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General Editor’s Preface 

Most of the solids with which the solid state physicist or materials scientist 

are concerned are crystalline, sometimes single crystals, more often poly¬ 

crystalline aggregates, and it is vital to an understanding of their behaviour 

to possess an understanding of the atomic arrangements and consequent 

crystal symmetry in these materials. Most textbooks of crystallography, 

however, provide more detail of crystallographic techniques than the 

undergraduate or post-graduate student of materials science or physics 

normally requires. On the other hand they frequently give only a very 

brief account of the crystal structures of particular solids and the physical 
and chemical principles underlying the appearance of these structures. 

The present book, one of a series designed to cover the central topics in 

solid state science, aims to provide the basic understanding of crystal struc¬ 

tures, their examination by diffraction techniques and the influences that 

govern their form, required by a scientist concerned with solids at the 

atomic level. The careful account of diffraction of different types of 

radiation provides both the basic theory of crystallographic techniques 

and an account valuable in its own right of the interaction of radiation 

with static crystals. (The use of scattering studies to provide information 

about The Dynamics of Atoms in Crystals is the subject of the next text in 

the series by Professor W. Cochran). The discussion of the arrangements of 

atoms in real crystals requires for completeness the brief discussion given 

of the behaviour of electrons in crystals of different types; this topic will 

be the subject of a separate text to appear in the series—The Electronic 

Structures of Solids by B. R. Coles and A. D. Caplin. 

Drs Brown and Forsyth bring to this book their experience of many 

types of crystallographic investigation, and an understanding, from their 

own experience, of the needs in this field of many different types of 

scientist. 

Imperial College, 

London, 

1973. 

BRC 



Preface 

This book gives an introductory account of the crystal structures found 

in solid materials. It is intended for the student of solid state physics or 

materials science who wishes to understand and make use of crystallographic 

techniques and the results which have been obtained by using them. 

In the first chapter the ideas and nomenclature which form the foun¬ 

dations for the description of crystals and their structures are laid. This is 

followed by an account of the exceedingly powerful diffraction techniques 

which, during the past sixty years, have made possible the study of crystal 

structure on an atomic scale and have led to our knowledge of the bewil¬ 

dering variety of different structures known today. First, the production 

and properties of the three most commonly used radiations, X-rays, neutrons 

and electrons, are described. The next two chapters develop the theory of 

the scattering of radiation by crystalline materials; in the first the emphasis 

is placed on weak scattering by a general periodic potential and in the 

second the special features and areas of applicability of the scattering of 

X-rays, neutrons and electrons are considered. A final chapter on diffraction 

introduces a few of the experimental techniques which may be of use to 

the non-specialist crystallographer, such as the all-important powder 

technique and methods for the determination of the orientation of single 

crystals. 
Having thus introduced the major techniques for the study of crystals, 

the rest of the book is devoted to the principles underlying the stability of 

structures. An attempt has been made to avoid a rigid classification of 

structures by ‘bond type’, but rather to stress the relationships as opposed 

to the distinctions between the myriad crystal structures found in nature. 

The crystal structures of the elements are considered in some detail, since 

these illustrate in the simplest way most of the important principles of 

structure building. The necessary extra complications which occur in 

crystals containing more than a single atomic specie are covered in the next 

two chapters, the first on polar structures dealing with chemically dissimilar 



atoms and the second on binary alloys which illustrates the effects of size 

difterences. No treatment of the structures of organic compounds is 

appropriate since they add little to our understanding of structural 
principles. 

Finally, some guidance is given to the solid state physicist or materials 

scientist encountering a new material about the ways in which he may 

establish whether its crystal structure is already known and, if not, whether 

it is isomorphous with some known structure type. 

Cambridge and Chilton PJB 

1973 JBF 
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1 
Crystallographic Geometry 
and Symmetry 

1.1 Introduction: the crystalline state 

Any study of solids without a knowledge of the details of the atomic 

arrangements must of necessity be of a superficial nature. The science 

of crystallography is concerned with the theory and techniques by which 

these arrangements, the crystal structures, are established. The great majority 

of all solid materials are crystalline, that is the atoms of which they are com¬ 

posed are arranged in a highly regular way. It is this regularity, together 

with the attendant symmetry, that characterises the crystalline state. 

Only infrequently do the conditions of crystal growth favour the production 

of the large plane faces which are popularly associated with ‘crystals.’ 

The purpose of this book is to introduce the most important crystal¬ 

lographic techniques of general use to the student ot the solid state and to 

describe a number of crystal structures, chosen to illustrate the interplay 

of factors which determine the atomic arrangement. The fundamental 

technique for structure determination is that of diffraction. A brief account 

will be given of the production and properties ot X-rays, neutrons and 

electrons with wavelengths in the useful range and both theoretical and 

experimental aspects of their diffraction will be treated. 
The science of crystallography had its origins in the study ot the external 

morphology of crystalline minerals. The flat faces exhibited by these 

materials became the subject of quantitative study and it was found that 

any particular mineral could be characterized by its interfacial angles as 

measured by a contact or optical goniometer. These measurements led to a 

study of the symmetry and geometry of crystals which has been carried 

over usefully to the description of their internal structures. 

1.2 Crystal symmetry and the crystal lattice 

Before considering the external symmetry of crystals which is best 

described by means of the stereographic projection (§1.4) it seems more 
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profitable to consider the nature of the atomic arrangement in crystalline 

solids, its symmetry and its periodicity, since these properties give rise to 

the external morphology of crystals and to anisotropy in their physical 

properties. 
It is convenient to describe the symmetry of a crystal structure by means 

of symmetry elements. A symmetry element is an operation which leaves 

the pattern of the atomic arrangement unchanged. Figure 1.1 shows an 

array of circles in contact: it can easily be seen that the operation of 

rotations through 2tt/6 about an axis perpendicular to the plane of the 

paper and passing through the point A leaves the pattern unchanged. This 

axis is called a sixfold rotation axis or hexad. Similarly, there is a threefold 

rotation axis or triad through B. Another common symmetry operation is 

that of reflection and the symmetry element to which it corresponds is a 

mirror plane. There are mirror planes perpendicular to all the solid lines in 

Fig. 1.1. 

dab c 

Figure 1.1 Symmetry operators in part of an infinite two-dimensional array. Hexads 
pass through the points A and triads through the points B. There are mirror planes 
parallel to all the solid lines. Translations through the vector distances AC, AD, AE, 
CA, DA and EA leave the pattern unchanged. 

If we ignore the boundaries of the crystal, there is a further class of 

operations which leave the pattern unchanged, namely translations; tor 

example, the movement of the crystal through the vector distance AC 

(Fig. 1.1). In general, if we consider any point r in an ideal crystal then 
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there are other points r throughout the crystal which have identical 
environments. Here 

r = r + n\a + n2b + n3c (1.1) 

and nx, n2, n3 are arbitrary integers. The fundamental translation vectors 

a, b and c define the crystal axes and the displacement nxa + n2b + n3c is 
a translation operation. 

A unit cell of a crystal is defined as any polyhedron with the following 

properties: 

a) None of the above translation operations, other than the identity 

operation n\ - n2 - n3 =0, results in a translated parallelepiped which 

overlaps the original one. 

b) The complete set of parallelepipeds generated from it by all the above 

translation operations covers all points in space. 

A convenient way to select a unit cell is to associate an arbitrary point 

with its origin: the infinite array of points r' described by Equ. 1.1 with 

r = 0 then constitute the crystal lattice. In some simple structures the 

origin is chosen to be coincident with the centre of an atom, but this is by 

no means essential. The essential property of a lattice is that every lattice 

point has the same environment in the same orientation. A particular 

lattice may be described in any number of ways by different choices of 

the basis vectors a, b and c, which are inclined to each other at angles cy (3 

and 7. The most general shape of the unit cell is a parallelepiped, with sides 

of lengths a, b and c respectively, and in which a =£ b A c and a A j3 A 7. 

The external morphology of the crystal may, however, show the following 

additional symmetry elements: 

a) Rotations of 2ir/n about axes through the origin, where n = 1,2, 3. 

4 or 6. 

b) Reflections in planes containing the origin. 

c) A centre of inversion which takes r into —r accompanied by a change 

in hand. 

The arrangement of lattice points must possess all the symmetry of the 

external morphology and it is appropriate to choose a unit cell which 

reflects this symmetry. For example, the presence of a fourfold rotation 

axis (tetrad) enables a cell which is a tetragonal prism to be identified. 

1.3 The Bravais lattices and the seven crystal systems 

As long ago as 1848, Bravais was able to show that there are only 14 

space lattices and their unit cells are illustrated in Fig. 1.2. 
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Figure 1.2 The Bravais lattices. 

There are seven different shapes of unit cell each containing the 

equivalent of one lattice point. Each of these cells exhibits the highest 

symmetry possible (holosymmetry) in one of the seven crystal systems. 
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The cells selected for the remaining lattices contain an additional lattice 

point at the centre (/), in the middle of each face (F), or in the middle of a 

pair of faces (C(A or £)); these are therefore not true unit cells, but they 

were chosen by Bravais in order to bring out more clearly the relationship 

between the lattice and the crystal symmetry. The other possible combi¬ 

nations of adding additional lattice points to the seven primitive (P) 

Bravais lattices result in arrangements which are either (a) no longer 

lattices, or (b) lattices, but ones with a different symmetry to the original 

primitive lattice, or (c) lattices with the same symmetry as the original 

lattice but which may be described by one of the 14 preferred Bravais 

lattices after a change in axes allowed by the particular lattice symmetry. 

Examples of (c) above are illustrated in Fig. 1.3 in which we show that in 
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Figure 1.3 Equivalence between Bravais lattices (a) in the monoclinic system and 
(b) in the tetragonal system. 

the monoclinic system B - P and F- I = C(= A) with a fresh choice of a 

and c axes. In the tetragonal system F= 1, by re-defining the axes perpen¬ 

dicular to the tetrad. Figure 1.3 introduces the method of representing a 
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set of lattice points or atomic positions by their projected positions on a 

convenient plane which will be used frequently throughout this book. The 

distance of any point from the plane of projection is given as a fraction of 

the repeat distance parallel to the projection axis. 

The characteristic symmetry and unit cell dimensions for each of the 

crystal systems are listed in Table 1.1. 

Table 1.1 The seven crystal systems 

System Unit cell dimensions Essential symmetry 

Triclinic a A b A c a A (3 A 7 None 
Monoclinic a =hb A c a - y - 90° One twofold axis of rotation or inversion 

conventionally chosen parallel to b axis. 
Orthorhombic ai=-b A c a = (3 = y = 90° Three mutually perpendicular twofold 

axes of rotation or inversion parallel to 
a, b and c. 

Tetragonal a = b A c a = (3 = y = 90° One fourfold axis of rotation or inversion 
parallel to c. 

Hexagonal a-b^hc a = (3 = 90° 
y - 120° 

One sixfold axis of rotation or inversion 
parallel to c. 

Trigonal or 
Rhombohedral 

a = b = c a = (3 = y < 120° 
and 7^ 90° 

One threefold axis of rotation or inversion 
parallel to a + b + c. 

Cubic a = b = c a = (3 = y = 90° Four threefold axes parallel to the body 
diagonals of the unit cell. 

1.4 The stereographic projection 

At this point we shall interrupt our consideration of the internal sym¬ 

metry of crystals to introduce the stereographic projection It provides a 

convenient way of representing, in two dimensions, the three dimensional 

relationships between symmetry elements or crystal faces. 

The use of perspective drawings to illustrate the faces exhibited by a 

crystal is unsatisfactory: they are difficult to construct and do not yield 

quantitative information easily. In the stereographic projection a sphere is 

imagined to surround the crystal and from the centre of the sphere normals 

are drawn to the crystal planes (Fig. 1.4a). The point at which each normal 

touches the sphere is then projected back through the equatorial plane, 

which is the plane of projection, to the pole of the lower hemisphere as in 

Fig. 1.4b. The points where these lines cut the equatorial plane are the 

stereographic poles of the corresponding faces. The stereographic poles of 

faces whose normals cut the sphere in the lower hemisphere will project 

outside the projection of the equator (or primitive circle): they may also 

be projected inside this circle by using the upper pole as the pole of 
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projection. In this case, the poles are shown as open circles to distinguish 

them trom poles projected from the upper hemisphere which are shown as 

dots. A completed stereogram is shown in Fig. 1.4c; the curves connecting 

the poles are great circles (i.e. circles whose planes pass through the centre 

ot the original sphere) or zones. A set of faces whose normals are co-planar 

are said to lie in a zone and the edges formed by their intersections are all 

parallel to a single direction which is called the zone axis. It is a property of 

the stereographic projection that all zones project as circles on the stereo¬ 

gram and pass through diametrically opposite points on the primitive circle. 

Figure 1.4 The stereographic projection of a rhombic dodecahedron. 

A small circle or projection sphere is the locus of points which are at 

equal angular distances from a point on the sphere. Small circles project as 

circles, but in general the centre of the small circle will not project as the 

centre of the circle on the stereogram (Fig. 1.5). 

Vertical section Stereographic projection 

Figure 1.5 A small circle of angle ROP about P projects as a circle with diameter 

RPS', but with the projection of P at P' no longer at its centre. 
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An aid to the use of the stereographic projection is provided by the 

stereographic. net which is illustrated in Fig. 1.6. It consists of a series of 

great circles drawn at a suitable angular interval between two diametrically 

Figure 1.6 The Wulff net drawn at 2° intervals. 

opposed points on the primitive circle; superimposed on this is a series of 

small circles drawn about these two diametrically opposite points. A 

commonly available net is based on a projection sphere of 2-5 in radius 

with angular intervals of 2°. By rotating the net about its centre, all poss¬ 

ible great circles can be obtained together with all the small circles about 

points on the primitive circle. Should a small circle be required about a 

point lying within the primitive circle the net can be used to locate the 

two points which lie on the diameter drawn through the pole and which 

are at the appropriate angular distance from it. The projection of the small 
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circle can be constructed with compasses so that the two points lie on 
either end of its diameter. 

The angular distance between two face normals in a stereogram can be 

determined by rotating the stereographic net so that their poles both lie on 

the same great circle: the distance between them is then obtained from the 

intersections of the small circles with this particular zone. 

The zone axis or pole of a great circle can easily be located on the 

stereogram since it is 90° from all points in the zone (Fig. 1.7). The angle 

s 

Figure 1.7 Construction to locate the pole P' of the great circle QPR. Project P on to 
the primitive from Q to S; locate T such that SOT is a right angle. Re-project T from Q 
to give the pole at P\ 

Figure 1.8 Construction to determine the angle between two poles P', P". 
P is the pole of the great circle joining P* and P” which can be located using the 
construction illustrated in Fig. 1.4. 
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between two zones is the angle between their zone axes, which may be 

found in exactly the same way as the angle between two face normals: a 

graphical method for determining such an angle is given in Fig. 1.8. 

1.5 Point groups 

The complete set of symmetry operators in a crystal is called its space 

group. The group of operations which is obtained by setting all translations 

of the space group elements equal to zero is called the point group of the 

crystal, and it is this point group which controls its external morphology. 

There are 32 such ‘crystallographic’ point groups which are consistent with 

translational symmetry and a total of 230 space groups. (In enumerating 

the 32 point groups appropriate to crystal symmetry, it is convenient to 

start with the groups containing the minimum symmetry appropriate to 

the seven crystal systems and listed in Table 1.1.) The symmetry of a point 

group is most conveniently given either as a symbol or as a stereogram 

(see § 1.4) showing the point group of symmetry elements. Unfortunately 

there are two systems of symbols in current use: those due to Schonflies 

and to Hermann-Mauguin. The latter have been preferred by the Inter¬ 

national Union of Crystallography and are used in all its compilations; the 

former are frequently used in works on group theory. We shall adopt the 

International symbols, which are listed together with their meanings in 

Table 1.2, since their extension to the description of space groups gives 

Table 1.2 Point group symbols 

Symbol Meaning 

X or 
X2 or X2 

Xm or Xm 

X/m 

X/mm 
mm 

X2m or Xm2 

Rotation or inverse axis respectively. 
Subsidiary diad or diads exist perpendicular to X or X. 

The m denotes a symmetry plane or planes containing the axis X or X. 
Symmetry plane perpendicular to the axis X. 

A combination of Xm and X/m. 

Two mutually perpendicular symmetry planes: these intersect in a diad 
and hence the symbols 2mm and mm2 are sometimes used. 
The symmetry planes contain the axis X whereas the diads are 
perpendicular to X. 

23, 23, m3 Cubic system symbols always contain 3 as the second symbol denoting 
_ the four triads. 
43m, 432 The first symbol is m if there are symmetry planes perpendicular to 

(100), otherwise it denotes the rotation axes parallel to <100>. 
m2m A third symbol refers to the <110) symmetry: a diad parallel or a 

symmetry plane perpendicular to these directions. 
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much more information than that obtainable from the Schonflies notation. 

For convenience, however, the equivalent Schonflies symbol for the 32 

crystallographic point groups are given in Table 1.3. 

Table 1.3 The crystallographic point groups 

System 
Point group symbols 

International Shonflies 

Number of 
poles in the 

general form 

Diffraction 
symmetry 

Triclinic f 1 Ci i 1 i 
1 1 s2 (C2) 2 ( 

2 c2 2 1 
Monoclinic j m Co 2 2/m 

2/m C2h 4 
r mm C2V 4 

Orthorhombic 222 D2 (V) 4 mmm 

mmm D?hiVh) 8 J 
f 3 C3 3 1 3 

Trigonal 
3 s6 (C3/) 6 J 
3m C3o 6 1 
32 d3 6 3m 

V 3 m d 12 
f 4 C4 4 1 

4 3" 4 4 4/m 

4/m 8 ^ 
Tetragonal / 4 mm C40 8 1 

42 m D2 d 8 1 4/mmm 
42 d4 8 

y 4/mmm D4h 16 J 
f 6 c6 6 1 

6 c3h 6 6/m 

6/m Ceh 12 
Hexagonal J 6mm C 6v 12 1 

6m2 D3 h 12 > 6/mmm 
62 D 6 12 

V 6/mmm D6h 24 j 

/ 23 T 12 \ 
m3 

m3 Th 24 
Cubic < 43 m Td 24 

' 43 0 24 m3m 
V m3m Oh 48 

In developing the crystallographic point groups it is convenient to start 

with those containing a single n-fold axis of symmetry. It is easy to show 

that the allowed values of n cannot exceed 6: a proof is based on the 

existence of a minimum length R for a translation vector perpendicular to 
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the rotation axis. Operating on R with the rotation axis yields another 

allowed vector R', of the same magnitude as R but rotated through 2ir/n 

(Fig. 1.9a). Since R — R' must also be an allowed translation we can write 

down that its length must be greater than or equal to \R\, the smallest 

translation, i.e., 2\R\ sin (7r/n) > R, hence n < 6. 

Figure 1.9 The generation of translation vectors perpendicular to (a) a three-fold and 

(b) a five-fold rotation axis. In (a) \R - R'\> |/?|, IR + R'\= |/?| but in (b) \R' + R'\ < 

1 jR I and the axis is not consistent with translational symmetry. 

A fivefold axis is also excluded since it results in |R + R" | <R for the 

rotations shown in Fig. 1.9b. Thus the requirements of translational 

symmetry restricts rotation axes in crystals to n- 1,2, 3, 4, or 6. 

We can now derive stereograms showing the symmetry elements of each 

crystallographic point group and the group of poles which result from the 

action of these symmetry elements on a general point. Point group 3m is 

chosen to illustrate the method. 

Figure 1.10 shows stereograms containing (i) the symmetry elements 

3m, (ii) the 12 poles produced by operating these symmetry elements on a 

general pole and (iii) the complete set of symmetry elements present in 

the point group which has been obtained by inspection of (ii). 

All 32 point groups are illustrated in Fig. 1.11, mirror planes are shown 

as solid lines and rotation axes of order n by solid /7-sided symbols. Open 

/7-sided symbols are used for inversion axes, that is rotation by 27r//7 



LAUE SYMMETRY 13 

m 

Figure 1.10 Stereograms of (a) the symmetry elements 3m (b) 3m operating on a 
general pole and (c) all the symmetry elements included by inspecting (b). 

followed by inversion through a centre. It should be noted that the same 

point group may result from different sets of initial symmetry operators, 

e.g. 3/m = 6 and 3/mm = 6m: all this means is that the same total group of 

symmetry elements is implied by both groups of symbols. In the symbol 

42m, the order of the subsidiary symbols is important, the first subsidiary 

denoting the symmetry element chosen to lie along the X axis and the 

second a symmetry element which occupies a direction inclined to the X 

axis and not related to it by the principal axis. 

The point group symbols in both notations are given in Table 1.3, 

together with the number of poles in the general form. Special forms are 

groups of poles produced by the point group operating on a pole which 

bears some special relationship to one or more of its symmetry elements 

such that the total number of poles is reduced. The cube is a special form 

in all the cubic point groups. 

The most symmetrical point group in each of the crystal systems (the 

last entry in each block of Table 1.3) is known as the holosymmetric point 

group. The arrangement of other lattice points around any one always 

shows the holosymmetric symmetry of the system so that the convention¬ 

ally chosen cell also has this symmetry. The symmetry of the atomic 

arrangement within such a cell may have less than the holosymmetric 

symmetry and this lower symmetry may be reflected in the external faces 

of the crystal. For example, the regular tetrahedron belongs to the cubic 

system because it has the necessary four triads though it lacks the full 

symmetry shown by a cube. 

1.6 Laue symmetry 

The crystal classes may be grouped according to the symmetry they 

exhibit in their diffraction effects. FriedeVs law states that, in general, 

every crystal diffracts as if a centre of symmetry were present. (Exceptions 
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Figure 1.11 Stereograms showing the symmetry elements and the poles of a general 
form in each of the 32 crystallographic point groups. Mirror planes are indicated by 
full lines. 

to this law occur if the incident wave has an energy close to that of a strong 

transition between two energy states in the scattering system (see §2.4 and 

§3.11).) The last column of Table 1.3 lists the 11 Laue symmetry groups 

which describe the diffraction symmetry exhibited by the 32 crystal 
classes. 
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1.7 Non-crystallographic point groups 

In the previous two sections we have laid emphasis on the point groups 

which describe the symmetry of crystals. Many crystal structures exist in 

which groups ot atoms are arranged with a point group whose symmetry is 

inconsistent with the requirements of translation which are essential for a 

crystallographic point group. A commonly found example of this type is 

the occurrence of the point group 532, which describes the 15 twofold, 

10 threefold and six fivefold axes of the regular icosahedron. Many inter- 

metallic phases exhibit local areas in which the 12 neighbours to a central 

atom he at the corners of an icosahedron and the same figure is prominent 

in a number of virus particles such as tomato bushy stunt virus (Caspar, 

1956) and turnip yellow mosaic virus (Klug et al., 1957). Figure 1.12 shows 

the way the icosahedral V—AI12 groups are arranged to conform with an 

overall cubic unit cell in the intermetallic compound VA110 (Brown, 1957). 

Oag #al2 

6) 

OAl3 #V 

(b) 

Figure 1.12 Icosahedral groups of aluminium atoms about the vanadium atoms in the 

structure of VA110. (a) The vanadium atoms are at the centres of the icosahedra, which 
are drawn as though solid, (b) The packing within the unit cell: all Al atoms in contact 

with V are omitted. 
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1.8 Space groups 

We must now consider the symmetry elements required to describe a 

three-dimensional array of atoms within a crystal. In a point group all the 

symmetry elements pass through a point. To describe the regularity of a 

crystal structure, symmetry elements must be arrayed throughout the 

lattice and in addition to the pure rotation and reflection operators 

described previously, elements may occur in which their operations are 

combined with translations. These new elements are called screw axes and 

glide planes respectively and the translations which they introduce are 

simple sub-multiples of lattice vectors. The complete scaffold of elements 

is termed a space group and there are 230 such groups which can describe 

the symmetry of crystals. Each space group belongs to that specific point 

group which has the same symmetry elements in the same directions 

ignoring the translations associated with screw axes and glide planes. The 

space groups are fully described in the International Tables for Crystal¬ 

lography, Volume I, (1952): we shall consider one example, Pinna, 

belonging to the orthorhombic point group mmm. 

In the space group Pmna the first symbol tells us that the Bravais lattice 

is primitive (see § 1.3). The remaining symbols refer to the three mirror 

planes in the parent point group; in this space group the one perpendicular 

to the x axis is a true mirror plane, the one perpendicular to the y axis is 

an /2-glide plane, i.e. one which reflects accompanied by a translation of 

a/2 and c/2 and the one perpendicular to the z axis is an 22-glide plane, 

i.e. one which translates by a/2 as well as reflecting. Figure 1.13 shows 

(a) the disposition of these symmetry elements within the unit cell, 

(b) the positions they generate when a general point is introduced and 

(c) the additional symmetry elements which are implied in the original 

description. 
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Figure 1.13 The space group Pmna; (a) includes only the symmetry elements m, n 

and a, (b) shows the positions they generate when a single representative point is 

introduced and (c) illustrates the complete group of symmetry elements obtained by 

inspection of (b). 
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and which can be seen by inspection of (b). It should be noted that the 

arrangement ot equivalent positions is centrosymmetric as is the parent 

point group, and the number of general positions is the same as the number 

of poles (8) in the general form of mmm. If the cell had been C-, 1- or 

F-centred, however, the number of general positions would have been 
increased by 2, 2 and 4 times respectively. 

1.9 Magnetic symmetry 

In Sections 1.5-1.8 we have been considering the symmetry elements 

which describe relationships between scalar quantities. Many crystals, 

however, exhibit the phenomena of ferromagnetism and antiferromagnetism 

in which certain atoms in the solid possess net magnetic moments which 

have fixed orientations relative to the crystal lattice. The point groups and 
space groups that we have used previously are inadequate to describe the 

symmetry relationships which exist between magnetic moments since, in 

addition to rotation, reflection and translation, we must introduce the 

concept of vector reversal. 

In considering the effect of symmetry elements on the magnetic moment, 

it must be recalled that a magnetic moment is equivalent to a current loop: 

the moment vector is perpendicular to the current loop and its direction is 

given by the right-handed screw convention. The operation of reflection in 

a plane containing the current loop does not reverse the moment direction, 

whereas a mirror plane perpendicular to the loop, containing the moment 

direction, reverses the direction of current in the loop and hence the 

moment. In both cases the result of the reflection operation on magnetic 

moment, which is an axial vector, is the reverse of that on a position vector. 

This is true for all operations involving mirror inversion. 

For any magnetic crystal, each element of its space group should corre¬ 

spond to one of two elements in the magnetic space group. In one of these 

the operation of the element on the moment is that to be expected for an 

axial vector and in the other it is accompanied by the time reversal 

operator. The action of the time reversal operator is to reverse the direction 

of current in the loop and hence to introduce a moment reversal in addition 

to any implied by the parent element. 

We have now completed our discussion of the symmetry properties of 

crystalline solids, and the remaining sections of this chapter will be devoted 

to obtaining some geometrical properties of lattices which are of general 

use and which will be needed in later chapters. The most popularly recog¬ 

nised feature of crystals is their well-formed faces and it may be asked how 

these faces relate to the internal structure and the crystal lattice. Crystals 
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form faces whose planes have a high density of atoms. Such planes pass 

through many unit cells of the crystal and a continuous high density will 

be maintained only if the lattice vectors within the plane are short. 

1.10 Miller indices 

If the unit cell of a crystal is defined by the vectors a, b and c, then any 

crystal plane which intercepts the axes in lengths proportional to a/h, b/k, 

c/l respectively is denoted by its Miller indices (hkl) [Fig. 1.14]. The Miller 

indices of the plane making negative intercepts a/h, b/k, c/l are convention¬ 

ally written (hkl). The equations of the normal/? to the face can be 

written down in terms of its direction cosines 

(a/h) cos (pa) = (b/k) cos (pb) = (c/l) cos (j5c) (1.2) 

a 

Figure 1.14 The Miller indices of the plane with intercepts a/2, b and c is (211). 

The requirement for short lattice vectors to occur in a plane is that the 

Miller indices should be small integers, which is the law of rational indices. 

It is sometimes convenient to use four axes in the trigonal and hexagonal 

systems, since the rotation axes imply the existence of three equivalent 

axes at 120° intervals in the plane perpendicular to the rotation axis (c). 

This is the Miller-Bravais system of notation, the third axis being denoted 

u with corresponding index i. The first three face indices are not indepen¬ 

dent since h + k + i = 0: the third index is sometimes suppressed for this 

reason, the face (2131) being denoted (21.1). 
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A Miller index (hkl) will still define the same face normal direction when 

it is divided through by any common factor and it is conventional to use 

the reduced index when describing the external morphology of a crystal. 
However, the interplanar spacing (Fig. 1.14) will be changed by this 

process, being multiplied by the common factor. We shall see in Section 3.5 

that the interplanar spacing is particularly important in describing the 

diffraction from crystals and for this purpose any common factors must 
be retained. 

a 

Figure 1.15 The Miller indices corresponding to faces of a rhombic dodecahedron. 
Only faces in the upper hemisphere have been indexed, the indices corresponding to 
open circles will have negative / indices and would be denoted (101) (TOf) ( 01 T) and 
(Oil). J 

The interplanar spacing d corresponding to a plane (hkl) in a triclinic 
crystal is given by 

cos 7 cos p 

1 cos a 

1 

1 
cos 7 

COS p cos a 
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For a cubic crystal this reduces to 

d = a/yjh2 + k2 + l2 0-4) 

A simpler expression can be given for the triclinic case in terms of the 

reciprocal lattice constants (see §3.4 and §3.5). 

1.11 Zone axis symbols and the zone law 

The zone axis symbol, written [UVW], defines the direction of the zone 

axis as that from the origin to the point (Ua + Vb + Wc). Any two faces 

(hi kill), (/z2^212) define a zone axis which is parallel to their line ot inter¬ 

section and perpendicular to the plane containing the lace normals. Since 

the equations of planes through the origin and parallel to the laces are 

x v z x y z 
h\ — + ki — + h — = 0 and h2 — + k2 — + l2 — - 0 

a b c a b c 

the equations of the zone axis are 

a(kxl2 — lxk2) bdih2 — hil2) c(hik2 — kxh2) 

U — kil2 — l\k2 

V=lxh2 - hih (1-6) 

W = h 1 k2 - kih2 

Multiplication of these three equations by hh kx and lx respectively, 

followed by summation gives an immediate proof of the Weiss zone law 

hU+ kV+lW = 0 

If dhkJi) and (h2k2l2) lie in the same zone [UVW] a simple device known 

as ‘cross-multiplication’ is helpful in evaluating UVW. Each Miller index is 

written down twice and the appropriate products are obtained by multi¬ 

plying the pairs of numbers indicated by the arrows, subtracting the product 

for which the arrow points from right to left. 

hi 

h2 

k\ /1 h\ k 1 
V"" V" 

k 2 12 «2 k2 

h 
h 

There remains an ambiguity in the sign ot [UVW] since writing h2k2l2 

first results in [UVW]. Both symbols define the same line, the direction 

derived being the one which completes a right-handed set with the two 

face normals. 



ZONE AXIS SYMBOLS AND THE ZONE LAW 21 

We may determine by way of illustration the zone axis defined by the 

faces (Oil) and (123) as [ 1111 

0 1 1 0 1 1 

1 2 3 1 2 o 

1 1 1 
A similar relationship exists for the determination of the indices of a 

face which lies in two zones: if the zones are [1111 and [ 101 ] the common 

face is 

1 1 1 1 1 1 

T 0 1 T 0 1 

(1 2 1) 

Care must be taken in interpreting zone axis symbols for hexagonal axes 

using Miller-Bravais notation: it is usual to omit the non-independent index 

corresponding to the u axis from all calculations and the resultant co¬ 

ordinates are referred to the three remaining axes and written as [UVf h7]. 

