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Preface 

This book has grown out of my earlier Introduction to Crystallography published in the 

Royal Microscopical Society’s Microscopy Handbook Series (Oxford University Press 

1990, revised edition 1992). My object then was to show that crystallography is not, as 

many students suppose, an abstruse and ‘difficult’ subject, but a subject that is essen¬ 

tially clear and simple and which does not require the assimilation and memorization of 

a large number of facts. Moreover, a knowledge of crystallography opens the door to a 

better and clearer understanding of so many other topics in physics and chemistry, earth, 

materials and textile sciences, and microscopy. 

In doing so I tried to show that the ideas of symmetry, structures, lattices and the 

architecture of crystals should be approached by reference to everyday examples of the 

things we see around us, and that these ideas were not confined to the pages of textbooks 

or the models displayed in laboratories. 

The subject of diffraction flows naturally from that of crystallography because by its 

means—and in most cases only by its means—are the structures of materials revealed. 

And this applies not only to the interpretation of diffraction patterns but also to the 

interpretation of images in microscopy. Indeed, diffraction patterns of objects ought to 

be thought of as being as ‘real’, and as simply understood, as the objects themselves. One 

is, to use the mathematical expression, simply the transform of the other. Hence, in 

discussing diffraction, I have tried to emphasize the common aspects of the phenomena 

with respect to light, X-rays and electrons. 

In Chapter 1 (Crystals and crystal structures) I have concentrated on the simplest 

examples, emphasizing how they are related in terms of the occupancy of atomic sites 

and how the structures may be changed by faulting. Chapter 2 (Two-dimensional 

patterns, lattices and symmetry) has been considerably expanded, partly to provide a 

firm basis for understanding symmetry and lattices in three dimensions (Chapters 3 and 

4) but also to address the interests of students involved in two-dimensional design. 

Similarly in Chapter 4, in discussing point group symmetry, I have emphasized its 

practical relevance in terms of the physical and optical properties of crystals. 

The reciprocal lattice (Chapter 6) provides the key to our understanding of diffraction, 

but as a concept it stands alone. I have therefore introduced it separately from diffraction 

and hope that in doing so these topics will be more readily understood. In Chapter 7 (The 

diffraction of light) I have emphasized the geometrical analogy with electron diffraction 

and have avoided any quantitative analysis of the amplitudes and intensities of diffracted 

beams. In my experience the (sometimes lengthy) equations which are required cloud 

students’ perceptions of the basic geometrical conditions for constructive and destruc¬ 

tive interference—and which are also of far more practical importance with respect, say, 

to the resolving power of optical instruments. 
Chapter 8 describes the historical development of the geometrical interpretation of 

X-ray diffraction patterns through the work of Laue, the Braggs and Ewald. The 

diffraction of X-rays and electrons from single crystals is covered in Chapter 9, but 

only in the case of X-ray diffraction are the intensities of the diffracted beams discussed. 



VI Preface 

This is largely because structure factors are important but also because the derivation of 

the interference conditions between the atoms in the motif can be represented as nothing 

more than an extension of Bragg’s law. Finally, the important X-ray and electron 

diffraction techniques from polycrystalline materials are covered in Chapter 10. 

The Appendices cover material that, for ease of reference's not covered in the text. 

Appendix 1 gives a list of items whicff are useful in making up crystal models and 

provides the names and addresses of suppliers. A rapidly increasing number of crystal¬ 

lography programs are becoming available for use in personal computers and in Appen¬ 

dix 21 have listed those which involve, to a greater or lesser degree, some ‘self learning’ 

element. If it is the case that the computer program will replace the book, then one might 

expect that books on crystallography would be the first to go! That day, however, has yet 

to arrive. Appendix 3 gives brief biographical details of crystallographers and scientists 

whose names are asterisked in the text. Appendix 4 lists some useful geometrical 
relationships. 

Throughout the book the mathematical level has been maintained at a very simple 

level and with few minor exceptions all the equations have been derived from first 

principles. In my view, students learn nothing from, and are invariably dismayed and 

perplexed by, phrases such as ‘it can be shown that’—without any indication or 

guidance of how it can be shown. Appendix 5 sets out all the mathematics which are 
needed. 

Finally, it is my belief that students appreciate a subject far more if it is presented to 

them not simply as a given body of knowledge but as one which has been gained by the 

exertions and insight of men and women perhaps not much older than themselves. This 

therefore shows that scientific discovery is an activity in which they, now or in the 

future, can participate. Hence the justification for the historical references, which, to 

return to my first point, also help to show that science progresses, not by being made 

more complicated, but by individuals piecing together facts and ideas, and seeing 
relationships where vagueness and uncertainty existed before. 



Preface to the Second Edition 

In this edition the content has been considerably revised and expanded not only to provide 

a more complete and integrated coverage of the topics in the first edition but also to 

introduce the reader to topics of more general scientific interest which (it seems to me) 

flow naturally from an understanding of the basic ideas of crystallography and diffraction. 

Chapter 1 is extended to show how some more complex crystal structures can be 

understood in terms of different faulting sequences of close-packed layers and also 

covers the various structures of carbon, including the fullerenes, the symmetry of which 

finds expression in natural and man-made forms and the geometry of polyhedra. 

In Chapter 2 the figures have been thoroughly revised in collaboration with Dr K. M. 

Crennell including additional ‘familiar’ examples of patterns and designs to provide a 

clearer understanding of two-dimensional (and hence three-dimensional) symmetry. 

I also include, at a very basic level, the subject of non-periodic patterns and tilings which 

also serves as a useful introduction to quasiperiodic crystals in Chapter 4. 

Chapter 3 includes a brief discussion on space-filling (Voronoi) polyhedra and in 

Chapter 4 the section on space groups has been considerably expanded to provide the 

reader with a much better starting-point for an understanding of the Space Group 

representation in Vol. A of the International Tables for Crystallography. 

Chapters 5 and 6 have been revised with the objective of making the subject-matter 

more readily understood and appreciated. 

In Chapter 7 I briefly discuss the human eye as an optical instrument to show, in a 

simple way, how beautifully related are its structure and its function. 

The material in Chapters 9 and 10 of the first edition has been considerably expanded 

and re-arranged into the present Chapters 9, 10 and 11. The topics of X-ray and neutron 

diffraction from ordered crystals, preferred orientation (texture or fabric) and its meas¬ 

urement are now included in view of their importance in materials and earth sciences. 

The stereographic projection and its uses is introduced at the very end of the book 

(Chapter 12)—quite the opposite of the usual arrangement in books on crystallography. 

But I consider that this is the right place: for here the usefulness and advantages of the 

stereographic projection are immediately apparent whereas at the beginning it may 

appear to be merely a geometrical exercise. 

Finally, following the work of Prof. Amand Lucas, I include in Chapter 10 a simula¬ 

tion by light diffraction of the structure of DNA. There are, it seems to me, two 

landmarks in X-ray diffraction: Laue’s 1912 photograph of zinc blende and Franklin’s 

1952 photograph of DNA and in view of which I have placed these ‘by way of 

symmetry’ in the frontispiece of this book. 
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X-ray photograph of zinc blende 

One of the eleven ‘Laue Diagrams’ in the paper submitted by Walter Friedrich, Paul Rnipping and 

Max von Laue to the Bavarian Academy of Sciences and presented at its Meeting held on June 

8th 1912—the paper which demonstrated the existence of internal atomic regularity in crystals 

and its relationship to the external symmetry. 

The X-ray beam is incident along one of the cubic crystal axes of the (face-centred cubic) ZnS 

structure and consequently the diffraction spots show the four-fold symmetry of the atomic 

arrangement about the axis. But notice also that the spots are not circular in shape—they are 

elliptical; the short axes of the ellipses all lying in radial directions. William Lawrence Bragg 

realized the great importance of this seemingly small observation: he had noticed that slightly 

divergent beams of light (of circular cross-action) reflected from mirrors also gave reflected spots 

of just these elliptical shapes. Hence he went on to formulate the Law of Reflection of X-Ray 

Beams which unlocked the door to the structural analysis of crystals. 



X-ray Photograph of Deoxyribonucleic Acid 

The photograph of the ‘B’ form of DNA taken by Rosalind Franklin and Raymond Gosling in May 

1952 and published, together with the two papers by J. D. Watson and F. H. C. Crick and M. H. F. 

Wilkins, A. R. Stokes and H. R. Wilson, in the 25 April issue of Nature, 1953, under the heading 

‘Molecular Structure of Nucleic Acids’. 

The specimen is a fibre (axis vertical) containing millions of DNA strands roughly aligned 

parallel to the fibre axis and separated by the high water content of the fibre; this is the form 

adopted by the DNA in living cells. The X-ray beam is normal to the fibre and the diffraction 

pattern is characterised by four lozenges or diamond-shapes outlined by fuzzy diffraction haloes 

and separated by two rows or arms of spots radiating outwards from the centre. These two arms are 

characteristic of helical structures and the angle between them is a measure of the ratio between the 

width of the molecule and the repeat-distance of the helix. But notice also the sequence of spots 

along each arm; there is a void where the fourth spot should be and this ‘missing fourth spot’ not 

only indicates that there are two helices intertwined but also the separation of the helices along the 

chain. Finally, notice that there are faint diffraction spots in the two side lozenges, but not in those 

above and below, an observation which shows that the sugar-phosphate ‘backbones’ are on the 

outside, and the bases on the inside, of the molecule. 

This photograph provided the crucial experimental evidence for the correctness of Watson and 

Crick’s structural model of DNA—a model not just of a crystal structure but one which shows 

its inbuilt power of replication and which thus unlocked the door to an understanding of the 

mechanism of transmission of the gene and of the evolution of life itself. 





1 

Crystals and crystal structures 

1.1 The nature of the crystalline state 

The beautiful hexagonal patterns of snowflakes, the plane faces and hard faceted shapes 

of minerals and the bright cleavage fracture surfaces of brittle iron have long been 

recognized as external evidence of an internal order—evidence, that is, of the patterns 

or arrangements of the underlying building blocks. However, the nature of this internal 

order, or the form and scale of the building blocks, was unknown. 

The first attempt to relate the external form or shape of a crystal to its underlying 

structure was made by Johannes Kepler* who, in 1611, wrote perhaps the first treatise 

on geometrical crystallography, with the delightful title, ‘A New Year’s Gift or the 

Six-Cornered Snowflake’ (Strena Seu de Nive Sexangula).' In this he speculates on the 

question as to why snowflakes always have six corners, never five or seven. He suggests 

that snowflakes are composed of tiny spheres or globules of ice and shows, in con¬ 

sequence, how the close-packing of these spheres gives rise to a six-sided figure. It is 

indeed a simple experiment that children now do with pennies at school. Kepler was not 

able to solve the problem as to why the six comers extend and branch to give many 

patterns (a problem not fully resolved to this day), nor did he extend his ideas to other 

crystals. The first to do so, and to consider the structure of crystals as a general problem, 

was Robert Hooke* who, with remarkable insight, suggested that the different shapes of 

crystals which occur—rhombs, trapezia, hexagons, etc.—could arise from the packing 

together of spheres or globules. Figure 1.1 is ‘Scheme VII’ from his bookMicrographia, 

first published in 1665. The upper part (Fig. 1) is his drawing, from the microscope, of 

‘Crystalline or Adamantine bodies’ occurring on the surface of a cavity in a piece of 

broken flint and the lower part (Fig. 2) is of ‘sand or gravel’ crystallized out of urine, 

which consist of ‘Slats or such-like plated Stones... their sides shaped into Rhombs, 

Rhomboeids and sometimes into Rectangles and Squares’. He goes on to show how 

these various shapes can arise from the packing together of ‘a company of bullets’ as 

shown in the inset sketches A-L, which represent pictures of crystal structures which 

have been repeated in innumerable books, with very little variation, ever since. Also 

implicit in Hooke’s sketches is the Law of the Constancy of Interfacial Angles', notice 

that the solid lines which outline the crystal faces are (except for the last sketch, L) all at 

60° or 120° angles which clearly arise from the close-packing of the spheres. This Law 

was first stated by Nicolaus Steno*, a near contemporary of Robert Hooke in 1669, from 

* Denotes biographical notes available in Appendix 3. 
1 The Six-Comered Snowflake, reprinted with English translation and commentary by the Clarendon Press, 

Oxford, 1966. 



2 Crystals and crystal structures 

Fig. 1.1. ‘ Scheme VII’ (from Hooke’s Micrographia, 1665), showing crystals in a piece of broken 

flint (Upper—Fig. 1), crystals from urine (Lower—Fig. 2) and hypothetical sketches of crystal structures 

A-L arising from the packing together of ‘bullets’. 



1.1 The nature of the crystalline state 3 

Fig. 1.2. Hatiy’s representation of dog-tooth spar built up from rhombohedral ‘molecules integrantes’ 

(from Essai d’une theorie sur la structure des cristaux, 1784). 

simple observations of the angles between the faces of quartz crystals, but was devel¬ 

oped much more fully as a general law by Rome de L’lsle* in a treatise entitled 

Cristallographie in 1783. He measured the angles between the faces of carefully-made 

crystal models and proposed that each mineral species therefore had an underlying 

‘characteristic primitive form’. The notion that the packing of the underlying building 

blocks determines both the shapes of crystals and the angular relationships between 

the faces was extended by Rene Just Haiiy*. In 1784 Haiiy showed how the different 

forms (or habits) of dog-tooth spar (calcite) could be precisely described by the packing 

together of little rhombs which he called ‘molecules integrantes’ (Fig. 1.2). Thus the 

connection between an internal order and an external symmetry was established. What 

was not realized at the time was that an internal order could exist even though there 

may appear to be no external evidence for it. 

* Denotes biographical notes available in Appendix 3. 



4 Crystals and crystal structures 

It is only relatively recently, as a result primarily of X-ray and electron diffraction 

techniques, that it has been realized that most materials, including many biological 

materials, are crystalline or partly so. But the notion that a lack of external crystalline 

form implies a lack of internal regularity still persists. For example, when iron and 

steel become embrittled there is a marked change in the fracture surface from a rough, 

irregular ‘grey’ appearance to a bright' faceted ‘brittle’ appearance. The change in 

properties from tough to brittle is sometimes vaguely thought to arise because the 

structure of the iron or steel has changed from some undefined amorphous or non¬ 

crystalline ‘grey’ state to a ‘crystallized’ state. In both situations, of course, the crystal¬ 

line structure of iron is unchanged; it is simply the fracture processes that are different. 

Given our more detailed knowledge of matter we can now interpret Hooke’s spheres 

or ‘bullets’ as atoms or ions, and Fig. 1.1 indicates the ways in which some of the simplest 

crystal structures can be built up. This representation of atoms as spheres does not, and 

is not intended, to show anything about their physical or chemical nature. The diameters 

of the spheres merely express their nearest distances of approach. It is true that these 

will depend upon the ways in which the atoms are packed together, and whether or not 

the atoms are ionized, but these considerations do not invalidate the ‘hard sphere’ model, 

which is justified, not as a representation of the structure of atoms, but as a representation 

of the structures arising from the packing together of atoms. 

Consider again Hooke’s sketches A-L (Fig. 1.1). In all of these, except the last, L, the 

atoms are packed together in the same way; the differences in shape arise from the 

different crystal boundaries. The atoms are packed in a close-packed hexagonal or 

honeycomb arrangement—the most compact way which is possible. By contrast, in 

the square arrangement of L there are larger voids or gaps (properly called interstices) 

between the atoms. This difference is shown more clearly in Fig. 1.3, where the 

boundaries of the (two-dimensional) crystals have been left deliberately irregular to 

(a) (b) 

Fig. 1.3. Layers of atoms stacked (a) in hexagonal and (b) in square arrays. 



1.2 Constructing crystals from hexagonal layers of atoms 5 

emphasize the point that is the internal regularity, hexagonal, or square, not the bound¬ 

aries (or external faces) which defines the structure of a crystal. 

Now we shall extend these ideas to three dimensions by considering not one, but 

many, layers of atoms, stacked one on top of the other. To understand better the figures 

which follow, it is very helpful to make models of these layers (Fig. 1.3) to construct 
the three-dimensional crystal models (see Appendix 1). 

1.2 Constructing crystals from close-packed hexagonal 
layers of atoms 

The simplest way of stacking the layers is to place the atom centres directly above one 

another. The resultant crystal structure is called the simple hexagonal structure. There 

are, in fact, no examples of elements with this structure because, as the model building 

shows, the atoms in the second layer tend to slip into the ‘hollows’ or interstices between 

the atoms in the layer below. This also accords with energy considerations: unless 

electron orbital considerations predominate, layers of atoms stacked in this ‘close- 

packed’ way generally have the lowest (free) energy and are therefore most stable. 

When a third layer is placed upon the second we see that there are two possibilities: 

when the atoms in the third layer slip into the interstices of the second layer they may 

either end up directly above the atom centres in the first layer or directly above the 

unoccupied interstices between the atoms in the first layer. 

The geometry may be understood from Fig. 1.4, which shows a plan view of atom 

layers. A is the first layer (with the circular outlines of the atoms drawn in) and B is the 

second layer (outlines of the atoms not shown for clarity). In the first case the third layer 

goes directly above the A layer, the fourth layer over the B layer, and so on; the stacking 

sequence then becomes ABABAB ... and is called the hexagonal close-packed (hep) 

structure. The packing of idealized hard spheres predicts a ratio of interlayer atomic 

spacing to in-layer atomic spacing of V(2/3) (see Exercise 1.1) and although inter¬ 

atomic forces cause deviations from this ratio, metals such as zinc, magnesium and the 

low-temperature form of titanium have the hep structure. 

Fig. 1.4. Stacking sequences of close-packed layers of atoms. A—first layer (with outlines of atoms 

shown); B—second layer; C—third layer. 
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In the second case, the third layer of atoms goes above the interstices marked C and the 

sequence only repeats at the fourth layer, which goes directly above the first layer. The 

stacking sequence is now ABCABC... and is called the cubic close-packed (ccp) 

structure. Metals such as copper, aluminium, silver, gold and the high-temperature form 

of iron have this structure. You may ask the question: ‘why i^a structure which is made 

up of a three-layer stacking sequence obhexagonal layers called cubic close packed?’ 

The answer lies in the shape and symmetry of the unit cell, which we shall meet below. 

These labels for the layers A, B, C are, of course, arbitrary; they could be called OUP or 

RMS or any combination of three letters or figures. The important point is not the labelling 

of the layers but their stacking sequence; a two-layer repeat for hep and a three-layer 

repeat for ccp. Another way of ‘seeing the difference’ is to notice that in the hep structure 

there are open channels perpendicular to the layers running through the connecting 

interstices (labelled C in Fig. 1.4). In the ccp structure there are no such open chan¬ 

nels—they are ‘blocked’ or obstructed because of the ABCABC ... stacking sequence. 

Although the hep and the ccp are the two most common stacking sequences of 

close-packed layers, some elements have crystal structures which are ‘mixtures’ of 

the two. For example, the actinide element americium has the stacking sequence 

ABACABAC ... a four-layer repeat which is essentially a combination of an hep and 

a ccp stacking sequence. Furthermore, in some elements with nominally ccp or hep 

stacking sequences nature sometimes ‘makes mistakes’ in model building and faults 

occur during crystal growth or under conditions of stress or deformation. For example, in 

a (predominantly) ccp crystal (such as cobalt at room temperature), the ABCABC ... 

(ccp) type of stacking may be interrupted by layers with an ABABAB ... (hep) type of 

stacking. The extent of occurrence of these stacking faults and the particular combina¬ 

tions of ABCABC ... and ABABAB ... sequences which may arise depend again on 

energy considerations, with which we are not concerned. What is of crystallographic 

importance is the fact that stacking faults show how one structure (ccp) may be 

transformed into another (hep) and vice versa. They can also be used in the representa¬ 

tion of more complicated crystal structures (i.e. of more than one kind of atom), as 
explained in Sections 1.6 and 1.9 below. 

1.3 Unit cells of the hep and ccp structures 

A simple and economical method is now needed to represent the hep and ccp (and of course 

other) crystal structures. Diagrams showing the stacked layers of atoms with irregular 

boundaries would obviously look very confused and complicated—the greater the number 

of atoms which have to be drawn, the more complicated the picture. The models need to 

be ‘stripped down’ to the fewest numbers of atoms which show the essential structure 

and symmetry. Such stripped-down’ models are called the unit cells of the structures. 

The unit cells of the simple hexagonal and hep structures are shown in Fig. 1.5. The 

similarities and differences are clear: both structures consist of hexagonal close-packed 

layers; in the simple hexagonal structure these are stacked directly on top of each other, 

giving an AAA... type of sequence, and in the hep structure there is an interleaving 

layer nestling in the interstices of the layers below and above, giving an AB AB ... type 
of sequence. 
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(a) (b) 

Fig. 1.5. Unit cells (a) of the simple hexagonal and (b) hep structures. 

(a) 

Fig. 1.6. Construction of the cubic unit cell of the ccp structure: (a) shows three close-packed layers 
A, B and C which are stacked in (b) in the ‘ABC..sequence from which emerges the cubic unit cell 

which is shown in (c) in the conventional orientation. 
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(b) (c) 

Fig. 1.7. Construction of the rhombohedral unit cell of the ccp structure: the close-packed layers 

(a) are again stacked (b) in the ‘ABC..sequence but the resulting rhombohedral cell (c) does not 

reveal the cubic symmetry. 

The unit cell of the ccp structure is not so easy to see. There are, in fact, two possible 

unit cells which may be identified, a cubic cell described below (Fig. 1.6), which is 

almost invariably used, and a smaller rhombohedral cell (Fig. 1.7). Figure 1.6(a) shows 

three close-packed layers separately—two triangular layers of six atoms (identical to 

one of Hooke’s sketches in Fig. 1.1)—and a third layer stripped down to just one atom. If 

we stack these layers in an ABC sequence, the result is as shown in Fig. 1.6(b): it is a 

cube with the bottom corner atom missing. This can now be added and the unit cell of the 

ccp structure, with atoms at the corners and centres of the faces, emerges. The unit cell is 

usually drawn in the ‘upright’ position of Fig. 1.6(c), and this helps to illustrate a very 

important point which may have already been spotted whilst model building with the 

close-packed layers. The close-packed layers lie perpendicular to the body diagonal of 

the cube, but as there are four different body diagonal directions in a cube, there are 

therefore four different sets of close-packed layers—not just the one set with which we 

started. Thus three further close-packed layers have been automatically generated by the 

ABCABC ... stacking sequence. This does not occur in the hep structure—try it and see! 

The cubic unit cell, therefore, shows the symmetry of the ccp structure, a topic which 

will be covered in Chapter 4. The alternative rhombohedral unit cell of the ccp structure 

may be obtained by ‘stripping away’ atoms from the cubic cell such that there are only 
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eight atoms left—one at each of the eight corners—or it may be built up by stacking 

triangular layers of only three atoms instead of six (Fig. 1.7). Unlike the larger cell, this 

does not obviously reveal the cubic symmetry of the structure and so is much less useful. 

1.4 Constructing crystals from square layers of atoms 

It will be noticed that the atoms in the cube faces of the ccp structure lie in a square array 

like that in Fig. 1.3(b) and the ccp structure may be constructed by stacking these layers 

such that alternate layers lie in the square interstices marked X in Fig. 1.8(a). The models 

show how the four close-packed layers arise like the faces of a pyramid (Fig. 1.8(b)). If, 

on the other hand, the layers are all stacked directly on top of each other, a simple cubic 

structure is obtained (Fig. 1.8(c)). This is an uncommon structure for the same reason as 

the simple hexagonal one is uncommon. An example of an element with a simple cubic 

structure is ct-polonium. 

1.5 Constructing body-centred cubic crystals 

The important and commonly occurring body-centred cubic (bcc) structure differs 

from those already discussed in that it cannot be constructed either from hexagonal 

(a) 

(b) (c) 

Fig. 1.8. (a) ‘Square’ layers of atoms with interstices marked X; (b) stacking the layers so that the 

atoms fall into these interstices, showing the development of the close-packed layers; (c) stacking 

the layers directly above one another, showing the development of the simple cubic structure. 
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(a) (b) 

Fig. 1.9. (a) Unit cell of the bcc structure, showing a face-diagonal plane in which the atoms are most 

closely packed; (b) a plan view of this ‘closest-packed’ plane of atoms; the positions of atoms in 

alternate layers are marked B. The arrows indicate possible slip directions from these positions. 

close-packed or square-packed layers of atoms (Fig. 1.3). The unit cell of the bcc 

structure is shown in Fig. 1.9. Notice how the body-centring atom ‘pushes’ the comer 

ones apart so that, on the basis of the ‘hard sphere’ model of atoms discussed above, they 

are not ‘in contact’ along the edges (in comparison with the simple cubic structure of 

Fig. 1.8(c), where they are in contact). In the bcc structure the atoms are in contact only 

along the body-diagonal directions. The planes in which the atoms are most (not fully) 

closely packed is the face-diagonal plane, as shown in Fig. 1.9(a), and in plan view, 

showing more atoms, in Fig. 1.9(b). The atom centres in the next layer go over the inter¬ 

stices marked B, then the third layer goes over the first layer, and so on—an ABAB ... 

type of stacking sequence. The interstices marked B have a slight ‘saddle’ configuration, 

and model building will suggest that the atoms in the second layer might slip a small 

distance to one side or the other (indicated by arrows), leading to a distortion in the cubic 

structure. Whether such a situation can arise in real crystals, even on a small scale, is still 

a matter of debate. Metals such as chromium, molybdenum, the high-temperature form 

of titanium and the low-temperature form of iron have the bcc structure. 

Finally, notice the close similarity between the layers of atoms in Figs 1.3(a) and 

1.9(b). With only small distortions, e.g. closing of the gaps in Fig. 1.9(b), the two layers 

become geometrically identical and some important bcc ^ ccp and bcc ^ hep trans¬ 

formations are thought to occur as a result of distortions of this kind. For example, when 

iron is quenched from its high-temperature form (ccp above 910 °C) to transform to its 

low-temperature (bcc) form, it is found that the set of the close-packed and closest- 

packed layers and close-packed directions are approximately parallel. 

1.6 Interstitial structures 

The different stacking sequences of one size of atom discussed in Sections 1.2 and 1.5 

are not only useful in describing the crystal structures in many of the elements, where all 
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the atoms are identical to one another, but can also be used to describe and explain the 

crystal structures of a wide range of compounds of two or more elements, where there 

are atoms of two or more different sizes. In particular, they can be applied to those 

compounds in which ‘small’ atoms or cations fit into the interstices between ‘large’ 

atoms or anions. The different structures of very many compounds arise from the 

different numbers and sizes of interstices which occur in the simple hexagonal, hep, 

ccp, simple cubic and bcc structures and also from the ways in which the small atoms 

or cations distribute themselves among these interstices. These ideas can, perhaps, be 

best understood by considering the types, sizes and numbers of interstices which occur 
in the ccp and simple cubic structures. 

In the ccp structure there are two types and sizes of interstice into which small atoms 

or cations may fit. They are best seen by fitting small spheres into the interstices between 

two-close-packed atom layers (Fig. 1.4). Consider an atom in a B layer which fits into 

the hollow or interstice between three A layer atoms: beneath the B atom is an interstice 

which is surrounded at equal distances by four atoms—three in the A layer and one in 

the B layer. These four atoms surround or ‘coordinate’ the interstice in the shape of 

a tetrahedron, hence the name tetrahedral interstice or tetrahedral interstitial site, 

i.e. where a small interstitial atom or ion may be situated. The position of one such site in 

the ccp unit cell is shown in Fig. 1.10(a) and diagrammatically in Fig. 1.10(b). 

The other interstices between the A and B layers (Fig. 1.4) are surrounded or 

coordinated by six atoms, three in the A layer and three in the B layer. These six atoms 

surround the interstice in the shape of an octahedron; hence the name octahedral 

interstice or octahedral interstitial site. The positions of several atoms or ions in 

octahedral sites in a ccp unit cell are shown in Fig. 1.10(c) and diagrammatically, 

showing one octahedral site, in Fig. 1.10(d). 

Now the diameters, or radii, of atoms or ions which can just fit into these interstices 

may easily be calculated on the basis that atoms or ions are spheres of fixed diameter— 

the ‘hard sphere’ model. The results are usually expressed as a radius ratio, rx/rA; the 

ratio of the radius (or diameter) of the interstitial atoms, X, to that of the large atoms, A, 

with which they are in contact. In the ccp structure, rx/rA for the tetrahedral sites is 0.225 

and for the octahedral sites it is 0.414. These radius ratios may be calculated with 

reference to Fig. 1.11. Figure 1.11(a) shows a tetrahedron, as in Fig. 1.10(b) outlined 

within a cube; clearly the centre of the cube is also the centre of the tetrahedron. The 

face-diagonal of the cube, or edge of the tetrahedron, along which the A atoms are in 

contact is of length 2rA. Hence the cube edge is of length 2rA cos 45 = \j2rK and the 

body-diagonal is of length i/6rA. The interstitial atom X lies at the mid-point of the body 

diagonal and is in contact with a comer atom A. 

Hence rx + rA — \\j6r(K — 1.225rA; whence rx = 0.225rA. 

Figure 1.11 (b) shows a plan view of the square of four A atoms in an octahedron 

surrounding an interstitial atom X. The edge of the square, along which the A atoms are 

in contact, is of length 2rA and the diagonal along which the X and A atoms are in contact 

is of length 2\j2ra. 
Hence 2rx + 2rA = 2\/2rA; whence rx = 0.414rA. 

In the simple cubic structure (Fig. 1.8(c)) there is an interstice at the centre of the unit 

cell which is surrounded by the eight atoms at the comers of the cube (Fig. 1.12(a)), 
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Fig. 1.10. (a) An atom in a tetrahedral interstitial site, ryjra = 0.225 within the ccp unit cell and 

(b) geometry of a tetrahedral site, showing the dimensions of the tetrahedron in terms of the unit cell 

edge length a. (c) Atoms or ions in some of the octahedral interstitial sites, r\/r\ = 0.414 within the ccp 

unit cell and (d) geometry of an octahedral site, showing the dimensions of the octahedron in terms of the 

unit cell edge length a. (From The Structure of Metals, 3rd edn, by C. S. Barrett and T. B. Massalski, 

Pergamon, 1980). 

hence the name cubic interstitial site. Caesium chloride, CsCl, has this structure, as 

shown diagrammatically in Fig. 1.12(b). The radius ratio for this site may be calculated 

in a similar way to that for the tetrahedral site in the ccp structure. In this case the atoms 

are in contact along the cube edge, which is of length 2rA and the body diagonal, along 

which the atoms A and X are in contact, is of length 2s/3r\. 
Hence rx + rA = V2 2\/3rA; whence rx = 0.732rA. 

As well as being of different relative sizes, there are different numbers, or proportions, 

of these interstitial sites. For both the octahedral sites in ccp, and the cubic sites in the 
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(b) 

Fig. 1.11. (a) a tetrahedral interstitial site X within a tetrahedron of four A atoms (shown as small fdled 

circles for clarity) outlined within a cube, (b) a plan view of an octahedral interstitial site X with four 

surrounding A atoms (plus one above and one below X). The centres of the A atoms are shown as solid 

circles for clarity. 

Fig. 1.12. (a) Cubic interstitial site, r^lra = 0.732, within the simple cube unit cell and (b) the CsCl 

structure (ions not to scale). 

simple cubic structure, the proportion is one interstitial site to one (large) atom or ion, but 

for the tetrahedral interstitial sites in cep the proportion is two sites to one atom. These 

proportions will be evident from model building or, if preferred, by geometrical reason¬ 

ing. In the simple cubic structure (Fig. 1.12) there is one interstice per unit cell (at the 

centre) and eight atoms at each of the eight comers. As each comer atom or ion is ‘shared’ 

by seven other cells, there is therefore one atom per cell—a ratio of 1:1. In the unit cell of 

the ccp structure (Fig. 1.10(c)), the octahedral sites are situated at the midpoints of each 

edge and in the centre. As each edge is shared by three other cells there are four octahedral 

sites per cell, i.e. twelve edges divided by four (number shared), plus one (centre). There 

are also four atoms per cell, i.e. eight comers divided by eight (number shared), plus six 
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£ Metal atoms 

(c) (d) O Tetrahedral interstices 

Fig. 1.13. (a) Octahedral interstitial site's, i'x/i'a = 0.154, (b) geometry of the octahedral interstitial 

sites, (c) tetrahedral interstitial sites r\lra = 0.291, and (d) geometry of the tetrahedral interstitial sites 

in the bcc structure, (b) and (d) show the dimensions of the octahedron and tetrahedron in terms of the 

unit cell edge length a (from Barrett and Massalski, loc. cit.). 

faces divided by two (number shared), again giving a ratio of 1:1. The tetrahedral sites in 

the ccp structure (Fig. 1.10(a) and (b)) are situated between a comer and three face¬ 

centring atoms, i.e. eight tetrahedral sites per unit cell, giving a ratio of 1 : 2. 

£ Metal atoms 

(b) o Octahedral interstices 
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It is a useful exercise to determine also the types, sizes and proportions of interstitial 

sites in the hep, bee and simple hexagonal structures. The hep structure presents no 

problem; for the ‘hard sphere’ model with an interlayer to in-layer atomic ratio of 

-v/(2/3) (Section 1.2) the interstitial sites are identical to those in cep. It is only the 

distribution or ‘stacking sequence’ of the sites, like that of the close-packed layers of 
atoms, which is different. 

In the bcc structure there are octahedral sites at the centres of the faces and mid-parts 

of the edges (Figs. 1.13(a) and (b)) and tetrahedral sites situated between the centres of 

the faces and mid-points of each edge (Figs 1.13(c) and (d)). Note, however, that both 

the octahedron and tetrahedron of the coordinating atoms do, not have edges of equal 

length. The octahedron, for example, is ‘squashed’ in one direction and two of the 

coordinating atoms are closer to the centre of the interstice than are the other four. 

It is very important to take this into account since the radius ratios are determined by 

the A atoms which are closer to the centre of the interstitial site and not those which are 

further away. For the octahedral interstitial site the four A atoms which are further away 

lie in a square (Fig. 1.13(b)), just as the case for those surrounding the octahedral 

interstitial site in the ccp structure (Fig. 1.10(d)), but it is not these atoms, but the two 

atoms in the ‘squashed’ direction in Fig. 1.13(b) which determine the radius ratio. These 

are at a closer distance a/2 from the interstitial site where a is the cube edge length. 

Since in the bcc structure the atoms are in contact along the body diagonal, length y/3a, 
then 4rA = \/3a. 

Hence rx + rA = all — 2rA/\/3, whence rx = 0.154rA. 

This is a very small site—smaller than the tetrahedral interstitial site (Fig. 1.13(c) 

and (d))—which has a radius ratio, rx/rA = 0.291 (see Exercise 1.2). 

In the simple hexagonal structure the interstitial sites are coordinated by six atoms— 

three in the layer below and three in the layer above (Fig. 1.5(a)). It is the same 

coordination as for the octahedral interstitial sites in the ccp structure except that in 

this case the surrounding six atoms lie at the comers of a prism with a triangular 

base, rather than an octahedron, and the radius ratio is larger, rx/rA = 0.527 (see 

Exercise 1.3). 

The radius ratios of interstitial sites and their proportions provide a very rough guide 

in interpreting the crystal structures of some simple, but important, compounds. The first 

problem, however, is that the ‘radius’ of an atom is not a fixed quantity but depends on 

its state of ionization (i.e. upon the nature of the chemical bonding in a compound) and 

coordination (the number and type of the surrounding atoms or ions). For example, the 

atomic radius of Li is about 156 pm but the ionic radius of the Li+ cation is about 60 pm. 

The atomic radius of Fe in the ccp structure, where each atom is surrounded by twelve 

others, is about 258 pm but that in the bcc structure, where each atom is surrounded 

by eight others, is about 248 pm—a contraction in going from twelve- to eight-fold 

coordination of about 4 per cent. 

Metal hydrides, nitrides, borides, carbides, etc., in which the radius ratio of the (small) 

non-metallic or metalloid atoms to the (large) metal atoms is small, provide good 

examples of interstitial compounds. However, in almost all of these compounds the 

interstitial atoms are ‘oversize’ (in terms of the exact radius ratios) and so, in effect, 

‘push apart’ or separate the surrounding atoms such that they are no longer strictly 
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close-packed although their pattern or distribution remains unchanged. For example, 

Fig. 1.14(a) shows the structure of TiN; the nitrogen atoms occupy all the octahedral 

interstitial sites and, because they are oversize, the titanium atoms are separated but still 

remain situated at the comers and face centres of the unit cell. This is described as 

a face-centred cubic (fee) array, rather than a ccp array gf titanium atoms, and TiN 

is described as a face-centred cubic structure. This description also applies to all 

compounds in which some of the atoms occur at the comers and face centres of the unit 

cell. The ccp structure may therefore be regarded as a special case of the fee structure in 

which the atoms are in contact along the face diagonals. 

In TiH2 (Fig. 1.14(b)), the titanium atoms are also in an fee array and the hydrogen 

atoms occupy all the tetrahedral sites, the ratio being of course 1: 2. In TiH (Fig. 1.14(c)) 

the hydrogen atoms are again situated in the tetrahedral sites, but only half of these sites 

are occupied. Notice that in these interstitial compounds the fee arrangement of the 

Fig. 1.14. (a) TiN structure (isomorphous with NaCl), (b) TiH2 structure (isomorphous with CaF2) and 

(c) TiH structure (isomorphous with sphalerite or zinc blende, ZnS) (from An Introduction to Crystal 

Chemistry, 2nd edn, by R. C. Evans, Cambridge University Press, 1964). 
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Fig. 1.15. (a) AIB2 structure, (b) WC structure. 

titanium atoms is not the same as their arrangement in the elemental form which 

is bee (high temperature form) or hep (low temperature form). In fact, interstitial 

compounds based on a bee packing of metal atoms are not known to exist; bcc metals 

such as vanadium, tungsten or iron (low temperature form) form interstitial compounds 

in which the metal atoms are arranged in an fee pattern (e.g. VC), a simple hexagonal 

pattern (e.g. WC) or more complicated patterns (e.g. FesC). Hence although as 

mentioned in Section 1.2, no elements have the simple hexagonal structure in which 

the close-packed layers are stacked in an AAA... sequence directly on top of one 

another (Fig. 1.5(a)), the metal atoms in some metal carbides, nitrides, borides, etc., are 

stacked in this way, the carbon, nitrogen, boron, etc., atoms being situated in some or all 

of the interstices between the metal atoms. The interstices are halfway between the 

close-packed (or nearly close-packed) layers and are surrounded or coordinated by six 

atoms—not, however, as described above in the form of an octahedron but in the form of 

a triangular prism. In the A1B2 structure all these sites are occupied (Fig. 1.15(a)) and in 

the WC structure only half are occupied (Fig. 1.15(b)). 

However, although there are no bcc interstitial compounds as such, interstitial 

elements can enter into the interstitial sites in the bcc structure to a limited extent to 

form what are known as interstitial solid solutions. One very important example in 

metallurgy is that of carbon in the distorted octahedral interstitial sites in iron, a structure 

called ferrite. The radius ratio of carbon to iron, rc/rpe, is about 0.6, much greater 

than the radius ratio calculated above according to the ‘hard sphere’ model and the 

solubility of carbon is thus very small—1 carbon atom in about 200 iron atoms. The 

carbon atoms ‘push apart’ the two closest iron atoms and distort the bcc structure in a 

non-uniform or a uniaxial way—and it is this uniaxial distortion which is ultimately 

the origin of the hardness of steel. In contrast, a much greater amount of carbon can 

enter the (uniform) octahedral interstitial sites in the ccp (high temperature) form of 

iron (called austenite)—1 carbon atom in about 10 iron atoms. The carbon atoms are 

still oversize, but the distortion is a uniform expansion and the hardening effect is 

much less. 
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1.7 Some simple ionic and covalent structures 

The ideas presented in Section 1.6 above can be used to describe and explain the crystal 

structures of many simple but important ionic and covalent compounds, in particular 

many metal halides, sulphides and oxides. Although the metal atoms or cations are smaller 

than the chlorine, oxygen, sulphur, etc. atoms or anions, radius ratio considerations are 

only one factor in determining the crystal structures of ionic and covalent compounds 

and they are not usually referred to as interstitial compounds even though the pattern 

or distribution of atoms in the unit cells may be exactly the same. For example, the 

TiN structure (Fig. 1.14(a)) is isomorphous with the NaCl structure. Similarly, the 

TiH2 structure (Fig. 1.14(b)) is identical to the Li20 structure and the TiH structure 

(Fig. 1.14(c)) is isomorphous with ZnS (zinc blende or sphalerite) structure. 

The differences in stacking discussed in Sections 1.2 and 1.6 also explain the different 

crystal structures or different crystalline polymorphs sometimes shown by one com¬ 

pound. As mentioned above, zinc blende has an fee structure, the sulphur atoms being 

stacked in the ABCABC... sequence. In wurtzite, the other crystal structure or poly¬ 

morph of zinc sulphide, the sulphur atoms are stacked in the hexagonal ABABAB ... 

sequence, giving a hexagonal structure. In both cases the zinc atoms occupy half the 

tetrahedral interstitial sites between the sulphur atoms. As in the case of cobalt, stacking 

faults may arise during crystal growth or under conditions of deformation, giving rise to 

‘mixed’ sphalerite-wurtzite structures. 

Examples of ionic structures based on the simple cubic packing of anions are CsCl 

and CaF2 (fluorite). In CsCl all the cubic interstitial sites are occupied by caesium 

cations (Fig. 1.12(b)) but in fluorite only half the sites are occupied by the calcium 

cations. The resulting unit cell is not just one simple cube of fluorine anions, but a 

larger cube with a cell side double that of the simple cube and containing therefore 

2 x 2 x 2 = 8 cubes, four of which contain calcium cations and four of which are 
empty. 

The distribution of the small calcium cations in the cubic sites is such that they form 

an fee array and the fluorite structure can be represented alternatively as an fee array of 

calcium cations with all the tetrahedral sites occupied by fluorine anions. It is identical, 

in terms of the distribution of ionic sites, to the structure of TiH2 or Li20 (Fig. 1.14(b)), 

except that the positions of the cations and anions are reversed; hence Li20 is said 

to have the anrffluorite structure. However, these differences, although in principle 

quite simple, may not be clear until we have some better method of representing the 

atom/ion positions in crystals other than the sketches (or clinographic projections) used 
in Figs. 1.10-1.15. 

1.8 Representing crystals^in projection: crystal plans 

The more complicated the crystal structure and the larger the unit cell, the more difficult 

it is to visualize the atom or ion positions from diagrams or photographs of models— 

atoms or ions may be hidden behind others and therefore not seen. Another form of 

representation, the crystal plan or crystal projection, is needed, which shows precisely 

the atomic or ionic positions in the unit cell. The first step is to specify axes x, y and z 
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Fig. 1.16. Plans of (a) bcc structure, (b) ccp or fee structure, (c) Li20 (antifluorite) structure, (d) CaF2 

(fluorite) structure. 

from a common origin and along the sides of the cell (see Chapter 5). By convention the 

‘back left-hand comer’ is chosen as the origin, the z-axis ‘upwards’, the y-axis to the 

right and the x-axis ‘forwards’, out of the page. The atomic/ionic positions or coordin¬ 

ates in the unit cell are specified as fractions of the cell edge lengths in the order x, y, z. 

Thus in the bcc structure the atomic/ionic coordinates are (000) (the atom/ion at the 

origin) and (the atom/ion at the centre of the cube). As all eight comers of the 

cube are equivalent positions (i.e. any of the eight comers can be chosen as the origin), 

there is no need to write down atomic/ionic coordinates (100), (110), etc.; (000) specifies 

all the comer atoms, and the two-coordinates (000) and (111) represent the two atoms/ 

ions in the bcc unit cell. In the fee structure, with four atoms/ions per unit cell, the 

coordinates are (000), (1^0), (^Ol), (0^|). 

Crystal projections or plans are usually drawn perpendicular to the z-axis, and 

Fig. 1.16(a) and (b) are plans of the bcc and fee structure, respectively. Note that only 

the z coordinates are indicated in these diagrams; the x and y coordinates need not be 

written down because they are clear from the plan. Similarly, no z coordinates are indic¬ 

ated for all the corner atoms because all eight corners are equivalent positions in the 

structure, as mentioned above. 

Figure 1.16(c) shows a projection of the antifluorite (Li02) structure; the oxygen 

anions in the fee positions and the lithium cations in all the tetrahedral interstitial sites 

with z coordinates one-quarter and three-quarters between the oxygen anions are clearly 

shown. Notice that the lithium cations are in a simple cubic array, i.e. equivalent to the 
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Fig. 1.17. Alternative unit cells of the perovskite AB03 structure. 

fluorine anions in the fluorite structure. The alternative fluorite unit cell, made up of 

eight simple cubes (see Section 1.7), is drawn by shifting the origin of the axes in 

Fig. 1.16(c) to the ion at the (~|) site and relabelling the coordinates. The result is 

shown in Fig. 1.16(d). 
Sketching crystal plans helps you to understand the similarities and differences 

between structures; in fact, it is very difficult to understand them otherwise! For example, 

Fig. 1.17(a) and (b) show the same crystal structure (perovskite, CaTiC^). They look 

different because the origins of the cells have been chosen to coincide with different 

atoms/ions. 

1.9 Stacking faults and twins 

As pointed out in Sections 1.2 and 1.7, the close packing of atoms (in metals and alloys) 

and anions (in ionic and covalent structures) may depart from the ABCABC ... (ccp or 

fee) or ABAB ... (hep or hexagonal) sequences: ‘nature makes mistakes’ and may do so 

in a number of ways. First, stacking faults may occur during crystallization from the melt 

or magma: second, they may occur during the solid state processes or recrystallization, 

phase transitions and crystal growth (i.e. during the heating and cooling of metals 

and alloys, ceramics and rocks); and third, they may occur during deformation. The 

mechanisms of faulting have been most widely studied, and are probably most easily 

understood in the simple case of metals in which there is no (interstitial) distribution of 

cations to complicate the picture. It is a study of considerable importance in metallurgy 

because of the effects of faulting on the mechanical and thermal properties of alloys— 

strength, work-hardening, softening temperatures and so on. However, this should not 

leave the impression that faulting is of lesser importance in other materials. 

Consider first the ccp structure (or, better, have your close-packed raft models to 

hand). Three layers are stacked ABC (Fig. 1.4). Now the next layer should again by A; 

instead place it in the B layer position, where it fits equally well into the ‘hollows’ 

between the C layer atoms. This is the only alternative choice and the stacking sequence 

is now ABCB. Now, when we add the next layer we have two choices: either to place it 
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in an A layer or in a C layer position. Now continue with our interrupted ABC... 

stacking sequence. In the first case we have the sequence ABCBABC... and in the 

second sequence ABCBCABC.... In both cases it can be seen that there are layers 

which are in an hep type of stacking sequence—but is there any difference between 

them, apart from the mere labelling of atom layers? Yes, there is a difference, which may 

be explained in two ways. If you examine the first sequence you will see that it is as if the 

mis-stacked B layer had been inserted into the ABCABC ... sequence and this is called 

an extrinsic stacking fault, whereas in the second case it is as if an A layer had been 

removed from the ABCABC ... sequence, and this is called an intrinsic stacking fault. 

However, this explanation, although it is the basis of the names intrinsic and extrinsic, 

is not very satisfactory. In order to understand better the distinction between stacking 

faults of different types (and indeed different stacking sequences in general), a com¬ 

pletely different method of representing stacking sequences needs to be used. 

You will recall (Section 1.2) that the labels for the layers are arbitrary and that it is the 

stacking sequence which is important; clearly then, some means of representing the 

sequence, rather than the layers themselves, is required. This requirement has been 

provided by William Shockley* and is named after him—the Shockley notation. Shock- 

ley proposed that each step in the stacking sequence A —» B —> C —> A... should be 

represented by a little ‘upright’ triangle A, and that each step in the stacking sequence, 

C —> B —> A —► C... should be represented by a little ‘inverted’ triangle v. Here are 

some examples, showing both the ABC... etc. type of notation for the layers and 

the Shockley notation for the sequence of stacking of the layers. Note that the triangles 

come between the close packed layers, representing the stacking sequence between them. 

ABCABCABC 
AAAAAAAA 

CBACBACBA 
vvvvvvvv 

two fee sequences 

ABABABAB 
A v A v A V ^ 

CBCBCBCB 
v A V A V A V 

two hep sequences 

ABCBABC 
A A v V A A 

ABCBCABC 
A A A v A A A 

extrinsic (left) and 
intrinsic (right) 
stacking faults. 

Notice that the ccp (or fee) stacking sequence is represented either by a sequence of 

upright triangles, or by a sequence of inverted ones—you could of course convert one to 

the other by simply turning your stack of close-packed layers upside down. However, 

the distinction is less arbitrary than this. An fee crystal may grow, or be deformed (as 

explained below), such that the stacking sequence reverses, as indicated in Fig. 1.18 

which shows the close-packed layers ‘edge on’ and both their ABC... etc. and A or v 
labels. Such a crystal is said to be twinned and the twin plane is that at which the stacking 

sequence reverses. Note that the crystal on one side of the twin plane is a mirror 

reflection of the other, just like the pair of hands in Fig. 4.4(b). 

The hep stacking sequence is represented by alternate upright and inverted trian¬ 

gles—and the sequence is unchanged if the stack of close-packed layers is turned 

* Denotes biographical notes available in Appendix 3. 
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Twin 
pi ane 

Fig. 1.18. Representation of the close-packed layers of a twinned fee crystal indicating the atom layers 

‘edge on’. Notice that the stacking sequence reverses across the twin plane, such that the crystal on one 

side of the twin plane is a mirror reflection of the other. 

upside down. Hence twinning on the close-packed planes is not possible in the hep 

structure—it is as if the backs and palms of your hands were identical, in which case, of 

course, your right hand would be indistinguishable from your left! 

The Shockley notation shows very well the distinction between extrinsic and intrinsic 

stacking faults; in the former case there are two inversions from the fee stacking sequence, 

and in the latter case, one. 

So far we have only considered stacking of close-packed layers of atoms and stacking 

faults in terms of the simple ‘hard sphere’ model. This model, given the criterion that the 

atoms should fit into the ‘hollows’ of the layers below (Fig. 1.4), would indicate that any 

stacking sequence is equally likely. We know that this is not the case—the fact that 

(except for the occurrence of stacking faults) the atoms, for example, of aluminium, 

gold, copper, etc., form the ccp structure, and zinc, magnesium etc., form the hep 

structure, indicates that other factors have to be considered. These factors are concerned 

with the minimization of the energies of the nearest and second nearest neighbour 

configuration of atoms round an atom. It turns out that it is the configuration of the 

second nearest neighbours which determines whether the most stable structure is ccp 

or hep. In one metal (cobalt) and in many alloys (e.g. a-brass) the energy differences 

between the two configurations is less marked and varies with temperature. Cobalt 

undergoes a phase change ccp ^ hep at 25 °C, but the structure both above and below 

this temperature is characterized by many stacking faults. In o-brass the occurrence of 

stacking faults (and twins) increases with zinc content. 

A detailed consideration of the stability of metal structures properly belongs to solid 

state physics. However, in practice we need to invoke some parameter which provides 

a measure of the occurrence of stacking faults and twins, and this is provided by the 

concept of the stacking fault energy (units mJ m-2); it is simply the increased energy 

(per unit area) above that of the normal (unfaulted) stacking sequence. Hence the lower 

the stacking fault energy, the greater the occurrence of stacking faults. On this basis 

the energy of a twin boundary will be about half that of an intrinsic stacking fault, 

and the energy of an extrinsic stacking fault will be about double that of an intrinsic 
stacking fault. 
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Fig. 1.19. On deformation, a B layer atom glides not in a straight line, e.g. B —> B (left to right) but in 

two steps via a C site across the ‘saddle points’ between the underlying A layer atoms, i.e. B —* C (first 

step), C —+ B (second step). 

As mentioned above, stacking faults, and the concept of stacking fault energy, play 

a very important role in the deformation of metals. During deformation—rolling, 

extrusion, forging and so on—the regular, crystalline arrangement of atoms is not 

destroyed. Metals do not, as was once supposed, become amorphous. Rather, the 

deformation is accomplished by the gliding or sliding of close-packed layers over each 

other. The overall gliding directions are those in which the rows of atoms are close- 

packed, but, as will also be evident from the models, the layers glide in a zig-zag path, 

from ‘hollow to hollow’ and passing across the ‘saddle-points’ between them. This is 

shown in Fig. 1.19, which is similar to Fig. 1.4, but re-drawn showing fewer atoms for 

simplicity. The overall glide direction of the B layer is along a close-packed direction, 

e.g. left to right, but the path from one B position to the next is over the saddle-points via 

a C position, as shown by the arrows. But the B layer may stop at a C position (partial 

slip), in which case we have an (intrinsic) stacking fault (Exercise 1.7). This partial slip, 

represented by the arrow or vector B —> C or C —■> B is also named after Shockley. 

Extrinsic stacking faults, twins and the ccp —> hep transformation may be accomplished 

by mechanisms involving the partial slip of close-packed layers. The mechanism for the 

generation of a twinned crystal by deformation is illustrated sequentially in Fig. 1.20. 

Figure 1.20(a) shows the close packed layers of a single fee crystal ‘edge on’. Let us now 

slip an A layer (arrowed) into the sites of the B layer atoms (partial slip), as shown in Fig. 

1.20(b). In doing so all the layers above the A layer move too: B—> C; C —> A; A —> B 

and so on. Figure 1.20(b) also shows these re-labelled layers of atoms. Now let us slip the 

next layer up (arrowed), C —> A; and again A —> B, B —■> C and so on (Fig. 1.20(c)). 

Again, slip the third layer up (arrowed) and re-label the layers—as shown in Fig. 1.20(d). 

As we can see we will ultimately generate the twinned crystal as shown in Fig. 1.18. This 

mechanism for deformation-twin formation may appear to be complicated; it occurs in 

practice (as in nearly all material deformation processes) through the movement of 

(partial) dislocations, a subject of great importance in materials science. 

The twinned crystal shown diagrammatically in Fig. 1.18 is just one particular 

example of very general phenomenon, which occurs in crystals with much more 

complex structures and in which the two parts of the twinned crystal may not simply 

be related by reflection across the twin plane (reflection twins). In general a twinned 
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(c) (d) 

Fig. 1.20. (a)-(d) the sequence of faulting in a ccp (or fee) crystal which leads to the formation of a 

twinned crystal as in Fig. 1.18. In Fig. 1.20(a) the close-packed layer to be faulted is an ‘A’ layer (arrowed) 

which in Fig. 1.20(b) becomes a ‘B’ layer and the layers above are relabelled accordingly; then the next 

layer above (the ‘C’ layer, arrowed) is faulted to become an ‘A’ layer (Fig. 1.20(c)) and so on. 

crystal is one in which the two parts are related to each other by a rotation (usually, but 

not necessarily, 180°) about some particular direction called a twin axis. For example, 

we could create the twinned crystal in Fig. 1.18 by folding the figure 180° along the 

dashed line (the twin axis) which lies in the twin plane; alternatively we could ‘cut' the 

single crystal in Fig. 1.20(a) in two along the c layer and create the twinned crystal by 

rotating the upper half 180° about a vertical direction (another twin axis) which in this 

case is normal to the twin plane. In our crystal all these actions (reflection in the twin 

plane, rotation 180° about an axis in the twin plane, rotation 180° about an axis normal to 

the twin plane) are all equivalent, but this is not necessarily the case as we will discover 

when we have learned about the symmetry of crystals. 

Some examples of twinned crystals from geology and metallurgy are shown in 

Fig. 1.21. The left-right-hand character of the twinned crystal in Fig. 1.21(a) is easily 

seen; in practice the twins may be interpenetrated and twinning may occur not just in one 

but in several different planes, as shown in Figs 1.21(b) and (c). In metals and alloys, the 

presence of twins may be seen in polished and etched surfaces (Fig. 1.21(d)). Old cast 

brass doorknobs provide a good and homely example. The stacking fault energy of 

<a-brass (Cu ~ 30% Zn) is very low (30 mJ m 2) and almost all the grains or crystals 

will contain twins. The corrosive contact of human hands reveals the irregular outlines 

or boundaries between the grains and also the perfectly straight lines or traces of the 

twin boundaries which terminate (unlike scratches) at the grain boundaries, as shown 
in Fig. 1.21(d). 
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Fig. 1.21. Examples of twinned crystals: (a) rutile (TiC>2) twinned on a {101} plane (from Rutley’s 

Elements of Mineralogy, 25th edn, revised by H. H. Read, George Allen and Unwin Ltd, 1962); 

(b) multiple twinning in rutile (from Introduction to Crystallography, 4th edn, by F. C. Phillips, 

Longman, 1971); (c) inteipenetrant twin in mercurous chloride (HgCl), twin plane {101} (from 

F. C. Phillips loc. cit.); (d) a photomicrograph of the etched surface of a-brass showing grain boundaries 

and (straight-sided) annealing twins, twin plane {111}. 

Twinning is very common in minerals, frequently occurring as a result of phase 

transitions during cooling. They may be observed, like the brass, on the polished sur¬ 

faces of minerals, where they may give rise to beautiful iridescent textures as a result of 
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the diffraction and interference of light (Chapter 7). They may be more readily seen 

in petrographic thin sections under the polarizing light microscope. For the petrologist 

they constitute one of the most important means of mineral identification. 

1.10 Introduction to some more complex’crystal structures 
\ 

The newcomer to crystallography is often dismayed by the immensity of all the different 

crystal structures—not only inorganic but also organic. The subject may seem to depend 

so much on rote-learning and the committing to memory of a vast number of facts. The 

subject is certainly immense, but it is not arbitrary, and the rules or criteria determining 

the simplest structures described in the preceding sections are the stepping-stones to an 

understanding of more complex structures. The same situation applies in the biological 

sciences: there is a vast number of different species of plants and animals, the under¬ 

standing of which is made coherent by a knowledge of the evolutionary criteria which 

determine their interrelationships. 

We will consider the structures of silicon carbide, alumina, silicates, and carbon not 

only because they serve as clear examples or extensions of the criteria we have already 

met but also because of their importance in ceramics and geology. 

1.10.1 Tetrahedral and octahedral structures—silicon carbide 

and alumina 

Consider, for example, the crystal structures which consist of close-packed or nearly 

close-packed layers of large atoms or ions with the smaller atoms or ions occupying some 

or all of the tetrahedral interstitial sites. Zinc blende and wurtzite are two such structures 

(Section 1.7) which are re-drawn in Fig. 1.22 so as to emphasize the aaaa_Stacking 

of the Zn (or S) atoms in zinc blende and the avav .... stacking of the Zn (or S) atoms in 

wurtzite. Many carbides, including silicon carbide, SiC, also possess such close-packed 

structures with the carbon atoms occupying the tetrahedral sites and the metal or 

metalloid atoms stacked in various combinations of aaaa ... and avav_Figure 

1.22 shows five structures or polytypes of silicon carbide (B3-B7) in which the silicon 

atoms are represented as solid spheres and the carbon atoms as small open spheres. The 

low-temperature form, /5-SiC (B3) has the fee structure, isomorphous with zinc blende. 

There are a number of high-temperature polytypes known collectively as a-SiC, the 

simplest structure of which, B4, is isomorphous with wurtzite. The other polytypes of 

a-SiC, three of which (B5, B6, B7) are shown in Fig. 1.22, have more complex stacking 
sequences, resulting in longer unit cell repeat distances. 

For example, the stacking sequence in B5 (Carborundum III) is (reading up) 

ABACABAC giving a four-layer repeat distance. In the Shockley notation this is 

represented as avvaavv ... i.e. by inversions in the stacking sequence every two 

layers, rather than every layer as in B4, the wurtzite structure. Similarly, for B6 

(Carborundum II) the stacking sequence is ABCACBA... giving a six-layer repeat 

distance which in the Shockley notation is aaavvv ... i.e. an inversion every three layers. 

Figure 1.23 shows an alternative representation of the polytypes of SiC showing (for 

clarity) only the close-packed layers of the metalloid (Si) atoms. The number below each 
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BA B 3 B 5 B6 B7 

Wurtzite Zinc blende Carborundum III Carborundum II Carborundum I 

Fig. 1.22. Five common tetrahedral structure types (after E. Parthe, Crystal Chemistry of Tetrahedral 

Structures, Gordon and Breach, New York, 1964, reproduced from The Structure of Metals, 3rd edn, 

C. S. Barrett and T. B. Massalski, Pergamon, 1980). 

polytype refers to the number of layers in the unit cell repeat distance and the letter refers 
to the type of unit cell (C—cubic; H—hexagonal; R—rhombohedral). All these poly¬ 

types of silicon carbide should not be thought of as distinct ‘species’, rather they should 

be regarded as interrelated as a result of different sequences of stacking faults and the 

transformations (3 a SiC appear, from electron microscopy evidence, to occur as the 

result of the passage of partial dislocations across the close-packed planes in the same 

way as for the generation of a twinned crystal, as shown in Fig. 1.20. For example 6H, 

a common form of a-SiC, may be regarded as a ‘microtwinned’ form of 3C, the three- 

layer thick twins being generated by the passage of three partial dislocations on 

successive close-packed planes as shown in Fig. 1.20(d). 

In aluminium oxide, AI2O3, the large oxygen anions occur in close-packed or nearly 

close packed layers with the aluminium cations occupying two-thirds of the octahedral 

interstitial sites. We now have an added complexity; not only may the oxygen anions 

be packed in different sequences but also the aluminium cations may be distributed 

differently throughout the interstitial sites—i.e. there may be different distributions of 

the one-third ‘empty’ sites. In the well-characterized form, a-Al203 (corundum- 

isomorphous with a-Fe203), the oxygen anions are stacked in the hep ABAB... 

stacking sequence and the aluminium cations between them are stacked in a rhombo¬ 

hedral sequence in exactly the same pattern as the carbon atoms in the rhombohedral 

form of graphite (see Fig. 1.28(b)). Hence the structure of a-A^Oj is rhombohedral with 

a six-layer unit cell repeat distance of oxygen anions. The other polytypes of alumina, 

called the transition aluminas, are not so well characterized, particularly with respect to 
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Fig. 1.23. The crystal structures of eight SiC polytypes. 3C is 0-SiC, the fee low temperature form and 

the others with 2,4, 6 and 8-layer repeat hexagonal cells or a 15-layer repeat rhombohedral cell are the 

a-SiC high temperature forms (from Ceramic Microstructures by W. E. Lee and W. M. Rainforth, 

Chapman & Hall, 1994). 

the distribution of the aluminium cations. A common fonn, 7-ACO3 is based on an 

ABCABC ... (fee) stacking of oxygen anions with a distribution of aluminium cations 

which is thought to give rise to a diamond-cubic structure. 

1.10.2 Silicate structures 

Silicates—which constitute by far the most important minerals in the earth’s crust- 

are based on the different ways in which Si04 tetrahedra2 may be joined together, 

each tetrahedron being made up of’four oxygen anions with the silicon cation in 

the tetrahedral interstice in the centre (Fig. 1.24). Silicate chemistry is based on the linking 

of the SiC>4 tetrahedra, i.e. whether they occur separately, or whether they are linked by 

2 The SKTt tetrahedra may be referred to more generally as Si-O tetrahedra since, as described in sub¬ 
sections (a)-(g), the silicon-oxygen ratio depends on how they are linked. 
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Fig. 1.24. A perspective of the SiC>4 tetrahedron. The oxygen anions at the comers of the tetrahedron 

are nearly close packed, as shown in the models, e.g. in Fig. 1.7 (the radius of the oxygen anion, 

rn— 0.132 nm and that of the silicon cation, rx = 0.039 nm, give a radius ratio, rx/r„ = 0.296, slightly 

than the ideal value rx/rn = 0.225, Fig. 1.10(a) and (b)). 

common oxygen anions to form chains, rings, sheets or complete frameworks. This 

provides the initial basis for the classification of silicate structures. If the Si-O bond is 

considered to be purely ionic, there are four positive charges associated with each silicon 

cation and two negative charges associated with each oxygen anion; hence there are four 

net negative charges associated with each SiQ* tetrahedron. The ‘charge balance’ in 

silicates may be achieved in seven possible ways (see Fig. 1.25): 

(a) Separate SiC>4 tetrahedra (nesosilicates): the charge balance (four net negative 

charges) is achieved with metal cations, e.g. Mg2+, Fe2+, which also link the 

tetrahedra together. Typical minerals are forsterite, Mg2(Si04), or fayalite, 

Fe2(Si04), the end-members of the olivine group, MgFe(SiC>4). 

(b) Two tetrahedra linked together sharing one oxygen anion (sorosilicates): the Si: O 

ratio is now Si207 giving six net negative charges which are balanced with 

metal cations. Typical minerals are melilite, Ca2Mg(Si207), or hemimorphite, 

Zn4(0H)H20(Si207). 

(c) Three or more tetrahedra linked together to form rings, each tetrahedron sharing 

two oxygen anions (cyclosilicates): the Si: O ratio is Si„03„ where n is the number 

of tetrahedra in the ring. A typical mineral is beryl, with a ring of six tetrahedra, 

Be3Al2(SieOi8). 

(d) Many tetrahedra linked together to form single chains (inosilicates): each tetra¬ 

hedron shares two oxygen anions, as in the ring structures above, and which there¬ 

fore give rise to the same Si: O ratio. This is the basis of the group of minerals 

called the pyroxenes. Typical examples are enstatite, Mg2(Si2C>6), or diopside, 

CaMg(Si206). 
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Class 

(a) 
Nesosilicates 

(b) 
Sorosilicates 

(c) 
Cyclosilicates 

(d) 
Inosilicates 

(single chain) 

Mineral example 

Olivine, 

(Mg, Fe)2Si04 

Hemimorphite, 
Zn4Si207(0H).K20 

Beryl, 

Be3AI2Si60i8 

Pyroxene 
e.g. Enstatite, 

MgSiOa 

Arrangement of Si04 tetrahedra 

(central Si4+ not shown) 
Unit 

composition 

(Si207)&- 

(Si6018)>2- 

(Si206)<- 



(e) 

Inosilicates 
(double chain) 

(0 
Phyllosilicates 

(g) 

Tectosilicates 
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Amphibole 
e.g. Anthophyllite, 
Mg7Si8022 (0H)Z 

Mica 
e.g. Phologopite, 

KMg3(AISi3O10)(0H)2 

(Si02) 
o High cristobalite, 

Si02 

Fig. 1.25. The arrangements of the Si04 tetrahedra and Si: O ratios in the seven main types of silicate 

structures, with examples of typical minerals (from Manual of Mineralogy, 21st edn, by C. Klein and 

C. S. Hurlbut Jr., John Wiley & Sons Inc., 1993). 



32 Crystals and crystal structures 

Fig. 1.26. The arrangements of the tetrahedra in the inosilicates. They are described (in German) 
according to the number of the tetrahedra in the repeat distance: a (zweier); b (dreier); c (vierer); 

d (fiinfer); e (sechser); f (siebener); g (neuner); h (zwolfer); i (24er) (from Structural Chemistry 

of Silicates by F. Liebau, Springer-Verlag, 1985). 
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(e) Tetrahedra linked together to form double chains (inosilicates), each tetrahedron 

sharing alternately two and three oxygen anions, giving the Si: O ratio Si4Oi i. This 

is the basis of the group of minerals called the amphiboles. Typical examples are 

anthophyllite, Mg7(OH)2(Si4Oii)2, ortremolite, Ca3Mg5(OH)2(Si4Oii)2. 

(f) Tetrahedra linked together to form sheets (phyllosilicates), each tetrahedron shar¬ 

ing three oxygen anions giving the Si: O ratio Si205. This is the basis of the micas, 
chlorites and the clay minerals. 

(g) Tetrahedra linked together such that all the oxygen anions are shared giving a three- 

dimensional framework (tectosilicates). The Si: O ratio, is now Si02 and there is 

an overall charge balance without the necessity of any linking cations. 

Figure 1.25 shows the arrangements of Si04 tetrahedra in these seven silicate 

structures. However, having established the basic pattern there are very important 

complications both in the chemistry and the arrangements of the tetrahedra which 

must not be overlooked. In all the silicates, and in the chain, sheet and framework 

silicates in particular, the silicon in the centre of the tetrahedron can be substituted by 

aluminium—a trivalent rather than a tetravalent ion. For each such substitution an 

additional positive charge by way of a ‘linking cation’ is required. All sheet silicates 

or phyllosilicates show such substitution to a greater or lesser extent, for example 

phlogopite in which one silicon is replaced by one aluminium cation giving the 

formula KMg3(OH)2(Si3A10io). In framework silicates (tectosilicates), substitution 

gives rise to an important new class of minerals—the feldspars, the most abundant 

minerals in the earth’s crust, e.g. albite, Na(Si3A108), or orthoclase, K(Si3A108) (one 

silicon cation substituted), or anorthite, Ca(Si2Al208) (two silicon cations substituted). 

With respect to the arrangements of the tetrahedra, one example—that of the inosi¬ 

licates—will suffice to show the principles involved. Figure 1.26 shows nine possible 

patterns (a)-(i) or conformations of the (unbranched) single chains, giving rise to 

different repeat distances as indicated: (a) (the simplest—known as zweier single chains 

because there are two tetrahedra in the repeat distance) is that for diopside and enstatite; 

(b) (drier single chains with three tetrahedra in the repeat distance) is that for wollas- 

tonite, Ca3(Si309), and so on. 
Clearly, there are also many possible arrangements of the tetrahedra in the cyclo¬ 

silicates, phyllosilicates and tectosilicates, and it is these which give rise (in part) to 

the many structural differences in silicate minerals. For example, in the tectosilicates 

the three different crystallographic forms of silica—quartz, tridymite and cristobalite— 

simply correspond to different ways in which the Si04 tetrahedra are linked together, 

and the a and (3 forms of these structures (with slightly different densities) arise from 

small relative rotations of the tetrahedra. 

1.10.3 The structures of carbon 

Of all the elements in the periodic table, only carbon and sulphur are capable of forming 

elemental rings or chains whose stability is independent of length. However, the chains 

formed by sulphur (with a higher valency than two), and those formed by silicon, 
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(b) 

Fig. 1.27. (a) the cubic and (b) hexagonal structures of diamond in clinographic projection (left) and 

in plan view (right). In both cases the carbon atoms are linked to four others in tetrahedral coordination 

but the arrangement of the tetrahedra differs. The pattern of atom sites is precisely the same as in the 

cubic (sphalerite) and hexagonal (wurtzite) forms of ZnS. (From Crystalline Solids by D. McKie and 

C. McKie, Nelson, 1975.) 

immediately below carbon in the periodic table, are thermally unstable and only short- 

length chain compounds are possible. Hence only carbon is capable of forming the 

complex ring- and long-chain compounds which are the prerequisite of life itself: the 

‘sulphur man’ and ‘silicon man’ must remain figments of the imagination! 

We will briefly survey only those structures of carbon itself, partly for their own 

intrinsic interest and partly because they serve to illustrate some of the basic ideas 

we have already met. These are diamond, graphite ‘mesophase’ and the fullerenes or 

‘bucky balls’. 

In diamond the basic structural unit is a carbon atom linked to four equidistant 

neighbours in a tetrahedral coordination, which arises, in chemical terms, from the sp3 

hybridization of the carbon atom. There are, however, two ways in which the tetrahedra 

can be linked together. In by far the commonest form of diamond the tetrahedra are 
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Fig. 1.28. (a) the hexagonal (layer sequence ABAB ...) and (b) the rhombohedral (layer sequence 

ABCABC...) structures of graphite. These are shown (below) in plan view with the layers shown 

‘offset’ for clarity. A-layer—full lines; B-layer—dashed lines and C-layer—dotted lines. 

linked together to generate a cubic structure, the pattern of carbon atoms being precisely 

the same as that in TiH (Fig. 1.14), or sphalerite or zinc blende, the cubic form of ZnS. 

The analysis of this structure (by W. H. and W. L. Bragg in 1913) was indeed one of the 

earliest triumphs of the X-ray diffraction technique. In the other, rare form of diamond, 

the tetrahedra are linked together to generate an hexagonal structure, the pattern of 

carbon atoms being precisely the same as that in wurtzite, the hexagonal form of ZnS 

(Section 1.7). These structures are shown in Fig. 1.27. 

In graphite, the carbon atoms are linked together to form plane hexagonal nets or 

layers (sp2 hybridization), the layers being stacked upon one another and held together 

by weak (van der Waals) forces. As in the case of our close-packed layers of metal 

atoms, the layers are not stacked immediately over each other (to give a simple 

hexagonal structure) but are again displaced in either of two ways. In the commonest 

form of graphite they are stacked in an ABAB sequence as in the hep structure—carbon 

atoms in the ‘B’ layers lying immediately above and below the hexagonal hollows of the 

‘A’ layers either side (Fig. 1.28(a)). This stacking pattern is precisely the same as that of 
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the cells in the two sides of a honeycomb—the comers of the cells on one side corres¬ 

ponding with the centres of the cells on the other side.3 
In the uncommon form of graphite the layers are stacked in an ABCABC ... sequence 

as in the ccp structure (Figs. 1.28(b)) and this is designated the rhombohedral form of 

graphite on the basis of the simplest unit cell which can Ije drawn (see Fig. 1.7(c)). 

However, just as in the case of metals ‘stacking faults’ doubtless occur particularly when 

we shear the graphite layers over each other as we do when we write with a pencil! It is 

also possible for the layers to be stacked in parallel layers but in a random orientation 

(with no correlation between the atoms in each layer) and this so-called turbostratic form 

appears to arise as an intermediate stage in the graphitization of pitch or some polymer 

precursors. 
Plan views of the stacking of the layers in the hexagonal and rhombohedral graphite 

stmctures are shown in Fig. 1.28. These structures are related to the hexagonal and cubic 

diamond structures respectively as shown in Exercise 1.10. 

Perhaps the most remarkable of the structures of carbon—remarkable, that is, for 

having been discovered so late—are the fullerenes or colloquially ‘bucky balls’. These 

were postulated as an act of scientific imagination by D. E. H. Jones (who wrote under 

the pen-name Daedalus) in 1966, but their actual existence and structures were not 

established until 1985 by H. W. Kroto, R. W. Smalley, and their co-workers. If a 

hexagon is replaced by a pentagon in a graphite-like net then, as model-building shows 

in a most immediate way, the net assumes a dome-like shape (Fig. 1.29). This principle 

was applied in engineering design by the American architect and polymath R. Buck¬ 

minster Fuller*—the distribution of pentagons and hexagons in the structure determin¬ 

ing, of course, the overall shape and stability of what he called a geodesic dome. In order 

to create a complete closed sphere precisely 12 pentagons are needed and the smallest, 

simplest sphere consists of 12 pentagons only, without any hexagons. The shape or 

polyhedron which is formed is called a pentagonal dodecahedron (Fig. 1.30(a)) and is 

one of the five ‘perfect’ polyhedra, or Platonic solids since all the 12 pentagonal faces 

and all the 20 vertices or ‘corners’ where the carbon atoms are situated are identical. 

[The other Platonic solids are the cube (6 square faces, 8 vertices. Fig. 4.2(a)), the 

octahedron (8 triangular faces, 6 vertices, Fig. 4.2(b)), the tetrahedron (4 triangular 

faces, 4 vertices, Fig. 4.2(c)), and the icosahedron, Fig. 1.30(b) (20 triangular faces, 12 

vertices)].4 Hence, the simplest and smallest of the ‘bucky-balls’ consists of 20 carbon 

atoms. It is called dodecahedrene, but it has not been isolated and is doubtless thermally 
unstable. 

As an increasing number of hexagons are included in the structure a family of fullerenes 

of increasing thermal stability and an increasing number of carbon atoms is developed 

(Fig. 1.31). The most interesting of these is Buckminsterfullerene itself with sixty carbon 

The dividing walls between the two sides of the honeycomb are not flat but are faceted at angles 
corresponding to those between the close-packed layers of atoms in the ccp structure (Section 1.3), and 
this arrangement can be shown to result in the most economical use of beeswax. 

