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The main aim of the book is to provide a modern 
introduction to the crystalline state for students 
in a wide range of scientific disciplines early in 
their university and college courses. More 
specialised industries can subsequently be built 
on the foundations it provides in geometrical, 
morphological and X-ray crystallography, as 
well as fundamental concepts in crystal physics 
and defects in crystalline solids. Presentation 
and emphasis are developed from the 
underlying atomic regularity of crystalline matter 
rather than external morphology of crystals as 
in many earlier texts. The strict rigour of more 
advanced treatments is relaxed to allow greater 
continuity in subject development and the 
mathematical techniques demanded from the 
reader are deliberately fixed at an elementary 
level. In general this book is based on the 
author’s experience of teaching such an 
introductory course to an undergraduate 
audience of disparate interests and abilities for 
over twenty years at Cambridge. 
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PREFACE 

Studies on the nature and properties of crystalline solids are increasing across 

a widening spectrum of scientific disciplines and technical applications. A 

common interest in the crystalline state has emerged to provide a unifying 

link between scientists, technologists and many others who would have found 

little in common in earlier generations. Professional crystallographers can still 

be identified as such, but are usually to be found applying their skills and 

knowledge to problems in disparate and apparently unrelated fields such as 

molecular biology, metallurgy, mineralogy, pharmacology, petrology and so 

on. This evolution has meant that an elementary knowledge of the funda¬ 

mental language of the crystalline state is important to many scientists with 

different specialisations, and this, in turn, has stimulated the teaching of the 

elements of crystallography and the properties of crystalline matter in under¬ 

graduate courses. 

The present book aims to provide a modern introduction to the crystalline 

state for students in a broad range of scientific disciplines early in their 

university and college courses; more specialised interests can subsequently be 

built on the foundations provided in crystallography, crystal physics and 

crystalline imperfections. The presentation and emphasis are developed from 

the essential underlying atomic regularity of crystalline matter; the strict 

rigour of more advanced texts is relaxed in order to allow greater continuity 

in subject development, and mathematical techniques are deliberately held 

back to an elementary level to ensure that the approach is comprehensible to 

readers with a limited mathematical background. In general, the book is 

based on the author’s experience of teaching such an introductory course to 

first-year undergraduates at Cambridge for over twenty years; such experience 

owes much to colleagues and students, and to all of them I am greatly in¬ 

debted for their major contribution to the preparation of this book. 

After an introductory chapter, the earlier sections develop the concepts of 

geometrical crystallography through the analysis of two- and three-dimen¬ 

sional patterns. Later chapters give an introductory account of the inter¬ 

action of X-rays with crystalline matter; the treatment is unsophisticated 

(e.g. the reciprocal lattice, although mentioned, is not used as an interpreta¬ 

tive tool), and is directed towards an appreciation of applications and poten¬ 

tialities of X-ray diffraction methods rather than a description of the detailed 
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techniques used by a crystallographer. The influence of symmetry relation¬ 

ships on physical properties is discussed in an elementary manner (i.e. with¬ 

out the use of tensor notation) in a later section, whilst the final chapter out¬ 

lines the nature of the commoner imperfections which occur in real crystals. 

Progressive exercises and problems are provided for most chapters, which 

also contain suggestions for further more advanced reading and reference. 

Much of the text of the book was completed during a period of leave of 

absence from duties in Cambridge, and I must express my gratitude to the 

General Board of the University and the Governing Body of Downing 

College for this opportunity. Among my colleagues, I am particularly in¬ 

debted to Dr. M. G. Bown for reading the final manuscript and providing 

many detailed suggestions for its improvement. Finally I must record my 

thanks to my wife for her invaluable assistance at every stage in the pre¬ 
paration of this book. 

P. GAY 

Cambridge, 

1970 
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1 
INTRODUCTION 

1.1. The character of crystalline matter 

Our common experience of matter comes through our senses, which are very 

selective in what they allow us to perceive about the real nature of our sur¬ 

roundings. They distinguish readily enough those materials which we call 

solids from those called liquids and gases, and they tell us much that is 

familiar and useful about such objects; we recognise size, shape, colour, 

opacity, texture and so on, but these are not necessarily the most suitable 

qualities for separating one type of solid matter from another, for any sub¬ 

divisions are really related to changes on an atomic scale. By observation 

alone we cannot always distinguish the imitation cut-glass gemstone from 

the crystalline mineral; of course, we can avoid being misled by such a sub¬ 

stitution by examining certain less obvious properties which are quite 

different for the two kinds of solids represented by a glass and a crystal. 

Indeed distinctive properties of various classes of solids were recognised long 

before their origins in divergent atomic arrangements were appreciated; 

although the crystalline state can be characterised by the behaviour of the 

solids in which it occurs, we shall start by establishing those features of the 

internal atomic structure which allow it to be differentiated from other forms 

of solid matter. 

As its name implies, the crystalline state was originally associated with 

crystals, i.e. what we normally understand by the descriptive term confined to 

homogeneous solids bounded by naturally formed planar faces, often quite 

regularly arranged. The beauty of many crystalline minerals attracted man’s 

attention from earliest times, and eventually crystallographic science began to 

emerge from studies of their shapes. In seeking explanation of the visible 

features of their specimens, the earliest crystallographers became convinced 

that naturally developed external faces were related to underlying regularities 

of internal arrangements. Almost two centuries ago, Haiiy showed that the 

many different shapes exhibited by crystals of the same substance could all be 

constructed by regular repetition of a small fundamental unit of a character¬ 

istic size and shape, though at that time he had little conception of the nature 
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of such units. Crystallography, as the study of the external shapes of natural 

and synthetic crystals, continued to advance during the nineteenth century 

with the development of detailed relationships between the observable geo¬ 

metry of faces and the sizes and shapes of the internal units. Speculations as 

to the constitution of units continued during this period until they were 

rationalised by the foundations of modern atomic theory at the beginning of 

this century. Crystalline solids were then recognised as regular and repeating 

arrangements of the constituent atoms to fill the whole volume of a crystal; 

the fundamental internal unit could then be identified with that distinctive 

small volume, containing groups of atoms in a particular configuration, 

which can be repeated to build up the solid. Subsequent developments in the 

present century have made it possible to determine the size and shape of these 

units and the relative dispositions of the various atoms within them; in doing 

this we are said to define the crystal structure which distinguishes one crystal¬ 

line solid from another. 

An ordered arrangement of the constituent atoms into a repetitive three- 

dimensional pattern is, then, the prime characteristic of the ideal crystalline 

state. With this conception, advancing experimental methods freed the study 

of crystalline materials from the restrictions imposed by the necessity of a 

regular external shape; crystals, in this older sense, may be developed by some 

materials, but other solids which have never formed natural external plane 

faces are just as representative of the crystalline state of matter. Moreover, it 

soon became clear that the strict atomic regularity of the perfect crystalline 

state is really only one extreme limit of the structural arrangements that are 

to be found in solid matter; it can merge by degrees to an ideal amorphous 

state in which the whole volume is occupied by a random jumble of the con¬ 

stituent atoms with no repetitive regularity. Apart from the many materials 

in which the atomic arrays approximate closely to the ideal crystalline state, 

some solids retain a degree of crystallinity which, although considerably less 

than perfect, is still sufficient to allow their properties to be investigated and 

described in crystallographic terms. Crystallographic studies now overflow 

into organic, inorganic, metallic, physical and biological fields in ways that 

were inconceivable in the circumscribed horizons less than a century ago, and 

to such an extent that the modern crystallographer tends to be a specialist 

within one of the more readily identifiable disciplines. 

1.2. The degree of crystallinity in solids 

The orderly arrangement of the crystalline state is a consequence of attractive 

binding forces which form permanent attachments between the constituent 

atoms; the development of perfect regularity corresponds to a minimisation 

of the energy of the solid at the change of state in which it is formed. In crystal¬ 

lisation from a liquid, for example, the constant re-shuffling of atoms is 
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changed in the solid to fixed atomic positions, with only small vibrations due 

to thermal motion; permanent attachments (or bonds) are formed between 

adjacent atoms to give the solid its rigidity, and regular and symmetrical con¬ 

figurations of neighbouring atoms develop, where possible, as a reflection of 

an attempt to achieve the lowest potential energy. Wave-mechanical treat¬ 

ments of the interactions of atoms in close proximity can predict quantitatively 

the minimum energy configurations for some systems of simple atoms, and 

although the calculations become too difficult to be handled quantitatively in 

more complicated systems, they can be extended in a rough qualitative man¬ 

ner. In crystalline matter the configuration of first nearest neighbours of any 

atom (or its co-ordination) is developed by the primary attractive forces and 

corresponds to a local minimum energy arrangement; the periodic regularity 

of the structural continuum grows as permanently bonded neighbours 

influence more and more atoms into the most energetically favourable 
positions. 

Sometimes these primary attractive forces are of such a kind that they are 

responsible for the rigidity of the atomic array throughout the whole volume 

of the solid, with all the constituent atoms directly linked into a closely 

packed framework. Sometimes they form only sub-units (of complexes of 

atoms) within the structural pattern; these must then be cross-linked to other 

similar sub-units by secondary bonds, often of a weaker and different kind, 

to build up the stability of a crystalline solid. These sub-units may be recog¬ 

nisable chemical molecules (as, for example, in many organic crystals) or 

separate groups of some of the constituent atoms (as in the complex ion group¬ 

ings of carbonates, nitrates, etc.) or even infinite repetitive chains, sheets or 

frameworks of some atoms (as, for example, in many silicates). The essential 

integrity of such sub-units is demonstrated by observations which show that 

they often persist after the long-range regularity of the crystalline solid has 

been destroyed by melting or solution; their formation and the peculiarities 

of their structure can play an important part in determining the degree of 

crystallinity achieved in the process of solidification. 

In solidification many materials achieve a condition resembling the ideal 

crystalline state with a repetitive regularity of structural pattern over volumes 

containing at least millions of atoms, but there are a number of other 

materials which do npt develop this long-range order; these include many 

solids so familiar to us in everyday life that we might be tempted to think of 

their low degree of crystallinity as more common than it really is. Nearly all 

of these materials contain some degree of a local short-range atomic order; 

some never develop this regularity over more than nearest neighbours or per¬ 

haps a few atomic distances, and approximate to an amorphous state, which 

may be compared to the ‘freezing’ of a liquid structure; others show a greater 

tendency to develop a crystalline form of lower energy, and their particular 

degree of crystallinity depends on the conditions of their solidification 
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and subsequent treatment. Among such ‘non-crystalline solids’* are pla¬ 

stics and resins formed from long chain polymers, natural and synthetic 

rubbers, glasses, wood, etc., groups of materials whose structures and pro¬ 

perties are often very different. Some of them contain ordered molecules, 

sub-units built by primary attractive forces into complexes of a highly ir¬ 

regular shape, sometimes with little mechanical stability; in the process of 

solidification these sub-units become hopelessly intertwined, and they have 

insufficient mobility to re-arrange themselves with any long-range regularity 

under the influence of weak secondary forces, though small ordered domains 

are sometimes realised. Others, mainly the glasses, have linked three-dimen¬ 

sional frameworks in which sub-units of first nearest neighbours are identical 

but the network into which they are linked is irregular with no long-range re¬ 

petition; they tend to occur in materials for which any crystalline configura¬ 

tion of the constituent atoms is relatively open with each atom having a small 

number of nearest neighbours and bonds between sub-units which are some¬ 

what flexible; glass structures are inherently unstable and will sometimes 

revert to a crystalline (or devitrified) form spontaneously unless inhibited by 

chemical additives during manufacture. Other solids have structures which 

are, in a sense, intermediate between the rigidity of the frameworks of simple 

sub-units in glasses and the more flexible tangled complexes of the polymers; 

the particular form of their non-crystallinity depends on the stable permanent 

attachments which arise between the constituent atoms on solidification. All 

of these materials are important in the technology of solids, but we shall 

not be concerned further with them. 

1.3. Crystal chemistry and the description of structures 

All our subsequent discussions will be confined to the very large number of 

solids which are crystalline and which have a high degree of long-range order 

in their atomic arrangements; each substance has its own crystal structure 

which determines many of its characteristic properties. The description of 

crystal structures and the rationalisation of the infinitely variable arrange¬ 

ments adopted by different combinations of atoms is the province of crystal 

chemistry, which is blended from a judicious mixture of theoretical expecta¬ 

tions tempered by the experimental observations of structure determination 

to provide some reasonable principles for the construction of the atomic 

architecture of crystalline matter. Unfortunately at present these can be little 

more than sophisticated guide-lines, for we have no means of calculating ab 

* We have not included the gels in which very small particles of a pseudo-crystalline 
character (as in a colloidal solution) join together to entrap small volumes of liquid 
within the framework; their important mechanical properties depend on the materials 
involved, the linking of the particles and the size and distribution of the pores, and range 
from elastic (as in gelatine) to rigid (as in the setting of cement). 
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initio the minimum energy configurations of anything other than small 

groups of atoms of relatively simple extranuclear structure; crystal structure 

determination is still essentially an experimental exercise. The wave-mechani¬ 

cal treatments of the simple systems, to which we have already referred, sug¬ 

gest that the nearest neighbour attractive forces can, with some justification, 

be described as ionic or covalent or metallic for particular atomic linkages, 

but such a division cannot always be entirely realistic, and in many combina¬ 

tions the primary cohesive forces must be assumed to be mixtures, in some 

way, of binding forces with these idealised limiting characteristics. 

The only rational systematic approach to crystal chemistry must start from 

the influences of such idealised primary bonds in determining the crystal 

structure adopted by a particular collection of atoms. Most important among 

these is the directed characters of covalent forces, which require permanently 

linked neighbouring atoms to be restricted numerically and to be disposed in 

only certain kinds of spatial array; this may be contrasted with the undirected 

nature of ionic and metallic bonds where the packing of neighbours is essen¬ 

tially a geometrical operation of minimising the occupied volume (whilst 

maintaining electrical neutrality in ionic structures). The development of sub¬ 

units consisting of tightly bound atomic complexes is one of the conse¬ 

quences of binding forces which are predominantly covalent in character. 

The resulting crystal structures with clearly distinguishable sub-units linked 

together by secondary attractive forces* are often said to be heterodesmic; 

most structures are of this kind, and the shape and form of the atomic group¬ 

ings in the sub-units are important as they determine the nature of repeatable 

motifs in the pattern theory that we shall discuss later. When atoms in com¬ 

bination are exclusively bound by predominantly ionic or metallic forces, 

crystal structures tend to be homodesmic, i.e. they have no recognisable sub¬ 

units ; the rigidity of the structural framework depends on identical nearest- 

neighbour interactions for all atoms and we cannot identify any separate 

molecular unit formed by groups of atoms. Such structures are relatively rare 

and are confined to elements and simple compounds containing only a few 

chemically different atoms (or ions); occasionally they are formed in covalent 

solids (diamond is a notable example, in which the whole framework can be 

regarded as an infinite molecular complex), and in inert gases simple homo¬ 

desmic structures are crystallised by the weak influence of residual attractive 

forces. 
Crystal chemistry seeks to explain the many different co-ordinations which 

* These secondary attractive forces may be relatively weak as when they are van der 
Waal’s (or residual) bonds or perhaps hydrogen bonds; they can also be forces with 
different primary character, as when complex anion groups are linked by ionic attraction 
through cations. If they are undirected the resultant structure is determined by the 
attempt to pack the sub-units (often of an irregular shape) and any other atoms in an 
economic space-filling manner; hydrogen bonds, however, can demand specific orienta¬ 
tions related to the formation of suitable bridges between molecular complexes. 
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can arise from the interactions between neighbouring atoms, and how such 

co-ordinations can be assembled to form the repetitive unit of a particular 

structure. From the outlines of the relationships between co-ordination and 

bonding forces that have been sketched above, it develops into a fascinating 

but involved field of study, and can be pursued by an interested reader through 

the references in the bibliography at the end of this chapter. Our immediate 

(b) 

Fig. 1.1. The crystal structure of a metallic element (Au). (a) The pack¬ 
ing of atoms within a small volume, (b) Representation of the atomic 
arrangement in a repetitive volume; this volume is £ of that shown in (a), 
and its edges are parallel to the dashed lines in (a). 

concern, however, is not with such principles of atomic architecture but 

rather with the basic descriptions of three-dimensional atomic patterns as 

they occur. Fig. 1.1(a) is a sketch of a small volume of the structure of a 

crystalline metallic element; the close proximity of neighbouring atoms is 

obvious, but details of co-ordination and repetitive packing are obscured by 

the overlapping of atoms in this representation. Fig. 1.1(b) shows a smaller 

repetitive volume of the same structure in which the spheres denoting atoms 
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have been reduced in size; the arrangement of the atoms is much clearer, but 

even so this kind of representation would be very confusing in more complex 

structures. One obvious way of showing atomic arrangements is to build scale 

models of structures; such models are often available from commercial 

organisations and some examples will be found in most crystallographic 

laboratories. But it is also important that we are able to describe any crystal 

structure by a systematic representation on the two dimensions of a sheet of 

paper; this requires a descriptive method which will produce some kind of 
standardised projection. 

All descriptions start with the recognition of a repetitive volume in the 

atomic pattern. In any structure there are any number of different unit 

volumes whose repetition will build up the crystalline solid; the three-dimen¬ 

sional periodicity of the atomic arrangement means that any parallelipiped 

whose edges are parallel to three non-co-planar lines joining identically 

situated atoms will suffice. Possible unit volumes will have a wide variety of 

shapes and sizes, but, as we shall see in later chapters, there are great advan¬ 

tages when one of minimum volume is chosen in conformity with certain 

aspects of the symmetry displayed by the atomic arrangement; the criteria by 

which this is done need not concern us for the present. The conventional unit 

volume (or cell) for the metallic element of Fig. 1.1 is the cube shown in (b) 

whose edges are parallel to the three perpendicular lines indicated in (a). 

With the choice of cell, three intersecting edges can be selected as reference 

axes; its contents are then listed by the co-ordinates of the individual atoms 

within it, usually expressed as fractions of the lengths of the cell edges. For 

example, the atom in Fig. 1.2(a) within a cell with edges a, b, c is at a distance 

from the origin whose components parallel to these edges are x', y' and z' 

respectively; it is described as having fractional cell co-ordinates x, y, z (where 

x = x'/a, y = y'lb and z = z'/c) with values between zero and unity. From a 

listing of the fractional co-ordinates of all atoms in the chosen unit volume, 

the structure is described and standardised projections can be constructed. 

These projections are usually made on to one of the cell faces, as shown in 

Fig. 1.2(b) for the metallic element. The fractional heights of atoms above the 

plane of projection are written adjacent to them, though values of 0 and 1 

corresponding to positions on the lower and upper faces of the cell are often 

omitted. All the essential geometrical features of the crystal structure of our 

metallic element are described by stating that the unit repetitive volume is a 

cube of a certain size, and that gold atoms are to be found with co-ordinates 

0, 0, 0; i, i, 0; 0, \\ 0, Notice that co-ordinates of atoms which would 

be introduced by the presence of identical adjacent unit volumes are not 

listed; the co-ordinates 0, 0, 0 specify an atom at the origin on one corner of 

the cube; those at the seven other corners of this cube are automatically 

inserted by the presence of this atom in the adjacent cells which must meet at 

these corners in the crystalline solid. In fact the number of listed co-ordinates 
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always corresponds to the number of atoms within the chosen unit volume; if 

we displace the origin of the cell, we see that there are four metallic atoms 

contained within the unit cube. 

Fig. 1.2. Atomic co-ordinates and projections of crystal structures, (a) 
Fractional cell co-ordinates x, y, z. (b) A projection of four cells of the 
metallic element of Fig. 1.1 on to a face of the unit cube. 

Atomic co-ordinates (and cell projections) are an essential part of the 

language of the structural crystallographer; they allow the general nature of 

the atomic pattern to be visualised and provide a record of the interatomic 

distances and spatial arrangements within co-ordination polyhedra for each 
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type of atom, all of which is vital to any understanding of the crystal chemistry 

of a particular material. Whilst we shall not be much concerned with the de¬ 

tailed configurations of individual structures, it is nevertheless important that 

in our studies of crystalline matter we should be familiar with this method of 

representing its atomic patterns. It is for this purpose that we quote two fur¬ 

ther examples of structural descriptions; they are both compounds and both 

have conventional unit volumes which are right prisms with a square base; 

the reference axes are orthogonal with x and y as the edges of the square and 

the z-axis as another edge of the parallelipiped normal to this plane. Tin 

dioxide, Sn02 (the mineral cassiterite) has a unit cell of this shape within 

which the atomic co-ordinates are: 

Sn: 0, 0, 0; -j, -j, \ 

O: ±(«, «,i); ±(i + u, \ - u, 0)* 

where u = 0-2. Fig. 1.3 shows the contents of four cells projected down the 

j-axis on to rectangular faces indicated by the broken lines; the network of 

#Sn O0 

Fig. 1.3. A projection of four cells of the cassiterite (Sn02) structure 
down the y-axis. 1 A s 10- 8 cm. 

* If a fractional atomic co-ordinate Xi has a value between i and 1, this is often listed in 
terms of the co-ordinate below the upper face of the cell as — x2 (written x2); clearly 
Xl + x2 = 1. When this applies to all three co-ordinates of an atom, they are usually 
written -Qc, y, z); ±(u, u, i) in the O co-ordinates here indicates two oxygen atoms, one 
with an entirely positive set and one with an entirely negative set. 
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primary bonds (in full lines) gives rigidity to an almost homodesmic frame¬ 

work of Sn and O atoms. From the figure we see that each Sn atom has 6 O 

neighbours at the vertices of an octahedron and that each O atom has 3 Sn 

neighbours in planar co-ordination at the corners of a triangle. Calculations 

from the dimensions of the cell show that the octahedron is slightly irregular 

and that the triangle is not equilateral; both deviations from regularity must 

reflect a departure from uniformity in the primary attractive forces which 

develop between tin and oxygen atoms in this structure. 
In our second example, CO(NH2)2, urea, has a similarly shaped conven¬ 

tional cell though it has different dimensions; atomic co-ordinates are quoted 

as: 

C: 0, u; 0, u, with u = 0-32 

0:0, %,v; 0, v, with = 0-57 

N: w, i - w, t; w, \ + w, t; \ + w, w, t, 

with w = 0-14 and t = 0-17. 

In Fig. 1.4, atoms in four cells have been projected down the z-axis on to 

square faces outlined by dashed lines. Primary and secondary linkages be¬ 

tween atoms can now be recognised; primary bonds (shown as full lines) are 

responsible for sub-units consisting of individual urea molecules in a hetero- 

desmic structure. These molecules are planar and triangular in outline with 

vertices at oxygen atoms pointing alternately up and down; interatomic dis¬ 

tances within a molecule are much shorter than those between molecules, 

indicating the greater strength of the primary attractive forces. Sub-units are 

assembled into the regular ordered three-dimensional pattern of a urea crystal 

by the weaker secondary bonds between molecules (indicated by dotted lines); 

these are bridges which join the sub-units in mutually perpendicular orienta¬ 

tions with the N atoms of one molecule linked to oxygen atoms in neigh¬ 

bouring molecules through H atoms located somewhere between them. 

Apart from their value in illustrating the kinds of atomic patterns found in 

crystalline matter, these examples (and all other structural descriptions) de¬ 

monstrate one fundamental physical relationship that is common to all crys¬ 

tals, viz. the unit cell weight for a particular material must be constant. We 

can therefore write that 

volume of the chosen cell x density = sum of the atomic weights 

of the atoms within the cell 

x mass of the hydrogen 

atom 

— Z x atomic weight of a for¬ 

mula unit x mass of the 

hydrogen atom 



INTRODUCTION 11 

where Z is the number of formula units per cell for any compound with an 
accepted chemical formula. In SnOa, for example, the atomic weights of Sn 
and O are 118-7 and 16-0 respectively, the mass of the hydrogen atom is 
1-66 x 10~24 gm, and the density is 6-99 gm/cc so that 

z = (4-74)2 x 3-19 x 10~24 x 6-99 
(118-7 + 32) x 1-66 x lO"24 ~ 2‘ 

• C (g)N Q° 

Fig. 1.4. A projection of four cells of the urea (CO(NH2)2) structure 
down the z-axis. The planes of the urea molecules are parallel to the 
z-axis which has a repeat length of 4-71 A. 1 As 10"8 cm. 

There are two formula units of SnOa within the conventional cell, which 
corresponds, as we would expect, to the two Sn and four O co-ordinates 
uniquely specified in the description earlier. In a similar way, the cell of the 
metallic element contains four atoms, whilst that of urea contains two mole¬ 
cules of CO(NH2)2; in other circumstances, this equality can provide us with 
a calculated density which should match the observed value if the chemical 
constitution of an unknown material has been correctly determined. 
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1.4. Scope of the present book 

The catholic nature of modern crystallographic work diffuses through many 

scientific disciplines, and in an introductory text it is not practicable to pursue 

the methods and purposes of investigation for all the many disparate materials 

of varying crystallinity that can be encountered; we can only hope to provide 

some account of the fundamental common principles on which all these 

investigations are based. Even so, there are problems in deciding limits for 

our discussions, for the study of perfect crystalline matter quickly develops 

from simple foundations into expanding and interlocking branches each 

demanding individual treatment. These foundations are formed by a know¬ 

ledge of the general nature of crystal structures, which, as we have already 

suggested in this introduction, represent the long-range order of crystalline 

solids by describing the geometry and contents of small repetitive volumes. 

Many of the more elementary aspects of geometrical crystallography and 

crystalline properties are common to groupings of structures containing 

materials which are apparently unconnected on most physical or chemical 

criteria; among our examples the chemically dissimilar urea and tin dioxide 

at least share a common shape of unit cell. In fact, all the arrays of atoms 

which are developed by the various binding forces are subject to certain geo¬ 

metrical rules irrespective of the variety of constituents in any particular 

crystalline solid. Our interest will be in the different pattern types which can 

be constructed according to these rules; each of the sub-groups of pattern 

theory defines a permissible repetition of a unit motif to fill space, and since 

we can identify this motif with an atom (or the atomic complex of a structural 

sub-unit), all the atomic arrangements of crystalline matter must conform 

to one or other of these pattern types. In this book we shall be concerned with 

the general properties of these pattern types, either separately or in groups; 

we shall mention only rarely the details of individual structures that are im¬ 

portant in crystal chemistry or in the fullest investigation of some particular 
substance. 

Our objective in this text, both in content and presentation, is to provide a 

basic knowledge of those concepts which are essential to an understanding of 

crystalline matter in whatever context it is found. To do this we must analyse 

the principles of the construction of repetitive patterns, first for the more 

familiar planar patterns, and subsequently, with the aid of projections, for 

the 230 space patterns basic to the internal atomic architecture of all crystal¬ 

line solids. Inevitably this involves the introduction of the symbolic language 

of the subject and its use to describe those essential geometrical features which 

are our concern. These are the abstract foundations of all subsequent devel¬ 

opments, but it is unwise, even in an elementary treatment, to divorce them 

from the practical problems of determining the pattern sub-group to which a 

particular material belongs. This requires some discussion of the external 
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shapes of crystals and an elementary account of the principles of diffraction 

by crystalline matter. It is in areas such as these that the most arbitrary 

limitations on subject matter have to be imposed; these have been set, so far 

as possible, at unsophisticated levels of treatment which, nevertheless, allow 

the determination of the cell shapes and symmetries which characterise 

individual space patterns. We do not, however, give much attention to the 

methods of structure determination; these, like other branches of many solid 

state studies, are firmly rooted in the elements of pattern theory and their 

practical application to crystalline solids that are presented here. 
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2 
TWO-DIMENSIONAL PATTERNS 

2.1. The nature of repetitive operators 

In the introductory chapter we saw that crystalline matter is formed by the 

continuous repetition in three dimensions of a particular fundamental atomic 

pattern. Many aspects of the crystallographic properties of a substance depend 

on the nature of this repetition and the operators which describe it, and so it is 

important to develop the ideas of three-dimensional pattern theory. At first 

the student often finds such concepts difficult, usually because he is much more 

familiar with the two dimensions provided by a piece of paper or a black¬ 

board. This chapter will set out the basic elements of two-dimensional pattern 

theory, so avoiding, for the moment, the more difficult mental step into three 

dimensions. Many of the ideas that are developed here may then be transferred 

to the discussions of the geometrical features of crystalline matter in later 

chapters, so providing a more certain foundation for the greater complexity 

of three-dimensional patterns. 