The figure — (U + V) must not be inserted in such a zone symbol since in 

general Ux + Vy =£ — Wii, where x etc. denote unit vectors parallel to the 

three hexagonally equivalent axes. When, however, a calculation leads to 

a face index (hk. /), the third figure can be re-inserted using the relation¬ 

ship h + k + i = 0. For example, the zones containing (2021), (0110) and 

(1010), (0111) can be found to have zone axis symbols 

2 0 1 2 0 1 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 1 0 1 1 

[T Of 2] [Olfl] 

The face common to them both is given by 

1 0 2 1 0 2 

0 T 1 0 T 1 

(2 1.1) 

with the full index (2131). 
In metallurgical texts a second convention for hexagonal zone axis 

symbols is frequently adopted in which four symbols are present and the 

sum of the first three is zero. The zone axis direction [UVSW] given by 

the vector from the origin to the point Ua + Vb + Se + Wc, where a = b - e 

and their directions are parallel to the three equivalent hexagonally related 

axes. Using this convention the zone law becomes hU + kV + iS + IW = 0. 
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A convention exists for the use of brackets around three integer symbols 

such as the Miller or zone indices: 

(hkl) denotes the Miller indices of a plane. 

{hkl} implies all those planes (hkl) related by the point group 
symmetry, namely all faces of the form (see §1.5). 

[JJVW] is a zone axis symbol. 

(UVW) implies all the zone axes related by the point group 

symmetry. 

1.12 The angles between zones and faces 

The general equations for the angles between two zones, a face and a 

zone and between two faces are complicated, but very simplified forms 

exist for the cubic system, where the zone axis [UVW] defines the same 

direction as the face normal (hkl), where U - h and V = k and W = /. For 

the cubic system, the angle 0 between two faces (h\k\l\), (/z2^2^2) is given 

by 

h\h2 + k 1 A;2 + hh n 
cos 0 =- : — v1 •') 

yc2+c2+/i2 fh22+k22+i22 

The angle between (111) and (110) in the cubic system would therefore 

be given by 

1+1 y/2 
cos (111) A (110) =-= =0-8163 

VV2 V3 
(111) A (110) = 35° 1 6' 

Tabulations of the angles between a large number of low index faces in 

the cubic system are given in the International Tables for Crystallography, 

Volume II, (1959) together with the more general equations applicable to 

crystal systems of lower symmetry. Fixed sets of interplanar angles also 

occur between normals in the plane perpendicular to the unique axis for 

the trigonal, hexagonal and tetragonal systems. 



2 
The Production and Properties of 
X-rays, Neutrons and Electrons 

2.1 Introduction 

In the first chapter of this book we have tried to show how the external 

symmetries of crystals are related to their internal regularities, and to 

provide a framework within which the essential geometry of crystal struc¬ 

ture can be described. The external geometry and symmetry of crystals is 

easily recognised in well-formed specimens and the measurement and 

description of these external features was for a long time the main concern 

of crystallographers. However since 1912, the year in which the first X-ray 

diffraction pattern was observed, a complete revolution has taken place in 

the science of crystallography. It has been possible to deduce in full detail 

the internal structures of countless solids, many of which from their 

external appearance alone would never have been recognised as crystals. 

The foundation upon which this revolution has been based is the phenom¬ 

enon of crystal diffraction, primarily X-ray diffraction but strongly supple¬ 

mented in recent years by electron and neutron diffraction. It is to a study 

of these methods and to the results obtained by them that the rest of this 

book is devoted and it is appropriate, therefore, at this point to give a brief 

account of the production and some of the essential properties of these 

radiations. 

2.2 Production of X-rays 

X-Rays are emitted when a beam of electrons strikes a surface. They 

have been shown to form part of the electromagnetic spectrum with wave¬ 

length of the order of 1 A. The precise spectrum of the X-rays emitted 

depends both on the material of the surface and on the energy of the 

electron beam. A commonly used type of X-ray ditfraction tube is shown 

schematically in Fig. 2.1. 

Electrons are emitted from the hot filament which is a coil of tungsten 

wire held at a negative potential with respect to the metal anode which is 
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earthed. Electrons emitted from the filament are focused by the space- 

charge distribution and by the geometrical form of the cathode; they are 

accelerated by the applied potential and strike the anode over an area about 

1 x 01 cm in size. X-Rays are emitted from this area and some of them 

pass out of the tube through beryllium windows in each of its four sides. 

Evacuated glass envelope Filament 

Anode Be window 

Figure 2.1 Schematic diagram of a sealed-off X-ray tube. The filament and cathode 

assembly is held at a high negative potential with respect to the anode which is earthed. 

X-rays emitted from the surface of the anode emerge through the beryllium windows. 

The windows are positioned so as to let through X-rays emitted at angles 

around 6° to the surface of the anode, thus the projected emitting area 

observed through one pair of windows is about 0-1 x 0-1 cm (square focus) 

and that through the other two windows 0-01 x 1 0 cm (line focus). The 

anode must be made of a highly conducting material so that the heat 

generated can rapidly be transferred to the cooling water. If it is necessary 

to use a target which is a poor conductor, such as molybdenum, it is usually 

prepared as a thin layer plated or sprayed on to the surface of a good con¬ 

ductor such as copper. A glass envelope, which carries the beryllium win¬ 

dows, encloses both anode and cathode. It is highly evacuated during the 

manufacturing process and then sealed. 

2.3 Spectrum of X-rays emitted 

The spectrum of X-rays obtained by bombarding a copper target with 
35 keV electrons is illustrated in Fig. 2.2. 

It can be seen to consist of a broad band of continuous (white) radiation 
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together with a number of discrete emission lines. Both parts of the spec¬ 

trum can be understood in terms ot quantum theory, the continuous 

radiation results Irom inelastic collisions between the exciting electrons and 

K x 

Wavelength (X) 

Figure 2.2 Spectrum of X-rays emitted by a Cu target at 35 keV excitation. 

those of the target material; energy lost in the collisions is emitted as 

X-radiation. The white spectrum has a well-defined minimum wavelength 
(maximum energy) which corresponds to a collision in which an electron 

loses the whole of its energy in a single process. Thus 

X min. 
he 

JVo or ^min. 12-34/Kq (2.1) 

where X is in A and Vq in kV. 

It is found in practice that the maximum intensity of the white spectrum 

occurs at a wavelength approximately twice Xmjn. The characteristic line 

spectrum of the target is emitted during the rearrangement of the orbital 

electrons of the target atoms consequent on the ejection of one or more 

of their inner electrons by the bombarding electrons. The K emission lines 

correspond to radiation emitted when electrons fall from the outer shells 
to fill holes in the K shell; the Kce line corresponds to an L-K transition 
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and the Kj3] line to an M to K transition. Similarly, the L and M lines corre¬ 

spond to transitions into the L and M shells respectively, the a lines corre¬ 

sponding to transitions with a change of unity in the principal quantum 

number and the strongest j3 and 7 lines to changes of 2 and 3 respectively. 

The selection rules for these transitions are such that the Kct line is a close 

doublet with the stronger component Koq having twice the intensity of 

the weaker K«2 component. As the atomic number of the target element 

increases, the energy difference between successive shells increases and 

hence the wavelength of the characteristic K lines is shortened. Table 2.1 

gives a list of the wavelengths of the Kct and K/3 lines of some commonly 

used target materials. 

Table 2.1 Data for some common target materialsf 

Target 
element 

Wavelength (A) 
w 

/3-Filter 
_x_ < 

Ka2 Kcq 
Mean 

Ka 

K 
K/3! absorption 

edge 
Element 

Thickness 
x 10-3 

(cm) 

Cr 2-2935 2-2896 2-2909 2-0848 2-070 V 1-7 
Mn 2-1057 2-1017 2-1031 1-9101 1-896 Cr 1-7 
Fe 1-9399 1-9360 1-9370 1-7565 1-743 Mn 1-8 
Co 1-7928 1-7889 1-7902 1-6208 1-608 Fe 2-0 
Ni 1-6617 1-6578 1-6591 1-5001 1-488 Co 2-0 
Cu 1-5443 1-5405 1-5418 1-3922 1-380 Ni 2-2 
Mo 0-7135 0-7093 0-7107 0-6322 0-620 Zr 11-3 
Rh 0-6176 0-6132 0-6147 0-5456 0-533 Ru 7-3 
Ag 0-5638 0-5594 0-5608 0-4970 0-486 Rh 7-7 

t The filter thickness given is that required to reduce the intensity of the Kj3 line relative 
to the Ka by a factor of 100. 

2.4 Absorption of X-rays 

When an X-ray beam passes through matter its intensity is attenuated by 

an amount which depends upon the thickness and density of the material 

and also on the wavelength of the radiation. For any material and wave¬ 

length it is possible to define a linear absorption coefficient /a such that the 

ratio of the intensity (/) transmitted normally through a thickness t, to 

the incident intensity (/q) is given by 

///o=e-^ (2.2) 
The absorption of an element can be described by a mass absorption 

coefficient /um such that 

Mm = M/P 

where p is the density. 

(2.3) 
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To a good approximation the absorption of a compound or mixture 
depends only on the elements present and their proportions and not on 

the state oi combination. The linear absorption coefficient of a multi- 

component material can therefore be expressed as 

M = plPiUrm (2.4) 
i 

where pm/- is the mass absorption coefficient of the zth element in the 

material and pt the fraction by weight of that element, the sum being 

taken over all elements present. There is one further absorption coefficient 

which is often tabulated; it is the gram-atomic coefficient which is given 
by 

Mg ~ Mm ^ (2.5) 

where W is the atomic weight of the element. The gram-atomic absorption 

coefficient is useful in calculating the absorption in chemical compounds 

whose formulae are known. In such a case the linear absorption coefficient 

M = P I niidgi/2 riiWi (2.6) 
i 

where rii is the number of atoms of element i in one formula unit, pgz- its 

gram-atomic absorption coefficient and Wf its atomic weight. 

The wavelength dependence of absorption coefficients is illustrated in 

Fig. 2.3 which shows the mass absorption coefficients of nickel and of 

barium as a function of wavelength. It can be seen that there is a general 

tendency for the absorption coefficient to increase with increasing wave¬ 

length. Superimposed on this increase are the effects of a number of 

‘absorption edges'] at wavelengths just below the edges there is a steep 

increase in the absorption and at the edge itself there is a nearly vertical fall 

in the coefficients to a value which may be a factor 10 smaller than the 

value just before the edge. These absorption edges occur at X-ray energies 

near which there is a resonant interaction between the incident radiation 

and one of the electronic levels in the atoms of the absorber, thus each 

absorption edge can be linked with a group of X-ray emission lines of the 

absorbing element. The K absorption edge corresponds to the resonant 

ejection of a K shell electron into the continuum; it is therefore at a wave¬ 

length close to, but rather shorter than, the K emission lines. It is perhaps 

worth mentioning that when the wavelength of the radiation is near to an 

absorption edge there is a significant change in the scattering power ot the 

atom and hence of its atomic scattering factor (see §3.6). This phenomenon, 
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usually referred to as anomalous scattering, is due to the resonant inter¬ 

action and leads to a change in phase of the scattered radiation at wave¬ 

lengths just below the edge where the absorption is high. At such wave¬ 

lengths the atomic scattering factor becomes a complex quantity and it is 

possible to observe departures from Friedefs law (see § 1.6 and §3.11). At 

wavelengths below the absorption edge there is of course excitation of 

fluorescent radiation as the electrons relax into the holes left vacant by the 

Wavelength (X) 

Figure 2.3 The wavelength dependence of the X-ray mass absorption coefficients of 
nickel and barium. 

resonant excitation. This radiation often gives an unwanted high back¬ 

ground level to X-ray photographs; it is therefore necessary to consider the 

possibility of fluorescence when selecting a suitable radiation for use in a 

particular problem. For a sample containing copper, Cu K radiation could 

be used because its energy is just insufficient to excite fluorescent K 

radiation from the copper of the sample; however, if the sample contained 

nickel, fluoresence would occur with the copper K/3 radiation and to 

avoid a high background it would be necessary either to filter out the Kj3 

radiation or to use a target material giving a longer wavelength. 
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One use of the K absorption edges is in enabling the K/3 lines to be 

attenuated with respect to the Ka, so that an approximately monochro¬ 

matic X-ray beam can be obtained lor diffraction purposes. The appropriate 

filter material is an element whose atomic number is less than that of the 

target material by one or perhaps two units. The K absorption edge of the 

filter should lie between the Ka and K/3 lines of the target and as close to 

the K/3 line as possible. Under these conditions the absorption coefficient 

of the filter for K/3 radiation will be much greater than that for Ka and 

hence, by using an appropriate thickness of filter, the transmitted radiation 

can be made to consist mainly ot the Kce line. The appropriate (3 filters for 

the commonly used radiations and the thicknesses required to attenuate 

the j3 radiation relative to the a by a factor of 100 are listed in Table 2.1. 

2.5 Production of electron beams for diffraction purposes 

Electron beams, whether for diffraction or for other purposes, are 

almost invariably produced by thermionic emission from a heated cathode. 

After emission the electrons are accelerated to the required energy by 

passing through an electric field and are focused by electrostatic and 

magnetic lenses into a narrow beam. The path of the beam must be in a 

high vacuum both to avoid electrical breakdown under the applied poten¬ 

tials and to prevent absorption and scattering of the electrons themselves 

by gas molecules. The electron gun and incident beam focusing system are 

very much the same as those of an electron microscope and, in fact, many 

electron microscopes are designed so that they can also be used for obtain¬ 

ing diffraction photographs. Such systems, however, often have the dis¬ 

advantage of rather small apertures so that only spectra diffracted at 

relatively low angles can be observed. This difficulty is overcome in appar¬ 

atus designed specifically for electron diffraction, and Fig. 2.4 is a schematic 

drawing of the electron-diffraction apparatus used by Vainstein and 

Pinsker (1958). 

The electron gun can be used with accelerating potentials up to 100 kV 

and consists of a heated filament held at a positive potential with respect 

to the surrounding cylindrical hood which has an exit hole OT mm in 

diameter. The anode section contains a diaphragm through which the beam 

passes at the end of its accelerated path. The magnetic lens is used to focus 

the beam in the plane of the fluorescent screen when diffraction images 

are being observed. An alternative position for focusing is just in front of 

the specimen, in which case a shadow image with a magnification of about 

50 times is obtained on the screen. The position and orientation of the 
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specimen at A can be adjusted from outside the vacuum envelope using rods 

actuated through bellows couplings. An alternative specimen position 

which gives a larger range of scattering angles is provided at B. 

Fluorescent screen or 

photographic plate 

Figure 2.4 Schematic diagram of an electron diffraction apparatus. 

Electrons with the energies used in diffraction are very strongly absorbed 

in matter. Specimens which are to be used in transmission must therefore 

be in the form of thin films a few hundreds of Angstrom units thick and it 

must be remembered, when reflection photographs are taken of thicker 

specimens, that only the surface layers of the specimen contribute to the 

diffraction pattern. 

The small penetration of low-energy electrons into a crystal is exploited 

in the technique commonly known as LEED (low-energy electron 

diffraction). This technique is used to study the structure of surfaces using 

electrons in the energy range 10-500 eV (150 eV — 1 A). The penetration 

of such electrons into a solid is limited to between 3 and 10 A, i.e. from 

one to three atomic layers; hence the scattering depends very largely on 

the two-dimensional structure of the solid’s surface. Electrons scattered in 

reflection from the surface of the sample are detected either by a Faraday 

collector or on a fluorescent screen. A review of the technique is given by 

Bauer (1969). 

2.6 The production of thermal neutron beams 

Diffraction of thermal neutrons was first observed in 1936 by Von 

Halben and Prieswerk and it was recognised, at about this time, that 

neutron scattering could provide a powerful tool for the investigation of 

crystalline solids. However the only neutron sources available then were of 

radioactive origin (and hence of very low flux) so that the potential of the 
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method could not be realised. With the advent of nuclear reactors the 

position has been entirely changed, since such reactors are essentially 
neutron generators. 

In a simple beam reactor the fuel elements, which may be of natural 

uranium or of uranium enriched in the 235U isotope, are embedded in a 

moderator and form the reactor ‘core’. In most modern beam reactors the 

moderator is either water or heavy water. The fast neutrons which are 

emitted when a 235U nucleus undergoes fission are slowed down by 

collisions with the atoms of the moderator and are then more likely to 

cause fission in further 235 U nuclei. The reactor will operate if, on average, 

at least one of the neutrons emitted in a fission causes a further fission. The 

output power of a reactor is controlled by the insertion of rods made of 

material (usually cadmium) which has a high capture cross-section for 

thermal neutrons. The reactor core is surrounded by a neutron reflector, 

which must be a good scatterer and low absorber of neutrons; these are 
just the properties required of a good moderator and the two may be made 

of the same material. The core and reflector must be surrounded by a 

biological shield of suitable material and thickness to attentuate to a safe 

level all radiations emitted by the reactor. Neutron beams for experimental 

purposes pass down tubes which pierce the shield and usually lie in the 

horizontal plane passing through the mid-point of the core. Figure 2.5 

shows a much simplified plan of an experimental beam reactor. 

Biological shield 

Core 

Experimental 

beam tubes D20 moderator 

and reflector 

Figure 2.5 Simplified plan of a high flux beam reactor showing the lay-out of 

horizontal beam tubes. 
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The distribution of energies of the neutrons emerging from the reactor 

depends to some extent on the direction of the tubes with respect to the 

core. Ideally, if the moderator were sufficiently thick the neutrons would 

be completely thermalised and the energy distribution would be Maxwellian 

at the temperature of the moderator. In practice this situation is not realised 

and the beams emerging from radial tubes (those pointing at the core) 

contain a relatively high proportion of fast and epithermal neutrons and 
also significant numbers of 7-rays. On the other hand, tubes pointing 

tangentially to the core give beams containing a significantly higher 

proportion of thermal neutrons and many fewer 7-rays. 

2.7 Monochromatisation of neutron beams 

In all cases the spectrum of neutron wavelengths available from the beam 

tubes is continuous and there is no thermal neutron equivalent of the 

characteristic X-ray lines. Usually, a necessary preliminary to diffraction 

experiments is to obtain a ‘monochromatic’ neutron beam containing only 

a small range of wavelengths. There are two methods by which such mono¬ 

chromatisation may be carried out, the first of these being by velocity 

selection using a chopper. The chopper consists of an absorbing disc which 

has a suitably shaped channel cut through it. The disc is spun rapidly about 

its axis so that only those neutrons will be transmitted which are incident 

on the opening as it passes the line of flight and travel with a velocity close 

to (2rco)/(27r — 0), where co is the angular velocity of rotation and 0 the 

angle between the entrance and exit holes. The transmitted beam consists 

of pulses of neutrons all travelling with approximately the same velocity. 

The range of velocities (and hence of wavelengths transmitted) depends on 

the width of the channel through the rotating disc and on its angular 

velocity. A considerable improvement in wavelength discrimination is 

obtained by using two or more choppers in series, each carefully phased 

relative to the others. Such a system can give pulses of neutrons of about 

6 ps duration with a wavelength spread of as little as 1%. 

The second, and much more commonly used, method for obtaining a 

monochromatic neutron beam is by using a Bragg reflection (see §3.5) 

from a large single crystal to select a small range of wavelengths. The crystal 

may either be used in reflection (cut so as the Bragg planes are parallel to 

the large surface) or in transmission, with the Bragg planes perpendicular to 

the surface. The former method is theoretically the more efficient but, 

because of geometrical convenience, the latter is more often used. With 

careful selection of a monochromating crystal, up to 60% of the neutrons 
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within the selected wavelength band will be reflected. The most commonly 

used crystals are beryllium, copper and germanium. The range of wave¬ 

lengths reflected depends on the degree of collimation of the incident and 

reflected beams, and on the degree of perfection of the monochromating 

crystal. Such a monochromator will give a continuous beam of neutrons 

with wavelength resolution ol around 4%. One disadvantage of crystal- 

monochromatised radiation is that a crystal set to reflect radiation of 

wavelength X from the (h, k, l) planes will reflect radiation of wavelength 

X/2 from the (2h, 2k, 21) planes. For this reason it is usual to work at 

wavelengths close to one Angstrom unit, which is on the short wavelength 

side of the peak of the neutron spectrum of the reactor; the half-wavelength 

radiation is then much reduced in intensity because of the sharp fall at 

short wavelengths of the spectral intensity curve. Another method of over¬ 

coming this difficulty is to use the (111) reflection of germanium or silicon 

because the scattering power of the (222) planes is zero in this instance. 

2.8 Absorption of neutrons 

Neutrons in general interact rather weakly with matter because of their 

electrical neutrality. A neutron beam is therefore only slightly attenuated 

by passing through most solids and consequently neutron absorption 

coefficients are usually much smaller than the corresponding X-ray absorp¬ 

tion coefficients. There are a few notable exceptions provided by elements 

such as boron, cadmium and gadolinium which have a high capture cross- 

section for neutrons in the wavelength range around 1 A. The nuclear 
reaction involved in neutron capture by each of these nuclei has a different 

resonant energy; neutrons with energies equal to or greater than this can 

excite the state corresponding to the combined nucleus and are therefore 

heavily absorbed. Neutrons with energies just below the resonant values 

cannot excite this state and are therefore not absorbed, although they are 

strongly scattered because of the existence of the virtual combined state. 

This effect is the neutron equivalent of an X-ray absorption edge, a sharp 

discontinuity in the absorption coefficient, an enhancement of the scattering 

cross-section at energies just below the edge and the occurrence of an 

imaginary contribution to scattering (90° phase difference) at energies just 

above the edge. As in the case of X-rays, the occurrence of an absorption 

edge may be turned to advantage in the construction of useful filters; thus 

Pu, which has a resonant capture at 0-52 A, may be used to discriminate 

against the X/2 component of crystal-monochromatised radiation of around 
1 A wavelength. 



3 
General Theory of Crystal Diffraction 

3.1 Introduction 

The measurement of scattering has played a fundamental role in the 
development of modern physics. Recognition of the wave character of 
matter requires that all scattering will give rise to diffraction on a scale 
which will be observable if the size of the scattering object is comparable 
with the wavelength associated with the scattered radiation. The scattering 
from any object whose dimensions are much smaller than this wavelength 
will be independent of angle (isotropic): the scattering from any uniform 
object whose dimensions are much larger will be governed by the rules of 
geometric optics. In the intervening range of size, the angular distribution 
of the scattered amplitude can be described by a form factor and this form 
factor is determined by the distribution of scattering matter within the 
object. The reader will already be familiar with the form applicable to slits 
and discs in optical diffraction: for example, the Airy function shown in 
Fig. 3.1a. A less obvious example is the electric form factor of the proton 
for high energy electron (up to 200 GeV i.e. down to 5 x 1CT15 cm wave¬ 
length) scattering shown in Fig. 3.1 b; the details of this have enabled the 
charge distribution within the proton (radius ~ 10“13 cm) to be deduced 
(see for example Wilson and Levinger, 1964). 

Scattering can be observed from crystals so long as the radiation interacts 
in some way with the constituent atoms. The diffraction from the crystal 
as a whole may be considered in two stages: firstly the scattering from a 
single atom, which is described by its form factor; secondly the diffraction 
due to the regular arrangement of these atoms within the crystal. It will be 
clear from the above considerations that the form factor depends upon the 
nature and the range of the interaction between the radiation and the atom. 
For example, since the range of interaction between the nucleus and the 
neutron is of the order of 10”13 cm, the form factor for scattering of 
neutrons with wavelength 1 A (10~8 cm) will be essentially isotropic. 
Diffraction due to the lattice structure is similar in character to that of a 
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diffraction grating. The three-dimensional nature of the periodicity in a 

crystal concentrates the diffracted radiation into specific directions. As in 

the case of the optical grating, the angular separation of the diffraction 

maxima is proportional to the wavelength and inversely proportional to the 

periodicity. Indeed, this reciprocal relationship between the characteristic 

lengths of the object and its scattering pattern is common to all diffraction. 

Figure 3.1 (a) Form factor for scattering of light by a disc-shaped opening of radius a. 
(b) Proton electric form factor for high energy electron scattering (data given by Wilson 
and Levinger, 1964). 1 fermi = 10“15 m. 

Apart from the precise physical mechanism of the interaction, the con¬ 

ditions which govern the formation of diffraction patterns are very similar 

for all types of wave disturbance. In this chapter therefore we shall discuss 

the general features of diffraction by crystals which are common to all 

types of wave. The physical mechanisms giving rise to electron, X-ray and 

neutron diffraction and the special features which these introduce form 

the subject of Chapter 4. 

3.2 The general equation for weak scattering 

Throughout this section, and most of those that follow, we shall assume 

that the crystal is a weak scatterer so that the process of scattering does 

not have a significant effect on the incident wave. This also implies that 

the interaction between the wave field and the crystal is a small pertur- 
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bation of the conditions outside the crystal, so that the scattering can be 

calculated using first-order perturbation theory. The extent to which this 

approximation is not valid will be considered in Section 4.17. We also 

assume that the distances between source and crystal, and between crystal 

and detector, are very long compared with the wavelength so that the 

conditions are those for Fraunhofer diffraction. This assumption is fully 

justified since the wavelength is of the order 10~8 cm and the other 

distances not less than a few cm. The discussion will be limited to elastic 

scattering: that is, scattering of radiation of the same wavelength as the 

incident beam. 
Consider a plane wave having wave vector Kq incident on a small piece 

of crystal and let us choose an arbitrary origin O within the crystal (Fig. 

3.2). We assume that, because of the interaction between the wave and the 

Figure 3.2 The relationship of the incident and scattered wave vectors K0 and K to 

the scattering vector K. 

material of the crystal, each point within the crystal is the source of a 

spherical elastically scattered wave. The amplitudes of these spherical 

waves will depend upon the physical mechanism of the interaction but we 

may assume that they will be proportional to some function of the density 

of scattering matter located at their origins. Let us suppose that this 

function is P(r), where r is the vector distance of the point in question 

from O. 

We wish to find the resultant amplitude scattered with wave vector K' by 

the whole crystal. At distances far from O the phase difference between 

the radiation scattered in the direction of K' from O and from P (vector 

distance r away) is 

y . Kq — r. K' — r . (Kq — K') — r . K (3.1) 
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where K is the scattering vector and 

K = - K! = 
47T . 0 
— sin — 
X 2 (3.2) 

Thus, it the amplitude arriving at R trom a volume element dr at O is given 
by A0P(0) dr, that arriving from P is A$P(r) eiK'r drr. 

The total amplitude at R is obtained by integrating over the whole 

volume ol crystal, when the scattering amplitude at R is given by 

A0 J P(r)eiK r di> 
crystal 

(3.3) 

The total scattered intensity at R is 

1 = I0 J P(r) dK-r drr 
crystal 

(3.4) 

3.3 The intensity diffracted by a lattice of point 

Suppose now that the only scattering in the crystal arises from point 

scatterers, with scattering amplitude S, arranged on the corner points of a 

lattice defined by the basis vectors a, b and c. In this case, the integral of 

Equ. 3.4 can be replaced by a summation over all the lattice points. In this 

sum r = n\a + njb + n$c where nni and n3 are integers. If the crystal is a 

parallelepiped consisting of N\, N2 and 7V3 cells in the a, b and c directions 

respectively, then the intensity scattered with scattering vector K is given by 

/ = 

No N1 

2 2 I Se 
n\ = 0 n2 = 0 n3 = 0 

N 3 

V Z iK. (rz]0 + n2b + n$c) 

N i 2 N i 2 n3 
V . n^a 
zl e 

V qiK. n2b v QiK. (n3c) 

«! = 0 n2 = 0 n2 = 0 

Each of the terms in the product is the square of the sum of a geometric 

progression; the value of the first term is 

1 — cos (N\K . a) _ sin2(i7V1/f . a) 

1 — cos (K . a) sin2 {\K . a) 
(3.5) 

This term has a maximum value when \K. a is an integral multiple of it. 

When this occurs, both numerator and denominator are zero and in the 

limit their ratio is Ah2; Equ. 3.5 tends to zero when . a - (m + —\ 7r, 
\ N\J 
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m being an integer. It has subsequent subsidiary maxima whenever %N\K. a 

is an odd integral multiple of — The sizes of the subsidiary maxima 

decrease rapidly and if Nx < n the height of the nth sub-maximum is 
N 2 / 2 \ 2 
—4r - . Now the unit cell edges of most crystals are a few Angstrom 
7r~ \2n + 1 / 
units (10~8 cm) in length, so that even in a very small crystal of thickness 

say 10“4 cm there will be at least 100 cells in each direction. There are 

thus at least 100 equally spaced maxima between each pair of main 

maxima. Since the heights of these are very small except very near the 

main maxima, having dropped to 1% by the seventh, it is a good approxi¬ 

mation to equate the first term of Equ. 3.5 to zero unless K. a = 2irh where 

h is an integer. Thus the total intensity, which is the product of three 

similar terms, will be essentially zero unless simultaneously 

K . a = 27t/z 

K.b = Ink 

K. c = 2irl 

where h, k and / are integers. 
When these three conditions are satisfied the intensity is N-^N^N^ = N2, 

where N is the total number of unit cells in the crystal. 

3.4 The reciprocal lattice 

In order to describe more easily the conditions for non-zero scattering 

it is convenient to introduce a reciprocal lattice. The values ot K for which 

such scattering occurs can be defined by 

K=2ir(ha* + kb* + lc*) (3.6) 

where a*, b* and c* are basis vectors defining the reciprocal lattice such 

that 

a . a* = b . b* = c . c* = 1 (3.7) 

and 

a . b* = b . c* = c . a* = b . a* = c . b* = a . c* = 0 (3.8) 

Thus the scattering vectors for which non-zero intensity is diffracted by a 

lattice of point scatterers are given by the radius vectors to points of the 

associated reciprocal lattice multiplied by 27r. 
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3.5 The Bragg equation 

We now want to use the detraction conditions given above to derive the 

familiar Bragg equation which expresses these conditions in terms of the 

distance between parallel crystallographic planes. Figure 3.3a shows a plane 

with Miller indices hkl intersecting the three crystallographic axes. 

Figure 3.3 The geometrical conditions for Bragg reflection from a set of planes with 
Miller indices {hkl). 

P is the base of the perpendicular from the origin O on to the plane and 

OP = d, the spacing between successive hkl planes. Let p be a vector parallel 

to OP passing through O, then, as in Equ. 1.2 

a.p b.p_c.p 

hkl 
\p\ d (3.9) 

If we write p as a vector in the reciprocal lattice so that 

p - xa * + yb* + zc * 

then Equ. 3.9 becomes (making use of Equ. 3.7 and 3.8) 

x _y _ z 

h~ k~ / 
p\d (3.10) 

A particularly simple solution of this equation occurs when x = h,y = k, 

z = /, then \p\d = 1 and/7 is the reciprocal lattice vector ha* + kb* + Ic*. 

The condition for strong diffraction with this reciprocal lattice vector is 
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that 

K = 27rp (3.11) 

The directions of incident and diffracted wave vectors for this value of K 

are shown in Fig. 3.3b, they are related as though by reflection in the 

planes hkl at glancing angle 6 where d = 0/2. Now from Equ. 3.1 and 3.1 1 

477 
27rp = — sin 0 

X 

and combining this with Equ. 3.10 we obtain the Bragg equation 

2d sin 6 (3-12) 

One may note that other solutions of Equ. 3.10 than the one chosen 

describe higher orders of diffraction and would be given by the more 

general equation 

n\ = 2d sin 6 

It is however more convenient to describe the nth order diflraction trom 

the planes with Miller indices (hkl) as first-order diffraction from planes 

(nh, nk, nl) and to retain the simple Bragg equation i.e. Equ. 3.12. 

The reflection relationship between the incident and diffracted beams 

when the Bragg condition is satisfied has led to the widespread use of 

‘reflection’ to describe the diffraction. The diffracted beam with scattering 

vector 2n(ha* + kb* + Ic*) is commonly called ‘the (hkl) reflection’. It is 

also worth pointing out that Equ. 3.11 shows that the reciprocal lattice 

vector ha* + kb* + Ic* is in the direction of the normal to the plane (hkl). 

