain appropriate ionic radii—which can 
not then be used for prediction purposes. 

At present the whole topic of ionic radii is in a very unsatisfactory 
state. In the first place quantum theory shows that there is a finite, 
if small, probability of finding the electron in an atom or ion at very 
great distances from the nucleus. The probability or charge density 
function dv has to be ‘chopped off’ at an arbitrary distance from 
the nucleus if the ion is to be regarded as a spherical charge-cloud 
of radius r. Nevertheless, a survey of interionic distances obtained by 
x-ray diffraction studies shows that ions do often behave as though 
they had characteristic radii in ionic structures. The difference 
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between the interionic distances in lithium bromide and chloride is 
0.18 A* and corresponding differences between the bromides and 
chlorides of Na, K, Rb, Cs are 0.16, 0.15, 0.14, and 0.14 A res- 
pectively. This approximately constant difference can be explained 
if the ions are regarded as spheres of constant radius; the interionic 
distance is then given as the sum of the radii of ions in contact. If 
the value of one radius is known the value of the other can be found 
by subtraction, and the construction of tables of ionic radii becomes 
possible. For many years crystal chemists and geochemists used the 
tables developed by V. Goldschmidt (1888-1947), who may well be 
regarded as one of the founders of crystal chemistry. They were based 
on values of individual radii obtained by J. A. Wasastjerna using a 
theory that related the polarizability of an ion to its volume. Gold- 
schmidt had himself measured interionic distances in a large number 
of simple compounds, and he made slight adjustments to the Wasast- 
jerna values to get the best fit between observed interionic distances 
and the sums of radii. 

The theoretical basis of Wasastjerna’s approach is not now 
generally accepted, and the values suggested by Linus Pauling are 
often used. Pauling emphasized that the radii would be a function of 
co-ordination number, radius ratio, and the charge on the ion. He 
considered isoelectronic ions such as KtCl-, and divided the in- 
terionic distance in the inverse ratio of the effective nuclear charge, 
i.e. the nuclear charge diminished by the screening effect of the inner 
electrons, obtaining the values r(K+)=1.33 A, r(Cl-)=1.81 A. This 
enabled him to assemble, first of all, a table of values of wnivalent 
jonic radii and, subsequently, values called ‘crystal radii’ for multa- 
valent ions in structures of octahedral co-ordination. Here again 
values were adjusted where necessary to get the best possible fit 
between observed interionic distances and radii sums. 
We have already referred (p 24) to recent, very precise x-ray 

diffraction studies in which the electron densities in some simple 

compounds such as NaCl have been determined. The electron 

density goes through a minimum along a line joining a sodium nucleus 

to a nearest neighbour chlorine nucleus and the position of this 

minimum should indicate the point at which the spherical cation 

and anion are in contact. Unfortunately, the radii so obtained from 

the results of W. Witte et al. are strikingly different from the 

Pauling or the Goldschmidt values. A new set of ionic radii has been 

devised by B. 8S. Gourary and F. J. Adrian (Solid St. Phys., 1960, 

* Crystallographers and structural chemists find the angstrom a very 

convenient unit of distance (1 A=10-!°m). This unit may eventually be 

abandoned and replaced by the SI units—the nanometre (1 nm=10-* m) and 
the picometre (1 pm=10-!* m). 
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10, 128) based on these recent x-ray diffraction results. They are 
shown in Table 6 with the corresponding Goldschmidt and Pauling 
values. It will be seen that the diffraction values give larger cations 
and smaller anions. Table 6 also includes a column headed atomic 
radit. These are not concerned with ionic structures but it is con- 
venient to include them here for comparison purposes. They refer 
to neutral atoms, and the most recent values are obtained from 

computations of the radius of maximum radial charge density 
[4rrr2R2(r)] in the outermost shell of the atom. The ionic radii of 
cations are considerably smaller than their atomic radii, whereas the 
anion radii are greater than the corresponding atomic radii. 

Table 6. lonic and atomic radii (in A) 

Ion Goldschmidt Pauling Diffraction Atomic 

Lit 0.78 0.60 0.94 1.45 
Nat 0.98 0.95 ible 1.80 
Kt 1.33 1.33 1.49 2.20 
Rb+ 1.49 1.48 1.63 2.35 
Cst 1.65 1.69 1.86 2.60 
Mg?+ 0.78 0.65 1.50 
Ca?+ 1.06 0.99 1.80 
Sr?+ 1.27 1.13 2.00 
Ba?+ 1.43 1.35 2.15 
1) 1.33 1.36 1.16 0.50 
Cl- 1.81 1.81 1.64 1.00 
Br- 1.96 1.95 1.80 1.15 
‘lie 2.20 2.16 2.05 1.40 
OFm 1.32 1.40 0.60 
Sm 1.74 1.84 1.00 