4 These polyhedra figure prominently in the history of science. They were supposed to be associated with the 
elements of earth, air, fire, water and the universe and were thought by Kepler to determine the geometrical 
ratios of the five planetary orbits. 

* Denotes biographical notes available in Appendix 3. 
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(b) 

Fig. 1.29. Model-building with simple linked straws or sticks, (a) the plane graphite-like net formed 

by linking hexagons and (b) the dome-like net formed when a hexagon is replaced by a pentagon. 

atoms (C^o) consisting of 12 pentagons separated from each other by 20 hexagons 

(Fig. 1.31 (a)) precisely in the same way as a football (or US soccer ball). This polyhedron 

is called a truncated icosahedron and is one of the thirteen ‘semi-regular’ or Archimedean 

polyhedra in which every face is a regular polygon, though not all faces are of the same 

kind. In crystals of Ceo the spheres arrange themselves in an fee pattern but doubtless 
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Fig. 1.30. (a) the pentagonal dodecahedron (12 pentagonal faces) and (b) the icosahedron (20 

triangular faces)—two of the five ‘perfect’ or ‘Platonic’ polyhedra (the others being the cube, the 

octahedron and the tetrahedron—see Fig. 4.2). 

Fig. 1.31. (a) Buckminsterfullerene, Cgo. consisting of 12 pentagonal and 20 hexagonal faces (from 

Perfect Symmetry by Jim Baggott, Oxford University Press, 1994) and (b) fullerenes C28-C7o all of 

which have 12 pentagonal faces and an increasing number of hexagonal faces (from Science 242, 1142, 

1988: reproduced by courtesy of Prof. Sir Harry Kroto). 
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Fig. 1.32. The silicaceous skeleton of Aulonia hexagona, a deep sea-water radiolarian, drawn by 

E. Haeckel (from ‘On Growth and Form’ by D’Arcy Wentworth Thompson, Cambridge University 

Press, 1942). 

faulting can also occur. The next fullerene, C70, with 70 carbon atoms, has the shape of a 

Rugby ball (US football) and fullerenes with much larger numbers of carbon atoms also 

occur. These structures have their counterparts in the structures of the spherical skeletons 

of the radiolaria (deep sea-water creatures) where pentagons (and octagons and hepta¬ 

gons) occur in a predominantly hexagonal network (Fig. 1.32). Here we see nature 

obeying the dictates of geometry both on an atomic and on a biological scale! 

A note on boron nitride—boron and nitrogen, which occur each side of carbon in 

the periodic table, form BN compounds with striking similarities to those of carbon 

described above. The boron and nitrogen atoms are linked alternately in a planar 

(sp2) conformation, giving rise to graphite-like structures, or in a tetrahedral (sp3) 

conformation giving diamond-like structures—the latter possess very high hardness 

and melting-points and are of great importance in materials engineering. It is not known 

whether BN also exhibits Buckminster fullerene structures—this may be unlikely in 

view of the necessity for adjacent boron or nitrogen atoms in the 5-ring components. 

However, open-ended ‘nanotube’ structures, which do not require 5-ring components, 

may occur. 
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Exercises 

1.1 With reference to Fig. 1.5(b) or Fig. 1.11(a), determine the c/a ratio for the hep structure. 

(Hint: a is equal to d, the atomic diameter and edge length of the tetrahedron, and c is twice 

the height of the tetrahedron. 

1.2 Determine the radius ratio, rx/rA, for the tetrahedral interstitial sites in the bcc structure. 

1.3 Determine the radius ratio, rx/rA, forthe six-fold coordinated interstitial site in the simple 

hexagonal structure. 

1.4 Examine your crystal models and find: 

(a) the number of different (non-parallel) close-packed planes and close-packed directions 

in the ccp and hep structures; and 

(b) the number of closest-packed planes and close-packed directions in the bcc structure. 

1.5 In the deformation of ccp and bcc metals, slip generally occurs on the close- or closest- 

packed planes and in close-packed directions. Each combination of slip plane and direction 

is called a slip system. How many slip systems are there in these metals? 

1.6 Draw a plan or crystal projection of the hep structure perpendicular to the z- or c-axis. 

Assign axes x and y (at 120° to each other) and outline a primitive hexagonal cell (one atom 

at each comer and one within the cell). What are the atomic coordinates of the atoms in the 

cell? 

1.7 Referring to Figs 1.22 or 1.23(a) or (b), express the stacking sequences in the /J-SiC 

structures B7(15R) and 8H in the Shockley notation. 

1.8 With reference to Fig. 1.20, show that an hep structure may be generated from a ccp structure 

by faulting alternate close-packed planes. 

1.9 Draw crystal plans of the perovskite structure shown in Fig. 1.17, relocate the origin of one 

cell, relabel the ionic coordinates and show that these two cells do represent the same 

crystal structure. 

1.10 Make ball-and-stick models of the cubic-diamond (Fig. 1.27(a)) and rhombohedral- 

graphite (Fig. 1.28(b)) structures. Notice that in the diamond stmeture the carbon atoms 

lie in ‘puckered’ layers perpendicular to the body-diagonal directions of the cube. If we 

(physically or in imagination) make the atoms in these layers coplanar and also lengthen 

the bonds between them, then we have the rhombohedral form of graphite. A similar 

relationship exists between the hexagonal-diamond (Fig. 1.27(b)) and hexagonal-graphite 

(Fig. 1.28(a)) structures. 
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Two-dimensional patterns, 
lattices and symmetry 

2.1 Approaches to the study of crystal structures 

In Chapter 1 we developed an understanding of simple crystal structures by first 

considering the ways in which atoms or ions could pack together and then introducing 

smaller atoms or ions into the interstices between the larger ones. This is a pragmatic 

approach as it not only provides us with an immediate and straightforward understand¬ 

ing of the atomic/ionic arrangements in some simple compounds, but also suggests the 

ways in which more complicated compounds can be built up. 

However, it is not a systematic and rigorous approach, as all the possibilities of atomic 

arrangements in all crystal structures are not explored. The rigorous, and essentially 

mathematical, approach is to analyse and classify the geometrical characteristics of 

quite general two-dimensional patterns and then to extend the analysis to three dimen¬ 

sions to arrive at a completely general description of all the patterns to which atoms or 

molecules or groups of atoms or molecules might conform in the crystalline state. 

These two distinct approaches—or strands of crystallographic thought—are apparent 

in the literature of the nineteenth and early twentieth centuries. In general, it was the 

metallurgists and chemists, such as Tammann* and Pope*, who were the pragmatists, 

and the theoreticians and geometers, such as Fedorov' and Schoenflies*, who were the 

analysts. It might be thought that the analytical is necessarily superior to the pragmatic 

approach because its generality and comprehensiveness provides a much more powerful 

starting point for progress to be made in the discovery and interpretation of the crystal 

structures of more and more complex substances. But this is not so. It was, after all, the 

simple models of sodium chloride and zinc blende of Pope (such as we also constructed 

in Chapter 1) that helped to provide the Braggs ' with the necessary insight into crystal 

structures to enable them to make their great advances in the interpretation of X-ray 

diffraction photographs. In the same way, 40 years later, the discovery of the structure of 

DNA by Watson and Crick was based as much upon structural and chemical knowledge 

and intuition, together with model building, as upon formal crystallographic theory. 

However, a more general appreciation of the different patterns into which atoms and 

molecules may be arranged is essential, because it leads to an understanding of the 

important concepts of symmetry, motifs and lattices. The topic need not be pursued 

rigorously—in fact it is unwise to do so because we might quickly ‘lose sight of the wood 

for the trees!’ The essential ideas can be appreciated in two dimensions, the subject of 

* Denotes biographical notes available in Appendix 3. 
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this chapter. The extension to three dimensions (Chapters 3 and 4) which relates to ‘real 

crystal structures’, should then present no conceptual difficulties. 

2.2 Two-dimensional patterns and lattices 
♦ 

Consider the pattern of Fig. 2.1(a), which is made up of the letter R repeated indefinitely. 

What does R represent? Anything you like—a ‘two-dimensional molecule’, a cluster of 

atoms or whatever. Representing the ‘molecule’ as an R, an asymmetric shape, is in effect 

representing an asymmetric molecule. We shall discuss the different types or elements 

of symmetry in detail in Section 2.3 below, but for the moment our general everyday 

knowledge is enough. For example, consider the symmetry of the letters R M S. R is 

asymmetrical. M consists of two equal sides, each of which is a reflection or mirror image 

of the other, there is a mirror line of symmetry down the centre indicated by the letter m, 

thus !YL . There is no mirror line in the S, but if it is rotated 180° about a point in its centre, 

an identical S appears; there is a two-fold rotation axis usually called a diad axis at 

the centre of the S. This is represented by a little lens-shape 0 at the axis of rotation: S 

In Fig. 2.1(a) R, the repeating ‘unit of pattern’ is called the motif. These motifs may 

be considered to be situated at or near the intersections of an (imaginary) grid. The grid 

is called the lattice and the intersections are called lattice points. 

Let us now draw this underlying lattice in Fig. 2.1(a). First we have to decide where to 

place each lattice point in relation to each motif: anywhere will do—above, below, to 

one side, in the ‘middle’ of the motif—the only requirement is that the same position 

with respect to the motif is chosen every time. We shall choose a position a little below 

the motif, as shown in Fig. 2.1 (b). Now there are an infinite number of ways in which the 

Fig. 2.1. (a) A pattern with the motif R, (b) with the lattice points indicated and (c) the lattice and a unit 

cell outlined (Drawn by K. M. Crennell). 
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lattice points may be ‘joined up’ (i.e. an infinite number of ways of drawing a lattice or 

grid of lines through lattice points). In practice, a grid is usually chosen which ‘joins up’ 

adjacent lattice points to give the lattice as shown in Fig. 2.1(c), and a unit cell of the 

lattice may also be outlined. Clearly, if we know (1) the size and shape of the unit cell 

and (2) the motif which each lattice point represents, including its orientation with 

respect to the lattice point, we can draw the whole pattern or build up the whole structure 

indefinitely. The unit cell of the lattice and the motif therefore define the whole pattern 

or structure. This is very simple: but observe an importance consequence. Each motif 

is identical and, for an infinitely extended pattern, the environment (i.e. the spatial 

distribution of the surrounding motifs, and their orientation) around each motif is 

identical. This provides us with the definition of a lattice (which applies equally in 

two and three dimensions): a lattice is an array of points in space in which the 

environment of each point is identical. Again it should be stressed that by environment 

we mean the spatial distribution and orientation of the surrounding points. 

Like all simple definitions (and indeed ideas), this definition of a lattice is often not 

fully appreciated; there is, to use a colloquial expression, ‘more to it than meets the eye!’ 

This is particularly the case when we come to three-dimensional lattices (Chapter 4), 

but, for the two-dimensional case, consider the patterns of points in Fig. 2.2 (which 

should be thought of as extending infinitely). Of these only (a) and (d) constitute a 

lattice; in (b) and (c) the points are certainly in a regular array, but the surroundings of 

each point are not all identical. 

Figures 2.2(a) and (d) represent two two-dimensional lattice types, named oblique 

and rectangular, respectively, in view of the shapes of their unit cells. But what is the 

distinction between the oblique and rectangular lattices? Surely the rectangular lattice 

is just a special case of the oblique, i.e. with a 90° angle? 

(c) (d) 

Fig. 2.2. Patterns of points. Only (a) and (d) constitute lattices. 
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The distinction arises from different symmetries of the two lattices, and requires 

us to extend our everyday notions of symmetry and to classify a series of symmetry ele¬ 

ments. This precise knowledge of symmetry can then be applied to both the motif and the 

lattice and will show that there are a limited number of patterns with different sym¬ 

metries (only seventeen) and a limited number of two-dimensional lattices (only five). 

\ 

2.3 Two-dimensional symmetry elements 

The clearest way of developing the concept of symmetry is to begin with an asymmet¬ 

rical ‘object’—say the R of Fig. 2.1—then to add successively mirror lines and axes of 

symmetry and to see how the R is repeated to form different patterns or groups. The 

different patterns or groups of Rs which are produced correspond, of course, to objects 

or projections of molecules (i.e. ‘two-dimensional molecules’) with different symmet¬ 

ries which are not possessed by the R alone. 

The patterns or groups which arise and which as explained below are of concern in 

crystallography are shown in Fig. 2.3. On the left are the patterns of Rs, in the centre are 

decorative motifs with the same symmetry, and on the right are projections of molecules. 

Figure 2.3(1) shows the R ‘on its own’ and, as an example, the asymmetrical projection 

of the CHFCIBr molecule. Figure 3.2(2) shows ‘right-’ and ieft’-handed Rs reflected in 

the ‘vertical’ mirror line between them. This pair of Rs has the same mirror symmetry as 

the projection of the cA-difluoroethene molecule. Now add another ‘horizontal’ mirror 

line as in Fig. 2.3(3). A group of four Rs (two right- and two left-handed) is produced. 

This group has the same symmetry as the projection of the ethene molecule. 

The R may be repeated with a diad (two-fold rotation) axis, as in Fig. 2.3(4). The two 

Rs (both right handed) have the same symmetry as the trans-difluoroethene molecule. 

Now look back to the group of Rs in Fig. 2.3(3); notice that they also are related by a diad 

(two-fold rotation axis) at the intersection of the mirror lines: the action of reflecting the 

Rs across two perpendicular mirror lines ‘automatically’ generates the two-fold sym¬ 

metry as well. This effect, where the action of two symmetry elements generates 
another, is quite general as we shall see below. 

Mirror lines and diad axes of symmetry are just two of the symmetry elements that 

occur in two dimensions. In addition there are three-fold rotation or triad (3) axes 

(represented by a little triangle, a), four-fold rotation or tetrad (4) axes (represented by 

a little square, ■), and six-fold (6) or hexad axes (represented by a little hexagon, #). 

Asymmetrical objects are represented as having a one-fold or monad (1) axis of 

symmetry (for which there is no little symbol)—which means in effect that one 360° 
rotation brings the object into coincidence with itself. 

Figure 2.3(5) shows the R related by a triad (three-fold) axis. The projection of the 

trifluoroalkylammonia molecule also has this same symmetry. Now add a ‘vertical’ 

mirror line as in Fig. 2.3(6). Three more left-handed Rs are generated, and at the same 

time the Rs are minor related not just in the vertical mirror line but also in two lines 

inclined at 60J as shown; another example of additional symmetry elements (in this case 
mirror lines) being automatically generated. 

This procedure (of generating groups of Rs which represent motifs with different 

symmetries) may be repeated for tetrad (four-fold) axes (Fig. 2.3(7)); plus mirror lines 
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(Fig. 2.3(8)); for hexad (six-fold) axes (Fig. 2.3(9)); plus mirror lines (Fig. 2.3(10)). Notice 

that not only do these axes of symmetry ‘automatically’ generate mirror lines at 90° (for 

tetrads) and 60° (for hexads) but also ‘interleaving’ mirror lines at 45° and 30° as well. 

H^c=c/H 2mm 
w' "'H 

ethene 

trifluoralkylammonia 

Fig. 2.3. (continued) 
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F 

tungsten oxyfluoride 

H h H benzene 

Fig. 2.3. The ten plane point groups showing left to right, the symmetry which arises based on an 

asymmetrical object R; examples of motifs; examples of molecules and ions (drawn as projections) and 

the point group symbols. (Drawn by K. M. Crennell, 1999.) 
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The ten arrangements of Rs (and the corresponding two-dimensional motifs or 

projections of molecules) are called the ten two-dimensional crystallographic or 

plane point groups, so called because all the symmetry elements—axes (perpendicular 

to the page) and mirror lines (in the page)—pass through a point. The ten plane point 

groups are labelled with ‘shorthand’ symbols which indicate, as shown in Fig. 2.3, the 

symmetry elements present: 1 for a monad (no symmetry), m for one mirror line, mm (or 

2mm) for two mirror lines (plus diad), 2 for a diad, 3 for a triad, 3m for a triad plus three 

mirror lines, 4 for a tetrad, 4mm for a tetrad plus four mirror lines, 6 for a hexad and 6mm 

for a hexad plus six mirror lines (the extra ‘m’ in the symbols referring to the ‘inter¬ 
leaving’ mirror lines). 

Now, in deriving these ten plane point groups we have ignored groups of Rs with five¬ 

fold (pentad), seven-fold (heptad) etc. axes of symmetry with and without mirror lines. 

Such plane point groups are certainly possible and are widely represented in nature—the 

pentagonal symmetry of a starfish for example. However, what makes the ten plane 

point groups in Fig. 2.3 special or distinctive is that only these combinations of axes and 

mirror lines can occur in regular repeating patterns in two dimensions as is explained in 

Sections 2.4 and 2.5 below. Hence they are properly called the two-dimensional crystal¬ 

lographic point groups as indicated above. Patterns with pentagonal symmetry are 

necessarily non-repeating, non-periodic or ‘incommensurate’ and consequently have 

in the past been rather overlooked by crystallographers. However, with the realization 

that groups of atoms (or viruses) can form ‘quasi crystals’ with five-fold symmetry 

elements (see Section 4.8), the study of non-periodic two-dimensional patterns has 

become of increasing interest and importance (see Section 2.8). A simple way at this 

stage of ‘seeing the difference’ is to compare, for example, the arrangement of six lattice 

points equally spaced around a central lattice point (hexagons) with the arrangement of 

five ‘lattice’ points equally spaced around a central point (pentagons). In the former case 

the arrangement of points can be put together to form a lattice (a pattern or tiling of 

hexagons with ‘no gaps’ and ‘no overlaps’). In the latter case the points cannot be put 

together to form a lattice—there are always ‘gaps’ or ‘overlaps’ between the tiling of 

pentagons. Try it and see! 

2.4 The five plane lattices 

Having examined the symmetries which a two-dimensional motif may possess we can 

now determine how many two-dimensional or plane lattices there are. We will do this 

by building up patterns from the ten motifs in Fig. 2.3 with the important condition that 

the symmetry elements possessed by the single motif must also extend throughout the 

whole pattern. This condition is best understood by way of a few examples. Consider the 

asymmetrical motif R (Fig. 2.3(1)); there are no symmetry elements to be considered 

and the R may be repeated in a pattern with an oblique (i.e. the most asymmetrical) 

arrangement of lattice points. Now consider the motif which possesses one ‘vertical’ 

mirror line of symmetry (Fig. 2.3(2)). This mirror symmetry must extend throughout the 

whole pattern from motif to motif which means that the lattice must be rectangular. 

There are two possible arrangements of lattice points which fulfil this requirement: 

a simple rectangular lattice and a centred rectangular lattice as shown in Fig. 2.4(a). 
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4-4 
The rectangular p-lattice 

The rectangular c-lattice 

p2mm 

c2mm 
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Fig. 2.4. (a) Unit cells of the five plane lattices, showing the symmetry elements present (heavy solid 

lines indicate mirror lines, dashed lines indicate glide lines) and their plane group symbols (from 

Essentials of Crystallography, by D. McKie and C. McKie, Blackwell, 1986). (b) The rectangular 

c lattice, showing the alternative primitive (rhombic p or diamond p) unit cell. 

These rectangular lattices also possess ‘horizontal’ mirror lines of symmetry corres¬ 

ponding to the motif with the two sets of mirror lines as shown in Fig. 2.3(3). Now 

consider the motifs with tetrad (four-fold) symmetry (Figs 2.3(7) and (8)). This four-fold 

symmetry must extend to the surrounding motifs which means that they must be 

arranged in a square pattern giving rise to a square lattice (Fig. 2.4(a)). 

Altogether, five two-dimensional or plane lattices may be worked out, as shown in 

Fig. 2.4(a). They are described by the shapes of the unit cells which are drawn between 

lattice points—oblique p, rectangular p, rectangular c (which is distinguished from 

rectangular p by having an additional lattice point in the centre of the cell), square p 

and hexagonal p. Notice again that additional symmetry elements are generated ‘in 

between’ the lattice points as shown in Fig. 2.4(a) (right). For example, in the square 

lattice there is a tetrad at the centre of the cell, diads halfway along the edges and vertical, 

horizontal and diagonal mirror lines as well as the tetrads situated at the lattice points. 

All two-dimensional patterns must be based upon one of these five plane lattices; no 

others are possible. This may seem very surprising—surely other shapes of unit cells are 

possible? The answer is ‘yes’, a large number of unit cell shapes are possible, but the 

pattern of lattice points which they describe will always be one of the five of Fig. 2.4(a). 

For example, the rectangular c lattice may also be described as a rhombic p or diamond 

p lattice, depending upon which unit cell is chosen to ‘join up’ the lattice points 

(Fig. 2.4(b)). These are just two alternative descriptions of the same arrangement of 

lattice points. So the choice of unit cell is arbitrary: any four lattice points which outline 

a parallelogram can be joined up to form a unit cell. In practice we take a sensible course 

and mostly choose a unit cell that is as small as possible—or ‘primitive’ (symbol p)— 

which does not contain other lattice points within it. Sometimes a larger cell is more 

useful because the axes joining up the sides are at 90°. Examples are the rhombic or 

diamond lattice which is identical to the rectangular centred lattice described above and, 

to take an important three-dimensional case, the cubic cell (Fig. 1.6(c)) which is used to 

describe the ccp structure in preference to the primitive rhombohedral cell (Fig. 1.7(c)). 
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Fig. 2.5. Patterns with (a) reflection symmetry and (b) glide-reflection symmetry. The mirror lines (m) 

and glide lines (g) are indicated. 

Now as there are ten point group symmetries which a motif can possess, it may be 

thought that there are therefore only ten different types of two-dimensional patterns, 

distributed among the five plane lattices. However, there is a complication: the com¬ 

bination of a point group symmetry with a lattice can give rise to an additional symme¬ 

try element called a glide line. Consider the two patterns in Fig. 2.5, both of which 

have a rectangular lattice. In Fig. 2.5(a) the motif has mirror symmetry as in Fig. 

2.3(2); it consists of a pair of right- and left-handed Rs. In Fig. 2.5(b) there is still a 

reflection—still pairs of right- and left-handed Rs—but one set of Rs has been trans¬ 

lated, or glided half a lattice spacing. This symmetry is called a reflection glide or 

simply a glide line of symmetry. Notice that glide lines also arise automatically in the 

centre of the unit cell of Fig. 2.5(b) as do mirror lines in Fig. 2.5(a). Glide lines are, of 

course, as familiar to us as mirror lines; they represent the pattern of our footprints in 
the snow when we walk in a straight line! 

The presence of the glide lines also has important consequences regarding the 

symmetry of the motif. In Fig. 2.5(a) the motif has mirror symmetry but in Fig. 2.5(b) 

it does not: the pair of right- and left-handed Rs is asymmetric. It is the repetition of 

the translational symmetry elements—the glide lines—that determines the overall 

rectangular symmetry of the pattern. The glide lines which are present in the five 

plane lattices are shown (in addition to the axes and mirror lines of symmetry) in 
Fig. 2.4(a). 

2.5 The seventeen plane groups 

Glide lines give seven more two-dimensional patterns, giving seventeen in all—the 

seventeen plane groups. On a macroscopic scale the glide symmetry in a crystal would 

appear as simple mirror symmetry—the shift between the mirror-related parts of the 

motif would only by observable in an electron microscope which was able to resolve 

the individual mirror-related parts of the motif, i.e. distances of the order of 0.5-2 A 
(50-200 pm). 

The seventeen plane groups are shown in Fig. 2.6(a). They are labelled by ‘shorthand’ 

symbols which indicate the type of lattice (p for primitive, c for centred) and the 
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Fig. 2.7. Projection (a) of the structure of (from Contemporary Crystallography, 

by M. J. Buerger, McGraw-Hill, 1970), with (b) the motif, lattice and symmetry elements indicated. 

symmetry elements present, m for mirror lines, g for glide lines, 4 for tetrads and so on. 

The symmetry elements within a unit cell are shown in Fig. 2.6(b). It is a good exercise in 

recognizing the symmetry elements present in the 17 plane groups to lay a sheet of 

tracing paper over Fig. 2.6(a), to indicate the positions of the axes, mirror and glide lines 

of symmetry in an (arbitrary) unit cell and then to compare your ‘answers’ with those 

shown in Fig. 2.6(b) overleaf. 

It is essential to practice recognizing the motifs, symmetry elements and lattice types 

in two-dimensional patterns and therefore to find to which of the seventeen plane groups 

they belong. Any regular patterned object will do—wallpapers, fabric designs, or the 

examples at the end of this chapter. Figure 2.7 indicates the procedure you should 

follow. Cover up Fig. 2.7(b) and examine only Fig. 2.7(a); it is a projection of molecules 

of CgH2(CH3)4. You should recognize that the molecules or groups of atoms are not 

identical in this two-dimensional projection. The motif is a pair of such molecules and 

this is the ‘unit of pattern’ that is repeated. Now look for symmetry elements and (using a 

piece of tracing paper) indicate the positions of all of these on the pattern. Compare your 

pattern of symmetry elements with those shown in Fig. 2.7(b). If you did not obtain 

the same result you have not been looking carefully enough! Finally, insert the lattice 

points—one for each motif. Anywhere will do, but it is convenient to have them coincide 

with a symmetry element, as has been done in Fig. 2.7(b). The lattice is clearly oblique 

and the plane group is p2 (see Fig. 2.6). 

The motifs of the seventeen patterns in Fig. 2.6 should be identified by circling them 

(lightly in pencil in case you make a mistake). You will find that, as a result of the 

presence of glide lines of symmetry, there are three plane groups (pg,p2gg and p4gm) in 
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which the motif is asymmetric and one (p2mg) in which it has only one mirror-line of 
symmetry. 

Another systematic way of identifying a plane pattern is to follow the ‘flow diagram’ 

shown in Fig. 2.8. The first step is to identify the highest order of rotation symmetry 

present, then to determine the presence or absence of reflection symmetry and so on 

through a series of ‘yes’ and ‘no’ answers, finally identifying one of the seventeen plane 

patterns whose plane group symbols are indicated ‘in boxes’, corresponding to those 
given in Fig. 2.6. 

2.6 One-dimensional symmetry: border or frieze patterns 

Identifying the number of one-dimensional patterns provides us with a good exercise 

in applying our more general knowledge of plane patterns. It is also a useful exercise in 

that it tells us about the different types of patterns that can be designed for the borders 

of wallpapers, edges of dress fabrics, friezes and cornices in buildings, and so on. 

In plane patterns the symmetry operations and symmetry elements are (clearly) 

repeated in a plane; in one-dimensional patterns they can only be repeated in or along 

a line—i.e. the line or long direction of the border or frieze. This restriction immedi¬ 

ately rules out all rotational symmetry elements with the exception of diads: two-fold 

symmetry alone can be repeated in a line: three-, four-, and six-fold symmetry elements 

require the repetition of a motif in directions other than the line of the border. For the 

same reason glide-reflection lines of symmetry, other than that along the line of the 

border, are ruled out. Mirror lines of symmetry are restricted to those along, and 

perpendicular to, the line of the border. 

These restrictions result in seven one-dimensional groups, shown in Fig. 2.9. It is a 

good and satisfying exercise for you to derive these from first principles as outlined 

above. It is also useful to compare Fig. 2.9 with Fig. 2.6; the bracketed symbols in 

Fig. 2.9 indicate from which plane pattern the one-dimensional pattern may be derived. 

Notice that in one case two one-dimensional patterns—these with ‘horizontal’ and 

‘vertical’ mirror planes—are derived from one plane pattern (pm). This is because the 

mirror lines in the plane group pm can be oriented either along, or perpendicular to, 

the line of the one-dimensional pattern. 

Figure 2.19 (see Exercise 2.6) also shows examples of some of the border 

patterns. You can practice recognizing such patterns either by overlaying the pattern 

with a piece of tracing paper, and indicating the positions of the diads, mirror and 

glide lines as described above for plane patterns or by following the flow diagram 

(Fig. 2.10). 

2.7 Symmetry in art and design: counterchange patterns 

We have a rich inheritance of plane and border patterns in printed and woven textiles, 

wallpapers, bricks and tiles which have been designed and made by countless craftsmen 

and artisans in the past ‘without benefit of crystallography’. The question we may now 

ask is: ‘Have all the seventeen plane groups and seven one-dimensional groups been 
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utilized in pattern design or are some patterns and some symmetries more evident than 

others? If so, is there any relationship between the preponderance or absence of certain 

types of symmetry elements in patterns and the civilization or culture which produced 

them?’ 

R 
_ pma2 (p2mg) 

R R R R R R 
O-4 >—< *-o 

B a a a a al 
pmm2 (p2mm) 

Fig. 2.9. {left) the seven one-dimensional groups or classes of border or frieze patterns (drawn by K. M. 

Crennell, 1999); (solid lines indicate mirror lines, dashed lines indicate glide lines and • symbols 

indicate diads); (centre) their symmetry symbols and {bracketed) the plane point groups from which 

they are derived; and (right) examples of Hungarian needlework border patterns (from Symmetry 

Through the Eyes of a Chemist by I. and M. Hargittai, Plenum Press, New York and London 1995). 
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pmm2 pma2 prrr\-\ pi ml plal pi 12 pill 
(p2mm) (p2mg) (pm) (pm) (pg) (p2) (pi) 

Fig. 2.10. Flow diagram for identifying one of the seven border patterns (from The Geometry of 

Regular Repeating Patterns, loc. cit.). 

Questions such as these have exercised the minds of archaeologists, anthropologists 

and historians of art and design. They are, to be sure, questions more of cultural than 

crystallographic significance, but patterns play such a large part in our everyday 

experience that a crystallographer can hardly fail to be absorbed by them, just as he 

or she is absorbed by the three-dimensional patterns of crystals. 

The study of plane and one-dimensional patterns (and indeed three-dimensional 

(space) patterns) is complicated by the question of colour—‘real’ colours in the case 

of plane and one-dimensional patterns, or colours representing some property, such as 

electron spin direction or magnetic moment, in space patterns (Chapter 4). Colour 

changes may also be analysed in terms of symmetry elements in which colours are 

alternated in a systematic way. Clearly, the greater the number of colours, the greater 

the complexity. The simplest cases to consider are two-colour (e.g. black and white) 

patterns. Figure 2.11 shows the generation of plane motifs through the operation of what 

are called counter-change or colour symmetry elements, which are distinguished from 

ordinary (rotation) axes and mirror lines of symmetry by a prime superscript. For 
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3m' (3m) 6'mm' (6mm) 6m'm' (6mm) 

Fig. 2.11. The eleven counterchange (black/white) point groups and (bracketed) the point group 

symbols for the plane point groups to which they correspond (see Fig. 2.3). The counterchange 

symmetry elements are denoted by prime superscripts. (Drawn by K. M. Crennell, 1999.) 

example, the operation of a 2! axis is a twice repeated rotation of an asymmetric object 

by 180° plus a colour change at each rotation; the operation of an m! mirror line is a 

reflection plus colour change. Altogether there are eleven counterchange point groups 

(Fig. 2.11) compared with the ten plane point groups (Fig. 2.3). Note that there are no 

counterchange point groups corresponding to the plane point groups with only odd- 

numbered axes of symmetry (the monad and the triad), but that there are in each case 

two possible counterchange point groups corresponding to the plane point groups with 

symmetry 2mm, 4mm and 6mm. 
The derivation of the counterchange one- and two-dimensional patterns also involves 

the operation of a g' glide line which involves a reflection plus a translation of half 

a lattice spacing plus a colour change and gives (to extend our footprint analogy) a 

sequence of black/white (i.e. right/left footprints). 

Accounting for two-colour symmetry gives rise to a total of forty-six (rather than 

seventeen) plane patterns and seventeen (rather than seven) one-dimensional patterns. 

Figure 2.12 shows an example of plane group pattern p2gg (No. 8—see Fig. 2.6(a), (b)) 

and the two possible counterchange patterns (symbols p2'gg' and p2g'g') which are 

based upon it. 
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Fig. 2.12. (a) Plane group p2gg and (b) and (c) the two counterchange plane groups p2'ggf and plg’g! 

respectively which are based upon it. (Drawn by K. M. Crennell, 1999.) 

Probably the most influential and pioneering study of patterns was The Grammar of 

Ornament by Owen Jones, first published in 18561. Owen Jones attempted to categorize 

both plane and border patterns in terms of the different cultures that produced them, and 

although the symmetry aspects of patterns are touched on in the most fragmentary way, 

there is no doubt that the superb illustrations and encyclopaedic character of the book 

provided later writers with material which could be classified and analysed in crystal¬ 

lographic terms. Perhaps the best known of these was M. C. Escher (1898-1971) who 

drew inspiration for his drawings of tessellated figures from visits to the Alhambra in 

the 1930s, and also presumably from Owen Jones’ chapter on ‘Moresque Ornament’ in 

which he describes the Alhambra as ‘the very summit of Moorish art, as the Parthenon 

is of Greek art’. Escher’s patterns encompass all the seventeen plane groups, eleven 

of which are represented in the Alhambra. 

More recent work has identified clear preponderances of certain plane symmetry 

groups, and the absences of others2. For example, nearly 50% of traditional Javanese 

batik (wax-resist textile) patterns belong to plane group p4mm (Fig. 2.6), others, such as 

p3, p3m\, p3\m and p6 are wholly absent. In Jacquard-woven French silks of the last 

decade of the nineteenth century, nearly 80% of the patterns belong to plane group pg. In 

Japanese textile designs of the Edo period all plane groups are represented, with a 

marked preponderance for groups p2mm and c2mm. What these differences mean, or tell 

us about the cultures which gave rise to them, is, as the saying goes, ‘another question’. 

2.8 Non-periodic patterns and tilings 

Johannes Kepler was the first to show that pentagonal symmetry would give rise to a 

pattern which was non-repeating. Figure 2.13 is an illustration from perhaps his greatest 

work Harmonices mundi (1619) which shows in the figures captioned ‘Aa’ and ‘z’ a 

pattern or tiling of pentagons, pentagonal stars and 10 and 16-sided figures which radiate 

f 

1 Owen Jones. The Grammar of Ornament, Day & Sons Ltd., London, reprinted by Studio Editions, London 

(1986). 
2 M. A. Hann. Symmetry of Regular Repeating Patterns: Case studies from various cultural settings. Journal 

of the Textile Institute (1992), Vol. 83, pp. 579-580. 
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Fig. 2.13. Non-periodic tiling patterns ‘z’ and ‘Aa’ (from Hannonices Mundi by Johannes Kepler, 

1619, reproduced from the copy in the Brotherton Library, University of Leeds, by courtesy of the 

Librarian). 
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out in pentagonal symmetry from a central point. Griinbaum and Shephard3 have shown 

how the tiling ‘Aa’ can be extended indefinitely giving long-range orientational order 

but the pattern does not repeat and cannot be identified with any of the seventeen plane 

groups (Fig. 2.6). A. L. Mackay4 has shown how a regular, but non-periodic pattern, can 

be built up from regular pentagons in a plane with the triangular gaps covered by pieces 

cut from pentagons, which he describes with the title (echoing Kepler) De nive quin- 

quangula—on the pentagonal snowflake. 

These are but two examples of non-periodic or ‘incommensurate’ tilings, the math¬ 

ematical basis of which was largely developed by Roger Penrose and are generally 

named after him. Figure 2.14 shows how a Penrose Tiling may be constructed by linking 

together edge-to-edge ‘wide’ and ‘narrow’ rhombs or diamond-shaped tiles of equal 

edge lengths. The angles between the edges of the tiles (as shown in Fig. 2.14(a)) are not 

arbitrary but arise from pentagonal symmetry as shown in Fig. 2.14(b) (where the tiles 

are shown shaded in relation to a pentagon); nor are they linked together in an arbitrary 

fashion but according to local ‘matching rules’, shown in Fig. 2.14(a) by little triangular 

‘pegs’ and ‘sockets’ along the tile edges. These are omitted in the resultant tiling 

(Fig. 2.14(c)), partly for clarity and partly because their work in constructing the pattern 

is done. (An alternative of showing how the tiles must be fitted together is to colour or 

shade them in three ways and then to match the colours, like the pegs and sockets, along 

the tile edges.) The tiling can be viewed as a linkage of little cubes where we see three 

cube faces; the ‘front’ and ‘top’ faces (represented by the ‘wide’ diamonds) and ‘side’ 

face (represented by the ‘narrow’ diamond)). 

The mathematical analysis of non-repeating patterns is rather difficult (especially in 

three-dimensions—see Section 4.8), but we can perhaps understand their essential 

‘incommensurate’ properties by way of a one-dimensional analogy or example. Con¬ 

sider a pattern made up of a row of arrows and a row of stars extending right and left from 

an origin O. If the spacings of the arrows and stars are in a ratio of whole numbers then, 

depending on the values of these numbers, the pattern will repeat. Figure 2.15(a) shows a 

simple case where the ratio of spacings is 3/2 and the pattern repeats (i.e. the arrows and 

stars coincide) every third arrow or second star. If, however, the spacings of the arrows 

and stars cannot be expressed as a ratio of whole numbers, in other words if the ratio is an 

irrational number, then the pattern will never repeat—the arrows and stars will never 

come into coincidence. Figure 2.15(b) shows an example where the ratio of spacings is 

x/2/1 = 1.414213.. . an irrational number, like it, where there is ‘no end’ to the number 

of decimal places and no cyclic repetition of the decimal numbers.5 

3 B. Grunbaum and G. C. Shephard. Tilings and Patterns: An Introduction. W. H. Freeman, New York, 1989. 

4 A. L. Mackay. De nive quinquangula. Physics Bulletin 1976, p. 495. 
5 The discovery that some numbers are irrational is one of the triumphs of Greek mathematics. The proof 

that \/2 is irrational, which is generally attributed to Pythagoras, may be expressed as follows. Suppose that 
\/2 can be expressed as a/h where a and h are whole numbers which have no common factor (if they had, we 
could simply remove it). Hence \/2b = a and squaring 2b2 = a2. Now lb2 is an even number, hence a2 is 
also an even number and, since the square of an even number is even, a is an even number. Now an even number 
can be expressed as 2 x (any number), i.e. a = 2c. Squaring again a2 = 4c2 = 2b2, hence 2c2 = b2 and, for 
the same reason as before, since 2c2 is an even number then b is an even number. So, both a and b are even 
and have a common factor 2 which contradicts our initial hypothesis which therefore must be false. 
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\ 

(a) (b) 

(c) 

Fig. 2.14. (a) The two types (‘wide’ and ‘narrow’) tiles for the construction of a Penrose tiling. The 

triangular ‘pegs’ and ‘sockets’ along the tile edges indicate how they should be linked together edge-to- 

edge. (b) The geometry of the tiles in relation to a pentagon. The ratio OL/.v (wide tile) = s/OS (narrow 

tile) = 0/5- l)/2 = 1.618... (c) shows the resultant tiling (pegs and sockets omitted for clarity) 

(reproduced by courtesy of Prof. Sir Roger Penrose). 
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One-dimensional examples of (a) a periodic pattern and (b) a non-periodic pattern. In 

(a) the pattern repeats every third arrow and second star, in (b) the ratio of the spacings is \J2 and the 
pattern never repeats. 

In Penrose five-fold or pentagonal tiling it turns out (Fig. 2.14(b)) that the ratio of 

the diagonal OL to the edge length s (for the wide tile) and the ratio of the edge length s to 

the diagonal OS (for the narrow tile) are also both equal to an irrational number 

(\/5 + l)/2 = 1.618034 ... called the Golden Mean or Golden Ratio. The Golden Ratio 

also applies to a rectangle whose sides are in the ratio (\/5 + l)/2:1; if a square is cut off 

such a rectangle, then the rectangle which remains also has sides which are in this ratio, 

i.e. (-\/5 + l)/2 — 1:1 = 1 :(\/5 + l)/2. The Golden Ratio also occurs as the conver¬ 

gence of the ratio of successive terms in the so-called Fibonacci series of numbers where 

each term is the sum of the preceding two. Any number can be used to ‘start off a 

Fibonacci series, e.g. 1,1,2, 3,5, 8,13,21,34... or 3,3,6,9, 15,24, 39,63_Not only 

is the Golden Ratio a subject of mathematical interest, but it is also of relevance in 

architectural proportion and spiral growth in animals and plants (e.g. the spirals traced 

out in the head of a sunflower). However, this is a subject which we must regretfully now 

leave. 

Exercises 

2.1 Lay tracing paper over the plane patterns in Fig. 2.6. Outline a unit cell in each case and 

indicate the positions of all the symmetry elements within the unit cell. Notice in particular 

the differences in the distribution of the triad axes and mirror lines in the plane groups p3lm 

and p3ml. 

2.2 Figure 2.16 is a design by M. C. Escher. Using a tracing paper overlay, indicate the positions 

of all the symmetry elements. With the help of the flow diagram (Fig. 2.8), determine the 

plane lattice type. 

2.3 Figure 2.17 is a projection of the structure of FeS2 (shaded atoms Fe, unshaded atoms S). 

Using a tracing paper overlay, indicate the positions of the symmetry elements, outline a unit 

cell and, with the help of the flow diagram in Fig. 2.8, determine the plane pattern type. 

2.4 Figure 2.18 is a design by M. C. Escher. Can you see that the two sets of men are related by 

glide lines of symmetry? Draw in the positions of these glide lines, and determine the plane 

lattice type. 
2.5 Determine (with reference to Fig. 2.11) the counterchange (black-white) point group 

symmetry of a chessboard. 

2.6 Figure 2.19 shows examples of border or frieze patterns from The Grammar of Ornament by 

Owen Jones. Using a tracing paper overlay, indicate the positions of the symmetry elements 

and, with the help of the flow diagram (Fig. 2.10), determine the one-dimensional lattice 

types. 
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2.7 Figure 2.20(a) is a ‘wood block floor’ or ‘herringbone’ pattern with plane group symmetry 

p2gg. Using a tracing-paper overlay (and with the help of Fig. 2.6(b) and the flow chart. Fig. 

2.8), locate the positions of the diad axes and glide lines. Now place your tracing paper over 

the counterchange patterns (Fig. 2.20(b)) and determine which of the symmetry elements 

become counterchange (2' or g') symmetry elements. To which of the counterchange 

patterns shown in Fig. 2.12 does this pattern belong? * 

Fig. 2.16. A plane pattern (from Symmetry Aspects ofM. C. Escher’s Periodic Drawings, 2nd edn, by 

C. H. MacGillavry. Published for the International Union of Crystallography by Bohn, Scheltema and 
Holkema, Utrecht, 1976). 
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Fig. 2.17. A projection of the structure of marcasite, FeS2 (from Contemporary Crystallography 

by M. J. Buerger, McGraw-Hill, New York, 1970). 

Fig. 2.18. A plane pattern (from C. H. MacGillavry, loc. cit.). 
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d e f 

HM fg][e!IeHeI(e 
g h i 

Fig. 2.19. Examples of border or frieze patterns (from The Grammar of Ornament by Owen Jones, 

Day & Son, London 1856, reprinted by Studio Editions, London, 1986). a, b, Greek; c, d, Arabian; 

e, Moresque; f, Celtic; g, h, Chinese; i, Mexican. 

Fig. 2.20. ‘wood block floor’ or ‘herringbone brickwork’ patterns (a) with all blocks the same colour, 

and (b) with alternating black and white blocks. 



3 

Bravais lattices and crystal 
systems 

3.1 Introduction 

The definitions of the motif, the repeating ‘unit of pattern’, and the lattice, an array of 

points in space in which each point has an identical environment, hold in three dimen¬ 

sions exactly as they do in two dimensions. However, in three dimensions there are 

additional symmetry elements that need to be considered: both point symmetry ele¬ 

ments to describe the symmetry of the three-dimensional motif (or indeed any crystal 

or three-dimensional object) and also translational symmetry elements, which are 

required (like glide lines in the two-dimensional case) to describe all the possible 

patterns which arise by combining motifs of different symmetries with their appropriate 

lattices. Clearly, these considerations suggest that the subject is going to be rather more 

complicated and ‘difficult’; it is obvious that there are going to be many more three- 

dimensional patterns (or space groups) than the seventeen two-dimensional patterns (or 

plane groups—Chapter 2), and to work through all of these systematically would take up 

many pages! However, it is not necessary to do so; all that is required is an understanding 

of the principles involved (Chapter 2), the operation and significance of the additional 

symmetry elements, and the main results. These main results may be stated straight 

away. The additional point symmetry elements required are centres of symmetry, mirror 

planes (instead of lines) and inversion axes; the additional translational symmetry 

elements are glide planes (instead of lines) and screw axes. The application and 

permutation of all symmetry elements to patterns in space give rise to 230 space groups 

(instead of seventeen plane groups) distributed among fourteen space lattices (instead of 

five plane lattices) and thirty-two point group symmetries (instead of ten plane point 

group symmetries). 
In this chapter the concept of space (or Bravais) lattices and their symmetries is 

discussed and, deriving from this, the classification of crystals into seven systems. 

3.2 The fourteen space (Bravais) lattices 

The systematic work of describing and enumerating the space lattices was done initially 

by Frankenheim* who, in 1835, proposed that there were fifteen in all. Unfortunately for 

Frankenheim, two of his lattices were identical, a fact first pointed out by Bravais* in 

1848. It was, to take a two-dimensional analogy, as if Frankenheim had failed to notice 

* Denotes biographical notes available in Appendix 3. 
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(see Fig. 2.4(b)) that the rhombic or diamond and the rectangular centred plane lattices 

were identical! Hence, to this day, the fourteen space lattices are usually, and perhaps 

unfairly, called Bravais lattices. 
The unit cells of the Bravais lattices are shown in Fig. 3.1. The different shapes and 

sizes of these cells may be described in terms of three .cell edge lengths or axial 

distances, a, b, c, or lattice vectors a, b> c and the angles between them, a, (3, 7, where 

a is the angle between b and c, /3 the angle between a and c, and 7 the angle between 

a and b. The axial distances and angles are measured from one comer to the cell, i.e, 

a common origin. It does not matter where we take the origin—any comer will do—but, 

as pointed out in Chapter 1, it is a useful convention (and helps to avoid confusion) if 

the origin is taken as the ‘back left-hand comer’ of the cell, the a-axis pointing forward 

(out of the page), the b-axis towards the right and the c-axis upwards. This convention 

also gives a right-handed axial system. If any one of the axes is reversed (e.g. the 

£>-axis towards the left instead of the right), then a left-handed axial system results. 

The distinction between them is that, like left and right hands, they are mirror images 

of one another and cannot be brought into coincidence by rotation. 

The drawings of the unit cells of the Bravais lattices in Fig. 3.1 can be misleading 

because, as shown in Chapter 2, it is the pattern of lattice points which distinguishes the 

lattices. The unit cells simply represent arbitrary, though convenient, ways of ‘joining 

up’ the lattice points. Consider, for example, the three cubic lattices; cubic P (for 

Primitive, one lattice point per cell, i.e. lattice points only at the comers of the cell), 

cubic / (for ‘/nnenzentrierte’, which is German for ‘body-centred’, an additional lattice 

point at the centre of the cell, giving two lattice points per cell) and cubic F (for Face- 

centred, with additional lattice points at the centres of each face of the cell, giving four 

lattice points per cell). It is possible to outline alternative primitive cells (i.e. lattice 

points only at the comers) for the cubic / and cubic F lattices, as is shown in Fig. 3.2. As 

mentioned in Chapter 1, these primitive cells are not often used (1) because the inter- 

axial angles are not the convenient 90° (i.e. they are not orthogonal) and (2) because they 

do not reveal very clearly the cubic symmetry of the cubic / and cubic F lattices. (The 

symmetry of the Bravais lattices, or rather the point group symmetries of their unit cells, 
will be described in Section 3.3.) 

Similar arguments concerning the use of primitive cells apply to all the other centred 

lattices. Notice that the unit cells of two of the lattices are centred on the ‘top’ and 

‘bottom’ faces. These are called base-centred or C-centred because these faces are 
intersected by the c-axis. 

The Bravais lattices may be thought of as being built up by stacking ‘layers’ of the five 

plane lattices, one on top of another. The cubic and tetragonal lattices are based on the 

stacking of square lattice layers; the orthorhombic P and I lattices on the stacking of 

rectangular layers; the orthorhombic^C and F lattices on the stacking of rectangular 

centred layers; the rhombohedral and hexagonal lattice on the stacking of hexagonal 

layers and the monoclinic and triclinic lattices on the stacking of oblique layers. These 

relationships between the plane and the Bravais lattices are easy to see, except perhaps 

for the rhombohedral lattice. The rhombohedral unit cell has axes of equal length and 

with equal angles (a) between them. Notice that the layers of lattice points, perpen¬ 

dicular to the ‘vertical’ direction (shown dotted in Fig. 3.1) form triangular, or equival- 
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A 

Simple 
cubic (P) 

Body-centred 
cubic (/) 

Face-centred 
cubic (F) 

Simple 
tetragonal 

(P) 

Body-centred 
tetragonal 

(/) 

Simple 
orthorhombic 

(P) 

Body-centred 
orthorhombic 

(/) 

Base-centred Face-centred 
orthorhombic orthorhombic 

(C) (F) 

Rhombohedral 
(R) (P) 

Fig. 3.1. The fourteen Bravais lattices (from Elements of X-Ray Diffraction, (2nd edn), by 

B. D. Cullity, Addison-Wesley, 1978). 

ently, hexagonal layers. The hexagonal and rhombohedral lattices differ in the ways in 

which the hexagonal layers are stacked. In the hexagonal lattice they are stacked directly 

one on top of the other (Fig. 3.3(a)) and in the rhombohedral lattice they are stacked such 
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Fig. 3.2. (a) The cubic 7 and (b) the cubic F lattices with the primitive rhombohedral cells and 

inter-axial angles indicated. 

that the next two layers of points lie above the triangular ‘hollows’ or interstices of the 

layer below, giving a three layer repeat (Fig. 3.3(b)). These hexagonal and rhombohe¬ 

dral stacking sequences have been met before in the stacking of close-packed layers 

(Chapter 1); the hexagonal lattice corresponds to the simple hexagonal AAA... 

sequence and the rhombohedral lattice corresponds to the fee ABCABC ... sequence. 

Now observant readers will notice that the rhombohedral and cubic lattices are 

therefore related. The primitive cells of the cubic I and cubic F lattices (Fig. 3.2) are 

rhombohedral—the axes are of equal length and the angles (a) between them are equal. 

As in the two-dimensional cases, what distinguishes the cubic lattices from the rhom¬ 

bohedral is their symmetry. When the angle a is 90° we have a cubic P lattice, when it is 

60° we have a cubic F lattice and when it is 109.47° we have a cubic I lattice (Fig. 3.2). 

Or, alternatively, when the hexagonal layers of lattice points in the rhombohedral lattice 

Fig. 3.3. Stacking of hexagonal layers of lattice points in (a) the hexagonal lattice and (b) the 

rhombohedral lattice. 
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p 

(a) (b) 

Fig. 3.4. Plans of tetragonal lattices showing (a) the tetragonal P = C lattice and (b) the tetragonal 

I — F lattice. 

are spaced apart in such a way that the angle a is 90°, 60° or 109.47°, then cubic 
symmetry results. 

Finally, compare the orthorhombic lattices (all sides of the unit cell of different 

lengths) with the tetragonal lattices (two sides of the cell of equal length). Why are 

there four orthorhombic lattices, P, C, I and F, and only two tetragonal lattices, P and II 

Why are there not tetragonal C and F lattices as well? The answer is that there are 

tetragonal C and F lattices, but by redrawing or outlining different unit cells, as shown in 

Fig. 3.4, it will be seen that they are identical to the tetragonal P and I lattices, 

respectively. In short, they represent no new arrangements of lattice points. 

3.3 The symmetry of the fourteen Bravais lattices: 

crystal systems 

The unit cells of the Bravais lattices may be thought of as the ‘building blocks’ of 

crystals, precisely as Haiiy envisaged (Fig. 1.2). Hence it follows that the habit or 

external shape, or the observed symmetry of crystals, will be based upon the shapes 

and symmetry of the Bravais lattices, and we now have to describe the point symmetry 

of the unit cells of the Bravais lattices just as we described the point symmetry of plane 

patterns and lattices. The subject is far more readily understood if simple models are 

used (Appendix 1). 

First, mirror lines of symmetry become mirror planes in three dimensions. Second, 

axes of symmetry (diads, triads, tetrads and hexads) also apply to three dimensions. 

The additional complication is that, whereas a plane motif or object can only have one 

such axis (perpendicular to its plane), a three-dimensional object can have several axes 

running in different directions (but always through a point in the centre of the object). 

Consider, for example, a cubic unit cell (Fig. 3.5(a)). It contains a total of nine mirror 

planes, three parallel to the cube faces and six parallel to the face diagonals. There are 

three tetrad (four-fold) axes perpendicular to the three sets of cube faces, four triad 

(three-fold) axes running between opposite cube comers, and six diad (two-fold) axes 

running between the centres of opposite edges. This ‘collection’ of symmetry elements 

is called the point group symmetry of the cube because all the elements—planes and 

axes—pass through a point in the centre. 

Why should there be these particular numbers of mirror planes and axes? It is because 

all the various symmetry elements operating at or around the point must be consistent 
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Fig. 3.5. The point symmetry elements in (a) a cube (cubic unit cell) and (b) an orthorhombic unit cell. 

with one another. Self-consistency is a fundamental principle, underlying all the two- 

dimensional plane groups, all the three-dimensional point groups and all the space 

groups that will be discussed in Section 4.6. If there are two diad axes, for example, 

then they have to be mutually orthogonal, otherwise chaos would result; by the same 

token they also must generate a third diad perpendicular to both of them. It is 

the necessity for self-consistency which governs the construction of every one of the 

different combinations of symmetry, controlling the nature of each combination; it is 

this, also, which limits the total numbers of possible combinations to quite definite 

numbers such as thirty-two, in the case of the crystallographic point groups (the crystal 

classes), the fourteen Bravais lattices, and so on. 

The cubic unit cell has more symmetry elements than any other: its very simplicity 

makes its symmetry difficult to grasp. More easy to follow is the symmetry of an 

orthorhombic cell. Figure 3.5(b) shows the point group symmetry of an orthorhombic 

unit cell. It contains, like the cube, three mirror planes parallel to the faces of the cell but 

no more—mirror planes do not exist parallel to the face diagonals. The only axes of 

symmetry are three diads perpendicular to the three faces of the unit cell. 

In both cases it can be seen that the point group symmetry of these unit cells (Figs 

3.5(a) and 3.5(b)) is independent of whether the cells are centred or not. All three cubic 

lattices, P, I and F, have the same point group symmetry; all four orthorhombic lattices, 

P, /, F and C, have the same point group symmetry and so on. This simple observation 

leads to an important conclusion: it is not possible, from the observed symmetry of a 

crystal, to tell whether the underlying Bravais lattice is centred or not. Therefore, in 

terms of their point group symmetries, the Bravais lattices are grouped, according to the 

shapes of their unit cells, into seven crystal systems. For example, crystals with cubic F, 

7 or F lattices belong to the cubic system, crystals with orthorhombic P, /, F or C lattices 

belong to the orthorhombic system, and so on. However, a complication arises in 

the case of crystals with a hexagonal lattice. One might expect that all crystals with a 

hexagonal lattice should belong to the hexagonal system, but, as shown in Chapter 4, the 

external symmetry of crystals may not be identical (and usually is not identical) to the 

symmetry of the underlying Bravais lattice. Some crystals with a hexagonal lattice, e.g. 

quartz, do not show hexagonal (hexad) symmetry but have triad symmetry. Such crystals 

are assigned to the trigonal system rather than to the hexagonal system. Hence the 

trigonal system includes crystals with both hexagonal and rhombohedral Bravais lat¬ 

tices. There is yet another problem which is particularly associated with the trigonal 
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system, which is that the rhombohedral unit cell outlined in Figs 3.1 and 3.3 is not always 

used—a larger (non-primitive) unit cell of three times the size is sometimes more 

convenient. The problem of transforming axes from one unit cell to another is addressed 

in Chapter 5. 
The crystal systems and their corresponding Bravais lattices are shown in Table 3.1. 

Notice that there are no axes or planes of symmetry in the triclinic system. The only 

symmetry that the triclinic lattice possesses (and which is possessed by all the other 

lattices) is a centre of symmetry. This point symmetry element and inversion axes of 

symmetry are explained in Chapter 4. 

3.4 The coordination or environments of Bravais lattice 

points; space-filling polyhedra 

So far we have considered lattices as patterns of points in space in which each lattice 

point has the same environment in the same orientation. This approach is complete and 

sufficient, but it fails to stress, or even make clear, the fact that each of these environ¬ 

ments is distinct and characteristic of the lattices themselves. 

We need therefore a method of clearly and unambiguously defining what we mean by 

‘the environment’ of a lattice point. One approach (which we have used already in 

8 

1 

4 

Fig. 3.6. The Voronoi polyhedron (Dirichlet region or Wigner-Seitz cell) for a monoclinic P lattice 

(plan view, b axis perpendicular to the page). The lines ®, (D etc. represent the edges or traces of 

planes which are equidistant between the central lattice point 0 and the surrounding or coordinating 

lattice points 1, 2, etc. The resulting Voronoi polyhedron is outlined in this two-dimensional section 

by the shaded area. 
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working out the sizes of interstitial sites) is to state this in terms of ‘coordination’—the 

numbers and distances of nearest neighbours. For example, in the simple cubic (cubic P) 

lattice each lattice point is surrounded by six other equidistant lattice points; in the bcc 

(cubic /) lattice each lattice point is surrounded by eight equidistant lattice points—and 

so on. This is satisfactory, but an alternative and much more fruitful approach is to 

consider the environment or domain of each lattice point in terms of a polyhedron whose 

faces, edges and vertices are equidistant from each lattice point and its nearest neigh¬ 

bours. The construction of such a polyhedron is illustrated in two dimensions for 

simplicity in Fig. 3.6. This is a plan view of a simple monoclinic (monoclinic P) lattice 

with the b axis perpendicular to the page. The line labelled ® represents the edge or trace 

of a plane perpendicular to the page and half way between the central lattice point 0 and 

its neighbour 1. All points lying in this plane (both in the plane of the paper and above 

and below) are therefore equidistant between the two lattice points 0 and 1. We now 

repeat the process for the other lattice points 2, 3, 4, etc., surrounding the central lattice 

point. The planes ©, ©, ® etc. form the six ‘vertical’ faces of the polyhedron and in three 

dimensions, considering the lattice points ‘above’ and ‘below’ the central lattice point 0, 

the polyhedron for the monoclinic P lattice is a closed prism, shown shaded in plan in 

Fig. 3.6. Each lattice point is surrounded by an identical polyhedron and they all fit 

together to completely fill space with no gaps in between. 

In this example (of a monoclinic P lattice) the edges of the polyhedron are where the 

faces intersect and represent points which are equidistant between the central lattice 

point and two other surrounding lattice points. Similarly, the vertices of the polyhedron 

represent points which are equidistant between the central lattice point and three other 

surrounding points. However, for lattices of higher symmetry this correspondence does 

not hold. If, for example, we consider a cubic P lattice, square in plan, and follow the 

procedure outlined above, we find that the polyhedron is (as expected) a cube, but the 

edges of which are equidistant between the central lattice point and three surrounding 

lattice points and the vertices of which are equidistant between the central lattice point 

and seven surrounding lattice points. 

The polyhedra constructed in this way and which represent the domains around each 

lattice point have various names: Dirichlet regions or Wigner-Seitz cells or Voronoi " 

polyhedra. There are altogether 24 such space-filling polyhedra corresponding to the 

14 Bravais lattices; it is not a simple one-to-one correspondence in all cases because 

the shape of the polyhedron may depend upon the ratios between the axial lengths 

and angles and whether the Bravais lattice is centred or not. For example, Fig. 3.7(a) 

and (b) shows the two polyhedra for the tetragonal I lattice; Fig. 3.7(a) for the case 

where the axial ratio, c/a, is less than one and Fig. 3.7(b) for the case where it is greater 

than one. 
The polyhedra for the cubic P, I and F lattices are particularly interesting. For the 

cubic P lattice it is simply a cube of edge-length equal to the spacing between nearest 

lattice points (Fig. 3.7(c)). For the cubic / lattice it is a truncated octahedron (Fig. 3.7(d), 

the eight hexagonal faces corresponding to the eight nearest neighbours at the comers of 

* Denotes biographical notes available in Appendix 3. 
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Fig. 3.7. Examples of domains or Voronoi polyhedra outlined around single lattice points (a) tetra¬ 

gonal / lattice, da < 1; (b) tetragonal / lattice, da > 1; (c) cubic P lattice; (d) cubic / lattice and 

(e) cubic F lattice (from Modem Crystallography by A. Vainshtein, Academic Press, 1981). 

the cube and the six square faces corresponding to the six next-nearest neighbours at the 

centres of the surrounding cubes. For the cubic F lattice it is a rhombic dodecahedron 

(Fig. 3.7(e)), the twelve diamond-shaped faces corresponding to the twelve nearest 

neighbours. Again, all these polyhedra are space-filling. 

The truncated octahedron (the Voronoi polyhedron for the cubic / lattice) is also an 

Archimedean polyhedron (see Section 1.10.3). It also represents the ‘special case’ 

polyhedron for the tetragonal / lattice when the c/a ratio changes from <1 to > 1 

(compare Figs 3.7(a), (b) and (d)). More importantly, it is the space-filling solid with 

plane faces which has the largest volume-to-surface-area ratio and therefore approx¬ 

imates to the shapes of grains in annealed polycrystalline metals or ceramics or the cells 

in soap-bubble foams. However, the angles between the faces and edges do not satisfy 

the equilibrium requirements for grain boundary energy (e.g. in two-dimensions the 

grain boundaries must meet at 120°)vIf, following Lord Kelvin, we (partly) accom¬ 

modate these requirements by allowing the surfaces and edges to bow in or out, we 

obtain a (space-filling) solid with curved surfaces and edges called an a-tetrakaideca- 

hedron. This, however, does not represent the ‘last word’ in the geometry of grain 

boundaries. If we relax the condition that all the polyhedra have an equal number of 

faces, then a space-filling structure with a slightly larger volume to surface area ratio can 

be built up consisting of pentagonal dodecahedra and 14-sided polygons consisting of 
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12 pentagonal faces and 2 hexagonal faces1 (‘C24’ in fullerene notation!). However, in 

practice, grains and the cells of soap-films are irregular in shape and size, although they 

do have on average about fourteen faces, like tetrakaidecahedra. 

The Voronoi approach to the partitioning of space may also be applied to the analysis 

of crystal structures, in which one alternative is to draw the planes equidistant between 

the outer radii of atoms or ions and not their centres—the sizes of the polyhedra being a 

measure of the relative sizes of the atoms or ions. All the polyhedra (now of different 

sizes and shapes) are space-filling. It may also be used in entirely non-crystallographic 

situations to determine, for example, the catchment areas for an irregular distribution of 

schools; pupils whose homes are on the dividing lines betweep the irregular polyhedra 

being equidistant from two schools and those whose homes are at the vertices being 

equidistant from three schools. 

Exercises 

3.1 The drawings in Fig. 3.8 show patterns of points distributed in orthorhombic-shaped unit 

cells. Identify to which (if any) of the orthorhombic Bravais lattices, P, C, / or F, each pattern 

of points corresponds. 

(Hint: It is helpful to sketch plans of several unit cells, which will show more clearly the 

patterns of points, and then to outline (if possible) a P, C, 1 or F unit cell.) 

Fig. 3.8. Patterns of points in orthorhombic unit cells. 

3.2 The unit cells of several orthorhombic structures are described below. Draw plans of each 

and identify the Bravais lattice, P, C, I or F, in each case. 

(a) One atom per unit cell located at (x'y'z'). 

(b) Two atoms per unit cell of the same type located at (0^0) and QO^). 

(c) Two atoms per unit cell, one type located at (00z7) and {{[z!) and the other type 

at (00(i +z7) and (55(5 + z/))- 

(Hint: Draw plans of several unit cells and relocate the origin of the axes, x7, /, z7 should 

be taken as small (non-integral) fractions of the cell edge lengths.) 

1 D. Weire and R. Phelan. A Counter Example to Kelvin’s Conjecture on Minimal Surfaces. Phil. Mag. Lett. 

69. 107-10(1994). 
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3.3 What is the Voronoi polyhedron which corresponds to the hexagonal close-packing (hep) of 

equal sized spheres? 

3.4 What are the shapes of the Voronoi polyhedra which correspond to the rhombohedral 

Bravais lattice? 

(Hint: recall that the three cubic lattices are ‘special cases’ of the rhombohedral lattice in 

which the inter-axial angle a is 90° (cubic P), 60° (cubic F) or 109.47° (cubic /)). 

•V 
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Crystal symmetry: point groups, 
space groups, symmetry related 

properties and quasiperiodic crystals 

4.1 Symmetry and crystal habit 

As indicated in Chapter 3, the system to which a crystal belongs may be identified from 

its observed or external symmetry. Sometimes this is a very simple procedure. For 

example, crystals which are found to grow or form as cubes obviously belong to the 

cubic system: the external point symmetry of the crystal and that of the underlying unit 

cell are identical. However, a crystal from the cubic system may not grow or form with 

the external shape of a cube; the unit cells may stack up to form, say, an octahedron, or a 

tetrahedron, as shown in the models constructed from sugar-cube unit cells (Fig. 4.1). 

These are just two examples of a very general phenomenon throughout all the crystal 

systems: only very occasionally do crystals grow with the same shape as that of the 

underlying unit cell. The different shapes or habits adopted by crystals are determined 

by chemical and physical factors which do not, at the moment, concern us; what does 

concern us as crystallographers is to know how to recognize to which system a crystal 

belongs even though its habit may be quite different from, and therefore conceal, the 

shape of the underlying unit cell. 

The clue to the answer lies in the point group symmetry of the crystal. Consider, 

for example, the symmetry of the cubic crystals which have the shape or habit of a 

(a) (b) (c) 

Fig. 4.1. Stacking of ‘sugar-cube’ unit cells to form (a) a cube, (b) an octahedron and (c) a tetrahedron. 

Note that the cubic cells in all three models are in the same orientation. 
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Fig. 4.2. (a) A cube, (b) an octahedron and (c) a tetrahedron drawn in the same orientation as the 

models in Fig. 4.1. (d) A tetrahedron showing the positions of one variant of the point symmetry 

elements: mirror plane (shaded) (x6), triad (x4) and inversion tetrad (which includes a diad) (x3). 

cube, an octahedron or a tetrahedron (Figs 4.1 and 4.2) or construct models of them 

(Appendix 1). The cube and octahedron, although they are different shapes, possess the 

same point group symmetry. The tetrahedron, however, has less symmetry: only six 

mirror planes instead of nine: only three diads running between opposite edges (i.e. 

along the directions perpendicular to the cube faces in the underlying cubes) and. as 

before, four triads running through each comer. The common, unchanged symmetry 

elements are the four (equally inclined) triads, and it is the presence of these four triads 

which characterizes crystals belonging to the cubic system. Cubic crystals usually 

possess additional symmetry elements—the most symmetrical cubic crystals being 

those with the full point group symmetry of the underlying unit cell. But it is the four 

triads—not the three tetrads or the nine mirror planes—which are the ‘hallmark’ of a 
cubic crystal. 

Similar considerations apply to all the other crystal systems. For example. Fig. 4.3 

shows three orthorhombic crystals. Figure 4.3(a) shows a crystal with the full symmetry 

of the underlying unit cell—three perpendicular mirror planes and three perpendicular 

diads. Figure 4.3(b) shows a crystal with only two mirror planes and one diad along their 

line of intersection. Figure 4.3(c) shows a crystal with three perpendicular diads but no 
mirror planes. 

4.2 The thirty-two crystal classes 

The examples shown in Figs 4.1-4.3 are of crystals with different point group symme¬ 

tries: they are said to belong to different crystal classes, Crystals in the same class have 

the same point group symmetry, so in effect the terms are synonymous. Notice that 

crystals in the same class do not necessarily have the same shape. For example, the cube 

and octahedron are obviously different shapes but belong to the same class because their 
point group symmetry is the same. 

In two dimensions (Chapter 2) we found that there were ten plane point groups; in 

three dimensions there are thirty-two three-dimensional point groups. One of the great 
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Fig. 4.3. Orthorhombic crystals (a) PbS04 (mmm), (b) NH4MgP04 ■ 6H20 {mm2), (c) MgS04- 7H20 

(222) (from Introduction to Crystallography, 4th edn, by F. C. Phillips, Oliver and Boyd, 1971). 

achievements of the science of mineralogy in the nineteenth century was the systematic 

description of the thirty-two point groups or crystal classes and their division into the 

seven crystal systems. Particular credit is due to J. F. C. Hessel*, whose contributions to 

the understanding of point group symmetry were unrecognized until after his death. The 

concept of seven different types or shapes of underlying unit cells then links up with the 

concept of the fourteen Bravais lattices; in other words, it establishes the connection 

between the external crystalline form or shape and the internal molecular or atomic 

arrangements. 

It is not necessary to describe all the thirty-two point groups systematically; only 

the nomenclature for describing their important distinguishing features needs to be 

considered. This requires a knowledge of additional symmetry elements—centres and 

inversion axes. 

Finally, we come to a ‘practical’ problem, which those of us who collect minerals or 

who grow crystals from solutions will immediately recognize. Our crystals are rarely 

uniformly developed, like those in Figs 4.2 or 4.3, but are irregular in appearance, with 

faces of different size and shape and from which it is almost impossible to recognize any 

point symmetry elements at all. It is this problem which hindered the development of 

crystallography until the discovery of the Law of Constancy of Interfacial Angles 

(Section 1.1) which enables us to focus on the underlying crystal symmetry rather than 

being diverted by the contingencies of crystal growth. 

4.3 Centres and inversion axes of symmetry 

If a crystal, or indeed any object, possesses a centre of symmetry, then any line passing 

through the centre of the crystal connects equivalent faces, or atoms, or molecules. A 

* Denotes biographical notes available in Appendix 3. 
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Fig. 4.4. Right and left hands (a) disposed with a centre of symmetry between them and (b) disposed 

with a mirror plane between them. 

familiar example is a right hand and a left hand placed palm-to-palm but with the fin¬ 

gers pointing in opposite directions, as in Fig. 4.4(a). Lines joining thumb to thumb or 

fingertip to fingertip all pass through a centre of symmetry between the hands. When the 

hands are placed palm-to-palm but with the fingers pointing in the same direction, as in 

prayer, then there is no centre of symmetry but a mirror plane of symmetry instead, as 

in Fig. 4.4(b). In two dimensions a centre of symmetry is equivalent to diad symmetry. 

(See, for example, the motif and plane molecule shown in Fig. 2.3(4), which may be 

described as showing diad symmetry or a centre of symmetry.) In three dimensions this 

is not the case, as an inspection of Fig. 4.4(a) will show. 

Inversion axes of symmetry are rather difficult to describe (and therefore difficult 

for the reader to understand) without the use of the stereographic projection—a method 

of representing a three-dimensional pattern of planes in a crystal on a two-dimensional 

plan. This topic is covered in Chapter 12 and the representation of symmetry elements in 

detail in Section 12.5.1. Geographers have the same problem when trying to represent 

the surface of the Earth on a two-dimensional map, and they too make use of the 
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Fig. 4.5. Examples of a crystal and an object which have inversion tetrad axes (both point group 42m). 

(a) Urea CO(NH2)2 and (b) a tennis ball. 

stereographic projection. In atlases, the circular maps of the world (usually with the 

north or south poles in the centre) are often stereographic projections. 

Inversion axes are compound symmetry elements, consisting of a rotation followed 

by an inversion. For example, as described in Chapter 2, the operation of a tetrad (four¬ 

fold) rotation axis is to repeat a crystal face or pattern every 90° rotation, e.g. in two 

dimensions giving four repeating Rs or the four-fold pattern of faces in a cube. The 

operation of an inversion tetrad, symbol 0 or 4, is to repeat a crystal face or pattern every 

90° rotation-plus-inversion through a centre. What results is a four-fold pattern of faces 

around the inversion axis, but with each alternate face inverted. Examples of a crystal 

and an object with inversion tetrad axes are shown in Figs 4.5(a) and (b). The tennis ball 

has, in fact, the same point group symmetry as the crystal. Notice that when it is rotated 

90° about the axis indicated, the ‘downwards’ loop in the surface pattern is replaced by 

an ‘upwards’ loop. Another 90° rotation brings a ‘downwards’ loop and so on for the full 

360° rotation. Notice also that the inversion tetrad includes a diad, as is indicated by the 

diad (lens) symbol in the inversion tetrad (open square) symbol, 0 or 4. 

Finally, compare the symmetry of the tetragonal crystal in Fig. 4.5(a) with that of the 

tetrahedron (Fig. 4.2(d)): the diad axes which we recognized passing through the centres 

of opposite edges in the tetrahedron are, in fact, inversion tetrad axes or, to develop one of 

the points made in Section 4.1, stacking the cubes into the form of a tetrahedron reduces 

the symmetry element along the cube axis directions from rotation to inversion tetrad. 

There are also inversion axes corresponding to rotation monads diads, triads and 

hexads. The operation of an inversion hexad, for example, is a rotation of 60° plus an 
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inversion, this compound operation being repeated a total of six times until we return 

to the beginning. However, for a beginner to the subject, these axes may perhaps 

be regarded as being of lesser importance then the inversion tetrad because they can 

be represented by combinations of other (better-understood) symmetry elements. 

An inversion monad, symbol o or 1 is equivalent to a centre* of symmetry. 

An inversion diad, symbol 2 is equivalent to a perpendicular mirror plane. 

An inversion triad, symbol A or 3 is equivalent to a triad plus a centre of symmetry— 

which is the symmetry of a rhombohedral lattice (see Fig. 3.1). Notice that the ‘top' three 

faces of the rhombohedron are related to the ‘bottom’ three faces by a centre of symmetry. 

An inversion hexad, symbol @ or 6 is equivalent to a triad plus a perpendicular mirror 

plane. 

Again, these equivalences are best understood with the use of the stereographic projec¬ 

tion (Chapter 12). The important point is that only inversion tetrads are unique (i.e. they 

cannot be represented by a combination of rotation axes, centres of symmetry or mirror 

planes) and therefore need to be considered separately. 

The point group symmetries of the thirty-two classes are described by a ‘short-hand’ 

notation or point group symbol which lists the main (but not necessarily all) symmetry 

elements present. For example, the presence of centres of symmetry is not recorded 

because they may arise ‘automatically’ from the presence of other symmetry elements, 

e.g. the presence of an inversion triad axis mentioned above. This notation for the thirty- 

two crystal classes or point groups, and their distribution among the seven crystal 

systems, is fully worked out in the International Tables for Crystallography published 

for the International Union of Crystallography and in F. C. Phillips’ Introduction to 

Crystallography (4th edn) (Oliver and Boyd). Altogether there are five cubic classes, 

three orthorhombic classes, three monoclinic classes and so on. They are all listed in 

Table 3.1 (p. 73). The order in which the symmetry elements are written down in the 

point group symbol depends upon the crystal system. 

In the cubic system the first place in the symbol refers to the axes parallel to, or planes 

of symmetry perpendicular to, the x-, y- and z-axes, the second refers to the four triads or 

inversion triads and the third the axes parallel to, or planes of symmetry perpendicular 

to, the face diagonal directions. Hence the point group symbol for the cube or the 

octahedron—the most symmetrical of the cubic crystals—is 4/m32/m. This full point 

group symbol is usually (and rather unhelpfully) contracted to m3m because the opera¬ 

tion of the four triads and nine minor planes (three parallel to the cube faces and six 

parallel to the face diagonals) ‘automatically’ generates the three tetrads, six diads, and a 

centre of symmetry. The symbol for the tetrahedron is 43m, the 4 referring to the three 

inversion tetrad axes along the x-, y- and z-axes together with the m referring to the face- 

diagonal mirror planes. The least symmetric cubic class has point group symbol 23, i.e. it 

only has diads along the x-, y- and z-axes and the characteristic four triads. 

