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Preface 

This book has grown out of my earlier Introduction to Crystallography published 

in the Royal Microscopical Society’s Microscopy Handbook Series (Oxford 

University Press 1990, revised edition 1992). My object then was to show that 

crystallography is not, as many students suppose, an abstruse and ‘difficult’ 

subject, but a subject that is essentially clear and simple and which does not 

require the assimilation and memorization of a large number of facts. Moreover, 

a knowledge of crystallography opens the door to a better and clearer under¬ 

standing of so many other topics in physics and chemistry, earth, materials and 
textile sciences, and microscopy. 

In doing so I tried to show that the ideas of symmetry, structures, lattices and 

the architecture of crystals should be approached by reference to everyday 

examples of the things we see around us, and that these ideas were not confined 

to the pages of textbooks or the models displayed in laboratories. 

The subject of diffraction flows naturally from that of crystallography because 

by its means—and in most cases only by its means—are the structures of 

materials revealed. And this applies not only to the interpretation of diffraction 

patterns but also to the interpretation of images in microscopy. Indeed, diffrac¬ 

tion patterns of objects ought to be thought of as being as ‘real’, and as simply 

understood, as the objects themselves. One is, to use the mathematical expres¬ 

sion, simply the transform of the other. Hence, in discussing diffraction, I have 

tried to emphasize the common aspects of the phenomena with respect to light. 

X-rays and electrons. 

In Chapter 1 (Crystals and crystal structures) I have concentrated on the 

simplest examples, emphasizing how they are related in terms of the occupancy 

of atomic sites and how the structures may be changed by faulting. Chapter 2 

(Two-dimensional patterns, lattices and symmetry) has been considerably ex¬ 

panded, partly to provide a firm basis for understanding symmetry and lattices in 

three dimensions (Chapters 3 and 4) but also to address the interests of students 

involved in two-dimensional design. Similarly in Chapter 4, in discussing point 

group symmetry, I have emphasized its practical relevance in terms of the 

physical and optical properties of crystals. 
The reciprocal lattice (Chapter 6) provides the key to our understanding of 

diffraction, but as a concept it stands alone. I have therefore introduced it 

separately from diffraction and hope that in doing so these topics will be more 

readily understood. In Chapter 7 (The diffraction of light) I have emphasized 

the geometrical analogy with electron diffraction and have avoided any 

quantitative analysis of the amplitudes and intensities of diffracted beams. In my 

experience the (sometimes lengthy) equations which are required cloud stu¬ 

dents’ perceptions of the basic geometrical conditions for constructive and 

destructive interference—and which are also of far more practical importance 

with respect, say, to the resolving power of optical instruments. 

30 ^ 



VI Preface 

Chapter 8 describes the historical development of the geometrical interpreta¬ 

tion of X-ray diffraction patterns through the work of Laue, the Braggs and 

Ewald. The diffraction of X-rays and electrons from single crystals is covered in 

Chapter 9, but only in the case of X-ray diffraction are the intensities of the 

diffracted beams discussed. This is largely because structure factors are impor¬ 

tant but also because the derivation of the interference conditions between the 

atoms in the motif can be represented as nothing more than an extension of 

Bragg’s law. Finally, the important X-ray and electron diffraction techniques 

from polycrystalline materials are covered in Chapter 10. 

The Appendices cover material that, for ease of reference, is not covered in 

the text. Appendix 1 gives a list of items which are useful in making up crystal 

models and provides the names and addresses of suppliers. A rapidly increasing 

number of crystallography programs are becoming available for use in personal 

computers and in Appendix 2 I have listed those which involve, to a greater or 

lesser degree, some ‘self learning’ element. If it is the case that the computer 

program will replace the book, then one might expect that books on 

crystallography would be the first to go! That day, however, has yet to arrive. 

Appendix 3 gives brief biographical details of crystallographers and scientists 

whose names are asterisked in the text. Appendix 4 lists some useful geometrical 
relationships. 

Throughout the book the mathematical level has been maintained at a very 

simple level and with few minor exceptions all the equations have been derived 

from first principles. In my view, students learn nothing from, and are invariably 

dismayed and perplexed by, phrases such as ‘it can be shown that’—without any 

indication or guidance of how it can be shown. Appendix 5 sets out all the 
mathematics which are needed. 

Finally, it is my belief that students appreciate a subject far more if it is 

presented to them not simply as a given body of knowledge but as one which has 

been gained by the exertions and insight of men and women perhaps not much 

older than themselves. This therefore shows that scientific discovery is an 

activity in which they, now or in the future, can participate. Hence the justifica¬ 

tion for the historical references, which, to return to my first point, also help to 

show that science progresses, not by being made more complicated, but by 

individuals piecing together facts and ideas, and seeing relationships where 
vagueness and uncertainty existed before. 
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0 

X-ray photograph of zinc blende 

One of the eleven ‘Lane Diagrams’ in the paper submitted by Walter Friedrich, Paul Knipping 
and Max von Laue to the Bavarian Academy of Sciences and presented at its Meeting held on 
June 8th 1912—the paper which demonstrated the existence of internal atomic regularity in 
crystals and its relationship to the external symmetry. 

The X-ray beam is incident along one of the cubic crystal axes of the (face centred cubic) 
ZnS structure and consequently the diffraction spots show the four-fold symmetry of the 
atomic arrangement about the axis. But notice also that the spots are not circular in 
shape—they are elliptical; the short axes of the ellipses all lying in radial directions. William 
Lawrence Bragg realized the great importance of this seemingly small observation; he had 
noticed that beams of light (of circular cross-section) reflected from mirrors also gave reflected 
spots of just these elliptical shapes. Hence he went on to formulate the Law of Reflection of 
X-Ray Beams which unlocked the door to the structural analysis of crystals. 



1 

Crystals and crystal structures 

1.1 The nature of the crystalline state 

The beautiful hexagonal patterns of snowflakes, the plane faces and hard 

faceted shapes of minerals and the bright cleavage fracture surfaces of brittle 

iron have long been recognized as external evidence of an internal order— 

evidence, that is, of the patterns or arrangements of the underlying building 

blocks. However, the nature of this internal order, or the form and scale of the 
building blocks, was unknown. 

The first attempt to relate the external form or shape of a crystal to its 

underlying structure was made by Johannes Kepler* who, in 1611, wrote perhaps 

the first treatise on geometrical crystallography, with the delightful title, ‘A New 

Year’s Gift or the Six-Cornered Snowflake’ (Strena Seu de Nive Sexangula). In 

this he speculates on the question as to why snowflakes always have six corners, 

never five or seven. He suggests that snowflakes are composed of tiny spheres of 

ice and shows, in consequence, how the close-packing of these spheres gives rise 

to a six-sided figure. It is indeed a simple experiment that children now do with 

pennies at school. Kepler was not able to solve the problem as to why the six 

corners extend and branch to give many patterns (a problem not fully resolved 

to this day), nor did he extend his ideas to other crystals. The first to do so, and 

to consider the structure of crystals as a general problem, was Robert Hooke* 

who, with remarkable insight, suggested that the different shapes of crystals 

which occur—rhombs, trapezia, hexagons, etc.—could arise from the packing 

together of spheres or globules. Figure 1.1 is ‘Scheme VIT from his book 

Micrographia, first published in 1665. The upper part (Fig. 1) is his drawing, from 

the microscope, of ‘Crystalline or Adamantine bodies’ occurring on the surface 

of a cavity in a piece of broken flint and the lower part (Fig. 2) is of ‘sand or 

gravel’ crystallized out of urine, which consist of ‘Slats or such-like plated 

Stones... their sides shaped into Rhombs, Rhomboeids and sometimes into 

Rectangles and Squares’. He goes on to show how these various shapes can arise 

from the packing together of ‘a company of bullets’ as shown in the inset 

sketches A-L, which represent pictures of crystal structures which have been 

repeated in innumerable books, with very little variation, ever since. The notion 

that the packing of the underlying building blocks determines both the shapes of 

crystals and the angular relationships between the faces was extended by Rene 

Just Hairy*. In 1784 Hairy showed how the different forms (or habits) of 

* Denotes biographical notes available in Appendix 3. 



2 Crystals and crystal structures 

Fig. 1.1. Scheme VII (from Hooke’s Micrographia, 1665), showing crystals in a piece of 
broken flint (Upper—Fig. 1), crystals from urine (Lower—Fig. 2) and hypothetical sketches of 
crystal structures A-L arising from the packing together of ‘bullets’. 
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Fig. 1.2. Haiiy’s representation of dog-tooth spar built up from rhombohedral ‘molecules 
integrantes’ (from Essai d’une theorie sur la structure des cristaux, 1784). 

dog-tooth spar (calcite) could be precisely described by the packing together of 

little rhombs which he called ‘molecules integrantes’ (Fig. 1.2). Thus the connec¬ 

tion between an internal order and an external symmetry was established. What 

was not realized at the time was that an internal order could exist even though 

there may appear to be no external evidence for it. 

It is only relatively recently, as a result primarily of X-ray and electron 

diffraction techniques, that it has been realized that most materials, including 

many biological materials, are crystalline or partly so. But the notion that a lack 

of external crystalline form implies a lack of internal regularity still persists. For 

example, when iron and steel become embrittled there is a marked change in 

the fracture surface from a rough, irregular ‘grey’ appearance to a bright faceted 

‘brittle’ appearance. The change in properties from tough to brittle is sometimes 

vaguely thought to arise because the structure of the iron or steel has changed 

from some undefined amorphous or non-crystalline ‘grey’ state to a ‘crystallized’ 
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state. In both situations, of course, the crystalline structure of iron is unchanged; 

it is simply the fracture processes that are different. 
Given our more detailed knowledge of matter we can now interpret Hooke’s 

spheres or ‘bullets’ as atoms or ions, and Fig. 1.1 indicates the ways in which 

some of the simplest crystal structures can be built up. This representation of 

atoms as spheres does not, and is not intended, to show anything about their 

physical or chemical nature. The diameters of the spheres merely express their 

nearest distances of approach. It is true that these will depend upon the ways in 

which the atoms are packed together, and whether or not the atoms are ionized, 

but these considerations do no invalidate the ‘hard sphere’ model, which is 

justified, not as a representation of the structure of atoms, but as a representa¬ 

tion of the structures arising from the packing together of atoms. 

Consider again Hooke’s sketches A-L (Fig. 1.1). In all of these, except the 

last, L, the atoms are packed together in the same way, the differences in shape 

arise from the different crystal boundaries. The atoms are packed in a close- 

packed hexagonal or honeycomb arrangement—the most compact way which is 

possible. By contrast, in the square arrangement of L there are larger voids or 

gaps (properly called interstices) between the atoms. This difference is shown 

more clearly in Fig. 1.3, where the boundaries of the (two-dimensional) crystals 

have been left deliberately irregular to emphasize the point that is the internal 

regularity, hexagonal, or square, not the boundaries (or external faces) which 
defines the structure of a crystal. 

Now we shall extend these ideas to three dimensions by considering not one, 

but many, layers of atoms, stacked one on top of the other. To understand 

better the figures which follow, it is very helpful to make models of these layers 

(Fig. 1.3) to construct the three-dimensional crystal models (see Appendix 1). 

(a) (b) 

Fig. 1.3. Layers of ‘atoms’ stacked (a) in hexagonal and (b) in square arrays. 
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1.2 Constructing crystals from close-packed hexagonal 
layers of atoms 

The simplest way of stacking the layers is to place the atom centres directly 

above one another. The resultant crystal structure is called the simple hexagonal 

structure. There are, in fact, no examples of elements with this structure 

because, as the model building shows, the atoms in the second layer tend to slip 

into the ‘hollows’ or interstices between the atoms in the layer below. This also 

accords with energy considerations: unless electron orbital considerations pre¬ 

dominate, layers of atoms stacked in this ‘close-packed’ way generally have the 

lowest (free) energy and are therefore most stable. 

When a third layer is placed upon the second we see that there are two 

possibilities: when the atoms in the third layer slip into the interstices of the 

second layer they may either end up directly above the atom centres in the first 

layer or directly above the unoccupied interstices between the atoms in the 

first layer. 

The geometry may be understood from Fig. 1.4, which shows a plan view of 

atom layers. A is the first layer (with the circular outlines of the atoms drawn in) 

and B is the second layer (outlines of the atoms not shown for clarity). In the 

first case the third layer goes directly above the A layer, the fourth layer over 

the B layer, and so on; the stacking sequence then becomes ABABAB... and is 

called the hexagonal close-packed (hep) structure. The packing of idealized 

hard spheres predicts a ratio of interlayer atomic spacing to in-layer atomic 

spacing of y^(2/3) and although interatomic forces cause deviations from this 

ratio, metals such as zinc, magnesium and the low-temperature form of titanium 

have the hep structure. 
In the second case, the third layer of atoms goes above the interstices marked 

C and the sequence only repeats at the fourth layer, which goes directly above 

the first layer. The stacking sequence is now ABCABC... and is called the 

cubic close-packed (cep) structure. Metals such as copper, aluminium, silver. 

Fig. 1.4. Stacking sequences of close-packed layers of atoms. A—first layer (with outlines of 

atoms shown); B—second layer; C third layer. 
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gold and the high-temperature form of iron have this structure. You may ask the 

question: ‘why is a structure which is made up of a three-layer stacking 

sequence of hexagonal layers called cubic close packed?’ The answer lies in the 

shape and symmetry of the unit cell, which we shall meet below. 

These labels for the layers A, B, C are, of course, arbitrary; they could be 

called OUP or RMS or any combination of three letters or figures. The 

important point is not the labelling of the layers but their stacking sequence; a 

two-layer repeat for hep and a three-layer repeat for ccp. Another way of ‘seeing 

the difference’ is to notice that in the hep structure there are open channels 

perpendicular to the layers running through the connecting interstices (labelled 

C in Fig. 1.4). In the ccp structure there are no such open channels—they are 

‘blocked’ or obstructed because of the ABCABC... stacking sequence. 

Although the hep and the ccp are the two most common stacking sequences 

of close-packed layers, some elements have crystal structures which are ‘mix¬ 

tures’ of the two. For example, the actinide element americium has the stacking 

sequence ABACABAC... a four-layer repeat which is essentially a combination 

of an hep and a ccp stacking sequence. Furthermore, in some elements with 

nominally ccp or hep stacking sequences nature sometimes ‘makes mistakes’ in 

model building and faults occur during crystal growth or under conditions of 

stress or deformation. For example, in a (predominantly) ccp crystal (such as 

cobalt at room temperature), the ABCABC... (ccp) type of stacking may be 

interrupted by layers with an ABABAB... (hep) type of stacking. The extent 

of occurrence of these stacking faults and the particular combinations of 

ABCABC... and ABABAB... sequences which may arise depend again on 

energy considerations, with which we are not concerned. What is of crystallo¬ 

graphic importance is the fact that stacking faults show how one structure (ccp) 

may be transformed into another (hep) and vice versa. They can also be used in 

the representation of more complicated crystal structures (i.e. of more than one 
kind of atom), as explained in Sections 1.6 and 1.9 below. 

1.3 Unit cells of the hep and ccp structures 

A simple and economical method is now needed to represent the hep and ccp 

(and of course other) crystal structures. Diagrams showing the stacked layers of 

atoms with irregular boundaries would obviously look very confused and 

complicated—the greater the number of atoms which have to be drawn, the 

more complicated the picture. The models need to be ‘stripped down’ to the 

fewest numbers of atoms which show the essential structure and symmetry. Such 
‘stripped-down’ models are called the unit cells of the structures. 

The unit cells of the simple hexagonal and hep structures are shown in Fig. 

1.5. The similarities and differences are clear: both structures consist of hexa¬ 

gonal close-packed layers; in the simple hexagonal structure these are stacked 

directly on top of each other, giving an AAA... type of sequence, and in the hep 

structure there is an interleaving layer nestling in the interstices of the layers 
below and above, giving an ABAB... type of sequence. 
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(a) (b) 

Fig. 1.5. Unit cells (a) of the simple hexagonal and (b) hep structures. 

Fig. 1.6. Construction of the cubit unit cell of the cep structure: (a) shows three close-packed 

layers A, B and C which are stacked in (b) in the ‘ABC... ’ sequence from which emerges the 

cubit unit cell which is shown in (c) in the conventional orientation. 
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(b) (c) 

Fig. 1.7. Construction of the rhombohedral unit cell of the ccp structure: the close-packed 
layers (a) are again stacked (b) in the ‘ABC... ’ sequence but the resulting rhombohedral cell 

(c) does not reveal the cubic symmetry. 

The unit cell of the ccp structure is not so easy to see. There are, in fact, two 

possible unit cells which may be identified, a cubic cell described below (Fig. 

1.6), which is almost invariably used, and a smaller rhombohedral cell (Fig. 1.7). 

Figure 1.6(a) shows three close-packed layers separately—two triangular layers 

of six atoms (identical to one of Hooke’s sketches in Fig. 1.1)—and a third layer 

stripped down to just one atom. If we stack these layers in an ABC sequence, 

the result is as shown in Fig. 1.6(b): it is a cube with the bottom corner atom 

missing. This can now be added and the unit cell of the ccp structure, with atoms 

at the corners and centres of the faces, emerges. The unit cell is usually drawn 

in the ‘upright’ position of Fig. 1.6(c), and this helps to illustrate a very 

important point which may have already been spotted whilst model building with 

the close-packed layers. The close-packed layers lie perpendicular to the body 

diagonal of the cube, but as there are four different body diagonal directions in 

a cube, there are therefore four different sets of close-packed layers—not just 

the one set with which we started. Thus three further close-packed layers have 

been automatically generated by the ABCABC... stacking sequence. This does 

not occur in the hep structure—try it and see! The cubic unit cell, therefore. 
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shows the symmetry of the ccp structure, a topic which will be covered in 

Chapter 4. The alternative rhombohedral unit cell of the ccp structure may be 

obtained by ‘stripping away’ atoms from the cubic cell such that there are only 

eight atoms left—one at each of the eight corners—or it may be built up by 

stacking triangular layers of only three atoms instead of six (Fig. 1.7). Unlike the 

larger cell, this does not obviously reveal the cubic symmetry of the structure 
and so is much less useful. 

1.4 Constructing crystals from square layers of atoms 

It will be noticed that the atoms in the cube faces of the ccp structure lie in a 

square array like that in Fig. 1.3(b) and the ccp structure may be constructed by 

stacking these layers such that alternate layers lie in the square interstices 

marked X in Fig. 1.8(a). The models show how the four close-packed layers arise 

like the faces of a pyramid (Fig. 1.8(b)). If, on the other hand, the layers are all 

stacked directly on top of each other, a simple cubic structure is obtained (Fig. 

1.8(c)). This is an uncommon structure for the same reason as the simple 

hexagonal one is uncommon. An example of an element with a simple cubic 

structure is a-polonium. 

Fig. 1.8. (a) ‘Square’ layers of atoms with interstices marked X; (b) stacking the layers so that 

the atoms fall into these interstices, showing the development of the close-packed layers; (c) 

stacking the layers directly above one another, showing the development of the simple cubic 

structure. 
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(a) (b) 

Fig. 1.9. (a) Unit cell of the bcc structure, showing a face-diagonal plane in which the atoms 
are most closely packed; (b) a plan view of this ‘closest-packed’ plane of atoms; the positions of 

atoms in alternate layers are marked B. The arrows indicate possible slip directions from these 

positions. 

1.5 Constructing body-centred cubic crystals 

The important and commonly occurring body-centred cubic (bcc) structure 

differs from those already discussed in that it cannot be constructed either from 

hexagonal close-packed or square-packed layers of atoms (Fig. 1.3). The unit cell 

of the bcc structure is shown in Fig. 1.9. Notice how the body-centring atom 

‘pushes’ the corner ones apart so that, on the basis of the ‘hard sphere’ model of 

atoms discussed above, they are not ‘in contact’ along the edges (in comparison 

with the simple cubic structure of Fig. 1.8(c), where they are in contact). In the 

bcc structure the atoms are in contact only along the body-diagonal directions. 

The planes in which the atoms are most (not fully) closely packed is the 

face-diagonal plane, as shown in Fig. 1.9(a), and in plan view, showing more 

atoms, in Fig. 1.9(b). The atom centres in the next layer go over the interstices 

marked B, then the third layer goes over the first layer, and so on—an 

ABAB... type of stacking sequence. The interstices marked B have a slight 

‘saddle’ configuration, and model building will suggest that the atoms in the 

second layer might slip a small distance to one side or the other (indicated by 

arrows), leading to a distortion in the cubic structure. Whether such a situation 

can arise in real crystals, even on a small scale, is still a matter of debate. Metals 

such as chromium, molybdenum, the high-temperature form of titanium and the 

low-temperature form of iron have the bcc structure. 

Finally, notice the close similarity between the layers of atoms in Figs 1.3(a) 

and 1.9(b). With only small distortions, e.g. closing of the gaps in Fig. 1.9(b), the 

two layers become geometrically identical and some important bcc ccp and 

bcc =Fi hep transformations are thought to occur as a result of distortions of this 

kind. For example, when iron is quenched from its high-temperature form (ccp 
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above 910 °C) to transform to its low-temperature (bcc) form, it is found that the 
set of the close-packed and closest-packed layers and close-packed directions 
are approximately parallel. 

1.6 Interstitial structures 

The different stacking sequences of one size of atom discussed in Sections 1.2 
and 1.5 are not only useful in describing the crystal structures in many of the 
elements, where all the atoms are identical to one another, but can also be used 
to describe and explain the crystal structures of a wide range of compounds of 
two or more elements, where there are atoms of two or more different sizes. In 
particular, they can be applied to those compounds in which ‘small’ atoms or 
cations fit into the interstices between ‘large’ atoms or anions. The different 
structures of very many compounds arise from the different numbers and sizes 
of interstices which occur in the simple hexagonal, hep, cep, simple cubic and 
bcc structures and also from the ways in which the small atoms or cations 
distribute themselves among these interstices. These ideas can, perhaps, be best 
understood by considering the types, sizes and numbers of interstices which 
occur in the cep and simple cubic structures. 

In the cep structure there are two types and sizes of interstice into which 
small atoms or cations may fit. They are best seen by fitting small spheres into 
the interstices between two-close-packed atom layers (Fig. 1.4). Consider an 
atom in a B layer which fits into the hollow or interstice between three A layer 
atoms: beneath the B atom is an interstice which is surrounded at equal 
distances by four atoms—three in the A layer and one in the B layer. These 
four atoms surround or ‘coordinate’ the interstice in the shape of a tetrahedron, 
hence the name tetrahedral interstice or tetrahedral interstitial site, i.e. where a 
small interstitial atom or ion may be situated. The position of one such site in 
the cep unit cell is shown in Fig. 1.10(a) and diagrammatically in Fig. 1.10(b). 

The other interstices between the A and B layers (Fig. 1.4) are surrounded or 
coordinated by six atoms, three in the A layer and three in the B layer. These six 
atoms surround the interstice in the shape of an octahedron; hence the name 
octahedral interstice or octahedral interstitial site. The positions of several 
atoms or ions in octahedral sites in a cep unit cell are shown in Fig. 1.11(a) and 
diagrammatically, showing one octahedral site, in Fig. 1.11(b). 

In the simple cubic structure (Fig. 1.8(c)) there is an interstice at the centre of 
the unit cell which is surrounded or coordinated by the eight atoms at the 
corners of the cube (Fig. 1.12(a)), hence the name cubic interstitial site. 
Caesium chloride, CsCl, has this structure, as shown diagrammatically in Fig. 

1.12(b). 
Now the diameters, or radii, of atoms or ions which can just fit into these 

interstices may easily be calculated on the basis that atoms or ions are spheres 
of fixed diameter—the ‘hard sphere’ model. The results are usually expressed as 
a radius ratio, ratio of the radius (or diameter) of the interstitial 
atoms, X, to that of the large atoms. A, with which they are in contact. In the 
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(a) 

^ Metal atoms 

(b) O Tetrahedral interstices 

Fig. 1.10. (a) An atom in a tetrahedral interstitial site, Tx/za = 0.225 within the ccp unit cell 
and (b) geometry of a tetrahedral site, showing the dimensions of the tetrahedron in terms of 
the unit cell edge length a (from The Structure of Metals, 3rd edn, by C. S. Barrett and T. B. 

Massalski, Pergamon, 1980). 

ccp structure, for the tetrahedral sites is 0.225 and for the octahedral sites 

it is 0.414; in the simple cubic structure, rx/r^ for the cubic sites is 0.732. As 

well as being of different relative sizes, there are different numbers, or propor¬ 

tions, of these interstitial sites. For both the octahedral sites in ccp, and the 

cubic sites in the simple cubic structure, the proportion is one interstitial site to 

Fig. 1.11. (a) Atoms or ions in some of the octahedral interstitial sites, rx/r^ = 0.414 within 
the ccp unit cell and (b) geometry of an octahedral site, showing the dimensions of the 

octahedron in terms of the unit cell edge length a (from Barrett and Massalski, loc. cit.). 
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(a) 

Fig. 1.12. (a) Cubic interstitial site, 

the CsCl structure (ions not to scale). 

one (large) atom or ion, but for the tetrahedral interstitial sites in ccp the 

proportion is two sites to one atom. These proportions will be evident from 

model building or, if preferred, by geometrical reasoning. In the simple cubic 

structure (Fig. 1.12) there is one interstice per unit cell (at the centre) and eight 

atoms at each of the eight corners. As each corner atom or ion is ‘shared’ by 

seven other cells, there is therefore one atom per cell—a ratio of 1:1. In the 

unit cell of the ccp structure (Fig. 1.11), the octahedral sites are situated at the 

midpoints of each edge and in the centre. As each edge is shared by three other 

cells there are four octahedral sites per cell, i.e. twelve edges divided by four 

(number shared), plus one (centre). There are also four atoms per cell, i.e. eight 

corners divided by eight (number shared), plus six faces divided by two (number 

shared), again giving a ratio of 1:1. The tetrahedral sites in the ccp structure 

(Fig. 1.10) are situated between a corner and three face-centring atoms, i.e. 

eight tetrahedral sites per unit cell, giving a ratio of 1:2. 

It is a useful exercise to determine also the types, sizes and proportions of 

interstitial sites in the hep, bcc and simple hexagonal structures. The hep 

structure presents no problem; for the ‘hard sphere’ model with an interlayer to 

in-layer atomic ratio of y^(2/3) (Section 1.2) the interstitial sites are identical to 

those in ccp. It is only the distribution or ‘stacking sequence’ of the sites, like 

that of the close-packed layers of atoms, which is different. In the bcc structure 

there are octahedral sites at the centres of the faces and mid-parts of the edges 

(Figs. 1.13(a) and (b)) and tetrahedral sites situated between the centres of the 

faces and mid-points of each edge (Figs. 1.13(c) and (d)). Note, however, that 

both the octahedron and tetrahedron of the coordinating atoms do not have 

edges of equal length. The octahedron, for example, is ‘squashed’ in one 

direction and two of the coordinating atoms are closer to the centre of the 

interstice than are the other four. The radius ratios for the octahedral and 

tetrahedral interstitial sites are 0.154 and 0.291, respectively. 
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(c) 

0 Metal atoms 

(b) o Octahedral interstices 

^ Metal atoms 

(d) o Tetrahedral interstices 

Fig. 1.13. (a) Octahedral interstitial sites, ry^/r^^ = 0.154, (b) geometry of the octahedral 

interstitial sites, (c) tetrahedral interstitial sites rx/r^ = 0.291, and (d) geometry of the 
tetrahedral interstitial sites in the bcc structure, (b) and (d) show the dimensions of the 

octahedron and tetrahedron in terms of the unit cell edge length a (from Barrett and 
Massalski, loc. cit.). 

The radius ratios of interstitial sites and their proportions provide a very 

rough guide in interpreting the crystal structures of some simple, but important, 

compounds. The first problem, however, is that the ‘radius’ of an atom is not a 
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fixed quantity but depends on its state of ionization (i.e. upon the nature of the 

chemical bonding in a compound) and coordination (the number and type of the 

surrounding atoms or ions). For example, the atomic radius of Li is about 156 

pm but the ionic radius of the Li^ cation is about 60 pm. The atomic radius of 

Fe in the ccp structure, where each atom is surrounded by twelve others, is 

about 258 pm but that in the bcc structure, where each atom is surrounded by 

eight others, is about 248 pm—a contraction in going from twelve- to eight-fold 

coordination of about 4 per cent. 

Metal hydrides, nitrides, borides, carbides, etc., in which the radius ratio of 

the (small) non-metallic or metalloid atoms to the (large) metal atoms is small, 

provide good examples of interstitial compounds. However, in almost all of these 

compounds the interstitial atoms are ‘oversize’ (in terms of the exact radius 

ratios) and so, in effect, ‘push apart’ or separate the surrounding atoms such 

that they are no longer strictly close-packed although their pattern or distribu¬ 

tion remains unchanged. For example. Fig. 1.14(a) shows the structure of TiN; 

Fig. 1.14. (a) TiN structure (isomorphous with NaCl), (b) TiHj (isomorphous with CaF2) and 

(c) TiH structure (isomorphous with sphalerite or zinc blende, ZnS) (from An Introduction to 

Crystal Chemistry, 2nd edn, by R. C. Evans, Cambridge University Press, 1964). 
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Fig. 1.15. (a) AIB2 structure, (b) WC structure. 

the nitrogen atoms occupy all the octahedral interstitial sites and, because they 

are oversize, the titanium atoms are separated but still remain situated at the 

corners and face centres of the unit cell. This is described as a face-centred 

cubic (fee) array, rather than a cep array of titanium atoms, and TiN is 

described as a face-centred cubic structure. This description also applies to all 

compounds in which some of the atoms occur at the corners and face centres of 

the unit cell. The cep structure may therefore be regarded as a special case of 

the fee structure in which the atoms are in contact along the face diagonals. 

In TiH2 (Fig. 1.14(b)), the titanium atoms are also in an fee array and the 

hydrogen atoms occupy all the tetrahedral sites, the ratio being of course 1:2. In 

TiH (Fig. 1.14(c)) the hydrogen atoms are again situated in the tetrahedral sites, 

but only half of these sites are occupied. 

Although, as mentioned in Section 1.2, no elements have the simple hexa¬ 

gonal structure in which the close-packed layers are stacked in an AAA... 

sequence directly on top of one another (Fig. 1.5(a)), the metal atoms in some 

metal carbides, nitrides, borides, etc., are stacked in this way, the carbon, 

nitrogen, boron, etc., atoms being situated in some or all of the interstices 

between the metal atoms. The interstices are halfway between the close-packed 

(or nearly close-packed) layers and are surrounded or coordinated by six atoms 

—not, however, in the form of an octahedron but in the form of a triangular 

prism. In the AIB2 structure all these sites are occupied (Fig. 1.15(a)) and in the 
WC structure only half are occupied (Fig. 1.15(b)). 

1.7 Some simple ionic and covalent structures 

The ideas presented in Section 1.6 above can be used to describe and explain 

the crystal structures of many simple but important ionic and covalent com¬ 

pounds, in particular many metal halides, sulphides and oxides. Although the 

metal atoms or cations are smaller than the chlorine, oxygen, sulphur, etc. atoms 
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or anions, radius ratio considerations are only one factor in determining the 

crystal structures of ionic and covalent compounds and they are not usually 

referred to as interstitial compounds even though the pattern or distribution of 

atoms in the unit cells may be exactly the same. For example, the TiN structure 

(Fig. 1.14(a)) is isomorphous with the NaCl structure. Similarly, the TiH2 

structure (Fig. 1.14(b)) is identical to the Li20 structure and the TiH structure 

(Fig. 1.14(c)) is isomorphous with ZnS (zinc blende or sphalerite) structure. 

The differences in stacking discussed in Sections 1.2 and 1.6 also explain the 

different crystal structures or different crystalline polymorphs sometimes shown 

by one compound. As mentioned above, zinc blende has an fee structure, the 

sulphur atoms being stacked in the ABCABC... sequence. In wurtzite, the 

other crystal structure or polymorph of zinc sulphide, the sulphur atoms are 

stacked in the hexagonal ABABAB... sequence, giving a hexagonal structure. 

In both cases the zinc atoms occupy half the tetrahedral interstitial sites 

between the sulphur atoms. As in the case of cobalt, stacking faults may arise 

during crystal growth or under conditions of deformation, giving rise to ‘mixed’ 
sphalerite-wurtzite structures. 

Examples of ionic structures based on the simple cubic packing of anions are 

CsCl and CaF2 (fluorite). In CsCl all the cubic interstitial sites are occupied by 

caesium cations (Fig. 1.12(b)) but in fluorite only half the sites are occupied by 

the calcium cations. The resulting unit cell is not just one simple cube of 

fluorine anions, but a larger cube with a cell side double that of the simple cube 

and containing therefore 2 X 2 X 2 = 8 cubes, four of which contain calcium 

cations and four of which are empty. 

The distribution of the small calcium cations in the cubic sites is such that 

they form an fee array and the fluorite structure can be represented alterna¬ 

tively as an fee array of calcium cations with all the tetrahedral sites occupied by 

fluorine anions. It is identical, in terms of the distribution of ionic sites, to the 

structure of TiH2 or Li2O (Fig. 1.14(b)), except that the positions of the cations 

and anions are reversed; hence Li20 is said to have the anrifluorite structure. 

However, these differences, although in principle quite simple, may not be clear 

until we have some better method of representing the atom/ion positions in 

crystals other than the sketches (or clinographic projections) used in Figs. 

1.10-1.15. 

1.8 Representing crystals in projection: crystal plans 

The more complicated the crystal structure and the larger the unit cell, the 

more difficult it is to visualize the atom or ion positions from diagrams or 

photographs of models—atoms or ions may be hidden behind others and 

therefore not seen. Another form of representation, the crystal plan or crystal 

projection, is needed, which shows precisely the atomic or ionic positions in the 

unit cell. The first step is to specify axes x, y and z from a common origin and 

along the sides of the cell (see Chapter 5). By convention the ‘back left-hand 

corner’ is chosen as the origin, the z-axis ‘upwards’, the y-axis to the right and 
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Fig. 1.16. Plans of (a) bcc structure, (b) ccp or fee structure, (c) Li20 (antifluorite) structure, 

(d) CaF2 (fluorite) structure. 

the j:-axis ‘forwards’, out of the page. The atomic/ionic positions or coordinates 

in the unit cell are specified as fractions of the cell edge lengths in the order 

x,y,z. Thus in the bcc structure the atomic/ionic coordinates are (000) (the 

atom/ion at the origin) and (HI) (the atom/ion at the centre of the cube). As 

all eight corners of the cube are equivalent positions (i.e. any of the eight corners 

can be chosen as the origin), there is no need to write down atomic/ionic 

coordinates (100), (110), etc.; (000) specifies all the corner atoms, and the 

two-coordinates (000) and (H|) represent the two atoms/ions in the bcc unit 

cell. In the fee structure, with four atoms/ions per unit cell, the coordinates are 

(000), (Ho), (|0|), (oH). 
Crystal projections or plans are usually drawn perpendicular to the z-axis, and 

Fig. 1.16(a) and (b) are plans of the bcc and fee structure, respectively. Note that 

only the z coordinates are indicated in these diagrams; the x and y coordinates 

need not be written down because they are clear from the plan. Similarly, no z 

coordinates are indicated for all the corner atoms because all eight corners are 

equivalent positions in the structure, as mentioned above. 

Figure 1.16(c) shows a projection of the antifluorite (Li02) structure; the 

oxygen anions in the fee positions and the lithium cations in all the tetrahedral 

interstitial sites with z coordinates one-quarter and three-quarters between the 

oxygen anions are clearly shown. Notice that the lithium cations are in a simple 

cubic array, i.e. equivalent to the fluorine anions in the fluorite structure. The 
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Fig. 1.17. Alternative unit cells of the perovskite ABO3 structure. 

alternative fluorite unit cell, made up of eight simple cubes (see Section 1.7), is 

drawn by shifting the origin of the axes in Fig. 1.16(c) to the ion at the (H?) site 
and relabelling the coordinates. The result is shown in Fig. 1.16(d). 

Sketching crystal plans helps you to understand the similarities and differ¬ 

ences between structures; in fact, it is very difficult to understand them 

otherwise! For example. Fig. 1.17(a) and (b) show the same crystal structure 

(perovskite, CaTi03). They look different because the origins of the cells have 
been chosen to coincide with different atoms/ions. 

1.9 Stacking faults and twins 

As pointed out in Sections 1.2 and 1.7, the close packing of atoms (in metals and 

alloys) and anions (in ionic and covalent structures) may depart from the 

ABCABC... (ccp or fee) or ABAB... (hep or hexagonal) sequences: ‘nature 

makes mistakes’ and may do so in a number of ways. First, stacking faults may 

occur during crystallization from the melt or magma: second, they may occur 

during the solid state processes or recrystallization, phase transitions and crystal 

growth (i.e. during the heating and cooling of metals and alloys, ceramics and 

rocks); and third, they may occur during deformation. The mechanisms of 

faulting have been most widely studied, and are probably most easily understood 

in the simple case of metals in which there is no (interstitial) distribution of 

cations to complicate the picture. It is a study of considerable importance in 

metallurgy because of the effects of faulting on the mechanical and thermal 

properties of alloys—strength, work-hardening, softening temperatures and so 

on. However, this should not leave the impression that faulting is of lesser 

importance in other materials. 
Consider first the ccp structure (or, better, have your close-packed raft models 

to hand). Three layers are stacked ABC (Fig. 1.4). Now the next layer should 

again by A; instead place it in the B layer position, where it fits equally well into 

the ‘hollows’ between the C layer atoms. This is the only alternative choice and 

the stacking sequence is now ABCB. Now, when we add the next layer we have 
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two choices: either to place it in an A layer or in a C layer position. Now 

continue with our interrupted ABC... stacking sequence. In the first case we 

have the sequence ABCBABC... and in the second sequence ABCBCABC... . 

In both cases it can be seen that there are layers which are in an hep type of 

stacking sequence—but is there any difference between them, apart from the 

mere labelling of atom layers? Yes, there is a difference, which may be 

explained in two ways. If you examine the first sequence you will see that it is as 

if the mis-stacked B layer had been inserted into the ABCABC... sequence and 

this is called an extrinsic stacking fault, whereas in the second case it is as if an 

A layer had been removed from the ABCABC... sequence, and this is called an 

intrinsic stacking fault. However, this explanation, although it is the basis of the 

names intrinsic and extrinsic, is not very satisfactory. In order to understand 

better the distinction between stacking faults of different types (and indeed 

different stacking sequences in general), a completely different method of 

representing stacking sequences needs to be used. 

You will recall (Section 1.2) that the labels for the layers are arbitrary and 

that it is the stacking sequence which is important; clearly then, some means of 

representing the sequence, rather than the layers themselves, is required. This 

requirement has been provided by William Shockley* and is named after 

him—the Shockley notation. Shockley proposed that each step in the stacking 

sequence A ^ B ^ C A... should be represented by a little ‘upright’ triangle 

A, and that each step in the stacking sequence, C ^ B ^ A ^ C... should be 

represented by a little ‘inverted’ triangle v. Here are some examples, showing 

both the ABC... etc. type of notation for the layers and the Shockley notation 

for the sequence of stacking of the layers. Note that the triangles come between 
the close packed layers, representing the stacking sequence between them. 

ABCABCABC CBACBACBA two fee sequenees 
AAAAAAAA VVVVVVVV 

ABABABAB CBCBCBCB 
AVAVAVA VAVAVAV 

two hep sequenees 

ABCBABC 
A A V V A A 

ABCBCABC 
A A A V A A A 

extrinsie (left) and 
intrinsie (right) 
staeking faults. 

Notice that the cep (or fee) stacking sequence is represented either by a 

sequence of upright triangles, or by a sequence of inverted ones—you could of 

course convert one to the other by simply turning your stack of close-packed 

layers upside down. However, the distinction is less arbitrary than this. An fee 

crystal may grow, or be deformed (as explained below), such that the stacking 

sequence reverses, as indicated in Fig. 1.18 which shows the close-packed layers 

‘edge on’ and both their ABC... etc. and a or v labels. Such a crystal is said 

to be twinned and the twin plane is that at which the stacking sequence reverses. 

* Denotes biographical notes available in Appendix 3. 
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Fig. 1.18. Representation of the close-packed layers of a twinned fee crystal indicating the 
atom layers ‘edge on’. Notice that the stacking sequence reverses across the twin plane, such 
that the crystal on one side of the twin plane is a mirror reflection of the other. 

Note that the crystal on one side of the twin plane is a mirror reflection of the 

other, just like the pair of hands in Fig. 4.4(b). 

The hep stacking sequence is represented by alternate upright and inverted 

triangles—and the sequence is unchanged if the stack of close-packed layers is 

turned upside down. Hence twinning on the close-packed planes is not possible 

in the hep structure—it is as if the backs and palms of your hands were 

identical, in which case, of course, your right hand would be indistinguishable 
from your left! 

The Shockley notation shows very well the distinction between extrinsic and 

intrinsic stacking faults; in the former case there are two inversions from the fee 

stacking sequence, and in the latter case, one. 

So far we have only considered stacking of close-packed layers of atoms and 

stacking faults in terms of the simple ‘hard sphere’ model. This model, given the 

criterion that the atoms should fit into the ‘hollows’ of the layers below (Fig. 

1.4), would indicate that any stacking sequence is equally likely. We know that 

this is not the case—the fact that (except for the occurrence of stacking faults) 

the atoms, for example, of aluminium, gold, copper etc. form the cep structure, 

and zinc, magnesium etc., form the hep structure, indicates that other factors 

have to be considered. These factors are concerned with the minimization of the 

energies of the nearest and second nearest neighbour configuration of atoms 

round an atom. It turns out that it is the configuration of the second nearest 

neighbours which determines whether the most stable structure is cep or hep. In 

one metal (cobalt) and in many alloys (e.g. a-brass) the energy differences 

between the two configurations is less marked and varies with temperature. 

Cobalt undergoes a phase change cep ^ hep at 25 ‘’C, but the structure both 

above and below this temperature is characterized by many stacking faults. In 

a-brass the occurrence of stacking faults (and twins) increases with zinc content. 

A detailed consideration of the stability of metal structures properly belongs 

to solid state physics. However, in practice we need to invoke some parameter 

which provides a measure of the occurrence of stacking faults and twins, and 

this is provided by the concept of the stacking fault energy (units mJ m“^); it is 
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Fig. 1.19. On deformation, a B layer atom glides not in a straight line, e.g. B ^ B (left to 

right) but in two steps via a C site across the ‘saddle points’ between the underlying A layer 

atoms, i.e. B -> C (first step), C -> B (second step). 

simply the increased energy (per unit area) above that of the normal (unfaulted) 

stacking sequence. Hence the lower the stacking fault energy, the greater the 

occurrence of stacking faults. On this basis the energy of a twin boundary will be 

about half that of an intrinsic stacking fault, and the energy of an extrinsic 

stacking fault will be about double that of an intrinsic stacking fault. 

As mentioned above, stacking faults, and the concept of stacking fault 

energy, play a very important role in the deformation of metals. During 

deformation—rolling, extrusion, forging and so on—the regular, crystalline 

arrangement of atoms is not destroyed. Metals do not, as was once supposed, 

become amorphous. Rather, the deformation is accomplished by the gliding or 

sliding of close-packed layers over each other. The overall gliding directions are 

those in which the rows of atoms are close-packed, but, as will also be evident 

from the models, the layers glide in a zig-zag path, from ‘hollow to hollow’ and 

passing across the ‘saddle-points’ between them. This is shown in Fig. 1.19, 

which is similar to Fig. 1.4, but re-drawn showing fewer atoms for simplicity. The 

overall glide direction of the B layer is along a close-packed direction, e.g. left to 

right, but the path from one B position to the next is over the saddle-points via a 

C position, as shown by the arrows. But the B layer may stop at a C position 

(partial slip), in which case we have an (intrinsic) stacking fault (Exercise 1.7). 

This partial slip, represented by the arrow or vector B C or C ^ B is also 

named after Shockley. Extrinsic stacking faults, twins and the ccp -> hep trans¬ 

formation may be accomplished by mechanisms involving the partial slip of 
close-packed layers. 

The twinned crystal shown diagrammatically in Fig. 1.18 is just one particular 

example of very general phenomenon, which occurs in crystals with much more 

complex structures and in which the two parts of the twinned crystal may not 

simply be related by reflection across the twin plane (reflection twins). Some 

examples of twinned crystals from geology and metallurgy are shown in Fig. 1.20. 

The left-right-hand character of the twinned crystal in Fig. 1.20(a) is easily seen; 

in practice the twins may be interpenetrated and twinning may occur not just in 

one but in several different planes, as shown in Figs. 1.20(b) and (c). In metals 

and alloys, the presence of twins may be seen in polished and etched surfaces 
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Fig. 1.20. Examples of twinned crystals: (a) rutile (Ti02) twinned on a {101} plane (from 

Rutley’s Elements of Mineralogy, 25th edn, revised by H. H. Read, George Allen and Unwin 
Ltd, 1962); (b) multiple twinning in rutile (from Introduction to Crystallography, 3rd edn, by F. 

C. Phillips, Longman, 1977); (c) interpenetrant twin in mercurous chloride (HgCl), twin plane 

{101} (from F. C. Phillips loc. cit.); (d) a photomicrograph of the etched surface of a-brass 
showing grain boundaries and (straight-sided) annealing twins, twin plane {111}. 

(Fig. 1.2(Xd)). Old cast brass doorknobs provide a good and homely example. 

The stacking fault energy of a-brass (Cu ~ 30% Zn) is very low (30 mJ m“^) 
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and almost all the grains or crystals will contain recrystallization twins. The 

corrosive contact of human hands reveals the irregular outlines or boundaries 

between the grains and also the perfectly straight lines or traces of the twin 

boundaries which terminate (unlike scratches) at the grain boundaries, as shown 

in Fig. 1.20(d). 
Twinning is very common in minerals, frequently occurring as a result of 

phase transitions during cooling. They may be observed, like the brass, on the 

polished surfaces of minerals, where they may give rise to beautiful iridescent 

textures as a result of the diffraction and interference of light (Chapter 7). They 

may be more readily seen in petrographic thin sections under the polarizing 

light microscope. For the petrologist they constitute one of the most important 

means of mineral identification. 

1.10 Some more complex crystal structures 

The newcomer to crystallography is often dismayed by the immensity of all the 

different crystal structures—not only inorganic but also organic. The subject 

may seem worse than French vocabulary! The subject is certainly immense and 

only a fraction of it can be learnt. However, it is not arbitrary and a knowledge 

of the rules or criteria determining the simplest structures, described in Sections 

1.2-1.7 above, are the stepping stones to an understanding of more complex 

structures. 

Consider, for example, the crystal structures which consist of close-packed 

layers of large atoms or ions, with the smaller atoms or ions occupying some or 

all of the tetrahedral interstitial sites. Zinc blende and wurtzite are two such 

structures (Section 1.7) which are drawn in Fig. 1.21 so as to emphasize the 

AVA ... stacking of the S (or Zn) atoms in wurtzite and the aaa ... stacking 

of the S (or Zn) atoms in zinc blende. Many carbides also possess such 

close-packed structures, with the carbon atoms occupying the tetrahedral inter¬ 

stitial sites and the metal or metalloid atoms stacked in various combinations of 

AVA ... and AAA ... sequences. Five forms of carborundum, SiC, are shown in 

Fig. 1.21, in which the silicon atoms are represented as solid spheres and the 

carbon atoms as open spheres. As can be seen, two of these structures, B4 and 

B3, are isomorphous with wurtzite and zinc blende, respectively. The other 

forms of carborundum have more complex stacking sequences, resulting in 

longer unit cell repeat distances. For example, the stacking sequence of the 

silicon atoms in carborundum III (B5) is (reading up) ABACABAC... giving a 

four-layer repeat distance. In the Shockley notation this is represented by 

AVVAAVV..., i.e. by inversions in the stacking sequence every two layers, not 
every layer as in B4, the wurtzite structure. 

Silicates which constitute by far the most important minerals in the Earth’s 

crust are based on the different ways in which Si04 tetrahedra* may be joined 

* The Si04 tetrahedra may be referred to more generally as Si-O tetrahedra since, as described in 
sub-sections (a)-(g), the silicon-oxygen ratio depends on how they are linked. 
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B3 B5 B6 Bl 

Wurtzite Zinc blende Carborundum III Carborundum II Carborundum I 

Fig. 1.21. Five common tetrahedral structure types (after E. Parthe, Crystal Chemistry of 
Tetrahedral Structures, Gordon and Breach, New York, 1964, reproduced from The Structure of 
Metals, 3rd edn, C. S. Barrett and T. B. Massalski, Pergamon, 1980). 

together, each tetrahedron being made up of four oxygen anions with the silicon 

cation in the tetrahedral interstice in the centre (Fig. 1.22). Silicate chemistry is 

based on the linking of the Si04 tetrahedra, i.e. whether they occur separately, 

or whether they are linked by common oxygen anions to form chains, rings, 

sheets or complete frameworks. This provides the initial basis for the classifica¬ 

tion of silicate structures. If the Si-O bond is considered to be purely ionic, 

there are four positive charges associated with each silicon cation and two 

negative charges associated with each oxygen anion; hence there are four net 

negative charges associated with each Si04 tetrahedron. The ‘charge balance’ in 

silicates may be achieved in seven possible ways (see Fig. 1.23): 

(a) Separate Si04 tetrahedra (nesosilicates): the charge balance (four net 

negative charges) is achieved with metal cations, e.g. Mg^'^, Fe^"^, which 

also link the tetrahedra together. Typical minerals are forsterite. Mg2(8104), 

or fayalite, Fe2(Si04), the end-members of the olivine group, MgFe(Si04). 

(b) Two tetrahedra linked together sharing one oxygen anion (sorosilicates): 

the Si:0 ratio is now Si207 giving she net negative charges which are 

balanced with metal cations. Typical minerals are melilite, Ca2Mg(Si207), 

or hemimorphite, Zn4(0H)H20(Si207). 

(c) Three or more tetrahedra linked together to form rings, each tetrahedron 
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Fig. 1.22. A perspective of the Si04 tetrahedron. The oxygen anions at the comers of the 

tetrahedron are nearly close packed, as shown in the models, e.g. in Fig. 1.7 (the radius of the 
oxygen anion, r„ = 0.132 nm and that of the silicon cation, = 0.039 nm, give a radius ratio, 

rx/r„ = 0.296, slightly greater than the ideal value rx/r„ = 0.225, Fig. 1.10). 

sharing two oxygen anions (cyclosilicates): the Si: O ratio is Si„03„ where n 

is the number of tetrahedra in the ring. A typical mineral is beryl, with a 

ring of six tetrahedra, Be3Al2(Si60i8). 

(d) Many tetrahedra linked together to form single chains (inosilicates): each 

tetrahedron shares two oxygen anions, as in the ring structures above, and 

which therefore give rise to the same Si: O ratio. This is the basis of the 

group of minerals called the pyroxenes. Typical examples are enstatite, 

Mg2(Si205), or diopside, CaMg(Si205). 

(e) Tetrahedra linked together to form double chains (inosilicates), each tetra¬ 

hedron sharing alternately two and three oxygen anions, giving the Si:0 

ratio Si40ii. This is the basis of the group of minerals called the amphi- 

boles. Typical examples are anthophyllite, Mg7(0H)2(Si40ii)2, or tremo- 

lite, Ca3Mg5(0H)2(Si40ii)2. 

(f) Tetrahedra linked together to form sheets (phyllosilicates), each tetra¬ 

hedron sharing three oxygen anions giving the Si:0 ratio Si205. This is 

the basis of the micas, chlorites and the clay minerals. 

(g) Tetrahedra linked together such that all the oxygen anions are shared 

giving a three-dimensional framework (tectosilicates). The Si; O ratio is now 

Si02 and there is an overall charge balance without the necessity of any 
linking cations. 

Figure 1.23 shows the arrangements of Si04 tetrahedra in these seven silicate 

structures. However, having established the basic pattern there are very impor¬ 

tant complications both in the chemistry and the arrangements of the tetrahedra 
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which must not be overlooked. In all the silicates, and in the chain, sheet and 

framework silicates in particular, the silicon in the centre of the tetrahedron can 

be substituted by aluminium—a trivalent rather than a tetravalent ion. For each 

such substitution an additional positive charge by way of a ‘linking cation’ is 

required. All sheet silicates or phyllosilicates show such substitution to a greater 

or lesser extent, for example phlogopite in which one silicon is replaced by one 

aluminium cation giving the formula KMg3(OH)2(Si3A10io). In framework 

silicates (tectosilicates), substitution gives rise to an important new class of 

minerals—the feldspars, the most abundant minerals in the Earth’s crust, e.g. 

albite, Na(Si3A108), or orthoclase, K(Si3A108) (one silicon cation substituted), 

or anorthite, Ca(Si2Al208) (two silicon cations substituted). 

With respect to the arrangements of the tetrahedra, one example—that of the 

inosilicates—^will suffice to show the principles involved. Figure 1.24 shows nine 

possible patterns (a)-(i) or conformations of the (unbranched) single chains, 

giving rise to different repeat distances as indicated: (a) (the simplest—known 

as zweier single chains because there are two tetrahedra in the repeat distance) 

is that for diopside and enstatite; (b) (drier single chains with three tetrahedra in 

the repeat distance) is that for wollastonite, Ca3(Si309), and so on. 

Clearly, there are also many possible arrangements of the tetrahedra in the 

cyclosilicates, phyllosilicates and tectosilicates, and it is these which give rise (in 

part) to the many structural differences in silicate minerals. For example, in the 

tectosilicates the three different crystallographic forms of silica—quartz, 

tridymite and cristobalite—simply correspond to different ways in which the 

Si04 tetrahedra are linked together, and the a and /3 forms of these structures 

(with slightly different densities) arise from small relative rotations of the 

tetrahedra. 

Exercises 

1.1 Draw crystal plans of the perovskite structure shown in Fig. 1.17, relocate the origin 

of one cell, relabel the ionic coordinates and show that these two cells do represent 

the same crystal structure. 
1.2 With reference to Figs. 1.10(b), 1.11(b), 1.13(b) and 1.13(d) (or your crystal models) 

check the radius ratios stated in the text for the tetrahedral and octahedral 

interstitial sites in the ccp and bcc structures. 

(Hint: These figures show the dimensions of the coordination polyhedra in terms of 

a, the cell edge lengths.) 

1.3 Examine your crystal models and find: 
(a) the number of different (non-parallel) close-packed planes and close-packed 

directions in the ccp and hep structures; and 

(b) the number of closest-packed planes and close-packed directions in the bcc 

structure. 
1.4 In the deformation of ccp and bcc metals, slip generally occurs on the close- or 

closest-packed planes and in close-packed directions. Each combination of slip 

plane and direction is called a slip system. How many slip systems are there in these 

metals? 
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Class 
Arrangement of Si04 tetrahedra 

(central Si'*'*’ not shown) 
Unit 

composition 
Mineral example 

(a) 
Nesosilicates 

^Oxygen 

(SiO,)'>“ 
Olivine, 

(Mg, Fe)2Si04 

(b) 
Sorosilicates 

\ 
(Si207)6^ 

Hemimorphite, 

Zn4Si207(0H)-H20 

(c) 
Cyclosilicates 

- V 

(Si60,8)12- Beryl, 

Be3Al2Si60i8 

) 

(d) 
Inosilicates 

(single chain) 

1 

J 

• (SijOg)''- 

Pyroxene 

e.g. Enstatite, 

MgSiOs 

Fig 1.23. The arrangements of the SiO^ tetrahedra and Si:0 ratios in the seven main types 

of silicate structures, with examples of typical minerals (from Manual of Mineralogy, 21st edn, 
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(e) 
Inosilicates 

(double chain) 

(f) 
Phyllosilicates 

►(Si40|,)6- 

Amphibole 
e.g. Anthophyllite, 

Mg7Sig022 (0H)2 

-{Su0,)2^ 

Mica 
e.g. Phologopite, 

KMg3(AISi30io)(OH). 

(g) 
Tectosilicates (Si02)“ 

High cristobalite, 

Si02 

by C. Klein and C. S. Hurlbut Jr., John Wiley & Sons Inc., 1993). 
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Fig. 1.24. The arrangements of the tetrahedra in the inosilicates. They are described (in 

German) according to the number of the tetrahedra in the repeat distance: a (zweier); b 

(dreier); c (vierer); d (fiinfer); e (sechser); f (siebener); g (neuner); h (zwolfer); i (24er) (from 
Structural Chemistry of Silicates by F. Liebau, Springer-Verlag, 1985). 
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1.5 With reference to Fig. 1.5(b), calculate the c/a ratio for the hep structure. 

{Hint: a is equal to d, the atomic diameter and edge length of the tetrahedron, and 

c is twice the height of the tetrahedron.) 

1.6 Draw a plan or crystal projection of the hep structure perpendicular to the z- or 

c-axis. Assign axes x and y (at 120° to each other) and outline a primitive hexagonal 

cell (one atom at each corner and one within the cell). What are the atomic 

coordinates of the atoms in the cell? 

1.7 Sketch a sequence of close-packed layers stacked in the ABCABC... sequence as 

shown in the lower half of Fig. 1.18. Fault an A layer in this sequence such that it 

becomes a B layer; in so doing, all the layers above are shifted together and need 

to be relabelled, i.e. B-»C, C-»A, A->B and so on. What type of stacking fault—■ 
intrinsic or extrinsic—is produced? Now fault the next layer above and repeat the 

relabelling of the layers above that. What type of fault is produced? What faulting 

sequence would you need to carry out to produce (a) a twin (as in Fig. 1.18) and (b) 

the hep stacking sequence? 

1.8 Determine the stacking sequence of the atoms or ions represented by the solid 

circles in the struetures B6 and B7 (carborundum II and I) using both the ABC... 

and Shockley notations. 

{Hint: in carborundum’ I, the sequence, which is omitted to save space, is (reading 

up) CBABCBA.) 
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Two-dimensional patterns, 
lattices and symmetry 

2.1 Approaches to the study of crystal structures 

In Chapter 1 we developed an understanding of simple crystal structures by first 

considering the ways in which atoms or ions could pack together and then 

introducing smaller atoms or ions into the interstices between the larger ones. 

This is a pragmatic approach as it not only provides us with an immediate and 

straightforward understanding of the atomic/ionic arrangements in some simple 

compounds, but also suggests the ways in which more complicated compounds 

can be built up. 
However, it is not a systematic and rigorous approach, as all the possibilities 

of atomic arrangements in all crystal structures are not explored. The rigorous, 

and essentially mathematical, approach is to analyse and classify the geometrical 

characteristics of quite general two-dimensional patterns and then to extend the 

analysis to three dimensions to arrive at a completely general description of all 

the patterns to which atoms or molecules or groups of atoms or molecules might 

conform in the crystalline state. 

These two distinct approaches—or strands of crystallographic thought—are 

apparent in the literature of the nineteenth and early twentieth centuries. In 

general, it was the metallurgists and chemists, such as Tammann* and Pope*, 

who were the pragmatists, and the theoreticians and geometers, such as 

Fedorov* and Schoenflies*, who were the analysts. It might be thought that the 

analytical is necessarily superior to the pragmatic approach because its general¬ 

ity and comprehensiveness provides a much more powerful starting point for 

progress to be made in the discovery and interpretation of the crystal structures 

of more and more complex substances. But this is not so. It was, after all, the 

simple models of sodium chloride and zinc blende of Pope (such as we also 

constructed in Chapter 1) that helped to provide the Braggs* with the necessary 

insight into crystal structures to enable them to make their great advances in the 

interpretation of X-ray diffraction photographs. In the same way, 40 years later, 

the discovery of the structure of DNA by Watson and Crick was based as much 

upon structural and chemical knowledge and intuition, together with model 
building, as upon formal crystallographic theory. 

However, a more general appreciation of the different patterns into which 

atoms and molecules may be arranged is essential, because it leads to an 

understanding of the important concepts of symmetry, motifs and lattices. The 

* Denotes biographical notes available in Appendix 3. 
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topic need not be pursued rigorously—in fact it is unwise to do so because we 

might quickly ‘lose sight of the wood for the trees!’ The essential ideas can be 

appreciated in two dimensions, the subject of this chapter. The extension to 

three dimensions (Chapters 3 and 4) which relates to ‘real crystal structures’, 
should then present no conceptual difficulties. 

2.2 Two-dimensional patterns and lattices 

Consider the pattern of Fig. 2.1(a), which is made up of the letter R repeated 

indefinitely. What does R represent? Anything you like—a ‘two-dimensional 

molecule’, a cluster of atoms or whatever. Representing the ‘molecule’ as an R, 

an asymmetric shape, is in effect representing an asymmetric molecule. We shall 

discuss the different types or elements of symmetry in detail in Section 2.3 

below, but for the moment our general everyday knowledge is enough. For 

example, consider the symmetry of the letters RMS. R is asymmetrical. M 

consists of two equal sides, each of which is a reflection or mirror image of the 

other, there is a mirror line of symmetry down the centre indicated by the letter 

m, thus 1^1 . There is no mirror line in the S, but if it is rotated 180'’ about a 
*— m 

point in its centre, an identical S appears; there is a two-fold rotation axis 

usually called a diad axis at the centre of the S. This is represented by a little 

lens-shape at the axis of rotation; S- 
In Fig. 2.1(a) R, the repeating ‘unit of pattern’ is called the motif. These 

motifs may be considered to be situated at or near the intersections of an 

(imaginary) grid. The grid is called the lattice and the intersections are called 

lattice points. 
Let us now draw this underlying lattice in Fig. 2.1(a). First we have to decide 

where to place each lattice point in relation to each motif: anywhere will 

do—above, below, to one side, in the ‘middle’ of the motif—the only require¬ 

ment is that the same position with respect to the motif is chosen every time. 