It is interesting to note that in the early days of structure analysis 
W. L. Bragg developed and used a set of radii characterized by large 
metal ions and small anions. Later, the theories of ion polarization 
seemed to demand small cations and large anions. Now we have 
electron-density determinations from precise x-ray diffraction 
studies which indicate a return to large cations and small anions, 
although the numerical values for the radii are not the same as those 
adopted by Bragg. However, it is too soon to consider a general 
replacement of Pauling or Goldschmidt values by a set based on 
diffraction results. In the first place only a very small number of 
electron-density determinations by high precision methods has so far 
been completed, and the Fourier method used has serious limitations 
when applied to heavy atoms. The position of the electron-density 
minimum is also sensitive to the nature and arrangement of the 
surrounding ions. Thus, the minimum electron density along the 
calcium—fluorine line in the CaF, (fluorite) structure gives a Ca?+ 
radius of 0.96 A and a F- radius of 1.40 A, which does not agree at all 
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with the F- radius (1.16 A) obtained from the electron density in 
alkali-metal fluorides such as KF. The traditional Goldschmidt or 
Pauling values have been of immense assistance in working out some 
very complex structures. The important point is that any consistent 
set of radii chosen to get the best fit between the sum of the radii and 
the measured interionic distance will be helpful in discussing solid 
structures. The danger lies in the uncritical and ‘quantitative’ use 
of these same radii in other situations, as, for example, in discussions 

of ion hydration. 
We shall therefore survey ionic structures in the traditional way, 

assuming first of all that the relative sizes of the ions will determine 
the co-ordination number around the cation. Co-ordination about the 
(generally) larger anions is not limited by geometry except insofar 
as a regular three-dimensional structure must be possible. The 
essential limitation is that of overall electrical neutrality. In a com- 
pound of general formula MX (e.g. Na*Cl-, Fe?+O?-) neutrality 

requires the cation and anion co-ordination number to be the same, 

whereas in a compound of formula MX, (e.g. Ca?+Fy) there must be 

twice as many singly-charged X~ ions as there are doubly-charged 

M?+ ions if neutrality is to be maintained. In this case the cation 

co-ordination number will be double that for the anion. 

Some typical ionic structures 

General formula MX 

The caesium chloride structure [Fig. 22a]. (e.g., CsCl, CsBr, CsI; 

NH,Cl, NH,Br, NH,I;* f-brass, CuZn). Here the cation has eight 

nearest neighbours symmetrically arranged at the corners of a cube. 

Neutrality requires the anion co-ordination to be the same so that 

each ion in the structure is at the centre of a cubic arrangement of 

ions of opposite charge. The resultant arrangement is one of two 

interlocking primitive cubic space lattices so arranged that a unit 

cell corner in one lattice is at the centre of a unit cell of the other 

lattice. (The caesium chloride structure is sometimes called ‘body- 

centred’. Strictly speaking this is a wrong use of the term ‘body- 

centred’ which applies to a particular type of Bravais space lattice of 

identical points.) 

It is often useful to note the number of ions per unit cell. In CsCl 

there are eight ions (Cl-) at the cube corners, but in a three-dimen- 

sional lattice each of these corners is common to eight unit cells so 

that the total contribution of the Cl- ions to one unit cell is 8 x $=1. 

* These ammonium halides crystallize with the sodium chloride structure at 

temperatures above 457, 411, and 255 K respectively. 
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(6) sodium chloride, 
(f) fluorite, (g) rutile. 

Fic. 22. Typical ionic structures (a) caesium chloride, 
(c) zine blende, (d) wurtzite, (e) nickel arsenide, 
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The Cs* ion at the centre of the unit cell belongs completely to that 
particular unit giving a total number of two ions per unit cell. 

The sodium chloride structure (Fig. 22b). (e.g. alkali halides [other 

than Cs] and hydrides; oxides and sulphides of Group ITA metals, 
oxides of divalent first-row transition metals—Mn0O, FeO, CoO etc.). 
Each ion has six nearest neighbours of opposite charge octahedrally 
arranged. The structure consists of the two interpenetrating face- 
centred cubic lattices. For the unit cell shown in Fig. 226 there are 
four Nat ions (8 at cube corners shared with 8 unit cells; 6 at cube 
faces shared with 2 unit cells; total 8x$+6x4=4) and 4 Cl- ions 
(12 at mid-points of cube edges shared with 4 unit cells; 1 at body- 
centre position unshared; total 12 x 4+1=4). 

The zinc blende structure (Fig. 22c). (e.g., CuF, CuCl, CuBr, Cul; 
ZnS [blende]; CdS; HgS; MnS; GaAs; SiC). Here each ion has four 

nearest neighbours arranged tetrahedrally. In all structures of low 
co-ordination number, however, the bonding is never purely ionic. 
Tetrahedral orientation of electron-pair bonds is a structural feature 

of very many covalent compounds. 

The wurtzite structure (Fig. 22d). (e.g., BeO, ZnO, NH,F; many of 

the examples quoted for zinc blende structures also exist in a wurt- 

zite form). The co-ordination is again four for each ion, but the 

geometry of second nearest neighbours is different from that in the 

zinc blende structure. (See p 55' for a discussion of these structures 

in terms of close-packed arrangements.) 

The nickel arsenide structure (Fig. 22e). (e.g., compounds of transition 

metals with S, Se, Te, As, Sb, Bi). Each M ion has six nearest xX 

neighbours at the corners of a distorted octahedron, whereas each X 

ion has its six M ion nearest neighbours at the corners of a trigonal 

prism. Each M ion also has two other M ions in close proximity and 

the bunding between these M ions may have considerable metallic 

cuaracter. 

General formula MX, 
Here, as we have seen above, the co-ordination about the cation is 

double that of the anion to achieve overall neutrality. 