In the orthorhombic system the three places in the point group symbol refer to the 

symmetry elements associated with the x-, y- and z-axes. The most symmetrical class 

(Fig. 4.3(a)), which has the full point group symmetry of the underlying orthorhombic 
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unit cell (Fig. 3.5), has the full point group symbol 2/m2/m2/m, but this is usually 

abbreviated to mmm because the presence of the three mirror planes perpendicular to 

the x-, y- and z-axes ‘automatically’ generates the three perpendicular diads. The other 

two classes are mm2 (Fig. 4.3(b))—a diad along the intersection of two mirror planes— 
and 222 (Fig. 4.3(c))—three perpendicular diads. 

In the monoclinic system the point group symbol simply refers to the symmetry 

elements associated with the y-axis. This may be a diad (class 2), an inversion diad 

(equivalent to a perpendicular mirror plane (class 2 or m)), or a diad plus a perpendicular 
mirror plane (class 2/m). 

In the tetragonal, hexagonal and trigonal systems, the first position in the point group 

symbol refers to the ‘unique’ z-axis. For example, the tetragonal crystals in Fig. 4.5 have 

point group symmetry 42m; 4 referring to the inversion tetrad along the z-axis, 2 

referring to the diads along the x- and y-axes and m to the mirror planes which bisect 

the x- and y-axes (which you will find by examining the model!). One of the trigonal 

classes has point group symbol 32 (not to be confused with cubic class 23!), i.e. a single 
triad along the z-axis and (three) perpendicular diads. 

Not all classes are of equal importance; in two of them (432 and 6 = 3/m) there may 

be no examples of real crystals at all! On the other hand, the two monoclinic classes m 

and 2/m contain about 50 per cent of all inorganic crystalline materials on a ‘crystal 

counting’ basis, including feldspar, the commonest mineral in nature, and many other 

economically important minerals. As for the crystals of organic compounds, class 2/m is 

by far the most important, while crystals of biologically important substances which 

contain chiral (right- or left-handed enantiomorphic molecules) have a predilection for 

class 2. The commonest class in any system is the holosymmetric class, i.e. the 

class which shows the highest symmetry. The holosymmetric cubic class m3m, the 

most symmetrical of all, contains only a few per cent of all crystals on this basis, 

but these also include many materials and ceramics of economic and commercial 

importance. 

4.4 Crystal symmetry and properties 

The quantities which are used to describe the properties of materials are, as we know, 

simply represented as coefficients, i.e. as one measured (or measurable) quantity divided 

by another. For example, the property (coefficient) of electrical conductivity is given by 

the amount of electrical current flowing between two points (which may be measured in 

various ways) divided by the electrical potential gradient; the pyroelectric effect—the 

property of certain crystals of developing electrical polarization when the temperature is 

changed—is given by the polarization divided by the temperature change; the heat 

capacity is given by the quantity of heat absorbed or given out divided by the tempera¬ 

ture change, and so on. 

In many (in fact most) cases the measured quantities depend on direction and are 

called vectors*. In the examples above, electrical current flow, potential gradient and 

See Appendix 5. 
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polarization are all vectors. The other quantities in the examples above, temperature 

change, quantity of heat, do not depend on direction and are called scalars. 

The important point is that, in those cases where one or more of the measured 

quantities vary with direction, so also do the crystal properties; they are said to be 

anisotropic (from the Greek tropos, direction or turn; (an)i$o, (not the) same). Aniso¬ 

tropy clearly arises because the arrangements of atoms in crystals vary in different 

directions—you would intuitively expect crystals to be anisotropic, the only exceptions 

being those properties (the heat capacity) which are direction independent. You would 

also intuitively expect cubic crystals to be ‘less anisotropic’ than, say, monoclinic ones 

because of their greater symmetry, and this intuition would also be correct. For many 

properties, but not all, cubic crystals are isotropic—the property (and property coeffi¬ 

cient) is direction independent. In the example given above, cubic crystals are isotropic 

with respect to electrical conductivity. They are also isotropic with regard to the 

pyroelectic effect, i.e. cubic crystals do not exhibit electrical polarization when the 

temperature is changed; the pyroelectic coefficient is zero. But cubic crystals are not 

isotropic with respect to all properties. For example, their elastic properties, which 

determine the mechanical properties of stiffness, shear and bulk moduli, are direction 

dependent and these are very important factors with respect to the properties of metals 

and alloys. 

Hence, one major use of point groups is in relating crystal symmetry and properties; 

as the external symmetry of crystals arises from the symmetry of the internal mole¬ 

cular or atomic arrangements, so also do these in turn determine or influence crystal 

properties. Some examples have already been alluded to. For example, the pyroelectric 

effect cannot exist in a crystal possessing a centre of symmetry, and the pyro¬ 

electric polarization can only lie along a direction in a crystal that is unique, in the 

sense that it is not repeated by any symmetry element. There are only ten point groups 

or crystal classes which fulfil these conditions and they are called the ten polar 
point groups: 

1 2 3 4 6 

m mm2 3 m 4 mm 6 mm. 

Hence, pyroelectricity or the pyroelectric effect can only occur in these ten polar point 
groups or classes. 

A very closely related property to pyroelectricity, and of great importance in electro¬ 

ceramics, is ferroelectricity. A ferroelectric crystal, like a pyroelectric crystal, can 

also show polarization, but in addition the direction of polarization may be reversed 

by the application of an electric field. Most ferroelectric crystals have a transition 

temperature (Curie point) above which their symmetry is non-polar and below which 
it is polar. 

One such example is barium titanate, BaTi03, which has the perovskite structure 

(Fig. 1.17). Above the Curie temperature barium titanate has the fully symmetric cubic 

structure, point group m3m, but below the Curie temperature, when the crystal becomes 

ferroelectric, distortions occur—a small expansion occurs along one cell edge and small 

contractions along the other two, changing the crystal system symmetry from cubic to 

tetragonal and the point group symmetry from m3m to 4mm. As the temperature is 
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further lowered below the Curie point, further distortions occur and the point group 

symmetry changes successively to mm2 and 3m—all of them, of necessity, being polar 
point groups. 

Another very important crystal property is piezoelectricity—the development of an 

electric dipole when a crystal is stressed, or conversely, the change of shape of a crystal 

when it is subjected to an electrical field. At equilibrium the applied stress will be 

centrosymmetrical, so if a crystal is to develop a dipole, i.e. develop charges of opposite 

sign at opposite ends of a line through its centre, it cannot have a centre of symmetry. 

There are twenty-one non-centrosymmetric point groups (Table 3.1), all of which, 

except one, point group 432, may exhibit piezoelectricity. It is the presence of the 

equally inclined triads, tetrads and diads in this cubic point group which in effect cancel 

out the development of a unidirectional dipole. 

The optical properties of crystals—the variation of refractive index with the vibration 

and propagation direction of light (double refraction or birefringence), the variation of 

refractive index with wavelength or colour of the light (dispersion), or the associated 

variations of absorption of light (pleochroism)—are all symmetry dependent. The 

complexity of the optical properties increases as the symmetry decreases. Cubic crystals 

are optically isotropic—the propagation of light is the same in all directions and they 

have a single refractive index. Tetragonal, hexagonal and trigonal crystals are charac¬ 

terized by two refractive indices. For light travelling in a direction perpendicular to the 

principal (tetrad, hexad or triad) axis, such crystals exhibit two refractive indices—one 

for light vibrating along the principal axis, and another for light vibrating in a plane 

perpendicular to the principal axis. For light travelling along the principal axis (and 

therefore vibrating in the plane perpendicular to it), the crystal exhibits only one 

refractive index, and therefore behaves, for this direction only, as an optically isotropic 

crystal. Such crystals are called uniaxial with respect to their optical properties, and 

their principal symmetry axis is called the optic axis. Crystals belonging to the remain¬ 

ing crystal systems—orthorhombic, monoclinic and triclinic—are characterized by 

three refractive indices and two, not one, optic axes. Hence they are said to be biaxial 

since there are two, not one, directions for the direction of propagation of light in 

which they appear to be optically isotropic. It should be noted, however, that unlike 

uniaxial crystals, there is no simple relationship between the two optic axes of biaxial 

crystals and the principal symmetry elements; nor are they fixed, but vary as a result 

of dispersion, i.e. the variations in the values of the refractive indices with wavelength. 

Finally, there is the phenomenon or property of optical activity or rotatory polariza¬ 

tion, which should not be confused with double refraction. It is a phenomenon in which, 

in effect, the vibrational direction of light rotates such that it propagates through 

the crystal in a helical manner either to the right (dextrorotatory) or the left (laevorota- 

tory). Now right-handed and left-handed helices are distinct in the same way as a 

right and left hand (Fig. 4.4) or the two parts of a twinned crystal (Fig. 1.18) and 

therefore optical activity would be expected to occur only in those crystals which occur 

in right-handed or left-handed forms, i.e. those which do not possess a mirror plane or 

a centre (or inversion axis) of symmetry. Such crystals are said to be enantiomorphous 

and there are altogether eleven enantiomorphous classes of point group symmetries 

(Table 3.1). 
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Fig. 4.6. (a) (above) Left- and right-handed forms of tartaric acid molecules (from Crystals: their Role 

in Nature and Science by C. W. Bunn, Academic Press, New York, 1964); and (b) (below) the left- and 

right-handed forms of tartaric acid crystals (from F. C. Phillips, loc. cit.). 

A famous example is tartaric acid (Fig. 4.6). In 1848 Louis Pasteur* first noticed these 

two forms ‘hemihedral to the right’ and ‘hemihedral to the left' under the microscope and, 

having separated them, found that their solutions were optically active in opposite senses. 

The study of enantiomorphism, or chirality, from the Greek word chiros, meaning 

hand, is becoming increasingly important. Louis Pasteur, as a result of his work on 

tartaric acid, was the first to suggest that the molecules themselves could be chiral—i.e. 

that they could exist in either right-handed or left-handed forms. The basic constituents 

of living things are chiral, including the amino acids present in proteins, the nucleotides 

present in nucleic acids and the DNA double helix itself. But only one enantiomorph is 

ever found in nature—only L-amino acids are present in proteins and only D-nucleotides 

are present in nucleic acids (L stands for laevo—or left-rotating, and D stands for 

dextra—or right-rotating). Why this should be so is one of the mysteries surrounding 

the origin of life itself and for which many explanations or hypotheses have been 

offered. If, as many hypotheses suppose, it was the result of a chance event which was 

then consolidated by growth, then we might reasonably suppose that on another 

planet such as ours the opposite event might have occurred and that there exist living 

creatures, in every way like ourselves, but who are constituted of D-amino acids and 
L-nucleotides! 

However, to return to earth, once our basic chirality has been established, the D- and 

L- (enantiomorphic) forms of many substances, including drugs in particular, may 

* Denotes biographical notes available in Appendix 3. 
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have very different chemical and therapeutic properties. For example, the molecule 

asparagine occurs in two enantiomorphic forms, one of which tastes bitter and the 

other sweet. Thalidomide also; the right-handed molecule of which acts as a sedative 

but the left-handed molecule of which gave rise to birth defects. Hence chiral 

separation, and the production of enantiomorphically pure substances, is of major 
importance. 

4.5 Translational symmetry elements 

The thirty-two point group symmetries (Table 3.1) may be applied to three-dimensional 

patterns just as the ten plane point group symmetries are applied to two-dimensional 

patterns (Chapter 2). As in two dimensions where translational symmetry elements or 

glide lines arise, so also in three dimensions do glide planes and also screw axes arise. It 

is only necessary to state the symmetry properties of patterns that are described by 

these translational symmetry elements. Glide planes are the three-dimensional analo¬ 

gues of glide lines; they define the symmetry in which mirror-related parts of the motif 

are shifted half a lattice spacing. In Fig. 2.9 the figures are related by glide lines, which 

can easily be visualized as glide-plane symmetry. Glide planes are symbolized as a, b, c 

(according to whether the translation is along the x-, y- or z-axes), n or d (diagonal or 

diamond glide—special cases involving translations along more than one axis). 

Screw axes (for which there is no two-dimensional analogue) essentially describe 

helical patterns of atoms or molecules, or the helical symmetry of motifs. Several types 

of helices are possible and they are all based upon different combinations of rotation 

axes and translations. Figure 4.7 shows the possible screw axes (the direction of trans¬ 

lation out of the plane of the page) with the heights R of the asymmetrical objects 

represented as fractions of the lattice repeat distance (compare to Fig. 2.3). Screw axes 

are represented in writing by the general symbol Nm, N representing the rotation (2, 3,4, 

6) and the subscript m representing the pitch in terms of the number of lattice translation 

or repeat distances for one complete rotation of the helix. m/N therefore represents the 

translation for each rotation around the axis. Thus the 4j screw axis represents a rotation 

of 90° followed by a translation of | of the repeat distance, which repeated three times 

brings R to an identical position but displaced one lattice repeat distance; the 43 screw 

axis represents a rotation of 90° followed by a translation of | of the lattice repeat 

distance, which repeated three times gives a helix with a pitch of three lattice repeat 

distances. This is equivalent to the Ax screw axis but of opposite sign: the A\ axis is a 

right-handed helix and 43 axis is a left-handed helix. In short they are enantiomorphs of 

each other. Similarly the 3| and 32 axes, the 6\ and 65 axes, and the 62 and 64 axes are 

enantiomorphs of each other. In diagrams, screw axes are represented by the symbol for 

the rotation axis with little ‘tails’ indicating (admittedly not very satisfactorily) the pitch 

and sense of rotation (see Fig. 4.7). Screw axes have, of course, their counterparts in 

nature and design—the distribution of leaves around the stem of a plant, for example, or 

the pattern of steps in a spiral (strictly helical) staircase. Figure 4.8 shows two such 

examples. Figure 4.9 shows the 63 screw hexads which occur in the hep structure; notice 

that they run parallel to the c-axis and are located in the ‘unfilled’ channels which 

occur in the hep structure. They do not pass through the atom centres of either the A layer 
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Fig. 4.7. The operation of screw axes on an asymmetrical motif, R. The fractions indicate the 

‘heights’ of each motif as a fraction of the repeat distance. 

* 

Fig. 4.8. (a) The 4i screw axis arrangemenUtf leaves round a stem of pentstemon (after Walter Crane); 

and (b) a 6i screw axis spiral (helical) staircase (from The Third Dimension in Chemistry by A. F. Wells, 

Clarendon Press, Oxford, 1968). 

or the B layer atoms; these are the positions of the triad (not hexad) axes in the hep 

structure. 

Just as the external symmetry of crystals does not distinguish between primitive and 

centred Bravais lattices, so also it does not distinguish between glide and mirror planes, 
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(a) (b) 

Fig. 4.9. (a) A screw hexad (63) axis; and (b) location of these axes in the hep structure. Notice that 

they pass through the ‘unfilled channels’ between the atoms in this structure. 

or screw and rotation axes. For example, the six faces of an hep crystal show hexad, 

six-fold symmetry, whereas the underlying structure possesses only screw hexad, 63, 

symmetry. 

In many crystals, optical activity arises as a result of the existence of enantiomorphic 

screw axes. For example, in quartz (enantiomorphic class 32), the SiC>2 structural units 

which are not themselves asymmetric are arranged along the c-axis (which is also the 

optic axis) in either a 3j or a 32 screw orientation. This gives rise to the two enantio¬ 

morphic crystal forms of quartz (class 32, Fig. 4.10). The plane of polarization of plane- 

polarized light propagating along the optic axis is rotated to right or left, the angle of 

rotation depending on the wavelength of the light and the thickness of the crystal. This is 

not, to repeat, the same phenomenon as birefringence; for the light travelling along the 

optic axis the crystal exhibits (by definition) one refractive index. If the 3i or 32 helical 

Fig. 4.10. The enantiomorphic (right- and left-handed) forms of quartz. The optic axis is in the vertical 

(long) direction in each crystal (from F. C. Phillips, loc. cit.). 
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arrangement of the SiC>2 stmctural units in quartz is destroyed (e.g. if the crystal is 

melted and solidified as a glass), the optical activity will also be destroyed. 

However, in other crystals such as tartaric acid (Fig. 4.6) and its derivatives, the 

optical activity arises from the asymmetry—the lack of a mirror plane or centre of 

symmetry—of the molecule itself (Fig. 4.6(a)). In such cases the optical activity is not 

destroyed if the crystal is melted or dissolved in a liquid. The left or right handedness of 

the molecules, even though they are randomly orientated in a solution, is communicated 

at least in part, to the plane-polarized light passing through it. Unlike quartz, in which 

the optical activity depends on the direction of propagation of the light with respect to 

the optic axis, the optical activity of a solution such as tartaric acid is unaffected by the 

direction of propagation of the light. In summary, the optical activity of solutions arises 

from the asymmetry of the molecule itself; the optical activity which is shown in 

crystals, but not their solutions or melts, arises from the enantiomorphic screw symme¬ 

try of the arrangement of molecules in the crystal. 

4.6 Space groups 

In Section 2.4 it is shown how the seventeen possible two-dimensional patterns or plane 

groups (Fig. 2.6) can be described as a combination of the five plane lattices with the 

appropriate point and translational symmetry elements. Similarly, in three dimensions, 

it can be shown that there are 230 possible three-dimensional patterns or space groups, 

which arise when the fourteen Bravais lattices are combined with the appropriate point 

and translational symmetry elements. It is easy to see why there should be a substantially 

larger number of space groups than plane groups. There are fourteen space lattices 

compared with only five plane lattices, but more particularly there is a greater number of 

combinations of point and translational symmetry elements in three dimensions, parti¬ 

cularly the presence of inversion axes (point) and screw axes (translational) which do 

not occur in two-dimensional patterns. 

The first step in the derivation of 230 space groups was made by L. Sohncke* (who 

also first introduced the notion of screw axes and glide planes described in Section 4.5). 

Essentially, Sohncke relaxed the restriction in the definition of a Bravais lattice—that 

the environment of each point is identical—by considering the possible arrays of points 

which have identical environments when viewed from different directions, rather than 

from the same direction as in the definition of a Bravais lattice. This is equivalent to 

combining the fourteen Bravais lattices with the appropriate translational symmetry 

elements, and gives rise to a total of sixty-five space groups or Sohncke groups. 

The second, final, step was to account for inversion axes of symmetry which gives rise 

to a further 165 space groups. They were first worked out by Fedorov* in Moscow in 

1890 (who drew heavily on Sohncke’s work) and independently by Schoenflies* in 

Gottingen in 1891 and Barlow* in London in 1894—an example of the frequently 

occurring phenomenon in science of progress being made almost at the same time by 

people approaching a problem entirely independently. 

Denotes biographical notes available in Appendix 3. 
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The 230 space groups are systematically drawn and described in the International 

Tables for Crystallography Volume A, which is based upon the earlier International 

Tables for X-ray Crystallography Vol. 1 compiled by N. F. M. Henry* and Kathleen 

Lonsdale —a work of great crystallographic scholarship. The space groups are arbitrar¬ 

ily numbered 1 to 230, beginning with triclinic crystals of lowest symmetry and ending 

with cubic crystals of highest symmetry. There are two space group symbols, one due 

to Schoenflies and the other, which is now generally adopted, due to Hermann* and 
Mauguin*. 

The Hermann-Mauguin space group symbol consists first of all of a letter P, I, F, R, C, 

B or A which describes the Bravais lattice type (Fig. 3.1) (the alternatives C, B or A being 

determined as to whether the unit cell axes are chosen such that the C, B or A faces are 

centred); then a statement, rather like a point group symbol, of the essential (not all) 

symmetry elements present. For example, the space group symbol Pbal represents 

a space group which has a primitive (P) Bravais lattice and whose point group is mm2 

(the a and b glide planes being simple mirror planes in point group symmetry). This is 

one of the point groups of the orthorhombic system (Fig. 4.3(b)) and the lattice type is 

orthorhombic P. Similarly, space group P^lmmc has a primitive (P) (hexagonal) 

Bravais lattice with point group symmetry 6/mmm. 

The space group itself is represented by means of two diagrams or projections, one 

showing the symmetry elements present and the other showing the operation of these 

symmetry elements on an asymmetric ‘unit of pattern’ represented by the circular 

symbol O and its mirror-image by ©: a circle with a comma inside. These symbols, 

which may represent an asymmetric molecule, a group of molecules, or indeed any 

asymmetrical structural unit, correspond to the R and fl of our two-dimensional 

patterns. The choice of a circle to represent an asymmetric object might be thought to 

be inadequate—surely a symbol such as R or, better still, a right hand would be more 

appropriate? In a sense it would, but there would then arise a serious problem of 

typography, of clearly and unambiguously representing the operation of all the sym¬ 

metry elements in the projection. For example, in the case where a mirror plane lies in 

the plane of projection a right hand (palm-down) would be mirrored by a left hand 

(palm-up)—and the problem would be to represent clearly these two superimposed 

hands in a plan view. In the case of a circle this situation is easily represented by ©—a 

circle divided in the middle with the mirror-image indicated in one half. Similarly, the 

use of a symbol such as R would lead to ambiguity. For example, a diad axis in the plane 

of projection would rotate an R 180° out of the plane of projection into an fl—which 

would be indistinguishable from an R reflected to an R in a mirror plane perpendicular 

to the plane of projection—i.e. as for mirror-lines in the two-dimensional case. In the 

case of a circle there is no such ambiguity; in the former case we have 

O | O (diad axis in plane of paper—no change of hand of motif) 

and in the latter case r*m 
o (mirror plane perpendicular to plane of paper—a change of hand of motif) 

* Denotes biographical notes available in Appendix 3. 
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The representation of space groups and some, but not all of the associated crystal¬ 

lographic information, is best described by means of three examples Pbal (No. 32), 

P2\lc (No. 14) and P6o,/mmc (No. 194). 

Figure 4.11, from the International Tables for X-ray Crystallography, shows space 

group No. 32, Pba2 with the Hermann-Mauguin and Schoenflies symbols shown top 

left and the point group and crystal system top right. The two diagrams are projections in 

the x-y plane, the right-hand one shows the symmetry elements present—the diads 

parallel to the z-axis at the comers, edges and centre of the unit cell and the a and b glide 

planes shown as dashed lines in between. It would be perfectly possible to draw the 

origin of the unit cell at an intersection of the glide planes—but to choose it, as shown, at 

a diad axis is more convenient, hence the note ‘origin on 2’. 

In the left-hand diagram the O is placed at (small) fractions, x, y, z of the cell edge 

lengths away from the origin, the z parameter or ‘height’ being represented by a plus 

(+) sign. This is called a ‘general equivalent position’ because the O does not lie on any 

of the symmetry elements present and the resulting pattern is known as the set of 

‘general equivalent positions’. The coordinates of these positions are listed below 

together with the total number of them, 4, the ‘Wyckoff letter’, c and the symbol 1 for 

a monad, indicating the asymmetry of the O (and its mirror-image ©). 

Pbal 
Cl 

No. 32 Pbal m ml 

*o ♦O 

O O* 
1 1 * i 

I j 

*© ! • i 1 
*o +© I , i , 

O O* 

Origin on 2 

Number of positions, Co-ordinates of equivalent positions 
Wyckoff notation, 

and point symmetry 

4 c 1 x,yyz; x,y,z; l~x,l+y,z; i+x,i~y,z. 

Conditions limiting 
possible reflections 

General: 

hkt: No conditions 

Okl: k~2n 

hOl: h=2n 

hkO: No conditions 

A00: (A=2n) 

0*0: (A=2n) 

00/: No conditions 

2 b 2 0,l,z; J,0,z. 

2 a 2 0,0, z; 

Special: as above, plus 

hkl: h+k=2n 

(001 )pgg; a'=a,b'=b 

Symmetry of special projections 

(100)pml; b'=b/2, c'-c (010) pint; c'=c, a'=a/2 

Fig. 4.11. Space group Pbal (No. 32) (from the International Tables for X-ray Crystallography). 
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If the pattern unit O were to be placed not in a general position but in a ‘special 

position’, on a diad axis in this example, then a simpler pattern results. The four 

asymmetric pattern units ‘merge together’ to give two units with diad symmetry and 

these are called ‘special equivalent positions’. There are in fact two possibilities, denoted 

by the Wyckoff letters a and b and their co-ordinates are listed in the table on the left. The 

Wyckoff letters are purely arbitrary, like the numbering of the space groups themselves. 

The table on the right lists the conditions (on the Laue indices hkl) limiting possible 

reflections, those not meeting these conditions being known as systematic absences in 

X-ray diffraction. These topics are covered in Chapter 9 and Appendix 6. Finally, the 

‘symmetry of special projections’ shows the plane groups corresponding to the space 

group projected on different planes (just as in our projections of crystal structures in 

Chapter 2). For example, the projection on the (001) plane (which is that of the 

diagrams) corresponds to plane group pgg (or p2gg—see Fig. 2.6). 

Figure 4.12 is extracted from the entry for the frequently occurring space group No. 14 

(P2fc) in the International Tables for Crystallography in which two choices for the 

unique axis b or c (parallel to the (screw) diad axes) and three choices of unit cell 

are available. Figure 4.12(a) shows the usual choice of the b (or y-axis) parallel to 

the (screw) diad axes as indicated by the monoclinic point group symbol 2/m (see Section 

4.3) and ‘cell choice 1’. The pattern of general equivalent positions is shown in the lower 

right diagram and the symmetry elements (screw diads, centres of symmetry and glide 

planes) are shown in three different projections. The centres of symmetry are indicated 

by small circles, the glide planes by dashed or dotted lines depending as to whether the 

glide direction is in, or perpendicular to, the plane of the diagram, and similarly the 

screw diad axes normal to or in the plane of the projection are indicated by S or single¬ 

headed arrow symbols respectively. Figure 4.12(b) shows the three possible cell choices 

and the tables of the coordinates of the general and special equivalent positions (with their 

Wyckoff letters running from bottom to top) and the reflection conditions as before. 

Figure 4.13 is extracted from the entry for space group Pb^/mmc, No. 194 in the 

International Tables for X-ray Crystallography; this is the space group for the hep 

metals (Fig. 1.5(b)), A1B2, WC (Fig. 1.15) and wurtzite (Figs 1.22 and 1.27(b)). Notice 

that there is a greater number of special equivalent positions (Wyckoff letters running 

from a to k) than in the two lower-symmetry space groups we have just looked at and that 

the coordinates of the pattern units are much reduced—from 24 for the general case to 

2 for positions with Wyckoff letters a, b, c, d. In hep metals the A and B layer atoms 

(Fig. 1.5(b)) are in the special equivalent positions denoted by Wyckoff letters c and d. 

Notice that if the origin of the unit cell is shifted so as to coincide with one of these atoms 

then their coordinates become (000), (/£/£/£) and (000), (\ ) (see Exercise 1.6 
and Section 9.2, Example 2). Finally, having studied Fig. 4.13 it is a good test of your 

powers of observation to turn back to Fig. 4.9(b) and fill in all the symmetry elements in 

addition to the 63 axes already indicated. 

4.7 Bravais lattices, space groups and crystal structures 

In the simple cubic, bcc and ccp structures of the elements, the three cubic lattices 

(Fig. 3.1) have exactly the same arrangement of lattice points as the atoms, i.e. in these 
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examples the motif is just one atom. In more complex crystals the motif consists of more 

than one atom and, to determine the Bravais lattice of a crystal, it is necessary first 

to identify the motif and then to identify the arrangement of the motifs. In crystals 

consisting of two or more different types of atoms this procedure may be quite difficult, 

but fortunately simple examples best illustrate the procedure and the principles 

involved. For example, in NaCl (isomqrphous with TiN; see Fig. 1.14(a)), the motif is 

one sodium and one chlorine ion and the motifs are arranged in an fee array. Hence 

the Bravais lattice of NaCl and TiN is cubic F. 

In Li20 (isomorphous with TiH2; see Fig. 1.14(b)) the motif is one oxygen and two 

lithium atoms; the motifs are arranged in an fee array and the Bravais lattice of these 

compounds is cubic F. In ZnS (isomorphous with TiH; see Fig. 1.14(c)) the motif is one 

zinc and one sulphur atom; again, these are arranged in an fee array and Bravais lattice of 

these compounds is cubic F. All the crystal structures illustrated in Fig. 1.14 have the 

cubic F Bravais lattice. They are called face-centred cubic structures not because the 

arrangements of atoms are the same—clearly they are not—but because they all have 
the cubic F lattice. 

(a) .P2i/c Cih 2/m Monoclinic 

No. 14 P 1 h/C 1 Patterson symmetry P 1 2/m 1 

UNIQUE AXIS b, CELL CHOICE 1 

Origin at I 

Asymmetric unit 0£*<1;' 0<y^i; O^z^l 

Symmetry operations 

(1) 1 (2) 2(0,i.O) 0,y,i (3) I 0,0,0 (4) c i.i.z 
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(b) P 2i/c C\h 
No. 14 

UNIQUE AXIS b, DIFFERENT CELL CHOICES 

2/m Monoclinic 

0 O O 

P 1 2 i/c 1 

UNIQUE AXIS b, CELL CHOICE 1 

Origin at I 

Asymmetric unit 

Generators selected (I); r(1,0,0); t(0,l,0); r(0,0,1); (2); (3) 

Positions 

Multiplicity. Coordinates 
Wyckoff letter, 
Site symmetry 

4 e I (l)j.y.r (2) T.y + U+i (3) XJ,Z (4) x.J+U+i 

2 d I i.O.i },i,0 

2 c I 0,0,1 0,1,0 

2 b I 1,0,0 1,1.1 

2 a I 0,0,0 0.1,1 

Reflection conditions 

General: 

hOI: I =2n 
0*0: * = 2n 
00/: / =2n 

Special: as above, plus 

hkl: *+/= 2n 

A*/ : *+/ =2/i 

hkl : *+/=2zi 

hkl : *+/ =2/1 

Fig. 4.12. Space group P2\/c (No. 14) (from the International Tables for Crystallography), (a) unique 

axis b, cell choice 1, (b) unique axis b, different cell choices. 

In CsCl (Fig. 1.12(b)), the motif is one caesium and one chlorine ion; the motifs 

are arranged in a simple cubic array and the Bravais lattice is cubic P. To be sure, the 

arrangement of ions in CsCl (and compounds isomorphous with it) is such that there is 

an ion or atom at the body-centre of the unit cell, but the Bravais lattice is not cubic 

/because the ions or atoms at the corners and centre of the unit cell are different. Nor, for 

the same reason, should CsCl and compounds isomorphous with it be described as 

having a body-centred cubic structure. 

In the case of hexagonal structures the arrangements of lattice points in the 

hexagonal P lattice (Fig. 3.1) corresponds to the arrangement of atoms in the simple 
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P 63/m me 
Din 

P 63/m 2/m 2jc 6/m m m Hexagonal 

Origin at centre (3ml) 

Number of positions. Co-ordinates of equivalent positions 
Wyckoff notation, 

and point symmetry 

24 / 1 x,y,z; y,x-y,z; y-x£,z; y,x,z; x,x-y,z; y-x,y,z\ 
x,y,z; y,y-x,z; x-y,x,z; y,x,z; x,y-x,z; x~y,y,z; 
x,y,b+z; y,y-xA+z; x-y,x,b+z; 
x, y,b-z; y,x-y,b-z; y-x,x,b-z; 
y, x,b+z; k,y-x,b+z; x-y,y,i+z; 
y,x,b~z; x,x-y,b-z; y-x,y,\-z. 

Conditions limiting 
possible reflections 

General: 

hkil: No conditions 

hh2hl: l=2n 
hfiOl: No conditions 

Special: as above, plus 

12 k m x,2jc,z; 2x,x,z; x,x,z; x,2X,z; 2x,x,z; S,x,z; 
x,2x,b+z; 2x,x,)+z; x,x,)+z; 
x,2x,b~z; 2x,x,l z; x,x,\-z. 

• no extra conditions 

12 j m X,y,i; y,x-y,J; y-x,x,i; y,xf\ x,x-y,i; y-x,y,1; 
X,y,I: y,y- x,l; x-y,x,\\ y,x,1; X,y-x,i; x-yj>,#. 

12 i 2 x,0,0; 0,x,0; x,x,0; x,0,l; 0,x,i; x,x 
x,0,0; 0,x,0; x,x,0; x,0,l; 0,Jt,b; x,xf. 

hkil: I=2n 

6 h mm x,2x,bt 2x,x,(, x,x,(, x,2x,l, 2x,x,(; x,x,J. no extra conditions 

6 g 2/m 4,0,0; 0,1,0; 1,1,0; 1,0,1; 0,1,1; 1,1,1- hkil: I~2n 

4 f 3m 1,1,z; 1,1,z; 1,1,1+*; 1,1,1-*. hkil: If h-k—3n, 
then /“2n 

4 e 3m 0,0,2; 0,0,z; 0,0,1+z; 0,0,1-z. hkil: /=2« 

2 d 6m2 1,1,i; 1,1,1. * hkil: If h-k=°3n, 

2 c 6m2 1,1,1; 1,1,i 
then l~2n 

2 b 6m2 O
 

O
 

O
 

O
 

W
w

 

hkil: l=2n 
2 a 3m 0,0,0; 0,0,J. 

Fig. 4.13. Space group P63/mmc (No. 194) (from the International Tables for X-ray Crystallo¬ 

graphy). 
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hexagonal structure (Fig. 1.5(a)) and not the hep structure (Fig. 1.5(b)). In the sim¬ 

ple hexagonal structure the environment of all the atoms is identical and the motif is just 

one atom. In the hep structure the environment of the atoms in the A and B layers is 

different. The motif is a pair of atoms, i.e. an A layer and a B layer atom per lattice point. 

The environment of these pairs of atoms (as for the pairs of ions or atoms in the NaCl, or 

CsCl or ZnS structures) is identical and they are arranged on a simple hexagonal lattice. 

Notice that in these examples the motif is either asymmetric or has a mirror plane or 

centre of symmetry. These are further instances of the situation which we found in 

two-dimensional patterns (Section 2.5). It is the repetition of the motif by the lattice 

which generates the crystal structures. 

The space groups of the simple cubic bcc and ccp structures of the elements are those 

of maximum symmetry, namely Pm3m, Im3m and Fm3m, and in which the atoms are all 

at the special positions 000 etc. Similarly, CsCl (Fig. 1.12(b)) and perovskite CaTiC>3 

(Fig. 1.17) orbarium titanateBaTiOs, in which all the atoms are in special positions, also 

belong to space group Pm3m. All these space groups or structures have a centre of 

symmetry (at the origin) as indicated by the inversion triad axis, 3, symbol. Zinc blende, 

ZnS, and isomorphous structures such as TiH (Fig. 1.14(c)) and the technologically 

important gallium arsenide, GaAs, have the cubic F Bravais lattice, the atoms are again 

in special positions but the structure does not have a centre of symmetry; the space 

group in this case is F43m. The same applies to all the (common) diamond, silicon or 

germanium structures where the atom positions (all of the same type) are the same as in 

ZnS—see Fig. 1.27(a). The space group in these cases is Fd3m, the d referring to the 

special type of glide plane. Graphite and hep metals, as mentioned above, belong to 

space group P6j/mmc, as does also wurtzite, the hexagonal form of ZnS (Fig. 1.22) 

and the common crystal structure of ice in which the oxygen atoms lie in the same 

atomic positions as the carbon atoms in the hexagonal form of diamond (Fig. 1.27(b)) 

and in which the H atoms are between (but not equidistant between) neighbouring 

O atoms. 
Not all the 230 space groups are of equal importance; for many of them there are no 

examples of real crystals at all. About 70% of the elements belong to the space groups 

Fm3m, Im3m and Fd3m (all based on point group m3m), F43m (based on point group 

43m) and 63/mmc (based on point group 6/mmm). Over 60% of organic and inorganic 

crystals belong to space groups P2\lc, C2lc, P2\, PI, Pbca and P2\2\2\ and of these 

space groups P2\/c (based on point group 2/m, Fig. 4.12) is by far the commonest. 

The question now arises ‘why are some space groups more favoured for organic and 

inorganic crystals than others?’ For organic structures the answer lies in the very first 

figure in this book (Fig. 1.1), Robert Hooke’s drawing of the close-packing of 

bullets—except that now we are dealing not with hard spheres representing single atoms 

but shapes with complex surface profiles representing the envelopes around individual 

molecules. But the criterion is the same: how may the organic molecules pack together 

in the closest possible way and with the greatest number of nearest neighbours? It turns 

out that the answers are not dissimilar to those for metals, the coefficient of molecular 

packing (the ratio of molecular volume to crystal volume per molecule) for stable 

structures is in the range 0.65-0.77 (for the close packing of hard spheres it is 0.7405), 

and the coordination is again 12. 
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A. I. Kitaigorodski1 has investigated the closest or densest packing together of 

molecules ‘of arbitrary form’, and for molecules with centres of symmetry. He shows 

that in the former case only space groups PI, P2\, P2\/c, Pbca, Pbna and P2\2\2\ are 

available; in the latter case only space groups P\, P2\/c, C2tc and Pbca are available. 

These predictions accord very well with most commonly observed space groups listed 

above. A two-dimensional analogy of densest packing of molecules of arbitrary form 

may be seen in the drawings of M. C. Escher, as shown in Chapter 2, where all the figures 

are closely intertwined. 
For inorganic materials such as ceramics and minerals it is not appropriate to speak of 

molecules: the structures of ionic crystals are determined by non-directional ionic 

bonding, the most efficient packing of anions around cations and the requirement for 

charge-balance. Pauling has summarized the principles determining the structures of 

complex ionic crystals through a set of semi-empirical ‘rules’, the details of which are 

beyond the scope of this book. However, the important point is that these structural and 

chemical considerations also limit the number of space groups which actually arise. 

4.8 Quasiperiodic crystals or crystalloids 

The 230 space groups represent all the possible combinations of symmetry elements, 

and therefore all the possible patterns which may be built up by the repetition, without 

any limit, of the structural units of atoms and molecules which constitute crystals. But 

real crystals are finite and the atoms or molecules at their surfaces obviously do not have 

the same environment as those inside. Moreover, crystals nucleate and grow not 

according to geometrical rules as such but according to the local requirements of atomic 

and molecular packing, chemical bonding and so on. The resulting repeating pattern or 

space group is the usual consequence of such requirements, but it is not a necessary one. 

We will now consider some such cases where ‘crystals’ nucleate and grow such that the 

resulting pattern of atoms or molecules is non periodic and does not conform to any of 

the 230 space groups—in short the three-dimensional analogy to the non-periodic 

patterns and tilings discussed in Section 2.8. But first we need to adopt a new name 

for such structures and, following Schechtman2 can call them quasiperiodic crystals 

or materials, or following Mackay3 call them crystalloids. 

We will start ‘where we began’ in Section 1.1 of this book by model-building with 

equal size closely packed spheres. In the ccp structure, as we have seen, each sphere is 

surrounded or coordinated by 12 others as shown in Fig. 4.14(a). The polyhedron formed 

around the central sphere is a cubeoctahedron. It is one of the thirteen semi-regular or 

Archimedean solids (see Sections 1.10.3 and 3.4). However, even though all the spheres 

are close-packed, they are not all evenly distributed around the central sphere the 

interstices between them are different^some ‘square’, some ‘triangular’. 

1 A. I. Kitaigorodski, Molecular Crystals and Molecules, Academic Press, New York (1973). 
D. Schechtman, I. Bloch, D. Gratias and J. W. Cahn. ‘Metallic phase with long-range orientational order 

and no translational symmetry.’ Phys. Rev. Lett. 53, 1951 (1984). 
3 A. L. Mackay. Phys. Bull. p. 495 (1976). 
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(a) (b) (c) 

Fig. 4.14. (a) The close packing of 12 spheres around a central sphere as in the ccp structure. The solid 

is a cubeoctahedron; note that the spheres are not evenly distributed round the central sphere, some of the 

interstices are square, some triangular, (b) The twelve spheres shifted to obtain an even distribution; note 

that the spheres are surrounded by, but not in contact with, five others, (c) The spheres brought together 

such that they are now in contact; the central sphere is now ~ 10% smaller. The solid now has the 

20 triangular faces of an icosahedron. 

Now, we can shift the spheres around the central sphere to obtain an even distribution 

and as we see (Fig. 4.14(b)), this occurs when each sphere is surrounded by (but not now 

touching) five others and with ‘open’ triangular interstices between them. (This opera¬ 

tion is best carried out by making the central sphere out of soft modelling clay and using 

pegs sticking from the spheres into the clay to keep them in place.) Finally, we can 

squeeze the whole model (i.e. compress the central sphere) in our cupped hands to bring 

all the spheres into contact and make a close-packed shell of 12 spheres as shown in 

Fig. 4.14(c). We have created icosahedral packing because the solid has the 20 tri¬ 

angular faces of an icosahedron (Fig. 1.30(b)). The central sphere or interstice now has a 

radius some 10% smaller than the 12 surrounding spheres. 

The icosahedron can be extended by adding a second, then a third shell of spheres, the 

spheres succeeding each other to give cubic close packing on each of the 20 triangular 

faces (Fig. 4.15). Icosahedral packing is not the densest packing (cubeoctahedral pack¬ 

ing is the densest), nor is it crystallographic packing—the non-repeating pattern of the 

shells of spheres constitutes a crystalloid with point group symmetry 235 indicating the 

presence of 30 two-fold, 20 three-fold and 12 five-fold axes of symmetry. It is, however, 

an extremely stable structure (the spheres naturally ‘lock’ together during the squeezing 

operation) and it is the basis of Buckminster Fuller’s construction of geodesic domes 
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Fig. 4.15. Icosahedral packing of spheres showing close-packing on each of the 20 triangular 

faces (from ‘A dense non-crystallographic packing of equal spheres’, by A. L. Mackay, Acta. Cryst. 

15, 916, 962). 

Fig. 4.16. A quasicrystal of a 63% Al, 25% Cu-11 % Fe alloy showing pentagonal dodecahedral faces 

(from ‘A stable quasicrystal in Al-Cu-Fe system’ by An-Pang Tsai, Akihisa Inoue and Tsuyoshi 

Masumoto, Jap. J. Appl. Phys. 26, 1505, 1987). 
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(Section 1.10.3) as well as being characteristic of many virus structures (e.g. the polio 

virus) which makes them so indestructible. 

Icosahedral structures also occur in several metallic alloys, in particular those based 

on aluminium with copper, iron, ruthenium, manganese, etc. These quasiperiodic 

crystals were first recognised (in an Al-25% Mn alloy) from the ten-fold symmetry of 

their electron diffraction patterns (i.e. five-fold symmetry) plus a centre of symmetry 

resulting from diffraction—Friedel’s law—see Section 9.2). Many such quasiperiodic 

crystals, formed by rapid solidification from the melt, are metastable and revert to 

crystalline structures on heating, but stable quasiperiodic crystals as large as a few 

millimetres in size have been prepared. Figure 4.16 is a scanning electron micrograph 

of a 63% Al-25% Cu-11% Fe alloy quasicrystal showing the existence of beautiful 

pentagonal dodecahedral faces. Icosahedral shells of atoms may also occur as the motif 

within crystal structures. For example, the alloy MoA1i2 consists of Mo atoms sur¬ 

rounded by icosahedral shells of 12 A1 atoms, the icosahedra themselves being packed 

together in a bcc array. 

A note on duality in polyhedra: polyhedra of identical symmetry are said to be dual if 

the faces of one correspond to the vertices of the other, and vice-versa. Thus the 

pentagonal dodecahedron and icosahedron are duals; the 12 faces and 20 vertices 

of the pentagonal dodecahedron correspond to the 12 vertices and 20 faces of the 

icosahedron. The cube and octahedron are duals and the tetrahedron is self-dual 

(i.e. the 4 faces and vertices of one correspond to the 4 vertices and faces of the other). 

The dual of the rhombic dodecahedron (the space-filling Voronoi polyhedron for the 

cubic F lattice) is a cubeoctahedron and the dual of the truncated octahedron (the space¬ 

filling Voronoi polyhedron for the cubic I lattice) is a tetrakis hexahedron. 

A note on alternating or rotary-reflection axes: these compound symmetry elements 

were used by Schoenflies in his derivation of the 230 space groups but are little-used 

today. They consist of a rotation plus a reflection in a plane perpendicular to the axis, 

rather than an inversion. Hence a monad alternating axis is equivalent to a perpendicular 

mirror plane (or inversion diad); a diad alternating axis is equivalent to a centre of 

symmetry (or inversion monad); a triad alternating axis is equivalent to an inversion 

hexad; a tetrad alternating axis is equivalent to an inversion tetrad and a hexad alternat¬ 

ing axis is equivalent to an inversion triad. 

Exercises 

4.1 Draw the space group Pbal with the pattern unit O at the following positions: 

(a) on the b glide plane, i.e. at (V \f); 
(b) at the intersections of the a and b glide planes, i.e. at 
(c) on a diad axis through the origin, i.e. at (OOz'); 
(d) on a diad axis through the mid-points of the cell edges, i.e. at Q0z'). 
Hence, show that only (c) and (d) constitute special positions. 

4.2 Make and examine the crystal models of NaCl, CsCl, diamond, ZnS (sphalerite), ZnS 
(wurtzite), Li20 or CaF2 (fluorite), CaTi03 (perovskite). Identify the Bravais lattice and 

describe the motif of each structure. 
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Describing lattice planes and 
directions in crystals: Miller 

indices and zone axis symbols 

5.1 Introduction 

In previous chapters we have described the distributions of atoms in crystals, the 

symmetry of crystals, and the concept of Bravais lattices and unit cells. We now 

introduce what are essentially shorthand notations for describing directions and planes 

in crystals (whether or not they correspond to axes or planes of symmetry). The great 

advantages of these notations are that they are short, unambiguous and easily under¬ 

stood. For example, the direction (or zone axis) symbol for the ‘comer-to-comer’ (or 

triad axis) directions in a cube is simply (111). The plane index (or Miller index) for the 

faces of a cube is simply {100} or of an octahedron {111} (Fig. 4.1). The various faces 

and the directions of their intersections in crystals such as those illustrated in Fig. 4.3 

can also be precisely described using these notations. Without them one would have to 

resort to carefully scaled drawings or projections. 

Now direction symbols and plane indices are based upon the crystal axes or lattice 

vectors which outline or define the unit cell (see Section 3.2) and the only ambiguities 

which can arise occur in those cases in which different unit cells may be used. For 

example, crystals with the cubic F Bravais lattice may be described in terms of the 

‘conventional’ face-centred cell (Fig. 1.6) or in terms of the primitive rhombohedral cell 

(Fig. 1.7). Because the axes are different, the direction symbols and plane indices will 

also be different. Hence it is important to know (1) which set of crystal axes, or which 

unit cell, is being used and (2) how to change or transform direction symbols and plane 

indices when the set of crystal axes or the unit cell is changed. This topic is covered in 

Section 5.8. It is a serious problem only in the case of the trigonal system for crystals 

with a rhombohedral lattice where there are two almost equally ‘popular’ unit cells— 

unlike, say, the rhombohedral cells for the cubic F and cubic / lattices which are rarely 

used. In addition, in the trigonal and hexagonal systems it is possible to introduce, 

because of symmetry considerations, a fourth axis, giving rise to ‘Miller-Bravais’ plane 

indices and ‘Weber’ direction symbols, each of which consist of four, rather than three, 

numbers. This topic is covered in Section 5.7, but first the concept of a zone and zone 

axis needs to be explained, a topic which is covered in more detail in Section 5.6. 

A zone may be defined as ‘a set of faces or planes in a crystal whose intersections are 

all parallel’. The common direction of the intersections is called the zone axis. All 

directions in crystals are zone axes, so the terms ‘direction’ and ‘zone axis’ are syn¬ 

onymous. So much for the definition. The concept of a zone is readily understood by 



5.2 Indexing lattice directions—zone axis symbols 105 

examining an ordinary pencil. The six faces of a pencil all form or lie in a zone because 

they all intersect along one direction—the pencil lead direction—which is the zone axis 

for this set of faces. The number of faces in a zone is not restricted and the faces need 

not be crystallographically equivalent. For example, the edges of a pencil may be shaved 

flat to give a 12-sided pencil, i.e. an additional six faces in the zone. Or consider an 

orthorhombic crystal (Fig. 3.5(b)), or a matchbox. Each crystal axis is the zone axis for 

four faces, or two crystallographically equivalent pairs of faces. Each face lies in two 

zones; for example, the ‘top’ and ‘bottom’ faces of Fig. 3.5(b) lie in the zones which 

have the x- and y-directions as zone axes. In general, a face or plane in a crystal belongs 

to a whole ‘family’ of zones, the zone axes of which lie in or are parallel to the face. 

Verbal definitions are frequently rather clumsy in relation to the simple concepts 

which they seek to express. Take a piece of paper and draw on it some parallel lines. Fold 

the paper along the lines—and there you have a zone! 

5.2 Indexing lattice directions—zone axis symbols 

First, the direction whose symbol is to be determined must pass through the origin of 

the unit cell. Consider the unit cell shown in Fig. 5.1, which has unit cell edge vectors 

a, b, c (which are not necessarily orthogonal or equal in length)*. The steps for 

determining the zone axis symbol for the direction OL are as follows. Write down the 

coordinates of a point—any point—in this direction—say P—in terms of fractions of 

the lengths a, b and c, respectively. The coordinates of P are I, 0, 1. Now express these 

fractions as the ratio of whole numbers and insert them into [square] brackets without 

commas; hence [102]. This is then the direction or zone axis symbol for OL. Notice that 

if we had chosen a different point along OL—say Q—with coordinates |, 0, we would 

have obtained the same result. 

z 

c 

o 

N 

Fig. 5.1. Primitive unit cell of a lattice defined by unit cell vectors a, b, c. OL and SN are directions 

[102] and [ 110] respectively. 

* See Appendix 5 for a simple introduction to vectors. 
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Now consider the direction SN. To find its direction symbol the origin must be shifted 

from O to S. Proceeding as before (e.g. finding the coordinates of G with respect to 

the origin at S) gives the direction symbol [110] (pronounced one bar-one oh), the 

bar or minus sign referring to a coordinate in the negative sense along the crystal axis. 

Directions in crystals are, of course, vectors, which may be expressed in terms of 

components on the three unit cell edge pr ‘base’ vectors a, b and c. In the above example 

the direction OL is written 

r 102 = Is T Ob T 2c. 

The general symbol for a direction is [nvw] or, written as a vector, 

r uvw = ua + vb + wc. 

The direction symbols for the unit cell edge vectors a, b and c are [100], [010] and 

[001 ], and very often these symbols are used in preference to the terms v-axis, y-axis and 

z-axis. 

5.3 Indexing lattice planes—Miller indices 

First, for reasons which will be apparent shortly, the lattice plane whose index is to be 

determined must not pass through the origin of the unit cell, or rather the origin must 

be shifted to a comer of the cell which does not lie in the plane. Consider the unit cell in 

Fig. 5.2 (identical to Fig. 5.1 but drawn separately to avoid confusion). We shall determine 

the index of the lattice plane which is shaded and outlined by the letters RMS. It is 

important first to realize that this plane extends indefinitely through the crystal; the 

shaded area is simply that portion of the plane that lies within the unit cell of Fig. 5.2. 

It is also important to realize that we are not just considering one plane but a whole family 

of identical, parallel planes passing through the crystal. The next plane ‘up' in the 

family is also shaded within the confines of the unit cell and is outlined by the letters 

PGFH. There is a whole succession of such planes, including one which passes through 

the origin of the unit cell. 

Fig. 5.2. Primitive unit cell (identical to Fig. 5.1), showing the first two planes, RMS and PGFH, 

in the family. These planes are shaded within the confines of the unit cell. 
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Fig. 5.3. Sketch of Fig. 5.2 with the a and c unit cell vectors in the plane of the paper (b into the plane 

of the paper) showing traces JL, UO, RM, PG of a family of planes. 

A two-dimensional sketch (Fig. 5.3) of Fig. 5.2, with the x- and z-axes in the plane 

of the paper, and showing the traces of these planes extending into neighbouring cells, 

will make this clear. Figure 5.3 also shows that all the planes in the family are identical 

in that they contain the same number or sequence of lattice points. 

For RMS, the plane in the family nearest the origin, write down the intercepts of the 

plane on the axes or unit cell vectors a, b, c, respectively; they are \a,lb,lc. Expressed 

as fractions of the cell edge lengths we have ^ ,1,1. Now take the reciprocals of these 

fractions, and put the whole numbers into (round) brackets without commas; hence 

(211). This is the Miller index of the plane, so-called after the crystallographer, W. H. 

Miller*, who first devised the notation. Proceeding similarly for the next plane in the 

family, PGFH (and considering its extension beyond the confines of the unit cell), we 

have intercepts la,2b,2c, which expressed as fractions becomes 1,2,2; the reciprocals of 

which are which expressed as whole numbers again gives the Miller index (211). 

The plane through the origin, OU (Fig. 5.3), has intercepts 0, 0, 0 which gives an 

indeterminate ‘Miller index’ (oooooo), but this is merely expressive of the fact that 

another comer of the unit cell must be selected as the origin. The plane JL (Fig. 5.3) in 

the same family lies on the opposite side of the origin from RM and has intercepts — \a, 

— lb, — lc, which gives the Miller index (211) (pronounced bar-two, bar-one, bar-one), 

the bar signs simply being expressive of the fact that the planes are recorded from the 

opposite (negative axis) side of the origin. 

The general index for a lattice plane is (hkl), i.e. (working backwards), the first plane 

in the family from the origin makes intercepts a/h, b/k, dl on the axes. This provides 

us with an alternative method for determining the Miller index of a family of planes. 

* Denotes biographical notes available in Appendix 3. 
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Count the number of planes intercepted in passing from one comer of the unit cell to the 

next. For the family of planes (hkl) the first plane intercepts the x-axis at a distance a/h, 

the second at lalh, and so on; i.e. a total of h planes are intercepted in passing from one 

comer of the unit cell to the next along the x-axis. Similarly, k planes are intercepted 

along the y-axis and 1 planes along the z-axis. , 
Miller indices apply not only to lattice planes, as sketched in Fig. 5.2 and 5.3, but also 

to the external faces of crystals, where the origin is conventionally taken to be at the 

centre of the crystal. The intercepts of a crystal face will be many millions of lattice 

spacings from the origin, depending of course on the size of the crystal but the ratios of 

the fractional intercepts, and therefore the Miller indices, will be simple whole numbers 

as before. This is sometimes expressed as ‘The Law of Rational Indices’, the germ of 

which can be traced back to Haiiy—see, for example, his representation of the relation¬ 

ship between the crystal faces and the unit cell in dog-tooth spar (Fig. 1.2). 

When a crystal plane lies parallel to an axis its intercept on that axis is infinity, the 

reciprocal of which is zero. For example, the ‘front’ face of a crystal, i.e. the face which 

intersects the x-axis only and is parallel to the y- and z-axes, has Miller index (100); the 

‘top’ face, which intersects the z-axis is (001) and so on. It is useful to remember that a zero 

Miller index means that the plane (or face) is parallel to the corresponding unit cell axis. 

Although Miller indices never include fractions they may, when used to describe 

lattice planes, have common denominators and this occurs when the unit cell is non¬ 

primitive. Consider, for example, the lattice planes perpendicular to the x-axis in the 

cubic F unit cell (Fig. 5.4). Because of the presence of the face-centring lattice points, 

lattice planes are intersected every \a distance along the x-axis. The first lattice plane in 

the family, shown shaded in Fig. 5.4, makes fractional intercepts \ ,00,00 on the x-, y- and 

z-axes. The Miller index of this family of planes is therefore (200). To refer to them 

as (100) would be to ignore the ‘interleaving’ lattice planes within the unit cell. This 

distinction does not apply to the Miller indices of the external crystal faces, which are 
many millions of lattice planes from the origin. 

Z 

Fig. 5.4. A cubic F unit cell showing (shaded) the first plane from the origin of a family of planes 

perpendicular to the x-axis but with interplanar spacing all. 
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The procedure described above for defining plane indices may seem rather odd—why 

not simply express indices as fractional intercepts without taking reciprocals? The Law 

of Rational Indices gives half a clue, but the full significance can only be appreciated in 

terms of the reciprocal lattice (Chapter 6). 

5.4 Miller indices and zone axis symbols in cubic crystals 

Miller indices and zone axis symbols may be used to express the symmetry of crystals. 

This applies to crystals in all the seven systems, but the principles are best explained in 

relation to cubic crystals because of their high symmetry. 

The positive and negative directions of the crystal axes x, y, z can be expressed by the 

direction symbols (Section 5.2) as [100], [TOO], [010], [OlO], [001], [00l]. Because, in the 

cubic system, the axes are crystallographically equivalent and interchangeable, so also 

are all these six direction symbols. They may be expressed collectively as (100), the 

(triangular) brackets implying all six permutations or variants of 1, 0, 0. Similarly, the 

triad axis comer-to-comer directions are expressed as (111), of which there are eight (four 

pairs) of variants, namely, [111], [III]; [ill], [III]; [111], [ill]; [111], [III], Thediad 

axis (edge-to-edge) directions are (110), of which there are twelve (six pairs) of variants. 

For the general direction (uvw) there are forty-eight (twenty-four pairs) of variants. 

A similar concept can be applied to Miller indices. The six faces of a cube (with the 

origin at the centre) are (100), (100), (010), (0l0), (001), (00l). These are expressed 

collectively as planes ‘of the form’ {100], i.e. in [curly] brackets. Again, for the general 

plane {hkl} there are forty-eight (twenty-four pairs) of variants. 

In cubic crystals, directions are perpendicular to planes with the same numerical 

indices; for example, the direction [111] is perpendicular to the plane (111), or equiva¬ 

lently it is parallel to the normal to the plane (111). This parallelism between directions 

and normals to planes with the same numerical indices does not apply to crystals of 

lower symmetry except in special cases. This will be made clear by considering 

Figs 5.5(a) and (b), which show plans of unit cells perpendicular to the z-axis of a cubic 

and an orthorhombic crystal. The traces of the (110) plane and [110] directions are 

shown in each case. Clearly, the (110) plane and [110] direction are only perpendicular 

to each other in the cubic crystal. In the orthorhombic crystal it is only in the special 

Fig. 5.5. Plans of (a) cubic and (b) orthorhombic unit cells perpendicular to the z-axis, showing the 

relationships between planes and zone axes of the same numerical indices. 
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cases, e.g. (100) planes and [100] directions, that the directions are perpendicular to 

planes of the same numerical indices. 

5.5 Lattice plane spacings, Miller indices and Laue indices 

The calculation for lattice plane spacings (also called interplanar spacings or d-spa- 

cings), dhki, is simple in the case of crystals with orthogonal axes. Consider Fig. 5.6, 

which shows the first plane away from the origin in a family of (hkl) planes. As there is 

another plane in the family passing through the origin, the lattice plane spacing is simply 

the length of the normal ON. Angle AON = a (angle between normal and x-axis) and 

angle ONA = 90°. Hence 

OAcoso; = ON or (a/h)cos a — dhki or cos a = dhki- 

Given that /3 and 7 (not shown in Fig. 5.6) are the angles between ON and the y- and 
z-axes, respectively, then 

cos/3 = ( j )dm and COS7 = ( - )dm- 

For orthogonal axes cos2 a + cos2 (3 + cos2 7 = 1 (Pythagoras), hence 

a lhki t I <4w +1-1 dm = 1 

For a cubic crystal a = b — c, hence 

1 _h2 + k2 + l2 

dhki a2 

Z 

Fig. 5.6. Intercepts of a lattice plane (hkl) on the unit cell vectors a, b, c. ON = dhk! = interplanar 
spacing. 
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Finally, since cos a = (hla)dm, cos /3 = (kld)dm and cos 7 = (lla)dhki the ratios of the 

direction cosines cos a: cos (3: cos 7 for a cubic crystal equals the ratios of the Miller 

indices h: k: l. 

The concept of lattice planes and interplanar spacings is the basis of the concept 

of the reciprocal lattice (Chapter 6) and also Bragg’s law (Chapter 8)—an equation 

which every schoolboy (or girl) knows! 

nX = 2dhki sin 9 

where n is the order of reflection, A is the wavelength, dhki is the lattice plane spacing 

and 9 is the angle of incidence/reflection to the lattice plapes. However, it is very 

important, when using Bragg’s law, to distinguish between lattice planes and reflecting 

planes. 

Except in the cases of non-primitive cells discussed above (Section 5.3), indices for 

lattice planes do not have common factors. However, the indices for reflecting planes 

frequently do have common factors. They are sometimes called Laue indices and are 

usually written without brackets. Their relationship with Miller indices for lattice planes 

is best illustrated by way of an example. Apply Bragg’s law to the (111) lattice planes 

in a crystal: 

first-order reflection (n = 1): 1A = 2dm sin#i 

second-order reflection (n = 2): 2A = 2dm sin 62, etc. 

Now the order of reflection is written on the right-hand side, i.e. for the second-order 

reflection (n — 2) 

This suggests that second-order reflections from the (111) lattice planes of d-spacing 

dm can be regarded as first-order reflections from planes of half the spacing, dm/2. 

Halving the intercepts implies doubling the indices, so these planes are called 222 (no 

brackets) of d-spacing d222 = dm/2. These 222 planes are imaginary in the sense that 

only half of them pass through lattice points, but they are a useful fiction in the sense that 

the order of reflection, n in Bragg’s law, can be omitted. Continuing the above example, 

third-order reflections from the (111) lattice planes can be regarded as first-order 

reflections from the 333 reflecting planes (only a third of which in a family pass through 

lattice points). As mentioned above, these unbracketed indices are sometimes called 

Laue indices or reflection indices. 
However, it should be pointed out that, in practice, when analysing X-ray or electron 

diffraction patterns, crystallographers very often do not make this distinction between 

Miller indices and Laue indices, but simply refer, for example, to 333 reflections (no 

brackets) from (333) ‘planes’ (with brackets). This should not lead to any confusion, 

except perhaps in the case of centred lattices where lattice planes may have common 

factors. For example, the 200 reflecting planes in the cubic F lattice (Fig. 5.4) are also the 

(200) lattice planes, but the 200 reflecting planes in the cubic P lattice refer to second- 

order reflections from the (100) lattice planes. 
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5.6 Zones, zone axes and the zone law, the addition rule 

The concept of a zone has been introduced in Section 5.1. In this section some useful 

geometrical relationships are listed, the proofs of which are given in Section 6.5, in 

which use is made of reciprocal lattice vectors. It is possible, of course, to prove the 

relationships given below without making use of the concepUof the reciprocal lattice, but 

the proofs tend to be long, tedious and not very obvious. 

5.6.1 The Weiss* zone law or zone equation 

If a plane (hkl) lies in a zone [uvw] (i.e. if the direction [uvw] is parallel to the plane 
(hkl)), then 

hu + kv + Iw = 0. 

5.6.2 Zone axis at the intersection of two planes 

The line or direction of intersection of two planes in a zone (h\k\l\) and (h2k2l2) gives 
the zone axis, [uvw], where 

u = (hl2 - k2h); v = (l\h2 - hhif, w = (hxk2 - h2ki). 

To remember these relationships, use the following ‘memogranr: 

hx h h hi k\ h x; 
h2 hi h hi k2 h 

u V w 

Write down the indices twice and strike out the first and last pairs. Then u is given by 
cross-multiplying, i.e. 

u = (plus k112 minus k2l\), 

and similarly for v and w. 

5.6.3 Plane parallel to two directions 

To find the plane lying parallel to two directions [wiving] and [M2V2W2], write down the 
‘memogram’ 

U\ 
Vl W\ Ml Vi Wi 

■ >5; 
u1 V2 W2'v m2 t v2 H’2 

h k / 

and proceed as above, i.e.' h — (v\W2 — v2wi), etc. 

Denotes biographical notes available in Appendix 3. 
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Fig. 5.7. A monoclinic crystal (class m) in which the face P lies in two zones, one containing (101) and 

(110), the other containing (011) and (100). 

5.6.4 The addition rule 

Consider two planes (h\k\l\) and (h2k2l2) lying in zone. Then the index of another plane 

{HKL) in the zone lying between these planes is given by H = (mhi + nh2)\ 

K = (mk\ -f- nk2); L = (ml\ + nl2), where m and n are small whole numbers. 

The rule enables us to work out the indices of ‘in-between’ planes in zones. Consider, 

for example, the plane marked P in Fig. 5.7, which lies both in the zone containing (100) 

and (011) and the zone containing (101) and (110). We need a choose values of m and 

n such that adding the pairs of indices as above gives the same result for {HKL). This 

is much more easily done than said! The plane is (211), i.e. 

(101) + (110) = (211) {m — \, n = \) 

and 

(Oil) + 2(100) = (211) (m = 1, w = 2). 

5.7 Indexing in the trigonal and hexagonal systems: 

Weber symbols and Miller-Bravais indices 

As shown in Section 3.3, the rhombohedral and hexagonal lattices both consist of 

hexagonal layers of lattice points which in the rhombohedral lattice are ‘stacked’ in 

the ABCABC... sequence (Fig. 3.3(b)) and in the hexagonal lattice are ‘stacked’ in 

the AAA... sequence (Fig. 3.3(a)). In both cases, it is convenient to outline unit cells 

using the easily recognized hexagonal layers as the ‘base’ of the cells and with the z-axis 

(or c vector) perpendicular thereto. However, at least three choices of unit cell are 

commonly made and these are illustrated in the case of the hexagonal lattice in Fig. 5.8 

(the corresponding unit cells of the rhombohedral lattice differ only insofar as they 

contain additional lattice points of the B and C layers at fractional distances of k and 

| of the unit edge length along the z-axis). 

Figure 5.8(a) shows the primitive hexagonal unit cell, the smallest that can be chosen 

with the x- and y-axes at 120°. However, this is often inconvenient in that it does not 
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Fig. 5.8. Hexagonal net of the hexagonal P lattice showing (a) primitive hexagonal unit cell with the 

traces of the six prism faces indexed {hkl), (b) hexagonal (four-index) unit cell with the traces of the six 

prism faces indexed [hkil], (c) orthohexagonal (Base or C-centred) unit cell. The z-axis is out of the 

plane of the page. 

reveal the hexagonal symmetry of the lattice. For example, all the (pencil) faces parallel 

to the z-axis are crystallographically equivalent or of the same form, but their indices 

differ in type as shown—some have indices of the type (llO) and some have indices of 

the type (100). To overcome this problem a fourth axis—the a-axis—is inserted at 120° 

to both the x- andy-axes, as shown in Fig. 5.8(b). These are called Miller-Bravais axes jc, 

y, u, z (or vectors a, b, t, c) and the indices of the lattice planes, called Miller-Bravais 

indices, now consist of four numbers (hkil). The indices for the pencil faces are shown 

in Fig. 5.8(b) and they are all of the same form {lOlO}. Notice that, in all cases the sum 

of the first three numbers is zero, i.e. h + k + i = 0. As therefore i = — (h + k), is 

sometimes simply represented as a dot, i.e. {hk.l}. However, this unnecessary abbrevia¬ 

tion should be discouraged, as it defeats the object of using Miller-Bravais axes in the 
first place. 

Similarly, zone axis symbols, sometimes called Weber* symbols, consist of four 

numbers (UVTW). However, determining these numbers (i.e. determining the compon¬ 

ents of a vector using four base vectors in three-dimensional space) is not straightfor¬ 

ward. We cannot convert to 4-index Weber symbols (UVTW) from 3-index zone axis 

symbols (mvw) by ‘adding’ the third symbol T such that T = -(u + v) as we did for the 

i index in Miller-Bravais indices. We need to derive the relationship between (UVTW) 

and (mvw) as follows. For a vector specified in both systems to be identical: 

Ma + vb + wc = Ua + Vb + 7T + Wc. 

Since the x, y and u axes are at 120° to each other, the vector sum, a + b + t = 0. 
Substituting for t = — (a + b), 

ua + vb + wc = Va + Vb - T(a + b) + Wc, i.e. 

ua + vb + wc — (U- T)a + (V - T)b + Wc. 

Denotes biographical notes available in Appendix 3. 
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Hence we obtain the identities: 

w = (U — T)\ v — (V — T); w = W. 

To obtain the identities for the reverse transformation we impose the condition that 

U + V + T = 0 (in the same way that h + k + i = 0 for Miller-Bravais indices). 
Eliminating T the identities become: 

u = 2U + V-v=U + 2V\w=W 

and by adding/subtracting the first two equations we obtain: 
r 

U = 1/3(2u -v);V= l/3(2v -u)\T= -l/3(w + v); W = w. 

On this basis the zone axis symbols for the x-, y- and w-axes are [2lT0], [1210] and 
[1120] respectively. 

When using Miller-Bravais indices and Weber symbols the zone law 

hu + kv + Iw = 0 becomes (using the above identities) 

h(U - T) + k(V - T) + IW = 0 

i.e. hU + kV - (h + k)T + IW = 0 

and since i = —(h + k) the zone law for Miller-Bravais axes becomes: 

hU + kV + iT + IW = 0. 

Another unit cell—the orthohexagonal cell—is shown in Fig. 5.8(c). The ratio of the 

lengths of the edges, a / b is \/3. As with the primitive hexagonal cell this does not reveal 

the hexagonal symmetry of the lattice. This base-centred cell has the advantage that 

the axes are orthogonal and is particularly useful in showing the relationships 

between the crystals which have similar structures but where small distortions can 

change the symmetry from hexagonal to orthorhombic, i.e. in situations in which the 

ratio a/b is no longer precisely \/3. 

To summarize, great care must be taken in interpreting plane indices and zone axis 

symbols in the hexagonal and trigonal systems—an index such as (111) could refer to 

the primitive hexagonal or orthohexagonal unit cell, or it could even refer to the 

Miller-Bravais hexagonal unit call and be the contracted form of (1121), i.e. (11.1), in 

which the dot may have been omitted in printing! 

5.8 Transforming Miller indices and zone axis symbols 

As mentioned in Section 3.3, different choices of axes (i.e. different unit cells) 

are frequently encountered in trigonal crystals with the rhombohedral Bravais lattice 

and it is therefore important to known how to transform Miller indices and zone axis 

symbols from one axis system to the other. The appropriate matrix equations or 

transformation matrices are given in Section 5.9. However, the concept and derivation 
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c=C 

Fig. 5.9. Alternative unit cells in a lattice defined by unit cell vectors a, b, c and A, B, C. 

of transformation matrices are best understood by way of an easily visualized, in effect, 

‘two-dimensional’ example (Fig. 5.9) in which one of the axes (out of the plane of the 

paper) is common to both cells. 

Figure 5.9 shows a plan view of a lattice with two possible unit cells outlined by 

vectors a, b, c and A, B, C. The common vectors c = C lie out of the plane of the paper. 

The unit cell vectors A, B, C can be expressed as components of a, b, c: 

A = la + 2b + Oc 

B = la + lb + Oc 

C = Oa + Ob + lc. 

Now there are two ways of writing these three equations in matrix form; the vectors may 

either by written as column matrices: 

or as row matrices; 

(A B C) = (a b c) 2 1 0 

\0 0 1 

Notice that the rows and columns of the 3 x 3 matrix are transposed. 

Let (hkl) and [wvw] be the Miller* indices and zone axis symbols referred to the 

primitive unit cell a, b, c and (HKL) and [UVW] be the Miller indices and zone axis 

symbol referred to the ‘large’ unit cell A, B, C (which has three lattice points per cell). 

Consider first the transformation between the indices (hkl) and (HKL). Figure 5.9 

shows the trace pq of the first plane from the origin in a family of planes in the lattice. 

By definition, the intercepts of this plane are a/h on the a lattice vector, A/H on the 
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A lattice vector, b/k on the b lattice vector and so on. Or, recall the equivalent definition 

that h is the number of planes intersected along the a lattice vector, H is the number 

intersected along the A lattice vector, and so on; h is the number intersected along a (i.e. 

0 to R) and 2k is the number intersected along 2b (i.e. R to S). Hence, h + 2kis the total 

number of planes intersected along la + 2b (i.e. O to S) and, as A = la + 2b, then this 
number is the H index. Hence 

H=lh + 2k + 0l 

K = Ih + Ik + 0/ 

L = Oh + Ok + 1/, 

and the indices transform in the same way as the unit cell vectors, and again can be 

written in matrix form as column matrices or row matrices. We shall choose the row 
matrix form, viz. 

The relationship between [uvw] and [UVW] may be derived as follows. A vector r in 

the lattice is written in terms of its components on the two sets of lattice vectors, i.e. 

r = ua + vb + wc = UA + VB + W C. 

Substituting for A, B and C: 

wa + vb + wc = U( la + 2b + 0c) + Vila + lb + 0c) + W(0a + Ob + lc). 

Collecting terms together for u, v and w gives 

u = \ U+ IV + OW 

v = 2U+ IV + OW 

w = 0U + 0V+lW. 

Writing the zone axis symbols as column matrices gives 

Hence the same 3x3 matrix relates plane indices written as row matrices from 

the primitive to ‘large’ unit cell and zone axis symbols written as column matrices 

from the ‘large’ to the primitive unit cell. 
The reverse relationships are found from the inverse of the matrix. The procedures for 

inverting a matrix and for finding its determinant may be found in many A-level 
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mathematics textbooks. A simple ‘memogram’ method for a 3 x 3 matrix is given in 

Section 5.10. For this example the inverse matrix is given by 

hence 

and 

(hkl) = (HKL)- 
1 

1 1 0 
2 1 0 
0 0 3 

Finally, note that the determinant of the matrix equals 3 (and its inverse equals ^), the 

ratio of the volumes, or number of lattice points, in the unit cells. 

In transforming indices and zone axis symbols from one set of crystal axes to another 

it is usually best to work from first principles as above because it is very easy to fall into 

error by using a transformation matrix without knowing which conventions for writing 

lattice planes and directions are being used. 

5.9 Transformation matrices for trigonal crystals 

with rhombohedral lattices 

Figure 5.10 shows a plan view of hexagonal layers of lattice points stacked in the 

rhombohedral ABC... sequence. (See also Fig. 3.3(b).) (To avoid confusion only the 

A hexagonal layers are outlined.) The (primitive) rhombohedral unit cell with equi- 

inclined lattice vectors a, b, c is outlined, as is a unit cell of a non-primitive hexagonal 

unit cell with lattice vectors A and B at 120° to each other and C perpendicular to the 

plan view. Proceeding as described in Section 5.8, 

1 0 1 

(HKL) = (hkl) | 1 1 1 

0 I 1 

(\ 

(hkl) = (HKL) 

I l\ 

i l 

2. 
3 

where (HKL), [UVW] and (hkl), [uvw] refer to the Miller indices and zone axes symbols 

for the hexagonal and rhombohedral unit cells, respectively. Note that the determinants 

of these two matrices are 3 and ~ respectively, i.e. equal to the ratios of the number of 
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Fig. 5.10. A plan view of the hexagonal layers of lattice points, A, B and C, in the rhombohedral 

lattice. The rhombohedral unit cell and the triple hexagonal unit cell are outlined. 

lattice points in the two cells. Hence the hexagonal unit cell is known as a triple 

hexagonal cell because it contains three lattice points per cell. Note also that it is 

possible to choose the hexagonal A and B axes differently (e.g. rotated 60° to those 

shown in Fig. 5.10); this will give rhombohedral unit cells that are mirror-related, 

sometimes known as ‘obverse’ and ‘reverse’ unit cells. 

5.10 A simple method for inverting a 3 x 3 matrix 

This method has the advantage that we do not need to memorize a sign convention. We 

will use the matrix derived in Section 5.8 as an example: 

Step 1: Write out the matrix (top left) and repeat it three times as if it were the ‘motif 

of a pattern, thus: 

l 1 0 1 1 

2 1 

0 0 

1 1 0 1 I 

2 10 2 1 

0 0 10 0 

2 ! 1 0 

0 ! 0 1 

0 

0 

1 

0 

0 

1 

Step 2: Find the co-factor for each term. We will start with the term 1 in the first row and 

first column. ‘Look down’ towards the right (as indicated by the arrow) at the group of 

four terms (shown inside the dashed box) ; \ "q 

0 1 
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Cross-multiply these terms following the ‘memogram’ procedure (Section 5.6), 

i.e. 

The result, 1, is the co-factor. Repeal this procedure for all the other terms—for 

each term ‘look down’ towards the right, identify the group of four terms and cross- 

multiply them. For example, for T, the second term in the first row, the group of four 

terms is • 0 2 

1 0 

and the cofactor is 2. 