As was mentioned in Section 1.10, the spacing d of planes hkl may be 

expressed rather simply in terms of the reciprocal lattice vectors. The most 

general equation (for a triclinic cell) is 

(2J2 = d*2 = h2a*2 + k2b*2 + ,2C*2 + 2klb* . C* + 

+ 2lh c* .a* + 2hka* . b* (3.13) 

3.6 Scattering from a real crystal 

In a real crystal each unit cell contains, not a single point scatterer, but 

an assembly of atoms at positions within the cell detined by the crystal 

structure and having the symmetry of the space group to which the 

crystal belongs. The radius vector to any point in such a crystal may be 
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written as 

r - ti\a + n2b + n^c + rj + r\ 

where ri\ a + n2b + zz3c is the radius vector to the origin of the particular 

unit cell in which the point lies, r, is the vector distance of the centre of 

the zth atom from the origin ot the unit cell (we suppose that the point in 

question lies within the zth atom) and r\ is the vector distance of the point 

from the centre of the zth atom. The integral of Equ. 3.3 can then be 
written 

N\ -\N2-\ N3-l n 

II 

0
 2 2 2 .2 

n x ~ 0 n2 = 0 «3 = 0 

'Aq-1 n2~\ n3-1 

0
 

II 2 Ql 
= 0 n2=0 n3=0 

n c f 

2 ( 1 PM) elK- n 

Plir'i) QiK • (H \a + n2b + n3c + rt + rj) (jr , 

x 

n 
i = l atom 

(3.14) 

there being n atoms in the unit cell. The terms within the square brackets 

are identical with those arising in the case of point scatterers and show that 

the scattered amplitude is essentially zero unless K is 2tt times a reciprocal 

lattice vector. The integral over the atom 

J Piir’i) elK• d7>; =fi(K) (3.15) 
atom 

is the scattering factor for the zth atom. Its magnitude and dependence 

upon K is given by the nature of the interaction between the atom and 

the incident wave which will be considered later. Inserting this into 

Equ. 3.14 and writing 

n =xta + ytb + ztc (3.16) 

and 

K = 2ir(ha* + kb* + lc*) 

we obtain 
n 

A=A0N 2 fj(K) e2^hxi+ *yt+ fei) (3.17) 
1 = 1 

the sum being taken over all the atoms in the unit cell. Thus the scattered 

intensity is given by 

/ = IqN2 

n 

2 f(K) Q27Tl(hxi + kXi + lzi> 
i = 1 

2 

(3.18) 
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It should be clear from this discussion that the intensity of the wave 

scattered elastically from a crystal can be evaluated in three stages. Firstly, 

the size and shape of the crystal lattice defines the directions in which 

scattering will occur, and these are most conveniently found using the 

reciprocal lattice. Secondly, the individual atoms in the unit cell are con¬ 

sidered and the scattering due to each of these is represented by an appro¬ 

priate atomic scattering factor or form factor. Lastly, the magnitudes of the 

form factors combined with the actual atomic positions in the unit cell 

enable the sum term in Equ. 3.17 to be evaluated: this sum is known as 

the structure factor. The values of the structure factors determine the 

relative intensities of the diffraction spectra permitted by the reciprocal 

lattice. 

3.7 Systematically absent reflections 

The value of the structure factor depends on the positions of atoms 

within the unit cell and these positions must show the symmetry of the 

space group to which the crystal belongs. If this space group has a non¬ 

primitive lattice, or contains one or more translational symmetry elements, 

then the phase relationships between the scattering from atoms related by 

these elements are such that for certain classes of reflection the structure 

factor is always zero. The way in which this arises is most easily seen by 

considering a few simple examples. 

Body-centred (I) lattice 

In a crystal having a body-centred (/) lattice, for every atom in the unit 

cell at a position (*/, jy, z/) there is a related atom at + x,-, \ + y/, \ + z/). 

From Equ. 3.17 the structure factor 

n 

F(hkl) = 2 fi(K) zlni{hx‘+ ky> * ,zi> 
i = 1 

and when the lattice is body-centred this can be written 

nil 

Fihkl) = 2 fi(K) (Q27Tkhxi + kyi + lzd + e27rf((T + Xi)h + (£ + y{)k + (| + zt)D} 
i = 1 

nil 

= 2 fi(K) [ e2^- + kyi + ] [ 1 + + k + l) J 
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Table 3.1 Systematic absences introduced by non-primitive lattices and 
translational symmetry elements 

Description 
Type of 

reflection 
affected 

Condition for non-zero 
structure factor 

Non-primitive A hkl 
lattices B hkl 

C hkl 
F hkl h, k and / all even or all odd 
I hkl h + k + l = 2n 
R hkil h + 2k + / = 3n 

Glide planes a 1 to b (.hOl) h = 2 n 
a 1 to c (hkO) h = 2n 
b 1 to c (MO) k - 2n 
b 1 to a (0 kl) k = 2n 
c 1 to a (0 kl) l = 2n 
c 1 to b ChOl) l = 2 n 
n 1 to a (0 kl) k + / = 2n 
n 1 to b (hOl) h + l = 2n 
n 1 to c (M0) h + k = 2n 
d 1 to a (Okl) k + l = 4n 
d 1 to [1101 Chhl) 2h + l — An 

Screw axes 2! || to a (M0) h = 2n 
2 j || to b (0H0) k - 2n 

21, 42,631| to c (00/) l = 2 n 
31, 32, 62, 641| to c (00/) l = 3n 

4i, 43|| to c (00/) l = 4 n 

61, 6S || to c (00/) l = 6n 

where the summation is taken over atoms not related by the body-centering. 

Now 1 + Qnl(h + k + 0 = 1 + cos 7x(h + k + /) + / sin 7r(/z + k + l) 

= 1 + cos ir(h + k + /), since h, k and / are integers 

= 0 if h + k + / is odd, or equal to 2 if h + k + / is even. 

Thus the structure factor F(hkl) will be zero unless h + k + l is even. 

b-glide plane perpendicular to c 

If the unit cell contains a h-glide plane perpendicular to c, and the origin 

of the cell is chosen so that the glide plane passes through z- 0, then for 

every atom at Xi, yt, Zi there will be a related atom A/, \ + jy, — z/. The 
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structure factor then becomes 

n/2 

p(hkl) = 2 fi(K) (Q2ni(hxi + tyi+ fef) + £ri(hxi + kQ+yj) - lzt)) 
/ = 1 

where the summation is over those atoms not related by the glide plane 

n/2 
F(hkl) = 2 f’(K) (Q27ri(hxi + kyt + hi) + e7rik Q2iri(hxi + kyt - Iz^ 

i = 1 

when / = 0 this becomes 

n/2 

F(hkO) = I fi(K) (e2”(toi+ W)[ 1 + ] 
Z = I 

The term in square brackets is zero when k is odd and hence if a crystal 

possesses a fr-glide plane perpendicular to c, reflections of the type hk0 

are absent when k is odd. 
Similar considerations to those given can be applied to deduce the 

systematic absences in other non-primitive lattices and for other types of 

translational symmetry element. The results obtained are summarised in 

Table 3.1. 

3.8 Intensity diffracted by a uniformly rotating crystal 

In the foregoing sections we have calculated the intensity scattered in a 

particular direction by a small parallelepiped of crystal. We have seen that 

this intensity is critically dependent on the relative orientation of the 

crystal and the incident wave vector. Now, since measurements of the 

structure factors must be made in order to determine the atomic positions, 

it is necessary to find some quantity which depends mainly on the structure 

factor and is not critically dependent on the crystal setting. Such a quantity 

is provided by the integrated intensity. Suppose a crystal is rotated with a 

uniform angular velocity co about an axis perpendicular to K in a beam of 

incident intensity /q. If E is the total power diffracted by the crystal as it 

sweeps through a Bragg reflection, then the integrated intensity of this 

Bragg reflection is defined as Eoj/Iq. 

Now from Equ. 3.14 and 3.5, the intensity diffracted with scattering 

vector K is 

I = I0\F(K)\2B2(K) (3.19) 
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where F(K) is the structure factor and B2(K) is the interference function 

B2(K) 
sin2 %Ni K. a 

sin2^K. a 

sin2\N2K. b 

sin2jK . b 

sin2 ^N3K. c 

sin2^A. c 
(3.20) 

The power diffracted into a small range of solid angle d£2 about A is 

7dF2 = 70 \F(K)\2B2 (A) dFl 

Consider a set of rectangular Cartesian coordinates x, p and z in the 

A-space of Fig. 3.4a with x parallel to A' and y in the plane of A0 and 

A'. In terms of these coordinates it can be seen that 

dp dz X2 
dFZ = ■ ^ = —s dpdz 

IA 'i 2 47T 

so that the total power diffracted 

II p = lo J J \F(K)\2B2(K) 
y ^ 

X^ 

47T2 

when the incident wave vector is Aq is 

dp dz 

(a) d y (b) 

Ko O 

Figure 3.4 The orientation of the incident and scattered wave vectors and the 

scattering vector as a rotating crystal passes through the position for Bragg reflection. 

As the crystal rotates there will be no significant scattering except at 

angles very close to 26q where 6q is the Bragg angle. The scattering vector 

A therefore moves through the same angle as the incident wave vector Kq 

as shown in Fig. 3.4b. In a small time increment dt the angle turned is 
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d0(= co dO and the total energy scattered during this time is P dt - 

P(d(J)/co). From Fig. 3.4b it can be seen that 

\Kd(P\ = \PP'\ 
dx 

cos 0q 

cbc 

A | cos 6 o 

X dx 

47r sin 6 q cos 6 o 

X dx 

27r sin 26Q 

so that as the crystal rotates through the reflecting position the total energy 

scattered is 

/ P X dx 

co 27r sin 20 o 
J7J IF(/di2b2(a:) 

X3 

87t3 sin 20 o 
dxdydz (3.21) 

Now dxdydz is a volume element in A-space, and any A-vector near to 

the direction of the hkl reciprocal lattice vector can be written 

A = 2tt [ (h + X)a* + (k + Y)b* + (/ + Z)c*] (3.22) 

so that the volume element dxdydz becomes 8773a*. (b* x c*) dXdYdZ. 

The interference function B only has an appreciable value when X, Y and Z 
in Equ. 3.22 are small, and since F(K) is a slowly varying function of A' we 

may replace it by F(hkl) and take it outside the integration of Equ. 3.21. 

The integrated intensity can then be written 

E x3 /*/*/* 
— = \F(hkl) |2 - fl dXdYdZ (3.23) 
I0 V sin 20o J JJ 

X Y Z 

where V is the volume of the unit cell, since from Equ. 3.7 and 3.8 

a * (/?* x c*) = 
1 

a . (b x c) 

1 

V 

The integration of Equ. 3.23 is separable into three similar terms when 

the value of B is substituted from Equ. 3.20. The first of these is 

/x 
ttN\ K. a 

sin2 ttK . a 
dX = 

sin2 + X) 

sin2 ir(h + X) 
dX = / 

sin“ 7tN\X 

sin2 7rX 
dX 

x ... x ..v"' ' x 

Since the integrand is only different from zero when X is small, we may 

take the limits of integration as + 00 and — °°. When X is small, sin27rX = 

(nX) and the integral can be approximated as 

sin2 7tNj X 

(irX)2 
d X = N 

* /- 

sin2 U 
d U = Ni (3.24) 
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and thus the integrated intensity is given by 

Eco /V3 
—-= \F(hkl)\2 Fsi 2d~0 = \F(hkt)\2 n2v = Qv (3.25) 
yo u sin 2d0 

where n is the number of unit cells per unit volume and v is the total volume 

of the crystal. The integrated intensity per unit volume of crystal is com¬ 
monly referred to as Q. 

3.9 The Fourier transform 

It is convenient to introduce here the concept of the Fourier transform. 

(A brief outline of the properties of this transform are given in the Appendix 

for readers not already familiar with it.) In Section 3.2 we showed that the 

amplitude scattered by a crystal with scattering vector K is 
oo 

A(K)= \P(r)eK-rdTr 
- OO 

i.e., a volume integral in real space. 

The equation simply represents a Fourier transformation relationship 

between the functions A (K) and P{r) so that, applying Fourier’s integral 

theorem, we obtain 
oo 

P(r) = J A (K) e ~iK ■r drK 
- OO 

i.e., a volume integral in Ai-space. 

Now we found previously that A(K) = F(K)B(K) where F(K) is the 

structure factor and B(K) is the amplitude of the interference function. 

Then, since B(K) is small unless K = 2n times a reciprocal lattice vector 

and F(K) is essentially constant over the ranges of K for which B(K) is 

non-zero, we can write 

K = ((h + X)a* + (k + Y)b* + (7 + Z)c*)2tt 

r - xa + yb + zc 

dXd YdZ 
dtk - dAdTdZ (a* . (b* x c*)) =-—— 

so that P(r)=Z 2 2™—jffB(XYZ)dXdYdZ 
- OO - CO — oo 

h k l 

where the integration is to be carried out around one reciprocal lattice 

point. 
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Now B(XYZ) is the product of three terms of the form 

1 — exp (27tz7Vi X) 

B{X) = iz— 1 — exp (2mX) 

and when N\ is large the value of the integral approaches unity. Thus 

| OO OO CO 

P(xyz) = — 2 2 2 F(hkl) 
Y _OO -OO -CO 

h k l 

(3.26) 

From this equation we conclude that if the structure factors of all reflec¬ 

tions could be measured it would be possible to deduce P(xyz) uniquely. 

Unfortunately this can never be achieved, because reflections corresponding 

to all possible combinations hkl can never be observed using radiation of 

finite wavelength. For, since 

X = 2d sin 6 
47T 

K 
sin 6 

and the maximum value of sin 6 = 1, Kmax. = 47r/X. Thus the summation for 

P{r) is perforce terminated at reflections with# values of 47r/X. The effect 

of this termination of the series is to limit the resolution with which P(r) 

can be determined. Since the Fourier coefficients with periodic lengths less 

than 2n/Kmax = X/2 are omitted, variations of P(r) over distances shorter 

than this cannot be deduced from the summation. For maximum resolution 

a short wavelength is used and reflections observed out to as high an angle 

as possible. 

3.10 The phase problem 

The second major difficulty in deriving the distribution P(r) from the 

structure factors is that these cannot as yet be measured directly in an 

experiment. The quantity which is usually measured is the integrated 

intensity (§3.8) and this is proportional to the square of the structure 

factor. In general, the structure factor is a complex quantity so that all 

that can be determined from the measurement of integrated intensity is 

its amplitude, its phase being unknown. The problem of determining the 

phases of the structure factors is usually the major difficulty in a structure 

determination. There are very many methods which can be used in attempts 

to solve it; however it would not be appropriate to give an account of such 

methods here. Suffice it to say that it is usually possible to deduce an 

approximate structure for a crystal using such methods and taking due 
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account ot the symmetry, the sizes of the atoms and any details of the 

chemical configuration which may be known. If the structure amplitudes 

calculated for this trial structure are in fair agreement with those deduced 

from the integrated intensities, then the phases calculated from the trial 

structure can be used with the measured structure amplitudes to obtain 

the distribution P{xyz) and hence a better approximation to the structure. 

It is worth noticing that it the structure has a centre of symmetry the 

phase problem is greatly simplified. Suppose a certain structure has a 

centre of symmetry: if we choose the origin of the unit cell to be coinci¬ 

dent with this centre, then every atom at X/>'/Z/ is related by this centre to 

a similar atom at x/>yz/. The structure factor 

F(hkl)=2 ft Q^hXi + kyf + lzi) 
i - 1 

can now be written 

n/2 
F{hkl)= 2 fi [e^TriihXi + ky>i + Izj) + ^-2-niQiXi + kyt + 

i = 1 

n/2 

= 2 2 f cos 27r(hxt + kyt + lz;) 
i = 1 

where the sum is to be taken over all atoms in the unit cell not related by 

the centre of symmetry. This shows that, when a centre of symmetry is 

present, then as long as the scattering factors// of all the atoms are real, the 

structure factor will be real and the phase problem is reduced to one of 

sign determination. 

3.11 Friedel’s law 

It was mentioned in an earlier chapter (§1.6) that in most cases there is 

no difference in the intensities scattered by the planes hkl and hkl, even 

though the crystal may not possess a centre of symmetry. The truth of this 

statement may be seen by examining the form of the structure factors for 

the two reflections 

F(hkl) = 2 f exp 2m(hx + ky + Iz) 

= 2 f cos 2n{hx + ky + Iz) + i 2 fi sin 2n{hx + ky + /z) 
i i 
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similarly Ffhkl) = 2 fi cos 2ir(-hx - ky - Iz) + i 2 f sin 2n(- hx - ky - Iz) 
i i 

= 2 fi cos 2ir(hx + ky + Iz) — i 2 fi sin 2u{hx + ky + Iz) 
z i 

The measured intensity is proportional to \F(hkl)\2 which can be seen to 

be the same for the two cases so long as the atomic scattering factor f are 

real. The equivalence of the intensities of reflections hkl and hkl, unless 

anomalous scattering is present, means that it it usually impossible to 

determine directly from the symmetry of the scattering whether or not a 
crystal possesses a centre of symmetry. This indeterminacy is known as 

Friedel’s law. 

3.12 Scattering from disordered systems 

Many crystals which are encountered in practice do not have perfectly 

ordered structures; a simple and important example is a random solid 

solution. In such a disordered crystal, the positions which the atoms 

occupy may be perfectly regular, but these positions are occupied randomly 

by one or the other component of the solid solution. Since our derivation 

of the scattering formulae has assumed that each set of equivalent positions 
is occupied by a single atomic species, it is of interest to see to what extent 

the same formulae will be valid for disordered structures. To do this we 

define a mean atomic scattering factor for each set of equivalent positions 

and let this be f for the /th set in the cell. Then we can write the scattering 

factor for the /th atom of the /th set in the ^th cell as 

fijn = fj + A fijn 

where the A fjn are the differences of the scattering factors of atoms at 

each of the positions from the mean. Thus 

2 2 A fijn = o and also 2A fijn = 0 
j n n 

if the disorder is completely random. 

The scattered amplitude A(K) then becomes 

A(K) = 22 f qiK- {r™f + 2 Z 2 A fjn 2K'irnij) 
n j n j i 

When K = 2n(ha* + kb* + lc*), z,Ktn =] 

and A(K) = NF(hkl) + 2 2 eiK ■ r‘i 2 Afijn 
j i n 

= NF(hkl) 

since the second term is zero. In this case, 

F(hkl) = 227/ eiKr‘i. 
i i 
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When A + 2ir(ha* + kb* + lc*) the first term is zero and 

A(K)=2 2Afin tiK ’‘n, 
n i 

Since the disorder is random, the values of Af\jn are completely uncor¬ 

related with the particular values of / and n. The contributions Afijn AK-rmj 

to the sum over n (the cells of the crystal) and i (the atoms in an equivalent 

set) can be represented on an amplitude-phase diagram by a series of 

vectors of length Afin in random orientations to one another. This is an 

equivalent situation to the random walk problem where Afjn is the step 

length; the resultant amplitude, being the mean distance travelled in n steps 

is ((Afjn )2AQ1/2. If all the equivalent positions are subject to random dis¬ 

order and A//2 is the mean-square deviation of the scattering factors from 

the mean ol the zth atom ot the cell, then the scattering when K is not 2tr 

times a reciprocal lattice vector is \A{K)\2 = TV 2 Af2. 
i 

We may conclude that when random disorder is present in a crystal, the 

scattering can be considered in two parts; the first part appears in the same 

positions as would be observed for an ordered structure, the appropriate 

structure amplitudes being calculated using the mean atomic scattering 

factor appropriate to each site in the unit cell. The second part, which has 

no equivalent in an ordered structure, is zero at the Bragg reflections but 

elsewhere has the intensity TV 2 Aff. This part, which is known as 

incoherent scattering, is independent of crystal orientation and only 

depends upon K through variations in the scattering factors with angle 

which affect A// ; it therefore appears as a more-or-less uniform background 

in the diffraction pattern. 

Let us take as an example a simple binary alloy having a body-centred 

cubic structure and containing a fraction x: of atoms with scattering factor 

A and a fraction (1 — x) with scattering factor B. The mean scattering 

factor for such an alloy is Ax + B( 1 — x) and the differences of the 

scattering factors from the mean are 

A — B — Ax + Bx - (A — B)(l — x) 

for sites occupied by A atoms, and 

B — B — Ax + Bx - (B — A)x 

for sites occupied by B atoms. Hence the mean-square deviation of the 

scattering factors is 

(A -B)2[( 1 - x)2x + x2(1 -*)] =(A -B)2{x-x2) 

so that the incoherent intensity would be N(A — B)2{x — x2). 
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3.13 The effect of temperature on the scattering 

A further important departure from complete regularity in a crystal 

arises from the oscillations, due to thermal energy, of the atoms about 

their mean positions. A rigorous treatment of the scattering from a lattice 

containing oscillating atoms would require a detailed knowledge of the 

phonon spectrum of the crystal and is far beyond the scope of this book. 
For further details, the reader should consult The Dynamics of Atoms in 

Crystals by W. Cochran. 
However it is possible, by considering the thermal oscillations of the 

atoms to be a form of random disorder, to use the results of the previous 

section to show how the coherent scattering from such a lattice differs from 

that of the lattice containing stationary atoms considered up to now. 

In this analysis we will assume that the thermal motions of the individual 

atoms are independent of one another. This assumption is certainly not 

justified in real crystals, but gives results in good agreement with experi¬ 

ment if we consider the elastic coherent scattering only. We will also 

assume that the oscillations are isotropic and harmonic, an assumption 

that is good to a first approximation for relatively symmetrical crystals. 

Under these conditions, the probability that an atom will be displaced by 

a distance rt from its mean position can be written 

P(rt) = N exp - (rt212U2) 

where N is a normalising constant and U2 is the root-mean-square displace¬ 

ment of an atom from its equilibrium position. The atomic scattering tactor 

for an atom is given by Equ. 3.15 as 

atom 

The scattering factor referred to the same origin for a similar atom displaced 

a vector distance rt from that origin would be 

atom 

where r is measured from the new atomic centre. Thus the mean atomic 

scattering factor for an oscillating atom may be written 

atom — oo 
r rt l 
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The two integrals in the numerator are separable so that 
oo 

P(r) qiK•r dTr ) TV e_rt/2L/2 eiK- rt drrt 
atom _oo 

j\K) =--- 

j Ne-rt2/2u2 d7>t 
the integral overc is just the atomic scattering factor f(K) and the integrals 

over rt can be evaluated by writing rt and K in their components rx, ry, rz, 

Kx, Ky, Kz in a system of rectangular Cartesian coordinates. The volume 

element dr,.t then becomes drxdrydrz and the integrals are the products of 

three similar terms of which the first is 

the integrals of both numerator and denominator can be evaluated for 
these particular limits, and the result is 

I-371 -KX2U2I 2 

J 2lrUl e 
1 

Hence the mean scattering factor f(K) becomes 

T(K) = f(K) exp - (i U2 (K2 + K2 + K2)) 

Ik2 f75\ 
= f(K) exp - (——J 

The result of the atomic vibration is therefore to reduce the atomic_ 

scattering factor for each atom by the factor exp — (K2U2I2), where U~ 
is the mean-square displacement of the atom concerned from its equilibrium 

position. Since K = 47r_sin 0/X, this exponential factor can be written 

e~BS2 where B = 87T2 U2 and S2 = (sin2 6)/\2. The factor i? is known as 

the temperature factor of the atom since B is directly dependent on U ; it 

increases as the temperature is increased and the thermal vibration becomes 

greater in amplitude. Typical values ofi? at room temperature are in the 

range 0-2-0-8 A2. The exponential factor depends upon sin2 0/A2 and is 

therefore nearly unit at low angles, hence the low-angle scattering is 

relatively insensitive to thermal vibration. At higher angles the exponential 

factor falls quite significantly from unity: at sin 0/A = 1 tor B = 0-5 A- the 

atomic scattering factor is reduced by a factor of about 0-6 from its value 

for a stationary atom. 



4 
The Scattering of X-rays, 

Electrons and Neutrons 

4.1 Introduction 

In order to recognise the useful fields of application of the different 

types of radiation which are used to study the structure of crystals, it is 

necessary to take some account of the physical mechanisms involved in 

the scattering processes. 

4.2 X-Ray scattering 

X-Ray scattering arises from the electromagnetic interaction between 

the electric field vector of the electromagnetic wave (X-ray) and the 

electrons in the crystal. The interaction induces a time-dependent fluctu¬ 

ation of the wavefunction of the electrons in the crystal and the fluctuating 

current density corresponding to these changes is the source of the scattered 

waves. The component which has the same frequency as the incident wave 

gives rise to coherent Bragg scattering and this is the only part that will be 

considered here. The intensity of such scattering can be calculated from 

first-order perturbation theory using a semi-classical treatment in which the 

electrons are treated quantum mechanically but the radiation field is not 

quantised. For an electron of mass m in a field of scalar potential 0 and 

vector potential A the Hamiltonian is written 

1 
K = — 

2 m 
+ e<p 

and if the vector potential A is small so that it can be treated as a small 
perturbation 

— — A . P + c0 
1 9 JC = — P2 

2m me 
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Writing the momentum operator/" as (7z/0V, the time-dependent 
Schrodinger equation is 

V “ 0 — ^4 . V 0 + e00 = ifi — (4 \) 
imc fit 2 m 

If we multiply this equation by 0* and the conjugate equation by 0 and 
subtract the two we obtain 

h2 9 9 fieA 3 
- — (0*V“0 - 0V20*) --. (0V0* - 0*V0) = ifl — (00*) 

2m z'mc 3r 

ihe e2 3 
or -V. (0V0* - 0*V0) +— (00*V.y4- V. 0 0 *^4) = — (e00*) 

me dt 2m 

But for a plane wave V. ^4 = 0, so 

/zTzc e2 \ 3 
(0 V 0 * — 0 * V0 ) — - 00*^4 ) = - (£0 0 *) 

0 m me dt 
(4.2) 

Comparing this with the classical equation of continuity 

1 3p 
V. [/I = 

c 3/ 
(4.3) 

and remembering that c00* represents a charge density, it can be seen 

that the quantum mechanical expression for the current density is 

/ = 
1 /zTzc 

c \2m 
(0 V0* - 0* V0) 

me 
/I 00 * (4.4) 

The vector potential at a point outside the crystal, vector distance jR from 

the origin, caused by a current density J is given by classical radiation 

theory as 

, _ [ [J]dTr 
A$- J 

crystal | f + R. \ 

where the square brackets round J denote the retarded value of the current 

density. The vector potential is related to the electric field by the equation 

1 dA 
E = -- — - V0 

c 31 

and hence 
1 f '3 [J] 1 

- J , 
C crystal 31 \r + R\_ 

drr -V 0 (4.5) 
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Thus the amplitude of the scattered radiation Es depends upon the rate of 

change of the induced current density. Under the action of the perturbing 

field the wavefunction of Equ. 4.4 will change. However, if the pertur¬ 

bation is small and the frequency of the radiation is far from any of the 

electron transition frequencies of the atoms in the crystal, then the change 

in wavefunction will be insignificant compared to the oscillation of the 

vector potential A. Hence to a good approximation we can write 

dJ 

d t 

e2 dA 

me2 31 
(00*) 

and Es =—^ J 
me crystal 

([E] 00* +v 0) 
1 

\r + R 
d 7> — v 0 

where [E] is the retarded value of the incident electric field. 

Now if we assume that R> r we can write. 

[E] = E() e'('0jr - r. Kq - r. K' - R . K') 

and 

E c = 
c2 1 

S 2 r> me R 

+ 

J [\p\p* eiK-r]dT, 
crystal 

me^ crystal 

V0 
1 

\R + r 
d Tr — V 0 

Only the first of these three terms has the frequency of the incident 

radiation, hence only this term contributes to the elastically scattered 
wave. The field E$ is parallel to the incident electric field amplitude Eq, but 

only its components perpendicular to the direction of K' will contribute 

to scattering with this wave vector. Since the angle between Kq and K' is 

twice the Bragg angle 6, the appropriate components will have magnitude 

E$ it Eq is perpendicular to both K and K\ and magnitude E$ cos 26 if Eq 
lies in the plane of K and K'. For unpolarised incident radiation the 

appropriate tactor is ^(1 + cos 20)ES. Thus the amplitude of the elastically 
scattered radiation can be written 

e2 f 
Eso ~ 4(1 + cos 26)—~ J 00*e7^-rdrr (4.6) 

me crystal 

Comparing this with Equ. 3.3 we see that for scattering of unpolarised 
X-radiation 
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and the atomic scattering factor for X-ray scattering is 

fx(K) ~ i(l + cos 26)—2 J i//\p* elK• r d?> 
7TZC atom atom 

(4.8) 

In order to calculate this atomic scattering factor the electron distribution 

\p\p* within each atom must be known. The electron distributions, and 

hence the scattering factors, have been calculated for most atoms using 

modified Hartree-Fock self-consistent field methods. These scattering 

factors are tabulated in the International Tables for Crystallography, 

Volume III, (1962). The values given are sufficiently precise to be used 

in all but the most accurate work. Alternatively, in a crystal of known 

simple structure the scattering measurements themselves may be used to 

deduce scattering factors and hence to determine the electron distribution 

in the atoms of the crystal. 

4.3 Electron scattering 

The wavelength of an electron with momentum p is given by the 

De Broglie relationship \p = h. In electron-diffraction experiments the 

electrons are commonly accelerated through potentials of about 100 kV 

and hence their energy E = p2/2m - eV - 105 electron volts = 1 -6 x 10- 

erg. Their wavelength X is given by 

h 27r x 10-27 

~V2mE~ 1 -7 x 1CT18 

~ 4 x 10~9 cm = 0-4 A 

This is of the same order of magnitude as the distance between atoms of the 

crystal so that the conditions for diffraction are satisfied. An exact calcu¬ 

lation of the electron wavelength involves use of the relativistic relationship 

between the energy and momentum of the electron; the error involved is 

about 5% at 100 kV and rises steadily for higher voltages. The interaction 

involved in electron scattering is the straightforward coulomb force 

between the incident electron and the electrons and nucleus ot the atom. 

Now the conditions that we assumed in Section 3.2 are just those required 

for the validity of the Born approximation for particle scattering (see Mott 

and Massey, 1949). In this case the wave function for elastically scattered 

electrons is given by 

(4.9) 
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where is the rest mass of the electron, R is the vector distance from 

the origin to the point at which the wave function is 0S, and 0(r) is the 

electrostatic potential in the crystal. Comparing Equ. 4.9 with Equ. 3.3 

shows that in the case of electron scattering the function P(r) may be 

written 

P(r) = 
m^e 

2irft2 
0(c) 

The atomic scattering factor for electrons is 

(4.10) 

fo(K) = 
moe 

2irfi2 
0(r) e iK. r dr. (4.11) 

atom 

Within an atom the potential 0(c) may be written 

P(r') 
0(r) = dr. 

atom 
\r — r 

where p(r) is the charge density at the point with radius vector r\ so that 

fe(K) = fp(r') e lK-r'&v [-—" r elK• (r r'} dTr (4.12) 

The first integral is e(Z — f \p\p* elK- r drr) where Z is the nuclear charge; it 

should be noticed that the integral required is just that involved in X-ray 

scattering (Equ. 4.6). The second integral can be evaluated between the 

limits zero and infinity and the result is 4ir/K2. The electron scattering 

factor then becomes 

fe(K) = 
2 me2 

fi2K2 
Z- \Jj\Jj* qiK- r 

atom 

(4.13) 

The second term within the bracket is closely related to the X-ray scattering 

factor (Equ. 4.8) and the electron scattering factor is thus easily evaluated 

if the X-ray scattering factor is known. It should be noted that the scat¬ 

tering factor for K = 0 cannot be obtained from Equ. 4.13 since both 

numerator and denominator tend to zero. Integration of Equ. 4.12 for the 

special case K = 0 shows that the scattering factor has a maximum value; 

as K increases the scattering factor drops rapidly because of the factor K 

in the denominator. 