Two-dimensional repetitive patterns are a familiar part of our everyday 

experience, as in wallpapers, fabrics, etc.; at first sight they appear to have 

infinite variation but most are manufactured by repetitive operations which 

severely restrict the number of distinct pattern types. The variety in design 

that we see is due to human ingenuity in changing both the form of the basic 

motif (or unit of pattern) and the spacing of its periodic repetition; such 

ingenuity is of little importance in pattern theory, which is concerned rather 

with the ways in which a motif (of whatever form) can be repeated, i.e. the 

nature of repetitive operators and their combinations. We can begin our 

study of the operators that develop patterns using the very simple example in 

Fig. 2.1(a); only a limited part of an infinite pattern is shown, but this is 

enough for any analysis. The motif (or unit) consists of two perpendicular 

lines of unequal length; in a more sophisticated version of the same basic 

pattern it could be a complex geometrical design or a floral arrangement. In an 

analysis of the nature of this pattern, all such possibilities may be represented 

quite generally by a simple unit whose only requirement in the first instance is 

that it is asymmetric (or without any kind of symmetry). The pattern is 
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derived from one single motif by two repetitive processes; firstly, repeated 

translation by a vector operator b would build up an infinite horizontal row, 

which is then transformed into the two-dimensional pattern by repeated 

translation by a vector operator a. This pattern may therefore be described as 

arising from a single motif by the movements due to two vector operators a 

(a) 

Fig. 2.1. A simple pattern with translational periodicity only, (a) The 
pattern of motifs with lattice translations superposed, (b) The equiva¬ 
lent array of lattice points; unit cells have been displaced to show the 
number of lattice points within each cell. 

and b (inclined at angle y). The essential features of this pattern type are 

specified by these two translational operators which mark out a grid of iden¬ 

tical points in two dimensions; in Fig. 2.1(a) this grid is shown superimposed 

upon the pattern. Since it is of infinite extent its origin may be taken at any 

position, and for generality in the figure the origin (and all other points at the 

intersections of the grid) are displaced from the motif. In all two-dimensional 

patterns (however complex) we shall have to describe translational periodi¬ 

city in terms of two inclined vector operators which lead to a grid of identical 
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points; this regular repetitive pattern of points with identical environment 

about every point is known as a two-dimensional (or planar) lattice. The 

nature of the lattice type is a fundamental feature of any pattern. 

The description of the lattice is, then, an important step in characterising a 

pattern type, and we have seen above how the array of identical points can be 

built up by the repetitive operations of two non-parallel vectors. However, the 

pair of operators a and b that were used to generate the lattice points of the 

example in Fig. 2.1(a) is not unique. The same pattern of points could be pro¬ 

duced by any other pair of translational vector operators which join lattice 

points; for example we can regard it as derived from the translational vectors 

a1 and bx (inclined at ya) or a2 and b2 (inclined at y2) as shown in Fig. 2.1(b). 

Fig. 2.2. A simple pattern with translational periodicity and rotational 
symmetry. The rotation diad points associated with each cell are shown 
below. 

Such pairs of vectors outline a repeated area of the pattern in each case, and 

are said to define a unit cell (or unit mesh) for the lattice. The lattice of 

Fig. 2.1 could be described in terms of each of the alternative cells we have 

outlined, though there are certain criteria which, as we shall see later, enable 

us to select the most suitable unit cell. Comparing the three cells of Fig. 2.1(b), 

that defined by a2 and b2 is different from the others in that it is twice as 

large; the other two cells are of minimum area. As a reflection of this we can 

see from the diagram that the larger cell contains two points of the lattice, 
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whereas the other two have only one. Cells with more than one lattice point 

are said to be multiply primitive (doubly primitive in this case); the cells 

defined by a and b, or ax and bx are said to be singly primitive (or, more 

usually, just primitive). Wherever possible, lattices are described in terms of 

primitive unit cells of minimum area, though, as the discussion on possible 

lattice types in the next section will make clear, there are some occasions 

where the use of non-primitive cells cannot be avoided without considerable 

inconvenience. In this example, however, the cell outlined by a2 and b2 would 

not normally be utilised to describe the pattern of lattice points. Both the 

other two cells are primitive and of minimum area, and any preference could 

only be decided by an arbitrary choice. The basis of any conventions need not 

concern us here, and we will proceed to further developments using the cell 

enclosed by a and b, remembering that an essential feature of any two- 

dimensional pattern is the lattice described by two non-parallel translation 

vectors; the distinctive types of planar lattices are examined in greater detail 
in Chapter 2.2. 

However, in addition to lattice operators, patterns can contain further 

repetitive operators of a different kind. In Fig. 2.2 the same motif has been 

repeated by the same lattice translations, but there are two motifs in each 

unit cell. It is important to recognise that the lattice remains primitive, for 

there is still only one lattice point associated with each unit cell; there are now 

two motifs associated with each lattice point, and this has arisen because of an 

additional operator. In this example, the operator has repeated a motif by 

rotation through 180° about a direction normal to the paper (e.g. A and B 

are related in this way), so doubling the number of motifs in the cell. The kind 

of symmetry operator that repeats a motif by rotation about a direction is 

known as a rotation point (of symmetry). For self-consistency, rotation points 

must ensure coincidence with the original motif after a complete revolution, 

so that n<f) = 2tt, where <f> (in radians) is the angular interval between each 

repetition, and n is an integer defining the degree of the rotation. In Fig. 2.2, 

(f, = jt so that n — 2, and the pattern is showing a two-fold rotation opera¬ 

tion normal to the paper; it is possible to have other rotation points with 

n — 3, 4,... to give three-, four-... fold repetition of the motif in a complete 

revolution, although we shall see shortly that the combination of rotation and 

translation operators restricts the values of n. 

There are still further repetitional operators which can occur in two-dimen¬ 

sional patterns; one of these is seen in the pattern of Fig. 2.3. The lattice 

reproducing the same motifs now has a primitive rectangular cell (y = 90°), 

and there are again two motifs associated with each cell, i.e. with each lattice 

point. This pattern differs fundamentally from those in the previous figures 

in that it is impossible to relate the motifs by operations involving either 

the translations or the rotations that have been described (e.g. consider 

the motifs A and B in Fig. 2.3). This is due to the asymmetric nature of the 
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original motif, which can exist in two different but related forms. A pair of 

human hands shows the most familiar example of two such forms, and motifs 

related in this way (sometimes called enantiomorphous pairs) are said to be 

left- and right-handed; in the pattern, A and B are a left- and right-handed 

enantiomorphous pair. Since in general the left-handed motif (A) cannot be 

brought into congruence with the right-handed motif (B) by any combination 

of translation and pure rotation operators whilst remaining at all times in the 

plane of the pattern, there must be some further operator which can cause 

such an inversion. In two dimensions the change of hand in the inversion 

can only be produced by reflection across a line, and the reflection line is 

another kind of repetitive operator which can occur in planar patterns. The 

pattern of Fig. 2.3 is produced by the translational repetitions of the lattice 

together with inversion to the opposite hand by a reflection line parallel to 

the b-lattice translation. 

1— 1— 

1_ 

1- 

i_ 

f— 1— r- i— 

1_ *—B ■- *- 

1— r-A r- r- 

*- 
i_ i_ 

Reflection lines 

Fig. 2.3. A simple pattern with translational periodicity and reflection 
symmetry. The reflection lines associated with each cell are shown 
below. 

So far, we have established the nature of the basic operations (translation, 

rotation and reflection) which control the repetition of a motif to form the 

two-dimensional pattern. Often the pattern is the result of the combination of 

these operators, and there is an interdependence which limits the number of 

permissible combinations. We shall investigate this interdependence in detail 

later, but for the present the discussion will be confined to those general 

features which enable us to see whether any new types of operators are 

encountered and what restrictions are placed on rotation points. In particular, 

since lattice translations must always be present it is important to examine the 
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effect of compounding these with the reflection and rotation operators. 

Firstly, the effect of such a combination for translation and reflection opera¬ 

tions is shown in Fig. 2.4(a); the left-handed motif (A) is reflected across the 

symmetry line to change its hand, and subsequently translated to give the 

right-handed motif (B). This is then reflected again to give the left-handed 

motif (A') and so on. In effect this provides a new kind of operator, the glide 

(a) 

1— 

1_ 1_ 

1— r- 

1_ 
B 

1— 

‘i?' 

r~ 

1_ 

1— 

1_ 
7' 

1— 

b 

Glide lines 

(b) 

Fig. 2.4. A simple pattern with translational periodicity and glide 
symmetry, (a) Combination of a lattice translation and a reflection line 
to give a glide line; the periodicity of the lattice translation is AA'. 
(b) The simple pattern; the glide lines associated with each cell are 
shown below. 

line, in which right- and left-handed forms of the motif are successively 

repeated on either side of the glide line with a periodicity of half the lattice 

translation in the direction of glide. Fig. 2.4(b) shows part of a pattern pro¬ 

duced using the same lattice translation as Fig. 2.3, but with the reflection 

line replaced by a glide line. 
Next, the combination of an 72-fold rotation operation with a lattice trans¬ 

lation is considered in Fig. 2.5. In (a), the symmetry operator, normal to the 
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paper, passing through Ox is repeated at 02, 03, etc. by the lattice translation. 

The operation through Ox in a clockwise sense will demand repetition of 02,03, 

etc. after an angular interval cf> to give the row 0x02, etc.; simultaneously we 

must consider the effect of the other operators, where, for example, after 

(a) 

Fig. 2.5. Combination of a lattice translation and a rotation, (a) The 
effect upon the original lattice row. (b) The effect upon a lattice point off 
the original row. 

rotation through 360° — <f> in the same sense, the rotation point at 02 will pro¬ 

duce the row 0'i0203, etc. The result of these operations will be to produce a 

planar mesh of symmetry related identical points; the mesh will have point- 

rows parallel to the original row 0i0203, etc. developed by the lattice transla¬ 

tion. From the simple geometry the closest spacing of points on these rows is 

020'i ( = 6(1 — 2 cos (f>)), but for mutual consistency of the mesh this spacing 

must be an integral multiple of the original translation operator, b, in the 

direction of the rows. Thus 

1—2 cos $ — an integer, 
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and since the limits of cos <£ are ±1, the only values of this integer are 3,2,1,0 

and -1. In turn, this implies that the only permissible values of <f> are 180°, 

120°, 90°, 60° and 0° respectively, showing the restrictions on the degrees of 

rotational symmetry imposed by their combination with translational opera¬ 

tors. In our repetitive patterns, therefore, we can only have two-, three-, four- 

and six-fold rotation points of symmetry; the value of 0° (or 360°), of course, 

indicates repetition only after a complete revolution, i.e. the absence of what 

would conventionally be recognised as a symmetry point. Operators for 

which n = 2, 3, 4, and 6 are known as diad, triad, tetrad and hexad points 

respectively (repetition only after a complete revolution is sometimes spoken 

of as a monad). A rotation diad point repeats a motif after 180° rotation, a 

rz.^' 4 
^2 b- 3 

1- 
JI b- 

(a) 

A, AJ Aa 
—M2>- ^4i 

_ r ZM 
1A 

(b) 

1 i 1 i 
l 

i \ 
(0 (d) 

Fig. 2.6. Patterns showing the same translational periodicity and reflec¬ 
tion symmetry, (a) and (b) use combinations of the simple motif in 
Fig. 2.3; there are three and four motifs per lattice point respectively. 
(c) and (d) show more complex patterns derived using a variety of motifs 
associated with each lattice point. 

rotation triad after 120° and so on. In addition to demonstrating these limita¬ 

tions, simple considerations also show that no new symmetry operator 

(analogous to the glide line) is formed so long as the translation is confined to 

a plane. In three dimensions, as we see later, a translation could occur in the 

same direction as the analogous operator, a rotation axis, and this can pro¬ 

duce a new kind of symmetry operator; in two dimensions, with possible 

lattice translations restricted to a plane, the same rotational symmetry is 

repeated in new positions in the resultant mesh. This repetition is illustrated 

in a general way in Fig. 2.5(b), which shows the effect of such a combination 

upon a lattice point 0 displaced from the original row CfiC^Og, etc. The 
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symmetry axis through 03 together with the lattice translation b repeats 0 at 0 ; 

on the same row (parallel to 0x0203, etc.) there must also be 0" obtained from 0 

by lattice translations alone. Thus 0" and O' (and the lines on which they lie) 

are related by a clockwise rotation through an angle </> about the point R 

away from the original row; since the operations which produced them must 

be generally valid for the whole of the resultant mesh, this net will show the 

development of the original symmetry point at all positions like R. 

To summarise, the discussion so far has been concerned with the nature of 

the repetitive operators to be found in two-dimensional patterns. In planar 

repeating patterns, the recognition of translations defining the unit cell of the 

lattice always begins any analysis; to these may be added other repetitive 

operators, usually called symmetry elements, which can be rotation points 

(diad, triad, tetrad, hexad) and symmetry lines (reflection or glide). We have 

seen already some general indications of the interdependence of lattice trans¬ 

lations and symmetry elements, and we must now examine the manner of 

their relationship in more detail. However, it is important to emphasise again 

at this point that limitations on pattern type in no way restrict the varieties of 

design by the use of different motifs. This is shown in a simple way in the four 

patterns of Fig. 2.6; these all belong to the same basic pattern type, in which 

the lattice translations give a primitive rectangular cell and a reflection line 

parallel to a cell edge is also present. 

2.2. Two-dimensional lattice types 

In the preceding section the concept of a lattice as a mesh of points formed by 

the repetitive operations of two non-parallel translational vectors has been 

described; each lattice point in the mesh can be associated with a simple or 

complex element of the pattern, and the points are identical in the sense that 

an observer viewing his surroundings from any point could not decide the 

exact location of his particular point within the mesh. An infinite lattice does 

not need to have a particular origin in the pattern, although for convenience 

it is often chosen to coincide with a particular feature, usually an associated 

symmetry element (e.g. the diad point in Fig. 2.2). The lattice is described by a 

unit cell, whose shape and size are determined by the magnitudes of the lattice 

translations a and b and the interaxial angle y; the chosen unit cell is usually 

primitive with one lattice point per cell, though occasionally a multiply primi¬ 

tive cell with more than one lattice point is selected. We must now enquire 

into the number of distinctive lattice types in two dimensions, and the com¬ 

binations of symmetry elements with which they are likely to be found. 

Before answering these questions, the meaning and significance of a lattice 

type must be clarified. It may be argued that any two non-parallel rows of 

lattice points could be used to define lattice translations and a unit cell. For 

example, in Figs. 2.3 and 2.4, a rectangular cell has been chosen; it is possible 
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to describe these patterns in terms of lattice translations parallel to the dia¬ 

gonals of the rectangular cell so employing an oblique rhomboidal cell. 

However, this is not a desirable choice for not only would the oblique cell be 

larger (two lattice points per cell), but its shape would be out of harmony 

with the symmetry shown by the pattern. Although it would be possible to 

proceed in this arbitrary way to describe any arrangement of lattice points in 

terms of a general oblique cell, there are serious disadvantages in attempting 

systematic developments on this basis. Unit cells are therefore chosen to be of 

minimum area for a particular pattern of lattice points and in accord with 

any symmetry displayed by the pattern. Different lattice types are distinguished 

by the general shapes of the cells and whether they are simply or multiply 

primitive; thus two primitive rectangular cells of different lattice translations 

are of the same general lattice type, but we recognise a distinction between 
lattices with square and rectangular primitive cells. 

In two dimensions there are only four distinctive shapes (Fig. 2.7); (a) shows 

an oblique cell with no particular relationship between a and b and a general 

value of y, (b) shows a rectangular cell, again with no relationship between a 

and b, but with y = 90°, (c) shows the square cell with a = b,y — 90°, while 

(d) shows a hexagonal cell, rhombus-shaped with a — b,y = 120°. Each of 

these cells could be used to mark out a different two-dimensional primitive 

(p) lattice type with lattice points at each of the cell corners. But since they 

are to be used in association with particular symmetry elements, one must 

ask what symmetry elements are consistent with the arrangement of lattice 

points that they define; in the lower diagrams of Fig. 2.7, the maximum 

symmetry consistent with each distribution of lattice points is shown. It is 

important to realise that in any pattern all of these symmetry elements need 

not necessarily be present; the patterns of Fig. 2.6 have the rectangular cell 

of (b) with one reflection line only. Nevertheless, once a particular symmetry 

element is displayed in the pattern, the most suitable cell shape is determined; 

thus the existence of the reflection lines in the patterns of Fig. 2.6 allows the 

choice of a rectangular cell. The association of cell shape and essential sym¬ 

metry elements is simply expressed. The oblique /^-lattice is suitable for the 

introduction of any rotational symmetry up to a diad; a rectangular ^-lattice 

is demanded once a reflection line is present, a squarep-lattice once a tetrad is 

present and the hexagonal ^-lattice once triad or hexad points are introduced. 

For each lattice type there may be several different permissible combina¬ 

tions of symmetry operators each containing the essential symmetry ele¬ 

ment; the possible groupings of symmetry elements for each lattice type will 

be discussed later. At this time we can recognise that it is the presence of the 

essential symmetry elements in the pattern which requires a particular unit 

cell shape, not the converse; thus a pattern without symmetry elements could 

have any specialised cell shape, though the pattern type on which it is based 

would be represented formally using the general shape of the oblique cell. 
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(a) (b) 

Symmetry elements: reflection lines, — 

rotational symmetry f diad; A triad; 

H tetrad; ^ hexad 

Fig. 2.7. Cell shapes in two dimensions and the associated maximum 
symmetry elements. The upper diagrams show the cells for primitive 
lattice types; the lower diagrams show the maximum number of sym¬ 
metry elements and their mutual orientations consistent with lattices 
based on each shape. 

So far, the existence of four distinctive primitive two-dimensional lattice 

types is established; but it is also necessary to ask if any of these cell shapes 

can occur in a multiply primitive form. This may be answered by first seeing 

if additional lattice points can be added without destroying any essential 

symmetry or the identity of all lattice points, and then examining whether a 
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smaller primitive cell may be chosen with the same general shape; if anew 

primitive cell cannot be found, one must recognise a new multiply primitive 

lattice type. As an illustration we will consider the possibilities of multiply 

primitive oblique lattices. The symmetry elements of an oblique cell are 

shown in Fig. 2.7(a); in addition to the diad points at the corners of the cell, 

there are other diads at both the centres of the cell edges and of the cells. If 

extra lattice points are inserted separately or in any combinations of these 

positions, multiply primitive cells of the same shape and symmetry will be 

produced; some of the possibilities are shown in Fig. 2.8. In (a) the extra 

lattice point is at the centre of an edge at A to give a doubly primitive cell; but 

A b A b 

A b 

Fig. 2.8. The addition of extra lattice points to a primitive oblique cell. 
Alternative primitive cells are shown with broken lines. 

this is not a new lattice type, for it merely leads to the halving of a lattice trans¬ 

lation to give a primitive oblique cell defined by a, &/2 and y. A similar argu¬ 

ment would apply if the extra lattice point had been added at the mid-point of 

the other cell edge, but in (b) two extra lattice points are added at A and B, 

the centres of both cell edges, to give a triply primitive cell. However, this does 

not constitute a lattice, for the environments of A and B are now different, 

and this attempt to construct a triply primitive oblique cell fails on this cri¬ 

terion. In (c), with all possible positions occupied by extra lattice points at A, 

B and C, the lattice points are once again identical, giving a quadruply primi¬ 

tive oblique cell; but this is not a new lattice type, for both lattice translations 
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can be halved to give a primitive oblique cell defined by a/2, b/2 and y. In the 

last example, (d), a doubly primitive cell is formed by the addition of an extra 

lattice point at the centre of the cell at C. At first it might be thought that this 

represents a new non-primitive lattice type, but we must remember that we 

are concerned only with a general cell shape and that the magnitudes of a, b 

and y are unimportant in the oblique cell. By changing the lattice translations 

a smaller primitive oblique cell (with new dimensions a', b' and y') can be 

found to describe this arrangement of lattice points, and so again no multiply 

primitive lattice type is formed. By such arguments it is clear that there is only 

one distinctive oblique lattice type, for all multiply primitive oblique cells 

may be reduced to a simple primitive form by a suitable choice of lattice 

translations. 

4*- 

4*-^ 

*1-V 4r 

Fig. 2.9. The centred rectangular lattice cell. The upper diagram shows 
the distribution of lattice points and the lower diagram the arrangement 
of the maximum number of symmetry elements consistent with lattices 
based on such a cell. 

The implications for the other cell shapes could be systematically explored 

in this way, when it will be found there is only one two-dimensional lattice 

type with a non-primitive cell. This is the centred (c) rectangular cell (Fig. 2.9); 

it is doubly primitive, consistent with symmetry and lattice requirements, and 

it cannot be described by a primitive cell in which the orthogonality (y = 90°) 

of the lattice translations is preserved. This may be added to the list of planar 

lattice types to bring the total to five, the oblique p-lattice, the rectangular p- 

and c-lattices, the square p-lattice and the hexagonal p-lattice; the transla¬ 

tional operators in any two-dimensional pattern are described in terms of one 
of these lattice types. 
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2.3. Two-dimensional point groups 

In the last section the translational aspects of pattern theory have been 

described, but the repetitive nature of certain patterns may also be due to the 

presence of symmetry elements; only when both facets are combined is it pos¬ 

sible to complete the analysis of a given pattern. It is convenient to take this 

last step in stages, and in this section we consider only those combinations of 

symmetry elements which could occur if the repetition demanded by transla¬ 

tional vectors is neglected. Rotation points and reflection lines are the only 

symmetry elements that need consideration, for glide lines involve a transla¬ 

tion. Strictly speaking, with translational repetition suspended, a restriction 

on the degrees of rotational symmetry need no longer be imposed; but, since 

we shall wish to relate this discussion to the symmetry elements found in 
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Fig. 2.10. The ten two-dimensional crystalline point groups. Symbols O 
and Q are used to represent left- and right-handed objects. 

repeating two-dimensional patterns, we must only consider those combinations 

with rotation operations for which n = 1, 2, 3, 4 or 6. The combinations of 

symmetry elements without translational repetition repeat an object about a 

point, and so each distinct combination is said to form a point group. Point 

group theory can be developed without reference to planar pattern theory, 

and it can be argued that a restricted discussion which refers only to a limited 

number of point groups implies that some other descriptive term should be 

used. If this is necessary, it is difficult to propose a suitable term except by 

analogy with the discussion of the three-dimensional point groups in Chapter 

4; in this, crystalline matter can be divided into a finite number of classes, in 

each of which there is the same point group symmetry. We can therefore refer 

to the restricted number of point groups associated with crystals as the crystal¬ 

line point groups, so that the present discussion concerns only two-dimen¬ 

sional crystalline point groups. To avoid the repetition of this cumbersome 
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expression, it will be understood that the point groups referred to in subse¬ 

quent sections are the limited number that are compatible with translational 

repetition as it exists in planar patterns and crystalline matter. 

The number of such planar point groups is very simply derived. Each sym¬ 

metry element can exist independently. Thus there will be point groups for 

each kind of rotation point, and there must also be a group with a reflection 

line alone; symbolically these groups are represented as 1, 2, 3, 4, 6 and m 

respectively. All other point groups are combinations of rotation points and 

reflection lines; in each of these groups the n-fold rotational symmetry repeats 

the reflection line at the appropriate angular interval. This provides four more 

point groups, symbolically 2m, 3m, 4m and 6m, to bring the total of two- 

dimensional crystalline point groups to ten, illustrated in Fig. 2.10. Groups 

common to a particular cell shape are classed together into two-dimensional 

crystal systems (again by analogy with the discussion of crystalline materials 

in Chapter 4.2); thus 4 and 4m, which both require a square cell, are said to 

belong to the same system. 

2.4. Two-dimensional space groups 

To complete the analysis of planar patterns, repetitions demanded by point 

group symmetry must be combined with those of the lattice type to produce 

one of the basic two-dimensional pattern types. These are called two-dimen¬ 

sional space groups, for they show the repetition of units of pattern to fill an 

infinite plane, and in this section their formation is discussed. In considering 

the nature of these space groups, however, it must be remembered that the 

combination of the point group operators with lattice translations does allow 

the development of new symmetry elements; in two dimensions, as we have 

seen, this leads only to the glide line (represented symbolically g) which can 

replace or supplement reflection lines. Moreover, in associating point group 

symmetry with a particular lattice cell, the relationships between symmetry 

and cell shape discussed in 2.2 must be maintained, so that, for example, the 

oblique p-lattice is only found with the point groups 1 and 2; higher sym¬ 

metry demands more regularly shaped unit cells. A space group is expressed 

symbolically by stating both the lattice type and the point group symbol 

(modified if necessary to include glide elements); thus the simplest planar 

space groups are pi and p2, indicating a primitive oblique cell with no sym¬ 
metry and a diad point respectively. 

Before describing the systematic derivation of all two-dimensional space 

groups, it is valuable to examine one group in some detail to clarify their 

significance. For this we shall use p2mm, in which the symmetry elements 

demand that the primitive lattice cell is rectangular in shape. Space groups 

are conventionally represented on two diagrams as in Fig. 2.11. Both show a 

unit cell of the lattice; in the right-hand cell the symmetry elements are dis- 
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played, whilst the left-hand cell shows the distribution of equivalent points 

produced within the cell by all the operators. To construct these diagrams we 

start with the single lattice point of the primitive cell in some general position, 

A, on the left; the symmetry elements given by the point group symbol (diads 

at a, reflection lines at b and c) are marked on the right-hand diagram. The 

symmetry elements are then operated in turn on the lattice point; since the 

point group 2mm produces four related points (Fig. 2.10) and we start with 

one lattice point per cell, the final number of equivalent points within the cell 

must be 4 x 1=4. Rotation of A about the diads at a gives A± (points in 

adjacent cells must be repeated in the original cell by the operation of the lat¬ 

tice translations). A will also be reflected across the symmetry line at b to A2; 

this involves an inversion, conventionally shown by placing a comma in the 

circle of the lattice point, indicating that if any motif associated with A is left- 

handed, the repetition at A2 will be right-handed. Finally, reflection of A 

across the symmetry line c to give A3 (again with a change of hand) completes 

x 

b 

b' 

b 

Fig. 2.11. Space group diagrams for p2mm (pmm). On the left is the dia¬ 
gram showing the general equivalent positions; on the right the diagram 
showing the distribution of symmetry elements. 

the four equivalent points in the cell of this space group. The distribution of 

points in the cell on the left is consistent with the development of extra sym¬ 

metry elements; there are further diads at a', and reflection lines at b' and c' 

to be inserted on the diagram of symmetry elements on the right. The signi¬ 

ficance of the general equivalent positions is that, if some object (an abstract 

motif, a rose, etc.) is placed at A it must be repeated at A1} A2 and A3 in the 

appropriate hand to produce this kind of pattern. For each space group such 

positions are listed in terms of fractional co-ordinates; if A is at (x, y), the 

four general equivalent positions (G.E.P.’s) are listed as ±(x, y); + (x, T)- 

The number of equivalent positions per cell may often be reduced, by siting A 

in a special position with respect to the symmetry elements, e.g. if A is placed 

on the symmetry line b it will coalesce with A2, whilst Ax and A3 will also 
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coincide to reduce the number of equivalent positions per cell to two. These 

locations are known as special equivalent positions (S.E.P.’s) and are also listed 

for each space group according to the manner in which they occur; in the 

example above, they would be shown as m (indicating the symmetry of the 

chosen special position), ± (0, y). A pattern based on this space group using 

symmetric and asymmetric motifs in general and special positions is shown in 

Fig. 2.12. 

To derive all the possible two-dimensional space groups, one must con¬ 

sider systematically all combinations of lattice type with permissible group¬ 

ings of symmetry elements. With an oblique cell only p\ and pi can occur; 

1 ® i 
\®T 

7 @ i i <! V ® 1 
T ® A ® I 

Fig. 2.12. A pattern based on the space group p2mm (pmtri). The reader 
can analyse this pattern to see how many of each kind of motif there are 
in each cell and whether they are in general or special positions. 

but for a rectangular cell there are many more combinations, for it can be both 

primitive and centred and have symmetry associated with the point groups m 

and 2mm. Thus we might expect space groups pm, pg, cm, eg to be derived 

from point group m, and pmm, pmg (=pgm), pgg, emm, cmg (= cgm), egg 

from point group 2mm (the diad symbol 2 is often omitted from this point 

group and its associated space groups, for its presence is always implied by 

the other symmetry elements). Looking at the list of two-dimensional space 
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groups in Table 2.1, we see that only 7 out of these 10 possibilities are listed; 

Table 2.1. The relationships between two-dimensional lattice types, point groups and 
space groups 

Cell shape 
(crystal system) 

Oblique Rectangular Square Hexagonal 

Lattice type 
Point group 

P p and c P P 

(crystal class) 1 2 m mm 4 4m 3 3m 6 6m 

Space groups Pi p2 pm pmm 

Pg pmg 
cm pgg 

emm 

p 4 p4m 

P*g 

p3 plml* p6 p6m 
/>31ma 

a The existence of two distinct groups is related to the two alternative positions for the 
three reflection lines associated with the triad rotation; inp3ml, the initial position of the 
reflection line bisects y, in p1\m, it is taken along an edge of the cell. 

the reason for this is that not all combinations form new and different space 

groups. For example, Fig. 2.13 demonstrates the equivalence between cm and 

eg; the symmetry elements are the same in both cases, interleaving m and g 

lines, and the distributions of G.E.P.’s can be made identical by a displace¬ 

ment of the origin of the cell. Similarly emm = cmg ^ egg, and only one 

m Q 

Fig. 2.13. Diagrams to show the equivalence of cm and eg. For easier 
comparison in both cases the distributions of general equivalent posi¬ 
tions and symmetry elements are shown on a single diagram; identity is 
achieved if the origin of the cell is displaced through a/4 in either case. 

distinctive space group symbol need be listed. By this kind of argument it can 

be deduced that there are only the 17 different two-dimensional space groups 

set out in Table 2.1, where their relation to symmetry and lattice operators is 

shown. All repetitive planar patterns must be based upon one or other of 

these space groups. 
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2.5. Extension to three-dimensional patterns 

The elements of two-dimensional pattern theory given in this chapter are 

relevant to any discussion of the three-dimensional regularity shown by crys¬ 

talline matter; naturally the analysis with an extra dimension is more com¬ 

plex. Three translational vector operators will be needed to mark out the 

pattern of identical points which form the lattice. Some of the other repeti- 

tional operations encountered in planar patterns are comparable with those 

which exist in crystalline matter; rotational symmetry around a point is 

replaced by rotation about a line to give axes of symmetry, whilst inversion 

across a line becomes reflection across a symmetry plane. But, as will be seen 

in later chapters, there are possibilities of new symmetry elements in both 

point groups and space groups that do not arise for planar platterns. Never¬ 

theless, the classification of the pattern types to be found in crystals is generally 

similar to that which we have established in this chapter for two-dimensional 

patterns. The ultimate sub-division is the space group of which there are 230 

(compared with 17 in two dimensions). Each space group is associated with a 

particular point group (or crystal class) of which there are 32 (compared with 

10 in two dimensions). Particular groups of crystal classes can be associated 

with particular cell shapes (or crystal systems); depending on certain conven¬ 

tions, there are said to be 6 or 7 systems (compared with 4 in two dimensions). 

