
Symmetry in crystals 
CARMELO GIACOVAZZO 

The crystalline state and isometric operations 

Matter is usually classified into three states: gaseous, liquid, and solid. 
Gases are composed of almost isolated particles, except for occasional 
collisions; they tend to occupy all the available volume, which is subject to 
variation following changes in pressure. In liquids the attraction between 
nearest-neighbour particles is high enough to keep the particles almost in 
contact. As a consequence liquids can only be slightly compressed. The 
thermal motion has sufficient energy to move the molecules away from the 
attractive field of their neighbours; the particles are not linked together 
permanently, thus allowing liquids to flow. 

If we reduce the thermal motion of a liquid, the links between molecules 
will become more stable. The molecules will then cluster together to form 
what is macroscopically observed as a rigid body. They can assume a 
random disposition, but an ordered pattern is more likely because it 
corresponds to a lower energy state. This ordered disposition of molecules is 
called the crystalline state. As a consequence of our increased understand- 
ing of the structure of matter, it has become more convenient to classify 
matter into the three states: gaseous, liquid, and crystalline. 

Can we then conclude that all solid materials are crystalline? For 
instance, can common glass and calcite (calcium carbonate present in 
nature) both be considered as crystalline? Even though both materials have 
high hardness and are transparent to light, glass, but not calcite, breaks in a 
completely irregular way. This is due to the fact that glass is formed by long, 
randomly disposed macromolecules of silicon dioxide. When it is formed 
from the molten state (glass does not possess a definite melting point, but 
becomes progressively less fluid) the thermal energy which remains as the 
material is cooled does not allow the polymers to assume a regular pattern. 
This disordered disposition, characteristic of the liquid state, is therefore 
retained when the cooling is completed. Usually glasses are referred to as 
overcooled liquids, while non-fluid materials with a very high degree of 
disorder are known as amorphous solids. 

A distinctive property of the crystalline state is a regular repetition in the 
three-dimensional space of an object (as postulated as early as the end of 
the eighteenth century by R. J. Haiiy), made of molecules or groups of 
molecules, extending over a distance corresponding to thousands of 
molecular dimensions. However, a crystal necessarily has a number of 
defects at non-zero temperature and/or may contain impurities without 
losing its order. Furthermore: 

1. Some crystals do not show three-dimensional periodicity because the 
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basic crystal periodicity is modulated by periodic distortions incom- 
mensurated with the basic periods (i.e. in incommensurately modulated 
structures, IMS). It has, however, been shown (p. 171 and Appendix 
3.E) that IMSs are periodic in a suitable (3 + d)-dimensional space. 

2. Some polymers only show a bi-dimensional order and most fibrous 
materials are ordered only along the fiber axis. 

3. Some organic crystals, when conveniently heated, assume a state 
intermediate between solid and liquid, which is called the mesomorphic 
or liquid crystal state. 

These examples indicate that periodicity can be observed to a lesser or 
greater extent in crystals, depending on their nature and on the thermo- 
dynamic conditions of their formation. It is therefore useful to introduce the 
concept of a real crystal to stress the differences from an ideal crystal with 
perfect periodicity. Although non-ideality may sometimes be a problem, 
more often it is the cause of favourable properties which are widely used in 
materials science and in solid state physics. 

In this chapter the symmetry rules determining the formation of an ideal 
crystalline state are considered (the reader will find a deeper account in 
some papers devoted to the subject, or some exhaustive or in the 
theoretical sections of the International Tables for Cryst~llography).[~~ 

In order to understand the periodic and ordered nature of crystals it is 
necessary to know the operations by which the repetition of the basic 
molecular motif is obtained. An important step is achieved by answering the 
following question: given two identical objects, placed in random positions 
and orientations, which operations should be performed to superpose one 
object onto the other? 

The well known coexistence of enantiomeric molecules demands a 
second question: given two enantiomorphous (the term enantiomeric will 
only be used for molecules) objects, which are the operations required to 
superpose the two objects? 

An exhaustive answer to the two questions is given by the theory of 
isometric transformations, the basic concepts of which are described in 
Appendix 1.A, while here only its most useful results will be considered. 

Two objects are said to be congruent if to each point of one object 
corresponds a point of the other and if the distance between two points of 
one object is equal to the distance between the corresponding points of the 
other. As a consequence, the corresponding angles will also be equal in 
absolute value. In mathematics such a correspondence is called isometric. 

The congruence may either be direct or opposite, according to whether 
the corresponding angles have the same or opposite signs. If the congruence 
is direct, one object can be brought to coincide with the other by a 
convenient movement during which it behaves as a rigid body. The 
movement may be: 

(1) a translation, when all points of the object undergo an equal 
displacement in the same direction; 

(2) a rotation around an axis; all points on the axis will not change their 
position; 



Symmetry in crystals ( 3 

(3) a rototranslation or screw movement, which may be considered as the 
combination (product) of a rotation around the axis and a transl-ation 
along the axial direction (the order of the two operations may be 
exchanged). 

If the congruence is opposite, then one object will be said to be 
enantiomorphous with respect to the other. The two objects may be brought 
to coincidence by the following operations: 

(1) a symmetry operation with respect to a point, known as inversion; 

(2) a symmetry operation with respect to a plane, known as reflection; 

(3) the product of a rotation around an axis by an inversion with respect to 
a point on the axis; the operation is called rotoinversion; 

(4) the product of a reflection by a translation parallel to the reflection 
plane; the plane is then called a glide plane. 

(5) the product of a rotation by a reflection with respect to a plane 
perpendicular to the axis; the operation is called rotoreflection. 

Symmetry elements 

Suppose that the isometric operations described in the preceding section, 
not only bring to coincidence a couple of congruent objects, but act on the 
entire space. If all the properties of the space remain unchanged after a 
given operation has been carried out, the operation will be a symmetry 
operation. Symmetry elements are points, axes, or planes with respect to 
which symmetry operations are performed. . 

In the following these elements will be considered in more detail, while 
the description of translation operators will be treated in subsequent 
sections. 

Axes of rotational symmetry 

If all the properties of the space remain unchanged after a rotation of 2nIn 
around an axis, this will be called a symmetry axis of order n ;  its written 
symbol is n. We will be mainly interested (cf. p. 9) in the axes 1, 2, 3, 4, 6. 
Axis 1 is trivial, since, after a rotation of 360" around whatever direction 
the space properties will always remain the same. The graphic symbols for 
the 2, 3, 4, 6 axes (called two-, three-, four-, sixfold axes) are shown in 
Table 1.1. In the first column of Fig. 1.1 their effects on the space are 
illustrated. In keeping with international notation, an object is represented 
by a circle, with a + or - sign next to it indicating whether it is above or 
below the page plane. There is no graphic symbol for the 1 axis. Note that a 
4 axis is at the same time a 2 axis, and a 6 axis is at the same time a 2 and a 
3 axis. 
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Fig. 1.1. Arrangements of symmetry-equivalent 
objects as an effect of rotation, inversion, and 
screw axes. 

Table 1.1. Graphical symbols for symmetry elements: (a) axes normal to the pfane of 
projection; (b) axes 2 and 2, ,parallel to the plane of projection; (c) axes parallel or 
inclined to the plane of projection; (d) symmetry pfanes normar to the plane of 
projection; (e) symmetry planes parallel to the plane of projection 
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Axes of rototranslation or screw axes 
A rototranslational symmetry axis will have an order n and a translational 
component t ,  if all the properties of the space remain unchanged after a 
2nln rotation around the axis and the translation by t along the axis. On p. 
10 we will see that in crystals only screw axes of order 1, 2, 3, 4, 6 can exist 
with appropriate translational components. 

Axes of inversion 
An inversion axis of order n is present when all the properties of the space 
remain unchanged after performing the product of a 2nln rotation around 
the axis by an inversion with respect to a point located on the same axis. 
The written symbol is f i  (read 'minus n' or 'bar n'). As we shall see on p. 9 
we will be mainly interested in 1, 2, 3, 4, 6 axes, and their graphic symbols 
are given in Table 1.1, while their effects on the space are represented in the 
second column of Fig. 1.1. According to international notation, if an object 
is represented by a circle, its enantiomorph is depicted by a circle with a 
comma inside. When the two enantiomorphous objects fall one on top of 
the other in the projection plane of the picture, they are represented by a 
single circle divided into two halves, one of which contains a comma. To 
each half the appropriate + or - sign is assigned. 

We may note that: 

(1) the direction of the i axis is irrelevant, since the operation coincides 
with an inversion with respect to a point; 

(2) the 2 axis is equivalent to a reflection plane perpendicular to it; the 
properties of the half-space on one side of the plane are identical to 
those of the other half-space after the reflection operation. The written 
symbol of this plane is m; 

(3) the 3 axis is equivalent to the product of a threefold rotation by an 
inversion: i.e. 3 = 31; 

(4) the 4 axis is also a 2 axis; 

(5) the 6 axis is equivalent to the product of a threefold rotation by a 
reflection with respect to a plane normal to it; this will be indicated by 
6 = 3/m. 

Axes of rotoreflection 
A rotoreflection axis of order n is present when all the properties of the 
space do not change after performing the product of a 2nln rotation around 
an axis by a reflection with respect to a plane normal to it. The written 
symbol of this axis is fi. The effects on the space of the 1, 2, 3 ,  4, 6 axes 
coincide with those caused by an inversion axis (generally of a different 
order). In particular: i = m, 2 = 1, 3 = 6, 4 = 4, 6 = 3. From now on we will 
no longer consider the ii axes but their equivalent inversion axes. 
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Reflection planes with translational component (glide 
planes) 
A glide plane operator is present if the properties of the half-space on one 
side of the plane are identical to those of the other half-space after the 
product of a reflection with respect to the plane by a translation parallel to 
the plane. On p. 11 we shall see which are the glide planes found in crystals. 

Symmetry operations relating objects referred by direct congruence are 
called proper (we will also refer to proper symmetry axes) while those 
relating objects referred by opposite congruence are called improper (we 
will also refer to improper axes). 

Lattices 

Translational periodicity in crystals can be conveniently studied by con- 
sidering the geometry of the repetion rather than the properties of the motif 
which is repeated. If the motif is periodically repeated at intervals a, b, and 
c along three non-coplanar directions, the repetition geometry can be fully 
described by a periodic sequence of points, separated by intervals a, b, c 
along the same three directions. This collection of points will be called a 
lattice. We will speak of line, plane, and space lattices, depending on 
whether the periodicity is observed in one direction, in a plane, or in a 
three-dimensional space. An example is illustrated in Fig. 1.2(a), where 
HOCl is a geometrical motif repeated at intervals a and b. If we replace the 
molecule with a point positioned at its centre of gravity, we obtain the 
lattice of Fig. 1.2(b). Note that, if instead of placing the lattice point at the 
centre of gravity, we locate it on the oxygen atom or on any other point of 
the motif, the lattice does not change. Therefore the position of the lattice 
with respect to the motif is completely arbitrary. 

If any lattice point is chosen as the origin of the lattice, the position of 
any other point in Fig. 1.2(b) is uniquely defined by the vector 

where u and v are positive or negative integers. The vectors a and b define a 
parallelogram which is called the unit cell: a and b are the basis vectors of 
the cell. The choice of the vectors a and b is rather arbitrary. In Fig. 1.2(b) 
four possible choices are shown; they are all characterized by the property 
that each lattice point satisfies relation (1.1) with integer u and v. 

Nevertheless we are allowed to choose different types of unit cells, such 
as those shown in Fig. 1.2(c), having double or triple area with respect to 
those selected in Fig. 1.2(b). In this case each lattice point will still satisfy 
(1.1) but u and v are no longer restricted to integer values. For instance, the 
point P is related to the origin 0 and to the basis vectors a' and b' through 
( 4  v) = (112, 112). 

The different types of unit cells are better characterized by determining 
the number of lattice points belonging to them, taking into account that the 

~ i ~ .  (a) R~~~~~~~~~ of a graphical motif as an points on sides and on corners are only partially shared by the given cell. 
example of a two-dimensional crystal; (b) The cells shown in Fig. 1.2(b) contain only one lattice point, since the 
corresponding lattice with some examples Of four points at the corners of each cell belong to it for only 114. These cells primitive cells; (c) corresponding lattice with 
some examples of multiple cells. are called primitive. The cells in Fig. 1.2(c) contain either two or three 
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points and are called multiple or centred cells. Several kinds of multiple 
cells are possible: i.e. double cells, triple cells, etc., depending on whether 
they contain two, three, etc. lattice points. 

The above considerations can be easily extended to linear and space 
lattices. For the latter in particular, given an origin 0 and three basis 

I I 

vectors a,  b, and c, each node is uniquely defined by the vector 

(1.2) = ua + ub + WC.  

The three basis vectors define a parallelepiped, called again a unit cell. a 
The directions specified by the vectors a,  b,  and c are the X,  Y, Z Fig. Notation for a unit cell. 

crystallographic axes, respectively, while the angles between them are 
indicated by a, 0, and y, with a opposing a,  opposing b,  and y opposing 
c (cf. Fig. 1.3). The volume of the unit cell is given by 

where the symbol '.' indicates the scalar product and the symbol ' A ' the 
vector product. The orientation of the three crystallographic axes is usually 
chosen in such a way that an observer located along the positive direction of 
c sees a moving towards b by an anti-clockwise rotation. The faces of the 
unit cell facing a,  b, and c are indicated by A, B, C, respectively. If the 
chosen cell is primitive, then the values of u, u, w in (1.2) are bound to be 
integer for all the lattice points. If the cell is multiple then u, u, w will have 
rational values. To characterize the cell we must recall that a lattice point at 
vertex belongs to it only for 1/8th, a point on a edge for 114, and one on a 
face for 112. 

The rational properties of lattices 

Since a lattice point can always be characterized by rational numbers, the 
lattice properties related to them are called rational. Directions defined by 
two lattice points will be called rational directions, and planes defined by 
three lattice points rational planes. Directions and planes of this type are 
also called crystallographic directions and planes. 

Crystallographic directions 
Since crystals are anisotropic, it is necessary to specify in a simple way 
directions (or planes) in which specific physical properties are observed. 

Two lattice points define a lattice row. In a lattice there are an infinite 
number of parallel rows (see Fig. 1.4): they are identical under lattice 
translation and in particular they have the same translation period. 

A lattice row defines a crystallographic direction. Suppose we have chosen a 
primitive unit cell. The two lattice vectors Q ,,,, and Q ,,,,,,, ,, with u, u, 
w, and n integer, define two different lattice points, but only one direction. 
This property may be used to characterize a direction in a unique way. For 
instance, the direction associated with the vector Q9,,,, can be uniquely 
defined by the vector Q,,,,, with no common factor among the indices. This 
direction will be indicated by the symbol [3 1 21, to be read as 'three, one, 
two' and not 'three hundred and twelve'. Fig. 1.4. Lattice rows and planes. 



8 1 Carmelo Giacovazzo 

When the cell is not primitive u, v, w, and n will be rational numbers. 
Thus Q112,312,-113 and Q512,1512,-5,3 define the same direction. The indices of 
the former may therefore be factorized to obtain a common denominator 
and no common factor among the numerators: Q,,,,,,, ,-,, , = Q3,6,,,6,-,,6 + 
[3 9 -21 to be read 'three', nine, minus two'. 