We shall choose a position a little below the motif, as shown in Fig. 2.1(b). Now 

there are an infinite number of ways in which the lattice points may be ‘joined 

up’ (i.e. an infinite number of ways of drawing a lattice or grid of lines through 

lattice points). In practice, a grid is usually chosen which ‘joins up’ adjacent 

lattice points to give the lattice as shown in Fig. 2.1(c), and a unit cell of 

the lattice may also be outlined. Clearly, if we know (1) the size and shape of the 

R R R R R R R R 

R R R R _R _R _R _R 

R R R R R R R ,R 

(a) (b) 

Fig. 2.1. (a) A pattern with the motif R, (b) with the lattice points indicated and (c) the lattice 

and a unit cell outlined. 

R R R R 
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unit cell and (2) the motif which each lattice point represents, including its 

orientation with respect to the lattice point, we can draw the whole pattern or 

build up the whole structure indefinitely. The unit cell of the lattice and the 

motif therefore define the whole pattern or structure. This is very simple: but 

observe an importance consequence. Each motif is identical and, for an in¬ 

finitely extended pattern, the environment (i.e. the spatial distribution of the 

surrounding motifs, and their orientation) around each motif is identical. This 

provides us with the definition of a lattice (which applies equally in two and 

three dimensions): a lattice is an array of points in space in which the environment 

of each point is identical. Again it should be stressed that by environment we 

mean the spatial distribution and orientation of the surrounding points. 

Like all simple definitions (and indeed ideas), this definition of a lattice is 

often not fully appreciated; there is, to use a colloquial expression, ‘more to it 

than meets the eye!’ This is particularly the case when we come to three- 

dimensional lattices (Chapter 4), but, for the two-dimensional case, consider the 

patterns of points in Fig. 2.2 (which should be thought of as extending infinitely). 

Of these only (a) and (d) constitute a lattice; in (b) and (c) the points are 

certainly in a regular array, but the surroundings of each point are not all 
identical. 

Figures 2.2(a) and (d) represent two two-dimensional lattice types, named 

oblique and rectangular, respectively, in view of the shapes of their unit cells. 

But what is the distinction between the oblique and rectangular lattices? Surely 

the rectangular lattice is just a special case of the oblique, i.e. with a 90° angle? 

The distinction arises from different symmetries of the two lattices, and 

requires us to extend our everyday notions of symmetry and to classify a series 

of symmetry elements. This precise knowledge of symmetry can then be applied 

Fig. 2.2. Patterns of points. Only (a) and (d) constitute lattices. 
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to both the motif and the lattice and will show that there are a limited number 

of patterns with different symmetries (only seventeen) and a limited number of 
two-dimensional lattices (only five). 

2.3 Two-dimensional symmetry elements 

The clearest way of developing the concept of symmetry is to begin with an 

asymmetrical ‘object’—say the R of Fig. 2.1—then to add successively mirror 

lines and axes of symmetry and to see how the R is repeated to form different 

patterns or groups. The different patterns or groups of Rs which are produced 

correspond, of course, to objects or projections of molecules (i.e. ‘two- 

dimensional molecules’) with different symmetries which are not possessed by 

the R alone. 

For example, consider Fig. 2.3(a). ‘Right-’ and ‘left-’handed Rs are reflected in 

the ‘vertical’ mirror line between them. This pair of Rs has the same mirror 

symmetry as the letter M, or the projection of the cw-difluoroethene molecule. 

Now add another ‘horizontal’ mirror line as in Fig. 2.3(b). A group of four 

Rs —two right and two left handed—is produced. This group has the same 

symmetry as the single letter H or the projection of the ethene molecule. 

The R may also be repeated with a diad (two-fold rotation) axis, as in Fig. 

(a) 

(b) 

(c) 

a 

H 
C=C 

H 
H 

H 
C=C 

H 

H 

^C— 

(d) 

(e) 

F 
K' 

'C 

Fig. 2.3. Generation of motifs (a)-(e) with different symmetries (five out of the ten plane 
point groups) and examples of two-dimensional symbols and (right) molecules and ions, (a) 

C«-difluoroethene, (b) ethene, (c) tram-difluoroethene, (d) tri(fluoroalkyl)ammonia molecule 

and (e) carbonate ion. 
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2.3(c). The two Rs—both right handed—have the same symmetry as the letter S 
as we saw above, or the tran^-difluoroethene molecule. Now look back to the 
group of Rs in Fig. 2.3(b); notice that they are also related by a diad (two-fold 
rotation axis) at the intersection of the mirror lines: the action of reflecting the 
Rs across two perpendicular mirror lines ‘automatically’ generates the two-fold 
symmetry as well. This effect, where the action of one symmetry element 
generates another, is quite general, as we shall see below. 

Mirror lines and diad axes of symmetry are just two of the symmetry elements 
in two dimensions. In addition, there are three-fold, rotation or triad axes 
(represented by a little triangle a), four-fold rotation or tetrad axes (repre¬ 
sented by a little square ■) and six-fold rotation or hexad axes (represented by 
a little hexagon #). Figure 2.3(d) shows the R related by a triad (three-fold) axis. 
This paper windmill and the projection of the trifluoralkylammonia molecule 
also have this same symmetry. Now add a ‘vertical’ mirror line as in Fig. 2.3(e). 
Three more (left-handed) Rs are generated, and at the same time, the Rs are 
mirror related not just in the vertical line but also in two lines inclined at 60° as 
shown, another example of additional symmetry elements—^in this case mirror 
lines— being automatically generated. 

This procedure—of generating groups of Rs which represent motifs with 
different symmetries—may be repeated with tetrad (four-fold) and hexad (six¬ 
fold) rotation axes of symmetry. Altogether there are ten such symmetries in two 
dimensions or ten plane point groups*, so called because all the symmetry 
elements pass through one point. The ten plane point groups are labelled with 
‘shorthand’ symbols which indicate the symmetry elements present; m for one 
mirror plane, mm or mm2 for two mirror planes (plus diad), 2 for a diad, 3 for a 
triad, 3m for a triad and three mirror planes and so on. The assiduous reader 
should complete Fig. 2.3 for himself or herself including, as well as the Rs, 
common objects and molecules with the appropriate symmetries. In addition, it 
will become obvious why it is not possible to have five-, seven-, eight-, etc., fold 
rotation axes of symmetry. A five-fold ‘pentad’ axis, for example, would require 
five lattice points to be equally arranged about the axis, but such an arrange¬ 
ment of points could not be put together to form a lattice. Try it and see! 

2.4 The five plane lattices 

Having examined some of the types of symmetry which a two-dimensional motif 
can possess (Fig. 2.3), we can now determine how many two-dimensional or 
plane lattices there are. The important criterion is this: the lattice itself must 
possess at least the symmmetry of the motif; it may possess more symmetry 
elements but it cannot possess fewer. Or, put another way, the symmetry of the 
arrangement of lattice points around each lattice point must be the same as, or 

* This IS only true for the case of repeating patterns. Separate objects in nature may have five-fold 
(pentagonal) symmetry (a starfish for example), or higher order axes of symmetry, but these do not 
occur in repeating patterns. The ten plane point groups which occur in plane patterns as discussed 
below are 1 (asymmetric), 2, 3, 4, 6, m, mm, 3m, Am, and 6m. 
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greater than, the symmetry of the motif. A few examples will make this clear. 

Consider the rectangular lattice of Fig. 2.2(d). Through each lattice point and 

halfway between there are vertical and horizontal lines of symmetry intersecting 

diad axes. The motif of Fig. 2.3(b) also has this symmetry and therefore it 

follows that a pattern with such a motif will have a rectangular lattice. The motif 

of Fig. 2.3(a) has one mirror line, and a pattern with this motif will also have a 

rectangular lattice in this case the symmetry of the lattice is greater than that 

of the motif. Note, on the other hand, that the motifs with one or two mirror 

lines of symmetry (Figs. 2.3(a) and (b)) cannot occur in a pattern with the 

oblique lattice because the oblique lattice does not itself have any mirror lines 
of symmetry. 

This procedure can be applied to all the other motifs. For example, a motif 

with tetrad (four-fold) symmetry applies to a pattern with a square lattice and a 

motif with triad (three-fold) symmetry (Figs 2.3(d) and (e)) and hexad (six-fold) 

symmetry will apply to a pattern with an hexagonal lattice. Altogether, five 

two-dimensional or plane lattices may be worked out, as shown in Fig. 2.4(a). 

They are described by the shapes of the unit* cells which are drawn between 

lattice points—oblique p, rectangular p, rectangular c (which is distinguished 

from rectangular p by having an additional lattice point in the centre of the 

cell), square p and hexagonal p. Notice again that additional symmetry ele¬ 

ments are generated ‘in between’ the lattice points as shown in Fig. 2.4(a) 

(right). For example, in the square lattice there is a tetrad at the centre of the 

cell, diads halfway along the edges and vertical, horizontal and diagonal mirror 

lines as well as the tetrads situated at the lattice points. 

All two-dimensional patterns must be based upon one of these five plane 

lattices; no others are possible. This may seem very surprising—surely ^othe/ 

shapes of unit cells are possible? The answer is ‘yes’, a large number of unit cell 

shapes are possible, but the pattern of lattice points which they describe will 

always be one of the five of Fig. 2.4(a). For example, the rectangular c lattice 

may also be described as a rhombic p or diamond p lattice, depending upon 

which unit cell is chosen to ‘join up’ the lattice points (Fig. 2.4(b)). These are 

just two alternative descriptions of the same arrangement of lattice points. So 

the choice of unit cell is arbitrary: any four lattice points can be joined up to 

form a unit cell. In practice we take a sensible course and mostly choose a unit 

cell that is as small as possible—or ‘primitive’ (symbol p)—which does not 

contain other lattice points within it. Sometimes a larger cell is more useful 

because the axes joining up the sides are at 90'’. Examples are the rhombic or 

diamond lattice which is identical to the rectangular centred lattice described 

above and, to take an important three-dimensional case, the cubic cell (Fig. 

1.6(c)) which is used to describe the ccp structure in preference to the primitive 

rhombohedral cell (Fig. 1.7(c)). 
Now as there are ten point group symmetries which a motif can possess (five 

of which are shown in Fig 2.3), it may be thought that there are therefore only 

ten different types of two-dimensional patterns, distributed among the five plane 

lattices. However, there is a complication: the combination of a point group 
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(a) 
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Fig. 2.4. (a) Unit cells of the five plane lattices (left), showing (right) the symmetry elements 

present (from Essentials of Crystallography, by D. McKie and C. McKie, Blackwell, 1986). (b) 

The rectangular c lattice, showing the alternative primitive (rhombic p or diamond p) unit 
cell. 

symmetry with a lattice can give rise to an additional symmetry element called a 

glide line. Consider the two patterns in Fig. 2.5, both of which have a rectangu¬ 

lar lattice. In Fig. 2.5(a) the motif has mirror symmetry as in Fig. 2.3(a); it 

consists of a pair of right- and left-handed Rs. In Fig. 2.5(b) there is still a 

reflection—still pairs of right- and left-handed Rs—but one set of Rs has been 

translated, or glided half a lattice spacing. This symmetry is called a reflection 

glide or simply a glide line of symmetry. Notice that glide lines also arise 

automatically in the centre of the unit cell of Fig. 2.5(b) as do mirror lines in 

Fig. 2.5(a). 

The presence of the glide lines also has important consequences regarding the 

symmetry of the motif. In Fig. 2.5(a) the motif has mirror symmetry but in Fig. 

2.5(b) it does not: the pair of right- and left-handed Rs is asymmetric. It is the 

repetition of the translational symmetry elements—the glide lines—that deter¬ 

mines the overall rectangular symmetry of the pattern. 

n 

R 

R 

R 

R 

fl 

R 

R 

R 

R 

R 

m m m 

(a) 

Fig. 2.5. Patterns with (a) reflection symmetry and (b) glide-reflection symmetry. The mirror 

lines im) and glide lines (g) are indicated. 
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Fig. 2.7. Projection (a) of the structure of CgH2(CH3)4 (from Contemporary Crystallography, 
by M. J. Buerger, McGraw-Hill, 1970), with (b) the motif, lattice and symmetry elements 
indicated. 

2.5 The seventeen plane groups 

Glide lines give seven more two-dimensional patterns, giving seventeen in 

all—the seventeen plane groups. On a macroscopic scale the glide symmetry in 

a crystal would appear as simple mirror symmetry—the shift between the 

mirror-related parts of the motif would only by observable in an electron 

microscope which was able to resolve the individual mirror-related parts of the 

motif, i.e. distances of the order of 0.5-2 A (50-200 pm). 

The seventeen plane groups are shown in Fig. 2.6. They are labelled by 

‘shorthand’ symbols which indicate the type of lattice (p for primitive, c for 

centred) and the symmetry elements present, m for mirror lines, g for glide 

lines, 4 for tetrads and so on. 

It is essential to practice recognizing the motifs, symmetry elements and 

lattice types in two-dimensional patterns and therefore to find to which of the 

seventeen plane groups they belong. Any regular patterned object will do— 

wallpapers, fabric designs, or the examples at the end of this chapter. Figure 2.7 

indicates the procedure you should follow. Cover up Fig. 2.7(b) and examine 

only Fig. 2.7(a); it is a projection of molecules of C6H2(CH3)4. You should 

recognize that the molecules or groups of atoms are not identical in this 

two-dimensional projection. The motif is a pair of such molecules and this is the 

‘unit of pattern’ that is repeated. Now look for symmetry elements and (using a 
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piece of tracing paper) indicate the positions of all of these on the pattern. 

Compare your pattern of symmetry elements with those shown in Fig. 2.7(b). If 

you did not obtain the same result you have not been looking carefully enough! 

Finally, insert the lattice points—one for each motif. Anywhere will do, but it is 

convenient to have them coincide with a symmetry element, as has been done in 

Fig. 2.7(b). The lattice is clearly oblique and the plane group is p2 (see Fig. 2.6). 

The motifs of the seventeen patterns in Fig. 2.6 should be identified by 

circling them (lightly in pencil in case you make a mistake). You will find that, as 

a result of the presence of glide lines of symmetry, there are three plane groups 

(pg> P'^gg ^nd pAgm) in which the motif is asymmetric and one {p2mg) in 

which it has only one mirror-line of symmetry. 
Another systematic way of identifying a plane pattern is to follow the ‘flow 

diagram’ shown in Fig. 2.8. The first step is to identify the highest order of 

rotation symmetry present, then to determine the presence or absence of 

reflection symmetry and so on through a series of ‘yes’ and ‘no’ answers, finally 

identifying one of the seventeen plane patterns whose plane group symbols are 

indicated ‘in boxes’, corresponding to those given in Fig. 2.6. 

2.6 One-dimensional symmetry; border or frieze patterns 

Identifying the number of one-dimensional patterns provides us with a good 

exercise in applying our more general knowledge of plane patterns. It is also a 

useful exercise in that it tells us about the different types of patterns that can be 

designed for the borders of wallpapers, edges of dress fabrics, friezes and 

cornices in buildings, and so on. 

In plane patterns the symmetry operations and symmetry elements are (clearly) 

repeated in a plane; in one-dimensional patterns they can only be repeated in or 

along a line—i.e. the line or long direction of the border or frieze. This 

restriction immediately rules out all rotational symmetry elements with the 

exception of diads: two-fold symmetry alone can be repeated in a line: three-, 

four-, and six-fold symmetry elements require the repetition of a motif in 

directions other than the line of the border. For the same reason glide-reflection 

lines of symmetry, other than that along the line of the border, are ruled out. 

Mirror lines of symmetry are restricted to those along, and perpendicular to, the 
line of the border. 

These restrictions result in seven one-dimensional groups, shown in Fig. 2.9. It 

is a good and satisfying exercise for you to derive these from first principles as 

outlined above. It is also useful to compare Fig. 2.9 with Fig. 2.6; the bracketed 

symbols in Fig. 2.9 indicate from which plane pattern the one-dimensional 

pattern may be derived. Notice that in one case two one-dimensional 

patterns these with ‘horizontal’ and ‘vertical’ mirror planes—are derived from 

one plane pattern (pm). This is because the mirror lines in the plane group 

pm can be oriented either along, or perpendicular to, the line of the one¬ 
dimensional pattern. 
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p111 (P1) 

p1al ipg) 

\ 

pmll (pm) 

pi ml (pm) 

p112(p2) 

pma2 (p2mg) 

pmm2 (p2mm) 

Fig. 2.9. The seven one-dimensional groups or seven classes of border or frieze patterns with 
their symmetry symbols (bracketed), the plane pattern symbols from which they may be 
derived. Solid lines indicate mirror lines, dotted lines indicate glide lines and symbols indicate 
diads (redrawn from The Geometry of Regular Repeating Patterns, loc. cit.). 

Figure 2.15 (see Exercise 2.6) also shows examples of some of the border 

patterns. You can practice recognizing such patterns either by overlaying the 

pattern with a piece of tracing paper, and indicating the positions of the diads, 

mirror and glide lines as described above for plane patterns or by following the 
flow diagram (Fig. 2.10). 

2.7 Symmetry, patterns and cultures 

We have a rich inheritance of plane and border patterns in printed and woven 

textiles, wallpapers, bricks and tiles which have been designed and made by 

countless craftsmen and artisans in the past ‘without benefit of crystallography’. 

The question we may now ask is: ‘Have all the seventeen plane groups and 

seven one-dimensional groups been utilized in pattern design or are some 

patterns and some symmetries more evident than others? If so, is there any 

relationship between the preponderance or absence of certain types of symmetry 

elements in patterns and the civilization or culture which produced them?’ 

Questions such as these have exercised the minds of archaeologists, anthro¬ 

pologists and historians of art and design. They are, to be sure, questions more 

of cultural than crystallographic significance, but patterns play such a large part 

in our everyday experience that a crystallographer can hardly fail to be absorbed 

by them, just as he or she is absorbed by the three-dimensional patterns of 
crystals. 
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pmm2 pma2 pm^ 1 
(p2mm) {p2mg) (pm) 

p^ m1 
(pm) 

p1a1 
ipg) 

p112 
(P2) 

p111 

(P1) 

Fig. 2.10. Flow diagram for identifying one of the seven border patterns (from The Geometry 

of Regular Repeating Patterns, loc. cit.). 

The study of plane and one-dimensional patterns (and indeed three- 

dimensional (space) patterns) is complicated by the question of colour—‘real’ 

colours in the case of plane and one-dimensional patterns, or colours represent¬ 

ing some property, such as electron spin direction or magnetic moment, in space 

patterns (Chapter 4). Colour changes may also be analysed in terms of symmetry 

elements in which colours are alternated in a systematic way. Clearly, the 

greater the number of colours, the greater the complexity. The simplest cases to 

consider are two-colour (e.g. black and white) patterns. Figure 2.11 shows the 

generation of plane motifs through the operation of what are called counter¬ 

change or colour symmetry elements, which are distinguished from ordinary 

(rotation) axes and mirror lines of symmetry by a prime superscript. For 

example, the operation of a 2' axis is a twice repeated rotation of an asymmetric 

object by 180° plus a colour change at each rotation; the operation of an m' 

mirror line is a reflection plus colour change. Figure 2.11 shows the operation of 

all the two-dimensional counterchange point symmetry elements. 



46 Two-dimensional patterns, lattices and symmetry 

Fig. 2.11. The operation of two-colour (black/white) counterchange symmetry elements 

(denoted by prime superscripts). 

Accounting for two-colour symmetry gives rise to a total of forty-six (rather 

than seventeen) plane patterns and seventeen (rather than seven) one¬ 

dimensional patterns. 
Probably the most influential and pioneering study of patterns was The 

Grammar of Ornament by Owen Jones, first published in 1856*. Owen Jones 

attempted to categorize both plane and border patterns in terms of the different 

cultures that produced them, and although the symmetry aspects of patterns are 

touched on in the most fragmentary way, there is no doubt that the superb 

illustrations and encyclopaedic character of the book provided later writers with 

material which could be classified and analysed in crystallographic terms. 

Perhaps the best known of these was M. C. Escher (1898-1971) who drew 

inspiration for his drawings of tessellated figures from visits to the Alhambra in 

the 1930s, and also presumably from Owen Jones’ chapter on ‘Moresque 

Ornament’ in which he describes the Alhambra as ‘the very summit of Moorish 

art, as the Parthenon is of Greek art’. Escher’s patterns encompass all the 

seventeen plane groups, eleven of which are represented in the Alhambra. 

More recent work has identified clear preponderances of certain plane 

symmetry groups, and the absences of others^. For example, nearly 50% of 

traditional Javanese batik (wax-resist textile) patterns belong to plane group 

4mm (Fig. 2.6), others, such as p3, p3ml, p3\m and p6 are wholly absent. In 

Jacquard-woven French silks of the last decade of the nineteenth century, nearly 

80% of the patterns belong to plane group pg. In Japanese textile designs of the 

Edo period all plane groups are represented, with a marked preponderance for 

groups plmm and c2mm. What these differences mean, or tell us about the 

cultures which gave rise to them, is, as the saying goes, ‘another question’. 

* Owen Jones. The Grammar of Ornament, Day & Sons Ltd., London, reprinted by Studio 
Editions, London (1986). 

^ M. A. Hann. Symmetry of Regular Repeating Patterns: Case studies from various cultural settings. 
Journal of the Textile Institute (1992), Vol. 83, pp. 579-580. 
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Fig. 2.12. A plane pattern (from Symmetry Aspects of M. C. Escher’s Periodic Drawings, 2nd 
edn, by C. H. MacGillavry. Published for the International Union of Crystallography by Bohn, 
Scheltema and Holkema, Utrecht, 1976). 

Exercises 

2.1 Lay tracing paper over the plane patterns in Fig. 2.6. Outline a unit cell in each case 

and indicate the positions of all the symmetry elements within the unit cell. Notice 

in particular the differences in the distribution of the triad axes and mirror lines in 

the plane groups p31m and p3ml. 

2.2 Figure 2.12 is a design by M. C. Escher. Using a tracing paper overlay, indicate the 

positions of all the symmetry elements. With the help of the flow diagram (Fig. 2.8), 

determine the plane lattice type. 
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Fig. 2.13. A projection of the structure of FeS2 (from Contemporary Crystallography by M. J. 
Buerger, McGraw-Hill, New York, 1970). 

Fig. 2.14. A plane pattern (from C. H. MacGillavry, loc. cit.). 
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b c 

d e f 

g h j 

Fig. 2.15. Examples of border or frieze patterns (from The Grammar of Ornament by Owen 
Jones, Day & Son, Lx)ndon 1856, reprinted by Studio Editions, London, 1986). a, b, Greek; 
c, d, Arabian; e, Moresque; f, Celtic; g, h, Chinese; i, Mexican. 

2.3 Figure 2.13 is a projection of the structure of FeS2 (shaded atoms Fe, unshaded 

atoms S). Using a tracing paper overlay, indicate the positions of the symmetry 

elements, outline a unit cell and, with the help of the flow diagram in Fig. 2.8, 

determine the plane pattern type. 

2.4 Figure 2.14 is a design by M. C. Escher. Can you see that the two sets of men are 

related by glide lines of symmetry? Draw in the positions of these glide lines, and 

determine the plane lattice type. 

2.5 Determine (with reference to Fig. 2.11) the counterchange (black-white) point 

group symmetry of a chessboard. 

2.6 Figure 2.15 shows examples of border or frieze patterns from The Grammar of 

Ornament by Owen Jones. Using a tracing paper overlay, indicate the positions of 

the symmetry elements and, with the help of the flow diagram (Fig. 2.10), determine 

the one-dimensional lattice types. 

Fig. 2.16. Examples of motifs, representing the ten plane point groups (from The Geometry of 

Regular Repeating Patterns, loc. cit.). 
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2.7 Figure 2.16 shows examples of motifs representing the ten plane point groups (five 

of which are shown in Fig. 2.3). Indicate the point symmetry elements present in 

each case. 

2.8 Compare the symmetries of the eleven motifs generated by the black/white point 

counterchange symmetry elements (Fig. 2.11) with the ten plane point groups (Fig. 

2.16). If the black/white symmetry in Fig. 2.11 is ignored, i.e. m' becomes m and 2' 

becomes 2 etc., then these motifs reduce to the ten plane point groups: all the ten 

plane point groups are represented, except two. Which are they? 



3 

Bravais lattices and crystal 
systems 

3.1 Introduction 

The definitions of the motif, the repeating ‘unit of pattern’, and the lattice, an 

array of points in space in which each point has an identical environment, hold 

in three dimensions exactly as they do in two dimensions. However, in three 

dimensions there are additional symmetry elements that need to be considered: 

both point symmetry elements to describe the symmetry of the three- 

dimensional motif (or indeed any crystal or three-dimensional object) and also 

translational symmetry elements, which are required (like glide lines in the 

two-dimensional case) to describe all the possible patterns which arise by 

combining motifs of different symmetries with their appropriate lattices. Clearly, 

these considerations suggest that the subject is going to be rather more compli¬ 

cated and ‘difficult’; it is obvious that there are going to be many more 

three-dimensional patterns (or space groups) than the seventeen two- 

dimensional patterns (or plane groups—Chapter 2), and to work through all of 

these systematically would take up many pages! However, it is not necessary to 

do so; all that is required is an understanding of the principles involved (Chapter 

2), the operation and significance of the additional symmetry elements, and the 

main results. These main results may be stated straight away. The additional 

point symmetry elements required are centres of symmetry, mirror planes 

(instead of lines) and inversion axes; the additional translational symmetry 

elements are glide planes (instead of lines) and screw axes. The application and 

permutation of all symmetry elements to patterns in space give rise to 230 space 

groups (instead of seventeen plane groups) distributed among fourteen space 

lattices (instead of five plane lattices) and thirty-two point group symmetries 

(instead of ten plane point group symmetries). 
In this chapter the concept of space (or Bravais) lattices and their symmetries 

is discussed and, deriving from this, the classification of crystals into seven 

systems. 

3.2 The fourteen space (Bravais) lattices 

The systematic work of describing and enumerating the space lattices was done 

initially by Frankenheim* who, in 1835, proposed that there were fifteen in all. 

Unfortunately for Frankenheim, two of his lattices were identical, a fact first 

pointed out by Bravais* in 1848. It was, to take a two-dimensional analogy, as if 

* Denotes biographical notes available in Appendfac 3. 



52 Bravais lattices and crystal systems 

Frankenheim had failed to notice (see Fig. 2.4(b)) that the rhombic or diamond 

and the rectangular centred plane lattices were identical! Hence, to this day, the 

fourteen space lattices are usually, and perhaps unfairly, called Bravais lattices. 

The unit cells of the Bravais lattices are shown in Fig. 3.1. The different 

shapes and sizes of these cells may be described in terms of three cell edge 

lengths or axial distances, a, b, c, or lattice vectors a, b, c and the angles 

between them, a, /3, y, where <x is the angle between b and c, /3 the angle 

between a and c, and y the angle between a and b. The axial distances and 

angles are measured from one corner to the cell, i.e. a common origin. It does 

not matter where we take the origin—any corner will do—but, as pointed out in 

Chapter 1, it is a useful convention (and helps to avoid confusion) if the origin is 

taken as the ‘back left-hand corner’ of the cell, the a-axis pointing forward (out 

of the page), the &-axis towards the right and the c-axis upwards. This conven¬ 

tion also gives a right-handed axial system. If any one of the axes is reversed 

(e.g. the b-axis towards the left instead of the right), then a left-handed axial 

system results. The distinction between them is that, like left and right hands, 

they are mirror images of one another and cannot be brought into coincidence 

by rotation. 
The drawings of the unit cells of the Bravais lattices in Fig. 3.1 can be 

misleading because, as shown in Chapter 2, it is the pattern of lattice points 

which distinguishes the lattices. The unit cells simply represent arbitrary, though 

convenient, ways of ‘joining up’ the lattice points. Consider, for example, the 

three cubic lattices; cubic P (for Primitive, one lattice point per cell, i.e. lattice 

points only at the corners of the cell), cubic I (for ‘/nnenzentrierte’, which is 

German for ‘body-centred’, an additional lattice point at the centre of the cell, 

giving two lattice points per cell) and cubic F (for Pace-centred, with additional 

lattice points at the centres of each face of the cell, giving four lattice points per 

cell). It is possible to outline alternative primitive cells (i.e. lattice points only at 

the corners) for the cubic I and cubic P lattices, as is shown in Fig. 3.2. As 

mentioned in Chapter 1, these primitive cells are not often used (1) because the 

inter-axial angles are not the convenient 90'’ (i.e. they are not orthogonal) and 

(2) because they do not reveal very clearly the cubic symmetry of the cubic I and 

cubic P lattices. (The symmetry of the Bravais lattices, or rather the point group 
symmetries of their unit cells, will be described in Section 3.3.) 

Similar arguments concerning the use of primitive cells apply to all the other 

centred lattices. Notice that the unit cells of two of the lattices are centred on 

the ‘top’ and ‘bottom’ faces. These are called base-centred or C-centred because 
these faces are intersected by the c-axis. 

The Bravais lattices may be thought of as being built up by stacking ‘layers’ of 

the five plane lattices, one on top of another. The cubic and tetragonal lattices 

are based on the stacking of square lattice layers; the orthorhombic P and / 

lattices on the stacking of rectangular layers; the orthorhombic C and P lattices 

on the stacking of rectangular centred layers; the rhombohedral and hexagonal 

lattice on the stacking of hexagonal layers and the monoclinic and triclinic 

lattices on the stacking of oblique layers. These relationships between the plane 
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Body-centred 
cubic (/) 

Face-centred 
cubic (F) 

(P) 

Body-centred 
tetragonal 

(/) 

Simple 
orthorhombic 

(P) 

Body-centred 
orthorhombic 

(/) 

Base-centred 
orthorhombic 

(C) 

Face-centred 
orthorhombic 

(P) 

Simple 
monoclinic 

(P) 

Fig. 3.1. The fourteen Bravais lattices (from Elements of X-Ray Diffraction, (2nd edn), by 
B. D. Cullity, Addison-Wesley, 1978). In the two monoclinic cells the origin is located at the 

‘front left-hand comer’ to show clearly the angle (5 between the a and c axes. 

and the Bravais lattices are easy to see, except perhaps for the rhombohedral 

lattice. The rhombohedral unit cell has axes of equal length and with equal 
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Fig. 3.2. (a) The cubic I and (b) the cubic F lattices with the primitive rhombohedral cells 

and inter-axial angles indicated. 

angles (a) between them. Notice that the layers of lattice points, perpendicular 

to the ‘vertical’ direction (shown dotted in Fig. 3.1) form triangular, or equiva¬ 

lently, hexagonal layers. The hexagonal and rhombohedral lattices differ in the 

ways in which the hexagonal layers are stacked. In the hexagonal lattice they are 

stacked directly one on top of the other (Fig. 3.3(a)) and in the rhombohedral 

lattice they are stacked such that the next two layers of points lie above the 

triangular ‘hollows’ or interstices of the layer below, giving a three layer repeat 

(Fig. 3.3(b)). These hexagonal and rhombohedral stacking sequences have been 

met before in the stacking of close-packed layers (Chapter 1); the hexagonal 

lattice corresponds to the simple hexagonal AAA... sequence and the rhombo¬ 

hedral lattice corresponds to the fee ABCABC... sequence. 

Now observant readers will notice that the rhombohedral and cubic lattices 

are therefore related. The primitive cells of the cubic / and cubic F lattices 

Fig. 3.3. Stacking of hexagonal layers of lattice points in (a) the hexagonal lattice and (b) the 
rhombohedral lattice. 
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(a) (b) 

Fig. 3.4. Plans of tetragonal lattices showing (a) the tetragonal P = C lattice and (b) the 
tetragonal I = F lattice. 

(Fig. 3.2) are rhombohedral—the axes are of equal length and the angles (a) 

between them are equal. As in the two-dimensional cases, what distinguishes the 

cubic lattices from the rhombohedral is their symmetry. When the angle a is 90° 

we have a cubic P lattice, when it is 60° we have a cubic F lattice and when it is 

109.47° we have a cubic I lattice (Fig. 3.2). Or, alternatively, when the hexagonal 

layers of lattice points in the rhombohedral lattice are spaced apart in such a 

way that the angle a is 90°, 60° or 109.47°, then cubic symmetry results. 

Finally, compare the orthorhombic lattices (all sides of the unit cell of 

different lengths) with the tetragonal lattices (two sides of the cell of equal 

length). Why are there four orthorhombic lattices, P, C, I and F, and only two 

tetragonal lattices, P and /? Why are there not tetragonal C and F lattices as 

well? The answer is that there are tetragonal C and F lattices, but by redrawing 

or outlining different unit cells, as shown in Fig. 3.4, it will be seen that they are 

identical to the tetragonal P and / lattices, respectively. In short, they represent 

no new arrangements of lattice points. 

3.3 The symmetry of the fourteen Bravais lattices: 
crystal systems 

The unit cells of the Bravais lattices may be thought of as the ‘building blocks’ 

of crystals, precisely as Haiiy envisaged (Fig. 1.2). Flence it follows that the habit 

or external shape, or the observed symmetry of crystals, will be based upon the 

shapes and symmetry of the Bravais lattices, and we now have to describe the 

point symmetry of the unit cells of the Bravais lattices just as we described the 

point symmetry of plane patterns and lattices. The subject is far more readily 

understood if simple models are used (Appendix 1). 
First, mirror lines of symmetry become mirror planes in three dimensions. 

Second, axes of symmetry (diads, triads, tetrads and hexads) also apply to three 

dimensions. The additional complication is that, whereas a plane motif or object 

can only have one such axis (perpendicular to its plane), a three-dimensional 

object can have several axes running in different directions (but always through 

a point in the centre of the object). 
Consider, for example, a cubic unit cell (Fig. 3.5(a)). It contains a total of nine 

mirror planes, three parallel to the cube faces and six parallel to the face 

diagonals. There are three tetrad (four-fold) axes perpendicular to the three sets 
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Fig. 3.5. The point symmetry elements in (a) a cube (cubic unit cell) and (b) an orthorhombic 

unit cell. 

of cube faces, four triad (three-fold) axes running between opposite cube 

corners, and six diad (two-fold) axes running between the centres of opposite 

edges. This ‘collection’ of symmetry elements is called the point group symmetry 

of the cube because all the elements—planes and axes—pass through a point in 

the centre. 
Why should there be these particular numbers of mirror planes and axes? It is 

because all the various symmetry elements operating at or around the point 

must be consistent with one another. Self-consistency is a fundamental principle, 

underlying all the two-dimensional plane groups, all the three-dimensional point 

groups and all the space groups that will be discussed in Section 4.6. If there are 

two diad axes, for example, then they have to be mutually orthogonal, otherwise 

chaos would result; by the same token they also must generate a third diad 

perpendicular to both of them. It is the necessity for self-consistency which 

governs the construction of every one of the different combinations of symme¬ 

try, controlling the nature of each combination; it is this, also, which limits the 

total numbers of possible combinations to quite definite numbers such as 

thirty-two, in the case of the crystallographic point groups (the crystal classes), 

the fourteen Bravais lattices, and so on. 

The cubic unit cell has more symmetry elements than any other: its very 

simplicity makes its symmetry difficult to grasp. More easy to follow is the 

symmetry of an orthorhombic cell. Figure 3.5(b) shows the point group symme¬ 

try of an orthorhombic unit cell. It contains, like the cube, three mirror planes 

parallel to the faces of the cell but no more—mirror planes do not exist parallel 

to the face diagonals. The only axes of symmetry are three diads perpendicular 
to the three faces of the unit cell. 

In both cases it can be seen that the point group symmetry of these unit cells 

(Figs. 3.5(a) and 3.5(b)) is independent of whether the cells are centred or not. 

All three cubic lattices, P, I and F, have the same point group symmetry; all 

four orthorhombic lattices, P, I, F and C, have the same point group symmetry 

and so on. This simple observation leads to an important conclusion: it is not 

possible, from the observed symmetry of a crystal, to tell whether the underlying 

Bravais lattice is centred or not. Therefore, in terms of their point group 

symmetries, the Bravais lattices are grouped, according to the shapes of their 

unit cells, into seven crystal systems. For example, crystals with cubic P, I ox F 
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lattices belong to the cubic system, crystals with orthorhombic P, I, F or C 

lattices belong to the orthorhombic system, and so on. However, a complication 

arises in the case of crystals with a hexagonal lattice. One might expect that all 

crystals with a hexagonal lattice should belong to the hexagonal system, but, as 

shown in Chapter 4, the external symmetry of crystals may not be identical (and 

usually is not identical) to the symmetry of the underlying Bravais lattice. Some 

crystals with a hexagonal lattice, e.g. quartz, do not show hexagonal (hexad) 

symmetry but have triad symmetry. Such crystals are assigned to the trigonal 

system rather than to the hexagonal system. Hence the trigonal system includes 

crystals with both hexagonal and rhombohedral Bravais lattices. There is yet 

another problem which is particularly associated with the trigonal system, which 

is that the rhombohedral unit cell outlined in Figs 3.1 and 3.3 is not always used 

—a larger (non-primitive) unit cell of three times the size is sometimes more 

convenient. The problem of transforming axes from one unit cell to another is 
addressed in Chapter 5. 

The crystal systems and their corresponding Bravais lattices are shown in 

Table 3.1. Notice that there are no axes or planes of symmetry in the triclinic 

system. The only symmetry that the triclinic lattice possesses (and which is 

possessed by all the other lattices) is a centre of symmetry. This point symmetry 

element and inversion axes of symmetry are explained in Chapter 4. 

Exercises 

3.1 The drawings in Fig. 3.6 show patterns of points distributed in orthorhombic-shaped 

unit cells. Identify to which (if any) of the orthorhombic Bravais lattices, P, C, I or 
F, each pattern of points corresponds. 

{Hint: It is helpful to sketch plans of several unit cells, which will show more clearly 

the patterns of points, and then to outline (if possible) a T, C, / or F unit cell.) 

3.2 The unit cells of several orthorhombic structures are described below. Draw plans 

of each and identify the Bravais lattice, P, C, I or F, in each case. 
(a) One atom per unit cell located at (x'y'z'). 

(b) Two atoms per unit cell of the same type located at (0|0) and (^0|). 
(c) Two atoms per unit cell, one type located at (OOz') and (^zO and the other 

type at (OOf^ +z')) and (|^(^ +z')). 

{Hint: Draw plans of several unit cells and relocate the origin of the axes, x', y', z' 

should be taken as small (non-integral) fractions of the cell edge lengths.) 

Fig, 3.6. Patterns of points in orthorhombic unit cells. 



4 

Crystal symmetry, point groups 
and crystal structures: the 

external symmetry of crystals 

4.1 Symmetry and crystal habit 

As indicated in Chapter 3, the system to which a crystal belongs may be 

identified from its observed or external symmetry. Sometimes this is a very 

simple procedure. For example, crystals which are found to grow or form as 

cubes obviously belong to the cubic system: the external point symmetry of the 

crystal and that of the underlying unit cell are identical. However, a crystal from 

the cubic system may not grow or form with the external shape of a cube; the 

unit cells may stack up to form, say, an octahedron, or a tetrahedron, as shown 

in the models constructed from sugar-cube unit cells (Fig. 4.1). These are just 

two examples of a very general phenomenon throughout all the crystal systems: 

only very occasionally do crystals grow with the same shape as that of the 

underlying unit cell. The different shapes or habits adopted by crystals are 

determined by chemical and physical factors which do not, at the moment, 

concern us; what does concern us as crystallographers is to know how to 

recognize to which system a crystal belongs even though its habit may be quite 

different from, and therefore conceal, the shape of the underlying unit cell. 

Fig. 4.1. Stacking of ‘sugar-cube’ unit cells to form (a) a cube, (b) an octahedron and (c) a 

tetrahedron. Note that the cubic cells in all three models are in the same orientation. 
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Fig. 4.2. (a) A cube, (b) an octahedron and (c) a tetrahedron drawn in the same orientation 
as the models in Fig. 4.1. (d) A tetrahedron showing the positions of one variant of the point 

symmetry elements: mirror plane (shaded) (x6), triad (X4) and inversion tetrad (which 

includes a diad) (X 3). 

The clue to the answer lies in the point group symmetry of the crystal. 

Consider, for example, the symmetry of the cubic crystals which have the shape 

or habit of a cube, an octahedron or a tetrahedron (Figs 4.1 and 4.2) or 

construct models of them (Appendix 1). The cube and octahedron, although 

they are different shapes, possess the same point group symmetry. The tetrahe¬ 

dron, however, has less symmetry: only sbc mirror planes instead of nine: only 

three diads running between opposite edges (i.e. along the directions perpendic¬ 

ular to the cube faces in the underlying cubes) and, as before, four triads 

running through each corner. The common, unchanged symmetry elements are 

the four (equally inclined) triads, and it is the presence of these four triads 

which characterizes crystals belonging to the cubic system. Cubic crystals usually 

possess additional symmetry elements—the most symmetrical cubic crystals 

being those with the full point group symmetry of the underlying unit cell. But it 

is the four triads—not the three tetrads or the nine mirror planes—which are 
the ‘hallmark’ of a cubic crystal. 

Similar considerations apply to all the other crystal systems. For example. Fig. 

4.3 shows three orthorhombic crystals. Figure 4.3(a) shows a crystal with the full 

symmetry of the underlying unit cell—three perpendicular mirror planes and 

three perpendicular diads. Figure 4.3(b) shows a crystal with only two mirror 

planes and one diad along their line of intersection. Figure 4.3(c) shows a crystal 
with three perpendicular diads but no mirror planes. 

4.2 The thirty-two crystal classes 

The examples shown in Figs 4.1-4.3 are of crystals with different point group 

symmetries: they are said to belong to different crystal classes. Crystals in the 

same class have the same point group symmetry, so in effect the terms are 

synonymous. Notice that crystals in the same class do not necessarily have the 

same shape. For example, the cube and octahedron are obviously different 
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Fig. 4.3. Orthorhombic crystals (a) PbS04 (mmm), (b) NH4MgP04-61120 {mm2), (c) 

MgS04-71120 (222) (from Introduction to Crystallography, 3rd edn, by F. C. Phillips, Long¬ 
man, 1977). 

shapes but belong to the same class because their point group symmetry is 
the same. 

In two dimensions (Chapter 2) we found that there were ten plane point 
groups; in three dimensions there are thirty-two three-dimensional point groups. 
One of the great achievements of the science of mineralogy in the nineteenth 
century was the systematic description of the thirty-two point groups or crystal 
classes and their division into the seven crystal systems. Particular credit is due 
to J. F. C. Hessel*, whose contributions to the understanding of point group 
symmetry were unrecognized until after his death. The concept of seven differ¬ 
ent types or shapes of underlying unit cells then links up with the concept of the 
fourteen Bravais lattices; in other words, it establishes the connection between 
the external crystalline form or shape and the internal molecular or atomic 
arrangements. 

It is not necessary to describe all the thirty-two point groups systematically; 
only the nomenclature for describing their important distinguishing features 
needs to be considered. This requires a knowledge of additional symmetry 
elements—centres and inversion axes. 

4.3 Centres and inversion axes of symmetry 

If a crystal, or indeed any object, possesses a centre of symmetry, then any line 
passing through the centre of the crystal connects equivalent faces, or atoms, or 
molecules. A familiar example is a right hand and a left hand placed palm-to- 
palm but with the fingers pointing in opposite directions, as in Fig. 4.4(a). Lines 
joining thumb to thumb or fingertip to fingertip all pass through a centre of 
symmetry between the hands. When the hands are placed palm-to-palm but with 
the fingers pointing in the same direction, as in prayer, then there is no centre 

* Denotes biographical notes available in Appendix 3. 



Fig. 4.4. Right and left hands (a) disposed with a centre of symmetry between them and (b) 

disposed with a mirror plane between them. 

of symmetry but a mirror plane of symmetry instead, as in Fig. 4.4(b). In two 

dimensions a centre of symmetry is equivalent to diad symmetry. (See, for 

example, the motif and plane molecule shown in Fig. 2.3(c), which may be 

described as showing diad symmetry or a centre of symmetry.) In three dimen¬ 

sions this is not the case, as an inspection of Fig. 4.4(a) will show. 

Inversion axes of symmetry are rather difficult to describe (and therefore 

difficult for the reader to understand) without the use of the stereographic 

projection—a method of representing a three-dimensional pattern of planes in a 

crystal on a two-dimensional plan. Geographers have the same problem when 

trying to represent the surface of the Earth on a two-dimensional map, and they 

too make use of the stereographic projection. In atlases, the circular maps of the 

world (usually with the North or South Poles in the centre) are often stereo¬ 

graphic projections. 

Inversion axes are compound symmetry elements, consisting of a rotation 

followed by an inversion. For example, as described in Chapter 2, the operation 
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Fig. 4.5. Examples of a crystal and an object which have inversion tetrad axes (both point 
group 42m). (a) Urea CO(NH2)2 and (b) a tennis ball. 

of a tetrad (four-fold) rotation axis is to repeat a crystal face or pattern every 90° 

rotation, e.g. in two dimensions giving four repeating Rs or the four-fold pattern 

of faces in a cube. The operation of an inversion tetrad, symbol IZI or 4, is to 

repeat a crystal face or pattern every 90° rotation-plus-inversion through a 

centre. What results is a four-fold pattern of faces around the inversion axis, but 

with each alternate face inverted. Examples of a crystal and an object with 

inversion tetrad axes are shown in Figs 4.5(a) and (b). The tennis ball has, in 

fact, the same point group symmetry as the crystal. Notice that when it is rotated 

90° about the axis indicated, the ‘downwards’ loop in the surface pattern is 

replaced by an ‘upwards’ loop. Another 90° rotation brings a ‘downwards’ loop 

and so on for the full 360° rotation. Notice also that the inversion tetrad 

includes a diad, as is indicated by the diad (lens) symbol in the inversion tetrad 

(open square) symbol, 0 or 4. 
Finally, compare the symmetry of the tetragonal crystal in Fig. 4.5(a) with that 

of the tetrahedron (Fig. 4.2(d)): the diad axes which we recognized passing 

through the centres of opposite edges in the tetrahedron are, in fact, inversion 

tetrad axes or, to develop one of the points made in Section 4.1, stacking the 

cubes into the form of a tetrahedron reduces the symmetry element along the 

cube axis directions from rotation to inversion tetrad. 

There are also inversion axes corresponding to rotation diads, triads and 

hexads. The operation of an inversion hexad, for example, is a rotation of 60° 

plus an inversion, this compound operation being repeated a total of six times 
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until we return to the beginning. However, for a beginner to the subject, these 

axes may perhaps be regarded as being of lesser importance than the inversion 

tetrads because they can be represented by combinations of other (better- 

understood) symmetry elements. The inversion diad is equivalent to a perpen¬ 

dicular mirror plane. The inversion triad is equivalent to a rotation triad plus a 

centre of symmetry—which is the symmetry of a rhombohedral lattice (see Fig. 

3.1). Notice that the ‘top’ three faces of the rhombohedron are related to the 

‘bottom’ three faces by a centre of symmetry. An inversion hexad is equivalent 

to a triad with a perpendicular mirror plane. Again, these equivalences are best 

understood with the use of the stereographic projection. The important point is 

that only inversion tetrads are unique (i.e. they cannot be represented by a 

combination of rotation axes, centres or mirror planes) and therefore need to be 

considered separately. 
The point group symmetries of the thirty-two classes are described by a 

‘short-hand’ notation or point group symbol which lists the main (but not 

necessarily all) symmetry elements present. For example, the presence of 

centres of symmetry is not recorded because they may arise ‘automatically’ from 

the presence of other symmetry elements, e.g. the presence of an inversion triad 

mentioned above. This notation for the thirty-two crystal classes or point groups, 

and their distribution among the seven crystal systems, is fully worked out in the 

International Tables for Crystallography published for the International Union of 

Crystallography and in F. C. Phillips’ Introduction to Crystallography (3rd edn) 

(Longman, 1977). Altogether there are five cubic classes, three orthorhombic 

classes, three monoclinic classes and so on. They are all listed in Table 3.1 

(p. 57). The order in which the symmetry elements are written down in the point 
group symbol depends upon the crystal system. 

In the cubic system the first place in the symbol refers to the axes parallel to, 

or planes of symmetry perpendicular to, the x-, y- or z-axes, the second refers to 
the four triads and the third the axes parallel to, or planes of symmetry 

perpendicular to, the face diagonal direetions. Hence the point group symbol for 

the cube or the oetahedron—the most symmetrical of the cubic crystals—is 

4/m 3 2/m. This full point group symbol is usually (and rather unhelpfully) 

contracted to m3m because the operation of the four triads and nine mirror 

planes (three parallel to the cube faces and six parallel to the face diagonals) 

‘automatically’ generates the three tetrads and six diads. The symbol for the 

tetrahedron is 43m, the 4 referring to the three inversion tetrad axes along the 

X-, y- and z-axes together with the m referring to the face-diagonal mirror 

planes. The least symmetric cubic class has point group symbol 23, i.e. it only 
has diads along the x-, y- and z-axes and the characteristic four triads. 

In the orthorhombic system the three places in the point group symbol refer 

to the symmetry elements associated with the x-, y- and z-axes. The most 

symmetrical class (Fig. 4.3(a)), which has the full point group symmetry of the 

underlying orthorhombic unit cell (Fig. 3.5), has the full point group symbol 

2/m 2/m 2/m, but this is usually abbreviated to mmm because the presence of 

the three mirror planes perpendicular to the x-, y- and z-axes ‘automatically’ 
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generates the three perpendicular diads. The other two classes are mm2 (Fig. 

4.3(b)) a diad along the intersection of two mirror planes—and 222 (Fig. 
4.3(c))—three perpendicular diads. 

In the monoclinic system the point group symbol simply refers to the symme¬ 

try elements associated with the y-axis. This may be a diad (class 2), an inversion 

diad (equivalent to a perpendicular mirror plane (class 2 or m)), or a diad plus a 
perpendicular mirror plane (class 2/m). 

In the tetragonal, hexagonal and trigonal systems, the first position in the 

point group symbol refers to the ‘unique’ z-axis. For example, the tetragonal 

crystals in Fig. 4.5 have point group symmetry 42m; 4 referring to the inversion 

tetrad along the z-axis, 2 referring to the diads along the x- and y-axes and m to 

the mirror planes which bisect the x- and y-axes (which you will find by 

examining the model!). One of the trigonal classes has point group symbol 32 

(not to be confused with cubic class 231), i.e. a single triad along the z-axis and 
(three) perpendicular diads. 

Not all classes are of equal importance; in two of them (432 and 6 = 3/m) 

there may be no examples of real crystals at all! On the other hand, the two 

monoclinic classes m and 2/m contain about 50 per cent of all inorganic 

crystalline materials on a ‘crystal counting’ basis, including feldspar, the com¬ 

monest mineral in nature, and many other economically important minerals. As 

for the crystals of organic compounds, class 2/m is by far the most important, 

white crystals of biologically important substances which contain chiral (right- or 

left-handed enantiomorphic molecules) have a predilection for class 2. The 

commonest class in any system is the holosymmetric class, i.e. the class which 

shows the highest symmetry. The holosymmetric cubic class m 3 m, the most 

symmetrical of all, contains only a few per cent of all crystals on this basis, but 

these also include many materials and ceramics of economic and commercial 

importance. 

4.4 Crystal symmetry and properties 

The quantities which are used to describe the properties of materials are, as we 

know, simply represented as coefficients, i.e. as one measured (or measurable) 

quantity divided by another. For example, the property (coefficient) of electrical 

conductivity is given by the amount of electrical current flowing between two 

points (which may be measured in various ways) divided by the electrical 

potential gradient; the pyroelectric effect—the property of certain crystals of 

developing electrical polarization when the temperature is changed—is given by 

the polarization divided by the temperature change; the heat capacity is given by 

the quantity of heat absorbed or given out divided by the temperature change, 

and so on. 
In many (in fact most) cases the measured quantities depend on direction and 

are called vectors*. In the examples above, electrical current flow, potential 

* See Appendix 5. 
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gradient and polarization are all vectors. The other quantities in the examples 

above, temperature change, quantity of heat, do not depend on direction and 

are called scalars. 
The important point is that, in those cases where one or more of the 

measured quantities vary with direction, so also' do the crystal properties; they 

are said to be anisotropic (from the Greek tropos, direction or turn; (an)iso, (not 

the) same). Anisotropy clearly arises because the arrangements of atoms in 

crystals vary in different directions—you would intuitively expect crystals to be 

anisotropic, the only exceptions being those properties (the heat capacity) which 

are direction independent. You would also intuitively expect cubic crystals to be 

‘less anisotropic’ than, say, monoclinic ones because of their greater symmetry, 

and this intuition would also be correct. For many properties, but not all, cubic 

crystals are isotropic—the property (and property coefficient) is direction inde¬ 

pendent. In the example given above, cubic crystals are isotropic with respect to 

electrical conductivity. They are also isotropic with regard to the pyroelectic 

effect, i.e. cubic crystals do not exhibit electrical polarization when the tempera¬ 

ture is changed; the pyroelectic coefficient is zero. But cubic crystals are not 

isotropic with respect to all properties. For example, their elastic properties, 

which determine the mechanical properties of stiffness, shear and bulk moduli, 

are direction dependent and these are very important factors with respect to the 
properties of metals and alloys. 

Hence, one major use of point groups is in relating crystal symmetry and 

properties; as the external symmetry of crystals arises from the symmetry of the 

internal molecular or atomic arrangements, so also do these in turn determine 

or influence crystal properties. Some examples have already been alluded to. 

For example, the pyroelectric effect cannot exist in a crystal possessing a centre 

of symmetry, and the pyroelectric polarization can only lie along a direction in a 

crystal that is unique, in the sense that it is not repeated by any symmetry 

element. There are only ten point groups or crystal classes which fulfil these 
conditions and they are called the ten polar point groups: 

1 2 3 4 6 
m mm2 3m 4mm 6mm. 

Hence, pyroelectricity or the pyroelectric effect can only occur in these ten 
polar point groups or classes. 

A very closely related property to pyroelectricity, and of great importance in 

electroceramics, is ferroelectricity. A ferroelectric crystal, like a pyroelectric 

crystal, can also show polarization, but in addition the direction of polarization 

may be reversed by the application of an electric field. Most ferroelectric 

crystals have a transition temperature (Curie point) above which their symmetry 
is non-polar and below which it is polar. 

One such example is barium titanate, BaTi03, which has the perovskite 

structure (Fig. 1.17). Above the Curie temperature barium titanate has the fully 

symmetric cubic structure, point group m3m, but below the Curie temperature, 

when the crystal becomes ferroelectric, distortions occur—a small expansion 
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occurs along one cell edge and small contractions along the other two, changing 
the crystal system symmetry from cubic to tetragonal and the point group 
symmetry from m3m to 4mm. As the temperature is further lowered below the 
Curie point, further distortions occur and the point group symmetry changes 
successively to mm2 and 3m—all of them, of necessity, being polar point 
groups. 

Another very important crystal property is piezoelectricity—the development 
of an electric dipole when a crystal is stressed, or conversely, the change of 
shape of a crystal when it is subjected to an electrical field. At equilibrium the 
applied stress will be centrosymmetrical, so if a crystal is to develop a dipole, i.e. 
develop charges of opposite sign at opposite ends of a line through its centre, it 
cannot have a centre of symmetry. There are twenty-one non-centrosymmetric 
point groups (Table 3.1), all of which, except one, point group 432, may exhibit 
piezoelectricity. It is the presence of the equally inclined triads, tetrads and 
diads in this cubic point group which in effect cancel out the development of a 
unidirectional dipole. 

The optical properties of crystals—the variation of refractive index with 
the vibration and propagation direction of light (double refraction or bire¬ 
fringence), the variation of refractive index with wavelength or colour of the 
light (dispersion), or the associated variations of absorption of light 
(pleochroism)—are all symmetry dependent. The complexity of the optical 
properties increases as the symmetry decreases. Cubic crystals are optically 
isotropic—the propagation of light is the same in all directions and they have a 
single refractive index. Tetragonal, hexagonal and trigonal crystals are character¬ 
ized by two refractive indices. For light travelling in a direction perpendicular to 
the principal (tetrad, hexad or triad) axis, such crystals exhibit two refractive 
indices—one for light vibrating along the principal axis, and another for light 
vibrating in a plane perpendicular to the principal axis. For light travelling along 

the principal axis (and therefore vibrating in the plane perpendicular to it), the 
crystal exhibits only one refractive index, and therefore behaves, for this 
direction only, as an optically isotropic crystal. Such crystals are called uniaxial 

with respect to their optical properties, and their principal symmetry axis is 
called the optic axis. Crystals belonging to the remaining crystal systems— 
orthorhombic, monoclinic and triclinic—are characterized by three refractive 
indices and two, not one, optic axes. Hence they are said to be biaxial since 
there are two, not one, directions for the direction of propagation of light in 
which they appear to be optically isotropic. It should be noted, however, that 
unlike uniaxial crystals, there is no simple relationship between the two optic 
axes of biaxial crystals and the principal symmetry elements; nor are they fixed, 
but vary as a result of dispersion, i.e. the variations in the values of the 
refractive indices with wavelength. 

Finally, there is the phenomenon or property of optical activity or rotatory 
polarization, which should not be confused with double refraction. It is a 
phenomenon in which, in effect, the vibrational direction of light rotates such 
that it propagates through the crystal in a helical manner either to the right 
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Fig. 4.6. (a) (above) Left- and right-handed forms of tartaric acid molecules (from Crystals: 
their Role in Nature and Science by C. W. Bunn, Academic Press, New York, 1964); and (b) 
(below) the left- and right-handed forms of tartaric acid crystals (from F. C. Phillips, loc. cit.). 

(dextrorotatory) or the the left (laevorotatory). Now right-handed and left-handed 
helices are distinct in the same way as a right and left hand (Fig. 4.4) or the two 
parts of a twinned crystal (Fig. 1.2(Xa)) and therefore optical activity would be 
expected to occur only in those crystals which occur in right-handed or left- 
handed forms, i.e. those which do not possess a mirror plane or a centre (or 
inversion axis) of symmetry. Such crystals are said to be enantiomorphous and 
there are altogether eleven enantiomorphous classes of point group symmetries 
(Table 3.1). 

A famous example is tartaric acid (Fig. 4.6). In 1848 Louis Pasteur* first 
noticed these two forms ‘hemihedral to the right’ and ‘hemihedral to the left’ 
under the microscope and, having separated them, found that their solutions 
were optically active in opposite senses. 

4.5 Translational symmetry elements 

The thirty-two point group symmetries (Table 3.1) may be applied to three- 
dimensional patterns just as the ten plane point group symmetries are applied to 
two-dimensional patterns (Chapter 2). As in two dimensions where translational 
symmetry elements or glide lines arise, so also in three dimensions do glide 

planes and also screw axes arise. It is only necessary to state the symmetry 
properties of patterns that are described by these translational symmetry ele¬ 
ments. Glide planes are the three-dimensional analogues of glide lines; they 

* Denotes biographical notes available in Appends 3. 
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Fig. 4.7. The operation of screw axes on an asymmetrical motif, R. The fractions indicate the 
‘heights’ of each motif as a fraction of the repeat distance. 

define the symmetry in which mirror-related parts of the motif are shifted half a 
lattice spacing. In Fig. 2.9 the figures are related by glide lines, which can easily 
be visualized as glide-plane symmetry. Glide planes are symbolized as a, b, c 

(according to whether the translation is along the x-, y- or z-axes), n or d 

(diagonal or diamond glide—special cases involving translations along more 
than one axis). 

Screw axes (for which there is no two-dimensional analogue) essentially 
describe helical patterns of atoms or molecules, or the helical symmetry of 
motifs. Several types of helices are possible and they are all based upon 
different combinations of rotation axes and translations. Figure 4.7 shows the 
possible screw axes (the direction of translation out of the plane of the page) 
with the heights R of the asymmetrical objects represented as fractions of the 
lattice repeat distance (compare to Fig. 2.3). Screw axes are represented in 
writing by the general symbol N^, N representing the rotation (2, 3, 4, 6) and 
the subscript m representing the pitch in terms of the number of lattice 
translation or repeat distances for one complete rotation of the helix. m/N 
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Fig. 4.8. (a) The 42 screw axis arrangement of leaves round a stem of pentstemon (after 
Walter Crane); and (b) a 6i screw axis spiral (helical) staircase (from The Third Dimension in 

Chemistry by A. F. Wells, Clarendon Press, Oxford, 1968). 

therefore represents the translation for each rotation around the axis. Thus the 
4i screw axis represents a rotation of 90° followed by a translation of \ of the 
repeat distance, which repeated three times brings R to an identical position but 
displaced one lattice repeat distance; the 4^ screw axis represents a rotation of 
90° followed by a translation of f of the lattice repeat distance, which repeated 
three times gives a helix with a pitch of three lattice repeat distances. This is 
equivalent to the 4^ screw axis but of opposite sign: the 4^ axis is a right-handed 
helbc and 4^, axis is a left-handed helix. In short they are enantiomorphs of each 
other. Similarly the 3^ and 82 axes, the 6^ and 65 axes, and the 62 and 64 axes 
are enantiomorphs of each other. In diagrams, screw axes are represented by 
the symbol for the rotation axis with little ‘tails’ indicating (admittedly not very 
satisfactorily) the pitch and sense of rotation (see Fig. 4.7). Screw axes have, of 
course, their counterparts in nature and design—the distribution of leaves 
around the stem of a plant, for example, or the pattern of steps in a spiral 
(strictly helical) staircase. Figure 4.8 shows two such examples. Figure 4.9 shows 
the 63 screw hexads which occur in the hep structure; notice that they run 
parallel to the c-axis and are located in the ‘unfilled’ channels which occur in 
the hep structure. They do not pass through the atom centres of either the A 
layer or the B layer atoms; these are the positions of the triad (not hexad) axes 
in the hep structure. 