Step 3: Write down, following the above procedure, the matrix of co-factors, which is: 

1 2 0 

1 1 0 
0 0 3 

Step 4: The determinant, det, of the matrix is the sum of the terms in any row or any 

column multiplied by their co-factors. For example, for the first row: 

det = 1.1 + 1.2+ 0.3 = 3 

and for the second row: 

det = 2.1+ 1.1+0.3 = 3 

and for the second column: 

det = 1.2+ 1.1 +0.3 = 3 

(repeating in this way serves as a useful cross-check to see that you have not made any 

mistakes, particularly with signs). 

Step 5: the inverse of the matrix is found by transposing the matrix of co-factors 

(i.e. interchanging rows and columns) and by dividing by the determinant, hence: 

1 

3 

/I 1 °\ which is (l 1 0\ 

2 1 
° 

the inverse 2 1 
0 

\o 0 3/ of the matrix [o 0 l 

Exercises 

5.1 Write down the Miller indices and zone axis symbols for the slip planes and slip directions in 

fee and bcc crystals. (See also Exercise 1.5.) 

5.2 Which of the directions [010], [432], [210], [23l], if any, lie parallel to the plane (115)? 

Which of the planes (112), (321), (9112), (111), if any, lie parallel to the direction [111]? 

5.3 Write down the planes whose normals are parallel to directions with the same numerical 

indices in the triclinic, monoclinic and tetragonal systems. 
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5.4 Find the plane which lies parallel to the directions [131] and [Ol 1], Find the plane which lies 

parallel to the directions [102] and [Ill]. Find the direction which lies parallel to the 

intersection of the planes (342) and (103). Find the direction which lies parallel to the 

intersection of the planes (213) and (110). 

5.5 An orthorhombic crystal (cementite, Fe3C) has unit cell vectors (or lattice parameters) of 

lengths a = 452 pm, b = 508 pm, c = 674 pm. 

(a) Find the d-spacings of the following families of planes: (101), (100), (111) and (202). 

(b) Find the angles a, (5, 7 (Fig. 5.6) between the normal to the plane (111) and the three 

crystal axes. 

(c) Find the angles p, q, r between the [111] direction and the three crystal axes. Briefly 

explain why these angles are not the same as those in (b). 

5.6 Draw the directions (zone axes) [001], [010], [210], [110] in'a hexagonal unit cell, and 

determine their Weber zone axis symbols, (UVTW). 

5.7 Figure 3.2 shows the cubic I and cubic F lattices and the corresponding primitive rhombo- 

hedral unit cells. Study these figures carefully, then close the book and redraw them for 

yourself—to ensure that you understand the geometries of the cells in each case. Assign unit 

cell vectors A, B, C to the primitive rhombohedral cells and unit cell vectors a, b, c to the 

cubic I and cubic F cells and derive the transformation matrices for indices (hkl) ±5 (HKL) 

and direction symbols \UVW\ ±5 \11vw] in each case. 
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The reciprocal lattice 

6.1 Introduction 

The reciprocal lattice is often regarded by students of physics as a geometrical 

abstraction, comprehensible only in terms of vector algebra and difficult diffraction 

theory. It is, in fact, a very simple concept and therefore a very important one. It provides 

a simple geometrical basis for understanding not only the geometry of X-ray and 

electron diffraction patterns but also the behaviour of electrons in crystals—reciprocal 

space being essentially identical to ‘/c-space’. 
The concept of the reciprocal lattice may be approached in two ways. First, reciprocal 

lattice unit cell vectors may be defined in terms of the (direct) lattice unit cell vectors 

a, b, c, and the geometrical properties of the reciprocal lattice developed therefrom. 

This is certainly an elegant approach, but it very often fails to provide the student with 

an immediate understanding of the relationships, for example, between the reciprocal 

lattice of a crystal and the diffraction pattern. The second approach, which is the one 

adopted in this chapter, is much less elegant. It develops the notion that families of 

planes in crystals can be represented simply by their normals, which are then specified 

as (reciprocal lattice) vectors and which can then be used to define a pattern of (recip¬ 

rocal lattice) points, each (reciprocal lattice) point representing a family of planes. The 

advantage of this approach is that it accentuates the connections between families of 

planes in the crystals, Bragg’s law and the directions of the diffracted or reflected beams. 

The notion that crystal axes can be defined in terms of the normals to crystal faces 

belongs to Bravais* (1850) who called them ‘polar axes’ (not to be confused with current 

usage of the term which means axes or directions whose ends are not related by 

symmetry). However, the credit for the development of this idea to the concept of the 

reciprocal lattice, and the application of this concept to the analysis of X-ray diffraction 

patterns, belongs to P. P. Ewald*, whose story is told in Section 8.1. 

A study of the reciprocal lattice does require an elementary knowledge of vectors, 

their symbolism and some simple rules governing their manipulation (vector algebra). 

If you are unfamiliar with these topics, or wish to refresh your memory, Appendix 5 

provides all the information you will require in order to follow the rest of this chapter. 

6.2 Reciprocal lattice veeEors 

Consider a family of planes in a crystal (for example, those in Figs 5.2 or 5.3). 

Geometrically, the planes can be specified by two quantities: (1) their orientation in 

* Denotes biographical notes available in Appendix 3. 
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Fig. 6.1. (a) Traces of two families of planes 1 and 2 (perpendicular to tfie plane of the paper), (b) the 

normals to these families of planes drawn from a common origin and (c) definition of these planes in 

terms of the reciprocal (lattice) vectors d* and dj, where d, = Ktd\, d* = K/d2, K being a constant. 

the crystal and (2) their c/-spacings. Now, the orientation of the planes is given or defined 

by the direction of their normals. In Fig. 6.1(a) two families of planes, simply labelled 

‘planes 1’ and ‘planes 2’, are sketched ‘edge on’. Notice that the planes do not have the 

same ri-spacings and are not at right angles to one another—in short we are starting with 

a completely general case. In Fig. 6.1(b) the normals to these planes are drawn from 

a common origin and these specify the orientation of the planes but as yet give no 

information about their d-spacings. Now the d-spacings, d\ and d2 need to be specified. 

An ‘obvious’ way of doing this might be to make the lengths of the normals directly 

proportional to the <i-spacings, i.e. by expressing them as vectors with moduli equal to 

Kx (d-spacing) where K is a proportionality constant. However, this is not the way; 

instead, we make the lengths or the moduli of the vectors inversely proportional to the 

d-spacings, i.e. equal to KJd-spacing (where A" is a proportionality constant, taken as 

unity or, in X-ray or electron diffraction, as A, the X-ray electron wavelength), i.e. a 

longer vector, indicating a smaller ^-spacing. The reason for making the moduli of the 

vectors inversely proportional to the <i-spacings will be apparent shortly (recall also the 

inversion of the intercepts in the definition of Miller indices). These vectors are called 

Fig. 6.2. As Fig. 6.1, showing in Fig. 6.2(a) a third set of intersecting planes (planes 3), their normals 

in Fig. 6.2(b) and their reciprocal lattice vectors in Fig. 6.2(c). Note that d* + dj = dt and that the 

reciprocal lattice points do form a lattice. 



124 The reciprocal lattice 

Fig. 6.3. The five plane lattices (left) and plane reciprocal lattices (right) indicating the corresponding 

unit cells, lattice vectors a and b and reciprocal lattice vectors a* and b*. 
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reciprocal (lattice) vectors, symbols d* and d^, and are shown in Fig. 6.1(c). The ‘end 

points’ of the vectors (called reciprocal lattice points) are labelled 1 and 2, correspond¬ 

ing to the planes which they represent, and are usually denoted by little squares (as in 

Fig. 6.1(c)) instead of arrow-heads. Reciprocal lattice vectors have dimensions of 

1/length (for K = 1), i.e. reciprocal Angstroms, A-1, or reciprocal picometres, pm-1. 

For example, if d\ — 0.5 A, the length or modulus of d* (for K = 1) is 

i ,*| 1 °-i 

0.5A 

This completes the simple definition of reciprocal lattice vectors. But, like all simple 

concepts, it is capable of great development, which will be done for particular examples 

in the sections below. But first we need to show that the points do indeed form a grid or 

lattice—we have so far only two such points (plus an origin) in Fig. 6.1(c). Let us 

therefore add a third set of planes—‘planes 3’ to Fig. 6.1(a), as shown separately for 

clarity in Fig. 6.2(a). All the planes have common points of intersection. Figure 6.2(b) 

shows in addition the normal to planes 3 and Fig. 6.2(c) shows the reciprocal lattice 

vector dj and reciprocal lattice point 3. Without any calculations or measurement we can 

see intuitively that the reciprocal lattice points 1, 2 and 3 do indeed form a lattice as 

indicated by the dashed lines and that, by vector addition, d* + d* = djj. If you are not 

immediately convinced (and even if you are), it is worthwhile sketching some planes (of 

arbitrary spacings and orientations) as in Fig. 6.2(a) and then proceeding to draw their 

reciprocal lattice vectors as in Fig. 6.2(c). But first a practical note. In drawing crystals, 

and in sketching crystal planes, we have to use a ‘map scale’ in ‘direct space’, choosing a 
o 

scale to fit our piece of paper, e.g. 1 A equals 1 cm. So also when drawing reciprocal 

lattice vectors we have to use a quite separate ‘map scale’ in ‘reciprocal space’, e.g. 

1 A-1 equals 1 cm or 10 cm or 1 inch, as convenient. Strictly speaking we should add 

‘scale bars’ to drawings of crystals and crystal planes as we do for micrographs, giving 

the scale of the drawing in terms of A or nm or pm, as appropriate, and quite different 

‘scale bars’ to drawings of reciprocal lattices (as we ought to do for diffraction patterns) 

giving the scale of the reciprocal lattice/diffraction pattern in terms of reciprocal 

units; A-1, or nm-1 or pm-1 as appropriate. 

The five plane lattices (Fig. 2.4(a)) also have their reciprocal lattice counterparts as is 

shown in Fig. 6.3—a comparison which further emphasizes the reciprocal relationships 

between them. The unit cells of the plane lattices are specified by the lattice vectors 

a and b and the unit cells of the reciprocal lattices are specified by the reciprocal lattice 

vectors a* and b*, as explained in Section 6.3 below. 

6.3 Reciprocal lattice unit cells 

To avoid the pitfalls of making hasty assumptions about the relationships between 

reciprocal and (direct) lattice vectors, a monoclinic crystal will be used as an example. 

First, we shall draw the reciprocal lattice vectors in a section perpendicular to the y-axis 

(i.e. containing the a and c lattice vectors) from which we will find the reciprocal lattice 

unit cell vectors a* and c*. This then enables us to express reciprocal lattice vectors in 
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(b) (c) 

Fig. 6.4. (a) Plan of a monoclinic P unit cell perpendicular to the >'-axis with the unit cell shaded. The 

traces of some planes of type {hOI} (i.e. parallel to the y-axis) are indicated, (b) the reciprocal (lattice) 

vectors, d*hkl for these planes and (c) the reciprocal lattice defined by these vectors. Each reciprocal 

lattice point is labelled with the indices of the plane it represents and the unit cell is shaded. The angle 0* 

is the complement of 0. 

this section in terms of their components on these vectors. It is then a simple step to 

extend these ideas to three dimensions. 

Figure 6.4(a) shows a section of a monoclinic P lattice through the origin and 

perpendicular to the y-axis or b unit cell vector. The section of the unit cell is outlined 

by the lattice vectors a and c at the obtuse angle 0 and also the traces of some planes of the 

type (hOI) (i.e. those planes parallel to the y-axis). In Fig. 6.4(a), (and Fig. 6.7(a)) no 

distinction is made between Miller indices and Laue indices—the indices of the planes are 

all put in brackets whether or not they all pass through lattice points. 

Figures 6.4(b) and (c) show the reciprocal lattice vectors for these planes constructed 

in the same way as before (Section 6.2), with the reciprocal lattice points labelled with 

the index of the planes they represent. Note again the reciprocal relationships between 

the lengths of the vectors and the ^/-spacings, e.g. the (002) planes with half the 

d-spacing of the (001) planes are represented by a reciprocal lattice point 002, twice 

the distance from the origin as the reciprocal lattice point 001. Obviously, 003 will be 

three times the distance, and so on. 

It can be seen that the reciprocal lattice points (the ‘end points’ of the reciprocal lattice 

vectors) do indeed form a grid or lattice—hence the name. This is emphasized in Fig. 

6.4(c), which also shows the reciprocal lattice unit cell for this section outlined by 

reciprocal lattice cell vectors a* and' <£, where 

a* = d*00 and |a*| = l/dmo; c* = d*)01 and |c*| = 1/dooi- 

Note that a* and c* are not parallel to a and c, respectively, because the normals to the 

(100) and (001) planes in the monoclinic lattice are not parallel to a and c, respectively. 

Also the angle 0* between a* and c* is the complement of the angle 0. 
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(a) hOI section (b) hi I section 

Fig. 6.5. Sections of a monoclinic reciprocal lattice perpendicular to the b* vector or y*-axis. (a) hOI 

section through the origin 000, built up by simply extending the section in Fig. 6.4(c); (b) hll section 

(representing planes intersecting the y-axis at one lattice vector b) ‘one layer up’ along the b* axis. 

Figure 6.4(c) shows just part of the reciprocal lattice for the few planes we have 

labelled in Fig. 6.4(a). It can obviously be extended for many more planes and 

the reciprocal lattice points labelled by adding indices like coordinates, as is shown in 

Fig. 6.5(a), with the origin labelled 000. 

These ideas are readily extended to the third dimension; the b* vector is perpendicular, 

to the plane of the paper, normal to the (010) planes which are parallel to the plane of the 

paper, i.e. in the monoclinic system b is parallel to b* and the 010 reciprocal lattice point 

is ‘one step above’ 000 out of the plane of the paper. Similarly with all the other 

reciprocal lattice points whose k index is 1; the 011 reciprocal lattice point is ‘one 

step above’ 001 and so on. All these points form another layer, or section of the 

reciprocal lattice as shown in Fig. 6.5(b). Obviously we can build up as many sections 

of the reciprocal lattice, representing as many planes in the crystal, as we please; the 

‘ground floor’ layer containing the hOI reciprocal lattice points, the section one 

step along the b axis (the ‘first floor’ layer) containing the h\l reciprocal lattice points 

and so on. 
Now, before expressing these ideas in vector notation, we can reflect on what we have 

already achieved. First, we are able to represent any set of planes in a crystal by a single 

reciprocal lattice point: consider how difficult and confusing it would be to have to draw 

very many different planes in crystal in the same way as in Figs 5.2 or 5.3! Second, the 

indices (strictly the Laue indices since they have common factors) are represented 

simply as coordinates of reciprocal lattice points. 
In vector notation, the reciprocal lattice vectors can now be expressed in terms of their 

components of the reciprocal unit cell vectors a*, b*, c*. For example, for the (102) 

family of planes [Figs 6.4(b) and (c)] d*02 = la* + 0b* + 2c*, or, in general, 

d*hk, = ha* + kb* + Ic*. 
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oil 

Fig. 6.6. The reciprocal lattice unit cell of a monoclinic P crystal defined by reciprocal lattice vectors 

a*, b* and c*. (3* is the angle between a* and c*. 

Hence, just as direction symbols [wvw] are the components of a vector ruvw in direct 

space (Section 5.2), so also plane indices are the components of a vector d*hkl in 

reciprocal space. 
It is worth while rewriting these two equations once again to emphasize their 

importance and what might be called their symmetry: 

ruvw = ua + vb + wc 

(direction symbols are simply the components of a direct lattice vector) 

d*hkl = ha* + kb* + Ic* 

(Laue indices are simply the components of a reciprocal lattice vector). 

The reciprocal lattice unit cell of the monoclinic crystal is drawn in Fig. 6.6 in an 

orientation where the a*, b* and c* unit cell vectors and the reciprocal lattice points 

at the comers can be seen clearly. Notice that the idea of ‘layers’ of reciprocal lattice 

points applies (of course) to all orientations, for example the ‘bottom face’ of the cell 

contains the hkO reciprocal lattice points, the ‘top face’, one step along c* contains 

the hkl reciprocal lattice points—and so on. 

6.4 Reciprocal lattice cells for cubic crystals 

In crystals with orthogonal axes (cubic, tetragonal, orthorhombic) the reciprocal lattice 

vectors a*, b*, c* are parallel to a, b, c, respectively. Hence we have the further identities 

that a • b = 0, a* • b = 0, etc. The reciprocal lattice unit cell of a simple cubic crystal 

(cubic P lattice) is obviously a cube with reciprocal lattice points only at the corners. The 

reciprocal unit cells of the cubic I and cubic F lattices also have additional lattice points 

within the unit cells, i.e. they are also not primitive. This is illustrated for the case of the 

cubic / lattice in Fig. 6.7, which shows four unit cells with the z-axis perpendicular to the 

plane of the paper and the traces of several hkO planes (parallel to the z-axis) sketched 
•% 

in. Notice (for example) that in the direction of the x-axis the first set of lattice planes 

encountered is not (100) but (200) because of the presence of the additional lattice points 

in the centres of the cells (see also Fig. 5.4). Hence the reciprocal lattice vector in this 
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(a) (b) 

Fig. 6.7. (a) Plan of a cubic I crystal perpendicular to the z-axis and (b) pattern of reciprocal lattice 

points perpendicular to the z-axis. Note the cubic F arrangement of reciprocal lattice points in this plane. 

Fig. 6.8. (a) The cubic F reciprocal lattice unit cell of the cubic / (direct) lattice; (b) The cubic 

/ reciprocal lattice cell of the cubic F (direct) lattice. 

direction is equal to not d*00; similarly, in the direction of the y-axis it is dQ20. In the 

[110] direction, however, the first set of lattice planes encountered is (110), which 

gives a reciprocal lattice point in the centre of the face of the cell and the second-order 

220 reciprocal lattice point at the comer. Proceeding in this way we find that this section 

of the reciprocal lattice is face-centred. Repeating this procedure in the other sections 

gives a face-centred cubic reciprocal lattice (cubic F) (Fig. 6.8(a)) for the body- 

centred cubic (direct) lattic (cubic I)—the two are reciprocally related. In the same 

way, we find that the reciprocal lattice of the face-centred cubic lattice is body-centred 

(Fig. 6.8(b)). 
There is another way of looking at these reciprocal relationships. Recall that the cubic 

lattices may all be referred to rhombohedral axes (primitive cells) with axial angles at 

60° (cubic F), 90° (cubic P), and 109.47° (cubic /) (Section 3.2, Fig. 3.2). The recipro¬ 

cals of these cells are again rhombohedral cells with axial angles 109.47° (i.e. cubic /), 

90° (i.e. cubic P) and 60° (i.e. cubic F), respectively. 

Finally, just as we can define the environments around lattice points in terms of 

Voronoi polyhedra, or Wigner-Seitz cells (Section 3.4), so also can we define the 
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environments around reciprocal lattice points in just the same way and in this case the 

polyhedra are called Brillouin zones. Brillouin zones are useful in describing the energy 

states of electrons in metallic crystals. For a cubic F crystal, for which the reciprocal lattice 

is cubic /, the Brillouin zone is a truncated octahedron and for a cubic / crystal, for which 

the reciprocal lattice is cubic F, it is a rhombic dodecahedron (see Fig. 3.7(d) and (e)). 

\ 

6.5 Proofs of some geometrical relationships 

using reciprocal lattice vectors 

Some useful geometrical relationships stated without proof in Chapter 5 can be proved 

very simply using the concept of the reciprocal lattice and an elementary knowledge 

of vector algebra (see Appendix 5). The results are summarized in Appendix 4. 

6.5.1 Relationships between a, b, c and a*, b*, c* 

Consider, for example, c* (Fig. 6.4) and its relationships with a, b and c, which are 

redrawn for clarity in Fig. 6.9. showing in addition the angle 0 between c and c*. 

Since c* is perpendicular to both a and b, the scalar (or dot) products are zero, i.e. 

c* • a = 0, c* • b = 0 and similarly for a* and b*, i.e. a* • b = 0, a* • c = 0, b* • a = 0, 
b* • c = 0. 

Now consider the scalar product c • c* = c|c*| cos </>. However, since |c*| = 1/z/qoi by 

definition and c cos <f> = d0oi > then c • c* = dooiMioi = 1 and similarly for a • a* = 1 and 
b-b* = 1. 

6.5.2 The addition rule 

This rule is simply based on the addition of reciprocal lattice vectors. For example 
(Fig. 6.4(b)), d*02 = d*01 + do01 or, in general, 

(mhi +nh2)(mkl+nk2)(mll +nl2) ^m(h]kil\) ' ^n(h2k2h)' 

Fig. 6.9. Plan of a monoclinic unit cell perpendicular to the y-axis emphasizing the geometrical 

relationships between a, c and c* (see Fig. 6.4 and Section 6.5.1). 



6.5 Proofs of some geometrical relationships 131 

6.5.3 The Weiss zone law or zone equation 

If a plane (hkl) lies in a zone [uvw], then d*hkl is perpendicular to ruvw, i.e. d*hkl • ruvw = 0. 

Writing dhkl and ruvw in terms of their components, 

(ha* + kb* + lc*) • (ua + vb + wc) = 0. 

Hence 

hu ku + Iw = 0 because a* • a = 1, a* • b = 0, etc. 

The zone law can be generalized as follows. Consider the condition for a lattice point 

with coordinates uvw (or with position vector ruvw) to lie ,in a lattice plane (hkl) 

(Fig. 6.10). For the lattice plane passing through the origin, ruvw is perpendicular to 

d*hkl and hence hu + kv + Iw = 0 as before. Now consider the nth lattice plane which 

lies at a perpendicular distance ndhki from the origin. 
The condition for a lattice point to be in this plane is that the component of ruvw 

perpendicular to the planes should equal this distance; i.e. ruvw -i = ndhki where i is 

a unit vector perpendicular to the planes. Now, since by definition 

• dhki , 
1 = = dhkAki 

\dhki\ 

then 

hence 

r«yvv " dhk,dhki ndhki > 

I"uvw = n 

uvw 

Fig. 6.10. Diagram representing the geometry of the (generalized) zone law. A set of hkl planes are 

drawn ‘edge on’. When a lattice point uvw lies on a plane through the origin then hu + ku + Iw = 0; 

when a lattice point lies on the nth plane from the origin then hu + kv + Iw — n. 
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and, substituting for ruvw and d*hkl as before, 

hu + ku + Iw = n. 

6.5.4 d-spacing of lattice planes (hkl) , 
Recalling (Appendix 5) that the scalar'product of a vector multiplied by itself is the 

modulus squared: 

dL • dL = -]r = ^a*+ ^b* +/c*) ’ (^a* + ^b* +/c*)- 

Simple expressions are only obtained for crystals with orthogonal axes (orthorhombic, 

tetragonal, cubic) where a* • b* = 0 etc., i.e. for orthorhombic crystals; 

4- = ha* • ha* + kb* • kb* + Ic • Ic = \ 4 + 4 
J?,. a2 c2 lhki 

1 
since a* • a* = —r etc. 

6.5.5 Angle p between plane normals (h\k\l\) and (hik^zh) 

The angle p between two vectors a and b is given by (Appendix 5): 

cos p = 
a • b 

ab 

Hence: 

cos p = d/nftl/l 'ah2k2t2 

^h\k\l\ | |d/j2^2^2 

Again, substituting in terms of components gives a simple expression only for cubic 

crystals. 

6.5.6 Definition of a*, b*, c* in terms of a, b, c 

The volume of the unit cell V is given by a • (b x c) (see Appendix 5). Now, as (b x c) is 

a vector parallel to a* and of modulus equal to the area of the face of the unit cell defined 

by b and c, then a* = (b x c)/V = (b x c)/a • (b x c), and similarly for b* and 

c*. a, b and c can be defined in the same way, i.e. a = (b* x c*)/V*, and similarly for 

b and c, where V* is the volume of the reciprocal unit cell. 

Hence to summarize: 

bxc ,* cxa * axb 

—• b =~’ c - 

b* x c* c* x a* a* x b* 

V* ’ V* ’ c _ v* • 
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6.5.7 Zone axis at intersection of planes (hikdi) and (h^k-ih) 

The zone axis is defined by ruvw, the vector product of 

dMi/. and dW2- 

Substituting in terms of their components and remembering the identities a = 
(b* x c*) IV* etc., gives 

wa + vb + wc = a(&i/2 - k2f) + b{l\h2 - l2hx) + c(hxk2 - h2k\) 

therefore 

u — (k\l2 k2l\)\ v = (hh2 - /2/ii); w = (hik2 - h2k\). 

6.5.8 A plane containing two directions [uiV\Wi] and [U2V2W2] 

The plane is defined by d*hkl, the vector product of r„lVlWl and rU2V2W2. Proceeding as 

above gives 

h — (v\\v2 — V2W1); k = (w\u2 — w2u\)\ l = (u\v2 — u2v\). 

Exercises 

6.1 Derive the [0001] reciprocal lattice section for the hexagonal P lattice and [111] reciprocal 

lattice sections for the cubic I and cubic F lattices. 

6.2 Derive expressions for 1 /dm and cos p for orthorhombic crystals. 

6.3 Do the relationships derived in Section 6.4 apply also to non-cubic centred Bravais lattices 

and their reciprocal unit cells? 
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The diffraction of -light 

7.1 Introduction 

As introduced in Chapter 6, the reciprocal lattice is the basis upon which the geometry of 

X-ray and electron diffraction patterns can be most easily understood and, as we shall 

see in Chapters 8, 9 and 11, the electron diffraction patterns observed in the electron 

microscope, or the X-ray diffraction patterns recorded with a precession camera, are 

simply sections through the reciprocal lattice of a crystal—the pattern of spots on the 

screen or photographic film and the pattern of reciprocal lattice points in the correspond¬ 

ing plane or section through the crystal are identical. 

This also applies to the diffraction of light from ‘two-dimensional crystals’ such as 

umbrella cloths, net window curtains and the like and in which the warp and weft of the 

cloth correspond in effect to intersecting lattice planes. The diffraction patterns which 

we see through umbrellas and curtains are, in effect, the two-dimensional reciprocal 

lattices of these two-dimensional lattices. 

The important point to realize at the outset is that the reciprocal lattice is not merely an 

elegant geometrical abstraction, or a crystallographer’s way of formally representing 

lattice planes in crystals or two-dimensional nets, but that it is something we can ‘see 

for ourselves’. Indeed, in the case of light it is a familiar part of our everyday visual 

sensations. Furthermore, as explained in Section 7.2 below, when our eyes are relaxed 

and focused on infinity we see the patterns of spots and streaks around the lights from 

distant street lamps when viewed through umbrellas and net curtains, or the circles of 

haze around them on foggy nights quite clearly. Hence, it might be suggested that 

diffraction patterns constitute our first visual sensations, before we have learned to 

near-focus upon the world! 

The familiarity and ease of demonstration is the main justification or reason 

for considering the diffraction of light, but there are three others. First, there is a 

geometrical analogy between light and electron diffraction: in both cases the wave¬ 

lengths (of light and electrons) are small in comparison with the spacings of the 

diffracting objects (the fibre separations in woven fabrics or the lattice spacings in 

crystals). For example, the wavelength of green light (~0.5 pm) is about 500x smaller 

than the fibre spacings in nets and fabrics (~0.25 mm); similarly, the wavelength of 

electrons in a lOOkV electron microscope (~ 4.0 pm) is about lOOx smaller than 

the lattice spacings in crystals (~0.4nm). In both cases therefore (as explained in 

Sections 7.4 and 11.2) the diffraction angles are also small and electron diffraction 

patterns can, at least initially, be interpreted as sections through the reciprocal lattice of 
the crystal. 
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The geometry of X-ray diffraction patterns is rather more complicated because the 

wavelengths of X-rays (~0.2nm) are roughly comparable with the lattice spacings in 

crystals. Hence the diffraction angles are large (Sections 8.2, 8.3, 8.4 and 9.5) and X-ray 

diffraction patterns are in a sense ‘distorted’ representations of the patterns of reciprocal 

lattice points from crystals, the nature of the ‘distortion’ depending upon the particular 
X-ray technique used. 

The second reason for considering the diffraction of light is that it provides a simple 

basis or analogy for an understanding of how and why the intensities of X-ray diffrac¬ 

tion beams vary (Section 9.1), line broadening and the occurrence of satellite reflec¬ 

tions (Section 9.6). The analogy is provided by a consideration of the diffraction grating, 

which is, in effect, a one-dimensional crystal. There are three variables to consider in the 

diffraction of light from a diffraction grating—the line or slit spacing, the width of each 

slit and the total number of slits. The slit spacing corresponds to the lattice spacings in 

crystals and determines the directions of the diffracted beams, or, in short, the geometry 

of the diffraction patterns. The width of the slits determines, for each diffracted beam 

direction, the sum total of the interference of all the little Huygens’ wavelets which 

contribute to the total intensity of the light from each slit (Section 7.4), which is 

analogous to the sum total of the interference between all the diffracted beams from 

all the atoms in the motif. In short it is the lattice which determines the geometry of 

the pattern and the motif which determines the intensities of the X-ray diffracted beams. 

The analogy, however, must not be pressed too far because it takes no account of the 

dynamical interactions between diffracted beams, i.e. the interference effects arising 

from re-reflection (and re-re-reflection etc.) of the direct and diffracted/reflected beams 

as they pass through a crystal. This desideratum is particularly important in the case of 

electron diffraction. Finally, the total number of slits in a diffraction grating determines 

the numbers and intensities of the satellite or subsidiary diffraction peaks each side of 

a main diffraction peak—the greater the number of slits, the greater the numbers and 

the smaller are the intensities of the satellite peaks. In most X-ray and electron diffrac¬ 

tion situations the total number of diffracting planes is so large that satellite peaks are 

unobservable and of no importance, but in the case of X-ray diffraction from thin film 

multilayers, consisting not of thousands but only of tens or hundreds of layers, the 

numbers and intensities of the satellite peaks are important and useful. 

Third, it is the diffraction of light which sets a limit, ‘the diffraction limit,’ to the 

resolving power or limit of resolution of optical instruments, in particular telescopes and 

microscopes, and is therefore of utmost importance to an understanding of how these 

instruments work. The diffraction limit however is not unsurmountable and it is an 

important characteristic of modem microscopical techniques—for example scanning 

tunnelling, atom force, or near field scanning optical microscopes—that they overcome 

this limit by virtue of the close approach of a fine probe to a specimen surface. 

Finally, to generalize the point made in the first paragraph, the reciprocal relationship 

between an object and its diffraction pattern is formally expressed by what is known 

as a Fourier transform, which is a (mathematical) operation which transforms a func¬ 

tion containing variables of one type (in our case distances in an object or displacements) 

into a function whose variables are reciprocals of the original type (in our case 

1/displacements). The reciprocal lattices which we worked out in Chapter 6 using 
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very simple geometry are, in fact, the Fourier transforms of the corresponding (real) 

lattices. 
In this sense diffraction patterns may be described as ‘visual representations’ or 

‘images’ of the Fourier transforms of objects—irrespective as to whether they are 

generated using light, X-rays or electrons. In the case of light, diffraction patterns are 

often described as the ‘optical transforms’ of the corresponding objects. 

7.2 Simple observations of the diffraction of light 

The diffraction of light is most easily demonstrated using a laser—the hand-held types 

which are designed to be used as ‘pointers’ on screens for lecturers are more than 

adequate and are relatively safe (but you should never look directly at the laser light). 

Many everyday objects may be used as ‘diffraction gratings’ either in transmission or 

reflection—fabrics, nets, stockings (transmission) or graduated metal rulers (reflection) 

and the resultant diffraction patterns may be projected on to a wall or screen. Such 

experiments will quickly make apparent the inverse or reciprocal relationships between 

the spacings of the nets, graduations etc. and the spacings between the diffracted spots. 

For example, when laser light is reflected from a graduated metal scale or ruler, in 

addition to the mirror-reflected beam, diffracted beams will be observed on each side; 

the spacings of these will change as the angle of the surface of the ruler to the laser 

beam (and hence the apparent spacings between the graduations) is changed, but, more 

convincingly, when the beam is shifted from the mm’ to the ‘1 mm’ graduated regions 

of the ruler, the spacings of the diffraction spots are halved. However, it is probably 

better to begin with the familiar diffraction patterns which are obtained with a simple 

point source of light and a piece of fabric with an open weave and which moreover serve 

to emphasize some important ideas about the angular relationships between the dif¬ 

fracted beams. A point-source of light may in practice be a distant street lamp or, in order 

to conduct the experiments indoors, a mini torch bulb or a domestic light bulb placed 

behind a screen with a pinhole (or a fine needle hole) punched into it. Nylon net curtain 

material is an effective fabric to use—the filaments of nylon which make up the strands 

are tightly twisted giving sharply defined transparent/opaque boundaries. 

Observe the point source (which should be at least 5 m distant) through the net. The 

image of the point source will be seen to be repeated to form a grid (or reciprocal lattice) 

of diffraction spots (Fig. 7.1(a)). In general the spots are of greatest intensity, and are 

streaked, in directions perpendicular to the lines or strands of the net. 

These familiar observations may be supplemented by two more. First the same pattern 

of spots is seen whether both, or only one, eye is used. Second the size of the pattern— 

the apparent spacings of the spots—is independent of the position of the net. The 

diffraction pattern appears to be unchanged, irrespective of whether the net is held away 

from, or close to the eyes (Fig. 7.1(b))1. These observations show that the diffraction 

spots or diffracted beams bear fixed angular relationships to the direct beam. 

1 If the light falling on the net is not parallel but is slightly diverging (i.e. the point source is not effectively at 
infinity), then the apparent spacing of the spots will change slightly as the net is held at different distances from 
the eyes. 
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Fig. 7.1. (a) A diffraction pattern from a piece of net curtain with a square weave. The outline of the net 

is indicated by the white frame. Note that two rows of strong spots and the fainter spots forming a square 

grid diffraction pattern, (b) The diffraction pattern is identical in scale when the net is brought closer to 

the observer’s eye. (c) Rotating the net about a vertical axis reduces the effective spacing of the vertical 

lines of the weave, resulting in diffraction spots in the horizontal direction which are further apart, 

(d) Shearing or distorting the net such that the strands or lines are no longer at 90° to each other results 

in a diffraction pattern ‘sheared’ in the opposite sense—the rows of strong diffraction spots remain 

perpendicular to the lines of the net. 

The reciprocal relationship between the net and diffraction pattern may be demon¬ 

strated in two ways. First, a net with a finer line spacing will be found to give diffraction 

spots more widely spaced. If a finer net is not available, the effective spacing of the lines 

may be decreased by rotating the net such that it is no longer oriented perpendicular to 

the line of sight to the light (Fig. 7.1(c)). Secondly, the net may be twisted or sheared 

such that the strands—the weft and the warp—no longer lie in lines at 90° to each other. 

It will be seen that the rows of strong diffraction spots rotate in such a way that they 

continue to lie in directions perpendicular to the lines of the net—the grid of diffraction 

spots is reciprocally related to the sheared lattice (Fig. 7.1(d)). 

These reciprocal relationships are analogous to those shown for a set of planes in a 

zone parallel to the y-axis in a monoclinic crystal (corresponding to the net, Fig. 6.4(a)) 

and its reciprocal lattice section (corresponding to the diffraction pattern, Fig. 6.4(c)). 

The observation that the size of the pattern is independent of the position of the net, 

and that it is seen to be identical with both eyes, may be explained by reference to 
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(a) 

(b) 

Fig. 7.2. (a) Parallel light (from a distant point source) falls on the net and is diffracted; only one set of 

diffracted beams is shown. The region of the net contributing to the diffracted light entering the eye of 

the observer is indicated by brackets, (b) As the net is moved towards the eye, the region of the net which 

contributes to the diffracted light entering the eye is different. The angular relationship between the 

direct and diffracted light at the eye remains unchanged. 

Fig. 7.2. The light from a point source radiates out in all directions, but if it is distant 

then that part incident upon the net is (approximately) parallel. 

Figure 7.2 shows a parallel beam of light from a (distant) source with the net held 

away from the eye (Fig. 7.2(a)) and closer to the eye (Fig. 7.2(b)). One set of diffracted 

beams from the net is shown. Of all the direct light and diffracted light from the net, 

only a portion will enter the eye. The portion of the net from which the diffracted light 

entering the eye originates changes as the net is moved: the further the net is moved 

away from the eye the greater the contribution from its outer regions (compare Fig. 7.2(a) 

with Fig. 7.2(b)). However, for incident parallel light, irrespective of the position of the 

net, the angular relationship at the eye between the direct and diffracted beams, and 

hence the apparent size of the diffraction pattern, remains unchanged. And what is true 

for one eye is true for both eyes; you do not need to squint, or keep your head still: the 
diffraction pattern remains unchanged. 

> 
Fig. 7.3. Diffracting apertures (reproduced as black dots on a white background) (left) and their 

corresponding diffraction patterns (or optical transforms) (right) taken using a laser, (a), (b) and (c) show 

the diffraction patterns (Airy discs and surrounding haloes or rings) from circular apertures of increasing 

diameters, (d) shows the diffraction pattern from a 4 x 5 net of small apertures (as in (a)). Note the 

reciprocal relationship between the net and the diffraction pattern, the 2 x 3 number of subsidiary peaks 

in each direction and the overall variation in intensity of the diffraction pattern in accordance with that 

for a single aperture (a), (e) shows that for a net of many apertures the subsidiary maxima are not 

discernible. (From Atlas of Optical Transforms by G. Harbum, C. A. Taylor and T. R. Welberry, Bell 

and Hyman, 1983, an imprint of HarperCollins Publishers Ltd.) 
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When using lasers to observe diffraction, a narrow, parallel beam of monochromatic 

light is available, as it were, ready made. Hence, unlike the previous situation, the 

diffraction pattern can be recorded on a screen because the diffracted beams all originate 

from the same small area of the net which is illuminated by the laser. (In the previous 
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case, Fig. 7.2, because the diffracted beams originate from a large area of the net, they 

will correspondingly be ‘blurred out’ when they fall on a screen.) Only if most of the 

incident light is ‘blocked off such that only a small area of the net is exposed (or 

illuminated in the case of a laser) will a (faint) diffraction pattern be recorded. These 

points are best appreciated by ‘self modifying’ Fig. 7.2. Reqaove the ‘eye’ and extend all 

the arrows showing the diffracted beams: notice how broad is the width of the total 

beam. Now ‘block off all the beams except those passing through a small (bracketed) 

area of the net and add a screen, in place of the eye, on the right. The direct and diffracted 

spots will be about equal to the area of the diffracting net (or the diameter of the laser 

beam), and their separation will increase the more distant is the screen. 

The reciprocal relationship between the diffracting object and its diffraction 

pattern also extends to the shapes and sizes of the diffracting apertures (the ‘holes’ in 

the net) as well as their spacings. However, this is not easy to demonstrate simply 

without a laser carefully set up on an optical bench, with diffracting apertures of various 

shapes and sizes and appropriate lenses to focus the diffraction patterns (see Section 7.4 

below). 

Figure 7.3 shows a sequence of pinholes or apertures and the corresponding 

diffraction patterns using a laser as a coherent source of light (see Section 7.3). Figures 

7.3(a)-(c) show the diffraction patterns (right) from the simplest apertures (left)—single 

pinholes of various sizes (which may be simply made by punching holes in thin 

aluminium foil and observing the diffraction pattern on a screen in a darkened room). 

The diffraction patterns consist of a central disc (of diameter greater than the geo¬ 

metrical shadow of the pinhole) surrounded by much fainter (and sometimes difficult to 

see) annuli or rings; notice that the diameters of the disc and rings decrease as the 

diameter of the aperture increases. Figure 7.3(d) shows the diffraction pattern (right) 

from a rectangular net or lattice (left) of 20 (4 by 5) of the smallest apertures. There are 

three things to notice about this net and its associated diffraction pattern. First, the 

reciprocal relationship between the unit cell of the net and that of the diffraction pattern 

(see also Fig. 7.1(c)); second the intensities of the diffraction spots which vary in the 

same way as the intensities of the central disc and rings from a single aperture 

(Fig. 7.3(a)), and third that there are faint spots, or subsidiary maxima, between the 

main diffraction spots. Finally, Fig. 7.3(e) shows the diffraction pattern (right) from a 

square net of many small apertures (left). The diffraction spots all lie within the region of 

the large central disc from a single small aperture and the subsidiary maxima between 
the main diffraction spots are no longer evident. 

7.3 The nature of light: coherence, scattering and 

interference 
« 

In the previous section we surveyed the phenomenon of diffraction: the pattern of beams 

which occur when light passes through pinholes and nets or is reflected from graduated 

rulers. We examined the conditions under which diffraction patterns can be observed 

either by looking at a point source of light through a net, or when using a laser, by 

projection onto a screen. Finally we observed the inverse or reciprocal relationship 

between the diffracting object and the diffraction pattern. All these observations need 
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to be explained and given a quantitative basis (Section 7.4), but before doing so we 

need to know something of the nature of light itself and the notions of coherence, 
scattering and interference. 

The nature of light is expressed through the ‘working models’ which seek to describe 

it. Physics provides us with two such models—light as ‘particles’ (photons or quanta) 

and light as waves. These working models are not contradictory or opposed; rather 

they express different aspects of the quantum-mechanical interpretation of light and 

matter. Visible light occupies a very small part of the whole spectrum of electro¬ 

magnetic radiation, with a wavelength range from about 400 nm (violet-blue) to about 

700nm (red). In the range below we have ultraviolet ( ~400nm—1 nm), X-rays 

(~ 10 nm — 10 pm), and the very shortest, 7-rays (~ 10 pm —10 fm). In the range above 

we have infrared (~700nm — 1 mm), microwaves (~ 1mm — 500mm) and, the very 

longest, radio waves (~500 mm— 100 km). 

Light (in common with all other electromagnetic radiation) has both wave-like and 

particle-like character which are linked by an equation of great simplicity—Planck’s 

equation: E = hc/X, where E is the energy of the photon (a particle-like quantity), c is 

the velocity of light (~3 x 108 ms-1), A is the wavelength (a wave-like quantity) and 

h is the Planck constant (6.6256 x 10-34 J s). Notice that the smaller is the wavelength, 

the higher is the energy of the photon—a matter of great physiological and practical 

importance: we are all continuously bathed in radio waves with no ill effects, but a short 

exposure to X-rays or 7-rays results in severe damage to our body tissues. Light 

obviously occupies an important niche in between. 

Matter—electrons, protons, particles of any sort—also has wave-like as well as 

particle-like character, which are similarly linked by de Broglie’s equation, A = h/mv, 

where m and v are the mass and velocity of the particle respectively and A is the 

wavelength. As before, the ‘linking constant’ between the particle-like and wave-like 

character is h, the Planck constant. 

The notion that light has both particle-like and wave-like character reaches back to the 

seventeenth century and the work of Isaac Newton* and Christiaan Huygens*. Newton 

has been represented as the advocate of the particle or ‘corpuscular’ theory of light and 

Huygens the advocate of the wave theory of light. Certainly Huygens’ simple and 

elegant interpretation of reflection and refraction in terms of wavefronts made up of 

the envelopes of secondary waves or wavelets, which was taken up and extended by 

Thomas Young* and Augustin Jean Fresnel* early in the nineteenth century, has been 

far more fruitful than Newton’s corpuscular theory. However, it is clear from his 

own writings that Newton himself was undecided. In his great work Opticks there are 

a number of Queries which represent his reflections on his life’s work on the properties 

of light. In Query 13 he asks: 

Do not several sorts of Rays make Vibrations of several bignesses, which accord¬ 

ing to their bignesses excite Sensations of several Colours? 

1 Denotes biographical notes available in Appendix 3. 
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and in Query 17: 

considering the lastingness of Motions excited in the bottom of the Eye by Light, 

are they not of a vibrating nature? 

+ 

Light originates from the transitions of electrons which occur within excited atoms, 

excited by virtue of being at a high temperature, as in lamp filaments and the Sun, or by 

simulated emission, as in a laser. The physics of the processes in either case does not 

concern us; the important point is that each atom emits a wavetrain for a period of time 

(about 10-8 s for lamp filaments; or from about 10-12 s for pulsed lasers to indefinite 

times for continuous lasers). In the former cases the wave is therefore not infinite in 

extent, but begins and ends, like a group of ripples moving outward from a point where 

a stone has been thrown into a pond. It is called a wavetrain or a photon, so leading 

back, in a sense, to the corpuscles of Newton. The length of each wavetrain depends 

on the velocity of light, 3 x 108ms_1 in air, and the period of emission; for lamp 

filaments a wavetrain is typically about 3 m long (3 x 108 ms-1 x 1CT8 s) and for lasers 

from about 0.3 mm long (3 x 108 ms-1 x 10-12 s) to much longer lengths (for ‘contin¬ 

uous’ lasers). 
For lamp filaments there are, in general, no phase relationships between the individual 

wavetrains; they overlap and follow on each other’s heels without any registration 

between the individual ‘peaks’ and ‘troughs’. Furthermore, the vibration directions of 

each wavetrain will be more or less random—and the light is said to be natural or 

unpolarized. 
Light from an extended source is said to be incoherent. Interference will occur 

spasmodically as it were, between the peaks and troughs of adjacent similarly polarized 

wavetrains, but the net effect is zero. Coherence, the condition which gives rise to 

clearly defined diffraction beams, is only achieved by a point source, a small part of an 

extended source (which condition is fulfilled by the distant street lamp) or by a laser. 

The condition for coherence may be illustrated by an example. Consider a distant light 

source shining on two slits (or pinholes). Figure 7.4 shows the arrangement with a point 

source, a wavetrain ‘on its way’ and at its arrival at the same time at the slits. The slits, 

in turn, will act as secondary waves or sources of light according to Huygens’ construc¬ 

tion—the peaks and troughs of the waves being ‘in step’ with each other. As the waves 

spread out they meet and interfere—where peak meets peak or trough meets trough we 

have reinforcement or constructive interference, and where peak meets trough we have 

cancellation or destructive interference. In Section 7.4 we shall determine the particular 

angles or directions in which constructive and destructive interference occur. The 

important point to note now is that the geometrical conditions for interference which 

apply to just one wavetrain apply ta all the wavetrains, and the resultant pattern of light 

and dark on the screen is the diffraction pattern. The words ‘diffraction pattern' are a 

very inadequate description of the physical processes which are involved and the words 

or phrase ‘diffraction (or scattering)-followed-by-interference-between-the-diffracted 

(or scattered)-beams-pattern’ would be more accurate, albeit rather long-winded! 

Now consider the situation when the slits are illuminated by separate light sources, 

or by an extended source. Separate sets of wavetrains from different parts of the source 
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Fig. 7.4. A diagram of a distant light source emitting coherent wavetrains. When one of these strikes 

a screen which has adjacent slits, the shts act as secondary sources of light according to Huygens’ 

construction, which then meet and interfere (from Qualitative Polarized Light Microscopy by P. C. 

Robinson and S. Bradbury, Oxford University Press/Royal Microscopical Society, 1992). 

will arrive independently at the slits and thus the secondary waves emanating from 

each slit will bear no relationship with each other. To be sure, when ‘peak meets 

peak’ constructive interference will occur and where ‘peak meets trough’ destructive 

interference will occur—but these effects will be quite random in space and will cancel 

out: the light in this situation is said to be incoherent. Laser light, by contrast, is highly 

coherent. 

7.4 Analysis of the geometry of diffraction patterns from 

gratings and nets 

We will now analyse the diffraction phenomena described in Section 7.1 by considering 

the constructive and destructive interference conditions for all the scattered waves 

which emerge from nets and apertures of different sizes, shapes and spacings. We will 

do this step-by-step by first considering diffraction from a grating, which consists of 

a set of parallel lines engraved or photographed on to a glass or a polished metal plate. 

Diffraction occurs when light passes through the transparent ‘slits’ between the lines, or 

when it is reflected from the metal ‘strips’. The constructive and destructive interference 

conditions in each case are identical, but it is much easier to draw the transmission case 
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because the incident and diffracted beams do not overlap. This situation is analogous to 

the ray diagrams used in light microscopy; it is simpler to demonstrate image formation 

in transmitted light microscopy by showing light passing from the condenser and 

through the specimen and objective iens to the eyepiece rather than light passing in 

two directions through the condenser/objective lens as it ^reflected from the specimen 

as in reflected light microscopy. \ 
The conditions for constructive/destructive interference from a set of parallel slits 

will, fairly obviously (ignoring end effects), be the same all along their length and the 

diffraction pattern will be a series of light/dark bands (corresponding to constructive and 

destructive interference conditions, respectively) running parallel to the slits. A net may 

be regarded as a two-dimensional grating, with a criss-cross pattern of slits, or two 

gratings superimposed upon each other with their slits running in different directions. 

Each grating will give rise to its own diffraction pattern of light/dark bands, but the net 

effect is that constructive interference will only occur when the light bands intersect and 

reinforce—giving rise to the observed diffraction peaks or spots. Hence, consideration 

of the, in effect, ‘one-dimensional diffraction’ case of a grating will lead us to a complete 

analysis of the ‘two-dimensional diffraction’ case of a net. 

First we will consider diffraction from a grating made up of very narrow or thin slits 

spaced distance a apart in which each slit is the source of just one Huygens’ wavelet 

across its width; from this we will determine the conditions for constructive interference 

and therefore the directions of the diffracted beams. By simply extending the analysis to 

two dimensions we will demonstrate the reciprocal relationship between the diffracting 

net and the positions of the spots in the diffraction pattern. Then we shall consider 

diffraction from a wide aperture—a circular hole or wide slit which is the source of not 

one but many Huygens’ wavelets and we shall see that this modifies the intensities, but 

does not change the positions, of the diffracted spots. Finally we shall consider gratings 

or nets of limited extent and will show how this leads to the occurrence of subsidiary 
peaks or spots. 

Fig. 7.5. A set of lines in the net acts as a diffraction grating, each slit acting as the source of a single set 

of Huygens’ wavelets. The diffracted beam is drawn for a path difference of one wavelength. 
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Diffraction 

Fig. 7.6. A plane wavefront (parallel light) incident upon a grating may be achieved by inserting a lens 

(left) with the point source at its focus. Conversely, the parallel ‘pencils’ of the direct and diffracted light 

may be sharply focused onto a screen or photographic plate by inserting another lens (right). (Compare 

with Fig. 7.5.) 

Figure 7.5 shows just part of a diffraction grating—a one-dimensional net—consist¬ 

ing of many narrow slits distance a apart. The incident light is shown as parallel beams 

from a distant source (i.e. a plane wavefront). This special case is sometimes called 

the case of Fraunhofer* diffraction as opposed to the case of Fresnel* diffraction in which 

the source is not distant and the wavefront is an arc, as shown in Fig. 7.4. Of course they 

are not different ‘types’ of diffraction, it is simply that Fraunhofer diffraction is simpler to 

treat mathematically. However, Fresnel diffraction may in practice be ‘converted’ to 

Fraunhofer diffraction by inserting a converging (positive) lens into the light beam with 

the point source at its focus and from which of course emerges parallel light (Fig. 7.6). 

Each narrow slit (Fig. 7.5) acts as a single source of Huygens’ wavelets spreading out 

in all directions. Constructive interference occurs in those directions where the path 

difference (AB) between adjacent slits equals a whole number of wavelengths, i.e. 

AB = nX = a sin a„ 

where a = the line (or lattice) spacing and a„ = the diffracted angle for the nth order 

diffracted beam. Since A ~ 0.5 pm and typically a ~ 0.5-2 mm, then, as pointed out in 

Section 7.1, the diffraction angles are small (because a A) and sincp, ~ an. Hence, 

for the first few visible diffraction orders AB = nX = aan, from which the angle 

an — nX/a: here we have the reciprocal relationship between the diffraction angles, 

otn, and lattice spacing, a. 

The screen on which the diffracted beams fall (not shown in Fig. 7.5) should be a long 

distance from the grating compared with its width—and of course the further it is 

away the greater is the separation between the beams. This may, in practice, be 

rather inconvenient, but the inconvenience may be overcome by placing a converging 

* Denotes biographical notes available in Appendix 3. 
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(positive) lens after the grating and placing the screen at its focal point such that the 

‘pencils’ or parallel light of the direct and diffracted beams are sharply focused there 

(Fig. 7.6). The presence of such a lens does not modify in any way our understanding of 

the diffraction and interference phenomena at the grating and is best ‘left out' of 

diagrams because it may appear to complicate the ray patljs unnecessarily. 
Figure 7.7(a) shows diagrammatically the diffraction pattern from such a grating— 

a central maximum or peak with the first, second, third, order etc. diffracted beams each 
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Fig. 7.7. Diagrams of the diffraction patterns from gratings and a single slit as a function of angle a; 

the intensities of the peaks are represented only qualitatively, (a) The diffracted beams for a narrow-slit 

grating of spacing a. Constructive interference occurs at sin an angles of ±n(\/a) where n — the order of 

the diffracted beams (n = 0 represents the direct beam), (b) The diffraction profile for a single slit of 

width d. Destructive interference occurs at sin a angles 1 (AId) (zero order minimum), 2(AId) (first order 

minimum) etc. (c) For a wide-slit grating (slit-width d, slit spacing a) the intensities of the diffracted 

beams Fig. 7.7(a) are modulated by the intensity profile for a single slit Fig. 7.7(b). 
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Interference between a 
pair of wavelets from the 

Fig. 7.8. Showing (a) a wide slit as the source of many Huygens’ wavelets (shown propagating in the 

forward direction) and (b) the condition for destructive interference for the zero order peak. For the pair 

of wavelets separated by distance 4/2—one at the ‘top’ edge and one at the centre of the slit (shown 

bracketed)—destructive interference occurs when the path difference BC = A/2. Similarly for the next 

pair down (indicated by dashed lines and brackets), and so on for pairs of wavelets across the whole slit. 

side. Their intensity decreases because as the angle a„ increases the screen is further 

away from the diffraction grating. 

This analysis of diffraction from a grating—a one-dimensional net—may readily be 

extended to the other set of lines in the net spaced, say, distance b apart, giving a second 

set of diffracted beams whose diffraction angles are again reciprocally related to b, the 

observed diffraction spots forming, as stressed before, the two-dimensional reciprocal 

lattice of the two-dimensional net (Figs 7.1(c) and 7.3(d) and (e)). 

Now, the practical requirements for narrow slits which are the source of just one 

Huygens’ wavelet are difficult if not impossible to achieve. Not only must the slit width 

be a small fraction of the wavelength of light, but it must also be equally thin—otherwise 

it will be, in effect, not a slit but a little rectangular tunnel—rather like the narrow 

openings in castle walls! Furthermore, the narrower (and thinner) are the slits, the 

smaller is the intensity of light. 
In practice, therefore, slits are wide, which means that they are the source of many 

Huygens’ wavelets, as shown in Fig. 7.8(a). The problem now is to sum all the 

contributions of all the wavelets. This may be carried out analytically or graphically 

by means of amplitude—phase diagrams, which are described in optics textbooks. 

However, we shall use a simplified approach, which is quite adequate and emphasizes 

the principles involved. 
In the forward (direct beam) direction, all the wavelets are in phase and interfere con¬ 

structively. At increasing angles to the direct beam the wavelets become progressively 
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more out of step; they begin to interfere destructively and the intensity falls: we need to 

work out the angle at which it falls to zero. Now consider a pair of wavelets; one wavelet 

at the ‘top edge’ of the slit and the other at the centre of the slit (Fig. 7.8(b)); when the 

path difference between them is A/2 ‘trough meets peak’ and total destructive inter¬ 

ference occurs. Hence from Fig. 7.8(b), , 

BC = X/2 = dll sin azom 

i.e. 

A = d sin oczom 

where d is the slit width and azom is the angle at which total destructive interference 

of the direct (zero order) peak occurs, i.e. zero order minimum, azom)- 

Now consider the next pair of wavelets again distance dll apart, one just below that at 

the top edge and one just below that at the centre, as shown by dashed lines in Fig. 7.8(b). 

The condition for destructive interference between this pair of wavelets will be the 

same—and so on for all the pairs of wavelets across the whole slit. Hence the above 

condition for total destructive interference applies to the whole slit and gives the angle at 

which the intensity of the direct or zero order beam or the ‘central maximum’ falls to 

zero. Notice that the equation ‘looks’ the same as that for constructive interference 

between the slits; the difference is of course that in the former case only two Huygens’ 

wavelets needed to be considered, one from each slit. 

As the angle increases further there will be some net constructive interference, giving 

a first order diffracted beam but of much smaller intensity than the zero order beam. 

The next condition for total destructive interference may be found by again considering 

the condition for destructive interference between a pair of wavelets, one wavelet at the 

‘top edge’ of the slit as before and the other a quarter of the slit width from the top. 

Again, when the path difference between them is A/2, destructive interference occurs. 

Continuing as before, i.e. considering pairs of such wavelets across the whole slit width, 

it is seen that this is again the condition for total destructive interference of all the 

wavelets across the slit, i.e. for the first order zero or minimum 

A/2 = (d/4) sin «fom, i.e. 2A — d sin af0m 

where afom is the angle for first order destructive interference (/irst order minimum 

ttfom)- Note that sino:fom = 2(AId) = 2sinazom, i.e. for small angles where sin a « a, 

the first order minimum occurs at twice the angle of the zero order minimum2. 

The diffraction pattern from a single slit is therefore a central maximum with much 

fainter bands of half the width of the central maximum on each side. It is represented 

diagrammatically in Fig. 7.7(b). The diffraction pattern from a circular hole or aperture 

is, correspondingly, a central disc surrounded by much fainter rings or haloes, as shown 

in Figs 7.3(a)-(c). The disc is called the Airy disc because its diameter was worked out 

The angle for maximum constructive interference for the first order diffracted beam cannot be determined 
precisely by such a simple approach as we have used. It turns out that the peak is slightly asymmetrical—the 
peak does not lie at an angle half way between azom and afom but is displaced slightly to a lower angle. The 
analysis is given in the optics textbooks listed in Further reading. 
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precisely by Sir George Airy*. His calculation for the angle oZ0m of the zero order 

minimum, which takes into account the circular symmetry of a round hole or aperture, 

only differs from our simple calculation by a factor of 1.22, i.e. 1.22A = dsinazom. 

A close approximation to the Airy factor can be obtained by comparing the diffraction 

pattern from a circular aperture diameter d, to a rectangular aperture of the same area, 

one side of which is length d and the other side of length 7r/4 d. In comparison with the 

circular aperture, the narrower rectangular aperture gives rise to an Airy disc which 

is wider in the reciprocal ratio, i.e. 4/7T = 1.27—a value which is only 4% different 

from the Airy factor 1.22. The Airy disc is of immense importance in optics since 

it determines the limit of resolution of telescopes and microscopes, as explained in 

Section 7.5. 

Now we have to consider the diffraction patterns from a grating with wide slits (width 

d) separated a distance a apart. The result is simply the combination of the narrow-slit 

diffraction pattern (Fig. 7.7(a)) and the single wide-slit diffraction pattern (Fig. 7.7(b)). 

The resultant is shown in Fig. 7.7(c). Notice that the angles at which the diffraction peaks 

occur are unchanged and are determined solely by the slit spacing a, but that their 

intensities are modulated by the intensity profile of a single slit of width d. 

Finally, we have to consider the situation where the diffraction grating is of limited 

extent, consisting of a limited number of slits. If W is the width of the grating and A is 

the number of slits, then W = Na. We simply consider the whole grating as a very wide 

slit, then work out the conditions for destructive interference as before. The sines of 

the angles are simply 

1(AIW), 2(AIW), 3(W),... or ^(Ala), ^(Ala), ~{\la)... 

Each of the diffracted peaks or ‘principal maxima’ will no longer be ‘sharp’, as indicated 

in Figs 7.7(a) and (c), but will be broadened and surrounded by fringes or ‘subsidiary 

maxima’. The number of fringes increases with A and their intensities decrease with A, 

such that they are generally not detectable for large A values. 

Figure 7.9 shows the zero, first and second order principal maxima and the subsidiary 

maxima from a grating with A slits. Note that the (half) angular widths of the principal 

maxima, and the angular widths of the subsidiary maxima, are simply equal to 1/A of the 

angular separation of the principal maxima. This leads to the simple result that there are 

(N - 2) subsidiary maxima between the principal maxima, as shown in Fig. 7.9. The 

proof is as follows. The first minimum of the zero order principal maximum (the direct 

beam) occurs at angle \/N(Xla), the second minimum at 2JN{XIa) and so on. Altogether 

therefore, going from the zero to the first order principal maximum which occurs at 

angle 1(Ala), there will be (A - 1) subsidiary minima, the (N - l)th minimum defining, 

in effect, the first minimum of the first order principal maximum. Hence, between the 

(A — 1) minima there will be (A - 2) subsidiary maxima. 

* Denotes biographical notes available in Appendix 3. 
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Fig. 7.9. Diagram of the diffraction pattern from a grating (drawn on one side of the direct beam) 

consisting of N narrow slits of spacing a. Between the principal maxima there are (N — 2) subsidiary 

maxima or fringes. The diagram is drawn for N = 6 (modified from Optics by E. Hecht and A. Zajac, 

Addison-Wesley, 1980). 

Figure 7.9 is drawn for N = 6 and shows the principal maxima at sin a angles 

l(A/a), 2(A/a) and the subsidiary minima at sinct angles 1/6(Ala), 2/6(Ala), 3/6(Ala), 

4/6(A/a) and 5/6(X/a). 

All these considerations—the sizes and numbers of diffracting apertures—may be 

extended to the two-dimensional case of nets, as shown in Figs 7.3(d) and (e). The 

intensities of the diffraction peaks are modulated by the intensity profiles of the Airy 

disc and its surrounding fainter rings or haloes and the numbers of subsidiary maxima 

between the principal maxima are two less than the number of apertures in each 

direction—and clearly will become insignificant as the number of apertures becomes 

large. Hence, although we have not determined quantitatively the light intensity dis¬ 

tribution in the diffraction patterns from nets, the main features that we noted in Section 

7.2 are now explained. 

7.5 The resolving power of optical instruments: 

the telescope, camera, microscope and the eye 

One of the most important and useful applications of the study of diffraction is the 

determination of the resolving power of optical instruments, in particular the telescope 

and the microscope. By resolving power we mean the ability to distinguish points with 

small angular separations, such as stars in the telescope, or points which are small 

distances apart as in the microscope". both cases the customary term resolving power is 

better expressed by the more precise term limit of resolution-, either an angular limit of 

resolution as in the telescope or a distance limit of resolution as in the microscope. In 

either case the resolving.power is a term reciprocally related to the limit of resolution. 

There are several other factors which determine the limit of resolution of optical 

instruments, in particular lens defects, such as spherical and chromatic aberration, and 

coma. To a large extent these can be eliminated by appropriate lens design or the use of 
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reflecting elements: mirrors have almost wholly replaced lenses as the principal element 

in astronomical telescopes and, except for the difficulties in manufacture, could partially 

replace objective lenses in microscopes. But the limit of resolution is ultimately limited 

by diffraction—either at the aperture of the telescope or microscope or at closely spaced 
features in the microscope. 

Consider first the limit of resolution of a telescope. Parallel rays from a distant point 

source—a star—enter the aperture, diameter d, and are focused by the objective lens on 

to a screen, photographic plate or the focal plane of the eyepiece. As explained in Section 

7.4, the image of the distant point source is not a point, but an Airy disc (surrounded by 

haloes of decreasing intensity), as shown in Figs 7.3(a)-(c) and Fig. 7.10. Now consider 

light from another star; again its image is an Airy disc, as also shown in Fig. 7.10. The net 

intensity in the image plane is the sum of the intensities of the two discs (and their 

haloes). As the angular separation between the stars decreases their Airy discs overlap 

and the limit of resolution is the point at which the net intensity does not show a 

discernible decrease between the central maxima of the Airy discs. Determining this 

point is a matter of some difficulty, but the criterion proposed by Lord Rayleigh* is most 

generally adopted. The Rayleigh criterion is that the centre of one Airy disc should 

coincide with the zero order minimum of the adjacent Airy disc. This criterion is shown 

in Fig. 7.10(a). The net intensity profile shows a small dip of about 85% of the maxima 

each side—which is easily discernible by the eye or detectable by a photographic plate. 

Hence the angular resolution of a telescope is azom, the zero order minimum angle for 

destructive interference, i.e. referring to Section 7.4: 

1.22A 
limit of resolution = azom « sin azom = —-—. 

d 

Clearly, the greater is the aperture of a telescope, the smaller is the limit of resolution and 

this explains why astronomical telescopes in particular are constructed with objective 

mirrors with as large a diameter as possible. 
These considerations are also relevant to an estimation of the limit of resolution of 

cameras in which the diameter jc of the Airy disc depends, additionally, on the focal 

length of the telescope or camera objective, /, the radius or half-diameter x!2 being 

given approximately by x/2 = /sin azom (Fig. 7.11). Substituting from above gives 

x = 2.44X(f/d). The ratio (fid) is called the /-number and is the important number 

engraved on camera lenses and the like. For blue-green light A rj 0.5 pm and therefore 

x is roughly equal to the/-number expressed as micrometres. ‘Stopping down’ a camera 

lens (i.e. increasing the /-number) means increasing the size of the Airy disc. How 

important this is (in comparison with other factors such as the depth of field) depends 

upon the relation between the size of the Airy disc and the ‘grain size’ of the photo¬ 

graphic film or pixel size of the CCD. Clearly, deterioration in image sharpness will only 

begin to occur when the Airy disc becomes (roughly) equal to the grain or pixel size. 

* Denotes biographical notes available in Appendix 3. 
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Fig. 7.10. (a) The intensity profile of an Airy disc pattern of two points separated by an angle which 

just satisfies the Rayleigh criterion for resolution. (Note that the centre of one disc falls on the zero order 

minimum of the other.) The overall intensity profile is indicated by the dotted line and the minimum, h, 

is about 85% of the maximum, I\. (b) Photograph of two point sources which are clearly resolved 

(angular separation of Airy discs «2azom, i.e. about double the Rayleigh limit) (front An Introduction to 

the Optical Microscope, 2nd edn, by S. Bradbury, Oxford University Press/Royal Microscopical 

Society, 1989). 

The diffraction-limited resolution of a microscope can be treated in two ways. First, 

it may be treated in the same way as for a telescope or camera—by considering the 

separation between the Airy discs‘o^ two closely spaced points of light and situated 

close to the front focal plane of the objective rather than (as in the telescope or camera) 

a long distance away. In so doing a simplifying assumption is made that the light from 

the two point sources ^incoherent (just as in the case of two stars) and hence inter¬ 

ference between them can be neglected (see Section 7.3). This assumption is obviously 

invalid—microscopical specimens do not consist of independent points of light of 

different intensities across their surfaces. It is more reasonable to assume that the 
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Fig. 7.11. The formation of the Airy disc in the focal plane of a telescope or camera. The half-diameter 

x/2 (shown much exaggerated) is given by/ sinazom. Only two incident rays are shown for which the 

path difference is A/2 (compare with Fig. 7.8(b)). 

specimen is illuminated with coherent light and that interference occurs between the 

light waves diffracted at the light/dark regions across the specimen surface. This leads us 

to the second way of treating the diffraction-limited resolution of the microscope which 

was first developed by Ernst Abbe*, the optical designer for Carl Zeiss. 

It turns out from a rigorous analysis that the expressions for the limit of resolution are 

closely identical irrespective of the assumptions made about the illumination or self¬ 

illumination of the specimen. We shall follow both approaches, not least because they 

serve as useful applications of the diffraction theory we have already learned. 

The first approach is represented in Fig. 7.12 which shows two such points of light and 

their Airy disc images—an axial point (solid lines) and an off-axis point (dashed lines). 

In a microscope the plane in which the Airy disc images occur is called the primary 

image plane—the plane which is ‘observed’ in the eyepiece. 

Just as in a telescope, the limit of resolution is given when the angular separation 

between the two point sources, ctzom = 1.22X1 d (see Fig. 7.11). We now have to express this 

limit in terms of a, the separation of the two point sources and i, the semi-angle subtended by 

the objective lens at the point-sources. Fet / be the focal length of the objective lens as 

indicated in Fig. 7.12, then sin i = d/2f and «zom ~ alf. Hence ot.7am = 1.22X1 d = a/f 

from which a = 1,22X/(f/d). Substituting ( fid) = 1/2 sin i we obtain 

1.22A 0.61A 
limit of resolution — a — ———; = —;—- 

2 sin l sin r 

In the case of microscope objectives of very small focal length (i.e. ‘high power’ 

objectives), the space between the specimen and front element of the lens may be filled 

with a drop of oil, of refractive index n, which is simply the ratio of the wavelength A 

* Denotes biographical notes available in Appendix 3. 
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plane 

Fig. 7.12. The limit of resolution in a microscope for two points of light separated by distance a and 

which subtend angle azom at the objective lens. At this angle the zero order minimum of the Airy disc of 

one point source corresponds with the central maximum of the Airy disc of the adjacent point source. 

The sources are situated at a distance from the objective lens close to/, the focal length. 

Fig. 7.13. Image formation in the light microscope. The direct and diffracted beams enter the objective 

lens and are focused to form a diffraction pattern in its (back) focal plane (compare with Fig. 7.6). The 

rays ‘continue on their way’ to form an image by the recombination of the diffracted light, e.g. incident 

ray X is separated into z (direct) and y (diffracted) light; these two rays recombine in the image plane. 

of light in air (or vacuum) to the wavelength A' in the oil, i.e. by definition n = A/A'. 
Substituting this factor gives; 

limit of resolution = a = 
0.61A' 

sin i 

0.61 A 

n sin i 

The second approach, due to Ernst Abbe, is as follows: in order for the microscope 

to form an image of the specimen (i.e. in order to resolve the slits or lines of a grating), 

at least two beams (usually the direct beam and the first order diffracted beam) should 
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enter the objective lens. This situation is shown in Fig. 7.13. The specimen/grating is 

illuminated with a parallel beam of light (from a distant source or a sub-stage condenser 

in which the aperture diaphragm is almost fully closed) and the first order diffracted 

beams (on either side of the direct beam) are just collected by the objective lens. 

These parallel beams are then focused by the objective lens to give diffraction spots 

which are situated, as shown, in its back focal plane (a screen placed here would record 

this diffraction pattern, just as shown in Fig. 7.6). However, the beams or rays continue 

on their way and intersect, as shown, to form the (primary) image, (which is then 

magnified by the eyepiece or photographic projection lens). The important point is that 

the image is formed by the recombination of light which was separated at the specimen 

by diffraction. Consider, for example, the incident beam marked X (Fig. 7.13); this is 

separated by diffraction into z (direct beam) and y (diffracted beam). These two beams 

then contribute to the separate (zero and first order) diffraction spots, but then continue 

on their way to be reunited or recombined and, as Abbe pointed out, it is this recombina¬ 

tion that constitutes an image. The greater the number of diffracted beams which are 

collected by the objective lens and thence recombined, the closer the image approx¬ 

imates to the object, but the limit of resolution is determined by the criterion that at least 

two beams should enter the objective. 

Hence, for the case of normal incidence, in which the direct and two first order beams 

enter the objective lens (Fig. 7.14(a)), the limit of resolution is simply obtained from the 

equation derived in Section 7.4, i.e. 1A = a sinai = a sin/, i.e. the limit of resolution 

a — A/sin /, where i is the semi-angle of the objective lens subtended at the specimen 

which is set equal to «i, the angle between the direct and first order diffracted beams. 

This equation may be modified in two ways. First, Fig. 7.13 shows an overfulfilled 

case in which, because the incident beam is normal to the specimen and axial with the 

microscope, two first-order diffracted beams, as well as the direct or zero order beam, 

enter the objective. This situation is sketched for emphasis in Fig. 7.14(a). However, if 

the incident beam is inclined to the axis of the microscope as shown in Fig. 7.14(b), then 

the first order beam on one side of the direct beam is lost but a first order beam on 

the other side of the direct beam of greater diffraction angle can enter the objective lens. 

The extreme or limiting case arises when the incident beam is inclined at angle i to the 

microscope axis (Fig. 7.14(c)), in which case the direct or zero order beam just passes 

inside one edge of the objective lens and one first order diffracted beam, now at twice the 

angle, 2i to the diffracted beam, just passes inside the opposite edge. The Abbe criterion 

is still satisfied because two beams (zero order and first order) enter the objective lens 

and are recombined to form an image in the same way as shown in Fig. 7.13. 

We must now work out the path difference for this inclined case. The geometry 

is shown in detail in Fig. 7.15, which should be compared with that for normal 

incident light shown in Fig. 7.5. The path difference between the direct and first 

order diffracted beam is now AB + BC = 1A for constructive interference, i.e. 

a sin i + a sin i — 2a sin i. This equation, it should be noted, is identical to the Bragg 

equation (see Section 8.3) since both describe the same geometrical conditions: in 

both cases the incident and diffracted beams are at the same angle to diffraction grating 

or lattice planes (i.e. /' = 6) and the grating spacing a corresponds to the interplanar 

spacing d. 
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Fig. 7.14. The Abbe criterion for the limit of resolution of an objective lens of (semi-angular) aperture 

i. (a) normal incidence, parallel light (condenser diaphragm closed down); the direct and two first-order 

beams at angle i enter the objective and contribute to the image; (b) as (a) but a slightly inclined incident 

parallel beam, the direct beam and just one first-order beam enter the objective lens but at an 

angle greater than i; (c) as (a) but the incident beam is inclined at the maximum angle i; it passes inside 

one edge of the objective lens and one diffracted beam at angle 2i passes inside the opposite edge; 

(d) the practical arrangement; the condenser diaphragm is opened to admit a convergent cone of light on 

to the specimen (in practice rather less than 2i) to admit direct and diffracted light to the objective over 

a whole range of angles. 

Re-arranging the equation gives: 

...... A 0.5A 
limit or resolution = a =-= ——, 

2 sin i sin i 

which differs from our previous equation by a factor of 0.5. 

Second, the space between the specimen and the front element of the objective lens 

may be filled with oil of refractive index n. Proceeding as before: 

.. . . , . 0.5A' 0.5A 
limit or resolution = a = —— =-. 

•. sin i n sin i 

In practice we do not in general illuminate the specimen with a single parallel inclined 

beam as shown in Fig. 7.14(c), but we open the aperture diaphragm of the condenser lens 
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Fig. 7.15. The geometry for constructive interference when the incident and diffracted beams make 
equal angle i to the diffraction grating. For constructive interference (first order) the path difference 

= AB + BC = a sin i + a sin i = 2a sin i = 1 A. This condition is equivalent to Bragg’s law where a is 
the interplanar spacing d and i is 9, the Bragg angle. 

to give a highly convergent beam on the specimen of semi-angle i (in practice slightly 

less) as shown in Fig. 7.14(d). This is analogous, in terms of illumination, to the case of the 

point sources of light radiating out in all directions as described above and the equations 

for the limit of resolution which we have derived—one for incoherent illumination 

(diffraction at the objective aperture) and the other for coherent illumination (diffraction 

at the specimen)—are, except for the Airy factor 1.22, precisely the same. As mentioned 

above, a much more rigorous analysis also predicts closely identical solutions. 

The important quantity in the equations n sin i was called by Abbe the numerical 

aperture, NA and fulfils, in effect, the same role with respect to the microscope as 

does the aperture d of the objective lens (or mirror) with respect to the telescope. 

To summarize: 

1.22A 
Angular—limit of resolution of a telescope = azom = —-— 

d 

0.61A 0.5A 
Distance—limit of resolution of a microscope = a = -----■ or —— 

NA NA 

The concept of numerical aperture NA = n sin i is of enormous importance in optics. 

It is closely related to the /-number, the ratio of focal length (fid) (focal length/aperture) 

of a lens. Referring again to Fig. 7.12, since sini = <7/2/ then {fid) = 1/2sin; since 

sin i = NAIn, 
/-number, {fid) = nt 2NA. 

The Abbe criterion applies equally to light microscopes and electron microscopes. 