Crystallographic planes 

Three lattice points define a crystallographic plane. Suppose it intersects the 
three crystallographic axes X ,  Y ,  and Z at the three lattice points ( p ,  0,  0 ) )  
(0 ,  q ,  0 )  and (0, 0 ,  r )  with integer p, q, r (see Fig. 1.5). Suppose that m is 
the least common multiple of p, q ,  r. Then the equation of the plane is 

x'lpa + y ' lqb + z ' lrc  = 1. 

If we introduce the fractional coordinates x = x ' la ,  y = y ' lb ,  z = z l / c ,  the 
equation of the plane becomes 

x l p  + y lq  + z l r  = 1. (1.3) 

Multiplying both sides by m we obtain 

hx + ky + lz = m (1.4) 
Fig. 1.5. Some lattice planes of the set (236). 

where h ,  k ,  and 1 are suitable integers, the largest common integer factor of 
which will be 1. 

We can therefore construct a family of planes parallel to the plane (1.4), 
by varying m over all integer numbers from -m to +m. These will also be 
crystallographic planes since each of them is bound to pass through at least 
three lattice points. 

The rational properties of all points being the same, there will be a plane 
of the family passing through each lattice point. For the same reason each 
lattice plane is identical to any other within the family through a lattice 
translation. 

Let us now show that (1.4) represents a plane at a distance from the 
origin m times the distance of the plane 

The intercepts of the plane (1.5) on X, Y ,  Z will be l l h ,  l l k  and 111 
respectively and those of (1.4) m l h ,  m l k ,  ml l .  It is then clear that the 
distance of plane (1.4) from the origin is m times that of plane (1.5). The 
first plane of the family intersecting the axes X ,  Y ,  and Z at three lattice 
points is that characterized by a m value equal to the least common mutiple 
of h ,  k ,  I. We can therefore conclude that eqn (1.4) defines, as m is varied, a 
family of identical and equally spaced crystallographic planes. The three 
indices h ,  k ,  and 1 define the family and are its Miller indices. To indicate 
that a family of lattice planes is defined by a sequence of three integers, 
these are included within braces: ( h  k I ) .  A simple interpretation of the 
three indices h,  k ,  and I can be deduced from (1.4) and (1.5). In fact they 



indicate that the planes of the family divide a in h parts, b in k parts, and c 
in 1 parts. 

Crystallographic planes parallel to one of the three axes X, Y, or Z are 
defined by indices of type (Okl), (hol), or (hkO) respectively. Planes parallel 
to faces A, B, and C of the unit cell are of type (hOO), (OkO), and (001) 
respectively. Some examples of crystallographic planes are illustrated in Fig. 
1.6. 

As a numerical example let us consider the plane 

which can be written as 

The first plane of the family with integer intersections on the three axes will 
be the 30th (30 being the least common multiple of 10, 15, and 6) and all the 
planes of the family can be obtained from the equation lox + 15y + 62 = m, 
by varying m over all integers from -m to +m. We observe that if we divide 
p, q, and r in eqn (1.6) by their common integer factor we obtain 
x/3 + y/2 + z/5 = 1, from which 

Planes (1.7) and (1.8) belong to the same family. We conclude that a 
family of crystallographic planes is always uniquely defined by three indices 
h, k, and 1 having the largest common integer factor equal to unity. 

Symmetry restrictions due to the lattice 
periodicity and vice versa 

Suppose that the disposition of the molecules in a crystal is compatible with 
an n axis. As a consequence the disposition of lattice points must also be 
compatible with the same axis. Without losing generality, we will assume 
that n passes through the origin 0 of the lattice. Since each lattice point has 
identical rational properties, there will be an n axis passing through each 
and every lattice point, parallel to that passing through the origin. In 
particular each symmetry axis will lie along a row and will be perpendicular 
to a crystallographic plane. 

Let T be the period vector of a row passing through 0 and normal to n. 
We will then have lattice points (see Fig. 1.7(a)) at T, -T, T', and T". The 
vector T' - T" must also be a lattice vector and, being parallel to T, we will 
have T'  - T" = mT where m is an integer value: in a scalar form 

2 cos (2nIn) = m (m integer). (1.9) 

Equation (1.9) is only verified for n = 1, 2, 3, 4, 6. It is noteworthy that a 
5 axis is not allowed, this being the reason why it is impossible to pave a 
room only with pentagonal tiles (see Fig. 1.7(b). 

A unit cell, and therefore a lattice, compatible with an n axis will also be 
compatible with an ii axis and vice versa. Thus axes I, 3, 3, 4, 6 will also be 
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0 k. (110) (010) 

(zio) 

Fig. 1.6. Miller indices for some crystallographic 
planes parallel to Z ( Z i s  supposed to be normal 
to the page). 

(b) 
Fig. 1.7.(a) Lattice points in a plane normal to the 
symmetry axis n passing through 0. (b) Regular 

allowed. pentagons cannot fill planar space. 
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Let us now consider the restrictions imposed by the periodic nature of 
crystals on the translational components t of a screw axis. Suppose that this 
lies along a row with period vector T. Its rotational component must 
correspond to n = 1, 2, 3, 4, 6. If we apply the translational component n 
times the resulting displacement will be nt. In order to maintain the 
periodicity of the crystal we must have nt =pT,  with integer p ,  or 

For instance, for a screw axis of order 4 the allowed translational 
components will be (0/4)T, (1/4)T, (2/4)T, (3/4)T, (4/4)T, (5/4)T, . . .; of 
these only the first four will be distinct. It follows that: 

(1) in (1.10) p can be restricted within 0 s p  < n ;  

(2) the n-fold axis may be thought as a special screw with t = 0. The nature 

Fig. 1.8. Screw axes: arrangement of symmetry- 
equivalent objects. 

of a screw axis is completely defined by the symbol n,. The graphic 
symbols are shown in Table 1.1: the effects of screw axes on the 
surrounding space are represented in Fig. 1.8. Note that: 

If we draw a helicoidal trajectory joining the centres of all the objects 
related by a 3, and by a 32 axis, we will obtain, in the first case a 
right-handed helix and in the second a left-handed one (the two helices 
are enantiomorphous). The same applies to the pairs 4, and 4,, 61 and 6,, 
and 6, and 6,. 

4, is also a 2 axis, 6, is also a 2 and a 32, 64 is also a 2 and a 3,, and 63 is 
also a 3 and a 2,. 
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We will now consider the restrictions imposed by the periodicity on the 
translation component t  of a glide plane. If we apply this operation twice, 
the resulting movement must correspond to a translation equal to pT, where 
p may be any integer and T any lattice vector on the crystallographic plane 
on which the glide lies. Therefore 2t =pT ,  i.e. t  = ( p / 2 ) T .  As p varies over 
all integer values, the following translations are obtained OT, (1/2)T, 
(2/2)T,  (3/2)T,  . . . of which only the first two are distinct. For p = 0 the 
glide plane reduces to a mirror m. We will indicate by a, b, c axial glides 
with translational components equal to a / 2 ,  b / 2 ,  c / 2  respectively, by n the 
diagonal glides with translational components (a  + b ) / 2  or (a  + c ) /2  or 
( b  + c ) / 2  or ( a  + b + c) /2 .  

In a non-primitive cell the condition 2t = p T  still holds, but now T is a 
lattice vector with rational components indicated by the symbol d. The 
graphic symbols for glide planes are given in Table 1.1. 

Point groups and symmetry  classes 

In crystals more symmetry axes, both proper and improper, with or without 
translational components, may coexist. We will consider here only those 
combinations of operators which do not imply translations, i.e. the 
combinations of proper and improper axes intersecting in a point. These are 
called point groups, since the operators form a mathematical group and 
leave one point fixed. The set of crystals having the same point group is 
called crystal class and its symbol is that of the point group. Often point 
group and crystal class are used as synonyms, even if that is not correct in 
principle. The total number of crystallographic point groups (for three- 
dimensional crystals) is 32, and they were first listed by Hessel in 1830. 

The simplest combinations of symmetry operators are those characterized 
by the presence of only one axis, which can be a proper axis or an inversion 
one. Also, a proper and an inversion axis may be simultaneously present. 
The 13 independent combinations of this type are described in Table 1.2. 
When along the same axis a proper axis and an inversion axis are 
simultaneously present, the symbol n/ri is used. Classes coinciding with 
other classes already quoted in the table are enclosed in brackets. 

The problem of the coexistence of more than one axis all passing by a 
common point was first solved by Euler and is illustrated, with a different 
approach, in Appendix 1.B. Here we only give the essential results. Let us 
suppose that there are two proper axes I ,  and l2 intersecting in 0 (see Fig. 
1.9). The I ,  axis will repeat in Q an object originally in P, while 1 ,  will 

Table 1.2. Single-axis crystallographic point groups 

Proper axis Improper axis Proper and improper 
axis 

1 1 (i[i = i) 
2 = m- 212-= 2jm 
3 3 - 31 (3[3 = 3) 
4 4 414 = 4/m 
6 6 = 3/m 616 = 6/m 

5 + 5 + 3 = 13 
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11 Table 1.3. For each combination of symmetry axes the minimum angles between axes t.' are given. For each angle the types of symmetry axes are quoted in parentheses 

Combination of cu (ded B (ded Y (ded 
symmetry axes . - 

P '. 2 2 2  90 (22)  90 (2 2) 90 (22)  -- - - - 0  
3 2 2 90 (2 3) 90 (2 3) 60 (2 2) 
4 2 2  90 (2 4) 90 (2 4) 45 (2 2) 
6 2 2 90 (2 6) 90 (2 6) 30 (2 2) 

0 2 3 3  54 44'08" (2 3) 54 44'08" (2 3) 70 31 '44" (3 3) 
Fig. 1.9. Arrangement of equivalent objects 4 3 2  35 15'52" (2 3) 45 (2 4) 54 44'08" (4 3) 
around two intersecting symmetry axes. 

repeat in R the object in Q. P and Q are therefore directly congruent and 
this implies the existence of another proper operator which repeats the 
object in P directly in R. The only allowed combinations are n22, 233, 432, 
532 which in crystals reduce to 222, 322, 422, 622, 233, 432. For these 
combinations the smallest angles between the axes are listed in Table 1.3, 
while their disposition in the space is shown in Fig. 1.10. Note that the 
combination 233 is also consistent with a tetrahedral symmetry and 432 with 
a cubic and octahedral symmetry. 

Suppose now that in Fig. 1.9 1, is a proper axis while 1, is an inversion 
one. Then the objects in P and in Q will be directly congruent, while the 
object in R is enantiomorphic with respect to them. Therefore the third 
operator relating R to P will be an inversion axis. We may conclude that if 
one of the three symmetry operators is an inversion axis also another must 
be an inversion one. In Table 1.4 are listed all the point groups 
characterized by combinations of type PPP, PII, IPI, IIP (P=proper, 
I = improper), while in Table 1.5 the classes with axes at the same time 
proper and improper are given. In the two tables the combinations 
coinciding with previously considered ones are closed within brackets. The 

Fig. 1.10. Arrangement of proper symmetry 
axes for six point groups. 



Symmetry in crystals 1 13 

Table 1.4. Crystallographic point groups with more than one axis 

P P P  P I 1  I P I  I I P 

4 3 2  (43 2  ---- 
r n l m  

Table 1.5. Crystallographic point groups with more than one axis, each axis being 
proper and improper simultaneously 

results so far described can be easily derived by recalling that: 

If two of the three axes are symmetry equivalent, they can not be one 
proper and one improper; for example, the threefold axes in 233 are 
symmetry referred by twofold axes, while binary axes in 422 differing by 
45" are not symmetry equivalent. 

If an even-order axis and a ? axis (or an m plane) coexist, there will also 
be an m plane (or a ? axis) normal to the axis and passing through the 
intersection point. Conversely, if m and ? coexist, there will also be a 2 
axis passing through ? and normal to m. 

In Tables 1.2, 1.4, and 1.5 the symbol of each point group does not reveal 
all the symmetry elements present: for instance, the complete list of 
symmetry elements in the class 2/m33 is 2/m 2/m 2/m?3333. On the other 
hand, the symbol 2/m% is too extensive, since only two symmetry operators 
are independent. In Table 1.6 are listed the conventional symbols used for 
the 32 symmetry classes. It may be noted that crystals with inversion 
symmetry operators have an equal number of 'left' and 'right' moieties; 
these parts, when considered separately, are one the enantiomorph of the 
other. 

The conclusions reached so far do not exclude the possibility of crystal- 
lizing molecules with a molecular symmetry different from that of the 32 
point groups (for instance with a 5 axis). In any case the symmetry of the 
crystal will belong to one of them. To help the reader, some molecules and 
their point symmetry are shown in Fig. 1.11. 

It is very important to understand how the symmetry of the physical 
properties of a crystal relates to its point group (this subject is more 
extensively described in Chapter 9). Of basic relevance to this is a postulate 
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2. The variation of the refractive index of the crystal with the vibration 
direction of a plane-polarized light wave is represented by the optical 
indicatrix (see p. 607). This is in general a three-axis ellipsoid: thus the 
lowest symmetry of the property 'refraction' is 2/m 2lm 2/m, the point 
group of the ellipsoid. In crystal classes belonging to tetragonal, trigonal, or 
hexagonal systems (see Table 1.6) the shape of the indicatrix is a rotational 
ellipsoid (the axis is parallel to the main symmetry axis), and in symmetry 
classes belonging to the cubic system the shape of the indicatrix is a sphere. 
For example, in the case of tourmaline, with point group 3m, the ellipsoid is 
a revolution around the threefold axis, showing a symmetry higher than that 
of the point group. 

We shall now see how it is possible to guess about the point group of a 
crystal through some of its physical properties: 

1. The morphology of a crystal tends to conform to its point group 
symmetry. From a morphological point of view, a crystal is a solid body 
bounded by plane natural surfaces, the faces. The set of symmetry- 
equivalent faces constitutes a form: the form is open if it does not enclose 
space, otherwise it is closed. A crystal form is named according to the 
number of its faces and to their nature. Thus a pedion is a single face, a 
pinacoid is a pair of parallel faces, a sphenoid is a pair of faces related by a 
diad axis, a prism a set of equivalent faces parallel to a common axis, a 
pyramid is a set of planes with equal angles of inclination to a common axis, 
etc. The morphology of different samples of the same compound can show 
different types of face, with different extensions, and different numbers of 
edges, the external form depending not only on the structure but also on the 
chemical and physical properties of the environment. For instance, galena 
crystals (PbS, point group m3m) tend to assume a cubic, cube-octahedral, 
or octahedral habit (Fig. 1.12(a)). Sodium chloride grows as cubic crystals 
from neutral aqueous solution and as octahedral from active solutions (in 
the latter case cations and anions play a different energetic role). But at the 
same temperature crystals will all have constant dihedral angles between 
corresponding faces (J. B. L. Rome' de l'Ile, 1736-1790). This property, the 
observation of which dates back to N. Steno (1669) and D. Guglielmini 
(1688), can be explained easily, following R. J. Haiiy (1743-1822), by 
considering that faces coincide with lattice planes and edges with lattice 
rows. Accordingly, Miller indices can be used as form symbols, enclosed in 
braces: {hkl). The indices of well-developed faces on natural crystals tend 
to have small values of h, k, 1, (integers greater than six are rarely 
involved). Such faces correspond to lattice planes with a high density of 
lattice points per unit area, or equivalently, with large intercepts alh, blk, 
cll on the reference axes (Bravais' law). An important extension of this law 
is obtained if space group symmetry (see p. 22) is taken into account: screw 
axes and glide planes normal to a given crystal face reduce its importance 
(Donnay-Harker principle). 