Each cell shape may define a primitive or multiply primitive lattice type, 

giving a total of 14 (compared with 5 in two dimensions). 

Despite its complications, an analysis of three-dimensional patterns can fol¬ 

low the outlines laid down by the simpler two-dimensional analogy. In suc¬ 

ceeding chapters, we shall discuss the nature of the lattice and symmetry 

operations leading to the description of crystallographic lattice types, systems, 

point groups and space groups, though in an introductory text it is not pos¬ 

sible to pursue detailed studies of each of the 230 space groups. Our objective 

must be to provide sufficient understanding of the essential principles in order 

that the reader may continue further developments quite readily; for con¬ 

venience the order of presentation may differ slightly from that in this 
chapter. 

2.6. Exercises and problems 

1. (i) Examine wall and floor coverings, fabrics, etc. to identify motifs and 

their translational repetitions so as to recognise the lattice type. 

(ii) Analyse the symmetries shown by the arrangement of motifs in such 

patterns so as to recognise their point groups. [Further practice in recog¬ 

nising point group symmetry can be obtained from individual symbols, e.g. 

the letters of the alphabet in Roman capitals, a swastika, the star of David 
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and so on, though it should be remembered that there will be no limitation 

on the degree of rotational symmetry.] 

(iii) In repetitive patterns combine your observations under (i) and (ii) to 

determine the two-dimensional space groups to which they belong. 

(iv) Reverse the process by designing your own patterns with various 

motifs to illustrate individual two-dimensional space groups. 

2. Demonstrate that any multiply primitive lattices with (a) triad symmetry 

and cell shapes in which a = b,y = 120° and (b) tetrad symmetry and cell 

shapes in which a = b, y — 90° can be reduced to a suitable primitive 

form. 

3. Demonstrate that the two-dimensional space groups p3gl, p31g, p6g are 

already represented by alternative symbols in Table 2.1. 

4. In a repetitive pattern in which the unit cell has a ^ b,y = 90° a charac¬ 

teristic motif was identified at general equivalent positions whose frac¬ 

tional co-ordinates are of the form ±(x, y)\ + (J — x, y). Identify the 

space group to which this pattern belongs. Other motifs occur in the pattern 

in special equivalent positions; list their possible fractional co-ordinates. 
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3 
STEREOGRAPHIC PROJECTION 

3.1. The nature of the problem 

The three-dimensional character of crystalline materials often makes it diffi¬ 

cult to visualise linear and angular relationships between various features of 

an atomic pattern, and it is essential to supplement any mental picture by a 

projection. Before enlarging upon the pattern theory outlined in the pre¬ 

ceding chapter we must consider this problem of systematic projection into 

two dimensions, for projections will be extensively used in our discussions. 

Unfortunately there is no simple solution which can combine both the linear 

and angular properties that must be represented, and they are usually treated 

separately. We saw in Chapter 1 how atomic positions within a unit cell are 

conveniently projected on to one of the cell faces with fractional co-ordinates 

giving indications of their heights. This simple method is quite adequate for a 

general impression of the crystal structure, and permits the accurate represen¬ 

tation of linear features such as atom positions, interatomic distances, etc.; 

however, such projections do not readily provide a rapid method of calculat¬ 

ing and expressing angular relations (bond angles, etc.) within the atomic 

pattern. More importantly, we saw in the last chapter that details of the 

atomic pattern can be replaced by the equivalent points generated by the 

lattice and symmetry operators; we need to represent the spatial distributions 

of rows and planes of lattice points and the general angular relationships be¬ 

tween them. Furthermore, in Chapter 6 we shall see that among the most 

important characteristics of crystals with well-developed external shapes are 

the angles between their plane faces. In fact, many of the most significant 

crystallographic properties (like symmetry) are concerned with angular dis¬ 

positions just as much as linear relationships. 

Many projections which try to preserve angular relations are based on an 

initial projection on to a sphere. The subject for projection is imagined to be 

surrounded by a central sphere (often called the circumscribing sphere); for 

our purposes the subject might be two inclined lattice rows, a plane of lattice 

points, or a geometrical figure bounded by plane faces. Since we are concerned 

with angular features only, the directions in all three cases are shown as radii 
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of the circumscribing sphere (Fig. 3.1); in (a) the lattice rows themselves are 

the radii, in (b) and (c) the radii are those normals to the planes which pass 

through the centre of the sphere. Each radius meets the surface of the circum¬ 

scribing sphere at a point known as a spherical pole; in each example the dis¬ 

tribution of poles on the surface of the sphere faithfully retains the angular 

/ 
/ 

Fig. 3.1. Projection on to a circumscribing sphere, (a) Two lattice rows; 
the angle between the spherical poles is that between the lattice rows. 
(b) A plane of lattice points; the spherical pole is at the end of the radius 
normal to the plane, (c) A geometrical figure; each face is represented by 
a spherical pole at the end of a radius normal to the face (for clarity, the 
rear faces of the bipyramid and their spherical poles are omitted). 

dispositions of the projection subject. For (a), the spherical arc between the 

poles is a measure of the angle between the lattice rows; while for (b), the 

position of the spherical pole fixes the orientation of the lattice plane with 

respect to a reference direction such as the N-S axis of the sphere, and in (c) 

the shape of the original figure could be constructed, for its planar faces are 

normal to the radii defined by the poles. So far, the representation is still 

three-dimensional with the subject replaced by a number of poles on the sur¬ 

face of a sphere. Before completing a projection into two dimensions, it is 

valuable to consider two important circular loci on the sphere. 
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Firstly, great circles on the surface of a sphere are the intersections with the 
spherical surface of planes passing through its centre; they have the same 
radius as the sphere and must pass through opposite ends of one of its dia¬ 
meters (Fig. 3.2(a)). Lines of longitude on the Earth are great circles passing 
through the North and South poles. A great circle may be drawn through any 
two points on the surface of the sphere, such as the poles representing the lat¬ 
tice rows in Fig. 3.1(a) (if the points are at opposite ends of a diameter, clearly 

A 

(a) (b) 

Fig. 3.2. Great and small circles on the surface of a sphere, (a) The in¬ 
clined great circle is cut by the shaded plane through the centre of the 
sphere. The pole of this great circle is at P. The area ABC on the surface 
of the sphere bounded by the arcs of three great circles is a spherical 

triangle with six angular elements (sides a, b, c and included angles A, B, 
C). The length of a side a is given by the angle subtended by the arc BC 

at the centre of the sphere. An included angle, B, is measured by the angles 
between the tangents to the two great circles at their point of inter¬ 
section; alternatively, it is the angular distance between the poles of the 

two great circles (PQ). (b) The small circle is cut by the shaded plane 
which does not pass through the centre of the sphere. Radii through 
points on the small circle form a cone so that they are equally inclined to 
the centre of the circle at X. 

a third point is necessary to specify a particular great circle). The distance be¬ 
tween two points on a great circle is the angle subtended by that arc of the 
circle at the centre of the sphere. The radius which is normal to the plane of 
the great circle gives a point on the sphere called the pole of the great circle, 
which is therefore at 90° to all points on the circle. The angle between two 
circles is measured between the tangents at the intersection of the circles, or, 
alternatively, as the angular distance between the poles of the great circles. 
Intersections between three great circles form a spherical triangle with six 
angular elements (three sides and three included angles); the relationships be¬ 
tween these elements is the subject of spherical trigonometry (see Appendix 
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B). Secondly, small circles on the surface of the sphere are the intersections 

with the spherical surface of planes which do not pass through its centre; their 

geometrical radius is less than that of the sphere (Fig. 3.2(b)). Lines of latitude 

on the Earth are small circles with different angular radii drawn about the 

North and South poles; the equator is a small circle of radius 90°, i.e. a great 

circle. Since a small circle is the locus of points on the surface which are at an 

equal angular distance from a spherical pole, its use is mostly in locating a pole 

whose angular distances from two given positions are known. This enables 

great circles to be drawn through the three points to define a spherical tri¬ 

angle; arcs of small circles, however, cannot be used as elements of such 
triangles. 

We shall return in the next section to the problem of projection, remember¬ 

ing that the subject has been replaced by a number of poles on a sphere; the 

relationships between these poles can be described in terms of their locations 

on great and small circles. In the final projection into two dimensions, experi¬ 

ence and familiarity will soon dispense with the need to visualise the inter¬ 
mediate circumscribing sphere. 

3.2. The method of projection and its properties 

Whilst there are a number of ways in which the spherical poles could be 

projected into two dimensions, that most commonly employed in 

crystallography is the stereographic method, an adaptation of an old classical 

projection which was probably first used by the early Greek astronomers. 

The main virtues of stereographic projection are the following, (a) Subject 

only to the limits of scale, all directions in space can be accurately represented, 

(b) The angular truth of the sphere is preserved so that angular measure¬ 

ments between directions are unaltered and easily determinable with 

accuracy, (c) Projections of both great and small circles on the sphere appear 

as arcs of true geometrical circles, thus making their construction simple. The 

validity of these assertions is demonstrated in Appendix A, where the detailed 

properties of the projection are discussed. 

To make a stereographic projection from the circumscribing sphere, we 

first choose points at the opposite ends of a diameter to be the north and south 

poles of the sphere; the plane of projection is then the equatorial plane of the 

sphere (Fig. 3.3). From each spherical pole in the northern hemisphere a line is 

drawn to the south pole of the sphere; the point at which this line cuts the 

equatorial section is marked as a dot on the projection plane. Such dots 

denote the stereographic poles representing directions in the projection 

subject; clearly these poles lie within the area of the projection bounded by 

the trace of the equatorial circle (known as the primitive) at distances from the 

centre of the projection given by r tan t/r/2, where r is the radius of the pro¬ 

jection (i.e. the circumscribing sphere), and f is the angular distance between 
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the corresponding spherical pole and the north pole of the circumscribing 

sphere. If we continued in this way with any spherical poles in the southern 

hemisphere, the projected stereographic poles would lie outside the primitive; 

this becomes more inconvenient as a spherical pole gets closer to the south 

pole of the sphere. Projection becomes more manageable when those poles in 

in the southern hemisphere are projected by joining each of them to the north 

pole of the sphere. These lines will intersect the projection plane within the 

primitive, and stereographic poles so obtained are marked with open circles 

(a) (b) 

Fig. 3.3. Stereographic projection, (a) Projection of three spherical poles, 
P, Q and R in the northern and southern hemispheres and on the equa¬ 
torial section respectively; R may be projected from either the N or the S 
pole, but conventionally is considered to be in the northern hemisphere. 
(b) The stereographic projection showing the location of the three poles 
P, Q and R; the N-S axis is at the centre of the projection at C. 

to distinguish them from poles from the northern hemisphere. Thus a stereo¬ 

graphic projection is restricted to poles (dots and circles) lying within the 

primitive. The particular arrangement of dots and circles depends both on the 

nature of the projection subject and the choice of projection plane, but with 

experience they may be interpreted in terms of the important crystalline 

features (symmetry, crystal shape, etc.) that they represent. 

We have already mentioned the importance of great and small circles on 

the circumscribing sphere in relating spherical poles; these relationships are 

maintained on the corresponding stereographic projection (or stereogram), 

and so it is often necessary to construct the projections of great and small 

circles. On the stereogram these are the arcs of true circles, and various simple 

geometrical constructions are described in Appendix A. In practice, however, 

most angular manipulations on the stereogram are more easily carried out 

using a stereographic net (Fig. 3.4). This shows a series of great circles 
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(inclined at suitable angular intervals) drawn to pass through the two ends of 

a diameter of the primitive circle; superimposed on these is a series of small 

circles (with radii increasing at the same angular intervals) drawn about these 

diametrically opposite points. Some stereographic nets enclose the whole 

primitive, while others (as in the figure) overlap only half the projection. 

Naturally, the size of the net varies with the scale of the projection; for most 

elementary work a projection radius of 2\ in. with the circles inscribed at 

angular intervals of 2° is adequate, though larger nets are available for more 

accurate work. Smaller nets are usually printed on transparent paper, though 

the larger ones (often as complete circles) are engraved and permanently 

mounted so that the actual projections may be carried out on tracing paper 

placed on top of them. Whatever its form and size, the stereographic net is an 

indispensable aid to constructions on the stereogram, for by rotation about 

the centre we can obtain the projections of all possible great circles and all 

possible small circles drawn about points on the primitive. We now describe 

briefly the use of the net in some of the more important stereographic 

constructions. 

FIRSTLY, CONCERNING GREAT CIRCLES 

(i) To draw a great circle through any two points that are not diametrically 

opposite 

When both points are in the same hemisphere, the net is rotated about the 

centre of the stereogram until they are both on the same great circle locus. 

Should it be necessary to mark this great circle permanently on the projection, 

the true circle of which it is an arc is easily drawn. Its geometric centre must 

lie on the line perpendicular to the base of the net through the centre of the 

projection (Fig. 3.5(a)); its position on this line can be found by bisecting a 

chord. (Great circles of slight inclination are arcs of circles of very large radii; 

these can be most conveniently drawn using a thin metal blade flexed to the 

appropriate radius and placed so that it passes through the points on the 

circle.) The lower half of the great circle in the southern hemisphere (usually 

dotted or dashed) is the mirror image of the upper circular arc in the diameter 

along the base of the net. 

If the points are in opposite hemispheres, the projection of the other end of a 

spherical diameter through one of them is found; this point, called the oppo¬ 

site of the original pole, will be on the same diameter of the primitive at an 

equal and opposite distance from the centre of the projection. The construc¬ 

tion may then proceed as before. When one of the original points lies on the 

primitive or at the centre of the projection, the use of the net is obvious; 

the net can also be used to find a great circle of a given inclination to the 

primitive. 
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(ii) To draw a great circle, given its pole 

The diameter through the pole of the great circle (P) and the centre of the pro¬ 

jection is drawn; we now need to find the point at which the required great 

circle cuts this diameter, i.e. a point which is 90° away from P (Fig. 3.5(b)). 

Fig. 3.5. Great circle constructions using a stereographic net. (a) A 
great circle through any two points within the primitive P and Q. (O, O' 
are the geometric centres of the arcs of the two halves of the great circle), 
(b) A great circle of which P is the pole. For clarity only small areas of 
the net in the relevant regions are shown. 
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With the base of the net perpendicular to this diameter, the angular distance 

(a) of P from the centre of the projection is measured from the inclination of 

the great circle passing through it; the required great circle has inclination 

90° — a so that its intersection with the original diameter can be found after 

rotating the semi-circle of the net through 180°. It is then drawn to pass 

through this point and the ends of a diameter perpendicular to the original. 

This construction can be reversed to find the pole of a given great circle. 

NEXT, THE CONSTRUCTION OF SMALL CIRCLES 

(iii) To draw a small circle of given angular radius about a pole within the 
primitive 

At the top of Fig. 3.6, we wish to draw a small circle of angular radius (a) 

about a point P in a general position on the stereogram; this will be a circle 

Fig. 3.6. Small circle construction using a stereographic net. At the top, 
a small circle of angular radius a (=20°) is drawn about P; note that the 
geometric centre of the circle is not at P. At the bottom, for a small 
circle of the same angular radius about Q, the points A and B located by 
the net are in opposite hemispheres. It is necessary to re-project these 
points outside the primitive by the construction shown to give A' and B' 
on the diameter produced. The upper and lower halves of the small circle 
pass through AB' and BA' respectively. 
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whose geometric centre is at a different point on the same diameter. If the 

diameter through P is drawn, points A and B on it must be located so that 

AP = PB = a; this can be done quite simply using the engraved small circles 

of the net placed with its base on this diameter. The geometric centre of the 

circle is then found by bisecting AB, and the small circle is drawn to pass 

through A and B. The converse construction can be used to find the angular 

centre of a given small circle. 

When the given pole is on the primitive, the small circle is already drawn on 

the net; if the given pole is at the centre of the projection, the small circle has 

its geometric centre at the same point. Arcs of a small circle can lie in both the 

northern and southern hemispheres of the circumscribing sphere. If the given 

pole lies on the primitive, the projections of the parts in the two hemispheres 

are superposed. If the given pole is in a more general position, the upper and 

lower halves are projected as circles of different radii both of which must be 

constructed. When the use of the net gives the points A and B in different 

hemispheres, and not superposed (the bottom of Fig. 3.6), a further construc¬ 

tion step is necessary. Each in turn must be re-projected outside the primitive 

on to the same diameter to A' and B' by the construction shown in the figure; 

the justification of this construction is given in Appendix A. The geometric 

centres of the two circles representing the upper and lower halves of the small 

circle are found by bisecting AB' and BA'. It will be noticed that if A hap¬ 

pens to coincide with the centre of the projection, the lower half of the small 

circle is a straight line, the chord joining points on the primitive intersected 

by the upper half, and vice versa when B coincides with the south pole of the 

projection. 

NEXT, FOR COMMON ANGULAR MEASUREMENTS ON THE STEREOGRAM 

(iv) To measure the angular separation of two given poles 

This requires the location of the great circle on which both poles lie, as in (i) 

above. Once this is done by rotation of the net, the angle between them can be 

read off as the difference in the angular radii of the small circles on which they 

lie (Fig. 3.7(a)). With two poles in opposite hemispheres, both the upper and 

lower parts of the great circle must be measured, i.e. one must count to the 

primitive along both arcs and add to get the total angle. 

(v) To measure the angle between two great circles 

This may be carried out in a variety of ways (Fig. 3.7(b)). Without a net, the 

tangents to the circles at their point of intersection can be drawn and the angle 

between these lines measured by an ordinary protractor. One may use a net to 

plot the poles of the two great circles, and measure the angle between them as 

described earlier. Alternatively, the net allows us to draw the great circle of 
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Fig. 3.7. Angular measurements on the stereogram, (a) The angular 
separation of two poles. In the upper half of the diagram the two poles P 
and Q are in the same hemisphere; the angle (a) between them is read off 
from the small circles on the net. In the lower half P' and Q' are in 
opposite hemispheres and the angle between them is a + y3. (b) The angle 
between two great circles. This angle (a) may be measured (i) as the angle 
between tangents at the point of intersection Q; (ii) as the angle be- 
between the poles Pi and P2 of the two great circles; (iii) as the angle 
between the intersections A and B of the given great circles with the great 
circle of which Q is the pole. 
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which the point of intersection Q is the pole; this will pass through the poles 

of the original great circles. The required angle may be obtained by measuring 

the arc of this great circle intercepted by the original great circles, for the two 

points of intersection A and B are necessarily at 90° to the original inter¬ 

section of the two great circles (imagine the point Q to be at the ‘north pole’ 

of a circumscribing sphere, when A and B will lie on the ‘equator’ of the 
sphere). 

FINALLY, ROTATION OF THE STEREOGRAM 

The distribution of points (dots and circles) for a given subject depends on the 

orientation of the plane of projection, i.e. the choice of the N-S axis of the 

circumscribing sphere; rotation of the projection may be desirable to bring 

the distribution of poles into a more favourable orientation. So far as spheri¬ 

cal poles on the circumscribing sphere are concerned, this amounts to the 

rotation of the sphere about a particular diameter so as to bring another point 

into the north pole position, normal to the plane of the new stereographic 

projection. As the sphere undergoes the necessary angular rotation about the 

given diameter, poles on its surface will be displaced. They will in general 

move through the appropriate angular distance around the loci of small circles 

whose angular centres are at the ends of the diameter of rotation. In terms of 

the same movements on the stereogram, we can quite simply relocate the 

poles after rotation of the projection as follows. 

(vi) Rotation about the centre of the projection 

Since the small circles are centred at the north and south poles of the pro¬ 

jection, the whole stereogram is rotated about the given angle measured on the 

primitive (Fig. 3.8(a)). 

(vii) Rotation about a point on the primitive 

All points on the stereogram move around small circles centred at the ends of 

the axis of revolution. This is conveniently done by moving the poles around 

the small circles on the net passing through them by the appropriate angular 

displacement (Fig. 3.8(a)). Care must be taken to ensure that rotation is in 

the same sense for all points. 

(viii) Rotation about a point within the primitive 

This is a much more tedious process, and starts with the construction of a 

small circle through each stereographic pole of radius appropriate to its 

angular distance from the axis of revolution. For each point two great circles 

must be found which intersect at the rotation axis inclined at the given angular 

rotation, in such a way that one passes through the undisplaced pole and the 

other gives its new position after rotation at the intersection with the appro¬ 

priate small circle (Fig. 3.8(b)); this is probably most simply achieved by 
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Fig. 3.8. Rotation of the stereogram, (a) Rotation through an angle a 
about the centre of the projection (axis 1) and a point on the primitive 
(axis 2) for three poles A, B and C. (b) Rotation through an angle a 
about a general direction (axis 3) for two poles B and C; the pairs of poles 
C, C3 and B, B3 lie on great circles through the axis of revolution which 
cut the great circle of which the rotation axis is the pole at points separ¬ 
ated by the angle a; each of the pairs of related poles is then at the same 
angular distance from the axis of rotation (for clarity only arcs of the 
small circles are shown). 
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using intersections with the great circle for which the rotation axis is the pole; 

this adaptation of one of the constructions in (v) is shown in the figure. This 

involves a multiple use of the net for each pole, and in practice it can be 

simpler to use three separate rotations. In the first of these the rotation axis is 

brought to the centre of the stereogram; in the second the poles are further 

rotated through the given angle by (vi), whilst in the last stage the rotation 

axis is restored to its original position. However general rotation of this kind 

is carried out it is clearly a complex operation, and it is avoided if possible by 

careful consideration of the initial projection plane. 

3.3. The use of stereographic projection 

In crystallography this kind of projection is used whenever there are angles 

between directions to be specified; its applications are too numerous to be 

listed, and range from the geometry of diffraction to the co-ordination or 

environment of different atoms in a structure. Sometimes the stereogram has 

to be drawn accurately, sometimes a sketch of the distribution of the poles will 

suffice. Its value and utility in particular problems will be appreciated with 

experience, but to prepare for the use of the stereograms in later chapters, we 

shall consider in this section three fields where the use of this projection is 

invaluable; these are (i) angular relationships in lattices, (ii) the geometrical 

shapes of crystals, and (iii) the operation and combination of symmetry ele¬ 

ments. Each of these will be explored in more detail in the appropriate chap¬ 

ter; the intention here is only to demonstrate the relevance of stereographic 

projection in these later discussions. 

Angular values in lattices depend both on the shape and the dimensions of 

the unit cell; in Chapter 5, the crystallographic importance of lattice rows and 

planes is described and their relations for particular cells examined. The 

stereographic projection provides a simple way of deducing all the angular 

relations of the lattice rows and planes for a given cell; or conversely, from a 

knowledge of angular data it allows some conclusions to be drawn about the 

lattice cell. Let us give a simple illustration; Fig. 3.9 shows a simple cell of a 

lattice, in which the three lattice rows defining the edges of the cell are perpen¬ 

dicular but each has a different lattice translation. When a projection is made 

with c lattice translation along the N-S axis of the circumscribing sphere, the 

points on the stereogram a, b, c represent the directions of the three lattice 

rows of the cell edges; if any of these directions had been defined in the 

opposite sense, the opposite pole would be shown on the stereogram. Now 

considering a lattice row in some other direction, say d, both the magnitude 

and direction of its translation are fixed by the translations a and b; the same 

is true for any other row (e.g. e) in this plane. Given a and b, the directions of d 

and e may be calculated and plotted on the stereogram on the primitive circle, 

i.e. on the same great circle as a and b. This illustrates the general principle 
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that directions lying within a plane will plot as stereographic poles on the 

same great circle; the row f will therefore lie on the great circle through b 

and c at an inclination determined by their magnitudes. We can now easily 

locate the direction of g, a more general lattice row, for it must lie both within 

the plane defined by c and d, and within the plane defined by a and/; it is 

therefore at the intersection of the great circles containing these pairs of poles. 

a 

Fig. 3.9. Projection of the directions of lattice rows on the stereogram. 

This method of locating a direction at the intersection of two great circles 

representing two planes to which it is common is extremely useful, and en¬ 

ables the position of any lattice row to be plotted once the unit cell translations 

are defined; it will be discussed at length in Chapter 5.1. The representation of 

the orientation of planes of lattice points by their normals is undertaken in a 

similar way. For example, a plane of points defined by the lattice translations 

c and b has a normal at the pole a; planes of lattice points do not always have 

normals which coincide with lattice rows, (e.g. the plane defined by c and d) 
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and the positions of their poles on the stereogram must be considered care¬ 

fully. However, once a few such poles have been plotted on the stereogram, 

others may be added using great circle relationships. 

♦ 

A 

Fig. 3.10. Projection of a geometrical shape (a crystal) by the normals to 
faces on the stereogram. The left-hand stereogram is constructed with 
direction 1 as the N-S axis of the circumscribing sphere; the right-hand 
stereogram is constructed with direction 2 at the centre of the projection. 
The great circle on this latter projection shows the orientation of the 
actual planes C and C'. 

In Chapter 6 the external shapes of crystals developing under ideal growth 

conditions are discussed as regular geometric polyhedra, which are con¬ 

veniently represented on the stereogram where the characteristic angles be¬ 

tween their plane faces can be displayed. In the simple illustration of Fig. 3.10, 

the crystal is in the form of a rectangular block, similar to the unit cell dis¬ 

cussed above. When a projection is made with the normal to the face C along 

the N-S axis of the circumscribing sphere, the six poles formed by the normals 
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to the faces are disposed so that the shape and orthogonality of the crystal are 

evident. However, the stereogram would be much less easy to interpret if 

some other plane of projection had been chosen. Suppose that a body diagonal 

of the crystal (like g in Fig. 3.9) was placed at the centre of the projection. 

This would be equivalent to rotating the first projection to bring g to the 

centre; the effect is shown on the right-hand stereogram in the figure, where 

the essential orthogonality of the crystal shape is not so obvious to a casual 

inspection. Occasionally it is desirable to represent the orientation of faces (or 

planes) themselves rather than that of their normals; this is simply done by 

drawing on the projection the great circle of which the face normal is the pole. 

This brief excursion into the projection of crystal shapes illustrates that 

stereograms are best drawn with due attention to the most convenient orienta¬ 

tion; such orientations are usually related to any symmetry shown by the 

projection subject. Furthermore, the next chapter will show how the combina¬ 

tion of symmetry elements into point groups is readily developed using this 

kind of projection. To conclude the present introduction to the use of stereo¬ 

grams, we shall look at the principles of operation and combination of symmetry 

elements in projection. In Chapter 2 it was shown that symmetry operators 

fall broadly into two categories, (a) those with rotational repetition, and (b) 

those which cause an inversion on repetition. Extension into three dimen¬ 

sions leads to a blurring of this distinction, with symmetry elements different 

in kind from those to be found in two dimensions (Chapter 4.1). For rotational 

symmetry, we shall omit any discussion of new operators for the present and 

deal with their stereographic representation when they are introduced in the 

next chapter; for inversion operations, we shall only consider the effects of 

simple inversion through a point and across a plane, a distinction which is 

also discussed in the next chapter. In principle the effect of rotation operators 

upon the stereogram is similar to rotation of the projection; for a particular 

symmetry axis a given pole will be repeated at the appropriate angular inter¬ 

vals as it moves around a small circle centred on the rotation axis. With con¬ 

ventional orientations of projections, rotation axes, with a few exceptions, are 

either at the centre of the projection or on the primitive (Fig. 3.11). These 

exceptions occur in some highly symmetrical combinations where diad axes 

can be found at 45° to the centre of the projection (Fig. 3.12(a)) to which triad 

axes are inclined at 54° 44'; this latter, apparently unusual, angle (= cos-1 

1/V3) implies the triad axis is equally inclined to the projection centre and 

two perpendicular poles on the primitive (Fig. 3.12(b)). Inversion through a 

point will merely produce the opposite of the original pole (Fig. 3.13(a)). 