Just as the external symmetry of crystals does not distinguish between 
primitive and centred Bravais lattices, so also it does not distinguish between 
glide and mirror planes, or screw and rotation axes. For example, the sk faces of 
an hep crystal show hexad, six-fold symmetry, whereas the underlying structure 
possesses only screw hexad, 63, symmetry. 

In many crystals, optical activity arises as a result of the existence of 
enantiomorphic screw axes. For example, in quartz (enantiomorphic class 32), 
the Si02 structural units which are not themselves asymmetric are arranged 
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Fig. 4,9. (a) A screw hexad (63) axis; and (b) location of these axes in the hep structure. 
Notice that they pass through the ‘unfilled channels’ between the atoms in this structure. 

along the c-axis (which is also the optic axis) in either a 3^ or a 82 screw 
orientation. This gives rise to the two enantiomorphic crystal forms of quartz 
(class 32, Fig. 4.10). The plane of polarization of plane-polarized light propagat¬ 
ing along the optic axis is rotated to right or left, the angle of rotation depending 
on the wavelength of the light and the thickness of the crystal. This is not, to 
repeat, the same phenomenon as birefringence; for the light travelling along the 
optic axis the crystal exhibits (by definition) one refractive index. If the 3i or 32 

helical arrangement of the Si02 structural units in quartz is destroyed (e.g. 
if the crystal is melted and solidified as a glass), the optical activity will also 
be destroyed. 

However, in other crystals such as tartaric acid (Fig. 4.6) and its derivatives, 
the optical activity arises from the asymmetry—the lack of a mirror plane or 
centre of symmetry—of the molecule itself (Fig. 4.6(a)). In such cases the optical 

Fig. 4.10. The enantiomorphic (right- and left-handed) forms of quartz. The optic axis is in 

the vertical (long) direction in each crystal (from F. C. Phillips, loc. cit.). 
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activity is not destroyed if the crystal is melted or dissolved in a liquid. The left 

or right handedness of the molecules, even though they are randomly orientated 

in a solution, is communicated at least in part, to the plane-polarized light 

passing through it. Unlike quartz, in which the optical activity depends on the 

direction of propagation of the light with'resp'ect to the optic axis, the optical 

activity of a solution such as tartaric acid is unaffected by the direction of 

propagation of the light. In summary, the optical activity of solutions arises from 

the asymmetry of the molecule itself; the optical activity which is shown in 

crystals, but not their solutions or melts, arises from the enantiomorphic screw 

symmetry of the arrangement of molecules in the crystal. 

4.6 Space groups 

In Section 2.4 it is shown how the seventeen possible two-dimensional patterns 

or plane groups (Fig. 2.6) can be described as a combination of the five plane 

lattices with the appropriate point and translational symmetry elements. Simi¬ 

larly, in three dimensions, it can be shown that there are 230 possible three- 

dimensional patterns or space groups, which arise when the fourteen Bravais 

lattices are combined with the appropriate point and translational symmetry 

elements. It is easy to see why there should be a substantially larger number of 

space groups than plane groups. There are fourteen space lattices compared 

with only five plane lattices, but more particularly there is a greater number of 

combinations of point and translational symmetry elements in three dimensions, 

particularly the presence of inversion axes (point) and screw axes (translational) 

which do not occur in two-dimensional patterns. 

The first step in the derivation of 230 space groups was made by L. Sohncke* 

(who also first introduced the notion of screw axes and glide planes described in 

Section 4.5). Essentially, Sohncke relaxed the restriction in the definition of a 

Bravais lattice—that the environment of each point is identical—by considering 

the possible arrays of points which have identical environments when viewed 

from different directions, rather than from the same direction as in the defini¬ 

tion of a Bravais lattice. This is equivalent to combining the fourteen Bravais 

lattices with the appropriate translational symmetry elements, and gives rise to a 
total of sbcty-five space groups or Sohncke groups. 

The second, final, step was to account for inversion axes of symmetry which 

gives rise to a further 165 space groups. They were first worked out by Fedorov* 

in Moscow in 1890 (who drew heavily on Sohncke’s work) and independently by 

Schoenflies* in Gottingen in 1891 and Barlow* in London in 1894—an example 

of the frequently occurring phenomenon in science of progress being made 

almost at the same time by people approaching a problem entirely indepen¬ 

dently. The 230 space groups are systematically described in the International 

Tables for Crystallography. The short-hand representation now most generally 

adopted is that due to Hermann* and Mauguin*. However, not all the 230 

* Denotes biographical notes available in Appendix 3. 
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Hermann-Mauguin space group symbols will be described; only their most 

salient characteristics will be covered together with one example. 

The Hermann-Mauguin space group symbol consists first of a latter P, C, I, 

F or R, which describes the Bravais lattice type; then a statement, rather like a 

point group symbol, of the essential (not all) symmetry elements present. For 

example, the space group symbol Pbal represents a space group which has a 

primitive (F) Bravais lattice and whose point group is mm2 (the a and b glide 

planes being simple mirror planes in point group symmetry). This is one of the 

point groups of the orthorhombic system (Fig. 4.3(b)) and the lattice type is 
orthorhombic P. 

The space group itself is represented by means of two diagrams, usually 

plotted as projections or plans in the x-y plane (i.e. the z-axis is out of the 

plane of the paper). One of these plans shows the positions of all the symmetry 

elements present. The other shows the operation of these symmetry elements on 

an asymmetrical ‘unit of pattern’ represented as the symbol O (i.e. correspond¬ 

ing to the R in our two-dimensional case), as shown in Fig. 2.1. In other words, 

the symbol O may represent an asymmetric molecule, a group of molecules or, 

indeed, any asymmetrical structural unit. It is placed at small fractions of the 

cell edge lengths x'y' z' away from the origin of the lattice, the z' parameter 

being represented by a plus sign in a projection along the z-axis (see Exercise 

3.2); this is called a ‘general position’ because it does not lie on a non- 

translational symmetry element, i.e. at a centre of symmetry, on a mirror plane, 

or on an axis (rotational or inversion) of symmetry. The resulting set of atomic 

positions is known as the ‘general equivalent positions’. 

Figure 4.11 gives the two diagrams for space group Pbal. In Fig. 4.11(b) the 

diad axes are shown parallel to the z-axis and passing through every corner of 

the cell (i.e. through rows of lattice points), and the a and b glide planes are 

shown by dashed lines. Again, they run parallel to the z-axis but lie between the 

diad axes. The operation of these symmetry elements on the pattern unit O is 

shown in Fig. 4.11(a); the operation of the diads is to repeat the O after 180° 

rotation in exactly the same way as in the two-dimensional case (see Fig. 2.3). 
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Fig. 4.11. Space group Pbal shown projected down the z-axis. (a) General equivalent 

positions within the unit eell and (b) positions of the symmetry elements. 



74 Crystal symmetry 

The operation of the glide planes is to reflect the O to give its mirror image, 

which is represented by the symbol O, i.e. corresponding to the fl in our 

two-dimensional case (Fig. 2.1), and then to translate it half a lattice spacing 

along the y- or x-axis. Hence we arrive at the pattern of right- and left-handed 

asymmetrical units, O and O, shown in Fig. 4.11(a) which is the space group 

Pba2. Notice that the operation of the diads through the corners of the unit cell 

‘automatically’ generates additional diads in between. All the symmetry ele¬ 

ments which arise in the space group are shown in Fig. 4.11(b). Notice too that if 

the pattern unit O were to be placed not in a general position but in a ‘special 

position’, on a diad axis in this example, then a simpler pattern, with fewer 

general equivalent positions, results. 
All the other 229 space groups can be built up in the same way, although it 

will be clear that the more symmetrical the crystal, the greater the number and 

types of symmetry elements present, the more complicated the pattern will be. 

Cubic space groups are therefore the most ‘complicated’, as a glance at the 

International Tables will show. However, remember that these complicated 

patterns of structural or pattern units do not mean that cubic crystals have 

necessarily more complicated structures. The space groups as drawn represent 

the most general case. As we saw above for space group Pba2, when the pattern 

unit, the O, is placed on a diad axis of symmetry, i.e. a ‘special position’, a 

simpler pattern results. So also when the atoms are in special positions in the 

higher-symmetry crystals, and the greater the number of symmetry elements, the 
greater the simplification. 

4.7 Bravais lattices, motifs and crystal structures 

In the simple cubic, bcc and ccp structures of the elements, the three cubic 

lattices (Fig. 3.1) have exactly the same arrangement of lattice points as the 

atoms, i.e. in these examples the motif is just one atom. In more complex 

crystals the motif consists of more than one atom and, to determine the Bravais 

lattice of a crystal, it is necessary first to identify the motif and then to identify 

the arrangement of the motifs. In crystals consisting of two or more different 

types of atoms this procedure may be quite difficult, but fortunately simple 

examples best illustrate the procedure and the principles involved. For example, 

in NaCl (isomorphous with TiN; see Fig. 1.14(a)), the motif is one sodium and 

one chlorine ion and the motifs are arranged in an fee array. Hence the Bravais 
lattice of NaCl and TiN is cubic F. 

In Li20 (isomorphous with TiH2; see Fig. 1.14(b)) the motif is one oxygen and 

two lithium atoms; the motifs are arranged in an fee array and the Bravais 

lattice of these compounds is cubic F. In ZnS (isomorphous with TiH; see Fig. 

1.14(c)) the motif is one zinc and one sulphur atom; again, these are arranged in 

an fee array and Bravais lattice of these compounds is cubic F. All the crystal 

structures illustrated in Fig. 1.14 have the cubic F Bravais lattice. They are 

called face-centred cubic structures not because the arrangements of atoms are 

the same clearly they are not—but because they all have the cubic F lattice. 
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In CsCl (Fig. 1.12(b)), the motif is one caesium and one chlorine ion; the 

motifs are arranged in a simple cubic array and the Bravais lattice is cubic P. To 

be sure, the arrangement of ions in CsCl (and compounds isomorphous with it) 

is such that there is an ion or atom at the body-centre of the unit cell, but the 

Bravais lattice is not cubic / because the ions or atoms at the corners and 

centre of the unit cell are different. Nor, for the same reason, should CsCl and 

compounds isomorphous with it be described as having a body-centred cubic 

structure. 

In the case of hexagonal structures the arrangements of lattice points in the 

hexagonal P lattice (Fig. 3.1) corresponds to the arrangement of atoms in the 

simple hexagonal structure (Fig. 1.5(a)) and not the hep structure (Fig. 1.5(b)). 

In the simple hexagonal structure the environment of all the atoms is identical 

and the motif is just one atom. In the hep structure the environment of the 

atoms in the A and B layers is different. The motif is a pair of atoms, i.e. an A 

layer and a B layer atom per lattice point. The environment of these pairs of 

atoms (as for the pairs of ions or atoms in the NaCl, or CsCl or ZnS structures) 

is identical and they are arranged on a simple hexagonal lattice. Notice that in 

these examples the motif is either asymmetric or has only one mirror line of 

symmetry. These are further instances of the situation which we found in 

two-dimensional patterns (Section 2.5). It is the repetition of the motif by the 

lattice which generates the crystal structures. 

Exercises 

4.1 Draw the space group Pba2 with the pattern unit O at the following positions: 

(a) on the b glide plane, i.e. at (x'^z'); 

(b) at the intersections of the a and b glide planes, i.e. at 

(c) on a diad axis through the origin, i.e. at (OOzO; 

(d) on a diad axis through the mid-points of the cell edges, i.e. at (^Oz'). 

Hence, show that only (c) and (d) constitute special positions. 

4.2 Make and examine the crystal models of NaCl, CsCl, diamond, ZnS (sphalerite), 

ZnS (wurtzite), LijO or CaF2 (fluorite), CaTiOj (perovskite). Identify the Bravais 

lattice and describe the motif of each structure. 
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Describing lattice planes and 
directions in crystals: Miller 

indices and zone axis symbols 

5.1 Introduction 

In previous chapters we have described the distributions of atoms in crystals, the 

symmetry of crystals, and the concept of Bravais lattices and unit cells. We now 

introduce what are essentially shorthand notations for describing directions and 

planes in crystals (whether or not they correspond to axes or planes of symme¬ 

try). The great advantages of these notations are that they are short, unambigu¬ 

ous and easily understood. For example, the direction (or zone axis) symbol for 

the ‘corner-to-corner’ (or triad axis) directions in a cube is simply (111). The 

plane index (or Miller index) for the faces of a cube is simply {100} or of an 

octahedron (111) (Fig. 4.1). The various faces and the directions of their 

intersections in crystals such as those illustrated in Fig. 4.3 can also be precisely 

described using these notations. Without them one would have to resort to 

carefully scaled drawings or projections. 

Now direction symbols and plane indices are based upon the crystal axes or 

lattice vectors which outline or define the unit cell (see Section 3.2) and the only 

ambiguities which can arise occur in those cases in which different unit cells 

may be used. For example, crystals with the cubic F Bravais lattice may be 

described in terms of the ‘conventional’ face-centred cell (Fig. 1.6) or in terms of 

the primitive rhombohedral cell (Fig. 1.7). Because the axes are different, the 

direction symbols and plane indices will also be different. Hence it is important 

to know (1) which set of crystal axes, or which unit cell, is being used and (2) 

how to change or transform direction symbols and plane indices when the set of 

crystal axes or the unit cell is changed. This topic is covered in Seetion 5.8. It is a 

serious problem only in the case of the trigonal system for crystals with a 

rhombohedral lattice where there are two almost equally ‘popular’ unit 

cells—unlike, say, the rhombohedral cells for the cubic F and cubic I lattices 

which are rarely used. In addition, in the trigonal and hexagonal systems it is 

possible to introduce, because of symmetry considerations, a fourth axis, giving 

rise to ‘Miller-Bravais’ plane indices and ‘Weber’ direction symbols, each of 

which consist of four, rather than three, numbers. This topic is covered in 

Section 5.7, but first the concept of a zone and zone axis needs to be explained, 
a topic which is covered in more detail in Section 5.6. 

A zone may be defined as ‘a set of faces or planes in a crystal whose 

intersections are all parallel’. The common direction of the intersections is 
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called the zone axis. All directions in crystals are zone axes, so the terms 

‘direction’ and ‘zone axis’ are synonymous. So much for the definition. The 

concept of a zone is readily understood by examining an ordinary pencil. The six 

faces of a pencil all form or lie in a zone because they all intersect along one 

direction—the pencil lead direction—which is the zone axis for this set of faces. 

The number of faces in a zone is not restricted and the faces need not be 

crystallographically equivalent. For example, the edges of a pencil may be 

shaved flat to five a 12-sided pencil, i.e. an additional six faces in the zone. Or 

consider an orthorhombic crystal (Fig. 3.5(b)), or a matchbox. Each crystal axis is 

the zone axis for four faces, or two crystallographically equivalent pairs of faces. 

Each face lies in two zones; for example, the ‘top’ and ‘bottom’ faces of Fig. 

3.5(b) lie in the zones which have the x- and y-directions as zone axes. In 

general, a face or plane in a crystal belongs to a whole ‘family’ of zones, the 

zone axes of which lie in or are parallel to the face. 
Verbal definitions are frequently rather clumsy in relation to the simple 

concepts which they seek to express. Take a piece of paper and draw on it some 

parallel lines. Fold the paper along the lines—and there you have a zone! 

5.2 Indexing lattice directions—zone axis symbols 

First, the direction whose symbol is to be determined must pass through the 

origin of the unit cell. Consider the unit cell shown in Fig. 5.1, which has unit 

cell edge vectors a, b, c (which are not necessarily orthogonal or equal in 

length)*. The steps for determining the zone axis symbol for the direction OL 

are as follows. Write down the coordinates of a point—any point—in this 

direction—say P—in terms of fractions of the lengths a, b and c, respectively. 

Z 

Fig. 5.1. Primitive unit cell of a lattice defined by unit cell vectors a, b, c. OL and SN are 

directions [102] and [110] respectively. 

See Appendix 5 for a simple introduction to vectors. 
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The coordinates of P are j, 0, 1. Now express these fractions as the ratio of 

whole numbers and insert them into [square] brackets without commas; hence 

[102]. This is then the direction or zone axis symbol for OL. Notice that if we 

had chosen a different point along OL—say Q—with coordinates 0, j, we 

would have obtained the same result. 

Now consider the direction SN. To find its direction symbol the origin must be 

shifted from O to S. Proceeding as before (e.g. finding the coordinates of G with 

respect to the origin at S) gives the direction symbol [110] (pronounced one 

bar-one oh), the bar or minus sign referring to a coordinate in the negative 

sense along the crystal axis. 

Directions in crystals are, of course, vectors, which may be expressed in terms 

of components on the three unit cell edge or ‘base’ vectors a, b and c. In the 

above example the direction OL is written 

*"io2 ~ Is T Ob + 2c. 

The general symbol for a direction is [uuw] or, written as a vector, 

^uuw = ua + uh + wc. 

The direction symbols for the unit cell edge vectors a, b and c are [100], [010] 

and [001], and very often these symbols are used in preference to the terms 
x-axis, y-axis and z-axis. 

5.3 Indexing lattice planes—Miller indices 

First, for reasons which will be apparent shortly, the lattice plane whose index is 

to be determined must not pass through the origin of the unit cell, or rather the 

origin must be shifted to a corner of the cell which does not lie in the plane. 

Consider the unit cell in Fig. 5.2 (identical to Fig. 5.1 but drawn separately to 

avoid confusion). We shall determine the index of the lattice plane which is 

Fig. 5.2. Primitive unit cell (identical to Fig. 5.1), showing the first two planes, RMS and 
PGFH, in the family. These planes are shaded within the confines of the unit cell. 
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Fig. 5.3. Sketch of Fig. 5.2 with the a and c unit cell vectors in the plane of the paper (b into 
the plane of the paper) showing traces JL, UO, RM, PG of a family of planes. 

shaded and outlined by the letters RMS. It is important first to realize that this 
plane extends indefinitely through the crystal; the shaded area is simply that 
portion of the plane that lies within the unit cell of Fig. 5.2. It is also important 
to realize that we are not just considering one plane but a whole family of 
identical, parallel planes passing through the crystal. The next plane ‘up’ in the 
family is also shaded within the confines of the unit cell and is outlined by the 
letters PGFH. There is a whole succession of such planes, including one which 
passes through the origin of the unit cell. 

A two-dimensional sketch (Fig. 5.3) of Fig. 5.2, with the x- and z-axes in the 
plane of the paper, and showing the traces of these planes extending into 
neighbouring cells, will make this clear. Figure 5.3 also shows that all the planes 
in the family are identical in that they contain the same number or sequence of 
lattice points. 

For RMS, the plane in the family nearest the origin, write down the intercepts 

of the plane on the axes or unit cell vectors a, b, c, respectively; they are 
\a,lb,lc. Expressed as fractions of the cell edge lengths we have ^,1,1. Now 
take the reciprocals of these fractions, and put the whole numbers into (round) 
brackets without commas; hence (211). This is the Miller index of the plane, 
so-called after the crystallographer, W. H. Miller*, who first devised the nota¬ 
tion. Proceeding similarly for the next plane in the family, PGFH (and consider¬ 
ing its extension beyond the confines of the unit cell), we have intercepts 
la,2b,2c, which expressed as fractions becomes 1,2,2; the reciprocals of which 
are 1, which expressed as whole numbers again gives the Miller index 

* Denotes biographical notes available in Appendix 3. 
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(211). The plane through the origin, OU (Fig. 5.3), has intercepts 0, 0, 0 which 
gives an indeterminate ‘Miller index’ (oooooo), but this is merely expressive of the 
fact that another corner of the unit cell must be selected as the origin. The 
plane JL (Fig. 5.3) in the same family lies on the opposite side of the origin from 
RM and has intercepts which gives the Miller index (211) 
(pronounced bar-two, bar-one, bar-one), the bar signs simply being expressive of 
the fact that the planes are recorded from the opposite (negative axis) side of 

the origin. 
The general index for a lattice plane is {hkl), i.e. (working backwards), the 

first plane in the family from the origin makes intercepts a/h,b/k,c/l on the 
axes. This provides us with an alternative method for determining the Miller 
index of a family of planes. Count the number of planes intercepted in passing 
from one corner of the unit cell to the next. For the family of planes (hkl) the 
first plane intercepts the x-axis at a distance a/h, the second at 2a/h, and so 
on; i.e. a total of h planes are intercepted in passing from one corner of the unit 
cell to the next along the x-axis. Similarly, k planes are intercepted along the 
y-axis and / planes along the z-axis. 

Miller indices apply not only to lattice planes, as sketched in Fig. 5.2 and 5.3, 
but also to the external faces of crystals, where the origin is conventionally taken 
to be at the centre of the crystal. The intercepts of a crystal face will be many 
millions of lattice spacings from the origin, depending of course on the size of 
the crystal but the ratios of the fractional intercepts, and therefore the Miller 
indices, will be simple whole numbers as before. This is sometimes expressed as 
‘The Law of Rational Indices’, the germ of which can be traced back to 
Haiiy—see, for example, his representation of the relationship between the 
crystal faces and the unit cell in dog-tooth spar (Fig. 1.2). 

When a crystal plane lies parallel to an axis its intercept on that axis is 
infinity, the reciprocal of which is zero. For example, the ‘front’ face of a crystal, 
i.e. the face which intersects the x-axis only and is parallel to the y- and z-axes, 
has Miller index (100); the ‘top’ face, which intersects the z-axis is (001) and so 
on. It is useful to remember that a zero Miller index means that the plane (or 
face) is parallel to the corresponding unit cell axis. 

Although Miller indices never include fractions they may, when used to 
describe lattice planes, have common denominators and this occurs when the 
unit cell is non-primitive. Consider, for example, the lattice planes perpendicular 
to the x-axis in the cubic F unit cell (Fig. 5.4). Because of the presence of the 
face-centring lattice points, lattice planes are intersected every ja distance 
along the x-axis. The first lattice plane in the family, shown shaded in Fig. 5.4, 
makes fractional intercepts ^,oo,oo on the x-, y- and z-axes. The Miller index of 
this family of planes is therefore (200). To refer to them as (100) would be to 
ignore the ‘interleaving’ lattice planes within the unit cell. This distinction does 
not apply to the Miller indices of the external crystal faces, which are many 
millions of lattice planes from the origin. 

The procedure described above for defining plane indices may seem rather 
odd—why not simply express indices as fractional intercepts without taking 
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Z 

Fig. 5.4. A cubic F unit cell showing (shaded) the first plane from the origin of a family of 
planes perpendicular to the x-axis but with interplanar spacing a/2. 

reciprocals? The Law of Rational Indices gives half a clue, but the full signifi¬ 
cance can only be appreciated in terms of the reciprocal lattice (Chapter 6). 

5.4 Miller indices and zone axis symbols in cubic crystals 

Miller indices and zone axis symbols may be used to express the symmetry of 
crystals. This applies to crystals in all the seven systems, but the principles are 
best explained in relation to cubic crystals because of their high symmetry. 

The positive and negative directions of the crystal axes x, y, z can be ex¬ 
pressed by the direction symbols (Section 5.2) as [100], [100], [010], [010], [001], 
[001]. Because, in the cubic system, the axes are crystallographically equivalent 
and interchangeable, so also are all these six direction symbols. They may be 
expressed collectively as (100), the (triangular) brackets implying all six permu¬ 
tations or variants of 1, 0, 0. Similarly, the triad axis corner-to-corner directions 
are expressed as (111), of which there are eight (four pairs) of variants, namely, 

[111], [111]; [111], [111]; [111], [111]; [111], [ill]. The diad axis (edge-to-edge) 
directions are (110), of which there are twelve (six pairs) of variants. For the 
general direction (uvw) there are forty-eight (twenty-four pairs) of variants. 

A similar concept can be applied to Miller indices. The six faces o^f a cube 
(with the origin at the centre) are (100), (100), (010), (010), (001), (001). These 
are expressed collectively as planes ‘of the form’ {100}, i.e. in (curly) brackets. 
Again, for the general plane {hkl} there are forty-eight (twenty-four pairs) 

of variants. 
In cubic crystals, directions are perpendicular to planes with the same 

numerical indices; for example, the direction [111] is perpendicular to the plane 
(111), or equivalently it is parallel to the normal to the plane (111). This 
parallelism between directions and normals to planes with the same numerical 
indices does not apply to crystals of lower symmetry except in special cases. This 
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[110] 
X 

(a) 

Fig. 5.5. Plans of (a) cubic and (b) orthorhombic unit cells perpendicular to the z-axis, 
showing the relationships between planes and zone axes of the same numerical indices. 

will be made clear by considering Figs 5.5(a) and (b), which show plans of unit 

cells perpendicular to the z-axis of a cubic and an orthorhombic crystal. The 

traces of the (110) plane and [110] directions are shown in each case. Clearly, 

the (110) plane and [110] direction are only perpendicular to each other in the 

cubic crystal. In the orthorhombic crystal it is only in the special cases, e.g. (100) 

planes and [100] directions, that the directions are perpendicular to planes of 
the same numerical indices. 

5.5 Lattice plane spacings, Miller indices and Lane indices 

The calculation for lattice plane spacings (also called interplanar spacings or 

d-spacings), is simple in the case of crystals with orthogonal axes. Consider 

Fig. 5.6, which shows the first plane away from the origin in a family of {hkl) 

planes. As there is another plane in the family passing through the origin, the 

lattice plane spacing is simply the length of the normal ON. Angle AON = a 
(angle between normal and x-axis) and angle ONA = 90°. Hence 

OAcosq: = ON or {a/h)cos a = or 

z 

Y 

Fig. 5.6. Intercepts of a lattice plane {hkl) on the unit cell vectors a, b, c. = = 
interplanar spacing. 
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Given that (B and y (not shown in Fig. 5.6) are the angles between ON and the 
y- and z-axes, respectively, then 

cos/3= and cos7=(-|rf hkl- 

For orthogonal axes cos^ a + cos^ /3 + cos^ 7=1 (Pythagoras), hence 

h 
diki + ^hkl + 

/ 

c ^hkl ~ 1- 

For a cubic crystal a = b = c, hence 

1 h^+k^ + f 

dlki 

The concept of lattice planes and interplanar spacings is the basis of the 

concept of the reciprocal lattice (Chapter 6) and also Bragg’s law (Chapter 
8)—an equation which every schoolboy (or girl) knows! 

nX. = sin 9 

where n is the order of reflection, A is the wavelength, is the lattice plane 

spacing and 6 is the angle of incidence/reflection to the lattice planes. How¬ 

ever, it is very important, when using Bragg’s law, to distinguish between lattice 

planes and reflecting planes. 

Except in the cases of non-primitive cells discussed above (Section 5.3), 

indices for lattice planes do not have common factors. However, the indices for 

reflecting planes frequently do have common factors. They are sometimes called 

Lane indices and are usually written without brackets. Their relationship with 

Miller indices for lattice planes is best illustrated by way of an example. Apply 

Bragg’s law to the (111) lattice planes in a crystal: 

first-order reflection (n = 1): \k = 2d-^-^-^ sin 9-^ 

second-order reflection in = 2): 2A = 2<ijjj sin 92, etc. 

Now the order of reflection is written on the right-hand side, i.e. for the 

second-order reflection in = 2) 

lA = 2|-^|sin 02- 

This suggests that second-order reflections from the (111) lattice planes of 

^/-spacing can be regarded as first-order reflections from planes of half the 

spacing, Halving the intercepts implies doubling the indices, so these 

planes are called 222 (no brackets) of (/-spacing d222 = These 222 planes 

are imaginary in the sense that only half of them pass through lattice points, but 

they are a useful fiction in the sense that the order of reflection, n in Bragg’s 

law, can be omitted. Continuing the above example, third-order reflections from 

the (111) lattice planes can be regarded as first-order reflections from the 333 
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reflecting planes (only a third of which in a family pass through lattice points). 

As mentioned above, these unbracketed indices are sometimes called Laue 

indices or reflection indices. 
However, it should be pointed out that, in practice, when analysing X-ray or 

electron diffraction patterns, crystallographers very often do not make this 

distinction between Miller indices and Laue indices, but simply refer, for 

example, to 333 reflections (no brackets) from (333) ‘planes’ (with brackets). 

This should not lead to any confusion, except perhaps in the case of centred 

lattices where lattice planes may have common factors. For example, the 200 

reflecting planes in the cubic F lattice (Fig. 5.4) are also the (200) lattice planes, 

but the 200 reflecting planes in the cubic P lattice refer to second-order 

reflections from the (100) lattice planes. 

5.6 Zones, zone axes and the zone law, the addition rule 

The concept of a zone has been introduced in Section 5.1. In this section some 

useful geometrical relationships are listed, the proofs of which are given in 

Section 6.5, in which use is made of reciprocal lattice vectors. It is possible, of 

course, to prove the relationships given below without making use of the 

concept of the reciprocal lattice, but the proofs tend to be long, tedious and not 

very obvious. 

5.6.1 The zone law (or Weiss* zone law) 

If a plane (hkl) lies in a zone [uvw] (i.e. if the direction [uvw] is parallel to the 
plane (hkl)), then 

hu + ku + Iw = 0. 

5.6.2 Zone axis at the intersection of two planes 

The line or direction of intersection of two planes in a zone (/ij^tj/j) and 

(/z2A:2^2) gives the zone axis, [uvw], where 

u = —kjlf)', u = (fh2 — Ijhi)] w = (hik2 —k2h^). 

To remember these relationships, use the following ‘memogram’: 

h h\ h 

^2 I2 /12 h 

U V w 

Write down the indices twice and strike out the first and last pairs. Then u is 
given by cross-multiplying, i.e. 

u = iplus k^f minus /c2^i)) 

and similarly for v and w. 

* Denotes biographical notes available in Appendix 3. 
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Fig. 5.7. A monoclinic crystal (class m) in which the face P lies in two zones, one containing 
(101) and (110), the other containing (Oil) and (100). 

5.6.3 Plane parallel to two directions 

To find the plane lying parallel to two directions [u-^V]W{\ and write 
down the ‘memogram’ 

ZZi Wi ZZj ZZj 

U2 
x: x: 

V2 W2 U2 V2 W2 

h k 1 

and proceed as above, i.e. h = (^^^2 — V2yv^), etc. 

5.6.4 The addition rule 

Consider two planes (/zj/tj/j) and ih2k2l2) lying in zone. Then the index of 

another plane (HKL) in the zone lying between these planes is given by 

H = (m/zj + n/z2); K = imk-^ + zzA:2); L = (zn/j + n/2), where m and n are small 
whole numbers. 

The rule enables us to work out the indices of ‘in-between’ planes in zones. 

Consider, for example, the plane marked P in Fig. 5.7, which lies both in the 

zone containing (100) and (Oil) and the zone containing (101) and (110). We 

need a choose values of m and n such that adding the pairs of indices as above 

gives the same result for {HKL). This is much more easily done than said! The 

plane is (211), i.e. 

(101)+ (110) = (211) (m = l,/z = l) 

and 

(Oil)+ 2(100) = (211) (m = l,AZ = 2). 

5.7 Indexing in the trigonal and hexagonal systems; 
Weber symbols and Miller-Bravais indices 

As shown in Section 3.3, the rhombohedral and hexagonal lattices both consist 

of hexagonal layers of lattice points which in the rhombohedral lattice are 
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Fig. 5.8. Hexagonal net of the hexagonal P lattice showing (a) primitive hexagonal unit cell 

with the traces of the six prism faces indexed {hkl), (b) hexagonal (four-index) unit cell with 

the traces of the six prism faces indexed {hkil}, (c) orthohexagonal (Base or C-centred) unit 

cell. 

‘stacked’ in the ABCABC... sequence (Fig. 3.3(b)) and in the hexagonal lattice 
are ‘stacked’ in the AAA... sequence (Fig. 3.3(a)). In both cases, it is conve¬ 
nient to outline unit cells using the easily recognized hexagonal layers as the 
‘base’ of the cells and with the z-axis (or c vector) perpendicular thereto. 
However, at least three choices of unit cell are commonly made and these are 
illustrated in the case of the hexagonal lattice in Fig. 5.8 (the corresponding unit 
cells of the rhombohedral lattice differ only insofar as they contain additional 
lattice points of the B and C layers at fractional distances of j and f of the unit 
edge length along the z-axis). 

Figure 5.8(a) shows the primitive hexagonal unit cell, the smallest that can be 
chosen with the x- and y-axes at 120°. However, this is often inconvenient in 
that it does not reveal the hexagonal symmetry of the lattice. For example, all 
the (pencil) faces parallel to the z-axis are crystallographically equivalent or of 
the same form, but their indices differ in type as shown—some have indices of 
the type (110) and some have indices of the type (100). To overcome this 
problem a fourth axis—the w-axis—is inserted at 120° to both the x- and 
y-axes, as shown in Fig. 5.8(b). These are called Miller-Bravais axes x, y, u, z (or 
vectors a,b, t,c) and the indices of the lattice planes, called Miller-Bravais 
indices, now consist of four numbers (hkil). The indices for the pencil faces are 
shown in Fig. 5.8(b) and they are all of the same form {1010}. Notice that, in all 
cases the sum of the first three numbers is zero, i.e. h + k + i = 0. As therefore 
i = -(h + k), is sometimes simply represented as a dot, i.e. [hk.l). However, this 
unnecessary abbreviation should be discouraged, as it defeats the object of using 
Miller-Bravais axes in the first place. 

Similarly, zone axis symbols, sometimes called Weber* symbols, consist of four 
numbers (UVTW). However, determining these numbers (i.e. determining the 
components of a vector using four base vectors in three-dimensional space) is 
not straightforward. Essentially, the components of a vector are adjusted such 

* Denotes biographical notes available in Appendix 3. 
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that the sum of the first three numbers is zero, i.e. U +V+T={). In practice, 
the simplest procedure is to determine first the zone axis symbol \_uuw\ of a 
direction using three axes (Fig. 5.8(a)) and then transform these to [UVTW] 
using the following identities: 

U=\{2u-v), V=\{2v-u), T=-iU+V), W=w. 

On this basis the zone axis symbols for the x-, y- and u-axes are [2110], [12l0] 

and [1120], respectively. The reverse transformation from [UVTW] to [uvw] is 
given by the identities 

u = (U-T), u = (V-T), w = W. 

When using Miller-Bravais indices and Weber symbols, the zone law becomes 

hU + kV+iT + lW=0. 

Another unit cell—the orthohexagonal cell—is shown in Fig. 5.8(c). The ratio 
of the lengths of the edges, a/b is ^3. As with the primitive hexagonal cell this 
does not reveal the hexagonal symmetry of the lattice. This base-centred cell has 
the advantage that the axes are orthogonal and is particularly useful in showing 
the relationships between the crystals which have similar structures but where 
small distortions can change the symmetry from hexagonal to orthorhombic, i.e. 
in situations in which the ratio a/b is no longer precisely ^/3. 

To summarize, great care must be taken in interpreting plane indices and 
zone axis symbols in the hexagonal and trigonal systems—an index such as (111) 

could refer to the primitive hexagonal or orthohexagonal unit cell, or it could 
even refer to the Miller-Bravais hexagonal unit call and be the contracted form 
of (1121), i.e. (11.1), in which the dot may have been omitted in printing! 

5.8 Transforming Miller indices and zone axis symbols 

As mentioned in Section 3.3, different choices of axes (i.e. different unit cells) 
are frequently encountered in trigonal crystals with the rhombohedral Bravais 
lattice and it is therefore important to known how to transform Miller indices 
and zone axis symbols from one axis system to the other. The appropriate matrix 
equations or transformation matrices are given in Section 5.9. However, the 
concept and derivation of transformation matrices are best understood by way of 
an easily visualized, in effect, ‘two-dimensional’ example (Fig. 5.9) in which one 
of the axes (out of the plane of the paper) is common to both cells. 

Figure 5.9 shows a plan view of a lattice with two possible unit cells outlined 
by vectors a, b, c and A, B, C. The common vectors c = C lie out of the plane of 
the paper. The unit cell vectors A, B, C can be expressed as components of a, b, c: 

A = la -h 2b -H Oc 

B = la -f lb -I- Oc 

C = Oa + Ob + Ic. 
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Fig. 5.9. Alternative unit cells in a lattice defined by unit cell vectors a, b, c and A, B, C. 

Now there are two ways of writing these three equations in matrix form; the 

vectors may either by written as column matrices; 

lA] 'l 2 o' / a' 
B = 1 1 0 b 

\cj io 0 ij \ c/ 

or as row matrices: 

(A B C) = (a b c) 
1 
2 

10 

1 o' 
1 0 
0 1 j 

Notice that the rows and columns of the 3x3 matrix are transposed. 

Let ihkl) and [uvw] be the Miller indices and zone axis symbols referred to 

the primitive unit cell a,b,c and (HKL) and [UVW] be the Miller indices and 

zone axis symbol referred to the ‘large’ unit cell A, B,C (which has three lattice 

points per cell). 

Consider first the transformation between the indices (hkl) and (HKL). 
Figure 5.9 shows the trace pq of the first plane from the origin in a family of 

planes in the lattice. By definition, the intercepts of this plane are a/h on the a 

lattice vector, A /H on the A lattice vector, b/k on the b lattice vector and so 

on. Or, recall the equivalent definition that h is the number of planes inter¬ 

sected along the a lattice vector, H is the number intersected along the A lattice 

vector, and so on; h is the number intersected along a (i.e. 0 to R) and 2/c is the 

number intersected along 2b (i.e. R to S). Hence, h + 2k the total number of 

planes intersected along la + 2b (i.e. O to S) and, as A = la -I- 2b, then this 
number is the H index. Hence 

H=\h + 2k + {)l 

K = \h \k -\- Ql 
L = O/i -h Qk -h 1/, 

and the indices transform in the same way as the unit cell vectors, and again can 
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be written in matrix form as column matrices or row matrices. We shall choose 
the row matrix form, viz. 

(HKL) = ihkl) 
1 1 
2 1 
0 0 

0 

ij 
The relationship between [uuw] and [UVW] may be derived as follows. A 

vector r in the lattice is written in terms of its components on the two sets of 
lattice vectors, i.e. 

r = ua + vh + wc = UA + VB + WC. 

Substituting for A, B and C: 

wa + i;b + wc = U(la + 2b + Oc) + F(la + lb + Oc) + W(0a + Ob + Ic). 

Collecting terms together for u, v and w gives 

u = lu+iv+m 
v = 2U+\V+m 
w = 0f/ + 0F+ \W. 

Writing the zone axis symbols as column matrices gives 

fu) 
/ 

1 1 
\ 

0 lu] 
u = 2 1 0 V 

\wj io 0 ij \wj 

Hence the same 3X3 matrix relates plane indices written as row matrices from 

the primitive to ‘large’ unit cell and zone axis symbols written as column 

matrices from the ‘large’ to the primitive unit cell. 

The reverse relationships are found from the inverse of the matrix. The 

procedures for inverting a matrix and for finding its determinant may be found 

in many A-level mathematics textbooks. For this example the inverse matrix is 

given by 

hence 

fl 1 
\ 

0 
-1 

1 '1 1 o' 
2 1 0 -5 2 1 0 

lo 0 ij 
D 

io 0 3/ 

ihkl) 
1 

iHKL)- 
'l 1 

2 1 
>0 0 

o' 
0 

3/ 

lu] 1 '1 1 o' 
V 2 1 0 V 

\w] io 0 3j \wj 

and 
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Finally, note that the determinant of the matrix equals 3 (and its inverse equals 

j), the ratio of the volumes, or number of lattice points, in the unit cells. 

In transforming indices and zone axis symbols from one set of crystal axes to 

another it is usually best to work from first principles as above because it is very 

easy to fall into error by using a transformation matrix without knowing which 

conventions for writing lattice planes and directions are being used. 

5.9 Transformation matrices for trigonal crystals 
with rhombohedral lattices 

Figure 5.10 shows a plan view of hexagonal layers of lattice points stacked in the 

rhombohedral ABC... sequence. (See also Fig. 3.3(b).) (To avoid confusion only 

the A hexagonal layers are outlined.) The (primitive) rhombohedral unit cell 

with equi-inclined lattice vectors a,b,c is outlined, as is a unit cell of a 

non-primitive hexagonal unit cell with lattice vectors A and B at 120° to 

each other and C perpendicular to the plan view. Proceeding as described in 
Section 5.8, 

iHKL) = ihkl) 

1 0 1 

1 1 0 J 

0 I 1 

ihkl) = {HKL) 

'2 1 1 ' 
3 3 3 

1 1 T 
3 3 3 9 

1 1 1 
\ 3 3 3 1 

u 

V 

w 

U 

V 

w 

1 0 1 U 

= 1 1 0 V 

0 T 1 w 

' 2 
3 

T 
3 3 u 

= 1 
3 

1 
3 

T 
3 V 

1 

3 

1 
3 

1 

3 

Fig. 5.10. A plan view of the hexagonal layers of lattice points, A, B and C, in the 

rhombohedral lattice. The rhombohedral unit cell and the triple hexagonal unit cell are 
outlined. 
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where {HKL), [UVW] and {hkl), [uvw\ refer to the Miller indices and zone axes 

symbols for the hexagonal and rhombohedral unit cells, respectively. Note that 

the determinants of these two matrices are 3 and 3^ respectively, i.e. equal to the 

ratios of the number of lattice points in the two cells. Hence the hexagonal unit 

cell is known as a triple hexagonal cell because it contains three lattice points 

per cell. Note also that it is possible to choose the hexagonal A and B axes 

differently (e.g. rotated 60° to those shown in Fig. 5.10); this will give rhombo¬ 

hedral unit cells that are mirror-related, sometimes known as ‘obverse’ and 
‘reverse’ unit cells. 

Exercises 

5.1 Write down the Miller indices and zone axis symbols for the slip planes and slip 

directions in fee and bee crystals. (See also Exercise 1.4.) 

5.2 Which of the directions [010], [432], [210], [231], if any, lie parallel to the plane 

(115)? Which of the planes (112), (321), (9112), (111), if any, lie parallel to the 

direction [111]? 

5.3 Write down the planes whose normals are parallel to directions with the same 

numerical indices in the triclinic, monoclinic and tetragonal systems. 

5.4 Find the plane which lies parallel to the directions [131] and [Oil]. Find the plane 

which lies parallel to the directions [102] and [111]. Find the direction which lies 

parallel to the intersection of the planes (342) and (103). Find the direction which 

lies parallel to the intersection of the planes (213) and (110). 

5.5 An orthorhombic crystal (cementite, Fe3C) has unit cell vectors (or lattice para¬ 

meters) of lengths a = 452 pm, b = 508 pm, c = 674 pm. 

(a) Find the ^^-spacings of the following families of planes: (101), (100), (111) and 

(202). 
(b) Find the angles a, /3, y (Fig. 5.6) between the normal to the plane (111) and the 

three crystal axes. 

(c) Find the angles p, q, r between the [111] direction and the three crystal axes. 

Briefly explain why these angles are not the same as those in (b). 

5.6 Draw the directions (zone axes) [001], [010], [210], [110] in a hexagonal unit cell, and 

determine their Weber zone axis symbols, (UVTW). 
5.7 Figure 3.2 shows the cubic / and cubic F lattices and the corresponding primitive 

rhombohedral unit cells. Study these figures carefully, then close the book and 

redraw them for yourself—to ensure that you understand the geometries of the 

cells in each case. Assign unit cell vectors A, B, C to the primitive rhombohedral 

cells and unit cell vectors a, b, c to the cubic I and cubic F cells and derive the 

transformation matrices for indices (hkl) ^ (HKL) and direction symbols [UVW\ ^ 

[uvw] in each case. 
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The reciprocal lattice 
6.1 Introduction 

The reciprocal lattice is often regarded by students of physics as a geometrical 
abstraction, comprehensible only in terms of vector algebra and difficult diffrac¬ 
tion theory. It is, in fact, a very simple concept and therefore a very important 
one. It provides a simple geometrical basis for understanding not only the 
geometry of X-ray and electron diffraction patterns but also the behaviour of 
electrons in crystals—reciprocal space being essentially identical to ‘A:-space’. 

The concept of the reciprocal lattice may be approached in two ways. First, 
reciprocal lattice unit cell vectors may be defined in terms of the (direct) lattice 
unit cell vectors a,b,c, and the geometrical properties of the reciprocal lattice 
developed therefrom. This is certainly an elegant approach, but it very often 
fails to provide the student with an immediate understanding of the relation¬ 
ships, for example, between the reciprocal lattice of a crystal and the diffraction 
pattern. The second approach, which is the one adopted in this chapter, is much 
less elegant. It develops the notion that families of planes in crystals can be 
represented simply by their normals, which are then specified as (reciprocal 
lattice) vectors and which can then be used to define a pattern of (reciprocal 
lattice) points, each (reciprocal lattice) point representing a family of planes. 
The advantage of this approach is that it accentuates the connections between 
families of planes in the crystals, Bragg’s law and the directions of the diffracted 
or reflected beams. 

The notion that crystal axes can be defined in terms of the normals to crystal 
faces belongs to Bravais* (1850) who called them ‘polar axes’ (not to be 
confused with current usage of the term which means axes or directions whose 
ends are not related by symmetry). However, the credit for the development of 
this idea to the concept of the reciprocal lattice, and the application of this 
concept to the analysis of X-ray diffraction patterns, belongs to P. P. Ewald*, 
whose story is told in Section 8.1. 

A study of the reciprocal lattice does require an elementary knowledge of 
vectors, their symbolism and some simple rules governing their manipulation 
(vector algebra). If you are unfamiliar with these topics, or wish to refresh your 
memory. Appendix 5 provides all the information you will require in order to 
follow the rest of this chapter. 

6.2 Reciprocal lattice vectors 

Consider a family of planes in a crystal (for example, those in Figs 5.2 or 5.3). 
Geometrically, the planes can be specified by two quantities: (1) their orienta- 

* Denotes biographical notes available in Appendix 3. 
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Fig. 6.1. (a) Traces of two families of planes 1 and 2 (perpendicular to the plane of the 

paper), (b) the normals to these families of planes drawn from a common origin and (c) 

definition of these planes in terms of the reciprocal (lattice) vectors df and df, where 
df =K/d^, df =K/d2, K being a constant. 

tion in the crystal and (2) their c(-spacing. Now, the orientation of the planes is 
defined by the direction of their normal. In Fig. 6.1(a) two families of planes, 
labelled 1 and 2, are sketched ‘edge on’. It is immaterial where the crystal axes 
are in relation to these planes, so they are omitted. In Fig. 6.1(b), the normals to 
these planes are drawn from a common origin and these specify the orientation 
of the planes. Now the ri-spacings, and <^2, need to be specified. An ‘obvious’ 
way of doing this might be to make the lengths of the normals directly 
proportional to the r/-spacings, i.e. by expressing them as vectors with moduli 
equal to iC X («i-spacing) where K is a. proportionality constant. However, this is 
not the way; instead, we make the lengths or the moduli of the vectors inversely 
proportional to the <i-spacings, i.e. equal to K/d-s^acing (where is a propor¬ 
tionality constant, taken as unity or, in X-ray diffraction, as A, the X-ray 
wavelength), i.e. a longer vector, indicating a smaller <i-spacing. The reason for 
making the moduli of the vectors inversely proportional to the ci-spacings will be 
apparent shortly (recall also the inversion of the intercepts in the definition of 
Miller indices). These vectors are called reciprocal (lattice) vectors, symbols df 

and df, and are shown in Fig. 6.1(c). The ‘end points’ of the vectors (called 
reciprocal lattice points) are labelled 1 and 2, corresponding to the planes which 
they represent. Reciprocal lattice vectors have dimensions of 1/length (for 
X=l), e.g. reciprocal angstroms, A“^ or reciprocal picometres, pm“k For 
example, if d^ = 0.5 A, the length or modulus of df (for X= 1) is 

Idf =-^ = 2A-^ 
0.5 A 

This completes the simple definition of reciprocal lattice vectors. But, like all 
simple concepts, it is capable of great development, which will be done for 
particular examples in the sections below. First a practical note. In drawing 
crystals and in sketching crystal planes we have to use a ‘map scale’ in ‘direct 
space’, choosing a scale to fit our piece of paper, e.g. 1 A equals 1 cm. So also 
when drawing reciprocal lattice vectors we have to use a quite separate map 



94 The reciprocal lattice 

scale’ in ‘reciprocal space,’ e.g. 1 A ^ equals 1 cm or 10 cm or 1 inch, as 

convenient. 

6.3 Reciprocal lattice unit cells 

To avoid the pitfalls of making hasty assumptions about the relationships 
between reciprocal and (direct) lattice vectors, a monoclinic crystal will be used 
as an example. First, we shall draw the reciprocal lattice vectors in a section 
perpendicular to the y-axis (i.e. containing the a and c lattice vectors) from 
which we will find the reciprocal lattice unit cell vectors a* and c*. This then 
enables us to express reciprocal lattice vectors in this section in terms of their 
components on these vectors. It is then a simple step to extend these ideas to 
three dimensions. 

Figure 6.2(a) shows a section of a monoclinic P lattice through the origin and 
perpendicular to the y-axis or b unit cell vector. The section of the unit cell is 
outlined by the lattice vectors a and c at the obtuse angle /3 and also the traces 
of some planes of the type {Ml) (i.e. those planes parallel to the y-axis). In Fig. 
6.2(a) (and Fig. 6.4(a)) no distinction is made between Miller indices and Laue 
indices—the indices of the planes are all put in brackets whether or not they all 
pass through lattice points. 

Figures 6.2(b) and (c) show the reciprocal lattice vectors for these planes, with 
the reciprocal lattice points labelled with the index of the planes they represent. 
Note again the reciprocal relationships between the lengths of the vectors and 
the c?;,^,-spacings, e.g. the (002) planes with half the ^/-spacing of the (001) 
planes are represented by a reciprocal lattice point 002, twice the distance from 

Fig. 6.2. (a) Plan of a monoclinic P unit cell perpendicular to the y-axis with the unit cell 

shaded. The traces of some planes of type {/lO/} (i.e. parallel to the y-axis) are indicated, (b) 
the reciprocal Oattice) vectors, for these planes and (c) the reciprocal lattice defined by 
these vectors. Each reciprocal lattice point is labelled with the indices of the plane it 
represents and the unit cell is shaded. The angle (3* is the complement of /3. 
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the origin as the reciprocal lattice point 001. Obviously, 003 will be three times 
the distance, and so on. 

It can be seen that the reciprocal lattice points (the ‘end points’ of the 
reciprocal lattice vectors) do indeed form a grid or lattice—hence the name. 
This is emphasized in Fig. 6.2(c), which also shows the reciprocal lattice unit cell 

for this section outlined by reciprocal lattice cell vectors a* and c*, where 

a* = dfoo and |a*| = l/Jioo; c* = d^oi and |c*| = l/Jooi- 

Note that a* and c* are not parallel to a and c, respectively, because the 
normals to the (100) and (001) planes in the monoclinic lattice are not parallel 
to a and c, respectively. Also the angle f3 * between a* and c* is the complement 
of the angle (3. 

These ideas are readily extended to the third dimension; the b* vector is 
perpendicular to the plane of the paper, normal to the (010) planes which are 
parallel to the plane of the paper, i.e. in the monoclinic system b is parallel 
to b*. 

The reciprocal lattice vectors can now be expressed in terms of their compo¬ 
nents of the reciprocal unit cell vectors a*, b*, c*. For example, for the (102) 
family of planes [Figs 6.2(b) and (c)] dfo2 = la* + Ob* -t- 2c*, or, in general, 

^hkl ^ 

Hence, just as direction symbols [uuw] are the components of a vector in 
direct space (Section 5.2), so also plane indices are the components of a vector 
d^j^i in reciprocal space. 

It is worth while rewriting these two equations once again to emphasize their 
importance and what might be called their symmetry: 

ruv^ = ^^ + vb + wc 

(direction symbols are simply the components of a direct lattice vector) 

^hkl ^ 

(Miller indices are simply the components of a reciprocal lattice vector). 
The reciprocal unit cell of the monoclinic crystal is sketched in Fig. 6.3. Note 

that each corner represents a family of planes and is labelled with the appropri¬ 
ate plane index and that the origin is labelled 000. 

011 

111 

110 

100 

Fig. 6.3. The reciprocal lattice unit cell of a monoclinic P crystal defined by reciprocal lattice 

vectors a*, b* and c*. P* is the angle between a* and c*. 
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Fig. 6.4. (a) Plan of a cubic I crystal perpendicular to the z-axis and (b) pattern of reciprocal 

lattice points perpendicular to the z-axis. Note the cubic F arrangement of reciprocal lattice 

points in this plane. 

6.4 Reciprocal lattice cells for cubic crystals 

In crystals with orthogonal axes (cubic, tetragonal, orthorhombic) the reciprocal 

lattice vectors a*, b*, c* are parallel to a, b, c, respectively. Hence we have the 

further identities that a • b = 0, a* • b = 0, etc. The reciprocal lattice unit cell of 

a simple cubic crystal (cubic P lattice) is obviously a cube with reciprocal lattice 

points only at the corners. The reciprocal unit cells of the cubic / and cubic F 

lattices also have additional lattice points within the unit cells, i.e. they are also 

not primitive. This is illustrated for the case of the cubic I lattice in Fig. 6.4, 

which shows four unit cells with the z-axis perpendicular to the plane of the 

paper and the traces of several hkQ planes (parallel to the z-axis) sketched in. 

Notice (for example) that in the direction of the x-axis the first set of lattice 

planes encountered is not (100) but (200) because of the presence of the 

additional lattice points in the centres of the cells (see also Fig. 5.4). Hence the 

reciprocal lattice vector in this direction is equal to dfgo not dfooi similarly, in 

the direction of the y-axis it is dj2o- In the [110] direction, however, the first set 

of lattice planes encountered is (110), which gives a reciprocal lattice point in 

the centre of the face of the cell and the second-order 220 reciprocal lattice 

point at the corner. Proceeding in this way we find that this section of the 

reciprocal lattice is face-centred. Repeating this procedure in the other sections 

gives a face-centred cubic reciprocal lattice (cubic F) (Fig. 6.5) for the body- 

centred cubic (direct) lattice (cubic I)—the two are reciprocally related. In the 

same way, we find that the reciprocal lattice of the face-centred cubic lattice is 
body-centred (Fig. 6.6). 

There is another way of looking at these reciprocal relationships. Recall that 

the cubic lattices may all be referred to rhombohedral axes (primitive cells) with 

axial angles at 60° (cubic F), 90° (cubic F), and 109.47° (cubic I) (Section 3.2, 

Fig. 3.2). The reciprocals of these cells are again rhombohedral cells with axial 

angles 109.47° (i.e. cubic 7), 90° (i.e. cubic P) and 60° (i.e. cubic F), respectively. 
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Fig. 6.5. The cubic F reciprocal lattice unit Fig. 6.6. The cubic I reciprocal lattice cell 
cell of the cubic / (direct) lattice. of the cubic F (direct) lattice. 

6.5 Proofs of some geometrical relationships 
using reciprocal lattice vectors 

Some useful geometrical relationships stated without proof in Chapter 5 can be 

proved very simply using the concept of the reciprocal lattice and an elementary 

knowledge of vector algebra (see Appendbc 5). The results are summarized in 

Appendix 4. 

6.5.1 Relationships between a, h, c and a*, b*, c* 

Consider, for example, c* (Fig. 6.2) and its relationships with a, b and c, which 

are redrawn for clarity in Fig. 6.7. showing in addition the angle 0 between c 

and c*. 
Since c* is perpendicular to both a and b, the scalar (or dot) products are 

zero, i.e. c* • a = 0, c* • b = 0 and similarly for a* and b*, i.e. a* • b = 0, a* • c = 0, 

b* • a = 0, b* • c = 0. 

Fig. 6.7. Plan of a monoclinic unit cell perpendicular to the ^'-axis emphasizing the geometri¬ 

cal relationships between a, c and c* (see Fig. 6.2 and Section 6.5.1). 
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Now consider the scalar product c • c* = c |c*|cos 0. However, since |c*| = 

1 /i^ooi by definition and c cos (f) = <iooi> ^ben c • c* = i^ooi/'^ooi ~ ^ similarly 

for a • a* = 1 and b • b* = 1. 

6.5.2 The addition rule 

This rule is simply based on the addition of reciprocal lattice vectors. For 

example (Fig. 6.2(b)), dfo2 = + dJoi in general, 

^ ^ _1_ ^ ^ 
(m/ii + n/i2X"'^l + +'^6) 'i(^2^26)' 

6.5.3 The (Weiss) zone law 

If a plane ihkl) lies in a zone [uvw], then is perpendicular to i.e. 

Afki • = 0. Writing Afki and in terms of their components, 

(ha* + kh* + /c*) ’(ua + yb + wc) = 0. 

Hence 

hu + kv + Iw = 0 because a* • a = 1, a* • b = 0, etc. 

The zone law can be generalized as follows. Consider the condition for a lattice 

point with coordinates uvw (or with position vector to be in a lattice plane 

(hkl) (Fig. 6.8). For the lattice plane passing through the origin, is 

perpendicular to d^^; and hence hu + kv + Iw = 0 as before. Now consider the 

«th lattice plane which lies at a perpendicular distance nd^ki from the origin. 

Fig. 6.8. Diagram representing the geometry of the (generalized) zone law. A set of hkl 
planes are drawn ‘edge on’. When a lattice point uvw lies on a plane through the origin then 

hu + kv + Iw = 0; when a lattice point lies on the nth plane from the origin then hu + kv + 
Iw = n. 
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The condition for a lattice point to be in this plane is that the component of r^^^ 

perpendicular to the planes should equal this distance; i.e. r^^^ • i = where 

i is a unit vector perpendicular to the planes. Now, since by definition 

H * 
^hkl 

|j* I ~ ^hkl^hkl 

then 

* ^hkl^hkl ~ ^^hkl’ 

hence 1n 

^uvw ^hkl ^ 

and, substituting for r„„^ and as before, 

hu + kv + Iw = n. 

6.5.4 d-spacing of lattice planes (hkl) 

Recalling (Appendix 5) that the scalar product of a vector multiplied by itself is 

the modulus squared: 

1 
^hkl ■ ^hkl ~7r~ ^ + /c*) • (/za* + kh* + Ic*). 

dhkl 

Simple expressions are only obtained for crystals with orthogonal axes (ortho¬ 

rhombic, tetragonal, cubic) where a* • b* = 0 etc., i.e. for orthorhombic crystals; 

1 h} k^ 

dlki 

1 
since a* • a* = —r etc. 

a 

6.5.5 Angle p between plane normals (hjkjlj) and (h2k2l2^ 

The angle p between two vectors a and b is given by (Appendix 5): 

Hence: 

a • b 
cos p = —— 

ab 

cos p = 
\^h2k2h^ 

Again, substituting in terms of components gives a simple expression only for 

cubic crystals. 
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6.5.6 Definition of a*, b*, c* in terms of a, h,c 

The volume of the unit cell V is given by a • (b X c) (see Appendix 5). Now, as 

(b X c) is a vector parallel to a* and of modulus equal to the area of the face of 

the unit cell defined by b and c, then a* = (b X c)/V = (b X c)/a • (b X c), and 

similarly for b* and c*. a, b and c can be'defined in the same way, i.e. 

a = (b* X c*)/K*, and similarly for b and c, where V* is the volume of the 

reciprocal unit cell. 

Hence to summarize; 

b X c 
a* = 

a = 

V ’ 

b* X c* 

b* 

b = 

c X a 

V ’ 

c* X a* 

y* ’ 

a X b 
c* = 

c = 

V ’ 

a* X b* 

y* 

6.5.7 Zone axis at intersection of planes (h^k^li) and (h2k2^2^ 

The zone axis is defined by the vector product of 

and 

Substituting in terms of their components and remembering the identities 
a = (b* X c*)/V* etc., gives 

ua + vb + wc = a(kd2 ~ + b(fh2 - 

therefore 

u = {kj2~ k2li); V = (fh2 —fhi); w = (h^k2 —h2k^). 

6.5.8 A plane containing two directions [u^v^Wi] and [U2V2W2] 

The plane is defined by the vector product of and Proceed¬ 
ings as above gives 

h = {V]W2-V2wf)\ k = {w^U2-W2uf)-, I = (u^V2 - U2V 

Exercises 

6.1 Derive the [0001] reciproeal lattice section for the hexagonal P lattice and [111] 

reciprocal lattice sections for the cubic I and cubic F lattices. 

6.2 Derive expressions for and cos p for orthorhombic crystals. 

6.3 Do the relationships derived in Section 6.4 apply also to non-cubic centred Bravais 
lattices and their reciprocal unit cells? 
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The diffraction of light 

7.1 Introduction 

As introduced in Chapter 6, the reciprocal lattice is the basis upon which the 

geometry of X-ray and electron diffraction patterns can be most easily under¬ 

stood and, as we shall see in Chapters 8 and 9, the electron diffraction patterns 

observed in the electron microscope, or the X-ray diffraction patterns recorded 

with a precession camera, are simply sections through the reciprocal lattice of a 

crystal—the pattern of spots on the screen or photographic film and the pattern 

of reciprocal lattice points in the corresponding plane or section through the 
crystal are identical. 

This also applies to the diffraction of light from ‘two-dimensional crystals’ 

such as umbrella cloths, net window curtains and the like and in which the warp 

and weft of the cloth correspond in effect to intersecting lattice planes. The 

diffraction patterns which we see through umbrellas and curtains are, in effect, 

the two-dimensional reciprocal lattices of these two-dimensional lattices. 