The origin within the crystal is usually chosen so that faces (hkl) and 
(h i t )  are parallel faces an opposite sides of the crystal. In Fig. 1.13 some 
idealized crystal forms are shown. 

The orientation of the faces is more important than their extension. The 
orientations can be represented by the set of unit vectors normal to them. 
This set will tend to assume the point-group symmetry of the given crystal 

(b) 
Fig. 1.12. (a) Crystals showing cubic or cube- 
octahedral or octahedral habitus, (b) crystal with 
a sixfold symmetry axis. 
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Fig. 1.13. Some simple crystal forms: (a) 
cinnabar, HgS, class 32; (b) arsenopyritf, FeAsS, 
class mmm; (c) ilmenite, FeTiO,, class 3; (d) 
gypsum, CaSO,, class 2/m. 

independently of the morphological aspect of the samples. Thus, each 
sample of Fig. 1.12(a) shows an m3m symmetry, and the sample in Fig. 
1.12(b) shows a sixfold symmetry if the normals to the faces are considered 
instead of their extensions. The morphological analysis of a crystalline 
sample may be used to get some, although not conclusive, indication, of its 
point-group symmetry. 

2. Electrical charges of opposite signs-may appear at the two hands of a 
polar axis of a crystal subject to compression, because of the piezoelectric 
effect (see p. 619). A polar axis is a rational direction which is not symmetry 
equivalent to its opposite direction. It then follows that a polar direction can 
only exist in the 21 non-centrosymmetric point groups (the only exception is 
the 432 class, where piezoelectricity can not occur). In these groups not all 
directions are polar: in particular a direction normal to an even-order axis 
or to a mirror plane will never be polar. For instance, in quartz crystals 
(SOz, class 32), charges of opposite sign may appear at the opposite hands 
of the twofold axes, but not at those of the threefold axis. 

3. A point group is said to be polar if a polar direction, with no other 
symmetry equivalent directions, is allowed. Along this direction a per- 
manent electric dipole may be measured, which varies with temperature 
(pyroelectric effect, see p. 606). The ten polar classes are: 1, 2, m, mm2, 4, 
4mm, 6, 6mm, 3, 3m. Piezo- and pyroelectricity tests are often used to 
exclude the presence of an inversion centre. Nevertheless when these effects 
are not detectable, no definitive conclusion may be drawn. 

4. Ferroelectric crystals show a permanent dipole moment which can be 
changed by application of an electric field. Thus they can only belong to one 
of the ten polar classes. 

5. The symmetry of a crystal containing only one enantiomer of an 
optically active molecule must belong to one of the 11 point groups which 
do not contain inversion axes. 

6. Because of non-linear optical susceptibility, light waves passing 
through non-centrosymmetric crystals induce additional waves of frequency 
twice the incident frequency. This phenomenon is described by a third-rank 
tensor, as the piezoelectric tensor (see p. 608): it occurs in all non- 
centrosymmetric groups except 432, and is very efficientL7] for testing the 
absence of an inversion centre. 

7. Etch figures produced on the crystal faces by chemical attack reveal 
the face symmetry (one of the following 10 two-dimensional point groups). 

Point groups in one and two dimensions 
The derivation of the crystallographic point groups in a two-dimensional 
space is much easier than in three dimensions. In fact the reflection with 
respect to a plane is substituted by a reflection with respect to a line (the 
same letter m will also indicate this operation); and ii axes are not used. The 
total number of point groups in the plane is 10, and these are indicated by 
the symbols: 1, 2, 3, 4, 6, m, 2mm, 3m, 4mm, 6mm. 

The number of crystallographic point groups in one dimension is 2: they 
are 1 and m = (I). 
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The Laue classes 

In agreement with Neumann's principle, physical experiments do not 
normally reveal the true symmetry of the crystal: some of them, for example 
diffraction, show the symmetry one would obtain by adding an inversion 
centre to the symmetry elements actually present. In particular this happens 
when the measured quantities do not depend on the atomic positions, but 
rather on the interatomic vectors, which indeed form a centrosymmetric set. 
Point groups differing only by the presence of an inversion centre will not be 
differentiated by these experiments. When these groups are collected in 
classes they form the 11 Laue classes listed in Table 1.6. 

The seven crystal systems 

If the crystal periodicity is only compatible with rotation or inversion axes of 
order 1, 2, 3, 4, 6, the presence of one of these axes will impose some 
restrictions on the geometry of the lattice. It is therefore convenient to 
group together the symmetry classes with common features in such a way 
that crystals belonging to these classes can be described by unit cells of the 
same type. In turn, the cells will be chosen in the most suitable way to show 
the symmetry actually present. 

Point groups 1 and i have no symmetry axes and therefore no constraint 
axes for the unit cell; the ratios a:b:c and the angles a ,  P, y can assume any 
value. Classes 1 and are said to belong to the triclinic system. 

Groups 2, m, and 2/m all present a 2 axis. If we assume that this axis 
coincides with the b axis of the unit cell, a and c can be chosen on the lattice 
plane normal to b. We will then have a = y = 90" and P unrestricted and the 
ratios a:b:c also unrestricted. Crystals with symmetry 2, m, and 2/m belong 
to the monoclinic system. 

Classes 222, mm2, mmm are characterized by the presence of three 
mutually orthqgonal twofold rotation or inversion axes. If we assume these 
as reference axes, we will obtain a unit cell with angles a = P = y = 90" and 
with unrestricted a:b:c ratios. These classes belong to the orthorhombic 
system. 

For the seven groups with only one fourfold axis 
[4,4,4/m, 422,4mm, 42m, 4/mmm] the c axis is chosen as the direction of 
the fourfold axis and the a and b axes will be symmetry equivalent, on the 
lattice plane normal to c. The cell angles will be a = P = y = 90" and the 
ratios a:b:c = 1:l:c. These crystals belong to the tetragonal system. 

For the crystals with only one threefold or sixfold axis [3, 3, 32, 3m, 3m, 
6, 6, 6/m, 622, 6mm, 62m, 6/mm] the c axis is assumed along the three- or 
sixfold axis, while a and b are symmetry equivalent on the plane 
perpendicular to c. These point groups are collected together in the trigonal 
and hexagonal systems, respectively, both characterized by a unit cell with 
angles a = /3 = 90" and y = 120°, and ratios a:  b :c = 1: 1:c. 

Crystals with four threefold axes [23, m3, 432, 43m, m3m] distributed as 
the diagonals of a cube can be referred to orthogonal unit axes coinciding 
with the cube edges. The presence of the threefold axes ensures that these 
directions are symmetry equivalent. The chosen unit cell will have a = P = 
y = 90' and ratios a :b:c = 1: 1: 1. This is called the cubic system. 
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The Bravais lattices 

In the previous section to each crystal system we have associated a primitive 
cell compatible with the point groups belonging to the system. Each of these 
primitive cells defines a lattice type. There are also other types of lattices, 
based on non-primitive cells, which can not be related to the previous ones. 
In particular we will consider as different two lattice types which can not be 
described by the same unit-cell type. 

In this section we shall describe the five possible plane lattices and 
fourteen possible space lattices based both on primitive and non-primitive 
cells. These are called Bravais lattices, after Auguste Bravais who first listed 
them in 1850. 

Plane lattices 
An oblique cell (see Fig. 1.14(a)) is compatible with the presence of axes 1 
or 2 normal to the cell. This cell is primitive and has point group 2. 

If the row indicated by m in Fig. 1.14(b) is a reflection line, the cell must 
be rectangular. Note that the unit cell is primitive and compatible with the 
point groups m and 2mm. Also the lattice illustrated in Fig. 1.14(c) with 
a = b and y # 90" is compatible with m. This plane lattice has an oblique 
primitive cell. Nevertheless, each of the lattice points has a 2mm symmetry 
and therefore the lattice must be compatible with a rectangular system. This 
can be seen by choosing the rectangular centred cell defined by the unit 
vectors a' and b'. This orthogonal cell is more convenient because a simpler 
coordinate system is allowed. It is worth noting that the two lattices shown 
in Figs. 1.14(b) and 1.14(c) are of different type even though they are 
compatible with the same point groups. 

In Fig. 1.14(d) a plane lattice is represented compatible with the presence 
of a fourfold axis. The cell is primitive and compatible with the point groups 
4 and 4mm. 

In Fig. 1.14(e) a plane lattice compatible with the presence of a three- or 
a sixfold axis is shown. A unit cell with a rhombus shape and angles of 60" 
and 120" (also called hexagonal) may be chosen. A centred rectangular cell 
can also be selected, but such a cell is seldom chosen. 

(b) m;2mm (c) m;2mm 

I I i i I  
Fig. 1.14. The five plane lattices and the 
corresponding two-dimensional point groups. (d) 4;4mm 
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Table 1.7. The five plane lattices 
- 

Cell 
-- 

Type of cell Point group Lattice parameters 
of the net 

Oblique P 2 a, b, y 
Rectangular P, C 2mm a, b, y = 90" 
Square P 4mm a = b, y = 90" 
Hexagonal P 6mm a=b,y=120" 

The basic features of the five lattices are listed in Table 1.7 

Space lattices 
In Table 1.8 the most useful types of cells are described. Their fairly limited 
number can be explained by the following (or similar) observations: 

A cell with two centred faces must be of type F. In fact a cell which is at 
the same time A and B, must have lattice points at (0,1/2,1/2) and 
(1/2,0, 112). When these two lattice translations are applied one after 
the other they will generate a lattice point also at (1/2,1/2,0); 

A cell which is at the same time body and face centred can always be 
reduced to a conventional centred cell. For instance an I and A cell will 
have lattice points at positions (1/2,1/2,1/2) and (0,1/2,1/2): a lattice 
point at (1/2,0,0) will then also be present. The lattice can then be 
described by a new A cell with axes a '  = a/2, b '  = b, and c' = c (Fig. 
1.15). 

It is worth noting that the positions of the additional lattice points in 
Table 1.8 define the minimal translational components which will move an 
object into an equivalent one. For instance, in an A-type cell, an object at 
( x ,  y, z) is repeated by translation into ( x ,  y + m/2, z + n/2) with m and n 
integers: the shortest translation will be (0,1/2,1/2). 

Let us now examine the different types of three-dimensional lattices 
grouped in the appropriate crystal systems. 

Table 1.8. The conventional types of unit cell 

Symbol Type Positions of Number 
additional of lattice 
lattice points points 

per cell 

P primitive - 1 
I body centred (112,1/2, l r 2 )  2 
A A-face centred (0,1/2,1/2) 2 
B B-face centred (1/2,0,1/2) 2 
C C-face centred (1/2,1/2,0) 2 
F All faces centred (112,112, O), (1/2,0,1/2) 2 

~0,112,112~ 4 
R Rhombohedrally (1/3,2/3,2/3), (2/3,1/3,1/3) 3 

centred (de 
scription with 
'hexagonal axes') 

J 
Fig. 1.15. Reduction of an I- and A-centred cell 
to an A-centred cell. 
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Fig. 1.16. Monoclinic lattices: (a) reduction of a 
B-centred cell to  a P cell; (b) reduction of an 
I-centred to an A-centred cell; (c) reduction of an 
F-centred to a C-centred cell; (d) reduction of a 
C-centred to a P non-monoclinic cell. 

Triclinic lattices 
Even though non-primitive cells can always be chosen, the absence of axes 
with order greater than one suggests the choice of a conventional primitive 
cell with unrestricted a,  p, y angles and a:b:c ratios. In fact, any triclinic 
lattice can always be referred to such a cell. 

Monoclinic lattices 
The conventional monoclinic cell has the twofold axis parallel to b, angles 
a = y = 90", unrestricted p and a :b :c ratios. A B-centred monoclinic cell 
with unit vectors a, b, c is shown in Fig. 1.16(a). If we choose a' = a ,  
b' = b, c' = (a  + c) /2  a primitive cell is obtained. Since c' lies on the (a, c)  
plane, the new cell will still be monoclinic. Therefore a lattice with a B-type 
monoclinic cell can always be reduced to a lattice with a P monoclinic cell. 

An I cell with axes a, b, c is illustrated in Fig. 1.16(b). If we choose 
a' = a, b' = b, c' = a + c, the corresponding cell becomes an A monoclinic 
cell. Therefore a lattice with an I monoclinic cell may always be described 
by an A monoclinic cell. Furthermore, since the a and c axes can always be 
interchanged, an A cell can be always reduced to a C cell. 

An F cell with axes a, b, c is shown in Fig. 1.16(c). When choosing 
a' = a, b' = b, c' = (a  + c) /2  a type-C monoclinic cell is obtained. There- 
fore, also, a lattice described by an F monoclinic cell can always be 
described by a C monoclinic cell. 

We will now show that there is a lattice with a C monoclinic cell which is 
not amenable to a lattice having a P monoclinic cell. In Fig. 1.16(d) a C cell 
with axes a, b, c is illustrated. A primitive cell is obtained by assuming 
a' = (a  + b)/2 ,  b' = ( - a  + b)/2 ,  c' = c, but this no longer shows the 
features of a monoclinic cell, since y' # 90°, a' = b' # c' ,  and the 2 axis lies 
along the diagonal of a face. It can then be concluded that there are two 
distinct monoclinic lattices, described by P and C cells, and not amenable 
one to the other. 

Orthorhombic lattices 
In the conventional orthorhombic cell the three proper or inversion axes are 
parallel to the unit vectors a, b, c, with angles a = /3 = y = 90" and general 
a:b:c ratios. With arguments similar to those used for monoclinic lattices, 
the reader can easily verify that there are four types of orthorhombic 
lattices, P, C, I, and F. 

Tetragonal lattices 
In the conventional tetragonal cell the fourfold axis is chosen along c with 
a = p = y = 90°, a = b, and unrestricted c value. It can be easily verified 
that because of the fourfold symmetry an A cell will always be at the same 
time a B cell and therefore an F cell. The latter is then amenable to a 
tetragonal I cell. A C cell is always amenable to another tetragonal P cell. 
Thus only two different tetragonal lattices, P and I ,  are found. 

Cubic lattices 
In the conventional cubic cell the four threefold axes are chosen to be 
parallel to the principal diagonals of a cube, while the unit vectors a, b, c 
are parallel to the cube edges. Because of symmetry a type-A (or B or C) 
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cell is also an F cell. There are three cubic lattices, P, I, and F which are not 
amenable one to the other. 

Hexagonal lattices 
In the conventional hexagonal cell the sixfold axis is parallel to c, with 
a = b, unrestricted c, a = /3 = 90") and y = 120". P is the only type of 
hexagonal Bravais lattice. 

Trigonal lattices 
As for the hexagonal cell, in the conventional trigonal cell the threefold axis 
is chosen parallel to c, with a = b, unrestricted c, a = /3 = 90°, and y = 120". 
Centred cells are easily amenable to the conventional P trigonal cell. 