The fluorite structure (Fig. 22f). (e.9., CaF,, SrF,, BaF,, BaCl,; 

ZrO,, ThO,, CeO,). Each Ca?+ cation has eight nearest F- neighbours 

at the corners of a cube. while four Ca*+ cations are tetrahedrally 

arranged around each F~ anion. 
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The rutile structure (Fig. 22g). (e.g., MgF,, MnF,, FeF,; TiO,, MnO,, 

VO,, WO,). The radius ratio is lower for these substances (values in 

the range 0.38-0.72) than it is for those with the fluorite structure 

(0.79-1.08) so that the cation co-ordination falls to six (octahedral) 

arrangement. Anion co-ordination must be three (trigonal coplanar) 

to maintain neutrality. 

Other MX, structures. When co-ordination numbers are less than six 
the bonds linking an ion with its nearest neighbours become in- 
creasingly covalent. Beryllium fluoride, BeF,, has the B-cristobalite 
structure in which the co-ordination is 4:2, with a tetrahedral 
arrangement of anions around each cation, and a collinear arrange- 
ment of cations around. the anions. 
Many halides of formula MX, have structures similar to those of 

cadmium chloride and cadmium iodide, but these ‘layer’ structures 
are best discussed in a more geometrical way in terms of close-packed 
arrangements (see p 57). 

General formula AX;, A, X,, AyXnYp 

Here again these structures are best discussed in terms of small 
ions occupying interstices in a close-packed arrangement of other 
ions in a symmetrical way (see p 57). 

Covalent structures 

In these structures the number of nearest neighbours is determined 
by the number of electrons available for the formation of covalent, 
electron-pair bonds between atoms. The elements of Group IV of the 
Periodic Table—C, Si, Ge, Sn (but not Pb)—have regular three- 

dimensional structures in which each atom has four nearest neigh- 
bours tetrahedrally arranged (see Fig. 23). The C-C bond length 
(1.54A) and the bond angles (1094°) in diamond are the same as 

Fie. 23. The diamond structure. 
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those in saturated hydrocarbon chains, and a detailed electron- 
density determination reveals the concentration of electron charge 
in the region between the linked nuclei which is a characteristic of 
covalent bonding. These covalent bonds are strong, and structures 
such as diamond are hard substances with high melting points. 
Carborundum, SiC, and Borazon, one of the forms of boron nitride, 
BN, also have the diamond structure. 

Molecular structures 

There are very many crystals in which the presence of molecular 
units is revealed by x-ray structure analysis. At least two types of 
bonding are usually involved. Within the molecules atoms are held 
together by strong bonds, essentially covalent in character, but the 
bonds holding the molecules together in a regular three-dimensional 
pattern are often much weaker—either van der Waals attraction or 
hydrogen bonding. Some idea of the relative strengths of these bonds 
can be obtained from a comparison of dissociation and sublimation 
enthalpies. Thus for Cl,(g)—>2Cl(g), AH (dissociation) = 242 kJmol- 
measures the energy needed to break the covalent bond linking the 
atoms in the Cl, molecule, whereas AH (sublimation) = 29.3 kJ mol? 
for Cl, (solid) Cl, (gas), is a measure of the strength of the van der 
Waals bond between the Cl, molecules in the crystal structure of 
solid chlorine. There are also many molecular structures in which the 
molecular ‘unit’ is extended to form long chains, or planar networks. 
They may be classified as follows, in terms of the complexity of the 

molecular unit. 

Discrete molecular units (e.g. Iz, Sg, solid crystalline organic com- 

pounds). They usually have low melting points, since melting involves 

breaking the weak van der Waals bonds between molecules rather 

than the strong bonds between atoms in the molecule. The van der 

Waals bond may include a number of different contributions. If the 

molecule is polar there will be electrostatic interactions between 

dipoles, together with dipole and induced dipole attraction. Even if 

there are no charges or dipoles in the structure there will always be 

attraction between atoms or molecules arising from the ‘dispersion’ 

effect. The origin of these dispersion forces must be left for more 

advanced courses. 
The construction and discussion of the rhombic sulphur structure 

can be particularly rewarding in teaching. The puckered 8, rings 

illustrate the way in which covalent bond geometry, including the 

effect of two lone-pairs of electrons on the sulphur atoms, is deter- 

mined by the repulsion of valence-shell electron pairs. The familiar, 

but very unusual, behaviour of the element on melting can then 
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readily be rationalized in terms of the preliminary breaking of van 
der Waals bonds between the 8, molecules, followed by subsequent 
breaking of covalent bonds and ring-opening at higher temperatures. 
The anomalous viscosity changes result from chain growth and chain 
entanglement. 

The units from which molecular structures are ¢onstructed need 
not necessarily be neutral molecules. There are many interesting 
chain or layer structures in which the units carry net charges, so 
that the inter-unit bonding, normally van der Waals, may be sup- 
plemented by ionic interactions. 

Chain structures 
Infinite chains, van der Waals attraction between chains (e.g. SeOx, 
PdCl,, BeCl,). In selenium dioxide each selenium atom is linked by 
covalent bonds to three oxygen atoms. The presence of a lone-pair of 
electrons on the selenium atom imposes a pyramidal geometry on the 
SeO, units which are linked through oxygen atoms to form the 
infinite chains 

O O O 

| | | 
Se Se Se 

7 ~ oF So No 

These chains are stacked together parallel to each other in the crystal 
structure. 

The chains in palladium(1r) chloride are formed by the sharing of 
chlorine atoms which are in a square-coplanar arrangement around 
each palladium atom. 

do Chicco met CN ms 

Pd ~S vd ~ a ~N a Cl Cl 

In beryllium chloride, however, the bridging chlorine atoms are 
tetrahedrally arranged about the metal atom in the infinite chains. 
These geometries are in accordance with the predictions of valency 
theory, and it is reassuring that structure determinatians confirm 
the predictions. 