The calculation we have just given is valid only if the energy of the 

electron is much greater than the potential V{r) inside the atom, since this 

is one of the conditions for use of the Born approximation. This assumption 
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does not hold near the centres of heavy atoms and thus the scattering 
factors deduced tor heavy atoms are liable to be inaccurate. For energetic 
electrons the electron mass m in Equ. 4.13 must be replaced by the 
relativistic expression m = mg{\ — v2/c2)1^2. 

4.4 Neutron-nuclear scattering 

The neutron wavelength is given by the relationship 

or E = 
2mA2 

Thus the energy of a neutron whose wavelength is 1 A is ~ 1-3 x 10~13 erg 
so that it has translational energy equivalent to about 700 K. 

There are two different interactions between a neutron and the atoms of 
a crystal which give rise to significant scattering; these are the neutron- 
nuclear interaction and the interaction between the neutron magnetic 
moment and any magnetic moment which the atoms of the crystal may 
possess. We will consider first the neutron-nuclear interaction which is 
just the same nucleon-nucleon force which is responsible for nuclear 
cohesion. As is well known, this is a strong interaction so that the potential 
of the neutron near the nucleus will be very different from its potential 
outside the crystal and the Born approximation should not be expected to 
hold. Fortunately, in order to predict the result of a neutron scattering 
experiment it is not necessary to have a precise model for forces which 
have a range much shorter than the neutron wavelength. We may use the 
method invented by Fermi and replace the true potential by a Fermi 
pseudo-potential. The pseudo-potential is chosen so as to give experimen¬ 
tally correct wavefunctions for the neutron when it is not in the near¬ 
neighbourhood of a nucleus. It is zero outside a radius rg from the nucleus 
and inside this radius has a constant value a; rg is of the order 10_1J cm. 
Use of the pseudo-potential rather than the true potential has an additional 
advantage: since it is obtained by smearing the potential out over a sphere 
of radius rg, the pseudo-potential is small compared to the neutron energy 
and hence the Born approximation can be used to compute the scattering. 
In this approximation the wavefunction of elastically scattered neutrons 
can be written in the same form as Equ. 4.9 as 

iKo. R j* ]/(>) 

crystal 
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where m is now the mass of the neutron and V(r) is the Fermi pseudo¬ 

potential. The atomic scattering factor for the neutron-nuclear interaction 

is therefore 

fn (K) 
m 

2irh2 atom 

' ;'o 

m 

V(r) e lK- r d Tr 

2irh‘ 
a e iK•r dr. 

o 

and since vq/K < 1 

171 

/n(«) = T72“(W) (4-14) 
2nh 

Thus the atomic scattering factor is a constant independent of K and is 

usually denoted by b, the nuclear scattering length. 
Since the nuclear scattering depends on the constitution ot the scattering 

nucleus and not on the electronic configuration of the atom, the nuclear 

scattering length will be different for different isotopes of the same 

element. From the standpoint of nuclear scattering therefore, a crystal con¬ 

taining an element having more than one isotope will act as a randomly 

disordered system (see §3.12). The scattering in the Bragg reflections will 

be given by the mean scattering length which is known as the coherent scat¬ 

tering length; the incoherent scattering is proportional to the mean-square 

deviation of the scattering lengths, the incoherent cross-section. Additional 

incoherent scattering occurs when the scattering nucleus has non-zero spin 

because the neutron-nuclear interaction is spin dependent; thus the scat¬ 

tering length depends upon whether the neutron spin is parallel or anti¬ 

parallel to the nuclear spin. The spin dependence of the nuclear scattering 

is responsible for the high incoherent scattering cross-sections of hydrogen 

and vanadium. 

4.5 Neutron-magnetic scattering 

The magnetic moment in a crystal may have contributions from both 

electron spin and electron orbital angular momenta; both of these will 

contribute to the interaction with the neutron spin magnetic moment 

which gives rise to neutron-magnetic scattering. However in many cases, 

particularly for the important first series transition elements, the net 

orbital magnetic moment is small because of orbital quenching. We shall 

therefore consider only the more important spin contribution to the 
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scattering. Because the neutron spin is small the scattering potential is 

weak, and hence the Born approximation is valid. In this case, however, 

the potential depends upon the relative orientations of the neutron spin 

and the electron spin, so the calculation of the scattered amplitude is more 

complicated and cannot be given here. The result for elastic scattering of 

unpolarised neutrons is that the differential scattering cross-section is given 

by 

2) (\P(K)\2 - (P(K). K)2) (4.15) 
3a /2ye 

312 l me 

here, m is the neutron mass and 7 its magnetic moment in nuclear 
magnetons, 

P{K)~ f \j/*S\l/ elK- r d7> (4.16) 
crystal 

and S is the spin operator. Comparing Equ. 4.15 and 4.16 with Equ. 3.4, 

it can be seen that the single squared term of Equ. 3.4 is replaced by the 

sum of two similar squared terms in the neutron-magnetic scattering cross- 

section. 

If we consider a simple ferromagnetic or antiferromagnetic crystal in 

which the spins are all parallel or antiparallel to a single magnetisation 

direction, then the function P(K) can be written 

P(K) = t) j S(r) tiK-r drr 
crystal 

y) is a unit vector parallel to the magnetisation direction and S(r) is the 

spin density in the crystal which may be both positive and negative. The 

differential scattering cross-section then becomes 

3a 

312 

l^ye \ sin2 a 

1-
 

T
3 

7d v
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1_
 

\ me2/ crystal 

(4.17) 

where a is the angle between y) and the scattering vector K, sin2 a is zero 

(and hence the magnetic scattering is zero) when the magnetisation 

direction is parallel to the scattering vector and it is unity when the two 

are perpendicular. If we make the additional assumption that the spins 

are localised on the atoms and that each magnetic atom has a well-defined 

spin, then the term within square brackets in Equ. 4.17 can be expressed 

as 

Z SjfjiK) 
7 = 1 

e iK. Vj (4.18) 
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Sj is the spin of the /th atom which has its centre distance r;- from the origin 

and 

fj{K) = -h J S(r)eiK-r drr 
Sj atom 

is the neutron-magnetic form factor. The magnetic structure factor is the 

summation of Equ. 4.18 taken over all the atoms in a magnetic unit cell. 

It should be noted here that in many simple antiferromagnetic structures 

atoms having opposite spins are related to one another by one of the trans¬ 

lational elements of the space group to which the crystal belongs (a lattice 

translation, a glide plane, or a screw axis). If this is the case, the magnetic 

structure factor will have finite values for the reflections which are nor¬ 

mally systematically absent because of the element and they will be 

Figure 4.1 Normalised atomic scattering factors for iron. 
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systematically zero for the corresponding even-order reflections. The proof 

of this statement is left as an exercise for the reader. When both nuclear 

and magnetic scattering takes place with the same scattering vector, the 

resultant intensity for unpolarised neutrons is the sum of the nuclear and 

magnetic intensities. If the neutrons are polarised, interference between 

the nuclear and magnetic scattering can occur and the scattered intensity 

depends on the neutron polarisation direction. This effect will not be 

considered here. 

The differences in the absolute magnitudes of the scattering amplitudes 

for X-rays, electrons and neutrons and their different degrees of variation 

with scattering angle are illustrated in Fig. 4.1. 

4.6 Extinction 

So far in this anlysis we have assumed that the scattering is so weak and 

the crystal size so small that there is no significant diminution in the 

intensity of the incident beam as it penetrates the crystal, either by true 

absorption or by the process of scattering. In real situations this is not a 

good assumption and these two processes must be taken into account. The 

extent to which the incident beam intensity is reduced because of the 

process of scattering clearly depends on the strength of the scattering 

interaction and is quite different for electrons, X-rays and neutrons. The 

importance of the effect can be judged by calculating the distance which 

the incident beam can travel in the crystal before this simple kinematical 

theory would predict that the whole of the incident intensity would be 

diffracted away. A simple calculation shows that this distance (= \dQ) is 

given approximately by 

_ 7T V COS 6 

de ~ \F(hkl) 

where V is the unit cell volume and <2e is known as the extinction distance. 

For the (111) reflection from aluminium the values of de turn out to be 

200 A for 1 00 kV electrons, 7 x 10“4 cm for 1 A wavelength X-rays and 

6 x 10“3 cm for neutrons of the same wavelength. Thus the diminution ol 

the incident beam cannot be neglected in electron dittraction except lor 

very thin crystals, but the inaccuracy introduced by using the kinematical 

theory of X-ray and neutron diffraction is much less severe. Even so, the 

size of crystals commonly used in experiments is 10 --10 1 cm lor X-rays 

and 0-2-2 cm for neutron diffraction, so that one might expect very large 

deviations from the kinematical theory. However, such large deviations are 
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not observed except in the case of a few materials which grow as very per¬ 

fect crystals. Normal crystals are made up of large numbers of small blocks 

of perfectly arranged crystal separated by regions containing imperfections, 

which may or may not give rise to small misorientations between the crystal 

blocks. If the linear dimensions of each crystal block are significantly less 

than de, it will scatter according to the kinematical theory. On passing 

from one block to another the coherence of the incident and scattered 

beams is lost, so that the total scattered intensity is the sum of the inten¬ 

sities scattered by each of the blocks individually. When the size of the 

blocks is too large for the kinematical approximation to be valid the crystal 

is said to exhibit primary extinction. The proper treatment of scattering 

from large perfect crystals requires consideration of the dynamic inter¬ 
action between the incident and scattered beams and this is beyond the 

scope of this book. Treatments of the dynamical theory for X-ray and 

electron scattering may be found in James (1958) and Hirsch et al. (1965). 

In cases in which the crystal blocks are small enough for the kinematical 

approximation to be valid, the total scattering may still be less than that 

predicted by the theory because of the process known as secondary extinc¬ 

tion. Secondary extinction occurs when the misorientation of the crystal 

blocks is small enough, and the whole crystal large enough, for an appreci¬ 

able part of the crystal well below the surface to have the same orientation 

as a part near the surface; the former then receives an incident beam which 

is reduced by the intensity scattered by the latter. It can be seen that 

secondary extinction will be greatest for those reflections with large struc¬ 

ture factors for which the crystal orientation is such that the path length of 

the incident beam in the crystal is long. No completely satisfactory method 

has been developed for correcting measured integrated intensities for 

secondary extinction. Fortunately, in many crystals the effect is small 

except in the very strongest reflections. 



5 
Experimental Study of Diffraction 
by Crystals 

5.1 The conditions for Bragg reflection 

In Chapter 3 it was shown that the geometrical condition for a crystal to 

diffract radiation coherently with scattering angle 26 is given by the Bragg 
equation, Equ. 3.12. 

X = 2d sin 6 

d is the spacing of a set of planes in the crystal which are oriented such 

that their normal bisects the angle between the incident and diffracted 

beams. This orientation is also defined by the Laue conditions 

2itK . a = h\; 2itK . b = k\; 2itK.c=IX (5.1) 

A single crystal placed in an arbitrary orientation in a monochromatic 

beam of radiation is rather unlikely to have any set of planes oriented so as 

to fulfil these conditions, so that diffraction will not usually occur. The 

techniques used for making diffraction measurements are ways of ensuring 

that during the experiment certain sets of planes within the crystal will 

fulfil the necessary conditions. There are three classes of technique which 

are commonly used. The moving-crystal technique includes all methods in 

which a single crystal is made to diffract radiation by moving it into the 
appropriate orientations. The Laue technique utilises polychromatic 

radiation and a stationary crystal: it relies on there being sets of planes in 

the crystal which are appropriately oriented to diffract some of the wave¬ 

lengths within the primary beam. The third technique, the powder method, 

is that in which a polycrystalline rather than a single-crystal specimen is 

used; in this case a large number of crystal orientations is present in the 

specimen and the Bragg condition for diffraction of the monochromatic 

radiation by each set of planes should be fulfilled by some of the crystallites. 
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5.2 The Ewald construction 

The Ewald construction is a very convenient method for representing 

the geometrical conditions for diffraction, using the reciprocal lattice 

representation. In Fig. 5.1, O is the origin of the reciprocal lattice and XC 

Figure 5.1 The Ewald construction. 

is a unit vector in the direction of the incident radiation. R is a point any¬ 

where on the surface of a sphere of unit radius centred on C. It can be seen 

that 

OCR 
OR = 20C sin- (5.2) 

2 

and if R is the reciprocal lattice point representing the set of planes hkl 

then OR = X/d^ki and writing OCR = 26, Equ. 5.2 can be written 

X = 2d sin 6 

from which it can be seen that the condition for Bragg reflection in the 

direction CR by the planes (hkl) is satisfied. Thus, in general, if P is a 

reciprocal lattice point, Bragg reflection from the planes represented by P 

will occur when the crystal is rotated so that P lies on the surface of the 

sphere at P' and the direction of the diffracted radiation will be given by 

CP'. 
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5.3 Diffractometer geometries 

Perhaps one ot the most straightforward and easily understood ways of 

recording the radiation diffracted by a crystal is by using a diffractometer: 

this method is applicable to both X-ray and neutron diffraction. The 

ionisation spectrometer used by the Braggs to determine the first crystal 

structures was a simple diffractometer, and although great improvements 

have taken place in the intervening years in methods of detecting radiations 

present day diffractometers are essentially similar. The essential parts of 

such an instrument are a collimating system for the incoming radiation, a 

means for orienting the crystal, and a radiation detector (counter) which 

can be rotated so as to point at the correct angle to accept the diffracted 

beam. Three commonly used diffractometer geometries are illustrated in 

Fig. 5.2, they differ only in the relative orientations of the crystal rotation 
axis and the incident and diffracted beams. 

(a) (6) (c) 

Figure 5.2 Stereograms illustrating the orientations of the normal to the diffracting 
planes N and the directions of the incident and diffracted rays X and R for three 
different geometries (a) the equatorial method, (b) the normal-beam method and 
(c) the equi-inclination method. 

In the equatorial method, (a), this rotation axis is always perpendicular 

to both incident and diffracted beams; the crystal orienter must permit 

rotation about this axis and at least one other, represented by X in the 

stereogram. In the case illustrated, the required rotations to bring the 

normal N into its reflecting position N' are x about X followed by 0 about O. 

Often the crystal orienter will have a further degree of freedom allowing 

greater flexibility in the orientations of the other two circles, which may 

thus be positioned so as not to interfere with the incident and diffracted 

beams. 
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In both the normal-beam and equi-inclination methods, (b) and (c), the 

crystal is oriented so that a prominent zone-axis [UVW] is parallel to the 

rotation axis O. Reflections in the [UVW] zone have their normals in the 
equatorial plane, and for these reflections all three methods are equivalent. 

For a general reflection hkl, however, the normal does not lie in the 
equatorial plane but the reciprocal lattice points representing the set ot 

planes for which HU + kV + IW = n lie on a plane distance 

f = \n/\ Ua+Vb + Wc\ 

from the origin. The diffracted rays from this set of planes lie on the surface 

of a cone, of semi-angle (90 — v) with v - sin 1 f, whose apex is at the 

centre of the Ewald sphere. In the normal-beam method, the crystal rota¬ 

tion axis O is kept normal to the incident beam. In order to accept the 

diffracted beams, the counter must be inclined at an angle (90 - v) to O as 

well as being rotated by the appropriate angle about O. In the equi- 

inclination method, on the other hand, both the incoming X-ray beam and 

the counter are tilted at an angle (90 - \ sin-1 f) to O. The crystal rotation 

axis is thus equally inclined to both incident and diffracted beams. 

5.4 Moving-crystal methods using photographic recording 

In X-ray diffraction the quantum detector ot the diffractometer can be 

replaced by a photographic emulsion. This is usually wrapped around the 

axis of rotation of the crystal to form a cylinder. In the most commonly used 

arrangement, the X-rays enter between the two ends of the film and the 

undiffracted beam passes out through a small hole punched in the middle. 

If the crystal is rotated by 360° about its axis, all the reciprocal lattice 

points within the toroidal volume illustrated in Fig. 5.3 will pass through 

the surface of the Ewald sphere. Hence, the planes which they represent 

will have an opportunity to diffract the incident beam. 
Latent images are formed at the points at which the diffracted beams 

strike the film and on development a picture such as that illustrated in 

Fig. 5.4a is obtained. The origin of the horizontal lines of spots known as 

‘layer lines' is clear from the considerations of the previous section. If the 

crystal is rotated about a zone axis [UVW], successive layers correspond to 

reflections from planes {hkl) for which hU + kV + IW = 0, 1, 2, . . . n. The 

common azimuthal angle of beams diffracted by planes belonging to the 

/zth layer is (90 — vn ) where 

vn sin 
/? X 

Ua + Vb + Wc I 
(5.3) 
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z 

Figure 5.3 The volume of reciprocal space swept out by the Ewald sphere when a 
crystal is rotated about an axis z. 

It the camera radius is r and 2Sn is the distance on the photograph between 

the /7th layers above and below the equatorial plane then 

(5.4) or 
r 

Thus the distance between the layer lines on the rotation photograph 

gives the distance between lattice points in the crystal along the zone 

axis direction which is parallel to the axis of rotation. 
Unless the unit cell of the crystal is small, or rather symmetrical, it is 

not usually possible to assign a unique set of indices to the individual 

reflections on a rotation photograph, particularly if the cell dimensions 

are not already known with some accuracy. The number of reflections 

which occur on a single photograph may be substantially reduced by 

oscillating the crystal through a small angle—usually 5, 10 or 15 degrees- 

rather than rotating it freely, (Fig. 5.4b). In this case only planes repre¬ 

sented by reciprocal lattice points which pass through the surface of the 

reflecting sphere during the oscillation have a chance to diffract. The 

method used for indexing the reflections is illustrated for two layers in 

Fig. 5.5. 



(b) 

Figure 5.4 (a) A rotation photograph of the intermetallic compound VAlio taken 
with MoAa radiation. One of the axes of the cubic unit cell is parallel to the axis of 
rotation, (b) A 5° oscillation photograph of FeC03 taken with CuKa radiation A = 
1-54 A. One of the axes of the rhombohedral unit cell is parallel to the axis of 
oscillation. 
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0 . 0 5 “To 
Keciprocal units 

Layer Spot 
No. l c Indices 

0 1 0 72 0 (120) 
2 1 08 (130) 
3 1 57 (040) 
4 1 76 (HO) 
5 1 96 (330) 
6 -1 46 (410) 

2 7 0 96 0 54 (242) 
8 1 50 (152) 
9 1 75 (052) 

Figure 5.5 Method of indexing the zero and second layers of the photograph shown 

in Fig. 5.4b. 
a* = b* = c* = 0-3928; X = 1-542 A; 

a* = /3* = 7*= 113°44' 
The full lines indicate the zero layer of the reciprocal lattice and the full circles the 

extreme sections of the reflecting sphere. The broken lines and circles refer to the 

second layer. 

The horizontal deflection Y of the incident beam is given by t/r where 

t is the distance to the spot measured from the central line on the film and 

. Y | 
sm — = — 

2 2 
where £ is the projection of the relevant reciprocal lattice vector on to the 

equatorial plane. Values of £ and f for each reflection on the film may be 
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deduced from measurements on the film, or alternatively their values may 

be obtained directly using a Bernal chart. Bernal charts which correspond 

to all the commonly used camera radii are obtainable and on them lines of 

constant £ and constant f are drawn at equal intervals, usually 0-05. The 

charts, which are usually drawn on transparent paper, are placed over the 

film so that the centres and equatorial planes coincide and this enables the 

values of £ and f for each reflection to be read. A scale drawing of each 

layer of the reciprocal lattice is made and on it circles corresponding to 

the extreme positions of the reflecting sphere during the oscillation are 

drawn. The reflections seen on the photograph should then he in the area 

between these circles. Arcs of radius £ corresponding to each reflection in 

the layer are drawn (also to scale) and the intersections ot these arcs with 

reciprocal lattice points inside the relevant area enable the reflections to be 

indexed. In the example illustrated (Fig. 5.5), it should be noticed that the 

zone axis is not parallel to a reciprocal lattice vector and so the reciprocal 

lattice points in different layers do not lie directly over one another. 

Interpretation of oscillation photographs of substances whose unit cells 

are completely unknown is much more complicated. It is usually simpler to 

use a moving-film technique to obtain more information about the relative 

positions of reciprocal lattice points within a layer. The discussion ol such 

methods is beyond the scope of this book, but further information about 

such techniques is given in Henry, Lipson and Wooster (1961) and Buerger 

(1960). 

5.5 The Laue method 

The Laue method is perhaps the simplest of all techniques for obtaining 

diffraction photographs. It was using this method that Max von Laue, in 

1912, obtained the first X-ray diffraction photograph thus demonstrating 

conclusively the wave nature of X-radiation. 

In the Laue method a single crystal is mounted so that a collimated 
beam of white radiation can fall upon it and a film placed so that the dif¬ 

fracted radiation can be recorded. If the crystal is thin enough tor the 

radiation to pass through it the film may be placed behind the specimen. 

Alternatively, the film may be placed between the radiation source and 

the specimen and the incident beam allowed to irradiate the crystal 

through a hole cut in the centre of the film. This is known as the back- 

reflection method. The number of reflections which can be recorded on a 

single flat flim is rather limited; a greater number are obtained by using a 

cylindrical film wrapped around the specimen. Examples of these three 

types of Laue photograph are shown in Fig. 5.6. 
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It can be seen that the spots on these photographs are clustered along 

well-defined curves. The origin of these curves may readily be understood 

by means of the reciprocal lattice and Ewald sphere. The reciprocal lattice 

points, which represent a single set of planes for the range of wavelengths 

in the incident beam, are distributed along the radius vector in the recipro¬ 

cal lattice which is normal to that set of planes. The point on this radius 

vector which is unit distance from the centre of the Ewald sphere will give 

rise to a diffracted beam. Now the sets of planes in a crystal may be 

grouped into zones, all planes in a zone having their normals in a common 

plane perpendicular to the zone axis. The locus of the diffracted beams 

from the set of planes forming a zone is the cone formed by lines joining 

the centre of the sphere to that circle in which the plane through the 

origin of the reciprocal lattice, perpendicular to the zone axis, intersects 

the sphere. Thus the axis of the cone of diffracted rays is parallel to the 

zone axis and the direction of the incident beam lies in its surface. The 

intersections of these cones with the film give the characteristic curves on 

the Laue photographs, each of which therefore corresponds to a zone of 

reflections. The formation of these curves for each of the three common 

geometries is shown in Fig. 5.7. 

The Laue method is used extensively for determining the orientation of 

crystals and for establishing their symmetries. It cannot easily be used in 

the determination of lattice constants or integrated intensities, for which a 

knowledge of the diffracted wavelength is essential. The photographs of 

Fig. 5.6 illustrate how the symmetry of a crystal can be revealed by Laue 

photographs: (a) shows a hexagonal axis aligned parallel to the X-ray beam 

and (c) shows the intersection of two mirror planes. It must be realised that 

the crystal symmetry cannot be determined uniquely from Laue photo¬ 

graphs because of Friedel’s law (§3.11) and the photograph (c) could 

equally well correspond to the intersection of two diad axes, or to a diad 

axis lying in a mirror plane. 

5.6 Determination of crystal orientation by the back-reflection Laue 

method 

The back-reflection Laue method is one of the most useful techniques 

for the determination of the orientation of large single crystals. Since such 

a determination of orientation is a necessary preliminary to many experi¬ 
ments in solid-state physics, it is worth going into in rather more detail. 

The camera used is very simple consisting of a plateholder in the centre of 

which the collimator, through which the incident beam passes, is fixed. 
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Figure 5.6 Laue photographs (a) Back-reflection photograph taken with a polaroid 

camera and fluorescent screen, (b) Forward-reflection photograph on a flat plate 

showing a hexagonal axis parallel to the X-ray beam, (c) Photograph taken using a film 

in a cylindrical cassette shows mirror planes parallel and perpendicular to the X-ray 
beam. 

The crystal is then supported on some suitable mount so that the colli¬ 

mated beam hits it at a point a known distance from the film plate. 

Figure 5.6b is an example of a photograph of diamond taken by this 

method. The intersections of the cones of diffracted rays from each zone 

with the plane of the film are hyperbolae. It can readily be seen that the 

shape of these hyperbolae, though not necessarily the distribution of 

reflections on them, must be symmetrical about the line of intersection of 

the plane, which contains the incident beam direction and the zone axis, 

with the plane of the film. 

Referring to Fig. 5.8a, which illustrates the interpretation of a hypo¬ 

thetical photograph showing three zones, the line of symmetry for zone 1 

is OA and it intersects the hyperbola at A, a distance xi from the centre 
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(a) (b) 

Figure 5.7 Diagrams showing the formation of the curves given by zones of reflec¬ 

tions in three different Laue geometries, (a) Forward reflection; (b) back reflection; 

(c) cylindrical geometry. 

of the film. If 0i is the angle between the zone axis and the incident beam 

then 

X\ 
— = cot 0i 
r 

where r is the specimen-to-film distance. 

The pole of the zone axis may readily be plotted on a stereographic pro¬ 

jection as illustrated in Fig. 5.8b. To determine the orientation of the 

crystal completely, as many zones as possible are plotted on the stereo¬ 

graphic projection and these are then indexed by comparing the angles 

between them with the calculated interzonal angles. For the cubic system 

the principal interzonal angles are tabulated in the International Tables for 

Crystallography, Volume II, (1959), p. 120. For other systems the angles 

depend upon the axial ratios and interaxial angles; they are usually obtained 

most easily by measurement of a stereographic projection of the crystal 

drawn in the standard orientation. 
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Figure 5.8 Diagram illustrating the interpretation of a back-reflection Laue photo¬ 
graph. This method is commonly used for determination of the orientation of large 
single crystals. 

5.7 The powder method 

For the powder method the specimen must be ground to a fine powder 

(about 250/300 mesh size) and mounted in such a way that it can be bathed 

in a monochromatic X-ray beam. In the simplest method for obtaining 

powder photographs the specimen is shaped into the form of a cylinder, of 

the order of 0-5 mm diameter, either by packing the powder into a fine 

Lindemann glass capillary or by using a binder such as Gum Tragacanth. 

The specimen is mounted at the centre of the camera and is usually rotated 

about its own axis. A narrow strip of film is pressed against the inside of a 

cylindrical holder, the axis of which coincides with the axis of the specimen: 

it has a hole or holes punched in it to allow the entry and/or exit of the 

primary beam. The three commonly used film mountings are shown in 

Fig. 5.9; of these the Straumanis, or asymmetric film mounting (c), is the 

most generally useful. 

Figure 5.10 shows some examples of powder photographs; the X-ray 

reflections may be seen to occur as ‘lines’ on the photographs. Each of 

these lines corresponds to the reflections from all planes of one form 

(see §1.5). This occurs because the crystal is a fine powder and, if the 

orientation of grains within the powder may be supposed to be random, 

there will be some particles oriented so as to diffract radiation at the Bragg 

angle for every possible set of planes in the crystal. Consider a set of planes 
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with spacing d, the spacing of all other planes of the same form will also be d 

and these planes will diffract radiation of wavelength X at an angle 6 such 

that 

sin 0 
X 

2d 

Figure 5.9 The relative orientations of the film and incident X-ray beam in the three 

most common methods used for powder photography. 

Since all orientations of the crystallites should be equally likely, the rays 

diffracted by these planes will lie along the surface of a cone of half-angle 

26 whose axis is the incident beam. The ‘lines’ on the powder photographs 

are the intersections of this cone with the cylindrical strip of film. Figure 

5.11 illustrates the interpretation of a photograph of a cubic material 

taken with the asymmetric film mounting. Table 5.1 shows the steps in 

the analysis of the photograph of Figure 5.10a. 

For the cubic system 

sin2e=~(h2 + k2 + l2) (5.5) 

so that the values of sin2 6 are proportional to integers which are the sum 

of squares of three integers. All integers less than 20, except for 7 and 15, 

can be represented in this way. Inspection of the values ot sin 6 usually 

enables gaps, corresponding to 7 or 1 5, to be located and hence the reflec¬ 

tion indices to be deduced. Alternatively, values of sin2 6 may be plotted 

on a strip of paper and matched against a set of straight lines representing 

the variation of sin2 6 with A2/4a2 for different sets of hkl (Fig. 5.12). 

The indexing of powder photographs of non-cubic materials is straight¬ 

forward, so long as the dimensions of the unit cell are known. If the cell is 

not known, there is no simple way of indexing the lines directly. The most 

generally useful methods are based on that due to Ito (1950). This is a 

trial and error method in which three low angle lines are arbitrarily chosen 
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as (100), (010) and (001). Pairs of lines corresponding to (101) and (101) 

etc. are then sought and these will of course be coincident if the appropriate 

interaxial angle is 90°. A method such as this is very suitable for use with a 

computer which can try a large number of different trial solutions and 

select that giving the best fit with the largest number of reflections. The 

unit cell given by such a method will not necessarily be the conventional 

one, exhibiting the symmetry of the crystal, and this has therefore to be 

deduced subsequently. 

Y = i (d3+d3) ~ f (T+di + dj+T') 
03 = 90 x Y(d3~d3) degrees 

Figure 5.11 The calculation of Bragg angles from powder photographs taken with the 

asymmetric film mounting. 

Powder photographs of low symmetry materials or of those with large 

unit cells often show a very large number of lines which, except at the 

lowest angles, may not be properly resolved from one another. It is almost 

impossible to index the lines in such photographs uniquely, unless the 

lattice parameters are already known with high accuracy. In addition, 

because of overlap, the intensities of the lines cannot be measured accu¬ 

rately. For this reason, quantitative measurements of the intensities 

scattered by materials of this sort cannot be made on powders and 
recourse has to be made to single-crystal methods. 

5.8 Use of powder photographs to identify materials 

One use that can be made of the distinct, though often complex, powder 

patterns given by different materials is as a means of identification. The 

American Society tor Testing Materials (A.S.T.M.) has developed an index 

in which the d-spacings and relative intensities of the lines in the powder 

photographs of a large number of materials are listed. Each distinct crystal¬ 

line phase occurring in the index is represented by three cards. On one of 

these all the d-spacings and intensities are tabulated and this is filed in the 

index in a position corresponding to the ^-spacing of the strongest line in 
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Figure 5.12 A method of indexing the powder photograph shown in Fig. 5.10a. 

the pattern. The other two cards have on them only the name of the phase 

and information about the three strongest lines: they are tiled in positions 

corresponding to the <i-spacings of the second and third strongest lines. 

This system makes it possible to identify an unknown material by calcu¬ 

lating the d-spacings of the lines in a powder photograph and selecting the 

three most intense ones. That part of the index corresponding to d-spacings 

near to that of the strongest line is searched lor a card lor which the other 

d-spacings and the relative intensities ol the lines are also in agreement. The 

tabulation under second and third strongest lines, in addition to the 
strongest, enables impurities or mixtures to be identilied even though the 

strongest line may be overlapped by that of another constituent. 