Because of the presence of a threefold axis some lattices can exist which 
may be described via a P cell of rhombohedral shape, with unit vectors aR,  
bR, CR such that aR = bR = cR, aR = PR = YR, and the threefold axis along 
the UR + bR + CR direction (see Fig. 1.17). Such lattices may also be 
described by three triple hexagonal cells with basis vectors UH, bH, CH 

defined according to[61 

These hexagonal cells are said to be in obverse setting. Three further triple 
hexagonal cells, said to be in reverse setting, can be obtained by changing 
a H  and bH to -aH and -bH. The hexagonal cells in obverse setting have 
centring points (see again Fig. 1.17)) at 

(O,O, O), I ,  I ,  I ,  (113,213,213) 

while for reverse setting centring points are at 

It is worth noting that a rhombohedral description of a hexagonal P lattice 
is always possible. Six triple rhombohedral cells with basis vectors a;, bk, 

Fig. 1.17. Rhombohedra1 lattice. The basis of the 
rhombohedral cell is labelled a,, b,, c,, the 
basis of the hexagonal centred cell is labelled 
a,, b,, c, (numerical fractions are calculated in  
terms of the c, axis). (a) Obverse setting; (b) the 
same figure as in (a) projected along c,. 
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ck can be obtained from aH,  bH, CH by choosing: 

U ~ = U H + C H ,  bk=b,+ cH, c k = - ( a H + b H ) + c H  

ak  = -aH + CH, bk = -bH + CH, ck = a H  + bH + cH 

and cyclic permutations of a;, bk, ck. Each triple rhomobohedral cell will 
have centring points at (O,0, O), (113,1/3,1/3), (213,213,213). 

In conclusion, some trigonal lattices may be described by a hexagonal P 
cell, others by a triple hexagonal cell. In the first case the nodes lying on the 
different planes normal to the threefold axis will lie exactly one on top of 
the other, in the second case lattice planes are translated one with respect to 
the other in such a way that the nth plane will superpose on the (n + 3)th 
plane (this explains why a rhombohedral lattice is not compatible with a 
sixfold axis). 

When, for crystals belonging to the hexagonal or trigonal systems, a 
hexagonal cell is chosen, then on the plane defined by a and b there will be 
a third axis equivalent to them. The family of planes (hkl) (see Fig. 1.18) 
divides the positive side of a in h parts and the positive side of b in k parts. 
If the third axis (say d) on the (a, b) plane is divided in i parts we can 

a introduce an extra index in the symbol of the family, i.e. (hkil). From the 
same figure it can be seen that the negative side of d is divided in h + k 

Fig. 1.18. Intersections of the set of parts, and then i = -(h + k). For instance (1 2 -3 5), (3 -5 2 I), 
crystallographic planes ( h  k l )  with the three 
symmetry-equivalent a, b, daxes in trigonal and 

(-2 0 2 3) represent three plane families in the new notation. The 
hexagonal systems. four-index symbol is useful to display the symmetry, since (hkil), (kihl), and 

(ihkl) are symmetry equivalent planes. 
Also, lattice directions can be indicated by the four-index notation. 

Following pp. 7-8, a direction in the (a, b) plane is defined by a vector 
(P - 0) = ma + nb. If we introduce the third axis d in the plane, we can 
write (P - 0) = ma + nb + Od. Since a decrease (or increase) of the three 
coordinates by the same amount j does not change the point P, this may be 
represented by the coordinates: u = m - j, v = n - j, i = -j. 

If we choose j = (m + n)/3, then u = (2m - n)/3, v = (2n - m)/3, i = 
-(m + n)/3. In conclusion the direction [mnw] may be represented in the 
new notation as [uviw], with i = -(u + v). On the contrary, if a direction is 
already represented in the four-index notation [uviw], to pass to the 
three-index one, -i should be added to the first three indices in order to 
bring to zero the third index, i.e. [u - i v - i w]. 

A last remark concerns the point symmetry of a lattice. There are seven 
three-dimensional lattice point groups, they are called holohedries and are 
listed in Table 1.6 (note that 3m is the point symmetry of the rhombohedral 
lattice). In two dmensions four holohedries exist: 2, 2mm, 4mm, 6mm. 

The 14 Bravais lattices are illustrated in Fig. 1.19 by means of their 
conventional unit cells (see Appendix 1.C for a different type of cell). A 
detailed description of the metric properties of crystal lattices will be given 
in Chapter 2. 

The space groups 

A crystallographic space group is the set of geometrical symmetry opera- 
tions that take a three-dimensional periodic object (say a crystal) into itself. 
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Triclinic 

Cubic 

Trigonal 

Hexagonal 

The total number of crystallographic space groups is 230. They were first 
derived at the end of the last century by the mathematicians Fedorov (1890) 
and Schoenflies (1891) and are listed in Table 1.9. 

In Fedorov's mathematical treatment each space group is represented by 
a set of three equations: such an approach enabled Fedorov to list all the 
space groups (he rejected, however, five space groups as impossible: Fdd2, 
Fddd, 143d, P4,32, P4132). The Schoenflies approach was most practical and 
is described briefly in the following. 

On pp. 11-16 we saw that 32 combinations of either simple rotation or 
inversion axes are compatible with the periodic nature of crystals. By 
combining the 32 point groups with the 14 Bravais lattices (i.e. P, I, F, . . .) 
one obtains only 73 (symmorphic) space groups. The others may be 
obtained by introducing a further variation: the proper or improper 
symmetry axes are replaced by screw axes of the same order and mirror 
planes by glide planes. Note, however, that when such combinations have 
more than one axis, the restriction that all symmetry elements must 
intersect in a point no longer applies (cf. Appendix l.B). As a consequence 
of the presence of symmetry elements, several symmetry-equivalent objects 
will coexist within the unit cell. We will call the smallest part of the unit cell 
which will generate the whole cell when applying to it the symmetry 

Fig. 1.19. The 14 three-dimensional Bravais 
lattices. 
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Table 1.9. The 230 three-dimensional space groups arranged by crystal systems and 
point groups. Space groups (and enantiomorphous pairs) that are uniquely deter- 
minable from the symmetry of the diffraction pattern and from systematic absences (see 
p. 159) are shown in bold-type. Point groups without inversion centres or mirror planes 
are emphasized by boxes 

Crystal Point Space 
system group groups 

Triclinic [i3 p1 
i P 1 

Monoclinic P2, P2,, C2 
m Pm, PC, Cm, Cc 
2/m P2/m, P2,/m, C2/m, P2/c, P2,/c, C2/c 

Orthorhombic 12221 P222, P222,, P2,2,2, P2,2,2,, C222,, C222, F222, 1222, 
12,2121 

mm2 Pmm2, PmcP,, Pcc2, PmaP,, PcaS,, PncZ,, PmnZ,, Pba2, 
Pna2,, Pnn2, Cmm2, Cmc2,, Ccc2, Amm2, Abm2, Ama2, 
Aba2, Fmm2, Fdd2,lmm2, lba2, h a 2  

mmm Pmmm,Pnnn,Pccm,Pban,Pmma,Pnna,Pmna,Pcca,  
Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, 
Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm, 
Fddd, Immm, Ibam, Ibca, lmma 

Tetragonal p4, p41, p4,, p4,, 14, 14, 
4 P4. 14 

Cubic (231 P23, F23, 123, P2,3,_12,3 - 
~ m 3 ,  ~ d ,  Fm3, F a ,  lm3, ~ a 3 ,  I& 
PG2, Pa&?, F$32, Y.2 ,  1432, P?,32, P4,32, l4?32 
P43-m, F43m, 143m, P43n, F43c, 1Gd 

m3m Pm_3m, Pn3n, PrnBn, Pn3m, Fm3m, Fm&, F b m ,  F&c, 
lm3m, la3d 

operations an asymmetric unit. The asymmetric unit is not usually uniquely 
defined and can be chosen with some degree of freedom. It is nevertheless 
obvious that when rotation or inversion axes are present, they must lie at 
the borders of the asymmetric unit. 
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According to the international (Hermann-Mauguin) notation, the space- 
group symbol consists of a letter indicating the centring type of the 
conventional cell, followed by a set of characters indicating the symmetry 
elements. Such a set is organized according to the following rules: 

1. For triclinic groups: no symmetry directions are needed. Only two space 
groups exist: PI and PI. 

2. For monoclinic groups: only one symbol is needed, giving the nature of 
the unique dyad axis (proper and/or inversion). Two settings are used: 
y-axis unique, z-axis unique. 

3. For orthorhombic groups: dyads (proper and/or of inversion) are given 
along x, y, and z axis in the order. Thus Pca2, means: primitive cell, 
glide plane of type c normal to x-axis, glide plane of type a normal to the 
y-axis, twofold screw axis along z.  

4. For tetragonal groups: first the tetrad (proper and/or of inversion) axis 
along z is specified, then the dyad (proper and/or of inversion) along x is 
given, and after that the dyad along [I101 is specified. For example, 
P4,lnbc denotes a space group with primitive cell, a 4 sub 2 screw axis 
along z to which a diagonal glide plane is perpendicular, an axial glide 
plane b normal to the x axis, an axial glide plane c normal to [110]. 
Because of the tetragonal symmetry, there is no need to specify 
symmetry along the y-axis. 

5. For trigonal and hexagonal groups: the triad or hexad (proper and/or of 
inversion) along the z-axis is first given, then the dyad (proper and/or of 
inversion) along x and after that the dyad (proper and/or of inversion) 
along [1?0] is specified. For example, P6,mc has primitive cell, a sixfold 
screw axis 6 sub 3 along z, a reflection plane normal to x and an axial 
glide plane c normal to [ ~ I o ] .  

6. For cubic groups: dyads or tetrads (proper and/or of inversion) along x ,  
followed by triads (proper and/or of inversion) along [ I l l ]  and dyads 
(proper and/or of inversion) along [110]. 

We note that: 

1. The combination of the Bravais lattices with symmetry elements with no 
translational components yields the 73 so-called symmorphic space 
groups. Examples are: P222, Cmm2, F23, etc. 

2. The 230 space groups include 11 enantiomorphous pairs: P3, (P3,), 
P3,12 (P3212), P3,21 (P3,21), P41 (P43), P4J2 (P4322), P4,&2 (P4&?,2), 
P6i (P65), P6, (P64), P6,22 (P6522), P6222 (P6422), P4,32 (P4,32). The 
( + ) isomer of an optically active molecule crystallizes in one of the two 
enantiomorphous space groups, the ( - )  isomer will crystallize in the 
other. 

3. Biological molecules are enantiomorphous and will then crystallize in 
space groups with no inversion centres or mirror planes; there are 65 
groups of this type (see Table 1.9). 

4. The point group to which the space group belongs is easily obtained from 
the space-group symbol by omitting the lattice symbol and by replacing 
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the screw axes and the glide planes with their corresponding symmorphic 
symmetry elements. For instance, the space groups P4Jmmc, P4/ncc, 
14,lacd, all belong to the point group 4lmmm. 

5. The frequency of the different space groups is not uniform. Organic 
compounds tend to crystallize in the space groups that permit close 
packing of triaxial ellipsoids.[81 According to this view, rotation axes and 
reflection planes can be considered as rigid scaffolding which make more 
difficult the comfortable accommodation of molecules, while screw axes 
and glide planes, when present, make it easier because they shift the 
molecules away from each other. 

Mighell and Rodgers [9] examined 21 051 organic compounds of known 
crystal structure; 95% of them had a symmetry not higher than orthorhom- 
bic. In particular 35% belonged to the space group P2,/c, 13.3% to PI, 
12.4% to P2,2,2,, 7.6% to P2, and 6.9% to C21c. A more recent study by 
~ i l s o n , [ ' ~ ]  based on a survey of the 54599 substances stored in the 
Cambridge Structural Database (in January 1987), confirmed Mighell and 
Rodgers' results and suggested a possible model to estimate the number Nsg 
of structures in each space group of a given crystal class: 

Nsg = Acc exp { -BccE21sg - Ccclmls,) 

where A,, is the total number of structures in the crystal class, [2],, is the 
number of twofold axes, [m],, the number of reflexion planes in the cell, B,, 
and Cc, are parameters characteristic of the crystal class in question. The 
same results cannot be applied to inorganic compounds, where ionic bonds 
are usually present. Indeed most of the 11 641 inorganic compounds 
considered by Mighell and Rodgers crystallize in space groups with 
orthorhombic or higher symmetry. In order of decreasing frequency we 
have: Fm3m, Fd3m, P6Jmmc, P2,/c, ~ m 3 m ,  ~ 3 m ,  C2/m, C2/c, . . . . 

The standard compilation of the plane and of the three-dimensional space 
groups is contained in volume A of the International Tables for Crystallog- 
raphy. For each space groups the Tables include (see Figs 1.20 and 1.21). 

1. At  the first line: the short international (Hermann-Mauguin) and the 
Schoenflies symbols for the space groups, the point group symbol, the 
crystal system. 

2. At the second line: the sequential number of the plane or space group, 
the full international (Hermann-Mauguin) symbol, the Patterson symmetry 
(see Chapter 5, p. 327). Short and full symbols differ only for the 
monoclinic space groups and for space groups with point group mmm, 
4/mmm, 3m, 6/mmm, m3, m3m. While in the short symbols symmetry 
planes are suppressed as much as possible, in the full symbols axes and 
planes are listed for each direction. 

3. Two types of space group diagrams (as orthogonal projections along a 
cell axis) are given: one shows the position of a set of symmetrically 
equivalent points, the other illustrates the arrangement of the symmetry 
elements. Close to the graphical symbols of a symmetry plane or axis 
parallel to the projection plane the 'height' h (as a fraction of the shortest 
lattice translation normal to the projection plane) is printed. If h = 0 the 
height is omitted. Symmetry elements at h also occur at height h + 112. 
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4. Information is given about: setting (if necessary), origin, asymmetric 
unit, symmetry operations, symmetry generators (see Appendix l.E) 
selected to generate all symmetrical equivalent points described in block 
'Positions'. The origin of the cell for centrosymmetric space groups is 
usually chosen on an inversion centre. A second description is given if 
points of high site symmetry not coincident with the inversion centre occur. 
For example, for ~ n 3 n  two descriptions are available, the first with origin at 
432, and the second with origin at 3. For non-centrosymmetric space groups 
the origin is chosen at a point of highest symmetry (e.g. the origin for ~ 4 2 c  
is chosen at 4lc) or at a point which is conveniently placed with respect to 
the symmetry elements. For example, on the screw axis in P2,, on the glide 
plane in PC, at la2, in P ~ a 2 ~ ,  at a point which is surrounded symmetrically 
by the three 2, axis in P2,2,2,. 

5. The block positions (called also Wyckoff positions) contains the 
general position (a set of symmetrically equivalent points, each point of 
which is left invariant only by application of an identity operation) and a list 
of special positions (a set of symmetrically equivalent points is in special 
position if each point is left invariant by at least two symmetry operations of 
the space group). The first three block columns give information about 
multiplicity (number of equivalent points per unit cell), Wyckoff letter (a 
code scheme starting with a at the bottom position and continuing upwards 
in alphabetical order), site symmetry (the group of symmetry operations 
which leaves invariant the site). The symbol adoptedr9] for describing the 
site symmetry displays the same sequence of symmetry directions as the 
space group symbol. A dot marks those directions which do not contribute 
any element to the site symmetry. To each Wyckoff position a reflection 
condition, limiting possible reflections, may be associated. The condition 
may be general (it is obeyed irrespective of which Wyckoff positions are 
occupied by atoms (see Chapter 3, p. 159) or special (it limits the 
contribution to the structure factor of the atoms located at that Wyckoff 
position). 