Inversion across a plane requires the construction of a great circle to cut that 

of the symmetry element at right angles; the given pole is then carried along 

this great circle to the intersection, and then repeated at an equal angular 

distance on the other side. In usual projection orientations symmetry planes 

are mostly in the plane of the primitive or vertical planes passing through the 
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Fig. 3.11. The operation of rotation axes by symmetry on the stereogram. 
The repetition of a general pole by the various axes is shown in the upper 
row with the axis at the centre of the projection, and in the lower row 
with the axis on the primitive. 

(a) (b) 

Fig. 3.12. The operation of inclined axes, (a) A diad axis inclined at 45° 
to the centre of the projection, (b). A triad axis inclined at 54° 44' to the 
centre of the projection, i.e. equally inclined to the perpendicular direc¬ 
tions represented by a, b and c so that it would repeat poles at these 
points. In both cases the repetition of a pole in each hemisphere is shown. 

<§) 
(a) (b) (c) 

Fig. 3.13. Inversion operations on a stereogram, (a) Repetition of a 
general pole by inversion through a point (b) Repetition of a general pole 
by inversion across a plane through the centre of the projection or in the 
plane of the primitive (to the point in the southern hemisphere), (c) Repe¬ 
tition of a general pole by inversion across a plane inclined at 45° to the 
centre of the projection. 
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centre of the projection (Fig. 3.13(b)). Again in some highly symmetrical 

combinations, symmetry planes inclined at 45° to the centre of the pro¬ 

jection are found (Fig. 3.13(c)). 

Stereographic projections are also well suited to the study of symmetry ele¬ 

ment combinations. Although the full examination of individual point groups 

is made in the next chapter, we can illustrate now the value of stereograms in 

such studies by an example. Let us suppose that we wish to look at two simple 

combinations, with two perpendicular diad axes in the first, and one diad 

contained in a symmetry plane in the second. When such combinations are 

made, one can ask what is the effect of combination upon the total symmetry, 

i.e. in each case whether any extra symmetry elements have been developed, 

and whether the two combinations lead to total symmetry groupings different 

from each other. Both questions are easily answered by examining the effect 

Fig. 3.14. The combination of symmetry elements on the stereogram, 
(a) Two perpendicular diad axes, (b) One diad contained in a symmetry 
plane. Note the different distribution of general poles and the extra sym¬ 
metry elements (dotted and broken lines) that have been developed. 

of the given symmetry elements of each combination upon a pole placed in a 

general position on a stereogram (Fig. 3.14); (a) shows the repetition of this 

pole by the first group, (b) by the second. In both cases new symmetry elements 

have been developed ; in (a) there is a third mutually perpendicular diad axis, 

whilst in (b) there is a second plane (also containing the diad axis) per¬ 

pendicular to the first. Clearly the final symmetry groupings of the two com¬ 

binations are quite distinct, a fact that is already reflected in the different 

distributions of general poles upon the stereogram. The number and arrange¬ 

ment of general poles is characteristic of each combination, and we shall use 

this in the systematic development of crystallographic point groups shortly. 
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3.4. Summary 

A full and clear understanding of stereographic projection is essential to what 

follows, and it is worthwhile re-stating the main features of this chapter at this 

point; moreover, familiarity with the projection comes only with experience, 

and exercises provided at the end of the chapter are designed to help the 

reader to gain this essential experience. 

In stereographic projection, the subject is first replaced by poles on the sur¬ 

face of the circumscribing sphere; each spherical pole is at the end of a radius 

of the sphere representing a direction in the projection subject. This arrange¬ 

ment of poles on the surface of the sphere is projected into two dimensions by 

choosing one diameter of the sphere to be the N-S axis, with the plane of pro¬ 

jection as the corresponding equatorial section of the sphere. Poles in the 

northern hemisphere are joined to the S pole of the sphere, while poles in the 

southern hemisphere are joined to the N pole of the sphere; the intersections 

of these lines with the equatorial section give the stereographic poles, those 

from the northern hemisphere being indicated by dots, those from the 

southern hemisphere by open circles. Thus all points on the stereogram are 

contained within the equatorial, or primitive, circle. 

This projection is most generally used in crystallography because it can 

represent all directions from 0° to 360°, it preserves angular truth, and its 

geometry is simple with both great and small circles on the sphere projecting 

as arcs of true circles. Constructions on the stereogram are readily carried out 

using stereographic nets, which are available to fit various projection scales. 

It can, in particular, represent the spatial angular distributions demanded by 

symmetry elements and their combinations in crystallographic point groups, 

as well as lending itself to angular calculations by spherical trigonometry. 

Probably its only real disadvantage in crystallographic work is the closer 

spacing of angular intervals near the centre; in certain circumstances this can 

lead to a crowding together of poles in this region of the stereogram, when it 

may be preferable to use an alternative method, the gnomonic projection, 

described briefly in Appendix A. 

3.5. Exercises and problems 

1. Familiarise yourself with the principles of projection by drawing sketches 

of the distribution of poles on a stereogram appropriate to certain aspects 

of simple objects. For example, using the rectangular parallelipiped of a 

match box (or book), make a sketch stereogram of the normals to its faces 

with the N-S axis of the circumscribing sphere (a) along the normal to the 

largest faces, (b) along the normals to other faces, (c) along other directions, 

such as face or body diagonals. Draw corresponding stereograms to 
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project the directions of the edges of the parallelipiped. Repeat these 

exercises with other objects of simple geometrical shape. 

2. Basic constructions on the stereogram can be carried out with a stereo¬ 

graphic net; use these in the following exercise: 
(i) On your projection draw two vertical great circles inclined at 30°. 

(ii) On one of these locate a pole P at 30° from the centre of the projection. 

(iii) Find two poles Q and R on the other vertical great circle such that 

PQ = PR = 20°. 
(iv) Draw great circles which pass through P and Q, and P and R; deter¬ 

mine the angle between these great circles. 
(v) Locate the positions of Q and R, when P is brought to the centre of the 

projection. 
(vi) Repeat (ii)—(v) with the pole P at 80° from the centre of projection and 

PQ = PR - 50°. 

3. Show that a rotation tetrad axis combined with (a) a perpendicular sym¬ 

metry plane, (b) a perpendicular diad symmetry axis, and (c) a parallel 

symmetry plane, are distinctive symmetry combinations although all three 

develop the same number of general poles. List the total number of sym¬ 

metry elements in each of the combinations. Show that the addition of a 

further symmetry plane normal to the tetrad axis in (b) and (c) produces 

identical combinations; what symmetry elements does this new group 

contain ? 

4. (i) An air service is to be operated between London (52°N, 0°E) and Bom¬ 

bay (19°N, 73°E) with possible intermediate stops at Beirut (36°N, 36°E) 

and Teheran (36°N, 52°E). Show that, if the aircraft has a maximum range 

of only 2500 miles, refuelling stops must be made at both Beirut and Teher¬ 

an. What is the minimum range for an aircraft that can eliminate either of 

the two intermediate stops ? 

(ii) A man sets out to row a boat from Lisbon (39 °N, 9°W) to Trinidad 

(11 °N, 61 °W); he hopes to average 20 miles per day. Determine the time he 

may expect to take and the bearing on which he should depart from 

Lisbon. 

(iii) On 21st June the sun’s rays are inclined at an angle of 67° to the earth’s 

north polar axis. At noon G.M.T. on this day has the sun risen in (a) 

Denver (40°N, 105°W), (b) Los Angeles (33°N, 118°W)? Has it set in (c) 

Peking (40°N, 116°E), (d) Sydney (34°S, 151°E)? 

(iv) A communications satellite is placed in orbit 2200 miles above the 

Earth’s surface. Show that as it passes over London (52°N, 0°E) its trans¬ 

missions can be received in New York (41°N, 74°W) and Teheran (36°N, 

52°E) but not in Denver (40°N, 105°W) or Bombay (19°N, 73°E). 

(N.B. In all of these problems assume that the Earth is a perfect sphere of 
radius 4000 miles.) 
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4 
CRYSTAL CLASSES AND SYSTEMS 

4.1. Symmetry elements 

The next three chapters are devoted mainly to those features of crystalline 

matter related to point group symmetry, i.e. the possible combinations of sym¬ 

metry elements when lattice translations are neglected. As with planar point 

groups in Chapter 2.3, application of our discussions to the three-dimensional 

repetitive patterns of crystalline materials must follow, and so the point 

groups that are our concern are limited to the three-dimensional crystal point 

groups each displaying a set of symmetry elements to be found in one or 

other of the sub-divisions of crystalline matter known as the crystal classes. 

Every crystal can be assigned to a class which has its own assemblage of sym¬ 

metry elements which pass through a point, so that an object is repeated in a 

characteristic way about the point. However, before looking at these com¬ 

binations we must establish the nature of the symmetry elements that they 

can contain. 

In Chapter 2, symmetry operations were found to be essentially of two 

types, those which produce rotational repetition and those which require an 

inversion. The concept of pure rotational symmetry can be taken over un¬ 

changed into three dimensions, save that the operation will be about the line 

of an axis (rather than a point). In the crystalline state there are the same 

limitations on the degrees of rotation axes of symmetry (n = 1, 2, 3, 4 or 6) 

for there are still repetitive lattice translations; in Chapter 7.1 the preservation 

of rotational symmetry in crystal lattice types is demonstrated. The origins of 

inversion between right- and left-handed enantiomorphous pairs needs fur¬ 

ther exploration. In planar patterns such pairs were formed by reflection 

lines; in crystalline matter they can arise either by inversion across a plane or 

by inversion through a point, and the two operations produce different spa¬ 

tial distributions of the enantiomorphous objects (already mentioned in 

Chapter 3.3). In Fig. 4.1, one member of the pair has co-ordinates xyz with 

respect to a set of reference axes; in (a) inversion through the origin point 

gives the co-ordinates of the other member as xyz, whilst in (b) inversion by 

a plane containing the X and Z axes requires the enantiomorphous object to 
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be at xyz. We can regard the symmetry plane of (b) to be the three-dimensional 

equivalent of the symmetry line, and it is written symbolically as m. Inversion 

through a point, as in (a), does not have a two-dimensional analogy, for it 

will not lead to an enantiomorphous pair in a planar pattern; any symbolic 

representation will become apparent shortly. 

Each of the two kinds of inversion can be combined with rotational repeti¬ 

tion so as to express all symmetry elements in the crystal classes as forms of 

rotational operators. These would include pure rotation axes, and other 

types of symmetry axes (sometimes called improper axes) for which an inver¬ 

sion of hand in the object takes place at each repetition. The alternating ro¬ 

tational repetition of improper axes could be formed either as a combination 

of a rotation and a reflection or as a combination of a rotation and inversion 

through a point; the degrees of all axes must have the usual limitations on n. 

Z 

(a) (b) 

Fig. 4.1. Inversion operations in three dimensions, (a) Through a point, 
(b) Across a plane containing the X and Z axes. 

In terms of these three kinds of rotational symmetry operator the permissible 

spatial combinations when the axes are constrained to pass through a point 

allow the symmetry of the crystal classes to be established. In practice this is 

unnecessarily cumbersome, for many of the improper axes are equivalent to 

one another. Furthermore, improper axes combining rotation and reflection 

are redundant in modern crystallographic usage; instead the symmetry 

plane (m) is retained as a separate symmetry element. Improper axes combin¬ 

ing rotation and point inversion are used, and are known as inversion axes of 

symmetry (symbolically T, 2, 3, 4, 6). The symmetry of any crystal class is 

described by means of planes of symmetry, inversion axes of symmetry, and 

rotation axes of symmetry.* 

* Commonly in describing symmetry axes a prefix is used only to describe inversion 
axes; thus ‘a tetrad’ is taken to imply a rotation axis (4), whilst its improper analogue 
(4) requires ‘an inversion tetrad’. 
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To examine the combination of these elements we shall make extensive use 

of the stereographic projection; in the preceding chapter (Figs. 3.11-13), the 

operation of rotation axes and symmetry (or mirror) planes in projection was 

set out. To complete this review of symmetry elements, we shall look at in¬ 

version axes in the same way, both to familiarise their operation in projection, 

and to comment on certain features. Fig. 4.2 shows the distribution of general 

poles produced by each kind of inversion axis; those which require particular 

attention are T, 2 and 6. The inversion monad (T) has the opposite poles of a 

simple point inversion; when any crystal class has an arrangement of general 

Fig. 4.2. The operation of inversion axes of symmetry on the stereo¬ 
gram. The repetition of a general pole by the various axes is shown in the 
upper row with the axis at the centre of the projection, and in the lower 
row with the axis on the primitive. Arrows in the upper row show the 
repetitive movements for clockwise rotation (cf. Fig._3.11). Note the 
possibility of alternative symmetry descriptions for the 2 and 6 axes. 

poles such that the opposite of every pole is present, there must be an inver¬ 

sion centre in the point group. As will be seen in later chapters, an inversion 

centre is of some physical importance, and it is usual to regard the inversion 

monad (T) as representing a separate symmetry element, the centre of sym¬ 

metry, to be listed as present or absent for each class. Next the inversion diad 

(2) has in its operation an equivalence with a symmetry plane (m); the same 

distribution of general poles would occur if the axis were replaced by a mirror 

plane in a perpendicular direction. This alternative description of the same 

symmetry operation is usually preferred. Finally, the operation of the inver¬ 

sion hexad (6) gives a distribution of general poles equivalent to that ob¬ 

tained if it is replaced by rotation triad (3) in the same direction together 

with a perpendicular symmetry plane. The dual nature of the degree of this 

axis is an illustration of the special relationships which exist between point 

groups with triads or hexads as their principal axes. For the present we will 
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note this equivalence, and consider later which of the alternative symmetry 
descriptions is to be preferred. 

4.2. The derivation of the crystal classes 

(a) The method of derivation. In attempting to establish the crystal classes (or 

point groups of crystal symmetry), a systematic method can be adopted in 

which the possible self-consistent arrangements of rotation and all kinds of 

improper axes are found. Permissible angular inclinations of the various axes 

can be determined by Euler’s construction, as illustrated in Appendix B. 

Certain of the improper axes are then decomposed into their equivalents in 

conventional symmetry elements to give the various crystal classes. We shall 

approach the problem in a different way, less rigorous but making use of the 

place of point groups in pattern theory, as described in Chapter 2 for planar 

patterns. We recall that each crystal class is a sub-division of a crystal system, 

which in turn is linked with a characteristic cell shape. For each cell shape 

there is a maximum number of symmetry directions with associated elements 

corresponding to the most symmetric (or holosymmetric) crystal class of each 

system. Within each system, however, there are minimum symmetry criteria 

which demand the particular cell shape; different crystal classes within each 

system arise as the essential symmetry is increased to the maximum permis¬ 

sible symmetry. We can in this way derive the possible crystal classes system 

by system. 

For planar point groups the process is simple; lattice cell shapes are self- 

evident, and the restricted number and arrangement of symmetry elements 

ensures that the crystal classes of each system are easily recognised. In three 

dimensions, whilst the procedure is the same, the discussion is a little more 

complex. Firstly we must anticipate a full investigation of lattice types in 

Chapter 7 so as to start with the seven different cell shapes. Then the maxi¬ 

mum symmetry compatible with each shape must be established together with 

any essential symmetry criteria common to all point groups of each system. 

Finally for each system, extra elements must be added step by step to the 

essential symmetry to build up the maximum symmetry of the holosymmetric 

class; as these elements are added we must decide whether a possible new 

combination (or crystal class) has been formed. This step by step progression 

to the holosymmetric' class is not as formidable as it might appear for the 

symmetry elements of each point group must be self-consistent, i.e. they must 

act upon each other to give a restricted finite grouping; in more symmetrical 

classes this means there are often sets of similar elements which must all be 

present or absent. Recognition of each new crystal class as it evolves is made 

from its characteristic distribution of general poles upon a stereogram (see 

Chapter 3.3). It should also be realised that since all lattice types must be 

centro-symmetric by their nature, a symmetry axis in a particular direction 
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may be rotation or inversion; when such a substitution is made the distribu¬ 

tion of general poles will show what modification (if any) to the point group 

symmetry has occurred. 
This method of investigating crystal classes is best illustrated in applica¬ 

tion, and in the remainder of this section the symmetry of classes within each 

of the systems will be briefly explored. 

c 

Fig. 4.3. The triclinic system. The upper stereogram is of the holo- 
symmetric class, the lower the other class with no symmetry. 

(b) The triclinic system. In this there is the most general cell shape (Fig. 4.3), 

a parallelogram-based oblique prism; no special relationships exist between 

the cell edges or the cell angles (a ^ b ^ c, 90°). Elements 

other than a centre of symmetry (I) would demand a more regular cell shape, 

and so there are just two classes in this system, the holosymmetric class with 

the centre and another class which has no symmetry.* 

* The stereogram of the holosymmetric class might appear to have a horizontal diad axis 
(cf. the poles of Fig. 3.11). To dispel this illusion insert a second set of general poles. 
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(c) The monoclinic system. This, too, has a non-orthogonal cell (Fig. 4.4), a 
parallelogram-based right prism; although no special relationships exist 
between the cell edges, the direction of one of them is perpendicular to the 

Fig. 4.4. The monoclinic system. The cell shows the essential diad. The 
upper stereogram is of the holosymmetric class; arrows show the effects 
on the lower symmetry class of adding (+) centres (I), planes (m) or axes 
(2) or substituting (—) inversion axes (2). 

plane containing the other two (a^b^c, a = y = 90°, A 90°; the choice 
of a and y as the right angles is conventional). The maximum symmetry asso¬ 
ciated with this cell shape has three elements (a diad axis, a symmetry plane 
and a centre) all present in the holosymmetric class. The essential symmetry 
is the diad axis (conventionally along the direction of the b lattice translation). 
All three symmetry elements of the holosymmetric class are independent, so 

when the only symmetry remaining will be the centre. This may be used in all classes to 
verify the presence of any symmetry element. 
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that the plane and the centre may be added separately to the lowest sym¬ 

metry class, in which the rotation diad may be replaced by an inversion diad. 

These possibilities and their inter-relations are shown in the figure, from 

which we see that there are three crystal classes in this system. 

Fig. 4.5. The orthorhombic system. The cell shows the three essential 
perpendicular diads. The upper stereogram is of the holosymmetric 
class; arrows show the effects on the lower symmetry classes of adding 
( + ) centres (I), planes (m) or axes (2) or substituting (—) inversion axes 

(2). 

(d) The orthorhombic system. The most general orthogonal cell is the rect¬ 

angular parallelipiped (Fig. 4.5) or a rectangle-based right prism; although 

there is no identity between the lattice translations, the cell angles are all right 

angles (a^b^c, a = ^ = y — 90°). Such a shape can be associated with a 

maximum of seven symmetry elements (three diads, three planes and a centre) 
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all present in the holosymmetric class. The essential symmetry elements 

needed to maintain the orthogonality of the cell are the three perpendicular 

diads. All the symmetry elements are independent, and the effects of adding 

planes or a centre to this class together with the use of replacement inversion 

diads are set out in the figure; again there are three classes in this system. 

00 The tetragonal system. In this an orthogonal cell has the more regular 

shape of a square-based right prism (Fig. 4.6); now two of the lattice transla- 

Fig. 4.6. The tetragonal system. The cell shows the essential tetrad axis. 
The upper stereogram is of the holosymmetric class; the elements of this 
class are divided into sets of which diads (i) and (ii), planes (i), (ii) and 
(iii) are marked. Arrows show the effects on the lower symmetry classes of 
adding ( + ) centres (I), sets of planes (m(i) etc.) and diads (2(i) etc.) and 
substituting (—) inversion axes (4). 

tions are identical (a = b ^ c, a = p = y = 90°; the choice of a and b as 

identical is conventional). The maximum symmetry of the holosymmetric 

class has eleven elements (one tetrad, four diads, five planes and a centre). 

The only essential symmetry element is the tetrad axis normal to the square 

base of the cell, and the possible addition of the ten further symmetry elements 
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leads to more complexities than have so far been encountered. The necessary 

presence of the tetrad axis implies that the extra elements of the holosym- 

metric group form six symmetry related sets; there are two sets of diads (i) 

and (ii), three sets of planes (i), (ii) and (iii) and the centre of symmetry (Fig. 

4.6). Each of these sets may be added independently, with changes to inver¬ 

sion axes where appropriate. In the figure the effects of these changes are in¬ 

dicated schematically; from this we see that there are seven different crystal 

classes in this system. 

(/) The cubic system. In this system (sometimes called the isometric system) 

there is the most symmetrical orthogonal cell with a cube shape (Fig. 4.7) in 

which the perpendicular lattice translations are all identical (a = b — c, 

a — (3 = y = 90°). The maximum symmetry associated with this shape has 

twenty-three elements (three tetrads, four triads, six diads, nine planes and a 

centre); their spatial arrangement is shown on the stereogram of the holo- 

symmetric class, a complex distribution which the reader can verify by exam¬ 

ining a model cube. The essential symmetry is the four equally inclined triad 

axes in the directions of the body diagonals of the cube; these ensure the 

identity of the lattice translations forming the cell edges. These essential triad 

axes divide the additional elements of the holosymmetric class into five sym¬ 

metry related sets; there is the tetrad set, the set of six diads, two sets of planes 

(three in the set marked (i), six in that marked (ii)) and the centre of symmetry 

(Fig. 4.7). In this system, the lowest symmetry class is a little unusual in that 

the distribution of general poles given by the operation of the four triads im¬ 

plies that the point group must also have three perpendicular diad axes along 

the cell edges; symmetry axes are always present in cubic classes in these 

directions, diads in the lower symmetry classes and tetrads in the more sym¬ 

metrical groupings. In view of this the best procedure is to add systematically 

the other four symmetry sets allowing the appropriate axes in the cell edge 

directions to develop by implication; this is illustrated in the figure, which 

shows that there are five distinct classes in this system. 

(g) The trigonal and hexagonal systems. We have left these systems until last, 

as the special relationship between triad and hexad axes already mentioned 

implies similarities and overlap in their cell shapes. A full discussion of the 

cells of these systems is given in Chapter 7.1, and for the present it is only 

important to recognise that there are two further lattice cell shapes found in 

crystalline matter. 

The first of these has the form of a rhombohedron (Fig. 4.8) which can be 

thought of as a cube elongated (or compressed) along one of its body dia¬ 

gonals; lattice translations are equally inclined to this direction (and to one 

another) and they are identical (a = b = c, a = j3 = y < 120° ^ 90°). 

Maximum symmetry for this cell has eight elements (one triad, three diads, 

three planes and a centre), in which the essential element is the triad axis 
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Fig. 4.7. The cubic system. The cell shows the four essential triad axes. 
The upper stereogram is of holosymmetric class; the elements of this 
class are divided into sets of which planes (i) and (ii) are marked. Arrows 
show the effects on the lower symmetry classes of adding ( + ) centres (T), 
and sets of planes (m(i), etc.) and diads (2). 



The upper stereogram is of the holosymmetric class; the elements of this 
class are divided into sets. Arrows show the effects on the lower sym¬ 
metry classes of adding ( + ) centres (T) and sets of planes (w) and diads 
(2) and substituting ( —) inversion axes (3). 
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along the body diagonal. This axis divides the additional elements into three 

symmetry related sets, and following the usual procedure there are five classes 
associated with this cell shape. 

The second cell (Fig. 4.9) is a 60° rhombus-based right prism in which two 

of the lattice translations are identical but different from the third (a = b ^ c, 

a = = 90°, y — 120°). The maximum symmetry for this cell has fifteen 

elements (one hexad, seven planes, six diads and a centre). The essential sym¬ 

metry, however, is only that of a triad axis needed to relate the identical lat¬ 

tice translations; in this lies a complication, for the symmetry of the five 

Fig. 4.9. The hexagonal system. The cell shows the essential hexad axis. 
The upper stereogram is of the holosymmetric class; the elements of this 
class are divided into sets of which diads (i) and (ii), and planes (i), (ii) and 
(iii) are marked. Arrows show the effects on lower symmetry classes of 
adding ( + ) centres (I), sets of planes (w(i), etc.) and diads (2(i), etc.) and 
substituting ( —) inversion axes (5). 

classes established above for a rhombohedral cell is such that they are equally 

consistent with this cell shape. Nevertheless, although the existence of these 

point groups is already known, there must be further classes uniquely asso¬ 

ciated with a hexagonal cell shape. These can be derived by imposing the 

minimum symmetry criterion of a hexad axis normal to the rhombus base, 

but in doing this we must remember that any sets of additional symmetry 
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elements need only be related by the basic threefold symmetry. Strictly, there¬ 

fore, there are six sets, three sets of planes (i), (ii) and (iii), two sets of diads 

(i) and (ii) and a centre to be considered, as well as any replacement of rota¬ 

tion by inversion axes. Fig. 4.9 shows the development of the seven extra 

classes for this cell. 
With these two cell shapes, twelve new crystal classes have been formed; 

all twelve can be associated with the hexagonal cell, but the rhombohedral 

cell is consistent only with five. The division of these classes into separate 

systems is a vexed question. In most American usage, they are not usually 

divided and are said to belong to the sixth crystal system, the hexagonal sys¬ 

tem; this is often taken to have a trigonal sub-division to include the five 

rhombohedral classes. Other crystallographers recognise a division to give a 

total of seven crystal systems. When this is done, the essential criteria for in¬ 

clusion in the trigonal system are the existence of a triad symmetry axis and 

point group symmetry in accord with a possible rhombohedral cell; on this 

basis in point groups where axes with alternative descriptions occur (viz. the 

problem of inversion hexad mentioned in 4.1), the class must be allocated to 

the hexagonal system because it requires a hexagonal cell. Indeed all classes 

which can only have this cell shape are put into the seventh system, the 

hexagonal system, for which the essential symmetry requirement is a hexad 

Table 4.1. Crystal classes, systems and unit cell shapes 

System Cell shape Essential 
symmetry 

No. of 
classes 

Triclinic General parallelipiped 
(a^b^c, 90°) 

None 2 

Monoclinic Oblique parallelipiped 
(a^b^c, a = y = 90°, 0 # 90°) 

A diad axis 3 

Orthorhombic Rectangular parallelipiped 
(a ^=b=£ c, a = fi = y = 90°) 

Three mutually 
perpendicular 
diad axes 

3 

Tetragonal Square-based right prism 
(a = b ^ C, a = j2 = y = 90°) 

A tetrad axis 7 

Cubic Cube 
(a = b = C, a = = y = 90°) 

Four equally 
inclined triad 
axes 

5 

Trigonal Rhombohedron 
(a = b = c, a = f3 = y< 120° # 90°) 

or 60° Rhombus-based right prism 
(a = b =£ c, a = p = 90°, y = 120°) 

A triad axis 5 

Hexagonal 60° Rhombus-based right prism 
{a = b ^ c, o = j3 = 90°, y = 120°) 

A hexad axis 7 



CRYSTAL CLASSES AND SYSTEMS 69 

axis. We shall adopt this latter convention with seven crystal systems, remem¬ 

bering that it implies that crystals of the trigonal system can have rhombo- 

hedral or hexagonal cells, an important point in space group considerations. 

(h) Summary. We can now summarise quite briefly the important results of 

our investigations of crystal systems and classes in this section. In crystalline 

matter there are thirty-two crystal classes, or sub-divisions, in each of which 

there is a characteristic self-consistent arrangement of symmetry elements all 

passing through a point. Although the establishment of these crystallographic 

point groups is an important stage in the analysis of the three-dimensional 

regularity of atomic structures, it has also an importance in its own right as 

will be seen in subsequent chapters. Certain crystal classes may be grouped 

together to give seven crystal systems; the basis of this grouping is the pres¬ 

ence of certain symmetry elements necessary to maintain a particular cell 

shape. The relationships between systems, classes, etc. are set out in Table 4.1. 

4.3. A symbolic notation for the crystal classes 

Each of the thirty-two crystal classes has a characteristic distribution of 

general poles on the stereogram from which the point group symmetry may 

be deduced. However, the importance of these sub-divisions of crystalline 

matter is so great that a less cumbersome method of denoting the symmetry of 

a particular class is essential, and various forms of symbolic nomenclature 

have been devised. The commonest notation is that shown in Fig. 4.10, where 

all the crystal classes are collected together and arranged in a conventional 

grid format to show the relationships between the systems and the classes 

within them; beneath each point group is a symbol which expresses the dis¬ 

tinctive symmetry which it contains. This symbol is constructed from the 

notation for symmetry elements (rotation axes, X, inversion axes, X and 

symmetry planes m) so as to show their mutual orientations in the combina¬ 

tion; the rules which govern the formation of compound symbols are dis¬ 

cussed presently, but there is a general observation to be made first. As in 

planar patterns we wish to extend the use of this symbolism to the description 

of crystalline space groups, and this is an important consideration when de¬ 

ciding the conventional form of the symbol for a particular class. If we were 

concerned with point group symmetry alone, the conventional form for each 

class need only show those elements from whose presence any additional 

symmetry could be deduced; but since each class may be linked to several 

distinct space groups, its conventional symbol must have sufficient flexibility 

to allow the display of the various symmetries of the space groups. We shall 

comment on this again, although the symbolic notation for classes shown in 

the figure is relatively simple and soon becomes familiar. 