5.9 Determination of accurate lattice parameters 

Examination of the photographs of Fig. 5.10 will show that around the 

left-hand hole in the film each of the lines is a doublet. The reason lor this 

lies in the nature of the Bragg equation, dillerentiation ol which gives 

1 
dX = — sec 6 dd 

dX 

X 

dd 

2d 

- cot 9 dd 

dX 
tan d — or 

X 
tan d 

did) 

d 
(5.6) 
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Thus the change in angle brought about by a small change in either the 

spacing or the wavelength depends upon tan 6 and therefore tends to 

infinity as 6 tends to 90°. The Ko: X-ray line, which is the strongest 

emission line from most targets and hence the one most commonly used, 

is a doublet with a wavelength separation for copper of 0-0038 A; it is 

resolved at high angles and the doublet lines may be seen at the high-angle 

ends ot the photographs of Fig. 5.10. The good resolution obtained in the 

high-angle region of a powder photograph enables very accurate values of 

the lattice parameters to be obtained. With 6 = 85° a change in ^-spacing of 

0-001 A causes a shift in angle of which is easily measurable. 
Looking at the possibilities from a different point of view, it should be 

possible with care to determine the position of the centre of a powder line 

to 0-2 mm. If the camera radius is 5-7 cm, this corresponds to an angular 

accuracy of 0-1° or a sensitivity of 0-0002 A at 6 = 85°. In order to achieve 

an accuracy in lattice parameter determination of this order, various effects 

which lead to systematic errors in measurement of the Bragg angle must be 

eliminated or corrected. We have seen that as 6 approaches 90° the error in 

d caused by a small error in 6 becomes vanishingly small. These systematic 

effects would therefore not cause any error in the lattice parameters were 
it possible to record reflections with 6 = 90°. In practice, the geometry of 

the method restricts the highest angle to about 87-5° because the angle sub¬ 

tended by the collimator at the specimen cannot be made less than about 

10°. It is possible however to deduce the lattice parameter which would 

have been obtained from a measurement at 90° by extrapolating the values 

obtained at lower angles against some suitable function of 6. The extra¬ 

polated result at 6 = 90° will be most accurate if the function of 6 used is 

one which can be expected to give a linear extrapolation. Hence it is neces¬ 

sary to consider which are the principal sources of error and how they de¬ 

pend upon 6 in any particular case. These errors may be due to mis-centering 

of the specimen in the camera, divergence of the X-ray beam, absorption in 

the specimen and film shrinkage. Other less important errors are caused by 

the finite height of the specimen and refraction of the X-ray beam. The 

effects of uniform film shrinkage are eliminated by use of the asymmetric 

film mounting, which also removes the need for the camera radius to be 
known accurately. For most powder specimens the main angle-dependent 

error is that due to absorption of the X-ray beam in the specimen, which 

causes a shift in the position of the peak of the powder line. It has been 

shown that in these circumstances the error in the deduced lattice para¬ 

meter is approximately proportional to ^(cos2 6/6 + cos2 6/sin 0), the 

Nelson-Riley function. In the case of a non-absorbing specimen the princi- 
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pal error is probably that due to mis-centering, and the appropriate extra¬ 
polation function is then cos2 6. 

Figure 5.13 shows the result of extrapolating the high-angle data of 
Table 5.1 against \(cos2 6/6 + cos2 0/sin 6). It can be seen that the result is 
very strongly influenced by the highest angle reflection and that the influ¬ 
ence of reflections with 6 less than 75° is rather small. If good values for 

Figure 5.13 The determination of accurate lattice parameters by extrapolation to 

d = 90°. 

lattice parameters are to be obtained, it is very important to choose a 
radiation which will give at least one reflection with 6 greater than 80 . 

The procedure to be followed for obtaining the lattice parameter ot 
cubic crystals will be clear from Section 5.7. For non-cubic crystals the 
analytical least-squares method due to Cohen (1935) is probably the most 
useful, particularly as the calculations may easily be programmed for a 
computer. For any particular crystal system, the spacing d ot planes (hkl) 
may be written in terms of the lattice constants (§1.10). For instance, in 

the orthorhombic system 

1 -]}L A! l— 

dr a2 b2 c2 

Suppose the extrapolation function appropriate to d is/(d), then the 
spacing d can be written in terms of the observed spacing d0 by an equation 

such as 

d = d0(\ -k/(6>)) (5.7) 

where k is a small constant which is the same for all measurements from 
one photograph. Then 
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i^(,+2k/(0)) 
so that 

h2 k2 fi 

a2 + b2 + c2 

4 sin2 6 _ 8 

“x^'x2 k/(0) sin2 6 (5.8) 

This equation has four adjustable parameters and the set of equations 

corresponding to a set of measurements may be solved by the usual least- 

squares techniques for a, b, c and k. An alternative graphical method is to 

divide the observed reflections into groups: those with Ic* greater than 

ha* + kb*, those with kb* greater than ha* + Ic* and those in which ha* is 

greater than kb* + Ic*. Using approximate values for a and b, the first group 

of reflections may be used to obtain an accurate value for c. Similarly the 

second and third groups may be used to obtain better values for b and a 

respectively. The calculation is then repeated but using the better values of 

a, b and c and the process re-cycled until no further significant changes 

occur. In order to obtain high-angle reflections in all three groups, it may 

be necessary to take photographs with X-rays of several different wave¬ 

lengths. 

5.10 The powder diffractometer 

For many applications the powder diffractometer has nowadays replaced 

the powder photograph for recording diffraction patterns from polycrystal¬ 

line samples though it cannot easily be applied when only very small quan¬ 

tities of material are available (< 0-05 cm3). The theory behind the method 

is unchanged. The specimen is usually pressed into the form of a flat plate 

of sufficient thickness to absorb the whole incident beam. The plane of 

the specimen is set so that the normal to it bisects the angle between the 

incident beam and the centre line of the X-ray detector. This detector is a 

quantum counter, usually a Geiger, proportional or scintillation counter 

and ideally records one count in a scaler for each X-ray quantum incident 

on it. The shaft which carries the detector can be rotated about the axis ot 

the specimen and can be set at an angle 26 to the direction ot the incident 

beam. The detector is aligned so that its centre line always passes through 

the axis of rotation of the specimen in a direction normal to it. The X-ray 

intensity scattered by the sample is recorded as a function ot 6, either by 

carrying out a continuous scan or using a step-scanning method. In the con¬ 

tinuous scan, the output of the detector is fed into a rate-meter and chart 
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recorder. In the step-scanning method, the number of quanta detected in a 

fixed time is recorded with the specimen and detector stationary and be¬ 

tween each recording they are stepped on by a small angular distance. The 

diffractometer method has the advantage that it is relatively easier to ob¬ 

tain quantitative estimates of the intensities of the diffraction lines and this 

is of considerable value in estimating the relative proportions of phases in a 

mixture. Measurements are obtained more rapidly both because the sensi¬ 

tivity of quantum detectors is high and because the geometry of the method 

enables a larger volume of sample to be irradiated. 

Neutron-diffraction data from polycrystalline samples are almost always 

collected using a diffractometer method as there is as yet no satisfactory 

neutron-sensitive film having a low enough noise level to be useful. The 

sample in the neutron powder diffractometer is usually held in a thin- 

walled cylindrical aluminium can, 1-2 cm in diameter. It is not usually 

practicable to use a plane sample because of the low absorption of thermal 

neutrons in most materials. One useful modification which can be made to 

the conventional diffractometer is to mount several detectors on the 

detector arm, rather than one. As the arm moves round, each of the 

detectors records a different part of the pattern and hence the whole 

pattern can be recorded in a much shorter time than if just a single 

detector is used. 

In Fig. 5.14, the X-ray and neutron powder patterns of NiO are compared. 

Features to note are the extra lines on the neutron pattern given by the 

antiferromagnetic structure of NiO, which has a repeat distance twice that of 

the chemical structure, and the difference in width of the lines in the two 

patterns. This width difference arises from the different spectral compo¬ 

sition of the primary beam in the two cases; in the X-ray case the primary 

beam is the CuKa line which has a spectral width of 0 005 A and in the 

neutron case it is reflected from the (200) planes of a Cu single crystal 

with a mosaic spread of 50; the in-pile collimation matches this approxi¬ 

mately so that the wavelength spread in the primary beam is 0-02 A. Thus 

it is clear that the resolution obtainable in neutron powder diffraction is 

nearly an order of magnitude less than that obtainable with X-rays. This 

limits the use of the method to materials with small unit cells as otherwise 

too much overlap between reflections occurs. 

5.11 Intensity of powder diffraction 

The intensity diffracted into a powder ring depends on Q, the integrated 

intensity per unit volume (§3.8) and on the volume of illuminated sample 

oriented so as to diffract. This volume depends on the multiplicity p, which 
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Neutron and X-ray powder patterns of Nickel Oxide 

Figure 5.14 Diffractometer traces obtained from powdered NiO at room temperature, 

(a) using neutrons, X = 241 A. (b) using X-rays, X = 1-54 A. Note the extra peaks in 

the neutron diffraction pattern which arise from magnetic scattering by the antiferro¬ 

magnetic array of Ni2+ ions. 

is the number of planes in the form {hkl} giving rise to the ring, the prob¬ 

ability that any one of these planes will be correctly oriented cos Q) and 

the effective illuminated volume. In the case of a flat sample, thick enough 

to absorb the whole beam, the effective illuminated volume is Sq/I/jl where 

Sq is the area of the beam and p the linear absorption coefficient. The inte¬ 

grated intensity per unit length of the diffracted ring will contain a factor 

1 /(sin 29) inversely proportional to its circumference and will therefore be 

proportional to 

SopQ/p sin 6 (5.9) 

where Q is defined by Equ. 3.25. The intensities of the lines in a powder 

pattern may be measured rather easily from the data obtained irom a 

diffractometer by integrating the area under eack peak and subtracting 

an integrated background measurement. The integrated background is 
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Figure 5.15 Electron microscopy and electron diffraction. The upper photograph 

shows an electron micrograph of a thin plate containing two uranium carbide phases; 

the light area is covered by the electron beam. The central picture is the corresponding 

diffraction pattern which contains spectra from both phases. The lower diagram shows 

how the reciprocal lattices of the two phases combine to produce the observed pattern 

which enables the relative orientations of the two single crystal phases to be established. 

(Photograph by kind permission of Dr B. L. Eyre, AERE Harwell. See Phil. Mag. (1964) 

9, 545.) 
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estimated from the intensity on either side of the peak. The intensities of 

the lines on a powder photograph are not so easily found. They may be 

estimated visually by comparison with an intensity scale or deduced from 
photometric measurements of the photographic density, using an experi¬ 

mental calibration ol density against the number of photons incident on 
the film. 

5.12 Methods for electron diffraction 

The methods used for electron-diffraction measurements are rather 

different from those used with either X-rays or neutrons, both because of 

the much higher absorption of electrons in solid specimens and because 

the wavelengths of the electrons used are very much shorter. It was shown 

in Chapter 4 that the form factor for electron scattering had much the 

same angular dependence as that for X-rays and had fallen to a small fraction 
of its maximum value at sin 6/\ = 1 -0. Since the wavelengths of electrons 

used are of the order 0-05 A, it can be seen that almost all the electron 

scattering will occur at Bragg angles of less than 5° For this reason the 

transmission method is the most appropriate and, because of the high 

absorption, the specimens must be in the form of thin flakes or films 

through which the electrons can pass. A simplifying feature occurs because 

the length of the reciprocal lattice vectors become very small in comparison 

with the radius of the Ewald sphere, so that near the origin of reciprocal 
space the sphere approximates to a plane. If this plane is perpendicular to 

any of the principal zones in the crystal, then the reciprocal lattice points 

representing planes in the zone will touch the surface of the sphere, since 

all have a finite extent because of the wavelength spread of the electron 

beam. Hence, for a single orientation of the crystal, a whole zone of reflec¬ 

tions can be recorded. An electron-diffraction camera designed to obtain 

photographs using this method was illustrated in Fig. 2.4 and Fig. 5.15 

shows a photograph so obtained. The reflections are very easily indexed 

because the photograph can be interpreted simply as a projection of the 

reciprocal lattice points on to the film through the centre of the Ewald 
sphere. 



6 
The Structures of the Elements 

6.1 Introduction 

In this chapter we shall consider the quantum mechanical interaction 

between like atoms and shall use this to discuss the crystal structures of 

the elements. Crystal structures are most easily visualised as the arrange¬ 

ments of hard spheres in contact. The justification for this concept lies in 

the strong short-range repulsive potential which exists between atoms. This 

enables an atomic radius to be defined which depends mainly on the range 

of the repulsive potential. It is however modified to a small extent by 

cohesive forces which depend upon the particular environment. The 

cohesive forces, in their turn, are determined by the electronic configur¬ 

ation of the element. 

6.2 The periodic classification of the elements 

It will be assumed that the reader is familiar with the interpretation of 

the Periodic Table in terms of atomic structure. The most stable state of an 

atom is that in which the electrons occupy the lowest permitted energy 

levels and this is termed the ground state. Characteristic excitation energies 

are required to cause an atom to change from the ground state and these 

excitation energies may be greater or less than those commonly involved 

in chemical reactions. In the latter case, the electronic structure of the atom 

in a compound may be different from the free-atom ground state listed in 
Table 6.1. 

Many different tabular arrangements of the elements can be devised to 

emphasise different relationships between their properties. 

The Periodic Table shown in Table 6.2 enables the elements to be 

classified into four types: 

Type /—The inert gases which have a complete octet of electrons in the 

outermost s and p orbitals. This configuration is characterised by extreme 

stability and high ionisation potentials. Until very recently, the inert gases 

were believed to form no chemical compounds (but see §7.13). 
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Table 6.1 The electronic configurations of the ground states of the 

elements 

Period, element and atomic number 
K L M 1 N 

1 s 2s 2p 3s 3p 3d 4s 4p 4d 4f 

1 H 1 1 
He 2 2 

2 Li 3 1 
Be 4 2 
B 5 2 1 
C 6 2 2 
N 7 2 3 
0 8 2 4 
F 9 2 5 
Ne 10 2 6 

3 Na 11 1 
Mg 12 2 
A1 13 2 1 
Si 14 2 2 
P 15 2 2 6 2 3 
s 16 2 4 
Cl 17 2 5 
Ar 18 2 6 

4 K 19 1 
Ca 20 2 
Sc 22 1 2 
Ti 21 2 2 
V 23 3 2 
Cr 24 5 1 
Mn 25 5 2 
Fe 26 6 2 
Co 27 7 2 
Ni 28 2 2 6 2 6 8 2 
Cu 29 10 1 
Zn 30 10 2 
Ga 31 10 2 1 
Ge 32 10 2 2 
As 33 10 2 3 
Se 34 10 2 4 
Br 35 10 2 5 
Kr 36 10 2 6 

Type II— Atoms which are differentiated from their neighbours in the 

Periodic Table by the number of electrons in the outermost shell. Such 

elements are characterised by a rapid change from metallic properties at 

the left of the Periodic Table (one electron outside the closed shell) to 

non-metallic properties on the right. The more metallic elements readily 
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Table 6.1 —continued 

Period, element and atomic number K L M 
N O P 

4s 4P 4d 5s 5p 5d 5f 6s 6p 6d 

5 Rb 37 1 
Sr 38 2 
Y 39 1 2 
Zr 40 2 2 
Nb 41 4 1 
Mo 42 5 1 
Tc 43 5 2 
Ru 44 7 1 
Rh 45 2 8 18 2 6 

8 1 
Pd 46 10 
Ag 47 10 1 
Cd 48 10 2 
In 49 10 2 1 
Sn 50 10 2 2 
Sb 51 10 2 3 
Te 52 10 2 4 
I 53 10 2 5 
Xe 54 10 2 6 

6 Cs 55 1 
Ba 56 2 
La 57 1 2 
Ce 58 2 2 
Pr 59 3 2 
Nd 60 4 2 
Pm 61 5 2 
Sm 62 6 2 
Eu 63 2 8 18 0 

4* 6 10 7 2 6 2 
Gd 64 7 1 2 
Tb 65 9 2 
Dy 66 10 2 
Ho 67 11 2 
Er 68 12 2 
Tm 69 13 2 
Yb 70 14 2 
Lu 71 14 1 2 

lose electrons in their outermost shell to form positive ions, e.g. sodium 

forms Na+, calcium forms Ca44. The elements in Groups 6 and 7 on the 

other hand readily form negative ions by acquiring electrons thus com¬ 

pleting the stable closed-shell configuration: chlorine goes to Cl- and 

oxygen to O2-. 

Type III— Atoms forming a transition series which are differentiated 

from their neighbours by the number of electrons in the next to outermost 
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Table 6.1 —continued 

Period, element and atomic number K L M N 
O P Q 

5s 5p 5d 5f 6s 6p 6d 7s 

6 Hf 72 2 2 
Ta 73 3 2 
W 74 4 2 
Re 75 5 2 
Os 76 6 2 
Ir 77 8 2 
Pt 78 2 8 18 32 2 6 9 1 
Au 79 10 1 
Hg 80 10 2 1 
T1 81 10 2 2 
Pb 82 10 2 3 
Br 83 10 2 4 
Po 84 10 2 5 
At 85 10 2 6 
Rn 86 10 

7 Fr 87 1 
Ra 88 2 
Ac 89 1 2 
Th 90 1 1 2 
Pa 91 2 1 2 
U 92 3 1 2 
Np 93 4 1 2 
Pu 94 2 8 18 32 2 6 10 5 2 6 1 2 
Am 95 7 2 
Cm 96 7 1 2 
Bk 97 8 1 2 
Cf 98 10 2 
Es 99 11 2 
Fm 100 12 2 
Md 101 13 2 
No 102 14 

- 

2 

shell. All the elements are metallic and, like the Type II metals, readily 

form positive ions. However, since a number of excited states are usually 

available within a relatively small energy range of each other, the transition 

elements frequently exhibit several different ionisation states, e.g. 

Co2+ ls2s22p63s23p63d7 cobaltous ion 

Co3+ ls2s22p63s23p63d6 cobaltic ion 

They are also able to form complex negative ions such as (TiC^)2-, (V04)2- 

and (Cr04)2~ which are found in the titanates, vanadates and chromates. 
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Type IV— A further transition series in which elements are differentiated 

by the number of electrons in the second to outermost shell. The lanthanide 

series of rare-earth elements is characterised by changes in the 4f shell of 

electrons (4f1 -4f14) and the actinide series by similar changes in the occu¬ 
pation of 5f levels. The highly shielded nature of these shells ensures that 

the chemical similarity between members is great. This similarity is not 

found in their magnetic properties, since these are related primarily to the 

number of unfilled 4f and 5f states respectively. 

6.3 The hydrogen molecule ion, H2 

The simplest case we can consider in which more than one atom is 

involved is the hydrogen molecule ion Ho, consisting of two hydrogen 

nuclei sharing a single electron. We shall not attempt to obtain an exact 

solution to the Schrodinger equation in this case but will use the variational 

technique to illustrate the approximate solution of the problem. 

The Schrodinger equation 

K \Jj = E\\j (6.1) 

is satisfied by eigenfunctions \p of the Hamiltonian K with energies E. If we 

multiply both sides of the equation by ^ * and integrate over the whole of 

space we obtain 

E = j \p*3(\p dr dr 

and if \jj happens to be the ground state then E is the minimum possible 

energy. Any approximate wavefunction \pi must therefore be such that 

dr = Ei > E 

and the nearer E\ is to E the closer is our approximate function \pi to the 

true ground-state wavefunction. 

In choosing an approximate wavefunction to describe the electron in the 

hydrogen molecule ion we are guided by the symmetry of the problem. The 

most obvious characteristic of a wavefunction in a diatomic molecule is 

that it should be bi-centric; however, in the region of either nucleus the 

significant parts of the Hamiltonian are exactly those terms which com¬ 

prise the Hamiltonian of an electron isolated on that nucleus. Thus we 

expect the wavefunction to have characteristics of both ipA and 1//B, the 

individual atomic wavefunctions for nucleus A and nucleus B. It therefore 
seems reasonable to write the approximate molecular wavefunction as a 

linear combination of the appropriate atomic wavefunctions. This is known 
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as the linear combination of atomic orbitals or L.C.A.O. approximation. 

Thus we write 0 i as 

01 = 0A + X0 B 

where 0A is an atomic wavefunction centred on atom A and 0B an 

equivalent wavefunction centred on atom B. Then 

E\ = {(0a360a + 2X0a J60b + X20B?f 0 b) dr 

|(0a0a + 2X0a 0 b + 0b0b) 4t 

= (EA + 2\(3 + \2Eb)/(\ + 2XS + X2) (6.2) 

where (3 has been written for the resonance integral f 0a?60b dr and S tor 

the overlap integral f 0a 0b dr. The minimum value of E\ is obtained by 

choosing X so that dEi/d\ = 0; since EA = EB we obtain X2 = 1 or X = ±1. 

The energies corresponding to these two solutions are 

E± = 
E\ ± P 

1 ±5 
(6.3) 

and the wavefunctions are 0 ± = 0A ± 0b- T° a approximation the 

overlap integral S may be put equal to zero so that 

E+=Ea ± (3 (6.4) 

(/3 is normally negative and therefore the 0+ state has lower energy). 

Equations 6.3 and 6.4 show how the two degenerate atomic wavefunctions 

0A and 0b combine to give two non-degenerate wavefunctions 0+ and 0_ 

whose energies differ by an amount which depends on the magnitude of 

the resonance integral (3. Figure 6.1a shows the energies of the molecular 

orbitals 0+ and 0_ for H2 as a function of the nuclear separation. The 

coulomb energy e2/R has been included to give the total energy of the 

molecule. The variation of the charge density 00* along the molecular 

axis is illustrated in Fig. 6.1b for both the bonding (0+) and antibonding 

(0_) states. 

6.4 The application of molecular orbital theory to the elements 

We have seen in the preceding section that when we bring two similar 

atoms together atomic orbitals centred on one atom combine with atomic 

orbitals centred on the other to give pairs of orbitals 0+ and 0_; one of 

these, the bonding orbital 0+, has a lower energy than the original atomic 

orbitals whereas the antibonding 0_ orbital has a higher energy. The dit- 
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Figure 6.1 (a) The energies (E) of the molecular orbitals i//+ and ip~ for H2+ as a 

function of nuclear separation r. (b) the variation of the charge density \p\p* along the 

molecular axis for the bonding (i//+) and antibonding states; the vertical arrows 

indicate the positions of the nuclei 

ference in energy between the bonding and antibonding states is deter¬ 

mined by the appropriate resonance and overlap integrals and at large 

separation the energies of both states tend to that of the parent atomic 
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orbitals. At small separation both energies rise steeply because of inter- 

nuclear repulsion. The rise is particularly dramatic for the antibonding 

orbitals because of the increase in the overlap integral as the atoms approach 

one another. This effect is responsible for the instability of molecules such 

as He? in which the antibonding orbitals would have to be occupied because 

the original atoms contain fully occupied atomic orbitals. 

This repulsive interaction between closed shells of atomic orbitals is also 

responsible for the steeply rising repulsive potential between many-electron 

atoms and underlies the success of the hard-sphere model of crystal struc¬ 

tures. The onset of the steeply rising potential enables characteristic radii 

to be assigned to the elements; these are plotted against atomic number in 

Fig. 6.2. 

2 5 Rb 

l Sr ffBa 

o< 

0 5 

0 10 20 30 40 50 60 70 80 90 100 

Atomic number Z 

Figure 6.2 The characteristic radii of the elements. 
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It can be seen trom this figure that the radii associated with elements 

having similar electronic structures increase with increasing atomic number, 

for example the series Be, Mg, Ca, Sr, and Ba. It should be noted however 

that the change in radius between the later members of the series is 

approximately constant and is not related to the number of intervening 
elements. 

6.5 The electron wave functions in a solid* 

In the preceding section we have seen how it is possible to obtain 

approximate wavefunctions for a system consisting of two atoms. Clearly 

the problem ot calculating the wavefunction in a solid is much more com¬ 

plicated, not least because the potential in which the electrons move is 

itself determined by the wavefunction. An exact solution is not possible, 

but considerable physical insight into the structurally important features 

ot wavefunctions in solids may be obtained from an extension of the 

L.C.A.O. approximation. We saw in Section 6.3 that the effect of bringing 

two similar atoms together was to produce two diatomic orbitals \jjA ± i//B 

separated in energy from the original atomic orbital \pA or \jjB. If we con¬ 

tinue the process, building up a solid by adding further atoms, each new 

atom adds one more orbital with energy in the range between E+ and E_ 

and slightly modifies those of the previous set. In the limit this process 

results in a band of allowed energies corresponding to each atomic 

orbital. This band contains one state per atom for each of the original 

atomic orbitals. The process of formation of such a band is illustrated in 

Fig. 6.3a, and the dependence of the band widths on internuclear distance 
in Fig. 6.3b. 

If the degree of overlap between orbitals of adjacent atoms is small so 

that the widths of the bands are less than the energy separation of the 

original atomic orbitals then the bands corresponding to the orbitals will 

remain separated. In all cases electrons in the closed shells of atoms belong 

to this non-overlapping group and give rise to narrow ‘atomic’ bands with 

energies and wavefunctions little perturbed from those in the isolated 

atoms. It the converse conditions exist, the bands may overlap in energy 

and the resulting molecular orbitals are combinations of both types of 

atomic orbital. It is a well-known result of quantum mechanics that when 

states of a system of similar energies and suitable symmetry exist the true 

eigenstates of the system are linear combinations of these states, thus an s 

* A detailed discussion of the material of this and the following section will be found 
in the companion text in this series, The Electronic Structures of Solids. 
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and a p state of similar energy combine to form two hybrid states a\ps + 

b\pp and a\jjs — b\jjp. The wavefunctions of these two states are illustrated 
in Fig. 6.4. 

Figure 6.3(a) The process of band formation by the addition of further atoms to build 

up a solid from a single atom, (b) The dependence of the band widths on internuclear 

distance. 

a<J/s +b(£p a<fs bf'Pj 

\ 

N 
\ 
\ 

/ 

/ 
/ 

Figure 6.4 The nybrid states a i//s + b\pp anda\ps - b \jjp. Contours are at equal 
arbitrary intervals, negative levels being shown dashed. 
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It can be seen that the wavetunctions are highly directional in character 

and this has important consequences for the stability of structures. The 

effect of hybridisation on the band structure of a solid can be illustrated 

by the case ot silicon in which the 3s and 3p bands have similar energies. 

The effect of decreasing internuclear distance is illustrated in Fig. 6.5. The 

top ot the 3s band and the bottom ot the 3p band gradually approach one 

another in energy but instead of crossing at the point A interaction occurs 

between the s and p states. The interaction results in the formation of sp3 

hybrid bonding and antibonding bands separated by an energy gap. 

Figure 6.5 The effect of decreasing the internuclear distance on the energy bands of 

silicon. The full lines give the limiting energies of the hybrid bands and the dashed lines 

the approximate form of the unhybridised s and p bands. The unhybridised p band in 

silicon would only be partly filled with 4 electrons per atom. The resultant sp3 bonding 

band is completely filled and is separated by the energy gap Eg from the unfilled sp3 
antibonding band. 

6.6 The effect of the lattice periodicity on the wavefunctions 

In Section 6.5 we obtained a qualitative picture of the band structure of 

a solid by considering it to be a molecule consisting of a very large number 

of atoms. This approach took no account of the periodicity of the crystal 
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lattice. An alternative way of attempting to find solutions to the wave 

equation in a solid exploits the periodic nature of the lattice and hence of 

the electronic potential. Bloch (1928) proved that in a periodic potential 

the wavefunctions have the form 

4tk = Uk(r) expO'fc • r) (6.5) 

where Uk(r) is a function having the lattice periodicity. 
The Bloch function depicted in Equ. 6.5 can be labelled by the vectors k 

and these can be conveniently represented as vectors in k-space—a space 

obtained directly from the reciprocal lattice (§3.4) by multiplying all dimen¬ 

sions by 27t. The influence of the lattice periodicity on the Bloch functions 

may be demonstrated by considering the function \pk(l + F) where k - g + k , 

g is a lattice vector of k space and / is a lattice repeat in the crystal. 

^k (/ + r) = Uk (/ + r) exp (/ (g + k') . (I + r)) 

= Uk{r) exp(z'(g + k'). r) exp(z(g + k') . I) 

= \pk(r) exp {ik'. I) 

since g . / = 27m with n being an integer. Thus the function \pk behaves like 

a Bloch function with wavevector k' = k — g. The wavevector ot a Bloch 

function is therefore not unique; corresponding to each function there are 

an infinite number of equivalent k vectors differing from it by lattice 

vectors g of k space. For most purposes it is convenient to consider a set of 

non-equivalent k vectors. Such a set may clearly be mapped within a single 

unit cell of k space since no two points within the cell are separated by a 

lattice vector and every point outside can be related to one inside by trans¬ 

lation by such a vector. The Brillouin zones are alternative volumes of k 

space which contain the set of non-equivalent k vectors once only. The tirst 

Brillouin zone is the smallest closed polyhedron enclosing the origin of k 

space, formed by planes which perpendicularly bisect the lattice vectors g. 

Higher Brillouin zones are formed by subsequent closed polyhedra. Thus 

the first Brillouin zone contains those parts of k space which are nearer to 

the origin than to any other lattice point. Since all lattice points are equiv¬ 

alent the zone contains all non-equivalent k vectors and hence its volume is 

the same as that of the unit cell of k space. The geometrical forms of the 

first Brillouin zones of the face-centred and body-centred cubic lattices are 

illustrated in Fig. 6.6. 
The total number of non-equivalent k vectors is determined by the 

boundary conditions at the surface of the crystal. For a crystal containing 

Nx x A^2 x 7V3 unit cells the values of k which satisfy simple periodic 
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boundary conditions are given by 

Nxa . k = 2?mi\ N2b . k = 2tt/72; N3c . k = 2ttu3 

where «ls n2, n3 are integers. In terms of the lattice vectors of k space, 
27U7*, 2.7Tb*, 27rc*, these conditions can be written 

, n\ rz? n-x 
k - — (27Ttf*) + -f-(27T^*) 3 ~ (27TC *) 

A^i JV2 N3 

thus the allowed values of k are radius vectors of a sub-lattice whose basis 

vectors are 27r<?*/A/i, 2irb*lN2, 2ttc*/N3. The volume of A: space per A vector 

is I/7V17V27V3 times the volume ol the unit cell of A: space, and hence the 

number ot non-equivalent k vectors is equal to the number of primitive 
unit cells in the crystal. 

Figure 6.6 The first Brillouin zones in (a) the f.c.c. and (b) the b.c.c. lattices. 

In the tree electron case, for which the periodic potential is zero, the 

Bloch functions are plane waves = qi/c •r. The electrons have kinetic 

energy only and hence their energies Ek are given by Ek = h2k2l2m so that 
there is a parabolic dependence of E on k (Fig. 6.7a). 

The effect of a periodic potential is to introduce discontinuities in the 

energy at values of At corresponding to Brillouin zone boundaries (Fig. 6.7b). 

Electrons with k values just inside the zone boundaries have their energies 

reduced and those with k just outside have their energies enhanced, relative 

to the parabolic dependence. These changes in energy arise because electrons 

with wavevectors near the critical values interact strongly with the crystal 
lattice. Electrons whose wavevectors correspond to points on the zone 

boundaries can undergo Bragg reflection by the lattice, and this would 

result in transfer of energy between the electron and the lattice due to 

momentum conservation. Thus electrons with these wavevectors can have 
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no continuing existence in the lattice. The dependence of E on k in a 

periodic potential may also be illustrated for successive bands within the 

first Brillouin zone. The result is termed the reduced zone scheme, and is 

illustrated in Fig. 6.7c. 

First zone 

Figure 6.7 Energy (E) versus momentum (k) curves, (a) Parabolic, corresponding to a 

free electron, (b) Modified by discontinuities introduced by the crystal lattice, (c) The 

reduced zone scheme corresponding to (b). 

The number of states available to electrons within a given energy range, 

N (E) dE, may be plotted against the energy E to give the density-of-states 

curve. The forms of these curves are strongly dependent on the strength of 

the periodic potential, which dictates the magnitude of the energy discon¬ 

tinuities. They also depend on the geometric form of the Brillouin zones, 

which may determine whether there is a completely forbidden energy range 

when all directions in k space are considered. Figure 6.8 is a schematic den¬ 

sity of states curve for a substance in which the first two zones overlap in 

energy. 

6.7 The inert gases: close-packed structures 

The elements He, Ne, Ar, Kr, Xe and Rn are gases which can only be 

liquefied and finally solidified at very low temperatures. These elements 

have closed outer shells of s and p electrons whose wavefunctions do not 

overlap significantly even in the solid state. The resulting fully occupied 
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Figure 6.8 A schematic density of states curve, N (E) dE, plotted as a function of the 
energy (E) for the case of overlapping zones. 

bands are extremely narrow compared to the energy difference between 

bands. In effect, the band structure consists of a highly degenerate set of 

discrete orbital levels. 