6. Symmetry of special projections. Three orthogonal projections for 
each space group are listed: for each of them the projection direction, the 
Hermann-Mauguin symbol of the resulting plane group, and the relation 
between the basis vectors of the plane group and the basis vectors of the 
space group, are given, together with the location of the plane group with 
respect to the unit cell of the space group. 

7. Information about maximal subgroups and minimal supergroups (see 
Appendix l .E) is given. 

In Figs. 1.20 and 1.21 descriptions of the space groups Pbcn and P4222 are 
respectively given as compiled in the International Tables for Crystallog- 
raphy. In order to obtain space group diagrams the reader should perform 
the following operations: 

1. Some or all the symmetry elements are traced as indicated in the 
space-group symbol. This is often a trivial task, but in certain cases 
special care must be taken. For example, the three twofold screw axes do 
not intersect each other in P2,2,2,, but two of them do in P2,2,2 (see 
Appendix 1. B) . 
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P b c n  
No. 60 P 2,lb 2 / c  2 , / n  

Origin at i on I c 1 

Asymmetric unit OSxli; 0 OlzS: 

Symmetry operations 

Orthorhombic 

Patterson symmetry P m  m m 

Fig. 1.20. Representation of the group Pbcn (as 
inlnternational Tables for Crystallography). 
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No. 60 P b c n  

Generatorsselected ( I ) ;  ( 1 0 0 ) ;  ( 0 1 0 ) ;  t ( 0 . 0 , ) ) ;  ( 2 ) ;  ( 3 ) ;  ( 5 )  

Positions 

Mulliplicity. 
Wyckoff letter. 
Site Spmetry 

Coordinates Reflection conditions 

General : 

8 d 1 (1) x ( 2 )  x + ~ , J + : , z + ~  ( 3 )  f , p , i + i  ( 4 )  x+:,y+i ,r  Okl : k = 2 n  
( 5 )  x ' , j , ~  ( 6 )  x+:,y+;.5+: ( 7 )  x.J' ,z++ (8 )  x'+:,y+i,z h01: 1 = 2 n  

hkO: h  +k = 2n 
hOO: h = 2n 
OkO: k  = 2n 
001: 1 = 2 n  

Special: as above, plus 

Symmetry of special projections 

Along [001] c 2 m m  Along [ 1001 p 2g m  
a l=a  bl= b a l=ib  b ' = c  
Origin at 0,O.z Origin at x.O.0 

Maximal non-isomorphic subgroups 
1 [ 2 ] P 2 , 2 2 , ( P 2 , 2 , 2 )  1 ; 2 ; 3 ; 4  

[ 2 ] P  1 1 2 , / n  ( P 2 , l c )  1; 2; 5 ;  6  
[ 2 ] P 1 2 / c I ( P 2 / c )  1 ; 3 ; 5 ; 7  
[ 2 ] P 2 , / b 1 1 ( P 2 , / c )  1 ; 4 ; 5 ; 8  
[ 2 ] P b c 2 ,  ( P c a  2 , )  1 ;  2;  7 ;  8 
[ 2 ] P b 2 n  ( P n c 2 )  1 ; 3;  6 ;  8  
[ 2 ] P 2 , c n ( P n a 2 , )  1 ; 4 ; 6 ; 7  

IIa none 

IIb none 

Maximal isomorphic subgroups of lowest index 
IIc [ 3 ] P b c n ( a 1 =  3 a ) ;  [ 3 ] P b c n ( b 1 =  3 b ) ; [ 3 ] P b c n ( c 1 =  3c )  

h k l :  h + k = 2 n  

hkl : h+k ,1=2n  

hkl : h + k , l = 2 n  

Along [010] p 2g m  
a'= bl= a  
Origin at O,y,O 

Minimal non-isomorphic supergroups 
I none 

I1 [2 ]Abma(Cmca) ; [2 ]Bbab(Ccca) ; [2 ]Cmcm;[2 ]1bam;[2 ]Pbcb(2a1=  a ) ( P c c a ) ;  
[2 ]Prnca (2b1= b ) ( P b c m ) ;  [ 2 ] P b m  n(2c1= c ) ( P m  n a )  
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No. 93 

Te t rag on al 

P 4 2 2 2  Patterson symmetry P 4/m m m 

Origin at 2 2 2 at 42 2 1 

Asymmetric unit O l x l i ;  O I y S  I ;  0 I z l $  

Symmetry operations 

Fig. 1.21. Representation of the group P4,22 (as 
in International Tables for Crystallography). 2. Once conveniently located, the symmetry operators are applied to a 

point P in order to obtain the symmetry equivalent points P', P", . . . . If 
P',  P ,  . . . , fall outside the unit cell, they should be moved inside by 
means of appropriate lattice translations. The first type of diagram is so 
obtained. 

3. New symmetry elements are then placed in the unit cell so producing the 
second type of diagram. . 

Some space group diagrams are collected in Fig. 1.22. Two simple crystal 
structures are shown in Figs 1.23 and 1.24: symmetry elements are also 
located for convenience. 

The plane and line groups 

There are 17 plane groups, which are listed in Table 1.10. In the symbol g 
stays for a glide plane. Any space group in projection will conform to one of 
these plane groups. There are two line groups: p l  and pm. 

A periodic decoration of the plane according to the 17 plane groups is 
shown in Fig. 1.25. 
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CONTINUED No. 93 

Generators selected ( I ) ;  t (I ,O,O); t (0, I ,0); t (O,O, I); (2); (3); (5) 

Positions 
Mulliplicily. 
Wyckofl kllcr. 
S~ le  symmetry 

Coordinates Reflection conditions 

General: 
001: I  =2n 

Special: as above, plus 

4  o . . 2  x,x,+ f , f , i  f , x , +  x , f , +  Okl: I =2n 

4  n  . . 2  x,x,$ f.1,: f,x,: x . f , ?  Okl: I =2n 

4  1  . 2 .  x,O,+ f,O.f O.x,O O,f,O hhl : I = 2n 

4  h  2 . .  1 , , , , z  L f ,:,z+: +,i,T f , $ , f + f  hkl : 1 =2n 

2  f 2 . 2 2  +,+,+ it+,+ hkl : I =2n 

2  e 2 . 2 2  O,O,+ O,O,+ hkl : I  = 2n 

hkl : h + k + l = 2 n  

2  b 2 2 2 .  f,f,O f , f , i  hkl : I  =2n 

Symmetry of special projections 

Along [OOI] p4mm 
a ' = a  b l = b  
Origin at 0,O.z 

Along [I001 p2n1tn 
a ' = b  b l = c  
Origin at x,O,O 

Maximal non-isomorphic subgroups 

I (2]P4,1  1 ( P 4 2 )  1 ; 2 ; 3 ; 4  
[ 2 ] P 2 2 1 ( P 2 2 2 )  l ; 2 ; 5 ; 6  
[ 2 ] P 2 1 2 ( C 2 2 2 )  1 ; 2 ; 7 ; 8  

IIa none 

IIb [ 2 ] P 4 , 2 2 ( c 1 = 2 c ) ; [ 2 ] P 4 , 2 2 ( c ' =  2 c ) ; ( 2 ] C 4 , 2 2 , ( a 1 =  2 a , b 1 = 2 b ) ( P 4 , 2 , 2 ) ;  
[ 2 ] F 4 , 2 2 ( a 1 =  2a ,b1=  2b , c1=  2 c ) ( 1 4 , 2 2 )  

Maximal isomorphic subgroups of lowest index 

IIc [3]P4,22(c1= 3c) ;  [ 2 ] C 4 , 2 2  (a1= 2a ,  b l =  2 b ) ( P 4 2 2 2 )  

Along [I101 p 2 m m  
a'= + ( - a f b )  b l = c  
Origin at x,x,$ 

Minimal non-isomorphic supergroups 
I  I21P4Jmmc; [2]P4J tncm;  [21P42/nbc;  [21P42/nnm; [31P4232 
I1 ( 2 ] 1 4 2 2 ; [ 2 ] P 4 2 2 ( 2 c 1 =  c)  
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+ + 

Fig. 1.22. Some space group diagrams. 

C 2 P 2/m 
0- 0 - 4 -0 0- -0 0- - 

On the matrix representation of symmetry 
operators 

A symmetry operation acts on the fractional coordinates x,y, z of a point P 
to obtain the coordinates (x', y', 2') of a symmetry-equivalent point P': 

The R matrix is the rotational component (proper or improper) of the 
symmetry operation. As we shall see in Chapter 2 its elements may be 0 ,  
$1, -1 and its determinant is f 1. T is the matrix of the translational 
component of the operation. A list of all the rotation matrices needed to 
conventionally describe the 230 space groups are given in Appendix 1.D. 

0"; - c ------ 0 --- 0 - 
0 + +O o+ +0 o+ -1 1 1- 

10 - - 
- 

O+ :!I - 4 -0 

0 + 

0 - 

0 -  I T I -  
0- 

o+ 

0- 

0- 
o+ 

+0 

-0 
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Fig. 1.23. A P2,2,2, crystal structure (G. Chiari, 
D. Viterbo, A. Gaetani Manfredotti, and C. 
Guastini (1975). Cryst. Struct. Commun., 4,561) 
and its symmetry elements (hydrogen atoms are 
not drawn). 

Fig. 1.24. A P2,/c crystal structure (M. Calleri, G. 
Ferraris, and D. Viterbo (1966). Acta Cryst., 20, 
73) and its symmetry elements (hydrogen atoms 
are not drawn). Glide planes are emphasized by 
the shading. 
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Table 1.10. The 17 plane groups 

Oblique cell P I ,  ~2 
Rectangular cell pm, pg, an ,  ~ 2 m m ,  P ~ V ,  ~ 2 9 9 ,  c2mm 
Square cell p4, p4n-m~ p4gt1-1 
Hexagonal cell p3, p3rn1, p31n-1, p6, p6mrn 

When applying the symmetry operator C1 = (R,, TI) to a point at the end 

Fig. 1.25. A periodic decoration of the plane 
of a vector r, we obtain X' = CIX = RIX + TI. If we then apply to r' the 

according to the 17 crystallographic plane symmetry operator C2, we obtain 
groups (drawing by SYMPATI, a computer 
program by L. Loreto and M.  Tonetti, pixel, 9, X = C2Xf = R2(RlX + TI) + T2 = R2RlX + R2Tl + T2. 
9-20; Nov 1990). 
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Since the symmetry operators form a mathematical group, a third symmetry 
operator must be present (see also pp. 11-12), 

C3 = C2C1= (R2R1, R2T1+ T2), (1.12) 

where R2Rl is the rotational component of C3 and (R2T, +T2) is its 
translational component. In particular the operator C2 = CC will be present 
and in general also the CJ operator. Because of (1.12) 

C1 = [RJ, (RJ-' + . . . + R + I)T]. (1.13) 

Let us now apply this result to the space group P6,. Once we have defined 
the R and T matrices corresponding to an anti-clockwise rototranslation of 
60" around z ,  we obtain all the six points equivalent to a point r by applying 
to it the operators CJ with j going from 1 to 6. Obviously C6= I and 
C6+j = CJ. For this reason we will say that the 6, operator is of order six 
(similarly 2 and m are of order two). 

If r is transferred to r '  by C = (R, T) there will also be an inverse operator 
C-' = (R', TI) which will bring r '  back to r. Since we must have C-'C = I, 
because of (1.12) we will also have R'R = I and R'T + T' = 0, and therefore 

C-1 = (R-1, -R-~T) (1.14) 

where R-l is the inverse matrix of R. In the P6, example, C-l = C5. When 
all the operators of the group can be generated from only one operator 
(indicated as the generator of the group) we will say that the group is 
cyclic. 

All symmetry operators of a group can be generated from at most three 
generators. For instance, the generators of the space group P6,22 are 6, and 
one twofold axis. Each of the 12 different operators of the group may be 
obtained as C',, j = 1, 2, . . . , 6, say the powers of 61, or as C2, the twofold 
axis operator, or as their product. We can then represent the symmetry 
operators of P6'22 as the product {C1){C2), where {C) indicates the set 
of distinct operators obtained as powers of C. Similarly there are two 
generators of the group P222 but three of the group ~ 4 3 m .  In general all the 
operations of a space group may be represented by the product {C1) {C2) {C3). 
If only two generators are sufficient, we will set C3 = I, and if only one is 
sufficient, then C2 = C3 = I .  The list of the generators of all point groups is 
given in Appendix 1 .E. 

So far we have deliberately excluded from our considerations the 
translation operations defined by the Bravais lattice type. When we take 
them into account, all the space-group operations may be written in "a very 
simple way. In fact the set of operations which will transfer a point r in a 
given cell into its equivalent points in any cell are: 

{ c ~ }  {c2} {c3} (1.15) 

where T = mla + m2b + m3c is the set of lattice translations. 
The theory of symmetry groups will be outlined in Appendix 1.E. 

Appendices 

1 .A The isometric transformations 
It is convenient to consider a Cartesian basis (el, e2, e3). Any transforma- 
tion which will keep the distances unchanged will be called an isometry or 
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an isometric mapping or a movement C. It will be a linear transformation, 
in the sense that a point P defined by the positional r x t o r  r = xe, + ye2 + 
ze3 is related to a point P', with positional vector r' = xfel  + y1e2 + zfe3 by 
the relation 

with the extra condition 

R R =  I or R =  R-'. 
R indicates the transpose of the matrix R and I is the identity matrix. 

We note that X and X' are the matrices of the components of the vectors 
r and r' respectively, while T is the matrix of the components of the 
translation vector t = Tlel + T,e2 + T3e3. 

A movement, leaving the distances unchanged, will also maintain the 
angles fixed in absolute value. Since the determinant of the product of two 
matrices is equal to the product of the two determinants, from (1.A.2) we 
have (det R)'= 1, and then det R = f 1. We will refer to direct or opposite 
movements and to direct or opposite congruence relating an object and its 
transform, depending on whether det R is +1 or -1. 

Direct movements 
Let us separate (l.A.l) into two movements: 

X 1 = X 0 + T  

Xo = RX. 

(1.A.3) adds to each position vector a fixed vector and corresponds 
therefore to a translation movement. (1.A.4) leaves the origin point 
invariant. In order to find the other points left invariant we have to set 
Xo = X and obtain 

(1.A.5a) will have solutions for X#O only if det (R - I) = 0. Since det (R - I) = 
det (R - RR) = det [(I - R)RJ = det (I - R) det R = det (I - R) = -det (R - I), 
then this condition is satisfied. Therefore one of the three equations 
represented by (1.A.4) must be a linear combination of the other two. The 
two independent equations will define a line, which is the locus of the 
invariants points; the movement described by (1.A.4) is therefore a 
rotation. In conclusion, a direct movement can be considered as the 
combination (or, more properly, the product) of a translation with a 
rotation around an axis. 

If in eqn (1.A.1) is R = I then the movement is a pure translation, if T = 0 
the movement is a pure rotation. When the translation is parallel to the 
rotation axis the movement will be indicated as rototranslation. An 
example of direct movement is the transformation undergone by the points 
of a rigid body when it is moved. Another example is the anti-clockwise 
rotation around the z axis of an angle 8; this will move r(x, y, z )  into 
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r1(x', y', z') through the transformation 

x l=xcosO-ys inO 

y 1 = x s i n 8 + y c o s 0  

which in matrix notation becomes X' = RX, with 

(l.A.5b) 

R-' can be obtained by substituting 8 with -8 and it can be immediately 
seen that, in agreement with (1.A.2), R = R-l. 