The rules of the notation concern the mutual orientations of elements, and 

in the twenty-seven non-cubic crystal classes these are essentially orthogonal 
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Fig. 4.10. The 32 crystal classes and their symbolic notation. Equi¬ 
valences are shown in unoccupied sectors of the grid; alternative forms 
of symbols in common use are in brackets. The seven sectors of the holo- 
symmetric classes are heavily outlined. 
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or parallel. In these classes the important relationships can be specified by a 
few simple conventions: 

X 
(i) The symbol — (often written or printed Xjm) represents a symmetry 

plane normal to an axis of degree X; 

(ii) The symbol Xm represents a symmetry plane containing an axis of 

degree X; 

(iii) The symbol X2 represents a diad axis normal to an axis of degree X. 

Whilst these conventions alone are sufficient to devise a suitable symbol for 

each of the non-cubic classes, some further explanation of the conventional 

forms is necessary. For example, it might be expected that any symbol for the 

holosymmetric class of the orthorhombic system should contain some refer¬ 

ence to the essential perpendicular diads, whatever the desirability of men¬ 

tioning the three perpendicular planes; in terms of the conventions above a 

2 2 2 
suitable class symbol might be-. However, in the related space groups, 

mmm 

the nature of the planes (which may be mirror or glide) is more important 

than the axes; in a sense, the diads are redundant, for they will be implied 

once the three planes are specified, and the conventional class symbol is 

abbreviated to mmm (Fig. 4.10). This kind of manipulation and abbreviation 

means that it becomes convenient to remember the interpretation of certain 

groupings of symbols, although they arise only by adaptations of the original 

conventions. They are: 

(a) The grouping mm, which represents two perpendicular planes; these on 

their own imply that their line of intersection is a diad axis, which is 

sometimes included as mm2 or 2mm (the order of symbols has a signi¬ 

ficance which will be explained elsewhere). 

(b) The grouping mmm representing three mutually perpendicular planes 

in the orthorhombic holosymmetric class. 

(c) Arising from (a), we can have XImm ^or representing an axis of 

degree JFlying in one of the two planes with its direction perpendicular 

to the other.* 

In this way, interpretation of the conventional symbols for the twenty-seven 

non-cubic classes is readily made; the compound symbol starts with the 

degree of the axis indicative of the crystal system except in the monoclinic 

* In Fig. 4.10 it will be noticed that XImm does not appear in the conventional symbols. 
For example, the holosymmetric classes of the tetragonal and hexagonal systems are 
described as 4/mmm and 6/mmm whereas the symbols 4/mm and 6/mm would appear to 
be adequate. In these cases the third m symbol refers to the extra set of vertical planes 
(i.e. (ii) in Chapter 4.2(e) and Chapter 4.2(g)) bisecting those containing lattice transla¬ 
tions. The designation of these planes is necessary in the development of associated space 
groups. 
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and orthorhombic systems. It is perhaps necessary to comment briefly on the 

classes 3m, 42m and 6m2 in the line of the grid Xm\ in these classes there can 

be some ambiguity in the orientation of the symmetry elements (other than 

the X axis) with respect to the edges of the smallest unit cell. If, when this cell 

is selected for a material of the tetragonal class, the diad axes are perpendicu¬ 

lar to the lattice translations of the square base (and, due to the orthogonality 

of the cell edges, necessarily parallel to these directions) the class symbol is 

written 42m; if the smallest lattice cell has planes of symmetry in these direc¬ 

tions the symbol is 4m2. For the hexagonal class, the diads and planes are 

within the same plane and the question now is whether the normal to this 

plane is along the lattice translations of the rhombus base of the cell or per¬ 

pendicular to them; by analogy with the tetragonal class, the former leads to 

the symbol 62m and the latter to the symbol 6m2. Both variants are needed to 

describe alternative space groups associated with this class, but there is a 

morphological convention to take the planes perpendicular to the crystallo¬ 

graphic axes so that these are not parallel to the diads; for this reason, only 

the symbol 6m2 is shown in Fig. 4.10. The trigonal class presents the most 

difficulties in that it can be associated with either a rhombohedral or a hexa¬ 

gonal cell. With a rhombohedral cell no difficulties can occur, and the cell 

edges must lie within the symmetry planes; with a hexagonal cell ambiguities 

similar to those for tetragonal crystals can arise, though these are of real im¬ 

portance only in space groups. 

Finally we turn to the remaining five cubic classes with their characteristic 

groupings of four triad axes. The presence of these axes must be indicated by 

the figure 3 in the symbol but there is a danger of confusion with trigonal 

classes. To overcome this it is necessary to adopt a fourth convention: 

(iv) The symbol 3 appearing in a subsidiary position denotes a cubic class, 

and refers to the four equally inclined triad axes that such classes must 
possess. 

A symbol X3, for example, denotes firstly cubic symmetry, and also, that this 

class has axes of degree X along the cell edge directions to which the triads are 

all equally inclined. In this way the notation for the non-cubic classes may be 

simply extended; for example, the holosymmetric class 4/m3m (often abbre¬ 

viated to m3m) is cubic (the subsidiary position of the figure 3), but addition¬ 

ally has three tetrad axes along the cell edges with planes perpendicular to 

them, and six inclined planes containing the triad axes. For 43m, there are no 

ambiguities in the choice of cell edges to be considered. 

4.4. Other sub-divisions within the crystal classes 

Division of the thirty-two crystal classes into seven crystal systems is of car¬ 

dinal importance in any development of crystalline pattern theory. Neverthe- 
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less, it is valuable in other contexts, notably physical properties, to use 

different criteria for grouping together certain classes; within a system this 

can lead to fewer sub-divisions than the number of classes (as in X-ray diffrac¬ 

tion, discussed in Chapter 9) or it can develop larger sub-divisions which em¬ 

brace several systems (as in some of the physical properties described in 

Chapter 11). These criteria depend on the presence or absence of certain kinds 

of symmetry elements, and while we shall be examining their detailed origins 

at a later stage, it is appropriate to make some preliminary observations 
about them here. 

The simplest symmetry element is the centre of symmetry; division on the 

basis of the presence or absence of a centre shows that there are 21 acentric 

(or non-centro-symmetric) classes and 11 centric (or centro-symmetric) 

classes (I, 2/m, mmm, 3, 3m, 4/m, 4/mmm, 6/m, 6/mmm, m3 and m3m). We 

can also select classes in which right- and left-handed motifs may be distin¬ 

guished. These are called the enantiomorphous classes, and are those whose 

symmetry groupings do not contain a centre of symmetry, a plane of sym¬ 

metry or an inversion axis; there are 11 enantiomorphic classes (1, 2, 222, 3, 

32, 4, 42, 6, 62, 23 and 432). One can also recognise that directions in certain 

point groups have distinct positive and negative senses. For example, com¬ 

pare the diad axis directions in the trigonal classes 3m and 32; in 3m opposite 

ends of a diad are identical, whereas in 32 they are dissimilar. A direction 

with distinguishable senses is said to be polar, and a symmetry axis along such 

a direction is said to be uniterminal; the diads in 32 are uniterminal, whereas 

those in 3m are biterminal. (Attempts are sometimes made to indicate this 

distinction on stereograms and space group diagrams by showing uniterminal 

axes with the axis symbol at one end only, and biterminal axes with symbols 

at both ends; whilst this is satisfactory for horizontal directions, it can lead to 

confusion for inclined or vertical directions and is not used here.) A simple 

method to determine whether an axis is uniterminal or not involves isolating 

those symmetry operators which demand identity at the two ends of the axis; 

these are (i) a centre of symmetry, (ii) a rotation axis of even degree per¬ 

pendicular to the axis, (iii) a plane of symmetry normal to the axis, and (iv) 

an inversion operation in the direction of the axis. If none of these is present, 

the axis is uniterminal. From this discussion, it follows that some directions 

in all 21 acentric classes must be polar, but uniterminal symmetry axes occur 

in only 13 of these: 1 (any direction), 2, mm (the diad), 3, 3m (the triad), 32 

(the diads), 4, 4mm (the tetrad), 6, 6mm (the hexad), 6m2 (the diads), 23 (the 

triads) and 43m (the triads). There is sometimes confusion between polar 

directions and the unique directions to which they are related. A unique direc¬ 

tion is a polar direction which is not repeated by the symmetry of the class. 

Thus a unique direction must be able to represent the direction of a finite 

vector, and this permits such directions to be recognised. If we take each of 

the general poles produced by the symmetry elements of a class to represent 
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a possible vector, the vector set can be summed; when this sum is zero there 

can be no unique direction in the class, but when it is finite, a unique direc¬ 

tion exists in the direction of the resultant vector. Unique directions are 

found in 10 classes (1, 2, m, mm, 3, 3m, 4, 4mm, 6 and 6mm) often known, 

rather perversely, as the polar classes', for, while these ten classes belong to 

the 21 acentric classes in which polar directions can be found, many acentric 

classes do not possess unique directions (e.g. class 32 has no unique direc¬ 

tions; the diads are polar but not unique). In general all unique directions are 

polar, but not all polar directions are unique. 

4.5. Exercises and problems 

1. (i) Many objects to be found in our surroundings are symmetrical. 

Familiarise yourself with the operations of symmetry elements by identify¬ 

ing the axes, planes and centres that they possess. (Remember that the 

degrees of axes are not necessarily restricted to those found in crystalline 

matter.) 

(ii) Consider the combinations of symmetry elements that these objects 

display, and, where possible, use the notation of Chapter 4.3 to devise 

suitable point group symbols. (Remember that point groups are not 

necessarily restricted to those found in crystalline matter.) 

2. In the discussion of cubic point groups, the possibility of the four essential 

triad axes as inversion axes was not considered. By examining the effects of 

four inversion triads on a general pole on a stereogram show that this 

combination is already included in the conventional fist of point groups. 

3. 222, 3/m2 and 432 are unusual descriptions of the symmetry of three 

crystallographic point groups. What are the conventional symbols ? What 

do these classes have in common ? 

4. Which of the five classes of the trigonal system are enantiomorphous and 

have uniterminal symmetry axes? Which of these classes contain unique 

directions ? 
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5 
AXIAL SYSTEMS AND INDEXING 

5.1. Plane indices and zone axis symbols 

In the symbolism for the crystal classes we have the nucleus of a crystallo¬ 

graphic shorthand, and in this chapter we will extend this with a simple no¬ 

menclature to specify directions in the lattices. Important lattice directions 

are those which (a) are defined by a row of lattice points, and (b) those which 

are the normals to families of planes that contain lattice points; in either case 

the direction indicated by a particular symbol depends on the form of the 

unit cell of a lattice. Since some classes with similar cell shapes are grouped to 

form a crystal system certain general features of the symbolism will be com¬ 

mon to all classes within a system, although the exact angular location of a 

given direction may vary from class to class (or from material to material 

within the same class) due to the different dimensions of the unit cell; we can 

therefore conveniently consider the notation system by system for each dis¬ 

tinctive cell shape. However, before embarking on this there are more general 

considerations of the nature of any symbolism, the choice of unit cell to 

which it refers, etc., to be discussed; in this section we shall examine only the 

widest aspects of the notation without reference to the choice of cell, axial 

system, etc., which can be advantageous in particular systems. 

For the moment, then, it will be assumed that the unit cell of the lattice has 

been chosen, i.e. the most suitable lattice translations a, b and c have been 

selected. The first important direction to be described is that of any lattice 

row; this is defined by the vector joining two lattice points on the row. Any 

vector of this kind can be written as a linear combination of the lattice trans¬ 

lations Ua + Vb + Wc, where U, V and W are positive or negative integers. 

The values of U, V and W define the direction of this particular lattice row 

from a chosen origin, but by the repetitive nature of infinite lattices there must 

be similar rows joining all lattice points; the integers specify the common 

direction of all such rows for the given cell. This is illustrated in Fig. 5.1 for a 

planar lattice with an oblique cell outlined by the lattice translations a and b. 

When the points A and B are chosen to form a row in a general direction, 

AB = 2 a + lb. 
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Due to the identity of all lattice points, AB is only one member of the family 

of identical rows joining all points in a similar manner. The integers U = 2, 

V = 1 are used to signify the common direction of all these rows in the lattice. 

They are known as direction indices, or more commonly as zone indices (or 

zone axis symbols) for reasons which will become apparent shortly, and are 

written symbolically with the integers in square brackets. Thus [21] indicates 

the rows of which AB is a member; if negative integers are used, e.g. CD = 

-1 a + lb, the notation is [Tl], and is read ‘bar one, one’. A reversal of the 

b 

a 

Fig. 5.1. Symbolism for lattice rows. AB is a member of a family of lattice 
rows; other adjacent rows of this family are shown as dashed lines. The 
common direction is [21] for the lattice translations a and b. CD (and 
EF) are in the direction [11]. 

sense of direction implies a change in sign for each of the integers in the sym¬ 

bol; thus BA is [2l] and DC is [ll]. It is also customary to use a symbol 

which denotes the shortest vector between two points on the row, so that any 

common factor in the indices is removed; EF = — 2a + 2b is in the same 

direction as CD and is also written [Tl]. Extension of this example into three 

dimensions to give zone axis symbols [UVW] is obvious; the integers of the 

symbol define a particular direction in a lattice (and crystal structure) in 

terms of a chosen unit cell. This direction is independent of whether the lat¬ 

tice is primitive or not, for this only determines the number of lattice points 
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per unit length of row or the separation of the rows. For example, in the 

planar rectangular c-lattice the direction of a cell diagonal is [\ £], which be¬ 

comes [11] when fractions are cleared; in a p-lattice cell of identical dimen¬ 

sions [11] denotes the same direction, although the spacing of lattice points 
is twice as great. 

The second important requirement is for a notation to describe the plane 

defined by any three lattice points; again, by the nature of the lattices, such a 

plane is only a member of a family of planes obtained by joining all lattice 

points in a similar manner. Now, whereas lattice rows are primarily used to 

indicate directions, families of planes are important not only for their orienta¬ 

tion but also, as we shall see in Chapter 8, for the spacing between the planes 

of a set; both orientation and spacing depend on the lattice cell. In this 

chapter we are mainly concerned with orientation, and the dependence of 

interplanar spacings on cell size and shape is considered in Chapter 7.2. The 

orientation of planes is usually described by the inclination of their common 

normal to the directions of the lattice translations, although the symbol re¬ 

presenting the planes is constructed from the intercepts made on these direc¬ 

tions. With a lattice point chosen as origin, we can write down the intercepts 

of each member of a family in terms of the appropriate cell edge. Thus for the 

very simple family of Fig. 5.2(a), the first plane has intercepts a, b and c on the 

lattice translation directions, the second has intercepts 2a, 2b and 2c, and so 

on. In other families, every member need not contain lattice points on the 

axial rows (see, for example, the intercepts on the c-lattice translation for the 

planes of Fig. 5.2(b)), but in every case the intercepts may be expressed as 

simple fractions of the appropriate lattice translation. The equation for any 

family of planes may therefore be written in the intercept form as 

where h, k and / are integers and p is the position of the plane in the set. In this 

way, p = 0 defines the plane through the origin; p = 1 is the first plane from 

the origin with intercepts a/h, b/k, c/l, on axes xyz in the direction of the lat¬ 

tice translations;p = 2, the second plane with intercepts 2a/h, 2bIk, 2c/1, and 

so on. For a given choice of cell, the orientation of a set of planes (and the 

inclination of their common normal) depends on the integers h, k and /. 

These are known as the plane (or face) indices, and they are written symbolic¬ 

ally with the integers in round brackets. Thus the planes in Fig. 5.2(a) and (b) 

are (111) and (112) respectively; the directions of the common normals are 

specified by these symbols; though, as with direction symbols, a reversal of 

sense requires a change in sign for all the integers, i.e. (Ill), read ‘bar one, 

bar one, bar one’, is the same family of planes as (111) but with the normal 

drawn in the opposite sense. A zero index shows that the planes are parallel to 
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a lattice translation (i.e. they have infinite intercept); thus (110) represents a 

family which is parallel to the c-lattice translation (or z-axis). 

Our definition of (hkl) to represent planes that divide the a-lattice transla¬ 

tion into h parts, the b-lattice translation into k parts and the c-lattice transla¬ 

tion into / parts, emphasises the repetitive nature of the set. When we are 

concerned only with orientation, any common factors can be removed to 

leave a set of indivisible integers; but in dealing with interplanar spacings it is 

b (ory) 

b (or y) 

Fig. 5.2. Symbolism for lattice planes, (a) The (111) family of planes, 
(b) The (112) family of planes. N shows the direction of the common 
normal through the origin, and dhkl the interplanar spacing. For clarity, 
only lattice points on the translation directions through the origin have 
been shown. 
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convenient (for reasons explained in Chapter 8) to distinguish between planes 

with a common normal direction such as (111) and (222), even though some 

planes of the latter set will not pass through any lattice points at all. The 

interplanar spacing (dhkl) is the length of the normal from the origin to the 
first plane of the set (p = 1), so that 

dhki — 7 cos Nx — y cos Ny — cos Nz 
n k l 

where N is the direction of the normal to the planes (hkl) and x, y and z are 

the directions of the lattice translations. This expression is often known as the 

equations to the normal, and it is mentioned here for its angular implications; 

dhki values are important only in diffraction studies. 

So far we have established two types of symbol, one representing the 

directions of lattice rows and the other showing the orientation of normals to 

planes of lattice points. It is important to realise that these indicate two 

different kinds of direction in the lattice; in general, normals to lattice planes 

need not coincide with the directions of lattice rows, so that (111) and [111] 

represent essentially different directions, although some symmetrical cell 

shapes can allow general and particular coincidences as we shall see when 

considering indexing in various crystal systems. However, there can be some 

universal relationships between (hkl) and [UVW] which are appropriate here. 

Families of planes (hjcj^) and (h2k2l2) will intersect in a series of lines paral¬ 

lel to lattice rows, for the equations of those planes through the origin in each 

set are 

with a line of intersection passing through the origin whose equation is 

x/a _ y/b _ z/c 

k^2 — l\h2 ^1^2 — h\l2 h\k2 k±h% 

This line will pass through another lattice point whose position relative to the 

origin is given by the vector 

(k1l2 — hk2)a + (l±h2 — hj^b + (hik2 kyh^c 

The coefficients of each lattice translation in this expression must be integral, 

so that it can be written in the form 

U12a + F12 b + Wi2c 
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or symbolically as a zone index [U12V12Wi2] where 

U12 — kil2 — l±k2 
Vi2 — lih2 hil2 

W\2 = hik2 kih2 

The intersections of any two lattice planes must therefore be in the directions 

of lattice rows given by a zone axis symbol formed from the plane indices in 

this way. A convenient method of memorising this relationship is to form the 

zone index by a process known as ‘cross multiplication’ of the plane integers. 

These are written down twice, with corresponding integers in the same 

columns; using the planes (111) and (112) of Fig. 5.2 we get 

I 1 1 1 1 I 
\A 
/\ 7\/\ 

112 112 

A 

A 

ki l\ ki 
\s \s \s 
/\ /\ /\ 

k2 l2 h2 k2 

h 

h 

[1x2— lxl, lxl— 2x1, lxl — lxl] 

i.e. [1 I 0] 

[kil2 — k2li, lih2 /A, h±k2 h2ki\ 

i.e. [U12 V12 Wi2] 

The first and last columns are deleted and cross-multiplication in pairs in the 

direction of the arrows takes place in separate stages; each stage gives one in¬ 

teger of the zone symbol when the second product is subtracted from the first. 

Since any pair of planes has intersections given by [U12V12W12], one can 

ask what other pairs of planes would also have intersections parallel to this 

direction. We would then have a number of planes of different indices whose 

■ mutual intersections are always in the same direction [U^V^Wi^. An as¬ 

semblage of planes which intersect one another in parallel lines is said to form 

a zone, and the common direction of their intersections is called the zone axis; 

the term zone (or zone axis) symbol, commonly employed as a synonym for 

direction index, is derived from this. An alternative form of the original ques¬ 

tion is to enquire what relationship must exist between plane indices {hkl) and 

zone indices [UVW] in order that this set of planes is a member of the zone. 

Geometrically to satisfy this condition the normal to the planes and the 

direction of the lattice row of the zone symbol must be perpendicular, or 

alternatively, the lattice row must lie in the plane that passes through the 

origin (Fig. 5.3(a)). The equation of the row is 

x _ y _ z 

Ua~Vb~Wc 

whilst that of the plane is 
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Thus the geometrical condition that ensures that (hkl) is in the zone repre¬ 
sented by [UVW] is met if 

Uh + Vk + Wl — 0. 

The expression is usually known as the Weiss zone equation or law, and is 

used in a variety of ways. For example, to find other planes {hkl) which lie in 

the zone [110], substitution in the zone equation shows that their indices must 

be such that 1 x h — 1 x k + 0 x / = 0, i.e. h — k\ anypairs of planes fulfilling 

this condition (113, 221, 114, 223, etc.) will have mutual intersections which 

[.UVW] 

00 

[uzvzwz] 

Fig. 5.3. Geometrical conditions relating plane and zone indices, (a) The 
condition that (hkl) is in the zone [UVW]. (b) The condition that (hkl) 
is at the intersection of the zones [Ux Vx Wx\ and [U2V2W2]. 

are parallel to this lattice row. Moreover, the zone law allows us to find the 

indices (h12k12l12) which define the normal to planes which are at the inter¬ 

section of the zones [UxVxWx] and [U2V2W2] (Fig. 5.3(b)). 

Clearly these planes must satisfy both zone equations 

hi2Ux + kxzVx + I12W1 — 0 

hx%U2 + kl2V2 + IxaWz — 0, 

hx2 = VxW2 - WxV2 

kx2 =WxU2- UXW2 

1x2 = UxV2 - VxU2. 

and 

so that 
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As before, this solution can be obtained by ‘cross multiplication’. For 

example, using [lTO] and [211] we get 

1 T 0 1 I 0 
V'X/X/ 
/\ /\ /\ 

2 112 11 

(Txl-lxO, 0x2— lxl, lxl—2xT) 

i.e. (I T 3) 

as the indices of the planes at the intersection of these two zones. The formal 

relationship between indices of planes within a zone expressed by the Weiss 

zone law can be used in an extremely valuable practical way. Since any two 

planes (hiMO and (h2k2l2) form a zone [UVW] for which 

Uhx + Vkx + Wlx = 0 

and Uh2 + Vk2 + Wl2 = 0, 

we may also write 

U(mh± + nh2) + V(mk1 + nk2) + W(mlx + nl2) = 0, 

in which the zone equations are added after multiplication by the integers m 

and n (positive or negative). Comparing with the zone equation for any other 

planes (hkl) in this zone, we obtain 

h = mhx + nh2 

k — mk1 + nk2 

l — mlx + nl2, 

i.e. other plane indices in the zone formed by (hjcj^) and (h2k2l2) are found 

by the addition of multiples of original indices. Thus in the zone defined by 

(111) and (112), there are planes (223) for m — n — 1, (001) for m = — 1, 

n = 1, (334) for m = 2, n = 1, etc.; naturally the indices must satisfy the 

condition h = k imposed by the zone index [llO]. This adaptation of the 

zone law gives rise to the commonest method of indexing planes at the inter¬ 

section of two zones, a method which is simpler than the formation of the 

zone symbols followed by cross-multiplication. Indices of the common planes 

(hkl) must be able to be expressed in the multiple form for other known 

planes in both zones, and a little mental dexterity enables the values of h, k 

and l to be obtained by the process known as ‘ cross-adding’ in zones. Two 

simple examples are given in Fig. 5.4, where in (a), P is at the intersection of 

zones defined by (100), (111) and (110), (101), and in (b) Q is located by the 

zones (100), (021), and (110), (101). By cross-adding multiples of indices in 

zones, we can soon find the common set of integers in each case and so index 

P and Q. In (a) P must be (211), i.e. 1 x (100) + 1 x (111) in one zone and 
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1 x (110) + 1 x (101) in the second. In (b) Q is (321), for these are the only 

common set of integers which can be found by cross-adding; for the first 

zone above m = 3, n = 1 gives (321), whilst for the second m = 2, n = 1 

also gives (321). Indexing by using zonal relationships and the ‘cross-adding’ 

technique is extremely convenient, and an essential familiarity with its use is 

soon obtained. 

(100) 

"(101) 

^ (211)_# 

(111) 

,,(110) 

(a) 

'(101) 

0(321) 

(100) (021* 

1(110) 

(b) 

Fig. 5.4. Indexing by ‘cross-adding’ in zones. 

(a) (b) 

Fig. 5.5. Normals to planes and zone axis directions on the stereogram, 
(a) The zone axis' [U12V12W12\ for the zone defined by (/n&i/i) and 
(h2k2l2) is the pole of the great circle passing through them, (b) The loca¬ 
tion of P and Q in Fig. 5.4 on the projection. 

Up to this point, these general relationships between plane indices and zone 

symbols have been treated geometrically and analytically. Since they will be 

used in conjunction with the stereograms described in the last chapter, we 

will conclude this section by transposing them into projection. Firstly, the 

directions of the normals to planes (hkl) and zone axis symbols [UVW] are 
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represented by poles on the stereogram; conventionally the poles (dots or 

circles) are identified by writing the appropriate integers by them, the round 

brackets being omitted for planes though the square brackets are usually re¬ 

tained for zone axes. Since the indices () and (^2^4) define a zone 

(represented by [t/12F12IF12]), this zone will be shown on the stereogram as a 

great circle passing through these two poles; moreover the direction 

[U12V12Wi2] of the zone axis will be the pole of this great circle (Fig. 5.5(a)). 

The indexing of a pole (hkl) by ‘cross-adding’ in zones means that the pro¬ 

jection of the pole is at the intersection of the great circles representing the 

two zones (Fig. 5.5(b)). 

5.2. The choice of axial systems and transformations between them 

In the preceding section we saw how the directions of normals to planes and 

zone axes could be described in terms of the lattice translations defining a 

unit cell. The cell edge directions form a crystallographic axial system (xyz) 

for which the lengths of the edges (a, b, c) are the units of measurement along 

each axis; conventionally the axial systems of crystallography are right- 

handed (Fig. 5.6). In a crystalline material any three non-co-planar lattice 

Fig. 5.6. Axial systems, (a) Right-handed axes; the senses of rotation from 
x to y and y to z are the same, (b) Left-handed axes; the senses of rota¬ 
tion from x to y and y to z are opposite. 

repeats can be used as an axial system, but this would usually result in more 

complex and arbitrary descriptions than are necessary; in other words, just 

as any co-ordinate system is simplified by selecting reference axes advanta¬ 

geously, the simplest indexing occurs when natural axial systems are em¬ 

ployed. To do this we must choose the unit cell (and hence the kind of axial 

system) in harmony with symmetry; crystallographic reference axes will then 

change with the crystal system according to the cell shape demanded by the 

symmetry, ranging from three perpendicular axes with identical units for 

cubic crystals to three generally inclined axes with different units of measure¬ 

ment for triclinic crystals. Once axes are chosen, the indexing of planes and 
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zone axes can proceed; but this choice of cell can present problems that are 
discussed in this section. 

These problems are broadly divided into two: (a) those which can still arise 

even when the fullest data on the crystal lattice is available, and (b) those 

which occur when only the most general information on the lattice is to hand. 

A situation such as (a) can occur when diffraction studies have established the 

full angular and linear distributions of lattice points; that of (b) can happen 

when only the symmetry of the crystal is known (as in morphological studies 

in Chapter 6) so that the form of the angular arrangement of points is in¬ 

ferred together with the characteristic cell shape but nothing is known about 
the linear dimensions. 

It might be thought that given the arrangement of lattice points, as in (a), 

the choice of a suitably shaped unit cell upon a criterion of minimum volume 

is unambiguous. For highly symmetrical systems with regular cell shapes this 

is so, but for more general cells a variety of problems can arise. In an ortho¬ 

rhombic crystal, for example, the orthogonal cell of minimum volume with 

edges in the directions of the diad axes can be identified, but we must decide 

which of these translations shall be labelled a, b and c (or which directions 

are the x>, y- and z-axes); they differ only in their dimensions, and any choice 

must be arbitrary. In less symmetrical systems with non-orthogonal cell 

shapes the problem is further complicated by ambiguity in the choice of a 

minimum volume cell. For a monoclinic crystal, for example, the 6-lattice 

translation (or the j-axis) is fixed by the direction of the essential diad axis; 

in the perpendicular plane there are innumerable pairs of generally inclined 

lattice rows which outline cells of the same minimum volume (as with planar 

oblique cells in Chapter 2.2). Each pair gives different directions to the x- and 

z-axes and has its own units a and c on these axes; once again any choice 

must be arbitrary. Any resolution of these arbitrary choices must be by con¬ 

vention, and we will discuss this in detail for each system later in this chapter. 