Cohesion in the condensed state results from weak attractive forces, a 

satisfactory explanation of which was first given by London (1930). 

London showed that the cohesive force arises from the dynamic polaris¬ 

ation of an atom which results from its zero-point motion. The inert gas 

atoms do not possess permanent dipole moments but they may have an 

instantaneous moment since at any instant the electron distribution need 

not have the full spherical symmetry of its time-average. The instantaneous 

dipole moment of one atom will polarise its neighbour in just the manner 

described by Debye (1920) for atoms and molecules exhibiting a permanent 

dipole moment. Since the interaction is dipolar, the interatomic potential 

will depend on r-6 and is therefore short-ranged. This and other weak 

attractive interactions are loosely termed Van der Waal’s forces commem¬ 

orating Van der Waal’s introduction (1873) of such forces into an equation 

of state for real gases. 

The Van der Waal’s bond is non-directional and the inert gases crystallise 

so that the atoms are equally spaced. Figure 6.9 illustrates the derivation of 

the two most symmetrical arrangements of close-packed spheres of equal 

/47rr3 \ // 4r 
radii. In both cases the packing fraction is 4 - 

\ 3 
i.e. 0-741 
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Figure 6.9 The close-packing of spheres of equal radius, (a) A single layer, (b) The 

positions B and C of two sets of hollows in the surface of the single layer, (c) Hexagonal 

close packing made up of successive A and B layers. The unit cell is indicated by dashed 

lines, (d) Cubic close packing in which the layers repeat ABC ABC and lie perpendicular 

to (111). 

Helium solidifies under high pressure in the hexagonal close-packed 

structure (h.c.p.); the remaining inert gases are cubic close-packed (c.c.p.) 

in the solid state. In both structures each atom is surrounded by twelve 

nearest neighbours at the same distance. The number ot atoms which may 

be considered to be in ‘contact’ with any particular atom is said to be the 

co-ordination number (C.N.) for that atom. We may also refer to the co¬ 

ordination of an atom in terms of the polyhedron whose vertices are the 
centres of the co-ordinating atoms. The polyhedra corresponding to c.c.p. 

and h.c.p. are illustrated in Fig. 6.10. It may be noted in connection with 

structures assembled from close-packed layers that the stacking sequence is 

determined by interactions between alternate rather than adjacent layers. 

Such interactions are often weak so that mistakes in the sequence (termed 

stacking faults) may readily occur. 
The low strength of the Van der Waal’s bond is also reflected in the low 

heats of sublimation ranging from 0-6 kcal/mol for Ne to 2-8 tor the more 

easily polarisable Kr (cf. 100 kcal/mol for Fe). 
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(b) 

Figure 6.10 The coordination polyhedra for (a) cubic close packing; a cube octahedron 

where the three points lying below the median plane are rotated relative to those lying 

above (b) for hexagonal close packing, where the two sets of points are superimposed. 

6.8 Atoms with a single valence electron : the half-filled band 

We have shown (§6.6) that there are two electron states per atom avail¬ 

able in each Brillouin zone. Atoms of such metals as the alkali metals Na, 

K, Cs and Rb and the noble metals Cu, Ag and Au have one electron out¬ 

side a stable shell. This electron is loosely bound and the corresponding 

zone is half-filled. A consequence of this is that these elements are good 

electrical and thermal conductors at all temperatures down to absolute 

zero, since states are always available just above the Fermi level into which 

electrons can be excited. The Fermi surface is very nearly spherical and the 

electron states isotropic; hence the cohesive forces have little directional 

character. One might expect therefore close-packed structures and these 

are in fact found for the noble metals which are cubic (cf. Fig. 6.9). 

Surprisingly, the alkali metals have a body-centred cubic structure with one 
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atom per lattice point (Fig. 6.1 la). The packing fraction is lower (068) 

than for the close-packed structures (074). Each atom has only eight nearest 

neighbours but there are a further six neighbours across the faces of the 

cube at only 15% greater distance. Thus the b.c.c. structure is often said to 

have C.N. = 14 and its co-ordinating polyhedron is illustrated in Fig. 6.1 lb. 

The three structures b.c.c., h.c.p. and c.c.p. are typical of the metallic state. 

It may be noted that lithium and sodium have h.c.p. structures at low 
temperatures (Barrett, 1956). 

(b) 

Figure 6.11 (a) The body centred cubic structure, (b) Its 14-fold coordination poly¬ 

hedron which includes the second nearest neighbours; the polyhedron is a rhombic 
dodecahedron. 

Some understanding of the difference in behaviour between the alkali 

and noble metals may be had by contrasting potassium with copper. In 

both elements the single valence electron is of 4s type, but in potassium 

the 3d shell is empty whereas in copper it is full. The consequent lower 

mean electron density in the outer regions of the alkali metal atom con¬ 

tributes less to the repulsive potential as the atoms approach one another 

and leads to the high compressibility of potassium relative to copper. As 
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might be expected, the ionic radius of K+ is much less than the atomic 
radius in the metal, but a much smaller difference exists between the radii 
of Cu+ and Cu. This distinction between the alkali and noble metals led 
Hume-Rothery and Raynor (1938) to introduce the concept of open 
(compressible) and full (incompressible) metals. 

6.9 The transition, lanthanide and actinide elements 

The free-atom ground states of the transition elements have an incom¬ 
plete d shellf, and are therefore characterised by having more than one 
untilled shell. Some ot the salient features ot the band structure of tran¬ 
sition metals may be illustrated by nickel. The 3d wavefunctions are more 

Figure 6.12 Density of states in nickel for the bands close to the Fermi energy, as 
calculated by Koster (1955). The Fermi level is shown as a vertical broken line. 

localised than the 4s and their energies will be modified to a lesser extent 
in the solid. The corresponding density-of-states curve in the two bands is 
illustrated in Fig. 6.12, which shows that the density of states is much 
greater in the d band. 

fin the case of palladium, the incomplete shell exists for excited states of small energy. 
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Figure 6.12 is a simplification in that exchange interaction has been 

neglected. The effect of this interaction is seen principally on the narrow 

3d band, which is divided into two parts corresponding to each of the two 

electron spin states. The spin-up and spin-down bands overlap to some 

extent, and the magnetic moment is a measure of the difference between 

the numbers of electrons in each. The wavefunctions corresponding to 

Atomic number 

Figure 6.13 The melting points of the transition metal and rare earth elements. 

states in the lower half of the d band have bonding character and contribute 

electron density to regions between atoms in the solid. The filling of these 

‘bonding’ states is to be associated with the decrease in atomic radius (Fig. 

6.2) and increase in stability found between the initial and final members 

of each transition metal series. Figure 6.13 shows how the increase in 

stability is reflected by the change in melting point across the three tran¬ 

sition metal series. States in the upper half of the d band are more ‘atomic’ 

in character and may give rise to localised magnetic moments. 
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Table 6.3 shows the structure exhibited by the transition metals. With 

the exception of manganese, they are the three typical metallic structures. 

It is significant that there is a tendency amongst the middle members of 

the series to form body-centred cubic structures and this may be inter¬ 

preted as a preference for high co-ordination when the d ‘bonding’ orbitals 

are nearly filled. Manganese is an extreme example of this tendency. The 

oMorm, stable at room temperature, has a complex cubic structure contain¬ 

ing 58 atoms/unit cell ot lour crystallographically non-equivalent types 

Table 6.3 The structures of the transition metals 

Period 
Group 

3A 4A 5A 6A 7A 8 
A 

\ 

4 Sc 
Aif 

a3 t 

Ti 
a3 

a2 t 

V 
a2 

Cr 
a2 

A3 

Mn 
complex 
A! 
a2 

Fe 
A2 

Ai 

Co 

A3 
Ai 

Ni 
Ai 
A3 

Y 
a2 

Zr 

A3 
a2 

Nb 
a2 

Mo 
a2 

a3 

Tc 

A3 

Ru 

a3 

Rh 
A! 

Pd 

Ai 

6 La 

Ai 
A3 

Hf 

A3 
a2 

Ta 
a2 

w 
a2 

Re 

A3 
Os 

Ai 
Ir 

Ai 
Pt 

A, 

7 Ac 
A! 

tA1} cubic close-packing; A2, cubic body-centred; A3, hexagonal close-packing. 

with C.N. values of 1 6, 16, 13 and 12. The same structure occurs in alloys 

between two different transition metals when it is called the y-phase (cf 
§8.5). 

The other groups of elements with more than one incomplete shell are 

the lanthanide and actinide series listed in Table 6.4. The lanthanide or 

rare earth series is characterised by the close-packed structures having 

relatively low stacking-fault energy. The cubic structure is preferred by the 

early members and the hexagonal structure by the later ones. The inter¬ 

mediate elements, Nd and Sm, have more complex structures derived from 

close-packed layers stacked in the order ABAC ABAC (cf. §6.7). 

Few of the actinide elements possess simple metallic structures. jft- 

Uranium is tetragonal with 30 atoms/unit cell of five unequivalent types: 

this structure is also found, like that of ce-manganese, amongst alloys 
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between two different transition metals when it is known as the a-phase 

(cf. §8.5). ce-Plutonium is monoclinic with eight non-equivalent sets of 

atoms. Many other complex structures exist in the series and some of these 

are also found amongst alloys. 

Table 6.4 The structures of the lanthanide and actinide elements 

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

AA Ai C — C a2 A3f a3 a3 a3 a3 a3 Ai A3 

a3 Cf 

Th Pa u Np Pu Am Cm Bk Cf Es Fm Md No 

Ai C c C C 

A2f a2 Ai 

A2 

f A1; cubic close-packing; A2, cubic body-centred; A3, hexagonal close-packing; 

C, complex structure or structures. 

6.10 Polyelectronic metals in Group II 

The elements we have considered in the previous two sections have 

atomic orbitals which are incompletely filled and it is clear why they have 

metallic properties. The alkaline earth metals (Group IIA), on the other 

hand, contain two valence electrons per atom which are just sufficient to 

fill the 2s band. Their conductivity must result from an overlap between 

2s and 2p bands in the solid state. The wavefunctions will however still be 

essentially s-like (non-directional) in character and this is borne out by the 

fact that these elements adopt the structure characteristic of the true 

metals. 
The elements zinc, cadmium and mercury (Group IIB) are also metallic 

in character, though the hexagonal structures of zinc and cadmium are 

distorted from h.c.p. and have c/a ratios of between 1 -8 and 1 -9 compared 

to the 1-633 appropriate to true close-packing. As a consequence of this 

distortion, each atom has six neighbours at a shorter distance than the 

remaining six which occur in the layers above and below it. This preference 

for C.N. 6 is more pronounced in mercury, which has atoms at the corners 

of a rhombohedral unit cell. The lack of complete isotropy in the structures 

of these elements shows us that the wavefunctions involved in the bonding 

cannot be entirely s-like. 

6.11 Directional bonding 

The elements so far considered have structures which may be understood 

largely in terms of a spherically symmetric potential associated with wave- 

functions having little directional character. The remaining elements which 



DIRECTIONAL BONDING 113 

occupy Groups IIIB-VIIB in the Periodic Table (Table 6.5) have structures 
which cannot be understood in this simple way. 

Table 6.5 The B sub-group elements of Groups II to VII 

Period 

Group 
A 

2B 3B 4B 5B 6B 7B 

2 B C N 0 F 

3 A1 Si P S Cl 

4 Zn Ga Ge As Se Br 

5 Cd In Sn Sb Te I 

6 Hg T1 Pb Bi Po At 

From Group IIIB onwards, valence electrons partially occupy the p levels 

with the important result that the wavefunction no longer possesses spheri¬ 

cal symmetry around each atom site. The aspherical character may be fur¬ 

ther increased by hybridisation when bands overlap (§6.5). In these con¬ 

ditions the energy of a particular arrangement may be critically dependent 

on the relative dispositions of neighbouring atoms and the resulting inter¬ 

atomic torces are non-central. The eftect is more marked for elements of 

low atomic number. The valence electrons of atoms of high atomic number 

have energies in a range in which there are many different electronic states 

available, and in the combined states which result most of the directional 

character is averaged out. For the same reason, it is unlikely that a band 

gap will exist at the Fermi energy so that most heavy elements exhibit 
metallic conduction. 

The bonding and antibonding orbitals associated with s-state electrons 

have already been considered in the discussion of the hydrogen molecule 

ion (§6.3). The six atomic p orbitals in a diatomic system separate into 

two with axes along the line joining the two atoms and four with axes 

perpendicular to this direction. The molecular orbitals are similarly of two 

types; a, formed by combining the orbitals parallel to the axis of the mol¬ 

ecule, and 7r, formed from the others. Thus there can be seen to be eight 

orbitals available which are the bonding and antibonding s and a, and two 
degenerate tt combinations. 

A possible energy level scheme tor these orbitals is shown in Fig. 6.14a. 

This scheme is only valid when the original s and p levels are well separated 
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in energy. If this is not the case hybridisation may occur (see §6.5) and 

Fig. 6.14b shows a possible energy level scheme when there is strong sp 

hydridisation. The sp hybrid orbitals are illustrated on Fig. 6.4. Other 

types of hybridisation can occur; sp3 (cf. §6.5) and sp2 which has three 

lobes making angles of 120° with each other. The energy separation of 

E 
a antibonding 

7t antibonding 

7t bonding 

a bonding 

s 

4 states/mol 

antibondi ng 

bonding 

E 

sp antibonding 

7T antibonding 

71 bonding 

sp bonding 

Indicates that the levels combine 

(a) (b) 

Figure 6.14 Possible energy level schemes for electrons in a diatomic molecule. 

(a) When the s and p orbitals are well separated in energy, (b) When the s and p levels 

are close together in energy and sp hybrids are formed. 

bonding and antibonding combinations of a given set of orbitals depends 

on the degree of overlap, being largest for those which overlap most. FFnce 

the appearance of the cra (antibonding) and spa orbitals at the highest 

energies on Fig. 6.14a and b. This enables us to understand the tendency 

of all atoms, save those of the inert gases, to form diatomic molecules, since 

when the antibonding states are not completely filled the net energy of the 

molecule is less than that of the two separate atoms. 
It remains to be considered whether in any particular case the diatomic 

molecule is energetically more or less favourable than some other bonded 

configuration. It can be seen from Figs. 6.14a and b that no energy premium 

arises if both antibonding and bonding combinations of a given set of orbitals 
are occupied. In the case of s and p orbitals only, if there are more than 
four electrons per atom the final configuration can be deduced from the 

energy of the unoccupied antibonding orbitals, whereas with less than four 

electrons per atom it is the filled bonding orbitals that should be considered. 

For Group VII atoms (seven valence electrons per atom) only one of the 

antibonding states is unoccupied. The maximum overlap in this orbital can 
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be achieved along the axis of a diatomic molecule and these are therefore 
stable (F, Cl, Br and I). The situation is more complicated when more than 

one orbital must be considered, since overlap may then occur with orbitals 

belonging to more than one neighbour. This happens in S, Se, and Te where 

the atoms link into chains, but in oxygen the diatomic molecule is still 

energetically favourable. The tendency outlined above forms the basis of 

what has been known as the (8 — N) rule: this suggests that the structure 

of an element will be stable if the number of closely bonded neighbours is 

equal to (8 — TV), where N is the number of its group. Evidence for this 

assertion is provided mainly by the structures of the elements in Groups 

IVB to VIIB, though the deviation from the ideal c/a ratio in the h.c.p. 

structures ot Zn and Cd (§ 6.10) has been attributed to this effect. 

6.12 Group IIIB elements 

The first member of this group is boron. It has at least two polymorphs, 

each of which is built of icosahedral frameworks of atoms stacked in a 

different way. The simplest form, which is rhombohedral with 12 atoms 

per unit cell, forms transparent red crystals. Its structure is illustrated in 

Fig. 6.15. The same icosahedral framework of atoms is found in other 

boron-rich compounds such as UB12. 

The /3-rhombohedral form of boron is a semiconductor with a band 

gap of 1.4 eV. It is known that boron forms three-centre bonds and it is 

generally thought that these are responsible for the lack of metallic 
behaviour. 

In contrast to boron, aluminium behaves as a true metal. It has the c.c.p. 

structure and de Haas van Alphen measurements show that the Fermi 
surface is nearly spherical. 

The remaining elements in the group, gallium, indium and thallium are 

also metallic conductors but like boron the structures of Ga and In reveal 

directional bonding. The heaviest member, thallium, has b.c.c. and h.c.p. 
modifications. 

6.13 Group IVB elements 

The first few elements in the group (Table 6.5) can all crystallise in the 

diamond structure illustrated in Fig. 6.16a. 

It is the stable modification of Si and Ge and it is also adopted by tin at 

low temperatures (grey tin) and by carbon under pressure (diamond). The 



116 THE STRUCTURES OF THE ELEMENTS 

strength and stability of the structure is due to the formation of sp3 bond¬ 

ing and antibonding bands (cf. §6.5), the electron density of which is 

directed along the tetrahedral directions to neighbouring atoms. The num¬ 

ber of electrons (four per atom) is just sufficient to fill the bonding 

(valence) band and the antibonding (conduction) band is unoccupied. The 

energy gap between the two bands is sufficient to ensure that the materials 

are insulators at low temperatures. Silicon and germanium are intrinsic 

semiconductors however, since their energy gap is of order 1 eV. 

Figure 6.15 The structure of rhombohedral boron projected onto the (001) plane of 
the related hexagonal cell with a 4-91 A and c = 12-57 A. The bond distance to boron 
atoms in icosehedra above and below in the c direction is 1-71 A. 

Carbon is dimorphous and also occurs as graphite, whose structure is 

illustrated in Fig. 6.16b. The hexagonal nets of carbon atoms extend in 

infinite sheets and have a C—C distance of 1 -42 A (cf. 1 -54 A in diamond). 

The layers of carbon atoms are superimposed with a much longer C~C dis¬ 

tance of 3-35 A. This remarkable anisotropy of the bonding results from 

the formation of the sp2 hybrid orbitals, which form o bonds to the other 
carbon atoms within a single sheet. The remaining electrons (one per 

carbon) occupy 7r orbitals extending above and below the plane of the sheet. 
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Figure 6.16 (a) The diamond structure (cubic, a = 3-56 A), (b) The graphite structure 
(hexagonal, a = 2-46 A, c = 6-80 A). Broken lines link atoms of successive sheets which 
are in the same vertical columns. 

The non-localisation of these electrons is evident from the relatively high 

electrical conductivity of single-crystal graphite in directions parallel to the 
layers compared to the perpendicular direction. The weakness of the inter¬ 

layer bonding gives rise to the extremely pronounced cleavage of the 

material and hence to its lubricating properties. The strength of the intra¬ 

layer bonds is utilised in composites containing carbon fibres. Each fibre is 

obtained by the graphitisation of a synthetic yarn and the axis of the fibre 

lies in the hexagonal planes of the structure. White tin has a unique struc¬ 

ture showing directional character but is a metallic conductor. The heaviest 
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member of the series, lead, is like thallium in being a metal with, in this 

case, the c.c.p. structure. The band structure of lead is not simple however, 

and its Fermi surface has a complicated topology. 

6.14 Group VB elements 

Nitrogen forms a diatomic molecule which exists in the solid, liquid and 

gas phases (§6.1 1). The liquefaction and solidification of nitrogen result 

from Van der Waal’s forces. The crystal structure, which is common to 

other bimolecular solids, is a hexagonal close-packing of the dumb-bell 

shaped molecules. 

Phosphorus also forms molecules, P4, of tetrahedral form which are 

found in the vapour, in solution and in the yellow crystalline modification. 

The black or ‘metallic’ form of phosphorus together with the heavier 

members of the group all have structures formed from puckered layers in 

which each atom has three close neighbours. In the structure common to 

As, Sb and Bi the layers are hexagonal and are stacked together to form a 

rhombohedral lattice (Fig. 6.17). 

Figure 6.17 A plan view of a puckered sheet of atoms as found in the structures of 

arsenic, antimony and bismuth. The lower atoms (A) in the next layer fall vertically 

above the points B in the layer below. The basal plane of the hexagonal unit cell is 

dashed. 

The electrical resistivity of As, Sb and Bi decreases with decreasing tem¬ 

perature which suggests metallic conduction; however in arsenic at 4-2 K 

the resistivity perpendicular to the layers is an order of magnitude greater 

than that parallel to the layers. This behaviour is similar to that of graphite 

(§6.13) and suggests that the ‘metallic’ conduction arises from delocali¬ 

sation of the 7r-bonding electrons. 
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6.15 The chalcogenides (elements in Group VIB) 

Structurally, oxygen is similar to nitrogen (§6.14) but there are three 

known modifications of the crystal structure in at least one of which, the 

ce-phase, the unquenched p-orbital moment leads to antiferromagnetism. 

The remaining elements in the group form bonds to two neighbours 

giving rise to a number of structures containing rings (sulphur and selenium) 

or chains (a polymorph of selenium and tellurium). The directional 

character of the orbitals involved leads to an inter-bond angle of about 

105° and consequently the rings are buckled and the chains twisted into 

spirals. The structure of selenium which contains such spirals is illustrated 

in Fig. 6.18a. 

(a) 

Figure 6.18 (a) Projection on (001) of the structure of hexagonal selenium (a = 4-37 A, 
c = 4-96 A). (b) Projection on (100) of the structure of iodine (orthohombic a = 7-27 A, 
b = 9-79 A, c = 4-79 A). The IT distance in the molecule is 2-70 A whereas the shortest 

distance between molecules is 3-54 A. 



120 THE STRUCTURES OF THE ELEMENTS 

6.16 The halogens 

These all form diatomic molecules. The solidification temperature 

increases with increasing atomic number, showing a corresponding increase 

in the strength of the Van der Waal’s bond. Iodine, which is a solid at room 

temperature, is black and lustrous indicative of a small band gap; it becomes 

metallic under pressure. Its structure is illustrated in Fig. 6.18b. 



7 
Polar Structures 

7.1 Introduction 

A new feature which is introduced when studying structures containing 

more than a single type ot atom is the essential asymmetry of the inter¬ 

atomic interaction. We may illustrate this by consideration of the series of 
binary compounds formed by pairs of elements: 

Si 

A1. . . . P 

Mg.S 

Na.Cl 

The crystal structure ol silicon and its energy bands have been described in 

Section 6.1 3. The four electrons per atom completely fill the sp3 bonding 

band and there is a gap of 0-8 eV between the top of this band and the 

bottom of the conduction band. A1P, with the same number of electrons 

per atom (e/a), forms a related structure (of the zinc blende type) in which 

the atomic sites are the same as in silicon but the four neighbours of any 

one atom are of the other sort (see Fig. 7.1). The essential difference in the 

electronic configuration arises from the difference in nuclear charges. The 

electron potential relative to that in silicon, is raised near to the aluminium 

atoms and lowered near to the phosphorus atoms which leads to a shift in 

charge density towards the phosphorus atom. This effect is seen yet more 

strongly as we progress to MgS and NaCl. Whilst e/a is still 4, the asymmetry 

of the charge distribution reaches a point in NaCl where the ions Na+ and 

Cr may be distinguished. Since these ions possess the inert gas configur¬ 

ation the electrons will occupy a series of narrow, filled ‘ionic’ bands. 

When ions are formed, the cohesion of the structure arises mainly from 

the electrostatic interaction between dissimilar ions. Both MgS and NaCl 

have the same structure, which is illustrated in Fig. 7.2a. In it. each ion is 

octahedrally co-ordinated by six ions of the opposite polarity and the 
structure is exhibited by a large number of ionic compounds. 
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Figure 7.1 (a) The structure of zinc blende (cubic a = 5-42 A) and (b) wurtzite 
(hexagonal a = 3-84 A, c = 5*18 A). 

7.2 The effect of ionic size on the stability of structures 

All the alkali halides except CsCl, CsBr and Csl possess the sodium 

chloride structure. These three salts, however, have the even simpler struc¬ 

ture in which ions of one type occupy the corners of the cubic unit cell 
and ions of the other type occur at the body-centre position. This arrange¬ 

ment results in a C.N. value of 8 and also occurs in many binary alloys 

when its stability does not derive from ion formation (cf. §8.9). The zinc 

blende structure described in the previous section is particularly associated 

with compounds between elements in Group N and those in Group (8 — TV), 

e.g. GaP, InAs, BeTe and CuCl, as is the alternative structure formed by 

ZnS in its wurtzite modification. This latter structure, illustrated in Fig. 

7.1b, has the same tetrahedral co-ordination as zinc blende but the tetra- 

hedra are stacked together in a different way so as to have hexagonal 

symmetry. Among other compounds with this structure are AIN, BeO, 

ZnO and Agl. 

Consideration of the cell dimensions of the alkali halides reveals a 

systematic expansion with increasing atomic number of either the cation 

or the anion. A set of characteristic radii for the ions may then be deduced 

on the assumption that the cell dimension is determined by the contact 

between oppositely charged ions each with a more or less constant size. 
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The values for the alkali halides and halogen ions are given in Table 7.1. 

Table 7.1 Ionic radii (A) 
for ions with C.N. = 6 

Li+ 068 F" 1 36 
Na+ 0-97 cr 1-81 
K+ F33 Br~ 1-95 
Rb+ 1 -47 r 246 
Cs+ F67 

Figure 7.2 (a) The sodium chloride structure and (b) a plan of the structure in the 
(001) plane which enables the limiting radius ratio to be calculated. 

If we accept the concept of a characteristic ionic size there will exist a 

radius ratio r+/r~ between cations and anions below which it is impossible 

to fit six anions around a cation whilst maintaining anion-cation ‘contact’. 

The critical radius ratio then corresponds to the situation illustrated in 
Fig. 7.2b, i.e. 

r+ + 

r+/r~ =(y/T- 1) = 0-414 

Similar considerations applied to C.N. = 4 and C.N. = 8 enable us to com¬ 
pile Table 7.2. 

The effective radius exhibited by an ion depends on the co-ordination in 

which it occurs. Lowering the co-ordination results in an apparent con¬ 

traction of the ionic radius, since the strength of the electrostatic inter- 
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actions increases the number of oppositely charged neighbours decreases. 

Ionic radii are usually quoted for C.N. = 6; the approximate corrections 

for different ionic co-ordinations are C.N. = 8, +3% and C.N. = 4, —5%. 

Table 7.2 Radius ratio ranges for the stability of 

simple ionic structures 

Co-ordination 
Typical 

structure r+/r for stability 

8 CsCl >0-732 
6 NaCl 0-414 O/r" < 0-732 
4 ZnS 0-225 <r+/r~ <0-414 

7.3 Ionic polarisation 

The process of ion formation described in Section 7.1 can be partially 

reversed in compounds where the size difference between the anions and 

the cations is large. The high relative field strength at the ‘surface’ of the 

small cation tends partly to reverse the process of charge separation and 

re-introduces a directional character to the bond. In such cases polarisation 

is said to occur: a small cation is an efficient polariser and a large anion is 

highly polarisable. The polarisability of an ion can be deduced from 

measurements of refractive index in the optical region (e.g. Tessman et al., 

1953). Experimental values for the halides and alkali metal ions are given 

in Table 7.3 and illustrate the principles outlined above. The presence of 

polarisation is reflected in the ‘ionic’ band structure, the band associated 

with the polarisable electrons being significantly broadened. 

Table 7.3 The electronic polarisabili- 

ties of alkali halide ions in units of cm3 

x 10“24 (Tessman et al., 1953). 

F" 065 Li+ 003 
cr 2-97 Na+ 041 
Br“ 4-17 K+ 1-33 
r 644 Rb+ 1-98 

Cs+ 3-34 

Evidence for increasing directional character in the bonding is provided 

by the occurrence of salts crystallising with the zinc blende or wurtzite 

structures when the radius ratio of the ions would indicate a preference 

for the NaCl structure. Examples are CuF, CuCl, CuBr and Agl. 
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7.4 Ionic compounds with composition AX2 

Before passing on to consider more complex ionic compounds between 

more than two elements it is worth describing some of the more important 

structures exhibited by binary compounds occurring at the composition 

AX2. The co-ordination ol the anion and cation cannot be reciprocal and 

the larger negative ions usually determine how close the packing can be. 

We therefore expect that the highest co-ordination will be 8, 4 correspond¬ 
ing to r+ /r~ > 0-732 as in CsCl. 

This co-ordination is found in CaF2, the structure of which is illustrated 

in Fig. 7.3a. Figure 7.3b shows the structure of Ti02 in its rutile modifi¬ 

cation in which each titanium atom is co-ordinated by six oxygen atoms 

and each oxygen atom by three titanium atoms. Finally, Fig. 7.3c shows 

the cristobalite modification of quartz, Si02, in which the silicon atom 

has a C.N. value of 4 and the oxygen atom a C.N. value of 2. 

Figure 7.3 The structure of (a) calcium fluoride (cubic a = 5-45 A), (b) rutile, Ti02 

(tetragonal a 4-58 A, c = 2-95 A) and (c) the crystobalite modification of quartz (cubic 
a = 7-12 A). 

In all these structures the bonding is relatively homogeneous, but this is 

not the case in the layer structures typified by the cadmium halides. In 

both the rhombohedral structure of Cdl2 and the hexagonal one of CdCl2 

layers of cadmium atoms are octahedrally co-ordinated by halide atoms to 
form a sandwich (Fig. 7.4). 

The two cells result from stacking the hexagonal layers in the sequence 

AB AB (hexagonal) or ABC ABC (rhombohedral). The energy difference 
between these two arrangements is small and Pbl2 occurs in both forms. 

The cohesion between successive sandwich layers is weak, being residual in 

character, so that the structure exhibits pronounced cleavage parallel to 
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Figure 7.4 The structure of cadmium chloride and cadmium iodide, (a) Shows the 

basic layer common to both structures. The solid circles represent cadmium atoms 

octahedrally coordinated by six anions, three above and three below. A direct super¬ 

position of layers forms the hexagonal unit cell (a = 4-24 A, c = 6*84 A) of cadmium 

iodide shown in (b). Displacement of the cadmium atoms in successive layers as in 

(c) results in the rhombohedral unit cell of cadmium atoms are shown together with 

their fractional heights along the [111] trigonal direction which corresponds with the 

c axis of a hexgonal cell with a = 3-99 A, c = 17-7 A. 

the layers. The bonding within each layer is strong with a large covalent 

contribution and the structure occurs between elements where the X ion 

is readily polarisable, e.g. CL Br, I, S, and the cation is strongly polarising, 

e.g. Ag, Zn, Cd, Co, Ni, Fe, 

7.5 Polymorphism in ionic compounds 

The equilibrium configuration of a polyphase material at the temperature 

T and pressure P results in a minimum in the Gibbs tree energy G, where 

G = U + PV - TS 

U is the internal energy, V is the volume and S is the entropy of the system. 
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Two phases may exist in equilibrium if they have the same value of G per 

unit mass. The internal energy of a crystal structure is a function of all the 

postional parameters ot the atoms, and it may exhibit a number of minima 

as illustrated schematically in Fig. 7.5. Each configuration will have its own 

particular value of S and V per unit mass, so that the stable form depends 

on the particular conditions of temperature and pressure. 

Figure 7.5 A hypothetical variation of the internal energy of a crystal as a function of 
the atomic positional parameters. 

These considerations apply to systems in thermodynamic equilibrium 

which may not in practice be achieved. The transformation from one phase 

to another may involve the formation of a substantially new structure or it 

may only require a small distortion of the original structure. The prob¬ 

ability of the former process occurring is negligible except at high tempera¬ 

ture, whereas the second process may be relatively probable at all tempera¬ 

tures. It is therefore likely that the transition may be arrested by quenching 

in the former case, but this may not be possible in the latter, displacive, 

type of transition. The achievement of even a displacive transition involves 

intermediate states of higher energy and if this energy difference, the acti¬ 

vation energy, exceeds that associated with thermal vibrations, the tran¬ 

sition is unlikely to occur. 