The enormous decrease in the limit of resolution obtainable in the transmission electron 
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Fig. 7.16. (a) A net with a single twin, and (b) a net with several twins and their corresponding 

diffraction patterns (from Atlas of Optical Transforms by G. Harbum, C. A. Taylor and T. R. Welberry, 

Bell & Hyman, 1983, an imprint of HarperCollins Publishers Ltd.) 

microscope arises because of the much smaller values of A for electrons (typically 4 pm 

for 100 kV instruments compared with light (typically 500 nm)). This (approximate) 

100000 decrease is however offset because of the high inherent spherical aberrations 

in electron lenses which limit NA values to the order of 0.01 compared with NA values 

up to 1.4 for oil immersion light objectives. 

Finally, we may apply these ideas to those most important and precious optical 

instruments—our eyes. 

We may treat the eye either as a telescope or camera to determine the angular-limit 

of resolution between two distant points, or as a microscope, with the direction of the 

light in effect reversed, to determine the distance-limit of resolution at the retina, the 

space between the objective (eye) lens and the retina (corresponding to the microscope 

object or specimen-plane) being filled with liquid (the aqueous humour) of refractive 
index n. 

If we take / = 17 mm, n= 1.3, d (the diameter of the pupil) « 3 mm (which varies 

of course roughly in the range I ~4mm depending on the intensity of the light) and A 
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(for green light) fa 0.55 pm, then the/-number of the eye is (17/3) mm = 5.67 and the 
numerical aperture NA is 1.3/2(5.67) = 0.115. 

Substituting these values of A and d into the expression for the angular-limit of 

resolution azom gives 0.22 x 10-3 rads or 0.77 min of arc which is close to that for 

normal vision (~ 1 min of arc or 0.07 mm at the near distance of 250 mm). 

Similarly, substitution of these values of A and d into the expression for the distance- 

limit of resolution a at the retina gives 2.9 pm—which is approximately equal to the 

spacing of our visual receptors (the cone cells) in the central part (the fovea centralis) of 

our retina. In short, our eyes have evolved, as we should expect, with a perfect balance 

between the sizes of their physiological components. 

Exercises 

7.1 Figure 7.16(a) shows a net with a single twin and the corresponding diffraction pattern 

(optical transform) and Fig. 7.16(b) shows a net with several twins and the corresponding 

diffraction pattern (see Figs. 1.18, 1.21 and 4.4(b)). Using a tracing paper overlay on 

the diffraction pattern in Fig. 7.16(a), outline the reciprocal lattice unit cells of the two twin 

orientations and note those reciprocal lattice points which are common to both twin 

orientations. 

The diffraction pattern in Fig. 7.16(b) is similar to that in Fig. 7.16(a) except that some of the 

spots are streaked in a direction perpendicular to the twin plane. Explain this streaking 

qualitatively after you have read Section 9.3. 

7.2 With reference to Fig. 7.7(c), describe the diffraction pattern which you would obtain with a 

diffraction grating in which the slit width d is equal to half the slit spacing a. 
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X-ray diffraction; the 
contributions of Max von Laue, 

W. H. and W. L. Bragg and 
P. P. Ewald 

8.1 Introduction 

The experimental technique which has been of the greatest importance in revealing 

the structure of crystals is undoubtedly X-ray diffraction. 

The story of the discovery of X-ray diffraction in crystals by Laue*, Friedrich and 

Knipping in Munich in 1912 and the development of the technique by W. H. Bragg* and 

W. L. Bragg* in Leeds and Cambridge in the years preceding the First World War is well 

known. But why did the Braggs make such rapid advances in the analysis of X-ray 

diffraction photographs in comparison with Laue and his co-workers? An important 

factor in the answer seems to be that Laue envisaged crystals in terms of a three- 

dimensional network of rows of atoms and based his analysis on the notion that the 

crystal behaved, in effect, as a three-dimensional diffraction grating. This approach is 

not wrong, but it is in practice rather clumsy or protracted. On the other hand, the Braggs 

(and here the credit must go to W. L. Bragg, the son) envisaged crystals in terms of layers 

or planes of atoms which behaved in effect as reflecting planes (for which the angle 

of incidence equals the angle of reflection), strong ‘reflected' beams being produced 

when the path differences between reflections from successive planes in a family is 

equal to whole number of wavelengths. This approach is not correct in a physical 

sense—planes of atoms do not reflect X-rays as such—but it is correct in a geometrical 

sense and provides us with the beautifully simple expression for the analysis of crystal 
structure: 

nX = Idhki sin 9, 

where A is the wavelength, n is the order of reflection, dhu is the lattice plane spacing and 
9 is the angle of incidence/reflection to the planes. 

What led W. L. Bragg to this ribvel perception of the diffraction? Simply his 

observation of the elliptical shapes of the diffraction spots, which he noticed were also 

characteristic of the reflections from mirrors of a pencil-beam of light (see the Laue 
photograph on p. xiv). Only connect! 

Denotes biographical notes available in Appendix 3. 
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Finally, we come to the contribution of P. P. Ewald*, a physicist who never achieved 

the recognition that was his due. The story is briefly recorded in his autobiographical 

sketch in 50 Years of X-ray Diffraction. Ewald was a ‘doctorand’—a research student 

working in the Institute of Theoretical Physics in the University of Munich under 

Professor A. Sommerfeld. The subject of his thesis was ‘To find the optical properties 

of an anisotropic arrangement of isotropic oscillators’. In January 1912, while he was in 

the final stages of writing up his thesis, he visited Max von Laue, a staff member of 

the Institute, to discuss some of the conclusions of his work. Ewald records that Laue 

listened to him in a slightly distracted way and insisted first on knowing what was 

the distance between the oscillators in Ewald’s model; perhaps 1/500 or 1/1000 of the 

wavelength of light, Ewald suggested. Then Laue asked ‘what would happen if you 

assumed very much shorter waves to travel through the crystal?’. Ewald turned to 

Paragraph 6, Formula 7, of his thesis manuscript, saying ‘this formula shows the results 

of the superposition of all wavelets issuing from the resonators. It has been derived 

without any neglection or approximation and is therefore valid also for short wave¬ 

lengths.’ Ewald copied the formula down for Laue shortly before taking his leave, 

saying that he, Laue, was welcome to discuss it. Laue’s question, of course, arose from 

his intuitive insight that if X-rays were waves and not particles, with wavelengths very 

much smaller than light, then they might be diffracted by such an array of regularly 

spaced oscillators. 

The next Ewald heard of Laue’s interest was through a report which Sommerfeld gave 

in June 1912 on the successful Laue—Friedrich—Knipping experiments. He realized 

that the formula which he had copied down for Laue, and which Laue had made no use 

of, provided the obvious way of interpreting the geometry of the diffraction patterns— 

by means of a construction which he called the reciprocal lattice and a sphere determined 

by the mode of incidence of the X-rays on the crystal (the Ewald or reflecting sphere). 

Ewald’s interpretation of the geometry of X-ray diffraction was not published until 

1913, by which time rapid progress in crystal structure analysis had already been made 

by W. H. and W. L. Bragg in Leeds and Cambridge. 

8.2 Laue’s analysis of X-ray diffraction: 

the three Laue equations 

Laue’s analysis of the geometry of X-ray diffraction patterns has been referred to in Section 

8.1. What follows is a much simplified treatment which does not take into consideration 

Laue’s interpretation of the origin of the diffracted waves from irradiated crystals. 

Consider a simple crystal in which the motif is one atom and the atoms are simply to 

be regarded as scattering centres situated at lattice points. The more general situation in 

which the motif consists of more than one atom and in which the different scattering 

amplitudes of the atoms and the path differences between the atoms have to be taken into 

account is discussed in Section 9.2. The crystal may be considered to be built up of rows 

of atoms in three dimensions: rows of atoms of spacing a along the x-axis, of spacing 

* Denotes biographical notes available in Appendix 3. 
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Fig. 8.1. (a) Diffraction from a lattice row along the x-axis. The incident and diffracted beams are 

at angles ao and a„ to the row respectively. The path difference between the diffracted beams 

= (AB - CD), (b) The incident and diffracted beam directions and the path difference between the 

diffracted beams as expressed in vector notation. 

b along the y-axis and of spacing c along the z-axis. Consider first of all the condition 

for constructive interference for the waves scattered from the row of atoms along the 

x-axis—which may simply be reduced to a consideration of the path differences 

between waves scattered from adjacent atoms in the row (Fig. 8.1(a)). 
For constructive interference the path difference (AB — CD) must be a whole number 

of wavelengths, i.e. 

(AB — CD) = a(cos a„ — cos cro) = nx\ 

where an, ao are the angles between the diffracted and incident beams to the x-axis, 

respectively, and nx is an integer (the order of diffraction). 
This equation, known as the first Laue equation, may be expressed more elegantly in 

vector notation. Let s, s0 be unit vectors along the directions of the diffracted and 

incident beams, respectively, and let a be the translation vector from one lattice point 

(or atom position) to the next [Fig. 8.1(b)]. The path difference a(cos a„ — cos ao) may 

be represented by the scalar product a • s — a • So = a • (s — so). Hence the first Laue 

equation may be written 

a(cos a„ — cos ao) = a • (s — So) = nxA. 

Now Fig. 8.1 is misleading in that it only shows the diffracted beam at angle a„ below 

the atom row—but the same path difference obtains if the diffracted beam lies in the 

plane of the paper at angle a„ above the atom row—or indeed out of the plane of the 

paper at angle an to the atom row. Hence all the diffracted beams with the same path 

difference occur at the same angle to the atom row, i.e. the diffracted beams of the same 

order all lie on the surface of a cone—called a Laue cone—centred on the atom row with 

semi-apex angle a„. This situation is illustrated in Fig. 8.2 which shows just three Laue 

cones with semi-apex angle ao (zero order, nx = 0), semi-apex angle ai (first order, 

nx = 1) and semi-apex angle a2 (second order, nx — 2). Clearly there will be a whole set 

of such cones with semi-apex angles a„ varying between 0° and 180°. 

The analysis is now repeated for tlie atom row along the y-axis, giving the second 

Laue equation: 
b(cos /3„ - cos p0) = b • (s - s0) = nyX, 

and for the atom row along the z-axis giving the third Laue equation: 

c(cos 7„ - cos 7o) = c • (s — s0) = nzA, 
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Fig. 8.2. Three Laue cones representing the directions of the diffracted beams from a lattice row 

along the x-axis with OA (nx = 0), 1A (nx — 1) and 2A (nx = 2) path differences. 

where the angles (3n, /%, yn, 70 and the integers ny and nz are defined in the same way 

as for an, ao and nx. 

Now, for constructive interference to occur simultaneously from all three atom 

rows, all three Laue equations must be satisfied simultaneously. This is equivalent to 

the geometrical condition that diffracted beams only occur in those directions along 

which three Laue cones, centred along the x-, y- and z-axes, intersect. Each diffracted 

beam may be identified by three integers nx, ny and nz which, as pointed out above, 

represent the order of diffraction from each of the atom rows. We shall find in Section 

8.3 that these integers are simply h, k and / Laue indices (see Section 5.5) of the 

reflecting planes in the crystal. 

8.3 Bragg’s analysis of X-ray diffraction: Bragg’s law 

Laue’s analysis is in effect an extension of the idea of a diffraction grating to three 

dimensions. It suffers from the severe practical disadvantage that in order to calculate 

the directions of the diffracted beams, a total of six angles an, ao, (3n, (3q and %, 70; three 

lattice spacings a, b and c, and three integers nx, ny and nz need to be determined. As 

discussed in Section 5.5, W. L. Bragg envisaged diffraction in terms of reflections from 

crystal planes giving rise to the simple relationship (Bragg’s law, derived below): 

n\ = 2dhki sin 6. 
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B 
(b) 

B 
(a) \ 

Fig. 8.3. (a) Bragg’s law for the case of a rectangular grid, i.e. AB = BC = dhki sin 9\ the path 

difference (AB + BC) = 2dhki sin 9. (b) Bragg’s law for the general case in which AB f BC. Again, 

the path difference (AB + BC) = 2dhki sin 9. 

It can be seen immediately, by comparing the Laue equations with Bragg’s law, that 

the number of variables needed to calculate the directions of the diffracted beams are 

much reduced. 
Bragg’s law may be derived with reference to Fig. 8.3(a) which shows (as for the 

derivation of the Laue equations) a simple crystal with one atom at each lattice point. 

The path difference between the waves scattered by atoms from adjacent (hkl) lattice 

planes of spacings dhki is given by 

(AB + BC) = (dhk[ sin 9 + dhki sin 9) = 2dhki sin 9. 

Hence for constructive interference: 

n\ = 2dhki sin 9, 

where n is an integer (the order of reflection or diffraction). 

As explained in Section 5.5, n is normally incorporated into the lattice plane 

symbol, i.e. 

where nh nk nl are the Laue indices for the reflecting planes of spacing diMln. In other 

words, to repeat the important point made in Section 5.5, n is not written separately but 

is represented as the common factor in the Laue indices. For example a third order 

reflection from the (111) lattice planes (Miller indices—in parentheses) is represented as 

a first order reflection from the 333 planes (Laue indices—no parentheses), the 333 

planes having l/3rd the spacing of the (111) planes. 

Figure 8.3(a) represents a particularly simple geometrical situation in which the 

lattice is shown as a rectangular grid and the atoms are symmetrically disposed with 

respect to the incident and diffracted beam, i.e. AB = BC. With reference to the 

diffraction of light this corresponds to the case in which the incident and diffracted 

beams make equal angles to the diffraction grating—i.e. the situation shown in Fig. 7.15 

where the angle i corresponds to 9 and the slit spacing a corresponds to dhki■ Figure 

8.3(b) shows a more general situation in which the lattice is not rectangular and the 

distance AB does not equal BC. However, the sum (AB + BC) is unchanged and is again 

equal to 2dhki sin 9 (see Exercise 8.3). The important point is that Bragg’s law applies 
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reflecting plane 

Fig. 8.4. Bragg’s law expressed in vector notation. Vectors (s — s0) and A*hkl are parallel and the ratio 

of the moduli is A. Hence Bragg’s law is expressed as (s — So)/A = d*hkl. , 

irrespective of the positions of the atoms in the planes; it is solely the spacing between 

the planes which needs to be considered. It follows as a corollary that the path 

difference between the waves scattered by the atoms in the same plane is zero—i.e. all 

the waves scattered from the same plane interfere constructively. This is only the case (to 

emphasize the significance of Bragg’s law once more) when the angle of incidence to the 

planes equals the angle of reflection. Finally, note that (unlike the Laue equations), 

Bragg’s law is wholly represented in two dimensions: the incident and diffracted 

beams and the normal to the reflecting planes (Fig. 8.3) all lie in a plane—i.e. the plane 

of the paper. 

Bragg’s law may also be expressed in vector notation. Again, let s, s0 be unit vectors 

along the directions of the diffracted and incident beams, then (with reference to 

Fig. 8.4) the vector (s — So) is parallel to d*M, the reciprocal lattice vector of the 

reflecting planes. Comparing the moduli of these vectors |s — So| = 2 sin 9 and 

|d^w| = 1 /dhki, it is seen from Bragg’s law that their ratio is simply A. Hence Bragg’s 

law may be written: 

(S Sn) ,* * i* 
-r-= dhkl = ha + kb + Ic . 

A 

Hence constructive interference occurs, or Bragg’s law is satisfied when the vector 

(s — So)/A coincides with the reciprocal lattice vector d*hkl of the reflecting planes. 

The vector form of Bragg’s law may be combined with each of the three Laue 

equations: i.e. for the first Laue equation: 

a • (s — So) = nx\ = a • d*hkl • A = a • (ha* + kb* + /c*)A. 

Hence nx = h (since a • a* = 1, a • b* = 0, etc), and similarly ny = k and nz = l for 

the other Laue equations. The integers nx, ny and nz of the Laue equations are simply 

the Laue indices h, k, l of the reflecting planes. 
Bragg’s law, like Newton’s laws, and all such uncomplicated expressions in physics, 

is deceptively simple. Its applicability and relevance to problems in X-ray and electron 

diffraction only unfold themselves gradually (to teachers and students alike!). Newton 

was once asked how he made his great discoveries: he replied ‘by always thinking 

unto them’. The student of crystallography could do no better with respect to Bragg’s 

law! 



166 X-ray diffraction 

8.4 Ewald’s synthesis: the reflecting sphere construction 

Ewald’s synthesis is a geometrical formulation or expression of Bragg’s law which 

involves the reciprocal lattice and a ‘sphere of reflection’. It is best illustrated and 

understood by way of an example. Consider a crystal with the (hkl) reflecting planes 

(Laue indices) at the correct Bragg angle (Fig. 8.5). The reciprocal lattice vector dhkl is 

also shown. Now draw a sphere (the reflecting or Ewald sphere) of radius 1/A (where A is 

the X-ray wavelength) with the crystal at the centre. Since Bragg’s law is satisfied it may 

be shown that the vector OB (from the point where the direct beam exits from the sphere 

to the point where the diffracted beam exits from the sphere) is identical to dhkl: i.e. 

from the triangle AOC, |OC| = (1/A) sin9 = (l/2)|d^z| = 1/2(4*/, i.e. A = 2<4w sin#. 

Hence, if the origin of the reciprocal lattice is shifted from the centre of the sphere (A) to 

the point where the direct beam exits from the sphere (O), then OB — dhkl and Bragg’s 

law is equivalent to the statement that the reciprocal lattice point for the reflecting 

planes (hkl) should intersect the sphere; the diffracted beam direction being given by 

the vector AB—i.e. the line from the centre of the sphere to the point where the 

reciprocal lattice point d*hkl intersects the sphere. Conversely, if the reciprocal lattice 

point does not intersect the sphere then Bragg’s law is not satisfied and no diffracted 

beams occur. 

Figure 8.5 shows the construction of just one reflecting plane and one reciprocal 

lattice point. It is a simple matter to extend it to all the reciprocal lattice points in a 

crystal. Fig. 8.6(a) shows a section of the reciprocal lattice of a monoclinic crystal 

perpendicular to the b* reciprocal lattice vector (i.e. the y-axis—see Fig. 6.5(a)). All the 

reciprocal lattice points in this section have indices of the form hOl. An incident X-ray 

beam is directed along the a* reciprocal lattice vector (i.e. along a direction in the crystal 

Fig. 8.5. The Ewald reflecting sphere construction for a set of planes at the correct Bragg angle. 

A sphere (the Ewald or reflecting sphere) is drawn, or radius 1/A with the crystal at the centre. The 

vector OB is identical to d*hkl. The origin of the reciprocal lattice is fixed at O and the reciprocal lattice 

point hkl intersects the sphere at the exit point of the diffracted beam. 
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perpendicular to they- and z-axes—see Fig. 6.4(a)). The centre of the reflecting sphere is 

at a distance 1/A from the origin of the reciprocal lattice along the line of the incident 

beam: note again that the origin of the reciprocal lattice is not at the centre of the sphere 

but is at the point where the direct beam exits from the sphere. 

In the section shown. Fig. 8.6(a), the reflecting sphere intersects the 201 reciprocal 

lattice point: hence the only plane for which Bragg’s law is satisfied is the (201) plane 

and the direction of the 201 reflected beam is as indicated. 

Figure 8.6(a) only shows one layer or section of the reciprocal lattice (through the 

origin) and a (diametral) section of the reflecting sphere. But the reciprocal lattice 

sections above and below the plane of the page need to be taken into account and also 

202 102 002 

212 112 012 

Fig. 8.6. The Ewald reflecting sphere construction for a monoclinic crystal in which the incident X-ray 

beam is directed along the a* reciprocal lattice vector, (a) Shows the hOl reciprocal lattice section 

(through the origin and perpendicular to the b* reciprocal lattice vector ory-axis—see Fig. 6.5(a) and a 

diametral section of the reflecting sphere radius 1/A. The 201 reciprocal lattice point intersects the 

sphere and the direction of the 201 reflected beam is indicated, (b) Shows the h\I reciprocal lattice 

section (i.e. the layer ‘above’ the hOl section—see Fig. 6.5(b)) and the smaller, non-diametral section of 

the reflecting sphere. The 21T reciprocal lattice point intersects the sphere, the direction of the 

211 reflected beam is ‘upwards’ from the centre of the sphere (in the hOl section below) through the 

211 reciprocal lattice point as indicated by the arrow-head. 
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the smaller non-diametral sections of the reflecting sphere which intersects them. 

Fig. 8.6(b) shows the ‘next layer above’ or hi l section of the reciprocal lattice (see 

Fig. 6.5(b)) and the smaller, non-diametral section of the reflecting sphere which it 

intersects. Notice that this section of the sphere does not pass through 010 (the reciprocal 

lattice point immediately ‘above’ the origin 000). The, sphere intersects the 211 
reciprocal lattice point, hence the (211) plane also satisfies Bragg's law and the 

direction of the 211 reflected beam is from the centre of the sphere (which is not 
the point in the centre of this smaller circle but the point in the centre of the sphere in 

the reciprocal lattice section below—Fig. 8.6(a)) and the 211 reciprocal lattice point. 

The reflected beam direction therefore cannot be drawn in Fig. 8.6(b) because it is 

directed upwards, out of the plane of the page. 
Clearly, the construction can be extended to other reciprocal lattice sections, i.e. 

through the hll, h3l, etc. sections (above); the hill, h2l, h3l, etc. sections (below) and so 

on. The further the reciprocal lattice section is from the origin, the smaller is the section 

of the reflecting sphere which it intersects. In the example above, the sphere only 

intersects the hOl section (Fig. 8.6(a)), the hll section (Fig. 8.6(b)) and the hll section 

(below), but no more. Hence only these sections, and the reciprocal lattice points within 

them, need to be considered. 

In Fig. 8.6 the relative sizes of the reciprocal lattice and the sphere happen to be such 

that just one reciprocal lattice point in each section intersects the sphere. Clearly if the 

diameter of the sphere were made a little larger (i.e. the X-ray wavelength was made 

a little smaller) then no reciprocal lattice points would intersect the sphere and no planes 

in the crystal would be at the correct Bragg angle for reflection; if the diameter of 

the sphere were continuously made larger (or smaller) than that shown in Fig. 8.6 then 

other planes would reflect as their reciprocal lattice points successively intersected the 

sphere. This is the basis of Laue’s original X-ray experiment; ‘white’ X-radiation was 

used which contains a range of wavelengths, which correspond to a range or ‘nest’ of 

spheres of different diameters. Any plane whose reciprocal lattice point falls within this 

range will therefore satisfy Bragg’s law for one particular wavelength. 

The situation is illustrated in Fig. 8.7, again for the hOl reciprocal lattice section of the 

monoclinic crystal shown in Fig. 8.6(a). The shaded region indicates a ‘nest’ of spheres 

with diameters in the wavelength range from largest wavelength (smallest sphere 

diameter) to smallest wavelength (largest sphere diameter). All the planes whose 

reciprocal lattice points lie within this region satisfy Bragg’s law for the particular 
sphere on which they lie. 

The Laue technique is unique in that it utilizes white X-radiation. All the others utilize 

monochromatic or near-monochromatic (Ka) X-radiation. In order to obtain diffraction, 

therefore, the crystal and the sphere (of a fixed diameter) must be moved relative to one 

another; whenever a reciprocal lattice point touches the sphere then ‘out shoots’ a 

diffracted (or reflected) beam from the centre of the sphere in a direction through the 

reciprocal lattice point. As described in Chapter 9 there are several ways in which these 

relative movements may be achieved in practice and several ways in which the dif¬ 

fracted beams may be recorded. The crystal may be oscillated (oscillation method), 

precessed (precession method), the film may be arranged cylindrically round the crystal 

or flat, it may be stationary or it may be moved in some way as in the Weissenberg 
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Fig. 8.7. The Ewald reflecting sphere construction for the hOl reciprocal lattice section of the 

monoclinic crystal shown in Fig. 8.6(a) for the ‘white’ X-radiation, i.e. for a range of wavelengths from 

the smallest (largest sphere) to the largest (smallest sphere) giving rise to a ‘nest’ of spheres (shaded 

region) all passing through the origin. The 102, 201, 200 and 201 reciprocal lattice points lying within 

this region satisfy Bragg’s law, each for the particular wavelength or sphere which they intersect. The 

directions of the reflected beams from these planes are indicated by the arrows. 

method (in which the cylindrical film movement is linked to the oscillation of the 

crystal) or, as in the precession method, precessed with the crystal. The geometry of 

these X-ray diffraction methods may appear to be complicated, but the basis of them 

all—the Ewald reflecting sphere construction—is the same. 

Exercises 

8.1 Compare Figs 7.5 and 8.3; both show conditions for constructive interference, one for light at 

a diffraction grating with line spacing a (Fig. 7.5) and one for X-rays reflected from planes of 

spacing dhki (Fig. 8.3). Show that the equations describing the conditions for constructive 

interference in each case (nX — a sin an and nX = 2dhki sin 0) are equivalent. 

8.2 Iron (bcc, a = 0.2866 nm (2.866 A)) is irradiated with CrKa X-radiation (A = 0.2291nm 

(2.291 A)). Find the indices {hkl} and d-spacings of the planes which give rise to X-ray 

reflections. 

(Note: In body-centred lattices, reflection from planes for which (h + k + /) does not equal 

an even integer are forbidden (see Appendix 6).) 

(Hint: Prepare a table listing the indices and d-spacings of the allowed reflecting planes in 

order of decreasing d-spacings and determine the 6 angles for reflection using Bragg’s law.) 

8.3 It is stated without proof with respect to Bragg’s law that when the atoms are not sym¬ 

metrically disposed to the incident and reflected beams (Fig. 8.3(b)), the path difference 

(AB + BC) = 2dhki sin 6. Prove, using very simple geometry, that this is indeed the case. 
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The diffraction of X-rays 
\ 

9.1 Introduction 

In Chapter 8, the Laue equations and Bragg’s law were derived on the basis that single 

atoms, of unspecified scattering power, were situated at each lattice point. Now we 

need to consider the physics of the scattering process. Since it is almost exclusively 

the electrons in atoms which contribute to the scattering of X-rays we have to sum the 

contributions to the scattered amplitude of all the electrons in all the atoms in the 

crystal, a problem which may be approached step-by-step. First the scattering amplitude 

of a single electron and the variation in scattering amplitude with angle is determined. 

Then the scattering amplitude of an atom is determined by summing the contributions 

from all Z electrons (where Z = the atomic number of the atom)—the summation taking 

into account the path or phase differences between all the Z scattered waves. The result 

of this analysis is expressed by a simple number,/, the atomic scattering factor, which 

is the ratio of the scattering amplitude of the atom divided by that of a single (classical) 
electron, i.e. 

amplitude scattered by atom 
atomic scattering factor / =-. 

amplitude scattered by a single electron 

At zero scattering angle, all the scattered waves are in phase and the scattered amplitude 

is the simple sum of the contribution from all Z electrons, i.e. / = Z. As the scattering 

angle increases, / falls below Z because of the increasingly destructive interference 

effects between the Z scattered waves. Atomic scattering factors / are plotted as a 

function of angle (usually expressed as sin 9/\). Figure 9.1 shows such a plot for 

the oxygen anion O2-, the neon atom Ne, and the silicon cation Si4+—all of which 

contain 10 electrons. When sin6>/A = 0,/ = 10 but with increasing angle/falls below 

10. The extent to which it does depends upon the relative sizes of the atoms or ions; 

the silicon cation is small, hence the phase differences are small and the destructive 

interference between the scattered waves is least—and conversely for the large oxygen 
anion. 

The scattering amplitude of a unit cell is determined by summing the scattering 

amplitudes,/, from all the atoms in "the unit cell (equivalent, in the case of a primitive 

unit cell), to all the atoms in the motif. Again, the summation must take into account 

the path or phase differences between all the scattered waves and is again expressed by 

a dimensionless number ,/m/, the structure factor, i.e. 

structure factor Fm = ™Plilude scaltered bV <he 0* cell 
amplitude scattered by a single electron 
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Fig. 9.1. The variation in atomic scattering factor /with scattering angle (expressed as sin 0/A) for 

atoms and ions with ten electrons. Note that the decrease in /is greatest for the (large) O2- anion and 

least for the (small) Si4+ cation. 

Fhki must not only express the amplitude of scattering from a reflecting plane with Laue 

indices hkl but must also express the phase angle of the scattered wave, an important 

concept which is explained in Section 9.2 below. Fhki is therefore not a simple number, 

like /, but is represented as a vector or mathematically as a complex number (see 

Appendix 5). 

Crystal structure determination is a two-part process: (a) the determination of the 

size and shape of the unit cell (i.e. the lattice parameters) from the geometry of the 

diffraction pattern and (b) the determination of the lattice type and distribution of 

the atoms in the structure from the (relative) intensities of the diffraction spots. Part 

(a) is in principle a straightforward process; part (b) is not, because films and counters 

record intensities which are proportional to the squares of the amplitudes. The square of 

a complex number, Fhki, is always real (i.e. a simple number) and hence the information 

about the phase angles of the diffracted beams is lost. A major problem in crystal 

structure determination is, in effect, the recovery of this phase information and requires 

for its solution as much insight and intuition as mathematical and crystallographic 

knowledge. A graphic account of the problems involved in the epoch-making deter¬ 

mination of the structure of DNA is given by one of those most closely involved, James 

D. Watson, in his book The Double Helix (see Further reading). 

The distinction between the direction-problem and intensity-problem of diffracted 

beams from crystals has its corollary in the diffraction of light from diffraction gratings, 
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Fig. 9.2. (a) Part of a crystal lattice with atoms with atomic scattering factor /o, situated at each 

lattice point, and a particular set of (hkl) planes through the lattice points. Incident / reflected beams 

at the Bragg angle 9 to these planes are indicated by the arrows, (b) As for (a), but with another atom 

with atomic scattering factorf\ defined by position vector rj. The path difference (shown for simplicity 

for one motif) is given by (AB — CD), s and so are unit vectors along the reflected and incident 

beam directions and the component of ri perpendicular to the (hkl) planes is also indicated, (c) The 

process of reflection and re-reflection for a single incident beam I; as it passes through the crystal at the 

Bragg angle 9 it is (partially) reflected by each successive plane. The reflected beams R are then 

re-reflected from the ‘undersides’ of the planes giving rise to beams RR with interfere destructively with 

the direct beam D. Clearly, the process is repeated for all the beams throughout the crystal. 
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which may be expressed as follows. A (primitive) crystal with one atom per lattice point 

(Fig. 9.2(a)) may be regarded as being analogous to a ‘narrow slit’ diffraction grating 

in which each slit can be regarded as the source of a single Huygens’ wavelet which 

propagates uniformly in all directions (Fig. 7.5). Only the interference effects of light 

emanating from different slits (equivalent to single atoms at lattice points) need to be 

taken into account and these determine the directions of the diffracted beams (Section 

7.4). The intensities of the diffracted beams are proportional to the squares of the 

scattered amplitudes of the Huygens’ wavelets (for light) or the squares of the atomic 

scattering factors of the single atoms (for X-rays). 

A (primitive) crystal with a motif consisting of more than one atom (Fig. 9.2(b)) may 

be regarded as being analogous to a ‘wide slit’ diffraction grating in which the inter¬ 

ference effects from all the atoms in the motif may be regarded as being analogous to 

the interference effects between all the Huygens’ wavelets distributed across each slit. 

Of course, the problem is rather more complicated because the atoms in the motif do not 

all lie in a plane or surface as do the Huygens’ wavelets, but the principle—of summing 

the contributions with respect to phase differences—is the same. 

As shown in Section 7.4 and Fig. 7.7, the diffraction pattern from a wide-slit dif¬ 

fraction grating may be expressed as that from a narrow-slit grating in which 

the intensities of the diffracted beams are modulated by the intensity distribution 

predicted to occur from a single wide slit. Similarly, in the case of X-ray diffraction 

from crystals it is the structure factor, Fhki, which expresses the interference effects from 

all the atoms in the unit cell and which modulates, in effect, the intensities of the 

diffracted beams. 

The final step is to sum the contributions from all the unit cells in the crystal. This is a 

difficult problem because we have to take into account the fact that the incident X-ray 

beam is attenuated as it is successively scattered by the atoms in the crystal—such that 

atoms ‘deeper down’ in the crystal encounter smaller amounts of incident radiation. 

Furthermore, the reflected beams also propagate through the crystal at the Bragg angle 9 

(see Fig. 9.2(c)) and are hence ‘re-reflected’ in a direction parallel to that of the incident 

beam. These re-reflected beams then interfere destructively1 with the incident or direct 

beam, attenuating it still further. This is covered in a comprehensive analysis, known as 

the dynamical theory of X-ray diffraction because it takes into account the dynamical 

interactions between the direct, reflected and re-reflected, etc., beams. It is much simpler 

to consider the case in which the size of the crystal is sufficiently small such that the 

attenuation of the direct beam is negligible and the intensities of the diffracted beams are 

small in comparison with the direct beam2. This case is fairly readily achieved in X-ray 

diffraction and enables the observed relative intensities of the diffracted spots to be 

1 When considering the interference between the direct and re-reflected beams, the 180° or 7r phase dif¬ 
ference of the re-reflected beams needs to be taken into account. This complication does not arise when we are 

considering interference between the reflected or diffracted beams alone. 
2 The crystal size in this context is better expressed by the notion of coherence length—the dimensions over 

which the scattering amplitudes from the unit cells can be summed. Crystal imperfections—dislocations, 
stacking faults, subgrain boundaries—within imperfect single crystals effectively limit or determine the 

coherence length as well as grain boundaries in perfect crystals. 
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assumed to be equal to the relative intensities of the squares of the Fhki values3. In 

electron diffraction, however, dynamical effects are always important and the above 

assumption cannot be made, but they are an important source of specimen contrast in 

the electron microscope. 
Finally, we have to consider the connection between th^ diffraction pattern and the 

type of unit cell (whether it is centredxor not) and the symmetry elements present. It 

turns out that the presence of the centring lattice points and translational symmetry 

elements (glide planes and screw axes—see Section 4.5) results in ‘zero intensity’ or 

systematically absent reflections from certain planes with Laue indices hkl. This topic, 

and that of double diffraction, which is of particular importance in the case of electron 

diffraction, are discussed in Appendix 6. 

9.2 The intensities of X-ray diffracted beams: 

the structure factor equation and its applications 

We shall begin by considering the simplest case of a primitive crystal with just one atom 

at each lattice point. Figure 9.2(a) shows part of such a crystal with atoms with atomic 

scattering factor /0 at each lattice point (the subscript 0 indicating that each atom is at 

an origin). Consider an X-ray beam incident at the correct Bragg angle 6 in a particular 

set of lattice planes (hkl) as indicated. For all the atoms lying in one plane the 

path differences between the reflected beams are zero, and for the atoms lying in succes¬ 

sive planes spaced dhki, 2dhki etc. apart the path differences are A, 2A etc. (Fig. 8.3). 

In all cases constructive interference occurs and the total scattered amplitude (relative 

to that of a single electron—see Section 9.1) is simply the sum of the atomic scattering 

factors. Hence, since we have a primitive crystal with one lattice point and therefore 

one atom per unit cell, the scattered amplitude from one cell, Fhki, is simply equal to 

the atomic scattering factor, ff. 

Now consider a crystal with a motif consisting of two atoms, one at the origin with 

atomic scattering factor ff as before and another with atomic scattering factor f at a 

distance from the origin defined by vector rx (Fig. 9.2(b)); rx is called a position vector 

because it specifies the position of an atom within the unit cell. It may be expressed in 

terms of its components or fractional atomic coordinates along the unit cell vectors 

a, b, c in the same way as for a lattice vector ruvw, i.e. ri = uxa + vib + wqc; the 

important difference being that the components u\ Vi wx axe fractions of the cell edge 

lengths, whereas the components uvw of a lattice vector ruvw are integers4. 

The path difference (P.D.) between the waves scattered by these two atoms is 

AB - CD (Fig. 9.2(b)), which, expressed in vector notation, is: 

3 A number of physical and geometrical factors also need to be taken into account—temperature factor, 
Lorentz-polarization factor, multiplicity factor, absorption factor, etc. These are described in standard 
textbooks such as Elements of X-ray Diffraction by B. D. Cullity, Addison-Wesley, 1978. 

The fractional atomic coordinates may also be written as x\ y\ z\. However, the use of u\ Vi W| (or, in 
general, un vn w„ for the nth atom in the unit cell) emphasizes the important fact that, with respect to the origin, 
the atom lies in the crystallographic direction [uvw]. 
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P.D. = AB - CD = ri • s - ri • s0 = ri • (s - s0) 

where s, So are unit vectors along the direction of the reflected and incident beams, 

respectively. Two substitutions can be made in this equation. First, ri may be expressed 

in terms of its components and second (since Bragg’s law is satisfied) the vector (s — s0) 

may be expressed in terms of A and d^u (see Section 8.3), i.e. 

(s - s0) = \d*hkl = X(ha* + kb* + Ic). 

Hence 

P.D. = A(«ia + vib + wic) • (ha* + kb* + /c*) 

multiplying out, and remembering the identities a • a* = 1 etc., a • b* =0 etc.: 

P.D. = \(hu\ + kv\ + lw\). 

This equation is another manifestation of the Weiss zone law (Section 6.5.3); in this 

case the number within the brackets (hu\ + kv\ + lw\) represents the component of ri 

perpendicular to the lattice planes as a fraction of the interplanar spacing, dhki (Fig. 

9.2(b)). It is clearly the important number with respect to constructive/destructive 

interference conditions; when for example (hu\ + kv\ + lw\) = 0 (the two atoms lying 

within the (hkl) planes), complete constructive interference occurs and when 

(hu\ + kvi + Iwi) = 0.5 (the second atom lying halfway between the (hkl) planes), 

destructive interference occurs, which is complete when the atomic scattering factors 

of the two atoms in the motif are equal. 

In general, in adding the contributions of the two atoms, we need to use a vector-phase 

diagram in which the lengths or moduli of the vectors are proportional to the atomic 

scattering factors of the atoms, and the phase angle between them, (j)l, 's equal to 

27t/A(P.D.), i.e. in the above case 

cf) i = 27t(/?mi + kv i + lw\). 

This is shown in Fig. 9.3(a). The resultant is the structure factor, Fhki- 

Fig. 9.3. Vector-phase diagrams for obtaining Fm. The atomic scattering factors/i,/2,... are 

represented as vectors with phase angles <j)\,<p2, ■ • • with respect to a wave scattered from the origin: 

(a) result for two atoms and (b) result for several atoms. 
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The analysis may be simply extended to any number of atoms in the motif with 

position vectors iq, r2, r3 etc. and phase angles (referred to the origin) </>i, 02, 03 etc. The 

resultant, Fhki, is found by adding all the vectors, representing the atomic scattering 

factors of all the atoms, as shown in Fig. 9.3(b). Note that the phase angles, 0, are all 

measured with respect to the origin (horizontal line in Fig. ^-3); they are not the angles 

between the vectors. Note also that, although for simplicity we began with an atom at the 

origin, there need not be one there. The length or modulus of the vector Fhki represents 

the resultant amplitude of the scattered or reflected beam and the angle $ which it makes 

with the horizontal line is the resultant phase angle. 

Adding vectors graphically in this way is obviously not very convenient; in practice 

vector-phase diagrams, such as Fig. 9.3, are substituted by Argand diagrams in which 

Fhid is represented as a complex number (see Appendix 5), i.e. 

n=N 

Fhid = y^ fn exp 2m(hun + kvn + lwn) 
n=0 

where fn is the atomic scattering factor and 2n(hun + kvn + lw„) is the phase angle 0n of 

the nth atom in the motif with fractional coordinates (un vn w„). 

Many students are deterred at first sight of equations such as this. It is important to 

realize that it merely represents an analytical way of adding vectors ‘top to tail’, the 

convenience and ease of which is soon appreciated by way of a few examples. 

Example 1: CsCl structure (Fig. 1.12). The (u„ vn w„) values are (000) for Cl, atomic 

scattering factor/a and (~~) for Cs, atomic scattering factor/Cs. Substituting these two 
terms in the equation: 

Fhki — fci exp 27ri(/z0 + kO + 10) + fCs exp 2?ri {h\ + k\ + /|) 

—fci +/cs exp 7d (h + k + l). 

Two situations may be identified: when (h + k + /) = even integer, exp 7ri (even 

integer) = 1, hence Fhki =/ci +/cs and when (h + k + /) = odd integer, exp zri (odd 

integer) = — 1, hence Fhki =/ci — /cs- These two situations may be simply represented 
on the Argand diagram as shown in Fig. 9.4. Note that in both cases Fm is a real number; 

the imaginary component is zero. This arises because CsCl has a centre of symmetry at 
the origin, as explained below. 

'Cs 'ci 

(a) 

(fa + fee) 

'Cs 

(fa-W 
'Cl (b) 

Fig. 9.4. Argand diagrams for Fm for CsCl (a) (h + k +1 ) = even integer, Fhkl =fcl + /Cs; 

(b) (h + k + /) = odd integer, Fhk! = fa -/Cs. 
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Example 2: hep metal structure. We have a choice of unit cells (Fig. 5.8); it is best to 

refer to the primitive hexagonal cell, Fig. 5.8(a), which contains two identical atoms, 

atomic scattering factor/, with fractional coordinates (000) (the A layer atoms) and 

(the B layer atoms). Substituting these two terms in the equation: 

Fhki = f exp 27ri(/j0 + kO + 10) + / exp 27ri (/z i + k | + l 

= /(l + exp 27ri(/z^ + + Z^)). 

Now let us apply this to some particular (hkl) planes, e.g. (002) = (0002); (100) = (lOlO) 

and (101) = (1011). 

F002 =/(l + exp27ri) = 2f 

Fioo =/( 1 +exp|7ri) = /(1 + cos|7r + i sin|7r) =/(0.5 + i0.866) 

Fioi =/(l + exp27iiQ + i)) = /(I + cos|7r + isin|7r) =/(1.5 - i0.866). 

These results are shown graphically in Fig. 9.5. Note that Fioo and Fioi are complex 

numbers. 
The intensities of X-ray beams are proportional to their amplitudes squared, or 

Fhki multiplied by its complex conjugate F*hkl (see Appendix 5). For the hep metal 

examples above: 

7oo2 = 2/ • 2/ = 4/2 

/100 =/(0.5 + i0.866)/(0.5 - i0.866) =/2 

7101 =/(1.5 - i0.866)/(l.5 + 10.866) = 3f2. 

Again, it should be stressed that Ihkj is a real number, the phase information expressed 

in Fhki is lost. (For an alternative choice of origin, see Exercise 9.4) 

Fig. 9.5. Argand diagrams for an hep metal for (left to right) F002, Foo and Fm showing also how 

these structure factors are obtained graphically by vector addition. 
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Imaginary 

Fig. 9.6. The Argand diagram for a centrosymmetric crystal. The phase angle +<f> for the atom at 

(uvw) is equal and opposite to the phase angle —<p for the atom at (iivw), hence Fhki is real. 

Example 3: A crystal with a centre of symmetry at the origin. This is an important case 

because the structure factor for all reflections is real. For every atom with fractional 

coordinates (uvw) and phase angle +0 there will be an identical one on the opposite side 

of the origin with fractional coordinates (uvw and phase angle ~4>. For these two atoms: 

Fhki = / exp 2ni(hu + kv + Iw) +/ exp 2Tn(hu + kv + Iw) 

— f exp 2ni(hu + kv + Iw) +f exp —2iti(hu + kv + Iw). 

The second term is the complex conjugate of the first, hence the sine terms cancel and 

Fhki = 2f cos 2n(hu + kv + Iw) 

as shown graphically in Fig. 9.6. 

Example 4: It follows from example 3 that the diffraction pattern from a centrosym¬ 

metric crystal is also centrosymmetric. However, even if a crystal does not possess a 

centre of symmetry, the diffraction pattern will still be centrosymmetric. This is known 

as Friedel’s law5. We have to show that the intensity of the reflection 7/,w from the hkl 

planes is equal to the intensity of the reflection on the opposite side of the direct beam 

from the hkl planes, i.e. Ehk7. Now, applying the structure factor equation to the simplest 

case of a crystal with one atom at (uvw): 

I hkl = Fhki ■ F*hkl = / exp 2m(hu -f kv + Iw) f exp —2m(hu + kv + Iw) 

= / exp 2ni(hu + kv + lw)f exp 2m(Jiu + £v + Iw) 

Fhki = Fhki ■ F*k-j — f exp 2m(hu + £v + Iw)f exp —2m(hu + + Iw) 

= f exp 2ni(hu + kv+ Iw) f exp 2ni(hu + kv + Iw). 

From which it is seen that Fhki = F*-k] and F*hkl = F-hk], hence Ihki = Iiu- 

The presence of a centre of symmetry in the diffraction pattern means that non- 

centrosymmetric point groups cannot be distinguished from those with a centre of 

symmetry6. There are eleven centrosymmetric point groups (Table 3.1, page 73) and 

hence eleven symmetries which diffraction patterns can possess. These are called the 

5 Friedel’s law breaks down under conditions of anomalous scattering, a discussion of which can be found in, 
for example, Essentials of Crystallography by D. McKie and C. McKie, Blackwell Scientific Publications, 
1986. 

6 It is, however, in situations when anomalous scattering is present, possible to distinguish non- 
centrosymmetric and centrosymmetric point groups. 
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Table 9.1 The eleven Laue point groups or crystal classes 

Crystal system 

Laue point group 

and centrosymmetric 

point group 

Non-centrosymmetric 

point groups belonging 

to the Laue point group 

Cubic m3m 432 43m 

(two Laue point groups) m3 23 

Tetragonal 4/mmm 422 4 mm 42 m 

(two Laue point groups) 4/m 4 4 

Orthorhombic mmm 222 mm2 

Trigonal 3 m 32 3m * 

(two Laue point groups) 3 3 

Hexagonal 6/mmm 622 6 mm 6m2 

(two Laue point groups) 6/m 6 6 

Monoclinic 2/m 2 m 

Triclinic I 1 

eleven Laue groups and are identified by the corresponding point group symbol of the 
centrosymmetric point group. They are listed in Table 9.1. 

To summarize, these four simple examples show how the amplitude, Fm, and hence 

the intensity, Ihkh of the reflected X-ray beam from a set of hkl planes can be calculated 

from the simple ‘Structure Factor’ equation on p. 176; all we need to know are the 

positions of the atoms in the unit cell (the un vn wn values) and their atomic scattering 

factors,/„. The great importance of the equation is that it can be applied, as it were, ‘the 

other way round’: by measuring the intensities of the reflections from several sets of 

planes (the more the better), the positions of the atoms in the unit cell can be determined. 

This is the basis of crystal structure determination, which has developed and expanded 

since the pioneering work of the Braggs, so that, at the time of writing, some 200 000 

different crystal structures are known. Many of these are very complex, for example 

protein crystals in which the motif may consist of several thousand atoms. Again, it 

should be emphasized that the procedures are invariably not straightforward because the 

phase information in going from the Fhki to the (measured) Ihki values is lost, e.g. as in 

Example 2. This is called the phase problem in crystal structure determination, which 

may be understood with reference to Fig. 9.3(b). All Fhki vectors with the same modulus 

or amplitude will give the same observed intensity 4«; the value of the phase angle <f>, 

which is an essential piece of information in the vector-phase diagram, is lost. In short, 

we do not know in which direction the vector Fhki ‘points’, e.g. as in Example 2. In some 

cases (as in Example 1), the problem is simply solved if we are able to arrange the origin 

to coincide with a centre of symmetry in the crystal in which case, as shown in Example 

3, the phase angle $ is zero and the structure factor Fhki is a real number with no 

imaginary component. However, in the many cases where the crystal does not possess a 

centre of symmetry, we must resort to more subtle procedures, the details of which are 

beyond the scope of this book. One method is to arrange a heavy atom (possibly 
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substituted in the crystal structure for a light atom) to be at the origin. Then, in terms of 

our vector-phase diagram (Fig. 9.3(b)),/o is so large that it dominates the contributions 

of all the other atoms such that the phase angles $ for all the Fhki values are small and 

therefore can more easily be guessed at. In all cases the structure factor equation is 

expressed as it were in a ‘converse’ form (or transform of th^t on p. 176 in which atomic 

positions (expressed as electron (X-ray scattering) density) are expressed in terms of the 

Fhki values of the reflections. The books on X-ray diffraction and X-ray crystallography 

in Further reading give further information and insight into this large and fascinating 

topic. In this book just the basic principles have been set out so that their nature and 

applications can begin to be appreciated. 

9.3 The broadening of diffracted beams: 

reciprocal lattice points and nodes 

In Section 7.4 we found that when the number N of lines in a grating, or the number of 

apertures in a net, were limited, the principal diffraction maxima were broadened and 

surrounded by much fainter subsidiary maxima. These phenomena are shown in 

Fig. 7.3(d) and diagrammatically in Fig. 7.9. Precisely the same considerations apply 

to X-ray (and electron) diffraction from ‘real’ crystals in which the number of reflecting 

planes is limited: and the broadening and occurrence of the subsidiary maxima can be 

derived by similar arguments. This, in turn, leads us to modify our concept of reciprocal 

lattice points, which are not geometrical points, but which have finite size and shape, 

reciprocally related, as we shall see, to the size and shape of the crystal. There is, as far as 

I know, no common term to express the fact that reciprocal lattice points do have a finite 

size and shape, except in special cases such as the reciprocal lattice streaks or ‘rel-rods’ 

which occur in the case of thin plate-like crystals. Reciprocal lattice nodes seems to be 
the closest approximation to a common term. 

The broadening of the reflected beams from a crystal of finite extent is derived as 

follows. Consider a crystal of thickness or dimension t perpendicular to the reflecting 

planes, dhki, of interest. If there are m planes then mdhki = t. Consider an incident beam 

bathing the whole crystal and incident at the exact Bragg angle for first order reflection 

(Fig. 9.7(a)). For the first two planes labelled 0 and 1, the path difference A = 2dhki sin 0; 

for planes 0 and 2 the path difference is 2A = 4dhki sin 9 and so on—constructive 

interference between all the planes occurs right through the crystal. Now consider the 

interference conditions for an incident and reflected beam deviated a small angle 89 

from the exact Bragg angle (Fig. 9.7(b)). For planes 0 and 1 the path difference will be 

very close to A as before and there will be constructive interference. However, for planes 

0 and 2, 0 and 3 etc. the ‘extra’ path difference will deviate increasingly from 2A, 3A 

etc.—and when it is an additional half^wavelength destructive interference between the 
pair of planes will result. 

The condition for destructive interference for the whole crystal is obtained by 

notionally ‘pairing’ reflections in the same way as we did for the destructive interference 

of Huygens’ wavelets across a wide slit (Fig. 7.8). Consider the constructive and 

destructive interference condition between planes 0 and (m/2) (half way down through 

the crystal). At the exact Bragg angle 9 (Fig. 9.7(a)), the condition for constructive 
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Fig. 9.7. Bragg reflection from a crystal of thickness t (measured perpendicular to the particular set of 

reflecting planes shown). The whole crystal is bathed in an X-ray beam (a) at the exact Bragg angle 9 and 

(b) at a small deviation from the exact Bragg angle, i.e. angle (9 + 69). The arrows represent the incident 

and reflected beams from successive planes 0,1,2,3 ... (ml2) (half-way down) and...m (the lowest 

plane). 

interference is (m/2)A = (m!2)2dhki sin 0. The condition for destructive interference at 

angle (0 + 80) is given by (ml2)A + A/2 = (m/2)2dhki sin(# + 80). Now this is also 

the condition for destructive interference between the next pair of planes 1 and 

(ml2) + 1—and so on through the crystal. This equation gives us, in short, the condition 

for destructive interference for the whole crystal and the angular range 80 (each side of 

the exact Bragg angle) of the reflected beam. 

Expanding the sine term and making the approximations cos 80 = 1 and sin 80 ~ 80 

gives: 

(ml2)A -f A/2 = (m/2)2dhki sin 0 + (m/2)2di,i<i cos 0 80. 

Cancelling the terms (m/2)A and (m/2)2dhki sin 0 and substituting mdhki = t gives 

280 = -^~ 
tc OS0 

This is the basis of the Scherrer equation which relates the broadening of an X-ray beam 

to the crystal size t. The broadening is usually expressed as (5, the breadth of the beam 

at half the maximum peak intensity and in which the angles are measured relative to 

the direct beam. As indicated in Fig. 9.8, f3 is approximately equal to 260, hence 

A A sec 0 

t cos 0 t 

The broadening can be represented in the Ewald reflecting sphere construction in 

terms of the extension of the reciprocal lattice point to a node of finite size. Fig. 9.9 

shows a diffracted beam (angle 20 to the direct beam) which is broadened over an 

angular range 2f3 « 480. This is expressed by extending the reciprocal lattice point into a 
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Fig. 9.8. A schematic diagram of a broadened Bragg peak arising from a crystal of finite thickness. 

The breadth at half the maximum peak intensity, (3, is approximately equal to 260. Note that the angular 
‘2O' scale is measured in relation to the direct and reflected beams. 

Fig. 9.9. The Ewald reflecting sphere construction for a broadened reflected beam, /3, which cor¬ 
responds to an extension 1 It of the reciprocal lattice node. 

node of finite length which, as the crystal rotates, intersects the reflecting sphere over 

this angular range. Let 6{d*hkl) represent the extension of the reciprocal lattice point about 
its mean position. Now since 

<W = dl, = 

6(d*) = <5 

hkl 

2sind 

A 

2 sin 9 

2 cos 6 

A 
86. 

Substituting for 69 from above gives: 
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i.e. the extension of the reciprocal lattice node is simply the reciprocal of the crystal 

dimension perpendicular to the reflecting planes. This applies to all the other directions 

in a crystal with the result that the shape of the reciprocal lattice node is reciprocally 

related to the shape of the crystal. For example, in the case of thin, plate-like crystals 

(e.g. twins or stacking faults), the reciprocal lattice node is a rod or ‘streak’ perpendi¬ 
cular to the plane of the plate. 

The above is a simplified treatment, both of the Scherrer equation and the extension of 

reciprocal lattice points into nodes. The Scherrer equation is normally applied to the 

broadening from polycrystalline (powder) specimens and includes a correction factor 

K (not significantly different from unity) to account for particle shapes7. Hence the 
Scherrer equation is normally written: 

_ KX _ KX sec 9 

tcos9 t 

Finally, it should be noted that the reciprocal lattice nodes are also surrounded by 

subsidiary nodes (or satellites, maxima, or fringes) just as in the case of light diffraction 

from gratings with a finite number of lines (Section 7.4, Fig. 7.9). In most situations these 

subsidiary nodes are very weak because the number of diffracting planes contributing to 

the beam is large. However, in the case of X-ray diffraction from specimens consisting of 

a limited number of diffracting planes, superlattice repeat distances or multilayers, the 

subsidiary nodes (or satellites, maxima or fringes) are observable and are important in 

the characterization of the specimen, as described in Section 9.6. 

9.4 Fixed 0, varying X X-ray techniques: the Laue method 

X-ray single crystal techniques may be classified into two groups depending upon the 

way in which Bragg’s law is satisfied experimentally. There are two variables in Bragg’s 

law—9 and A—-and a series of fixed values, dm- In order to satisfy Bragg’s law for any 

of the d- values, either A must be varied with 9 fixed, or 9 must be varied with A fixed. The 

former case has only one significant representative—the (original) Laue method and its 

variants, whereas there are many methods based upon the latter case. 

The geometry of the Laue method, in terms of the reflecting sphere construction, has 

already been explained in Section 8.4. Now we need to consider the practical applica¬ 

tions of the technique. The important point to emphasize is that each set of reflecting 

planes with Laue indices hkl (see Section 8.4) gives rise to just one reflected beam. Of all 

the white X-radiation falling upon it, a lattice plane with Miller indices (hkl) reflects 

only that wavelength (or ‘colour’) for which Bragg’s law is satisfied, a reflecting plane 

of half the spacing with Laue indices 2h 2k 21 reflects a wavelength of half this value, and 

so on. In other words the reflections from planes such as, for example, (111) (Miller 

7 Note that the observed breadth at half the maximum peak intensity, /3obs. includes additional sources of 
broadening arising from the experimental set up and instrumentation, /JINST, which must be ‘subtracted’ from 

Pobs in order than /3 can be determined (see Section 10.3.3). 
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indices for lattice planes) 222, 333, 444, etc. (Laue indices for the parallel reflecting 

planes) are all superimposed. 

The usual practice is to record the back-reflected beams since thick specimens which 

are opaque to the transmission of X-rays through them can be examined. The set-up 

showing just one reflected beam in the plane of the paper is shown in Fig. 9.10(a). In 

Fig. 9.10. (a) The geometry of the back reflection Laue method for a particular set of hkl planes in 

a single crystal. The wavelength of the reflected beam is that for which Bragg’s law is satisfied for the 

particular fixed 6 and dhkl value, (b) A back reflection Laue photograph of a single crystal of aluminium 

oriented with a (100) direction nearly parallel to the incident X-ray beam showing the reflections S from 

many (hkl) planes. They lie on a series of intersecting hyperbolae (close to straight lines in this 

photograph), each hyperbola corresponding to reflections from planes in a single zone, [uvw]. Note 

the four-fold symmetry of the intersecting zones indicating the (100) crystal orientation. (Photograph 
by courtesy of Prof. G. W. Lorimer.) 
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analysing the film it is necessary to determine the projection of the normal (or reciprocal 

lattice vector) of each of the reflecting planes on to the film from each reflection S and 

then to plot these on a stereographic projection. By measuring the angles between 

the normals, and then comparing them with lists of angles such as given for cubic 

crystals in Section A4.4 (Appendix 4), it is possible to identify the reflections. In practice 

such manual procedures (involving the use of the Greninger net8) have largely been 

replaced by computer programs which determine the orientation of the crystal using as 

input data the positions of spots on the film, film-specimen distance and (assumed) 

crystal structure. 

Hence (back reflection) Laue photographs may be used to determine or check the 

orientation of single crystals and the orientation relationships between crystals. An 

example of a Laue photograph is shown in Fig. 9.10(b). 

Figure 9.10(a) should be compared with Fig. 8.7. Consider for example the 201 

reciprocal lattice point which is situated in the ‘nest’ of spheres representing the 

wavelength range of the incident ‘white’ X-radiation. Bragg’s law is satisfied for the 

particular wavelength represented by the sphere which passes through the 201 reciprocal 

lattice point and the direction of the reflected beam (indicated by the arrow) is from the 

centre of this sphere (which can be found by construction) and the 201 reciprocal lattice 

point. This beam makes angle (180° — 26) with the incident beam and the reciprocal 

lattice vector makes angle (90° — 9) with the incident beam. 

9.5 Fixed A, varying 6 X-ray techniques: oscillation, rotation 

and precession methods 

In Section 8.4, Fig. 8.6, we showed the Ewald reflecting sphere construction for the 

case where the incident X-ray beam was incident along the a* reciprocal lattice vector 

(from the left). Figure 8.6(a) shows the hOl section of the reciprocal lattice through the 

centre of the sphere and the origin of the reciprocal lattice and Fig. 8.6(b) shows the h\l 
section of the reciprocal lattice and the smaller (non-diametral) section of the Ewald 

sphere. For the particular wavelength and particular incident beam direction drawn in 

Fig. 8.6, only two planes—201 and 211 satisfy Bragg’s law. Now, instead of varying A, 

as in the Laue case (Fig. 8.7), let us change the direction of the incident beam such that it 

is no longer incident along the a* reciprocal lattice vector direction. This variation in the 

Bragg angle is accomplished in practice by moving the crystal. 

9.5.1 The oscillation method 

Consider the crystal, Fig. 8.6, oscillated say ±10° about an axis parallel to the b" 

reciprocal lattice vector (or y-axis), i.e. perpendicular to the plane of the paper. As the 

crystal is (slowly) oscillated, the angles between the incident beam and hkl planes vary 

8 Greninger nets are prepared for a particular specimen-film distance (e.g. 30 mm), on which are drawn 
a series of calibrated hyperbolae (for the back reflection case). By measuring the distance between two 
spots along a hyperbola the angle between the normals, or the reciprocal lattice vectors of the two planes giving 

rise to these spots, can be obtained. 
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Fig. 9.11. The Ewald reflecting sphere construction for a monoclinic crystal in which the incident 

X-ray beam is oscillated ±10° from the direction of the a* reciprocal lattice vector about the [010] 

direction (y-axis, perpendicular to the plane of the paper). The directions of the X-ray beams and the 

corresponding surface of the reflecting sphere are shown at the limits of oscillation. Any reciprocal 

lattice points lying in the regions of reciprocal space through which the reflecting sphere passes 

(the shaded regions, called dunes’) give rise to reflections, (a) The hOI reciprocal lattice section 

through the origin and a diametral section of the reflecting sphere and (b) the hi l reciprocal lattice 

section (i.e. the layer ‘above’ the hOI section) and the smaller, non-diametral section of the reflecting 

sphere (compare with Fig. 8.6). In these two sections the planes which reflect are 201,102,001,20l, 102 

(zero layer line) and 112, 211 (first layer line above). 

and whenever Bragg’s law is satisfied for a particular plane ‘out shoots’ momentarily 

a reflected beam. The oscillation of the crystal can be represented by an oscillation of 

the reciprocal lattice about the origin: imagine a pencil fixed to the crystal perpendicular 

to the page with its point at the origin of Fig. 8.6(a). As you oscillate the pencil 

the reciprocal lattice oscillates about the origin but the Ewald sphere remains fixed, 

centred along the direction of the incident beam from the left: whenever a reciprocal 

lattice point intersects the sphere ‘out shoots’ a reflected beam. 

The relative movement of the sphere and reciprocal lattice is most easily represented, 

not by drawing the whole reciprocal lattice in its different positions, but by drawing the 

Ewald sphere at the extreme limits of oscillation say 10° in one direction and 10° in 
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the other. These limits are shown in Fig. 9.11 for (a) the hOl and (b) the hll reciprocal 

lattice sections. The shaded regions, called ‘lunes’ because of their shape, represent 

the regions of reciprocal space through which the surface of the sphere passes as it is 

oscillated. Only those reciprocal lattice points which lie within these shaded regions 

give rise to reflected beams. 

There are several ways of recording the reflected beams. The simplest is to arrange 

a cylindrically shaped film coaxially around the crystal (with a hole to allow the exit of 

the incident beam) such that reflections at all angles can be recorded. Now, all the 

reflected beams from the hOl reciprocal lattice section (Fig. 9.11(a)) lie in the plane of 

the paper and thus lie in a ring around the film. The reflected beams from the hll 
reciprocal lattice section lie in a cone whose centre is the centre of the Ewald sphere and 

these beams also intersect the film in a ring ‘higher up’ than the ring from the hOl 
reciprocal lattice section. Figure 9.12(a) shows this geometry for the reflected beams 

from the hOl, hll, hll, hll etc. sections of the reciprocal lattice. 

When the film is ‘unwrapped’ and laid flat, the rings of spots appear as lines, called 

layer lines (Fig. 9.12(b)), the ‘zero layer line’ spots from the hOl reciprocal lattice section 

through the centre, the ‘first layer line’ spots from the hll reciprocal lattice section next 

above—and so on for all the reciprocal lattice sections perpendicular to the axis of 

oscillation. 
In practice it is necessary to set up a crystal such that some prominent zone axis is 

along the oscillation axis, such as, in our case, the [010] axis. This implies that the 

reciprocal lattice sections or layers perpendicular to the oscillation axis are well defined 

[010] 
i 

Fig. 9.12. (a) The oscillation photograph arrangement with the crystal at the centre of the cylindrical 

film. The oscillation axis [010] is co-axial with the film and the reflections from each reciprocal lattice 

section hOl, hll, hll, hll etc. lie on cones which intersect the film in circles. X indicates the incident 

beam direction and in (b), showing the cylindrical film ‘unwrapped’, O indicates the exit beam direction 

through a hole at the centre of the film. 
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and give rise to clearly defined layer lines on the film. If, for example, we set a cubic 

crystal with the z-axis or [001] direction along the axis of oscillation, then the reciprocal 

lattice sections giving the layer lines would be hkO (zero layer line), hkl (first layer 

line above) and so on (see Figs 6.7 or 6.8). If on the other hand the crystal was set up 

in no particular orientation, i.e. no particular reciprocal lattice section perpendicular 

to the axis of rotation, the layer lines would, correspondingly, hardly be evident. 

9.5.2 The rotation method 

As the angle of oscillation increases, the Ewald reflecting sphere sweeps to and fro 

through a greater volume of reciprocal space, the lunes (Fig. 9.11) become larger and 

overlap and more reflections are recorded. The extreme case is to oscillate the crystal 

±180°—but this is the same as rotating it 360°, in which case the Ewald reflecting 

sphere makes a complete circuit round the origin of the reciprocal lattice. As the Ewald 

sphere sweeps through the reciprocal lattice, a plane will reflect twice: once when it 

crosses ‘from outside to inside’ the reflecting sphere and once when it crosses out again, 

the reflections being recorded on opposite sides of the direct beam. Rotation photo¬ 

graphs are generally used to determine the orientation of small single crystals. An 
example is given in Fig. 9.13. 

9.5.3 The precession method 

This is an ingenious and useful technique invented by M. J. Buerger* by means of which 

(unlike oscillation and rotation photographs), undistorted sections or layers of reciprocal 

lattice points may be recorded on a flat film. It is probably easiest to appreciate the 

geometrical basis of the method by using, as an example, a simple cubic crystal. 

Fig. 9.13. A rotation crystal photograph toftopaz Al2(Si04)(0H, F)2, orthorhombic. The cylindrical 

film is shown laid flat with the X-ray beam exit hole at the centre and the rotation axis (in this case 

the x-axis) vertical. Notice the large number of reflections in each layer line and the vertical and 

horizontal mirror lines of symmetry which arise because the reflecting sphere sweeps through a much 

larger region of reciprocal space during the 360° rotation of the crystal than for an oscillation 

photograph. (Photograph by courtesy of Dr. M. S. Hampar.) 

* Denotes biographical notes available in Appendix 3. 
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Figure 9.14(a) shows an (hOl) section of a simple cubic crystal (drawn with the y-axis 

or b* reciprocal lattice unit cell vector perpendicular to the page). The X-ray beam is 

incident along the x-axis or a* reciprocal lattice unit cell vector and the Ewald reflecting 

sphere for a particular wavelength is centred about the incident beam direction. The 

flat film is set perpendicular to the X-ray beam. We are now going to consider the 

Coupled rotation of 

Fig. 9.14. (continued) 
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Fig. 9.14. The geometry of the precession method, (a) The incident beam normal to the 0kl section 

of the reciprocal lattice (indicated by the row of reciprocal lattice points 001, 002, 003 etc.). In order 

to bring these points into reflecting positions the crystal and the film are rotated anti-clockwise 

as indicated. The situation in which the 003 reciprocal lattice point is in a reflecting position is shown 

in (b). (c) A plan view of the film at this angle <j> with the circle representing the intersection of the 0kl 
plane and the reflecting sphere and the projection of the annulus on to the screen. The only reflections to 

reach the film are those falling within the annulus (shaded region), As the crystal + screen + film are 

precessed about the angle (j> the annulus effectively sweeps through the 0kl section of the recip¬ 

rocal lattice as indicated by the arrow and all reciprocal lattice points within the large circle give 

rise successively to reflections. 

conditions by which we can obtain reflections from the reciprocal lattice points lying in 

the plane 0kl—i.e. the plane through the origin and perpendicular to the .r-axis or a* 
reciprocal lattice vector. Figure 9.14(a) shows only one row of these reciprocal lattice 

points—001, 002, 003, OOl, 002, 003 etc.; the others are above and below the plane of 

the diagram. Now, ignoring for the time being the reciprocal lattice points not lying in 

this plane 0kl, let us consider the movements necessary to bring 001, 002, 003 etc. 

reciprocal lattice points into reflecting positions. Clearly, we need to tilt or rotate the 

crystal anticlockwise such that first 001, then 002, then 003 etc. successively intersect 

the sphere. As we do so we tilt or rotate the film anticlockwise by the same angle (the 

film and crystal rotation mechanisms being coupled together). The 001, 002, 003 

reflections then strike the film successively at equally spaced distances from the 

origin 000. The situation in which 003 is in the reflecting position at a tilt or rotation 

angle 0 is drawn in Fig. 9-. 14(b). Clearly, if we rotate the crystal and film clockwise we 

would record the OOl, 002, 003 etc. reflections on the opposite side of the film from the 

origin. The result (ignoring reflections from reciprocal lattice points not lying on this 

row) would be a row of equally spaced spots on the film corresponding to the equally 
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spaced reciprocal lattice points in the row through the origin. These are shown on a plan 

view of the film (Fig. 9.14(c)), as the vertical row of spots through the centre. 

Now we have to consider the reciprocal lattice points in the 0kl section of the 

reciprocal lattice which intersect the Ewald reflecting sphere above and below the plane 

of Fig. 9.14(b). The sphere intersects the reciprocal lattice section 0kl in a circle, 

Fig. 9.14(c); any reciprocal lattice point lying in this circle gives rise to a reflected 

beam. Now we precess the crystal and the film about the incident beam direction such 

that the film is always parallel to the 0kl reciprocal lattice section (the precession 

movement means that the jt-axis of the crystal rotates about the incident beam direction 

at the fixed angle </>). As we do so the circle moves through the reciprocal lattice section 

in an arc centred at the origin 000 of the reciprocal lattice, i.e. about the direction of the 

direct X-ray beam. Hence, in a complete revolution, all the reciprocal lattice points lying 

within the large circle of Fig. 9.14(c) reflect—and the pattern of spots on the film 

corresponds to the pattern of reciprocal lattice points in the 0kl section of the reciprocal 

lattice, as shown in Fig. 9.14(c). 

Finally, we have to eliminate the complicating effects of the reflections from recip¬ 

rocal lattice points not lying in the 0kl plane through the origin. This is achieved by 

Fig. 9.15. A (zero level) precession photograph of tremolite, Ca2Mg5Si8022(OH)2 (monoclinic C2/m, 

a = 9.84 A, b = 18.05 A, c = 5.28 A, (3 = 104.7°), showing reflections from the hOl reciprocal lattice 

section (incident beam along the y-axis). The orientations of the reciprocal lattice vectors & and c 

are indicated. Compare this photograph with the drawing of the (hOI) reciprocal lattice section of 

a monoclinic crystal (Fig. 6.4(c)). The streaking arises from the presence of a spectrum of X-ray 

wavelengths in the incompletely filtered MoKa (A = 0.71 A) X-radiation. (Photograph by courtesy 

of Dr. J. E. Chisholm.) 
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placing a screen with an annular opening between the crystal and the film, the size of the 

annulus being chosen to allow reflections to pass to the screen only from reciprocal 

lattice points lying in the circle (Fig. 9.14(c)). The screen is indicated in cross-section 

in Fig. 9.14(b) for the case in which the furthest reciprocal lattice point from the origin 

which can be recorded is 003. The screen is also linked tonhe crystal-film precession 

movements. 

The precession method can be modified to record reciprocal lattice sections which 

do not pass through the origin (non-zero-level photographs), details of which can be 

found in the books on X-ray diffraction techniques listed in Further reading. Its main 

application is in crystal structure determination by measurement of the intensities of the 

X-ray reflections. Figure 9.15 shows an example of a zero-level photograph (of a 

reciprocal lattice section passing through the origin) which shows very convincingly 

the pattern of reciprocal lattice points. 

9.6 X-ray diffraction from single crystal thin films 

and multilayers 

Thin films and multilayer specimens are invariably studied using the X-ray diffracto¬ 

meter, the geometrical basis of which is described in detail in Section 10.2. 

specimen surface 

Maximum angle of 
specimen tilt for 
piane dhk, 

2/A (Smallest value of dftW) 

Fig. 9.16. The X-ray diffractometer arrangements for a single crystal, (a) The symmetrical setting: 

the reciprocal lattice vectors of the reflecting planes are all parallel to the specimen surface normal n. 

(b) The asymmetrical setting, the reciprocal lattice vectors of the reflecting planes are inclined at 

angle a to n. (c) The region of reciprocal space (shaded) within which lie the reciprocal lattice points of 

possible reflecting planes. 
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The normal arrangement, as used in X-ray powder diffractometry, is the symmetrical 

(Bragg-Brentano) one in which only the d-spacings of those planes parallel to the 

specimen surface are recorded. This is achieved by arranging the X-ray source and 

X-ray detector and their collimating slits such that the incident and reflected beams 

make equal angles to the specimen surface. The arrangement is shown diagrammatically 

in Fig. 9.16(a). As the angle 6 is varied (either by keeping the specimen fixed and 

rotating the source and detector in opposite senses as indicated in Figs 10.3(a) and (b), or 

by keeping the source fixed and rotating the detector at twice the angular velocity of the 

specimen), reflections occur whenever Bragg’s law is satisfied. Clearly, for a single 

crystal, with only one set of planes parallel to the surface, there will only be one Bragg 

reflection. For multilayer specimens, which may consist of a sequence of thin crystal 

films (say, of copper and cobalt) mounted on a single crystal substrate, there will be 

three Bragg reflections—one from the substrate and one each from the thin films (of 

different crystal structure). 

However, there are more diffraction phenomena to be recorded. First, since the layers 

are generally thin—of the order of 1-10 nm—the (high angle) Bragg peaks are sub¬ 

stantially broadened and this may be used to estimate the thickness of the layers by 

means of the Scherrer equation (Section 9.3). Second, the repeat distance, or superlattice 

wavelength A of the layers can be determined from the angles of ‘satellite’ reflections 

which occur (given a multilayer specimen with a long range structural coherence) on 

either side of the (high angle) Bragg peaks. The value of A may be determined from the 

equation 

2(sin$2 — sin ) 

where A = the X-ray wavelength and sin 9\, sin 02 are the Bragg angles of adjacent 

satellite peaks. This equation may be rearranged to give 

1 _ J__ J_ 
A d2 d\ 

where d\, d2 are the notional d-spacings of the satellite peaks. An example of a cobalt- 

gold multilayer specimen is given in Fig. 9.17(a). 
The repeat distance A of the layers also gives rise to low-angle Bragg reflections (of 

the order 29 = 2 - 5°), between which occur a further set of satellite peaks or fringes 

called Keissig fringes which may be used to determine the total multilayer film thick¬ 

ness NA using an analogous equation to that above, viz. 

1 _J_1_ 
NA dki dk\ 

where dki, dk2 are the notional d-spacings of any pair of adjacent Keissig fringes. An 

example of a cobalt-copper multilayer specimen is given in Fig. 9.17(b). 

The occurrence of the low-angle Bragg peaks and Keissig fringes may be understood 

by analogy with the diffraction pattern from a limited number N of slits of width 

a (Section 7.4); Fig. 7.9 shows a particular case for N = 6. The principal maxima 

correspond to the low-angle Bragg peaks in which the slit spacing a corresponds to 



194 The diffraction of X-rays 

the repeat distance of the layers, or superlattice wavelength A. The subsidiary maxima, 

of which there are (N — 2) between principal maxima, correspond to the Keissig fringes; 

by counting the number of Keissig fringes (plus two) between the low-angle Bragg 

peaks the number of multilayers or superlattice wavelengths A can be determined and by 

measuring the angles between adjacent fringes the total thickness A A. of the multilayers 

can be determined using the equations given above. Its validity can be checked by 

applying it, say, to the subsidiary maxima in Fig. 7.9; for the zero and first order minima 

the sin a se a 29 values are l(A/6a) and 2(A/6a). Substituting these values in the 

above equation gives AA = 6a, the total width of the grating. 

In practice in X-ray diffraction the Keissig fringes are most clearly defined between 

the direct beam (zero order peak) and first low-angle Bragg peak (Fig. 9.17(b)). 

The other arrangement used in X-ray diffractometry is the asymmetrical one in which, 

for any particular Bragg angle (source and detector fixed), the specimen can be rotated 

such that the incident and diffracted beams make different angles to the specimen 

surface (the angle between them remaining fixed at 29). The arrangement is shown 

diagrammatically in Figs 9.16(b) and 10.3(c). It has the advantage in that reflections 

from planes which are not parallel to the surface can be recorded (and is also a useful 

means of ‘fine tuning’ the angle of the specimen to maximize the intensity of reflections 

from planes which may not be exactly parallel to the specimen surface). Clearly, the 

maximum angle of tilt either way is 9, otherwise the surface of the specimen will block 

or ‘cut off’ either the incident or the diffracted beam. 