The important point to realize at the outset is that the reciprocal lattice is not 

merely an elegant geometrical abstraction, or a crystallographer’s way of for¬ 

mally representing lattice planes in crystals or two-dimensional nets, but that it 

is something we can ‘see for ourselves’. Indeed, in the case of light it is a 

familiar part of our everyday visual sensations. Furthermore, as explained in 

Section 7.2 below, when our eyes are relaxed and focused on infinity we see the 

patterns of spots and streaks around the lights from distant street lamps when 

viewed through umbrellas and net curtains, or the circles of haze around them 

on foggy nights quite clearly. Hence, it might be suggested that diffraction 

patterns constitute our first visual sensations, before we have learned to near¬ 

focus upon the world! 
The familiarity and ease of demonstration is the main justification or reason 

for considering the diffraction of light, but there are three others. First, there is 

a geometrical analogy between light and electron diffraction: in both cases the 

wavelengths (of light and electrons) are small in comparison with the spacings of 

the diffracting objects (the fibre separations in woven fabrics or the lattice 

spacings in crystals). For example, the wavelength of green light (~0.5 /rm) is 

about 500X smaller than the fibre spacings in nets and fabrics (~0.25 mm); 

similarly, the wavelength of electrons in a 100 kV electron microscope (~4.0 

pm) is about lOOx smaller than the lattice spacings in crystals (~0.4 nm). In 

both cases therefore (as explained in Sections 7.4 and 9.5) the diffraction angles 

are also small and electron diffraction patterns can, at least initially, be inter¬ 

preted as sections through the reciprocal lattice of the crystal. 
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The geometry of X-ray diffraction patterns is rather more complicated be¬ 

cause the wavelengths of X-rays (~0.2 nm) are roughly comparable with the 

lattice spacings in crystals. Hence the diffraction angles are large (Sections 8.2, 

8.3, 8.4 and 9.3) and X-ray diffraction patterns are in a sense ‘distorted’ 

representations of the patterns of reciprocal lattice points from crystals, the 

nature of the ‘distortion’ depending upon the particular X-ray technique used. 

The second reason for considering the diffraction of light is that it provides a 

simple basis or analogy for an understanding of how and why the intensities of 

X-ray diffraction beams vary (Section 9.1), line broadening and the occurrence 

of satellite reflections (Section 9.2). The analogy is provided by a consideration 

of the diffraction grating, which is, in effect, a one-dimensional crystal. There 

are three variables to consider in the diffraction of light from a diffraction 

grating—the line or slit spacing, the width of each slit and the total number of 

slits. The slit spacing corresponds to the lattice spacings in crystals and deter¬ 

mines the directions of the diffracted beams, or, in short, the geometry of the 

diffraction patterns. The width of the slits determines, for each diffracted beam 

direction, the sum total of the interference of all the little Huygens’ wavelets 

which contribute to the total intensity of the light from each slit (Section 7.4), 

which is analogous to the sum total of the interference between all the 

diffracted beams from all the atoms in the motif. In short it is the lattice which 

determines the geometry of the pattern and the motif which determines the 

intensities of the X-ray diffracted beams. The analogy, however, must not be 

pressed too far because it takes no account of the dynamical interactions 

between diffracted beams, i.e. the interference effects arising from re-reflection 

(and re-re-reflection etc.) of the direct and diffracted/reflected beams as they 

pass through a crystal. This desideratum is particularly important in the case of 

electron diffraction. Finally, the total number of slits in a diffraction grating 

determines the numbers and intensities of the satellite or subsidiary diffraction 

peaks each side of a main diffraction peak—the greater the number of slits, the 

greater the numbers and the smaller are the intensities of the satellite peaks. In 

most X-ray and electron diffraction situations the total number of diffracting 

planes is so large that satellite peaks are unobservable and of no importance, 

but in the case of X-ray diffraction from thin film multilayers, consisting not of 

thousands but only of tens or hundreds of layers, the numbers and intensities of 
the satellite peaks are important and useful. 

Third, it is the diffraction of light which sets a limit, ‘the diffraction limit,’ to 

the resolving power or limit of resolution of optical instruments, in particular 

telescopes and microscopes, and is therefore of utmost importance to an 

understanding of how these instruments work. The diffraction limit however is 

not unsurmountable and it is an important characteristic of modern microscopi¬ 

cal techniques—for example scanning tunnelling, atom force, or near field 

scanning optical microscopes—that they overcome this limit by virtue of the 
close approach of a fine probe to a specimen surface. 

Finally, to generalize the point made in the first paragraph, the reciprocal 

relationship between an object and its diffraction pattern is formally expressed 
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by what is known as a Fourier transform, which is a (mathematical) operation 

which transforms a function containing variables of one type (in our case 

distances in an object or displacements) into a function whose variables are 

reciprocals of the original type (in our case \/displacements). The reciprocal 

lattices which we worked out in Chapter 6 using very simple geometry are, in 

fact, the Fourier transforms of the corresponding (real) lattices. 

In this sense diffraction patterns may be described as ‘visual representations’ 

of ‘images’ of the Fourier transforms of objects—irrespective as to whether they 

are generated using light. X-rays or electrons. In the case of light, diffraction 

patterns are often described as the ‘optical transforms’ of the corresponding 
objects. 

7.2 Simple observations of the diffraction of light 

The diffraction of light is most easily demonstrated using a laser—the hand-held 

types which are designed to be used as ‘pointers’ on screens for lecturers are 

more than adequate and are relatively safe (but you should never look directly 

at the laser light). Many everyday objects may be used as ‘diffraction gratings’ 

either in transmission or reflection—fabrics, nets, stockings (transmission) or 

graduated metal rulers (reflection) and the resultant diffraction patterns may be 

projected on to a wall or screen. Such experiments will quickly make apparent 

the inverse or reciprocal relationships between the spacings of the nets, gradua¬ 

tions etc. and the spacings between the diffracted spots. For example, when laser 

light is reflected from a graduated metal scale or ruler, in addition to the 

mirror-reflected beam, diffracted beams will be observed on each side; the 

spacings of these will change as the angle of the surface of the ruler to the laser 

beam (and hence the apparent spacings between the graduations) is changed, 

but, more convincingly, when the beam is shifted from the mm’ to the ‘1 mm’ 

graduated regions of the ruler, the spacings of the diffraction spots are halved. 

However, it is probably better to begin with the familiar diffraction patterns 

which are obtained with a simple point source of tight and a piece of fabric with 

an open weave and which moreover serve to emphasize some important ideas 

about the angular relationships between the diffracted beams. A point-source of 

light may in practice be a distant street lamp or, in order to conduct the 

experiments indoors, a mini torch bulb or a domestic light bulb placed behind a 

screen with a pinhole (or a fine needle hole) punched into it. Nylon net curtain 

material is an effective fabric to use—the filaments of nylon which make 

up the strands are tightly twisted giving sharply defined transparent/opaque 

boundaries. 
Observe the point source (which should be at least 5 m distant) through the 

net. The image of the point source will be seen to be repeated to form a grid (or 

reciprocal lattice) of diffraction spots (Fig. 7.1(a)). In general the spots are of 

greatest intensity, and are streaked, in directions perpendicular to the lines or 

strands of the net. 
These familiar observations may be supplemented by two more. First the 
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Fig. 7.1. (a) A diffraction pattern from a piece of net curtain with a square weave. The 
outline of the net is indicated by the white frame. Note that two rows of strong spots and the 
fainter spots forming a square grid diffraction pattern, (b) The diffraction pattern is identical 
in scale when the net is brought closer to the observer’s eye. (c) Rotating the net about a 
vertical axis reduces the effective spacing of the vertical lines of the weave, resulting in 
diffraction spots in the horizontal direction which are further apart, (d) Shearing or distorting 
the net such that the strands or lines are no longer at 90° to each other results in a diffraction 
pattern ‘sheared’ in the opposite sense—the rows of strong diffraction spots remain perpen¬ 
dicular to the lines of the net. 

same pattern of spots is seen whether both, or only one, eye is used. Second the 

size of the pattern—the apparent spacings of the spots—is independent of the 

position of the net. The diffraction pattern appears to be unchanged, irrespec¬ 

tive of whether the net is held away from, or close to the eyes (Fig. 7.1(b))’^. 

These observations show that the diffraction spots or diffracted beams bear 
fixed angular relationships to the direct beam. 

The reciprocal relationship between the net and diffraction pattern may be 

demonstrated in two ways. First, a net with a finer line spacing will be found to 

give diffraction spots more widely spaced. If a finer net is not available, the 

effective spacing of the lines may be decreased by rotating the net such that it is 

If the light falling on the net is not parallel but is slightly diverging (i.e. the point source is not 
effectively at infinity), then the apparent spacing of the spots will change slightly as the net is held at 
different distances from the eyes. 
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Fig. 7.2. (a) Parallel light (from a distant point source) falls on the net and is diffracted; only 
one set of diffracted beams is shown. The region of the net contributing to the diffracted light 

entering the eye of the observer is indicated by brackets, (b) As the net is moved towards the 
eye, the region of the net which contributes to the diffracted light entering the eye is different. 
The angular relationship between the direct and diffracted light at the eye remains unchanged. 

no longer oriented perpendicular to the line of sight to the light (Fig. 7.1(c)). 

Secondly, the net may be twisted or sheared such that the strands the weft and 

the warp—no longer lie in lines at 90° to each other. It will be seen that the 

rows of strong diffraction spots rotate in such a way that they continue to lie in 

directions perpendicular to the lines of the net the grid of diffraction spots is 

reciprocally related to the sheared lattice (Fig. 7.1(d)). 
These reciprocal relationships are analogous to those shown for a set of 

planes in a zone parallel to the y-axis in a monoclinic crystal (corresponding to 

the net, Fig. 6.2(a)) and its reciprocal lattice section (corresponding to the 

diffraction pattern. Fig. 6.2(c)). • • r 
The observation that the size of the pattern is independent of the position ot 

the net, and that it is seen to be identical with both eyes, may be explained by 

reference to Fig. 7.2. The light from a point source radiates out in all directions, 

but if it is distant then that part incident upon the net is (approximately) 

^ Figure 7 2 shows a parallel beam of light from a (distant) source with the net 

held away from the eye (Fig. 7.2(a)) and closer to the eye (Fig. 7.2(b)) One set of 

diffracted beams from the net is shown. Of all the direct light and diffracted 

light from the net, only a portion will enter the eye. The portion of the net from 

which the diffracted light entering the eye originates changes as the net is 

moved: the further the net is moved away from the eye the greater the 

contribution from its outer regions (compare Fig. 7.2(a) with Fig. 7.2(b)). 

However, for incident parallel light, irrespective of the position of the net, the 
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angular relationship at the eye between the direct and diffracted beams, and 

hence the apparent size of the diffraction pattern, remains unchanged. And 

what is true for one eye is true for both eyes; you do not need to squint, or keep 

your head still: the diffraction pattern remains unchanged. 
When using lasers to observe diffraction, a narrow, parallel beam of 

monochromatic light is available, as it were, ready made. Hence, unlike the 

previous situation, the diffraction pattern can be recorded on a screen because 

the diffracted beams all originate from the same small area of the net which is 

illuminated by the laser. (In the previous case. Fig. 7.2, because the diffracted 

beams originate from a large area of the net, they will correspondingly be 

‘blurred out’ when they fall on a screen.) Only if most of the incident light is 

‘blocked off such that only a small area of the net is exposed (or illuminated in 

the case of a laser) will a (faint) diffraction pattern be recorded. These points 

are best appreciated by ‘self modifying’ Fig. 7.2. Remove the ‘eye’ and extend all 

the arrows showing the diffracted beams: notice how broad is the width of the 

total beam. Now ‘block off all the beams except those passing through a small 

(bracketed) area of the net and add a screen, in place of the eye, on the right. 

The direct and diffracted spots will be about equal to the area of the diffracting 

net (or the diameter of the laser beam), and their separation will increase the 

more distant is the screen. 
The reciprocal relationship between the diffracting object and its diffraction 

pattern also extends to the shapes and sizes of the diffracting apertures (the 

‘holes’ in the net) as well as their spacings. However, this is not easy to 

demonstrate simply without a laser carefully set up on an optical bench, with 

diffracting apertures of various shapes and sizes and appropriate lenses to focus 

the diffraction patterns (see Section 7.4 below). 

Figure 7.3 shows a sequence of pinholes or apertures and the corresponding 

diffraction patterns using a laser as a coherent source of light (see Section 7.3). 

Figures 7.3(a)-(c) show the diffraction patterns (right) from the simplest aper¬ 

tures (left)—single pinholes of various sizes (which may be simply made by 

punching holes in thin aluminium foil and observing the diffraction pattern on a 

screen in a darkened room). The diffraction patterns consist of a central disc (of 

diameter greater than the geometrical shadow of the pinhole) surrounded by 

> 
Fig. 7.3. Diffracting apertures (reproduced as black dots on a white background) (left) and 

their corresponding diffraction patterns (or optical transforms) (right) taken using a laser, (a), 
(b) and (c) show the diffraction patterns (Airy discs and surrounding haloes or rings) from 

circular apertures of increasing diameters, (d) shows the diffraction pattern from a 4 X 5 net of 
small apertures (as in (a)). Note the reciprocal relationship between the net and the diffraction 

pattern, the 2X3 number of subsidiary peaks in each direction and the overall variation in 

intensity of the diffraction pattern in accordance with that for a single aperture (a), (e) shows 
that for a net of many apertures the subsidiary maxima are not discernible. (From Atlas of 

Optical Transforms by G. Harbum, C. A. Taylor and T. R. Welberry, Bell and Hyman, 1983, an 
imprint of HarperCollins Publishers Ltd.) 
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much fainter (and sometimes difficult to see) annuli or rings; notice that the 

diameters of the disc and rings decrease as the diameter of the aperture 

increases. Figure 7.3(d) shows the diffraction pattern (right) from a rectangular 

net or lattice (left) of 20 (4 by 5) of the smallest apertures. There are three 
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things to notice about this net and its associated diffraction pattern. First, the 

reciprocal relationship between the unit cell of the net and that of the diffrac¬ 

tion pattern (see also Fig. 7.1(c); second the intensities of the diffraction spots 

which vary in the same way as the intensities of the central disc and rings from a 

single aperture (Fig. 7.3(a)), and third that there are faint spots, or subsidiary 

maxima, between the main diffraction spots. Finally, Fig. 7.3(e) shows the 

diffraction pattern (right) from a square net of many small apertures (left). The 

diffraction spots all lie within the region of the large central disc from a single 

small aperture and the subsidiary maxima between the main diffraction spots 

are no longer evident. 

7.3 The nature of light: coherence, scattering 
and interference 

In the previous section we surveyed the phenomenon of diffraction: the pattern 

of beams which occur when light passes through pinholes and nets or is 

reflected from graduated rulers. We examined the conditions under which 

diffraction patterns can be observed either by looking at a point source of light 

through a net, or when using a laser, by projection onto a screen. Finally we 

observed the inverse or reciprocal relationship between the diffracting object 

and the diffraction pattern. All these observations need to be explained and 

given a quantitative basis (Section 7.4), but before doing so we need to know 

something of the nature of light itself and the notions of coherence, scattering 

and interference. 

The nature of light is expressed through the ‘working models’ which seek to 

describe it. Physics provides us with two such models—light as ‘particles’ 

(photons or quanta) and light as waves. These working models are not contra¬ 

dictory or opposed; rather they express different aspects of the quantum- 

mechanical interpretation of light and matter. Visible light occupies a very small 

part of the whole spectrum of electromagnetic radiation, with a wavelength 

range from about 400 nm (violet-blue) to about 700 nm (red). In the range 

below we have ultraviolet (~400 nm-1 nm). X-rays (~10 nm-10 pm), and the 

very shortest, y-rays (~10 pm-10 fm). In the range above we have infrared 

(~700 nm-1 mm), microwaves (~1 mm-500 mm) and, the very longest, radio 
waves (~500 mm-100 km). 

Light (in common with all other electromagnetic radiation) has both wave-like 

and particle-like character which are linked by an equation of great 

simplicity—Planck’s equation: E = hc/\, where E is the energy of the photon 

(a particle-like quantity), c is the velocity of light (~3 X 10® ms“^), A is the 

wavelength (a wave-like quantity) and h is the Planck constant (6.6256 X lO^^'* 

J s). Notice that the smaller is the wavelength, the higher is the energy of the 

photon—a matter of great physiological and practical importance: we are all 

continuously bathed in radio waves with no ill effects, but a short exposure to 

X-rays or y-rays results in severe damage to our body tissues. Light obviously 
occupies an important niche in between. 
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Matter—electrons, protons, particles of any sort—also has wave-like as well 

as particle-like character, which are similarly linked by de Broglie’s equation, 

A = h/mu, where m and u are the mass and velocity of the particle respectively 

and A is the wavelength. As before, the ‘linking constant’ between the particle¬ 

like and wave-like character is h, the Planck constant*. 

The notion that light has both particle-like and wave-like character reaches 

back to the seventeenth century and the work of Isaac Newton^ and Christiaan 

Huygens^ Newton has been represented as the advocate of the particle or 

‘corpuscular’ theory of light and Huygens the advocate of the wave theory of 

light. Certainly Huygens’ simple and elegant interpretation of reflection and 

refraction in terms of wavefronts made up of the envelopes of secondary waves 

or wavelets, which was taken up and extended by Thomas Young^ and Augustin 

Jean Fresnel^ early in the nineteenth century, has been far more fruitful than 

Newton’s corpuscular theory. However, it is clear from his own writings that 

Newton himself was undecided. In his great work Opticks there are a number of 

Queries which represent his reflections on his life’s work on the properties of 

light. In Query 13 he asks:- 

Do not several sorts of Rays make Vibrations of several bignesses, which 

according to their bignesses excite Sensations of several Colours? 

and in Query 17: 

considering the lastingness of Motions excited in the bottom of the Eye by 

Light, are they not of a vibrating nature? 

Light originates from the transitions of electrons which occur within excited 

atoms, excited by virtue of being at a high temperature, as in lamp filaments and 

the Sun, or by simulated emission, as in a laser. The physics of the processes in 

either case does not concern us; the important point is that each atom emits a 

wavetrain for a period of time (about 10"* s for lamp filaments; or from about 

10“^^ s for pulsed lasers to indefinite times for continuous lasers). In the former 

cases the wave is therefore not infinite in extent, but begins and ends, like a 

group of ripples moving outward from a point where a stone has been thrown 

into a pond. It is called a wavetrain or a photon, so leading back, in a sense, to 

the corpuscles of Newton. The length of each wavetrain depends on the velocity 

of light, 3 X 10* ms"’ in air, and the period of emission; for lamp filaments a 

wavetrain is typically about 3 m long (3 X 10* ms ’ X 10 * s) and for lasers 

from about 0.3 mm long (3 X 10* ms ’ X 10"s) to much longer lengths (for 

‘continuous’ lasers). 

* De Broglie’s equation provides the basis for the determination of the wavelength A of electrons 
in the electron microscope. The momentum mu of the electrons (m being relativistically corrected 
and V the velocity) depends on the accelerating voltage V and is determined by equating the 
potential energy eV (lost) where e is the charge on the electron, with the kinetic energy 2^^ 
(gained). But de Broglie’s equation applies to all moving particles—including pieces of chalk flung at 
dozing students—but, as a simple calculation shows, the associated wavelengths are very small. 

^ Denotes biographical notes available in Appendix 3. 
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For lamp filaments there are, in general, no phase relationships between the 

individual wavetrains; they overlap and follow on each other’s heels without any 

registration between the individual ‘peaks’ and ‘troughs’. Furthermore, the 

vibration directions of each wavetrain will be more or less random—and the 

light is said to be natural or unpolarized. 

Light from an extended source is said to be incoherent. Interference will 

occur spasmodically as it were, between the peaks and troughs of adjacent 

similarly polarized wavetrains, but the net effect is zero. Coherence, the condi¬ 

tion which gives rise to clearly defined diffraction beams, is only achieved by a 

point source, a small part of an extended source (which condition is fulfilled by 

the distant street lamp) or by a laser. The condition for coherence may be 

illustrated by an example. Consider a distant light source shining on two slits (or 

pinholes). Figure 7.4 shows the arrangement with a point source, a wavetrain ‘on 

its way’ and at its arrival at the same time at the slits. The slits, in turn, will act as 

secondary waves or sources of light according to Huygens’ construction—the 

peaks and troughs of the waves being ‘in step’ with each other. As the waves 

spread out they meet and interfere—where peak meets peak or trough meets 

Fig. 7.4. A diagram of a distant light source emitting coherent wavetrains. When one of these 
strikes a screen which has adjacent slits, the slits act as secondary sources of light according to 

Huygens construction, which then meet and interfere (from Qualitative Polarized Light 
Microscopy by P. C. Robinson and S. Bradbury, Oxford University Press/Royal Microscopical 
Society, 1992). ^ 
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trough we have reinforcement or constructive interference, and where peak 
meets trough we have cancellation or destructive interference. In Section 7.4 we 
shall determine the particular angles or directions in which constructive and 
destructive interference occur. The important point to note now is that the 
geometrical conditions for interference which apply to just one wavetrain apply 
to all the wavetrains, and the resultant pattern of light and dark on the screen is 
the diffraction pattern. The words ‘diffraction pattern’ are a very inadequate 
description of the physical processes which are involved and the words or phrase 
‘diffraction (or scattering)-followed-by-interference-between-the-diffracted (or 
scattered)-beams-pattern’ would be more accurate, albeit rather long-winded! 

Now consider the situation when the slits are illuminated by separate light 
sources, or by an extended source. Separate sets of wavetrains from different 
parts of the source will arrive independently at the slits and thus the secondary 
waves emanating from each slit will bear no relationship with each other. To be 
sure, when ‘peak meets peak’ constructive interference will occur and where 
‘peak meets trough’ destructive interference will occur—but these effects will 
be quite random in space and will cancel out: the light in this situation is said to 
be incoherent. Laser light, by contrast, is highly coherent. 

7.4 Analysis of the geometry of diffraction patterns 
from gratings and nets 

We will now analyse the diffraction phenomena described in Section 7.1 by 
considering the constructive and destructive interference conditions for all the 
scattered waves which emerge from nets and apertures of different sizes, shapes 
and spacings. We will do this step-by-step by first considering diffraction from a 
grating, which consists of a set of parallel lines engraved or photographed on to 
a glass or a polished metal plate. Diffraction occurs when light passes through 
the transparent ‘slits’ between the lines, or when it is reflected from the metal 
‘strips’. The constructive and destructive interference conditions in each case 
are identical, but it is much easier to draw the transmission case because the 
incident and diffracted beams do no overlap. This situation is analogous to the 
ray diagrams used in light microscopy; it is simpler to demonstrate image 
formation in transmitted light microscopy by showing light passing from the 
condenser and through the specimen and objective lens to the eyepiece rather 
than light passing in two directions through the condenser/objective lens as it is 
reflected from the specimen as in reflected light microscopy. 

The conditions for constructive/destructive interference from a set of parallel 
slits will, fairly obviously (ignoring end effects), be the same all along their 
length and the diffraction pattern will be a series of light/dark bands (corre¬ 
sponding to constructive and destructive interference conditions, respectively) 
running parallel to the slits. A net may be regarded as a two-dimensional 
grating, with a criss-cross pattern of slits, or two gratings superimposed upon 
each other with their slits running in different directions. Each grating will give 
rise to its own diffraction pattern of light/dark bands, but the net effect is that 
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Fig. 7.5. A set of lines in the net acts as a diffraction grating, each slit acting as the source of 
a single set of Huygens’ wavelets. The diffracted beam is drawn for a path difference of 

one wavelength. 

constructive interference will only occur when the light bands intersect and 

reinforce—giving rise to the observed diffraction peaks or spots. Hence, consid¬ 

eration of the, in effect, ‘one-dimensional diffraction’ case of a grating will lead 

us to a complete analysis of the ‘two-dimensional diffraction’ case of a net. 

First we will consider diffraction from a grating made up of very narrow or 

thin slits spaced distance a apart in which each slit is the source of just one 

Huygens’ wavelet across its width; from this we will determine the conditions for 

constructive interference and therefore the directions of the diffracted beams. 

By simply extending the analysis to two dimensions we will demonstrate the 

reciprocal relationship between the diffracting net and the positions of the spots 

in the diffraction pattern. Then we shall consider diffraction from a wide 

aperture—a circular hole or wide slit which is the source of not one but many 

Huygens’ wavelets and we shall see that this modifies the intensities, but does 

not change the positions, of the diffracted spots. Finally we shall consider 

gratings or nets of limited extent and will show how this leads to the occurrence 
of subsidiary peaks or spots. 

Figure 7.5 shows just part of a diffraction grating—a one-dimensional 

net—consisting of many narrow slits distance a apart. The incident light is 

shown as parallel beams from a distant source (i.e. a plane wavefront). This 

special case is sometimes called the case of Fraunhofer* diffraction as opposed 

to the case of Fresnel* diffraction in which the source is not distant and the 

wavefront is an arc, as shown in Fig. 7.4. Of course they are not different ‘types’ 

of diffraction, it is simply that Fraunhofer diffraction is simpler to treat mathe¬ 

matically. However, Fresnel diffraction may in practice be ‘converted’ to 

Fraunhofer diffraction by inserting a converging (positive) lens into the light 

beam with the point source at its focus and from which of course emerges 
parallel light (Fig. 7.6). 

* Denotes biographical notes available in Appendix 3. 



7.4 Geometry of diffraction patterns from gratings and nets 113 

Diffraction 

Fig. 7.6. A plane wavefront (parallel light) incident upon a grating may be achieved by 

inserting a lens (left) with the point source at its focus. Conversely, the parallel ‘pencils’ of the 
direct and diffracted light may be sharply focused onto a screen or photographic plate by 
inserting another lens (right). (Compare with Fig. 7.5.) 

Each narrow slit (Fig. 7.5) acts as a single source of Huygens’ wavelets 

spreading out in all directions. Constructive interference occurs in those direc¬ 

tions where the path difference (AB) between adjacent slits equals a whole 
number of wavelengths, i.e. 

AB = n A = sin 

where a = the line (or lattice) spacing and q:„ = the diffracted angle for the nth 

order diffracted beam. Since A ~ 0.5 /xm and typically a ~ 0.5-2 mm, then, as 

pointed out in Section 7.1, the diffraction angles are small (because a » A) and 

sin a„~ a„. Hence, for the first few visible diffraction orders AB = nA = na„, 

from which the angle a^ = n\/a: here we have the reciprocal relationship 

between the diffraction angles, a„, and lattice spacing, a. 

The screen on which the diffracted beams fall (not shown in Fig. 7.5) should 

be a long distance from the grating compared with its width—and of course the 

further it is away the greater is the separation between the beams. This may, in 

practice, be rather inconvenient , but the inconvenience may be overcome by 

placing a converging (positive) lens after the grating and placing the screen at its 

focal point such that the ‘pencils’ or parallel light of the direct and diffracted 

beams are sharply focused there (Fig. 7.6). The presence of such a lens does not 

modify in any way our understanding of the diffraction and interference phe¬ 

nomena at the grating and is best ‘left out’ of diagrams because it may appear to 

complicate the ray paths unnecessarily. 

Figure 7.7(a) shows diagrammatically the diffraction pattern from such a 

grating—a central maximum or peak with the first, second, third, order etc. 

diffracted beams each side. Their intensity decreases because as the angle a„ 

increases the screen is further away from the diffraction grating. 

This analysis of diffraction from a grating—a one-dimensional net—may 

readily be extended to the other set of lines in the net spaced, say, distance b 
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Fig. 7.7. Diagrams of the diffraction patterns from gratings and a single slit as a function of 
angle a; the intensities of the peaks are represented only qualitatively, (a) The diffracted 

beams for a narrow-slit grating. Constructive interference occurs at sin a„ angles of +n(A/a) 
where n = the order of the diffracted beams (n = 0 represents the direct beam), (b) The 
diffraction profile for a single slit. Destructive interference occurs at sin a angles l(A/d) (zero 

order minimum), 2(A/d) (first order minimum) etc. (c) For a wide-slit grating (slit-width d, slit 
spacing a) the intensities of the diffracted beams Fig. 7.7(a) are modulated by the intensity 
profile for a single slit Fig. 7.7(b). 

apart, giving a second set of diffracted beams whose diffraction angles are again 

reciprocally related to b, the observed diffraction spots forming, as stressed 

before, the two-dimensional reciprocal lattice of the two-dimensional net (Figs 

7.1(c) and 7.3(d) and (e)). 

Now, the practical requirements for narrow slits which are the source of just 

one Huygens’ wavelet are difficult if not impossible to achieve. Not only must 
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Interference between a 

Fig. 7.8. Showing (a) a wide slit as the source of many Huygens’ wavelets (shown propagating 
in the forward direction) and (b) the condition for destructive interference for the zero order 
peak. For the pair of wavelets separated by distance d/2—one at the ‘top’ edge and one at the 
centre of the slit (shown bracketed)—destructive interference occurs when the path difference 
BC = A/2. Similarly for the next pair down (indicated by dashed lines and brackets), and so on 
for pairs of wavelets across the whole slit. 

the slit width be a small fraction of the wavelength of light, but it must also be 

equally thin—otherwise it will be, in effect, not a slit but a little rectangular 

tunnel—rather like the narrow openings in castle walls! Furthermore, the 

narrower (and thinner) are the slits, the smaller is the intensity of light. 

In practice, therefore, slits are wide, which means that they are the source of 

many Huygens’ wavelets, as shown in Fig. 7.8(a). The problem now is to sum all 

the contributions of all the wavelets. This may be carried out analytically or 

graphically by means of amplitude—phase diagrams, which are described in 

optics textbooks. However, we shall use a simplified approach, which is quite 

adequate and emphasizes the principles involved. 
In the forward (direct beam) direction, all the wavelets are in phase and 

interfere constructively. At increasing angles to the direct beam the wavelets 

become progressively more out of step; they begin to interfere destructively and 

the intensity falls: we need to work out the angle at which it falls to zero. Now 

consider a pair of wavelets; one wavelet at the ‘top edge’ of the slit and the 

other at the centre of the slit (Fig. 7.8(b)); when the path difference between 

them is A/2 ‘trough meets peak’ and total destructive interference occurs. 

Hence from Fig. 7.8(b), 

BC = A/2 = <i/2sin 

i.e. 

A d sin Q:2om 



116 The diffraction of light 

where d is the slit width and is the angle at which total destructive 

interference of the direct (zero order) peak occurs, i.e. zero order minimum, 

®zom^- . j- j 
Now consider the next pair of wavelets again distance d/2 apart, one just 

below that at the top edge and one just below that at the centre, as shown by 

dashed lines in Fig. 7.8(b). The condition for destructive interference between 

this pair of wavelents will be the same—and so on for all the pairs of wavelets 

across the whole slit. Hence the above condition for total destructive interfer¬ 

ence applies to the whole slit and gives the angle at which the intensity of the 

direct or zero order beam or the ‘central maximum’ falls to zero. Notice that the 

equation ‘looks’ the same as that for constructive interference between the slits; 

the difference is of course that in the former case only two Huygens’ wavelets 

needed to be considered, one from each slit. 

As the angle increases further there will be some net constructive interfer¬ 

ence, giving a first order diffracted beam but of much smaller intensity than the 

zero order beam. The next condition for total destructive interference may be 

found by again considering the condition for destructive interference between a 

pair of wavelets, one wavelet at the ‘top edge’ of the slit as before and the other 

a quarter of the slit width from the top. Again, when the path difference 

between them is A/2, destructive interference occurs. Continuing as before, i.e. 

considering pairs of such wavelets across the whole slit width, it is seen that this 

is again the condition for total destructive interference of all the wavelets across 

the slit, i.e. for the first order zero or minimum 

A/2 = (^f/4)sin i.e. 2A = Jsin 

where is the angle for first order destructive interference (/irst order 

minimum a^jj,). Note that sin = 2(A/d) = 2sin cc^on,, i.e. for small angles 

where sin a « a, the first order minimum occurs at twice the angle of the zero 
order minimum*. 

The diffraction pattern from a single slit is therefore a central maximum with 

much fainter bands of half the width of the central maximum on each side. It is 

represented diagrammatically in Fig. 7.7(b). The diffraction pattern from a 

circular hole or aperture is, correspondingly, a central disc surrounded by much 

fainter rings or haloes, as shown in Figs 7.3(a)-(c). The disc is called the Airy 

disc because its diameter was worked out precisely by Sir George Airy^. His 

calculation for the angle of the zero order minimum, which takes into 

account the circular symmetry of a round hole or aperture, only differs from our 

simple calculation by a factor of 1.22, i.e. 1.22 A = dsm The Airy disc is of 

immense importance in optics since it determines the limit of resolution of 
telescopes and microscopes, as explained in Section 7.5. 

* The angle for maximum constructive interference for the first order diffracted beam cannot be 
determined precisely by such a simple approach as we have used. It turns out that the peak is slightly 
asymmetrical—the peak does not lie at an angle half way between and but is displaced 
slightly to a lower angle. The analysis is given in the optics textbooks listed in Further Reading 

t Denotes biographical notes available in Appendix 3. 
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Now we have to consider the diffraction patterns from a grating with wide slits 

(width d) separated a distance a apart. The result is simply the combination of 

the narrow-slit diffraction pattern (Fig. 7.7(a)) and the single wide-slit diffraction 

pattern (Fig. 7.7(b)). The resultant is shown in Fig. 7.7(c). Notice that the angles 

at which the diffraction peaks occur are unchanged and are determined solely by 

the slit spacing a, but that their intensities are modulated by the intensity 
profile of a single slit of width d. 

Finally, we have to consider the situation where the diffraction grating is of 

limited extent, consisting of a limited number of slits. If W is the width of the 

grating and N is the nurnber of slits, then W = Na. We simply consider the 

whole grating as a very wide slit, then work out the conditions for destructive 

interference as before. The sines of the angles are simply 

1 2 3 
1(A/IF),2(A/IF),3(A/IF),... or -(A/u), -(A/u), -(A/a)... 

Each of the diffracted peaks or ‘principal maxima’ will no longer be ‘sharp’, as 

indicated in Figs 7.7(a) and (c), but will be broadened and surrounded by fringes 

or ‘subsidiary maxima’. The number of fringes increases with N and their 

intensities decrease with N, such that they are generally not detectable for large 

N values. 

Figure 7.9 shows the zero, first and second order principal maxima and the 

subsidiary maxima from a grating with N slits. Note that the (half) angular 

widths of the principal maxima, and the angular widths of the subsidiary 

maxima, are simply equal to \/N of the angular separation of the principal 

maxima. This leads to the simple result that there are {N - 2) subsidiary 

maxima between the principal maxima, as shown in Fig. 7.9. The proof is as 

follows. The first minimum of the zero order principal maximum (the direct 

Fig. 7.9. Diagram of the diffraction pattern from a grating (drawn on one side of the direct 
beam) consisting of N narrow slits of spacing a. Between the principal maxima there are 

{N-D subsidiary maxima or fringes. The diagram is drawn for A^= 6 (modified from Optics 

by E. Hecht and A. Zajac, Addison-Wesley, 1980). 
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beam) occurs at angle \/N{X/a), the second minimum at 2/N{\/a) and so on. 

Altogether therefore, going from the zero to the first order principal maximum 

which occurs at angle l(A/a), there will be (A-1) subsidiary minima, the 

(A-l)th minimum defining, in effect, the first minimum of the first order 

principal maximum. Hence, between the {N — 1) minima there will be iN—2) 

subsidiary maxima. 
Figure 7.9 is drawn for A = 6 and shows the principal maxima at sin a angles 

l(A/a), 2(A/a) and the subsidiary minima at sin a angles l/6(A/a), 2/6(A/a), 

3/6(A/a), 4/6{\/a) and 5/6(A/a). 
All these considerations—the sizes and numbers of diffracting apertures—may 

be extended to the two-dimensional case of nets, as shown in Figs 7.3(d) and (e). 

The intensities of the diffraction peaks are modulated by the intensity profiles of 

the Airy disc and its surrounding fainter rings or haloes and the numbers of 

subsidiary maxima between the prineipal maxima are two less than the number 

of apertures in each direction—and clearly will become insignificant as the 

number of apertures becomes large. Hence, although we have not determined 

quantitatively the light intensity distribution in the diffraction patterns from 

nets, the main features that we noted in Section 7.2 are now explained. 

7.5 The resolving power of optical instruments 

One of the most important and useful applications of the study of diffraction is 

the determination of the resolving power of optical instruments, in particular 

the telescope and the microscope. By resolving power we mean the ability to 

distinguish points with small angular separations, such as stars in the telescope, 

or points which are small distances apart as in the microscope. In both cases the 

customary term resolving power is better expressed by the more precise term 

limit of resolution; either an angular limit of resolution as in the telescope or a 

distance limit of resolution as in the microscope. In either case the resolving 

power is a term reciprocally related to the limit of resolution. 

There are several other factors which determine the limit of resolution of 

optical instruments, in particular lens defects, such as spherical and chromatic 

aberration, and coma. To a large extent these can be eliminated by appropriate 

lens design or the use of reflecting elements; mirrors have almost wholly 

replaced lenses as the principal element in astronomical telescopes and, except 

for the difficulties in manufacture, could partially replace objective lenses in 

microscopes. But the limit of resolution is ultimately limited by diffraction 

—either at the aperture of the telescope or at closely spaced features in the 
microscope. 

Consider first the limit of resolution of a telescope. Parallel rays from a 

distant point source—a star—enter the aperture, diameter d, and are focused 

by the objective lens on to a screen, photographic plate or the focal plane of the 

eyepiece. As explained in Section 7.4, the image of the distant point source is 

not a point, but an Airy disc (surrounded by haloes of decreasing intensity), as 

shown in Figs 7.3(a)-(c) and Fig. 7.10. Now consider light from another star; 
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Fig. 7.10. (a) The intensity profile of an Airy disc pattern of two points separated by an angle 
which just satisfies the Rayleigh criterion for resolution. (Note that the centre of one disc falls 
on the zero order minimum of the other.) The overall intensity profile is indicated by the 
dotted line and the minimum, 12, is about 85% of the maximum, ly (b) Corresponding 
photograph of two point sources which are just resolved (from An Introduction to the 

Optical Microscope, 2nd edn, by S. Bradbury, Oxford University Press/Royal Microscopical 

Society, 1989). 

again its image is an Airy disc, as also shown in Fig. 7.10. The net intensity in the 

image plane is the sum of the intensities of the two discs (and their haloes). As 

the angular separation between the stars decreases their Airy discs overlap and 

the limit of resolution is the point at which the net intensity does not show a 

discernible decrease between the central maxima of the Airy discs. Determining 

this point is a matter of some difficulty, but the criterion proposed by Lord 

Rayleigh* is most generally adopted. The Rayleigh criterion is that the centre of 

Denotes biographical notes available in Appendix 3. 
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one Airy disc should coincide with the zero order minimum of the adjacent Airy 

disc. This criterion is shown in Fig. 7.10. The net intensity profile shows a small 

dip of about 85% of the maxima each side—which is easily discernible by the 

eye or detectable by a photographic plate. Hence the angular resolution of a 

telescope is a^om’ order minimum angle for destructive interference, 

i.e. referring to Section 7.4; 

1.22A 
Limit of resolution = ~ sin ^—. 

Clearly, the greater is the aperture of a telescope, the smaller is the limit of 

resolution and this explains why astronomical telescopes in particular are 

constructed with objective mirrors with as large a diameter as possible. 

These considerations are also relevant to an estimation of the limit of 

resolution of cameras in which the dimension x of the Airy disc depends, 

additionally, on the focal length of the telescope or camera objective, /, the 

radius or half-diameter x/2 being given approximately by x/2 =/sin (Fig. 

7.11). Substituting from above gives x = 2AA\{f/d). The ratio if/d) is called 

the /-number and is the important number engraved on camera lenses and the 

like. For blue-green light A = 0.5 fim and therefore x is roughly equal to the 

/-number expressed as micrometres. ‘Stopping down’ a camera lens (i.e. increas¬ 

ing the /-number) means increasing the size of the Airy disc. How important this 

is (in comparison with other factors such as the depth of field) depends upon the 

relation between the size of the Airy disc and the ‘grain size’ of the photo¬ 

graphic film. Clearly, deterioration in image sharpness will only begin to occur 

when the Airy disc becomes (roughly) equal to the grain size. 

The diffraction-limited resolution of the microscope can be treated in the 

same way as for a telescope—by considering the separation between the Airy 

discs of two closely separated point sources of light in the object plane and 

Fig. 7.11. The formation of the Airy disc in the focal plane of a telescope or camera. The 

half-diameter x/2 (shown much exaggerated) is given by / sin . Only two incident rays are 
shown for which the path difference is A/2 (compare with Fig. 7.8(b)). 
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situated of course close to the front focal plane of the objective rather than (as 

in the telescope) a long distance away. In doing so a simplifying assumption may 

be made that the two point sources are entirely independent, or rather that they 

are incoherent with one another and hence that there is no interference 

between them. This assumption is obviously invalid—microscopical specimens 

do not consist of independent points of light of different intensities across their 

surfaces. It is more reasonable to assume that the specimen is illuminated with 

coherent light and that interference occurs between the light waves diffracted at 

the light/dark regions across the specimen surface. In this case the simplest 

type of specimen to consider is a narrow-slit diffraction grating consisting of slits 

spaced a apart and the limit of resolution is simply the limit at which the 

microscope objective can resolve the slits, i.e. the limit at which it can form an 

image of the grating. This, essentially, was the approach of Ernst Abbe* *, the 

optical designer for Carl Zeiss. It turns out (from a much more rigorous 

analysis) that the expressions for the limit of resolution of the microscope are 

formally identical irrespective of the assumptions made about the nature of the 

illumination or self-illumination of the specimen, but the Abbe approach serves 

to emphasize the physical principles involved in image formation in a more 

direct and comprehensible way. 
The Abbe criterion is as follows: in order for the microscope to form an image 

of the specimen (i.e. in order to resolve the slits or lines of a grating), at least 

two beams (usually the direct beam and the first order diffracted beam) should 

enter the objective lens. This situation is shown in Fig. 7.12. The specimen/ 

grating is illuminated with a parallel beam of light (from a distant source or a 

sub-stage condenser in which the aperture diaphragm is almost fully closed) and 

the first order diffracted beams (on either side of the direct beam) are just 

collected by the objective lens. 

-►- 

Incident ' Diffraction 
beam ^grating 

(Primary) image 
plane 

lens 
object 

Fig. 7.12. Image formation in the light microscope. The direct and diffracted beams enter the 

objective lens and are focused to form a diffraction pattern in its (back) focal plane (compare 

with Fig. 7.6). The rays ‘continue on their way’ to form an image by the recombination of the 
diffracted light, e.g. incident ray X is separated into z (direct) and y (diffracted) light; these two 

rays recombine in the image plane. 

* Denotes biographical notes available in Appendix 3. 
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These parallel beams are then focused by the objective lens to give diffraction 

spots which are situated, as shown, in its back focal plane (a screen placed here 

would record this diffraction pattern, just as shown in Fig. 7.6). However, the 

beams or rays continue on their way and intersect, as shown, to form the 

(primary) image, (which is then magnified by the eyepiece or photographic 

projection lens). The important point is that the image is formed by the 

recombination of light which was separated at the specimen by diffraction. 

Consider, for example, the incident beam marked X (Fig. 7.12); this is separated 

by diffraction into z (direct beam) and y (diffracted beam). These two beams 

then contribute to the separate (zero and first order) diffraction spots, but then 

continue on their way to be reunited or recombined and, as Abbe pointed out, it 

is this recombination that constitutes an image. The greater the number of 

diffracted beams which are collected by the objective lens and thence recom¬ 

bined, the closer the image approximates to the object, but the limit of 

resolution is determined by the criterion that at least two beams should enter 

the objective. 
Hence, for the case of normal incidence, in which the direct and two first 

order beams enter the objective lens (Fig. 7.13(a)), the limit of resolution is 

simply obtained from the equation derived in Section 7.4, i.e. lA = asin aj = 

flsini, i.e. the limit of resolution a = A/sin i, where i is the semi-angle of the 

objective lens subtended at the specimen which is set equal to ctj, the angle 

between the direct and first order diffracted beams. 

This equation can be modified in several ways. First the Airy correction factor 

1.22 may be included to account for the circular symmetry of the objective lens. 

Second, the space between the specimen and objective lens may be filled with 

immersion oil of refractive index n, which is simply the ratio of the wavelength 

A of light in air (or vacuum) and the wavelength A' in the oil, i.e. by definition 
n = A/A'. Including these factors gives 

1.22 A' 1.22 A 
a = —:-=-. 

sin i n sin i 

The important quantity n sin i in this equation is called the numerical aperture 

(NA) and fulfils, in effect, the same role with respect to the microscope as the 

diameter d of the objective lens/mirror with respect to the telescope. 

Finally, Fig. 7.13(a) shows an over-fulfilled case in which, because the incident 

beam is normal to the specimen and axial with the microscope, two diffracted 

beams, as well as the direct or zero order beam, enter the objective. Fig. 7.13(b) 

shows the situation in which the incident beam is inclined such that the zero 

order beam passes through one edge of the objective lens and one diffracted 

beam passes through the opposite edge. The angle between them is now double 
that previously so that the limit of resolution is halved, i.e. 

0.61A 0.61A 
a =-=-. 

n sin i NA 
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Fig. 7.13. The Abbe criterion for the limit of resolution of an objective lens of semi-angular 
aperture i. (a) Normal incidence, parallel light (condenser diaphragm closed down); the direct 
and two first-order beams enter the objective and contribute to the image; (b) as (a) but 
inclined incidence; the direct beam and just one first-order beam at angle 2i enter the 
objective and contribute to the image; (c) the practical arrangement for maximum resolving 
power; the condenser diaphragm is opened to pass a cone of light of semi-angle i to fulfil, at 
all angles, the geometrical requirements for the limit of resolution as in (b). 

This situation is effectively brought about when the aperture diaphragm in the 

condenser lens is opened out to give a highly convergent beam of light on the 

specimen of semi-angle i equal to the semi-angle or aperture of the objective 

lens (Fig. 7.13(c)). 
The Abbe criterion applies equally to light microscopes and electron micro¬ 

scopes. The enormous decrease in the limit of resolution obtainable in the 

transmission electron microscope arises because of the much smaller values of A 

for electrons (typically 4 pm for 100 kV instruments compared with light 

(typically 500 nm)). This (approximate) 100000 decrease is however offset 

because of the high inherent spherical aberrations in electron lenses which limit 

NA values to the order of 0.01 compared with NA values up to 1.4 for oil 

immersion light objectives. 

Exercises 

7.1 Figure 7.14(a) shows a net with a single twin and the corresponding diffraction 

pattern (optical transform) and Fig. 7.14(b) shows a net with several twins and the 
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Fig. 7.14. (a) A net with a single twin, and (b) a net with several twins and their corre¬ 
sponding diffraction patterns (from Atlas of Optical Transforms by G. Harbum, C. A. Taylor 
and T. R. Welberry, Bell & Hyman, 1983, an imprint of HarperCollins Publishers Ltd.) 

corresponding diffraction pattern (see Figs. 1.18, 1.20 and 4.4(b)). Using a tracing 

paper overlay on the diffraction pattern in Fig. 7.14(a), outline the reciprocal lattice 

unit cells of the two twin orientations and note those reciprocal lattice points which 

are common to both twin orientations. 

The diffraction pattern in Fig. 7.14(b) is similar to that in Fig. 7.14(a) except that 

some of the spots are streaked in a direction perpendicular to the twin plane. 

Explain this streaking qualitatively after you have read Section 9.3. 

7.2 With reference to Fig. 7.7(c), describe the diffraction pattern which you would 

obtain with a diffraction grating in which the slit width d is equal to half the slit 
spacing a. 

7.3 Using de Broglie’s equation, derive a simple equation for the (non-relativistically 

corrected) wavelength A of electrons in the electron microscope in terms of m, e 

(electron mass and charge) and V the microscope accelerating voltage. Given the 

following values of m (rest mass) = 9.11 X 10“^^ kg, e (electron charge) = 1.6 X 

10“*® C, and h (Planck constant) = 6.63 X 10“^'* Js, determine A for F=10 kV, 
100 kV and 1 MV. 
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X-ray diffraction: the 
contributions of Max von Laue, 

W. H. and W. L. Bragg and 
P. P. Ewald 

8.1 Introduction 

The experimental technique which has been of the greatest importance in 

revealing the structure of crystals is undoubtedly X-ray diffraction. 

The story of the discovery of X-ray diffraction in crystals by Laue*, Friedrich 

and Knipping in Munich in 1912 and the development of the technique by W. H. 

Bragg* and W. L. Bragg* in Leeds and Cambridge in the years preceding the 

First World War is well known. But why did the Braggs make such rapid 

advances in the analysis of X-ray diffraction photographs in comparison with 

Laue and his co-workers? An important factor in the answer seems to be that 

Laue envisaged crystals in terms of a three-dimensional network of rows of 

atoms and based his analysis on the notion that the crystal behaved, in effect, as 

a three-dimensional diffraction grating. This approach is not wrong, but it is in 

practice rather clumsy or protracted. On the other hand, the Braggs (and here 

the credit must go to W. L. Bragg, the son) envisaged crystals in terms of layers 

or planes of atoms which behaved in effect as reflecting planes (for which the 

angle of incidence equals the angle of reflection), strong ‘reflected’ beams being 

produced when the path differences between reflections from successive planes 

in a family is equal to whole number of wavelengths. This approach is not 

correct in a physical sense—planes of atoms do not reflect X-rays as such—but 

it is correct in a geometrical sense and provides us with the beautifully simple 

expression for the analysis of crystal structure: 

n\ = sin 6, 

where A is the wavelength, n is the order of reflection, is the lattice plane 

spacing and 6 is the angle of incidence/reflection to the planes. 

What led W. L. Bragg to this novel perception of the diffraction? Simply his 

observation of the elliptical shapes of the diffraction spots, which he noticed 

were also characteristic of the reflections from mirrors of a pencil-beam of light 

(see the Laue photograph on p. xii). Only connect! 
Finally, we come to the contribution of P. P. Ewald*, a physicist who never 

* Denotes biographical notes available in Appendix 3. 



126 X-ray diffraction 

achieved the recognition that was his due. The story is briefly recorded in his 

autobiographical sketch in 50 Years of X-ray Diffraction. Ewald was a doctorand 

—a research student working in the Institute of Theoretical Physics in the 

University of Munich under Professor A. Sommerfeld. The subject of his thesis 

was ‘To find the optical properties of an anisotropic arrangement of isotropic 

oscillators’. In January 1912, while he was in the final stages of writing up his 

thesis, he visited Max von Laue, a staff member of the Institute, to discuss some 

of the conclusions of his work. Ewald records that Laue listened to him in a 

slightly distracted way and insisted first on knowing what was the distance 

between the oscillators in Ewald’s model; perhaps 1/500 or 1/1000 of the 

wavelength of light, Ewald suggested. Then Laue asked ‘what would happen if 

you assumed very much shorter waves to travel through the crystal?’. Ewald 

turned to Paragraph 6, Formula 7, of his thesis manuscript, saying ‘this formula 

shows the results of the superposition of all wavelets issuing from the res¬ 

onators. It has been derived without any neglection or approximation and is 

therefore valid also for short wavelengths.’ Ewald copied the formula down for 

Laue shortly before taking his leave, saying that he, Laue, was welcome to 

discuss it. Laue’s question, of course, arose from his intuitive insight that if 

X-rays were waves and not particles, with wavelengths very much smaller than 

light, then they might be diffracted by such an array of regularly spaced 

oscillators. 
The next Ewald heard of Laue’s interest was through a report which 

Sommerfeld gave in June 1912 on the successful Laue-Friedrich-Knipping 

experiments. He realized that the formula which he had copied down for Laue, 

and which Laue had made no use of, provided the obvious way of interpreting 
the geometry of the diffraction patterns—by means of a construction which he 

called the reciprocal lattice and a sphere determined by the mode of incidence 

of the X-rays on the crystal (the Ewald or reflecting sphere). Ewald’s interpreta¬ 

tion of the geometry of X-ray diffraction was not published until 1913, by which 

time rapid progress in crystal structure analysis had already been made by W. H. 
and W. L. Bragg in Leeds and Cambridge. 

8.2 Laue’s analysis of X-ray diffi^action: 
the three Laue equations 

Laue’s analysis of the geometry of X-ray diffraction patterns has been referred 

to in Section 8.1. What follows is a much simplified treatment which does not 

take into consideration Laue’s interpretation of the origin of the diffracted 
waves from irradiated crystals. 

Consider a simple crystal in which the motif is one atom and the atoms are 

simply to be regarded as scattering centres situated at lattice points. The more 

general situation in which the motif consists of more than one atom and in 

which the different scattering amplitudes of the atoms and the path differences 

between the atoms have to be taken into account is discussed in Section 9.2. The 

crystal may be considered to be built up of rows of atoms in three dimensions; 
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Fig. 8.1. (a) Diffraction from a lattice row along the ^r-axis. The incident and diffracted 

beams are at angles ag and a„ to the row. The path difference between the diffracted 

beams = (AB - CD), (b) The incident and diffracted beam directions and the path difference 
between the diffracted beams as expressed in vector notation. 

rows of atoms of spacing a along the x-axis, of spacing b along the y-axis and of 

spacing c along the z-axis. Consider first of all the condition for constructive 

interference for the waves scattered from the row of atoms along the x- 

axis—which may simply be reduced to a consideration of the path differences 

between waves scattered from adjacent atoms in the row (Fig. 8.1(a)). 

For constructive interference the path difference (AB - CD) must be a whole 

number of wavelengths, i.e. 

(AB — CD) = fl(cos — cos Uq) = n^X 

where , Ug are the angles between the diffracted and incident beams to the 

x-axis, respectively, and is an integer (the order of diffraction). 

This equation, known as the first Laue equation, may be expressed more 

elegantly in vector notation. Let s, Sg be unit vectors along the directions of the 

diffracted and incident beams, respectively, and let a be the translation vector 

from one lattice point (or atom position) to the next [Fig. 8.1(b)]. The path 

difference a(cos — cos ug) may be represented by the scalar product a-s — 

a • Sg = a • (s — Sg). Hence the first Laue equation may be written 

u(cos — cos Ug) = a '(s — Sg) = n^A. 

Now Fig. 8.1 is misleading in that it only shows the diffracted beam at angle 

below the atom row—but the same path difference obtains if the diffracted 

beam lies in the plane of the paper at angle a„ above the atom row—or indeed 

out of the plane of the paper at angle to the atom row. Hence all the 

diffracted beams with the same path difference occur at the same angle to the 

atom row, i.e. the diffracted beams of the same order all lie on the surface of a 

cone—called a Laue cone—centred on the atom row with semi-apex angle 

This situation is illustrated in Fig. 8.2 which shows just three Laue cones with 

semi-apex angle Ug (zero order, = 0), semi-apex angle a-^ (first order, = 1) 

and semi-apex angle 0:2 (second order, = 2). Clearly there will be a whole set 

of such cones with semi-apex angles a„ varying between 0° and 180°. 

The analysis is now repeated for the atom row along the y-axis, giving the 

second Laue equation: 

Z?(cos - cos )8g) = b • (s - Sg) = n^A, 
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Fig. 8.2. Three Laue cones representing the directions of the diffracted beams from a lattice 

row along the x-axis with OA (n^ = 0), lA (n^ = 1) and 2 A (n^ = 2) path differences. 

and for the atom row along the z-axis giving the third Laue equation: 

c(cosy„ - cos yg) = c - (s - Sg) = n^\, 

where the angles )8g, yg and the integers and are defined in the 

same way as for ag and n^. 

Now, for constructive interference to occur simultaneously from all three 

atom rows, all three Laue equations much be satisfied simultaneously. This is 

equivalent to the geometrical condition that diffracted beams only occur in 

those directions along which three Laue cones, centred along the x-, y- and 

z-axes, intersect. Each diffracted beam may be identified by three integers n^, 

Hy and which, as pointed out above, represent the order of diffraction from 

each of the atom rows. We shall find in Section 8.3 that these integers are 

simply h, k and / Laue indices (see Section 5.5) of the reflecting planes in 
the crystal. 

8.3 Bragg’s analysis of X-ray diffraction: Bragg’s law 

Laue’s analysis is in effect an extension of the idea of a diffraction grating to 

three dimensions. It suffers from the severe practical disadvantage that in order 

to calculate the directions of the diffracted beams, a total of six angles a„, ctg. 
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Fig. 8.3. (a) Bragg’s law for the case of a rectangular grid, i.e. AB = BC = sin 9; the path 
difference (AB -f BC) = sin 6. (b) Bragg’s law for the general case in which AB BC. 
Again, the path difference (AB + BC) = sin 9. 

I3„, Pq and y„, ygi three lattice spacings a, b and c, and three integers n^, 

and need to be determined. As discussed in Section 5.5, W. L. Bragg 

envisaged diffraction in terms of reflections from crystal planes giving rise to the 

simple relationship (Bragg’s law, derived below): 

nX = 2df,j^i sin d. 

It can be seen immediately, by comparing the Laue equations with Bragg’s law, 

that the number of variables needed to calculate the directions of the diffracted 

beams are much reduced. 

Bragg’s law may be derived with reference to Fig. 8.3(a) which shows (as for 

the derivation of the Laue equations) a simple crystal with one atom at each 

lattice point. The path difference between the waves scattered by atoms from 

adjacent ihkl) lattice planes of spacings is given by 

(AB + BC) = sin d + df^^i sin 0) = sin 6. 

Hence for constructive interference: 

n\ = 2diji^i sin 6, 

where n is an integer (the order of reflection or diffraction). 

As explained in Section 5.5, n is normally incorporated into the lattice plane 

symbol, i.e. 

I ^hkl \ 
A = 2| — jsin 0 = sin d 

where nhnknl are the Laue indices for the reflecting planes of spacing df^/^i/n. 

Figure 8.3(a) represents a particularly simple geometrical situation in which 

the lattice is shown as a rectangular grid and the atoms are symmetrically 

disposed with respect to the incident and diffracted beam, i.e. AB = BC. Figure 

8.3(b) shows a more general situation in which the lattice is not rectangular and 

the distance AB does not equal BC. However, the sum (AB + BC) is unchanged 

and is again equal to 2df^^, sin d. The important point is that Bragg’s law applies 

irrespective of the positions of the atoms in the planes; it is solely the spacing 

between the planes which needs to be considered. It follows as a corollary that 

the path difference between the waves scattered by the atoms in the same plane 
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reflecting plane 

Fig. 8.4. Bragg’s law expressed in vector notation. Vectors (s - Sq) and are parallel and 
the ratio of the moduli is A. Henee Bragg’s law is expressed as (s - So)/A = 

is zero—i.e. all the waves scattered from the same place interfere constructively. 

Finally, note that (unlike the Laue equations), Bragg’s law is wholly represented 

in two dimensions: the incident and diffracted beams and the normal to the 

reflecting planes (Fig. 8.3) all lie in a plane—i.e. the plane of the paper. 

Bragg’s law may also be expressed in vector notation. Again, let s, Sq be unit 

vectors along the directions of the diffracted and incident beams, then (with 

reference to Fig. 8.4) the vector (s - Sq) is parallel to the reciprocal lattice 

vector of the reflecting planes. Comparing the moduli of these vectors |s — SqI = 

2sin 9 and it is seen from Bragg’s law that their ratio is simply A. 
Hence Bragg’s law may be written: 

(S - Sq) 

A 
= d^^, = ha* + kb* + Ic*. 

Hence constructive interference occurs, or Bragg’s law is satisfied when the 

vector (s - So)/A coincides with the reciprocal lattice vector djf^, of the reflect¬ 
ing planes. 

The vector form of Bragg’s law may be combined with each of the three Laue 
equations: i.e. for the first Laue equation: 

a -(s — Sq) = n^A = a • djf^^ • A = a ‘(ha* + kh* + lc*)\. 

Hence n^ = h (since a • a* = 1, a • b* = 0, etc), and similarly ny = k and n^ = l 
for the other Laue equations. The integers n^, and of the Laue equations 
are simply the Laue indices h,k,l of the reflecting planes. 

Bragg’s law, like Newton’s laws, and all such uncomplicated expressions in 

physics, is deceptively simple. Its applicability and relevance to problems in 

X-ray and electron diffraction only unfold themselves gradually (to teachers and 

students alike!). Newton was once asked how he made his great discoveries: he 

replied ‘by always thinking unto them’. The student of crystallography could do 
no better with respect to Bragg’s law! 

8.4 Ewald’s synthesis: the reflecting sphere construction 

Ewald s synthesis is a geometrical formulation or expression of Bragg’s law 

which involves the reciprocal lattice and a ‘sphere of reflection’. It is best 

illustrated and understood by way of an example. Consider a crystal with the 

(hkl) reflecting planes (Laue indices) at the correct Bragg angle (Fig. 8.5). The 
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Fig. 8.5. The Ewald reflecting sphere construction for a set of planes at the correct Bragg 
angle. A sphere (the Ewald or. reflecting sphere) is drawn, or radius 1 /A with the crystal at the 
centre. The vector OB is identical to The origin of the reciprocal lattice is fixed at O and 

the reciprocal lattice point hkl intersects the sphere at the exit point of the diffracted beam. 

reciprocal lattice vector is also shown. Now draw a sphere (the reflecting or 

Ewald sphere) of radius 1/A (where A is the X-ray wavelength) with the crystal 

at the centre. Since Bragg’s law is satisfied it may be shown that the vector OB 

(from the point where the direct beam exits from the sphere to the point where 

the diffracted beam exits from the sphere^ is identical to i.e. from the 

friangle AOC, |OCl = (1/A)sin 0 = (1 /2) |djf^,| = 1 i.e. A = sin 6. 