Many ionic substances occur naturally as minerals which have been 

formed under widely different conditions of temperature and pressure. 

Such materials frequently exhibit polymorphism as the non-equilibrium 
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configurations have been retained by quenching. The polymorphs of Si02 

and TiO? illustrate some features common to many polymorphic systems. 

In both compounds the same basic co-ordination polyhedron of anions 

about the cation is found in all structures, but the arrangement of the poly- 

hedra differs between the polymorphs. There is also a tendency toward 

higher symmetry as the formation temperature of the polymorph increases. 

The modifications of quartz provide an illustration: the Si—O—Si bond is 

bent in the low-temperature modifications a- and /7-quartz, but the mean 

position for the oxygen atom is midway between the silicon atoms in 

tridymite and cristobalite. The latter structure is illustrated in Fig. 7.3c; 

the structure of tridymite is related to wurtzite (Fig. 7.1b) in the same way 

as cristobalite is related to zinc blende. Each Zn and S atom is replaced by 

silicon and the oxygen atoms are situated midway between each pair of 

silicon atoms. 

The trend towards higher symmetry with higher temperature of stability 

is also evident in TiC>2 since the high-temperature modification, rutile, has 

more symmetrical (TiOg) octahedra than occur in either brookite or anatase. 

The tetragonal structure of rutile is illustrated in Fig. 7.3b. 

7.6 Mixed oxides: the perovskite and spinel structures 

As a first example of an important class of compounds which require 

three or more different types of atom for their formation, we will examine 

two structures commonly found amongst the oxides, sulphides, selenides 

and tellurides having two different cation species. 

The simpler of these structures is illustrated in Fig. 7.6, which shows the 

unit cell of the perovskite structure containing one formula unit ABO3. 

Figure 7.6 The unit cell of the perovskite structure. 
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Cation A has a C.N. value of 12 whereas cation B has a C.N. value of 6; the 

A atom is therefore the larger and the A and oxygen atoms together con¬ 

stitute a cubic close-packed arrangement. Examples of this structure are 

given in Table 7.4. There are many structures related to the simple perov- 

skite arrangement. The basic co-ordination numbers remain the same, but 

the polyhedra are distorted, e.g. BaTi03, CaW03 etc. In BaTi03 successive 

Table 7.4 Some compounds with either the ideal or a slightly distorted 
perovskite structure 

NaNb03 CaTi03 CaSn03 BaPr03 yaio3 KMgF3 
KNb03 SrTi03 SrSn03 SrHf03 LaA103 PbMgF 
NaW03 BaTi03 BaSn03 BaHf03 LaCr03 KNiF3 

CdTi03 CaCe03 BaTh03 LaMn03 KZnF3 
PbTi03 SrCe03 LaFe03 
CaZr03 BaCe03 
SrZr03 CdCe03 
BaZr03 PbCe03 
PbZr03 

Some compounds with the spinel structure. 

BeLi2 F4 MgCr2 04f MgFe204 $ FeNi2 04 MgGa2 04 $ 
MoNa2 F4 MnCr2 04 TiFe2 04$ GeNi2 04 ZnGa2 04 
WNa204 FeCr2 04 MnFe2 04 FeNi2 S4 CaGa2 04 
ZnK2(CN)4 CoCr2 04 FeFe2 04 X NiNi2 S4 Mgln2 04 X 
CdK2(CN)4 NiCr2 04 f Fe203 MgRh204f Caln2 04 
HgK2(CN)4 ZnCr2 04f CoFe2 04 ZnRh2 04f Jvlnln2 04 
TiMg204 t CdCr2 041 NiFe2 04 TiZn2 04 | Feln2 04 X 
VMg2 04 X MnCr2 S4 CuFe204 X SnZn2 04 X CoIn204 | 
SnMg2 04 FeCr2 S4 ZnFe2 04f MgAl2 04 Niln2 04 X 
MgV204f CoCr2S4 CdFe2 04f SrAl2 04 Cdln2 04 
FeV204 CdCr2S4 AlFe2 04 CrAl204 Hgln2 04 
ZnV2 04f HgCr2 S4 f PbFe2 04 MoA12 04 MnGa2 04 

ZnCr2 Se4 MgCo2 04 FeAl2 04 
CdCr2 Se4f TiCo2 04 CoA12 04 
TiMn2 04 CoCo2 04 NiAl2 04 f 
MgMn2 04 CuCo2 04 CuA12 04 
CuMn2 04 ZnCo204 ZnAl2 04 f 
CuCr2 04 SnCo2 04f Al2 03 
CuCr2 S4 CoCo2 S4 ZnAl2 S4 
CuCr2 Se4 CuCo2 S4 CuRh2 S4 
CuCr2Te4 CaFe2 04 

Agi/2 Ini/2 Cr2 S4 

Cu1/2 Fei/2 Cr2S4 
Cui/2 Ini/2Cr2 S4 

Cui/2 Ini/2Cr2 Se4 
Cu 1/2 Gai/2 RI12S4 

Lii/2 Fei/2Cr2 O4 

f Normal structure. X Inverted structure. 
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structural distortions take place as the temperature is lowered. The principle 

changes are small displacements of barium and titanium atoms relative to 

the oxygen framework, which result in a permanent electric dipole moment 

characteristic of a ferroelectric phase. 

Another structure frequently found amongst mixed oxides is that of 

spinel. The general formula of spinels corresponds to A2+0B3+203 or 

A2+b3 + 204. Fe, Mg, Zn or Mn are frequently found in the divalent state 

and Al, Fe, Mn or Cr as the trivalent ions. The unit cell is cubic and a 

varies over the range 8-10-5 A depending on the chemical constituents; it 

contains eight formula units AB2O4. The oxygen atoms are approximately 

cubic close-packed, the unit cell containing eight simple c.c.p. cells of 

oxygen. The cations A are tetrahedrally co-ordinated by oxygen and the 

cations B are octahedrally surrounded by six oxygen atoms. The structure 

is most easily visualised as a series of layers as shown in Fig. 7.7. 
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a o 
Tetrahedron, Tetrahedron, 

| A below plane A above plane 
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•1 *3 *1 
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•1 •3 *1 

(b) 

(c) 

Figure 7.7 (a), (b), and (c), planes of atoms in the spinel structure. For explanation 
see paragraph 7.6. 

The lower layer, (a), has diagonal chains of B octahedra which are linked 

laterally by A tetrahedra lying alternately above and below the heavily 

outlined oxygen atoms. In the next layer, (b), the chains form on the other 

diagonal of the cell. Four such layers make up the complete unit cell and 

the layer numbers on which the A ions occur are shown in (c): it can 

be seen that they have the same arrangement as the atoms in diamond 

(cf. §6.13). 
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Many examples of spinels occur where the majority cation is not con¬ 

fined entirely to the octahedrally co-ordinated sites as is the case in the 

normal spinel structure. For example, MgGa204 has gallium atoms in the 

A sites (C.N. = 4) and half the B sites, the remaining B sites being occupied 

by magnesium. This arrangement is termed the inverse spinel structure and 

the particular example might be more correctly written Ga(Mg, Ga)04. 

Mixed oxides of rare earth elements and the trivalent cations of lighter 

elements frequently form with the garnet structure. The general formula is 

M5R3O12, where R is a rare earth and M may be Fe, Ga, A1 etc. Further 

details of this structure will be deferred to the following section since the 

prototype, garnet, is a silicate containing isolated Si04 tetrahedra. 

7.7 Silicates 

In the previous section we have noticed the tendency of oxygen atoms 

to form co-ordination polyhedra around a small cation. Study of 

compounds exhibiting polymorphism suggests that these co-ordination 

polyhedra form structural building bricks. This tendency is even more 

pronounced in the case of the SiC>4 tetrahedron, which forms the basic 

structural unit of the most important group of rock-forming minerals, 

comprising some 95% of the Earth’s crust. It is convenient to describe 

this group of structures in terms of the ways in which the SiC>4 tetrahedra 

are linked within the structure. 

Isolated tetrahedra 

The structure of olivine (Mg, Fe)2SiC>4 is illustrated in Fig. 7.8 and the 

isolated SiC>4 tetrahedra can easily be identified. The iron and magnesium 

cations are octahedrally co-ordinated by the oxygen atoms of two or more 

SiC>4 groups. In such groups four of the eight negative charges of the 

oxygen anions are neutralised by the silicon ion, so that each oxygen atom 

has an unbalanced negative charge of one. 

Another frequently occurring structure which contains isolated Si04 

tetrahedra is that of the garnets. Their general formula is R3 R2 (SiC>4)3, 

where R2+ is Ca, Mg, Fe or Mn and R3+ is Al, Fe or Cr. The unit cell is 

cubic with a cell edge of some 12 A and the complete structure is too 

complicated to illustrate simply. The R2+ cations have a C.N. value of 8 

and the RJ cations a C.N. value of 6. Each oxygen atom is linked to one 

R ion, one Si atom and two R" ions. The structure is also exhibited by 

some mixed oxides in which silicon is replaced by a trivalent rare earth 

element such as Lu, Yb, Gd etc. and all the remaining cations are also 

trivalent (see also §7.6). 
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- b 

O °xygen • Magnesium 

Figure 7.8 The structure of olivine, a simple silicate with isolated Si04 tetrahedra. 

The illustration shows the orthorhombic unit cell, (a = 4’76 A, b = 10-21 A, c = 5-99 A) 
projected on to (100). The oxygen atoms lie at heights J (shaded) and f (open). The 

silicon atoms at the centre of the oxygen tetrahedra are omitted for clarity. The 

magnesium atoms are in octahedral coordination. 

Chained tetrahedra 

Si04 tetrahedra may be joined together by sharing one or more corners. 

The simplest case consists of two tetrahedra sharing a single corner to form 

the Si207 group found in the structure of the mineral thortveitite, 

Sc2Si207. Slightly more complex examples are provided by the structures 

of benetoite, BaTiSi3 09, and beryl, Be2 Al2 Si6Oi8, which contain rings of 

three and six linked SiC>4 tetrahedra respectively. The Si: O ratio remains 

constant at 1:3 for any unit in which each tetrahedron shares two corners 

with other tetrahedra. 
The same 1: 3 ratio of Si : O occurs in the pyroxene group of minerals in 

which endless chains of linked SiC>4 tetrahedra are found. A schematic 
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diagram of the structure of one such mineral, diopside, CaMg (Si03)2, is 

given in Fig. 7.9a. Double chains, the basic unit of which is shown in 

Fig. 7.9b are the basis of the amphiboles having a Si : O ratio of 1:2-75. 

Sheets 

The double chain illustrated in Fig. 7.9b may obviously be extended to 

form a two-dimensional sheet by linking to further parallel chains. Such 

sheets are tound in the micas and have a clear connection with the pro¬ 

nounced flaky cleavage ol these materials. Mica structures are composed 

ot sandwiches ot two sheets arranged with the unshared oxygen atoms 

pointing inwards to form the co-ordinating atoms of a variety of cations 

such as Mg and Al. Anions such as OFD are often found between the sheets 

as additional co-ordination for the cations. The sandwiches are stacked to 

form a three-dimensional layered structure and large cations such as 
potassium may be found between the layers. 

Three-dimensional frameworks 

If the tetrahedra share all four of their corners to form a framework the 

Si : O ratio is reduced to 1:2, and consequently such a framework is elec¬ 

trically neutral, without the addition of further cations. Silica, Si02, 

crystallises in four forms, high- and low-temperature quartz, tridymite and 

cristobalite. The framework of tetrahedral Si04 groups is evident in all the 

structures. The simplest to illustrate is that of cristobalite (Fig. 7.3a) in 

which the silicon atoms occur in the same positions within the unit cell as 

in the element (§6.13) and the oxygen atoms occur in positions midway 

between each pair of silicons. The remaining structures are less symmetrical 

arrangements of tetrahedra sharing all four corners, and in both modifi¬ 

cations of quartz the Si-O-Si bond is bent at the oxygen atom. 

7.8 The role of aluminium in the silicates 

The radii of Al3+ and Si4+ for four-fold co-ordination are similar, so that 

it is possible for aluminium to replace silicon in a tetrahedron of oxygen 

atoms. The most important consequence of such a substitution is that an 

average of 1 -25 negative charges per oxygen atom now remain unbalanced. 

Partial substitution of aluminium for silicon in one of the structures 

described in the previous section would require an increase in the extra- 

tetrahedral cation charge, which may be achieved by the substitution of 

higher valency cations or by the addition of further cations. An example 

of the latter effect is provided by the micas (§7.7). The number of large 
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a 

(b) 

Figure 7.9 (a) A simplified plan of the structure of diopside, CaMg(Si03)2, projected 

down [001]. The monoclinic cell has dimensions a = 9-71 A, b = 8-89 A, c = 5-24 A, 

j3 = 74° 10'. The chains of linked Si04 tetrahedra are seen end on in this projection and 

the co-ordination of a calcium and a magnesium atom are indicated, (b) Schematic 

plan view of Si04 tetrahedra sharing two and three oxygen atoms to form the double 
chain found in the amphibole silicates. 

cations like potassium which occur between the layers increases as 
aluminium is substituted for silicon. 

The substitution of some aluminium for silicon allows the formation of 
a number of framework structures which include other cations. The feld- 
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spars, e.g. Na(AlSi3 Og), and the zeolites, e.g. NaCAlS^Og) „ H2O, are 
abundant minerals in which this occurs. 

In all formulae of silicates, a distinction must be made between the 

aluminium which enters into the tetrahedra and the aluminium which is 

in six co-ordination and plays the same role as the cations magnesium or 
iron. 

7.9 Pauling’s principles 

Pauling (1929) has discussed the conditions which determine the relative 

stabilities of ionic structures. Two important new principles emerge. Firstly, 

we can define an electrostatic bond strength to be associated with any two 

ions in contact. If a cation A of charge m is co-ordinated by n anions B, 

then the A—B bond strength is m/n. Pauling’s rule states that the sum of 

the strengths of all bonds to a given anion is equal to its valency. In this 

way, local electrical neutrality is ensured. 

Secondly, Pauling points out that it is energetically favourable to keep 

similarly charged ions well separated so that the stability of structures 

decreases as the anion polyhedra share first corners, then edges and finally 

faces. The lowering of stability is more pronounced if the cation charge 

is high. 
An example of the use of Pauling’s rules is afforded by the structure of 

the silicate benetoite, BaTiSi309(§ 7.7). Each silicon is tetrahedrally 

co-ordinated by oxygen and each of the titanium and barium atoms are 

co-ordinated by six oxygens. The bond strengths are therefore: 

Si4 +—O = 1 

Ti4+—0 = | 

Ba2+—O = j 

Pauling’s rule for local electrical neutrality is satisfied if each oxygen atom 

is co-ordinated by one silicon, one titanium and one barium atom, which 

is indeed the case. 

7.10 Complex anions 

A further deduction from Pauling’s rules is that a co-ordination poly¬ 

hedron in which the electrostatic bond strength is greater than half the 

charge of each anion cannot link to a similar polyhedron. Such polyhedra 

will therefore always be identifiable as isolated units in the structure and 

will form compounds with cations possessing, on average, an equal and 
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opposite charge. In these circumstances it is easy to regard the structures 

as those of salts derived from an acid HxAm+B^x + m)!n)~, No such simple 

deduction is possible when the polyhedra share members as in the silicates. 

Of course, any isolated co-ordination polyhedron could be thought of as 

derived from an acid, though such an acid might be chemically unstable. 

This concept leads to the names given to some of the mixed oxides referred 

to in Section 7.6, for example vanadates, molybdates and tungstates. 

Table 7.5 Some common complex anions 

co3, no3 

planar 

( C 

f 7? 
( 0 

] 

0 ) 

so4, po4,cio4 

Mn04 ,CrC>4 

tetrahedral 

CNO, N3 
linear ( c 

N ° ) 

S03,Cl03,Br03 

lo3 

pyramidal 

1 ° 1 
( 0 Vo ) 

oTPo 

The isolated co-ordination group is often more usefully considered as a 

complex anion. We have seen in Section 7.3 that a high degree of polaris¬ 

ation is associated with a small, highly-charged cation co-ordinated by a 

larger anion. In these cases the bonding must be thought to be at least 

partly covalent, and in many cases the complex anions may be understood 

satisfactorily using a molecular orbital description. Table 7.5 lists some ot 

the more commonly occurring complex anions and illustrates their atomic 

arrangements. It may be noted that all contain oxygen and hence their 

electrostatic bond strengths are greater than one. 
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Figure 7.10 The rhombohedral unit cell of calcite, CaC03. 

Many carbonates and nitrates form with the calcite structure, the rhom¬ 

bohedral cell of which is illustrated in Fig. 7.10. The triangular carbonate 

group lies on the trigonal axis and each cation is octahedrally co-ordinated 
by oxygen atoms from six different carbonate groups. 

The structure of a Group VIII sulphate is shown in Fig. 7.1 1. Again, the 

complex ions are easily identified and the cation co-ordination is octahedral 

7.11 Polar effects due to hydrogen 

Most ot the interesting structural effects introduced hy hydrogen have 

their origin in the small size and consequent high polarising power of the 

H+ ion. H+ is too small to be stably co-ordinated by more than two anions 

It does, however, form a complex cation in conjunction with nitrogen. 

The NH4 group differs from the complex anions in as much as the small 

polarising atoms now surround the anion and cannot be thought of as 
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Figure 7.11 The structure of the iron group sulphates. These particular coordinates 

refer to the structure of manganese sulphate, but FeS04, CrV04, NiS04 and a-CoS04 

are isostructural. The unit ceil of MnS04 is orthorhombic (a = 5-26 A, b = 8-04 A, 

c = 6-85 A) and a [001] projection is illustrated. The tetrahedral sulphate group can 

clearly be seen; the transition metal ion is octahedrally coordinated by oxygen atoms 

belonging to different S04“ groups. 

co-ordinating it, since they are not in contact with each other. The NH4 

group is nearly spherical and occurs in structures in much the same way as 

the monovalent alkali metals. Many compounds containing ammonium 

groups undergo structural changes on cooling, and these are associated 

with this group adopting particular orientations with respect to its environ¬ 

ment. To minimise the electrostatic energy resulting from unscreened 

positive charge the hydrogen atoms are directed towards the co-ordinating 

anions. The unscreened charge is small, so the associated electrostatic 

energy is usually comparable with thermal energies allowing libration and 

free rotation as the temperature is increased. 
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Oa • 
Figure 7.12 The structure of solid DC1 at 77-4 K. The orthorhombic phase (a = 5-05 A, 

b = 5-37 A, c = 5-83 A) undergoes a first order phase change to a cubic structure above 

105 K. The asymmetric position of the deuterium atoms between the chlorine atoms is 
clearly seen; the ‘hydrogen’ bonds are indicated by broken lines in this projection of the 
structure onto (001). 

The hydroxyl group OH is dipolar in character (its dipole moment is 

1'66 D, i.e., 1 -66 x 3-3 x 10“30 C m). The group is oriented so as to maxi¬ 

mise the distance between its positive (H) end and the co-ordinating 

cations. The positive end may also contribute to the cohesion of the struc¬ 

ture by electrostatic interaction with neighbouring ions (the hydrogen 

bond). A striking example of hydrogen bonding is provided by the struc¬ 

ture of HC1 as revealed by a neutron-diffraction study of the deuterated 

compound. The structure is shown in Fig. 7.12 where the asymmetry of 

the hydrogen position is clearly demonstrated. It can be seen that the 

structure should possess a permanent dipole moment and hence exhibit 
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ferroelectricity. The asymmetry of hydrogen bonding is also responsible 

for the ferroelectricity of KH2PO4, potassium dihydrogen phosphate (KDP) 

(see also §7.6). 

7.12 Water 

Water also illustrates the polarising capability of hydrogen. The struc¬ 

ture of ice is illustrated in Fig. 7.1 3 from which it can be seen that the two 

hydrogen atoms are not symmetrically placed with respect to the oxygen 

atom. The charge distribution on the molecule is approximately tetrahedral 

with two positive and two negative areas. 

Many ionic compounds exist in hydrated forms and neutron-diffraction 

experiments provide direct evidence that the water molecules are oriented 

so as to be bound into the structure by electrostatic interaction. 

Figure 7.13 The hexagonal structure of ice. The unit cell has dimensions (— 50°C) of 

a = 4-51 A, c = 7-36 A and is indicated by dotted lines. Typical hydrogen positions are 

shown and the hydrogen bonding which results is indicated by broken lines. 

7.13 Inert gas compounds 

Our final example of polar structure is provided by the inert gases. That 

these gases can indeed take part in chemical reactions was only fairly 

recently recognised and the first compounds were prepared in 1962. We 
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0Xe Of 

Figure 7.14 The structure of XeF2 

(tetragonal a = 4-32 A, c = 6-99 A). The 

fluorine atoms are 2 A from the xenon 

atom with which they are associated. All 

other interatomic distances are in excess 
of 3 A. 

have already noted (§6.7) that atoms of the inert gases can polarise each 

other to some small extent and thereby produce solid phases. The polaris- 

ability increases with increasing atomic number, as is shown by the change 
in melting points of these elements. 

Polarisation in ionic compounds may be considered as a partial reversal 

of the charge separation which changes the covalent to the ionic bond (see 

§7.3). Similarly, an interaction between a polarisable inert gas atom, such 

as xenon, and a polarising electron acceptor, such as fluorine, may be 

expected to introduce a form of covalent bond. However, in this case some 

charge separation would be involved, i.e. some charge would be transferred 
from the inert gas to the fluorine. 

XeF2 is a typical inert gas compound, the structure of which is shown in 

Fig. 7.14; XeF2 molecules can clearly be seen. A simple molecular orbital 

model which accounts for this molecule is one in which the valence orbitals 

are filled except for the 2pz of each fluorine atom and the 5pz of xenon. 

Four electrons (one from each F and two from Xe) are available to form 

molecular orbitals. The stability of the molecule is due to the formation 

of a bonding a orbital involving pz functions on all three atoms. The 

remaining two electrons fill a non-bonding orbital localised mainly on the 
fluorine atoms. 



8 
Structures of Binary Alloys 

8.1 Introduction 

The previous chapter has been concerned with compounds which form 

between elements with markedly dissimilar electron configurations. Apart 

from those few light elements which form simple molecules, combinations 

of elements with similar configurations may be classed as alloys. The study 

of alloys is simplified by the relatively small size difference between the 

elements and by the generally non-directional character of the interaction 

between like atoms. In this situation there is a tendency to form certain 

simple structures, common to a large number of systems, whose occurrence 

is determined primarily by size considerations. For example, the extremely 

simple caesium chloride structure (§7.2) exists in at least 150 binary alloy 

systems. 
Within the framework imposed by the atomic sizes, the structures 

formed are influenced by the nature of other electronic interactions 

between the atoms. When the valencies of the two constituents are the 

same these interactions are essentially similar to those between the pure 

elements (Chapter 6). When the valencies differ there is always some ten¬ 

dency to charge separation which leads ultimately to the formation of 

ionic compounds (Chapter 7). In alloy systems the difference in valency 

is restricted and the polar contribution to cohesion is small. 

Our discussion of alloys will be restricted to binary systems since they 

are sufficient to illustrate the more important principles involved and 

contain most of the frequently occurring alloy structure types. 

8.2 Solid solutions and super-lattices 

The simplest alloy systems are those between two metals with the same 

valency and similar sizes. For example, Au-Ag, Ti-Zr and K-Rb form con¬ 

tinuous solid solutions in which the atoms of one element randomly replace 

those of the other within the framework of a common crystal structure. 
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As the size difference increases, or if the structures of the constituent 

elements are different, complete solid solution is not possible. A small dif¬ 

ference in atomic size is found to lead to an ordered distribution of one 

sort of atom in the structure of the other, giving rise to the well-known 

‘super-lattice structures. The super-lattices formed in copper gold alloys 

around the compositions CuAu and Cu3 Au are illustrated in Fig. 8.1a and b. 

(c) 

Figure 8.1 The super-lattice structures of (a) CuAu tetragonal a = 3-97 A, c = 3-67 A, 
(b) Cu3Au cubic a = 3-74 A, (c) Fe3Al cubic a = 5-79 A. 

The name ‘super-lattice’ arose from the study of the X-ray diffraction 

patterns of such materials in which atomic order changes the crystal lattice 

and gives rise to extra reflections. In the case of Cu3 Au the lattice changes 
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from F to P, and reflections with mixed odd and even indices appear 

(cf. §3.7). An example of a ‘super-lattice’ which can occur in a body- 

centred cubic parent structure is that formed by iron-aluminium alloys at 

the composition Fe3Al. The atomic arrangement is illustrated in Fig. 8.1c. 

Solid solutions are prolific amongst alloys because of the existence of 

the transition series which provide many pairs of elements of similar size 

and outer electron configuration. Among the other elements only those in 

the same group and in adjacent periods satisfy these conditions and can be 

expected to form extensive solid solutions. Solid solutions may form even 

between non-metallic elements, for example Si-Ge and Se-Te. 

8.3 Alloy packing structures 

When the size difference between the constituent atoms of an alloy is 

more than some 15% the formation of super-lattices becomes energetically 

unfavourable, and a number of special structures characterised by particu¬ 

lar size ratios are formed. Important amongst these are the group of Laves 

phase structures, of composition AEG, the basic layer of which is illustrated 

in Fig. 8.2. The layers may be superposed in several ways to form cubic 

(MgCu2-type) or hexagonal (MgZn2 and MgNi2) structures, each having the 
same first neighbour co-ordinations and ideally the same density. This 

superposition of identical layers to form different structures is analogous 

to the stacking of close-packed layers to form cubic and hexagonal close- 

packed structures (§6.6). 
In the cubic Laves phase the atoms occupy positions fixed by the crystal 

symmetry and define an ideal size ratio between the constituent atoms A 

and B of 1 -225 :1. There are over 200 known examples of Laves phases of 

which about 150 are cubic and most of the remainder are of the MgZn2 

type. A salient feature of the Laves phases is the occurrence of a 16-fold 

(C.N. = 16) polyhedron at the centre of which is an A atom (the larger of 

the two components). The smaller B atoms are in 12-fold icosahedral 
co-ordination. The two co-ordination polyhedra are illustrated in Fig. 8.3c 

and f. The ratio of the atomic radii of the components, rA/rg referred to 

12-fold co-ordination, is found to vary between L05 and L68 for known 

Laves phases. MgZm-type phases exist over the whole range whereas the 
cubic phase has not been found at ratios in excess of 1 -40. It is clear there¬ 

fore that size factors alone do not determine the formation of the Laves 

phases. 

Two structures, typified by UNis and CaCus, occurring at AB5 

stoichiometry are structural variants of the Laves phases. The cubic UNis 
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(a) 

Figure 8.2 (a) The basic layer of smaller (B) atoms found in the Laves phase structures. 

In (b) the structure of MgZn2 is illustrated, the hexagonal cell (a= 5*15 A, c = 8-48 A) ' 
being projected on to (001). Two of the layers illustrated in (a) lie at heights \ (broken 

lines) and 3 (full lines). Extra B atoms (shaded) occur at height zero in positions with 

icosahedral coordinates. The A atoms are shown solid and their heights are indicated 
in hundredths of the c axis. These are in 16-fold co-ordination. 
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(d) 
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(e) 

(f) 

(g) 

Figure 8.3 Some coordination polyhedra found in intermetallic compounds and pure 

metals, (a) 12-fold, cubic close packing, (b) 12-fold hexagonal close packing, (c) Icosa- 

hedral, Laves phases, (d) 14-fold, body centred cubic, (e) 14-fold, sigma phase, (f) 16- 

fold, Laves phases, (g) 24-fold, NaZn13. 
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structure is derived from MgCu2 by replacing A atoms by B atoms on tour 

of the atomic sites in the latter structure. The CaC'u5 structure is related to 

that of MgZn2 by a similar replacement combined with some atomic dis¬ 

placements. The ideal radius ratio rA/rB for A—A and B—B contact is 1 -45 

for the UNi5 structure but all known phases with this structure have 

rA/rB < 1.3. The CaCu5-type phases all have rA/rB > 1-3 so that the radius 

ratio, although not obviously related to the ideal one, seems to be the 

determining factor in the choice between these two structures. 

A structure which forms at the composition AB2 when A is smaller than 

B is that typified by CuA12; the [001 ] projection of the tetragonal cell is 

illustrated in Fig. 8.4. The structure is found within the radius ratios rA/rB 

0-9-0-85; the co-ordination of A is tenfold and that of B is eight. 

Figure 8.4 The structure of CuAl2 projected down the c axis of the tetragonal unit 

cell. The copper atoms are at heights 4 and 4 and are superposed in the projection. The 

bold lines connect aluminium atoms at height \ and the broken lines aluminium atoms 

at height zero. The dotted lines indicate the unit cell, (a = 6-05 A, c = 4-88 A). 
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There are six structures with the composition AB3 which exhibit various 

stacking schemes of ordered close-packed layers. They are typified by 

phases AuCu3, TiNi3, MgCd3, PuA13, TiCu3 and TiAl3. Fig. 8.5a shows 

the arrangement of atoms in the ordered layers found in the first four 

structures and 8.5b the layers occuring in TiCu3 and TiAl3. All the stacking 

variants produce a polyhedron of B atoms about each A atom having a 

C.N. value of 12. 

Figure 8.5 Close-packed ordered layers in AB3 phases. Layer (a) occurs in phases of 

the AuCu3-type, TiNi3-type, MgCd3-type and PuAl3-type. Layer (b) occurs in TiCu3- 
type and TiAl3-type phases. 

A discussion of alloy packing structures would not be complete without 

mention of the CsCl structure (§7.2). Clearly this structure is closely 

related to the b.c.c. structure formed by some true metals (cf. §6.8). It 

may exist over a wide composition range by super-lattice formation when 

the size difference is small, or as an approximately stoichiometric com¬ 

pound. The radius ratio can increase up to 1-37 :1 which corresponds to 
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simultaneous A-A and A-B contacts. The environment of both types of 

atoms is such that the eight shortest interatomic distances are between 

unlike atoms. It should therefore not be assumed that the occurrence of 

this structure necessarily indicates a size-factor alloy, since any affinity 

between unlike atoms will tend to stabilise the structure. 

Size ratios in excesss of 1:4 lead to the formation of structures with 

large ratios of B to A atoms such as NaZn^ and BaHgu. They are charac¬ 

terised by high co-ordination of A by B atoms (24 and 22 respectively); 

the 24-fold polyhedron is illustrated in Fig. 8.3g. 

8.4 Binary compounds between elements belonging to neighbouring 

groups 

It is possible to make a rather loose division of the elements into three 

classes—metals, transition metals and non-metals. Within each of these 

classes there exist numbers of pairs of closely similar elements whose alloys 

have been described in the previous two sections. Further types of alloy 

structures are formed by pairings of less similar atoms within the first two 

classes. 
An important series of compounds exists within the metal systems with one 

element of noble metal and the other a B sub-group metal. The existence of 

a systematic tendency to compound formation was pointed out by Hume- 

Rothery after whom the phases are named. A typical system is provided by 

Cu-Zn in which four phases occur: c.c.p. solid solution based on copper, 

CsCl super-lattice, 7-brass structure and h.c.p. solid solution based on zinc. 
The same four phases occur in other systems of this type but their com¬ 

positions vary widely between systems. Hume-Rothery pointed out how¬ 

ever that the composition at which any particular structure formed corre¬ 

sponded to the same ratio of valence electrons to atoms (e/a ratio). The 

e/a ratios which characterise the structure types are shown in Table 8.1. 
Hume-Rothery phases are also found in many systems between transition 

metals and B sub-group metals, but the e/a ratios are not those expected if 

Table 8.1 Electron to atom ratios, e/a, for the 

Hume-Rothery phases. 

Structure e/a Examples 

b.c.c. 3/21 x 
2 V 14 / AuZn, Au5 Sn4, Cu3Ga 

7-brass 21 
13 Ags Zn8, Cu31 Sn8, Cu9 Al4 

h.c.p. 1(21\ 
4 V12 ) AgCd3, Cu3Ge, Ags Al2 
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the normal transition metal valencies are used. Closer agreement can be 

obtained by assuming that the transition metal contributes no electrons. 