We will now show that any direct movement can be carried out by means 
of a translation or a rotation or a rototranslation. Let us suppose that an 
isometric transformation relates the three non-collinear points A, B, C with 
the points A', B', C' respectively. If a is the translation bringing A on A', 
then, if also B and C superpose on B' and C', the movement is a 
translation; if not, then the complete superposition can be achieved by a 
rotation R around an axis 1 passing through A'. If 1 is perpendicular to a, 
the movement resulting from the combination of the rotation and transla- 
tion operations is still a pure rotation around an axis parallel to 1 (see 
Appendix l.B). If a is not perpendicular to 1, then it can be decomposed 
into two translational components a1 and a2, one perpendicular and the 
other parallel to 1. The product of R times al is a pure rotation around an 
axis parallel to 1, which, when composed with a2, results in a rototranslation 
movement. 

Opposite movements 
An opposite movement can be obtained from a direct one by changing the 
sign to one or three rows of the R matrix. For instance, when changing the 
sign of the third row, we substitute the vector ( x ' ,  y', 2') with (x', y', -zl), 
i.e. the point P' with its symmetry related with respect to a plane at z = 0. 
This operation is called a reflection with respect to the plane at z = 0. 
Changing the signs of all three rows of the R matrix implies the substitution 
of the vector (x', y' ,  z') with (-x', -y ', -2')) i.e. of the point P with its 
symmetry related with respect to the origin of the coordinate system. This 
operation is called inversion with respect to a point. 

We may conclude that each direct movement, followed by a reflection 
with respect to a plane or by an inversion with respect to a point yields an 
opposite movement. On the other hand an opposite movement may be 
obtained as the product of a direct movement by a reflection with respect to 
a plane or by an inversion with respect to a point. 

1 .B. Some combinations of movements 
Only those combinations of movements explicitly mentioned in this book 
will be considered (for further insight, the reader is referred to the splendid 
book by Lockwood and ~acMillan[~I) .  The stated laws may be interpreted 
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Fig. 1.B.1. (a) Composition of two reflections; 
(b) composition of two rotations about parallel 
axes; (c) composition of two rotations, the first 
through cuand the second through -a, about 
parallel axes; (d) composition of two rotations 
about axes passing through a point. 

in terms of combinations of symmetry operations if all the space is invariant 
with respect to the movements. 

1. Composition of two reflections. In Fig. l.B.l(a) the two reflection 
planes m, and m, are at a dihedral angle a and intersect along a line, the 
trace of which is in 0 .  The image of OQ with respect to m, is OQ1 and the 
image of OQ, with respect to m, is OQ,. It is possible to superpose OQ to 
OQ, by a rotation of 2 a  around the axis through 0 .  We may conclude that 
the product of the two reflections is a rotation of 2 a  around 0 ;  in symbols 
mlm2 = R. The product is not commutative (m,m, # m,m,): in fact by first 
reflecting OQ with respect to m, and then reflecting the image with respect 
to m, we obtain a 2 a  rotation in the opposite direction. 

2. The Silvester theorem relative to three parallel rotation axes. The traces 
of the three axes on the plane of Fig. l.B.l(b) are A, B, C. The Silvester 
theorem states that consecutive anti-clockwise rotations of 2a,  2P, 2y 
around A, B, C respectively produce the identity. In fact, because of point 
1, the rotations are equivalent to reflection operations with respect to the 
three pairs of planes AC-AB, BA-BC, CB-CA respectively and all these 
reflections cancel each other out. Since a + P + y = n, two successive 
rotations of 2 a  and 2P around A and B respectively, will be equivalent to a 
rotation of +(2a + 2P) around C. When a = -P, the third axis goes to 
infinity and the resulting movement is a translation. 



Symmetry in crystals 1 39 

In Fig. l.B.l(c) AC moves to AB by a rotation of a around A; by a -a 
rotation around B BA goes to BD. The resulting movement brings AC to 
BD and can be achieved by a translation of DA = 2AB sin (a12) perpen- 
dicular to the direction of the rotation axes and at an angle of ( n  - a)/2 
with respect to AB. In symbols: R,RI_,=T. We can then deduce the 
following point 3. 

3. A rotation and a translation perpendicular to the rotation axis combine 
in a resulting rotation movement around an axis parallel to the original axis. 

4. The Silvester theorem relative to three rotation axes passing through a 
point. In Fig. l.B.l(d) ABC is a spherical triangle with angles a ,  P, y in A, 
B, C respectively. If A, B, C are in a clockwise order, rotations of 2a, 2P, 
2y around A, B, C leave the figure unchanged. In fact, because of point 1, 
the three rotations correspond to the products of the reflections with respect 
to the pairs of planes AOC-AOB, AOB-BOC, BOC-COA respectively, 
and these reflections cancel each other out. Since a + p + y > n, then 
consecutive rotations of 2 a  around A and of 2P around B are equivalent to 
a rotation of 2y around C, with 2y # (2a + 2P). 

5. Coexistence of rotation axes passing through a point: the Euler 
theorem. We will study this problem using the Silvester theorem treated in 
point 4. In Fig. l.B.l(d) let OA and OB be two symmetry rotation axes of 
order m and n respectively. The angles a and P are chosen in such a way 
that 2 a  = 2n/m and 2P = 2nln. Because of the Silvester theorem, anti- 
clockwise rotations of 2 a  and 2P around OA and OB are equivalent to a 2y 
anti-clockwise rotation around OC. C is therefore a symmetry axis of order 
p = 2nI2y = nly.  The angles of the spherical triangle are then nlm, n ln  
and nlp. Since the sum of the angles must be greater than n, the inequality 
l lm + l l n  + l l p  > 1 follows. The possible solutions of this inequality are: 1, 
2, 2 with 1 integer >1; 2, 3, 3; 4, 3, 2; 5, 3, 2. We can now consider the 
different solutions, keeping in mind that the surface of a sphere of radius r is 
4nr2 and that of a spherical triangle is ( a  + P + y - n)r2: 

(a) Solution 1, 2, 2. a ,  p, and y are equal to n12, n12, n l l  respectively and 
A and B may be chosen on an equatorial circle with C as a pole. The 
binary axes are therefore always at 90' with respect to the 1 axis. Values 
of 1 different from 2, 3, 4, 6 correspond to non-crystallographic groups 
which occur as possible symmetries of molecules or as approximate 
local site symmetries in crystals. 

(b) Solution 2, 3, 3. a ,  p, and y are equal to n12, n13, n13 respectively 
and the area of the spherical triangle is nr2/6. On the sphere there will 
be 24 such triangles. The 24 n / 2  angles meet four at a time at six 
vertices and the 48 n13 angles meet six at a time at eight vertices. This 
implies the presence of three twofold axes and of four threefold axes. 
The three twofold axes will be perpendicular one to the other and can 
be assumed as the axes of a reference system. The four threefold axes 
run from the centre to the points (1,1, I), (1, - 1, -I), (- 1,1,  -I), 
(-1, -1, l) .  The group of rotations is consistent with the symmetry of a 
tetrahedron. 

(c) Solution 4, 3, 2. a ,  p, and y are equal to n/2, n13, n14 respectively 
and the area of the spherical triangle is nr2/12. On the sphere there will 
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Fig. 1.8.2. Stereographic projections of the 32 
crystallographic point groups. 

be 48 such triangles. The 48 n/2  angles meet four at a time at twelve 
vertices, the 48 n / 3  angles meet six at a time at eight vertices and the 48 
n /4  angles meet eight at a time at six vertices. A total of six twofold 
axes, of four threefold axes, and of three fourfold axes will be present. 
The three fourfold axes-will be perpendicular one to the other and can 
be assumed as the axes of a reference system. The threefold axes are 
located along the [I,  1,1], [I,  - 1, -11, [-I, 1, -11, [-I, -1, 11 direc- 
tions, while the twofold axes are on the bisecting lines of the angles 
between the fourfold axes. The group of rotations is consistent with the 
symmetry of a cube and of an octahedron (see Fig. 1.10). 

The mutual disposition of the symmetry elements in the 32 crystal- 
lographic point groups is illustrated in Fig. 1.B.2, where the so called 
'stereographic projections' are shown. The c axis is normal to the plane, 
the a axis points down the page, and the b axis runs horizontally in the 
page from left ro right. A stereographic projection is defined as follows 
(see Fig. l.B.3(a)). A unit sphere is described around the crystal in C. 
A point P (terminal of some symmetry axis) in the $2 hemisphere is 
defined in the ( x ,  y )  plane as intersection P' of that plane with the line 
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connecting the point with the south pole of the unit sphere. If the point 
to be projected is in the -2 hemisphere then the north pole is used. 

In Fig. l.B.3(b) parts of the stereographic projections for m3m are 
magnified in order to make clearer the statements made in the text. 

(d) Solution 5, 3, 2. This solution, which is compatible with the symmetry 
of the regular icosahedron (20 faces, 12 vertices) and its dual, the 
regular pentagon-dodecahedron, (12 faces, 20 vertices), but not with 
the periodicity property of crystals, will not be examined. 

It is however of particular importance in Crystallography as sym- 
metry of viruses molecules and in quasi-crystals. 

6.  Composition of two glide planes. In Fig. 1.B.4 let S and S' be the 
traces of two glide planes forming an angle a and 0 be the trace of their 
intersection line. The translational components OA and OB are chosen to 
lie on the plane of the drawing and Q is the meeting point of the axes of the 
OA and OB segments. X, Y, and Q' are the reflection images of Q with 
respect to S, S', and to the point 0, respectively. The product S'S moves Q 
to Q' and then back to Q. Since S'S is a direct movement it leaves Q 
unchanged and corresponds to a rotation around an axis normal to the plane 
of the figure and passing through Q. Since S'S moves first A to 0 and then 
to B, the rotation angle AQB = 2a. Note that the two glides are equivalent 
to a rotation around an axis not passing along the intersection line of S 
and S'. 

7. Composition of two twofold axes, with and without translational 
component. From point 5 we know that the coexistence of two orthogonal 
twofold axes passing by 0 ,  implies a third binary axis perpendicular to them 
and also passing through 0 (see Fig. l.B.5(a)). The reader can easily verify 
the following conclusions: 

(a) if one of the two axes is 2, (Fig. l.BS(b)), then another 2 axis, at 114 
from 0 and intersecting orthogonally the screw axis, will exist; 

(b) if two 21 intersect in 0 (Fig. l.B.5(c)), then another 2 axis perpendicu- 
lar to them and passing at (114,114) from 0 will be present; 

(c) if a pair of mutually perpendicular 2 axes is separated by 114 of a period 
(Fig. l.BS(d)), then a 2, axis orthogonally intersecting both axes will 
exist; 

(d) if a 2 and a 2, axis are separated by 114 of a period (Fig. l.B.5(e)) there 
will then be a new 2, axis normal to both of them and intersecting the 
first 2, axis at 114 froin the 2 axis; 

(e) if two orthogonal screws are separated by 114 of a period (Fig. 
l.B.5(f)), then a third screw axis normal to them and passing at 
(114,114) from them will be present. 

1 .C. Wigner-Seitz cells 
The 14 Bravais lattices are compatible with cells which are different from 
those conventionally associated to them. A conventional cell is a paral- 
lelepiped: as such it may be considered as a particular type of polyhedron. 
There are several families of polyhedra with which we can fill up the space 

poie 

Fig. 1.8.3. (a) Geometry of the stereographic 
projection. (b) Angular values occurring in m3m 
stereographic projection. 

Fig. 1.8.4. Composition of two glide planes. 
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Fig. 1.8.5. Various arrangements of three 
orthogonal binary axes. The length of the 
graphical symbol for screw axes in  the plane of 
the page corresponds to half repetition period. 

by translation. A very important type is the one obtained through the 
Dirichlet construction. Each lattice point is connected with a line to its 
nearest neighbours. We then trace through the mid-points of the segments 
the planes perpendicular to them. These intersecting planes will delimit a 
region of the space which is called called the Dirichlet region or Wigner- 
Seitz cell. An example in two dimensions is given in Fig. l .C.l(a) and two 
three-dimensional examples are illustrated in Fig. 1 .C. l(b, c) . The Wigner- 
Seitz cell is always primitive and coincides with the Bravais cell if this is 
rectangular and primitive. A construction identical to the Wigner-Seitz cell 
delimits in the reciprocal space (cf. Chapters 2 and 3) a cell conventionally 
known as the first Brillouin zone. There will be 14 first Brillouin zones 
corresponding to the 14 Bravais lattices. We recall here that to a lattice I in 
direct space corresponds an F lattice in reciprocal space and vice versa (see 
Appendix 2.D); then, the first Brillouin zone of an I lattice will look like a 
Wigner-Seitz cell of an F lattice and vice versa. The Brillouin zones are 
very important in the study of lattice dynamics and in electronic band 
theory. 

Fig. 1.C.1. Examples of Wigner-Seitz cells. 
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1 .D. The space-group matrices 
All the rotation matrices R needed to conventionally describe all 230 space 
groups will be listed. They operate according to the relation X' = RX. The 
matrices are grouped following the directions along which they operate, and 
for the hexagonal and trigonal systems they are preceded by the letter H. 
They may be constructed using the following practical criterion: in the first, 
second, and third columns are the coordinates of the points symmetry 
related to points (1,0, O), (0,1, O), and (0,0,1) respectively. 

The determinant of a matrix will have a +1 or a -1 value depending on 
whether the represented operation is of rotation or of inversion type. This 
number, together with the trace (sum of the diagonal elements) of a matrix, 
are characteristic of the symmetry element: 

element 1 2 3 4 6 1 2 3 4 6 ,  
trace 3 i 0 1 2 3 1 0 1 2 ,  
determinant l l l l l i i i i i .  

The matrix of the fi operator may be simply obtained from that of the n 
operator by multiplying by the matrix corresponding to the i operator: 

0 
i = ( i  -1 o -1 :). 

This corresponds to changing the sign of all the elements of the original 
matrix. Therefore in the following list we will not give all the 64 matrices 
necessary to describe the space groups, but only the 32 matrices cor- 
responding to proper symmetry elements. 

Direction [0 0 01 

Direction [I 0 01 

( 0 ° )  ( 1 )  ( l o  O ) ;  ( l o  0) 
2 ~ 0 1 0  H 2 = 0 1 0  4 ~ 0 0 1  4 3 = O 0 1 .  

o o i  o o i  o I 0 '  0 1 0  

Direction [0 1 01 

( i o 0 ) ;  O O ) ;  ( O O i ) ;  ( y g ; )  2 = 0 1 O  H 2 = 1 1 O  3 = 0 1 O  4 3 = 0 1 0 .  
o o i  o o i  l o o  

Direction [0 0 11 

i o o  1 1 0  o i o  
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Direction [ l  1 01 

Direction [l 0  11 

0 0 1  

Direction [0 1 11 

Direction [l i 01 

Direction [ i  0  11 

Direction [0 1 I] 

Direction [I 1 11 

0 0 1  0  1 0  

Direction [I 1 11 

o i 0  o o i  

Direction [l i 11 

l o o  o i o 
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Direction [I 1 ?I ( 0); (O  O T )  
3 ~ 0 0 1  3 2 ' 1 0 0 .  

T o o  0 i 0 

Direction [2 1 0] 

Direction [ l  2 01. 