The Ewald reflecting sphere construction, which shows the extent to which the 

symmetrical and asymmetrical techniques sample a volume of reciprocal space, is 

shown in Fig. 9.16(c). The construction is essentially two-dimensional, since only those 

planes whose normals lie in the plane of the diagram (co-planar with the incident and 

reflected beams) can be recorded. In the symmetrical case (Fig. 9.16(a)), the reciprocal 

lattice points of the reflecting planes lie along a line perpendicular to the specimen 

surface whose maximum extent corresponds with the reciprocal lattice vector of the 

plane of smallest ^/-spacing that can be measured, i.e. that for which 9 — 90°; hence 

l<Cl = 2/A. 

> 
Fig. 9.17. (a) A high angle X-ray diffraction trace (CuKcti radiation) from a cobalt-gold multilayer 

specimen showing the satellite peaks or fringes (D each side of the Au 111 Bragg reflection. The repeat 

distance A of the layers is determined by measuring the (notional) 4-spacings d\ and ch of adjacent 

fringes and using the equation on page 193. The notional 4-spacings (A) of the fringes and the Au 111 

peak are indicated (from which a value of A « 64 A is obtained). The group of higher angle reflections 

are from Co 111, Co 0002, the substrate GaAs 110 and the ‘buffer’ layer Ge 110. (b) A low angle X-ray 

diffraction trace (CuKai radiation) from a cobalt-copper multilayer specimen showing the low angle 

Bragg reflection at 4.525° and the Keissig fringes each side. The Bragg peak gives the multilayer or 

superlattice repeat distance A and the number A - 2 of Keissig fringes between the Bragg peak and zero 

angle gives AA, the total thickness. In this example A = 19.512 A and (N — 2) — 22 (only those fringes 

from about 29 « 1.5° are shown). Hence the total thickness A A = 468.3 A. A A may also be determined 

by measuring the (notional) cZ-spacings, dK] and dK2 of adjacent Keissig fringes and using the equation 

on page 193. The notional 4-spacings (A) of fringes 11 to 22 are indicated, from which values of A A, in 

fair agreement with that given above (subject to experimental scatter), are obtained. 
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In the asymmetrical case (Fig. 9.16(b)) the crystal can be tilted or rotated clockwise or 

anticlockwise such that the reciprocal lattice vector of the reflecting planes is also tilted 

or rotated with respect to the specimen surface. The angular range, ±9 (limited by 

specimen cut-off), increases as |d^w| = 2 sind/A increases, the maximum being ±90° 

when sin 6 = 1. This is shown as the shaded region in Fig. 9.16(c). Clearly, the choice of 
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the wavelength of the X-radiation may be important, particularly in the asymmetrical 

case, since it determines which crystal planes in the specimen may, or may not, be 

recorded. 

9.7 X-ray (and neutron) diffraction from ordered crystals 
\ 

In metal alloys, solid solutions may be of two kinds—interstitial solid solutions such as, 

for example, carbon in iron (see p. 17) and substitutional solid solutions, such as, for 

example, a-brass where zinc atoms substitute for copper atoms in the cep structure. In 

some cases complete solid solubility is obtained across the whole compositional range 

from one pure metal to another—such as, for example, copper and nickel, both of which 

have the cep structure; but in most alloys the solid solubility is limited and a series of 

different solid solutions and intermetallic compounds occur across the whole composi¬ 

tion range. Copper-zinc alloys for example exhibit a range of such structures or phases: 

a (stable up to about 35 at % Zn); /3 (which is a bcc solid solution stable over a narrow 

composition range close to equal atomic proportions of copper and zinc and which is 

also described as the intermetallic compound CuZn); 7 (a complex cubic structure); 

e (a complex hexagonal structure); and finally rj (an hep solid solution of copper in 

zinc). The study of such alloy phases belongs to physical metallurgy; our interest is 

solely concerned with the arrangements of the atoms. 

In some phases, e.g. a-brass, the copper and zinc atoms are randomly distributed 

amongst the lattice sites and the structure is said to be disordered. In others there is a 

tendency, which increases with decreasing temperature, for the atoms to occupy specific 

sites. Two situations may be distinguished: clustering, where atoms tend to be sur¬ 

rounded by atoms of their own type (such as, for example, solid solutions of zinc in 

aluminium); and the converse short range ordering where atoms tend to be surrounded 

by atoms of opposite type. /3 brass provides a simple example of short range ordering; at 

high temperatures the structure is disordered but as the temperature decreases (to about 

460 °C), short range ordered regions develop, the copper (or zinc) atoms tending to 

occur either at the comers or the centres of the bcc unit cell. Below this temperature the 

short-range ordered regions extend throughout the crystal and impinge. We now have 

domains of long-range order. Within each domain the copper and zinc atoms are at the 

corners or centres of the unit cell and the crystal structure is the same as that for CsCl 

(Fig. 1.12(b)). The boundaries (called antiphase domain boundaries) are where the 

ordering ‘changes over’—in one domain it is, say, the copper atoms which occupy the 

centres of the cell and in the other it is the zinc atoms. It is, of course, possible for a single 

domain to extend across the whole crystal, in which case of course the distinction 

between comers and centres in the bcc unit cell disappears. 

Long-range ordering also occurs in many ccp alloys, of which the copper-gold system 

provides ‘type’ examples. For example, at high temperatures the alloy Cu3Au is 

disordered but at low temperatures the gold atoms occupy the comers, and the copper 

atoms the face-centres of the unit cell. In the alloy CuAu the atoms order so as to occupy 
alternate (002) planes. 

The phenomenon of long-range ordering is often described as superlattice formation, 

but this is a bad name because it suggests the existence of lattices other than the 
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Fig. 9.18. Unit cells of ordered structures, atom positions as indicated, (a) CuZn (bcc structure, cubic 

P lattice), (b) CU3Au (ccp structure, cubic P lattice), (c) CuAu—the ordering of Cu and Au atoms on 

alternate 002 planes in the ccp structure results in a reduction of symmetry from a cubic to a tetragonal 

P lattice. 

14 Bravais lattices. Ordering rather consists of a change of lattice type. For /3-brass 

(Fig. 9.18(a)) it is a change from Cubic I to Cubic P (the motif, as in CsCl, being 

Cu + Zn), and for Cu3Au (Fig. 9.18(b)) it is a change from Cubic F to Cubic P (the motif 

being 3Cu + Zn). In the case of CuAu (Fig. 9.18(c)), the change is from Cubic F to 

Tetragonal P as a consequence of the size difference between the copper and gold atoms, 

which results in a small reduction in the interlayer spacing perpendicular to the 002 

planes giving a c/a ratio less than unity. 

Long range ordering and antiphase domain boundaries are also characteristic of 

ferromagnetic (and antiferromagnetic) materials where in each domain it is the magnetic 

dipoles or moments which are ordered or orientated in a particular direction. 

Ordering was one of the earliest phenomena to be detected by X-ray diffraction 

techniques and provides further simple examples of the application of the structure 

factor equation (Section 9.2). 

Example 5—Cu^Au: For the disordered case the atomic scattering factor for each atom 

site,/Av, is taken as the weighted average of/cu and/Au, i.e./AV = 14(/au + 3/cu) and the 
structure factor Fhki is that for an fee crystal (see Appendix 6), i.e. 

Fhki = 4 ■ V4(fAu + 3/cu) = (/au + 3/cu) for h, k, l all odd or all even 

Fhki = 0 for h, k, l mixed. 

For the ordered case (Fig. 9.18(b)) the atomic positions unvnwn for the gold atoms are 

(000) and for the copper atoms (\ \ 0), Q0^)(0^). Hence: 

Fhki = /au exp 27ri(/z0 + kO + 10) +/cu27ri (h \ + k j + /0) 

+/cu exp27ii(h^ + kO + l\) +/cu exp27ri(/i0 + k\ + l\) 

= /au +/cu( exp 7ri (h + k) + exp 7ri (h + /) + exp in(k + /) 

Hence 

Fhki = (/au + 3/cu) for h, k, l all odd or all even 

Fhki = (/au -fcu) for h, k, l mixed. 
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Hence, in the ordered case reflections occur when h, k, l are mixed and it is the 

occurrence of these additional or ‘superimposed’ reflections in the diffraction pattern 

that gave rise to the term ‘superlattice’. Their intensities, in proportion to the ‘base’ 

reflections for which h, k, I are all odd or all even, can be estimated by approximating 

/ fa Z; i.e./Au = 79 and/cu = 29. Hence: „ 

Im = Fhki ■ F*hkl = (79 + 3.29)^ = (166)2 h, k, l all odd or all even 

lhkl = Fhkl ■ F*hkl = (79 - 29)2 = (50)2 h, k, l mixed. 

Hence the intensities of the ‘superlattice’ reflections are 502/1662 x 100% = 9% of the 

intensities of the ‘base’ reflections and are easily detectable. 

Example 6—CuZn (/3-brass): For the disordered case /Av = (fcu +/zn) and, as for 
a bcc crystal, reflections only occur when (h + k + /) = even integer. For the ordered 

case we follow the same procedure as for CsCl (Example 1), i.e. Fhki = /cu +/zn for 

(h + k + l) = even integer and Fhki = /Cu - /zn for (h + k + l) = odd integer. Approx¬ 

imating fcu = 29 and fzn = 30, the intensities of the ‘superlattice’ reflections are 

—12/592 x 100% = 0.03% of the intensities of the ‘base’ reflections and are much too 

small to be readily detected by X-ray diffraction techniques. 

This situation is illustrative of a general problem in X-ray diffraction: since atomic 

scattering factors are proportional to Z then the positions in the unit cell of atoms of 

similar atomic number are not easy to determine, nor are the positions of atoms of low 

atomic number which scatter X-rays very weakly. It is a situation in which neutron 

diffraction finds a ‘niche market’. Unlike X-rays, neutrons in most cases are scattered 

by the nuclei rather than the electrons in atoms and the scattering amplitudes (expressed 

as scattering lengths) vary in an irregular way with atomic number. The relatively large 

scattering amplitudes of, for example, hydrogen and oxygen atoms in comparison with 

heavy metal atoms enables these atoms to be located within the unit cell and also allows 

the small distortions which occur below the Curie temperature in ferroelectric perovs- 

kite structures (see p. 86) to be determined. Moreover, since atomic nuclei cross-sections 

are very small the destructive interference effects which in the case of X-rays lead to 

a decrease in scattering amplitude with angle (Fig. 9.1) are also small and neutron 

scattering amplitudes do not decrease rapidly with angle. Finally, since neutrons possess 

spin they interact additionally with the unpaired electrons in magnetic materials and the 

consequent effects on the scattering amplitudes can be used to detect ordering and 

orientation of the magnetic moments in such materials—leading to important applica¬ 
tions for which X-rays offer no alternative. 

The wavelengths A of neutrons are related to their velocity v through de Broglie’s 

equation A = h/mv in precisely the same way as for electrons or any other moving 

particle (Section 11.1). Neutrons emerge from a nuclear reactor with a range of velocities 

and hence wavelengths but which peak typically in the range 1-2 A—i.e. close to X-ray 

wavelengths and, as with X-rays, useful single-wavelength beams are achieved through 

the use of crystal monochromators (Section 10.2). Geometrically therefore neutron 

diffraction is similar to X-ray diffraction except that the physical size of the apparatus 

needs to be much larger because of the much lower intensities of neutron beams. 
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Exercises 

9.1 In the Laue experiment, a bcc crystal, lattice parameter a = 0.4 nm (4 A) is irradiated in the 

[100] (or a*) direction with an X-ray beam which contains a continuous spectrum of 

wavelengths in the range between 0.167 nm (1.67 A) and 0.25 nm (2.5 A). Use the reflecting 

sphere construction to determine the indices of the planes in the crystal for which 

Bragg’s law is satisfied and draw the direction of the reflected beam for one plane in the 

[001] zone. 

(Hint : Make a scale drawing of the section of the reciprocal lattice normal to the [001] 

(or z*) direction and which passes through the origin 000 (i.e. the section which contains 

the hkO reciprocal lattice points as shown in Fig. 6.7(b)). A convenient scale to use between 

the^ reciprocal lattice dimensions and A4 size drawing [laper is lnm_1=0.5cm 

(1 A-1 = 5.0cm). Draw a line indicating the [100] direction of the incident beam and draw 

in the two reflecting spheres representing the limits of the wavelength range. Remember that 

the origin of the reciprocal lattice is located at the point where the beam exits from the 

spheres—hence the centres of the spheres are obviously not coincident. Shade in the region 

of the reciprocal lattice between the two spheres; planes whose reciprocal lattice points 

lie in this region satisfy Bragg’s law. For one reciprocal lattice point in this region, find, by 

construction, the sphere which it intersects. The direction of the reflected beam is from the 

centre of this sphere through the reciprocal lattice point, and the radius of the sphere gives the 

particular wavelength reflected. Draw sections of the reciprocal lattice normal to the [001] 

(or z*) direction and which pass through the Ml, M2, Ml, M2, etc. reciprocal lattice points 

(see Fig. 6.8(a)). In these sections of the reciprocal lattice ‘above’ and ‘below’ that through 

the origin, the sections of the sphere are reducing in size—simple trigonometry will show 

by how much. Again, planes whose reciprocal lattice points lie in the region between 

the spheres satisfy Bragg’s law.) 

9.2 In an oscillating crystal experiment the bcc crystal described in Exercise 9.1 is irradiated 

in the [100] (or a*) direction with a monochromatic X-ray beam of wavelength 0.167 nm 

(1.67 A). The crystal is then oscillated ±10° about the [001] (or z*) direction. Find the 

indices M0 of the planes in the [001 ] zone which give rise to reflections during the oscillation 

of the crystal. 

(Hint: Make a scale drawing of the section of the reciprocal lattice through the origin 000 

and normal to the [001] (or z*) direction. Draw a line indicating the [100] direction of the 

incident beam and a single sphere corresponding to the single X-ray wavelength (see 

Exercise 9.1). Oscillating the crystal (at the centre of the sphere) is equivalent to oscillating 

the reciprocal lattice (at the origin). The simplest way to represent the relative changes in 

orientation between the crystal and the X-ray beam is to ‘oscillate’ the beam. The directions 

of the beam at the oscillation limits are ±10° from the [100] direction in the plane of the 

reciprocal lattice section. Draw in the reflecting sphere at these limits and shade in the lunes 

or the regions of reciprocal space through which the surface of the sphere passes. Planes 

whose reciprocal lattice points lie in these regions reflect the X-ray beam during oscillation.) 

9.3 The kinetic energy of neutrons emerging in thermal equilibrium from a reactor is given by 

3/2kT where k =Boltzmann’s constant, 1.38 x 10_23JK_1 and Tis the Kelvin temperature. 

Given that the (rest) mass Mn of a neutron = 1.67 x 10~27kg and Planck’s constant 

h = 6.63 x 10“34 Js, estimate the wavelength of neutrons in thermal equilibrium at 100 °C. 

9.4 Determine Fhk[ for the reflections in a hep metal structure (as in Example 2) but with the 

origin 000 coincident with a centre of symmetry equidistant between an A and B layer atom. 

The fractional coordinates are denoted by Wyckoff letters c and d in Fig 4.13. Hence show 

that the Fm values are real and (of course) have the same moduli as before. 
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X-ray diffraction of polycrystalline 
materials 

10.1 Introduction 

The preparation or synthesis of single crystals which are sufficiently large—of the order 

of a tenth of a millimetre or so—to be studied using the X-ray diffraction methods 

described in Chapter 11 is often a matter of great experimental difficulty. This is 

particularly the case for proteins and other complex organic crystals, the preparation 

of which requires considerable ingenuity and skill. However, in many situations the 

preparation of large single crystals is neither possible nor desirable. In materials science 

and petrology, for example, the crystal structures of interest are frequently those of 

metastable phases which occur on a very fine scale as a result of precipitation (or 

exsolution) from metal, ceramic or mineral matrices. As such phases grow, either as a 

result of natural or artificial ageing processes, their crystal structures invariably change 

as they evolve into more stable phases. These changes are best studied using the 

electron diffraction techniques outlined in Chapter 11, since electron beams can be 

focused down to diameters of the order of 1-10 nm, compared with beam diameters 

of the order of 0.1-1.0 mm for X-rays. Electron diffraction has the further advantage that 

crystallographic relationships between the phases and the matrices in which they 

occur can be investigated. Its disadvantage lies in the fact that the accuracy with which 

dhki-spacings can be measured is low compared to that for X-ray diffraction. 

Polycrystalline or ‘powder’ X-ray diffraction techniques (Section 10.2) were devel¬ 

oped by Debye" and Scherrer* and independently by Hull* in the period 1914-1919. 

They may be classified as ‘fixed A, varying 9’ techniques (see Section 9.5) in which the 

‘varying 6’ is achieved by having a sufficiently large number of more-or-less randomly 

oriented crystals in the specimen such that some of the hkl planes in some of them will be 

orientated, by chance, at the appropriate Bragg angles for reflection. All the planes of a 

given ^/-spacing reflect at the same 29 angle to the direct beam and all these reflected 

beams lie on a cone of semi-angle 29 about the direct beam. The various ‘powder’ X-ray 

diffraction techniques may be classified as to the ways in which the cones of diffracted 

beams are intercepted and recorded. In situations in which the crystals are randomly 

oriented, the diffracted intensity in the*cones will be uniform and hence only part of the 

cones need to be recorded. This is the case with what might be called the ‘classical’ 
powder camera and diffractometer techniques (Section 10.3). 

Denotes biographical notes available in Appendix 3. 
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However, in situations in which the crystals are not randomly oriented the diffracted 

intensity in the cones will not be uniform and in order to determine the extent of the ‘non- 

randomness’ the whole, or a large part, of the cones needs to be recorded. In metallurgy 

and materials science the ‘non-randomness’ of crystals is known as texture or preferred 

orientation whereas in earth science it is known as fabric or petrofabric. (The word 

texture in earth science has quite a different meaning and refers rather generally to grain 

shapes and grain size distributions—a different nomenclature which is a possible source 
of confusion.) 

The analysis of preferred orientation (texture or fabric) is important since it almost 

invariably arises as a consequence of the processes of crystallization and re-crystal- 

lization, sintering, extrusion and hot deformation which occur either in the short time- 

scale in materials processing or in the long time-scale in the earth’s crust and mantle. 

The simplest experimental techniques are the ‘fibre’ X-ray techniques in which the 

crystals are orientated with a particular crystallographic direction (or directions) along 

the fibre axis. In the case of rolled/recrystallized metal sheets or strata in the earth’s crust 

the analysis is more complicated—in addition to preferred orientation along some 

reference (e.g. rolling or shear) direction there may also be preferred orientation of the 

crystals with respect to the plane of the metal sheet or rock strata. Such textures may be 

represented by stereographic projections referred to as pole figures, fabric or petrofabric 

diagrams (Section 10.4) or, more quantitatively, by what are known as orientation 

distribution functions. 

Finally, fibre techniques play an essential experimental part in the determination of 

the structures of long-chain organic molecules in which the aim is to draw out a fibre 

from a solution which contains a sufficient number of molecules, all perfectly aligned 

along the fibre axis, and which give rise to reflections of measurable intensity. A simple 

description of the structure of DNA, which was discovered by such a technique, is given 

in Section 10.5. 

10.2 The geometrical basis of polycrystalline (powder) 

X-ray diffraction techniques 

We begin, perhaps rather surprisingly, with a theorem which we learned off-by-heart (or 

should have done) in our early geometry lessons at school—never imagining that it 

would ever come in useful! The theorem comes from The Elements of Euclid, the 

mathematics textbook which has remained in print ever since it was first written in 

c. 300 B.C. The theorem, which is proved in Proposition 21, Book III of The Elements, 

states that ‘the angles in the same segment of a circle are equal to one another’. It follows 

the other equally well known theorem (Proposition 20) that ‘the angle at the centre of 

a circle is double that of the angle at the circumference on the same base, that is, on the 

same arc’. 
The former theorem is illustrated (without Euclid’s proof) in Fig. 10.1(a) and may 

be simply restated by saying that for any two points S and D on the circumference of 

a circle, the angle shown as x is constant irrespective of the position of point P. Now let 

us make use of this geometry in devising an X-ray camera (Fig. 10.1 (b)). Let S be a point 

or slit source of monochromatic X-rays (the slit being perpendicular to the plane of 
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Fig. 10.1. (a) The geometrical basis of X-ray powder diffraction techniques; for two given points 

S and D on the circle, the angle x at the circumference is constant, irrespective of the position of P. 

(b) Application to an X-ray focusing camera. S is a source of monochromatic X-rays, the angular spread 

of which is collimated by a divergence slit to strike a thin layer of a powder specimen on the 

circumference at P... P. Angle x = (180° — 20), hence any crystal planes in the right orientation for 

Bragg’s law to be satisfied reflect to give a focused beam (as shown in the inset for a particular 

<4fc/-spacing). Note that the reflecting planes are not in general tangential to the circumference of the 

camera, although in practice they are closely so. 

the paper) and let part of the circumference P... P be ‘coated’ with a thin film of a 

polycrystalline specimen. 
The X-rays diverge from the source S and in order that they should only strike the 

specimen we limit or collimate them with a (divergence) slit as shown. Now the angle jc 

is, in terms of Bragg’s law, the angle (180° — 29)—and whenever this is the correct 

Bragg angle for reflection for a particular set of hkl planes, reflections occur from all 

those crystals in the specimen which are in the right orientation and the reflected beams, 

as proved by Euclid, all converge to point D. In short D is a point where all the reflected 

beams for a particular dhki spacing are focused. Different positions of D on the circum¬ 

ference correspond to different x, hence different (180° — 29) values. Hence we will 

have a series of focused diffraction lines, one for each ^./-spacing in the specimen, 

around the circumference of the circle. 

The Bragg reflecting geometry is shown in detail in the little ‘inset’ diagram below 

Fig. 10.1(b) which shows the orientation of the reflecting planes in one part of the 

specimen and the angle 29 between the direct and reflected beams. Notice that the 

reflecting planes are not (except for some particular part of the specimen) tangential to 

the circumference. 

A film placed around the rest of the circumference of the circle will record all the 

reflected beams and this arrangement is the basis of the Seeman-Bohlin camera and the 
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Fig. 10.2. The principle of the X-ray monochromator. The crystal planes are curved to a radius twice 

that of the focusing circle such that they make the same angle (9) to the divergent incident beam. The 

surface of the crystal is also shaped so as to lie precisely on the focusing circle. The source and focus 

of the reflected beams are symmetrical (i.e. equal distances) with respect to the crystal and 9 and the 

(^/-spacing of the crystal planes are chosen such that only the strong Ko i X-ray wavelength compon¬ 

ent is reflected. 

variants of it devised by Guinier and Hagg. They are called focusing X-ray methods 

because they exploit the focusing geometry of Euclid’s circle which is thus called the 
focusing circle. 

The focusing geometry can also be used to provide a monochromatic source of X-rays 

(Fig. 10.2). The source S is now the line focus of an X-ray tube from which a spectrum of 

X-ray wavelengths (the ‘white’ radiation with superimposed characteristic wavelengths, 

Kcti, Kc*2, K(3 etc.) is emitted1. A single plate-shaped crystal is cut such that a set of 

strongly reflecting planes is parallel to the surface. The crystal is curved or bent to 

a radius of curvature twice that of the focusing circle and then (ideally) is shaped or 

‘hollowed out’ such that its inner surface lies along that of the focusing circle. The 

position of the source S, and hence the angle (180°—29) is, together with the dhki spacing 

of the crystal planes, chosen to reflect, say, only the strong Koq component of the whole 

X-ray spectrum which is focused to a point or line D, symmetrical with the source S. D 

becomes, in effect, the line source of a beam of monochromatic X-rays, which can be 

used ‘upstream’ of the Seeman-Bohlin camera as the source S of monochromatic X- 

rays. 
The symmetrical arrangement is also made use of in the X-ray diffractometer, which 

has become by far the most important classical X-ray diffraction technique. The 

1 Details of the physics of X-ray generation. X-ray spectra and the operation of X-ray tubes may be found 
in the appropriate books listed under Further reading. In brief, superimposed on a background of varying 
X-ray wavelengths (the ‘white’ X-radiation) there are strong components arising from specific transitions of 
electrons between the energy levels in the atom. These are called the characteristic wavelengths because their 
wavelengths are characteristic of the atom. Monochromatization is a method by which one of these 
wavelengths (usually that called Ke*i) is isolated from the other components and the ‘white’ background. 
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diffractometer has become, in effect, the X-ray data acquisition end of a computer in 

which the data can be stored, analysed, plotted, compared with standard powder data 

files etc. The advantages are enormous; the disadvantage, if it can be called such, is that 

students may simply regard the diffractometer as a ‘black box’ to generate data, without 

understanding the principles on which the instrument works, nor the parameters under¬ 

lying the data analysis procedures. s 

The symmetrical or Bragg-Brentano focusing geometry of the diffractometer 

is shown in Figs 10.3(a) and (b). As described in Section 9.6, the source of mono¬ 

chromatic X-rays, S (from a monochromator upstream of the diffractometer) is at 

an equal distance and equal angle to the specimen surface as D, the ‘receiving slit’ of 

the detector (a proportional counter). The 29 angle is continuously varied by the 

circle 

Fig. 10.3. The principle of the X-ray diffractometer. The source—specimen and specimen—detector slit 

distances are fixed and equal, (a) The situation for a small 9 angle and (b) for a large 9 angle, the source 

and detector moving round the arc of a circle centred on the specimen. Notice the change in the diameter 

of the focusing circle and the fact that, since the specimen is flat, complete focusing conditions are not 

achieved (dashed line in (a)), (c) An asymmetrical specimen arrangement for the same 29 angle as in (b), 

the position and diameter of the focusing circle have changed such that the detector slit is no longer 

coincident with it. The reflecting planes are now those which make (approximately) angle a to the 
specimen surface (see Fig. 9.16). 
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source and detector slit tracking round the arc of a circle centred on (and therefore at 

a fixed distance from) the specimen. Figure 10.3(a) shows the situation at a low 6 

angle and Fig. 10.3(b) shows the situation at a high 6 angle. In some instruments the 

specimen is fixed and the source and detector slit rotate in opposite senses; in others the 

source is fixed and the specimen and detector slit rotate in the same sense, the detector 

slit at twice the angular velocity of the specimen—but the result geometrically is the same. 

However, the important point to note is that the polycrystalline specimen as used in 

a diffractometer is flat, and not curved to fit the circumference of the focusing circle. 

Focusing therefore is not perfect—the reflected beams from across the whole surface of 

the specimen do not all converge to the same point: those from the centre converge to 

a point a little above those from the edges, as shown in Fig. 10.3(a). The diffractometer is 

hence called a semi-focusing X-ray method. In practice the deviation from full focusing 

geometry is only important (in the symmetrical arrangement) at low 6 angles and in 

which a large width of specimen contributes to the reflected beam. It is not however 

laziness or experimental difficulty which prevents specimens being made to fit the 

circumference of the focusing circle, but the fact that, unlike the situation for the 

Seeman-Bohlin camera, the radius of the focusing circle changes with angle as is shown 
by a comparison with Figs 10.3(a) and (b). 

As pointed out above, in the symmetrical arrangement, in which the specimen surface 

makes equal angles to the incident and reflected beams, the only crystal planes which 

contribute to the reflections are those which lie (approximately) parallel to the specimen 

surface, particularly when the divergence angle of the incident beam, and therefore the 

irradiated surface of the specimen, is small. In situations in which the dhki spacings of 

planes which lie at large angles to the specimen surface need to be measured (e.g. in 

determining the variation of lattice strains from planes in different orientations), the 

specimen is rotated as shown in Fig. 10.3(c); the angle of rotation a is of course 

(approximately) equal to the angle of the reflecting planes to the specimen surface 

(Fig. 9.16). In doing so, however, the symmetrical Bragg-Brentano focusing geometry 

is lost; the focusing circle changes both in diameter and position, as shown in Fig. 

10.3(c), and the detector slit is no longer at the approximate line of focus, but in this case 

beyond it where the beam diverges and broadens. This deviation from the focusing 

geometry may be serious because the observed ‘broadening’ at the detector slit could be 

misinterpreted as arising from a variation in reflection angle as a result of a variation in 

lattice strain. The problem may be partially overcome in two ways. First, the detector slit 

may be moved along a sliding-arm arrangement so as to coincide more precisely with the 

line of focus. However, this may itself introduce errors in the angular measurements 

because of the difficulty of achieving a precise radial alignment of the slider. Second, the 

angular divergence of the incident beam may be restricted to very low values—say 

0.25°—0.5°—such that the broadening of the beam at the detector slit is very small, and 

this is now the preferred option. 
An example of an X-ray diffractometer chart or ‘trace’ for quartz (SiC>2) is given in 

Fig. 10.4. The d^-spacings and relative intensities of the reflections may be used to 

identify the material, as described in Section 10.3 below. 

There are two other ‘classical’ X-ray powder techniques of interest—the back 

reflection method in which the whole or part of the diffraction cones are recorded on 



206 X-ray diffraction of polycrystalline materials 

20.0 30.0 40.0 50.0 60.0 70.0 80.0 

-* Diffraction angle 2© 

Fig. 10.4. An example of an X-ray diffractometer chart of intensity of the reflected beams (ordinate) 

vs 26 angle (abscissa). The intensity scale is non-linear (square root) to emphasize the weaker reflec¬ 

tions. The specimen is polycrystalline SiC>2 (quartz), CuKai radiation (A = 1.541 A). The <r/-spacings 

(A) of the reflections are indicated (compare with Figs 10.7 and 10.8). 

flat film (an experimental arrangement identical to that for the Laue back reflection 

method) and the Debye-Scherrer technique in which a thin rod-shaped specimen or a 

powder in a capillary tube is set at the centre of a cylindrical camera. 

The geometry of the back reflection powder method is shown in Fig. 10.5. The 

effective position of the source S is determined by the design of the collimator tube 

which passes through a hole in the centre of the film. In practice the divergence angle is 

very small, of the order 0.5°—2°. Notice that, like the diffractometer, it is a semi- 

focusing method—all the reflected beams from the (flat) specimen surface focus 

approximately at the circumference of the focusing circle. However, the flat film can 

be placed only at one distance x from the specimen: if x is the focal distance of the high 

26 angle reflections as shown, it will not be at the focal distance of the lower 26 angle 

reflections. In practice a ‘compromise’ value ofx is chosen such that the diffraction rings 

of particular interest are most sharply focused. 

The great advantage of the Debye-Scherrer method over the diffractometer (and to 

a lesser extent the Seeman-Bohlin method and its variants) is that only very small 

amounts of material are required for, say, insertion into a capillary tube. 

The geometry and specimen-film arrangement in the Debye-Scherrer camera are 

shown in Fig. 10.6. The cylindrical specimen (a powder in a capillary tube or a cemented 

powder in the form of a little rod) is placed at the centre of a cylindrical camera. The strip 

of film may be fitted round the circumference of the camera in several ways: it may have 
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Fig. 10.5. The geometry of the back reflection X-ray powder method; the diverging X-ray beam from 
an (effective) source S passes through a hole at the centre of the film. The reflected beams for two 
reflections are shown. The film is shown placed at a specimen-film distance x so as to intercept the 
higher angle reflections such that they are sharply focused. In order to intercept the lower angle 

reflections such that they are sharply focused it would need to be moved closer to the specimen as 
indicated. In practice a ‘compromise’ value for x is chosen which is acceptable since the divergence 
angle, and the de-focusing of the incident beam, is small. 

a single hole punched at its centre and so arranged to coincide with the ‘exit’ direction of 

the X-ray beam (the ends of the film being each side of the ‘entrance’ direction of the 

X-ray beam) or vice versa. However, the usual way is to punch two holes in the film, 

one to match the ‘entrance’ and the other to match the ‘exit’ directions of the X-ray beam, 

the two ends of the film now being at the ‘top’ or ‘bottom’ of the camera as shown. This 

‘asymmetrical’ arrangement or ‘setting’ has the advantage that a complete range of 26 

angles—-from 0° to 180°—may be recorded on one side of the film without a ‘cut-off 

occasioned by the presence of a film end. In this way accurate d/,w-spacings may be 

determined and any effects of film shrinkage accounted for. 

The position of the effective source S is determined by the design of the collimator. 

The focusing circle for a particular reflection is shown; however, this only represents 

the physical situation very approximately since the reflected beams arise to different 

extents from the whole volume of the specimen and the position of the source S and the 

focusing effect is by no means as precise as that drawn in Fig. 10.6. 



208 X-ray diffraction of polycrystalline materials 

Fig. 10.6. (a) The geometry of the Debye-Scherrer camera; the reflected beams from a cylindrical 

specimen tend towards a focus on the film around the circumference of the camera and the focusing 

circle for a particular reflected beam is shown. In practice deviations from this idealized situation occur 

because the reflected beams originate with varying intensities from the whole volume of the specimen 

and the effective source S may not coincide with the circumference of the camera, (b) The camera with 

the light-tight lid removed showing the specimen at the centre, the collimator and receiving tube and the 

(low angle) X-ray diffraction rings on the film. The screws at the top are for locating and fixing the ends 

of the film (from Manual of Mineralogy, 21 st edn, by C. Klein and C. S. Hurlbut Jr., John Wiley & Sons 

Inc., 1993). 
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Fig. 10.7. An example of a Debye-Scherrer X-ray film (CuK« X-radiation) for 

SiC>2 (quartz). S is the ‘entrance’ hole and O the ‘exit’ hole. The ‘spotty’ appearance 

of the rings arises because of the relatively coarse crystallite size in the specimen. 

At high 26 angles (near the entrance hole) the Ko')/K«2 doublets are resolved but 

at low 26 angles (near the exit hole) they are unresolved. The streaks around the exit 

hole arise from the presence of residual ‘white’ X-radiation in the incident beam. 
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An example of a Debye-Scherrer film (asymmetrical setting) is shown in Fig. 10.7. 

The 26 = 0° and 26= 180° positions can be worked out exactly by determining 

the centres of the ‘exit’ and ‘entrance’ rings, the distance between them on the film 

corresponding to 180° exactly. Hence the camera diameter does not need to be known, 

although in practice cameras are made with diameters 57.53 mm or 114.83 mm such 

that (and accounting for film thickness) the circumferen«e is 180 mm or 360 mm. 

Hence for quick work the angles can siihply read in terms of millimetres on the film. 

10.3 Some applications of X-ray diffraction techniques in 

polycrystalline materials 

10.3.1 Accurate lattice parameter measurements 

The accurate measurement of d/^-spacings is now largely carried out with the X-ray 

diffractometer using monochromatized (Kai) radiation, narrow divergence and receiv¬ 

ing slit systems, internal calibration systems and peak profile measurement procedures. 

However, as shown below, it is the high 29 angle reflections which are most sensitive to 

small variations in <4w-spacings and for this reason the Debye-Scherrer powder camera 

and back reflection flat film techniques in which 26 angles up to nearly 180° can be 

recorded, are still used. By contrast, the largest 29 angles measurable with a diffracto¬ 

meter are about 150° because the near approach and possible contact between the source 

and receiving slit assemblies. 

Given the crystal system and the hkl values of the reflections, the lattice parameter(s) 

can be determined using the appropriate equation (Appendix A4.1). This procedure is 

clearly simplest for the cubic system in which the ^/-values depend only upon the one 

variable, a. In other systems several <7/,^/-spacings need to be measured and the values 

inserted into simultaneous equations from which values of the lattice parameters are 

extracted. 

The sensitivity of change of the 26 angle for a reflection with a change in dm- spacing 

is a measure of the resolving power of the diffraction technique. The resolving power, 

or rather the limit of resolution, 8d/d, can be obtained by differentiating Bragg’s law 
with respect to d and 9 (A fixed), i.e. 

A = 2d sin 6 

differentiating: 

hence 

0 = 2 d cos 9 89 + 2 sin 9 8d 

8dld = —cot 6 89. 

This equation may bedread’ in two ways. For a given value of 286, which may be 

expressed in terms of the minimum resolved distance between two reflections on the 

film, chart, etc., for the smallest limit of resolution we want cot 9 values to be as small 
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as possible; or, for a given value of 8d/d, we want the angular separation of the 

reflections 260 to be as large, and hence again cot 9 values to be as small as possible. 

A glance at cotangent tables shows that cot 9 values are high at low 9 angles and 

rapidly decrease towards zero as 9 approaches 90°. Hence ^/-spacing measurements 

are most accurate using high-angle X-ray diffraction methods and least accurate with 
low-angle electron diffraction methods. 

10.3.2 Identification of unknown phases 

For powder specimens in which the crystals are randomly orientated, the set of 

d-spacings and their relative intensities serves as a ‘fingerprint’ (or ‘genetic strand’) 

from which the phase can be identified by comparison with the ‘fingerprints’ of phases 

in the X-ray Powder Diffraction File—a data bank of over 70 000 inorganic and 20 000 

organic phases. The File is administered by the International Centre for Diffraction Data 

(ICDD)—formerly the Joint Committee for Powder Diffraction Standards (JCPDS)— 

and new and revised sets of data are published annually in book form (replacing the 

original 5 inch by 3 inch cards) or as a computer database. In addition, there are 

published Indexes with the phases arranged alphabetically by chemical name, search 

manuals and abstracts from the File (including Indexes and Search Manuals) or Fre¬ 

quently Encountered Phases (FEP). 

The entry for each phase in the File or computer database (which differ slightly in 

their layout) includes: file number, chemical formula and name, experimental condi¬ 

tions, physical and optical data (where known), references and the set of d-spacings 

(given in A), their Laue indices and their relative intensities arranged in order of 

decreasing d-spacing. Finally, the ICDD editors assign a ‘quality mark’ to indicate the 

reliability of the data (e.g. a **’ indicates that the chemistry, structure and X-ray data of 

the phase is well characterized); or whether the X-ray data has been derived by calcula¬ 

tion, rather than observed (a ‘c’ mark). Figure 10.8 shows an example of a Powder 

Diffraction File card, that for quartz, set number 33, card number 1161. 

A comparison of an unknown phase with 70 000 others is potentially a daunting task! 

It is greatly facilitated by a search procedure based on that first devised by J. D. 

Hanawalt in 1936 and now refined and speeded up using computer search procedures. 

The phases are grouped together (into what is known as Hanawalt groups) according 

to the d-spacing of their strongest reflection. There are forty Hanawalt groups covering 

the whole range of d-spacings. For example, the strongest line of quartz (relative 

intensity 100) is that at 3.34 A (Figs 10.4 and 10.7); quartz therefore lies in the Hanawalt 

group with d-spacings in the range from 3.39 to 3.32 A (Figure 10.9—first column). 

Within each Hanawalt group the patterns are listed in the second column in order of 

decreasing d-spacings of the second strongest line which for quartz is that at 4.26 A; on 

reading down the list of patterns in the second column of the Hanawalt group a potential 

‘match’ can be made with the second strongest line and then (from the number of 

possibilities available) final confirmation made with the d-spacings and intensities of 

the third, fourth etc. strongest lines in the subsequent columns. Figure 10.9 is from 

the Hanawalt Inorganic Search Manual showing some entries in the Hanawalt group 

3.39-3.32 A which includes that for quartz. File No. 33-1161. 
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33-1161 
d A Int hid dA lnt bkl 

4.257 22 100 1.1532 i 311 

3.342 100 101 1.1405 <i 204 

2.457 8 110 1.1143 <i 303 

2.282 8 102 1.0813 2 312 

2.237 4 111 1.0635 <1 400 

2.127 6 * 200 1.0476 1 105 

1.9792 4 201 1.0438 <1 401 

1.8179 14 112 1.0347 <1 214 

1.8021 <1 003 1.0150 1 223 

1.6719 4 202 0.9898 1 402 

1.6591 2 103 0.9873 1 313 

1.6082 <1 210 0.9783 <1 304 

1.5418 9 211 0.9762 1 320 

1.4536 1 113 0.9636 <1 205 

1.4189 <1 300 

1.3820 6 212 
1.3752 7 203 
1.3718 8 301 
1.2880 2 104 

1.2558 2 302 

1.2285 1 220 
1.1999 2 213 
1.1978 1 221 
1.1843 3 114 
1.1804 3 310 

SiO, 

Silicon Oxide Quartz, syn 

Rid. CuKa, X 1.540598 Fiber Mono. d-sp Diff. 
Cut off Ini. Diffractometer !/!„, 3.6 
Ref. Nat. Bur. Stand. (U.S.) Monogr. 25, 18 61 (19&1) 

V 

Sys. Hexagonal 
a 4.9133(2) b 
o p 
Ref. Ibid. 

S.G. P3221(154) 
c 5.4053(4) A C 1.1001 
Y Z 3 mp 

D, 2.65 Dm 2.66 SS/FOM F3o = 77(.0126,31) 

eo nu>fi 1.544 ty 1.553 Sign + 2V 
Ref. Swanson, Riyat, Natl. Bur. Stand. (U.S.), Circ. 539, 3 24 (1954) 

Color Colorless 
Pattern at 25 C. Sample from the Glass Section at the National 
Bureau of Standards; ground single-crystals of optical quality. 02Si 
type. Quartz group. Silicon used as internal standard. PSC: hP9. To 
replace 5-490. Plus 6 reflections to 0.9089. 

Fig. 10.8. The Powder Diffraction File Card No. 33-1161, for quartz. The left-hand side gives 

crystallographic, optical and physical information and the source of the data. The right-hand side lists 

the d-spacings, in descending order, with the strongest line assigned an intensity of 100. Formerly (up 

to set 24) the cards included along the top left edge the d-spacings of the three strongest lines and the 

largest d-spacing recorded in the pattern. (International Centre for Diffraction Data.) 

In practice the procedure is by no means as straightforward as this. First, many 

minerals and metallic alloys give very nearly the same diffraction pattern because 

of the existence of solid solution ranges, which result in very small shifts in 

lattice parameter. Second, the crystals in the powder specimen may not be randomly 

orientated—the specimen may be textured or may show preferred orientation, 

which implies that the relative intensities of the reflections may be altered as compared 

with those in the File. Third, the unknown specimen may consist of more than 

one phase—and if they are in roughly equal proportions the strongest lines may be 
‘mixed up’. 

These problems are partly (but not wholly) circumvented by a series of ‘entry rules’, 

the details of which are given in the Search Manual. First, those patterns in which the 

d-spacing of the strongest reflection lies close to one of the boundary values of the 

Hanawalt group are entered in both groups—the one above and the one below. Second, 

those patterns in which the intensity of the second strongest reflection is greater than 

75% of the intensity of the strongest (and in which there is therefore a strong possibility 

of the mis-identification of the strongest reflection) are entered twice; the second 

strongest reflection determining the Hanawalt group and the position in the group listed 

(as before) in accordance with the (decreasing) d-spacing of the second strongest 

reflection. Similar rules'apply to the third and fourth strongest reflections such that 

a pattern may be listed several times. Examples of such permutations are shown in 
Fig. 10.9. 
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i 3.31, 4.306 4.534 2.034 2.85„ 2.004 

3.39 - 3.32 (± .02) 

7.743 3.24, Na7Ce*F,, 

File No. 

25- 817 
' . 3.30, 4.30s 2.13S 2.793 2.333 2.013 1 792 1.52, Hg,Br,/Kuzminite, svn 8- 468 3 40, 4.29, 4.09, 6.637 4.82, 3.31, 2 67, 2 33, CIF2OBF4 26- 235 

3.39, 4.29, 5.88, 3.12, 2.98, 2 30, 196, 1.78, 33^®0 6?S2 36-1089 
3.39, 4.294 2.47, 2.31, 2.23, 2.14, 1.99, 1.83, bpo4 11- 237 

o 3.36, 4.29x 2.85, 5.60s 4.02s 2.58s 1.98s 1.905 Vo 87^r0 ) 3®2 ,7 35- 332 
• 3.35, 4.297 3.43, 2.02, 4.35, 3.39, 2.07, 4.935 KNaSiF* 38- 686 
» 3.34, 4.29x 10.5, 2.64, 2-715 5.274 5.25 4 3 793 Z

 
a a1

 
O

' 

25- 871 
3 32, 4.296 2 99, 2.87, 2.52, 4.705 2.38s 2.30s Cs2AI(N03)s 28- 274 

o 3.31, 4.29x 3.68x 2.91 x 2.34x 2.06, 1,99x 1.93, Pu(0H)C03xH20 33- 982 

i 3.37, 4.283 1.84, 1.55, 2.47, 2.31, 1.39, 2.14, AlP04/Berlinite, syn 10- 423 
3.35, 4.28x 3.71, 2.85, 2.17, 4.074 3.034 2.734 k2n2v,o2, 20-1379 
3.35, 4.28, 2.9 7j 1.91, 7.61 j 2.214 1.634 1.384 (Zn, Ca)Al2P2H,0,2 • 3H20/Kehoeite 27- 94 

• 3.34, 4.283 4.273 3.383 2.773 2.33j 2.792 2.322 CsliSe04 29- 411 
' 3.33, 4.28x 3.24x 8.58, 2.91, 2.37, 1.87, 4.95, 35^3^7 30- 385 

i 3.34, 4.274 3.19, 2.70, 7.28j 4.912 1.822 3.13, CaAl2Si2O0-4H2O/Gismondine 20- 452 
i 3 30, 4.277 3.717 3.457 3.92s 3.34, 3.27s 2.96, KFeSi30, 16- 153 

3.38, 4.26x 4.16X 1.68x 6.70, 2.97, 2.86, 2-56, Cs2VCI5-4H20 20- 301 
i 3.37, 4.26, 4.18, 2.98, 8.56, 6.76, 3.49, 3 09, Cs2VCI5-4H20 34- 322 
o 3.36x 4.26x 4.21x 2.86x 5.90, 5.55, 3.26, 2-94, KAlH(P3O,0) 38- 55 

o 3.36, 4.26x 2.98x 5-95, 5-55, 4.02, 3.26, 2.87, KCrHP3O10 ' 41- 442 
3.34x 4.26, 3.66, 2.61, 2.48, 1.80, 3-97, 3.05, 3PbCOa • 2 Pb(OH)2 • H20 9- 356 

' 3.34x 4.267 2.13, 7.405 3.49s 2.58s 2.24s 2.21s Ca3Ge(S04)2(0H),-3H20/Schaurteite 19- 225 
3.34x 4.26, 2.13, 7.40, 2.57, 2.03, 3.494 2.244 Ca3Mn(S04)2(OH),-3H20/Despujolsite 20- 226 
3.34x 4.26a 1.82, 1.54, 2.46, 2.28, 1.37, 1.38, Si02/Quarti, syn\silica 33-1161 

o 3.33x 4.264 3.274 4.313 2.893 2.753 3.882 3.192 K2Ca(V03)4 37- 180 
3.30x 426, 4.247 3.667 2 89, 2.30, 2.63j 2 32s Sm20(C03)2-xH20 28- 994 
3.319 4.25x 4.09, 3.72, 2.987 2.207 1.937 5.47, CIPtOF, 26- 415 
3.30, 4.25x 4.09, 3.67, 7.42, 5.47, 2.96, 1.91, (CIF20)AsF, 26- 117 
3.40x 4.24, 3.004 5.723 2.653 2.852 2.37, 0.00, KAuF4 27- 395 

* 3.37x 4.243 2.32, 2.12, 2.45, 1.84, 1.83, 1.54, GaPO, 8- 497 
o 3.36x 4.24x 2.86x 5.90, 5.55, 3.26, 2.94, 6.60, KAIH(P3O10) 38- 55 
* 3.33x 4.24x 3.394 2.643 3 253 2.602 4.382 3.442 SrUMo40,, 38-1360 
i 3-418 4.23x 2.87x 2.49x 2-06, 1.99, 1.95, 1.93, a-WP2 35-1467 

3.39, 4.23x 5.06, 3.45, 3.18, 3.05, 5.257 3.767 RbAl2(H2P3O,0)(P4O,2) 37- 261 

o 3.398 4.23x 2.99, 2.89, 2.777 5.93, 3.245 4.754 RbGaHP3O,0 34-1347 
o 3.37x 4.23x 3.46x 3.00x 2.13X 6.00, 2.69, 2 45, CsSnFBrl 30- 369 
o 3.36x 4.23x 2.37x 2.29x 2.15x 1.90x 9.50, 3 95s Al,La2S,j 41- 734 
o 3.36x 4.23s 1.64, 2.724 2.443 2.223 1.93, 3.142 Mo30,xH20/llsemannite 21- 574 

3.35e 4.23x 3-12X 3.43, 3 84, 3.75, 3.39, 3 37, (3-Cs2Cu(S04)2 28- 288 

o 3.40x 4.22s 3.207 3.14, 5.81, 3.625 3.034 2.644 Na3V02(S04)2 41- 175 
3.418 4.2 lx 3-11 x 2.75, 7.587 5.607 4.467 3.317 Na2SbF3S04 28-1038 

o 3,41, 4-21 x 2.99, 3.24, 2.91, 2.777 5.95, 4.77, RbCrHP3O,0 41- 443 
o 3.39x 4.21, 3.92, 2.78, 1.89, 3.78s 2.965 2.085 Pb2Sb2Sj 36- 94 

3.33, 4.21x 3.827 2.96, 2.477 2.347 2.017 1.897 CsXeOFj 35-1267 

o 3.41, 4.20x 3.657 2.777 2-717 2.965 2.11, 4.004 Tl2Si2Ss 38- 914 
0 3.33x 4.207 3 08s 2.734 1.802 3.002 2.482 1.562 PbMoP2Ov 36- 198 

3.39x 4.1 9S 3.674 2.81, 2.532 2.17, 1.89, 1.94, Li4H2Si2QT 23-1185 
i 3.35x 4.1 8S 2.953 5.59, 2.61, 2.31, 0.00, 0.00, KAgF4 26-1464 

3.32x 4.18, 3.594 4.303 3.703 2.823 2.77, 2-083 CsV02S04 36- 704 

Fig. 10.9. Part of the Hanawalt Search Manual for Inorganic Phases, showing some entries in the 

Hanawalt Group 3.39-3.32 A. The intensities of the reflections are indicated by subscripts x = 100, 

9 = 90, 8 = 80 and so on. Notice that some patterns are entered in this Hanawalt Group according to 

their .sccoucZ-strongest or third-strongest lines; e.g. K2N2V602i (20-1379) or RbGaHP3Oio (34-1347) 

respectively. This is because they have intensities over 75% of that of the strongest line and may 

experimentally be identified as the strongest lines. (International Centre for Diffraction Data.) 

10.3.3 Measurement of crystal (grain) size 

This is based on the determination of (3, the line broadening in the Scherrer equation 

(Section 9.3) and an estimate of K, the ‘shape’ correction factor (which does not differ 

significantly from unity). However, this is not a straightforward business because the 

observed broadening, f30bs, also includes ‘instrumental’ factors such as detector slit 

width, area of specimen irradiated, possible presence of a Ka2 component in the 

X-ray beam etc. The contributions from these factors have to be ‘subtracted’ from 

the observed peak breadth (or, strictly speaking, they have to be deconvoluted from 

the peak). The usual procedure is to measure the instrumental broadening, p-msU in a 

large-grained material in which grain size broadening is assumed to be negligible, and to 

determine /3 either by a simple subtraction, due to Scherrer, i.e. (3 = /3obs — /?inst, or by 

a subtraction of squares, due to Warren, i.e. (32 = [32ohs - (3fnst. In practice, attempts to 
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measure ‘absolute’ grain sizes by X-ray diffraction are fraught with difficulty because 

of the presence of imperfections (particularly sub-grain boundaries), lattice strains etc. 

which contribute to the broadening of the X-ray peaks. 

10.3.4 Measurement of internal elastic strains 

The elastic strains to be measured can bfe distinguished into those occurring on a ‘macro’ 

scale and those occurring on a ‘micro’ scale. Macroscale refers to the situation where 

the whole material is subject to some directional residual tension or compression; the 

resultant strains, which are manifested in terms of increases (tension) or decreases 

(compression) in the dhkrspacings are therefore also directional and the measured values 

vary with the orientation of the reflecting planes—those parallel to the stress axis for 

example suffering no change. 

In order to measure such strains (and to determine the stress axis) in the diffracto¬ 

meter, the specimen needs to be rotated from the symmetrical (Bragg-Brentano) 

geometry as described above. In practice, measurements of peak shift are made for 

various settings of the specimen and from which the direction and magnitude of the 

stress can be extrapolated. 

Microscale refers to the situation in which the directions (and magnitudes) of the 

internal strains vary from crystal to crystal. The subsequent elastic strains give rise, not 

to a shift, but to a broadening of the diffraction peaks from which an estimate of the 

micro-stress can be made. The relevant equation is that derived for the limit of resolution 

(Section 10.3.1), in which e, the elastic strain, is substituted for Sd/d. i.e. 

e - —cot 0 86. 

Hence the broadening, /3, expressed as the half-height peak width 288, is: 

(3 = —= —21 tan 9. 
cot 9 

Notice that this equation is very similar to the Scherrer equation for broadening 

arising from crystal size; the important difference being that in this case (3 varies as 

1/cot 6 or tan 9 and in the Scherrer equation f3 varies as 1/cos 9 or sec 9. As in the case of 

grain size broadening (Section 10.3.3), the instrumental broadening, /3inst, measured for 

a stress-free material, must be subtracted from (3obs, the observed broadening for the 

micro-strained material. Finally, having measured the strain e, the stress may be 

determined by substituting the appropriate value of the Young modulus, E. 

10.4 Preferred orientation (texture, fabric) and its 

measurement 

There are essentially two methods of recording preferred orientation: film methods 

which make use of flat-plate film cameras, and counter methods which make use of 

a special design of diffractometer called a texture goniometer. Film methods have the 

advantage that the cones of reflected beams from planes of different dhu spacings can be 

recorded ‘all at once’ so that you can see at a glance, from the varying intensities around 

the diffraction rings, whether the crystals are in random orientation or not. In practice the 
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film may be set ‘behind’ the specimen as in Fig. 10.5 such that the cones of high-angle 

reflections are recorded (the back reflection X-ray method; or the film may be set ‘in 

front of the specimen such that the cones of low-angle reflections are recorded) the 

transmission X-ray method. In the latter case the specimen must be thin enough for the 

reflected beams to pass through with sufficient intensity to be recorded—which sets a 

practical limitation in the case of ‘bulk’ specimens which cannot be cut into thin sections. 

However, film methods have the disadvantage that, except for the case of fibres, the 

data cannot easily be represented in a quantitative way—the varying intensities around 

the diffraction rings depend also on the orientation of the specimen with respect to the 

incident beam which means that several exposures need to be made and the results 

collated and the intensities analysed in terms of the ‘blackening’ of the films—a tedious 

business. In the case of fibres only one orientation and hence only one photograph is 

needed—the fibre axis normally being set vertical and perpendicular to the direction of 

the (horizontal) incident beam. 

In the texture goniometer the detector is set at a fixed 29 angle to record the diffracted 

intensity from just one set of dm planes. All the movement takes place at the specimen 

which can be rotated about two axes as described below such that the detector in effect 

scans a wide range of orientations of the selected dm planes. The detector may then be 

re-set at another 29 angle to record another set of dm planes and the process repeated. 

It is therefore, in contrast to film methods, a sequential procedure but has the enormous 

advantage that the output from the detector can be represented in the form of pole figures 

or processed numerically to give what is known as an orientation distribution function 

(ODF) which provides a complete description of the texture or fabric of the material. 

10.4.1 Fibre textures 

Figure 10.10 shows the simple experimental set-up for the transmission X-ray method 

to record the low 29 angle (highest dm) reflections. The fibre, or reference direction is 

set vertical and perpendicular to the incident X-ray beam. Figure 10.11 is an example of 

the application of the technique in the study of polymers. Figure 10.11(a) shows the 

diffraction pattern of a thin section of an injection-moulded specimen of polypropene 

n(CH2-CHCH3) which partially crystallizes on cooling from the melt; the diffraction 

rings are of uniform intensity which shows that the crystallites are in random orientation. 

Figure 10.11(b) is of the same material which has been plastically deformed in tension 

to a strain of about 500%. The diffraction rings are no longer continuous but consist of 

peaks of intensity which show that the crystallites now lie in a particular orientation with 

respect to the tensile axis. The diffraction pattern approaches that of a rotation or 

oscillation photograph of a single crystal (Fig. 9.13), the peaks of intensity lying in 

layer-lines perpendicular to the axis of rotation/oscillation. Given the structure and unit 

cell of polypropene and the {hkl} reflections which occur, we can index the reflections 

and hence determine which crystallographic direction is orientated along the tensile 

axis. Intuitively we may guess that the crystallites are orientated such that the polymer 

chains lie in the direction of the tensile axis and the demonstration that this is indeed the 

case is given in Exercise 10.4. 
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Fig. 10.10. Transmission X-ray powder method. The diffraction rings consist of reflections from 

many crystallites as indicated by the dots. Each ring corresponds to a cone of reflected beams of semi¬ 

angle 29. 

Fig. 10.11. Transmission X-ray photographs of polypropene //(CfT-CHCTp) (a) as-crystallized from 

the melt (crystallites in random orientation), (b) after 500°/a plastic deformation in tension (crystallites 

orientated with the polymer chains along the (vertical) tensile axis). 

10.4.2 Sheet textures 
■v 

The texture goniometer consists essentially of a cradle in which a flat-surface specimen 

(as in a diffractometer) can be rotated about two axes as indicated in Fig. 10.12(a), one 

of which, O ... O is normal to the specimen surface and the other B ... B lies in the 

specimen surface and in the plane containing the incident and diffracted beams (i.e. 

perpendicular to the direction A ... A). In the ‘starting position’ the specimen is set in the 
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O 

Fig. 10.12. The geometry of the texture goniometer, the specimen is rotated about the axis O... O 

normal to the specimen surface and tilted about the axis B ... B lying in the specimen surface and in the 

plane containing the incident and diffracted beams, (a) indicates ‘starting position’ (reflecting plane 

normals perpendicular to specimen surface) and (b) at angle of tilt 0 (reflecting plane normals lying in 

a cone at angle 0 to specimen surface). 

symmetrical or Bragg-Brentano focusing arrangement as shown in Fig. 9.16(a) and all 

the reflected intensity received by the detector arises from the crystal planes lying 

parallel to the specimen surface. The specimen is then tilted a small angle /3 (say 5°) 

about the axis B ... B. The reflected intensity received by the detector now arises from 

the crystal planes also tilted 5° to one side of the specimen surface. Note that this angle of 

tilt is not the same as the angle a in Fig. 9.16(b) which is in effect a tilt about the other 

direction A ... A in Fig. 10.12(a). The specimen is then rotated about the normal O... O; 
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in a complete revolution of 360° the detector records the reflected intensity from the 

planes tilted in all directions at 5° to the specimen surface. Now the specimen is tilted 

about the axis B... B say another 5° and again rotated 360° about its normal; the recorded 

intensity now arises from all the planes tilted 10° from the specimen surface—and so on. 

Figure 10.12(b) shows the geometry involved for an angle of tilt /3; the diffracted 

intensity arises from the planes whose normals lie in a ccffie normal to the specimen 

surface of semi-apex angle (3. The ‘vertical’ edge of the cone (in the plane of the incident 

Fig. 10.13. (a) Graphitized carbon tape showing the orientations of the graphite layers at a fracture 

surface (left) at the edge of the tape and (right) in the centre (photograph by courtesy of Dr S. Lu and 

Professor B. Rand), (b) The corresponding pole figure, the plane of projection is the plane of the tape and 

the fibre or tape direction is as indicated. The pole figure extends to ~80° and the limit of the spiral is 

shown by the thin line. The intensity-contours are indicated in the legend. 
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and diffracted beams) corresponds to the normals of the planes which are reflecting at 
any point during the 360° rotation. 

Tilting about the axis B... B maintains the symmetrical Bragg-Brentano focusing 

geometry (unlike, as in Fig. 9.16(b), tilting about the other axis A... A) but clearly as (3 

increases the incident and diffracted beams lie at an increasingly small ‘glancing’ angle 

to the specimen surface such that the practical limit of tilt is about 80°. Hence the planes 

which lie perpendicular to the specimen surface (normals lying in the specimen surface) 

cannot be recorded. This problem is overcome either by using a transmission method or 

by sectioning the specimen in another orientation. 

In practice the mechanics of the texture goniometer are such that the specimen is 

tilted and rotated at the same time—say a 5° tilt for 360? rotation, such that the 

recorded intensity arises from planes lying in a spiral of 5° pitch. The data is then plotted 

in a stereographic projection—a pole figure (Section 12.5.3) and presented in terms of 

contours of intensity data. Finally, in order that the X-ray beam may sample as large an 

area as possible, the specimen is oscillated in its cradle, or shunted to and fro, by a 

mechanical device rather like the connecting-rod to the wheels in a steam engine. It 

is the one feature of the texture goniometer which students always notice first! 

Figure 10.13(a) is a scanning electron micrograph of a graphitized carbon tape 

showing clearly the graphite layers lying parallel to the surface of the tape except at 

the edges where they ‘curl over’—but always lying parallel to the long direction of the 

tape. Figure 10.13(b) is the corresponding pole figure, the 29 angle being set to record 

the 0002 graphite planes. They peak in the centre (the planes parallel to the surface 

of the tape) and also towards the transverse directions (the planes curled over at the 

edges). This is a nice example because the relationship between the pole figure and the 

micrograph can be visualized very easily. In most other materials the micrographs 

do not reveal the orientations of the reflecting planes at all and their orientations are 

only revealed in the pole figure. 

10.5 X-ray diffraction of DNA: simulation by light diffraction 

The 1952 X-ray photograph of deoxyribonucleic acid (DNA) is of such importance in 

the history of science that I have placed it, along with the 1912 X-ray photograph of zinc 

blende, at the very beginning of this book (p. xv). The caption indicates how some of the 

features of this pattern relate to the structure of DNA. We are, of course, unable to 

attempt a complete analysis of the positions and intensities of the diffraction spots from 

a structure of such complexity, but we can make some progress towards that goal by 

making use of the simple ideas about diffraction that we covered earlier in this book 

together with a simplified (two-dimensional) model of DNA itself2. 

2 The analysis which follows is largely based on the work of Prof. Arnand Lucas and his colleagues of the 
University of Namur, Belgium, to whom I am very grateful. Their analysis entitled ‘Revealing the backbone 
structure of B-DNA from laser optical simulations of its X-ray diffraction diagram’ is published in the Journal 
of Chemical Education 76, 378-83, 1999. It is also available from the authors as a videotape (together with a 
diffraction mask) entitled DNA - from light to life, and is also included in the Vega Science Film Series 
(Videotape VRS-7 ‘How X-rays cracked the structure of DNA’), available from the Vega Science Trust, 

University of Sussex, UK, BN1 3QJ and via the vega website; www.vega.org.uk. 
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0.3 p 

Fig. 10.14. A model of DNA showing schematically the two helical backbones of the phosphate 

groups (indicated by dots) and the equidistant planar- bases (indicated by horizontal bars), p — 3.4 nm is 

the helical repeat distance, the two helices are separated by 3/8 p and the distance between the bases is 

1/10/7. The diameter of the helices is 0.6p = 2.0 nm (from A. A. Lucas, Ph Lambin, R. Mairesse and 

M. Mathot../. Chem. Educ. 76, 378, 1999). 

Figure 10.14 shows a projection of a simplified DNA model showing schematically 

the two helical backbones of the phosphate groups (indicated by dots along the sine 

waves) and the equidistant planar bases (indicated by horizontal bars), p = 3.4 nm is the 

helical repeat distance; the two helices, are separated by 3/8 p and the distance between 

the bases is l/10p. The diameter of the helices is 0.6p « 2.0 nm. 

We will now represent this structure in the simplest possible way—as a row of 

horizontal lines of length 0.6p and separation p (Fig. 10.15(a)). The corresponding 

diffraction pattern (or optical transform) is shown in Fig. 10.16(a). It is produced in the 

same way as the patterns shown in Fig. 7.3 except that, in practice, the diffracting mask 
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Fig. 10.15. Representational models of the DNA structure, (a) Lines spaced the helical repeat distance 

p and length 0.6 p; (b) lines inclined at (approximately) the same angle as one of the arms of the helices; 

(c) a zig-zag pattern made by combining the two arms of the helices and roughly representing the single 

sine wave, in projection, of one of the helices; (d) two helices (represented as sine waves rather than 

zig-zags) separated by a distance 3/8p. (From A.A. Lucas et al. loc. cit.) 

is made up not of one, but of many sets of such lines, irregularly spaced, so as to give 

sufficient diffracted light intensity. It is also made to such a scale that the distance p 

between the lines and the wavelength of laser light is in the same proportion to the actual 

helix repeat distance (3.4 nm) and typical X-ray wavelengths (~ 0.15 nm). 

The vertical separation between the laterally-streaked spots is given by the simple 

diffraction grating equation (Section 7.4): sin an = nX/p and since A <C p, sina„ « an 

and the spots are nearly equally spaced. 

Now we will improve our model by inclining the lines at (approximately) the same 

angle as the ‘arms’ or the ‘zigs’ and ‘zags’ of the helices (Fig. 10.15(b)). The diffraction 

pattern from one of these again shows laterally-streaked spots with the same vertical 

separation but with maximum intensities in a direction perpendicular to the inclined 

lines (Fig. 10.16(b)). Clearly, for the arms of the helices inclined in the opposite sense 

the diffraction pattern will be mirror-related to that in Fig. 10.16(b) in a vertical line. 

Now we combine the two sets of lines to give a zig-zag pattern (Fig. 10.15(c)) which 

roughly represents the projection of a single helix; the resulting pattern (Fig. 10.16(c)) 

now shows (as expected) the two characteristic rows or arms of spots radiating out from 

the centre and the angle between them, which is the angle between the arms of the 

helices can, together with the repeat distance p, be used to estimate the width of the 

helices, i.e. the diameter of the DNA structure. We may refine our model by representing 

the helix more properly as a sine wave but the resulting pattern is only changed in detail3. 

3 Examples of diffraction patterns of sine waves of various forms are given in the Atlas of Optical Transforms 

(see Chapter 7). 
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Fig. 10.16. The optical transforms or diffraction patterns corresponding to the models shown in 

Fig. 10.15(a)-(d) and Fig. 10.14: (a) from horizontal lines spacing p and length 0.6 p, (b) from lines 

inclined as in one of the arms of the helices, the intensity maxima lie in a direction normal to the lines, 

(c) from two sets of lines (zig-zags) representing the sine-wave projection of a single helix, (d) from two 

sine waves separated by a distance 3/8 p, and (e) from the double-helix model as represented in 

Fig. 10.14. (Photographs by courtesy of Prof. A. A. Lucas.) 
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Next, we combine two zig-zags or two sine waves separated by the distance 3/8 p 

(Fig. 10.15(d)). The diffraction pattern is similar, but with the crucial difference that 

there are gaps, or systematic absences, in the sequence of lines—the 4th (12th and 20th) 

lines are missing (Fig. 10.16(d)). We can very easily understand this by drawing a 

diffraction grating of slit separation p, working out the diffraction angles as in Section 

7.4 and then considering the contributions to the diffracted intensities of a second set of 

slits separated by distance 3/8 p. It is precisely the same procedure that we used to 

determine the diffracted amplitudes from a crystal with just two atoms per unit cell 

(Section 9.2 and Fig. 9.3(a)). 

Figure 10.17(a) shows the geometry involved. Let/be the scattered amplitude from 

each slit and consider first the interference between the diffracted beams from the slits 

A—A—. Maxima occur when the path difference x — nX = p sin an ~ pan and the 

P 

P 

Fig. 10.17. (continued) 



224 X-ray diffraction of polycrystalline materials 

n Path diff, ^nX Phase angle Amplitude, F 
2 

Intensity, |F| 

0 0 o- 
F 

f f 

4f2 

1 

COICO 

\ 

135° f/V®' 0.586f2 

2 4A 270° 

O O
 

. h- 
• O

J 

f
i
l
 

^
 

~
 

2 f2 

3 liA 405° (45°) 

f 

3.414 f2 

4 IgA 540° (180°) f wr~y-180° 

f 

0 

5 

M
co 675° (315°) 3.414/2 

12 

■H
C

\J 

CO 1620° (180°) ^-^r.180° 
f 

0 

20 7gA 2700° (180°) 
f ✓-V'lSO0 

0 

Fig. 10.17. (a) A diffraction grating of repeat distance p made up of two sets of slits A... A and 

B ... B ... separated by distance 3/8p. Maxima occur when the path difference x — n\ = psin a„. The 

amplitudes or intensities of the diffracted beams are modulated by interference between the waves 

diffracted at each pair of slits A and B. (b) The vector-phase diagram for values of n = 0, l, 2, 3, 4, 

indicating zero intensity for n = 4 (and 12, 20 etc.). 

amplitude per unit length p (or per unit cell) is/. Now consider slits B— B—. We only 

need consider the contribution of one such slit (i.e. in one cell), since what applies to 

one applies to all. The path difference between each A and B slit, y = 3/8.r = 3/8nA and 

we can now construct the amplitude- or vector-phase diagrams for n = 0,1,2,3,4... 

The results, and corresponding intensities in terms off2 are shown in Fig. 10.17(b). The 

cyclic variations in intensities with zeros at n = 4,12,20 etc. are clear. 

Finally, Fig. 10.16(e) shows the diffraction pattern of the double helix with the 

phosphate groups and planar bases shown as in Fig. 10.14. Its similarity to well-defined 

X-ray diffraction patterns of DNA is remarkable, especially so since it was arrived at by 
such simple procedures. 
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Exercises 

10.1 Show, by simple geometrical reasoning, that in the X-ray monochromator (Fig. 10.2) the 

curved reflecting crystal planes should have a radius twice that of the focusing circle. 

10.2 Show, by simple geometrical reasoning, that in the back-reflection X-ray powder photo¬ 

graph (Fig. 10.5), the reflections are most sharply focused when R2 = xy where R = the 

radius of the ring, x = the specimen-film distance and y = the distance of the (effective) 

source S behind the film. 

10.3 Determine the c/-spacings of the strongest low-angle reflections in the Debye-Scherrer film 

of quartz (Fig. 10.7) and check that they correspond (within the limits of experimental 

accuracy) with those indicated in Fig. 10.4 or listed in Fig. 10.8. 

(Hint: the precise locations at which 20 = 0 and 180° are not found from the centres of the 

holes in the film (which might be slightly displaced) but by determining the mid-points of 

the low-angle and high-angle reflections, respectively. The distance between these mid¬ 

points corresponds to an angle of 180° and the linear scale can be related to the angular scale 

and the 20 values. Hence the 4-spacings of the reflections can be found using Bragg’s law. 

(The film is taken using filtered CuKa radiation which includes both the Ka, and Kq2 

components. At low angles these are unresolved, ACuKa = 1.542 A, but at high angles 

they are resolved, ACuKaq = 1.541 A, ACuKa2 = 1.544 A.) 

10.4 Crystalline polypropene may be assigned a monoclinic unit cell with lattice parameters 

a — 6.65 A, b = 20.96 A, c — 6.50 A and /? = 99.3°. The polymer chains are orientated 

along the c-axis. The table shows the d spacings, relative intensities and corresponding M0, 

Ml and M2 indices (data from Natta, G., Corradini, P. and Cesari, M. (1956), Rend. Acad. 

Naz. Lincei 21, 365). 

d/ A (M0) Intensity^ d/A (Ml) Intensity^ d/A (M2) Intensity^ 

6.21 110 s 4.14 111 m 3.06 022 mf 

5.20 040 vs 4.06 131 s 3.05 112 mf 

4.74 130 s 4.03 041 s 2.50 202 f 
3.50 150 m 2.11 202 mf 

3.46 060 m 

3.25 200 mf 

3.11 220 mf 

' Intensities: s = strong, v = very, m = medium, f = faint. 

Given that the X-ray photographs in Fig. 10.11 were taken with CuKa radiation 

(A = 1.542 A) and that the specimen-film distance (corrected for printing = 36 mm, index 

the reflections and show that in Fig. 10.11(b) the polymer chains are orientated along the 

tensile axis. 

10.5 With reference to Fig. 10.18, determine (3 (expressed in radians) for each of the peaks from 

the half-height peak widths of the annealed (Anst) and abraded (/30bs) specimens. On the 

assumption that the broadening arises solely from microstrain, determine the microstrain 

and hence residual stress given the Young modulus for iron E = 207 GPa (see Section 

10.3.4). 

10.6 With reference to Fig. 10.19, electron microscopy indicates that the grain size of the milled 

powder (a) is in the range 10-50 nm and that of the consolidated powder (b) is 5 pm and 

above. On the basis that the increased broadening in (a) arises solely as a result of the fine 

crystallite size, show that the X-ray data is consistent with the microscopical data. 
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xio1 

Fig. 10.19. Diffractometer charts (CuKa, radiation, A = 1.541 A) showing the first three reflections 

for a titanium alloy (Ti-6% Al-4% V) powder specimen in (a) the mechanically milled condition and (b) 

following consolidation and heat treatment which gives rise to an increase in grain size and precipitation 

of the (3 phase (bcc) in the a phase (hexagonal) alloy matrix. (Data by courtesy of Mr D. G. Wright and 

Dr A. Brown.) 
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Electron diffraction and its 
applications 

11.1 Introduction 

In Section 7.3 we discussed the wave- and particle-like characters of light which are 

linked by Planck’s equation E = hc/X; and also the wave-like character of moving 

particles which is linked to their mass and velocity by de Broglie’s equation A = h/mv. 

The common or ‘linking factor’ in both equations being Planck’s constant 

h — 6.63 x 10-34 Js. In the case of neutrons (Section 9.7 and Exercise 9.3), it is the 

thermal conditions in the reactor which give rise to the neutron velocities, and hence mv 

values which, when substituted in de Broglie’s equation, give wavelengths very similar 

to those for X-rays (Section 9.7). In the case of electrons in the transmission electron 

microscope the velocity and hence momentum mv of the electrons (m being relativist- 

ically corrected) depends on the accelerating voltage V and is determined by equating 

the potential energy eV (lost) where e is the charge on the electron with the kinetic 

energy \mv2 (gained). The resulting A values are very small (see Exercise 11.1), for 

example in a microscope operating at 300 kV, A = 1.97 pm (0.0197 A) and this of course 

is the basis of the high resolving power (or small limit of resolution) of the electron 

microscope in comparison with the light microscope as described in Section 7.5. Finally, 

it should be emphasized that de Broglie’s equation applies to all moving particles, not 

just neutrons and electrons—including pieces of chalk thrown at inattentive students 

in lectures! However, as a simple calculation shows, the associated wavelengths are 

very small. 

Whereas X-rays are scattered by the electrons in atoms, the incident electrons are 

primarily scattered by the protons in the nuclei, the scattering amplitude being propor¬ 

tional to Z. The electrons do, however, play a role insofar as they ‘shield’ the nuclei from 

the incident electrons by an amount proportional to/, the X-ray atomic scattering factor. 

Hence, the electron atomic scattering amplitude, /e is proportional to (Z —/). It is 

normally expressed as a scattering length (rather than a number like/) and the electron 

scattering intensities are thus expressed as areas or atomic scattering cross-sections. 

The important consequence is that on average/e oc \/Z (rather than/ oc Z for X-rays) 

so that light elements scatter more strongly, in comparison to heavy elements, than 

X-rays. More important still the amount of scattering is much greater than for X-rays by 

a factor of 103 or 104 such that electron beams are attenuated much more rapidly. Hence 

in electron diffraction the dynamical interactions discussed in Section 9.1 are much 

more important than in X-ray diffraction and must always be taken into account in any 

attempt to relate observed electron beam intensities to atomic positions. There is, in 
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electron diffraction, no simple analogy to the structure factor equation for X-ray diffrac¬ 

tion. (i.e. no simple way of relating atomic positions to diffracted beam intensities.) 

11.2 The Ewald reflecting sphere construction for electron 

diffraction 

Since electron wavelengths are very much smaller than the lattice parameters of crystals, 

which are normally in the region of 0.3 nm upwards, the diameter of the reflecting sphere 

is very large in comparison with the size of the unit cell of the reciprocal lattice. 