. AY ye Cll oN 7 

Be Be Be 

Aa = Cl SC en a 

Infinite chains, ionic bonds between the chains. An example of this 
type of structure is CsCuCl,, in which the (CuCl,)~ complex forms an 
infinite chain in which each copper atom is octahedrally surrounded 
by six chlorines. The chain structure is again the result of chlorine 
bridges between the copper atoms. 
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Two-dimensional network or layer structures, van der Waals bonds 
between layers. [e.g. Cdl,, MoS,, C (graphite)]. Many chlorides, 
bromides and iodides of general formula MX, or MX, form layer 
structures. 

In cadmium iodide each cadmium atom has six nearest neighbour 
iodines octahedrally arranged; each iodine is shared between two 
Cdl, units thus building up a layer structure (see Fig. 24a) [N.B. 
the Cdl, type structure is often discussed in terms of Cd?+ ions 

inserted into a close-packed structure of iodide ions (see p 57). The 

cadmium-iodine bond, however, has appreciable covalent character, 

and a description of the structure in terms of a molecular lattice is 

perhaps more appropriate]. 
The useful lubricant molybdenum disulphide achieves its layer 

structure by sharing sulphur atoms between MoS, units which have 
the geometry of a triangular prism (Mig. 245). 

The common form of graphite has the familiar layer structure 

shown in Fig. 24c. The stacking of the layers is such that a carbon 

atom in one layer is vertically above the centre of a hexagon of car- 

bon atoms in the layer below. The layers then alternate ABABAB 

... etc. in the crystal structure. Graphite is polymorphic, and one of 

its forms has a structure in which the alternation is more com- 

plicated—ABCABCABGC etc. This rhombohedral form is much more 

closely related to the diamond structure than is the common form of 

graphite structure. 

Hydrogen bonding between layers (e.g. Al(OH);]. In aluminium 

hydroxide, and many other metal hydroxide structures, the metal 

ion is surrounded by six hydroxide ions in octahedral geometry. The 

hydroxy-groups on the underside of one layer are linked tu corres- 

ponding hydroxy groups of the layer below through hydrogen bonds. 

(Figs 24d and 24e). 

Three-dimensional structures 
We have already discussed the ‘giant molecule’ type of three-dimen- 

sional structure exemplified by ionic crystals such as sodium chloride, 

and covalent structures such as diamond or silicon. In these examples 

there is no ‘molecular’ unit, since the entire structure is one giant 
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e= Aluminium 
(in plane of paper ) 

o= Hydroxyl 
(above plane) 

o= Hydroxyl 
(below plane) 

d 

e=MO(in plane of paper ) 

o= S ( in plane above paper) 

o= S( in plane below paper) AI(OH), layer 
6 

b 

hydrogen bonding 

Al(OH), layer 

——_— hydrogen bonding 

@-— Aluminium 

ZS — Hydroxide 

e 
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Fia. 24. Layer structures. (a) CdI,; (6) MoS,; (c) graphite; (d) and (e) Al(OH),. 
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represents a water molecule 

--- direction of hydrogen bonding 

Fic. 25. The structure of ice-I. 

molecule. Small molecules or complex ions may, however, link 

together to form a three-dimensional framework. 
Ice is polymorphic. In the form obtained by normal freezing, water 

molecules link together through hydrogen bonds to form a hexa- 
gonal structure closely resembling the wurtzite arrangement 
(p 45). The form obtained by condensing water vapour on to a very, 
cold surface, however, has a cubic structure. In each case every 
oxygen has four other oxygen atoms tetrahedrally arranged around 
it, with hydrogen atoms lying on, or nearly on, the line joining ad- 

jacent oxygens (see Fig. 25). 

The structures of large organic molecules 

The most spectacular advances in the techniques of structure 

analysis by x-ray diffraction have been made in the field of organic 

chemistry. Progress was slow in the early days because of technical 
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difficulties. It was impossible to locate hydrogen atoms because they 

gave only very weak x-ray scattering, and the important atoms, 

carbon, nitrogen, and oxygen were difficult to differentiate since they 
had similar scattering powers. Nevertheless, Kathleen Lonsdale com- 
pleted the structure determination of an aromatic compound, hexa- 
methylbenzene, in 1929; this work provided the first direct evidence 

for the planarity of the benzene ring. 
J. D. Bernal’s work on the structure of crystalline sterols also had 

a marked impact on experimental chemistry. His determination of 
the unit cell dimensions showed at once that the then accepted 
structural formulae for the sterols must be wrong, since molecules 
with these formulae would be too big to fit into the unit cell. 

The pace of structure analysis of large organic molecules accele- 
rated from the 1940s onward, largely as a result of wartime work on 
the structure of penicillin. Money was available to assemble a large 
team of workers and provide adequate computing facilities. The 
development of high-speed computers and automatic crystal diffrac- 

tometers has changed the scale and scope of structure analysis in 
recent years. Structures that at one time would require months or 
years of work with desk computers can now be completed in weeks 
or months. Each of these large molecules, however, is a special 

case, so that crystal chemistry does not necessarily provide the 
correlations that have been so useful in inorganic chemistry. The 
structures are essentially molecular—large, very unsymmetrical 
molecules held together by van der Waals forces and hydrogen bonds. 