Hence, if the origin of the reciprocal lattice is shifted from the centre of the 

sphere (A) to the point where the direct beam exits from the sphere (O), then 

OB = d,*,, and Bragg’s law is equivalent to the statement that the reciprocal 

lattice point for the reflecting planes (hkl) should intersect the sphere; the 

diffracted beam direction being given by the vector AB—i.e. the line from the 

centre of the sphere to the point where the reciprocal lattice point djf^/ 

intersects the sphere. Conversely, if the reciprocal lattice point does not inter¬ 

sect the sphere then Bragg’s law is not satisfied and no diffracted beams occur. 

Figure 8.5 shows the construction of just one reflecting plane and one 

reciprocal lattice point. It is a simple matter to extend it to all the reciprocal 

lattice points in a crystal. Fig. 8.6(a) shows a section of the reciprocal lattice of a 

monoclinic crystal perpendicular to the b* reciprocal lattice vector (i.e. the 

y-axis—see Fig. 6.2(b)). All the reciprocal lattice points in this section have 

indices of the form hQl. An incident X-ray beam is directed along the a* 

reciprocal lattice vector (i.e. along a direction in the crystal perpendicular to the 

y- and z-axes—see Fig. 6.2(a)). The centre of the reflecting sphere is at a 

distance 1/A from the origin of the reciprocal lattice along the line of the 

incident beam: note again that the origin of the reciprocal lattice is not at the 

centre of the sphere but is at the point where the direct beam exits from 

the sphere. 
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202 102 002 

212 112 012 

Fig. 8.6. The Ewald reflecting sphere construction for a monoclinic crystal in which the 
incident X-ray beam is directed along the a* reciprocal lattice vector, (a) Shows the Ml 
reciprocal lattice section (through the origin and perpendicular to the b* reciprocal lattice 
vector or y-axis—see Fig. 6.2(c) and Fig. 6.3) and a diametral section of the reflecting sphere 
radius 1/A. The 201 reciprocal lattice point intersects the sphere and the direction of the 201 
reflected beam is indicated, (b) Shows the hll reciprocal lattice section (i.e. the layer ‘above’ 
the Ml section) and the smaller, non-diametral section of the reflecting sphere. The 211 
reciprocal lattice point intersects the sphere, the direction of the 211 reflected beam is 
‘upwards’ from the centre of the sphere (in the hOl section below) through the 211 reciprocal 
lattice point as indicated by the arrow-head. 

In the section shown, Fig. 8.6(a), the reflecting sphere intersects the 201 

reciprocal lattice point: hence the only plane for which Bragg’s law is satisfied is 

the (201) plane and the direction of the 201 reflected beam is as indicated. 

Figure 8.6(a) only shows one layer or section of the reciprocal lattice (through 

the origin) and a (diametral) section of the reflecting sphere. But the reciprocal 

lattice sections above and below the plane of the page need to be taken into 

account and also the smaller non-diametral sections of the reflecting sphere 

which intersects them. Fig. 8.6(b) shows the ‘next layer above’ ox hll section of 

the reciprocal lattice (see Fig. 6.3) and the smaller, non-diametral section of the 

reflecting sphere which it intersects. Notice that this section of the sphere does 
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not pass through 010 (the reciprocal lattice point immediately ‘above’ the origin 

000). The sphere intersects the 2ll reciprocal lattice point, hence the (2ll) 

plane also satisfies Bragg’s law and the direction of the 211 reflected beam is 

from the centre of the sphere (which is not the point in the centre of this 

smaller circle but the point in the centre of the sphere in the reciprocal lattice 

section below—Fig. 8.6(a)) and the 211 reciprocal lattice point. The reflected 

beam direction therefore cannot be drawn in Fig. 8.6(b) because it is directed 
upwards, out of the plane of the page. 

Clearly, the construction can be extended to other reciprocal lattice sections, 

i.e. through the h2l,h3l, etc. sections (above); the hTl,h2l,h3l, etc. sections 

(below) and so on. The further the reciprocal lattice section is from the origin, 

the smaller is the section of the reflecting sphere which it intersects. In the 

example above, the sphere oidy intersects the hOl section (Fig. 8.6(a)), the hll 

section (Fig. 8.6(b)) and the hll section (below), but no more. Hence only these 

sections, and the reciprocal lattice points within them, need to be considered. 

In Fig. 8.6 the relative sizes of the reciprocal lattice and the sphere happen to 

be such that just one reciprocal lattice point in each section intersects the 

sphere. Clearly if the diameter of the sphere were made a little larger (i.e. the 

X-ray wavelength was made a little smaller) then no reciprocal lattice points 

would intersect the sphere and no planes in the crystal would be at the correct 

Bragg angle for reflection; if the diameter of the sphere were continuously made 

larger (or smaller) than that shown in Fig. 8.6 then other planes would reflect as 

their reciprocal lattice points successively intersected the sphere. This is the 

basis of Laue’s original X-ray experiment; ‘white’ X-radiation was used which 

contains a range of wavelengths, which correspond to a range or ‘nest’ of 

spheres of different diameters. Any plane whose reciprocal lattice point falls 

within this range will therefore satisfy Bragg’s law for one particular wavelength. 

The situation is illustrated in Fig. 8.7, again for the hOl reciprocal lattice 

section of the monoclinic crystal shown in Fig. 8.6(a). The shaded region 

indicates a ‘nest’ of spheres with diameters in the wavelength range from largest 

wavelength (smallest sphere diameter) to smallest wavelength (largest sphere 

diameter). All the planes whose reciprocal lattice points lie within this region 

satisfy Bragg’s law for the particular sphere on which they lie. 

The Laue technique is unique in that it utilizes white X-radiation. All the 

others utilize monochromatic or near-monochromatic (K^) X-radiation. In 

order to obtain diffraction, therefore, the crystal and the sphere (of a fbced 

diameter) must be moved relative to one another; whenever a reciprocal lattice 

point touches the sphere then ‘out shoots’ a diffracted (or reflected) beam from 

the centre of the sphere in a direction through the reciprocal lattice point. As 

described in Chapter 9 there are several ways in which these relative movements 

may be achieved in practice and several ways in which the diffracted beams may 

be recorded. The crystal may be oscillated (oscillation method), processed 

(precession method), the film may be arranged cylindrically round the crystal or 

flat, it may be stationary or it may be moved in some way as in the Weissenberg 

method (in which the cylindrical film movement is linked to the oscillation of 

the crystal) or, as in the precession method, processed with the crystal. The 
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Fig. 8.7. The Ewald reflecting sphere construction for the hQl reciprocal lattice section of the 

monoclinic crystal shown in Fig. 8.6(a) for the ‘white’ X-radiation, i.e. for a range of 
wavelengths from the smallest (largest sphere) to the largest (smallest sphere) giving rise to a 
‘nest’ of spheres (shaded region) all passing through the origin. The 102, 201, 200 and 201 
reciprocal lattice points lying within this region satisfy Bragg’s law, each for the particular 

wavelength or sphere which they intersect. The directions of the reflected beams from these 
planes are indicated by the arrows. 

geometry of these X-ray diffraction methods may appear to be complicated, but 

the basis of them all—the Ewald reflecting sphere construction—is the same. 

Exercises 

8.1 Compare Figs 7.5 and 8.3; both show conditions for constructive interference, one 

for light at a diffraction grating with line spacing a (Fig. 7.5) and one for X-rays 

reflected from planes of spacing Show that the equations describing the 

conditions for constructive interference in each case (nA = asina„ and n\ = 
sin 6) are equivalent. 

8.2 Iron (bee, a = 0.2866 nm (2.866 A)) is irradiated with CrKa X-radiation (A = 0.2291 

nm (2.291 A)). Find the indices [hkl] and tf-spacings of the planes which give rise to 
X-ray reflections. 

{Note: In body-centred lattices, reflection from planes for which {h + k + l) does 

not equal an even integer are forbidden (see Appendix 6).) 

{Hint: Prepare a table listing the indices and rf-spacings of the allowed reflecting 

planes in order of decreasing rf-spacings and determine the 0 angles for reflection 
using Bragg’s law.) 

8.3 It is stated without proof with respect to Bragg’s law that when the atoms are not 

symmetrically disposed to the incident and reflected beams (Fig. 8.3(b)), the path 

difference (AB -I- BC) = 2rfy,^, sin 9. Prove, using very simple geometry, that this is 
indeed the case. 
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The diffraction of X-rays and 
electrons 

9.1 Introduction 

In Chapter 8, the Lane equations and Bragg’s law were derived on the basis that 

single atoms, of unspecified scattering power, were situated at each lattice point. 

Now we need to consider the physics of the scattering process. Since it is almost 

exclusively the electrons in atoms which contribute to the scattering of X-rays 

we have to sum the contributions to the scattered amplitude of all the electrons 

in all the atoms in the crystal, a problem which may be approached step-by-step. 

First the scattering amplitude of a single electron and the variation in scattering 

amplitude with angle is determined. Then the scattering amplitude of an atom is 

determined by summing the contributions from all Z electrons (where Z = the 

atomic number of the atom)—the summation taking into account the path or 

phase differences between all the Z scattered waves. The result of this analysis 

is expressed by a simple number, /, the atomic scattering factor, which is the 

ratio of the scattering amplitude of the atom divided by that of a single 

(classical) electron, i.e. 

amplitude scattered by atom 
atomic scattering factor /=--—;-—-^;—;-. 

amplitude scattered by a single electron 

At zero scattering angle, all the scattered waves are in phase and the scattered 

amplitude is the simple sum of the contribution from all Z electrons, i.e. f=Z. 

As the scattering angle increases, / falls below Z because of the increasingly 

destructive interference effects between the Z scattered waves. Atomic scatter¬ 

ing factors / are plotted as a function of angle (usually expressed as sin d/X). 

Figure 9.1 shows such a plot for the oxygen anion 0^“, the neon atom Ne, and 

the silicon cation Si"*"^—all of which contain 10 electrons. When sin d/X = 0, 

/= 10 but with increasing angle / falls below 10. The extent to which it does 

depends upon the relative sizes of the atoms or ions; the silicon cation is small, 

hence the phase differences are small and the destructive interference between 

the scattered waves is least—and conversely for the large oxygen anion. 

The scattering amplitude of a unit cell is determined by summing the 

scattering amplitudes, /, from all the atoms in the unit cell (equivalent, in the 

case of a primitive unit cell), to all the atoms in the motif. Again, the summation 

must take into account the path or phase differences between all the scattered 
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Fig. 9.1. The variation in atomic scattering factor / with scattering angle (expressed as 
sin 0/A) for atoms and ions with ten electrons. Note that the decrease in / is greatest for the 

(large) anion and least for the (small) Si"*"^ cation. 

waves and is again expressed by a dimensionless number, the structure 
factor, i.e. 

amplitude scattered by the atoms in the unit cell 
structure factor Ff.,,i=--—;-—-^—;-;- 

amplitude scattered by a single electron 

^hkl must not only express the amplitude of scattering from a reflecting plane 
with Laue indices hkl but must also express the phase angle of the scattered 
wave. ^hkl is therefore not a simple number, like /, but is represented as a 
vector or mathematically as a complex number (see Appendix 5). 

Crystal structure determination is a two-part process: (a) the determination of 
the size and shape of the unit cell (i.e. the lattice parameters) from the geometry 
of the diffraction pattern and (b) the determination of the lattice type and 
distribution of the atoms in the structure from the (relative) intensities of the 
diffraction spots. Part (a) is in principle a straightforward process; part (b) is not, 
because films and counters record intensities which are proportional to the 
squares of the amplitudes. The square of a complex number, is always real 
(i.e. a simple number) and hence the information about the phase angles of the 
diffracted beams is lost. A major problem in crystal structure determination is, 
in effect, the recovery of this phase information and requires for its solution as 
much insight and intuition as mathematical and crystallographic knowledge. A 



9.1 Introduction 137 

graphic account of the problems involved in the epoch-making determination of 

the structure of DNA is given by one of those most closely involved, James D. 

Watson, in his book The Double Helve (see Further Reading). 

The distinction between the direction-problem and intensity-problem of 

diffracted beams from crystals has its corollary in the diffraction of light from 

diffraction gratings, which may be expressed as follows. A (primitive) crystal with 

one atom per lattice point (Fig. 9.2(a)) may be regarded as being analogous to a 

‘narrow slit’ diffraction grating in which each slit can be regarded as the source 

of a single Huygens’ wavelet which propagates uniformly in all directions (Fig. 

7.5). Only the interference effects of light emanating from different slits (equiv¬ 

alent to single atoms at lattice points) need to be taken into account and these 

determine the directions of the diffracted beams (Section 7.4). The intensities of 

the diffracted beams are proportional to the squares of the scattered amplitudes 

of the Huygens’ wavelets (for light) or the squares of the atomic scattering 

factors of the single atoms (for X-rays). 

A (primitive) crystal with a motif consisting of more than one atom (Fig. 

9.2(b)) may be regarded as being analogous to a ‘wide slit’ diffraction grating in 

which the interference effects from all the atoms in the motif may be regarded 

as being analogous to the interference effects between all the Huygens’ wavelets 

distributed across each slit. Of course, the problem is rather more complicated 

because the atoms in the motif do not all lie in a plane or surface as do the 

Huygens’ wavelets, but the principle—of summing the contributions with re¬ 

spect to phase differences—is the same. 

As shown in Section 7.4 and Fig. 7.7, the diffraction pattern from a wide-slit 

diffraction grating may be expressed as that from a narrow-slit grating in which 

the intensities of the diffracted beams are modulated by the intensity distribu¬ 

tion predicted to occur from a single wide slit. Similarly, in the case of X-ray 

diffraction from crystals it is the structure factor, which expresses the 

interference effects from all the atoms in the unit cell and which modulates, in 

effect, the intensities of the diffracted beams. 

The final step is to sum the contributions from all the unit cells in the crystal. 

This is a difficult problem because we have to take into account the fact that the 

incident X-ray beam is attenuated as it is successively scattered by the atoms in 

the crystal—such that atoms ‘deeper down’ in the crystal encounter smaller 

amounts of incident radiation. Furthermore, the reflected beams also propagate 

through the crystal at the Bragg angle 6 (see Fig. 9.2(c)) and are hence 

‘re-reflected’ in a direction parallel to that of the incident beam. These re¬ 

reflected beams then interfere destructively* with the incident or direct beam, 

attenuating it still further. This is covered in a comprehensive analysis, known as 

the dynamical theory of X-ray diffraction because it takes into account the 

dynamical interactions between the direct, reflected and re-reflected, etc., 

beams. It is much simpler to consider the case in which the size of the crystal is 

* When considering the interference between the direct and re-reflected beams, the 180° or tt 

phase difference of the re-reflected beams needs to be taken into account. This complication does 
not arise when we are considering interference between the reflected or diffracted beams alone. 
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sufficiently small such that the attenuation of the direct beam is negligible and 

the intensities of the diffracted beams are small in comparison with the direct 

beam*. This case is fairly readily achieved in X-ray diffraction and enables the 

observed relative intensities of the diffracted spots to be assumed to be equal to 

the relative intensities of the squares of the values^ In electron diffraction, 

however, dynamical effects are always important and the above assumption 

cannot be made, but they are an important source of specimen contrast in the 

electron microscope. 
Finally, we have to consider the connection between the diffraction pattern 

and the type of unit cell (whether it is centred or not) and the symmetry 

elements present. It turns out that the presence of the centring lattice points 

and translational symmetry elements (glide planes and screw axes—see Section 

4.5) results in ‘zero intensity’ or systematically absent reflections from certain 

planes with Laue indices hkl. This topic, and that of double diffraction, which is 

of particular importance in the case of electron diffraction, are discussed in 

Appendix 6. 

9.2 The intensities of X-ray diffracted beams: the 
structure factor equation and its applications 

We shall begin by considering the simplest case of a primitive crystal with just 

one atom at each lattice point. Figure 9.2(a) shows part of such a crystal with 

atoms with atomic scattering factor /q at each lattice point (the subscript 0 
indicating that each atom is at an origin). Consider an X-ray beam incident at 

the correct Bragg angle 0 in a particular set of lattice planes {hkl) as indicated. 

For all the atoms lying in one plane the path differences between the reflected 

beams are zero, and for the atoms lying in successive planes spaced 2d^^i 

etc. apart the path differences are A, 2 A etc. (Fig. 8.3). In all cases constructive 

interference occurs and the total scattered amplitude (relative to that of a single 

electron—see Section 9.1) is simply the sum of the atomic scattering factors. 

Hence, since we have a primitive crystal with one lattice point and therefore one 

atom per unit cell, the scattered amplitude from one cell, F^^i, is simply equal to 

the atomic scattering factor, /q. 

Now consider a crystal with a motif consisting of two atoms, one at the origin 

with atomic scattering factor /q as before and another with atomic scattering 

factor /i at a distance from the origin defined by vector Fj (Fig. 9.2(b)); Fj is 

called a position vectoF because it specifies the position of an atom within the 

unit cell. It may be expressed in terms of its components or fractional coordi¬ 

nates along the unit cell vectors a, b, c in the same way as for a lattice vector 

*The crystal size in this context is better expressed by the notion of coherence length—the 
dimensions over which the scattering amplitudes from the unit cells can be summed. Crystal 
imperfections—dislocations, stacking faults, subgrain boundaries—within imperfect single crystals 
effectively limit or determine the coherence length as well as grain boundaries in perfect crystals. 

number of physical and geometrical factors also need to be taken into account—temperature 
factor, Lorentz-polarization factor, multiplicity factor, absorption factor, etc. These are described in 
standard textbooks such as Elements of X-ray Diffraction by B. D. Cullity, Addison-Wesley, 1978. 
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Fig. 9.2. (a) Part of a crystal lattice with atoms with atomic scattering factor /g, situated at 
each lattice point, and a particular set of {hkl) planes through the lattice points. Incident/ 
reflected beams at the Bragg angle d to these planes are indicated by the arrows, (b) As for 
(a), but with another atom with atomic scattering factor /j defined by position vector Fj. The 

path difference (shown for simplicity for one motif) is given by (AB - CD), s and Sg are unit 
vectors along the reflected and incident beam directions and the component of Fj perpendicu¬ 

lar to the ihkl) planes is also indicated, (c) The process of reflection and re-reflection for a 
single incident beam I; as it passes through the crystal at the Bragg angle B it is (partially) 

reflected by each successive plane. The reflected beams R are then re-reflected from the 

‘undersides’ of the planes giving rise to beams RR with interfere destructively with the direct 
beam D. Clearly, the process is repeated for all the beams throughout the crystal. 
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r„„^, i.e. r, = ^ v+ w^c\ the important difference being that the compo¬ 
nents Wj are fractions of the cell edge lengths, whereas the components 

uuw of a lattice vector are integers. 
The path difference (P.D.) between the waves scattered by these two atoms is 

AB - CD (Fig. 9.2(b)), which, expressed in vector notation, is: 

P.D. = AB - CD = rj • s - Tj • So = r, • (s - Sq) 

where s, Sq are unit vectors along the direction of the reflected and incident 
beams, respectively. Two substitutions can be made in this equation. First, 
may be expressed in terms of its components and second (since Bragg’s law is 
satisfied) the vector (s - Sg) may be expressed in terms of A and (see 

Section 8.3), i.e. 

(s — Sq) = = A(/ia* -t- kh* + Ic*). 

Hence 

P.D. = A(wja -t- yjb + Wjc) • (ha* + kh* + Ic*) 

multiplying out, and remembering the identities a • a* = 1 etc., a • b* = 0 etc.: 

P.D. = X(hu^ + kv^ + /wj). 

This equation is another manifestation of the Weiss zone law (Section 6.5.3); 
in this case the number within the brackets (hu^ +kv-^ +/wj) represents the 
component of Tj perpendicular to the lattice planes as a fraction of the 
interplanar spacing, (Fig. 9.2(b)). It is clearly the important number with 
respect to constructive/destructive interference conditions; when for example 
(hu^ -f kyj -l-/wi) = 0 (the two atoms lying within the (hkl) planes), complete 
constructive interference occurs and when (hu^ +kv^ -l-/wj) = 0.5 (the second 
atom lying halfway between the (hkl) planes), destructive interference occurs, 
which is complete when the atomic scattering factors of the two atoms in the 
motif are equal. 

In general, in adding the contributions of the two atoms, we need to use a 
vector-phase diagram in which the lengths or moduli of the vectors are 
proportional to the atomic scattering factors of the atoms, and the phase angle 
between them, </>i, is equal to 27r/A(P.D.), i.e. in the above case 

01 = 27r(/iWi + kv^ + /wj). 

This is shown in Fig. 9.3(a). The resultant is the structure factor, 
The analysis may be simply extended to any number of atoms in the motif 

with position vectors Tj, r2, Tj etc. and phase angles (referred to the origin) 
01, 02> <^3 etc. The resultant, is found by adding all the vectors, represent¬ 
ing the atomic scattering factors of all the atoms, as shown in Fig. 9.3(b). Note 
that the phase angles, 0, are all measured with respect to the origin (horizontal 
line in Fig. 9.3); they are not the angles between the vectors. Note also that, 
although for simplicity we began with an atom at the origin, there need not be 
one there. 
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Fig. 93. Vector-phase diagrams for obtaining ^hkl- The atomic scattering factors 
are represented as vectors with phase angles with respect to a wave scattered from 
the origin: (a) result for two atoms and (b) result for several atoms. 

Adding vectors graphically in this way is obviously not very convenient; in 
practice vector-phase diagrams, such as Fig. 9.3, are substituted by Argand 
diagrams in which ^hk! is represented as a complex number (see Appendix 5), 
i.e. 

n = N 

Fhki = E /« exp27ri(/iw„ + kv^ + lw„) 
n = 0 

where /„ is the atomic scattering factor and lirihu^ is the phase 
angle of the nth atom in the motif with fractional coordinates («„ v„ w^). 

Many students are deterred at first sight of equations such as this. It is 
important to realize that it merely represents an analytical way of adding vectors 
‘top to tail’, the convenience and ease of which is soon appreciated by way of a 
few examples. 

Example 1: CsCl structure (Fig. 1.12). The (m„ u„ w„) values are (000) for Cl, 
atomic scattering factor /q and (Ijj) for Cs, atomic scattering factor 
Substituting these two terms in the equation: 

Fhki ^fc\ exp27ri(/z0 -I- /cO 4-10) +/cs exp27ri(/i| + kj + Ij) 

=fc\ +/cs &xpTTi(h+k + l). 

Two situations may be identified: when (h + k + 1) = even integer, exp7ri(even 
integer) = 1, hence Fhki=fc\Ffcs and when (h + k + 1) = odd integer, 
exp7ri(odd integer) = -1, hence Ff,i^i = - fc,. These two situations may be 
simply represented on the Argand diagram as shown in Fig. 9.4. Note that in 
both cases is a real number; the imaginary component is zero. This arises 
because CsCl has a centre of symmetry at the origin, as explained below. 

Example 2: hep metal structure. We have a choice of unit cells (Fig. 5.8); it is 
best to refer to the primitive hexagonal cell. Fig. 5.8(a), which contains two 
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fcs 'Cl 
-» - » 

ifa + fcs) 

(a) 

Fig. 9.4. Argand diagrams for ^hkl for CsCl (a) (h + k + l) = even integer, ~fc\ +/csi 

{b){h+k + l) = odd integer, =/c, -/c^. 

identical atoms, atomic scattering factor /, with fractional coordinates (000) 

(the A layer atoms) and (j f \) (the B layer atoms). Substituting these two terms 

in the equation; 

Fhki =/exp27ri(/z0 -I- ^0 -I- /O) -l-/exp27ri(/ty + k\ + l\) 

= /(l + explTriihj + A:f -f /§)). 

Now let us apply this to some particular (hkl) planes, e.g. (002) = (0002); 

(100) = (1010) and (101) = (1011). 

^002 =/(l + exp27ri) = 2/ 

/^loo =/(l + expfTri) =/(l -f cosf77+ isinfTr) =/(0.5 + iO.866) 

■^101 + exp27ri(5 + j)) =/(l + cos§77-I- isinf-n-) =/(1.5 - iO.866). 

These results are shown graphically in Fig. 9.5. Note that and are 
complex numbers. 

The intensities of X-ray beams are proportional to their amplitudes 

squared, or multiplied by its complex conjugate F*ki (see Appendbc 5). For 
the hep metal examples above: 

/oo2 = 2/-2/=4/2 

/loo = /(0.5 + i0.866)/(0.5 - iO.866) =f^ 

Aoi =/(l-5 - i0.866)/(1.5 + iO.866) = 3/^. 

Imaginary 
axis 

f 

F)02 

-► 
Real 
axis 

Imaginary Imaginary 

Fig. 9.5. Argand diagrams for an hep metal for (left to right) and Fjoi showing also 
how these structure factors are obtained graphically by vector addition. 
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Imaginary 

Fig. 9.6. The Argand diagram for a centrosymmetric crystal. The phase angle + 4> for the 

atom at {uvw) is equal and opposite to the phase angle -</> for the atom at (uvw), hence T).*, 
is real. 

Again, it should be stressed that 4^, is a real number, the phase information 

expressed in ^hkl is lost. 

Example 3: A crystal with a centre of symmetry at the origin. This is an 

important case because the structure factor for all reflections is real. For every 

atom with fractional coordinates (uvw) and phase angle +(/> there will be an 

identical one on the opposite side of the origin with fractional coordinates 

{uvw) and phase angle -</>. For these two atoms: 

^hkl =/exp277i(/u/ +kv + Iw) + f cxpliriihu +kv + tw) 

=/exp27ri(/iM +kv + Iw) -f/exp —liriihu +kv + Iw). 

The second term is the complex conjugate of the first, hence the sine terms 
cancel and 

Phkl = Ifcoslirihu + kv + Iw) 

as shown graphically in Fig. 9.6. 

Example 4: It follows from example 3 that the diffraction pattern from a 

centrosymmetric crystal is also centrosymmetric. However, even if a crystal does 

not possess a centre of symmetry, the diffraction pattern will be centrosymmet¬ 

ric. This is known as Friedel’s law*. We have to show that the intensity of the 

reflection 4^, from the hkl planes is equal tq^the intensity of the reflection on 

the opposite side of the direct beam from the Hkl planes, i.e. 4*/- Now, applying 

the structure factor equation to the simplest case of a crystal with one atom at 

{uvw): 

hki = FHkEf^ki = /exp27ri(/zw + kv + lw)fexp —27ri{hu + kv + Iw) 

=/exp277i(AM + kv + lw)f &xp2TT\(hu +kv+ Iw) 

hkl ^Ffikl' F^kl ^ f 2'TTi{TlU +kv + iw )f eXp — 2TT\{JlU+~kv + lw) 

=f txp2TT\(hu + 'kv + /w)/exp 2-77 i(/zM +kv + Iw). 

From which it is seen that = F^n and = F^^j, hence 4a:/ = hll- 

* Friedel’s law breaks down under conditions of anomalous scattering, a discussion of which can 
be found in, for example. Essentials of Crystallography by D. McKie and C. McKie, Blackwell 
Scientific Publications, 1986. 
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Table 9.1 The eleven Laue point groups or crystal classes 

Crystal system 

Laue point group 

and centrosymmetric 

point group 

Non-centrosymmetric point 

groups belonging to the 

Laue point group 

Cubic m3m 432 43m 

(two Laue point groups) m3 23 

Tetragonal 4/mmm 422 4 mm 42 m 

(two Laue point groups) 4/m 4 4 

Orthorhombic mmm 222 mm2 

Trigonal 3m 32 3m 

(two Laue point groups) 3 3 

Hexagonal 6/mmm 622 6 mm 6m2 

(two Laue point groups) 6/m 6 6 

Monoclinic 2/m 2 m 

Triclinic 1 1 

The presence of a centre of symmetry in the diffraction pattern means that 

non-centrosymmetric point groups cannot be distinguished from those with a 

centre of symmetry*. There are eleven centrosymmetric point groups (Table 3.1, 

page 57) and hence eleven symmetries which diffraction patterns can possess. 

These are called the eleven Laue groups and are identified by the corresponding 

point group symbol of the centrosymmetric point group. They are listed in 
Table 9.1. 

To summarize, these four simple examples show how the amplitude, and 

hence the intensity, 4^/, of the reflected X-ray beam from a set of hkl planes 

can be calculated from the simple ‘Structure Factor’ equation on p. 141; all we 

need to know are the positions of the atoms in the unit cell (the values) 

and their atomic scattering factors, /„. The great importance of the equation is 

that it can be applied, as it were, ‘the other way round’: by measuring the 

intensities of the reflections from several sets of planes (the more the better), 

the positions of the atoms in the unit cell can be determined. This is the basis of 

crystal structure determination, which has developed and expanded since the 

pioneering work of the Braggs, so that, at the time of writing, some 50000 

different crystal structures are known. Many of these are very complex, for 

example protein crystals in which the motif may consist of several thousand 

atoms. Again, it should be emphasized that the procedures are invariably not 

straightforward because the phase information in going from the to the 

(measured) 4^, values is lost, e.g. as in Example 2. The equation is also 

expressed as it were in a ‘converse’ form (or transform of that on p. 141) in 

* It is, however, in situations when anomalous scattering is present, possible to distinguish 
non-centrosymmetric and centrosymmetric point groups by means of a statistical analysis of the 
X-ray intensities. 
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which atomic positions (expressed as electron X-ray scattering) density) are 

expressed in terms of the values of the reflections. The books on X-ray 

diffraction and X-ray crystallography in Further Reading give further informa¬ 

tion and insight into this large and fascinating topic. In this book just the basic 

principles have been set out so that their nature and applications can begin to 
be appreciated. 

9.3 The broadening of diffracted beams: 
reciprocal lattice points and nodes 

In Section 7.4 we found that when the number N of lines in a grating, or the 

number of apertures in a net, were limited, the principal diffraction maxima 

were broadened and surrounded by much fainter subsidiary maxima. These 

phenomena are shown in Fig. 7.3(d) and diagrammatically in Fig. 7.9. Precisely 

the same considerations apply to X-ray and electron diffraction from ‘real’ 

crystals in which the number of reflecting planes is limited: and the broadening 

and occurrence of the subsidiary maxima can be derived by similar arguments. 

This, in turn, leads us to modify our concept of reciprocal lattice points, which 

are not geometrical points, but which have finite size and shape, reciprocally 

related, as we shall see, to the size and shape of the crystal. There is, as far as I 

know, no common term to express the fact that reciprocal lattice points do have 

a finite size and shape, except in special cases such as the reciprocal lattice 

streaks or ‘rel-rods’ which occur in the case of thin plate-like crystals. Recipro¬ 

cal lattice nodes seems to be the closest approximation to a common term. 

The broadening of the reflected beams from a crystal of finite extent is 

derived as follows. Consider a crystal of thickness or dimension t perpendicular 

to the reflecting planes, of interest. If there are m planes then = t. 

Consider an incident beam bathing the whole crystal and incident at the exact 

Bragg angle for first order reflection (Fig. 9.7(a)). For the first two planes 

labelled 0 and 1, the path difference A = 2df,^i sin 0; for planes 0 and 2 the path 

difference is 2A = Adf^^-ism 6 and so on—constructive interference between all 

the planes occurs right through the crystal. Now consider the interference 

conditions for an incident and reflected beam deviated a small angle 86 from 

the exact Bragg angle (Fig. 9.7(b)). For planes 0 and 1 the path difference will be 

very close to A as before and there will be constructive interference. However, 

for planes 0 and 2, 0 and 3 etc. the ‘extra’ path difference will deviate 

increasingly from 2A, 3A etc.—and when it is an additional half-wavelength 

destructive interference between the pair of planes will result. 
The condition for destructive interference for the whole crystal is obtained by 

notionally ‘pairing’ reflections in the same way as we did for the diffraction 

grating (Section 7.4). Consider the constructive and destructive interference 

condition between planes 0 and (m/2) (half way down through the crystal). At 

the exact Bragg angle 6 (Fig. 9.7(a)), the condition for constructive interference 

is (m/2)X = im/2)2df,i,[Smd. The condition for destructive interference at 

angle {6+86) is given by (m/2)A + A/2 = {m/2)2d^,^i sin(0 + 86). Now this is 

also the condition for destructive interference between the next pair of planes 1 



146 The diffraction of X-rays and electrons 

Fig. 9.7. Bragg reflection from a crystal of thickness t (measured perpendicular to the 
particular set of reflecting planes shown). The whole crystal is bathed in an X-ray beam (a) at 
the exact Bragg angle d and (b) at a small deviation from the exact Bragg angle, i.e. angle 

(0+50). The arrows represent the incident and reflected beams from successive planes 
0,1,2,3...{m/2) (half-way down) and ...m (the lowest plane). 

and (m/2) -t-1—and so on through the crystal. This equation gives us, in short, 

the condition for destructive interference for the whole crystal and the angular 

range 8Q (each side of the exact Bragg angle) of the reflected beam. 

Expanding the sine term and making the approximations cos 86= I and 
sin 86 ~ 86 gives: 

(m/2) A +- A/2 = (m/2)2df,i^i sin 6+ {m/2)2df,^i cos 6 86. 

Cancelling the terms (m/2)A and (m/2)2rf;,^, sin 6 and substituting md)^,^i = t 
gives 

A 
286=-. 

t cos 6 

This is the basis of the Scherrer equation which relates the broadening of an 

X-ray beam to the crystal size t. The broadening is usually expressed as /3, the 

breadth of the beam at half the maximum peak intensity and in which the angles 

are measured relative to the direct beam. As indicated in Fig. 9.8, p is 
approximately equal to 250, hence 

A A sec 6 
P=-=-. 

t cos 6 t 

The broadening can be represented in the Ewald reflecting sphere construc¬ 

tion in terms of the extension of the reciprocal lattice point to a node of finite 

size. Fig. 9.9 shows a diffracted beam (angle 20 to the direct beam) which is 

broadened over an angular range 2)3 ~ 450. This is expressed by extending the 
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Fig. 9.8. A schematic diagram of a broadened Bragg peak arising from a crystal of finite 

thickness. The breadth at half the maximum peak intensity, /3, is approximately equal to 2dd. 

Note that the angular ‘26’ scale is measured in relation to the direct and reflected beams. 

reciprocal lattice point into a node of finite length which, as the crystal rotates, 

intersects the reflecting sphere over this angular range. Let represent 

the extension of the reciprocal lattice point about its mean position. Now since 

2 sin 6 
IH* I = //* =_• 

/ 2 sin 0 \ 2 cos 6 

Substituting for 86 from above gives; 

2 cos 6 
S(dtu) = 

A 

2tcos 6 

1 

t 

Fig. 9.9. The Ewald reflecting sphere construction for a broadened reflected beam, 6, which 

corresponds to an extension 1/t of the reciprocal lattice node. 
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i.e. the extension of the reciprocal lattice node is simply the reciprocal of the 

crystal dimension perpendicular to the reflecting planes. This applies to all the 

other directions in a crystal with the result that the shape of the reciprocal 

lattice node is reciprocally related to the shape of the crystal. For example, in 

the case of thin, plate-like crystals (e.g. twins or stacking faults), the reciprocal 

lattice node is a rod or ‘streak’ perpendicular to the plane of the plate. 

The above is a simplified treatment, both of the Scherrer equation and the 

extension of reciprocal lattice points into nodes. The Scherrer equation is 

normally applied to the broadening from polycrystalline (powder) specimens and 

includes a correction factor K (not significantly different from unity) to account 

for particle shapes*. Hence the Scherrer equation is normally written: 

K\ K\se.c6 
B=---. 

t cos 6 t 

Finally, it should be noted that the reciprocal lattice nodes are also surrounded 

by subsidiary nodes (or satellites, maxima, or fringes) just as in the case of light 

diffraction from gratings with a finite number of lines (Section 7.4, Fig. 7.9). In 

most situations these subsidiary nodes are very weak because the number of 

diffracting planes contributing to the beam is large. However, in the case of 

X-ray diffraction from specimens consisting of a limited number of diffracting 

planes, superlattice repeat distances or multilayers, the subsidiary nodes (or 

satellites, maxima or fringes) are observable and are important in the characteri¬ 

zation of the specimen, as described in Section 9.6. 

9.4 Fixed 0, varying X X-ray techniques: the Laue method 

X-ray single crystal techniques may be classified into two groups depending 

upon the way in which Bragg’s law is satisfied experimentally. There are two 

variables in Bragg’s law—9 and A—and a series of fixed values, In order 

to satisfy Bragg’s law for any of the J-values, either A must be varied with 9 

fixed, or 9 must be varied with A fixed. The former case has only one significant 

representative—the (original) Laue method, whereas there are many methods 

based upon the latter case. 

The geometry of the Laue method, in terms of the reflecting sphere construc¬ 

tion, has already been explained in Section 8.4. Now we need to consider the 

practical applications of the technique. The important point to emphasize is that 

each set of reflecting planes with Laue indices hkl (see Section 8.4) gives rise to 

just one reflected beam. Of all the white X-radiation falling upon it, a lattice 

plane with Miller indices (hkl) reflects only that wavelength (or ‘colour’) for 

which Bragg’s law is satisfied, a reflecting plane of half the spacing with Laue 

indices 2h 2k 21 reflects a wavelength of half this value, and so on. In other 

* Note that the observed breadth at half the maximum peak intensity, )3obs> includes additional 
sources of broadening arising from the experimental set up and instrumentation, )3,nst> which must 
be ‘subtracted’ from /Jqbs in order than (3 can be determined (see Section 10.3.3). 
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words the reflections from planes such as, for example, (111) (Miller indices for 

lattice planes) 222, 333, 444, etc. (Laue indices for the parallel reflecting planes) 
are all superimposed. 

The usual practice is to record the back-reflected beams since thick specimens 

which are opaque to the transmission of X-rays through them can be examined. 

The set-up showing just one reflected beam in the plane of the paper is shown in 

Fig. 9.10(a). In analysing the film it is necessary to determine the projection of 

the normal (or reciprocal lattice vector) of each of the reflecting planes on to 

the film from each reflection S and then to plot these on a stereographic 

projection*. By measuring the angles between the normals, and then comparing 

them with lists of angles such as given for cubic crystals in Section A4.4 

(Appendix 4), it is possible to identify the reflections. In practice such manual 

procedures (involving the use of the Greninger netO have largely been replaced 

by computer programs which determine the orientation of the crystal using as 

input data the positions of spots on the film, film-specimen distance and 

(assumed) crystal structure. 

Hence (back reflection) Laue photographs may be used to determine or check 

the orientation of single crystals and the orientation relationships between 

crystals. An example of a Laue photograph is shown in Fig. 9.10(b). 

Figure 9.10(a) should be compared with Fig. 8.7. Consider for example the 201 

reciprocal lattice point which is situated in the ‘nest’ of spheres representing the 

wavelength range of the incident ‘white’ X-radiation. Bragg’s law is satisfied for 

the particular wavelength represented by the sphere which passes through the 

201 reciprocal lattice point and the direction of the reflected beam (indicated by 

the arrow) is from the centre of this sphere (which can be found by construction) 

and the 201 reciprocal lattice point. This beam makes angle (180'’ — 26) with the 

incident beam and the reciprocal lattice vector dfoi niakes angle (90'’ - 6) with 

the incident beam. 

9.5 Fixed X, varying 0 X-ray techniques: oscillation, 
rotation and precession methods 

In Section 8.4, Fig. 8.6, we showed the Ewald reflecting sphere construction for 

the case where the incident X-ray beam was incident along the a* reciprocal 

lattice vector (from the left). Figure 8.6(a) shows the /lO/ section of the 

reciprocal lattice through the centre of the sphere and the origin of the 

* The stereographic projection is a major topic which is omitted from this book. It is covered in 
many of the books listed under Further Reading but in none of them entirely satisfactorily—perhaps 
the most helpful book is that by J. R. Moon Introduction to the Stereographic Projection, The Institute 
of Materials, 1972. The problem is that a book is not a very satisfactory medium from which to 
assimilate the geometrical procedures which are involved—and which almost always appear to a 
reader much more complicated than they in fact are. Models are much more useful or, lacking them, 
‘three-dimensional’ drawings (anaglyphs) which are viewed through red-green spectacles. 

^ Greninger nets are prepared for a particular specimen-film distance (e.g. 30 mm), on which are 
drawn a series of calibrated hyperbolae (for the back reflection case). By measuring the distance 
between two spots along a hyperbola the angle between the normals, or the reciprocal lattice vectors 
of the two planes giving rise to these spots, can be obtained. 
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(a) 

Fig. 9.10. (a) The geometry of the back reflection Lane method for a particular set of hkl 

planes in a single crystal. The wavelength of the reflected beam is that for which Bragg’s law is 
satisfied for the particular fixed d and value, (b) A back reflection Laue photograph of a 
single crystal of aluminium oriented with a (100> direction nearly parallel to the incident 
X-ray beam showing the reflections S from many {.hkl) planes. They lie on a series of 
intersecting hyperbolae (close to straight lines in this photograph), each hyperbola correspond¬ 

ing to reflections from planes in a single zone, [uvw]. Note the four-fold symmetry of the 
intersecting zones indicating the (100) crystal orientation. (Photograph by courtesy of Prof. G. 
W. Lorimer.) 

reciprocal lattice and Fig. 8.6(b) shows the hll section of the reciprocal lattice 

and the smaller (non-diametral) section of the Ewald sphere. For the particular 

wavelength and pardcular incident beam direction drawn in Fig. 8.6, only two 

planes—201 and 211 satisfy Bragg’s law. Now, instead of varying A, as in the 
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Laue case (Fig. 8.7), let us change the direction of the incident beam such that it 

is no longer incident along the a* reciprocal lattice vector direction. This 

variation in the Bragg angle is accomplished in practice by moving the crystal. 

9.5.1 The oscillation method 

Consider the crystal, Fig. 8.6, oscillated say ± 10° about an axis parallel to the b* 
reciprocal lattice vector (or y-axis), i.e. perpendicular to the plane of the paper. 

As the crystal is (slowly) oscillated, the angles between the incident beam and 

hkl planes vary and whenever Bragg’s law is satisfied for a particular plane ‘out 

shoots’ momentarily a reflected beam. The oscillation of the crystal can be 

represented by an oscillation of the reciprocal lattice about the origin: imagine a 

pencil fixed to the crystal perpendicular to the page with its point at the origin 

of Fig. 8.6(a). As you oscillate the pencil the reciprocal lattice oscillates about 

the origin but the Ewald sphere remains fixed, centred along the direction of the 

incident beam from the left: whenever a reciprocal lattice point intersects the 

sphere ‘out shoots’ a reflected beam. 

The relative movement of the sphere and reciprocal lattice is most easily 

represented, not by drawing the whole reciprocal lattice in its different positions, 

but by drawing the Ewald sphere at the extreme limits of oscillation say 10° in 

one direction and 10° in the other. These limits are shown in Fig. 9.11 for (a) the 

hQl and (b) the hll reciprocal lattice sections. The shaded regions, called ‘lunes’ 

because of their shape, represent the regions of reciprocal space through which 

the surface of the sphere passes as it is oscillated. Only those reciprocal lattice 

points which lie within these shaded regions give rise to reflected beams. 

There are several ways of recording the reflected beams. The simplest is to 

arrange a cylindrically shaped film coaxially around the crystal (with a hole to 

allow the exit of the incident beam) such that reflections at all angles can be 

recorded. Now, all the reflected beams from the /zO/ reciprocal lattice section 

(Fig. 9.11(a)) lie in the plane of the paper and thus lie in a ring around the film. 

The reflected beams from the hll reciprocal lattice section lie in a cone whose 

centre is the centre of the Ewald sphere and these beams also intersect the film 

in a ring ‘higher up’ than the ring from the /zO/ reciprocal lattice section. JFigure 

9.12(a) shows this geometry for the reflected beams from the hQl, hll, hll, hll 

etc. sections of the reciprocal lattice. 
When the film is ‘unwrapped’ and laid flat, the rings of spots appear as lines, 

called layer lines (Fig. 9.12(b)), the ‘zero layer line’ spots from the /zO/ reciprocal 

lattice section through the centre, the ‘first layer line’ spots from the hll 

reciprocal lattice section next above—and so on for all the reciprocal lattice 

sections perpendicular to the axis of oscillation. 

In practice it is necessary to set up a crystal such that some prominent zone 

axis is along the oscillation axis, such as, in our case, the [010] axis. This implies 

that the reciprocal lattice sections or layers perpendicular to the oscillation axis 

are well defined and give rise to clearly defined layer lines on the film. If, for 

example,we set a cubic crystal with the z-axis or [001] direction along the axis of 
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Fig. 9.11. The Ewald reflecting sphere construction for a monoclinic crystal in which the 
incident X-ray beam is oscillated ± 10° from the direction of the a* reciprocal lattice vector 

about the [010] direction (y-axis, perpendicular to the plane of the paper). The directions of 
the X-ray beams and the corresponding surface of the reflecting sphere are shown at the limits 
of oscillation. Any reciprocal lattice points lying in the regions of reciprocal space through 
which the reflecting sphere passes (the shaded regions, called iunes’) give rise to reflections, 
(a) The hQl reciprocal lattice section through the origin and a diametral section of the 
reflecting sphere and (b) the h\l reciprocal lattice section (i.e. the layer ‘above’ the Ml 

section) and the smaller, non-diametral section of the reflecting sphere (compare with Fig. 
8.6). In these two sections the planes which reflect are 201, 102, 001, 201, 102 (zero layer line) 
and 112, 211 (first layer line above). 

oscillation, then the reciprocal lattice sections giving the layer lines would be 

hkQ (zero layer line), hk\ (first layer line above) and so on (see Figs 6.5 or 6.6). 

If on the other hand the crystal was set up in no particular orientation, i.e. no 

particular reciprocal lattice section perpendicular to the axis of rotation, the 

layer lines would, correspondingly, hardly be evident. 

9.5.2 The rotation method 

As the angle of oscillation increases, the Ewald reflecting sphere sweeps to and 
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[010] 

Fig. 9.12. (a) The oscillation photograph arrangement with the crystal at the centre of the 

cylindrical film. The oscillation axis [010] is co-axial with the film and the reflections from each 
reciprocal lattice section hOl, hll, h\l, h2l etc. lie on cones which intersect the film in circles. 
X indicates the incident beam direction and in (b), showing the cylindrical film ‘unwrapped’, O 
indicates the exit beam direction through a hole at the centre of the film. 

fro through a greater volume of reciprocal space, the lunes (Fig. 9.11) become 

larger and overlap and more reflections are recorded. The extreme case is to 

oscillate the crystal +180°—but this is the same as rotating it 360°, in which 

case the Ewald reflecting sphere makes a complete circuit round the origin of 

the reciprocal lattice. As the Ewald sphere sweeps through the reciprocal lattice, 

a plane will reflect twice: once when it crosses ‘from outside to inside’ the 

reflecting sphere and once when it crosses out again, the reflections being 

recorded on opposite sides of the direct beam. Rotation photographs are 

generally used to determine the orientation of small single crystals. An example 

is given in Fig. 9.13. 

9.5.3 The precession method 

This is an ingenious and useful technique invented by M. J. Buerger* by means 

of which (unlike oscillation and rotation photographs), undistorted sections or 

layers of reciprocal lattice points may be recorded on a flat film. It is probably 

easiest to appreciate the geometrical basis of the method by using, as an 

example, a simple cubic crystal. 
Figure 9.14(a) shows an {hQl) section of a simple cubic crystal (drawn with the 

y-axis or b* reciprocal lattice unit cell vector perpendicular to the page). The 

* Denotes biographical notes available in Appendix 3. 
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Fig. 9.13. A rotation crystal photograph of topaz Al2(Si04X0H, F)2, orthorhombic. The 

cylindrical film is shown laid flat with the X-ray beam exit hole at the centre and the rotation 

axis (in this case the x-axis) vertical. Notice the large number of reflections in each layer line 
and the vertical and horizontal mirror lines of symmetry which arise because the reflecting 

sphere sweeps through a much larger region of reciprocal space during the 360° rotation of the 
crystal than for an oscillation photograph. (Photograph by courtesy of Dr. M. S. Hampar.) 

X-ray beam is incident along the x-axis or a* reciprocal lattice unit cell vector 

and the Ewald reflecting sphere for a particular wavelength is centred about the 

incident beam direction. The flat film is set perpendicular to the X-ray beam. 

We are now going to consider the conditions by which we can obtain reflections 

from the reciprocal lattice points lying in the plane Okl—i.e. the plane through 

the origin and perpendicular to the x-axis or a* reciprocal lattice vector. Figure 

9.14(a) shows only one row of these reciprocal lattice points—001, 002, 003, 001, 

002, 003 etc.; the others are above and below the plane of the diagram. Now, 

ignoring for the time being the reciprocal lattice points not lying in this plane 

Okl, let us consider the movements necessary to bring 001, 002, 003 etc. 

reciprocal lattice points into reflecting positions. Clearly, we need to tilt or 

rotate the crystal anticlockwise such that first 001, then 002, then 003 etc. 

successively intersect the sphere. As we do so we tilt or rotate the film 

anticlockwise by the same angle (the film and crystal rotation mechanisms being 

coupled together). The 001, 002, 003 reflections then strike the film successively 

at equally spaced distances from the origin 000. The situation in which 003 is in 

the reflecting position at a tilt or rotation angle (f> is drawn in Fig. 9.14(b). 

Clearly, if we rotate the crystal and film clockwise we would record the 001, 002, 

003 etc. reflections on the opposite side of the film from the origin. The result 

(ignoring reflections from reciprocal lattice points not lying on this row) would 

be a row of equally spaced spots on the film corresponding to the equally spaced 

reciprocal lattice points in the row through the origin. These are shown on a 

plan view of the film (Fig. 9.14(c)), as the vertical row of spots through the 
centre. 

Now we have to consider the reciprocal lattice points in the Okl section of the 

reciprocal lattice which intersect the Ewald reflecting sphere above and below 

the plane of Fig. 9.14(b). The sphere intersects the reciprocal lattice section Okl 
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in a circle, Fig. 9.14(c); any reciprocal lattice point lying in this circle gives rise to 

a reflected beam. Now we precess the crystal and the film about the incident 

beam direction such that the film is always parallel to the OA:/ reciprocal lattice 

section (the precession movement means that the x-axis of the crystal rotates 

about the incident beam direction at the fixed angle 0). As we do so the circle 

moves through the reciprocal lattice section in an arc centred at the origin 000 

of the reciprocal lattice, i.e. about the direction of the direct X-ray beam. 

Hence, in a complete revolution, all the reciprocal lattice points lying within the 

large circle of Fig. 9.14(c) reflect—^and the pattern of spots on the film 

corresponds to the pattern of reciprocal lattice points in the Qkl section of the 

reciprocal lattice, as shown in Fig. 9.14(c). 

Finally, we have to eliminate the complicating effects of the reflections from 

reciprocal lattice points not lying in the OA:/ plane through the origin. This is 

achieved by placing a screen with an annular opening between the crystal and 

the film, the size of the annulus being chosen to allow reflections to pass to the 

screen only from reciprocal lattice points lying in the circle (Fig. 9.14(c)). The 

screen is indicated in cross-section in Fig. 9.14(b) for the case in which the 

furthest reciprocal lattice point from the origin which can be recorded is 003. 

The screen is also linked to the crystal-film precession movements. 

The precession method can be modified to record reciprocal lattice sections 

which do not pass through the origin (non-zero-level photographs), details of 

which can be found in the books on X-ray diffraction techniques listed in 

Further Reading. Its main application is in crystal structure determination by 

measurement of the intensities of the X-ray reflections. Figure 9.15 shows an 

example of a zero-level photograph (of a reciprocal lattice section passing 

through the origin) which shows very convincingly the pattern of reciprocal 

lattice points. 

9.6 X-ray diffraction from single crystal thin films 
and multilayers 

Thin films and multilayer specimens are invariably studied using the X-ray 

diffractometer, the geometrical basis of which is described in detail in Section 

10.2. 
The normal arrangement, as used in X-ray powder diffractometry, is the 

symmetrical (Bragg-Brentano) one in which only the cl-spacings of those planes 

parallel to the specimen surface are recorded. This is achieved by arranging the 

X-ray source and X-ray detector and their collimating slits such that the incident 

and reflected beams make equal angles to the specimen surface. The arrange¬ 

ment is shown diagrammatically in Fig. 9.16(a). As the angle 6 is varied (either 

by keeping the specimen fixed and rotating the source and detector in opposite 

senses as indicated in Figs 10.3(a) and (b), or by keeping the source fixed and 

rotating the detector at twice the angular velocity of the specimen), reflections 

occur whenever Bragg’s law is satisfied. Clearly, for a single crystal, with only 
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one set of planes parallel to the surface, there will only be one Bragg reflection. 

For multilayer specimens, which may consist of a sequence of thin crystal films 

(say, of copper and cobalt) mounted on a single crystal substrate, there will be 

, Coupled rotation of 

film and crystal 

Fig. 9.14. The geometry of the precession method, (a) The incident beam normal to the Okl 

section of the reciprocal lattice (indicated by the row of reciprocal lattice points 001,002,003 

etc.). In order to bring these points into reflecting positions the crystal and the film are rotated 

anti-clockwise as indicated. The situation in which the 003 reciprocal lattice point is in a 

reflecting position is shown in (b). (c) A plan view of the film at this angle <{) with the circle 
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three Bragg reflections—one from the substrate and one each from the thin 

films (of different crystal structure). 

However, there are more diffraction phenomena to be recorded. First, since 

the layers are generally thin—of the order of 1-10 nm—the (high angle) Bragg 

peaks are substantially broadened and this may be used to estimate the 

thickness of the layers by means of the Scherrer equation (Section 9.3). Second, 

the repeat distance, or superlattice wavelength A of the layers can be deter¬ 

mined from the angles of ‘satellite’ reflections which occur (given a multilayer 

specimen with a long range structural coherence) on either side of the (high 

angle) Bragg peaks. The value of A may be determined from the equation 

A 
A = -:-r 

2(sm 02 “ sm d^) 

where A = the X-ray wavelength and sin d^, sin 02 ^^e the Bragg angles of 

adjacent satellite peaks. This equation may be rearranged to give 

1 1 1 

A £^2 

where d2 are the notional ^/-spacings of the satellite peaks. An example of a 

cobalt-gold multilayer specimen is given in Fig. 9.17(a). 

representing the intersection of the Ofc/ plane and the reflecting sphere and the projection 
of the annulus on to the screen. The only reflections to reach the film are those falling within 
the annulus (shaded region), As the crystal + screen + film are precessed about the angle ^ 
the annulus effectively sweeps through the Qkl section of the reciprocal lattice as indicated 
by the arrow and all reciprocal lattice points within the large circle give rise successively to 

reflections. 
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Fig. 9.15. A (zero level) precession photograph of tremolite, Ca2Mg5Si8022(OH)2 (mono¬ 
clinic C2/m, a = 9.84 A, b = 18.05 A, c = 5.28 A, /3= 104.7°X showing reflections from the 
hOl reciprocal lattice section (incident beam along the y-axis). The orientations of the 
reciprocal lattice vectors a* and c* are indicated. Compare this photograph with the drawing 
of the ihOl) reciprocal lattice section of a monoclinic crystal (Fig. 6.2(c)). The streaking arises 
from the presence of a spectrum of X-ray wavelengths in the incompletely filtered MoKa 

(A = 0.71 A) X-radiation. (Photograph by courtesy of Dr. J. E. Chisholm.) 

The repeat distance A of the layers also gives rise to low-angle Bragg 

reflections (of the order 20 = 2-5°), between which occur a further set of 

satellite peaks or fringes called Keissig fringes which may be used to determine 

the total multilayer film thickness NA using an analogous equation to that 
above, viz. 

1 1 1 

NA di^2 

where r/^2 ^^e the notional J-spacings of any pair of adjacent Keissig 
fringes. An example of a cobalt-copper multilayer specimen is given in Fig. 
9.17(b). 

The occurrence of the low-angle Bragg peaks and Keissig fringes may be 

understood by analogy with the diffraction pattern from a limited number N of 

slits of width a (Section 7.4); Fig. 7.9 shows a particular case for N = 6. The 

principal maxima correspond to the low-angle Bragg peaks in which the slit 

spacing a corresponds to the repeat distance of the layers, or superlattice 
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specimen surface 

Fig. 9.16. The X-ray diffractometer arrangements for a single crystal, (a) The symmetrical 
setting: the reciprocal lattice vectors of the reflecting planes are all parallel to the specimen 
surface normal n. (b) The asymmetrical setting, the reciprocal lattice vectors of the reflecting 
planes are inclined at angle a to n. (c) The region of reciprocal space (shaded) within which 
lie the reciprocal lattice points of possible reflecting planes. 

wavelength A. The subsidiary maxima, of which there are (N —2) between 

principal maxima, correspond to the Keissig fringes; by counting the number of 

Keissig fringes (plus two) between the low-angle Bragg peaks the number of 

multilayers or superlattice wavelengths N can be determined and by measuring 

the angles between adjacent fringes the total thickness NA of the multilayers 

can be determined using the equation given above. Its validity can be checked by 

applying it, say, to the subsidiary maxima in Fig. 7.9; for the zero and first order 

minima the sin a ~ a = 20 values are l(A/6n) and 2(X/6a). Substituting these 

values in the above equation gives NA = 6a, the total width of the grating. 

In practice in X-ray diffraction the Keissig fringes are most clearly defined 

between the direct beam (zero order peak) and first low-angle Bragg peak (Fig. 

9.17(b)). 
The other arrangement used in X-ray diffractometry is the asymmetrical one 

in which, for any particular Bragg angle (source and detector fixed), the 

specimen can be rotated such that the incident and diffracted beams make 

different angles to the specimen surface (the angle between them remaining 

fked at 26). The arrangement is shown diagrammatically in Figs 9.16(b) and 

10.3(c). It has the advantage in that reflections from planes which are not 
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parallel to the surface can be recorded (and is also a useful means of fine 

tuning’ the angle of the specimen to maximize the intensity of reflections from 

planes which may not be exactly parallel to the specimen surface). Clearly, the 

maximum angle of tilt either way is 9, otherwise the surface of the specimen will 

block or ‘cut off either the incident or the diffracted beam. 
The Ewald reflecting sphere construction, which shows the extent to which 

the symmetrical and asymmetrical techniques sample a volume of reciprocal 

space, is shown in Fig. 9.16(c). The construction is essentially two-dimensional, 

since only those planes whose normals lie in the plane of the diagram (co-planar 

with the incident and reflected beams) can be recorded. In the symmetrical case 

(Fig. 9.16(a)), the reciprocal lattice points of the reflecting planes lie along a line 

perpendicular to the specimen surface whose maximum extent corresponds with 

the reciprocal lattice vector of the plane of smallest -spacing that can be 

measured, i.e. that for which 6= 90°; hence = 2/A. 
In the asymmetrical case (Fig. 9.16(b)) the crystal can be tilted or rotated 

clockwise or anticlockwise such that the reciprocal lattice vector of the reflecting 

planes is also tilted or rotated with respect to the specimen surface. The angular 

range, ±6 (limited by specimen cut-off), increases as ^ ^sin 0/A in¬ 

creases, the maximum being +90° when sin 0=1. This is shown as the shaded 

region in Fig. 9.16(c). Clearly, the choice of the wavelength of the X-radiation 

may be important, particularly in the asymmetrical case, since it determines 

which crystal planes in the specimen may, or may not, be recorded. 

9.7 Electron diffraction in the transmission 
electron microscope 

The wavelength associated with electrons depends on the accelerating voltage; 

for example in an electron microscope operated at 100 kV the wavelength is 3.7 

> 

Fig. 9.17. (a) A high angle X-ray diffraction trace (CuKaj radiation) from a cobalt-gold 

multilayer specimen showing the satellite peaks or fringes (§) each side of the Au 111 Bragg 

reflection. The repeat distance A of the layers is determined by measuring the (notional) 
d-spacings and <^2 of adjacent fringes and using the equation on page 157. The notional 

d-spacings (A) of the fringes and the Au 111 peak are indicated (from which a value of A = 
64 A is obtained). The group of higher angle reflections are from Co 111, Co 0002, the 
substrate GaAs 110 and the ‘buffer’ layer Ge 110. (b) A low angle X-ray diffraction trace 
(CuKa, radiation) from a cobalt-copper multilayer specimen showing the low angle Bragg 

reflection at 4.525° and the Keissig fringes each side. The Bragg peak gives the multilayer or 
superlattice repeat distance A and the number A — 2 of Keissig fringes between the Bragg 
peak and zero angle gives NA, the total thickness. In this example A = 19.512 A and 

(A-2) = 22^(only those fringes from about 20= 1.5° are shown). Hence the total thickness 
AA = 468.3 A. NA may also be determined by measuring the (notional) d-spacings, 

of adjacent Keissig fringes and using the equation on page 158. The notional d-spacings 

(A) of fringes 11 to 22 are indicated, from which values of AA, in fair agreement with that 
given above (subject to experimental scatter), are obtained. 
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pm and at 1 MV it is 0.87 pm. These wavelengths are very much smaller than the 
lattice parameters of crystals, which are normally in the region of 0.3 nm 
upwards. Hence the diameter of the reflecting sphere is very large in comparison 
with the size of the unit cell of the reciprocal lattice. Referring to the reciprocal 
lattice sections in Figs 8.6 and 9.14(a) and (b) for example, for the case of 
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I Reflections 
I from FOLZ 

Reflections 
from ZOLZ 

Direct beam 
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from ZOLZ 

Reflections 
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Fig. 9.18. The Ewald reflecting sphere construction for a simple cubic crystal in which the 
electron beam is incident along the a* reciprocal lattice vector (x-axis). The b* reciprocal 
lattice vector (y-axis) is perpendicular to the plane of the page. A section of the sphere (centre 
beyond the left-hand edge of the page) and the reflected beams passing at small angles from 
the centre of the sphere through the reciprocal lattice points in ZOLZ (giving spots close to 
the direct beam) and FOLZ (giving spots further away from the direct beam) are indicated. 

electron diffraction, the centres of the reflecting spheres would be situated 

along the direction of the incident beam at a point far to the left of the origin of 

the reciprocal lattice, well beyond the left-hand edge of the paper. 