1 .E. Symmetry groups 
A group G is a set of elements g,, g2, . . . g,, . . . for which a combination 
law is defined, with the following four properties: closure, the combination 
of two elements of the group is an element of the group gigj =gk; 
associativity, the associative law (gigj)gk = gi(gjgk) is valid; identity, there 
is only one element e in the group such that eg = ge = g; inversion, each 
element g in the group has one and only one inverse element g-' such that 
g-lg = gg-l = e. 

Examples of groups are: 

(1) the set of all integer numbers (positive, negative, and zero), when the 
combination law is the sum. In this case e = 0, g-' = -g; 

(2) the rational numbers, excluding zero, when the law is the product: 
e = 1, g-l= l/g; 

(3) the set of all n x n son-singular matrices under the product law: e is the 
diagonal matrix with aii = 1; 

(4) the set of all lattice vectors r,,,,, = ua + vb + wc with u, v, w positive, 
negative, or null integers, when the combination law is the vector sum: 
then e = g,,,,, g-l = -g. 

The number of different elements of a group is called the order of the 
group and can be finite or infinite. If a group also possesses the 
commutative property gigj =gigi for any i and j, then G is said to be 
Abelian. With reference to the examples given above, (I), (2), (4) are 
infinite and Abelian groups, (3) is infinite and non-Abelian. 

If g is an element of G, all powers of g must be contained in G. An 
integer n may exist for which 

then gn+' = g, gn+2 = g2, . . , If n is the smallest integer for which (l.E.l) is 
satisfied, there will only be n distinct powers of g. Since gJgn-j = gn-jgi = e, 
then gn-j is the inverse of gi. The element g is then said to be of order n and 
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Table 1.E.1. List of generators for non-cyclic point groups. There are 2 1  proper 
generators in all 

Point group 

2 / m  
2 2 2  
r n r n 2  
rnrnrn 

4 2 2  
4/ rn 
4rn rn 
4 2 r n  
4Jrnrnrn 

3 2  
3 r n  

Generators 

4oro1,  2roio1 
2~1001~ 210101 
2[1001' 210011 

2110011 ~ 1 0 1 0 1 ~  

210011 
~ [ ~ o o I ,  3 1  i o ~  
4100111 ?[0011 

~ [ I O O I ~  2 [ i i o 1  
T r r o o i ~  2 [ i i o 1  
?[looit 4 i i o i  
210011 

3 1 o o i 1 ~  Tr iooi  
310011~ 21ioo~ 

Point group 

Jrn 
6 2 r n  
6 2 2  
6/m 

Generators 

the set of all powers of g is a group of order n:  
2 G I =  (g, g , . . . , gn-l, gn = e). 

A group, such as (1.E.2), in which all the elements are powers of a single 
generating element, is called cyclic. All cyclic groups are Abelian, but the 
converse is not true. An example of cyclic group of order n is the set of 
rotations around a given axis, which are multiple of an angle a = 2nln. 

Any point group can be represented as the product of powers of at most 
three elements, which are the generators of the group. In Table l .E . l  the 
list of the generators of the non-cyclic groups is reported. We also note that 
the definition of the generators is not unique. For instance in the class 222 
we may chose the generators 2[,ool and 2[olo1, or 2,,,] and 2[00,1, or 210101 and 
~[ooI] .  

When the physical properties of the group elements are not specified the 
group is said to be abstract. From a mathematical point of view all its 
properties are determined by its multiplication table. For a group of n 
elements this table has the form: 

We note that 

1. Each element appears once and only once in a given row (or column) of 
the table. In order to demonstrate this statement let us consider the ith 
row of the table and suppose that there are two different elements gj and 
gk, for which gigj = gigk = g,. Then g, would appear twice in the row, but 
by multiplying the two equations by g;' we obtain g, = g,, in contrast 
with the hypothesis. 

2. Each row (column) is different from any other row (column); this 
property follows immediately from property 1. 

3. For abelian groups the table is symmetric with respect to the diagonal. 
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Table 1.E.2. The 18 abstract groups corresponding to the 32 crystallographic point 
groups 

Point group Order of Characteristic 
the group relations 

1 
i, 2, m 
3 
4.4 
2/m, mm2, 222 
6, 6, 3 
32.3m 
mmm 
4/m 
4mm, 422.42m 
g/m 
3m, 62m, 6mm, 622 
23 
4/mmm 
432.43m 
m3 
6/mmm 
m3m 

Groups having the same multiplication table, even though their elements 
might have different physical meaning, are called isomorphous. They must 
have the same order and may be considered as generated from the same 
abstract group. For instance the three point groups 222, 2/m and mm2 are 
isomorphous. To show this let us choose g,, g,, g3, g4 in the following way. 

group 222: 1, 2, 2, 2; 
group 2/m; 1, 2, m, i; 

group mm2; 1, m, m, 2. 

The multiplication table of the abstract group is 

In Table 1.E.2 the 32 crystallographic point groups are grouped into 18 
abstract groups and for each of them the defining relationships are listed. 
We note that all cyclic groups of the same order are isomorphous. 

Subgroups 
A set H of elements of the group G satisfying the group conditions is called 
a subgroup of G. The subgroup H is proper if there are symmetry 
operations of G not contained in H. Examples of subgroups are: 

(1) the set of even integers (including zero) under the sum law is a 
subgroup of the group of all integers; 

(2) the point group 32 has elements g, = 1, g2 = 310011, g3 = 3, = 3-l, 
g4 = 2[1m1, g5 = 2[0101, g6 = 2[iio1; H = (gl, g2, g3) is a subgroup of G; 



48 1 Carmelo Giacovazzo 

(3) the point groups 1, 2, I, m are subgroups of the point group 2/m; 

(4) 222 is a subgroup of 422; 

(5) the set T of all primitive lattice translations is a subgroup of the space 
group G. 

Conversely G may be considered a supergroup of H. 
Subgroup-group-supergroup relationships are very important in the 

study of phase transitions and of order-disorder problems. 

Cosets 
Let H = (h,, h2, . . .) be a subgroup of G and gi an element of G not 
contained in H. Then the products 

giH = (gihl, g h ,  . . .) and Hgi = (hlgi, h2gi, . . .) 
form a left and a right coset of H respectively. In general they will not be 
identical. 

Furthermore H can not have any common element with giH or Hgi. In 
fact, if for instance, we had gihi = hk, it would follow that gi = hkhjl ,  i.e. 
contradicting the hypothesis, gi would belong to H. 

It can be shown that two right (or left) cosets, either have no common 
element or are identical one to the other. This allows us to decompose G 
with respect to H in the following way: 

It follows that the order of a subgroup is a divisor of the order of the group 
and if this is a prime number, the only subgroup of G is e and G must also 
be cyclic. 

The decomposition of the group 2/m into separate left cosets with respect 
to the subgroup 2 is: 

The number of distinct cosets obtained from the decomposition of a 
group with respect to a subgroup is called index of the subgroup. In the 
previous example, the index of the subgroup 2 of the group 2/m is two. 

A coset is never a group because it does not contain the element e. 

Conjugate classes 
An element gi is said to be conjugate to an element gj of G if G contains an 
element gk such that 

gi = gklgjgk. (1.E.5) 

If g, is fixed and gk varies within G, then the set of elements gi forms a class 
of conjugate elements. 

In agreement with relation (1.E.5) the element e forms a class on its own. 
Since each element of G can not belong to two different classes, it is 
possible to decompose G into the factorized set G = e U T, U T2 U . . . . 

A physical or geometrical meaning may be attributed to the classes. In 
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the transformation (1.E.5), let the element g, be a coordinate transforma- 
tion due to a symmetry operator and the element gj a matrix operator 
related to another symmetry operation. Since g, is transformed by (1.E.5) 
(see eqn (2.E.7)), the operators belonging to the same class are changed 
one onto the other by coordinate transformations represented by the 
elements of the group. For instance, for the point group 32 three classes 
may be set up: 

(el, (3,3-'), (2[iool, ~[oID] ,  2~iiol.I 

As we will see later, the character is identical for the matrix repre- 
sentation of all the elements of the same class. 

The following rules may be useful to set up the point-group classes: 

the classes are formed by one element only for the point groups up to 
orthorhombic; this means that each symmetry operator commutes with 
all the others; 

in an Abelian group the classes are formed by only one element; 

the operators identity, inversion, and reflection with respect to a mirror 
plane perpendicular to the principal symmetry axis (the axis with the 
highest order), are each in a separate class. 

Conjugate subgroups 
Let H be a subgroup of G and g an element of G not in H. Then all the 
elements g - l ~ g ,  form a group. H and g-lHg are conjugate subgroups. 

Normal subgroups and factor groups 
If the right and left cosets of the subgroup H are the same, i.e. Hg, =g,H 
for every i, then g;'Hg, = H. This relation is still valid when g, is in H since 
both g,H and g, belong to H. Conversely, if a subgroup is transformed into 
itself when applying all the elements of the group, the corresponding left 
and right cosets must be equal. 

Subgroups which are transformed into themselves by applying all the 
elements of the group, are called invariant or normal. They must contain 
complete classes. 

For instance the subgroup 2 of the point group 2/m is normal since 
1(1,2) = (1,2)i,  m(1, 2) = (1, 2)m. Furthermore, in the group 32, the 
subgroup (1,3,3-') is normal, while (1,2i1,1) is not; the subgroup T of all 
the primitive lattice translations is an invariant subgroup of the space group 
G. 

Let H be a normal subgroup of G with index p, while n is the order of G. 
Because of (1.E.4) the order of H is n/p. We observe that for H and all its 
distinct cosets, the following multiplication law may be established: 

(g,H&H) = giHHgj = giHgj = g,&H 

Besides, it is: 

(g,H)-'(gi~) = H-'~&H = el 

We can now define a new type of group of order p,  called a factor group 
or quotient group, indicated by the symbol G/H: its elements are cosets of 
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H. The following multiplication table is for the quotient group (we assume 
rr l  = e). 

For instance, for the quotient group (2/m)/2, (1.E.6) becomes 

As a further example let us consider the elements of the point group 
4mm: e, 4, 43, q2 = 2, Z[lool, 2[olol, Z[llol, Z[liol. Five classes may be formed: 
(e), (21, (4, 43) , (Z[iool, Z[oio]), (Z[iio17 2[iiol). The subgroup H = (e, 2) is 
invariant and the factor group with respect to H may be written as: H, 4H, 
Z[100]H7 Z[llop. 

The relat~on between G and G/H is a n / p  + 1 correspondence, i.e. 
G -, H. In detail glH = H -, e, g2H -, f,, . . . , g,H + fp. A correspon- 
dence of this type (many + one) is called homomorphism and G/H is said 
to be homomorphic with G. 

Isomorphism is then a special case of homomorphism for which there is a 
one to one correspondence. A homomorphic correspondence allows us to 
reduce the study of the multiplication laws of the group G to that of the 
multiplication laws of the smaller G/H group. 

To display many of the abstract definitions given so far, we consider as 
major example, the point group G = 23: say 

Readers will find the four classes: 

and the ten subgroups 

of which only {I), (1, 211,1, 2[olo17 2[,11), and G are invariant subgroups. 
Calculate now the factored group of H = (1, 211,1, 210101, 2[ooll): we 

multiply it by an element not in H, say 3[1111, and obtain 

We take now an element not in H or in 3[llllH, say 3flll], and we get 
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The group is now exhausted and we may write 

On assuming g1 = e, then {e, 3[1111H, 3fl11]H) form a group under the 
following multiplication table 

This group is homomorphic with G itself if we associate the elements in H 
to e, the elements in 3[111]H with the 'element' 3[,l11H, the elements in 
3elllH with the 'element' 3t l11]~.  

Maximal subgroups and minimal supergroups 
The number of subgroups of a space group is always infinite. They may bp 
the site-symmetry groups (groups without a lattice), or line groups, ribbon 
groups, rod groups, plane groups, or space groups. For example, the set T 
of all the primitive lattice translations is a subgroup (invariant) of the space 
group. Further subgroups may be found by considering the set of all the 
translations defined by a superlattice. We are here interested only in 
subgroups which are space groups themselves. 

Let us first recall the concept of proper subgroup. A subgroup H is called 
proper subgroup of a group G if there are symmetry operations of G not 
contained in H. Now we define maximal subgroups: a subgroup H of a 
space group G is called a maximal subgroup of G if there is no proper 
subgroup M of G such that H is a proper subgroup of M. For example, 
P112,, P1211, P2,ll are maximal subgroups of P212121, while P1 is not 
maximal. 

For every H, according to (1.E.4), a right coset decomposition of G 
relative to H may be made. The index of the decomposition determines the 
degree of 'dilution' of the symmetry in H with respect to that in G. Such a 
dilution may be obtained in three different ways: 

1. By eliminating some symmetry operators (e.g., from G = P212121 to 
H = P2,ll). Subgroups of this kind, are called Translationengleiche or t 
subgroups. Since the point group P of G is finite, the number of subgroups, 
and therefore, of maximal subgroups, is finite. All the maximal subgroups 
of type t for any given G are listed in the Znternational ~ables  as type I 
maximal non-isomorphous subgroups (see Figs 1.20 and 1.21). 

2. By loss of translational symmetry, i.e. by thipning out the lattice. Such 
subgroups are called Klassengleiche or k subgroups and are classified as 
type 11. A subset of k subgroups are those belonging to the same space 
group G or to its enantiomorphic: their number is infinite and they are 
called maximal isomorphous subgroups. Those of lowest index are listed 
as IIc in the International Tables. For example, if G = (2222, maximal 
isomorphous subgroups of lowest index are C222 with a' = 3a or b' = 3b 
and C222 with c' = 2c. 

Maximal non-isomorphous subgroups of C222 are also P222, P2J12, 
P2,22, P2212, P222,, which have the same conventional cell: for practice1 
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reasons they are labelled as subgroups of type IIa. Space groups with 
primitive cells have no entry in the block IZa. Some further subgroups of 
C222 are C222, (with c' = 2c), I222 (with c' = 2c) and I2,2,2, (with c' = 2c). 
These subgroups have conventional cells larger than that of C222 and are 
denoted as subgroups of type IIb. For k subgroups the point group P of G is 
unchanged. 

3. By combination of 1 and 2. In this case both the translation group T 
and the point group P of G are changed. 

A theorem by Hermann states that a maximal subgroup of G is either a t 
subgroup or a k subgroup. Thus in the International Tables only I, IIa, IIb, 
and IIc subgroups are listed. 

Sometimes we are interested to the possible space groups G' of which a 
given space group G is a subgroup. G' is called a minimal supergroup of the 
group G if G is a maximal subgroup of G'. Of course we will have a 
minimal t, or a minimal non-isomorphous k, or a minimal isomorphous k 
supergroup G'  of G according to whether G is a maximal t, or a maximal 
non-isomorphous k, or a maximal isomorphous k subgroup of G'. The 
minimal non-isomorphous supergroups of C222 are: 

of type t: Cmmm, Cccm, Cmma, Ccca, P422, P42,2, P4,22, P42,2, 
~4rn2 ,  ~ 4 ~ 2 ,  ~ 4 b 2 ,  ~ 4 n 2 ,  P622, P6,22, P6,22, 

of type k: F222, P222 (with a '  = a/2, b' = b/2). 

Maximal subgroups and minimal supergroups for three- 
dimensional crystallographic point groups 
With trivial changes the definitions of maximal subgroup and minimal 
supergroup given above for space groups may be applied to three- 
dimensional crystallographic point groups. For example, it will be easily 
seen that Laue symmetry is always a minimal supergroup of index 2 of a 
non-centrosymmetric point group. 