Referring to the reciprocal lattice sections in Figs 8.6 and 9.14(a) and (b) for example, 

for the case of electron diffraction, the centres of the reflecting spheres would be situated 

along the direction of the incident beam at a point far to the left of the origin of the 

reciprocal lattice, well beyond the left-hand edge of the paper. 

The situation for a simple cubic crystal (as for Fig. 9.14(a)) is illustrated in Fig. 11.1, 

which shows again that part of the reciprocal lattice section perpendicular to the b* 
reciprocal lattice vector or y-axis (out of the plane of the paper) which lies close to the 

I Reflections 
j from FOLZ 

Reflections 
from ZOLZ 

Direct beam 

Reflections 
from ZOLZ 

| Reflections 
from FOLZ 

Fig. 11.1. The Ewald reflecting sphere construction for a simple cubic crystal in which the electron 

beam is incident along the a* reciprocal lattice vector (x-axis). The b* reciprocal lattice vector (y-axis) is 

perpendicular to the plane of the page. A section of the sphere (centre beyond the left-hand edge of the 

page) and the reflected beams passing at small angles from the centre of the sphere through the 

reciprocal lattice points in ZOLZ (giving spots close to the direct beam) and FOLZ (giving spots further 

away from the direct beam) are indicated. 
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surface of the reflecting sphere, only part of which near the origin can be shown since its 

radius is so large. The incident electron beam is directed along the a* reciprocal lattice 

vector or x-axis and the centre of the reflecting sphere is far to the left of the diagram. 

Close to the origin, 000, the curvature of the sphere is so small that it approximates to 

a plane perpendicular to the direction of the electron beam and hence passes (in this 

section) very close to the 001, 002, 003 and OOl, 002, 003 reciprocal lattice points. 

Now in order for Bragg’s law to be^satisfied exactly, a reciprocal lattice point must 

intersect the Ewald reflecting sphere. However, since reciprocal lattice points are 

broadened into nodes (Section 9.3) they may be extended sufficiently to intersect the 

sphere and hence give rise to diffracted beams. This situation also arises in X-ray 

diffraction but to a lesser extent than in electron diffraction (a) because the reciprocal 

lattice points of the thin foil crystal sections used in electron microscopy are extended 

perpendicular to the foil surface and are therefore approximately parallel to the electron 

beam and (b) because thin foils are often slightly bent or ‘buckled’ such that the 

orientation of the electron beam varies slightly over the surface of the foil—i.e. it is 

never incident precisely along one crystallographic direction as indicated in Fig. 11.1 

Hence (referring again to Fig. 11.1), the reciprocal lattice points 001, 002, 003, 001, 

002, 003 which lie in a reciprocal lattice row perpendicular to the electron beam 

direction all give rise to reflected beams, which are directed from the centre of the 

sphere (to the far left of the page) as indicated. Similar considerations apply to the 

reciprocal lattice row in the ‘next layer above the page’, i.e. the row through 010 

(above 000), 011, 012, 013 etc. and also the next layer below, i.e. through OlO (below 

000), Oil, 0l2, 0l3, etc. All of these reciprocal lattice points lie in the (0k/) plane or 

section of the reciprocal lattice which is perpendicular to the electron beam direction. 

In summary, therefore, the reciprocal lattice points close to the origin, in the (0k/) 

reciprocal lattice section perpendicular to the electron beam direction, give rise to 
reflected beams. 

Since the diffraction angles are small (Fig. 11.1), the pattern of spots on the screen 

perpendicular to the beam corresponds to the pattern of reciprocal lattice points. Figure 

11.2 shows this pattern of spots from the (0k/) reciprocal lattice section grouped around 

the direct beam. For simplicity and clarity, only those reflected beams of type 00/ (in the 
section perpendicular to the y-axis, Fig. 11.1) are indexed. 

These diffraction spots are said to belong to the zero order Laue zone (ZOFZ for 

short) since they all arise from reciprocal lattice points in a section through the origin or, 

equivalently, they all arise from planes in a zone—the zone axis being parallel (or nearly 
parallel) to the electron beam direction. 

The pattern of electron diffraction spots (for a particular incident beam direction) in 

the zero order Laue zone is identical to that in the zero level X-ray precession photo¬ 

graph (when the crystal is precessed by the appropriate angle about the same incident 

beam direction). This is seen by comparing Fig. 9.14(c) with Fig. 11.2. The far simpler 

set-up (a stationary crystal) in electron diffraction ‘works’ because of the ‘flatter’ (large 

diameter) Ewald reflecting sphere, the extension of the reciprocal lattice nodes and the 

slight buckling of the thin foil specimens—all of which serve to provide the requisite 

diffraction conditions without the necessity of precessing the specimen over a very 
much smaller angular range. 
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Fig. 11.2. The diffraction pattern on a screen perpendicular to the electron beam direction. The 0kl 

ZOLZ spots are grouped around the direct beam (centre spot) and the 1 kl FOLZ spots are grouped 

roughly in a ring outside. Only the hOl spots in the section perpendicular to the y-axis (Fig. 11.1) are 

indexed (compare with Fig. 9.14(c)). 

Referring again to Fig. 11.1, as we proceed along the surface of the reflecting sphere 

away from the origin, we begin to intersect the next row of reciprocal lattice points 

which does not pass through the origin. The reciprocal lattice points in this row which lie 

close to the sphere, i.e. 106, 107, 106 and 107 (and in the corresponding rows above and 

below the plane of the diagram, all of which lie in the (1 kl) section of the reciprocal 

lattice) will also give rise to diffraction spots as indicated. These spots, which lie outside 

those from the zero order Laue zone away from the centre of the pattern (Fig. 11.2) are 

said to belong to the first order Laue zone (FOLZ for short). Continuing outwards 

towards the edge of Fig. 11.1 we come to reciprocal lattice points in the second order 

Laue zone (SOLZ for short). These are just the first two in a series of higher order Laue 

zones (HOLZ for short). 

11.3 The analysis of electron diffraction patterns 

The analysis of electron diffraction patterns is essentially a process of identifying the 

reciprocal lattice sections which give rise to them. Several computer programs are now 

available (see Appendix 2) which generate reciprocal lattice sections, given as input data 

the lattice parameters, type of unit cell (and in some cases the space group and atomic 

positions) and the electron beam (zone axis) direction. Several examples showing the 

ZOLZ only are given in Fig. 11.3. Care must be exercised in using such data because a 
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Fig. 11.3. Examples of the computer-generated diffraction patterns, drawn to the same scale 

(XL = 16.3 A mm), (a) Aluminium (fee), zone axis = (110); (b) aluminium (fee), zone axis = (111); 
(c) iron (bee), zone axis = (112); (d) titanium (hep), zone axis = [0001], 

number of different electron diffraction patterns from different types of high-symmetry 

crystals have identical symmetry and only differ in scale. For example the (11 l)fcc and 

[0001]hCp patterns shown in Figs 11.3(b) and (d) both consist of hexagonal patterns of 

points. 
The first step in the analysis of electron diffraction patterns is measurement of the 

d-spacings. This is an easy matter. Fig. 11.4 shows a set of reflecting planes at the Bragg 

angle d (much exaggerated) to the electron beam. The diffracted beam, at angle 

d + 9 = 2d, to the direct beam, falls on the screen at a distance R from the centre spot. 

Figure 11.4 does not represent the actual ray paths in the electron microscope, which are 

of course determined and controlled by the lens settings: hence L, the camera length, is 

not the actual distance between the specimen and screen, but is a ‘projected’ distance 

which varies with the lens settings. 

From Fig. 11.4, tan 2d = R/L. Since 9 is small, tan 2d ~ 2d (2d of course being 

measured in radians). Similarly for Bragg’s law, sin 6^6 hence A 2d/lWd. Eliminating 

d from these equations we have: 
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Fig. 11.4. Idealized representation of the direct and diffracted ray paths in the electron microscope 

between the specimen and the screen. L is the camera length and R is the distance between the centre spot 

(direct beam) and the diffracted spot. 

dhki = X L/R 

where XL is known as the camera constant and which, like L, varies with lens settings in 

the microscope. The units of XL are best expressed in terms of the product of R, the 
o 

distance measured on the screen (e.g. mm) and dhki (e.g. nm, A or pm). Although the 

angstrom (A) is not an SI (Systeme International) unit, it is coherent with the SI system 

(1 A = 10“10 m) and still remains in widespread use in crystallography (a) because it is 

roughly equal to atomic diameters and (b) because X-ray dhki-spacing data in the Powder 

Diffraction File (see Section 10.3) is recorded in angstroms. 

The accuracy with which the d^-spacings can be measured is very limited because of 

the size or ‘diffuseness’ of the diffraction spots. Moreover the camera constant, XL, will 

only be known to a high degree of accuracy if a ‘standard’ specimen is used which gives 

a diffraction pattern with spots of accurately known d/^-spacings. Otherwise the small 

variations in lens settings from specimen to specimen and from day-to-day will limit the 

accuracy of XL values at best to three significant figures. Hence, as pointed out above, 

patterns which have identical symmetry but which only differ slightly in scale with 

respect to the d^-spacings of the diffraction spots are not readily distinguished. 

The spots may then be indexed by reference to tables of data such as are contained in 

the Powder Diffraction File, which show the (Laue) indices, hkl, corresponding to the 

measured d/^-spacings. In doing so, a further step is required: the indexing must be such 
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that the addition rule (Section 6.5.2) is satisfied. A given set or family of planes {hkl} 

(which are invariably listed in data files simply as hkl—no brackets) will consist of a 

number of variants of identical af^-spacings. For example, in the cubic system (see 

Section 5.4), there are six variants of the ‘plane of the form’ {100}, all of which have 

identical d/^-spacings. The procedure consists of choosing the appropriate variants such 

that the addition rule is satisfied. Consider, for example, Fig. 11.3(a). The four spots of 

identical d/^-spacings closest to the cfentre spot are all reflections from planes of the 

form {111}. The particular indices have been chosen such that the indices of the 

remaining spots are determined correctly. For example, dj jj + djn = d002 and the zone 

axis, [110], is found by cross-multiplication of any pair of these indices (see Section 

6.5.7), the ‘choice’ only needs to be made once, and having been made, all the other 

spots in the pattern can be indexed consistently by repeated application of the addition 

rule; again, with reference to Fig. 11.3(a), d*^ + do02 = d*j3 and so on. The ‘choice’ is 

of course arbitrary: the number of different choices which can be made, all leading to 

a self-consistently indexed diffraction pattern, depends on the number of equivalent 

variants of the zone axis. In a cubic crystal there are twelve variants of the 110) 

direction, hence there are twelve ways in which a pattern like that of Fig. 11.3(a) can 

be indexed. 

The availability of computer-generated diffraction patterns has greatly facilitated the 

indexing and verification of electron diffraction pattern analysis. However, it must be 

said that many ‘useful’ diffraction patterns—i.e. those which may be of potential 

scientific interest, which have been obtained under conditions of experimental difficulty 

and which may consist of many spots from several crystals of varying degrees of 

visibility on the film—still require for their solution careful observation and measure¬ 

ment and an awareness of the possible occurrence of additional complicating factors 

such as double diffraction (see Appendix 6). Those books on electron diffraction 

techniques in Further reading provide a more detailed and thorough coverage of these 
topics. 

11.4 Applications of electron diffraction 

11.4.1 Determining orientation relationships between crystals 

One of the greatest advantages of electron diffraction is the facility in the electron 

microscope of being able to select a particular area of the specimen and to vary the 

diameter of the beam to obtain diffraction patterns simultaneously from those phases of 

interest. Moreover, the reflections from the phases present may be distinguished by the 

technique of dark field imaging. Each electron diffraction pattern may be indexed 

according to the procedures described in Section 11.3. The orientation relationship(s) 

may then be given in terms of parallelisms between zone axes and planes. 

Figure 11.5(a) shows an electron diffraction pattern of a-iron a = 2.866 A (bcc— 

strong reflections) in which are precipitated (or exsolved) particles of Fe2TiSi, 

a — 5.132 A (fee—weak reflections) in a single crystallographic orientation. It is 

obvious, simply by inspection or looking, that there is a clearly defined orientation 

relationship between the iron matrix and the precipitate and, because of the coincidence 
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Fig. 11.5. (a) An electron diffraction pattern of a-iron (bcc, a = 2.866 A: strong reflections) and 

Fe2TiSi (fee, a — 5.732 A: weak reflections) in a single crystallographic orientation. The camera 

constant XL — 31.5 A mm. (b) The patterns indexed according to one (arbitrary) variant of the 

‘cube-cube’ orientation relationship: (200)Fe2TiSi || (200)„_Fe; [Ol l]Fe2Tisi II [01 1 ]a.Fe (Photograph by 

courtesy of Dr. D. H. Jack) 

of many of the reflections, that the lattice parameters are related in some rational ratio. 

The d-spacings of the reflections may be measured (Section 11.3) and, given the lattice 

parameters and the conditions for reflection for the cubic F (fee) and cubic I (bcc) 

lattices (Table A6.2), the reflections may be indexed. Figure 11.5(b) shows the patterns 

indexed according to one (arbitrary) variant of the orientation relationship. Note that the 

200 Fe2TiSi spot is half the distance (and therefore twice the d-spacing) of the 200 cc-Fe 

spot from the centre; these planes are therefore parallel and the lattice parameter of 

Fe2TiSi is twice that of a-Fe. Similarly, the 022 Fe2TiSi reflection (by vector addition 

of Ill and 111) is coincident with Oil a-Ti. The zone axes, obtained by cross¬ 

multiplication (Section 11.3), are both [Oil]. The orientation relationship may be speci¬ 

fied by quoting the parallelisms: 

(200)Fe2XiSi || (200)a.Fe 

[0ll]Fe2TiSi II [011]a-Fe- 

This is known as the ‘cube-cube’ orientation relationship because it is equivalent to the 

statement that the x, y, z axes of both crystals are mutually parallel. 

Other, more complicated, orientation relationships may be determined by the same 

simple approach, but to go from the parallelisms between the planes and zone axes 

observed for the particular patterns to the establishment of possible parallelisms 

between planes not observed in the patterns (i.e. those that are not (nearly) parallel to 

the electron beam direction), requires a knowledge of the stereographic projection (see 

Chapter 12). 
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11.4.2 Identification of poly crystalline materials 

The Powder Diffraction File may be used to identify polycrystalline specimens from 

their electron diffraction patterns. However, its use is much more limited owing to 

the fact that the d-spacings of the diffraction rings can be measured to a much lower 

level of accuracy and only qualitative estimates can J?e made of their relative 

intensities. Hence the use of search procedures, as described in Section 10.3.2, is 

uncommon. Usually we have a fair idea as to what the specimen might be and make 

direct comparisons between the experimental data and that of ‘possible’ patterns in the 

File. Exercise 11.4 gives an example of this in the case of a single-crystal electron 

diffraction pattern. 

Figure 11.6 gives an example of an electron diffraction ‘ring’ pattern from a fine¬ 

grained polycrystalline thin foil specimen of aluminium. It is, in effect, the superposition 

of many single-crystal patterns. Notice the variations in intensity and the sequence of 

spacings of the rings. Aluminium can immediately be recognized as having the fee 

structure since the rings occur in the characteristic sequence ‘two-together’, ‘one-on-its- 

own’, ‘two-together’ etc. (see Note 3, Table A6.2). Hence the rings may simply be 

indexed ‘by inspection’, i.e. 

111,200, 220, 311,222, 400, 331,420. 

Fig. 11.6. An electron diffraction pattern of polycrystalline aluminium, showing varying intensities of 

the diffraction rings and the sequence of ring spacings characteristic of the fee structure. 
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11.4.3 Identification of quasiperiodic crystals 

In Section 4.8 we showed how quasiperiodic crystals or crystalloids could nucleate and 

grow without any long range translational symmetry and that their existence was first 

recognised from the ten-fold symmetry of their electron diffraction patterns. Figure 

11.7 shows the first observed such electron diffraction pattern of a nodule-like phase 

in a rapidly quenched Al-25 wt% Mn alloy. Such a ten-fold pattern does not however 

constitute sufficient evidence for quasiperiodicity since multiply-twinned crystals 

(consisting of 10 twin-related segments radiating out from a central point rather like 

the slices of a cake) can also give rise to such ten-fold patterns. Nor is this a remote 

possibility and some alloy systems may exhibit quasiperiodic crystals or multiply- 

twinned crystals (the microcrystalline state) depending upon heat treatment. For 

example the Al65Cu2oFei5 alloy gives twinned microcrystals when slowly cooled 

from the melt which on heating transform to quasiperiodic crystals1. 

There are two ways in which these quasiperiodic and multiply-twinned states may be 

distinguished. First the evidence from microscopy: twin boundaries and the changes in 

orientation of lattice fringes at twin boundaries may be observed by high resolution 

electron microscopy—which constitutes firm evidence for the microcrystalline phase. 

Second, the fine detail of the spots in the electron diffraction patterns: the segments or 

‘slices of cake’ in multiply-twinned crystals are not perfectly related by five-fold 

symmetry; there is some misalignment which results in spots of a triangular ‘shape’ 

(i.e. made up of a group of little sub-spots) rather than the clear and distinct single 

spots of Fig. 11.7. Other, more complicated five-fold patterns of spots may also arise. 

Fig. 11.7. Electron diffraction pattern of the first observed icosahedral particle in an Al-25 wt% Mn 

alloy, April 1982. (Photograph by courtesy of Prof. D. Shechtman.) 

1 Quasicrystals: A Primer by C. Janot, Clarendon Press, Oxford, 1992. 
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It is not surprising that the first reported occurrences of quasiperiodic crystals 

were greeted with considerable scepticism throughout much of the crystallographic 

community. 

Exercises * 

11.1 Using de Broglie’s equation, derive a simple equation for the (non-relativistically corrected) 

wavelength A of electrons in the electron microscope in terms of m, e (electron mass 

and charge) and V the microscope accelerating voltage. Given the following values of 

m (rest mass) = 9.11 x 1CU31 kg, e (electron charge) = 1.6 x 10~19 C, and h (Planck 

constant) = 6.63 x 10~34 Js, determine A for V = 10 kV, 100 kV and 1 MV. 

11.2 Figure 11.8 is an electron diffraction pattern of a thin crystal of aluminium (fee, a = 

0.4049 nm (4.049 A)) taken using an electron microscope operating at 100 kV, and shows 

diffraction spots from the ZOLZ (zero order Laue zone) only. Given the electron wave¬ 

length A = 0.0037 nm (0.037 A) and the camera length L = 688 mm, index the diffraction 

spots and determine the zone axis of the diffraction pattern. {Note: In face-centred 

lattices, reflections from the planes for which h, k and / are not all odd or all even integers are 

forbidden.) 

{Hint: Refer to Table A.6.2 listing the indices {hkl} and d-spacings of the allowed reflecting 

planes. Determine the dM/-spacings of the diffraction spots in the pattern (see Section 11.3) 

and hence, using the table, find their indices {hkl}. Using the addition rule in Section 6.5.2, 

Fig. 11.8. An electron diffraction pattern (ZOLZ) of a fee crystal. The camera length L (adjusted for 

the print size) is 688 mm (see Exercise 11.2). 
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assign a consistent set of indices hkl to the diffraction spots and hence find their common 

zone axis using the equation in Section 6.5.7. 

11.3 In an electron diffraction experiment the bcc crystal described in Exercises 9.1 and 9.2 is 

irradiated in the [100] (or a*) direction with an electron beam of wavelength 0.002 nm 
o 

(0.02 A). Find the reciprocal lattice points which lie close to the sphere in the ZOLZ (zero 

order Laue zone) and FOLZ (first order Laue zone). 

(Hint: Using the same reciprocal lattice scale as in Exercises 9.1 and 9.2, it will be found 

that a very large sheet of paper and very large compasses are needed to draw the complete 

reflecting sphere! However, a sketch of the surface of the sphere near the origin will suffice. 

In electron diffraction, sections of the reciprocal lattice perpendicular to the electron beam 

(i.e. normal to the [100] or a*) direction are most convenient. Draw the section through the 

origin 000 containing the 0kl reciprocal lattice points (i.e. the ZOLZ), and the section 

containing the 1 kl reciprocal lattice points (i.e. the FOLZ) (see also Fig. 6.8(a)). Estimate 

the regions of these reciprocal lattice sections, and hence the reciprocal lattice points, which 

are close to the surface of the reflecting sphere.) 

11.4 Figure 11.9 is an electron diffraction pattern of a particle which has been extracted 

from a nitrided chromium-containing steel. It is one of three possible compounds, 

CrN, Fe3C or (Cr,Fe)7C3. The d^y-spacings and indices of the lowest angle reflections 

are given below". Given XL = 39 A mm, identify the compound and index the diffraction 

pattern. 

Fig. 11.9. An electron diffraction pattern (ZOLZ) of a particle extracted from a nitrided chromium- 

containing steel. The camera constant XL (adjusted for print size) is 39 A mm (see Exercise 11.4). 

"Data for CrN from the ICDD Powder Data File (11-65), for Fe3C and (Cr,Fe)7C3 from Interpretation of 
Electron Diffraction Patterns, 2ndedn, 1972 by K. W. Andrews, D. J. Dyson and S. R. Keown, Adam Hilger (1972). 
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CrN(fcc) Fe3C (orthorhombic) (Cr,Fe)7C3 (hexagonal) 

a = 4.14 A a = 4.524 A a = 13.982 A 

b = 5.088 A c = 4.506 A 

c = 6.741 A 

dhki!A hkl 
o 

dhki/A hkl dhkA hkl 

2.39 111 6.742 001 12.108 0110 

2.07 200 5.088 010 6.991 1120 

1.46 220 4.524 100 6.054 0220 

1.25 311 4.061 Oil 4.576 1230 

1.20 222 3.757 101 4.506 0001 

1.04 400 3.381 110 4.223 0111 

0.950 331 3.371 002 4.036 0330 

0.926 420 3.022 111 3.878 1121 

0.845 422 2.810 012 3.615 0221 

0.800 511 2.703 102 3.495 2240. 

2.544 020 3.358 1340 

2.387 112 3.211 1231 

2.380 021 3.027 0440 

2.262 200 3.006 0331 

2.247 003 2.777 2350 

2.218 120 2.767 2241 

2.107 121 2.692 1341 

2.067 210 2.642 1451 

2.031 022 2.512 0441 

2.013 103 2.421 0550 

1.976 211 2.364 2351 

1.872 113 2.330 2360 

1.588 130 2.288 2460 

11.5 Given the lattice parameter of aluminium a = 4.041 A, find the camera constant in Fig. 

11.6. 

11.6 Figure 11.10 is a selected area electron diffraction pattern of a thin foil of a steel (Fe, 1.3% 

Mn, 0.5% Mo, 0.7% Ni, 0.2% Cr, 0.2% C) which has been quenched from 1300 °C and 

tempered at 615 °C. The microstructure consists of a matrix of tempered martensite (a-Fe, 

bcc) and particles of cementite, iron carbide, Fe^C. The pattern includes a-Fe (strong spots) 

and Fe3C (weak spots). Index the patterns and determine the orientation relationship 

between a-Fe and Fe3C. The camera constant XL = 36 A mm. 

(Hint: A list of d/^-spacings for a-Fe should be worked out given aa-pe = 2.866 A and 

given the condition for allowed reflections for the Cubic I lattice (Table A6.2). The 

d/i/y-spacings for Fe3C are given in Exercise 11.4. Notice that the a-Fe pattern also consists 

of two twin-related variants (see Fig. 7.16(a) for the analogous case in the diffraction of 

light). 
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Fig. 11.10. A selected area electron diffraction pattern of a thin foil of a quenched and tempered steel 
showing reflections from Fe3C precipitates in a single crystallographic orientation (weak spots) and 

two twin-related orientations of the ferrite (a-Fe) matrix (strong spots). (Photograph by courtesy of 
Dr. D. H. Jack) 
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The stereographic projection 
and its uses 

12.1 Introduction 

In Chapter 6 we showed how both the orientations and the dhki spacings of planes could 

be represented in terms of reciprocal lattice vectors and how these vectors could be 

used to determine the angles between planes and to specify zones and zone axes. We 

now need a method of representing the planes or faces in a crystal ‘all at once’ so that 

we can recognize the zones to which they belong and determine the angles between 

them without the need for repetitive calculations. The ‘crystal drawings’ such as Fig. 5.7 

are obviously inadequate in this respect; half of the crystal faces are ‘hidden from 

view’ and we can only recognize zones with difficulty by looking for the parallel 

lines of intersections between the (visible) faces. The stereographic projection 

provides an important method of overcoming these difficulties. It is similar to the 

reciprocal lattice construction in that in both cases planes or faces are represented 

by their normals. 

The stereographic projection is a very ancient geometrical technique; it originated in 

the second century a.d. in the work of the Alexandrian astronomer Claudius Ptolemy 

who used it as a means of representing the stars on the heavenly sphere. The original 

Greek manuscript is lost, but the work comes down to us in a sixteenth-century Latin 

translation from an Arabic commentary entitled The Planispherium. The stereographic 

projection was first applied to crystallography in the work of F. E. Neumann* and 

was further developed by W. H. Miller*. 

The geometry of the stereographic projection may be described very simply. First, the 

crystal is imagined to be at the centre of a sphere (the stereographic sphere); the normals 

to the crystal faces are imagined to radiate out from the centre and to intersect the sphere 

in an array of points. Each point on the sphere therefore represents a crystal face or plane 

(and is labelled with the appropriate Miller index) just as a ‘point’ on the surface of 

the earth represents a town or city. The (angular) distance between two points is equal to 

the angle between the corresponding planes and is determined in the same way that we 

find the angular distance between, say, Bangkok and New York: we take our private 

aeroplane and, uninhibited by Traffic Control, fly in a great circle between the two. 

Lines of longitude are simply speciaFfcases of great circles which pass through the north 

and south poles, the angular distances between the poles being of course 180°. Lines of 

latitude are called small circles and represent different angular distances from the north 

Denotes biographical notes available in Appendix 3. 
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Fig. 12.1. A portion of the surface of the moon (south at top); above centre is the crater Tycho (from 
which the bright rays radiate) and above this, and seen increasingly foreshortened, is the large crater 

Clavius and smaller craters towards the edge. (Photographed at Mount Wilson Observatory, USA.) 

and south poles. The largest small circle is the equator which is also a great circle 

90° from the north and south poles. 

The second step is to find a method of representing this three-dimensional informa- 

tion in two dimensions. One method is to project all the points on the surface of the 

sphere by parallel lines on to a flat disc called the plane of projection—in the same way 

as we see in effect all the features on the surface of the moon, Fig. 12.1. This has the 

disadvantage that features near the edge of the moon are seen foreshortened or ‘edge on’ 

and that craters, which we know to be circular, are seen as elliptical in shape. The 

geometry is shown in Fig. 12.2(a), the point of view being taken, in ‘earth’ terms, from 

above the north pole. Five points 15°, 30°, 45°, 60° and 75° from the north pole are 

shown and it is easily seen how equal angles are represented by smaller distances as 

we move out from the centre. However, in the stereographic projection we do not 

project the points on the surface of the sphere in this way but rather project them to 

the south pole as shown in Fig. 12.2(b). Now the distortion is, as it were, the other 

way round, equal angles are represented by larger distances as we move out from the 

centre. However, the stereographic projection has one very important geometrical 
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North North 

Fig. 12.2. A cross-section of the earth perpendicular to the equator (the plane of projection) with the 

north pole at the top and the south pole at the bottom, and points on the surface of the earth at equal 
angles 15°, 30°, 45°, 60°, 75° and 90° from the north pole. Viewed from a point a long distance above (as 
we see the surface of the moon) the points project on to the equatorial plane as shown in Fig. 12.2(a). 

However, in the stereographic projection the points are projected to the south pole as in Fig. 12.2(b). 

advantage and that is that circles on the surface of the sphere appear as circles, not 

ellipses, in the plane of projection. The geometry is shown in Fig. 12.3(a). Here a circle 

in the northern hemisphere (a small circle) is centred about O; all the points on this 

small circle are at equal angles from O (just as all the points on a line of latitude are at 

equal angles from the north and south poles). All the points on the circle are projected, 

as shown, to the south pole giving a cone—not a cone like an ice-cream cone of 

circular cross-section but one of elliptical cross-section. However, in any such elliptical 

cone there are two circular cross-sections inclined at equal angles to the axis of the 

cone, one of which is the circle on the sphere and the other of which lies in the 

plane of projection (the proof of this is left as Exercise 12.1). Figure 12.3(b) shows a 

plan view of the equatorial plane, or the stereographic projection of the small circle. 

Notice that O', the projection of the centre of the circle is displaced towards the centre of 

the projection and does not coincide with the point of a drawing-compass. This follows 

from the fact, pointed out above, that in the projection equal angles are not represented 

by equal distances. 

Figures 12.2 and 12.3 show the construction for points in the northern hemisphere. 

For points in the southern hemisphere we project instead to the north pole and repres¬ 

ent the intersections of the lines wit)} the plane of projection by small unfilled circles 

instead of dots. 

Hence, in summary, and to return to our crystal, the stereographic projection consists 

of an array of points and, circles, called stereographic poles or simply poles represent¬ 

ing plane normals in the northern and southern hemispheres respectively and each 

labelled with the appropriate Miller index of the crystal face they represent. 



12.1 Introduction 245 

N 

(b) 

small circle 
in plane of 
projection 

Fig. 12.3. (a) The geometry of the stereographic projection of a small circle (or moon-crater); all the 

points on the circle are at equal angles to the centre O. The cone outlined by the lines of projection to the 

south pole is elliptical in cross-section but its intersection with the equatorial plane of projection is again 

a circle (see Exercise 12.1). Pi and P2 are two points on the small circle on the same line of longitude 
(great circle through the north pole) which passes through the origin O. (b) The equatorial plane, 

stereographic projection, or simply stereogram, of the small circle. Notice that the projected points Pj 

and P'2 are not equidistant from the projected centre of the small circle O'; this follows because equal 

angles are not represented by equal distances (see Fig. 12.2(b)). 
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12.2 Construction of the stereographic projection of a cubic 

crystal 

Figure 12.4 shows a cubic crystal at the centre of the stereographic sphere with {100}, 

{110} and {111} faces and oriented for easy ‘earth’ reference with the z-axis in the 

direction of the north pole and the x and y axes in the equatorial plane (the stereo¬ 

graphic plane of projection). The normals to the crystal faces are shown and their inter¬ 

sections with the sphere labelled with their {hkl} indices. The great circles on the 

sphere represent zones. For example, planes or faces (00T), (lOl), (100), (101) and 

(001) all lie in the [010] zone and their normals lie on a great circle—a line of longitude 

which passes through the north and south poles. Similarly, planes or faces (010), (111), 

N 
001 

S 

Fig. 12.4. A cubic crystal showing faces of the form {100}, {110} and {111} at the centre of the 

stereographic sphere with face normals intersecting the surface of the sphere. Zones are shown as 

great circles (diametral sections) on the sphere, the zone axis being normal to the diametral section. 
(From Manual of Mineralogy, 21st edn, by C. Klein and C. S. Hurlbut Jr; John Wiley, 1993.) 
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N 
001 

Fig. 12.5. Poles of planes in the northern hemisphere (and in the equatorial plane of projection) and the 

projection lines to the south pole, the intersections of which in the plane of projection are marked by dots 
and their corresponding {hkl} indices indicate the position of the stereographic poles of the planes. 

(101), (111) and (OlO) all lie in the [101] zone and their normals all lie on a great circle in 

this case inclined at 45° to the north and south poles. 

Figure 12.5 just shows the poles of planes in the equator and in the northern hemi¬ 

sphere with the crystal and great circles omitted (to avoid the confusion of too many 

lines). The lines of projection to the south pole are shown and their intersections with the 

stereographic plane of projection marked by dots with their corresponding {hkl] indices. 

Finally, Fig. 12.6 is a ‘plan’ view of the stereographic projection showing the stereo¬ 

graphic poles and again the great circles which project as the arcs of circles passing 

through them. Now look back to Fig. 12.4. It is very important that you are able to 

visualize the relationships between the faces in the crystal and their representation 

as poles in the stereographic projection. 
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Fig. 12.6. A plan view of the stereographic plane of projection (the stereogram) showing the stereo¬ 

graphic poles of the faces of the crystal in Fig. 12.4 and including both those faces ‘hidden from view’ 
in Fig. 12.4 and also additional faces (such as, for example, (112)) not drawn in Fig. 12.4. Great circles 

on the sphere project as the arcs of circles in the plane of projection. 

In plotting the exact positions of the poles in Fig. 12.6 it is important to remember that 

equal angles are not represented by equal distances (except, of course, around the 

perimeter). For example the (101) plane is 45° between (001) and (100) but projects at 

a smaller distance to (001) as shown in Fig. 12.2(b). Having plotted the positions of the 

(101), (011), (Oil) etc. poles at their proper scale, the great circles through them 

‘automatically’ give the positions of all the other poles or faces in the crystal—both 

those ‘hidden from view’ such as (Ill) and also ones not shown in the drawing of 

the crystal in Fig. 12.4. For example (112) lies at the intersection of the zone through 

(101) and (011) and also the zone through (111) and (001); i.e. by use of the addition 

rule (Section 5.6.4) (101) + (011) = (112) and (111) -|- (001) = (112). Clearly, by 

drawing more great circles and using the addition rule, planes of higher {hkl} values 

can be located (Exercise>12.2). 

Finally, we must now consider the points lying in the southern hemisphere where 

the projection lines are made to the north pole and their intersections with the plane 

of projection represented by small unfilled circles. These need not be shown as such 



12.3 Manipulation of the stereographic projection 249 

in Fig. 12.6 because clearly, for this orientation of the crystal (z-axis or (001) at the 

centre), a plane such as (101) is coincident with (but ‘underneath’) the plane (101). 

12.3 Manipulation of the stereographic projection: 

use of the Wulff net 

We now need a ‘stereographic graph paper’ in order to locate stereographic poles, zones 

and zone axes. One such is the polar net (Fig. 12.7) which shows great circles like lines 

of longitude and small circles like lines of latitude. This net is not very useful. Instead we 

use the net devised by G. V. Wulff* (Fig. 12.8) which is, in effect, the polar net rotated 

through 90°; the great circles all pass through diametral points A... A in the plane of the 

projection (‘top’ and ‘bottom’ of Fig. 12.8) and the small circles are at increasing angles 

to these points, i.e. each small circle represents the loci of points at equal angles to 

a point like 0 in Fig. 12.3 where 0 is now located in the plane of the projection. But 

80 90 80 

80 go 80 

Fig. 12.7. The polar net. 

* Denotes biographical notes available in Appendix 3. 
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Fig. 12.8. The Wulff net (which may be rotated about the centre of the stereographic projection such 

that the ‘axis’ A... A lies in any direction). 

the Wulff net is rotatable (about a pin in the centre) and the diametral points A... A or 

axis of the net may be centered along the x-axis, or the y-axis (90° rotation) or indeed 

any direction in the plane of the projection. 

The use of the Wulff net is best explained by way of some examples. Suppose we wish 

to find the angle between planes h\k\l\ and h2k2l2 (Fig. 12.9) (or, in earth terms, between 

New York and Bangkok). We rotate the Wulff net until h\k\l\ and h2k2l2 lie on the same 

great circle as shown (full line) and the angle between them is simply ‘read off from the 

divisions between the small circles which intersect at 90°. The dashed line, symmetrical 

about the centre, is the continuation of the great circle in the southern hemisphere and the 

angle, say, between h2k2l2 and h^kpj-is found by continuing the small-circle division¬ 

counting round the edge. The opposite direction of a plane normal, say h\k\l\, is found 

by drawing a line through the centre (arrowed line in Fig. 12.9); the two poles, h\k\l\ and 

h\k\~l\ being related by a centre of symmetry. Finally, the zone axis is the direction 

90° to all points in the zone as indicated by the point ZA. 

Small circles may be used to locate poles in the stereographic projection given their a, 

P and 7 angles to the x, y and z axes (Exercise 12.3). They may also be used to find the 
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Fig. 12.9. Use of the Wulff net: to find the angle between two planes h\k\l\ and hikih in the northern 
hemisphere, the Wulff net is rotated until the poles lie on the same great circle (solid line, axis along 

A... A); the angle between the poles is calibrated by the intersections of the small circles. The dashed 
line represents the continuation of this great circle in the southern hemisphere on which lies the 
pole J13IC1I3. The pole h\kj\ is related to h\k\l\ by a centre of symmetry indicated by the arrowed line. 
ZA indicates the zone axis of the zone in which all these poles lie. 

positions of the poles when the crystal is rotated away from its ‘standard’ orientation 

(z axis along the north pole—Fig. 12.6) to some other orientation. Suppose we wish to 

rotate the crystal to bring (112) to the centre. The angle of rotation (the angle between 

(001) and (112)) is 35.3° and the axis of rotation is the [110]—[110] direction. The Wulff 

net is orientated such that the small circles are centered along this axis (A... A, 

Fig. 12.10) and all the poles rotated 35.3° around their respective small circles, the 

angle of rotation being calibrated by the intersections of the great circles. 

12.4 Stereographic projections of non-cubic crystals 

Stereographic projections of triclinic, monoclinic and trigonal crystals appear to be 

rather complicated because the crystal axes in these systems are not orthogonal; we will 

not consider them further. Stereographic projections of hexagonal crystals in the ‘stand¬ 

ard’ orientation (i.e. the z-axis or (0001) in the centre and the x, y and u axes in the plane 

of the projection) are, like those of cubic crystals, easily visualized—the hexagonal 

symmetry of the pattern of poles is immediately evident. Similarly with orthorhombic 

(and tetragonal) crystals, except that in these cases, as compared to cubic crystals, the 

{110} planes are no longer at 45° to the {100} planes; the angles must be calculated from 
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Fig. 12.10. A stereographic projection showing (i) poles of planes in the standard orientation (as in 

Fig. 12.6) indicated by small dots and indices and (ii) their corresponding positions, indicated by large 

dots and indices, with (112) rotated to the centre. All the poles rotate 35.3° about small circles centered 

on the ‘axis of rotation’ A... A as indicated by the dashed lines. 

the a, b and c lattice parameters. Furthermore, as shown in Section 5.5, in non-cubic 

crystals plane normals and directions with the same numerical indices are not, except in 

special cases, parallel to each other. For example, in hexagonal crystals a plane normal 

such as (1010) is parallel to the direction [10l0] but a plane normal such as (lOll) is 

not parallel to the direction [ 1 Ol 1 ]. In orthorhombic crystals a plane normal such as 

(100) is parallel to the direction [100] but a plane normal such as (110) is not parallel to 

the direction [110]. This means that either two stereographic projections are needed for 

non-cubic crystals, one showing plane normals and the other showing directions, or a 

‘composite’ stereographic projection is needed with the positions of plane normals {hkl} 

and directions [uvw] clearly distinguished. Figure 12.11(a) shows a plan view of an 

orthorhombic crystal (cementite, Fe3C; a = 4.524 A, b = 5.088 A, c = 6.741 A) per¬ 

pendicular to the z axis and the angles a — tan~xa!b and p = tan~lb/a of the (110) plane 

normal (full line) and the [110] direction (dashed line) to the x-axis respectively. These 

poles, and those related by symmetry, are plotted on the ‘composite’ stereographic 

projection in Fig. 12.11(b). Similarly, the (101), [101], (Oil) and [011] poles can also 
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100 

Fig. 12.11. (a) Plan view (perpendicular to the z axis) of an orthorhombic crystal (cementite, Fe^C) 

showing the angles a and p = (90° — a) of the (110) plane normal (full line) and [110] direction (dashed 

line) to the x-axis respectively, (b) The ‘composite’ stereographic projection showing two sets of great 

circles through the {hkl] poles (full lines) and the [uvw\ directions (dashed lines). 

be plotted using the Wulff net given the ratios of da and db. Having located these poles, 

the positions of the (111), [111] (and also higher-index) poles can be found from the 

intersections of great circles as before—no further calculations are required. 
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In general, stereographic projections showing the positions of {hkl} plane normals are 

more useful and where the indices are not bracketed (as in Fig. 12.6) it is understood that 

they refer to plane normals, not directions. However, in non-cubic crystals a zone axis 

located as shown in Fig. 12.9 should always be assigned square [wvw] brackets because it 

will not in general coincide with the unbracketed indices which refer to plane normals. 
\ 

12.5 Applications of the stereographic projection 

12.5.1 Representation of point group symmetry 

In Chapter 4 we discussed the point group symmetry elements—mirror planes, centres, 

rotation and inversion axes of symmetry. We can represent the operation of these 

symmetry elements very easily with the stereographic projection by first placing a 

single pole (representing a single face) in a general position in the projection (i.e. 

not on an axis or mirror plane) and then seeing how it is repeated by the action of 

the symmetry elements present. In this way all the 32 point groups can be built up. 

Figure 12.12(a) shows a pole reflected in a ‘vertical’ mirror plane m (indicated by 

a heavy line) and Fig. 12.12(b) shows a pole reflected by a mirror plane in the plane of 

the projection—one pole being in the ‘northern’ hemisphere and its reflection (an open 

circle) in the ‘southern’ hemisphere below. Fig. 12.12(c) shows the operation of a centre 

of symmetry and Figs. 12.12(d) and (e) show the operation of a diad axis—a ‘vertical’ 

diad as in (d) or a ‘horizontal’ diad (in the plane of projection) as in (e); the rotation 

is 180° about a small circle centered along the diad axis giving one pole in the upper 

hemisphere, and one in the lower hemisphere as shown. 

Figure 12.12(f) shows the operation of a ‘vertical’ tetrad giving a four-fold pattern 

of poles (the light lines may be regarded as ‘guidelines’ in making the drawing). When 

one of these guidelines is made into a mirror plane the resulting pattern of poles is 

given in Fig. 12.12(g). Notice that the tetrad symmetry not only generates mirror planes 

at 90° but an additional set at 45° as well (see Section 2.3). 

Figure 12.12(h) shows the operation of the inversion tetrad axis of symmetry. The 

procedure is as follows: starting with the pole marked 1, rotate 90° and invert through the 

centre (dashed and arrowed lines) to give the next position of the pole marked 2. Then 

repeat to give poles marked 3 and 4. Notice that the pattern of poles (two ‘above’ and 

two ‘below’) includes the operation of a diad axis, hence the symbol for the inversion 

tetrad axis includes the diad symbol. Finally, Fig. 12.12(i) shows the pattern of poles 

when a ‘vertical’ mirror plane is added, which generates not only a ‘horizontal’ mirror 

plane at 90° but also two sets of diads at 45° as indicated. This point group 42m 
represents the symmetry of urea or a tennis ball (Fig. 4.5). 

Figure 12.13 shows the pattern of poles for a cubic crystal with minimum symmetry 

(point group 23) and maximum symmetry (point group m3m). The principal symmetry 

elements are the four equally-inclined triads around which the poles rotate like points 

round the centre of a small circle (Fig. 12.3). In Fig. 12.13(a) the great circles drawn 

in are all ‘guidelines’ as in, e.g. Fig. 12.12(f), and around each triad are a set of three 

poles—two ‘above’ and two ‘below’. Notice that the diad axes are ‘automatically’ 

generated along the x, y and z axes. Figure 12.13(b) shows the holosymmetric point 
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Fig. 12.12. Stereographic projections showing the operation of some point group symmetry elements 

as indicated. Light lines indicate ‘guidelines’ for locating the poles, heavy lines indicate mirror planes. 

group m3m; all the great circles now correspond to mirror planes, the x, y and z axes 

correspond to tetrads, the (110) directions correspond to diads and the triads include a 

centre of symmetry, hence the symbol 3. These symmetry elements are indicated in 

the stereographic projection of the cubic crystal shown in Fig. 12.6. 

Figures 12.12 and 12.13 show 10 of the 32 point groups. It will help your under¬ 

standing of symmetry to draw stereographic projections of all the 32 point groups (see 

Table 3.1) and thereby you will appreciate more fully the relationships between them. 

12.5.2 Representation of orientation relationships 

The study of solid state transformations in which new crystals nucleate and grow within, 

or at the boundaries of, parent crystals is of major importance in materials and earth 

sciences. Our interest as crystallographers is not so much with the mechanisms of 

the transformations and the conditions which give rise to them but rather with the fact 
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(a) (23) (b) (m3m) 

Fig. 12.13. Stereographic projections of cubic crystals (a) point group 23 and (b) point group m3m. 

The principal symmetry elements are the four equally-inclined triad axes around which the poles are 

distributed around small circles centred on these axes. In (a) the only additional symmetry elements are 

the diad axes along the x, y and z-axes, whereas in (b) these become tetrads; There are also six further 

diads along (110) directions and all the great circles become mirror planes (heavy lines). 

or observation that in almost all cases the planes and directions in the parent and pro¬ 

duct phases bear definite relationships to each other and that such relationships may 

provide evidence of the nature of the transformation processes. 

That such relationships arise may be seen almost intuitively from the simplest of 

examples—as we saw in Section 1.5. When iron transforms from its high-temperature 

ccp form to its low temperature bee form, a closest-packed {110} plane in the bcc structure 

(Fig. 1.9(b)) is parallel, or closely parallel, to a close-packed {111} plane in the ccp 

structure (Fig. 1.4) and a pair of close-packed directions ((111) in bcc, (110) in ccp) are 

also parallel, or closely parallel. Hence, the orientation relationship may be stated in terms 

of (i) parallelism of planes and (ii) parallelism of directions within these planes, i.e. 

(lll)ccp || (110)bcc 

[llOlccp II [lTl]bce 

Similarly, when cementite, Fe3C, precipitates as fine particles within ferrite (the 

interstitial solid solution, a, of carbon in bcc iron), then under certain conditions the 
orientation relationship which occurs is given as; 

(001)FeiC || (112)q 

[010]Fe3c || [IlO]Q 

However, such statements of ‘parallelisms’ do not immediately tell us what other 

planes and directions in the two phases may be parallel (or nearly parallel) to each other, 

nor do they immediately specify the angles between the two sets of crystal axes—except 

in the very simplest cases such as the ‘cube-cube’ orientation relationship between 

a-iron and Fe2TiSi (Fig. 11.5) where the diffraction pattern clearly shows that the 
crystal axes of these two phases are parallel. 
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The stereographic projection provides a graphical way of analysing the relationships 

between planes and directions in two phases. For example, if we place the cubic 

stereogram with the (112) plane in the centre (Fig. 12.10) over the stereogram of the 

cementite crystal with (001) in the centre (Fig. 12.11(b)) and rotate them until the 

[100]pg3c ar,d [110]a directions (at the edge, i.e. in the plane of the projection) coincide, 

then we can see, across the whole composite projection, the orientation relationships 

between the crystal axes and other planes and directions. Furthermore, it may well be 

(and usually is) the case that the zones we observe in our electron diffraction patterns of 

the two phases may well be those out of the plane of projection and we may check the 

occurrence of the orientation relationship by a trial-and-error process of tracing round 

great circles in the composite projection and seeing whether or not the plane normals of 

the two phases occur at the observed angles to each other. The diffraction pattern in Fig. 

11.5 provides a very simple example. The cube-cube orientation relationship is simply 

represented by two cubic stereograms in the ‘standard’ orientation with the x, y and z 

axes parallel and with the added proviso that for cr-Fe (bcc) the planes which reflect are 

those for which h + k + l is even and for Fe2TiSi (fee), h, k, l are all odd or all even. The 

angles between the two sets of planes may be checked by tracing round the great circles 
with the common [Oil] zone axis1. 

12.5.3 Representation of preferred orientation (texture or fabric) 

Pole figures (see Section 10.4), are in effect stereographic ‘contour maps’, the positions 

of the ‘hills’ or ‘peaks’ in the maps showing the orientations of a particular set of crystal 

planes and the ‘height’ and ‘steepness’ of the hills showing the extent or degree of preferred 

orientation from a random distribution. In materials science the plane of projection 

is normally set parallel to the surface of the metal sheet, in earth science it is normally set 

horizontal with the points of the compass around the edge. 

The geometry of pole figures is best understood by way of a simple example. Let us 

suppose that in a rolled sheet of a polycrystalline cubic metal the {100} planes of all the 

crystallites lie closely, but not perfectly, parallel to the sheet surface and that the (100) 

directions lie closely parallel to the rolling direction (this texture, incidentally, occurs in 

rolled and recrystallised sheets of iron-silicon alloys used for transformer cores). The 

pole figure for the {100} planes will appear as shown in Fig. 12.14(a)—the {100} plane 

normals cluster at the centre (i.e. normal to the sheet surface) and also along the rolling 

and transverse directions giving contoured ‘peaks’ in these positions as shown. Now 

suppose that the crystallites still remain aligned such that the (100) directions lie closely 

parallel to the rolling direction but that the {100} planes are more randomly orientated 

with respect to the surface of the sheet. The pole figure will appear as in Fig. 12.14(b)— 

the contour lines representing the distribution of the {100} plane normals are now spread 

out towards the transverse directions. This pole figure corresponds closely to that for 

'A more detailed description of the use of stereographic projections in the analysis of orientation 
relationships, with step-by-step examples, may be found in my article on Stereographic Techniques, 
Module 9.17 in Procedures in Electron Microscopy (eds A. W. Robards and A. J. Wilson), John Wiley, 1993. 
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graphitized carbon tapes (Fig. 10.13(b)) which shows the orientations of the graphite 

layers. 

Pole figures may be prepared for any set of planes. For example the {111} pole figure 

corresponding to the texture shown in Fig. 12.14(b) would consist of peaks of intensity 

as shown in Fig. 12.14(c). Pole figures may be prepared»in practice by a number of 

experimental techniques—by the use 6f the texture goniometer as described in Section 

10.4, by recording back-scattered electron diffraction patterns in the scanning electron 

microscope or by recording the orientation of individual grains in thin sections in the 

TD TD 

TD 

Fig. 12.14. (a) A {100) pole figure in which the {100} planes lie closely parallel to the sheet surface 

and the (100) directions lie closely to the rolling direction (RD) and transverse direction (TD). The 

successive levels of shading correspond to the contours of the orientations of plane normals and 

directions, (b) A similar pole figure to (a) except that the {100} planes are more randomly distributed 

about the rolling direction—the peaks are extended across the transverse direction, (c) A pole figure 

of the same texture as (b) but now showing the orientations of the {111} planes. 
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RD 

1 

Fig. 12.15. (a) A {111} pole figure for heavily cold rolled copper, rolling direction RD vertical (from 

H. Hu and S. R. Goodman, Trans. AIME, 227, 627, 1963). (b) A pole figure with contours shaded as in 

Fig. 12.14, showing the orientations of the c-axes (or 0001 planes) of the quartz grains in a meta¬ 

morphosed psammite rock. These lie in a zone with a zone axis approximately parallel to the lineation 

of the rock (from Introduction to Geology by H. H. Read and Janet Watson, Macmillan, 1968). 
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light microscope. In general the textures observed are rather more complicated than 

those of the simple examples described above and may consist of two or more compon¬ 

ents, i.e. two or more sets of planes and directions may be aligned to a greater or lesser 

extent parallel to the plane of the sheet and along the rolling direction respectively. For 

example, Fig. 12.15(a) shows the {111} pole figure of heavily cold rolled copper in 

which the texture may be described as (T23)[412] and (146)[211] where the indices refer 

to the planes orientated parallel to the rolling plane and the direction symbols refer to 

the directions orientated along the rolling direction. Finally, Fig. 12.15(b) is a pole figure 

(or petrofabric diagram2) showing the orientations of the c-axes of the quartz grains 

in a metamorphosed psammite rock. They he, as can be seen, roughly in a great circle, 

the zone axis of which is closely parallel to the direction of lineation or structural 

long direction of the rock. 

2 Petrofabric (or fabric) diagrams may also be represented on equal area projections which are, of course, 
much used in earth science and geography since they show, for example, the sizes of materials in their correct 
proportions. ‘Equal area graph paper’ consists, like the Wulff net, of intersecting small and great circles, 
but these are not arcs of circles and do not appear to intersect at 90°. The geometry of equal-area projection is 
more complicated than that of the stereographic projection. For example, referring to Fig. 12.2, we need to 
project the points on the sphere 15°, 30° etc. from the north pole such that they make equal divisions 
along the equatorial plane, and this cannot be done by projecting lines down to a single point. 

Exercises 

Note'. Figures 12.6, 12.7, 12.8, 12.10 and 12.11 are all printed to the same diameter and may be 

copied on to transparent film to facilitate measurements and comparisons between the stereo¬ 

graphic projections. 

12.1 Prove that the stereographic projection of a small circle on the stereographic sphere is again 

a circle. (Hint: this is an exercise in Euclidean geometry.) 

12.2 Use the Wulff net to prepare a projection of a cubic crystal with (001) in the centre as in 

Fig. 12.6. Find, by drawing in additional great circles, the positions of the (212) and (332) 

planes, measure their angles a, (3 and 7 to the x, y and z axes and hence check that the ratios 

of their direction cosines cos a: cos (3: cos 7 are in the ratios of h: k: I in each case (see 

Section 5.5). 

12.3 Two planes in a cubic crystal make the following angles to the crystal axes 

x-axis y-axis z-axis 

Plane A +36.5° +57.5° +74.5' 

Plane B -48.2° -70.5° +48.2' 

Find the positions of these planes on a standard projection from the common intersections 

of small circles centred about the^y and z-axes, and determine their Miller indices. Using 

the Wulff net measure the angles between: Plane A and Plane B; Plane A and (III); Plane B 

and (101); Plane B and (TOl). 

12.4 Using sketch stereograms as in Fig. 12.12, show that (a) 2 = a perpendicular mirror plane; 

(b) 3 = 3 + a centre of symmetry, and (c) 6 = 3 + a perpendicular mirror plane. 



Appendix 1 

Useful components for 
crystallography model-building 

and suppliers 

The value of crystal models (particularly those which you make yourself) cannot be 

over-emphasized. Illustrations in books, and even the beautiful computer-simulations 

in which crystal structures can be rotated so as to be seen in many orientations, are 

inadequate substitutes: what is missing is the tactile element, the enhancement of 

understanding brought about by the link between hand and eye. 

The use of crystal models in the teaching or exposition of crystallography has a long 

history, the first perhaps being the terracotta models of Rome de L’lsle (1783). Later, 

comprehensive sets in wood were made by geological suppliers, particularly by the 

German firm of Krantz. Glass, aluminium, paper and card have also been used. Some of 

the strangest and most intriguing crystal models were those made by William Barlow. 

His workshop is said to have resembled a toy factory with thousands of balls of various 

sizes and colours and plaster dolls’ hands which he arranged in frameworks to demon¬ 

strate enantiomorphism and space group symmetry. Unfortunately, toy suppliers, unlike 

their Victorian forebears, are unwilling or unable to provide dolls’ hands for such 

crystallographic purposes today!1 

Models representing crystal structures can be made from expanded polystyrene, plastic 

or wooden spheres or table-tennis balls glued together with woodworkers’ PVA resin, 

polystyrene cement or superglue. Children’s modelling-clay (or Plasticine) can also be 

used to make spheres of different sizes and colours, close-packed or joined together with 

orange-sticks. 

Beevers Miniature Models Unit, Department of Chemistry, Edinburgh University, 

EH9 3JJ, UK, http://www.bmmu.demon.co.uk, makes model kits based on two sizes of 

balls, available in different colours and drilled with a range of hole configurations which 

can be linked with wire rods. Complete models of a wide range of crystal structures are 

also available. 

Cochranes of Oxford, Leafield, Witney, 0X8 5NY, UK, http://www.cochranes.co.uk, 

makes ‘Orbit’ and ‘Minit’ molecular model kits based on plastic atom centres joined by 

1 The Natural History Museum (London) has a comprehensive collection of crystal models although only 

some are on public display. 
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short plastic tubes. The centres are moulded in a variety of shapes and are colour-coded 

according to the element. The kits can be used to build a wide range of crystal structures 

and complete models are also available. 

Spiring Enterprises, Billingshurst, RH14 9HF, UK, http:/Avww.molymod.com, makes 

the ‘Molymod’ molecular model systetn consisting of open or skeletal models in which 

the atom parts are joined by flexible links and closed or semi space-filling models in 

which the atom parts are joined by short links. A wide range of kits for molecular models 

and crystal structures are available. 

Models of polyhedra representing the 7 crystal systems, 32 crystal classes, space filling 

solids and the Platonic and Archimedean polyhedra (as well as more complex ‘stellated’ 

polyhedra with re-entrant faces) may be made from paper or cardboard templates. 

Fortran Friends, P.O. Box 64, Didcot, Oxon, 0X11, OTH, http://www.argonet.co.uk/ 

users/fortran, has a range of such templates (including a pentagonal dodecahedral 

calendar) which may be downloaded. 

The British Crystallographic Association (BCA), http://bca.cryst.bbk.ac.uk/BCA/ 

index.html, has a range of templates designed for an exhibit for an Interactive Science 

Centre. However, not all the 32 crystal classes are represented. 

Tarquin Publications, Stradbroke, Diss, Norfolk, IP21 5JP, http://www.tarquin- 

books.demon.co.uk, supply posters, sets of model-building blocks, stencils, symmetry 

and tessellation patterns and guides to practical model-building, of which Polyhedron 

Models by Magnus J. Wenninger (Cambridge University Press, 1971) is perhaps the 

most detailed. 

Polydron International Ltd., Kemble, Gloucester, GL7 6BA, http://www.Poly- 

dron.com, manufacture educational construction, mathematics and technology pro¬ 

ducts. The ‘Polydron’ system consists of coloured plastic tiles of various shapes which 

click-fit together to create a wide range of three-dimensional solids (including stellated 

polyhedra). The ‘Frameworks’ system allows the construction of open-framed geo¬ 
metric shapes. 
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Computer programs in 
crystallography 

The International Union for Crystallography (IUCr) maintains a Website with links to 
many others. Its URL is: 

(IUCr) http://www.iucr.org/ 

Useful links are to the American Crystallographic Association (ACA), the British 

Crystallographic Association (BCA), Crystallography World-Wide (CWW) and the 

European Crystallographic Association (ECA) whose URLs are: 

(ACA) http://www.hwi.buffalo.edu/ACA/ 

(BCA) http://bca.cryst.bbk.ac.uk/BCA/index.html 

(CWW) http://www.iucr.org/cww-top/crystal.index.html 
(ECU) http://area.ba.cnr.it/eca/ 

The following list provides brief descriptions of some programs currently available. 

CRYSTAL OFFICE by Atomic Softek, 70 Longwood Road North, Hamilton, Ontario, 

Canada L85 3V4; http://www.atomicsoftek.com 

CRYSTAL OFFICE is a user-friendly graphic system which allows the user to interact¬ 

ively build crystals with space group tables; visualise symmetry elements, Miller planes, 

Wyckoff positions, X-ray and electron diffraction structure factors; access position, 

symmetry and reflection tables for all of the 230 space groups, generate non-standard 

setting space group tables, search for site symmetry and position patterns and compare 

two space groups by position and symmetry tables. 

CRYSTALS by David Watkin, Chemical Crystallography Dept, University of Oxford, 

UK; http://www.ox.ac.uk 

CRYSTALS-2000 is available for personal computers from the web server. It provides 

all the basic and advanced facilities needed for crystal structure determination, plus 

a visualisation window which continuously displays the structure, and an interactive 

graphics module for manipulating and drawing the structure. The manual is distributed 

as postscript files, and as browseable html. A scripting interface enables the program to 

be customised as a teaching aid. 
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CRYSTALLOGRAPHY by Ann Dray and Trevor Emmett, Anglia Polytechnic 

University, distributed by UK Earth Sciences Courseware Consortium, Department 

of Earth Sciences, University of Manchester, Manchester Ml3 9PL, UK; http:// 

www.man.ack.uk/~ukescc 

CRYSTALLOGRAPHY is an interactive courseware moduli which introduces the basics 

of crystallography and is suitable for first year degree students. No prior knowledge is 

assumed and virtually no use is made of stereographic projection. It is divided into: 

Introduction, Symmetry I and II, Indexing I and II, and Crystal Systems. Interactive 

exercises including questions and answers are used extensively. 

CRYSTALLOGRAPHIC A by Oxford Cryosystems, 3 Blenheim Office Park, Lower 

Road, Long Hanborough, Oxford 0X8 7AQ, UK; http://www.crystallographica.co.uk 

CRYSTALLOGRAPHIC A is a toolkit aimed at scientists whose work involves crystal¬ 

lography. Combining a Microsoft Windows interface with a powerful and flexible 

crystallographic engine, it can serve as a ‘friendly crystallographer’ for the non-special¬ 

ist, but has more than enough power to satisfy the most demanding professional. It is also 

ideal for teaching. The package includes structure and reciprocal lattice display, powder 

simulation, graphing, and a unique crystallographic scripting language, and is supported 

by comprehensive help. 

CELLX by K. D. Rogers, Department of Materials and Medical Sciences, Cranfield 

University, Shrivenham, Swindon, Wiltshire, SN6 8LA, UK; http://www.rcms.cran¬ 

field.ac.uk/department/dmms/biomat/xray.shtml 

CELLX is designed as a teaching package to examine the relationships between real and 

reciprocal space. The users can move atoms or rigid bodies through the unit cell and 

manipulate the symmetry elements whilst simultaneously observing changes to the 

weighted reciprocal lattice. Both powder and rotation patterns can also be simulated. 

ELECTRON DIFFRACTION by J. P. Morniroli, Laboratoire de Metallurgie, Univer- 

site de Lille, 59655 Villeneuve d’Ascq Cedex, France; http://www.univ-lille 1 .fr/lmpgm/ 

ELECTRON DIFFRACTION allows the simulation of all types of electron diffraction 

patterns—‘spot’, Kikuchi, convergent beam, back scattered and ring patterns. It also 

allows a wide range of crystallographic calculations to be made and provides automatic 

interpretation of ‘spot’ patterns and also the creation of crystal structures taking into 

account crystal system, space group lattice parameters, atomic positions etc. 

INTRODUCTION TO CRYSTALLOGRAPHY by Anne Fretwell and Peter Good- 

hew, University of Liverpool, Liverpool L69 3BX, UK; http://www.matter.org.uk/ 
diffraction/ 

INTRODUCTION TO CRYSTALLOGRAPHY is an interactive CD-ROM consisting of 

18 different topics which cover the basics of materials science for teachers and students 

of materials science and engineering and related subjects at undergraduate level. The 
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Introduction to Crystallography module covers: Crystals, 2-D Crystallography, 3-D 

Crystallography, Crystal Structures and Indexing Directions and Planes. Embedded 

multiple choice questions and interactive simulations are featured alongside a compre¬ 
hensive glossary. 

CRYSTALMAKER 4 by David Palmer/CrystalMaker Software, P.O. Box 183, 

Bicester, Oxfordshire, 0X6 7BS; http://www.crystalmaker.co.uk 

CRYSTALMAKER is a Macintosh program for chemical structural work to build, dis¬ 

play and manipulate all kinds of crystal and molecular structures in photo-realistic 

colour—or out-of-the-screen 3D stereo images. 

CRYSTALDIFFRACT by David Palmer/CrystalMaker Software, P.O. Box 183, 

Bicester, Oxfordshire, 0X6 7BS; http://www.crystalmaker.co.uk 

CRYSTALDIFFRACT is a Macintosh program to simulate, display and manipulate 

X-ray and neutron powder diffraction patterns. Included are measurement and 

analysis features, the display of observed and simulated data, simulation of mixtures, 

particle size, strain, etc. It is a teaching tool, with real-time control over many sample 

and diffraction parameters—with the effects on the diffraction pattern seen immedi¬ 

ately. 

CRYSTALLOGRAPHIC SPACE GROUP DIAGRAMS AND TABLES by 

J. K. Cockcroft, Department of Crystallography, Birkbeck College, University of 

London, Malet Street, London WC1E 7HX; http://img.cryst.bbk.ac.uk/sgp/mainme- 

nu.html 

THIS HYPERTEXT BOOK on CD-ROM contains over 1000 different space group 

diagrams covering all 230 space groups in various settings. Tables of symmetry oper¬ 

ators and reflection conditions supplement the diagrams, the nomenclature and sym¬ 

bolism of which correspond with the standards set in the International Tables for 

Crystallography. 

CARINE CRYSTALLOGRAPHY by C. Boudias and D. Monceau, Divergent S. A., 

Centre de Transfert, 60200 Compiegne, France; http://pro.wanadoo.fr/carine.crystallo¬ 

graphy/ 

CARINE CRYSTALLOGRAPHY version 3.1/4.0 is an interactive program providing 

rotations and projections of Bravais lattices, reciprocal lattices, space groups, co¬ 

ordination polyhedra, X-ray and electron diffraction patterns and stereographic projec¬ 

tions. It allows interactivity between the various representations of crystals and includes 

surfaces, interfaces and epitaxial relationships between lattices. A demonstration ver¬ 

sion is available. 

ATOMIC PACKING AND CRYSTAL STRUCTURE by K. M. Crennell and 

L. S. Dent-Glasser, available at: http://bca/cryst.bbk.ac.uk/BCA/progs/cchem/ or 

http://www.argonet.co.uk/users/fortran/cchem/ 
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ATOMIC PACKING AND CRYSTAL STRUCTURE is a self-contained learning program 

with sophisticated 3D graphics. It includes hexagonal and cubic close packing, cubic 

closest-packing of spheres, face- and body-centered cells and interstitial sites in bcc 

structures. 
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Biographical notes on 
crystallographers and scientists 

mentioned in the text 

Ernst Abbe 1840-1905 

Abbe’s father was a mill worker in Eisenach, Germany, and it was his employers who 

provided the scholarships which enabled Abbe to proceed from High School to study 

physics at the Universities of Jena and Gottingen. In 1863 Abbe achieved his ambition of 

becoming a lecturer at Jena, but his career may be said to commence in 1866 when he 

began his long and fruitful collaboration with Carl Zeiss. As a theoretician he established 

the relation between the aperture and the limit of resolution of a lens (the equation is 

engraved on his memorial at Jena); as an optical designer he invented the apochromatic 

objective lens (made possible with the new glasses developed by the Schott glassworks); 

and as an industrialist he and Zeiss developed systematic microscope production on a 

large scale. 
In 1876 he was made a partner in the Carl Zeiss firm and became the sole owner 

following the death of Zeiss in 18 8 8. In 1891 he created the Carl Zeiss Foundation whose 

charter was used in Prussia as a model for progressive social legislation. 

George Biddell Airy 1801-92 

Airy’s life was characterized, to a remarkable degree, by a determination to succeed and 

meticulous organization: he made a record of everything that he wrote, with dates, and 

discarded not the merest note or receipt. His entry to Cambridge in 1819, which was 

largely facilitated by a wealthy uncle in Colchester, provided him with the opportunity 

to break away from a modest parental background and thence his career developed 

rapidly. He was appointed Lucasian Professor of Mathematics in 1826, Plumian Pro¬ 

fessor of Astronomy in 1828 and Astronomer Royal in 1835, a post he filled for 46 years 

and which entirely fitted his temperament. He largely re-equipped the Greenwich 

Observatory and transformed it into a highly efficient Institution—but at a price: it 

provided no centre for the training of innovative scientific minds and the discoveries 

of John Herschel and John Couch Adams were made elsewhere. Airy was, in effect, the 

prototype of the modem government scientist and played a major role in the develop¬ 

ment of institutional science in Victorian England. He designed (with the lawyer, 

Edmund Beckett Denison) the clock for the new Palace of Westminister—it had to be 

redesigned in 1852 when it was discovered that the interior walls had been made too 
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small—but its continued functioning almost without interruption for over 140 years is 

a measure of their achievement. 
Airy calculated the magnitude of the image fonned by a telescope objective of 

a star—a point source of light—and thereby laid the foundations for the theory of the 

resolving power of optical instruments. He was knightecLin 1872, having refused that 

honour three times previously on the grounds that he couldn’t afford the fees. 

William Barlow 1845-1934 

Following an inheritance from his father, Barlow, one of the last great English amateurs 

in science, took up the study of crystallography in his early thirties and attempted to 

relate the properties of crystals to the packing arrangements of their constituent 

atoms. He collaborated with W. J. Pope at Cambridge and guessed (correctly) the 

structure of the alkali halides. His mathematical ability and developing interest in 

symmetry enabled him to extend the methods of Bravais and Sohncke to find the 

‘symmetrical groupings to fit the forms and compositions of a variety of different 

substances’ but he did not publish his derivation of the 230 space groups until 1894, 

three years after Fedorov and Schoenflies, of whose work he almost certainly had no 

prior knowledge. 

William Henry Bragg 1862-1942 

W. H. Bragg read mathematics at Cambridge and was appointed Professor of Math¬ 

ematics and Physics at Adelaide in 1885. For his first eighteen years there he published 

very little, but in 1903 became involved in problems of radiation, the ionization of gases 

and the nature of X-rays, which he considered to be ‘material’ in nature. His increasing 

reputation led to his appointment in 1908 as Cavendish Professor of Physics in the 

University of Leeds. In late 1912 he and his son, William Lawrence, become convinced 

that the Laue experiment made a wave hypothesis for X-rays unavoidable and together 

they made remarkably rapid advances in crystal structure analysis, the father’s main 

contribution being the construction of an ionization chamber and crystal spectrometer 

and the solution of the structure of diamond. The work was interrupted by the First 

World War and, in 1915, Bragg moved from Leeds to University College, London, and 

then, in 1923, to the Royal Institution, at which places he laid one of the foundations 

of molecular biology by establishing research groups directed towards the analysis of 

organic crystals. 

William Lawrence Bragg 1890-1971 

W. L. Bragg obtained a degree in mathematics at the University of Adelaide and, on the 

return of the family to England, entered Trinity College, Cambridge, to study physics at 

the Cavendish Laboratory under Sir. J. J. Thomson. In 1911 he obtained a lectureship at 

Trinity College. At that time he supported his father’s view that X-rays had the ‘proper¬ 

ties of material particles rather than those of electromagnetic waves’ but during the 

summer and autumn of 1912 both he and his father abandoned it in the light of Laue’s 
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discovery of X-ray diffraction. It is not known how the Braggs became acquainted with 

Laue’s discovery; this may have been through the 250th anniversary meeting of The 

Royal Society in July 1912 or, somewhat later, a lecture by J. J. Thomson to the Leeds 

(or Manchester?) Physics Groups. The theory (of Stokes) that X-rays were very short 

pulses of electromagnetic radiation also gave rise to the notion in Bragg’s mind that the 

pulses should be reflected ‘by the sheets of atoms in the crystal as if these sheets were 

mirrors’—a profoundly simple notion that not only explained the shapes of the diffrac¬ 

tion spots but also provided a simple geometrical basis for the analysis of crystal 

structures. This work progressed extremely rapidly. Bragg’s study of Laue’s diffraction 

patterns of ZnS (zinc blende) led to the (correct) postulate that the structure was based on 
t 

an fee lattice and in the winter of 1912-13 he had prepared and analysed his own ‘Laue’ 

photographs of NaCl and KC1. In collaboration with his father in the summer of 1913, 

and with the aid of the X-ray spectrometer, Bragg solved the structures of fluorspar 

(CaF2), zinc blende (ZnS), iron pyrites (FeS2), sodium nitrate (NaN03) and calcite 

(CaCCL). The remainder (if it can be called that) of Bragg’s scientific career saw the 

inexorable development of the techniques of X-ray (and electron) diffraction and the 

solution of the structures of crystals—particularly mineral and organic crystals—of 

greater and greater complexity. It was a development in which Bragg himself, as 

Langworthy Professor of Physics at the University of Manchester, as Cavendish Pro¬ 

fessor at Cambridge, and towards the end of his life, as Director of the Royal Institution, 

played no small part. 

Auguste Bravais 1811-63 

Bravais was bom in Annonay in France, studied mathematics in Paris and became 

a naval cadet in Toulon, which enabled him to participate in explorations to Algeria 

and the North Cape. He was appointed Professor of Physics at the ecole Polytechnique 

in 1845, and his interest in the relationships between the external forms and internal 

structures of crystals led to the derivation of the fourteen space lattices in 1848, 

published in his famous Memoire sur les systemes formes par des points distribues 

regulierement sur un plan ou dans Vespace (1850)—work which was partly based 

on Frankenheim’s fifteen ‘nodal’ lattice types. However, constant application to 

a wide range of studies which aroused his curiosity led, in 1857, to a breakdown of 

his health. 

Richard Buckminster Fuller 1895-1983 

Richard Buckminster Fuller was bom in Milton, Massachusetts, into a patrician New 

England family—his great-great-great grandfather was the Massachusetts delegate at 

the federal constitutional Assembly that created the USA. He broke from family tradi¬ 

tion by failing to graduate from Harvard and was packed off to work in a cotton mill in 

Canada. In 1917 he enlisted with the United States Navy which first provided him with 

experience of engineering design and organization. The death of his young daughter 

from influenza in 1922 was a turning-point in his life; he developed an obsession with 

the role of damp and bad housing on public health and founded a company to develop his 
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‘Stockade Building System’—a method of cheaply building walls from cement and 

wood shavings. However, the company collapsed in 1927. Thereafter followed a strange 

and crucial period of his life, ‘the year of silence’ when he refused to speak to anyone, 

not excepting his wife, but consumed books and articles on mathematics, science, 

engineering and architecture with a compulsive and almpst destructive inner energy. 

It was a time when the inventiveness of his mind took root—an inventiveness sub¬ 

sequently expressed in a welter of ideas, proposals and projections throughout the rest 

of his life which it is difficult, if not impossible, to assess. Certainly he was far ahead 

of his time in his advocacy of a ‘world design science’ to avoid ecological catastrophe 

and the invention of the geodesic dome was a major engineering design achievement; 

however these must be set against so much else of his work and ideas which now seem 

merely fanciful and which he would tirelessly express in presentations and lectures of 

up to four hours at a stretch! 

The initial outcome of the year of silence was ‘4-D’ (meaning four-dimensional 

thinking) in time as well as space. It was the first of many terms or words coined by 

Buckminster Fuller to express ideas or concepts for which the English language was then 

deficient; the most well-known of which are Synergy, or Dymaxion, the latter a word 

not invented by Buckminster Fuller himself but by the public relations department of 

a Chicago department store (the ‘spin doctors’ of the time) and made up of the words he 

most frequently used—‘dynamic’, ‘maximum’ and ‘ion’. It was Buckminster Fuller’s 

favourite adjective which he applied to light-weight, easily erectable houses, towers 

(stacks of Dymaxion houses) and, most famous of all, the Dymaxion car of 1933-A, 

a hoped-for breakthrough in automobile design which would lift the industry out of 
the depression. 

The geodesic dome was largely the outcome of Buckminster Fuller’s work with the 

Design Class of Black Mountain Art School, North Carolina, from 1948. The Patent was 

applied for in 1951 and granted in 1954; it represented the last turning-point in his life 

from failed entrepreneur to visionary designer. The basic structural design has been 

applied to simple tent-like structures to radomes and, following the success of the dome 

covering the Ford Motor Company’s building in Dearborn, Michigan, has become an 

accepted architectural form. The use of his name to describe the newly-discovered 
carbon structures was made after his death. 

Martin Julian Buerger 1903-86 

Buerger was born in Detroit, USA, and studied mining engineering at the Massachusetts 

Institute of Technology, specializing after graduation in research in mineralogy. It was 

during this time that he attended, in 1927, a course of lectures on X-ray diffraction given 

by W. L. Bragg, as a result of which Buerger realized that in order to understand the 

chemical and physical properties of crystals it was necessary to know their structures. 

Hence began his life-long work in X-ray crystallography, not only in the solving 

of crystal structures but in the invention of the equi-inclination Weissenberg camera, 

the precession camera and the writing of several well-known textbooks, the earliest 

of which X-Ray Crystallography is, like Bragg’s The Crystalline State: Volume 1, 
A General Survey, a classic which is still current today. 
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Buerger was closely associated with the founding of the International Union of 

Crystallography and was a member of the Commission for the International Tables 
from its establishment in 1948. 

Peter Joseph William Debye 1884-1966 

Debye was bom in Maastricht in the Netherlands, was educated at Aachen and Munich 

and held a number of Chairs in Physics before becoming Director of the Kaiser Wilhelm 

Institute for Theoretical Physics 1935-40. He then emigrated to the USA in 1940, 

becoming Professor of Chemistry .at Cornell University. 