The situation for a simple cubic crystal (as for Fig. 9.14(a)) is illustrated in Fig. 

9.18, which shows again that part of the reciprocal lattice section perpendicular 

to the b* reciprocal lattice vector or y-axis (out of the plane of the paper) which 

lies close to the surface of the reflecting sphere, only part of which near the 

origin can be shown since its radius is so large. The incident electron beam is 

directed along the a* reciprocal lattice vector or x-axis and the centre of the 

reflecting sphere is far to the left of the diagram. 

Close to the origin, 000, the curvature of the sphere is so small that it 

approximates to a plane perpendicular to the direction of the electron beam and 

hence passes (in this section) very close to the 001, 002, 003 and 001, 002, 003 
reciprocal lattice points. 

Now in order for Bragg’s law to be satisfied exactly, a reciprocal lattice point 

must intersect the Ewald reflecting sphere. However, since reciprocal lattice 
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points are broadened into nodes (Section 9.3) they may be extended sufficiently 

to intersect the sphere and hence give rise to diffracted beams. This situation 

also arises in X-ray diffraction but to a lesser extent than in electron diffraction 

(a) because the reciprocal lattice points of the thin foil crystal sections used in 

electron microscopy are extended perpendicular to the foil surface and are 

therefore approximately parallel to the electron beam and (b) because thin foils 

are often slightly bent or ‘buckled’ such that the orientation of the electron 

beam varies slightly over the surface of the foil—i.e. it is never incident 

precisely along one crystallographic direction as indicated in Fig. 9.18. 

Hence (referring again to Fig. 9.18), the reciprocal lattice points 001, 002, 003, 

001, 002, 003 which lie in a reciprocal lattice row perpendicular to the electron 

beam direction all give rise to reflected beams, which are directed from the 

centre of the sphere (to the far left of the page) as indicated. Similar considera¬ 

tions apply to the reciprocal lattice row in the ‘next layer above the page’, i.e. 

the row through 010_ (above 000), 011, 012, 013 etc. and also the next layer 

below, i.e. through 010 (below 000), 011, 012, 013, etc. All of these reciprocal 

lattice points lie in the (0^/) plane or section of the reciprocal lattice which is 

perpendicular to the electron beam direction. In summary, therefore, the 

reciprocal lattice points close to the origin, in the (Okl) reciprocal lattice section 

perpendicular to the electron beam direction, give rise to reflected beams. 

Since the diffraction angles are small (Fig. 9.18), the pattern of spots on the 

screen perpendicular to the beam corresponds to the pattern of reciprocal 

lattice points. Figure 9.19 shows this pattern of spots from the (Okl) reciprocal 

lattice section grouped around the direct beam. For simplicity and clarity, only 

those reflected beams of type 001 (in the section perpendicular to the y-axis. Fig. 

9.20) are indexed. 

These diffraction spots are said to belong to the zero order Laue zone (ZOLZ 

for short) since they all arise from reciprocal lattice points in a section through 

the origin or, equivalently, they all arise from planes in a zone—the zone axis 

being parallel (or nearly parallel) to the electron beam direction. 

The pattern of electron diffraction spots (for a particular incident beam 

direction) in the zero order Laue zone is identical to that in the zero level X-ray 

precession photograph (when the crystal is precessed by the appropriate angle 

about the same incident beam direction). This is seen by comparing Fig. 9.14(c) 

with Fig. 9.19. The far simpler set-up (a stationary crystal) in electron diffraction 

‘works’ because of the ‘flatter’ (large diameter) Ewald reflecting sphere, the 

extension of the reciprocal lattice nodes and the slight buckling of the thin foil 

specimens—all of which serve to provide the requisite diffraction conditions 

without the necessity of precessing the specimen over a very much smaller 

angular range. 
Referring again to Fig. 9.18, as we proceed along the surface of the reflecting 

sphere away from the origin, we begin to intersect the next row of reciprocal 

lattice points which does not pass through the origin. The reciprocal lattice 

points in this row which lie close to the sphere, i.e. 106, 107, 106 and 107 (and in 

the corresponding rows above and below the plane of the diagram, all of which 
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Fig. 9.19. The diffraction pattern on a screen perpendicular to the electron beam direction. 
The Okl ZOLZ spots are grouped around the direct beam (centre spot) and the Ikl FOLZ 
spots are grouped roughly in a ring outside. Only the hOl spots in the section perpendicular to 

the y-axis (Fig. 9.18) are indexed (compare with Fig. 9.14(c)). 

lie in the (Ikl) section of the reciprocal lattice) will also give rise to diffraction 

spots as indicated. These spots, which lie outside those from the zero order Laue 

zone away from the centre of the pattern (Fig. 9.19) are said to belong to the 

first order Laue zone (FOLZ for short). Continuing outwards towards the edge 

of Fig. 9.18 we come to reciprocal lattice points in the second order Laue zone 

(SOLZ for short). These are just the first two in a series of higher order Laue 

zones (HOLZ for short). 

The analysis of electron diffraction patterns is essentially a process of identify¬ 

ing the reciprocal lattice sections which give rise to them. Several computer 

programs are now available (see Appendk 2) which generate reciprocal lattice 

sections, given as input data the lattice parameters and type of unit cell and the 

electron beam (zone axis) direction. Several examples showing the ZOLZ only 

are given in Fig. 9.20. Care must be exercised in using such data because a 

number of different electron diffraction patterns from different types of high- 

symmetry crystals have identical symmetry and only differ in scale. For example 

the (lll>fcc and [0001]j,j.p patterns shown in Figs. 9.20(b) and (d) both consist of 

hexagonal patterns of points. 

The first step in the analysis of electron diffraction patterns is measurement 

of the (i-spacings. This is an easy matter. Fig. 9.21 shows a set of reflecting 
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Fig. 9.20. Examples of the computer-generated diffraction patterns, drawn to the same scale 
(AL = 16.3 A mm), (a) Aluminium (fee), zone axis = <110>; (b) aluminium (fee), zone axis = 
(111); (c) iron (bee), zone axis = (112); (d) titanium (hep), zone axis = [0001]. 

planes at the Bragg angle 6 (much exaggerated) to the electron beam. The 

diffracted beam, at angle 6+ 6 = 26, to the direct beam, falls on the screen at a 

distance R from the centre spot. Figure 9.21 does not represent the actual ray 

paths in the electron microscope, which are of course determined and controlled 

by the lens settings: hence L, the camera length, is not the actual distance 

between the specimen and screen, but is a ‘projected’ distance which varies with 

the lens settings. 
From Fig. 9.21, tan26 = R/L. Since 6 is small, tan20 = 20 (26 of course 

being measured in radians). Similarly for Bragg’s law, sin 0 ~ 0 hence 2df,i^i6. 

Eliminating 6 from these equations we have: 

^hkl ^ ^L/R 

where AL is known as the camera constant and which, like L, varies with lens 



166 The diffraction of X-rays and electrons 

spot spot 

Fig. 9.21. Idealized representation of the direct and diffracted ray paths in the electron 
microscope between the specimen and the screen. L is the camera length and R is the 

distance between the centre spot (direct beam) and the diffracted spot. 

settings in the microscope. The units of XL are best expressed in terms of the 

product of R, the distance measured on the screen (e.g. mm) and (e.g. nm, 
o o 

A or pm). Although the angstrom (A) is not an SI (Systeme International) unit, 

it is coherent with the SI system (1 A = 10“^° m) and still remains in widespread 

use in crystallography (a) because it is roughly equal to atomic diameters and (b) 

because X-ray d;,^/-spacing data in the Powder Diffraction File (see Section 
10.3) is recorded in angstroms. 

The accuracy with which the ri;,;^,-spacings can be measured is very limited 

because of the size or ‘diffuseness’ of the diffraction spots. Moreover the camera 

constant, XL, will only be known to a high degree of accuracy if a ‘standard’ 

specimen is used which gives a diffraction pattern with spots of accurately 

known <i;,^/-spacings. Otherwise the small variations in lens settings from speci¬ 

men to specimen and from day-to-day will limit the accuracy of XL values at 

best to three significant figures. Hence, as pointed out above, patterns which 

have identical symmetry but which only differ slightly in scale with respect to the 

J;,^/-spacings of the diffraction spots are not readily distinguished. 

The spots may then be indexed by reference to tables of data such as are 

contained in the Powder Diffraction File, which show the (Laue) indices, hkl, 

corresponding to the measured <i;,^,-spacings. In doing so, a further step is 

required: the indexing must be such that the addition rule (Section 6.5.2) is 



Exercises 167 

satisfied. A given set or family of planes {hkl) (which are invariably listed in 

data files simply as hkl—no brackets) will consist of a number of variants of 

identical r/^^,-spacings. For example, in the cubic system (see Section 5.4), there 

are six variants of the ‘plane of the form’ {100}, all of which have identical 

^/lArfSpacings. The procedure consists of choosing the appropriate variants such 

that the addition rule is satisfied. Consider, for example. Fig. 9.20(a). The four 

spots of identical <i;,^/-spacings closest to the centre spot are all reflections from 

planes of the form (111). The particular indices have been chosen such that the 

indices of the remaining spots are determined correctly. For example, + 

*^111 “ *^002 and the zone axis, [110], is found by cross-multiplication of any pair 
of these indices (see Section 6.5.7), the ‘choice’ only needs to be made once, and 

having been made, all the other spots in the pattern can be indexed consistently 

by repeated application of the addition rule; again, with reference to Fig. 

9.20(a), djjj + dQQ2 = d2j3 and so on. The ‘choice’ is of course arbitrary: the 

number of different choices which can be made, all leading to a self-consistently 

indexed diffraction pattern, depends on the number of equivalent variants of the 

zone axis. In a cubic crystal there are twelve variants of the (110) direction, 

hence there are twelve ways in which a pattern like that of Fig. 9.20(a) can be 

indexed. 

The availability of computer-generated diffraction patterns has greatly facili¬ 

tated the indexing and verification of electron diffraction pattern analysis. 

However, it must be said that many ‘useful’ diffraction patterns—i.e. those 

which may be of potential scientific interest, which have been obtained under 

conditions of experimental difficulty and which may consist of many spots from 

several crystals of varying degrees of visibility on the film—still require for their 

solution careful observation and measurement and an awareness of the possible 

occurrence of additional complicating factors such as double diffraction (see 

Appendix 6). Those books on electron diffraction techniques in Further Reading 

provide a more detailed and thorough coverage of these topics. 

Exercises 

9.1 In the Laue experiment, a bee crystal, lattice parameter a = 0.4 nm (4 A) is 

irradiated in the [100] (or a*) direction with an X-ray beam which contains a 

continuous spectrum of wavelengths in the range between 0.167 nm (1.67 A) and 

0.25 nm (2.5 A). Use the reflecting sphere construction to determine the indices of 

the planes in the crystal for which Bragg’s law is satisfied and draw the direction of 

the reflected beam for one plane in the [001] zone. 

Make a scale drawing of the section of the reciprocal lattice normal to the 

[001] (or z*) direction and which passes through the origin 000 (i.e. the section 

which contains the hkQ reciprocal lattice points as shown in Fig. 6.4(b)). A 

convenient scale to use between the reciprocal lattice dimensions and A4 size 

drawing paper is 1 nm“* = 0.5 cm (1 A“^ = 5.0 cm). Draw a line indicating the [100] 

direction of the incident beam and draw in the two reflecting spheres representing 

the limits of the wavelength range. Remember that the origin of the reciprocal 

lattice is located at the point where the beam exits from the spheres—hence the 
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centres of the spheres are obviously not coincident. Shade in the region of the 

reciprocal lattice between the two spheres; planes whose reciprocal lattice points lie 

in this region satisfy Bragg’s law. For one reciprocal lattice point in this region, find, 

by construction, the sphere which it intersects. The direction of the reflected beam 

is from the centre of this sphere through the reciprocal lattice point, and the radius 

of the sphere gives the particular wavelength reflected. Draw sections of the 

reciprocal lattice normal to the [001] (or z*) direction and which pass through the 

hk\, hk2, hk\, hkl, etc. reciprocal lattice points (see Fig. 6.5). In these sections of 

the reciprocal lattice ‘above’ and ‘below’ that through the origin, the sections of the 

sphere are reducing in size—simple trigonometry will show by how much. Again, 

planes whose reciprocal lattice points lie in the region between the spheres satisfy 

Bragg’s law.) 

9.2 In an oscillating crystal experiment the bcc crystal described in Exercise 9.1 is 

irradiated in the [100] (or a*) direction with a monochromatic X-ray beam of 

wavelength 0.167 nm (1.67 A). The crystal is then oscillated ± 10'’ about the [001] (or 

z*) direction. Find the indices hkO of the planes in the [001] zone which give rise to 

reflections during the oscillation of the crystal. 

(Hint: Make a scale drawing of the section of the reciprocal lattice through the 

origin 000 and normal to the [001] (or z*) direction. Draw a line indicating the [100] 

direction of the incident beam and a single sphere corresponding to the single X-ray 

wavelength (see Exercise 9.1). Oscillating the crystal (at the centre of the sphere) is 

equivalent to oscillating the reciprocal lattice (at the origin). The simplest way to 

represent the relative changes in orientation between the crystal and the X-ray 

Fig. 9.22. An electron diffraction pattern (ZOLZ) of a fee crystal. The camera length L 
(adjusted for the print size) is 715 mm (see Exercise 9.3). 
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beam is to ‘oscillate’ the beam. The directions of the beam at the oscillation limits 

are ± 10° from the [100] direction in the plane of the reciprocal lattice section. 

Draw in the reflecting sphere at these limits and shade in the lunes or the regions of 

reciprocal space through which the surface of the sphere passes. Planes whose 

reciprocal lattice points lie in these regions reflect the X-ray beam during 
oscillation.) 

9.3 Figure 9.22 is an electron diffraction pattern of a thin crystal of aluminium (fee, 

a = 0.4049 nm (4.049 A)) taken using an electron microscope operating at 100 kV, 

and shows diffraction spots from the ZOLZ (zero order Laue zone) only. Given the 

electron wavelength A = 0.0037 nm (0.037 A) and the camera length L = 715 mm, 

index the diffraction spots and determine the zone axis of the diffraction pattern. 

{Note: In face-centred lattices, reflections from the planes for which h, k and I are 

not all odd or all even integers are forbidden.) 

{Hint: Refer to Table A.6.2 listing the indices {hkl} and d-spacings of the allowed 

reflecting planes. Determine the rf;,^;-spacings of the diffraction spots in the pattern 

(see Section 9.7) and hence, using the table, find their indices {hkl}. Using the 

addition rule in Section 6.5.2, assign a consistent set of indices hkl to the diffraction 

spots and hence find their common zone axis using the equation in Section 6.5.7. 

Check your answer by using one of the computer programs listed in Appendix 2.) 

9.4 In an electron diffraction experiment the bcc crystal described in Exercises 9.1 and 

9.2 is irradiated in the [100] (or a*) direction with an electron beam of wavelength 

0.002 nm (0.02 A). Find the reciprocal lattice points which lie close to the sphere in 

the ZOLZ (zero order Laue zone) and FOLZ (first order Laue zone). 

{Hint: Using the same reciprocal lattice scale as in Exercises 9.1 and 9.2, it will be 

found that a very large sheet of paper and very large compasses are needed to draw 

the complete reflecting sphere! However, a sketch of the surface of the sphere near 

the origin will suffice. In electron diffraction, sections of the reciprocal lattice 

Fig. 9.23. An electron diffraction pattern (ZOLZ) of a particle extracted from a nitrided 

chromium-containing steel. The camera constant AL (adjusted for print size) is 38 A mm (see 

Exercise 9.5). 
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perpendicular to the electron beam (i.e. normal to the [100] or a*) direction are 

most convenient. Draw the section through the origin 000 containing the Okl 

reciprocal lattice points (i.e. the ZOLZ), and the section containing the \kl 

reciprocal lattice points (i.e. the FOLZ) (see also Fig. 6.5). Estimate the regions of 

these reciprocal lattice sections, and hence .the reciprocal lattice points, which are 

close to the surface of the reflecting sphere.) 

9.5 Figure 9.23 is an electron diffraction pattern of a particle which has been extracted 

from a nitrided chromium-containing steel. It is one of three possible compounds, 

CrN, FcgC or (Cr,Fe)7C3. The i/;,^;-spacings^ and indices of the lowest angle 

reflections are given below*. Given AL = 38 A mm, identify the compound and 

index the diffraction pattern. 

CrN (fee) FcjC (orthorhombic) (Cr,Fe)7C3 (hexagonal) 

fl = 4.14A a = 4.524 A a = 13.982 A 

b = 5.088 A c = 4.506 A 

c = 6.741 A 

d-hkl/^ hkl ^hkl/^ hkl d-hkl/^ hkl 

2.39 111 6.742 001 12.108 0110 

2.07 200 5.088 010 6.991 n20 

1.46 220 4.524 100 6.054 0220 

1.25 311 4.061 on 4.576 1230 
1.20 222 3.757 101 4.506 0001 

1.04 400 3.381 no 4.223 0111 

0.950 331 3.371 002 4.036 0330 

0.926 420 3.022 111 3.878 1121 

0.845 422 2.810 012 3.615 0221 

0.800 511 2.703 102 3.495 2240 

2.544 020 3.358 1340 

2.387 112 3.211 1231 

2.380 021 3.027 0440 

2.262 200 3.006 0331 

2.247 003 2.777 2350 

2.218 120 2.767 2241 

2.107 121 2.692 1341 

2.067 210 2.642 1451 

2.031 022 2.512 0441 

2.013 103 2.421 0550 

1.976 211 2.364 2351 

1.872 113 2.330 2360 

1.588 130 2.288 2460 

*Data for CrN from the ICDD Powder Data File (11-65), for Fe3C and (Cr,Fe)7C3 from 
Interpretation of Electron Diffraction Patterns, 2nd edn, 1972 by K. W. Andrews, D. J Dyson and S R 
Keown, Adam Hilger (1972). 
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X-ray and electron diffraction of 
polycrystalline materials 

10.1 Introduction 

The preparation or synthesis of single crystals which are sufficiently large—of 

the order of a tenth of a millimetre or so—to be studied using the X-ray 

diffraction methods described in Chapter 9 is often a matter of great experimen¬ 

tal difficulty. This is particularly the case for proteins and other complex organic 

crystals, the preparation of which requires considerable ingenuity and skill. 

However, in many situations the preparation of large single crystals is neither 

possible nor desirable. In materials science and petrology, for example, the 

crystal structures of interest are frequently those of metastable phases which 

occur on a very fine scale as a result of precipitation (or exsolution) from metal, 

ceramic or mineral matrices. As such phases grow, either as a result of natural 

or artificial ageing processes, their crystal structures invariably change as they 

evolve into more stable phases. These changes are best studied using the 

electron diffraction techniques outlined in Chapter 9, since electron beams can 

be focused down to diameters of the order of 1-10 nm, compared with beam 

diameters of the order of 0.1-1.0 mm for X-rays. Electron diffraction has the 

further advantage that crystallographic relationships between the phases and the 

matrices in which they occur can be investigated. Its disadvantage lies in the fact 

that the accuracy with which ^f^j^^fSpacings can be measured is low compared to 

that for X-ray diffraction. 
Polycrystalline or ‘powder’ X-ray diffraction techniques were developed by 

Debye* and Scherrer* and independently by Hull* in the period 1914-1919. 

They may be classified as ‘fixed A, varying d’ techniques (see Section 9.5) in 

which the ‘varying 6’ is achieved by having a sufficiently large number of 

more-or-less randomly oriented crystals in the specimen such that some of the 

hkl planes in some of them will be orientated, by chance, at the appropriate 

Bragg angles for reflection. All the planes of a given ^f^^/-spacing reflect at the 

same 2 d angle to the direct beam and all these reflected beams lie on a cone of 

semi-angle 26 about the direct beam. The various ‘powder’ X-ray diffraction 

techniques may be classified as to the ways in which the cones of diffracted 

beams are intercepted and recorded. In situations in which the crystals are 

randomly oriented, the diffracted intensity in the cones will be uniform and 

hence only part of the cones need to be recorded. This is the case with what 

might be called the ‘classical’ powder camera and diffractometer techniques. 

* Denotes biographical notes available in Appendix 3. 
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However, in situations in which the crystals are not randomly oriented th& 

diffracted intensity in the cones will not be uniform and, in order to determine 

the nature and extent of the ^non-randomness (better described as texture or 

preferred orientation) the whole, or a large part, of the cones need to be 

recorded. This is the case with what are known as ‘fibre’ X-ray techniques (in 

which the crystals are orientated with a particular crystallographic direction (or 

directions) along the fibre axis) or ‘sheet’ techniques (in which the crystals are 

orientated with a particular crystal plane (or planes) parallel to the surface of 

the sheet). 
In electron diffraction the 26 semi-angles of the cones are of course much 

smaller than the case with X-ray diffraction and intersect the screen of film in a 

series of concentric rings about the direct beam. The J^^^-spacings of the rings 

are determined in the same way as for single crystal diffraction patterns 

(Section 9.7). 

10.2 The geometrical basis of polycrystalline (powder) 
X-ray diffraction techniques 

We begin, perhaps rather surprisingly, with a theorem which we learned off-by- 

heart (or should have done) in our early geometry lessons at school—never 

imagining that it would ever come in useful! The theorem comes from The 

Elements of Euclid, the mathematics textbook which has remained in print ever 

since it was first written in c. 300 B.C. The theorem, which is proved in 

Proposition 21, Book III of The Elements, states that ‘the angles in the same 

segment of a circle are equal to one another’. It follows the other equally well 

known theorem (Proposition 20) that ‘the angle at the centre of a circle is 

double that of the angle at the circumference on the same base, that is, on the 
same arc’. 

The former theorem is illustrated (without Euclid’s proof) in Fig. 10.1(a) and 

may be simply restated by saying that for any two points S and D on the 

circumference of a circle, the angle shown as x is constant irrespective of the 

position of point P. Now let us make use of this geometry in devising an X-ray 

camera (Fig. 10.1(b)). Let S be a point or slit source of monochromatic X-rays 

(the slit being perpendicular to the plane of the paper) and let part of the 

circumference P... P be ‘coated’ with a thin film of a polycrystalline specimen. 

The X-rays diverge from the source S and in order that they should only strike 

the specimen we limit or collimate them with a (divergence) slit as shown. Now 

the angle x is, in terms of Bragg’s law, the angle (180°-20)—and whenever 

this is the correct Bragg angle for reflection for a particular set of hkl planes, 

reflections occur from all those crystals in the specimen which are in the right 

orientation and the reflected beams, as proved by Euclid, all converge to point 

D. In short D is a point where all the reflected beams for a particular 

spacing are focused. Different positions of D on the circumference correspond 

to different x, hence different (180° — 26) values. Hence we will have a series of 

focused diffraction lines, one for each i/^^^-spacing in the specimen, around the 
circumference of the circle. 
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Fig. 10.1. (a) The geometrical basis of X-ray powder diffraction techniques; for two given 

points S and D on the circle, the angle x at the circumference is constant, irrespective of the 
position of P. (b) Application to an X-ray focusing camera. S is a source of monochromatic 
X-rays, the angular spread of which is collimated by a divergence slit to strike a thin layer of a 
powder specimen on the circumference at P...P. Angle x = (18O°-20), hence any crystal 

planes in the right orientation for Bragg’s law to be satisfied reflect to give a focused beam (as 
shown in the inset for a particular spacing). Note that the reflecting planes are not in 
general tangential to the circumference of the camera, although in practice they are closely so. 

The Bragg reflecting geometry is shown in detail in the little ‘inset’ diagram 

below Fig. 10.1(b) which shows the orientation of the reflecting planes in one 

part of the specimen and the angle 20 between the direct and reflected beams. 

Notice that the reflecting planes are not (except for some particular part of the 

specimen) tangential to the circumference. 
A film placed around the rest of the circumference of the circle will record all 

the reflected beams and this arrangement is the basis of the Seeman-Bohlin 

camera and the variants of it devised by Guinier and Hagg. They are called 

focusing X-ray methods because they exploit the focusing geometry of Euclid’s 

circle which is thus called the focusing circle. 

The focusing geometry can also be used to provide a monochromatic source 

of X-rays (Fig. 10.2). The source S is now the line focus of an X-ray tube from 

which a spectrum of X-ray wavelengths (the ‘white’ radiation with superimposed 

characteristic wavelengths, Kaj, Ka2, K(3 etc.) is emitted*. A single plate¬ 

shaped crystal is cut such that a set of strongly reflecting planes is parallel to the 

* Details of the physics of X-ray generation. X-ray spectra and the operation of X-ray tubes may 
be found in the appropriate books listed under ‘Further Reading’. In brief, superimposed on a 
background of varying X-ray wavelengths (the ‘white’ X-radiation) there are strong components 
arising from specific transitions of electrons between energy levels in the atom. These are called the 
characteristic wavelengths because their wavelengths are characteristic of the atom. Monochromati- 
zation is a method by which one of these wavelengths (usually that called Kaj) is isolated from the 
other components and the ‘white’ background. 
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Polych 
source 
of x-ra; 

Curved and shaped crystal 
the reflecting planes are at 
angle 0to the incident and 
diffracted beams 

Fig. 10.2. The principle of the X-ray monochromator. The crystal planes are curved to a 
radius twice that of the focusing circle such that they make the same angle (0) to the divergent 

incident beam. The surface of the crystal is also shaped so as to lie precisely on the focusing 
circle. The source and focus of the reflected beams are symmetrical (i.e. equal distances) with 

respect to the crystal and 6 and the -spacing of the crystal planes are chosen such that 

only the strong Ka^ X-ray wavelength component is reflected. 

surface. The crystal is curved or bent to a radius of curvature twice that of the 

focusing circle and then (ideally) is shaped or ‘hollowed out’ such that its inner 

surface lies along that of the focusing circle. The position of the source S, and 

hence the angle (180°-20) is, together with the spacing of the crystal 

planes, chosen to reflect, say, only the strong Kaj component of the whole 

X-ray spectrum which is focused to a point or line D, symmetrical with the 

source S. D becomes, in effect, the line source of a beam of monochromatic 

X-rays, which can be used ‘upstream’ of the Seeman-Bohlin camera as the 

source S of monochromatic X-rays. 

The symmetrical arrangement is also made use of in the X-ray diffractometer, 

which has become by far the most important classical X-ray diffraction tech¬ 

nique. The diffractometer has become, in effect, the X-ray data acquisition end 

of a computer in which the data can be stored, analysed, plotted, compared with 

standard powder data files etc. The advantages are enormous; the disadvantage, 

if it can be called such, is that students may simply regard the diffractometer as 

a ‘black box’ to generate data, without understanding the principles on which 

the instrument works, nor the parameters underlying the data analysis proce¬ 
dures. 

The symmetrical or Bragg-Brentano focusing geometry of the diffractometer 

is shown in Figs. 10.3(a) and (b). As described in Section 9.6, the source of 

monochromatic X-rays, S (from a monochromator upstream of the diffractome¬ 

ter) is at an equal distance and equal angle to the specimen surface as D, the 

‘receiving slit’ of the detector (a proportional counter). The 20 angle is continu¬ 

ously varied by the source and detector slit tracking round the arc of a circle 

centred on (and therefore at a fixed distance from) the specimen. Figure 10.3(a) 
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Flat specimen: centre 
lies within the focusing 
circle 

Fig. 103. The principle of the X-ray diffractometer. The source-specimen and specimen- 
detector slit distances are fixed and equal, (a) The situation for a small d angle and (b) for a 

large 6 angle, the source and detector moving round the arc of a circle centred on the 
specimen. Notice the change in the diameter of the focusing circle and the fact that, since the 
specimen is flat, complete focusing conditions are not achieved (dashed line in (a)), (c) An 

asymmetrical specimen arrangement for the same 2d angle as in (b), the position and diameter 
of the focusing circle have changed such that the detector slit is no longer coincident with it. 
The reflecting planes are now those which make (approximately) angle a to the specimen 
surface (see Fig. 9.16). 

shows the situation at a low d angle and Fig. 10.3(b) shows the situation at a 

high 6 angle. In some instruments the specimen is fixed and the source and 

detector slit rotate in opposite senses; in others the source is fixed and the 

specimen and detector slit rotate in the same sense, the detector slit at twice the 

angular velocity of the specimen—but the result geometrically is the same. 

However, the important point to note is that the polycrystalline specimen as 

used in a diffractometer is flat, and not curved to fit the circumference of the 

focusing circle. Focusing therefore is not perfect—the reflected beams from 

across the whole surface of the specimen do not all converge to the same point: 

those from the centre converge to a point a little above those from the edges, as 

shown in Fig. 10.3(a). The diffractometer is hence called a semi-focusing X-ray 

method. In practice the deviation from full focusing geometry is only important 
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(in the symmetrical arrangement) at low 0 angles and in which a large width of 

specimen contributes to the reflected beam. It is not however laziness or 

experimental difficulty which prevents specimens being made to fit the circum¬ 

ference of the focusing circle, but the fact that, unlike the situation for the 

Seeman-Bohlin camera, the radius of the focusing circle changes with angle as 

is shown by a comparison with Figs 10.3(a) and (b). 

As pointed out above, in the symmetrical arrangement, in which the specimen 

surface makes equal angles to the incident and reflected beams, the only crystal 

planes which contribute to the reflections are those which lie (approximately) 

parallel to the specimen surface, particularly when the divergence angle of the 

incident beam, and therefore the irradiated surface of the specimen, is small. In 

situations in which the spacings of planes which lie at large angles to the 

specimen surface need to be measured (e.g. in determining the variation of 

lattice strains from planes in different orientations), the specimen is rotated as 

shown in Fig. 10.3(c); the angle of rotation a is of course (approximately) equal 

to the angle of the reflecting planes to the specimen surface (Fig. 9.16). In doing 

so, however, the symmetrical Bragg-Brentano focusing geometry is lost; the 

focusing circle changes both in diameter and position, as shown in Fig. 10.3(c), 

and the detector slit is no longer at the approximate line of focus, but in this 

case beyond it where the beam diverges and broadens. This deviation from the 

focusing geometry may be serious because the observed ‘broadening’ at the 

detector slit could be misinterpreted as arising from a variation in reflection 

angle as a result of a variation in lattice strain. The problem may be partially 

overcome in two ways. First, the detector slit may be moved along a sliding-arm 

arrangement so as to coincide more precisely with the line of focus. However, 

this may itself introduce errors in the angular measurements because of the 

difficulty of achieving a precise radial alignment of the slider. Second, the 

angular divergence of the incident beam may be restricted to very low values 

say 0.25‘’-0.5°—such that the broadening of the beam at the detector slit is 
very small, and this is now the preferred option. 

An example of an X-ray diffractometer chart or ‘trace’ for quartz (Si02) is 

given in Fig. 10.4. The -spacings and relative intensities of the reflections 

may be used to identify the material, as described in Section 10.3 below. 

There are two other ‘classical’ X-ray powder techniques of interest—the back 

reflection method in which the whole or part of the diffraction cones are 

reeorded on flat film (an experimental arrangement identical to that for the 

Laue back reflection method) and the Debye-Scherrer technique in which a 

thin rod-shaped specimen or a powder in a capillary tube is set at the centre of a 
cylindrical camera. 

The geometry of the back reflection powder method is shown in Fig. 10.5. The 

effective position of the source S is determined by the design of the collimator 

tube which passes through a hole in the centre of the film. In practice the 

divergence angle is very small, of the order 0.5°-2°. Notice that, like the 

diffractometer, it is a semi-focusing method—all the reflected beams from 

the (flat) specimen surface focus approximately at the circumference of the 
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-♦ Diffraction angle 2© 

Fig. 10.4. An example of an X-ray diffractometer chart of intensity of the reflected beams 
(ordinate) vs 20 angle (abscissa). The intensity scale is non-linear (square root) to emphasize 
the weaker reflections. The specimen is polycrystalline Si02 (quartz), CuKaj radiation 

(A = 1.541 A). The d-spacings (A) of the reflections are indicated (compare with Figs. 10.7 and 

10.8). 

focusing circle. However, the flat film can be placed only at one distance x from 

the specimen: if a: is the focal distance of the high 26 angle reflections as 

shown, it will not be at the focal distance of the lower 26 angle reflections. In 

practice a ‘compromise’ value of x is chosen such that the diffraction rings of 

particular interest are most sharply focused. 
The great advantage of the Debye-Scherrer method over the diffractometer 

(and to a lesser extent the Seeman-Bohlin method and its variants) is that only 

very small amounts of material are required for, say, insertion into a capillary 

tube. 
The geometry and specimen-film arrangement in the Debye-Scherrer cam¬ 

era are shown in Fig. 10.6. The cylindrical specimen (a powder in a capillary 

tube or a cemented powder in the form of a little rod) is placed at the centre of 

a cylindrical camera. The strip of film may be fitted round the circumference of 

the camera in several ways: it may have a single hole punched at its centre and 

so arranged to coincide with the ‘exit’ direction of the X-ray beam (the ends of 

the film being each side of the ‘entrance’ direction of the X-ray beam) or vice 

versa. However, the usual way is to punch two holes in the film, one to match 

the ‘entrance’ and the other to match the ‘exit’ directions of the X-ray beam, the 

two ends of the film now being at the ‘top’ or ‘bottom’ of the camera as shown. 

This ‘asymmetrical’ arrangement or ‘setting’ has the advantage that a complete 
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Fig. 10.5. The geometry of the back reflection X-ray powder method; the diverging X-ray 

beam from an (effective) source S passes through a hole at the centre of the film. The 
reflected beams for two reflections are shown. The film is shown placed at a specimen-film 
distance x so as to intercept the higher angle reflections such that they are sharply focused. In 
order to intercept the lower angle reflections such that they are sharply focused it would need 
to be moved closer to the specimen as indicated. In practice a ‘compromise’ value for x is 
chosen which is acceptable since the divergence angle, and the de-focusing of the incident 

beam, is small. 

range of 2d angles—from 0° to 180°—may be recorded on one side of the film 

without a ‘cut-off occasioned by the presence of a film end. In this way accurate 

<i;,^;-spacings may be determined and any effects of film shrinkage accounted 

for. 

The position of the effective source S is determined by the design of the 

collimator. The focusing circle for a particular reflection is shown; however, this 

only represents the physical situation very approximately since the reflected 

beams arise to different extents from the whole volume of the specimen and the 

position of the source S and the focusing effect is by no means as precise as that 
drawn in Fig. 10.6. 

An example of a Debye-Scherrer film (asymmetrical setting) is shown in Fig. 

10.7. The 20= 0° and 26= 180° positions can be worked out exactly by deter¬ 

mining the centres of the ‘exit’ and ‘entrance’ rings, the distance between them 
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Fig. 10.6. (a) The geometry of the Debye-Scherrer camera; the reflected beams from a 

cylindrical specimen tend towards a focus on the film around the circumference of the camera 

and the focusing circle for a particular reflected beam is shown. In practice deviations from 
this idealized situation occur because the reflected beams originate with varying intensities 

from the whole volume of the specimen and the effective source S may not coincide with the 
circumference of the camera, (b) The camera with the light-tight lid removed showing the 

specimen at the centre, the collimator and receiving tube and the (low angle) X-ray diffraction 

rings on the film. The screws at the top are for locating and fixing the ends of the film (from 

Manual of Mineralogy, 21st edn, by C. Klein and C. S. Hurlbut Jr., John Wiley & Sons Inc., 

1993). 
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Fig. 10.7. An example of a Debye-Scherrer X-ray film (CuKa X- 

radiation) for SiO^ (quartz). S is the ‘entrance’ hole and O the ‘exit’ hole. 
The ‘spotty’ appearance of the rings arises because of the relatively coarse 

crystallite size in the specimen. At high 2 6 angles (near the entrance hole) 

the Kai/Ka2 doublets are resolved but at low 20 angles (near the exit 
hole) they are unresolved. The streaks around the exit hole arise from the 
presence of residual ‘white’ X-radiation in the incident beam. 
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on the film corresponding to 180° exactly. Hence the camera diameter does not 

need to be known, although in practice cameras are made with diameters 57.53 

mm or 114.83 mm such that (and accounting for film thickness) the circumfer¬ 

ence is 180 mm or 360 mm. Hence for quick work the angles can simply read in 

terms of millimetres on the film. 

Finally, a note about X-ray diffraction techniques for materials in which the 

crystals are in a preferred orientation—fibres or sheets. Fibres may be exam¬ 

ined in an oscillation or rotation camera in the same way as for single crystals 

(Section 9.6), the important measurement being the spacings between the layer 

lines which correspond to the repeat distance of the crystallographic direction 

aligned along the fibre axis. The cones of reflected beams of non-uniform 

intensity for both fibres and sheets may be recorded using flat plate film 

methods (such as the back reflection method shown in Fig. 10.5), separate 

exposures being made for different settings of the specimen. Such data however 

is not easy to quantify because the observed intensities are also affected by 

extraneous factors such as absorption in the specimen, etc. By far the most 

useful techniques are those in which the specimen is mounted in a goniometer, 

the diffracted intensity for particular reflections being measured by a counter, 

the data processed by a computer and plotted out in the form of pole figures or 

an orientation distribution function (ODF). 

10.3 Some applications of X-ray and electron diffraction 
techniques in polycrystalline materials 

10.3.1 Accurate lattice parameter measurements 

The accurate measurement of -spacings is now largely carried out with the 

X-ray diffractometer using monochromatized (Ka^) radiation, narrow diver¬ 

gence and receiving slit systems, internal calibration systems and peak profile 

measurement procedures. However, as shown below, it is the high 26 angle 

reflections which are most sensitive to small variations in -spacings and for 

this reason the Debye-Scherrer powder camera and back reflection flat film 

techniques in which 26 angles up to nearly 180° can be recorded, are still used. 

By contrast, the largest 26 angles measurable with a diffractometer are about 

150° because the near approach and possible contact between the source and 

receiving slit assemblies. 
Given the crystal system and the hkl values of the reflections, the lattice 

parameter(s) can be determined using the appropriate equation (Appendix 

A4.1). This procedure is clearly simplest for the cubic system in which the 

d^i^i-walues depend only upon the one variable, a. In other systems several 

^^/i/trspacings need to be measured and the values inserted into simultaneous 

equations from which values of the lattice parameters are extracted. 

The sensitivity of change of the 26 angle for a reflection with a change in 

-spacing is a measure of the resolving power of the diffraction technique. 
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The resolving power, or rather the limit of resolution, 8d/d, can be obtained by 

differentiating Bragg’s law with respect to d and 0 (A fixed), i.e. 

X = 2d sin 6 

differentiating: 

0 = 2d cos dSd + 2 sin 6 8d 

hence 
8d/d = -cot 6 86. 

This equation may be ‘read’ in two ways. For a given value of 2 86, which may 

be expressed in terms of the minimum resolved distance between two reflections 

on the film, chart, etc., for the smallest limit of resolution we want cot 6 values 

to be as small as possible; or, for a given value of 8d/d, we want the angular 

separation of the reflections 286 to be as large, and hence again cot 6 values to 

be as small as possible. 
A glance at cotangent tables shows that cot 6 values are high at low 6 angles 

and rapidly decrease towards zero as 6 approaches 90°. Hence d;,;t/-spacing 

measurements are most accurate using high-angle X-ray diffraction methods 

and least accurate with low-angle electron diffraction methods. 

10.3.2 Identification of unknown phases 

For powder specimens in which the crystals are randomly orientated, the set of 

d-spacings and their relative intensities serves as a ‘fingerprint’ (or ‘genetic 

strand’) from which the phase can be identified by comparison with the 

‘fingerprints’ of phases in the X-ray Powder Diffraction File—a data bank of over 

70000 inorganic and 20000 organic phases. The File is administered by the 

International Centre for Diffraction Data (ICDD)—formerly the Joint Commit¬ 

tee for Powder Diffraction Standards (JCPDS)—and new and revised sets of 

data are published annually in book form (replacing the original 5 inch by 3 inch 

cards) or as a computer database. In addition, there are published Indexes with 

the phases arranged alphabetically by chemical name, search manuals and 

abstracts from the File (including Indexes and Search Manuals) or Frequently 
Encountered Phases (FEP). 

The entry for each phase in the File or computer database (which differ 

slightly in their layout) includes: file number, chemical formula and name, 

experimental conditions, physical and optical data (where known), references 

and the set of d-spacings (given in A), their Laue indices and their relative 

intensities arranged in order of decreasing d-spacing. Finally, the ICDD editors 

assign a ‘quality mark’ to indicate the reliability of the data (e.g. a ‘*’ indicates 

that the chemistry, structure and X-ray data of the phase is well characterized); 

or whether the X-ray data has been derived by calculation, rather than observed 

(a ‘c’ mark). Figure 10.8 shows an example of a Powder Diffraction File card, 
that for quartz, set number 33, card number 1161. 

A comparison of an unknown phase with 70000 others is potentially a 

daunting task! It is greatly facilitated by a search procedure based on that first 
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33-1161 
SiO, 

Silicon Oxide Quartz, syn 

Rad. CuKa, X 1.540598 Filler Mono. d-sp Diff. 
Cu< off IdI. Diffractometer 3.6 
Ref. Nal. Bur. Stand. (U.S.j Monogr. 25, 18 61 (1981) 

Sys. Hexagonal S.G. P3,21(154) 
a 4.9133(2) b c 5.4053(4) A C 1.1001 
a p 

Ref. Ibid. 
Y Z 3 mp 

D, 2.65 D„, 2.66 SS/FOM F3o = 77(.0126,31) 

Eo neap 1.544 €Y 1.553 Sign r 2V 
Ref. Swanson, Fuyat, Natl. Bur. Stand. (U.S.), Ore. 539, 3 24 (1954) 

Color Colorless 

av .jaiiipic iiulu ijic occuon ai xne iNaiionai 
Bureau of Standards; ground single-crystals of optical quality. 02Si 
type. Quartz group. Silicon used as internal standard. PSC: hP9. To 
replace 5-490. Plus 6 reflections to 0.9089. 

d A Ini hkl d A Int hU 

4.257 22 100 1.1532 1 311 
3.342 100 101 1.1405 <1 204 
2.457 8 110 1.1143 <1 303 
2.282 8 102 1.0813 2 312 
2.237 4 111 1.0635 <1 400 

2.127 6 200 1.0476 1 105 
1.9792 4 201 1.0438 <1 401 
1.8179 14 112 1.0347 <1 214 
1.8021 <1 003 1.0150 1 223 
1.6719 4 202 0.9898 1 402 

1.6591 2__ 103 0.9873 1 313 
1.6082 <1 210 0.9783 <1 304 
1.5418 9 211 0.9762 1 320 
1.4536 1 113 0.9636 <I 205 
1.4189 <1 300 

1.3820 6 212 
1.3752 7 203 
1.3718 8 301 
1.2880 2 104 
1.2558 2 302 

1.2285 1 220 
1.1999 2 213 
1.1978 1 221 
1.1843 3 114 
1.1804 3 310 

Fig. 10.8. The Powder Diffraction File Card No. 33-1161, for quartz. The left-hand side gives 
crystallographic, optical and physical information and the source of the data. The right-hand 
side lists the ti-spacings, in descending order, with the strongest line assigned an intensity of 
100. Formerly (up to set 24) the cards included along the top left edge the d-spacings of the 
three strongest lines and the largest d-spacing recorded in the pattern. (International Centre 
for Diffraction Data). 

devised by J. D. Hanawalt in 1936 and now refined and speeded up using 
computer search procedures. 

The phases are grouped together (into what is known as Hanawalt groups) 

according to the ^/-spacing of their strongest reflection. There are forty Hanawalt 

groups covering the whole range of rf-spacings. For example, the strongest line 

of quartz (relative intensity 100) is that at 3.34 A (Figs 10.4 and 10.7); quartz 

therefore lies in the Hanawalt group with <i-spacings in the range from 3.39 to 

3.32 A (Figure 10.9—first column). Within each Hanawalt group the patterns 

are listed in the second column in order of decreasing (i-spacings of the second 

strongest line which for quartz is that at 4.26 A; on reading down the list of 

patterns in the second column of the Hanawalt group a potential ‘match’ can be 

made with the second strongest line and then (from the number of possibilities 

available) final confirmation made with the i/-spacings and intensities of the 

third, fourth etc. strongest lines in the subsequent columns. Figure 10.9 is from 

the Hanawalt Inorganic Search Manual showing some entries in the Hanawalt 

group 3.39-3.32 A which includes that for quartz. File No. 33-1161. 

In practice the procedure is by no means as straightforward as this. First, 

many minerals and metallic alloys give very nearly the same diffraction pattern 

because of the existence of solid solution ranges, which result in very small shifts 

in lattice parameter. Second, the crystals in the powder specimen may not be 
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3 31x 4.30, 4.53, 2 034 2 854 2 OO4 

3.39 - 3.32 ( .02) 

774, 3 24, No,Ce,F,i 
, 3.30* 4.30s 2 13j 2 79j 2 33, 2 Olj 1 79, 1 52. Hg,Br, Kuxmmtfe, »yn 

3.40x 4.29, 4.09, 6 63, 4 02, 3 31, 2-67, 2 33, CIF',0BF4 

3.39* 4.29, 5 88, 3 12, 2 906 2 30, 1 96, 1 78, 

3.39x 4.294 2,47, 2 31, 2 23, 2 14, 1 99, 1 83, BPO4 

0 3.36, 4.29x 2 85, 5.60s 4 02, 2 58, 1 98, 1 90, axCro ,,0; 

3,35x 4.29; 3.43, 2 02, 4 35, 3 39, 2 07, 493, KNoSiF, , 3.34. 4 29x 10.5, 2 64, 2.71, 5 274 5.75, 3 79, ^ Na,Ta^O,F, 

3.32x 4.29, 2.99, 2 87, 2 52, 4 70, 2 38, 2.30, Cs,Al(NOs), 

0 3,31x 4.29x 3.66x 2 91x 2 34. 2 06x 1 99, 1 93, Pu(OH}COj *H,0 

I 3.37x 4.28, 1.84, 1.55, 2 47, 2 31, 1 39, 2 14, AIPO4 B»riirtit», tyn 

3 35. 4 28x 3.71, 2 85, 2.17, 4.074 3 034 2 734 K,N,V,0„ 

3.35x 4 28, 2.97; 1 7 61, 2 2I4 1.634 1 384 (Zn.Co)Al,P,H,0,, 3H,0 Kehoeife 
1 3.34x 4 26, 4.27, 3.385 2-77, 2 33, 2 79, 2 32, CUi$«04 

( 3.33x 4 28x 3.24x B58a 2.91, 2.37, 1 07, 4 95, C*0 

3.34x 4.27, 3.19, 2.70, 7 28, 4 91; 1.82; 3.13, CaAl,Si306'4H,O Gismondine 
1 3.30x 4.27; 3.71; 3.45, 3 92, 3 34, 3.27, 2 96, KFeSijO* 

3.38x 4.26x 4.16x 1.604 6 70a 2 97, 2-86a 2,56„ Cj,VC!,4H,0 
1 3.37x 4.26, 4.186 2 906 0 56, 6 76, 3 49, 3 09, Cj,VCI, 4H,0 

0 3.36x 4.26x 4,21x 2,86x 5.906 5 55, 3.26, 2 94a KAlHiPjO.o) 

0 3.36, 4.26x 2 98* 5.95, 5 55, 4 02, 3-26, 2.87, KCrHPjO,o 

3.34x 4.26, 3.66, 2.61, 2.40, 1.80, 3.97, 3 05, 3PbCO,-2Pb(OH)5H,0 
1 3.34x 4.26; 2 13, 7.40s 3 49, 2 58, 2-24, 2 21, Ca3G«(S04),(OH), 3H,0 Schoorteit* 

3,34x 4.266 2-136 7-40, 2 57, 2.03, 3 494 2 244» Co3Mn(S04),(OH), 3H,0 D«vpu|oliile 

3.34x 4.26, 1.82, 1 54, 2 46. 2 28, 1.37, 1 38, SiO, Quart!, syn jtlica 

0 3.33x 4.26, 3.274 4.3I3 2.893 2.753 3.88; 3.19, K,Ca(VOj)4 

3.30x 4.26a 4,24; 3.66; 2 89, 2 30, 2.63, 2 32s 5fn,0(COj), xH,0 
3.31, 4.25x 4.09, 3.72; 2.98; 2 20; 1 93; 5 47, CIPrOFa 
3.30, 4 25x 4.09, 3-67, 7 42, 5 ^7, 2 96, ’ 91, (CIF,0)AtF, 

3.40x 4.24, 3.OO4 5-723 2 665 2.05; 2.37, 0 00, KAuFj 

3.37x 4 24, 2.32, 2 12j 2 45, 1 04, 1 83, 1 54, G0PO4 

0 3.36x 4.24x 2.86* 5-90, 5.55a 3 26, 2 94, 6 60, KAIH(P,0,o) 
3.33x 4.24x 3 39, 2 64, 3.253 2 60. 4 30, 3.44, SrUMo40i, 

i 3.41b 4.23x 2.87* 2 49; 2.06a 1 99a 1.95; 1 93,, u-WP, 

3.39, 4.23x 5.06, 3.45, 3 18, 3.05, 5.25; 3.76, RbAl,(H,PjO,oKp40„) 

0 3.396 4.23x 2.99, 2 09e 2.77, 5.93, 3.24, 4 754 RbGoHPjOio 
0 3.37x 4.23x 3.46x 3.00x 2.13* 6 00, 2 69, 2.45, CsSrtFBH 

0 3.36x 4.23x 2.37* 2-29x 2.15x 1 90x 9.50, 3.95, AlgLajS,, 
0 3.36x 4.23s 1 64s 2 724 2.44, 2.223 1.933 3.14, Mo306 *H,Ollt*monnite 

3-356 4.23x 3.12* 3,436 3 84, 3-75, 3.39, 3 37, |J-C$,Cu(S04), 

0 3.40x 4.22, 3.20, 3.14; 5.81, 3.62j 3.034 2-644 No3VO,(S04), 
3,416 4.21x 3.11* 2.756 7 58; 5.60; 4 46, 3.31, No,SbF3S04 

0 3.41, 4.21x 2.99, 3.246 2.91a 2.77; 5.95, 4.77, RbCrHPjO.o 
0 3,39x 4.21, 3.92, 2.706 1 896 3 78, 2 96, 2.08, Pb,Sb,S, 

3.33, 4.21x 3.82; 2.96; 2.47; 2-34; 2.01, 1.89; CiXeOF, 

0 3.41, 4.20x 3.65; 2.77; 2.71; 2.96, 2.11, 4.OO4 TljSijS, 
0 3.33x 4.20; 3.08s 2.734 l.BOj 3-00, 2.40, 1.56, PbMoPjOa 

3.39x 4.19j 3.67, 2.81, 2.53, 2.17, 1.89, 1.94, Li4H3Si,0, 
, 3.35x 4.18s 2.953 5.59, 2.61, 2.31, 0-00, 0-00, KAgF4 

3.32x 4.18, 3.594 4,30, 3-7O3 2.823 2-77; 2.08, CsVOjSO* 

Fig. 10.9. Part of the Hanawalt^Search Manual for Inorganic Phases, sh 

File No 

25- 817 
8 468 

26- 235 
36- 1089 
11' 237 

35- 332 
38- 686 
25- 871 
28- 274 
33- 982 

10- 423 
20-1379 
27- 94 
29- 411 
30- 385 

20- 452 
16- 153 
20- 301 
34- 322 
38- 55 

41- 442 
9- 356 

19- 225 
20- 226 
33- 1161 

37- 180 
28- 994 
26- 415 
26 117 
27- 395 

8- 497 
38- 55 
38-1360 
35- 1467 
37- 261 

34- 1347 
30- 369 
41- r'«4 
21- 5''4 
28- 288 

41- 175 
28-1038 
41- 443 
36- 94 
35- 1267 

38- 914 
36- 198 
23-1185 
26-1464 
36- 704 

the Hanawalt Group 3.39-3.32 A. The intensities of the reflections are indicated by subscripts 
X = 100, 9 = 90, 8 = 80 and so on. Notice that some patterns are entered in this Hanawalt 

Group according to their second-strongest or t/iird-strongest lines; e.g. K2N2V5O21 (20-1379) 
or RbGaHPjOio (34-1347) respectively. This is because they have intensities over 75% of that 
of the strongest line and may experimentally be identified as the strongest lines. (International 
Centre for Diffraction Data). 

randomly orientated—the specimen may be textured or may show preferred 

orientation, which implies that the relative intensities of the reflections may be 

altered as compared with those in the File. Third, the unknown specimen may 

consist of more than one phase—and if they are in roughly equal proportions 

the strongest lines may be ‘mixed up’. 

These problems are partly (but not wholly) circumvented by a series of ‘entry 

rules’, the details of which are given in the Search Manual. First, those patterns 

in which the (i-spacing of the strongest reflection lies close to one of the 

boundary values of the Hanawalt group are entered in both groups—the one 

above and the one below. Second, those patterns in which the intensity of the 

second strongest reflection is greater than 75% of the intensity of the strongest 

(and in which there is therefore a strong possibility of the mis-identification of 

the strongest reflection) are entered twice; the second strongest reflection 
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determining the Hanawalt group and the position in the group listed (as before) 

in accordance with the (decreasing) ii-spacing of the second strongest reflection. 

Similar rules apply to the third and fourth strongest reflections such that a 

pattern may be listed several times. Examples of such permutations are shown in 

Fig. 10.9. 

The Powder Diffraction File may be used to identify polycrystalline specimens 

from their electron diffraction patterns. However, its use is much more limited 

owing to the fact that the ^/-spacings of the diffraction rings can be measured to 

a much lower level of accuracy and only qualitative estimates can be made of 

their relative intensities. Hence the use of search procedures, as described 

above, is uncommon. Usually we have a fair idea as to what the specimen might 

be and make direct comparisons between the experimental data and that of 

‘possible’ patterns in the File. Exercise 9.5 gives an example of this in the case of 

a single-crystal electron diffraction pattern. 

Figure 10.10 gives an example of an electron diffraction ‘ring’ pattern from a 

fine-grained polycrystalline thin foil specimen of aluminium. It is, in effect, the 

superposition of many single-crystal patterns. Notice the variations in intensity 

and the sequence of spacings of the rings. Aluminium can immediately be 

recognized as having the fee structure since the rings occur in the characteristic 

sequence ‘two-together’, ‘one-on-its-own’, ‘two-together’ etc. (see Note 3, Table 

A6.2). Hence the rings may simply be indexed ‘by inspection’, i.e. 

111,200, 220, 311,222, 400, 331,420. 

Fig. 10.10. An electron diffraction pattern of polycrystalline aluminium, showing varying 

intensities of the diffraction rings and the sequence of ring spacings characteristic of the fee 

structure. 
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10.3.3 Measurement of crystal (grain) size 

This is based on the determination of /3, the line broadening in the Scherrer 
equation (Section 9.3) and an estimate of K, the ‘shape’ correction factor (which 
does not differ significantly from unity). However, this is not a straightforward 
business because the observed broadening, Xbs’ ^^^o includes ‘instrumental’ 
factors such as detector slit width, area of specimen irradiated, possible presence 
of a Ka2 component in the X-ray beam etc. The contributions from these 
factors have to be ‘subtracted’ from the observed peak breadth (or, strictly 
speaking, they have to be deconvoluted from the peak). The usual procedure is 
to measure the instrumental broadening, in a large-grained material in 
which grain size broadening is assumed to be negligible, and to determine /3 
either by a simple subtraction, due to Scherrer, i.e. ^3 = “/^inst^ or by a 
subtraction of squares, due to Warren, i.e. = (3ohs ~^Lr In practice, 
attempts to measure ‘absolute’ grain sizes by X-ray diffraction are fraught with 
difficulty because of the presence of imperfections (particularly sub-grain 
boundaries), lattice strains etc. which contribute to the broadening of the X-ray 

peaks. 

10.3.4 Measurement of internal elastic strains 

The elastic strains to be measured can be distinguished into those occurring on 
a ‘macro’ scale and those occurring on a ‘micro’ scale. Macroscale refers to the 
situation where the whole material is subject to some directional residual 
tension or compression; the resultant strains, which are manifested in terms of 
increases (tension) or decreases (compression) in the d;,^,-spacings are therefore 
also directional and the measured values vary with the orientation of the reflect¬ 
ing planes—those parallel to the stress axis for example suffering no change. 

In order to measure such strains (and to determine the stress axis) in the 
diffractometer, the specimen needs to be rotated from the symmetrical 
(Bragg-Brentano) geometry as described above. In practice, measurements of 
peak shift are made for various settings of the specimen and from which the 
direction and magnitude of the stress can be extrapolated. 

Microscale refers to the situation in which the directions (and magnitudes) of 
the internal strains vary from crystal to crystal. The subsequent elastic strains 
give rise, not to a shift, but to a broadening of the diffraction peaks from which 
an estimate of the micro-stress can be made. The relevant equation is that 
derived for the limit of resolution (Section 10.3.1), in which e, the elastic strain, 
is substituted for 8d/d, i.e. 

e = —cot 6 86. 

Hence the broadening, p, expressed as the half-height peak width 2 86, is: 

2e 
P=-= — 2e tan 6. 

cot 6 

Notice that this equation is very similar to the Scherrer equation for broaden¬ 
ing arising from crystal size; the important difference being that in this case p 
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varies as 1/cot 6 or tan 6 and in the Scherrer equation p varies as 1/cos 6 or 

sec d. As in the case of grain size broadening (Section 10.3.3), the instrumental 

broadening, measured for a stress-free material, must be subtracted from 

/Sobs, observed broadening for the micro-strained material. Finally, having 

measured the strain e, the stress may be determined by substituting the 

appropriate value of the Young modulus, E. 

10.3.5 Determining orientation relationships between crystals from 
electron diffraction patterns 

One of the greatest advantages of electron diffraction is the facility in the 

electron microscope of being able to select a particular area of the specimen 

and to vary the diameter of the beam to obtain diffraction patterns simultane¬ 

ously from those phases of interest. Moreover, the reflections from the phases 

present may be distinguished by the technique of dark field imaging. Each 

electron diffraction pattern may be indexed according to the procedures de¬ 

scribed in Section 9.7. The orientation relationship(s) may then be given in 

terms of parallelisms between zone axes and planes. 

Figure 10.11(a) shows an electron diffraction pattern of a-iron a = 2.866 A 

(bee—strong reflections) in which are precipitated (or exsolved) particles of 

Fe2TiSi, a = 5.732 A (fee—weak reflections) in a single crystallographic orienta¬ 

tion. It is obvious, simply by inspection or looking, that there is a clearly defined 

• m • • • • 

□ □ 
211 Oil 211 

• # • • 

Til 111 
□ □ □ □ 

' # 
200 200 000 200 200 • • • 

• 
D □ 

% • • • • 

(a) (b) 

Fig. 10.11. (a) An electron diffraction pattern of a-iron (bee, a = 2.866 A; strong reflections) 
and Fe2TiSi (fee, a = 5.732 A: weak reflections) in a single crystallographic orientation. The 

camera constant AL = 31.5 A mm. (b) The patterns indexed according to one (arbitrary) 

variant of the ‘cube-cube’ orientation relationship: 

(200)Fe2TiSi II (200)a-Fe; [OlljFejTiSi || [011]a-Fe 
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orientation relationship between the iron matrix and the precipitate and, be¬ 

cause of the coincidence of many of the reflections, that the lattice parameters 

are related in some rational ratio. The J-spacings of the reflections may be 

measured (Section 9.7) and, given the lattice parameters and the conditions for 

reflection for the cubic F (fee) and cubic I (bcc) lattices (Table A6.2), the 

reflections may be indexed. Figure 10.11(b) shows the patterns indexed accord¬ 

ing to one (arbitrary) variant of the orientation relationship. Note that the 200 

Fe2TiSi spot is half the distance (and therefore twice the ^/-spacing) of the 200 

a-Fe spot from the centre; these planes are therefore parallel and the lattice 

parameter of Fe2TiSi is twice that of a-Fe. Similarly, the 022 Fe2TiSi reflection 

(by vector addition of 111 and 111) is coincident with 011 a-Ti. The zone axes, 

obtained by cross-multiplication (Section 9.7), are both [011]. The orientation 

relationship may be specified by quoting the parallelisms: 

(200)Fe2TiSi II (200)a-Fe 

[OlllFejTiSi II [Ollja-Fe- 

This is known as the ‘cube-cube’ orientation relationship because it is equiva¬ 

lent to the statement that the x, y, z axes of both crystals are mutually parallel. 

Other, more complicated, orientation relationships may be determined by the 

same simple approach, but to go from the parallelisms between the planes and 

zone axes observed for the particular patterns to the establishment of possible 

parallelisms between planes not observed in the patterns (i.e. those that are not 

(nearly) parallel to the electron beam direction), requires a knowledge of the 

stereographic projection (see footnote on page 149). 

Exercises 

10.1 Show, by simple geometrical reasoning, that in the X-ray monochromator (Fig. 

10.2) the curved reflecting crystal planes should have a radius twice that of the 
focusing circle. 

10.2 Show, by simple geometrical reasoning, that in the back-reflection X-ray powder 

photograph (Fig. 10.5), the reflections are most sharply focused when R^=xy 

where R = the radius of the ring, x = the specimen-film distance and y = the 

distance of the (effective) source S behind the film. 

10.3 Determine the ^f-spacings of the strongest low-angle reflections in the 

Debye-Scherrer film of quartz (Fig. 10.7) and check that they correspond (within 

the limits of experimental accuracy) with those indicated in Fig. 10.4 or listed in 
Fig. 10.8. 