But when indexing is carried out with only a knowledge of point group 

symmetry, as in (b), the ambiguities of choice are multiplied. Only the general 

shape of the cell is known, with no data on its dimensions or orientation at 

all. In order to index visible features, such as a crystal face, not only have axial 

reference directions to be chosen but unit translations a, b and c on these axes 

must also be assigned. Clearly the process becomes much more arbitrary, and 

is unambiguous only for the highly symmetrical classes which form the cubic 

system. In all other systems, there is some kind of choice in the axial direc¬ 

tions to be made, and then a further step in the selection of the axial units. It 

should be realised that when angular aspects of plane and zone indices are 

solely concerned, a choice of axial units need only be given in terms of their 

ratios. Fig. 5.7 shows the intersection of the first member of the (111) planes 

on the reference axes; its intercepts are in the ratio a: b: c on x, y and z re¬ 

spectively, as are those of any parallel plane; and so it is these ratios (rather 
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than the absolute magnitudes of the translations) which determine the normal 

to the planes. In the form 1 :-y these are known as the axial ratios, and their 

numerical values are quoted to define the choice of axial units that has been 
made; for a specific axial system they fix the orientation of the (111) planes, 
often known as the parametral planes. Let us illustrate the problems of index¬ 
ing under these circumstances by supposing that the point group symmetry is 
known to be 4/mmm (Fig. 5.8). The desirable tetragonal cell is a square-based 

z 

Fig. 5.7. The orientation of the parametral (111) planes. 

Fig. 5.8. Alternative axial systems for class 4/mmm. 

right prism, and the direction of the tetrad axis can be taken as the z-axis. 
The other two axes will be symmetry related and there are obvious possibili¬ 
ties in the two sets of diad axes (*!yx or x2y2); an arbitrary choice (say x1 yx) 
must be made at this point. Next, the axial ratios must be fixed; because of 

the identity of the x- and j-axes, | = 1, leaving only a choice of = -V 

Since a = b the normal to the parametral planes (111) must lie on the dia- 
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meter of the projection bisecting the Xi- and jvaxes; it could be chosen 

at any point on this line in the lower right-hand quadrant, but is usually re¬ 

lated to some feature of the particular crystal (often the position of an ex¬ 

ternal face). With the choice of the parametral pole the value of the axial 

ratio has been determined, and indexing can proceed on this axial system. In 

this procedure the possibilities of divergence from an indexing scheme based 

on a full knowledge of the crystal lattice are obvious; even if the choice of xx 

and y1 happens to correspond to the directions of the edges of the cell of 

minimum volume, there remains the arbitrary axial ratio which may not be 

Fig. 5.9. Alternative descriptions of a tetragonal lattice. Lattice points 
are at the intersections of all broken lines. The eight new cells of mini¬ 
mum volume refer to an axial system xnynzn defined by the lattice trans¬ 

lations cin, ~bn and the old cell of larger volume is heavily outlined and 
refers to a different axial system x0y0z0 implying the lattice translations 

_^ ^ —y. —> —>■ —> —y 

aob0 and c0. Symmetry demands that an = bn and a0 = b0. 

that given by the cell dimensions (although in this case it must be rationally 

related to the true value). Moreover, indexing of the same crystal by two 

different observers, although compatible, could be quite different in detail. In 

less symmetrical systems we shall face many more possibilities for the choice 

of axial directions and axial ratios when only the crystal class is known. 
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Later we shall see how the method of indexing may be best rationalised in 

each system, but the problems outlined above suggest that there will be from 

time to time a conflict in the representation of the crystallography of a par¬ 

ticular material. In such cases each description is self-consistent and valid, 

but differs from other descriptions with alternative axial systems and unit 

translations. When this occurs, it is convenient to have a simple algebraic 

method of transforming one set of axes (and their indices) to another. Essen¬ 

tially this axial transformation reflects a change from one lattice cell to 

another defined by lattice translations which may differ in direction and 

dimensions. In general this may be expressed by vector equations in which the 

translations of one cell are given in terms of the other, so that 

Old new New -> old 
—> —>■ —> —>• —> —> —> 

uxaQ + vxb0 + WiC0 a0 = u[an + v[bn + w'xcn 

u2a0 + v2b0 + w2ca or b0 = u2an + v2bn + w2cn 
—> —>• —> —>■ —> ——> 

u3a0 + v3ba + w3c0 c0 = u3an + v3bn + w3cn 

in which a0, ba, c0 and an, ba, cn are the lattice translations of the old and new 

cells respectively; the coefficients ux..., u'x,..., etc. define the relationships 

in each case. Fig. 5.9 shows two alternative cells describing a tetragonal lat¬ 

tice; one of these, labelled new, is the cell of minimum volume, whilst the 

other, labelled old, is much larger with a translation in the tetrad direction 

twice that of the new cell and rotation of the x- and j-axes through 45°. In 

this example the new cell might be that apparent after an X-ray examination 

of the internal crystal structure, whilst the old cell could be that implied in an 

earlier description based on external features alone. The equations relating 
the two cells are 

Old —> new 

«n = }a0 - }b0 + 0co 

= \ao + h.b0 + 0co 

Cn = 0«o + 0 b0 + 

New —> old 

a0 = 1 an + 1 ba + 0cn 

bQ = - 1 an + 1 bn + 0 cn 

c0 = Ocin + 0 ba + 2 cn 

The coefficients in these vector equations can be written as matrices, so that 
generally 

Old -+■ new New -> old 

ux VX wx u'x V\i w’x 

u2 V2 w2 or u2 Vf2 w2 

u3 V3 w3 u3 V3 W3 

which are sometimes printed u1vxw1lu2v2w2lu3v3w3 and u'xvfxw'xlu'2v2w2l 
u3v3w3 respectively. These matrices have useful properties; in particular, they 
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can be used to transform plane indices from one axial system to the other. To 

find what (hkl)0 becomes on the new system, or conversely what indices 

(hkl)n had in the old system, we can use the appropriate matrix in the form, 

K = u-Ji0 + vxk0 + wj0 h0 = u'xha + v[kn + w[ln 

K = u2h0 + v3 k0 + w2l0 or kQ = u'2ha + v'2kn + w2ln 

hi — Uafro + v3k0 + h’3/0 /0 = u'3hn + v3kn + H-3/n 
For the parametral planes (111)0 and (11 l)n of the two cells of Fig. 5.9, these 
transform to become 

= | x 1 — I x 1+Ox 1=0 

kn — ■jX 1 + "2 x 1 + 0 x 1 = 1 

4=0xl+0xl+|xl=| 

and h0 = lxl+lxl+0xl=2 

kQ = — lxl+lxl+0xl=0 

/0= 0xl+0xl+2xl = 2. 

Clearing fractions and multiples, (111)0 -» (021)n and (lll)n -> (101)o, re¬ 

flecting, of course, the changes in directions of the x- and j-axes and the unit 

intercept on the z-axis. We shall not attempt to justify this property of 

the matrices here, nor do more than mention certain others. For example, it 

will be noticed that the two matrices, old -> new and new -> old, are differ¬ 

ent. Mathematically they are related by inversion and their determinants give 

the numerical ratios of the cell volumes; a change in sign in the determinant 

denotes a change in hand of the reference system. 

When using these matrices it is important to realise that whilst they relate 

plane indices (hkl), different matrices are needed to transform zone axis sym¬ 

bols [UVWJ. These can be obtained by interchanging rows and columns in 

the inverse of the original matrix to give 

Old -> new New -» old 

u[ u2 u3 Ml u2 u3 

v'l v'2 v's or »1 V2 V3 

w[ w'2 w3 Wi w2 w3 

These new matrices are then used to transform zone axis symbols in the same 

way as before. With [111]0 and [lll]n of the two cells in Fig. 5.9, we shall get 

Un = lxl + -lxl+0xl = 0 U0 = ix 1+^x 1+0x1 = 1 
Vn = 1x1+ lxl+0x1=2 and V0 = —\x l+£x l+0x 1 = 0 

Wn = 0x1+ 0xl + 2xl = 2 WQ= 0xl+0xl+^xl = \ 

Clearing fractions and multiples, [111]0 -> [01 l]n and [lll]n[201]o. In 

practice, when only one or two zone symbols have to be transformed, it is 
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often convenient to select two faces which lie in the zone and find the new 

index by cross-multiplying these after transformation with the original 

matrix. For example, the two faces (1 T0)o and (112)0 lie in the zone [111 ]0 for 

they satisfy the zone equation; transforming these by the original matrix 

(ll0)o-> (100)n and (112)0-> (0ll)n, which on cross-multiplying give the 

direction [Oil]n. 
Transformation matrices can be important both in the reconciliation of 

older data with more recent investigations and in describing the relations 

between alternative choices of axial systems and cells in the lower symmetry 

systems. A fuller account of the properties of the various matrices and their 

uses will be found in the bibliography. 

5.3. Determination of angular relationships 

For a particular material, once the lattice translations are chosen, the index¬ 

ing of planes and lattice rows embraces all angular and linear relationships of 

the lattice; indeed, as we saw in the previous section, the angular values alone 

determine the shape of the cell and the axial ratios. In this section we shall 

briefly review the methods by which angles between planes or zones can be 

evaluated from cell data; conversely these methods could permit conclusions 

about the cell from angular measurements. The most important angles are 

usually those between the normals to two sets of planes (hjcjx) and (h2k2l2) 

and those between two zone axis directions [UiV-JV^ and [U2V2W2]; we 

shall refer to these as p and 4> respectively. 

Since all indexing is based on axial co-ordinate systems it is possible to set 

up algebraic expressions for p and <f> in terms of the cell constants. With 

orthogonal axes one can adapt the results of co-ordinate solid geometry, in 

particular those which state that the sum of the squares of the direction co¬ 

sines of a line is unity and which express the angle between two lines in terms 

of their direction cosines. For example, the equations to the normal for a 

family of planes (see Chapter 5.1) show that it has direction cosines 

cos Nx(oz cos Ny oc ^ I and cos Nz H) 
in such systems. When these are substituted in the standard relationship 

hih2 + kxk2 

cos p = b2 
hi2 

„2 

+ M + R 
a2 b2^ c2 

hi 
2 

\ (h2 ,h2 l%\ 

and a comparable expression for cos <f> may be developed in the same way. 

These expressions are simplified when the crystal system has symmetry which 

requires one or both the axial ratios on the orthogonal axes to be unity. But, 
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except for cubic crystals, they remain complex enough to encourage compu¬ 

tational error and comparable expressions for a non-orthogonal axial sys¬ 

tem are even more unwieldy to use without computer facilities. When only a 

few angles are required, it is more convenient to obtain them from the 
stereogram. 

Both p and </> correspond to angular distances on great circles on the pro¬ 

jection and can be measured (by the methods described in Chapter 3.3) with 

reasonable accuracy on stereograms of a suitable scale from the locations of 

the appropriate poles; but as mentioned in this earlier section the stereogram 

is admirably suited to accurate calculation of spherical triangles by spherical 

trigonometry. This requires that three elements (of the six) in the triangle are 

known; in practice, crystallographic stereograms often contain an element of 

90°, and the trigonometric solutions are simpler for such right-angled (or 

Napierian) triangles. Whenever possible the calculations are formulated in 

terms of Napierian triangles, which can be solved when two elements (other 

than the right angle) are known; the method of solution most suited to a 

particular problem is acquired by experience. We shall not attempt to illus¬ 

trate these calculations on the stereogram here, but some examples are given 

for each of the crystal systems, together with the essentials of the spherical 

trigonometry, in Appendix B. 

5.4, Axial systems and indexing for each crystal system 

(a) Triclinic System 

(/) Choice of axial system. The lattice cell is a general parallelipiped defining 

non-orthogonal crystallographic axes with different units on each. Even if the 

distribution of lattice points is known, there is no unique choice of a primitive 

cell of minimum volume; the decision to select one particular cell is arbitrary, 

and can only be governed by convention. Unfortunately, over many years 

there have been several different conventions and many ill-defined customs, 

and even now there are no universally recognised rules which lead to a stand¬ 

ard form of description for this system. We shall refer to those used in the 

compilation of Crystal Data, a source book which lists the basic facts of 

symmetry and geometry for as many crystalline materials as possible. In this 

all triclinic crystals are described by: 

(i) Choosing the primitive cell of minimum volume whose edges give the 

three shortest lattice translations; this is sometimes known as the re¬ 

duced cell', 
(ii) labelling the translations (and crystallographic axes) according to 

their lengths so that c(|| z-axis) < a{\\ x-axis) < 6(|| y-axis); 

(iii) taking the positive directions of these translations to form a right- 

handed set of axes with the interaxial angles a and obtuse; depend¬ 

ing on the geometry of the particular cell, y may be obtuse or acute. 
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If these rules, inevitably arbitrary, are followed, some consistency in the 

presentation of data for this system can be achieved; but it will soon be found 

that the records of triclinic crystals, even now, are by no means standardised. 

Apart from the use of other conventions, further factors that contribute to 

this non-uniformity include: (a) the choice of a cell (sometimes even non¬ 

primitive) whose axes are selected and labelled in a different manner in order 

to facilitate comparison of the structure with that of another crystal, often of 

higher symmetry; (b) maintenance of older descriptions based solely on ex¬ 

ternal evidence and which implies an unconventional choice of cell. Whatever 

the origin of the divergence, the very general character of the triclinic axial 

system is common to all descriptions. 

(ii) The orientation of the parametral planes. This can be calculated if the 

Cl c 
axial constants, the axial ratios ^:1:-^ and the interaxial angles a, 0, y are 

known, but is more often found by using zonal relationships on a stereogram 

as we shall see in (iii) below. In this connection the geometry of Fig. 5.10(a) 

is relevant; this is shown for (111) planes but it can be generalised for any 

family of planes (hkl). From the three triangles in the xy, zy and zx planes 

formed by the intersections of a (111) plane, we see that 

a _ sin <f)11 c _ sin </»3 _ c _ sin <ft5 

b sin b sin </>4’ a sin (j>6 

and <f>i + <^2 + Y = ^3 + ^4 + a — ^5 + ^6 + ft = 180°. 

Now <f>!, <j>2, etc. are angles between lattice rows, i.e. they are angles between 

zone axes; these may be identified with the angles between corresponding 

zones at their points of intersection in the stereogram below. 

(iii) Stereographic projection. Conventionally the right-handed axial set is 

projected with the z-axis at the centre of the projection, and the plane of the 

x- and z-axes as the vertical diameter; since the (010) planes are parallel to the 

xz plane, the pole of their common normal direction must be on the primi¬ 

tive at the right-hand end of the horizontal radius (Fig. 5.10(b)). If the inter¬ 

axial angles are obtuse, the poles of the x- and y-axes are in the southern 

hemisphere; the points (100) and (001), representing planes parallel to yz and 

xy respectively, will be the poles of the great circles passing through these 

pairs of axes. This means that the external angles of the spherical triangle 

formed by (100)(010)(001) will be the interaxial angles a, /3 and y, for apexes 

of this triangle are the intersections of great circles whose poles are the x-, y- 

and z-axes. The point (111)—and any pole representing planes with positive 

integers—must lie within this triangle, and its position may be found by 

drawing the great circles joining it to the corners of the triangle. These are zones 

formed by the pairs of planes (111)(001), etc. for which the zone axis direc¬ 

tions are given by their mutual intersections; in Fig. 5.10(a) these are the 
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010 

z 

(a) 

Fig. 5.10. Triclinic stereograms, (a) The intersection of a parametral 
(111) plane with the axes, (b) The corresponding stereogram. Heavy lines 
show the location of the (111) pole by zones within the spherical tri¬ 
angle (100) (010) (001). The indices (hkl) at the intersection of some other 
zones are shown. Any repetition by symmetry is neglected. 
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inclined lattice rows joining points on the a- and y-, z- and y-, and z- and x-axes. 

The angles <f>u <j>2, etc. in this figure are enclosed between these rows and those 

along the axial directions, i.e. (f>i is between the zones (001)(111) and (001)(100) 

at their point of intersection, and so on; they therefore locate the great circles 

which join (111) to the corners of the triangle (100)(010)(001). Values of <j>i, 

<f>2, etc. can be calculated from the axial ratios and interaxial angles by the 

equations in (ii), when these circles intersecting in (111) can be drawn. We 

shall adapt the application of this general geometry to the more symmetrical 

axial arrangements of the other crystal systems in succeeding sections. With 

these points on the stereogram all other poles (hkl) can be found by zonal 

relationships; a few simple examples are shown in the figure. In this system 

poles of planes (hkl) intersecting the negative direction of the z-axis lie in the 

southern hemisphere; they will not be beneath the points (hkl) and must 

again be found by zonal relations. 
The projection of [UVW] does not coincide with the pole of planes with 

identical indices (viz. [100] (the x-axis) is in a different position to (100)), and 

each zone axis must be separately determined. It is usually best to find planes 

on the corresponding zone by the Weiss zone equation, and then plot the 

pole of this great circle. For example, the poles (110) and (011) must lie on the 

zone [111]; the zone axis is plotted as the pole of the great circle passing 

through them (Fig. 5.10(b)). 

(b) Monoclinic System 

(i) Choice of axial system. The lattice cell chosen in accord with the essential 

symmetry of a diad axis is an oblique parallelipiped; conventionally the 

y-axis is identified with this diad, so that the x- and z-axes are generally in¬ 

clined in the perpendicular plane, with different units on all three axes. In a 

monoclinic array of lattice points the y-axis is distinguishable, but there can 

be no unique cell of minimum volume and the choice of x- and z-axes must be 

governed by convention. Some authors (and Crystal Data) follow the rules 

set out for triclinic crystals, and choose the two shortest lattice translations in 

the lattice net normal to the y-axis to be the x- and z-axes, labelling them so 

that c < a and the angular inclination is obtuse; others have given priority 

to choosing a cell so that /3, although obtuse, is as close to 90° as possible. 

There is a further complication in that some monoclinic crystals can have 

irreducible non-primitive cells (see Chapter 7.1), and in striving for a uniform 

description for such cells we can impose an axial system that contravenes 

other conventions. Taken with other aberrations due to structural compari¬ 

sons and prior morphological descriptions, it is difficult to discern any uni¬ 

formity of presentation in recorded data for this system. Nevertheless, the 

nature of the axial system with the diad as the y-axis, and the other two axes 

inclined at an obtuse angle in the perpendicular plane is generally preserved 
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in most descriptions; occasionally in some early observations the diad is 
taken as the z-axis, but this is now discouraged. 

00 The orientation of the parametral planes. As before, this requires a knowl¬ 

edge of the axial constants, the axial ratios |: 1 and the interaxial angle /?. 

The geometry of Fig. 5.10(a) is simplified, for a and y are 90°, so that 

^1 + ^2 = ^3 + ~ 90° 

to make the axial ratios become 

a 

b 
= tan 

c 

b 
tan </>3; 

c _ sin <f>5 

a sin </>6 

which we can again use to plot the zones which locate (111). Alternatively 

these zones can be plotted from the angles (100)(110) and (001)(011) which 

are simply related to the axial constants (Fig. 5.11) as 

(100X001) = 180° - j8 

tan (100X110) = ^ sin yS 

and tan (001X011) = £ sin 0. 

The last two expressions can be generalised for planes (hkO) and (Okl) re¬ 

spectively. 

(iii) Stereographic projection. There are two conventional orientations of 

projection. In the first (Fig. 5.12(a)), the z-axis is at the centre of the projec¬ 

tion and the y-axis on the primitive at the right-hand end of the horizontal 

radius; this makes the xz plane the vertical diameter, with the pole of the 

x-axis in the southern hemisphere when /3 is obtuse. In the second (Fig. 

5.12(b)) the y-axis is taken at the centre, with the z-axis on the primitive at the 

upper end of the vertical radius; for a right-handed set of axes and obtuse /3 

this places the x-axis on the primitive in a general position in the lower left- 

hand quadrant. Both orientations have advantages and disadvantages; (a) 

maintains the location of the z-axis at the centre of the projection, but retains 

the feature that poles (hkl) in the southern hemisphere are not immediately 

below the corresponding points (hkl); (b) eliminates this for points in the 

southern hemisphere are (hkl), which are beneath poles (hkl), but it is now 

not uniform with the conventional orientation of projections in all other sys¬ 

tems. A choice can only be made in terms of personal preference, and we 

shall mainly use the orientation of (a); but, whichever form is employed, the 

use of zonal relationships for indexing follows the same pattern. 

As before, the poles (100), (010) and (001) are found as the poles of great 

circles containing the appropriate pairs of axes. (Ill) can then be located by 
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zones to the vertices of the spherical triangle; these zones can be constructed 

either by use of the angles <^25 etc. or from the positions of the poles (110) 

and (Oil) determined on the zones (100)(010) and (001)(010) respectively by 

the relations above. Incidentally we notice from the stereogram that 

c _ sin c/>5 _ sin (001)(101) _ sin (001)(101) 

a ~ sin <£6 “ sjn (100X101) sin [£-(001X101)] 

tan (100) A (110)= £ 

(100) A (001)= l80°-/3 

H= a cos (/3-90°) 

L = c cos (/3- 90°) 

Fig. 5.11. Angles in principal zones of a monoclinic crystal. The three 
diagrams show planes perpendicular to the x, y and z-axes. 

after substituting (001)(100) = 180° — £; this enables the position of (101)— 

and any other poles (hOl) in the zone (001)(100)—to be determined inde- 

c 
pendently from the axial ratio - and £. With these points on the stereogram, 

all other poles can be found by zonal relations; a few examples are shown in 

the figure. 

With the exception of [010] (the y-axis) which coincides with (010), zone 



210 

(a) 

Fig. 5.12. Monoclinic stereograms, (a) With the z-axis at the centre of 
the projection, (b) With the y-axis at the centre of the projection. Heavy 
zones show the location of the (111) pole within the spherical triangle 
(100)(010)(001). The indices (hkl) at the intersections of some other zones 
are shown. Any repetition by symmetry is neglected. 
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indices [UVW] are in different positions to the poles of corresponding plane 

indices, and should be found as poles of great circles containing the relevant 

plane indices (e.g. [ill] in the figure). 

(c) Orthorhombic System 

(i) Choice of axial system. A lattice cell shaped as a rectangular parallelipiped 

is demanded by the essential symmetry of three perpendicular diad axes; the 

x, y and z crystallographic axes are along these diads with different units on 

each axis. From the array of lattice points there is no difficulty in recognising 

these directions and finding the cell of minimum volume, but the naming of 

the axes allows some freedom. One can follow the criteria of length of lattice 

translation (c < a < b), but this may conflict with the conventional nomen¬ 

clature for the particular space group (see Chapter 7.4). Once again other 

priorities may be fixed according to the problem, and we must accept the 

possibility of an interchange of axial labelling in recorded data; but all de¬ 

scriptions of orthorhombic crystals are made with a right-handed orthogonal 

axial set. 

(«) The orientation of the parametral planes. With this axial system, there are 

no problems in calculating (as in Chapter 5.3) the positions of these planes 

from the axial constants, the axial ratios ^: 1:But pursuing the zonal ap¬ 

proach of the two previous systems the increased symmetry with a — f = y = 

90° permits further simplication in the relations to axial ratios. Not only does 

<f>5 = (001)(101) and <f>6 = (100)(101) as in the monoclinic system, but also 

= (100X110), <f>2 = (010X110), <f>2 = (001X011) and <£4 - (010X011), so 
that 

| = tan^i = tan (100)(110); 

^ = tan = tan (001)(011); 

£ = tan <f>5 - tan (001X101), 

which can be respectively generalised for any planes of the type (M0), (0kl) 
and (hOl). 

(iii) Stereographic projection. The conventional orientation has the z-axis at 

the centre and the y-axis on the primitive at the end of the right-hand hori¬ 

zontal radius; the x-axis is therefore also on the primitive at the lower end of 

the vertical diameter. The poles (001), (010) and (100) coincide with the poles 

of the axes, and the usual zones to plot (111) are shown on the stereogram in 

Fig. 5.13. The points (hkl) in the southern hemisphere will project as circles 



AXIAL SYSTEMS AND INDEXING 99 

immediately below the corresponding (hkl) poles; when both (hkl) and (hkl) 

are present on the stereogram, it is usual to label only the upper one. 

Although the axial directions [100], [010] and [001] coincide with the poles 

(100), (010) and (001), all other zone axes [UVW] are in different directions 

from the poles of planes with corresponding indices (e.g. in the figure [111], 

plotted by the usual procedure, is not on the great circle (0l0)(101)). 

100M 
Fig. 5.13. Orthorhombic stereograms. Heavy zones show the location 
of the (111) pole within the spherical triangle (100)(010)(001). The 
indices (hkl) at the intersections of some other zones are shown. Any 
repetition by symmetry is neglected. 

(d) Tetragonal System 

(i) Choice of axial system. In the array of lattice points, a suitable square- 

based prism cell is identifiable, and the requirement of minimum volume is 

unambiguous; the essential tetrad axis perpendicular to the square base of the 

cell is the z-axis with its unit (c), whilst the other two symmetry related edges 

provide the x- and jp-axes with identical units (a = b). This axial system re¬ 

quires no arbitrary conventions; ambiguities can arise only if full lattice data 
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are not available, as described in the examples of Fig. 5.9. In general, there 

are few problems in the description of tetragonal crystals; occasionally the 

choice of a different larger cell is advantageous for a particular purpose, but 

its relation to the true minimum volume cell is usually obvious. 

Too 

Fig. 5.14. Tetragonal stereograms. Heavy zones show the location of 
the (111) pole within the spherical triangle (100)(010)(001). The indices 
(hkl) at the intersections of some other zones are shown. Any repetition 
by symmetry is neglected. 

(») The orientation of the parametral planes. The axial constant (an axial 

ratio usually quoted as c/a) determines the position of the (111) planes, which 

can be found by the usual zonal relations. The more regular shape of the cell 

ensures that 

^ = 1 = tan <j>1 = tan (100X110); 

^ = ~a — tan <^3 = tan <f>5 = tan (001)(101) 

= tan (001X011) 

so that fa = fa = 45°; fa = fa; = <f>6. 
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(hi) Stereographic projection. Conventional orientation is the same as for the 

orthorhombic system, with the z-axis at the centre and the x- and j-axes on 

the primitive; (001), (100) and (010) are at the poles of the respective axes. 

From the zonal relations above (110) must be at 45° to the x- and j-axes. 

The zone (110)(001) is the vertical great circle at 45° to the horizontal and 

vertical diameters; the position of (111) is found from the usual zones con¬ 

taining (101) and (Oil) which are equally inclined to the centre of the projec¬ 

tion (Fig. 5.14). It will also be noticed that the positions of poles (hkO) on the 

primitive are independent of the axial ratio and must be the same for all 

tetragonal crystals. All other poles (hkl) depend on the axial ratio and can be 

inserted by zonal relationships, though (hkl) and (hkl) are coincident. 

Due to the identity of units on the x- and j-axes, all zone axes [UV0], in¬ 

cluding [100] and [010], coincide with the poles of planes of corresponding 

indices, as do [001] and (001); more general zone axes (e.g. [1 Tl]) are inde¬ 

pendently located. 

(e) Cubic System 

(i) Choice of axial system. The essential symmetry of four equally inclined 

triad axes requires a distribution of lattice points in which the cell must 

be a cube with the triads as the body diagonals; the edges of this cube are the 

x, y and z axes with identical units on all three axes. The high symmetry 

allows no ambiguity in this choice of a minimum volume cell. 

(ii) The orientation of the parametral planes. These must be such that their 

normal is equally inclined to the three crystallographic axes at an angle of 

54° 44' (— cos -1 l/\/3> for the sum of the squares of its direction cosines 

must be unity). The equations governing zonal relationships reduce to 

j = y = - = \ = tan = tan (100)(110), etc. 
b b a 

so that <£i = ^2 = ^3 — ^4 = <^5 = <^6 = 45°. 

(Hi) The stereographic projection. With the x, y and z axes projected as for 

the orthorhombic and tetragonal systems, (100), (010) and (001) are coincid¬ 

ent with these poles. The position of (111) must be the same for all cubic 

crystals; the zonal relations above show that the poles (110), (011) and (101) 

are at 45° to the respective pairs of axes, so that (111) is at the intersection of 

three great circles inclined at 45° to the axial planes (Fig. 5.15). With the 

fixed position of (111) all other poles (hkl) are in identical positions for all 

cubic crystals. 
Moreover the identity of units on all three axes requires all zone axes 

[UVW] to have poles coincident with those for corresponding plane 

indices. 
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(/) Trigonal and Hexagonal Systems 

In the discussion of Chapter 4.2(g) point groups of these two systems are 

associated with rhombohedral and hexagonal cell shapes; trigonal crystals 

can have lattices described in terms of either cell, but hexagonal crystals can 

only have minimum volume cells of hexagonal form. This poses a problem in 

the indexing of trigonal crystals, for some should be described on the basis of 

Too 

Fig. 5.15. Cubic stereograms. Heavy zones show the location of the 
(111) pole within the spherical triangle (100)(010)(001). The indices (hkl) 
at the intersections of some other zones are shown. Any repetition by 
symmetry is neglected. 

rhombohedral axial geometry and others need a hexagonal axial system. 

The solution most commonly adopted when the material shows a rhombo¬ 

hedral distribution of lattice points is to choose to describe it by means of a 

larger cell of hexagonal shape; the relation of this cell to the rhombohedral 

lattice and its minimum volume cell is explained in Chapter 7.1(g). In prac¬ 

tice, therefore, both trigonal and hexagonal crystals are usually indexed in the 
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same way, though for completeness we shall describe first rhombohedral 
indexing which is occasionally used for trigonal crystals. 