Debye was primarily a theoretician concerned with the application of physical 

methods to molecular structure and is best known for his work of specific heat, electro¬ 

lysis and the electron diffraction of gases. He was a member of staff in the Institute of 

Experimental Physics at the University of Munich at the time that Laue carried out his 

famous X-ray diffraction experiments. His development of a technique and camera 

(with P. H. Schemer) for the investigation of X-ray diffraction from powders was made 
at the University of Gottingen in 1915. 

Paul Peter Ewald 1890-1985 

Ewald, a posthumous child, was brought up by his mother, Clara Philippson Ewald, a 

renowned portrait painter; they travelled widely and Ewald learned English and French 

at an early age. He graduated from the Koningliches Victoriagymnasium in Potsdam 

in 1905 and spent a short time studying chemistry at Cambridge before returning to 

the University of Gottingen in 1906. Ewald’s interests then moved from chemistry to 

mathematics; he transferred to the University of Munich to attend the courses of lectures 

given by Sommerfeld on hydrodynamics. 

The story of Ewald’s thesis topic is given in Section 8.1 and it is clear that Ewald 

deserves greater recognition for his contribution to the interpretation of X-ray diffrac¬ 

tion patterns than he has hitherto been accorded—unlike Laue or the Braggs he was not 

awarded a Nobel Prize. Yet his doctor’s thesis of 1912, which he discussed with Laue, 

contained within it the basis of the ‘reciprocal lattice and reflecting sphere construction’ 

analysis of the geometry of (X-ray) diffraction which is equivalent to Bragg’s law. 

Indeed, it was only after reading Laue, Friedrich and Knipping’s published papers that 

Ewald realized the relevance of his own approach and, in particular, the applicability of 

the formula in his thesis which he had brought to the attention of Laue but which in fact 

he (Laue) had not used. 

During the First World War, Ewald became a field X-ray technician in the northern 

Russian Front but had sufficient time to publish, from 1916 onwards, a series of papers 

on crystal optics and dynamical theory. In 1921 he became first Professor of Theoretical 

Physics in the University of Stuttgart and then Rector in 1932. It was an inauspicious 

time: only one year after his inaugural address, in which he pleaded for the pursuit of 

social and political harmony, he was forced, by a Nazi Party decree, to resign his 

Rectorship because his wife was Jewish and he part-Jewish himself. The increasing 

persecution and corruption of the objective academic ideals of German science by the 



272 Appendix 3 

Nazi Party forced him in 1937 to leave Germany for England with the support of W. L. 

Bragg. He lived in Cambridge with his family in a financially precarious situation until 

1939 when he became Professor of Theoretical Physics in the Queens University in 

Belfast. In 1949 he became Professor of Physics at the Polytechnic Institute of Brooklyn, 

and although he remained in the USA for the rest of his life he never gave up his British 

citizenship. v 
The International Union of Crystallography was founded in 1947 largely through 

Ewald’s initiative, with W. L. Bragg as President and he himself as Vice-President. It 

was, in a sense, a fulfilment of those ideals for which he had pleaded twenty-five years 

previously. 

Evgraph Stepanovich Fedorov 1853-1919 

Son of an army engineer, Fedorov attended military school in Kiev and became, in turn, 

a combat officer and member of the revolutionary underground. His first ideas on the 

derivation of the 230 space groups were contained in his book The Elements of Config¬ 

urations, started in 1879, when he was 26 years old but not published until 1885. His 

complete derivation of the space groups was circulated in 1890 to his friends (including 

Schoenflies) as a series of preprints but was not published until 1891, shortly before 

Schoenfhes’ independent derivation. 

Jean Baptiste Joseph Fourier 1768-1830 

Fourier, son of poor parents who died when he was nine, attended the military school 

in his home town of Auxerre, France, where his great mathematical ability was first 

recognized. As a young man he was caught up in the Revolution; he was imprisoned both 

by Robespierre (being released only as a result of Robespierre’s execution in 1794) and, 

subsequently, by the counter regime, ironically as a supporter of Robespierre. 

Fourier’s administrative and political talents were recognized by Napoleon who made 

Fourier secretary of the newly formed Institut d’Egypte, but after Napoleon’s fall he 

found himself out of favour with Louis XVIII and was not elected a member of the 

Academie Francaise until 1827. 

Fourier’s main achievements lie in his development of the mathematical techniques 

applied to the diffusion of heat and (what are now called) Fourier series and Fourier 

integrals. He also made substantial contributions to the theory of equations, linear 

inequalities, and probability. 

Moritz Ludwig Frankenheim 1801-69 
'v 

Frankenheim was born and educated in Brunswick and the University of Berlin, where 

he was appointed lecturer in 1826. He was subsequently appointed Professor of Physics 

at Breslau, a post which he held until 1866. It was in a work of 1835 that he showed 

there could be only fifteen ‘nodal’, i.e. space lattice types, which much later (1856) he 

corrected to fourteen configurations, 8 years after Bravais’ derivation of the fourteen 
space lattices. 
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Rosalind Elsie Franklin 1920-58 

Rosalind Franklin was bom in London into a prosperous upper middle class Jewish 

family. She was one of five children (three brothers and a younger sister) and followed 

a Franklin family tradition in being educated at St. Paul’s Girls’ School where she was 

a Foundation Scholar. By the age of 15 she had no doubts that she wanted to be a scientist 

(which was a new departure away from her cultural background) and in 1938 won an 

Exhibition (a scholarship) to Newnham College, Cambridge. Her studies were affected 

by the outbreak of war when many of the university staff were seconded to the war effort 

and in 1941 she graduated, to her disappointment and against expectations, with 

a second, rather than a first class degree. However, she was awarded a Research 

Scholarship at Newnham College which she held for a year before being appointed as 

a Research Officer at the British Coal Utilization Research Council—a youthful organ¬ 

ization where she established her reputation as a research scientist and for her work there 

was awarded the Ph.D. degree by Cambridge University in 1945. In 1947 she was 

appointed Chercheur in the Laboratoire Centrale des Services Chimique de l’Etat in 

Paris and it was here that she developed X-ray diffraction techniques in the analysis of 

carbon structures—work which has partly laid the foundations to a whole new materials 

technology. In 1951 she decided it was time to return to England and on the basis of her 

expertise in a difficult area of X-ray analysis was appointed to a Newall and Turner 

Research Fellowship in the Medical Research Council Unit at King’s College, London 

to work on DNA—the elucidation of the structure of which was widely recognized as 

being a matter of paramount importance. It has, indeed, been represented as a race 

between competing laboratories and individuals, but if so it was a race which could not 

be won by one group alone but rather with the inputs from various individuals. Franklin’s 

great contribution was her meticulous experimental work, and cautious, unspeculative 

but well-founded deductions. Together with a research student, Raymond Gosling, who, 

under M. H. F. Wilkins’ direction had obtained diffraction patterns of DNA which 

showed a high degree of crystallinity, she demonstrated the effect of varying humidity 

on the crystal structure of DNA and in 1951 showed that the B-form (that which occurs 

under conditions of high humidity) had a structure consistent with a helical conforma¬ 

tion and that the phosphate groups of the amino acids must lie on the outside, rather than 

the inside, of the chains. Her photograph of DNA, which was crucial in demonstrating 

the correctness of Crick and Watson’s model in 1953, was taken with Gosling over the 

weekend of 1 May 1952. 
In the last five years of her life, before her untimely death from cancer, she worked in 

the Crystallography Laboratory at Birkbeck College London, where she discovered the 

structure of the tobacco mosaic virus. 

Joseph Fraunhofer 1787-1826 

Fraunhofer was the eleventh child of a poor master glazer in Straubing, Germany, who, 

after the early death of his parents and an unsatisfactory apprenticeship, joined the 

optical instrument workshop of a scientific instrument maker in Munich in 1806. Here 

his versatility as experimental scientist, optical instrument technician and glassmaker 
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laid the foundations of the pre-eminence of the German optical instrument industry 

which was to be consolidated with such success by Otto Schott, Carl Zeiss and Ernst 

Abbe later in the century. It was a result of his investigations into the optical properties 

of glass that Fraunhofer discovered that the solar spectrum was crossed by many fine 

dark lines (some of which William Wollaston had first noticed in 1802), thereby laying 

the foundations of spectrometry. Following the work of Thomas Young he made the first 

quantitative study of diffraction and found the reciprocal relationship between the 

separation of the lines in diffraction gratings and the dispersion of light. In 1823, three 

years before his death from tuberculosis, he was appointed to the post of director of the 

Physics Museum of the Bavarian Academy of Sciences. 

Augustin Jean Fresnel 1788-1827 

Fresnel was bom in Broglie, France, and grew up in a stem Jansenist home environ¬ 

ment. In 1804 he entered the Ecole Polytechnique in Paris, his intended career being in 

civil engineering; from there he entered the Ecole des Ponts et Chaussees, graduating in 

1809. His first big job as a civil engineer was the construction of the Imperial Highway 

to link France and Italy through the Alpine Pass of Col Montgenevre. 

Fresnel’s interests in optics and the nature of light appear to have begun in about 1814, 

but were stimulated in 1815 when he was suspended from his engineering work because 

of his opposition to Napoleon’s return to France from exile in Elba—a period of enforced 

leisure during which time Fresnel was under police surveillance. However, in 1823 he 

become a member of the French Academy of Sciences and in 1824 was appointed to the 

lighthouse commission in France and developed the echelon lens which bears his name. 

Like Thomas Young, but working entirely independently, Fresnel advocated and 

elaborated on the wave theory of light, though it is not known to what extent he was 

familiar with the ideas of Christiaan Huygens. Like Young, he introduced the principle 

of interference, drawn from analogy with his work on acoustics, publishing the results of 

his experiments on the diffraction and interference of light in 1815. 

Fresnel collaborated closely with Frangois Arago in studies on the polarization 

phenomena of light and followed Young in the realization that light waves must be 

transverse rather than longitudinal. For most of his short life Fresnel suffered severe 

ill-health; he was awarded the Rumford Medal of the Royal Society shortly before his 
early death. 

Rene-Just Haiiy 1743-1822 

The son of a poor weaver, Haiiy received a classical and theological education at the 

College de Navarre in Paris and was ordained in 1770. His Essai d’une theorie sur la 

structure des cristaux of 1784 laid the foundation for the mathematical theory of crystal 

structure. In 1793 he proposed that there were six ‘primary forms’—a parallelpiped, 

rhombic dodecahedron, hexagonal dipyramid, right hexagonal prism, octahedron and 

tetrahedron. In the Traite de Mineralogie of 1801 these were further divided, which led 

to the notion of ‘molecules integrantes’. Haiiy survived the Revolution and was made 
Honorary Canon of Notre Dame in 1802. 
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Formal structure theory, following the derivation of the 230 space groups by Fedorov, 

Schoenflies and Barlow, remained dormant even in the early years of crystal structure 

analysis by X-rays, largely because of the inconvenient and difficult notation then used. 

Hermann’s great contribution (carried out initially independently of Mauguin) was to 

simplify the notation for the symmetry elements and space groups, making the theory 

much more accessible. Hermann was also instrumental in the preparation of the Struk- 

terberichte (Structure Reports) from 1925 to 1937. He was a member of the Society of 

Friends and after the Second World War (during which he was jailed for listening to 

BBC broadcasts) he was appointed Professor of Crystallography at Marburg, a post he 
held until his death. 

Norman Fordyce McKerron Henry 1909-83 

N. F. M. Henry was born at Grangemouth, Stirlingshire and was brought up in Aberdeen 

where his father was a master at the Grammar School. He read geography at Aberdeen 

University and in 1934 entered the newly-founded Department of Mineralogy and 

Petrology at Cambridge University and St. John’s College which was to become, to 

a great extent, the focus of his life. 

Henry’s research interests lay in the fields of X-ray crystallography and reflected light 

microscopy and, although he published few papers, the two books The Interpretation 

of X-ray Diffraction Photographs and the Microscopic Study of Opaque Minerals which 

he co-authored have been instrumental in the wide dissemination of these subjects. 

Indeed, he and his colleagues introduced the subject of crystallography to a greater 

number of students than at any other university. As a teacher Henry presented an image 

of formality and dryness, but even undergraduates could recognize the humour and 

generosity that lay underneath. He conducted tutorials two at a time, passing from group 

to group (with perhaps time for a cigarette in between), setting problems and expecting 

the solutions to be ready at the next visitation: a simple and most effective technique. 

Henry played a major role in the work of the International Union of Crystallography 

where his knowledge of European languages and cultures did much to establish an 

atmosphere of goodwill and collaboration. He edited (with Kathleen Lonsdale) the first 

volume of the International Tables for X-ray Crystallography, a task entirely fitted to his 

rigorous standards and painstaking scholarship. 

In 1960 he was elected a Fellow of St. John’s College, was made Steward (1961-9) in 

recognition of his knowledge of food and wine and was elected Praelector or ‘college- 

father’ in 1971 where again his support and concern for his younger colleagues found 

full expression. 

Johann Friedrich Christian Hessel 1796-1872 

Hessel was bom and educated at Nuremberg but spent most of his professional life 

as Professor of Mineralogy and Mining Technology at Marburg. He was the first to 

show (in 1830) that only two-, three-, four- and six-fold axes of symmetry can occur in 
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crystals and that considerations of symmetry lead to the thirty-two crystal classes. 

However, his work was unrecognized by his contemporaries and remained so until long 

after his death. 

Robert Hooke 1635-1703 * 
\ 

Hooke attracted the attention of Robert Boyle at Oxford and it was through his mechan¬ 

ical skill that he made a success of Boyle’s air pump. He became a Fellow of the Royal 

Society and held the post of ‘Curator of Experiments’ from 1662 until the end of his life. 

It was in this capacity that Hooke was solicited by the Council of the Royal Society to 

prosecute his microscopical observations in order to publish them and was also charged 

to bring in at every meeting one microscopical observation at least. Hooke more then 

fulfilled this onerous obligation and, in doing so, caused the great capability of the 

microscope to be realized in England. The fruit of his work, Micrographia, or Some 

Physiological Descriptions of Minute Bodies made by Magnifying Glasses, with Obser¬ 

vations and Inquiries Thereupon, was printed in 1665. In his book the word ‘cell’, so 

important in biology, was first applied to describe the porous structure of cork. 

Albert Wallace Hull 1880-1966 

Albert W. Hull was bom in Connecticut and studied Classics at Yale University. 

However, he became increasingly interested in physics and after a period teaching 

modern languages, returned to Yale and completed, as it were, his educational transition 

by the award of a doctorate in 1909. After a further period of teaching (this time physics), 

he joined the General Electric Research Laboratory at Schenectady where he discovered 

(independently of Debye and Scherrer) the powder diffraction technique. Hull’s later 

achievements were in the fields of electronics (principally the invention of the Thyra- 

tron) and what is now called materials (principally the development of metal-glass 

vacuum seals). He was elected President of the American Physical Society in 1942. 

Christiaan Huygens 1629-95 

Huygens was bom in The Hague, studied at the University of Leiden and Breda and 

became one of the founding members of the French Academy of Sciences. He made 

important contributions to dynamics and showed that a pendulum which describes a 

cycloid (rather than the arc of a circle) is exactly isochronous and succeeded in inventing 

and constructing a pendulum clock based on this principle. He also made major 

contributions to observational astronomy and was the first to describe Saturn’s rings 
correctly. 

Huygens’ greatest achievement was his development of the wave theory of light 

described in his Traite de Lumiere (1690). The notion of action at a distance was 

abhorrent to him; in his view space is pervaded by particles (the ether), light being the 

effect of the disturbance of the particles—that of one particle being transmitted to the 

next and so on. The net effect is a wave spreading out from the point of origin, each point 

in the wavefront being the source of secondary wavelets. Huygens was thereby able to 
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explain refraction and reflection and to predict (correctly) that the velocity of light 

decreased in passing from a rarer to a denser medium—whereas Newton’s corpuscular 

theory required the denser medium to attract the corpuscles of light and therefore 

increase its velocity. However, because the waves were conceived as being longitudinal, 

rather than transverse, he could not satisfactorily explain double refraction. 

The problem of double refraction constituted one of Newton’s objections to the wave 

theory of Huygens for ‘Pressions and Motions’, as he says in Opticks, ‘propagated from 

a shining body through a uniform medium must on all sides be alike’, whereas experi¬ 

ment had shown that the ‘Rays of Light have different properties in their different 

sides’—a clear presentiment of the idea of polarization. The other, even more serious 

objection, was that without the concept of interference, Huygens’ wave theory could not 

explain the most obvious character of a light beam, namely rectilinear propagation. It 

was not until the work of Fresnel and Young at the beginning of the nineteenth century 
that the wave theory of light was finally established. 

Johannes Kepler 1571-1630 

The turmoil of Kepler’s life is in strong contrast to his belief in the existence of a 

mathematical harmony underlying the Universe, the search for which was the guiding 

inspiration of his life’s work. He was bom in Wiirtemburg in Germany and in 1594 was 

appointed teacher of mathematics at the seminary at Gratz. Here he encountered the 

work of Nicolaus Copernicus and published his first book (Mysterium Cosmograph- 

icum, 1596), in which he tried to show that the orbits of the planets were determined by 

the nestling, one within the other, of Plato’s five regular solids—cube, tetrahedron, 

dodecahedron, icosahedron and octahedron. Forced, as a Lutheran, to leave Gratz, he 

joined Tycho Brahe in Prague under the patronage of the emperor Rudolph II, a fruitful 

but uneasy collaboration. Here Kepler discovered the first two of the three laws of 

planetary motion which were to be of such importance to Newton, wrote a major work 

on optics, discovered the second new star visible to the naked eye since antiquity and 

prepared his astronomical tables, against a background of the social unrest of the Thirty 

Years’ War and continual lack of financial support from the emperor. 

In 1611 civil war broke out in Prague, the emperor was forced to abdicate and 

Kepler’s young son and wife died. He moved to Linz, remarried in 1613, and had to 

face his mother’s trial for witchcraft in Wiirtemburg. At Linz he published Harmonices 

Mundi (1619) which contains his third law. 
On completion of the astronomical (Rudolphine) tables, Kepler moved to Sagan in 

Silesia under the patronage of Imperial General Wallenstein. He died of a fever at 

Ratisbon in the unsuccessful quest of 12 000 florins owed to him by the emperor. 

Max von Laue 1879-1960 

Max Laue (the title ‘von’ appears after his father was raised to the hereditary nobility in 

1914) was bom in Pfaffendorf near Koblenz. He was educated at the University of Berlin 

and, as a pupil of Max Planck, obtained his doctorate in 1903 for a thesis on the 

interference of light between plane parallel plates. 
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In 1909 he became Privatdozent in the Institute for Theoretical Physics in the 

University of Munich under Arnold Sommerfeld. He was an early ‘convert’ to Einstein’s 

special theory of relativity and wrote the first monograph on the subject. 

Laue’s intuition (that the regular arrangement of atoms in a crystal might give rise to 

an interference effect if the waves travelling through were^of a wavelength of the same 

order as the atom or ‘resonator’ spacing) almost certainly stems from a meeting with P.P. 

Ewald in January 1912. Ewald was completing his doctorate thesis and wished to discuss 

some of his conclusions with Laue. Laue encountered strong disbelief amongst his col¬ 

leagues of a significant outcome of such a diffraction experiment on the grounds that the 

thermal vibration of the atoms would obscure any diffraction maxima. However, he 

persevered, and with the assistance of Walter Friedrich (an assistant of Sommerfeld) 

and Paul Knipping (who had just finished his thesis under Roentgen), the famous experi¬ 

ment on a copper sulphate crystal which ‘happened to be in the laboratory’ was carried out. 

Laue recalls in his Autobiography the very time and place when the idea for a 

mathematical explanation of the spots in the photograph taken by Friedrich and Knip¬ 

ping came to him: ‘I was plunged in deep thought as I walked home along Leopold- 

strasse just after Friedrich showed me this picture. Not far from my own apartment at 

Bismarckstrasse 22, just in front of the house at Siegfriedstrasse 10, the idea for a 

mathematical explanation of the phenomena came to me_I had to re-formulate 

Schwerd’s theory of diffraction by an optical grating so that it would be valid, if iterated, 

also for a cross-grating. I needed only to write down the same equation for a third time, 

corresponding to the triple periodicity of the space lattice, in order to explain the new 

discovery.’ 

The new discovery, and Laue’s analysis (in terms of a three-dimensional diffraction 

grating), which Einstein referred to as one of the most beautiful in physics, led to the 

award of the Nobel Prize for Physics, jointly with W. H. and W. L. Bragg in 1914. But 

unlike the Braggs, Laue did not pursue crystal structure determination since his main 

interests lay towards the ‘great general principles’ of Physics. 

In 1919 Laue returned to the University of Berlin to be near his mentor. Max Planck, 

and in 1921 was elected a member of the Prussian Academy of Sciences. He protested 

against the Nazi Party’s persecution of Einstein: at his opening address on 18 September 

1933 to the Physics Congress held in Wiirtzburg he drew the parallel between Galileo, 

champion of the Copemican World View, and Einstein, the founder of relativity theory; 

just as Galileo had won out against the church’s prohibition so also would Einstein win 

out against the proscriptions of National Socialism. However, Laue was unable to stem 

the tide of Nazi infiltration into German Science; he was increasingly ‘sidelined’, his 

advice and judgement were no longer asked for and in 1943 he took early retirement 

from teaching and moved away from Berlin to Wiirttemberg-Hohenzollern. After the 

war he was briefly interned in England and until his death took a major role in the re¬ 
building of German science and its institutions. 

Kathleen Lonsdale 1903-71 

Kathleen Yardley was born in Newbridge, S. Ireland, the youngest in a family of ten 

children. In 1908 the Yardley family moved to England in view of the unsettled state in 
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Ireland. As a schoolgirl Kathleen showed her remarkable aptitude for physics and 

mathematics; at the age of 16 she won a scholarship to Bedford College for Women and 

in 1922 came top of the class list, as a result of which the examiner, W. H. Bragg, offered 

her a place in his research team first at University College and then at the Royal Institu¬ 

tion—a team which then consisted of some of the brightest stars in X-ray crystallography. 

In 1927 she married Thomas Lonsdale and moved with him to Leeds when he took up a 

post in the Textile Department. It was a short but formative period in her life: she proved 

that the benzene molecule was planar, established her position as a leading X-ray 

crystallographer and also showed that it was possible to combine the roles of a scientist 

and a wife and mother. Her recollections of Leeds—the food bargains which could be 

obtained (and can still be obtained today) in the closing-time auctions at the Leeds 

market—are evocative. In 1929 she returned to London as W. H. Bragg’s research 

assistant and remained with him at the Royal Institution until his death in 1942. Her early 

upbringing was strict Baptist, but by degrees she became a member of the Society of 

Friends, a vegetarian and a pacifist. These latter ideals led to her imprisonment for a 

short time in 1943 in Holloway Prison which was another positive formative influence in 

her life. 

Kathleen Lonsdale (and Marjory Stephenson) were the first women to be elected 

Fellows of the Royal Society (22 March 1945). It was only subsequently that she was 

appointed to a university post, and became involved in teaching, first as Reader (1946) 

and then as Head (1949) of the Department of Crystallography at University College, 

London. However, perhaps her most enduring achievement was her leading role in the 

preparation of the International Tables for X-ray Crystallography as General Editor 

1948-63 and as joint editor (with N. F. M. Henry) of the first volume, published in 1952. 

To the end of her life her social conscience and concern for what is now called 

women’s liberation was unwavering. She wrote in 1957 the Penguin Special Is Peace 

Possible? and in 1971 the broadsheet ‘Women Scientists—Why so Few?’ 

Charles Mauguin 1878-58 

Mauguin’s early career expectation was that of a teacher in a teacher’s training college, 

but he quickly developed an interest in mathematics and natural philosophy and 

commenced his scientific work in the field of organic chemistry. His interest in crystal¬ 

lography probably stems from a course of lectures given by Pierre Curie which he 

attended in 1905. Mauguin was one of a small group of crystallographers who, in 1933, 

undertook the publication of the International Tables, and it is his symbolism of the 230 

space groups (worked out in collaboration with C. H. Hermann) which is now in almost 

universal use. 

William Hallowes Miller 1801-80 

Miller was educated in St. John’s College, Cambridge, where, in 1829, he became 

a Fellow. In 1839 he published A Treatise on Crystallography, in which he made the 

fundamental assertion that crystallographic reference axes should be parallel to possible 

crystal edges. His system of indexing was based on a ‘parametral’ plane making 
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intercepts a, b and c on such axes [i.e. (111)]; a plane making intercepts alh, blk and dl 

was assigned the (integral) indices (hkl). Although the algebraic advantages of this 

system were immediately apparent to his contemporaries (and were quickly adopted), 

their full significance was not fully appreciated until Bragg’s and Ewald's interpretation 

of X-ray diffraction. „ 

Franz Ernst Neumann 1798-1895 

Neumann was born in Joachimsthal (now Jachymov in the Czech Republic) and was 

brought up by his grandparents (his mother, a divorced Countess, being unable to marry 

his father who was from a lower social class). He showed an early aptitude for math¬ 

ematics and attended the Berlin Gymnasium after which, at the age of 16, he volunteered 

to serve in the Prussian Army. He was wounded in the Battle of Ligny (the forerunner to 

Waterloo) in 1815. 

Neumann’s contributions to mineralogy and crystallography, which represent a 

relatively small part of his life’s work, arose through his collaboration with his friend 

and mentor C. S. Weiss. He introduced and developed the stereographic projection in the 

study of crystals and extended Weiss’ work on zones in publications of 1823 and 1830. 

He was appointed curator of the Mineral Cabinet at the University of Berlin in 1823. 

Although throughout his long life Neumann made many original contributions to 

optics, heat and electrodynamics (for which he was awarded the Copley Medal of the 

Royal Society in 1887), he was chiefly remembered by his contemporaries as an 

inspiring teacher. He was also a firm Prussian patriot and supported Bismarck’s policy 

for the unification of Germany. 

Isaac Newton 1642-1727 

‘Nature was to him an open book, whose letters he could read without effort.’ 

A. Einstein. Foreword to Newton’s Opticks 

Isaac Newton was bom, a premature and posthumous child, at Woolsthorpe Manor in 

Lincolnshire. He was educated at the King’s School, Grantham, and was admitted to 

Trinity College, Cambridge, in 1661. It is while he was an undergraduate that he seems 

to have made his first acquaintance with optics; he read the works of Kepler and 

Descartes and from about 1663 was involved in the construction and performance of 

telescopes and the observation of lunar crowns and haloes. In the summer of 1665 he 

went home to Woolsthorpe Manor to escape the plague and remained there until April 

1667, except for a three-month visit to Cambridge from March 1666. It was during this 

time that Newton says of himself ‘I was in the prime of my age for invention and minded 

Mathematicks and Philosophy more than at any time since.’ These two years of 

intellectual achievement—the formulation of the binomial theorem and the differential 

and integral calculus, the theory of colours and of universal gravitational attraction— 

together with the two years (1685-86) during which he composed the Principia, have 
never been surpassed. 



Appendix 3 281 

Newton’s first paper to the Royal Society (published in 1672), in which he showed 

that ordinary white light is a mixture of rays of every variety of colour, received such 

a hostile reception from Robert Hooke that it made Newton cautious of publishing his 

work; the Principia or the Mathematical Principles of Natural Philosophy itself was 

not published until 1687 and then largely due to the encouragement of Edmund Halley. 

It immediately brought to Newton enormous prestige, a place in society and public 

affairs but thereafter little more science. 

The Opticks was not published until 1704, a year after the death of Robert Hooke, 

Newton’s most pertinacious antagonist. Further editions came out in 1717, 1721 and 

1730, the last being ‘corrected by the Author’s own hand’. In this great work Newton 

states that his ‘design in this book is not to explain the Properties of Light by Hypothesis 

but to propose and prove them by Reason and Experiments’. However, there are many 

comments suggestive of a deeper penetration into the nature of light than exact know¬ 

ledge could then achieve, including the notion of interference, for in attempting to 

explain the colours of thin films Newton describes the passage of light as being made up 

of ‘alternate fits of easy Reflection and easy Transmission’. 

The greatest interest in the Opticks lies in the Queries, in which Newton speculates 

on the nature of light. The question form may have been used to allay criticism that 

he was departing from his dictum ‘hypotheses non fingo’ (I frame no hypotheses), but 

all are couched in the negative ‘Do not Bodies act upon Light at a distance?’ A 

negatively phrased question suggests or implies a positive answer; ‘do not bodies act 

upon light at a distance?’ Is not Newton implying that the answer must be in the 

affirmative? 

Louis Pasteur 1822-95 

Pasteur is perhaps best remembered for his work in microbiology and immunology and, 

in particular, the practical applications—the discovery of vaccines, the treatments for 

rabies and anthrax, silkworm disease, etc. His work in crystallography was confined to 

the early years of his scientific career. Beginning in about 1847 (shortly after complet¬ 

ing his dissertation in physics), he began a series of investigations into the relations 

between optical activity, crystalline structure and chemical composition in organic 

compounds. His guiding principle was that optical activity was somehow associated 

with life; that whereas enantiomorphic crystals or molecules produced in the laborat¬ 

ory, or of mineral origin, occurred in equal quantities of left- and right-handed forms, 

those of organic origin—from plants or animals—were always of one form. The origin 

of life it seemed was bound up with an original asymmetric chemical synthesis. Hence 

Pasteur believed that molecular asymmetry was an essential characteristic of the 

chemistry (and biology) of life. 
Pasteur’s demonstration that the optically inactive (or racemic) paratartaric acid was 

composed of equal amounts of two optically active forms of opposite senses was made 

on crystals of sodium-ammonium paratartrate. In using these, and in separating out the 

two forms, he was perhaps fortunate, as in no other compounds is the relationship 

between crystal structure and molecular asymmetry so straightforward; also, the dis¬ 

tinctive ‘hemihedral’ crystalline forms of these compounds occur only under certain 
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conditions of crystallization. From this he was led to study asparagine and its derivatives 

(aspartic acid and the aspartates, malic acid and the malates). 

William Jackson Pope 1870-1939 

Pope’s major scientific work was in the field of organic chemistry. He was educated at 

Finsbury Technical College and the City and Guilds of London Institute in Kensington; 

in 1908 he was appointed Professor of Chemistry at Cambridge at the early age of 38. 

His crystallographic work extends over the period 1906-10 when, in collaboration with 

W. Barlow, he developed models of crystal structures based on the close-packing of ions 

or atoms of different sizes—models which were to prove so valuable to the Braggs in 

their analyses of crystal structures. 

Jean Baptiste Louis Rome de L’Isle 1736-90 

Rome de L’lsle, the son of a cavalry officer, was bom in Gray in France. In 1756 he 

joined the Royal Corps of Artillery and Engineering and travelled to Pondicherry in the 

French East Indies. When Pondicherry was seized by the English in 1761 he was taken 

prisoner and transported to China where he remained until 1764 when he returned to 

France. He first studied mineralogy and in 1767 he was asked to prepare a catalogue of a 

collection of mineral ‘curiosities’. In doing so he followed the method of Linnaeus (the 

great Swedish botanist) in emphasising the importance of crystalline form in minera- 

logical description. In 1772 he published Essai de cristallographie and in 1783 his major 

work Cristallographie. Here he identified 450 ‘crystalline forms’ and characterized the 

cube, regular octahedron, parallelipiped, rhomboidal octahedron and dodecahedron. 

In the course of measuring the angles between the faces of terracotta (clay) crystal 

models using a contact goniometer, he recognized the constancy of interfacial angles. 

Rome de L’lsles’ great contribution, through his experimental work, was to establish 

crystallography as the firm basis for the study of minerals although he did uot follow 

(and was critical of) Hauy’s notion of ‘molecules integrantes’. 

John William Strutt, third Baron Rayleigh 1842-1919 

Like his near contemporary the geologist and microscopist Henry Clifton Sorby, Lord 

Rayleigh (as he became when he succeeded to his father’s title in 1873) had the leisure 

and financial resources to devote his life to science. His early life was dogged by ill 

health; in 1865 he graduated in mathematics at Cambridge and remained there until 1872 

when he went to Egypt for a period of convalescence. It was not, however, a period of 

idleness; he wrote his classic book The Theory of Sound on a houseboat on the Nile. 

On his return to England he built his own private laboratory and carried out most of 

his work there except for a short period (1879-1884) when he was Cavendish Professor 
of Experimental Physics at Cambridge. 

Rayleigh’s main contributions to science were in optics and acoustics; his work on the 

scattering of light by small particles led to the explanation of the blue colour of the sky 

and his work on the density of gases led to the discovery of argon. 
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Scherrer was born at St. Gall, Switzerland. During his education his interests moved 

away from commercial topics towards natural history, first to botany and then to 

mathematics and physics. In 1913 he entered the University of Gottingen and became 

a member of Debye’s research group. The stimulus for the investigation of polycrystal- 

line specimens appears to have come from Debye although the construction of the 

cylindrical camera was due to Scherrer. With it, Debye and Scherrer took the first 

X-ray powder photographs (of lithium fluoride) in 1915. A very similar method was 

devised in 1917 by Albert W. Hull at the General Electric Laboratories, USA. 

In later years Scherrer was active in the foundation of the European Centre for 

Nuclear Research (CERN). He was also prolific teacher and brought to his lectures 

a considerable element of showmanship. 

Arthur Schoenflies 1853-1928 

Schoenflies was bom in Landsberg an der Warte, now in Poland. He studied math¬ 

ematics at Berlin and became successively high school teacher. Associate Professor of 

Mathematics (at Gottingen), Professor (at Konigsberg) and Rector at the University 

at Frankfurt. He extended the work of Sohncke on periodic discrete groups by taking 

into consideration rotation-reflection and inversion axes of symmetry, adding another 

165 to Sohncke’s sixty-five groups. The work was completed in his book Kristall- 

systeme und Kristallstruktur, published in Leipsig in 1891, a few months after 

Fedorov’s paper. 

William Bradford Shockley 1910-89 

William Shockley was bom in London to American parents and moved to California 

(with them) in 1913. He was educated at the California Institute of Technology and 

Massachusetts Institute of Technology and, after war service with the U.S. Navy’s 

Submarine Warfare Operations Research Group, became a supervisor in the semicon¬ 

ductor research group at Bell Telephone Laboratories in New York. There, in 1947, 

together with John Bardeen and Walter Brattain, he discovered the principle of the point 

contact transistor and then went on to develop the junction transistor. This may be said to 

be the starting point of the electronic transformation of the latter part of the twentieth 

century, which was recognized by the award of the Nobel prize for Physics, jointly with 

Bardeen and Brattain, in 1956. 
Shockley then left ‘Bell Labs’ to set up the Shockley Semiconductor Corpora¬ 

tion in California and from 1963 became Professor of Engineering at Stanford 

University. 
The latter part of his life was clouded by controversy because of his uncompromis¬ 

ingly held views on dysgenics, i.e. retrogressive evolution through the excessive repro¬ 

duction of the genetically disadvantaged, and for which, as one example of his 

increasing isolation, the University of Leeds refused to confirm his nomination for an 

Honorary Doctorate. 
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Leonhard Sohncke 1842-97 

Sohncke was bom in Halle, Germany, where his father was Professor of Mathematics at 

the University. Like his father he followed an academic career, being appointed to a 

succession of professorships in physics, firstly at Halle and at the end of his career at 

the Technische Hochschule in Munich. Sohncke considered the possible arrays of 

points which have identical environments but not necessarily in the same orientation 

(as in the definition of Bravais lattices), and arrived at sixty-five of the possible 230 

space groups. He published his findings in 1897, while he was professor of Physics 

at the Technische Hochschule in Karlsruhe, and used cigar-box models by way of 

illustrations. 

Nicolaus Steno (Niels Stensen) 1638-86 

Stensen (Steno being the Latinized form of his name) was bom in Copenhagen where his 

father, a goldsmith, kept a shop close to the famous Round Tower. He studied medicine 

at the University of Copenhagen and carried out anatomical researches in Florence, 

ultimately being appointed Royal Anatomist in Denmark in 1672. 

Stensen combined his medical and anatomical career with an interest in minerals, 

metals, the refraction of light, telescopes and microscopes which presumably stemmed 

both from boyhood associations in his father’s shop and also from his later travels in 

Italy where he became acquainted with the works of Kepler and Galileo. He published in 

Florence in 1669 the Prodromum (i.e. an advance notice) to a treatise on solid bodies 

naturally enclosed in other solids—a work in which he outlined the principles of 

geology. This was translated into English by Henry Oldenberg, Secretary of the Royal 

Society, and re-published in London in 1671. In this work Stensen shows that crystals 

grow by external deposition on faces already laid down and not (as was then supposed 

by analogy with plants) by the absorption of fluids and the deposition of material 

from within. The Law of the Constancy of Interfacial Angles, for which he is best 

known, is illustrated in just one figure and stated in two sentences. In the latter part 

of his life Stensen’s strongly held religious beliefs led him to renounce scientific 
research. 

Gustav Heinrich Johann Apollon Tammann 1861-1938 

Tammann can be regarded as a pioneer physical metallurgist in the light of his work in 

metallography and the study of solid-state chemical reactions. He was bom in Yamburg 

(now Kingisepp) in Russia and, after a career as a lecturer at Charlottenburg and Leipzig, 

was chosen to head the newly formedjnstitute at Gottingen in 1903. It was here that he 

began his studies on metallic compounds, the crystal structures and mechanical prop¬ 

erties of metals and alloys, and the general problems of the mechanisms of plastic 

deformation and work hardening in terms of crystallographic slip and crystalline 

rearrangements. He continued to work on these problems until shortly before his death, 
applying his ideas at the same time to the flow of ice. 
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Georgy Fedoseevich Voronoi 1868-1908 

Voronoi was bom in Zhuravka, Russia, into an academic family—his father was Super¬ 

intendent (a sort of Government Inspector) of the Gymnasiums in towns in Southern 

Ukraine. His mathematical ability was apparent from an early age; he attended the 

Gymnasium at Priluka, graduated in mathematics in the University of St. Petersburg in 

1889 and was appointed Professor of Pure Mathematics in the University of Warsaw at 

the early age of 26. Voronoi’s main interests were in the Theory of Numbers, for which 

he planned a series of memoirs—a series cut short by his early death. It was in the second 

of these that he established the possible methods of filling n-dimensional Euclidean 

space with identical non-intersecting convex polyhedra (Voronoi polyhedra or parallel- 

ipipeds), all of which possessed contiguous boundaries—an analysis which extended the 

work of his near contemporary, Fedorov. 

Wilhelm Eduard Weber 1804-91 

Weber was Professor of Physics at Gottingen from 1831 for most of his professional life 

and worked in collaboration with Gauss on magnetic phenomena. His main achieve¬ 

ments were the introduction of a logical system of units for electricity, related to the 

fundamental units of mass, length and time and also the connection between electro¬ 

magnetic phenomena and the velocity of light—a connection which was later thor¬ 

oughly worked out by Maxwell. Weber was also one of the ‘Gottingen Seven’ who, in 

1837, lost their university posts because of their opposition to the autocracy of King 

Ernst August of Hanover. 

Christian Samuel Weiss 1780-1856 

After studying medicine at Leipzig, Weiss switched to chemistry and physics, becoming 

Professor of Physics there in 1808. In 1810 he was appointed Professor of Physics at the 

newly established and prestigious University of Berlin, a post which he held until his 

death. Weiss developed the idea of crystal axes, from which he was able to distinguish 

crystal systems by the ways in which crystal faces were related to such axes. He also 

formulated the concept of a zone: originally conceived as a direction of prominent 

crystal growth, the term was defined as a collection of crystal faces parallel to a line— 

the zone axis; from this concept the zone law was derived. 

Georg (Yuri Viktorovich) Wulff 1863-1925 

Georg Wulff (the name he used in his German-language publications) was bom in 

Nezhin in the Ukraine. He published his first papers (on the morphology and physical 

properties of crystals) in 1883 and 1884 whilst still a student at Warsaw University. In 

1907 he was appointed Professor of Crystallography at Moscow University, a post 

which he held until his death. He proposed what has become known as the Wulff net 

(the stereographic projection of a sphere orientated with the polar ‘north-south’ axis in 

the plane of projection rather than perpendicular to it) in 1909. 
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Wulff’s contribution to X-ray crystallography was his demonstration of the geomet¬ 

rical equivalence of Laue’s diffraction and W. L. Bragg’s reflection interpretation of 

X-ray diffraction. The equation which he derived in 19131 is equivalent to that which 

W. L. Bragg presented in the previous year2; in both cases the equation is expressed in 

the form nX = 2d cos 0 where 0 = (90 — 9). On this basis some writers link Wulff’s 

name with Bragg’s—the Bragg-Wulff equation. However, the present form of the 

equation was first given in a later joint >paper by W. H. and W. L. Bragg3 and it was of 

course W. L. Bragg who made the first great leap forward in crystal structure analysis. 

Thomas Young 1773-1829 

Young was an infant prodigy who could read at the age of 2 and at the age of 14 knew 

Latin, Greek, French and Italian, and had begun to study several ancient languages— 

Hebrew, Chaldean, Syriac and the like—linguistic knowledge that he put to use in his 

contribution to the translation of the text of the Rosetta stone. Young intended to take up 

a medical career and commenced his education in 1793 at St. Bartholemew’s Hospital, 

moving from there to Edinburgh, Gottingen and Cambridge. He was elected a Fellow of 

the Royal Society as early as 1794 for his explanation on how the ciliary muscles of the 

eye change the shape (and focal length) of the lens. 

Young’s great contribution to science was his revival in 1800-04 of Huygens’ wave 

theory of light, to which he added the concept of interference to explain rectilinear 

propagation and the diffraction phenomena at single or double slits or pinholes and in 

which he was closely shadowed by the work of Fresnel in France. In England Young was 

strongly attacked because he questioned the hegemony of Newton, but his work quickly 

won acceptance in the USA and Europe. Young was also first to suggest (in a letter to 

Francois Arago in 1816) that light might be propagated as a transverse wave, thus 

accounting for polarization and meeting the main objection of Newton. Regrettably, 

Young did not live to witness Foucault’s demonstration, in 1850, that the speed of light 

was less in water than in air—the crucial experiment which distinguished the corpus¬ 

cular and wave theories. 

Young was also active in many other fields. His name comes down to us through his 

work on the elastic behaviour of solids as the constant of proportionality (E) in Hooke’s 
law, called Young’s (or latterly Young) modulus. 

(Phys. Zeitschrift (15 Mar. 1913) Vol. 14, p. 217. 
2Proc. Cam. Phil. Soc. (11 Nov. 1912) Vol. 17, pp. 43-57. 
3Proc. Roy. Soc. A (17 April 1913) Vol. 88, pp. 428-438. 
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Some useful crystallographic 
relationships 

In Sections A4.1-A4.3 the rather lengthy expressions for,the triclinic system are 

omitted. 

A4.1 Interplanar spacings, dhki (see Section 6.5.4) 

Orthorhombic: 

1 _h2 fc2 

dhki ~ a2+ b2 + c2' 

(Tetragonal: a = b\ cubic: a — b = c.) 

Hexagonal: 

Rhombohedral: 

1 

dhkl 

Monoclinic: 

A4.2 Interplanar angles, p, between planes (hikih) and 

Qi2k2h) (see Section 6.5.5) 

Orthorhombic: 

(hih2/a2) + (kik2/b2) + (hh/c2) 
cos p = —, == 

^{[(hj/a2) + (k]/b2) + (l\/c2)][{h22/a2) + (k\/b2) + (ll/c2)]} 

1 4 kh2 + hk -\- k2\ l2 

d2hki~3\ a2 )+c2' 

(,h2 + k2 + l2)sin2 a + 2(hk + kl + hl)( cos2 a - cos a) 

a2( 1 — 3 cos2 a + 2 cos3 a) 

1 1 fh2 k2 sin2 /3 l2 2hi cos (3\ 

cfhkl~ sin2 (3 \a2+ b2 + c2 ac )' 

(Tetragonal: a = b; cubic: a = b = c.) 
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Hexagonal: 

h\h.2 + k\k2 + \ih\k2 + h2k\) 4- (3a2/4c2)/i/2 
cos p — — z . 

\/{\h\ + kl + h\k\ + (3a2/4c2)/j2][/z2 + k\ + A2&2 + (3a2/4c2)/|]} 

Rhombohedral: * 
\ 

cos p = (a4d\d2/V2)[ sin2 a(hih2 + k\k2 + l\l2) 

+ (cos2 a - cosa){k\l2 + k2l\ + l\h2 + l2h\ + h\k2 + h2ki)]. 

Monoclinic: 

h\h2 k\k2 sin2/? l\l2 {l\h2 + hh\) cos (3 

~a^~+ ~b2 + ~^c 

A4.3 Volumes of unit cells (see Section 6.5.6) 

Orthorhombic: 

V = abc. 

cos p = 
dxdl 

sin2 B 

(Tetragonal: a = b; cubic: a — b = c.) 

Hexagonal: 

V = (y/3/2 )a2c = 0.866a2c. 

Rhombohedral: 

V = a3 -\/(l — 3 cos2 a. + 2 cos3 a). 

Monoclinic: 

V = abc sin (3. 

A4.4 Angles between planes in cubic crystals (variants 
between 100 and 221) (see Section 6.5.5) 

100 0.00 90.00 
110 45.00 90.00 
111 54.74 

210 26.56 63.43 90.00 
211 35.26 65.90 
221 48.19 70.53 

110 0.00 60.00 90.00 
111 35.26 90.00 
210 18.43 50.77 71.56 
211 30.00 54.74 73.22 
221 19.47 45.00 76.37 

90.00 

90.00 
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Ill 111 0.00 70.53 

210 39.23 75.04 

211 19.47 61.87 90.00 
221 15.79 54.74 78.90 

210 210 0.00 36.87 53.13 66.42 78.46 90.00 
211 24.09 43.09 56.79 79.48 90.00 
221 26.56 41.81 53.40 63.43 72.65 90.00 

211 211 0.00 33.56 48.19 60.00 70.53 80.40 
221 17.72 35.26 47.12 65.90 74.21 82.18 

A4.5 Relationships between zones and planes 

(see Section 6.5.3) 

For a plane (hkl) which lies in a zone [uvw]: 

hu + kv + Iw = 0. 

For a plane (hkil) which lies in a zone [UVTW]: 

hU + kV + iT + IW = 0. 

For a lattice point with coordinates [uvw] which lies in the nth (hkl) plane from the 

origin: 
hu + kv + Iw = n. 

For a plane (hkl) which lies in the; zones [«iviwi] and [U2V2W2]: 

h = (viw2 - v2wi); k = (wxu2 - w2u\)\ l = (uxv2 - u2v\). 

For a zone [uvw] which contains the planes (h\k\l\) and (h2k2l2): 

u = (kll2-k2h); v = (l\h2 - l2h\)\ w = (h{k2-h2k\). 
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A simple introduction to vectors and 
complex numbers and their use in 

crystallography 

A5.1 Scalars, vectors, tensors 

In science—and, of course, everyday life—we are concerned with different types of 

quantities as well as quantities of the same type but of different size or magnitude. In 

many cases the quantities are independent of direction—mass for example, or volume or 

temperature. Such quantities, which can be represented by points on scales, are known 

as scalars and are denoted algebraically in familiar italic type—m for mass, t for time, 

x and y for unknown (scalar) quantities and so on. In many other cases, quantities are 

direction dependent, or, in other words, in order to specify the quantity completely the 

direction as well as the magnitude of the quantity needs to be described. Such quantities 

are called vectors and are denoted algebraically by printing in bold type—a, b, x, y, etc. 

In handwriting wavy underlining is substituted for bold type, i.e. a, b, x, y, etc. 

Velocity is an everyday example of a vector quantity—we need to specify not only 

the speed of an object but the direction in which it is travelling. A motor car travelling 

50 km h-1 due north has the same speed as a motor car travelling 50 km IT1 due east, 

but their velocities are different—one has a velocity of 50 km h-1 north and the 

other has a velocity of 50 km h-1 east. The velocities may be represented as vectors by 

arrows—one pointing north and one pointing east. The lengths of the arrows or vectors 

gives the speed—the greater the speed the longer the arrows. In the above case 

(50 km IT1), the arrows are of equal length. 

Heat and electrical current flow, electrical and magnetic fields are examples of vector 

quantities of interest in crystal physics, but in geometrical crystallography we are 

invariably concerned with vectors which denote displacements: for example the dis¬ 

placement from one comer of a unit cell to the next, or the displacement from one atom 

to another. Crystal axes or directions are examples of such displacement vector quan¬ 

tities. In Fig. 5.1 (p. 105) the directions and lengths of the edges of the unit cell are all 

denoted by the vectors a, b, and c. In the special case of cubic crystals (Fig. 3.1, p. 69) 
these vectors are all at 90° (orthogonal) and are also the same length, but they are not 

identical vectors because they ‘point’ in different directions. 

The ‘length’ of a vector is called its modulus. In the case of the motor car the modulus 

of the velocity is the speed. The modulus of a vector is written in two ways, either in 

italic type, a (denoting that it is a scalar quantity), or with the heavy type vector symbol 

bracketed between straight vertical lines thus: |a|. Hence la I = a. 
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In Fig. 3.1 the moduli a, b, and c of the unit cell vectors for the fourteen Bravais 

lattices are indicated. In the case of cubic (or rhombohedral) crystals, the unit cell edge 

lengths, or moduli, are all identical and are represented (for all three axes) by a. Hence 
|a| = |b| = |c| = a (as in Fig. 3.1). 

Scalars and vectors are particular types of quantities which are known in general as 

tensors. There are other, more complicated types of tensors which are of importance in 

crystal physics because they are able to describe properties such as conductivity or stress 

which vary not only with the direction of the applied field or force but also with the 

orientation of the crystal. ‘Everyday’ examples of tensors (other than scalars or vectors) 

are not easy to provide, but the following, perhaps rather contrived example, may 

illustrate the ideas involved. 

Consider rainwater flowing down a corrugated roof. The flow of water (a vector) is 

obviously down the roof, parallel to the corrugations and parallel also to a vector 

representing the inclined component of the gravitational field. The effective ‘conduct¬ 

ivity’ may simply be regarded as the quantity that relates these two parallel vectors. 

Now consider a (badly made) roof in which the corrugations are set at an angle. The 

water will partly run sideways, along the ‘preferred direction’ of the corrugations and 

will partly flow downwards over from one corrugation to the next. The overall water 

flow will lie in a direction somewhere between the lines of the corrugations and 

downwards. In this case the effective gravitational field vector and the water flow 

vector are not parallel, and in estimating the effective conductivity of the roof, both the 

‘downwards’ and ‘sideways’ components of the water flow need to be taken into 

account. 
In crystals the ‘corrugations’ may be loosely regarded as preferred or easy directions 

of, say, heat or electrical flow. The conductivity of the crystal is the quantity which 

relates one vector (heat or electrical flow) to another vector (temperature or electrical 

field gradient). As indicated in the example above these vectors may not, except in 

special cases, be parallel and in general a total of 9 terms or components1 are required 

in order to specify the conductivity completely. 

Conductivity is called a second-rank tensor property. There are, in addition, third- 

rank tensor properties (e.g. piezoelectricity) which are specified by 27 components and 

fourth-rank tensor properties (e.g. elasticity) which are specified by 81 components. 

Scalars, which are specified by one term or component are, in this classification, called 

zero-rank tensors and vectors which are, as shown below, specified by three components 

are called first-rank tensors. 

A5.2 Resolving vectors into components and vector addition 

Consider the (displacement) vector r drawn in Fig. A5.1 which is outlined in a (two- 

dimensional) lattice with the unit cell vectors a and b. Note that all these vectors have 

a common origin. 

1 These components are not all independent: their number is greatly reduced by symmetry considerations. 
For further information on tensors, see J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 
Second Edition 1985, and F. G. Fumi II Nuovo Cimento (1952) Volume 9, pp. 739-56. 



292 Appendix 5 

Fig. A5.1. 

The vector r may be resolved into its components in the directions of the unit cell vectors 

a andb. These components, 5a and 3b, are drawn in Fig. A5.1. Added together they give 

r, i.e. r = 5a + 3b. 
In vector analysis in general, cubic or Cartesian axes are chosen, and the unit cell 

vectors are labelled i, j, k rather than a, b, c. Also, the moduli of i, j, k are unity and they 

are known as unit vectors. The general symbol for a unit vector is n, i.e. |n| = 1. 

A5.3 Multiplying vectors—scalar products and vector 

products 

There are two ways in which vectors can be multiplied, namely, the scalar product and 

the vector product, the general significance of which go beyond the scope of this book. 

We will consider only the multiplication of displacement vectors. 

The scalar (or ‘dot’) product a • b may be thought of as ‘representing’ the product of 

the moduli of the vectors resolved in the direction of one or other of the vectors. For 

example (Fig. A5.2), if the angle between the vectors, drawn from a common origin, is 0, 

the resolved component of the modulus of b along the a direction is b cos 0. Hence 

a • b = ab cos 0. The same result applies if a is resolved along the direction of b. 

If one of the vectors is a unit vector—say in Fig. A5.2 a = n, then the scalar product 

n*b = b cos 0 (since |n| = 1): it is simply the modulus of b resolved along the direction 
of the unit vector n. The scalar product may therefore be thought of as a ‘shorthand’ 
means of resolving the vectors along different directions. 

Clearly, the maximum value of the scalar product occurs when the vectors are parallel 

(0 = 90°) and the minimum value, zero, occurs when they are at right angles (0 = 90°). 

The scalar product of a vector multiplied by itself is simply the modulus squared, i.e. 
a • a = I a 11 a I = a2. 

Fig. A5.2. 
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The vector (or ‘cross’) product a x b may be thought of as ‘representing’ the area 

outlined by two vectors. In Fig. A5.3 the area outlined by the vectors a and b is ab sin 6. 

But there is more: the area may represent a crystal plane or surface, the orientation of 

which also needs to be specified. The orientation of the surface may be specified by the 

direction normal to it, i.e. perpendicular to the page. Let the unit vector along this 

direction be n; then a x b = (ab sin d)n. 

In general, the vector product is expressed as a x b = c, where c is perpendicular to a 

and b and |c| = ab sin 9. The largest value of c occurs when a and b are at right angles 

and the smallest value, zero, occurs when they are parallel. Finally, the vector product 

involves the use of a sign convention: the vector c or n is perpendicular to the plane 

defined by a and b but can have one of two directions, i.e. with reference to Fig. A5.3, it 

can be ‘up’ from the page or ‘down’. One vector must have a + sign and the opposite 

must have a — sign. The sign convention is as follows. Consider in Fig. A5.3 an 

(ordinary) right-handed screw coming out of the page (i.e. parallel to c or n) through 

the common origin of a and b. If we ‘screw’ from a to b the screw will move ‘upwards’ 

and this upwards direction is the direction or sense of c. If we screw in the opposite 

direction, from b to a, the screw will move downwards. Hence, the order of the multi¬ 

plication of vectors is important and leads to the anticommunicative law for the vector 

product: 

axb = —(b x a). 

A5.4 Multiplication of vectors in terms of components 

Calculations are generally made easier if vectors are expressed in terms of their 

components on a Cartesian axis system with unit vectors, i, j, k at right angles. In this 

case i • i = 1, i - j = 0, i x i = 0, i x j = k, and similarly for the other combinations 

of i, j and k. 

Writing 

a = (aji + aj + 03k) and b = (b\\ + b^ + b3k). 

The scalar product 

a • b = (a\\ + a2j + a3k) • (b\i + b^ + b3k) 

= axb\\'i + a\b2\'i H- 

= (a\b\ + a2b2 + a3b3) 
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(all the other terms cancel because i • i = 1 and i • j = 0, etc.) 

The vector product 

a x b = (aiii + aj + a3k) x {bii + b^ + b3k) 

= fli^i(i x \) + axb2(\ x j)-+- 

= (a2b3 - b2aj)i + (a^bi - )j + («i^2 - bia2)k 
\ 

(all the other terms cancel because i x i = 0 and i x j = k, etc.). 

The vector product may be expressed in matrix form as a determinant: 

a x b = 

i 

«i 

b\ 

j k 
a2 a3 

b2 h 

A5.5 Volumes of unit cells in vector notation 

The volume of a unit cell defined by vectors a, b, and c is ‘the area of the base times 

the height’. 
The ‘area of the base’ is (a x b) = (ab sin 6*)n. The ‘height’ is the component of c 

resolved in the direction of the normal n (Fig. A5.4), i.e. the height = n • c = ccos (j). 

Hence the volume V = (a x b) • c. It is a scalar quantity. The vectors a. b, c in this 

equation may be ‘cycled’ but the sequence must be maintained, i.e. 

f = (axb)-c = a-(bxc) = (cxa)'b, etc. 

If the sequence is reversed, i.e. (b x a) • c, then a negative volume results. In practice this 

can occur if a left-handed set of axes are substituted, inadvertently or otherwise, 

for a right-handed set. 

The reciprocal unit cell a*, b*, c* can be derived from the ‘direct’ unit cell a, b, c 

in a similar way as outlined in Section 6.5.6. Note that the relationships 

* b x c 
a = —etc- 

are valid for the primitive unit cells for any axis system. 

Fig. A5.4. 

a 
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A5.6 Representing vectors by complex numbers: the Argand 

diagram 

The sum of a number of vectors a + b + c H-may be simply obtained graphically 

by adding them ‘top to tail’ as shown in Fig. A5.5. In the case where the vectors repres¬ 

ent the atomic scattering factors, /, for the atoms in the motif, the sum is the structure 
factor Fhk[. 

However, although graphical procedures are very instructive in that they clearly show 

the physical principles involved, they are also very clumsy and do not readily lend them¬ 

selves to analytical procedures. We need therefore an alternative method of representing 

vectors and the method we adopt is that of representing vectors as complex numbers. 

A complex number, z, is a number which has two parts of the form 

Z = x + iy 

where x and y are real numbers and i = %/^T. The first part, x, is called the real part of 

the complex number and the second part, iy, is called the imaginary part. These two 

parts can be represented graphically on what is known as an Argand diagram—a graph 

in which the horizontal axis (abscissa) represents x, the real part and the vertical axis 

(ordinate) represents iy, the imaginary part (Fig. A5.6). 

The complex number z is represented on the Argand diagram by the point P:(x, y) and 

the length OP = r = y/x2 + y2 is called the modulus of the complex number z (or 

simply ‘mod z’ or |z|). Hence (from Fig. A5.6) the complex number z can be written in 

the form: 

z = rcoscf) + irsin0 

where r (the modulus) and 0 (the angle) are known as polar coordinates. This expression 

can further be written in exponential form (Euler’s formula); cos 0 + i sin 0 = exp i0 

and cos 0 — i sin 0 = exp —i0, i.e. z — r exp i9. 
This representation of complex numbers in exponential form by means of the polar 

coordinates r and 0 allows us to add, subtract and carry out other mathematical opera¬ 

tions upon them without having to resort to rulers and graph paper. 

Fig. A5.5. 
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Fig. A5.6. 

For example, the addition of complex numbers, z\ + z2 + • • • is simply given by: 

Zi + Z2 H-= n exp \(j)i + r2 exp i<p2. 

or: 

Z\ +Z2~\-n COS + r2 cos 02 d-1- i(n sin /i + r2 sin <p2 H-) 

(sum of ‘horizontal’ components) + i(sum of ‘vertical’ components). 

This is the procedure used to find the structure factor Fua, the sum of all the atomic 

scattering factors,/, for the atoms in the motif. 

The complex conjugate of a complex number, symbol z , is one which has the same 

modulus r, but a negative angle /, i.e. 

z = r cos (f) — ir sin / = r exp —i 

The complex conjugate can be used, for example to determine the modulus r of 
a complex number, i.e. 

z • z* = r exp i(f) ■ r exp —icf> = r2. 
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Systematic absences (extinctions) 
in X-ray diffraction and double 

diffraction in electron diffraction 
patterns 

A6.1 Systematic absences 

In X-ray diffraction (and also, except for the complication of double diffraction, in 

electron diffraction) the intensities of reflections from certain planes with Laue indices 

hkl are zero. Such reflections are said to be, forbidden or extinguished or, better, system¬ 

atically absent since they arise from the centring of the unit cell and /or the presence 

of translational symmetry elements—glide planes and screw axes. The identification of 

systematic absences is very useful since it provides the ‘first step’ in crystal structure 
determination. 

The subject may be best introduced by considering the diffraction of light from a 

wide slit diffraction grating (Section 7.4). In the diffraction of light extinctions 

or ‘missing orders’ occur for certain ratios of the slit spacing a and the slit width 

d. For example, referring to Fig. 7.7, if the slit width d is set equal to one-third of 

the slit spacing a, then the zero order minimum of the central peak from a single slit 

(Fig. 7.7(b)) coincides with the angle of the third order diffracted peaks n = ±3 (Fig. 

7.7(a)). These peaks (and subsequently the sixth, ninth etc. order peaks) are therefore 

of zero intensity (i.e. extinguished). Other sets of systematic absences may be derived 

for other combinations of a and d—the most important being that when d = ^a 

(see Exercise 7.2). 

Systematic absences in crystals may be derived in two ways: either by a consideration 

of the geometrical consequences arising from the use of centred, rather than primitive, 

unit cells and the presence of glide planes and screw axes, or by application of the 

structure factor equation. The former approach is the proper one, since systematic 

absences arise solely as a consequence of the architecture of crystals—but the latter 

approach is a useful means of gaining practice and familiarity with the structure factor 

equation. We will start with both approaches for an fee crystal. 

Consider Fig. A6.1 which shows the unit cell vectors a, b, c for the conventional fee 

unit cell and the unit cell vectors A, B, C for (one variant) of the primitive rhombohedral 

unit cell. The origin is drawn at the front left-hand corner to help make clear the shape of 

the rhombohedral cell. 
Writing down the transformation equations for unit cell vectors or axes (see Sec¬ 

tion 5.8): 
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A = ^a + ^b + 0c 

B = + Ob + ^c 

C = 0a + ^b + ^c. 

Now, as shown in Section 5.8, Miller indices transform in the same way as unit cell 

vectors. Hence if (HKL) and (hkl) are the Miller indices of a plane referred to the 

primitive and fee unit cells, respectively: 

H = \h + \k + 0l 2H = h + k 

K = + Ok + ^l or 2K = h + l 

L = 0h + ~kJr^l 2L = k + l. 

Now H, K, L are all integers, odd or even; hence 2//, 2K, 2L are all even integers, from 

which it follows that (h + k), (h + /), (k + /) are also all even integers. 

An even integer is either the sum of two even integers, or two odd integers, but not 

mixed. Hence, for each identity, h, k, I are either all odd or all even integers. In other 

words the lattice planes from which reflections occur are those for which h, k, I are all 

even or all odd integers. When h, k, l are mixed (some odd, some even) the Miller index 

(hkl) describes a set of planes which are not lattice planes since they do not all pass 

through lattice points. 

Now let us derive the same result using the structure factor equation applied to an 

fee crystal with an identical atom (atomic scattering factor /) at each of the four 

lattice points in the cell. The (un v„ w„) fractional coordinate values of these atoms 

are: 

(ooo),(iio),(ioi),(oy). 
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Hence, 

Fhu = / exp 27ti(/z0 + kO + 10) +f exp 27ri (h~ + k^ + lO) 

+/ exp 27ri (h\ + kO +1\) +/ exp 2-m. (hO + k^ + l 4). 

Simplifying, and remembering that since the cell is centrosymmetric the 

ponents in the exponents vanish: 

Fhki =/(l + cos 27r(h + k) + cos 2n(h + /) + cos 27r(k + /)). 
* 

Now, cos27r (even integer) = +1 and cos27t (odd integer) *= — 1. The value of Fhki 

will depend on whether h, k, l are all even, all odd or mixed. It is easily seen that if they 

are all even or all odd Fhki — 4f and if they are mixed Fhki = 0. 

The conditions for systematic absences from body- and base-centred lattices can be 

derived in the same ways: either by referring the lattice to a primitive unit cell or by 

applying the structure factor equation. For example, for a body-centred cubic crystal 

with identical atoms at (000) and (H ^) 

Fhki — f exp 27ri(/i0 + £0 + 10) +/ exp 27ri {h\ + k^ + l^) 

— f( 1 + cos n(h + k + /)). 

Hence when (h + k + l) — even integer Fhu = 2f and when (h + k + /) = odd integer 

Fhki = 0. 
Systematic absences for glide planes and screw axes may be derived in the same way; 

an example of each will suffice to show the principles involved. 

Figure A6.2 shows a (monoclinic) crystal with a c-glide plane in the xz plane (the 

plane of the paper). The action of the c-glide is to translate any atom, atomic scattering 

sine com- 

c -glide 
and reflection 
in plane of 
paper 

Fig. A6.2. 



300 Appendix 6 

Operation of screw diad 

factor/, with fractional coordinates (uvw) to (nv^ + w). Substituting these two values in 

the structure factor equation: 

Fhk, = f exp 2-7ri (hu + kv + lw)+f exp 27ri (hu + kv + / (\ + w)). 

Consider the hOl reflections (k = 0): 

Fhoi = f exp 2m(hu + Iw) + / exp 27ri(/iu + Iw) exp 27ri ^ 1 

— f exp 2id(hu + Iw) [ 1 + exp 7ri/]. 

When / = odd integer, exp ml = — 1 and Fm — 0. This then gives the condition for 

systematic absences for the hOl planes; systematic absences occur when / equals 

an odd integer and, correspondingly, reflections occur when / equals an even 

integer. 

Figure A6.3 shows a (monoclinic) crystal with a screw diad axis, 2i along the y-axis, 

the action of which is to translate an atom with fractional coordinates (uvw) to 

(m (|fvj iv). Proceeding as before: 

Fhki = /ex p 2m(hu + kv + Iw) +/exp 2m{hu + + v) + Iw) 

consider the 0£0 reflections (h = l = 0) 

Foko = / exp 2m(kv) + / exp 27ri [k i + kv) 

= / exp 27ri(Av)[ 1 + exp mk]. 

When k — odd integer, exp nik = -1 and F0k0 — 0 and reflections only occur from 0kO 

planes when k equals an even integer. This result can also be seen intuitively: the action 

of the screw diad axis repeats the atomic layers at spacings equal to half the b lattice 
repeat distance. 

Table A6.1 summarizes the extinction criteria for lattices and translational symmetry 
elements. 

Table A6.2 lists the reflecting planes in cubic P, /, F and diamond-cubic crystals in 

order of decreasing dhki-spacing. For cubic crystals dhki = a/y/N where a = the lattice 
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Table A6.1 Extinction criteria for lattices and symmetry elements 

Lattice or symmetry Symbol Class of Condition for 

element type reflections presence 

Lattice type: hkl 

primitive P none 

body-centred I h + k + l=2 n 

centred on the C face C h + k =2 n 

centred on the A face A k + l =2n 

centred on the B face B h + l = 2n 

h, k, l 

centred on all faces F 
> 

all = n (odd) 

or all = 2n (even) 

rhombohedral, obverse R —h + k + l = 3n 

rhombohedral, reverse R h — k + l = 3n 

Glide plane || (001) a hkO h =2 n 

b k =2/i 

n h + k =2/i 

d h + k =4/i 

Glide plane || (100) b 0kl k =2n 

c l = 2/i 

n k + l = 2n 

d k + 1 = An 

Glide plane || (010) a hOl h =2n 

c l = 2/i 

d h H- / — 2 n 

n h + l = An 

Glide plane | (110) c hhl l =2/i 

n h + k =2/i 

d 2h+ 1 = An 

Screw axis c 2), 42,63 001 l = 2n 

3i,32,62,64 l = 3/i 

4i,42 l = An 

61,65 
l = 6/1 

Screw axis a 2i,42 hOO h = 2/i 

41T3 
h = An 

Screw axis || b 2i,42 OkO k =2n 

41,43 
k =4/i 

Screw axis || [110] 2i hhO h =2 n 

in = odd integer. 2n = even integer etc.) 

parameter and N = (h2 + k2 + l2). The conditions for reflection for a diamond-cubic 

crystal are h, k, l are all odd or all even integers (since a diamond-cubic crystal has an fee 

lattice) with the additional condition that (h + k +1) is either an odd integer or an integer 

which is an even multiple of 2. 
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Table A6.2 

N hkl cubic P cubic / cubic F Diamond cubic 

1 100 s/ 

2 110 s/ V 
3 111 V V a/ 

4 200 V V a/ 

5 210 a/ 
\ 

6 211 V V 
7 — 

8 220 V s! V a/ 
9 300/221 V 

10 310 V V 
11 311 V V V 
12 222 s! V V 
13 320 s! 

14 321 V V 
15 — 

16 400 V V a/ v/ 
17 410 ■J 
18 330/411 V a/ 

19 331 V V A! 

20 420 V V V 

Note 1 There are no squares of three numbers which add up to 7,15 
etc. This means that there are ‘gaps’ in the sequence of reflections 
for cubic P crystals, i.e. ‘line 7’, ‘line 15’ etc. are missing. 
Note 2 Cubic I crystals show a uniform sequence of reflections 
(with no ‘gaps’ as in cubic P crystals). 
Note 3 Cubic F crystals show a characteristic sequence of lines: 
‘two-together’, ‘one-on-its-own’, ‘two-together’ etc. 

A6.2 Double diffraction 

In electron diffraction the presence of face- or body-centring lattice points also gives rise 

to systematically absent reflections just as in the case of X-ray diffraction (the first group 

in Table A6.1). However, reflections which are systematically absent in X-ray diffrac¬ 

tion as a result of the presence of translational symmetry elements (glide planes and 

screw axes, Table A6.1) may, and usually do, occur in electron diffraction patterns. This 

is known as double diffraction and occurs because the intensities of the diffracted beams 

may be comparable with that of the direct or undiffracted beam—a consequence of the 

dynamical interactions between the direct and diffracted beams. The effect, in terms of 

the geometry of the electron diffraction pattern, is that a strong diffracted beam can 

behave, as it were, as the direct beam -and the whole pattern is in effect shifted so as to 

be centred about the diffracted beam. In the case of electron diffraction patterns from 

centred lattices all the spots are coincident and no new ones arise; but in most other cases 

new ones arise in positions in which the diffraction spots should be systematically 

absent. A simple example—that of electron diffraction from the hep structure—will 

make this clear. 
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diffraction pattern from hco metal. [12101 zone 
• • • • • • • • • • • • • 

10T0 ioTi 10T2 1013 1014 
• • • • • • • • • • • • • 

0000 0002 0004 
• • • • • • • 

I 

Fig. A6.4. 

In the hep structure the relevant translational symmetry element is the screw hexad 

(Fig. 4.9) which describes the symmetry of the sequence of A and B layer atoms (Fig. 

1.5(b)). Consider the conditions for constructive interference for Bragg reflections from 

the A layers of atoms, i.e. the (0001) planes with interplanar spacing doooi = c. When 

the path difference (P.D.) is 1A (constructive interference), the path difference 

between the interleaving A and B layers of atoms, interplanar spacing r/0002 = c/2 is 

\ A, which is the condition for destructive interference; hence the 0001 reflection is 

(systematically) absent. Second-order reflection from the (0001) planes (P.D. = 2A) 

corresponds to the first-order reflection from the (0002) planes (P.D. = 1 A). Continuing 

in this way it turns out that 000/ reflections where l is odd are systematically absent, as 

shown in Table A6.1. The same result may be found by applying the structure factor 

equation to the (0001), (0002), (0003) etc. planes, as in Example 2, Section 9.2: when / is 

odd the atomic scattering factors for the A and B layer atoms are equal and opposite. 

Now let us draw a commonly-observed hep electron diffraction pattern from the 

[1210] zone (Fig. A6.4), showing the systematically absent reflections 0001, OOOl, 

0003, 0003 etc. in the row through the origin1. Now suppose that the (strong) lOlO 

reflected beam acts as it were as the direct beam: the whole pattern will, in effect, be 

shifted from the origin 0000 to lOlO as shown by the arrow and spots will now appear in 

the systematically absent positions. The same result will be obtained for other choices of 

strong diffracted beams—as can easily be seen by making a tracing paper overlay in 

Fig. A6.4 and shifting the origin to the positions of different diffracted spots. 

Double diffraction can also occur in situations in which the electron diffraction spots 

of two (or more) crystals are present in the pattern. In such cases the double-diffracted 

1 Systematic absences also occur in every third row (not shown in Fig. A6.4). These arise because the 
A-iayer and B-layer atoms are in special equivalent positions in the hexagonal unit cell (see Section 4.6). This 
leads to the conditions for hkil: if h - k = 3n, / = 2n, i.e. in the third row the 3031,3033 etc. reflections are 
systematically absent. These conditions are given in the table in Fig. 4.13, space group P6^/mmc, for the special 

equivalent positions for hep structures denoted by the Wyckoff letters c and d. 
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Double diffraction o 
between two zones 0 

o 
o 

TT2t 

o 

Twin plane normal 
112//112, 

Fig. A6.6. 
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spots which appear may correspond to no d-spacing in either crystal—and are probably 

the biggest cause of the frustrated electron microscopists’ ‘unindexable’ patterns. Figure 

A6.5 indicates the geometry involved. Here, two (high order) patterns are shown 

consisting of widely separated rows (indicated by filled and open circles). The strong 

spots in the rows through the origin may act in effect as the direct beam, generating 

additional double diffraction spots in the positions marked by the letter d. The pattern 

appears to be from a relatively simple low-order zone—but of course it is not, and is 

either unindexable or (worse) may be indexed incorrectly. An example of the latter case 

is that of the electron diffraction patterns from twin-related plates or laths of ferrite (bcc) 

which occur in the microstructures of some structural steels. 

Figure A6.6 shows the spots (indicated by filled and open circles) for two bcc [110] 

zones twin-related in the (112) plane. Double diffraction between these twin-related 

zones gives rise to the spots marked d (i.e. d110 + d110T — dj where (110)x is the twin- 

spot of (110)). The presence of these spots indicates a pattern in which the spots outline 

an ‘elongated’ hexagon, as indicated, which is precisely the same shape as for an 

fee (110) zone—the four bcc {110} spots closer to the centre spot being identified as 

fee {111} spots and the two double-diffraction spots further away being identified as fee 

{200} spots. Since in steels duo (ferrite) is closely similar to dm (austenite), then this 

pattern may be misinterpreted as a (110) austenite zone—leading to the erroneous 

conclusion that this phase is present at the ferrite twin boundary. 



Answers to exercises 

Chapter 1 

1.1 Figure El.l shows a tetrahedron of height h and edge-length equal to the interatomic 

spacing a. The ‘B layer’ atom lies above the centre of the triangle formed by three ‘A layer’ 

atoms. The distance AC is % a cos 30 = a/y/3. Hence from a right-angled triangle 

ABC h2 = a2—1/a2 whence h = \j2!3a. Hence da = Ihla = 2y/2/3 — 1.633. 

1.2 As can be seen in Figure 1.13(d), the tetrahedron of four A atoms is not regular but has four 

shorter edges of length a\/3/2 and two longer edges of length a. However, unlike the 

octahedral interstitial site all four A atoms are equidistant from the interstitial X atom at 

the centre of the tetrahedron. The geometry is best appreciated with reference to a plan view 

(Fig. El.2) showing two bcc cells and one tetrahedral interstitial site which lies, by sym¬ 

metry, at height V4a in the common cell face. The distance from the centre of the tetrahedron 

to any comer is \J(a/2)2 + (a/4)2 = a\/5/4 = rx + rA. The closest distance between A 

atoms is along the direction of the body-diagonal of the cube, i.e. 2rA = 1/2%/3a. Hence 

rx + rA = ay/5/4 = rA\J5/3 = 1.291 rA whence rx = 0.291 rA. 

1.3 The interstitial site is at the centre of a triangular prism of height and side-length 2rA 

(Fig. El.3). The interstitial atom X at height rA is equidistant from all six comers of the 

prism. Hence, proceeding as in Exercise 1.1, AC = % 2rAcos 30° = rA2/-/3, and 

AX = -^4/3^ + r\ — rA\/l/3. 

Hence AX = rx + rA = 1.528rA whence rx = 0.528rA. 

B 

Fig. El.l. 
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