(Hint: the precise locations at which 20 = 0 and 180° are not found from the 

centres of the holes in the film (which might be slightly displaced) but by 

determining the mid-points of the low-angle and high-angle reflections, respec¬ 

tively. The distance between these mid-points corresponds to an angle of 180° and 

the linear scale can be related to the angular scale and the 26 values. Hence the 

<i-spacings of the reflections can be found using Bragg’s law. (The film is taken 

using filtered CuKa radiation which includes both the Kaj and Ka2 components. 

At low angles these are unresolved, A CuKa = 1.542 A, but at high angles they are 

resolved, A CuKaj = 1.541 A, A CuKa2 = 1.544 A.) 
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10.4 Given the lattice parameter of aluminium a = 4.041 A, find the camera constant 

AL of Fig. 10.10. 
10.5 Figure 10.12 shows X-ray diffraction peaks from (a) an annealed mild steel 

specimen and (b) the same specimen in which the surface has been heavily 

abraded. The X-radiation used was CuK a but the CuK a2 component of the peak 

profiles has been eliminated by a peak stripping program; hence the broadening 

due to the Kai/Ka2 doublet is eliminated. 

Given that the lattice parameter, a, of mild steel is that for a-Fe (2.866 A) and 

Acuk =1-541 A, identify the peaks. From the difference in peak broadening, 

determine /3 and on the assumption that it arises wholly from residual elastic 

strain, estimate the residual stress in the surface of the abraded specimen. 

(Assume that the Young Modulus, E = 200 GPa.) 

10.6 Figure 10.13 is a selected area electron diffraction pattern of a thin foil of a steel 

(Fe, 1.3% Mn, 0.5% Mo, 0.7% Ni, 0.2% Cr, 0.2% C) which has been quenched 

from 1300 °C and tempered at 615 °C. The microstructure consists of a matrbc of 

tempered martensite (a-Fe, bcc) and particles of cementite, iron carbide, FcjC. 

The pattern includes a-Fe (strong spots) and Fe3C (weak spots). Index the patterns 

and determine the orientation relationship between a-Fe and Fe3C. The camera 

constant AL = 35 A mm. 

{Hint: A list of ^f;„^./-spacings for a-Fe should be worked out given 2.866 A 

and given the condition for allowed reflections for the Cubic I lattice (Table A6.2). 

The <7;„(.rspacings for Fe3C are given in Exercise 9.5. Notice that the a-Fe pattern 

also consists of two twin-related variants (see Fig. 7.14(a) for the analogous case in 
the diffraction of light). 

Fig. 10.13. A selected area electron diffraction pattern of a thin foil of a quenched and 

tempered steel showing reflections from Fe3C precipitates in a single crystallographic orienta¬ 

tion (weak spots) and two twin-related orientations of the ferrite (a-Fe) matrix (strong spots). 



Appendix 1 

Useful components for a 
crystallography model-building 

kit and suppliers 

Crystal models may be made from expanded polystyrene or solid plastic balls. A 

range of sizes is available and the cost increases roughly in proportion to the 

cube of the diameter. Unfortunately, it is not possible to select balls with 

diameter ratios 1; 0.732:0.414:0.225:0.291 (i.e. the useful diameter ratios for 

interstitial sites) and it is simplest to make interstitial atoms out of Plasticine. 

Beevers Miniature Models Unit, Department of Chemistry, Edinburgh Uni¬ 

versity, West Mains Road, Edinburgh EH 9 3JJ (Tel; 0131 667 1081 Ext. 3405; 

Fax 0131 662 4045) markets molecular model kits based on 6.9 and 4.9 mm 

diameter balls, available in different colours and drilled with a range of hole 

configurations, and which can be linked with wire rods. Complete models of a 

wide range of crystal structures are also available. 

Cochranes of Oxford Ltd, Leafield, Witney 0X8 5NY (Tel: 01993 878641; 

Fax: 01993 878416) manufactures the ‘Orbit' and ‘Minit’ molecular model kits 

based on plastic atom centres joined by short plastic tubes. The centres are 

moulded in a variety of shapes, and are colour coded according to the element. 

The kits can can be used to build a range of molecules and extended lattices. 

Complete models of a wide range of crystal structures are also available, as are 

atom centres and bonds in packets of 100. 

Philip Harris Education, Lynn Lane, Shenstone, Lichfield, Staffordshire, 

WS14 OEE (Tel; 01543 480077; Fax: 01543 480068) stock polystyrene spheres of 

a range of sizes for making into sphere-filling models, ‘Molymod’ system 

molecular models consisting of moulded plastic spheres and connectors for 

open (skeletal) and semi-space-filling models; ‘Orbit’ system molecular models 

comprising colour-coded atom centres and tube connectors and also Beevers 

miniature models. 

Polydron, 11 Scotia Close, Brackmills Industrial Estate, Northampton NN4 

7HR (Tel: 01604 769144; Fax: 01604 701674) manufacture both solid and 

‘framework’ shapes useful for model building. They can be obtained from toy 

shops or suppliers of primary schools mathematics equipment. 
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Tarquin Publications, Stradbroke, Diss, Norfolk IP21 5JP (Tel: 01379 384218; 

Fax: 01379 384289) supply many types of paper cut-out books, posters, sets of 

blocks and books associated with mathematical shapes. 

The Yorkshire Purchasing Organisation, 4,1 Industrial Park, Wakefield WF2 

OXE (Tel: 01924 824477; Fax: 01924 834805) markets expanded polystyrene 

spheres in 35 mm and 70 mm diameter sizes. 

Your local grocery shop or supermarket sells sugar cubes from which cubic 

crystal models showing different point symmetries may be made. Woodworkers’ 

water-based resin gives a satisfactory bond; saturated sugar solution is slow and 

rather ineffective. 

Your High Street toy shop sells all manner of building bricks, multi-coloured 

shapes (triangles, squares, pentagons etc.) which can be used to make two- 

dimensional tesselations or linked together to form three-dimensional shapes. 

These are usually in the ‘3- to 9-year-old’ department, but they are suitable for 
crystallographers of all ages. 
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Computer programs in 
crystallography 

The British Crystallographic Association (BCA) maintains useful infor¬ 

mation on crystallographic software on the Internet at URL 

http:/www.cryst.bbk.ac.uk/BCA/index.html. Lists of meetings and courses, 

suppliers of educational materials and programs for microcomputers are contin¬ 

ually updated. Some software programs can be collected via the Internet; in 

other cases you can get a ‘Demonstration Version’ to try out before purchase. 

Results of software surveys and reviews of programs are published regularly in 

‘Crystallography News’ which has been accessible on the Internet since March 

1995. 

Further details from The BCA Webmaster, E-mail: BCA@ISISE.RL.ac.uk 

(Tel. 01235 834357) or from the BCA Administrative Secretary, 2 Staplow Road, 

Worcester WR5 2LZ. Tel:/Fax: 01905 358550; E-mail: s.e.harris@aston.ac.uk. 

ATOMIC PACKING AND CRYSTAL STRUCTURE (K. M. Crennell and L. S. 

Dent-Glasser)—a self-contained learning program with sophisticated 3D graph¬ 

ics; includes hexagonal and cubic close-packing, cubic closest-packing of spheres, 

face- and body-centred unit cells and interstitial sites in close-packed structures. 

ELECTRON DIFFRACTION (P. J. Goodhew)—examines various aspects of 

electron scattering and diffraction as encountered in electron microscopy. 

Both programs run on PCs with MS-DOS and on any Acorn computer 

running RISC-OS or BBC Micros. 
From: The Institute of Materials Marketing Department, 1 Carlton House 

Terrace, London SWIY 5DB (Tel: 0171 8344071; Fax: 0171 8392078). Further 

programs involving crystallography are being produced as part of the TLTP 

MATTER project for the production of microcomputer software for students of 

Materials Science and Engineering. A CD-ROM will be published annually 

(commencing 1996) by Chapman & Hall, 2-6 Boundary Row, London SEl 8HN 

(Tel: 0171 8650066; Fax: 0171 5229624). 

ATOMS—a program for three-dimensional representation of all types of 

atomic structures, including crystals, polymers and molecules. 
The standard display model can show ball-and-stick, wire-frame, interpene¬ 

trating atoms (space-filling) or coordination polyhedra, or combinations thereof. 

The new thermal ellipsoid mode makes drawings in the style of ORTEP. The 

drawing features include: shading, front-to-back fading, stereopairs and perspec¬ 

tive. The program supports multiple structure fragments, isolation of molecules. 
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full use of symmetry, several boundary options, importation of files. Windows 

and Mac versions have a completely graphical user interface; the DOS version 

has an interactive keyboard user interface. 
Libraries of ATOMS include: 120+ minerals, 13 basic inorganic structures 

and 25 silicates. 
From: Shape Software, 521 Hidden Valley Road, Kingsport TN 37663, USA 

(Tel: (432) 239 4771; Fax: (423) 239 6360; E-mail: 74457.1703@compuserve.com). 

BALL AND STICK—molecular graphics software for chemistry presentation 

and animation. Ball & Stick automatically recognizes a wide range of standard 

molecular file formats for importing structures and offers an interactive environ¬ 

ment in which to view, manipulative, calculate and edit molecular models. New 

Power Mac version available (v3.7). 

From: Cherwell Scientific Publishing Ltd, The Magdalen Centre, Oxford 0X4 

4GA (Tel: 01865 784800; Fax: 01865 784801; E-mail csp@cherwell.com). 

CELLX—an interactive program for the presentation of unit cells and recip¬ 

rocal space aimed at senior undergraduate or postgraduate levels, the principal 

function of which is the familiarize the student with the relationship between 

real space and reciprocal space. A pragmatic, visual approach is adopted to 

achieve this. The orientation or contents of the unit cell can be easily changed 

and the corresponding change in reciprocal space viewed immediately. For 

orthogonal systems only. For PCs with VGA graphics. 

From: K. D. Rogers, Cranfield University, Shrivenham, Swindon SN6 8L, (Tel: 

01793 785399; Fax: 01793 7855774; E-mail: rogersk@rmcs.cranfield.ac.uk). 

CHEMSOFT—four programs (Periodic, Crystal, Organic and Alkanes). 

‘Crystal’ shows three-dimensional views of the most important structures of 

inorganic compounds. Two structures may be displayed simultaneously and 

rotated, expanded or highlighted in various ways to make clear the features of 
each. Acorn compatible. 

From: AVP, School Hill Centre, Chepstow NP6 5PH (Tel: 01291 625439; Fax: 
01291 629671; E-mail: 100441.130@compuserve.com). 

CRYSTALLOGRAPHICA—an MS-Windows software tool kit for research 

and teaching in crystallography. Crystallographica includes a specially extended 

Pascal interpreter, crystal structure drawing and powder pattern simulation. 

Properties of the crystal can be modified using either user-friendly dialogs or 

else by writing mini-programs which call upon the extensive crystallographic 

library. The program can read and write various standard file formats, including 

Shebd and the standard Crystallographic Information File. A demonstration 

version is available via the World Wide Web, accessible from the BCA pages. 

From: Oxford Cryosystems, 3 Blenheim Office Park, Lower Road, Long 

Hanborough, Oxford 0X8 8LN (Tel: 01993 883488; Fax: 01993 883988; E-mail: 
sales@cgraph.demon.co.uk). 
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CRYSTALLOGRAPHY—an interactive course module aimed primarily at 

first-year undergraduates; no prior knowledge is assumed and no use is made of 

the stereographic projection. The module is divided into eight units (fronted by 

a main menu) which can be run separately. They are: Introduction, Symmetry I, 

Symmetry II, Indexing I, Indexing II, Crystal Systems, Rotations. Available in 

PC (MS-DOS Windows 3.1 or later versions) and Macintosh (4Mb RAM). A 
demonstration version is available. 

From: The UK Earth Science Courseware Consortium, Central Unit, Depart¬ 

ment of Earth Sciences, University of Manchester M13 9PL (Tel: 0161 275- 

3820/3838; Fax: 0161 275347; E-mail: ukescc@man.ac.uk). 

Ca.Rdne CRYSTALLOGRAPHY (Version 3.0) —an interactive program pro¬ 

viding rotation and projections of Bravais lattices, space groups and coordina¬ 

tion polyhedra. A multiple window can be opened showing X-ray powder 

diffraction, reciprocal lattices, electron diffraction patterns and stereographic 

projections. Available in English and French for Windows 3.1 (or later) and for 

Macintosh v.3. Demonstration versions for both Mac and Windows are available 

via the BCA World Wide Web pages or free upon request. 

From: Cyrille Boudias and Dr Daniel Monceau, CaRine Crystallography, 17 

Rue du Moulin du Roy, 60300 Senlis, France (Tel:/Fax: (33) 44 53 29 48; 

E-mail: monceau@cict.fr). 

CRYSTALMAKER—a user-friendly Macintosh program to generate, display 

and manipulate all kinds of crystal structures in high-quality colour graphics. A 

major feature of the program is the intuitive click-and-drag real-time rotation of 

crystal structures, which can be displayed as ball-and-stick, wireframe, poly¬ 

hedral and space-filling models. 
CrystalMaker is distributed in three versions, optimized for Math-coprocessor 

(FPU), non-FPU, and PowerPC Macs, together with a library of over 200 crystal 

structures and a 160-page printed manual. A demonstration version is available. 

From: Cambridge University Technical Services Ltd, 20 Trumpington Street, 

Cambridge CB2 IQA (Tel: 01223 334755; Fax: 01223 332797; E-mail: 

sjm21@cus.cam.ac.uk). For technical support contact the author David Palmer 

(Fax: 01869 369393; E-mail: D.C.Palmer@eWorld.com). 

CRYSTAL OFFICE—a program package includes Space Groups for Windows 

4.0, Crystal Builder 96 and Space Group Tables 96. The user-friendly graphic 

system allows you to create multiple-crystal graphic scenes and photo-realistic 

graphics; label atoms, bonds and scenes; interactively build crystals with space 

group tables; visually measure distances and angles; create surfaces and clusters; 

substitute atoms with molecules; visualize symmetry elements, Wyckoff positions 

and Miller planes; output X-ray and electron diffraction structure factors, access 

position, symmetry and reflection tables for all of the 230 space groups and 

generate non-standard setting space group tables. 
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System requirements; MS Windows 3.1, Windows 95 and Windows NT. A 

Macintosh version is under development. 
From: Atomic Softek, 70 Longwood Road North, Hamilton, Ontario, Canada 

L8S 3V4 (Tel: 905 528 4506; Fax: 905 528 9084; E-mail: SpaceGrp@wchat.on.ca). 

CRYSTALS—together with SIR92 forms a unified X-ray crystallography 

package, including full graphics with colour PostScript output. It has both menu 

and command-line input, extensive documentation and two data sets for com¬ 

plete worked examples. Requires an Intel™ 486DX processor, 8MB memory, 

and 10Mb available hard disk. 
From: Dr. D. Watkin, Chemical Crystallography Laboratory, 9 Parks Road, 

Oxford 0X1 3PD (Tel: 01865 275263; Fax: 01865 272690; E-mail: 

Watkin@vax.ox.ac.uk). 

DESKTOP MICROSCOPIST (formerly entitled DIFFRACT)—a very com¬ 

prehensive program which includes diffraction patterns, HOLZ patterns, stereo¬ 

graphic projections, Kikuchi lines and numerical values (^/-spacings, angles 

between planes etc.). For the Macintosh version 1.3. 
From: Microdev Software, 3120 NW John Olsen Avenue, D-104, Hillsboro, 

OR 97124, USA. 

DESKTOP MOLECULAR MODELLER—for PCs with optional structure 

libraries; it has utilities and symmetry operators to generate crystals and lattices 

of inorganic materials. There is also a simpler version appropriate for schools. 

From: Oxford Electronic Publishing, Oxford University Press, Walton Street, 

Oxford 0X2 6DP (Tel: 01865 267979; Fax: 01865 267990). 

DIAMOND—a three-dimensional graphics program with an integrated 

database for the visualization of crystal structures for molecular and solid-state 

chemists and materials scientists. It includes special functions for complex 

inorganic structures—neighbouring and bonded atoms around central 

atoms—and coordination polyhedra. Molecules are found without explicit bond¬ 

ing information. For an IBM-compatible PC and 386 or higher, at least 4 Mb of 

RAM and 8 Mb of free disc space. The program runs on Windows 3.1, Windows 

95 and Windows NT 3.51. A demonstration disc is available. 

From: Prof. Dr G. Bergerhoff Software-Entwicklung, Gerhard-dornagk-Str-1, 

D-53121 Bonn, Germany (Tel: ( + 49) 228 73 53 55; Fax; ( + 49) 228 21 01 55; 

E-mail: Bergerhoff@uni.bonn.de or from the World Wide Web page at URL 

http://www/rhrz.uni-bonn.de/~ unc442/diamond.html). 

ELECTRON DIFFRACTION—a program which allows the simulation of any 

type of electron diffraction pattern—‘spot’ and Kikuchi patterns, convergent 

beam and back scattered patterns. The patterns may be indexed, crystals tilted, 

interplanar spacings and angles determined etc. For PCs Windows 3.1 and 

Windows 95. A demonstration version is available limited to the silicon and 
quartz structures. 
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From: J. P. Morniroli, Laboratoire de Metallurgie, URA, CNRS 234, Univer- 

site de Lille 1, 59655 Villeneuve d’Ascq Cedex, France (Tel: (33) 20 43 69 37; 

Fax: (33) 20 43 40 40; E-mail: mornirol@omega.univ.lillel.fr). 

K-SPACE NAVIGATOR a program specifically designed for indexing elec¬ 

tron diffraction patterns for all crystal systems. It provides K-space (reciprocal 

space) displays of zone axes, spot patterns and Kikuchi lines and, for micro¬ 

scopes with a motor-driven specimen tilt stage (and suitable RS232 interface), 

can drive the stage to the required crystal orientation, making specimen orienta¬ 

tion determinations fast and easy. Runs on most PCs operating under Microsoft 

Windows. A demonstration disc is also available. 

From: Surface Data, 5 Sandhawes Hill, East Grinstead, West Sussex RH19 

3ET (Tel:/Fax: 01342 328845; Email: Sales@surface.demon.co.uk). 

PHYSDEMOS—includes a description of the common lattices and several 

display forms of the C60 (buckminster fullerene or ‘bucky-ball’) molecule which 

can be interactively rotated. 

From: The UK Higher Education National Software Archive (HENSA) (avail¬ 

able on the World Wide Web at URL: http:/micros.hensa.ac.uk). 

POLYHEDRA, TILING GENERATOR, 3-D DIFFRACTION PATTERNS—a 

set of PC programs which do not need Windows; Polyhedra displays polyhedra 
derived from crystallographic point groups. Tiling Generator is for quasi-crystal 

symmetries, 3-D Diffraction Patterns is displayed to aid an understanding of the 

concept of reciprocal space. 
From: the BCA or available directly from Steffen Weber Software on the 

World Wide Web at URL http://www.nirim.go.jp/weber/ or via the BCA 

pages. 

SHAPE—a program for drawing the external morphology of crystals and also 

sections of crystals (Windows and DOS versions). It will draw any single crystal 

and most twins and epitaxial intergrowths. You enter the crystal axis lengths and 

angles, the symbol for the crystal class, and one face of each form (symmetry 

equivalent set). The crystal can be rotated, scaled, twinned, etc. A stereonet can 

be displayed with the crystal, or stereopairs may be drawn automatically. Screen 

display and hard copy of even complex interpenetrating intergrowths may be 

made in final finished form, with no extraneous lines. There is a library of 700 + 

mineral crystals. 
From: Shape Software, 521 Hidden Valley Road, Kingsport TN 37663, USA 

(Tel: (423) 239 4771; Fax: (423) 239 6360; E-mail: 74457.1703@compuserve.com). 

STEREO—plots 20 cm diameter stereographic projections of plane normals 

or zone axes. Available in Macintosh or PC versions. 
From: Dr P. E. Champness, Department of Earth Sciences, University of 

Manchester, Oxford Road, Manchester M13 9PL (Tel: 0161 2753804; Fax: 0161 

2753947; E-mail: pchampness@fs2.ge.man.ac.uk). 
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SYMMETRY—a self-paced program with self-assessment on symmetry in 

point groups and lattices. For PCs with MS-Windows. 

From: Crystallography Department, Birkbeck College, University of London, 

WCIE 7HX (Tel: 0171 6316800; Fax: 0171 6316803; can also be downloaded 

from http://www/cryst.ac.uk/symmetry/). ' 

3-D MOLECULE—enables a structural formula to be constructed for an 

organic molecule. The molecule is built up in stages by selection from a range of 

functional groups. It can be viewed as a three-dimensional ball-and-spoke model 

and can be rotated in all planes. Acorn compatible. 

From: AVP; School Hill Centre, Chepstow NP6 5PH (Tel: 01291 625439; Fax: 

01291 629671; E-mail: 100441.130@Compuserve.com). 
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Biographical notes on 
crystallographers and scientists 

mentioned in the text 

Ernst Abbe 1840-1905 

Abbe’s father was a mill worker in Eisenach, Germany, and it was his employers 

who provided the scholarships which enabled Abbe to proceed from High 

School to study physics at the Universities of Jena and Gottingen. In 1863 Abbe 

achieved his ambition of becoming a lecturer at Jena, but his career may be said 

to commence in 1866 when he began his long and fruitful collaboration with 

Carl Zeiss. As a theoretician he established the relation between the aperture 

and the limit of resolution of a lens (the equation is engraved on his memorial at 

Jena); as an optical designer he invented the apochromatic objective lens (made 

possible with the new glasses developed by the Schott glassworks); and as an 

industrialist he and Zeiss developed systematic microscope production on a 

large scale. 
In 1876 he was made a partner in the Carl Zeiss firm and became the sole 

owner following the death of Zeiss in 1888. In 1891 he created the Carl Zeiss 

Foundation whose charter was used in Prussia as a model for progressive social 

legislation. 

George Biddell Airy 1801-92 

Airy’s life was characterized, to a remarkable degree, by a determination to 

succeed and meticulous organization: he made a record of everything that he 

wrote, with dates, and discarded not the merest note or receipt. His entry 

to Cambridge in 1819, which was largely facilitated by a wealthy uncle in 

Colchester, provided him with the opportunity to break away from a modest 

parental background and thence his career developed rapidly. He was appointed 

Lucasian Professor of Mathematics in 1826, Plumian Professor of Astronomy in 

1828 and Astronomer Royal in 1835, a post he filled for 46 years and which 

entirely fitted his temperament. He largely re-equipped the Greenwich Observa¬ 

tory and transformed it into a highly efficient Institution but at a price: it 

provided no centre for the training of innovative scientific minds and the 

discoveries of John Herschel and John Couch Adams were made elsewhere. 

Airy was, in effect, the prototype of the modern government scientist and played 

a major role in the development of institutional science in Victorian England. 
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He designed (with the lawyer, Edmund Beckett Denison) the clock for the new 

Palace of Westminister—it had to be redesigned in 1852 when it was discovered 

that the interior walls had been made too small but its continued function¬ 

ing almost without interruption for over 140 years is a measure of their 

achievement. 
Airy calculated the magnitude of the image formed by a telescope objective of 

a star—a point source of light—and thereby laid the foundations for the theory 

of the resolving power of optical instruments. He was knighted in 1872, having 

refused that honour three times previously on the grounds that he couldn’t 

afford the fees. 

William Barlow 1845-1934 

Following an inheritance from his father, Barlow, one of the last great English 

amateurs in science, took up the study of crystallography in his early thirties and 

attempted to relate the properties of crystals to the packing arrangements of 

their constituent atoms. He collaborated with W. J. Pope at Cambridge and 

guessed (correctly) the structure of the alkali halides. His mathematical ability 

and developing interest in symmetry enabled him to extend the methods of 

Bravais and Sohncke to find the ‘symmetrical groupings to fit the forms and 

compositions of a variety of different substances’ but he did not publish his 

derivation of the 230 space groups until 1894, three years after Fedorov and 

Schoenflies, of whose work he almost certainly had no prior knowledge. 

William Henry Bragg 1862-1942 

W. H. Bragg read mathematics at Cambridge and was appointed Professor of 

Mathematics and Physics at Adelaide in 1885. For his first eighteen years there 

he published very little, but in 1903 became involved in problems of radiation, 

the ionization of gases and the nature of X-rays, which he considered to be 

‘material’ in nature. His increasing reputation led to his appointment in 1908 as 

Cavendish Professor of Physics in the University of Leeds. In late 1912 he and 

his son, William Lawrence, become convinced that the Laue experiment made a 

wave hypothesis for X-rays unavoidable and together they made remarkably 

rapid advances in crystal structure analysis, the father’s main contribution being 

the construction of an ionization chamber and crystal spectrometer and the 

solution of the structure of diamond. The work was interrupted by the First 

World War and, in 1915, Bragg moved from Leeds to University College, 

London, and then, in 1923, to the Royal Institution, at which places he laid one 

of the foundations of molecular biology by establishing research groups directed 
towards the analysis of organic crystals. 

William Lawrence Bragg 1890-1971 

W. L. Bragg obtained a degree in mathematics at the University of Adelaide 

and, on the return of the family to England, entered Trinity College, Cambridge, 
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to study physics at the Cavendish Laboratory under Sir. J. J. Thomson. In 1911 

he obtained a lectureship at Trinity College. At that time he supported his 

father’s view that X-rays had the ‘properties of material particles rather than 

those of electromagnetic waves’ but during the summer and autumn of 1912 

both he and his father abandoned it in the light of Laue’s discovery of X-ray 

diffraction. It is not known how the Braggs became acquainted with Laue’s 

discovery; this may have been through the 250th anniversary meeting of The 

Royal Society in July 1912 or, somewhat later, a lecture by J. J. Thomson to the 

Leeds (or Manchester?) Physics Groups. The theory (of Stokes) that X-rays were 

very short pulses of electromagnetic radiation also gave rise to the notion in 

Bragg’s mind that the pulses should be reflected ‘by the sheets of atoms in the 

crystal as if these sheets were mirrors’—a profoundly simple notion that not 

only explained the shapes of the diffraction spots but also provided a simple 

geometrical basis for the analysis of crystal structures. This work progressed 

extremely rapidly. Bragg’s study of Laue’s diffraction patterns of ZnS (zinc 

blende) led to the (correct) postulate that the structure was based on an fee 

lattice and in the winter of 1912-13 he had prepared and analysed his own 

‘Laue’ photographs of NaCl and KCl. In collaboration with his father in the 

summer of 1913, and with the aid of the X-ray spectrometer, Bragg solved the 

structures of fluorspar (CaF2), zinc blende (ZnS), iron pyrites (FeS2), sodium 

nitrate (NaN03) and calcite (CaC03). The remainder (if it can be called that) of 

Bragg’s scientific career saw the inexorable development of the techniques 

of X-ray (and electron) diffraction and the solution of the structures of crystals 

—particularly mineral and organic crystals—of greater and greater complexity. 

It was a development in which Bragg himself, as Langworthy Professor of 

Physics at the University of Manchester, as Cavendish Professor at Cambridge, 

and towards the end of his life, as Director of the Royal Institution, played no 

small part. 

Auguste Bravais 1811-63 

Bravais was born in Annonay in France, studied mathematics in Paris and 

became a naval cadet in Toulon, which enabled him to participate in explor¬ 

ations to Algeria and the North Cape. He was appointed Professor of Physics at 

the Ecole Polytechnique in 1845, and his interest in the relationships between 

the external forms and internal structures of crystals led to the derivation of the 

fourteen space lattices in 1848, published in his famous Memoire sur les systemes 

formes par des points distribues regulierement sur un plan ou dans I’espace 

(1850)—work which was partly based on Frankenheim’s fifteen ‘nodal’ lattice 

types. However, constant application to a wide range of studies which aroused 

his curiosity led, in 1857, to a breakdown of his health. 

Martin Julian Buerger 1903-86 

Buerger was born in Detroit, USA, and studied mining engineering at the 

Massachusetts Institute of Technology, specializing after graduation in research 
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in mineralogy. It was during this time that he attended, in 1927, a course of 

lectures on X-ray diffraction given by W. L. Bragg, as a result of which Buerger 

realized that in order to understand the chemical and physical properties of 

crystals it was necessary to know their structures. Hence began his life-long work 

in X-ray crystallography, not only in the solving of crystal structures but in the 

invention of the equi-inclination Weissenberg camera, the precession camera 

and the writing of several well-known textbooks, the earliest of which X-Ray 

Crystallography is, like Bragg’s The Crystalline State: Volume 1, A General Survey, 

a classic which is still current today. 
Buerger was closely associated with the founding of the International Union 

of Crystallography and was a member of the Commission for the International 

Tables from its establishment in 1948. 

Peter Joseph William Debye 1884-1966 

Debye was born in Maastricht in the Netherlands, was educated at Aachen and 

Munich and held a number of Chairs in Physics before becoming Director of the 

Kaiser Wilhelm Institute for Theoretical Physics 1935-40. He then emigrated to 

the USA in 1940, becoming Professor of Chemistry at Cornell University. 

Debye was primarily a theoretician concerned with the application of physical 

methods to molecular structure and is best known for his work of specific heat, 

electrolysis and the electron diffraction of gases. He was a member of staff in 

the Institute of Experimental Physics at the University of Munich at the time 

that Laue carried out his famous X-ray diffraction experiments. His develop¬ 

ment of a technique and camera (with P. H. Scherrer) for the investigation of 

X-ray diffraction from powders was made at the University of Gottingen in 1915. 

Peter Paul Ewald 1890-1985 

Ewald deserves greater recognition for his contribution to the interpretation of 

X-ray diffraction patterns that he has hitherto been accorded—unlike Laue or 

the Braggs he was not awarded a Nobel Prize. Yet his doctor’s thesis of 1912, 

which he discussed with Laue, contained within it the basis of the ‘reciprocal 

lattice and reflecting sphere construction’ analysis of the geometry of (X-ray) 

diffraction which is equivalent to Bragg’s law. Indeed, it was only after reading 

Laue, Friedrich and Knipping’s published papers that Ewald realized the rele¬ 

vance of his own approach and, in particular, the applicability of the formula in 

his thesis which he had brought to the attention of Laue but which in fact he 
(Laue) had not used. 

Evgraph Stepanovich von Fedorov 1853-1919 

Son of an army engineer, Fedorov attended military school in Kiev and became, 

in turn, a combat officer and member of the revolutionary underground. His 

first ideas on the derivation of the 230 space groups were contained in his book 
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The Elements of Configurations, started in 1879, when he was 26 years old but not 

published until 1885. His complete derivation of the space groups was circulated 

in 1890 to his friends (including Schoenflies) as a series of preprints but was not 

published until 1891, shortly before Schoenflies’ independent derivation. 

Jean Baptiste Joseph Fourier 1768-1830 

Fourier, son of poor parents who died when he was nine, attended the military 

school in his home town of Auxerre, France, where his great mathematical 

ability was first recognized. As a young man he was caught up in the Revolution; 

he was imprisoned both by Robespierre (being released only as a result of 

Robespierre’s execution in 1794) and, subsequently, by the counter regime, 

ironically as a supporter of Robespierre. 

Fourier’s administrative and political talents were recognized by Napoleon 

who made Fourier secretary of the newly formed Institut d’Egypte, but after 

Napoleon’s fall he found himself out of favour with Louis XVIII and was not 

elected a member of the Academic Francaise until 1827. 

Fourier’s main achievements lie in his development of the mathematical 

techniques applied to the diffusion of heat and (what are now called) Fourier 

series and Fourier integrals. He also made substantial contributions to the 

theory of equations, linear inequalities, and probability. 

Moritz Ludwig Frankenheim 1801-69 

Frankenheim was born and educated in Brunswick and the University of Berlin, 

where he was appointed lecturer in 1826. He was subsequently appointed 

Professor of Physics at Breslau, a post which he held until 1866. It was in a work 

of 1835 that he showed there could be only fifteen ‘nodal’, i.e. space lattice 

types, which much later (1856) he corrected to fourteen configurations, 8 years 

after Bravais’ derivation of the fourteen space lattices. 

Joseph Fraunhofer 1787-1826 

Fraunhofer was the eleventh child of a poor master glazer in Straubing, 

Germany, who, after the early death of his parents and an unsatisfactory 

apprenticeship, joined the optical instrument workshop of a scientific instrument 

maker in Munich in 1806. Here his versatility as experimental scientist, optical 

instrument technician and glassmaker laid the foundations of the pre-eminence 

of the German optical instrument industry which was to be consolidated with 

such success by Otto Schott, Carl Zeiss and Ernst Abbe later in the century. It 

was a result of his investigations into the optical properties of glass that 

Fraunhofer discovered that the solar spectrum was crossed by many fine dark 

tines (some of which William Wollaston had first noticed in 1802), thereby laying 

the foundations of spectrometry. Following the work of Thomas Young he made 
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the first quantitative study of diffraction and found the reciprocal relationship 

between the separation of the lines in diffraction gratings and the dispersion of 

light. In 1823, three years before his death from tuberculosis, he was appointed 

to the post of director of the Physics Museum of the Bavarian Academy of 

Sciences. 

Augustin Jean Fresnel 1788-1827 

Fresnel was born in Broglie, France, and grew up in a stern Jansenist home 

environment. In 1804 he entered the Ecole Polytechnique in Paris, his intended 

career being in civil engineering; from there he entered the Ecole des Ponts et 

Chaussees, graduating in 1809. His first big job as a civil engineer was the 

construction of the Imperial Highway to link France and Italy through the 

Alpine Pass of Col Montgenevre. 
Fresnel’s interests in optics and the nature of light appear to have begun in 

about 1814, but were stimulated in 1815 when he was suspended from his 

engineering work because of his opposition to Napoleon’s return to France from 

exile in Elba—a period of enforced leisure during which time Fresnel was under 

police surveillance. However, in 1823 he become a member of the French 

Academy of Sciences and in 1824 was appointed to the lighthouse commission in 

France and developed the echelon lens which bears his name. 

Like Thomas Young, but working entirely independently, Fresnel advocated 

and elaborated on the wave theory of light, though it is not known to what 

extent he was familiar with the ideas of Christiaan Huygens. Like Young, he 

introduced the principle of interference, drawn from analogy with his work on 

acoustics, publishing the results of his experiments on the diffraction and 
interference of light in 1815. 

Fresnel collaborated closely with Frangois Arago in studies on the polariza¬ 

tion phenomena of light and followed Young in the realization that light waves 

must be transverse rather than longitudinal. For most of his short life Fresnel 

suffered severe ill-health; he was awarded the Rumford Medal of the Royal 
Society shortly before his early death. 

Rene-Just Haiiy 1743-1822 

The son of a poor weaver, Haiiy received a classical and theological education at 

the College de Navarre in Paris and was ordained in 1770. His Essai d’une 

theorie sur la structure des cristaux of 1784 laid the foundation for the mathemati¬ 

cal theory of crystal structure. In 1793 he proposed that there were six ‘primary 

forms’—a parallelpiped, rhombic dodecahedron, hexagonal dipyramid, right 

hexagonal prism, octahedron and tetrahedron. In the Trade de Mineralogie of 

1801 these were further divided, which led to the notion of ‘molecules 

integrantes’. Haiiy survived the Revolution and was made Honorary Canon of 
Notre Dame in 1802. 
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Carl Heinrich Hermann 1898-1961 

Formal structure theory, following the derivation of the 230 space groups by 

Fedorov, Schoenflies and Barlow, remained dormant even in the early years of 

crystal structure analyses by X-rays, largely because of the inconvenient and 

difficult notation then used. Hermann’s great contribution (carried out initially 

independently of Mauguin) was to simplify the notation for the symmetry 

elements and space groups, making the theory much more accessible. Hermann 

was also instrumental in the preparation of the Strukterberichte (Structure Re¬ 

ports) from 1925 to 1937. He was a member of the Society of Friends and after 

the Second World War (during which he was jailed for listening to BBC 

broadcasts) he was appointed Professor of Crystallography at Marburg, a post he 
held until his death. 

Johann Friedrich Christian Hessel 1796-1872 

Hessel was born and educated at Nuremberg but spent most of his professional 

life as Professor of Mineralogy and Mining Technology at Marburg. He was the 

first to show (in 1830) that only two-, three-, four- and six-fold axes of symmetry 

can occur in crystals and that considerations of symmetry lead to the thirty-two 

crystal classes. However, his work was unrecognized by his contemporaries and 
remained so until long after his death. 

Robert Hooke 1635-1703 

Hooke attracted the attention of Robert Boyle at Oxford and it was through his 

mechanical skill that he made a success of Boyle’s air pump. He became a 

Fellow of the Royal Society and held the post of ‘Curator of Experiments’ from 

1662 until the end of his life. It was in this capacity that Hooke was solicited by 

the Council of the Royal Society to prosecute his microscopical observations in 

order to publish them and was also charged to bring in at every meeting one 

microscopical observation at least. Hooke more then fulfilled this onerous 

obligation and, in doing so, caused the great capability of the microscope to be 

realized in England. The fruit of his work, Micrographia, or Some Physiological 

Descriptions of Minute Bodies made by Magnifying Glasses, with Observations and 

Inquiries Thereupon, was printed in 1665. In his book the word ‘cell’, so 

important in biology, was first applied to describe the porous structure of cork. 

Albert Wallace Hull 1880-1966 

Albert W. Hull was born in Connecticut and studied Classics at Yale University. 

However, he became increasingly interested in physics and after a period 

teaching modern languages, returned to Yale and completed, as it were, his 

educational transition by the award of a doctorate in 1909. After a further 

period of teaching (this time physics), he joined the General Electric Research 



206 Appendix 3 

Laboratory at Schenectady where he discovered (independently of Debye and 

Scherrer) the powder diffraction technique. Hull’s later achievements were in 

the fields of electronics (principally the invention of the Thyratron) and what is 

now called materials (principally the development of metal-glass vacuum seals). 

He was elected President of the American Physical Society in 1942. 

Christiaan Huygens 1629-95 

Huygens was born in The Hague, studied at the University of Leiden and Breda 

and became one of the founding members of the French Academy of Sciences. 

He made important contributions to dynamics and showed that a pendulum 

which describes a cycloid (rather than the arc of a circle) is exactly isochronous 

and succeeded in inventing and constructing a pendulum clock based on this 

principle. He also made major contributions to observational astronomy and was 

the first to describe Saturn’s rings correctly. 
Huygens’ greatest achievement was his development of the wave theory of 

light described in his Traite de Lumiere (1690). The notion of action at a distance 

was abhorrent to him; in his view space is pervaded by particles (the ether), light 

being the effect of the disturbance of the particles—that of one particle being 

transmitted to the next and so on. The net effect is a wave spreading out from 

the point of origin, each point in the wavefront being the source of secondary 

wavelets. Huygens was thereby able to explain refraction and reflection and to 

predict (correctly) that the velocity of light decreased in passing from a rarer to 

a denser medium—whereas Newton’s corpuscular theory required the denser 

medium to attract the corpuscles of light and therefore increase its velocity. 

However, because the waves were conceived as being longitudinal, rather than 

transverse, he could not satisfactorily explain double refraction. 

The problem of double refraction constituted one of Newton’s objections to 

the wave theory of Huygens for ‘Pressions and Motions’, as he says in Opticks, 

‘propagated from a shining body through a uniform medium must on all sides be 

alike’, whereas experiment had shown that the ‘Rays of Light have different 

properties in their different sides’—a clear presentiment of the idea of polariza¬ 

tion. The other, even more serious objection, was that without the concept of 

interference, Huygens’ wave theory could not explain the most obvious charac¬ 

ter of a light beam, namely rectilinear propagation. It was not until the work of 

Fresnel and Young at the beginning of the nineteenth century that the wave 
theory of light was finally established. 

Johannes Kepler 1571-1630 

The turmoil of Kepler’s life is in strong contrast to his belief in the existence of 

a mathematical harmony underlying the Universe, the search for which was the 

guiding inspiration of his life’s work. He was born in Wiirtemburg in Germany 

and in 1594 was appointed teacher of mathematics at the seminary at Gratz. 

Here he encountered the work of Nicolaus Copernicus and published his first 
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book (Mysterium Cosmographicum, 1596), in which he tried to show that the 

orbits of the planets were determined by the nestling, one within the other, of 

Plato s five regular solids cube, tetrahedron, dodecahedron, icosahedron and 

octahedron. Forced, as a Lutheran, to leave Gratz, he joined Tycho Brahe in 

Prague under the patronage of the emperor Rudolph II, a fruitful but uneasy 

collaboration. Here Kepler discovered the first two of the three laws of plane¬ 

tary motion which were to be of such importance to Newton, wrote a major work 

on optics, discovered the second new star visible to the naked eye since antiquity 

and prepared his astronomical tables, against a background of the social unrest 

of the Thirty Years’ War and continual lack of financial support from the 
emperor. 

In 1611 civil war broke out in Prague, the emperor was forced to abdicate and 

Kepler’s young son and wife died. He moved to Linz, remarried in 1613, and had 

to face his mother’s trial for witchcraft in Wiirtemburg. At Linz he published 
Harmonices Mundi (1619) which contains his third law. 

On completion of the astronomical (Rudolphine) tables, Kepler moved to 

Sagan in Silesia under the patronage of Imperial General Wallenstein. He died 

of a fever at Ratisbon in the unsuccessful quest of 12 000 florins owed to him by 
the emperor. 

Max von Lane 1879-1960 

Laue was educated at the University of Berlin and became an assistant to (and 

favourite disciple of) Max Planck. He joined Sommerfeld’s Theoretical Physics 

Group at the University of Munich in 1909. His intuition—that the regular 

arrangement of atoms in a crystal might give rise to an interference effect if the 

waves travelling through were of a wavelength of the same order as the atom or 

‘resonator’ spacing—almost certainly stems from a meeting with P. P. Ewald in 

January 1912. Ewald was completing his doctoral thesis and wished to discuss 

some of his conclusions with Laue. Laue encountered strong disbelief amongst 

his colleagues of any significant outcome of such a diffraction experiments on 

the grounds that the thermal motion of the atoms would obscure any diffraction 

maxima. However, he persevered and, with the assistance of Walter Friedrich 

(an assistant of Sommerfeld), and Paul Knipping (who had just finished his 

thesis under Roentgen), the famous experiment on a copper sulphate crystal 

which ‘happened to be in the laboratory’ was carried out. Laue’s interpretation 

of the results was based upon the notion that the crystal behaves as a ‘three- 

dimensional’ diffraction grating but was also confused by a misapprehension 

that the wavelengths of the (diffracted) beams were those of characteristic or 

fluorescence X-rays in a crystal—a property of the atoms rather than the lattice. 

Charles Mauguin 1878-1958 

Mauguin’s early career expectation was that of a teacher in a teacher’s training 

college, but he quickly developed an interest in mathematics and natural 
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philosophy and commenced his scientific work in the field of organic chemistry. 

His interest in crystallography probably stems from a course of lectures given by 

Pierre Curie which he attended in 1905. Mauguin was one of a small group of 

crystallographers who, in 1933, undertook the publication of the International 

Tables, and it is his symbolism of the 230 space groups (worked out in 

collaboration with C. H. Hermann) which is now in almost universal use. 

William Hallowes Miller 1801-80 

Miller was educated in St. John’s College, Cambridge, where, in 1829, he 

became a Fellow. In 1839 he published A Treatise on Crystallography, in which 

he made the fundamental assertion that crystallographic reference axes should 

be parallel to possible crystal edges. His system of indexing was based on a 

‘parametral’ plane making intercepts a, b and c on such axes [i.e. (Ill)]; a plane 

making intercepts a/h, b/k and c/l was assigned the (integral) indices ihkl). 

Although the algebraic advantages of this system were immediately apparent to 

his contemporaries (and were quickly adopted), their full significance was not 

fully appreciated until Bragg’s and Ewald’s interpretation of X-ray diffraction. 

Isaac Newton 1642-1727 

‘Nature was to him an open book, whose letters he could read without effort.’ 

A. Einstein. Foreword to Newton's Opticks 

Isaac Newton was born, a premature and posthumous child, at Woolsthorpe 

Manor in Lincolnshire. He was educated at the King’s School, Grantham, and 

was admitted to Trinity College, Cambridge, in 1661. It is while he was an 

undergraduate that he seems to have made his first acquaintance with optics; he 

read the works of Kepler and Descartes and from about 1663 was involved in 

the construction and performance of telescopes and the observation of lunar 

crowns and haloes. In the summer of 1665 he went home to Woolsthorpe Manor 

to escape the plague and remained there until April 1667, except for a three- 

month visit to Cambridge from March 1666. It was during this time that Newton 

says of himself ‘I was in the prime of my age for invention and minded 

Mathematicks and Philosophy more than at any time since.’ Those two years of 

intellectual achievement—the formulation of the binomial theorem and the 

differential and integral calculus, the theory of colours and of universal gravita¬ 

tional attraction—together with the two years (1685-86) during which he 

composed the Principia, have never been surpassed. 

Newton’s first paper to the Royal Society (published in 1672), in which he 

showed that ordinary white light is a mixture of rays of every variety of colour, 

received such a hostile reception from Robert Hooke that it made Newton 

cautious of publishing his work; the Principia or the Mathematical Principles of 

Natural Philosophy itself was not published until 1687 and then largely due to 

the encouragement of Edmund Halley. It immediately brought to Newton 
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enormous prestige, a place in society and public affairs but thereafter little more 
science. 

The Opticks was not published unit 1704, a year after the death of Robert 

Hooke, Newton’s most pertinacious antagonist. Further editions came out in 

1717, 1721 and 1730, the last being ‘corrected by the Author’s own hand’. In this 

great work Newton states that his ‘design in this book is not to explain the 

Properties of Light by Hypothesis but to propose and prove them by Reason and 

Experiments’. However, there are many comments suggestive of a deeper 

penetration into the nature of light than exact knowledge could then achieve, 

including the notion of interference, for in attempting to explain the colours of 

thin films Newton describes the passage of light as being made up of ‘alternate 
fits of easy Reflection and easy Transmission’. 

The greatest interest in the Opticks lies in the Queries, in which Newton 

speculates on the nature of light. The question form may have been used to 

allay criticism that he was departing from his dictum ‘hypothesis non fingo’ (I 

frame no hypotheses), but all are couched in the negative ‘Do not Bodies act 

upon Light at a distance?,’ A negatively phrased question suggests or implies a 

positive answer; ‘do not bodies act upon light at a distance?’ Is not Newton 

implying that the answer must be in the affirmative? 

Louis Pasteur 1822-95 

Pasteur is perhaps best remembered for his work in microbiology and immunol¬ 

ogy and, in particular, the practical applications—the discovery of vaccines, the 

treatments for rabies and anthrax, silkworm disease, etc. His work in crystallog¬ 

raphy was confined to the early years of his scientific career. Beginning in about 

1847 (shortly after completing his dissertation in physics), he began a series of 

investigations into the relations between optical activity, crystalline structure 

and chemical composition in organic compounds. His guiding principle was that 

optical activity was somehow associated with life; that whereas enantiomorphic 

crystals or molecules produced in the laboratory, or of mineral origin, occurred 

in equal quantities of left- and right-handed forms, those of organic origin—from 

plants or animals—were always of one form. The origin of life it seemed was 

bound up with an original asymmetric chemical synthesis. Hence Pasteur be¬ 

lieved that molecular asymmetry was an essential characteristic of the chemistry 

(and biology) of life. 
Pasteur’s demonstration that the optically inactive (or racemic) paratartaric 

acid was composed of equal amounts of two optically active forms of opposite 

senses was made on crystals of sodium-ammonium paratartrate. In using these, 

and in separating out the two forms, he was perhaps fortunate, as in no other 

compounds is the relationship between crystal structure and molecular asymme¬ 

try so straightforward; also, the distinctive ‘hemihedral’ crystalline forms of 

these compounds occur only under certain conditions of crystallization. From 

this he was led to study asparagine and its derivatives (aspartic acid and the 

aspartates, malic acid and the malates). 
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William Jackson Pope 1870-1939 

Pope’s major scientific work was in the field of organic chemistry. He was 

educated at Finsbury Technical College and the City and Guilds of London 

Institute in Kensington; in 1908 he was appointed Professor of Chemistry at 

Cambridge at the early age of 38. His crystallographic work extends over the 

period 1906-10 when, in collaboration with W. Barlow, he developed models of 

crystal structures based on the close-packing of ions or atoms of different sizes 

—models which were to prove so valuable to the Braggs in their analyses of 

crystal structures. 

John William Strutt, third Baron Rayleigh 1842-1919 

Like his near contemporary the geologist and microscopist Henry Clifton Sorby, 

Lord Rayleigh (as he became when he succeeded to his father’s title in 1873) 

had the leisure and financial resources to devote his life to science. His early life 

was dogged by ill health; in 1865 he graduated in mathematics at Cambridge and 

remained there until 1872 when he went to Egypt for a period of convalescence. 

It was not, however, a period of idleness; he wrote his classic book The Theory of 

Sound on a houseboat on the Nile. 

On his return to England he built his own private laboratory and carried out 

most of his work there except for a short period (1879-1884) when he was 

Cavendish Professor of Experimental Physics at Cambridge. 

Rayleigh’s main contributions to science were in optics and acoustics; his 

work on the scattering of light by small particles led to the explanation of the 

blue colour of the sky and his work on the density of gases led to the discovery 
of argon. 

Paul Hermann Scherrer 1890-1969 

Scherrer was born at St. Gall, Switzerland. During his education his interests 

moved away from commercial topics towards natural history, first to botany and 

then to mathematics and physics. In 1913 he entered the University of 

Gottingen and became a member of Debye’s research group. The stimulus for 

the investigation of polycrystalline specimens appears to have come from Debye 

although the construction of the cylindrical camera was due to Scherrer. With it, 

Debye and Scherrer took the first X-ray powder photographs (of lithium 

fluoride) in 1915. A very similar method was devised in 1917 by Albert W. Hull 
at the General Electric Laboratories, USA. 

In later years Scherrer was active in the foundation of the European Centre 

for Nuclear Research (CERN). He was also prolific teacher and brought to his 
lectures a considerable element of showmanship. 

Arthur Schoenflies 1853-1928 

Schoenflies was born in Landsberg an der Warte, now in Poland. He studied 

mathematics at Berlin and became successively high school teacher. Associate 
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Professor of Mathematics (at Gottingen), Professor (at Konigsberg) and Rector 
at the University at Frankfurt. He extended the work of Sohncke on periodic 
discrete groups by taking into consideration rotation-reflection and inversion 
axes of symmetry, adding another 165 to Sohncke’s sixty-five groups. The work 
was completed in his book Kristallsysteme und Kristallstmktur, published in 
Leipsig in 1891, a few months after Fedorov’s paper. 

William Bradford Shockley 1910-89 

William Shockley was born in London to American parents and moved to 
California (with them) in 1913. He was educated at the California Institute of 
Technology and Massachusetts Institute of Technology and, after war service 
with the U.S. Navy’s Submarine Warfare Operations Research Group, became a 
supervisor in the semiconductor research group at Bell Telephone Laboratories 
in New York. There, in 1947, together with John Bardeen and Walter Brattain, 
he discovered the principle of the point contact transistor and then went on to 
develop the junction transistor. This may be said to be the starting point of the 
electronic transformation of the latter part of the twentieth century, which was 
recognized by the award of the Nobel prize for Physics, jointly with Bardeen and 
Brattain, in 1956. 

Shockley then left ‘Bell Labs’ to set up the Shockley Semiconductor Corpora¬ 
tion in California and from 1963 became Professor of Engineering at Stanford 
University. 

The latter part of his life was clouded by controversy because of his uncom¬ 
promisingly held views on dysgenics, i.e. retrogressive evolution through the 
excessive reproduction of the genetically disadvantaged, and for which, as one 
example of his increasing isolation, the University of Leeds refused to confirm 
his nomination for an Honorary Doctorate. 

Leonhard Sohncke 1842-97 

Sohncke was born in Halle, Germany, where his father was Professor of 
Mathematics at the University. Like his father he followed an academic career, 
being appointed to a succession of professorships in physics, firstly at Halle and 
at the end of his career at the Technische Hochschule in Munich. Sohncke 
considered the possible arrays of points which have identical environments but 
not necessarily in the same orientation (as in the definition of Bravais lattices), 
and arrived at sixty-five of the possible 230 space groups. He published his 
findings in 1897, while he was professor of Physics at the Technische Hochschule 
in Karlsruhe, and used cigar-box models by way of illustrations! 

Gustav Heinrich Johann Apollon Tammann 1861-1938 

Tammann can be regarded as a pioneer physical metallurgist in the light of his 
work in metallography and the study of solid-state chemical reactions. He was 
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born in Yamburg (now Kingisepp) in Russia and, after a career as a lecturer at 

Charlottenburg and Leipzig, was chosen to head the newly formed Institute at 

Gottingen in 1903. It was here that he began his studies on metallic compounds, 

the crystal structures and mechanical properties of metals and alloys, and the 

general problems of the mechanisms of plastic deformation and work hardening 

in terms of crystallographic slip and crystalline rearrangements. He continued to 

work on these problems until shortly before his death, applying his ideas at the 

same time to the flow of ice. 

Wilhelm Eduard Weber 1804-91 

Weber was Professor of Physics at Gottingen from 1831 for most of his 

professional life and worked in collaboration with Gauss on magnetic phenom¬ 

ena. His main achievements were the introduction of a logical system of units 

for electricity, related to the fundamental units of mass, length and time and 

also the connection between electromagnetic phenomena and the velocity of 

light—a connection which was later thoroughly worked out by Maxwell. Weber 

was also one of the ‘Gottingen Seven’ who, in 1837, lost their university posts 

because of their opposition to the autocracy of King Ernst August of Hanover. 

Christian Samuel Weiss 1780-1856 

After studying medicine at Leipzig, Weiss switched to chemistry and physics, 

becoming Professor of Physics there in 1808. In 1810 he was appointed 

Professor of Physics at the newly established and prestigious University of 

Berlin, a post which he held until his death. Weiss developed the idea of crystal 

axes, from which he was able to distinguish crystal systems by the ways in which 

crystal faces were related to such axes. He also formulated the concept of a 

zone; originally conceived as a direction of prominent crystal growth, the term 

was defined as a collection of crystal faces parallel to a line—the zone axis; 

from this concept the zone law was derived. 

Thomas Young 1773-1829 

Young was an infant prodigy who could read at the age of 2 and at the age of 14 

knew Latin, Greek, French and Italian, and had begun to study several ancient 

languages—Hebrew, Chaldean, Syriac and the like—linguistic knowledge that 

he put to use in his contribution to the translation of the text of the Rosetta 

stone. Young intended to take up a medical career and commenced his educa¬ 

tion in 1793 at St. Bartholomew’s Hospital, moving from there to Edinburgh, 

Gottingen and Cambridge. He was elected a Fellow of the Royal Society as early 

as 1794 for his explanation on how the ciliary muscles of the eye change the 
shape (and focal length) of the lens. 
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Young’s great contribution to science was his revival in 1800-04 of Huygens’ 

wave theory of light, to which he added the concept of interference to explain 

rectilinear propagation and the diffraction phenomena at single or double slits 

or pinholes and in which he was closely shadowed by the work of Fresnel in 

France. In England Young was strongly attacked because he questioned the 

hegemony of Newton, but his work quickly won acceptance in the USA and 

Europe. Young was also first to suggest (in a letter to Francois Arago in 1816) 

that light might be propagated as a transverse wave, thus accounting for 

polarization and meeting the main objection of Newton. Regrettably, Young did 

not live to witness Foucault’s demonstration, in 1850, that the speed of light was 

less in water than in air—the crucial experiment which distinguished the 

corpuscular and wave theories. 

Young was also active in many other fields. His name comes down to us 

through his work on the elastic behaviour of solids as the constant of propor¬ 

tionality (E) in Hooke’s law, called Young’s (or latterly Young) modulus. 
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Some useful crystallographic 
relationships 

In Sections A4.1-A4.3 the rather lengthy expressions for the triclinic system are 

omitted. 

A4.1 Interplanar spacings, (see Section 6.5.4) 

Orthorhombic 

(Tetragonal: a = b; cubic: a=b = c.) 

Hexagonal: 

1 Alh^ + hk + k^\ f 

dlki 3 \ fl" J ^ ■ 
Rhombohedral: 

1 {h} + k^ + /^)sin^ a + 2{hk + kl + hl)icos^ a — cos a) 

dl^i 0^(1 — 3cos^ a + 2cos^ a) 

Monoclinic: 

1 1 I k^ sin^ p P 2hl cos jS \ 

sin^ i3 \ ac ) 

A4.2 Interplanar angles, p, between planes (h^k^l^) and 
(h2k2l2^ (see Section 6.5.5) 

Orthorhombic: 

ih^h^/a^) + {k^k2/b^) + (/1/2/c^) 

cos p = —7- . 
yj\\{h\/a^) + {kl/b^) + (/f/c^)] [(hl/a^) + (kl/b^) + (/|/c^)]| 

(tetragonal: a = b; cubic: a = b = c.) 

Hexagonal: 

h^h2 + ^1^2 + i(^i^2 + ^2^1) (3a^/4c^)/j/2 
cos p = —r- T--— ... . 

y [[hj + kl + h^k^ + (3a^/4c^)/i ] [/i2 + + /i2^2 + (3a^/4c^)/|]| 
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Rhombohedral: 

cos P = a{h^h2 + k^k2 + /j/j) 

+ (cos^ a - cos a)(kj2 + k2li + I^h2 + l2h^ +/iiA;2 +/z2^i)l • 

Monoclinic 

h^hi k^k2^m^ ^ IJ2 (/i/z2 + ^2^i)cos/3 

7c • 

COS p = 
d,d^ 

sin^ P 

A4.3 Volumes of unit cells (see Section 6.5.6) 

Orthorhombic 
V = abc. 

(Tetragonal: a = b-, cubic: a==b = c.) 

Hexagonal: 

V = (\/J/2)a^c = 0.866 a^c. 

Rhombohedral: 

V = t/(l — 3cos^ a + 2cos^ a) . 

Monoclinic: 
V = abc sin j8. 

A4.4 Angles between planes in cubic crystals (variants 
between 100 and 221) (see Section 6.5.5) 

100 

110 

111 

210 

100 0.00 90.00 

110 45.00 90.00 

111 54.74 

210 26.56 63.43 90.00 

211 35.26 65.90 

221 48.19 70.53 

110 0.00 60.00 90.00 

111 35.26 90.00 

210 18.43 50.77 71.56 

211 30.00 54.74 73.22 90.00 

221 19.47 45.00 76.37 90.00 

111 0.00 70.53 

210 39.23 75.04 

211 19.47 61.87 90.00 

221 15.79 54.74 78.90 

210 0.00 36.87 53.13 66.42 78.46 90.00 

211 24.09 43.09 56.79 79.48 90.00 

221 26.56 41.81 53.40 63.43 72.65 90.00 

211 0.00 33.56 48.19 60.00 70.53 80.40 

221 17.72 35.26 47.12 65.90 74.21 82.18 
211 



216 Appendix 4 

A4.5 Relationships between zones and planes 
(see Section 6.5.3) 

For a plane {hkl) which lies in a zone [uvw\. 

hu + kv + Iw =. 0. 

For a plane (hkil) which lies in a zone [UVTW]: 

hU + kV+iT + lW=0. 

For a lattice point with coordinates [uuw] which lies in the nth (hkl) plane from 

the origin: 

hu + kv + Iw = n. 

For a plane (hkl) which lies in the zones and 

h = (V]W2 —U2yV\)', A: = (WjM2 ~ I = (u^U2 —U2V1). 

For a zone [uuw] which contains the planes (h^kj^) and (h2k2l2)' 

u = (kj2-k2li)', y = (/1/12 -/2^i); w = (hik2-h2ki). 
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A simple introduction to vectors 
and complex numbers and their 

use in crystallography 

A5.1 Scalars, vectors, tensors 

In science—and, of course, everyday life—we are concerned with different 
types of quantities as well as quantities of the same type but of different size or 
magnitude. In many cases the quantities are independent of direction—mass for 
example, or volume or temperature. Such quantities, which can be represented 
by points on scales, are known as scalars and are denoted algebraically in 
familiar italic type—m for mass, t for time, x and y for unknown (scalar) 
quantities and so on. In many other cases, quantities are direction dependent, 
or, in other words, in order to specify the quantity completely the direction as 
well as the magnitude of the quantity needs to be described. Such quantities are 
called vectors and are denoted algebraically by printing in bold type—a, b, x, y, 
etc. In handwriting wavy underlining is substituted for bold type, i.e. a, fy x, y, 
etc. 

Velocity is an everyday example of a vector quantity—^we need to specify not 
only the speed of an object but the direction in which it is travelling. A motor 
car travelling 50 kmh~^ due north has the same speed as a motor car travelling 
50 kmh“^ due east, but their velocities are different—one has a velocity of 50 
kmh“^ north and the other has a velocity of 50 kmh~' east. The velocities may 
be represented as vectors by arrows—one pointing north and one pointing east. 
The lengths of the arrows or vectors gives the speed—the greater the speed the 
longer the arrows. In the above case (50 kmh“0, the arrows are of equal length. 

Heat and electrical current flow, electrical and magnetic fields are examples 
of vector quantities of interest in crystal physics, but in geometrical crystallogra¬ 
phy we are invariably concerned with vectors which denote displacements: for 
example the displacement from one corner of a unit cell to the next, or the 
displacement from one atom to another. Crystal axes or directions are examples 
of such displacement vector quantities. In Fig. 5.1 (p. 77) the directions and 
lengths of the edges of the unit cell are all denoted by the vectors a, b, and c. In 
the special case of cubic crystals (Fig. 3.1, p. 53) these vectors are all at 90° 
(orthogonal) and are also the same length, but they are not identical vectors 
because they ‘point’ in different directions. 