The correlation between e/a ratio and structural stability arises from 

energy associated with filling electronic states within the Brillouin zone 

(§6.6). Jones (1937) suggests that the transition between the f.c.c. and 

b.c.c. structures at e/a ~ 1-5 occurs because at this density electrons can 

be accommodated in the Brillouin zone of the latter structure with a lower 

energy than in the former. It must be emphasised that the energy of elec¬ 

trons in the Brillouin zone is only one of a number of contributions to the 

total energy and these other contributions may also be structure-dependent 

It is therefore not unusual to find Hume-Rothery phases with non-typical 

e/a ratios in which the electron/atom ratio is a minor, rather than the 

dominant, stabilising factor. 

8.5 Binary phases of variable composition between two transition metals 

We have already described (§8.3) a series of binary alloy packing struc¬ 

tures which exist at simple and more or less invariant stoichiometric ratios 

between the two constituent atoms. In Section 8.4 we have seen that a 

structure like 7-brass can be stable at widely different compositions in 

different alloy systems. Further examples of the occurrence of structures 

capable of existing over wide variations in composition occur in alloys be¬ 

tween two transition metals. The three most frequently occurring are the o- 

p- and y-phases: Fig. 8.6 illustrates their occurrence (and that of some of 

the fixed composition phases) in alloy systems of two transition metals. 

Most of the examples occur between elements one of which, the A type, is 

a member of the Sc, Ti, V or Cr groups and the other, the B type, is an 

element of the Mn, Fe, Co, Ni or Cu groups. 

All three phases are characterised by high co-ordination and a number 

of different atomic environments exist in each structure; Table 8.2 sum¬ 

marises this information. The occurrence, compositional limits and atomic 

ordering in these phases have all been examined in attempts to decide on 

the relative importance of atomic size and electronic factors in determining 

the stability of the phases. No single feature is common to all examples and 

one must suppose that the competing influences decide the final outcome. 

Several general features are, however, discernable. The a-phase always has 

one A-type component (elements in groups to the left of manganese in the 

Periodic Table) and is found over a fairly small range of radius ratio. X-ray 

and neutron diffraction studies of the ordering in the a-phases show that 

the generally larger A-type atoms occupy the 1 5-fold sites and the other 
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atoms the 12 and 10 sites. The 14-fold sites may be occupied by either 

component, except in the rare instances of one component being a non¬ 

transition metal, when they are only occupied by transition metal atoms. 

Atomic % B 

Figure 8.6 The occurrence of some important binary intermediate phases. In transition 

metal compounds the A component is an element of the Sc, Ti, V or Cr group and the 

B component is any element of the Mn, Fe, Co, Ni or Cu group. 

The composition range for stability of phases with the same A-type atom 

shifts to higher A concentration as the group number of the A-type 

atom rises; there is therefore a tendency to retain the same number of d 

electrons. 

The x-phases exhibit the same tendency. The larger atoms are always of 

the A type and occupy the 16-fold site; the B type atoms have C.N. = 12 

and C.N. = 13. A-type atoms again fill the more highly co-ordinated sites 

in the p-phase. 

8.6 The Cr30 structure 

A commonly occurring structure at A3B stoichiometry is that of Cr30. 

This structure was originally ascribed to an allotrope of tungsten which was 

later shown to be an oxide; for this reason it is sometimes referred to as the 

/3-tungsten structure (Structurbericht, type A15). 
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Table 8.2 The a-, x- and ju-phases 

Phase Range of rA/rB 
No. of atoms 
per unit cell No. of d electrons 

Atomic site 

Name Number C.N. 

0 0-93-M5 30 3-6-5-6 A, a 2 12 
B, g 4 15 
C,i 8 14 
D,i 8 12 
EJ 8 14 

X T02-1-21 58 4-3-5-0 a 2 16 
c 8 13 
g 24 12 
g 24 12 

MO-1-18 13 5 1-56 a 1 12 
h 6 12 
c 2 15 
c 2 16 
c 2 14 

The unit cell is cubic and contains two formula units. Each A atom has 

a C.N. value ot 14 and each B atom a value of 12 in a distorted icosahedral 

arrangement. The A component ot the phase is always a transition element 

but the B component may be another transition element or a B sub-group 
metal. 

The A and C site co-ordination polyhedra for the a-phase are illustrated 
in Fig. 8.3c and e, respectively. 

In every example the size ratio of the two constituents is within 1 5% of 

unity. The structure contains two co-ordinations found in the x~, M- and 

a-phases discussed in Section 8.5. It does not, however, exhibit the wide 

variations in composition associated with the x- and a-phases, which leads 
us to suppose that these particular 14- and 12-fold co-ordinations are 

acceptable only to A and B transition metal elements respectively, irrespec¬ 

tive of their relative sizes. Non-transition metal elements do not occupy the 

highly co-ordinated 14-lold site. Similarly, in the a-phases which contain 

A1 and Si these elements are again confined to the C.N. = 12 sites. 

8.7 Semi-metallic alloys: interstitial compounds 

An important class of alloy structures is formed by the transition 

elements in combination with B sub-group elements. In all of these 

materials some degree of polar interaction contributes to the stability of 

the structures. It is convenient to divide this class of materials into two 

groups depending on the radius ratio of the constituent atoms. 
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a) Radius ratio in excess of 1- 7—interstitial compounds. 

These may be thought of in terms of the fitting of the smaller (B) atoms 

into interstices in the metallic (A) structure. In the c.c.p. structure two 

types of hole can be distinguished, the eight at positions such as (JJJ) 

which are tetrahedrally co-ordinated and the four at positions like (00^) 

which are in octahedral co-ordination. The equivalent positions in h.c.p. 

are four with C.N. values of 4 at positions (00 ± §)(§3 ± 5) and two with 

C.N. values of 6 at (^f ± J). In both structures the corresponding radius 

ratios are 4-45 and 2-41 respectively. The b.c.c. structure has only tetra¬ 

hedral interstices which are rather larger than those in the c.c.p. structure, 

the critical radius ratio being 3-44. 
The most commonly occurring interstitial elements are hydrogen, boron, 

carbon and nitrogen of which only hydrogen is found in the tetrahedral 

holes in the c.c.p. and h.c.p. structures (ZrH, TiH and PdH). Carbides and 

nitrides based on the filling of octahedral holes in the close-packed structure 

form when rA/r# lies in the range 1*69-2-56. If rA/rg is less than T69, 

more complicated structures form, e.g. cementite, Fe3C, with rA/rg = C64. 

The most common formulae for the interstitial compounds are M4X, 

M2X, MX and MX2 where M is the transition metal element. The type 

M2X is particularly liable to form wide ranges of solid solution correspond¬ 

ing to the filling up of the interstices. Interstitial compounds usually retain 

much of the electrical conductivity of the parent metal, but the extent of 

the interaction between the interstitial and the host atoms may be judged 

from the increased melting points of such compounds as TiC (3150 °C), 

ZrC (3530 °C) and TaC (3900 °C) compared to that of the transition 

metal itself. 

b) Radius ratio less than 1• 7. 
A great variety of structure types exist for materials in which the radius 

ratio is smaller than 1*7. Some of the most common types are shown by 

Fe3P, Fe3C and Fe2P. These structures are usually described in terms of 

co-ordination polyhedra around transition metal atoms, the most common 

configuration being a triangular prism. These structures are characterised 

by a narrow composition range, but otherwise have properties more nearly 

those of the metal than the metalloid constituent. 

8.8 Nickel arsenide and related structures 

The structure of nickel arsenide is illustrated in Fig. 8.7. It can be seen 

that the metalloid atoms form a close-packed hexagonal arrangement and 

that the metal sites are octahedrally co-ordinated by metalloid atoms. 
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Phases possessing this structure frequently exhibit a variable composition 

MexB, with x from 0-8 to 2-0. For x > 1 a second set of metal sites at 

±(Hi) are occupied. When x = 0-5 only half the original octahedral sites 
are filled and the structure is then identical to the Cdl2 structure (§7.4). 

CoTe2 and NiTe2 are stable at this composition. 

As 

Figure 8.7 Four hexagonal unit cells (a = 3-62 A, c = 5-03 A) of the NiAs structure 

projected on to (001). The nickel atoms are superimposed at heights 0 and The 

nickel atoms are in octahedral co-ordination whereas the six nickel neighbours of each 
atom form the corners of a trigonal prism. 

A number of more complicated structures exist which are closely related 

to NiAs, for example Mn5Si3 and MnP. These types of structure have limited 

ranges of composition and often form when a phase possessing the nickel 

arsenide structure at high temperatures is annealed. An example is provided 

by CrSi+x which decomposes to CrySg, CrsSg and CT3S4, all three phases 

having different structures related to that of nickel arsenide. 

8.9 Alloys exhibiting typicaUy ionic structures 

We have noted in the previous section that using half the octahedral 

holes in the NiAs structure produces the typically ionic structure of Cdl2. 

Similarly, filling all the octahedral interstitial holes in the c.c.p. structure 

results in the familiar NaCl structure (§7.2). Other examples of inter- 

metallic compounds possessing ionic structures are given in Table 8.3. 
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Table 8.3 Alloys exhibiting typically ionic structures. 

Phase Ionic structure 

NiS2, CoS2 fluorite, CaF2 (§7-4) 
RuSi CsCl (§7.2) 
MnSe wurtzite (§7.2) 
CrH zinc blende (§7.2) 
ZrS2, NiSe2 Cdl2 (§7.4) 

The structural feature common to binary ionic compounds is that any 

atom is co-ordinated exclusively by atoms of the other type and this arises 

from the strong interaction between the unlike atoms. Such an interaction 

is clearly responsible for stabilising such structures amongst alloys. The 

degree to which charge separation actually occurs varies widely and may 

be inferred from properties like electrical conductivity and colour. Clearly 

these materials form a bridge between the variable composition alloys 

considered earlier in this chapter and the strictly stoichiometric ionic 
compounds of Chapter 7. 



9 
Conclusion 

It has not been our intention in this short book to provide a compre¬ 

hensive catalogue of structures, but to illustrate the principles underlying 

structural stability by considering a number of commonly occurring or 

important structures. We have not mentioned many molecular structures 

since the configurations of their molecules are dictated by chemical prin¬ 

ciples and the arrangement of molecules within the crystalline material has 

less significance. The structural principles of organic materials are described 

in many textbooks and an introduction to the subject may be found in 

Organic Chemical Crystallography by A. I. Kitaigorodskii (Consultants 

Bureau, New York, 1957) and Diffraction of X-rays by Proteins, Nucleic 

Acids and Viruses by H. R. Wilson (Arnold, London, 1966). However, 

because of the lack of common structure types amongst these materials it 

is unlikely that the structure of a particular new compound can be found 
in these books. 

A complete index of organic compounds whose structures are known is 

kept by the Crystallographic Data Centre, University Chemical Laboratory, 

Cambridge. Tabulated data on crystal structures can also be found in a 

growing number of books and these data are increasingly being transferred 

to computer-based data banks. In addition, a number of international 

journals specialise in reporting new structure determinations. Some useful 

books and journals are listed in the first part of the Bibliography. 

The crystal structure of a material is an important factor governing its 

physical properties, including those dependent on defects in the structure, 

and its role is emphasised in some of the other books in this series. The 

solid-state physicist may therefore need to find out whether the structure 

of a particular material is known by using the references referred to above. 

It may therefore be useful to indicate how this can be done for particular 
cases by giving two examples. 

9.1 A search for the structure of an alloy material 

The phase diagram of the Co-In system has recently been reported 

(Schobel and Stadelmaier, 1970). Two intermetallic phases are formed of 
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which one, CoIn3, has a small tetragonal cell with dimensions <2 = 6-82 A 

and c = 3-53A. No further structural details are given. 
In the case of an unknown alloy structure it is always worth making a 

careful search through the known structure types, since the likely structure 

may be deduced in this way. The most easily used reference book for alloy 

structures is A Handbook of Lattice Spacings and Structures of Metals and 

Alloys, Volume 2, by W. B. Pearson. Table 6 of this book gives the critical 

data for alloy materials published up to 1965. It contains no reference to 

CoIn3. In Schubert’s book on binary alloys, classification is done by refer¬ 

ence to the Group numbers of the constituent elements. CoIn3 is therefore 

a T9B3 alloy (T = transition metal, B = B sub-group metal). The appropriate 

table however contains no reference to CoIn3. 

It may be possible to infer the likely structure from a knowledge of the 

cell constants and the known composition. The first step is to find the 

number of formula units in the unit cell. Since in this case the density is 

not given, this cannot be done directly. However, it is possible to estimate 

the atomic volume per formula unit by reference to Fig. 6.2, which gives 

the atomic radii. The values found are r\n = 1 -62 A and rco = 1 '25 A and 
these lead to a volume of 61-5 A3/CoIn3. Intermetallic compounds are 

generally well packed, so we may assume that the packing fraction will be 

near to that for the close-packed metals, viz. 0-740 (§6.7). The estimate 
for the volume occupied by each formula unit is therefore 83-1 A3, whereas 

the cell dimensions give a unit-cell volume close to twice this figure, 

164-2 A3. We may therefore conclude that there are two formula units 

per cell. 

Table 4 of Pearson’s book gives a classification of the structures of metals 

and alloys according to Bravais lattice and the number of atoms in the 

crystallographic unit cell. In the case of CoIn3 the Bravais lattice is tetra¬ 

gonal and must be either P or / (§ 1.4); the number of atoms in the cell is 8. 

There is no entry under tP8 and a single prototype, TiAl3, at the correct 

composition against t/8. Reference to Table 6 of the book gives the cell 

dimensions of TiAl3 as a = 3-84 A and c = 8-58 A, which are very different 

from those of CoIn3. 

Another way of attacking the problem is to look for references to struc¬ 

tures of alloys between chemically similar elements at the composition 3:1. 

Schubert’s book contains a table giving the structure types which occur at 

particular compositions. Reference to the table at 25% reveals a chemically 

related phase CoGa3, which is tetragonal with cell dimensions a = 6-25 A 

and c/a = 1 -035 and 16 atoms per unit cell. The a dimension agrees well 

with the CoIn3 phase, allowing for the larger size of indium. However, 
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C0I113 has a c/a ratio ot 0-5 I9, halt that ot CoGa3. If the two structures 

are related, we expect to tind that the upper and lower halves of the larger 
cell are very similar. 

Figure 9.1 is a plane of the structure of CoGa3 projected on (001). The 

unit cell can indeed be divided into two halves, which are identical with 

respect to the gallium atoms. They differ in that the cobalt atoms in one 

Figure 9.1 The structure of CoGa3 projected down the c axis of the tetragonal unit 
cell. The bold lines connect gallium atoms in layers at heights 0 and The structure 
is closely related to that of CuA12 (Figure 8.4). The broken lines indicate the unit cell 
(a = 6-26 A, c = 6-48 A). 

are rotated 90° with respect to those in the other. A unit cell with c one- 

half that in CoGa3 would result if the cobalt atoms were randomly distri¬ 

buted over the eight positions. Such a model might well serve as a trial 

structure from which a complete structure refinement could be made. 
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9.2 The use of structural information to interpret physical properties 

Molybdenum disulphide is used in greases to improve their lubricating 

properties. We are familiar with the structural basis for a similar property 

in graphite and we may therefore expect to be able to explain this quality 

in M0S2 by reference to its structure. 

Structure Reports issues cumulative indices, 1940-1950 and 1950-1960. 

The earlier volume tells us that work on M0S2 is reported in Volume 8, 
p. 137 and Volume 1 1, p. 41. The first of these reports refers us to 

Structurbericht, Volume 1, p. 164 for the crystal structure. This source 

gives us the following information: 

M0S2 Cl type. Hexagonal unit cell 

<2 = 3T 5 A c = 12-30 A 

Mo at (ili) 

S at (335 + u) with u = 0-379 

Two molecules per unit cell, space group D\h, P6^lmmc. 

International Tables for Crystallography, Volume 1, give these special 

positions as 

(Mo) 2 c ±(Hi) 

(S) 4 f ±(itz),±(!ii +z) 
i.e. z = u + -4 

Figure 9.2a shows the [0001 ] projection of the unit cell constructed 

from these data. The interatomic distances are as given in Table 9.1. 
Evaluating the Mo—S distance gives a result of 2-35 A. Figure 9.2b shows 

that the structure is indeed layered and that the shortest distance between 

atoms in different layers is 3-65 A (S—S), which is considerably longer 

than twice the atomic radius for sulphur found from Table 6.2 (1-05 A). 

We may therefore conclude that the lubricating properties of M0S2 arise 

from the pronounced (0001) cleavage which results from the weak inter¬ 

layer binding. 

9.3 The unknown structure 

In the examples given in the preceding two sections structural infor¬ 

mation has been available in the larger compilations. These works are 

always, by their nature, several years out of date so that failure to find 

the required information does not necessarily mean that it is not available. 

In such instances, a search through recent volumes of Chemical Abstracts 
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(b) 

Figure 9.2 The structure of MoS2. (a) Four hexagonal unit cells (a = 3*15 A, c = 

12-30 A) projected on to (001). The full circles represent Mo atoms at heights i and f. 
The open circles represent sulphur atoms at the fractional heights 0-129, 0-371, 0-629 

and 0-871. The full lines show the co-ordination of molybdenum atoms at height \ by 

six sulphur atoms at the corners of a trigonal prism, (b) Successive layers of MoS2 are 
weakly bonded together as indicated by the broken lines. 

Table 9.1 Interatomic distances in molybdenum disulphid 

Atom Neighbour C.N. Distance 

Mo S 6 [ai+c2(i - z)2]1/2 
S Mo 3 [tf§ + c2 (| — z)2 ]1/2 
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may give references to relevant papers. In addition, the indices of recent 

volumes of Acta Cry st aliographica and Zeitschrift fur Kris t alio gr a fie should 

be searched. Should information not be found in any of these places, it is 

probable that the crystal structure is unknown. 

The first stage in the examination of an unknown structure should be a 

determination of the Bravais lattice and cell constants and it may well be 

(see §9.1) that these may then show that the structure is related to some 

known type. If this is not the case, the determination of the crystal struc¬ 

ture may be a complex task, the complete description of which is beyond 

the scope of this book. For the interested reader, there are several special¬ 
ised books on structure determination listed in the second part of the 

Bibliography. 



Appendix 

The Fourier Transform 

The function F(u) defined by the integral equation 

oo 

fix) = | F(u) exp (-27jinx) du 
— oo 

is called the Fourier Transform of fix) and is given by 

oo 

F(u) - j fix) exp (27riux) dx 
— *bo 

These relationships may be written as 

F(u) = T[f(x)] and fix) = T~ 1 [F(u)] 

By the operation T we mean multiplication by exp i—2mux) followed by 

integration; by T~ 1 we mean multiplication by exp (27dux) prior to 

integration. 

We note that T2 [fix)] = fi-x) = T[f(u)] etc. For even functions fix) 

oo 

F(u) = 2 j fix) (cos 2nux) dx 

o 

and for odd functions fix) 

oo 

Fin) = 2 j fix) sin {2mix) dx 

o 

Let us now derive the Fourier transforms for three simple cases: 

(i) a delta function. 5(r) satisfies 5(r) = 0 except at r = 0 and j 8(r) dv = 1 

F(u) = | 8(r) e(] dv = | 8(r)dv = 1. 

We see that the Fourier transform of a 5 function is a constant 

distribution. 
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(ii) a rectangular distribution in one dimension-. 

fix) = a for \x\ < b 

= 0 for \x\> b 

+ b 
F(u) - | a exp (27riux) dx 

- b 
a 

2iTiu 
exp {2mux) 

i + b 

- b 

= 2a 
sin 2tt bu 

2iTbu 

The form of F(u) is illustrated in Fig. 3Aa. 

(Hi) a Gaussian in three dimensions 

-Tur/p2) 

pir) = exp (— pr2) 

/ 7T\ 

F(ji^\p) exp ■ 
that is, the Fourier transform is another Gaussian function. 

Tables 2.5.3.A, B, C and D in Volume 2 of the International Tables 

for X-ray Crystallography list many of the mathematical properties of 
Fourier transforms and the Fourier transforms of commonly occurring 

functions. In particular, we note that the Fourier transform of the sum of 

two functions is the sum of the Fourier transforms of the functions. 

Another important relationship concerns the Fourier transform of the 

product of two functions, the convolution formulae. 

_ rr— l 

and 

fix)g(x) = T 

or T~ 

F(u)G(u) = T 

oo 

J Fill - 77) Girt) dp 
- oo 

oo 

j Fip) G(u - t?) dp 

oo 

f f(v)g(x - p) dp 

or T fix - p)gip) dp 

The simplest example is the convolution of a function with a 5 function. 

Since the Fourier transform of the delta function is a uniform distribution, 

the result is simply the Fourier transform of the function. 
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Chemical compounds are indexed by formulae in which the constituent elements are 
alphabetically ordered. Where appropriate, they are also indexed in full: e.g. caesium 
chloride, CICs. 

Absorption, 
coefficients, 26, 27 
edges, 27 

electrons, 30 
neutrons, 33 
wavelength dependence of, 28 
X-rays, 26 

Actinide series, 95, 109 
structures of, 111 

Activation energy for a transition, 127 
Agl, structure of, 122 
Alkali halides, structure of, 122 
Alkali metals, 107 
Alloy packing structures, 144 
Aluminium, structure of, 115 
A12Cu, structure of, 148, 152 
AlFe3, structure of, 143 
AIN, structure of, 122 
AsNi, structure of, 154 
A1P, structure of, 121 
A13Pu, structure of, 149 

Al3Ti, structure of, 149 
A110V, structure of, 1 5 
Ammonium group, 137 
Anions, complex, 135 
Anomalous scattering, 28 
Antimony, structure of, 118 
Arsenic, structure of, 118 
Asln, structure of, 122 
Axial vector, 17 

Band formation, 99 
BaHgn, structure of, 150 
Benetoite, structure of, 132, 135 
BeO, structure of, 122 
BeTe, structure of, 122 
Binary alloy structures, 142 et seq 

Bismuth, structure of, 118 
Block functions, 102 
Body-centred cubic structure, 108 
Bonding and antibonding orbitals, 101 

(8 - N) rule, 115 
Bonds, three centre, 115 
Boron, structure of, 115 
Born approximation, 59, 97 
Bragg equation, 39, 40, 65 
Bragg reflection, conditions for, 65 
Bravais lattices, 3, 4 
Brillouin zones, 102, 151 
B-sub-group elements, 113 

Cadmium, 
halides structures of, 125 
structure of, 112 

Caesium chloride structure, 122, 149, 
152 

Calcite structure, 137 
Calcium fluorite structure, 125 
Carbon, 

fibres, 117 
structure of diamond, 1 16 
structure of graphite, 116 

Carbonate group, 136 
CaF2 structure, 125 
CaCu5 structure, 144 
CdCl2 structure, 125, 15 6 
Cdl2 structure, 125, 156 
Cd3Mg structure, 149 
Centre of inversion, 3 
Chalcogenides, structures of, 119 
Characteristic radii of the elements, 98 
Chi (x) phases, 151 
Chlorate group, 136 
Chromates, 92 
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Close packed structures, 104 
Convolution formulae, 164 
CICu structure, 122 
C1D structure, 139 
CINa structure, 121 
Computer indexing of powder photo¬ 

graphs, 78 
CoGa3, structure of, 159 
Coordination, 

number, 106, 122 
polyhedra, 107, 146 

Crystal, 
orientation determination, 73 
systems, 4 

Cristobalite structure, 125 
CrH structure, 156 
Cr03 structure, 151 
CuAu structure, 143 
Cu3Au structure, 143, 149 
Cu2Mg structure, 144 
Cu3Ti structure, 149 

Delta function, Fourier transform of, 163 
Density of states curve, 109 
Determination of accurate lattice 

parameters, 82 
Diamond, structure of, 116 
Diatomic molecules, formation of, 114 
Diffractometer geometries, 67 
Diopside, structure of, 134 
Directional bonding, 113 
Displacive transitions, 127 

electron, 58 
neutron-nuclear, 59 
neutron-magnetic, 60 
X-ray, 57 

Fourier transform, 47, 163 
Friedel’s law, 13, 49, 73 

departure from, 14, 28 

Gamma(7)-brass structure, 150 
GaP, structure of, 122 
General form, 13 
Geometry of diffraction, 66 
Glide planes, 16 

absences due to, 43, 62 
Graphite, structure of, 116 
Great circles, 7 
Group, 

III B elements, 115 
IV B elements, 115 
V B elements, 118 
VI B elements, 115, 119 
VII B elements, 114- 

Halogens, 120 
Holosymmetric point group, 13 
Holosymmetry, 4 
Hume Rothery phases, 150 
Hydrides, 154 
Hydrogen, 

bond,139 
molecule ion, 95 
polar effects due to, 137 

Electron, 
beams, production of, 29 
diffraction, 89 
energy-wavelength relationship, 57 
to atom ratio (e/a), 121, 151 
wavefunctions, 99 

Elements, characteristic radii of, 98 
Equi-inclination method, 67 
Ewald contruction, 66 
Extinction, 63 

distance, 63 
primary and secondary, 63 

F2Xe, structure of, 140 
Ferroelectricity, 140 
Fluorite structure, 156 
Form factors, 

disc shaped aperture, 35 

Ice, structure of, 140 
Icosahedral coordination, 15 
Inert gas compounds, 140 
Inert gases, 90, 140 
Integrated intensity, 44, 86 
Interfacial angles, 22 
Interplanar spacing, 19 
Interstitial compounds, 153 
Interzonal angles, 22 
Inversion axes, 12 
Iodine, structure of, 120 
Ionic compounds, AX2 , 125 

polarisation, 124 
radii of ions, 123 
size, effect on stability, 122 

Lanthanide series, 95, 109 
structures of, 111 
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Lattice, 3 
absences due to body-centring, 42 
body-centred, 4 
face-centred, 4 
reciprocal, 38 
scattering from disordered, 50 

Laue, 
conditions, 65 
method, 72 
method in back reflection, 73 
symmetry, 14 

Laves phases, 144, 152 
Law of rational indices, 18 
Layer lines, 68 
Low energy electron diffraction 

(LEED), 30 

Magnetic symmetry, 17 
Melting points of the transition and 

rare earth elements, 110 
Mercury, structure of, 112 
MgNi2 structure, 144 
MgS, structure of, 121 
MgZn2 structure, 144 
Mica structure, 133 
Miller-Bravais notation, 18 
Miller indices, 18, 39 
Mirror planes, 2 
MnSe structure, 156 
Mn04S, structure of, 138 
Molecular orbitals, 96 
Monochromators, neutron, 32 
Moving crystal methods, 68 
MoS2 , structure of, 160 
Mu(/i)phase structures, 151 

NaZn13 structure, 150 
Neutron, 

beams, productions of, 30 
filters, 33 
monochromatisation of, 32 

Nickel arsenide structure, 154 
Nickel, density of states in, 109 
NiS2 structure, 156 
NiSe2 structure, 156 
Ni3Ti structure, 149 
Ni5U structure, 144 
Nitrate group, 1 36 
Noble metals, 107 
Normal beam method, 67 
Nuclear scattering length, 60 

Octahedral coordination, 121 
Olivine, structure of, 131 
Oscillation photographs, 69 

methods of indexing, 71 
Overlap integral, 96 
Oxygen, structure of, 119 
02Si, polymorphs of, 128 

structure of, 125, 133 
02Ti, polymorphs of, 128 

structure of, 125 

Pauling’s principles, 135 
Pbl2, structure of, 125 
Periodic classification of the elements, 

90 
Perovskite structure, 128 
Phase problem in structure deter¬ 

mination, 48 
Phosphate group, 136 
Phosphides, 154 
Phosphorus, structure of, 118 
Physical properties, relation to 

structure, 160 
Pi (7r) orbitals, 113, 116, 118 
Point groups, 10,11 

non crystallographic, 15 
stereograms of, 14 
symbols, 10 

Polar effects due to hydrogen, 137 
structures, 121 et seq 

Polarisability of ions, 124 
Powder, 

diffraction, 86 
diffractometer, 85 

Powder method, 
determination of lattice parameters, 

82 
of X-ray diffraction, 77 
used to identify materials, 80 

Polymorphism in ionic compounds, 
126 

Polymorphs of Si02 , 128 
Polymorphs of Ti02 , 129 
Primitive circle, 6 

Quartz, structure of, 125 

Radius ratio, 123 
for stability, 124 

Reciprocal lattice, 38 
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Reflections, systematically absent, 
42 et seq 

Resonance integral, 96 
Rotation axes, 2 

photographs, 69 
Rutile structure, 125 
RuSi structure, 156 

Scattering, 
amplitude, 37 
by lattice, 37 
effect of temperature on, 52 et seq 
factor, 41,42, 57, 62 
from a real crystal, 40 
from disordered lattices, 50 
incoherent, 5 1 
vector, 37 
weak, 35 
X-ray, 54 

Schonflies notation, 11 
Screw axes, 16 

absences due to, 43, 62 
Selenium structure, 119 
Sigma (a), 

orbitals, 113, 116, 141 
phase structures, 151 

Silicates, 131 
role of aluminium in, 133 
with chained tetrahedra, 132 
with frameworks, 133 
with isolated tetrahedra, 131 
with sheets of tetrahedra, 133 

Small circles, 7 
Sodium chloride structure, 121 
Solid solutions, 142 
Space groups, 10, 16 
Special form, 13 
sp hybrid orbitals, 114 
sp2 hybrid orbitals, 114, 116 
sp3 hybrid orbitals, 101, 116, 112 
Spinel structure, 128 

normal and inverse, 131 
Stereographic, 

net, 8 
poles, 6 
projection, 6 

Straumanis mounting, 77 
Structure, 

the search for an alloy, 15 7 
the unknown, 160 

Sulphate group, 136, 138 
Sulphur, structure of, 119 
Symmetry, 1 

elements, 2 
S2Zr structure, 156 

Titanates, 92 
Transition elements, 92, 109 

structures of, 111 
Translation operation, 3 
Tridymite structure, 128 

Vanadates, 92 
Van der Waals forces, 109, 118, 120 
Vector reversal, 17 

Water, structure of ice, 140 
Wavefunctions, effects of lattice on 

periodicity of, 101 
Weiss zone law, 20 
Wulff net, 8 
Wurtzite structure type, 156, 121 

X-ray, 
absorption, 26 
emission spectra, 24 
filters, 29 
fluorescence, 28 
production of, 23 
tube, 24 

X-ray diffraction, 
powder method, 77 
Laue method, 72 
oscillation method, 69 

Zinc, 
blende structure type, 121, 156 
structure of, 112 

Zones, 7 
angle between two, 10 
axis, 7 
law, 20 
of a great circle, 9 
symbols, 20, 22 

ZnO, structure of, 122 
ZnS structures, 121, 156 
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The appeal of this book lies in the 
illuminating, combination of modern cr 
experimental techniques with an introdu 
of the crystal structures found in solids, 
the physicist's or materials scientist's view 
At the outset, the authors introduce t 
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nomenclature which form the basis for the description 
of crystals and their structures. This is followed by an 
account of the powerful techniques which have made 
possible the study of crystal structure on an atomic 
scale. 
Having once introduced the major techniques for the 
study of crystals, the book concentrates on the 
principles underlying the stability of structures, stres¬ 
sing the relationships between the myriad crystal types ^ 
found in nature. Crystal structures of the elements are 
considered in some detail as these illustrate, in the 
simplest way, most of the important principles of 
structure building. This is followed by chapters on the 
structure of polar compounds and binary alloys. In 
conclusion, guidance is given to the solid state 
physicist or materials scientist who needs to establish 
the crystal structure of a new material. 
This text will prove to be of particular value to both 
graduates and undergraduates in departments of 
metallurgy, materials science and solid state physics, 
and also for students taking introductory courses in 
crystallography. 
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