A scheme showing the subgroup and supergroup relationships for point 
groups is illustrated in Fig. 1.E.1. Maximal invariant subgroups are 
indicated by full lines: if two or three maximal invariant subgroups exist 
with the same symbol then double or triple full lines are used. 

A set of maximal conjugate subgroups is referred to by a broken line. For 
example, from 3m three conjugate subgroups of type m can be formed. 
Thus a dashed line refers 3m to m. Furthermore, from 422 two invariant 
subgroups of type 222 with index 2 can be formed (no symmetry operation 
of 422 refers one subgroup to the other). Thus in Fig. l.E.l a double solid 
line refers 422 to 222. 

Limiting groups in two and three dimensions 
In two dimensions there are two types of point groups: 

For very large values of the order of the rotation axis the two types 
approach w and am respectively. From the geometrical point of view w and 
wm are identical, and our standard notation will be wm (the situation 
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a, # a m  occurs when the rotation direction is taken into account: i.e. for a 
magnetic field round a disc). 

In three dimensions a point group can include continuous rotations about 
one or about all axes (this is a consequence of the Euler theorem applied to 
such a limiting case). In the first case two groups can be identified, wm and 
w 2 -- , according to whether there is or not a mirror perpendicular to a, axis 
m m  
(the symmetry of the two groups can be represented by a circular cone and 

w m 
by a circular cylinder respectively). The symbol -- represents the case in 

m m  
which continuous rotation about any axis is allowed (the symmetry is 
represented by a sphere). 

Representation of a group 
If a square matrix d can be associated to each g E G,  in such a way that 
when gigj =gk also didj = d,, then the matrices form a group D isomor- 
phous with G. These matrices form an isomorphous or exact repre- 
sentation of the group: the order n of the matrices is the dimension of the 
representation. In accordance with this point of view, in Chapter 1 we have 
represented the symmetry groups through square matrices of order 3. 
Different representations of G may be obtained through a transformation of 
the type 

Fig. 1.E.1. Group, subgroup, supergroup 
relationships for point groups (from 
International Tables for Crystallography). 

When condition (1.E.7) is verified for the two representations 
rl(d,, d2 , .  . .) and r2(dI, d;, . . .) then the two representations are said to 
be equivalent, since q can be interpreted as a change of coordinate system. 
It is often possible to find a new coordinate system for which each matrix d 
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is transformed into 

with dl  of order m < n and d2 of order (n - m). If this can not be obtained 
by any transformation, then the representation is called irreducible; 
otherwise it is called reducible. Sometimes dl and d2 can be further 
reduced, and at the end of the process each matrix dj  will be transformed 
into 

q-ld,q = diag [djl), dj2), . . . , d,(")] = d,' 

where dji) are themselves matrices. 
The matrices dl1), dp), dill, . . . all have the same dimension. Similarly 

dl2), di2), di2), . . . have the same dimension. From the rule of the product of 
blocked matrices it follows that (dl1), d$'), dS1), . . .) form a'representation of 
the group, as well as (dl2), ds2), dS2), . . .), etc. 

It can be shown that for finite groups the number of irreducible 
representations is equal to the number of classes. For instance an 
isomorphous (reducible) representation of the point group 32 is 

Also the two-dimensional irreducible representation 

and the one-dimensional non-exact (homomorphic) representations exist: 

Character tables 
The sum of the diagonal elements of a matrix, elsewhere called trace, in 
group theory is called character and is indicated by ~ ( g )  It is obvious that 
~ ( g , )  defines the dimensionality of the representation. The complete set of 
characters for a given representation is called the character of the 
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representation. Since the traces of two matrices related by a coordinate 
transformation are identical, the characters of two equivalent repre- 
sentations will be identical (the converse is also true). Several properties of 
a point group may be deduced from the characters of its irreducible 
representations alone. It is therefore convenient to set them up in tables 
called character tables. Each row of the table refers to a particular 
irreducible representation and each column to a given class. 

1 .F. Symmetry generalization 
Only a few intuitive elements of this subject are given, since a full treatment 
would exceed the limits of the present book. The reader is referred to 
specific texts or 

The symmetry groups G: 
A space may or may not be periodic in all its m dimensions. The 
corresponding symmetry groups are indicated by GT, with m 3 n, where n is 
the number of dimensions of the subspace in which the group is periodic. In 
this space only symmetry operations transforming the space into itself will 
be allowed. For instance in the G: groups, describing objects periodic in one 
direction and finite in the other two, at least one line will remain invariant 
with respect to all symmetry operations. 

The G1 groups 

1. Gh groups. In a one-dimensional space (a line), which is non-periodic, 
only two symmetry operators are conceivable: 1 and ? (which is the 
reflection operator m). The only two (point) groups are therefore 1 
and I. 

2. G: groups. Besides the 1 and ? operators, they contain the translation 
operator. Only two groups of type G: are then possible. 

The G2 groups 

1. G?, groups. In a 'two-dimensional space (a plane), which is non-periodic, 
the only conceivable operators are those of rotation around an axis 
perpendicular to the plane and of reflection with respect to a line on the 
plane. The number of (point) groups is infinite, but there are only ten 
crystallographic groups (see p. 16). 

2. ~f (border) groups. In a two-dimensional space, periodic in one 
dimension, only the symmetry operators (and their combinations), which 
transform that direction into itself, are allowed. We may therefore 
consider reflection planes parallel or perpendicular to the invariant t a---a--t:2 

direction, glides with translational component parallel to it and two-fold 
- - - - - - - - - - - t.a 1- - - + - - - I  at:2,a axes. There are seven Gf groups (the symmetries of linear decorations) 

which are represented in Fig. 1.F.1. t.m +-+-+-+t:zm 

3. G$ groups. There are the 17 plane groups described on the pages 30 and I-It:m 
34. Fig. 1.F.l. The seven border groups 
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The G3 groups 

1. G; groups. There describe non-periodic spaces in three dimensions. The 
number of (point) groups is infinite (see Appendix l.B), but there are 
only 32 crystallographic point groups (see pp. 11-16). 

2. G: (rod) groups. Rod groups may be considered as arising from the 
combination of one-dimensional translation groups with point groups G;. 
They describe three-dimensional objects which are periodic in only one 
direction (say z). This must remain invariant with respect to all 
symmetry operations. The only allowed operations are therefore n and ri 
axes coinciding with z, 2 and 3 axes perpendicular to it, screw axes and 
glide planes with a translational component parallel to the invariant 
direction. 

There are 75 G: crystallographic groups. In Table l .F. l  the rod group 
symbols are shown alongside the point groups from which they are derived. 
The first position in the symbol indicates the axis (n or ri) along z, the 

Table 1.F.1. The 75 rod groups 

Point group Rod groups 

1 
2 
3 
4 
6 
I m 
2mm 
31-17 
4m m 
6mm 
m 
2/m 
4/m 
6/m 
m2m 
2 2 2  --- 
m m m  
4 2 2  --- 
rn rn rn  
6 2 2 --- 
m m m  
12 
222 
32 
422 
622 
1 
3 
4 
6 
- 2 
1 - 

m 
- 2 
3- 

m 
4m2 
6m2 

1 
2 
3 
4 
6 
I m 
2mm 
3m 
4mm 
6m m 
m 
2/m 
4/m 
61 m 
m2m 
2 2 2  --- 
m m m  
4 2 2  --- 
m m m  
6 2 2  --- 
m m m  
12 
222 
32 
422 
622 
1 
3 
4 
6 
- 2 
1 - 

m 
- 2 
3- 

m 
4m2 
6m2 

21 
31 
41 
61 
I c 
2,mc 
3c 
4,mc 
6,mc 

2,/m 
421 m 
6,/m 
m2c 
2, 2 2 --- 
m m c  
4, 2 2 --- 
m m c  
6, 2 2 --- 
m m c  

2,22 
312 
4,22 
6,22 

- 2 
1 - 

C 

- 2 
3 - 

C 

4c2 
6c2 
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second position refers to axes (n or i i )  in the plane (x, y) normal to the 
invariant direction, the third position for axes in the (x, y) plane bisecting 
the previous ones. Glides in the z direction are denoted by c. 

3. G: groups. There are called layer groups and d e s ~ r i b e [ ~ , ~ , ~ ~ , ' ~ ]  the 
symmetries of doubly periodic three-dimensional objects. They are 
useful in describing the patterns of walls, panels, and, at an atomic level, 
in describing structures with layer molecular units. 

Let us denote by z the direction perpendicular to the layer plane. It will 
be the vertical axis from now on: directions in the plane will be called 
horizontal. Rotations can only occur about a vertical axis, and if twofold, 
also about a horizontal one. No more than one horizontal reflection plane 
can exist, otherwise translational symmetry should also occur along the z 
axis. The layer groups can be enumerated according to the five nets quoted 
in Table 1.7 for the plane lattices. In Table 1.F.2 the 80 layer groups are 
divided in blocks, each block divided by the subsequent by a double line: 
each block refers to a specific net (in sequence, parallelogram, rectangular, 
centred rectangular, square, hexagonal) and contains the point groups 
compatible with the net and the corresponding layer groups. 

The number of point groups which can be used is 31: the 32 three- 
dimensional point groups minus the five incompatible groups 23, m3, 432, 
43m, m3m plus four second settings (this time the z axis is distinguishable 
from x and y: so 2 is different from 12, or 2/m from ?2/m, . . .). 

The first position in the layer group symbol gives the type of cell, the 
second refers to the z direction. The third and fourth positions refer: 

(a) for rectangular nets, to x and y respectively; 

(b) for a square net, to x (and therefore to y) and to a diagonal direction; 

(c) for a hexagonal net, to x (and therefore symmetry related axes) and to 
diagonals directions. 

As subgroups of the G; groups we may consider the G: groups, which 
are obtained by projecting the Gq groups along the axis normal to the 
singular plane. 

4. G: groups. These are the 230 space groups (see pp. 22-30). 

The 64, groups 
The three-dimensional Euclidean space may be insufficient to describe the 
symmetries of some physical objects. We can therefore introduce one or 
more additional continuous variables (e.g. the time, the phase of a wave 
function, etc.), thus passing from a three-dimensional space into a space 
with dimensions m > 3. In a four-dimensional Euclidean space the sym- 
metry groups G: may be constructed from their three-dimensional projec- 
tions G:, which are all well known. Thus there are 227 point groups G: and 
4895 groups Gi. 

The groups of colour symmetry 
Groups in which three variables have a geometrical meaning while the 
fourth has a different physical meaning and is not continuous, are 
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Table 1.F.2. The layer groups 

Point group Plane groups 

1 P 1 
2 P2 
rn prn P b 
Tim p2/m p2/b 
1 P 1 

1 rn p l m  p l b  

2rnrn p2rnm p2bm p2ba 

rn2m prn2rn pm2,a pa2,m pa2a 
pn2,m pn2a pb2rn pb2,a 

2 2 2  --- 2 2 2  2 2 2  22,2, P--- P--l 
m r n m  m m m  rnbrn 

2 2 2  22 2 2 2 2  22,2 p--A p - l L  
brnm b m  a P b b i  P b b a -  
22121 22,2 222  P--- p--- P,ba 
n rnm n b m  

1 rn 
2mm 
m2m 
2 2 2 --- 
m m m  
12 
222 
- 2 
1 - 

m 

c l  rn 
c,mrn 
cm2m 

2 2 2  
C--- 

m m m  
c12 
c222 
- 2 

c l -  
rn 

- 

4 P4 
4m rn p4mm p4grn 
41 rn p4m/m p4/n 
4 2 2  --- 4 2  2 4 2  2 4 2 , 2  4 2 2  P--- p-A- 
m m r n  P--- P--- m m m  r n g m  r n g m  n g m  
4 P4 
422 ~ 2 2  ~ 4 2 ~ 2  
4m2 p4m2 p4g2 p42rn p42,rn 
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particularly important in crystallography. For instance: 

1. The position and orientation of the magnetic moments of the cobalt 
atoms in the CoA1204 structure (space group ~ d 3 m )  may be described by 
means of a two-colour group (see Fig. l.F.2(a)) in which each colour 
corresponds to a given polarity of the magnetic moment. Groups of this 
type are also called 'groups with antisymmetry' or 'black-white' sym- 
metry. More complicated cases require more colours, and the term 
colour symmetry is used. Classical groups involve only neutral points. 

As a further example let us consider the case of NiO, a material used 
in the ceramic and electronic industries. At room temperature, NiO is 
rhombohedral with edge length a ,  - 2.952 A and a~ =. 60'4': aR ap- 
proaches 60" with increasing temperature, and, above 250°C, NiO is 
cubic with ac2: 4.177 A. The relation between the two cells is shown in 
Fig. l.F.2(b): the same set of lattice points is described by the primitive 
rhombohedral unit cell and by the face-centred cubic cell provided that 
aR = 60' exactly and aR = a/*. If the cube is compressed (or extended) 
along one of the four threefold axes of the cubic unit cell then symmetry 
reduces from cubic to rhombohedral (the only threefold axis is the 
compression axis). The polymorphism of NiO is due to its magnetic 
properties. Each Ni2+ ion has two unpaired spins (the [Ar]3d8 electronic 
configuration). At room temperature the spins in NiO form an ordered 
antiferromagnetic array: layers of Ni2+ with net spin magnetic moments 
all in the same direction alternate with layers of Ni2+ with magnetic 
moments all in the opposite direction, as in Fig. l.F.2(c). In these 
conditions the threefold axis is unique and the structure is rhom- 
bohedral. Above 250°C the antiferromagneti~ordering is lost: the 
rhombohedral + cubic transition occurs and NiO displays ordinary 
paramagnetism. 

2. If we project a G: group, in which a 6, axis is present, on a plane 
perpendicular to the axis, we obtain a G; group. But, if we assign a 
different colour to each of the six atoms related by the 6, axis, we will 
obtain a colour group G;,@) with a clear meaning of the symbols. 

In the groups with antisymmetry there will be four types of equivalence 
between geometrically related objects: identity, identity after an inversion 
operation, anti-identity (the two objects differ only in the colour), identity 
after both an inversion operation and a change in colour. A general rotation 
matrix may be written in the form 

\ O  0 0 R44/ 
where R4, = -1 or +1 depending on whether or not the operation changes 
the colour. 

For the three-dimensional groups with antisymmetry we observe that, 
because of the existence of the anti-identity operation 1' (only the colour is 
changed), the anti-translation operation t' = t l '  will also exist. New types of 
Bravais lattices, such as those given in Fig. 1.F.3, will come out. As an 
example, in Fig. l.F.2(c) the quasi-cubic magnetic unit cell of NiO has an 

Fig. 1.F.2. Examples of structure described by 
an antisymrnetry group: (a) CoAI,O, magnetic 
structure; (b) geometrical relation between a 
face-centered cubic unit cell and a primitive 
rhombohedral unit cell; (c) antiferromagnetic 
superstructure of NiO (only ~ i ' +  ions are 
shown). 
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edge length twice that of the chemical unit cell. It may be seen[14] that if the 
five Bravais lattices are centred by black and white lattice points (in equal 
percentage) then five new plane lattices are obtained. In three dimensions 
there are 36 black and white Bravais lattices, including the traditional 
uncoloured lattices. 
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