The ‘length’ of a vector is called its modulus. In the case of the motor car the 
modulus of the velocity is the speed. The modulus of a vector is written in two 
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ways, either in italic type, a (denoting that it is a scalar quantity), or with the 
heavy type vector symbol bracketed between straight vertical lines thus: |a|. 

Hence |a| = u. 
In Fig. 3.1 the moduli a, b, and c of the unit cell vectors for the fourteen 

Bravais lattices are indicated. In the case of cubic (or rhombohedral) crystals, 
the unit cell edge lengths, or moduli, are all identical and are represented (for 
all three axes) by a. Hence |a| = |b| = |c| = a (as in Fig. 3.1). 

Scalars and vectors are particular types of quantities which are known in 
general as tensors. There are other, more complicated types of tensors which 
are of importance in crystal physics because they are able to describe properties 
such as conductivity or stress which vary not only with the direction of the 
applied field or force but also with the orientation of the crystal. ‘Everyday’ 
examples of tensors (other than scalars or vectors) are not easy to provide, 
but the following, perhaps rather contrived example, may illustrate the ideas 
involved. 

Consider rainwater flowing down a corrugated roof. The flow of water (a 
vector) is obviously down the roof, parallel to the corrugations and parallel also 
to a vector representing the inclined component of the gravitational field. The 
effective ‘conductivity’ may simply be regarded as the quantity that relates these 
two parallel vectors. Now consider a (badly made) roof in which the corrugations 
are set at an angle. The water will partly run sideways, along the ‘preferred 
direction’ of the corrugations and will partly flow downwards over from one 
corrugation to the next. The overall water flow will lie in a direction somewhere 
between the lines of the corrugations and downwards. In this case the effective 
gravitational field vector and the water flow vector are not parallel, and in 
estimating the effective conductivity of the roof, both the ‘downwards’ and 
‘sideways’ components of the water flow need to be taken into account. 

In crystals the ‘corrugations’ may be loosely regarded as preferred or easy 
directions of, say, heat or electrical flow. The conductivity of the crystal is the 
quantity which relates one vector (heat or electrical flow) to another vector 
(temperature or electrical field gradient). As indicated in the example above 
these vectors may not, except in special cases, be parallel and in general a total 
of 9 terms or components* are required in order to specify the conductivity 
completely. 

Conductivity is called a second-rank tensor property. There are, in addition, 
third-rank tensor properties (e.g. piezoelectricity) which are specified by 27 
components and fourth-rank tensor properties (e.g. elasticity) which are speci¬ 
fied by 81 components. Scalars, which are specified by one term or component 
are, in this classification, called zero-rank tensors and vectors which are, as 
shown below, specified by three components are called first-rank tensors. 

* These components are not all independent: their number is greatly reduced by symmetry 
considerations. For further information on tensors, see J. F. Nye, Physical Properties of Crystals, 
Clarendon Press, Oxford, Second Edition 1985, and F. G. Fumi II Nuovo Cimento (1952) Volume 9 
pp. 739-56. 
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A5.2 Resolving vectors into components 
and vector addition 

Consider the (displacement) vector r drawn in Fig. A5.1 which is outlined in a 
(two-dimensional) lattice with the unit cell vectors a and b. Note that all these 
vectors have a common origin. 

The vector r may be resolved into its components in the directions of the unit 
cell vectors a and b. These components, 5a and 3b, are drawn in Fig. A5.1. 
Added together they give r, i.e. r = 5a -I- 3b. 

In vector analysis in general, cubic or Cartesian axes are chosen, and the unit 
cell vectors are labelled i, j, k rather than a, b, c. Also, the moduli of i, j, k are 
unity and they are known as unit vectors. The general symbol for a unit vector is 
n, i.e. |n| = 1. 

A5.3 Multiplying vectors—scalar products 
and vector products 

There are two ways in which vectors can be multiplied, namely, the scalar 
product and the vector product, the general significance of which go beyond the 
scope of this book. We will consider only the multiplication of displacement 

vectors. 
The scalar (or ‘dot’) product a • b may be thought of as ‘representing’ the 

product of the moduli of the vectors resolved in the direction of one or other of 
the vectors. For example (Fig. A5.2), if the angle between the vectors, drawn 
from a common origin, is 6, the resolved component of the modulus of b along 

Fig. A5.2 
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Fig. A5.3 

the a direction is b cos 6. Hence a • b = cos 6. The same result applies if a is 

resolved along the direction of b. 
If one of the vectors is a unit vector—say in Fig. A5.2 a = n, then the scalar 

product n-b = bcos0 (since |n| = l): it is simply the modulus of b resolved 
along the direction of the unit vector n. The scalar product may therefore be 
thought of as a ‘shorthand’ means of resolving the vectors along different 
directions. 

Clearly, the maximum value of the scalar product occurs when the vectors are 
parallel (6= 90°) and the minimum value, zero, occurs when they are at right 
angles (0 = 90°). The scalar product of a vector multiplied by itself is simply the 
modulus squared, i.e. a • a = |a| |al = a^. 

The vector (or ‘cross’) product a X b may be thought of as ‘representing’ the 
area outlined by two vectors. In Fig. A5.3 the area outlined by the vectors a and 
b is ab sin 6. But there is more: the area may represent a crystal plane or 
surface, the orientation of which also needs to be specified. The orientation of 
the surface may be specified by the direction normal to it, i.e. perpendicular to 
the page. Let the unit vector along this direction be n; then a X b = (ab sin 0)n. 

In general, the vector product is expressed as a X b = c, where c is perpendic¬ 
ular to a and b and \c\ = ab sin 6. The largest value of c occurs when a and b are 
at right angles and the smallest value, zero, occurs when they are parallel. 
Finally, the vector product involves the use of a sign convention; the vector c 

and n is perpendicular to the plane defined by a and b but can have one of two 
directions, i.e. with reference to Fig. A5.3, it can be ‘up’ from the page or ‘down’. 
One vector must have a -f sign and the opposite must have a — sign. The sign 
convention is as follows. Consider in Fig. A5.3 an (ordinary) right-handed screw 
coming out of the page (i.e. parallel to c or n) through the common origin of a 

and b. If we ‘screw’ from a to b the screw will move ‘upwards’ and this upwards 
direction is the direction or sense of c. If we screw in the opposite direction, 
from b to a, the screw will move downwards. Hence, the order of the multiplica¬ 
tion of vectors is important and leads to the anticommunicative law for the 
vector product: 

a X b = —(b X a). 

A5.4 Multiplication of vectors in terms of components 

Calculations are generally made easier if vectors are expressed in terms of their 
components on a Cartesian axis system with unit vectors, i, j, k at right angles. 
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In this case i-i—1, i-j —0, ixi —0, ixj = k, and similarly for the other 
combinations of i, j and k. 

Writing 

a = (flii+ fl2j+fl3k) and b = (/jji + 63 j + ^jk). 

The scalar product 

a • b — (flji + U2 j + <33k) • (hji + £>2 j + ^^sk) 

= flihji • i + aj£?2* ’ j + ■" 

= +^2^2 + ^3^3) 

(all the other terms cancel because i • i = 1 and i • j = 0, etc.) 
The vector product 

a X b = (oji + ^2 j + fl3k) X (£?ji + £>2 j + £>3k) 

= fli£>i(i X i) + fli£j2(i X j) + ••• 

= (^2^3 “ £>2^3)1 + - b^a^)j + (^162 - b^a2)k 

(all the other terms cancel because i X i = 0 and i X j = k, etc.). 
The vector product may be expressed in matrix form as a determinant: 

a X b = a. 

£?i £^2 

A5.5 Volumes of unit cells in vector notation 

The volume of a unit cell defined by vectors a, b, and c is ‘the area of the base 
times the height’. 

The ‘area of the base’ is (a X b) = (ah sin 0)n. The ‘height’ is the component 
of c resolved in the direction of the normal n (Fig. A5.4), i.e. the height = n • c = 
c cos 0. Hence the volume F = (a X b) • c. It is a scalar quantity. The vectors a, 

b, c in this equation may be ‘cycled’ but the sequence must be maintained, i.e. 

K = (a X b) • c = a • (b X c) = (c X a) • b, etc. 

Fig. A5.4 
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If the sequence is reversed, i.e. (b X a) • c, then a negative volume results. In 
practice this can occur if a left-handed set of axes are substituted, inadvertently 

or otherwise, for a right-handed set. 
The reciprocal unit cell a*, b*, c* can be derived from the ‘direct’ unit cell a, 

b, c in a similar way as outlined in Section 6.5.6. Note that the relationships 

b X c 
a* = —etc. 

are valid for the primitive unit cells for any axis system. 

A5.6 Representing vectors by complex numbers: 
the Argand diagram 

The sum of a number of vectors a + b -f c -H • • • may be simply obtained 
graphically by adding them ‘top to tail’ as shown in Fig. A5.5. In the case where 
the vectors represent the atomic scattering factors, /, for the atoms in the motif, 
the sum is the structure factor ^hkl- 

However, although graphical procedures are very instructive in that they 
clearly show the physical principles involved, they are also very clumsy and do 
not readily lend themselves to analytical procedures. We need therefore an 
alternative method of representing vectors and the method we adopt is that of 
representing vectors as complex numbers. 

A complex number, z, is a number which has two parts of the form 

z=x + \y 

where x and y are real numbers and i = — \ . The first part, x, is called the 
real part of the complex number and the second part, iy, is called the imaginary 
part. These two parts can be represented graphically on what is known as an 
Argand diagram—a graph in which the horizontal axis (abscissa) represents x, 

the real part and the vertical axis (ordinate) represents iy, the imaginary part 
(Fig. A5.6). 

Fig. A5.5 
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The complex number 2 is represented on the Argand diagram by the point 

P: (x, y) and the length OP = r= y/x^ +y^ is called the modulus of the complex 
number z (or simply ‘mod z’ or |z|. Hence (from Fig. A5.6) the complex number 
z can be written in the form: 

z = r cos (/) + i r sin 0 

where r (the modulus) and 0 (the angle) are known as polar coordinates. This 
expression can further be written in exponential form (Euler’s formula); 
cos </) + i sin 0 = exp i 0 and cos — i sin 4>= exp — i (/>, i.e. z = r exp i 6. 

This representation of complex numbers in exponential form by means of the 
polar coordinates r and (f) allows us to add, subtract and carry out other 
mathematical operations upon them without having to resort to rulers and graph 
paper. 

For example, the addition of complex numbers, Zj + Z2 + • • • is simply given 
by: 

Zj + Z2 + • • • = /"i exp i </>j + r2 exp i (^2 > 

or: 

Zj +Z2 + ••• /"i cos + r2 cos 02 + ■■■ sin 0i + r2 sin 02 + ) 

(sum of ‘horizontal’ components) + i(sum of ‘vertical’ components). 
This is the procedure used to find the structure factor the sum of all the 

atomic scattering factors, /, for the atoms in the motif. 
The complex conjugate of a complex number, symbol z*, is one which has the 

same modulus r, but a negative angle 0, i.e. 

z* = r cos 0 — ir sin 0 = r exp — i0. 

The complex conjugate can be used, for example to determine the modulus r of 

a complex number, i.e. 

z • z* = r exp i 0 • r exp — i 0 = r^. 
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Systematic absences (extinctions) 
in X-ray diffraction and double 

diffraction in electron diffraction 
patterns 

A6.1 Systematic absences 

In X-ray diffraction (and also, except for the complication of double diffraction, 
in electron diffraction) the intensities of reflections from certain planes with 
Laue indices hkl are zero. Such reflections are said to be forbidden or extin¬ 

guished or, better, systematically absent since they arise from the centring of the 
unit cell and/or the presence of translational symmetry elements—glide planes 
and screw axes. The identification of systematic absences is very useful since it 
provides the ‘first step’ in crystal structure determination. 

The subject may be best introduced by considering the diffraction of light 
from a wide slit diffraction grating (Section 7.4). In the diffraction of light 
extinctions or ‘missing orders’ occur for certain ratios of the slit spacing a and 
the slit width d. For example, referring to Fig. 7.7, if the slit width d is set equal 
to one-third of the slit spacing a, then the zero order minimum of the central 
peak from a single slit (Fig. 7.7(b)) coincides with the angle of the third order 
diffracted peaks n = + 3 (Fig. 7.7(a)). These peaks (and subsequently the sixth, 
ninth etc. order peaks) are therefore of zero intensity (i.e. extinguished). Other 
sets of systematic absences may be derived for other combinations of a and 
d—the most important being that when d= \a (see Exercise 7.2). 

Systematic absences in crystals may be derived in two ways; either by a 
consideration of the geometrical consequences arising from the use of centred, 
rather than primitive, unit cells and the presence of glide planes and screw axes, 
or by application of the structure factor equation. The former approach is the 
proper one, since systematic absences arise solely as a consequence of the 
architecture of crystals—but the latter approach is a useful means of gaining 
practice and familiarity with the structure factor equation. We will start with 
both approaches for an fee crystal. 

Consider Fig. A6.1 which shows the unit cell vectors a, b, c for the conven¬ 
tional fee unit cell and the unit cell vectors A, B, C for (one variant) of the 
primitive rhombohedral unit cell. The origin is drawn at the front left-hand 
corner to help make clear the shape of the rhombohedral cell. 
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Writing down the transformation equations for unit cell vectors or axes (see 
Section 5.8): 

A = + 'I'b + Oc 

B = ^a + Ob + 

C = Oa + ^b + -jC. 

Now, as shown in Section 5.8, Miller indices transform in the same way as unit 
cell vectors. Hence if (HKL) and (hkl) are the Miller indices of a plane referred 
to the primitive and fee unit cells, respectively: 

H^^h + ^k + Ol 2H = h+k 

K = + 0^: or 2K = h + I 

L = Qh + \k+\l 2L=k + l. 

Now H, K, L are all integers, odd or even; hence 2H, 2K, 2L are all even 
integers, from which it follows that (h + k), (h +1), (k +1) are also all even 
integers. 

An even integer is either the sum of two even integers, or two odd integers, 
but not mixed. Hence, for each identity, h, k, I are either all odd or all even 
integers. In other words the lattice planes from which reflections occur are those 
for which h, k, I are all even or all odd integers. When h, k, I are mixed (some 
odd, some even) the Miller index {hkl) describes a set of planes which are not 
lattice planes since they do not all pass through lattice points. 

Now let us derive the same result using the structure factor equation applied 
to an fee ciy'stal with an identical atom (atomic scattering factor /) at each of 
the four lattice points in the cell. The (m„ v„ w„) fractional coordinate values of 
these atoms are: 

(000),(H0),(i0|),(0H)- 
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Hence, 

Ffjk! =/exp277’i(/i0 + kO + 10) + f exp27ri(/i| + +10) 

+f exp2Tri(hj + A:0 +1\) + / exp27ri(/z0 + k\ +1\). 
\ 

Simplifying, and remembering that since the cell is centrosymmetric the sine 
components in the exponents vanish: 

^hki “/(I cos27r(/z + /:) + cos27r(/i + /) + coslnik + /)). 

Now, cos2-77 (even integer) = +1 and cos 277 (odd integer) = -1. The value of 
Fkki will depend on whether h, k, I are all even, all odd or mixed. It is easily 
seen that if they are all even or all odd ^hkl = 4/ and if they are mixed ^hkl ~ 0- 

The conditions for systematic absences from body- and base-centred lattices 
can be derived in the same ways: either by referring the lattice to a primitive 
unit cell or by applying the structure factor equation. For example, for a 
body-centred cubic crystal with identical atoms at (000) and (j^j) 

F/jki =/exp277i(/i0 + A:0 -I- /O) -l-/exp277i(/i| + k^ +1\) 

=/(l + cos 7r(/i +k + l)). 

Hence when {h+k + l) = even integer F^^i = 2/ and when {h+k + l) = odd 
integer F^^i = 0. 

Systematic absences for glide planes and screw axes may be derived in the 
same way; an example of each will suffice to show the principles involved. 

Figure A6.2 shows a (monoclinic) crystal with a c-glide plane in the xz plane 
(the plane of the paper). The action of the c-glide is to translate any atom, 
atomic scattering factor /, with fractional coordinates iuvw) to (,uu\+w). 

Substituting these two values in the structure factor equation: 

=/exp277i(/zM +kv +lw) + f expliTiihu +ku +w)). 

Operation of c -glide z 

c 

u vM2+w^ 
^ c-glide 

' and reflection 
in plane of 
paper 

Fig. A6.2 
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Operation of screw diad 

, u 1/2+1/ IV 

Fig. A63 

Consider the hO/ reflections (k = 0): 

^hoi exp27ri(/iM + Iw) + /expliriihu + /w)exp27rij/ 

=/QxplTTiihu + lw)[l + exp Tri/]. 

When / = odd integer, exp Tri/ = — 1 and = 0. This then gives the condition 
for systematic absences for the hOl planes; systematic absences occur when / 
equals an odd integer and, correspondingly, reflections occur when / equals an 
even integer. 

Figure A6.3 shows a (monoclinic) crystal with a screw diad axis, 2j along the 
y-axis, the action of which is to translate an atom with fractional coordinates 
(uuw) to (mCj + i;)vv). Proceeding as before; 

^hki exp2T7i(/zw + ku + Iw) +/exp27ri(/iu + + v) + Iw) 

consider the 0/:0 reflections (h =1 = 0) 

^oko =/exp27ri(/:y) +fexp27ri(kj +kv) 

=f Qxp2'TTi{kv)[\ + exp Tri k]. 

When /: = odd integer, expTriA:= —1 and ^ ^ reflections only occur 
from 0A:0 planes when k equals an even integer. This result can also be seen 
intuitively: the action of the screw diad axis repeats the atomic layers at spacings 
equal to half the b lattice repeat distance. 

Table A6.1 summarizes the extinction criteria for lattices and translational 
symmetry elements. 

Table A6.2 lists the reflecting planes in cubic P, I, F and diamond-cubic 
crystals in order of decreasing i/^^^-spacing. For cubic crystals = a//A 
where a = the lattice parameter and N = + k^ +1^). The conditions for 
reflection for a diamond-cubic crystal are h, k, I are all odd or all even integers 
(since a diamond-cubic crystal has an fee lattice) with the additional condition 
that ih+k + l) is an odd integer or an integer which is an even multiple of 2. 
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Table A6.1 Extinction criteria for lattices and symmetry elements 

Lattice or symmetry 

element type Symbol 

Class of 

reflections 

Condition for 

presence 

Lattice type: hkl 
primitive P none 

body-centred I h + k + / = 2n 
centred on the C face C h + k =2n 
centred on the A face A k +1 = 2n 
eentred on the B face B h + l = 2n 

h,k,l 
centred on all faces F all = n (odd) 

or all = 2/j (even) 
rhombohedral, obverse R — h + k + l = 3n 
rhombohedral, reverse R h — k +1 = 3n 

Glide plane || (001) a hkO h = 2n 
b k =2n 
n h + k =2n 
d h + k = 4n 

Glide plane || (100) b Okl k =2n 
c 1 = 2n 
n k A1 = 2n 
d kAl = An 

Glide plane || (010) a hOl h =2n 
c 1 = 2n 
d h +1 = 2n 
n h +l = An 

Glide plane || (110) c hkl 1 = 2n 
b h =2n 
n h + k =2n 
d 2h -f / = An 

Screw axis || c 00/ 1 = 2n 
3i) ^2, 62,64 1 = 3n 
4i,42 l = An 
65,65 1 = 6n 

Screw axis || a 2i>42 hOO 1 = 2n 
4ii43 l = An 

Screw axis || b ^1)42 OkO k =2n 
4i>43 k = An 

Screw axis || [110] 2i hhO h =2n 

(n — odd integer, 2n = even integer etc.) 
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Table A6.2 

N hkl cubic P cubic I cubic F Diamond cubic 

1 100 7 
2 no 7 7 
3 111 7 7 7 
4 200 7 7 7 
5 210 7 
6 211 7 7 
7 — 

8 220 7 7 7 7 
9 300/221 7 

10 310 7 7 
11 311 7 7 7 
12 222 7 7 7 
13 320 7 
14 321 7 7 
15 — 

16 400 7 7 7 7 
17 410 7 
18 330/411 7 7 
19 331 7 7 7 
20 420 7 7 7 

Note 1 There are no squares of three numbers which add up to 7, 15 etc. This means 
that there are ‘gaps’ in the sequence of reflections for cubic P crystals, i.e. ‘line 7’, 
‘line 15’ etc. are missing. 

Note 2 Cubic / crystals show a uniform sequence of reflections (with no ‘gaps’ as in 
cubic P crystals). 

Note 3 Cubic F crystals show a characteristic sequence of lines: ‘two-together’, 
‘one-on-its-own’, ‘two-together’ etc. 

A6.2 Double diffraction 

In electron diffraction the presence of face- or body-centring lattice points also 
gives rise to systematically absent reflections just as in the case of X-ray 
diffraction (the first group in Table A6.1). However, reflections which are 
systematically absent in X-ray diffraction as a result of the presence of transla¬ 
tional symmetry elements (glide planes and screw axes, Table A6.1) may, and 
usually do, occur in electron diffraction patterns. This is known as double 
diffraction and occurs because the intensities of the diffracted beams may be 
comparable with that of the direct or undiffracted beam—a consequence of the 
dynamical interactions between the direct and diffracted beams. The effect, in 
terms of the geometry of the electron diffraction pattern, is that a strong 
diffracted beam can behave, as it were, as the direct beam and the whole pattern 
is in effect shifted so as to be centred about the diffracted beam. In the case of 
electron diffraction patterns from centred lattices all the spots are coincident 
and no new ones arise; but in most other cases new ones arise in positions in 
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diffraction pattern from hep metal, [1210] zone 

• • • • • • • • • • • • • 

loTo loTi 10T2 10T3 10T4 

• • • • • • • • 
' \ 

• • • • • 

0000 0002 0004 

• • • • • • • 

• • 

Fig. A6.4 

which the diffraction spots should be systematically absent. A simple 
example—that of electron diffraction from the hep structure—will make this 
clear. 

In the hep structure the relevant translational symmetry element is the screw 
hexad (Fig. 4.9) which describes the symmetry of the sequence of A and B layer 
atoms (Fig. 1.5(b)). Consider the conditions for constructive interference for 
Bragg reflections from the A layers of atoms, i.e. the (0001) planes with 
interplanar spacing ^fgooi When the path difference (P.D.) is 1A (construc¬ 
tive interference), the path difference between the interleaving A and B layers 
of atoms, interplanar spacing iiooo2 = ‘^/2 is ^A, which is the condition for 
destructive interference; hence the 0001 reflection is (systematically) absent. 
Second-order reflection from the (0001) planes (P.D. = 2 A) corresponds to the 
first-order reflection from the (0002) planes (P.D. = 1 A). Continuing in this way 
it turns out that 000/ reflections where / is odd are systematically absent, as 
shown in Table A6.1. The same result may be found by applying the structure 
factor equation to the (0001), (0002), (0003) etc. planes, as in Example 9.2: when 
/ is odd the atomic scattering factors for the A and B layer atoms are equal and 
opposite. 

Nqwjet us draw a commonly-observed hep electron diffraction pattern from 
the_[12T0] zone (Fig. A6.4), showing the systematically absent reflections 0001, 
0001, 0003, 0003 etc. in the row through the origin*. Now suppose that the 
(strong) 1010 reflected beam acts as it were as the direct beam: the whole 
pattern will, in effect, be shifted from the origin 0000 to 1010 as shown by the 
arrow and spots will now appear in the systematically absent positions. The same 
result will be obtained for other choices of strong diffracted beams—as can 

* Systematic absences also occur in every third row (not shown in Fig. A6.4). These arise because 
the A-layer and B-layer atoms are in special equivalent positions in the hexagonal unit cell (see 
Section 4.6). This leads to the conditions for hkil: if h - k = 3n, I = 2n, i.e. in the third row the 3031, 
3033 etc. reflections are systematically absent. 
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Fig. A6.5 

easily be seen by making a tracing paper overlay in Fig. A6.4 and shifting the 
origin to the positions of different diffracted spots. 

Double diffraction can also occur in situations in which the electron diffrac¬ 
tion spots of two (or more) crystals are present in the pattern. In such cases the 
double-diffracted spots which appear may correspond to no ^f-spacing in either 
crystal—and are probably the biggest cause of the frustrated electron micro- 
scopists’ ‘unindexable’ patterns. Figure A6.5 indicates the geometry involved. 
Here, two (high order) patterns are shown consisting of widely separated rows 
(indicated by filled and open circles). The strong spots in the rows through the 
origin may act in effect as the direct beam, generating additional double 
diffraction spots in the positions marked by the letter d. The pattern appears to 
be from a relatively simple low-order zone—but of course it is not, and is either 
unindexable or (worse) may be indexed incorrectly. An example of the latter 
case is that of the electron diffraction patterns from twin-related plates or laths 
of ferrite (bcc) which occur in the microstructures of some structural steels. In 
certain twin orientations the double-diffracted spots correspond very closely 
with those expected of the high temperature austenite (fee) phase—leading to 
the erroneous conclusion that this phase is retained between the ferrite plates in 
the microstructure. 
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Chapter 1 

1.3 (a) In the ccp structure there are four sets of close-packed planes and six 

close-packed directions and in the hep structure only one set of close-packed 

planes and three close-packed directions. 

(b) In the bcc structure there are six sets of closest-packed planes and four 

close-packed directions. 

1.4 In the ccp structure each close-packed plane contains three close-packed direc¬ 

tions, i.e. three slip systems share a common close-packed plane. As there are four 

sets of close-packed planes in the ccp structure there are therefore twelve slip 

systems. In the bcc structure each closest-packed plane contains two close-packed 

directions, i.e. two slip systems share a common closest-packed plane. As there are 

six sets of closest-packed planes in the bcc structure there are therefore also twelve 

slip systems. 

1.5 The height of the tetrahedron (i.e. the distance from its vertex to its base) is simply 

yJ{2/3) of the length of its edge which is the unit cell edge length a. Hence 

c/a = 2^(2/3) = 1.633. 

1.6 The atomic coordinates are (000) (for all the ‘A layer’ atoms situated at the corners 

of the unit cell), and either (^fl) or (f j^) for the ‘B layer’ or the ‘C layer’ atom 

within the cell, depending upon the arbitrary choice made between these two 
possible (B or C) sites. 

1.7 Faulting one close-packed layer of atoms gives rise to an intrinsic stacking fault, 

faulting the next layer above (or below) gives an extrinsic stacking fault, (a) A twin 

is produced by faulting every close-packed layer and (b) the hep sequence is 
produced by faulting every alternative layer. 

1.8 For B6 (carborundum II) the stacking sequence is ABCACBA... giving a six-layer 

unit cell repeat distance. In the Shockley notation this is a a a v v v ... , i.e. an 

inversion every three layers (rather than an inversion every layer in B4 and an 
inversion every two layers in B5). 

For B7 (carborundum I) the stacking sequence is ABACBCACBABCBACA... 

giving a fifteen-layer unit cell repeat distance. In the Shockley notation this is 

AVVVAAVVVAAVVVA..., i.e. inversions every two and three layers 
alternately. 

Chapter 2 

2.1 There are twice as many mirror lines in p3/nl and the triads lie at the intersec¬ 

tions of all of them; in p31/n half the triads are not intersected by mirror lines. 

2.2 The lattice type is p3m\ (refer to your drawings or Question 2.1). 

2.3 The lattice type is p2 i.e. the pattern has identical symmetry to Fig. 2.7; it is 

based on the oblique plane lattice, not a rectangular plane lattice (primitive or 

centred) because there are no mirror lines of symmetry present. 
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2.4 The lattice type is pg. The glide lines run vertically through the back heels of the 

black men and the raised hands of the white men. 

2.5 A 4' axis with vertical and horizontal m' lines and diagonal m lines (see Fig. 2.11). 

2.6 The one-dimensional lattice types (Fig. 2.15) are: 

(a) pin (b) pin (c) pin 
(d) pin (e) pmml (d) pmm2 

(g) plal (h) pill (i) pin. 
2.7 The plane point group symmetries (Fig. 2.16) are: 

1 m mm 3 3m 

2 4 4m 6 6m. 

2.8 The asymmetric plane point group and the plane point group with triad symmetry 

only. 

Chapter 3 

3.1 (a) is orthorhombic C; (b) is not a Bravais lattice because the points do not all 

have an identical environment [see the two-dimensional examples, Figs 2.2(b) and 

(c)]; (c) is orthorhombic P (two primitive cells are drawn together). 

3.2 (a) is orthorhombic P (relocate the origin at x'y'z'); (b) is orthorhombic I 

(relocate the origin at 0|0); (c) is orthorhombic C (relocate the origin at OOz'; the 

motif is two atoms, one of each type). 

Chapter 4 

4.2 Structure 

NaCl 

CsCl 

Diamond 

ZnS (sphalerite) 

ZnS (wurtzite) 

Li20 (or CaF2) 

CaTiOg 

Bravais lattice 

Cubic F 

Cubic P 

Cubic F 

Cubic F 

Hexagonal P 

Cubic F 

Cubic P 

Motif 

(Na and Cl) 

(Cs and Cl) 

(C and C) 

(Zn and S) 

(2Zn and 2S) 

(2Li and lO) 

(ICa, ITi, and 30). 

NB: in ferroelectric crystals the distortions which occur at the Curie temperature 

and below change the Bravais lattice from Cubic P to Tetragonal P to Or¬ 

thorhombic P and to Rhombohedral with decreasing temperature. 

Chapter 5 

5.1 In fee crystals the slip planes are {111}, slip directions are <110). 

In bcc crystals the slip planes are (110), slip directions are (111). 

5.2 [231], i.e. 2.1 + 3.1 + 1.5 = 0. 
(321), i.e. 3.1 -1-2.1+ 1.1 = 0. 

5.3 Triclinic, none; monoclinic, (010) and [010]; tetragonal, (001) and [001]; (hkO) and 

[hkO]. _____ 
5.4 (411); (231); [12114]; [331] (or, their opposites, e.g. (411), etc.). 

5.5 (a) Jioi = 375 pm; rfioo = 452 pm; = 302 pm; ^202 = 188 pm. 

(b) a = 48.1°; 13 = 53.5°; 7=63.4°. 

(c) p = 61.8°; q = 58.0°; r = 45.3°. 
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5.6 

5.7 

a, jS, 7 are not identical to p, q, r because the (111) plane normal is not parallel 

to the [111] direction in orthorhombic crystals. These directions are only parallel in 

the case of cubic crystals. 
[001] = [0001]; [010] = [1210]; [210] = [3030] = [1010]; [110] = [1120]. 

Writing planes as row matrices (Section 5.8); ' 

Cubic /: 

Cubic F\ 

(HKD^ihkl) 

1 1 
2 2 

1 1 
2 2 

I 1 

(HKL)^(hkl) j i 

1 
2 

X 
2 

1 
2 

2 

0 

2 

The answers you obtain will depend upon your particular choices of A, B, C and 

a, b, c—but they will be the same form as those given above. The reverse 

transformations for planes are given by the inverse of the matrix in each case. Note 

that each matrix and its inverse also gives the transformation for direction symbols 

{UVW]'^[uvw] when these are written as column matrices (see for example, 

Section 5.9). Finally, check that your determinants are positive for Cubic 7, ^ 

for Cubic F in the examples above). A negative value means that you have 

inadvertently chosen a left-handed axial system to describe one or other of the unit 

cells. 

Chapter 6 

6.1 These reciprocal lattice sections all consist of hexagonal arrays of reciprocal lattice 

points, those closest to the origin representing the {1010} planes (hexagonal 

lattice), (110) planes (cubic I lattice) and (220) planes (cubic F lattice). 

6.2 Check your answers with the equations given in Appendix 4. 

6.3 Yes. 

Chapter 7 

7.1 The unit cells of the net are ‘skew’, like that for the monoclinic crystal (Fig. 6.2(a)) 

or the net (Fig. 7.1(d)). The (reciprocal lattice) unit cells of each twin orientation 

indicated by circles and squares are shown in Fig. E7.1. The vertical row of spots 

through the origin and perpendicular to the twin plane is common to both twin 

orientations and the spots are unstreaked. Similarly, in every third row spots are 

common to both twin orientations and are also unstreaked. This arises because 

one-in-three of the points in the net have the same position, or are coincident in 

both twin orientations. Streaking, or the extension of the reciprocal lattice points 

normal to the twin plane, increases as the twin thickness decreases, except for 

those reciprocal lattice points common to both orientations. 

7.2 The angles at which the second, fourth etc. maxima occur, i.e. 2(A/fl), 4(\/a), etc., 

coincide with the angles at which the zero order, first order etc. minima occur, i.e. 

(lA/<7), 2{X/d). Hence alternate peaks or maxima in the diffraction pattern are 

missing. 
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o 

□ 

o 

o 

o 

O 

o 

\ 
Coincident row of 
spots for both 
twin orientations 

Normal to twin plane 

unit cells 

o 

o 

□ 

o 

o 

□ 

o 

Fig. E7.1 

7.3 The equation to be derived follows from the footnote on page 109. Since eV = \mv^, 

then 'JlmeV = mv. Substituting in de Broglie’s equation gives A = h/ ^2meV. The 

numerical values obtained by substituting the m, e and V values are 10 kV: 12.2 

pm (12.2 pm); 100 kV: 3.88 pm (3.70 pm); 1 MV: 1.22 pm (0.87 pm). The 

relativistically corrected values are in brackets, from which it is seen that the 

differences between the values are insignificant at 10 kV, significant at 100 kV and 

very significant at IMV. 

Chapter 8 
8.1 a„, the angle between the direct and diffracted beams, is equal to 20 (see Fig. 

E8.1); the planes are inclined to the diffraction grating such that they make equal 

angles with the incident and reflected beams. Hence = a cos 6. Substituting 

for 6 and in the equation n\ = asina„ gives nX = {d^^-i/cos d)sin2d = 

id0)2cos 0 sin 0 = 2dhki sin 0—i.e. Bragg’s law. 

8.2 rfjjo = 0.2027 nm; ^200 ^ ^*-1433 nm; and (^211 = 0.1170 nm. Planes whose d- 

spacings are smaller than A/2 (=0.1146 nm) do not satisfy Bragg’s law since the 

maximum possible value of 0 is 90°. 

Fig. E8.1 
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8.3 Let the angle and distance OB be as shown in Fig. E8.3. Then AB = OBsin(0 + 
and BC = OBsin(0- '^^). Summing and expanding the sine terms: 

(AB + BC) = OBsin Ocos"^ + OBcos 6 sm'¥ + OBsin 0cos^ - OBcos 0 sin^. 

Hence, cancelling and substituting OBcos'^^ = 

(AB + BC) = 20B sin 6 cos'T = 2df,^i sin 6; 

i.e. the path difference is independent of the value of 

Chapter 9 

9.1 Bragg’s law is satisfied for the planes (220), (310), (400), (310), (220) (in the hkO 
section); (4ll), (411), (301), (411), (411) (in the hkl and hkl sections) and (312), 
(312), (202), (202), (312), (312) (in the hk2 and hk2 sections). The (larger) 
reflecting sphere does not extend beyond the hk2 and hk2 sections. 

9.2 Bragg’s law is satisfied for the planes (420), (420), (220) and (220). 
9.3 The zone axis of the pattern is (112). The particular variant obtained depends 

upon the variants of the indices chosen to index the pattern consistently. 
9.4 This problem is essentially the same as that for the simple cubic crystal as shown in 

Figs 9.18 and 9.19, except that the cubic P reciprocal lattice is replaced by the 
cubic F reciprocal lattice (for a cubic I crystal—see Section 6.4). In the ZOLZ Qkl 
and FOLZ \kl the reflecting planes are those for which (/i+A: + /) = an even 
number (see Fig. 6.5). 

,103 
112 

.011 .121 
,000 .130 

,011 

Fig. E9.5 
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9.5 The diffraction pattern is from Fe3C (cementite) and is indexed in Fig. E9.5 above. 

Notice that the pattern is not rectangular, but slightly skew. Since the structure is 

orthorhombic the order of the indices hkl may not be changed; only 

their signs may be changed, e.g. the allowed permutations of 103 are: 103, 103, 103, 
103. 

Chapter 10 

10.4 In Fig. 10.10 the camera constant AL = 27.2 A mm. 

10.5 The tf-spacing of the peaks (~1.17 A) is determined using Bragg’s law. Substituting 

this value and the lattice parameter a into the equation df,^i = a/ 
(Appendix 6) gives N = 6, hence the Laue indices hkl = 211. This result is in 

accordance with the conditions for reflection from a cubic I lattice (Table A6.2). 

Since the broadening due to the CuKa2 component is eliminated, ^jnst ^^d 

jSoBs simply be estimated from the half height peak widths; these should be 

measured in mm and converted to angular values in radians. This gives /3 = 

i^iNST ~ I^OBS ~ 4.4 X lOT^ rads. Hence e= jl3 cot 0 ~ 2.5 X 10“^ and the residual 
stress cr= Ee~ 500 MPa—a value close to that of the yield stress in mild steel. 

(However, it should be borne in mind that some part of /3 will have arisen from a 

reduced sub-grain size.) 

10.6 The diffraction patterns may be indexed as shown in Fig. E10.6. The ‘matrix’ a-Fe 

orientation is outlined by solid lines and the twin orientation by dashed lines. The 

trace of the twin plane and the twin plane normal are indicated (compare with the 

twin plane normal 

Fig. E10.6 
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twin-related unit cells in the optical diffraction pattern as shown in the answer to 

Exercise 7.1). The reflections for matrix (m) and twin (t) orientations are indexed 

such that (e.g.) Ollt is related to 011^ by reflection in the twin plane. The FcjC 

reflections may be indexed as shown, giving the orientation relationship between 

the a-Fe (matrix) and FcgC as; 

(OlDrejC II (Oll)a-Fe and (IODfcjC II (112)a-Fe. 

For the zone axes, obtained by cross multiplication (see Section 5.6.2); 

[Ill]Fe3C||[3lT]„.Fe. 
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counter-change (colour) symmetry elements 45, 

46 
covalent structures 16-17 
crystal classes 60 

distribution in the seven crystal systems 64 

holosymmetric classes 65 
nomenclature for 64-5 
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table of 57 
crystal faces, Miller indices applied to 80 

crystal habit 1 
symmetry related to 59-60 

crystalline state, nature of 1-4 
crystal planes or projections 17-19 

axis convention 17 
equivalent positions in 18 
fluorite and antifluorite structures 18 

crystal structure determination 136-7, 144 
crystal symmetry, properties related to 

ferroelectricity 66 
optical properties 67-8 
piezoelectricity 67 
pyroelectricity 66 

crystal systems 55-8 
Bravais lattices for 56 

table of 57 
cubic close-packed (ccp) structure 5-6 

crystal plan of 18, 18 
interstitial sites in 11-13, 12 
symmetry of 8 
unit cells of 6-9, 7, 8 

cubic crystals 
angles between planes in 215 
crystal habits of 59-60 
Miller indices and zone axis symbols for 81-2 
reciprocal lattice unit cells for 96, 97 

cubic crystal system 
point group symbols for 57, 64 

cubic F lattice 53 
reciprocal unit cell for 96, 97 

cubic interstitial sites 11, 12, 13 
cubic lattices 52, 53 

geometrical relationships between 52, 54 
cubic P lattice 53 

reciprocal unit cell for 96 
cubic space groups 74 
cubic unit cell 

point group symmetry of 55, 56 
cultures (relationship to symmetry and patterns) 

44-6 
Curie temperature 66 

de Broglie’s equation 109, 109n 
Debye, P.J.W. 171, 202 
Debye-Scherrer X-ray powder method 176, 

177-81, 179, 180 
diad (two-fold) axis of symmetry 33, 35-6, 55 
diffraction angles 

for electrons 101, 163-5 
for light 101, 103-8 
for X-rays 102, 128-130, 157-8 

diffraction-grating 
with limited number of slits 117-18, 117 
with narrow slits 112-14, 113, 114 
with wide slits 114, 115-17 

diffraction and interference 111 
diffractometer X-ray powder method, see X-ray 

diffractometer 

direction symbols 77-8 
displacement vectors 217, 219 

dog-tooth spar 3, 5, 81 
double diffraction 

origin of 229-30 
in hep structure 229-30, 230 
between two crystals 230, 231 
and ‘unindexable’ patterns 231 

riy„^;-spacings, see lattice plane spacings 

electron diffraction 160-7 
comparison with light and X-ray diffraction 

102 
electron diffraction patterns 164-7, 164, 165, 

168, 169, 187, 190 
electron diffraction techniques 

identification of polycrystalline specimens 185 
indexing procedures 166-7 
orientation relationships between crystals 

187- 8, 187 
polycrystalline (ring) pattern of aluminium 

185, 185 
Elements of Euclid 172 
enantiomorphic crystals 68, 68, 71 
Escher, M.C. 46 
Euler’s formula 223 
Ewald, P.P. 92, 125-6, 202 
Ewald reflecting sphere construction 

and broadening of reflected beams 146-7,147 
and electron diffraction 160-4, 162, 164 
and Laue technique 133-4, 134 
for monoclinic crystal 131-3, 132 
and oscillation method 151-2, 152, 153 
and precession method 153-5, 156, 157, 158 
and rotation method 152-3, 154 
for a single set of planes 130-1, 131 
and X-ray diffractometer 159-60, 159 

Ewald’s synthesis 130-4 
exercises 27-31, 58, 91, 100, 123-4, 134, 167, 

188- 90 
extrinsic stacking faults 20 

face-centred cubic lattice 53 
reciprocal lattice unit cell of 96, 97 

face-centred cubic (fee) structure 16 
crystal plan of 18, 18 
distinction between ccp structure 16 
interstitial sites in 11-12, 12 
unit cells of 6-8, 7, 8 

face-centred orthorhombic lattice 53 
Fedorov, E.S. 32, 72, 202 
ferroelectricity 66 
first-order Laue zone 162, 164, 164 
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five-fold (pentad) rotation axis 36 
fluorite structure 15, 17, 18 
/-number (for camera lens) 120, 120 
focusing circle 173-5, 173, 174, 175, 178 
focusing X-ray diffraction geometry 172-3, 173 
focusing X-ray diffraction methods 173-4 
four-fold (tetrad) rotation axis 36 
Frankenheim, M.L. 51, 203 
Fraunhofer diffraction 112, 112, 113 
Fraunhofer, J. 112, 203 
Fresnel, A.J. 109, 204 
Fresnel diffraction 112 
Friedel’s Law 143, 143n 
further reading 239-42 

geometrical relationships 
addition rule 85, 98 
angle between planes 99 
d;,^,-spacings of lattice planes 99 
plane parallel to two directions 85, 100 
reciprocal and (direct) lattice unit cell vectors 

97, 100 
Weiss zone law 84, 87, 98-9, 140 
zone axis for two planes 84, 100 

glide line of symmetry 39 
glide plane of symmetry 68-9 

and systematic absences 226-7, 226 
The Grammar of Ornament 46, 46n 

Hanawalt groups 183-5, 184 
Hanawalt, J.D. 183 
Hanawalt search procedure 182-5 
hard sphere model (for crystal structures) 4 

Haiiy, R-J. 1, 55, 81, 204 
Hermann, C.H. 72, 205 
Hermann-Mauguin space group symbols 72-4 

Hessel, J.F.C. 61, 205 
hexad (six-fold) axis of symmetry 36, 55 

hexagonal arrays 4, 4 
constructing ccp and hep structures from 5, 6, 

7,S 
hexagonal close packed (hep) structure 5-6 

interstitial sites in 13 
unit cells of 6, 7 

hexagonal crystal system 
indexing in 85-7 
point group symbols for 65 

hexagonal (Bravais) lattice 52-4, 53, 54 
hexagonal (plane) lattice 37, 38 
high-order Laue zone 164 
holosymmetric crystal classes 55 
honeycomb arrangement 4 

Hooke, R. 1, 2, 4, 8, 205 
Hull, A.W. 171, 205 

Huygens, C. 109, 206 
Huygens’ construction 110 
Huygens’ wavelets 110, 112, 113-15, 137 

image formation (in light microscope) 120-3 
indexing 

in hexagonal/trigonal systems 85-7 
for lattice directions (zone axes) 77-8, 77 
for lattice planes 78-81, 78, 79 

intensities of X-ray diffracted beams 138,142-4 
interference and diffraction 111 
International Tables for Crystallography 64, 92, 

241 
interplanar angles, geometrical relationships for 

99, 214 
interplanar spacings, geometrical relationships 

for 82-3, 214 
interstices 

in body-centred cubic (bcc) structure 13, 14 
in cubic close packed (ccp) structure 11-12, 

12 
in hexagonal arrays 4, 4 
in simple cubic structure 11-12, 13 
in square arrays 4, 4 

interstitial structures 11, 15, 16 
intrinsic stacking faults 20 
inversion axes of symmetry 62-4 
inversion diad 64 
inversion hexad 63, 64 
inversion tetrad 63, 63 
inversion triad 64 
ionic structures 16 
iron, fracture appearance of 3 

Jones, O. 46, 46n, 49 

Keissig fringes (in X-ray diffraction) 158-9,161 
Kepler, Johannes 1, 206 

lattice 
definition of 34 
three-dimensional (Bravais) types of 51-3, 57 
two-dimensional (plane) types of 34, 36 

lattice plane spacings, dhkt 82-3, 93-4, 99 
in relation to Bragg’s Law 129, 140, 165 

lattice points 33, 34 
lattice unit cell vectors 76, 94-5 

lattice vectors 52 
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Laue cones 127-8, 128 
Lane equations 126-8, 127 
Laue-Friedrich-Knipping experiments 126 

Laue indices 83-4, 148, 166 
Laue, M. von 125, 126, 207 
Laue point groups 144 
Laue X-ray diffraction technique 133-4, 134, 

148-9, 150 
Laue zones 163-4, 169 
Law of rational indices 80 
layer lines (in X-ray diffraction) 151, 152, 153, 

154 
lead sulphate (PbS04) crystal 61 
light 

coherence, scattering and interference 

108-111 
diffraction of 111-18 
interference of 110-11, 113 
nature of 108-10 

light diffraction 
from a circular aperture 106, 107, 116, 119 
corollary with X-ray and electron diffraction 

102, 137, 158-9 
geometry of 111 
and limit of resolution of optical instruments 

102, 118-123 
observations using a laser 106-8, 107 
observations using nets 103-6, 104, 105, 124 
from a single slit 115, 115 

limit of resolution, see resolving power 
line broadening in X-ray diffraction 

grain size and shape factors 145-7, 146, 147, 
186 

instrumental factors 186 
internal elastic strain factors 186-7, 189 

lithium oxide (Li20-antifluorite) structure 
Bravais lattice for \1, 18 
structure of 74 

low-angle Bragg reflections 158, 161 
for cobalt-copper multilayer specimen 158, 

160, 161 

magnesium sulphate (MgS047H20) crystal 61 
‘map scales’ for (direct) and reciprocal lattices 

93 
Mauguin, C. 72, 207 
maxima (in light diffraction) 

principal 117, 117 
subsidiary 117, 117 

‘memograms’ (for geometrical relationships) 
84-5 

Micrographia 1, 2 

microscope, limit of resolution of 120-3, 121, 
123 

Miller-Bravais indices 85-7 
Miller indices 78-81, 148 

for cubic crystals 81-2 

row matrbc form 88-90 
transformation of 80-9 

Miller, W.H. 79, 208 
mirror line of symmetry 33, 35, 35, 39 
mirror plane of symmetry 55, 62 
modql building 4, 5, 8 
model building kit suppliers 191-2 

monoclinic crystal 
reciprocal lattice unit cell for 94-5, 94, 95 

monoclinic crystal system 
point group symbols for 57, 65 

monoclinic lattices 53 
motifs 

in cubic structures 74-5 
in hexagonal structures 75 
meaning of term 33 
symmetries of 35, 35, 37-9 

multilayer specimens. X-ray diffraction of 
cobalt-copper 158, 160, 161 
cobalt-gold 157, 160, 161 

nature of crystalline state 1-4 
Newton, I. 109, 130, 208 
Newton’s Laws 130 
non-centrosymmetric point groups 67 

table of 57 
numerical aperture (of a microscope) 122 

oblique lattice 34, 34, 37, 38 
octahedral interstitial sites 11 

in bcc structure 13, 14 
in ccp structure 12, 12 

one-dimensional patterns or groups 42, 44, 49 
systematic identification of 44, 45 

one-dimensional symmetry 42 
optical activity 67 

in enantiomorphous crystals 68 
in liquids 71-2 

optic axis 
in biaxial crystals 67 
in uniaxial crystals 67, 71 

Opticks 109, 206, 209 
orthorhombic crystals—examples of crystal 

classes in 60, 61 
orthorhombic crystal system 56-8, 57 

point group symbols for 64 
orthorhombic lattices 53 
orthorhombic unit cell 

point group symmetry of 56, 56 
oscillation (X-ray diffraction) method 151-2, 

152, 153 
Ewald reflecting sphere construction for 

151-2 

particle-like character of light 108-9 
Pasteur, L. 68, 209 
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path difference 112, 113, 115, 115, 116, 126, 
127, 127, 129, 129, 139, 140 

patterns 
in one dimension 42-4, 44, 49 
in two dimensions 4, 32-5, 40, 41, 44-6, 47, 

48 
in three dimensions 5-6, 32-3, 72-5, 73 

pentad (five-fold) axis of symmetry 36 
perovskite (ABO3) structure 19, 19, 66 

phase angle (difference) 140, 141,141, 142, 143, 
223 

piezoelectricity 67, 218 
plane indices, see Miller indices 
plane lattices 36-7, 38, 39 
plane parallel to two directions 85, 100, 216 
plane patterns (groups) 33, 37, 40, 41, 41, 47, 48 

symbols for 41 
systematic identification of 42, 43 

plane point groups 36, 36n, 49 
planes, relationship to zones 98, 216 
point group symbols 64-5 

for plane point groups 36, 36n 
point group symmetry 56, 59 

of cubic crystals 55-6, 56, 59-60 
of orthorhombic crystals 55-6, 56 

table of 57 
polar point groups 66 

Pope, W.J. 32, 210 
powder (X-ray diffraction) methods 

Debye-Scherrer 176, 177-81, 179, 180 
diffractometer, see X-ray diffractometer 

flat film 176, 178 
precession (X-ray diffraction) method 153-5, 

156, 157, 158 
Ewald reflecting sphere construction for 

154-5, 156 
zero level photograph (of tremolite 

Ca2Mg5Sig022(OH)2) 158 
principal maxima 117, 117 
pyroelectricity 66, 218 

quartz 70, 71, 72 
Hanawalt Search Manual listing for 184 
Powder Diffraction File Card for 183 
X-ray diffraction from 176, 177, 180 

radius ratios of interstitial sites 11-13 

in bcc structure 13, 14 
in ccp structure 12, 72 
in simple cubic structure 12, 13 

Rayleigh, Baron (J.W. Strutt) 119, 210 

Rayleigh criterion 119, 119 
reading list (further reading) 239-42 

reciprocal lattice 

construction of 92-3 
reciprocal lattice nodes 145, 147-8, 147 
reciprocal lattice points 93 
reciprocal lattice unit cells 

for cubic crystals 96-7, 97 
for a monoclinic crystal 94-5, 94, 95 
referred to rhombohedral axes (primitive cells) 

96 
reciprocal lattice unit cell vectors 95 

relationships with (direct) lattice unit cell 
vectors 97 

reciprocal lattice vectors 92-3 
expressed as components of reciprocal lattice 

unit cell vectors 95 
rectangular c (diamond) lattice 37, 38 
rectangular p lattice 34, 34, 37, 38 
reflecting sphere construction, see Ewald 

reflecting sphere construction 
reflection-glide symmetry, see glide line of 

symmetry; glide plane of symmetry 
reflection indices, see Laue indices 
reflection symmetry, see mirror line of 

symmetry; mirror plane of symmetry 
resolving power of optical instruments 

Abbe criterion for 121-2 
of a camera 120, 120 
limited by diffraction 116, 121-3 
of a microscope 120-3, 121, 123 
of a telescope 118-20, 119, 120 

resolving power of X-ray diffraction techniques 
181-2 

rhombohedral lattices 52-5, 53 
transformation matrices for 85-7 

rhombohedral unit cells 53-5, 55, 54 
for cubic F Bravais lattice 54, 54, 55 
for cubic 1 Bravais lattice 54, 54, 55 

rotation axes of symmetry 33, 35, 36, 55 
rotation (X-ray diffraction) method 152-3 

photograph of topaz Al2(Si04XOH,F)2 154 

satellite reflections 157, 161 
scalar product 219, 219 
scalars 217 
scattering processes 111 

Scherrer equation 146, 148, 157, 186 
Scherrer, P.H. 171, 210 
Schoenflies, A. 32, 72, 210 
screw axes of symmetry 68-9, 69, 70, 71 
screw diad axis of symmetry, extinction 

conditions for 227, 227 
self consistency in indexing electron diffraction 

patterns 167 
semi-focusing X-ray diffraction methods 175-8 

Shockley notation 
for close-packed structures 20 

for faulted structures 20 

for tetrahedral structures 24, 25 
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for twinned structures 20, 21 
Shockley, W.B. 20, 211 
silicate structures 25-30, 28, 29, 30 
simple cubic lattice 53 
simple cubic structure 9-11, 9 

interstitial sites in 11, 13 
unit cell of 9 

simple hexagonal structure 5, 6, 16, 16 
interstitial sites in 16, 16 
unit cell of 7 

simple monoclinic lattice 53 
simple orthorhombic lattice 53 
simple tetragonal lattice 53 
six-fold (hexad) rotation axis 36 
slip systems 27 
snowflake 1 
sodium chloride (NaCl) 

Bravais lattice for 74-5 
structure of 15, 17 

software suppliers (computer programs in 
crystallography) 193-8 

Sohncke groups 72 
Sohncke, L. 72, 211 
Sorby, H.C. 210 
space group Pba2 73-4 
space groups 72 

general equivalent positions in 73 
Hermann-Mauguin notation for 72-4 
special positions in 74 

space lattices, see Bravais lattices 
square arrays 4, 4 

constructing ccp and simple cubic structures 
from 9, 9 

square lattice 37, 38 
stacking fault energy 21-3 
stacking faults 6 

in a-brass 21, 23 
in ccp structure 19 
in cobalt 21 
occurrence of 19, 22 

stacking sequence 
in bcc structure 10, 10 
in carborundum (SiC) structures 24, 25 
in ccp structure 5, 6, 7 
in faulted structures 20 
in simple hexagonal structure 5, 7 
Shockley notation for 20 
in twinned ccp structures 24, 25 

stereographic projection 62, 149n 
structure factor 136, 138-41 
structure factor equation, derivation of 140-1 
structure factor equation 

application to CsCl structure 141, 142 
application to crystal with a centre of 

symmetry 143, 143 
application to crystal without a centre of 

symmetry 143 

application to hep metal structure 141-2, 142 
and crystal structure determination 144 

subsidiary maxima 117, 117 

suppliers 
of computer programs 193-8 
of model-building kits 191-2 

symmetry 8, 34, 59 
Symmetry Aspects ofM.C. Escher’s Periodic 

drawings 47, 48, 242 
symmetry elements, self-consistency of 56 
symmetry, patterns and cultures 44-6 
systematic absences (extinction) in X-ray 

diffraction 
for a bcc crystal 226 
for a crystal with a glide plane of symmetry 

226-7, 226 
for a crystal with a screw diad axis of 

symmetry 227, 227 
for an fee crystal 224-6 
table (of allowed reflections) for cubic 

structures 229 
table (of extinction criteria) for lattices and 

symmetry elements 228 

Tammann, G.H.J.A. 32, 211 
tartaric acid, enantiomorphic forms of 68, 68, 

71-2 
telescope, limit of resolution of 118-20, 119, 

120 
tennis ball, symmetry of 63, 63 
tensor rank 218 
tensors 218, 218n 
tetrad (four-fold) axis of symmetry 36, 55 
tetragonal crystal, example of (urea, CO(NH2)2) 

63, 63 
tetragonal crystal system 57 

point group symbols for 65 
tetragonal lattices 52, 53 

unit cells for 55, 55 
tetrahedral interstitial sites 11 

in bcc structure 13, 74 
in ccp structure 12, 72 

texture (preferred orientation) 172 
three-fold (triad) rotation axis 36, 55 
titanium hydride (TiH) 

Bravais lattice for 74 
structure of 15-17, 75 

titanium hydride (TiH 2) 

Bravais lattice for 74 
structure of 15-17, 75 

titanium nitride (TiN) 
Bravais lattice for 74 
structure of 15-17, 75 

transformation matrices 
for lattice (unit-cell) vectors 87-8 
for Miller indices 88-9, 90 

for trigonal crystals with rhombohedral 
lattices 90-1 

for zone-axis symbols 89-90 
transformations in crystal structures 10 
translational symmetry elements 68-70 
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triad (three-fold) axis of symmetry 36, 55 
triclinic crystal system 57-8 
triclinic lattice 52, 53 
trigonal crystals, transformation matrices for 

90-1 
trigonal crystal system 57-8 

indexing in 85-7 

point-group symbols for 65 
tungsten carbide (WC) structure 16, 76 
twinned crystals 20, 27, 22, 23 

diffraction patterns from 123-4,124, 234, 
235, 237, 237 

twins 19, 21-4 
two-colour (one-dimensional) patterns 45-6 
two-colour (plane) patterns or groups 45-6 
two-dimensional (plane) patterns or groups 

33-5, 41-2 
systematic identification of 43 
table of 40 

two-dimensional symmetry elements 35-6, 35 
two-fold (diad) rotation axis 35-6, 55 

unit cells 
for the 14 Bravais lattices 53, 53 
for the ccp structure 6-9, 7, 8 
for the hep structure 6, 7 
for the simple hexagonal structure 6, 7 

unit cell, choices of 
for the ccp structure 6-9, 7, 8 
for hexagonal and rhombohedral lattices 

86-7, 86 
for plane lattices 37 

units (Systeme International) 166 
urea crystal, symmetry of 63, 63 
useful crystallographic relationships 

angles between planes in cubic crystals 215 
interplanar angles 214 
interplanar spacings 214 
relationships between planes and zones 216 
volumes of unit cells 215 

vector components 219-21 
vector modulus 217-18 
vector notation for unit cell colume 100, 221-2, 

221 
vector-phase diagrams 140, 141 
vector product 220, 220 
vectors 78, 87-9, 217-22 

addition of 219 
multiplication of 219-21, 219, 220 
resolution into components 219-21 

wave-like character of light 108-9 
wavetrain 109-11 
Weber, W.E. 212 

Weber (zone axis) symbols 85-7 
Weiss, C.S. 84, 212 
Weiss zone law 84, 87, 98-9, 140 
white X-radiation 173 
wurtzite (ZnS) structure 17, 24 

X-ray diffraction 
Bragg’s interpretation of 128-30 
Ewald’s interpretation of 130-14 
Laue’s interpretation of 126-8 

X-ray diffraction—corollary with light and 
electron diffraction 102, 137, 158-9 

X-ray diffraction techniques 
for polycrystalline (powder) specimens 173-81 
for single crystal specimens 148-55 
for thin films and multilayers 155-8 

X-ray diffractometer 155, 174-6, 775, 777, 189 
and reciprocal space 159, 160 
asymmetrical setting 159, 759, 775, 176 
symmetrical (Bragg-Brentano) setting 155, 

759, 174, 775 
X-ray line broadening factors 

grain size and shape 145-7, 146, 147, 186 
instrumental 186 
internal elastic strains 186-7, 189 

X-ray monochromator 173-4, 174 
X-ray Powder Diffraction File 182, 241 

file cards 182, 183 
Hanawall groups 183-5, 184 
Hanawalt search procedure 182-5 

Young, T. 109, 212 

zero-order Laue zone 162-4, 162, 164 
zinc blende (ZnS—sphalerite) 

Bravais lattice for 74-5 
structure of 75, 17, 24 

zone axis 77 
at intersection of two planes 84, 100 

zone axis (direction) symbols 77-8 
column matrix form 89, 90 
for cubic crystals 81-2 
transformation of 89 

zone, definition of 76-7 
zone law 84, 87, 98-9, 140 
zones, relationship to planes 84, 100 
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A knowledge of cn'stallography opens the door to a better and elearer understanding 

of manv topics in physical sciences and pattern design. In this new text, the basic ideas 

in crx'stallography and diffraction are explained simply and comprehensi\el\'. 

The subject ofdiffraction flows naturally from that ofcn stallography since by its means 

the structures of materials may be re\ealed. The topic is developed by simple analogies 

and eiemonstrations—from familar examples of the diffraction of light from nets and 

gratings through to X-ray and electron diffraction from cn stals. The physical concepts 

and geometrical features common to all these diffraction modes are emphasized and 

described in ven' simple mathematical terms. Similarh’, the relationship between 

diffraction and image formation in telescopes, cameras, and light and electron 

microscopes is developed and explained, and simple expressions are elerived for the 

limits of resolution of optical instruments. 

The applications of X-ray and electron diffraction techniques in the identification of 

the structures of materials and the measurement of cn stal size, orientation relation¬ 

ships, and internal stress are also described and exercises (with '’helpful hints’) given. 

The Basics of Crystallorirnphy and Diffraction gives a good foundation to manv other 

topics in physics, chemistiy, earth, materials, and textile sciences, microscope and 

pattern design, and it is hoped that all readers will find the topics treated in wavs which 

are ‘’cnstal clear’ thoughout. 

Christopher Hammond is Senior Lecturer in the School of Materials at the 

L niversity ol Leeds. He is the author ot the successful lutvodnction to Crvstallotii'aphv 

( 1990, 1992), from w hich the present text has developed. 
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