Metallic structures 

About 75 per cent of the known elements are metals. They 
have structures of high co-ordination, high electrical and thermal 
conductivity, with a typical surface lustre. These properties are to a 
large extent explained by a theory which, in simple terms, regards 
the structures as a close-packed array of positive ions, held in an 
equilibrium position by interaction with valence-shell electrons 
supplied by the metal atoms. However, the valence-shell electrons 
are not localized in electron-pair bonds between near neighbours; 
they enter a delocalized molecular orbital enveloping all the cations 
in the structure. The conductivity of metals can then be related to 
possible energy changes for electrons in this delocalized orbital. 

From the structural point of view we have to consider the geo- 
metry of close-packed arrays of ions of equal radius, 7.e. the method 
of packing which puts as many equal spheres as possible into a given 
volume. Figures 26a and b show two possible ways in which close 
packing can be achieved. In any layer, each sphere is in contact with 
six others whose centres form a regular hexagon coplanar with the 
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Fie. 26. Close packing of spheres. 

central sphere. A second layer can now be arranged so that each 
sphere in layer A is in contact with three spheres in layer B. There 
are two different ways of adding the third layer, each of which gives 
rise to a close-packed structure. In 26a each ion in the third layer is 
vertically above an ion in the first layer, whereas in 26) each third- 
layer ion is above an interstice in layer one. 

The sequence of layers in the 26a structure can conveniently be 

denoted ABABAB .... Each ion has a co-ordination number of 12, 
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Fie. 27. The body-centred cubic 
structure. 

and the structure has hexagonal symmetry; it is therefore termed 
hexagonal close-packed. The layer in structure 26b can be denoted 
ABCABCABC ... The co-ordination number of each ion is again 
12, but the structure has cubic symmetry. Figure 26c shows the 
relationship between the parallel close-packed layers and the face- 
centred cube unit cell. Most metals crystallize in one or other of these 
two forms. There are a few which have a modified hexagonal close- 
packing in which the layer sequence is ABACABAC, and a few which 
have the body-centred cubic structure shown in Fig. 27. This 
body-centred structure is not close packed. The co-ordination num- 
ber is eight, but it should be noted that there are six second-nearest 
neighbours at the centres of the six adjacent cubes which are not very 
much further away (2, =1/3/2 x,, where x, and x, are the distances 
of first- and second-nearest neighbours from a given ion). The pack- 
ing density is not very different from that of the two close-packed 
structures (proportion of space occupied by spheres in hexagonal or 
cubic close-packing is 74 per cent; the corresponding figure for body- 
centred cubic structures is 68 per cent). Table 7 lists some examples 
of the main types of metal structure. 

Table 7. Metal structures 

Hexagonal c.p. aBe, Mg, yCa, ySr. aTi, aZr, Hf, aCo, Ni 
ABABAB.--- 

Cubic ¢.p. aCa, aSr, Al, Pb, yFe, BCo, Ni, Cu, Ag, Au 
ABCABC--- 

Body-centred cubic Li, Na, K, Rb, Cs, Ca, Sr, Ba, BTi, V, aCr, W 

Double hexagonal c.p. La, Pr, Nd, Am 
ABACABAC--- 

It will be noted that many metals are polymorphic—a factor of considerable 
metallurgical importance. 
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Fie. 28. The Bijt cluster. 

The structures of metals and alloys are usually studied because of 
their importance in metallurgical processes. The compositions of 
some of the intermetallic compounds (e.g. Cu,,Sn3, Ni;Zn,,) pose 
problems for the theoretical chemist who is concerned with valency 
theory, but the structures are in general relatively simple. Recent 
work on metal ‘cluster’ compounds has, however, revived interest 
in metal bonding, and structure determinations have revealed some 
very interesting arrangements. In the complex rhenium anion 
(Re,Cl,,)*~, for example, the three rhenium atoms are linked together 
in a triangle by metal-metal bonds in which electrons occupy de- 
localized orbitals. A wide range of bismuth clusters has been found 
in melts of bismuth trichloride in which bismuth has been dissolved. 
The cation Bi>* has a structure with six bismuth atoms at the 
corners of a triangular prism and three more arranged above the 
centres of the rectangular faces of the prism (see Fig. 28). 

Similar metal-metal bonds are found in carbonyl complexes of 

transition metals [e.g. (CO);Mn—Mn(CQ),]. 

Geometrical classifications of structure 

So far we have been discussing structures in terms of bond types 
but, as was pointed out earlier, it is sometimes convenient to use a 

more geometrical approach. 

Structures related to close-packed arrangements 
The close-packed arrangement adopted in many metal structures 
has been discussed (p 52). Structures which are not metallic can 
also be related to these close-packed arrangements: large anions 
may be close packed, with small cations entering the interstices 
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octahedral sites 

tetrahedral sites 

Fie. 29. Sites of tetrahedral and octahedral co-ordination in close-packed 
structures. 

between the anions. There are two types of interstice or ‘hole’ into 
which ions may be inserted in a close packed structure. 

Figure 29a illustrates a ‘tetrahedral hole’ or position of tetrahedral 
co-ordination for the ion occupying this site. It isin contact with three 
ions in the layer below, and one in the layer above. Figure 29b 
illustrates an ‘octahedral hole’. An ion in this position is in contact 
with six other ions, three in the layer below, three in the layer above. 
The relative positions of these holes between two layers of a close- 
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packed structure are shown in Fig. 29c. Octahedral holes are larger 
than the tetrahedral ones. If 7, is the radius of a cation in contact 
with four anions of radius r_ in close-packing, 7, =0.225r_, whereas 
for an ion occupying an octahedral hole r, =0.414r_. 