Rhombohedral cell 

O') Choice of axial system. A minimum volume cell with a body-diagonal 

along the essential triad symmetry can be chosen from a truly rhombohedral 

array of lattice points; the lattice translations of the cell edges are equally in¬ 

clined to the triad axis, and they define the x-, y- and z-axes mutually inclined 

at angle a (< 120° ^ 90°) with identical units on each of the axes. Rhombo¬ 

hedral indexing on this axial system gives sets of three integers often known 
as Miller indices. 

00 The orientation of the parametral planes. (Ill) planes must be equally 

inclined to the directions of the three axes, i.e. their normal is along the 

direction of the essential triad axis, and is defined by the axial constant, the 

interaxial angle a. From the geometry of Fig. 5.16(a) we see that this angle 
of inclination is given by 

With this arrangement of axes the zonal equations become 

a _ c _ c _ i _ sin <j>x _ sin j>3 _ sin <f>5 

b b a sin <f>2 sin <£4 sin </>Q 

so that <f>i = <f>2 — <^3 — ^4 — = ^6 — 90° — 2* 

(Hi) The stereographic projection. Conventionally, the triad axis and pole of 

the (111) planes is placed at the centre of the projection, so the problem is 

turned into the location of the poles of the axes. These must lie on a small 

circle of radius p about the centre; the x-axis is taken at the lower intersection 

of this circle with the vertical diameter, and the y- and z-axes at similar inter¬ 

sections with diameters at 120° intervals (Fig. 5.16(b)). (100), (010) and (001) 

will be at the poles of great circles defined by the appropriate pairs of axes, 

i.e. on the same diameters as the poles of x, y and z but not coincident with 

them. All other poles (pqr) can then be inserted by zonal relationships. 

With the exception of [111], zone axes [UVW] are at different positions 

from the poles of planes with corresponding indices, and are found in the 

usual way. 

Hexagonal cell 

(i) Choice of axial system. A minimum volume cell in the shape of a rhombus- 

based right prism can be chosen for the lattice point array for all hexagonal 

crystals and some trigonal crystals; as mentioned above, a cell of this kind 
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N 

(a) 

Fig. 5.16. Trigonal stereograms with rhombohedral axes, (a) The inter¬ 
section of a parametral (111) plane with the axes, (b) The corresponding 
stereogram. Heavy zones show the location of the poles (100), (010) and 
(001). The indices (pqr) at the intersections of some other zones are 
shown. Any repetition by symmetry is neglected. 
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can also be selected for all other trigonal crystals, though it will not be of 

smallest volume. The natural axial system suggested by this cell shape has the 

z-axis along the triad or hexad direction with units (c) and the Jt- and _y-axes 

in the direction of other cell edges inclined at 120° with identical units (a = b). 

v i 

Fig. 5.17. Three- and four-axis systems for trigonal and hexagonal 
crystals, (a) A three-axis system for planes. The diagram shows the plane 
perpendicular to the z-axis and the traces of three symmetry related 
planes parallel to the z-axis. (b) A four-axis system for planes. The dia¬ 
gram is similar to that in (a), (c) An array of lattice points in a plane 
normal to the triad or hexad axis. Zone symbols on the three- and four- 
axis systems for the x-axis direction are shown. 

Such an axial system can be—and is—commonly used in X-ray work, but it 

is not entirely satisfactory in other contexts, particularly for morphological 

studies; for example, where it is desirable that symmetry related planes 

should have related indices, this does not always happen (Fig. 5.17(a)). This 

kind of difficulty can be overcome by using an additional axis (called the u- 

axis) in the plane perpendicular to z so that it externally bisects x and y; it is 

identical to them and must have similar units. Hexagonal indexing on this 

axial system gives sets of four indices (hkil), often known as Miller-Bravais 
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indices', in such indices the integers h, k and i cannot be independent, and in 

all cases 

h + k + i = 0 

though this does allow symmetry-related planes to have related indices (Fig. 

5.17(b)). It is most common to use the Miller-Bravais system for the indices 

of planes; a simple reversion to the three-axis system can be made by omitting 

the redundant integer (hk. I); the dot is used to emphasise which index is 

missing, for it might be advantageous to drop either h, k or i on some occa¬ 

sions. 
It is appropriate at this point to clarify the use of zone axis symbols, some¬ 

times a source of confusion with hexagonal axes. With a three-axis system the 

nomenclature is straightforward and strictly comparable to that of all other 

systems; thus the direction of the x-axis (Fig. 5.17(c)) is described as [10.0] 

Using a four-axis system, there is an ambiguity in the choice of integers to 

define the direction of a lattice row in the xyu plane; in the figure the x-axis 

direction can be written [1000], [2110], [3220] and so on. To rationalise the 

infinite variations we choose the symbol [U'V'J'W'], which has no common 

factors and for which 

U' + V' + J' = 0, 

an analogous condition to that for plane indices; thus the direction of the 

x-axis is [2ll0]. This example shows that the conversion from four-axis zone 

symbols to their equivalent three-axis symbols, unlike that for plane indices, 

is not a simple matter of omitting a redundant index. The change from a 

three-axis symbol [UV. W] (i.e. [UV0W[) to its four-axis equivalent 

[U'V'J'W']* can be made by subtracting %(U + V) from U, Vand 0 to satisfy 

the condition U' + V + J' = 0; hence U' = j(2U — V), V = %(2V — U), 

J' = -WJ + V) and W' = JF. For [10.0], we get U' = £(2), V = i(-1), 

J' = — i(l), W' = 0, to give [2ll0] after fractions are cleared. Conversely, 

the conversion of four-axis symbol [U'V'J'W'] to its three-axis equivalent 

[UV. W] involves the relations U = U' — J'(= 2U' + V), V = V — J' 

(= U' + 2V) and W = W'; so that for [2ll0] we get U = 2 — (— 1), V — 

— 1 — (— 1), W = 0 to give [10.0]. In considering the relations between 

plane indices in a zone, the Weiss zone law applies to all three-axis systems so 
that 

Uh+ Vk + Wl = 0 

remains the condition for (hkil) to lie in the zone [UV. W]. In four-axis sys¬ 
tems it must be written in the form 

U'h + Vk + J'i + W'l = 0. 

* Some writers use general symbols [UV. W] and [uvtw], or [uv. w] and [UVJW] to 
denote corresponding directions on three- and four-axis systems. 
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The case for three- or four-axis zone symbols can be argued, and both 

methods have advantages and disadvantages. The four-axis system gives an 

identity of direction to the zone symbol [U'V'J'0] and the normal to planes of 

corresponding indices; thus (2TT0) and [2ll0] are both in the direction of the 

x-axis, which has quite different plane and zone indices on a three-axis system. 

1010 

Fig. 5.18. Trigonal and hexagonal stereograms with hexagonal four-axis 
system. Heavy zone shows the location of the (1121) pole in the spherical 
triangle (10l0)(01l0)(0001). The indices (hkil) at the intersections of some 
other zones are shown. Any repetition by symmetry is neglected. 

But in more general directions this equivalence does not hold and the symbols 

are more cumbersome to interpret, e.g. [2ll3] requires more thought than 

[10.1]. The four-axis system finds favour in work where directions [U'V'J'0] 

are important, particularly in the metallurgical field; but we shall use the 

more popular alternative form [UV. W], with plane indices written as (hkil); 

contraction to (hk . I) is usually made in diffraction studies. 

(if) The orientation of the parametral planes. With the Miller-Bravais axial 

system the parametral planes with indices (1121) are in a direction determined 
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by the axial constant (the axial ratio usually quoted as c/a); their normal, 

equally inclined to the x- and j-axes, must lie in the plane of the zu axes at an 

inclination (p) to the triad or hexad axis given by 

With these axes, the zonal relations become 

so that 

a _ j _ sin <f>x' c 

b sin </>2 ’ b 

Q 
- = tan 63 = tan </>5 
a 

4>i — 4>2 = 30°; </>3 — ^5 and (f) 4 — </>6. 

Alternatively, these zones can be found from the positions of poles such as 

(lOll); by examining a projection down the >>-axis tan (0001)(10Tl) = 

c 

a cos 30° 

(Hi) The stereographic projection. Conventionally, the z-axis (with the essen¬ 

tial triad or hexad) is at the centre of the projection, with the j-axis on the 

primitive at the end of the right-hand horizontal diameter; this also places the 

x- and u-axes on the primitive in the left-hand lower and upper quadrants 

respectively (Fig. 5.18). The points (10T0), (OlTO), etc. are the poles of great 

circles containing the pairs of axes to which they are parallel, i.e. they are in 

positions on the primitive bisecting the axial directions; (0001) is at the centre 

of the projection. Once the position of (1121) is found, all other poles (hkil) 

can be inserted by zonal relationships and the usual cross-adding procedure; 

(hkil) is immediately below (hkil). 

In the discussion above we saw that (with the exception of [00.1] and 

(0001)) zone axes [UV. W] do not lie in the directions of the normals to 

planes with corresponding indices; [ll. 1] in the figure is the pole of the zone 

containing (1120) and (0111). 

5.5. Exercises and problems 

[Note: Many of these problems can be solved by applying the methods de¬ 

scribed in Appendix B, though it is also possible to use accurate construc¬ 
tions.] 

1. (i) Draw out a number of unit cells of a planar lattice for which a = 2 cm, 
b = 3 cm and y — 110°. 

(ii) Insert the directions [11] and [12], and measure the angle between 
them. 

(iii) Draw in several of the lines in the sets (11) and (23) and measure the 
spacings of each set. 
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(iv) Determine the angle (11)[11]. 

(v) Choose a new cell so that a' is [12] and b' is [11]; what are the values 

of a', b' and y ? 

(vi) Determine the indices of the two sets of lines of (iii) in terms of this 

new choice of cell. 

2. (i) Find the zone symbols formed from the plane indices (a) (010) and 

(325), (b) (103) and (112). 

(ii) Planes with indices (130), (01T), (335), (251) also lie in one or other of 

these two zones; decide which planes belong to which zones. 

(iii) From the zone symbols of (i) find the indices of planes which are 

common to both zones; check your answer by cross-adding the plane in¬ 

dices of (a) and (b). 

3. In a transformation from old to new axes, the following changes in plane 

indices were made: 

(210)o -* (212)n 

(101)o -* (102)n 

(012)0 -> (012)n 

What do (lll)o and [111]0 become when indexed on the new axes? 

4. For a material crystallising in class I, a :b: c — 0-917:1:0-720, a = 90° 06', 

j8 = 102° 02', y = 105° 45'. 
(i) On an accurate stereogram locate the poles (100), (010) and (001), and 

determine the angles between them. 
(ii) Locate (111), and from this plot the positions of (110), (101) and (011). 

What are the angles (100)(110) and (100)(ll0) ? 

(iii) Determine the angle (110)[110]. 

5. In a crystalline substance of class 2/m, (110)(ll0) — 61° 13', (110)(001) = 

67° 47' and (OlOXlll) = 63° 08'. Determine the axial constants for the 

cell implied by these measurements. 

6. For a crystal belonging to class mmm with axial ratios a:b:c = 

0-813:1:1-903 a set of planes (hkl) is orientated so that (001 )(hkl) = 

55° 30' and (0l0)(hkl) = 77° 33'. Determine the indices (hkl) and the 

value of the angle [I30]f051] for this crystal. 

7. For a compound with point group symmetry 4/m and an axial_ratio c/a = 

1-575, a set of planes (hkl) lie in the same zone as (201) and (210) at an in¬ 

clination of 15° 15' to (2l0). What are the indices of (hkl) ? Later examina¬ 

tion of the same material showed that planes formerly indexed as (201) 

should have been chosen as the parametral planes in order to give a more 

conventional choice of cell. Re-index the other two sets of planes and 

determine the new axial ratio. 
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8. In a crystal of class 432 the angle between two sets of planes (hlh)(lhh) = 

37° 51', where h > l. Determine the angle (hhl){hhl), and the values of the 

indices h and /. 
9. In all trigonal crystals the planes (lOll), (IlOl), (Olll) must be related by 

symmetry. If for a particular crystalline substance with trigonal symmetry 

(1011)(T101) = 87° 23', determine the angles between the zone axes in 

which these three sets of planes intersect. What are the zone symbols for 

these directions (i) with a three-axis hexagonal system, (ii) with a four-axis 

hexagonal system ? 

Selected Bibliography 

General 

Buerger, M. J. 1956. Elementary crystallography. Wiley. 
International Union of Crystallography. 1965. International tables for X-ray 

crystallography, vol. I. Kynoch Press, Birmingham. 
Phillips, F. C. 1963. An introduction to crystallography. Longmans. 

Analytical approach 

Hilton, H. 1963. Mathematical crystallography. Dover Publications. 
International Union of Crystallography. 1966. International tables for X-ray 

crystallography, vol. II. Kynoch Press, Birmingham. 

Axial transformations 

Aitken, A. C. 1939. Determinants and matrices. Oliver and Boyd. 
Buerger, M. J. 1942. X-ray crystallography. Wiley. 

Source book for crystallographic data 

Donnay, J. D. H., Donnay, G., Cox, E. G., Kennard, O. and King, M. V. 1963. 
Crystal data (determinative tables). American Crystallographic Association. 



6 
MORPHOLOGICAL 
CRYSTALLOGRAPHY 

6.1. Introduction 

In this chapter we are concerned with the shapes of natural crystals; until the 
discovery of X-ray diffraction in 1912 these external regularities had provided 
the main experimental data for the development of scientific crystallography. 
Undoubtedly man has shown an interest in the crystalline state from prehis¬ 
toric times, if only for the rare beauty and economic value of the many 
natural forms; but the real foundations of the present science were laid only 
in the late eighteenth century by Abbe Haiiy. On his work later generations 
built up a mixture of experimental observation and mathematical theory into 
a kind of‘classical crystallography’, self-coherent but restricted by an inability 
to examine any internal structure responsible for external regularities. In the 
past fifty or sixty years X-ray diffraction and other techniques have been used 
to discover internal atomic arrangements, and inevitably the importance of 
crystalline shape to the modern crystallographer has decreased as the spec¬ 
trum of specimens that he can examine has broadened. Nevertheless, the 
classical experimental data, the arrangement and regularity of crystalline faces, 
whose study is often known as morphological crystallography, still have a 
place in any modern work. 

At the outset it must be emphasised that crystal morphology is concerned 
only with those shapes formed by natural processes; artificial faces, such as 
those cut upon gem stones to display their qualities are of no fundamental 
scientific interest. Our passing familiarity with a crystal as a homogeneous 
polyhedral solid bounded by naturally developed plane faces is usually gained 
either from examples seen in museums and in natural rock formations, or 
from elementary growth experiments from saturated solutions in the labora¬ 
tory; in the polyhedron there is a wealth of information to be gleaned. Well- 
developed crystals occur in different sizes and shapes. Common sizes vary 
from crystals which can be comfortably handled (of dimensions in centi¬ 
metres) to those in which faces can only be resolved using a magnifying glass 
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or a powerful microscope; in natural geological processes, larger crystals 

rarely have the opportunity to develop, although artificially controlled growth 

conditions can give very large synthetic crystals. Whatever the size, there are 

two important and distinguishable factors in the crystal shape; (i) the particu¬ 

lar polyhedral faces which are developed and the symmetry which is displayed 

in their arrangement, and (ii) the relative importance of the different faces of 

the particular specimen. Early crystallographers soon realised that under ideal 

growth conditions (i) is of more fundamental significance than (ii); whilst 

similar faces are arranged in the same symmetrical way, crystals of a parti¬ 

cular substance may appear quite dissimilar due to the accentuation of dif¬ 

ferent faces. Fig. 6.1 illustrates two crystals of the same substance; in (a) the 

rectangular faces are well developed and dominant, whereas in (b) it is the 

(a) (b) 

Fig. 6.1. Two crystals with the same symmetry and interfacial angles. 

triangular faces which determine the general appearance. Despite this dif¬ 

ference due to the second factor (ii), both crystals show the same polyhedral 

faces and the same symmetry; this is demonstrated by the identity of the 

measured angles between pairs of corresponding faces on the two specimens. 

Indeed by very extensive measurements of interfacial angles, Hauy proposed 

a law of constancy of angle, which stated that in all crystals of the same sub¬ 

stance the angles between corresponding faces have constant values. This law 

is central to all developments in classical crystallography, though its real 

origins do not become clear until we have explored the relations between the 

faces developed by a particular crystal and its atomic structure. We shall dis¬ 

cuss this in Chapter 6.3(a); some other factors important in the growth shapes 

of real crystals are considered in Appendix C. But first, before turning to the 

principles of morphological analysis and their application to real crystals, we 

shall describe the experimental measurement of interfacial angles. 



MORPHOLOGICAL CRYSTALLOGRAPHY 113 

6.2. Methods of measurement 

Any morphological study is based on the accurate measurement of interfacial 

angles, followed by their representation on a projection; each pole on the 

stereogram corresponds to the orientation of the normal to a face of the crystal 

(as in Chapter 3.3), and the distribution of the poles will indicate any sym¬ 
metry in the arrangement of the faces. 

Methods of measuring interfacial angles depend on the nature of the speci¬ 

men and the desirable accuracy. For very large crystals, or when the highest 

accuracy is not important, a simple device known as a contact goniometer can 

be used. This has a graduated semi-circle (like a protractor) with a pivoting 

flat arm (Fig. 6.2). The flat base of the semi-circular scale is placed on one 

face and the flat arm pivoted to lie along the other face; the angle between the 

normals to the faces is read off from the graduated scale. Contact gonio¬ 

meters made of perspex are suitable for elementary work, but for any accur¬ 

ate measurements the instruments have a metal scale and arm with vernier 

attachments. However, opportunities to use these goniometers in accurate 

work is limited by the rarity of crystals of suitable size and quality, and in the 

nineteenth century optical goniometers were developed in which measure¬ 

ments are made by reflecting light from the crystal faces. 
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During the last century, with the flowering of classical crystallography, a 

wide variety of optical goniometers were designed and constructed. It is not 

worthwhile here to recount their construction in detail; many of them are still 

(b) 

Fig. 6.3. Optical goniometers (schematic), (a) Single circle instrument. 
(b) Two circle instrument. 

preserved and in use, and more modern goniometers still employ the same 

general principles as are found in the original designs. The commonest instru¬ 

ment is the single-circle goniometer shown schematically in Fig. 6.3(a). The 

crystal is mounted on an axis through the centre of a graduated circular scale; 
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as it is rotated about this axis its setting is read on the scale. A parallel light 

signal from the fixed collimator is reflected from the first face, and the 

crystal setting is adjusted so that this image is observed on the crosswires of a 

telescope clamped in a fixed position; the angular setting of the crystal is 

noted. The crystal is then rotated about the central axis until the reflection of 

the signal from a second face is on the telescope crosswires; the new setting is 

recorded, when the angular difference between the two positions of the 

crystal is the interfacial angle measured between the normals to the two planes. 

To ensure that the two reflected images are in the same plane as the collimator 

signal and telescope crosswires, the crystal must be mounted so that the edge 

or zone axis formed by the intersection of the planes of the two faces (ex¬ 

tended if they are not adjacent) is parallel to the rotation axis; whilst this is 

roughly achieved by eye, the final orientation is performed with a pair of per¬ 

pendicular arcs with tilts of up to 20-30° mounted on the spindle carrying the 

specimen. The symmetrical arrangement of faces into zones (with parallel 

mutual intersections) allows all the interfacial angles within one zone to be 

measured once the crystal has been adjusted. A preliminary visual examina¬ 

tion identifies such zones, and an initial crystal mounting usually sets the 

most prominent zone axis along the rotation axis; measurements continue 

with re-mounting for each new zone, until every visible face is included in at 

least one zone. More sophisticated optical goniometers are designed to elim¬ 

inate the re-mounting of the crystal necessary after each set of zonal measure¬ 

ments. In the two-circle goniometer, shown diagrammatically in Fig. 6.3(b), a 

second graduated drum is carried vertically so that it can rotate about an axis 

which intersects that of the horizontal circle. When the crystal is set with its 

most prominent zone axis parallel to the axis of the vertical circle, rotations on 

both circles make it possible to obtain reflections of the signal on the telescope 

crosswires from nearly all crystal faces; the recorded settings on the two circles 

allow the angular positions of the faces to be plotted. 

In practice, all optical goniometry requires crystals of a suitable size whose 

well-developed faces are of good quality. When faces have irregularities or 

are imperfectly flat, the reflected signal is distorted (or even multiple) and the 

accuracy of measurement is reduced. Often, the best quality crystals are 

the smallest, but a lower limit of size (usually a few millimetres) is set by the 

necessity of handling the specimen and adjusting it on the goniometer. After 

the most suitable specimen of a batch has been selected a preliminary visual 

examination provides a sketch of its appearance on which faces are labelled 

for identification and probable zonal configurations established. In the sub¬ 

sequent measurement of interfacial angles on an optical goniometer, the 

accuracy depends on the experimental conditions, not least the sharpness of 

the reflected images; with crystals of good quality and modest equipment an 

accuracy of + T is quite usual. After measurement, a stereogram showing the 

angular distribution of the faces is plotted, and on this projection the first 
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task is to recognise any symmetry elements (whose presence may have been 

suspected in the preliminary visual examination) and, if possible, decide the 

crystal class; rotation of the stereogram into a conventional orientation may 

then be required. The detailed examination of the crystal morphology 

involving the selection of crystallographic reference axes and the analysis of 

the polyhedral shape is then completed; we shall consider the nature of this 

analysis in the next section, and a detailed example of a morphological study 

is set out in Chapter 6.5. 

6.3. The morphological analysis of crystal shapes 

(a) General Considerations 

So far, we have referred to crystal shapes as kinds of geometrical polyhedra 

which often have a regularity and symmetry in the arrangement of their faces. 

The particular polyhedron that crystallises for a substance under given cir¬ 

cumstances depends on all the factors that can influence growth; under real 

conditions these can change and distort the crystal faces in a complex way. 

But crystal shapes developed under ideal uniform growth conditions reflect 

the underlying atomic pattern, and the analysis of these ideal shapes is an 

essential part of the background to any morphological studies; in this section 

we shall describe only how the possible regular polyhedra may be discovered, 

and their relationship to actual crystals will be considered in the subsequent 

section. 

A connection between crystal faces and the structural pattern was suspected 

from the earliest days of the subject; Haiiy showed how various shapes could 

be built up by the stacking of fundamental units whose form was character¬ 

istic of the symmetry. Later these units were identified with the various lattice 

cells, though only in this century has it been possible to discern the atomic 

pattern within these cells. As these ideas evolved, it was natural to associate 

the faces of crystals with the families of lattice planes; since each face is 

parallel to a particular stack of lattice planes, there must be a constancy of 

angles between corresponding faces, because all angles are fixed by the cell 

constants of the particular substance. But, as we saw in the last chapter, 

there are an infinite number of different sets of lattice planes (hkl) depending 

on the integers h, k and /; only very few are represented in the finite number of 

faces of a crystal, and these crystal faces usually have low values of h, k and /. 

In a general way we can see that this limitation arises in the assembly of the 

constituent atoms in the growth process, when the lattice planes with the 

fastest growing surface areas are those with the largest number of atoms per 

unit area; faces parallel to these planes will eventually dominate the external 

shape of the growing crystal. This may be pursued to relate the actual ob¬ 

served indices h, k and / of faces to the particular structure, an aspect of 

growth theory mentioned in Appendix C; whatever the validity of the detailed 
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deductions for individual materials, this theory provides a reasonable explan¬ 

ation for the low values of h, k and / generally associated with crystal faces, 

for such lattice planes must have the highest density of atomic material in any 
structure. 

Individual faces of a crystal may therefore be identified by the indices (hkl) 

of the planes to which they are parallel; as we saw in the last chapter, con¬ 

ventional indexing relates to an axial system determined by any symmetry 

elements present, and this ensures that faces reproduced by symmetry have 

related indices. Our crystal polyhedron must display the symmetry of one of 

the thirty-two crystal classes; its allocation to one of these classes (or at least 

a system) enables indices to be assigned to the various faces, but we must also 

disentangle which faces are symmetry related to one another for this is 

important in analysing the nature of the particular polyhedron. It is best to do 

this as an exercise in which all polyhedral forms consistent with all point 

group symmetries are worked out; any ideal crystal belonging to a particular 

class must have a shape built up of one or more of these forms. As usual the 

stereogram is invaluable in this exercise, and we have already shown the 

projections of symmetry related general poles in Chapter 4.2; in each class 

the distributions represent a possible geometric polyhedron displaying the 

appropriate symmetry elements. In morphological terms the set of symmetry 

related planes constituting each polyhedron is known as a (crystal) fornv, 

symbolically a form is written by placing the integers of one of its faces in 

braces, so that {hkl} represents the assemblage of faces reproduced by the 

operation of the point group symmetry on the face (hkl).* The shapes defined 

by these earlier stereograms are known as the general forms of each class, but 

in nearly every case there are other different shapes that are consistent with 

the same point group symmetry. These special forms are the assemblage of 

faces reproduced by the point group symmetry acting on a face in a position 

preferentially related to the symmetry elements; there may be several special 

forms in a class, each with a different shape, and all different from the general 

form for that class. Again we can use the stereogram to discover possible 

special forms as illustrated in Fig. 6.4 for class 4/m. The upper stereogram 

shows the distribution of poles for the general form {hkl}; beside it is the 

polyhedral shape represented by these poles, known as a tetragonal bipyra¬ 

mid, the general form of this class. The representative shown is, of course, 

only one of the family of tetragonal bipyramids all with the same general 

appearance but having different interfacial angles; the particular member of 

the family is specified by the integers h, k and /. The middle stereogram shows 

the distribution obtained when an initial pole is placed on the symmetry 

plane around the primitive, i.e. it is the special form developed by the 

* The analogous grouping of zone axes obtained by the operation of the point group 
symmetry on a direction [UVW] is usually expressed symbolically (.UVW), though some 
objections have been raised to this and an alternative version is \[UVW]\ 
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operation of the point group symmetry on a face (MO). The faces of the form 

{MO} for this class are shown on the right as a tetragonal prism. This has four 

perpendicular faces, and is not an enclosed polyhedron; such distributions 

are called open forms and cannot exist independently but must occur in com¬ 

bination with other forms. Although the faces of any {MO} always have the 

MO 

— 

• ^ 
khO 

{MO} Tetragonal prism 

(4 faces) 

Fig. 6.4. Forms in the class 4/m. (a) General form {hkl}. (b) Special 
form {MO}, (c) Special form {001}. 

same interfacial angles (90°), particular values of the integers h and k are 

needed to define its orientation with respect to those other forms with which 

it is combined. The only other special form in this class is shown in the lowest 

stereogram of the figure; in this the initial pole is placed on the tetrad axis. 
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The form {001} is a pair of parallel planes, usually called a pinacoid, normal 

to the tetrad axis; again it is an open form, but it is unique in that the integers 

are specified. Ideal polyhedral crystals of any substance with symmetry 4/m 

must have shapes which are either any closed form (a tetragonal bipyramid) 

alone or combinations of forms, open and closed; the crystal of Fig. 6.1 com¬ 

bines a tetragonal bipyramid and a prism and could be an example of this 

class (though see the discussion in Chapter 6.4). 

To summarise, the analysis of crystal shapes involves three stages: (i) the 

determination of crystal class, (ii) the recognition of the different forms, 

special and general, which may be present, and (iii) the choice of a suitable 

axial system and the assignation of indices to the faces of the various forms. 

We have dealt with the principles of (i) and (iii) in earlier chapters, and prac¬ 

tical problems that can arise are discussed shortly; some account of (ii) has 

been given above, and an exhaustive approach to morphological analysis 

would now require the treatment exemplified by the discussion of 4/m to be 

repeated in the other thirty-one classes. This is tedious and less rewarding 

than in the past owing to the diminished importance of morphological studies 

in modern crystallography. Excellent detailed accounts are given in other 

books mentioned in the bibliography, and in the rest of this section we shall 

only derive the special and general forms for the holosymmetric classes of 

each system by way of illustration. 

(b) Triclinic holosymmetric class (T) 

There are no symmetry elements other than the centre, and so there is no real 

distinction between special and general forms; all forms {hkl} are pinacoids, 

and crystals must show a combination of these sets of parallel planes (Fig. 

6.5). (In terms of a chosen axial system, the pinacoids are sometimes given 

descriptive adjectives, e.g. {001} is often called the basal pinacoid; but this 

distinction is only of convenience and there is no real difference between the 

planes {001} and any other pinacoid {hkl}.) 

(c) Monoclinic holosymmetric class (2/m) 

Now a distinction between the special and general forms must be recognised; 

their stereograms and geometrical configurations are shown in Fig. 6.6. There 

are three types of form;,the general form {hkl} is a prism, and the special forms 

{010} and {hOl} are both pinacoids. This is one of the commonest classes, and 

a large number of substances with this symmetry crystallise polyhedra which 

are a combination of these forms; an example is shown in the figure. (Again 

in terms of a chosen axial system, various descriptive adjectives are often 

employed (see Phillips, p. 76).) 