In any collection of N ions in a close-packed arrangement there 
are N octahedral holes and 2N tetrahedral holes. We can now use 
these considerations to reclassify ionic structures. If small cations 
M occupy all the octahedral holes in a close-packed arrangement of X 
anions we shall get equal numbers of cations and anions in the struc- 
ture and a formula MX. Thus, a potassium chloride structure could 
be described as a cubic close-packed arrangement of chloride ions 
with all the octahedral holes occupied by potassium ions. It should be 
emphasized that in many cases the anions, although in contact with 
cations, may not be in contact with each other. Close-packing implies 
ions packed together, in contact; we can, however, still talk of ‘close- 

packed geometry’ even though the ions in the close-packed arrange- 
ment are not in contact. This distinction between close-packing and 
close-packed geometry is important. Thus, calcium fluoride is: often 
described in terms of calcium ions in cubic close-packing with 
fluoride ions occupying all the tetrahedral sites. In this case, how- 

Table 8. Structures related to close-packed arrangements 

Cation: anion Type and number Examples 
Formula co-ordination of holes occupied Cubic c.p. Hexagonal c.p. 

MX 6:6 All octahedral NaCl, FeO, NiAs, FeS, 
Mn8, TiC NiS 

4:4 4 tetrahedral, ZnS (zinc blende) 
every alternate CuCl, AgI, ZnS (wurtzite) 
site occupied 

MX, 6:3 4 octahedral; CdCI, Cdl, 
alternate layers 
have fully 
occupied sites; 
layer structure 

8:4 all tetrahedral; CaF,, ThO,, 

cations in close ZrO,, CeO, 
packing 

MX, 6:2 X in ? of cubic ReO, 
c.p. sites 
M in } octahedral 
sites 

M,X, 6:4 % octahedral a-Al,O, 
sites FeTiO, 

(Fe and Ti 
in octahedral 
sites) 

a 
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ever, the Ca?+ ion is smaller than the F- ion. The Ca?* ions form a 
face-centred cubic lattice (i.e. they have the geometrical arrange- 
ment that large ions in cubic close-packing possess) but they are not 
in contact with each other. Table 8 summarizes the way in which a 
large number of structures can be interpreted in terms of close- 
packed arrangements. 

The mineral perovskite provides a name for a class of structures 
of general formula ABO, in which the A cation and the oxide ion 
O?- together constitute a cubic close-packed arrangement. The A 
ions occupy the corners of a unit cell (common to eight units) and the 
O?- ions the face-centre positions (common to two units) so that A 
occupies } of the available sites in cubic close-packed positions. The 
B ion, at the centre of the unit cells, occupies } of the octahedral 
sites (see Fig. 30). 

Compounds such as SrTiO, and BaTiO, have this structure, but 
perovskite itself, CaTiO, has a distorted version of lower symmetry. 
It should be emphasized that structures of this general type, ABOs,, 
are complex oxides. There is no oxyanion unit such as TiO} and 
therefore no justification for calling the compounds ‘titanates’. 

Crystals with spinel structures have important industrial applica- 
tions. The general formula for these oxide structures is MI4M"O, 
(e.g. Al,MgO,). In the normal spinel structure (e.g. Mn,0,) Mn+ 
ions enter octahedral holes and the Mn?+ ions occupy tetrahedral 

Fic. 30. The perovskite structure. 
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holes (even though Mn** ions will be smaller than Mn?+). Only 3 of 
the tetrahedral sites and 4 of the octahedral sites are occupied. In 
inverse spinel structures the M?* ions occupy octahedral sites whereas 
half the M%+ ions occupy octahedral, and the other half are in tetra- 
hedral sites (e.g. Fe,0,, Fe?+ in octahedral and Fe*+ in octahedral 
and tetrahedral sites). 

Silicate structures have often been discussed in relation to close 
packing. The Pauling crystal radii for O2- and Si** are 1.40 A and 
0.41 A respectively, so that it seems reasonable to describe many 
silicate structures in terms of a small cation occupying a ‘tetra- 
hedral hole’ in a close-packed oxide structure. This approach is, 
however, misleading. Some precise electron-density determinations 
have been made on «-quartz and on several silicates. These show that 
the Si-O bond has very appreciable covalent character (ca 60 per 
cent). The bond length, Si-O, 1.62 + 0.03 A, is considerably shorter 

than the sum of the radii (1.40+0.41=1.81 A), and the Si-O-Si 
angle is 145°. So, although a description of silicates in terms of close- 
packed oxide structures was extremely useful in the early days of 
crystal chemistry, an approach based on co-ordinated polyhedra is 

now more appropriate. 

Structures considered as co-ordinated polyhedra 

Silicate structures can be discussed in terms of tetrahedral SiO, 

units which may either exist as discrete units or else share oxygen 

atoms to form single or double infinite chains, rings, layers, or three- 

dimensional framework structures. (We shall refer to SiO, ‘units’ 

rather than SiO} ions, since, as we have seen, the bonding in 

silicates is far from being pure ionic). 

Discrete SiO, units.—e.g. olivine, which has the ideal formula 

MgSi,O,, but some of the magnesium is always replaced by iron so 

that the formula is expressed as (Mg,Fe)SiO,. 

Infinite chains (Figure 31a). Single chains are formed if each tetra- 

hedron has two of its four oxygens shared with neighbouring 

tetrahedra. The ‘repeat unit’ is SiO,, and the minerals with this 

structure are called pyroxenes, ¢.g. diopside, CaMg(SiOg)p. 

Double infinite chains (Figure 31b). These occur in the amphiboles, 

alternate tetrahedra sharing two and three oxygens respectively. 

The fibrous asbestos minerals belong to this type. These chain 

structures are held together by bonds from oxygen to metals such as 

magnesium and calcium which are at least partially ionic in character. 

Infinite layers (Figure 31c). These are formed if each unit shares 
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three oxygen atoms to give a repeat unit Si,0,). The fourth oxygen 
atom will project either above or below the layer, and sandwich- 
type double layers may be formed, held together by bonds between 
these projecting oxygen atoms and ions such as magnesium and 
hydroxide. Each magnesium ion is at the centre of an octahedral unit 
formed by four oxygens from the silicate layers and two hydroxide 
ions. The sandwich units are themselves stacked together parallel to 
each other by weak van der Waals bonds, e.g. tale, Mg,(OH),Si,O,9. 
If one-quarter of the silicon atoms in the tetrahedral units are re- 
placed by aluminium, the layers acquire a negative charge which 
can be neutralized by inserting cations between the layers. The micas 
belong to this structure type (Mig. 31d). They cleave into thin 
plates in a direction parallel to the layers, but the additional bond- 
ing between the composite layers makes them much harder than the 
tales where van der Waals bonding only is involved, e.g. phlogopite, 

KMg;(OH),(SisA10}9). 

Clay minerals. These are essentially single-layer silicate structures with 
the unshared oxygen atoms all pointing in the same direction, and 
incorporated into a superimposed sheet of linked AlO,(OH), octa- 
hedral units (Fig. 31e). The layers are held together by van der 

Waals forces. 

Framework structures. These are formed if all four oxygen atoms of 
the SiO, tetrahedron are shared with neighbouring units. This can 
give rise to very open frameworks, as in the zeolite minerals, in 
which there are spacious channels and cavities that can accommodate 
metal ions and water molecules. Minerals of this type have been used 
for ion-exchange purposes and as molecular ‘sieves’. 
Many other inorganic structures can be described in terms of co- 

ordinated polyhedra. Thus, the structures of phosphorus oxyanions 

can be systematized by considering tetrahedral PO, units sharing 
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orthophosphate pyrophosphate trimetaphosphate 

one or more vertices to form polynuclear complexes, and the com- 
plicated formulae of the polyacids of molybdenum and tungsten 
can also be rationalized in terms of tetrahedral or octahedral units, 

MO, or MO,, linked together by sharing corners or edges. 





6. Crystal Defects 

i ES NE OE IE SST SER AIRES RE REET 

Structure and properties 

We have now discussed the way in which classical crystallography, 
reinforced by x-ray diffraction techniques, establishes the structure 
of crystalline substances in terms of a regular packing of unit cells, 
and we have stated that once the positions of the atoms or ions in a 
particular unit cell have been determined the structure of the rest of 
the crystal is also determined. We should, however, give a very in- 
complete picture of crystal chemistry if we stopped at this point. 
The model we have been discussing is an idealized one. It has proved 
to be extremely useful in correlating the properties and structures 
of solid substances but it fails to account for many of the properties 
of crystals which are so important in technology. These properties 
depend wpon irregularities in an essentially regular structure. 

In our survey of crystals we have drawn attention to the way in 
which structure influences properties. The ‘giant molecule’ structures 
are hard, have high melting points etc., whereas molecular crystals 
are soft and have low melting points. The excellent lubricating pro- 
perties of graphite and molybdenum sulphide are often associated 
with the ease with which weak van der Waals bonds between the 
layers in these structures can be broken. Unfortunately, crystal 
structure is often only a poor guide to the prediction of physical pro- 
perties. Thus, graphite when carefully prepared in an oxygen-free 
environment is an extremely hard substance; its lubricating pro- 
perties are presumably associated with the presence of adsorbed 
oxygen on the layers. A serious difficulty arises when attempts are 
made to calculate physical properties such as the strength or rigidity 
of a metal from its structure. The values obtained for the shear 
moduli of pure metals turn out to be about 10° times as great as those 
measured experimentally for pure metal single crystals. The weakness 
of single crystals arises from the movement of dislocation lines (of 
the type mentioned on p 18) in the metal crystal structure. Single 
crystals of metals, however, have to be grown by special techniques 
to maintain structural uniformity. Metals as normally manufactured 

have a ‘grain’ or ‘polycrystalline’ structure. Structure within each 

grain is uniform but the grain boundaries between the crystallites 

hinder the movement of dislocations, so that the polycrystalline 

material is less easily deformed than the single crystal. Alloying can 

greatly increase the hardness of a metal. The ‘foreign’ atoms tend to 
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congregate at grain boundaries and hinder still further the movement 
of dislocations in the structure. The art and science of metallurgy 
is thus very much concerned with defect rather than with ideal 
structures. 

Crystal properties can be significantly modified by the introduction 
of controlled irregularity into an essentially regular (7.e. crystalline) 
system. The x-ray diffraction method can be used to determine the 
nature of these irregularities. The typical diffraction pattern is one 
of rows of dark spots on an x-ray film, or peaks on a diffractometer 
recorder, superimposed on a background of diffuse scattering. The 
overall or average structure of the unit cell can be obtained from 
measurements of the positions and intensities of these spots; the 
shape of the spots gives information about crystal texture or grain, 
since diffraction from a single crystal gives spots which have a 
different shape from those produced by a polycrystalline material 
with a grain or mosaic structure. The diffuse background gives 
information about thermal vibrations. The atoms in a crystal have 
vibrational energy even at absolute zero (the ‘zero-point’ or ‘residual’ 
energy), and the amplitude of these vibrations increases with in- 
creasing temperature. This means that the structure becomes in- 
creasingly irregular as the temperature rises, and the x-ray diffrac- 
tion pattern becomes correspondingly more diffuse. 

Lattice defects 

One important type of irregularity or disorder arises from point 
defects in the crystal lattice. In some unit cells there are vacant lattice 
points or sites—a cation is missing from one site and an anion from 
another. Ions have moved to new positions on the crystal surface. 
The vacant sites so produced are called Schottky defects (Fig. 32a). 
Cation and anion vacancies occur in pairs so that overall neutrality 
and, consequently, stoicheiometry is preserved. 

Frenkel defects are illustrated in Fig. 32b. Here ions leave lattice 
sites to go into interstitial positions, and neutrality is maintained 
when there is an interstitial ion corresponding to each vacant site. 
Schottky-type defects tend to be more numerous than Frenkel 
defects, since it is usually easier to remove ions completely than it is 
to force them into interstices. Cations, being in general smaller than 
anions, move more readily into interstitial positions, and Frenkel 
defects occur to a greater extent in the more open structures of the 
zine blende or wurtzite type where there is more room for interstitial 
ions. Another factor may be the possibility of covalent bonding 
in the structure. 

The main defects in silver chloride, for example, are of the 
Frenkel type, with interstitial Ag+ ions and Ag+ site vacancies in the 
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Fia. 32. Defect structures. 

sodium chloride type lattice, whereas Schottky-type defects are more 

prevalent in sodium chloride itself. This may be due to the partial 

covalent character of the bond between silver and chlorine in silver 

chloride, which may be considerable when silver is confined in an 

interstitial position. 

The existence of vacant sites or holes in the crystal structure pro- 

vides a mechanism for diffusion of particles through the crystal. It is 

much easier for an ion to migrate by moving from an occupied site 

to an unoccupied one than to force a way through a regular array of 

ions in the lattice. 

A convenient and important way of changing the number of 

vacant sites in a crystal lattice is to ‘dope’ the crystal with ions of 

different valency. If sodium chloride is crystallized from a melt con- 
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taining some manganese(11) chloride, Mn?+ ions occupy some of the 
cation sites in the crystal lattice. Overall neutrality is preserved if 
one site for singly-charged sodium ions is left vacant for each site 
o¢écupied by the doubly-charged manganese cation. The introduction 
of controlled traces of impurities may therefore produce marked 
changes in diffusion rates and ionic conductivities in these crystals. 
Controlled doping is also an important method of changing the 
electronic conductivity of a crystal, but this arises from the provision 
of new allowed energy bands which are accessible to electrons. 

Non-stoicheiometric:structures 

The composition of a structure containing Schottky or Frenkel 
defects does not differ from that of the ideal, defect-free structure. 

If, however, there are different numbers of cation or anion vacancies, 
or if interstitial ions are not balanced by site vacancies, the com- 
position of the crystal will no longer be stoicheiometric. Different 
samples of the same substance may have slightly different composi- 
tions. Thus, zine oxide can be made with a composition represented 
by Zn,. 090330; there is a 0.033 per cent excess of zinc in interstitial 
sites in the ZnO structure. The well-known colour change from white 
to yellow when zine oxide is heated arises from this excess of zinc in 
interstitial positions. 

Nickel(11) oxide provides another example of a non-stoicheiometric 
compound. Black nickel oxide has an average composition Nig 9,0, 

indicating that there are vacant Ni?+ sites in the NiO lattice. The 
rate of corrosion of a metal such as nickel in a dry atmosphere can 
be linked with defect structures. A clean nickel surface is almost 
instantaneously covered with oxygen when it is exposed to the gas. 
The O, molecules dissociate into atoms and strong metal-oxygen 
bonds are formed. Metal ions (Ni?*) now diffuse from the metal 
surface to the oxide/oxygen interface making use of vacant sites on 
the way, and the rate of diffusion will depend on the number of 
vacant sites in the oxide layer. At the surface, newly arrived Ni?+ 
will combine to form more oxide, and the oxide layers will grow. The 
rate of oxide formation can be retarded by adding a small amount of 
lithium. Substitution of a singly-charged Li*+ ion for the doubly- 
charged Ni?* ion leaves a net negative charge which can be neutral- 
ized by an additional Lit which enters a vacant Ni?* site. Thus the 
number of vacancies is reduced and the rate of diffusion of metal 
through the oxide layer diminishes. If, on the other hand, a tervalent 
ion is added, such as Mn®+, the number of vacant sites in the oxide 
layer must increase if neutrality is to be preserved. Such metals 
therefore accelerate the corrosion of nickel. 

Detailed study of the defect solid state lies outside the scope of 
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this short survey. It is important, however, that students should not 
be left with a picture of a crystalline solid as a static model of perfect 
regularity since the technology of the solid state is very much bound 
up with the properties of defect structures. 
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