(d) Orthorhombic holosymmetric class (mmm) 

The closed general form {hkl}, a bipyramid, together with the special forms 
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{hkO}, {hOl}, {0kl} as prisms and {100}, {010}, {001} as pinacoids, are shown in 

Fig. 6.7. This class is almost as common as 2/m, and most crystals show com¬ 

binations of forms, as in the illustration. (Once again the descriptive ter¬ 

minology is often supplemented after an axial system has been chosen, even 

to the use of different names, e.g. ‘domes’ for the prisms {hOl} and {0kl} (see 

Phillips, p. 70).) 

z 
i 

{hkt\ Pinacoid 
(2 faces) 

(a) 

z 

X 

(b) 

Fig. 6.5. Forms in the class I. (a) General (and special) form {hkl}. 
(b) A crystal of CuS04.5H20 showing the forms {010}, {100}, {llO}, 
{110}, {130}, {111}. 

(e) Trigonal holosymmetric class (3m) 

The special and general forms will be described by means of the Miller- 

Bravais four-axis indexing system (Chapter 5.4(g)). The general form {hkil} is 

known as a ditrigonal scalenohedron; there are five distinctive special forms, 
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{Mf} Prism 
(4 faces) 
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{hOfl Pinacoid 
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(d) 

Fig. 6.6. Forms in the class 2/m. (a) General form {hkl}. (b) Special 
form {hOl}. (c) Special form {010}. (d) A crystal of orthoclase (KAlSi308) 
showing general forms {110}, {130}, {021}, {Ill} in combination with the 
special forms {010}, {20l}, {001}. 
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Fig. 6.7. Forms in the class mmm. (a) General form {hkl}. (b) Special 
form {hkO}, {hOl} and {0kl}. (c) Special forms {100}, {001} and {010}. 
(d) A crystal of PbS04 showing general form {111} in combination with 
special forms {101} and {001}. 
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•^y 

Fig. 6.8. Forms in the class 3m. (a) General form {hkil} (i is a negative 

integer, —(A + k)). (b) Special form {hhlhl}. (c) Special forms {hOkl} 
and (0kJcl). (d) Special form {hkiO}. (e) Special forms {1120} and {10l0}. 
(f) Special form {0001}. (g) A crystal of calcite, CaC03, showing the 
general form {2131} in combination with the special forms {1011} and 
{1010}. 
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most of which emphasise geometrically the special relationships between the 

trigonal and hexagonal systems (Fig. 6.8); {hhlhl} is a hexagonal bipyramid, 

{hkiO} is a dihexagonal prism, {lOlO}, {1120} are hexagonal prisms, {0001} is a 

pinacoid, all shapes to be found in one or other of the hexagonal classes. 

The only specifically trigonal special forms are {hOhl}, {0kkl}, as rhombo- 

hedra, a shape to be found only in this and other trigonal classes. One of the 

commoner minerals, calcite, a form of CaC03, crystallises in this class with a 
wide variety of different forms; an example is shown in the figure. 

(/) Tetragonal holosymmetric class (4/mmm) 

By comparison with mmm, the list of special forms must lengthen; for 

example, a distinction must be now made between the family {M0} and {110}, 

for the pole (110) is in a more symmetrical position than (M0). The general 

form {M/}, a ditetragonal bipyramid, and the various special forms, {hOl}, 

{hhl} as tetragonal bipyramids, {M0}, a ditetragonal prism, {100}, {110} as 

tetragonal prisms and {001} as a pinacoid are shown in Fig. 6.9; a zircon 

crystal with a combination of various forms is also illustrated. 

(g) Hexagonal holosymmetric class (6/mmm) 

The general form {hkil} is a dihexagonal bipyramid; this is shown in Fig. 6.10, 

together with the special forms {hOhl}, {hhlhl} as hexagonal bipyramids, 

{M/0} as a dihexagonal prism, {10l0}, {1120} as hexagonal prisms, and {0001} 

as a pinacoid; a combination of some of these forms found on a crystal of 

beryl, a semi-precious mineral, is also illustrated. 
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Fig. 6.9. Forms in the class 4/mmm. (a) General form {hkl}. (b) Special 
forms {hOl} and {hhl}. (c) Special form {MO}, (d) Special forms {100} and 
{110}. (e) Special form {001}. (f) A crystal of zircon ZrSi04 showing the 
general form {211} in combination with the special forms {101}, {110} and 
{100}. 
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{hk/f} Dihexagonal bipyramid 

(24 faces) 
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{hOhf} Hexagonal bipyramid 
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{hki6} Dihexagonal prism 

(12 faces) 

Fig. 6.10. Forms in the class 6/mmm. (a) General form {hkil} (/ is a 
negative integer, —{h + k)). (b) Special forms {hORl} and {hhThl). 
(c) Special form {M/0}, (d) Special forms {1010} and {1120}. (e) Special 
form {0001}. (f) A crystal of beryl, Be3Al2Si6018, showing the general 
form {2131} in combination with the special forms {1121}, {1011}, {1010} 
and {0001}. 
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Fig. 6.11. Forms in class m7>m. (a) General form {hkl}. (b) Special form 
{MO}, (c) Special form {hll}(h > /). (d) Special form {hhl}(h > l). (e) 
Special form {111}, (f) Special form {110}. (g) Special form {100}. (h) A 
crystal of garnet, X3Y2(Si04)3 with X = divalent metal, Y = trivalent 
metal, showing a combination of the special forms {211} and {110}. 
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(h) Cubic holosymmetric class (m3m) 

This class has the largest number of symmetry elements, and as such has the 

greatest complexity in the varieties of form shapes; all special forms are closed, 

and can often be found alone for substances crystallising with this symmetry. 

The general form {hkl} is a hex(akis)octahedron (Fig. 6.11) and it is perhaps 

worthwhile to consider the generation of special forms shown in this figure a 

little more carefully than hitherto. Firstly, the initial pole to derive the special 

form may be placed in a general position on one of the symmetry planes; 

taking h > l, this leads to three different families, in which {hkO} is a tetra- 

hexahedron,{M}isanicositetrahedron,and{/z/z/} is a tri(aki)soctahedron. Next 

we can explore initial locations in more symmetrical positions on symmetry 

axes; these lead to the unique special forms {110}, the rhombic dodecahedron 

for the diad, {111}, the octahedron for the triad, and {100}, the cube for the 

tetrad. Crystals belonging to this class are relatively common, particularly 

among metals and simple compounds such as metallic oxides and sulphides, 

z 

(h) 
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alkali halides, etc.; the illustration, however, shows a typical combination of 

forms found in crystals of garnet, another semi-precious mineral. 

6.4. The external shapes of real crystals 

In the earlier morphological analysis any ideal polyhedral crystal has a shape 

determined by the form or combination of forms that develop during growth; 

the description of the crystal is made in terms of its class and the indices of the 

forms present. Even under perfect growth conditions the physical appearance 

(b) 

Fig. 6.12. Different habits in crystals of barytes, BaS04. Both crystals 
show the forms {210}, {101}, {011} and {001}; (a) is tabular due to the 
dominance of {001}, whilst (b) is prismatic due to the dominance of {210}. 

can be profoundly changed by the relative developments of the forms in 

combination (as already shown in Fig. 6.1). As a further example, the two 

crystals of barytes, BaS04, in Fig. 6.12, are crystallographically identical 

(class mmm, a:b:c = 1-629:1:1-312, with the forms {210}{011}{101} and 

{001}) but are apparently quite different at first sight; in (a) {001} is the 

dominant form giving the flat appearance, whilst in (b) the crystal appears 

elongated due to the dominance of the prism {210} faces. Although these 
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differences are not of any vital crystallographic significance, morphological 

description is incomplete until a statement about the relative importance of 

faces and forms is made; this usually refers to the crystal habit. Descriptions 

of habit are given in a variety of ways, sometimes, as above, by naming the 

dominant forms or sometimes by general descriptive terms; the two barytes 

crystals, for example, might be said to differ in that (a) has a tabular (or 

flat) habit, whilst the elongated crystals of (b) have a prismatic (or acicular) 

habit. Changes in the habit of crystals of the same material are usually due 

to different crystallisation conditions, e.g. concentration of solution, tempera¬ 

ture gradients in the solution, impurities, etc. all of which can have a marked 

effect both upon the habit and the particular forms that crystallise. More¬ 

over these factors can lead to distortion of the ideal regularity for they can 

cause preferential development of some but not all faces of a particular form; 

if during the growth of a cube they cause one pair of faces to develop faster 

than the others, the actual crystal will appear tabular rather than equi-dimen- 

sional. It should be emphasised that none of these changes which distort 

the habits of real crystals can affect the fundamental constancy of interfacial 

angles which will always be apparent after measurement and projection, 

but nevertheless they are confusing to the inexperienced eye. 

Even when the complexities of habit shown by actual crystals are dis¬ 

counted, there is a much more important problem in any morphological 

study which relates to the determination of symmetry. This can be illustrated 

by the crystals of Fig. 6.1, which we said earlier might belong to class 4/m and 

be described as a combination of the general form {hkl} with the special form 

{hkO}. Now these crystals have been drawn so that both the tetragonal bi¬ 

pyramid and prism have the integers h and k in common; in this case, the 

resulting crystals apparently have more symmetry than 4/m (it could be as 

high as 4/mmm), and we could well be in doubt as to the true symmetry. This 

reflects a real problem in symmetry determination by morphological study 

alone, for some forms (particularly special forms) occur in several different 

classes; when only these are present, there must be some ambiguity in crystal 

class, and the crystals of Fig. 6.1 could belong to any one of the classes 4/m, 

42, 42m and 4/mmm. Another obvious example is the cube which occurs as 

the special form {100} in all cubic crystals, so that substances crystallising 

exclusively with this shape may belong to any one of the five different classes. 

However, there are usually particular diagnostic combinations of forms which 

give a certain indication of particular point group symmetry, and often the 

occurrence of a general form is sufficient. In systematic morphology, there 

must be a tabulation of all forms possible in the classes of the various systems 

with a subsequent consideration of their diagnostic significance in the deter¬ 

mination of crystal class; such a tabulation and evaluation is given in Buerger, 

pp. 172-5. This demonstrates that, whilst most point groups can be recog¬ 

nised with certainty when critical forms are present, doubts must remain in 
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the allocation of crystal class if the crystals under examination do not exhibit 

these forms. An additional hazard for the morphological crystallographer lies 

in the occurrence of twinned crystals (a form of composite crystal discussed in 

detail in Appendix D); in some crystals the growth process develops an imita¬ 

tive (or mimetic) twinning, sometimes on a sub-microscopic scale so that the 

composite crystal has a physical appearance consistent with a symmetry 

greater than that actually possessed by the structure. 

In view of all the experimental difficulties and the subsequent interpretative 

pitfalls, it is a great tribute to the early morphological crystallographers that 

many of their results have suffered little or no later modification. These 

classical crystallographic studies provided the basis for all theories of the 

crystalline state until the advent of X-ray diffraction. So powerful was the 

influence they exerted that in the early years of this century a project was 

begun which aimed to recognise and characterise all compounds by their 

crystalline morphology; the resulting Barker index, although its original pur¬ 

poses were overtaken by events, remains an outstanding record of the 

achievements of the morphological crystallographer. Diffraction studies, be¬ 

gun in 1912, free the modern crystallographer from the necessary limitations 

of well-developed growth forms, and broaden the materials for study to the 

whole of the solid state; morphological work (where appropriate) provides 

only a small part of the total spectrum of data obtained mainly by other 

methods of examination. In general, these other techniques are physical in 

nature; as well as diffraction studies, which we shall consider at some length 

in later chapters, they involve other tests for symmetry described in Chapter 

11, many of which were used by the morphologist to supplement the prime 

information contained in the crystal shape. As we shall see, many problems 

that defeated the earlier crystallographers can now be resolved but, as com¬ 

monly happens, more refined difficulties appear; doubts as to the allocation of 

materials to a crystal class are far less common than when morphological 

studies were supreme, but in some cases symmetry determination can still 

prove a difficult and even intractable task. 

6.5. An example of a morphological study 

To conclude this chapter on crystal shapes, we shall describe a detailed mor¬ 

phological examination to illustrate this kind of work. The well-developed 

crystal X selected for study is sketched in Fig. 6.13; it appears to be highly 

symmetrical, and even from the sketch some symmetry elements are obviously 

present. Nevertheless ab initio these (and any other) elements must be de¬ 

duced from a stereographic projection constructed from goniometric measure¬ 

ments; using a single-circle instrument, the measured values of interfacial 

angles in various zones are given in Table 6.1. Zone 1 appears to have the 

most important development of faces with some interfacial angles of 90° 



Table 6.1. Values of interfacial angles determined on a single-circle goniometer for the 
crystal X 

Zone 1 Zones 2 3 4 5 

a 
26° 34' 

a a e e 
39° 39' 

b 
18° 26' 
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28° IT 

c 
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(e.g. ae), suggesting that the zone axis is in the direction of a symmetry ele¬ 

ment and that there may well be some orthogonality in the axial system; we 

will start the projection by placing this zone around the primitive (Fig. 6.14), 

though a re-orientation of the stereogram could still be required after sym¬ 

metry elements are recognised. Next we must locate the zones 2, 3, 4, 5 con¬ 

taining faces within the primitive; this may be done by first plotting a face 

common to two of these zones. For example, the measurements listed for 

Fig. 6.14. Stereogram of crystal X. Letters labelling faces are beneath 
poles in upper hemisphere and above poles in lower hemisphere. Indices 
are shown only for positive integers. 

zones 2 and 4 both contain the face q, with aq = eq — 68° 06'; small circles of 

this angular radius about the poles a and e on the primitive intersect at#, after 

which all poles on zones 2 and 4 can be plotted. Zones 3 and 5 are now drawn, 

for the poles u and v respectively in these zones are already on the projection. 

The completed distribution of poles is consistent with the tetragonal sym¬ 

metry 4/mmm, for which the stereogram is conventionally orientated. For 

this class, the forms present are a general form {a}, a ditetragonal bipyramid, 

and the special forms {/} and {#}, tetragonal bipyramids, {b} a ditetragonal 
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prism, and {a} and {c}, tetragonal prisms. The presence of {a}, confirms the 

point group symmetry for the ditetragonal bipyramid is unique to this class 

(had it not been developed the remaining faces could also be found as forms 

in classes 42m and 42). In this system, the crystallographic axes are ortho¬ 

gonal; the z-axis must be chosen along the tetrad axis, but, as we have seen 

before, the selection of the x- and y-axes is arbitrary. From the crystal shape 

there is no evidence as to the choice which would correspond to a minimum 

volume cell, and we can only proceed in accordance with the expectation that 

the faces of any crystal have simple indices. There are two reasonable possi¬ 

bilities. (i) We can use the directions of the normals to the faces a and e as x- 

and y-axes respectively; or (ii) we can choose the normals to c and g as these 

reference axes. Any guidance on a final choice between (i) and (ii) could only 

come from experience in previous examinations of similar crystals, and lack¬ 

ing this, we will choose (i); the tetragonal prisms {a} and {c}, must therefore be 

indexed as {100} and {110} respectively. All other faces on the primitive belong 

to the ditetragonal prism {b} and may be immediately indexed before the 

choice of axial ratio; since 

this form is {210}. 
At this point, a choice of parametral plane cannot be avoided. In any tetra¬ 

gonal crystal, its pole must be on the radius containing c and q bisecting the 

x- and y-axes, but again the crystal shape cannot provide evidence as to the 

position required by the dimensions of the minimum volume cell; as before, 

we must proceed arbitrarily but in accordance with the desire to keep face 

indices small, so that the face q is a reasonable choice. This indexes one tetra¬ 

gonal bipyramid {q} as {111}, and requires all other faces within the primitive 

to be indexed in terms of this parametral plane. By zonal relationships on the 

stereogram J is (101), so identifying the second tetragonal bipyramid as {101}. 

The remaining faces are those of the general form one of which, a, is at the 

intersection of the zones (100)(111) and (210)(101), which cross-add to give 

its indices as (311); the particular bipyramid present on this crystal is {311}. 

The study is now complete except for the determination of the value of the 

corresponding to the choice of parametral plane and a 

statement about the crystal habit. The formal record of crystal X is then: 

Class 4/mmm c/a — 0-439 

Forms {311}, {111}, {101}, {210} and {100}. 

Habit Elongated parallel to the prism zone. 

6.6. Exercises and problems 

(Note. Many of these problems can be solved by application of the methods of 
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Appendix B; it will also be necessary to refer to Appendix D for those 
involving twinning in crystals.) 

1. Use sketch stereograms to find the number of distinct forms, special and 

general, in each of the following crystal classes (i) m, (ii) 222, (iii) 3m, (iv) 

42m, (v) 6, (vi) m3. In each case list the number of faces possessed by the 
form and try to sketch its appearance. 

2. (i) In which classes of the trigonal system is the rhombohedron to be 
found as a special or general form ? 

(ii) In which classes of the tetragonal system is the tetragonal bipyramid 

to be found as a special or general form? 

(iii) In which class of the hexagonal system does the hexagonal prism not 

occur as a special or general form? 

(iv) In which classes of the cubic system does the trisoctahedron occur as a 

special form? If a crystal also showed the faces of a tetrahexahedron, 

which of these possible classes would be eliminated ? 

3. Many simpler crystals of a common mineral are described as: Class 2/m, 

a:b:c = 0-659:1:0-554,/I = 116° 01', showing the forms {001}, {010}, {110} 
and {l01}; habit, either prismatic or elongated parallel to the x-axis. 

(i) Draw a stereogram showing all the faces of these forms. 

(ii) Determine the angles between faces in the zones [010] and [001]. 

(iii) Make sketches of crystals with the two different habits. 

(iv) Crystals are often twinned with [001] as twin axis. Insert the twinned 

positions of faces on your stereogram, and determine the angle (001)(l01). 

4. Goniometric measurements were made around zones on the upper half of 

a centrosymmetric crystal as follows: 

Zone 1 Zones 2 3 4 5 Zone 6 

a a c a' c' b 
45° 00' 35° 10' 52° 46' 

b g i i 0 e 

o
 

o
 

o
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(i) Determine the crystal class. 

(ii) If g is indexed as (311), complete the description of this crystal. 
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5. A crystal of class 32 shows the forms {1010} and {3141}, and measurement 

shows that (10l0)(3141) = 22° 41'. Determine the axial ratio. Other 

crystals of the same substance are frequently twinned about the z-axis. Find 

the angle (3141)(3141) for such crystals. 

6. It is known that a substance belongs to the hexagonal system, and the 

external shapes of most of its crystals combine basal pinacoid, hexagonal 

prism and hexagonal bipyramid, which are indexed as {0001}, {10l0} and 

{1121} respectively; measurement gives the angle (0001)(1121) = 55° 46'. 

What are the possible crystal classes ? A rare crystal of this substance shows 

two further small faces in the zone [Ol.l]; goniometric measurement 

reveals that one of these faces is inclined at 30° 19' to (lOlO), and that the 

second face is the opposite of the first. To what form do these faces 

belong ? If its presence were confirmed, what is the probable crystal class ? 

7. A certain element shows crystals which are perfect regular hexoctahedra 

{321}. Draw accurate representations of central sections cut through these 

crystals (a) parallel to the plane (100), (b) parallel to the plane (110). 

8. Common crystals of a particular mineral are described as class mmm, 

a'.b'.c = 0-677:1:1 • 188, showing the forms {hkO} and {0kl}. If (hk0)(hk0) = 

68° 13' and (0kl)(0kl) — 33° 05', index the forms of this morphological 

description. Later X-ray measurements were made in which the cell di¬ 

mensions were chosen as a = 9-51, b = 5-65, c = 6-42 (all in A). Show 

how this cell can be reconciled with the morphological axial ratios, and 

re-index the two common forms in terms of the X-ray cell. 
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7 
THREE-DIMENSIONAL LATTICE 
TYPES AND SPACE GROUPS 

7.1. Lattice types 

(a) Methods of Derivation 

In the past few chapters the symmetries of point groups and their application 

to crystal classes and systems have been considered at some length; our dis¬ 

cussions, although implicitly bounded by the existence of translational repeti¬ 

tion, have not required a systematic development of the space lattices that can 

exist in crystalline matter, but in the further development of pattern theory 

this can no longer be delayed. The importance of planar lattices in two- 

dimensional patterns was described in Chapter 2, and before embarking on a 

discussion of their three-dimensional analogues it is worthwhile to re-state in 

the appropriate terms some of the principles set out in that chapter. 

Any lattice associated with crystalline matter can be described as a regular 

repetitive pattern of points in space such that the environment of every point 

is identical; in a crystal structure each lattice point may be regarded as repre¬ 

senting the pattern motif, a separate atom or a grouping of similar or dissimi¬ 

lar atoms. The array of lattice points can be produced by the repetitive 

operations of three non-coplanar lattice translations. The repeats of any three 

lattice rows can be chosen to outline a lattice cell, but there are conventional 

advantages in selecting this cell to be of minimum volume. Moreover, some 

arrangements of lattice points are related by symmetry operators, and any 

systematic nomenclature related to the choice of cell is simplified if the con¬ 

ventional selection is made in accordance with this symmetry. In effect this 

implies that for a given array the most suitable cell has a shape fixed by cer¬ 

tain symmetry criteria, and that we must choose a cell of this shape with 

minimum volume. It follows that for some space lattices the most suitable 

cell contains more than one lattice point per cell and is multiply primitive, 

just as in others the cell is singly primitive. The symbolism of the various cell 

types is simple; P (to contrast with the planar analogue p) denotes a (singly) 

primitive lattice cell, and the other symbols in common use are listed in 
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Table 7.1. In this section we shall establish the total number of space lattices 

of each shape, singly or multiply primitive, that can be recognised in crystal¬ 

line matter. 

Table 7.1. Symbols for types of lattice cell 

Symbol Meaning Lattice points 
per cell 

A Centring of cell faces defined by the b and c lattice 
translations; with these as the y and z crystallo¬ 
graphic axes it could be said that this cell is centred 
on (100) planes. 2 

B Centring of cell faces defined by the a and c lattice 
translations, i.e. on (010) planes. 2 

Ca Centring of cell faces defined by the a and b lattice 
translations, i.e. on (001) planes. 2 

F Centring of all cell faces. 4 
/ An extra lattice point at the centre of the cell. 2 
i?a Used to denote a primitive rhombohedral cell. 1 

a The symbol (C) was also formerly used for a primitive hexagonal cell; this is now 
simply denoted by P. The extra primitive symbol (R) is necessary to distinguish trigonal 
crystals which have a minimum volume cell of rhombohedral rather than hexagonal 
shape. 

In Chapter 4.2 we have already linked cell shape and crystal system and, in 

particular, set down the essential symmetry criteria for each of the seven 

crystal systems (Table 4.1); the problem of the possible space lattices can be 

approached by trying to build up distributions of lattice points which con¬ 

form to these criteria expressed in terms of the presence of symmetry axes. 

Any spatial arrangement of lattice points can be regarded as the repetition of 

a planar array by a third non-co-planar lattice translation, and in Chapter 2.2 

we have already determined the five distinctive planar lattices and the maxi¬ 

mum symmetry with which each is consistent (Figs. 2.7 and 2.9). In stacking 

planar layers to build up a symmetrical space lattice we must use layers in 

which the points have the correct symmetrical array and ensure that their 

superposition preserves an appropriate regularity of points in the lattice as a 

whole; this will impose restrictions on the kinds of stacking pattern that are 

permissible. In particular, to build up a distribution of lattice points consis¬ 

tent with an n-fold symmetry axis the procedure should be: 

(i) select the planar lattice which has an w-fold axis normal to its plane; 

(ii) place the second layer of the stack parallel to the first so that the direc¬ 

tions of the ra-fold axes are in register. Since there are often several 

different 72-fold axes intersecting the planar cell at different points, there 

may be several different placements for the second layer; 

(iii) for each alternative stacking position, use the relative positions of the 

two layers to define stacking vectors whose repetitive operations re- 
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peat the planar lattice layers. Each stacking vector D can be specified 

by its components uvw parallel to the lattice translations of the planar 

layer and the normal to the layers; thus when the two layers are exactly 

above one another the stacking vector has components OOw. 

(iv) all possible distributions of lattice points are discovered by continuing 

for each different D to stack successive layers with the same relative 

displacements. 

After this has been carried out for a particular system it remains to select suit¬ 

able cells for each distribution; comparison of these cells will tell us whether 

or not all the lattices are different and so allows us to establish the number of 

distinctive lattice types. In the rest of this section a method of this kind is 

applied system by system. 

(b) Triclinic System 

This has no rotational symmetry, and, whilst any planar lattice could be used 

b 

Fig. 7.1. Triclinic space lattices, (a) The oblique p-lattice and its maxi¬ 
mum symmetry, (b) The stacking of the first two layers; the stacking vec¬ 

tor D has components uvw. (c) The conventional projection of the cell of 
the triclinic /’-lattice normal to (001); for simplicity the displacements 
of the upper lattice points due to the non-orthogonality of the lattice 
translations is not shown. 
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to form a general unrelated array of points in space, it is preferable that we 

should build this up from oblique p-lattices with generally inclined lattice 

translations. (In a way, this recognises that the least symmetrical cell shapes 

consistent with the symmetry are those which will be found in practice. In 

theory, there is no reason why a triclinic lattice should not have a cube cell 

provided that the atomic groupings associated with the lattice points destroy 

all the symmetry inherent in such a shape.) Such planar layers have diad sym¬ 

metry (Fig. 7.1) but the stacking pattern is unrelated to this; the first two layers 

can have any relative displacement with a general stacking vector uvw. Repeti¬ 

tion of this type must build up a space lattice without any symmetry in which 

there is an infinite number of ways of choosing a primitive cell of minimum 

volume. Conventions which govern the most suitable selection have already 

been described in Chapter 5.4(a), but there can be only one triclinic lattice 

type (P). 

(c) Monoclinic System 

Conventionally the direction of the essential diad is chosen as the >>-axis, so 

that the lattice translations of the rows of the oblique /^-lattice are a and c 

inclined at /3. We must now preserve the symmetry normal to the layers, and 

this restricts the relative displacements of the first two layers. There are four 
C Cl 

alternative arrangements for which the stacking vectors are 00w, O^w, -Ovv 

and “W (Fig. 7.2); we notice generally that unless u = v = 0 the completion 

of a stacking sequence does not occur until further layers are added. In all 

four cases the cells have the characteristic monoclinic shape of an oblique 

parallelipiped, but there are only two different lattice types P and C(= A 

— I); the equivalences are demonstrated in the figure, and arise because we 

can choose alternative lattice translations within a layer as the cell edges a 

and c (cf. the discussion of multiply primitive oblique planar lattices related 

to Fig. 2.8). 

{d) Orthorhombic System 

In Table 4.1 the minimum symmetry for this system is given as 222; in the 

present context it is convenient to re-state this as 2mm (= 222), a legitimate 

modification for inversion and rotation axes may be interchanged in lattices 

(see Chapter 4.2(a)). This symmetry is consistent with planar rectangular 

lattices of both types, p and c. Again the preservation of this essential sym¬ 

metry restricts relative displacements in the stacking of the layers; for both 

planar lattice types there are four different arrangements of the first two layers 

with stacking vectors 00w, O^tv, ^0w and (Fig. 7.3). The eight cells for the 
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resultant space lattices all have the characteristic orthorhombic shape of a 

rectangular parallelipiped, but several of them prove to be identical when 

lattice translations are relabelled. In orthorhombic crystals there are four dif¬ 
ferent lattice types P, C(= B = A), I and F. 

(b) 

c 

Fig. 7.2. Monoclinic space lattices, (a) The oblique p-lattice and its 
monoclinic symmetry elements, (b) The alternative stacking of the first 

two layers; the stacking vector D has possible components 00tv, 0 - w, 

| Ow and || w. (c) Projections of the cells of the four resultant space 

lattices normal to the layers. 

(e) Trigonal System 

In the definition of crystal systems we decided that point groups which have a 

triad symmetry axis and which can be consistent with a rhombohedral cell 

shape should be allocated to a separate trigonal system; in making this 
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distinction it was recognised that the same point group symmetries could 

also be found in crystals with hexagonal cells. We can now explore the 

origins of these alternative lattices and detailed relationships between the 

rhombohedral and hexagonal indexing of trigonal crystals described in 
Chapter 5.4(g). 

First layers unshaded, planes of second layer shaded 

(b) 
a 

Fig. 7.4. Trigonal space lattices, (a) The hexagonal p-lattice and its tri¬ 
gonal symmetry elements, (b) The alternative stacking of the first two 

layers; the stacking vector D has possible components 00w, y ^w» and 

j —w. (c) Projections of the cells of the three resultant space lattices 

normal to the layers; note that the R cells require three layers to com¬ 
plete. 

The alternative lattice arrays for trigonal crystals can be derived in the 

usual way by the stacking of hexagonal /^-lattices. The maximum symmetry of 

hexagonal p-lattices is that shown in Fig. 2.7, but in trigonal crystals the 

hexads of this figure may be replaced by triads (whose repetition they include) 

to give the symmetry of Fig. 7.4. To preserve these essential triad axes, there 
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are three different positions for the second layer which define stacking vectors 

00w, $a$aw and $a$aw. The space lattice formed by stacking with 00 w has a 

cell with the shape of a 60° rhombus-based prism, and is the hexagonal P lat¬ 

tice; the other two form lattices in which the minimum volume cell is a 

rhombohedron. These rhombohedral cells (shown in the figure) are both 

primitive, and are symbolised R to distinguish them from the hexagonal P 

cell. Apart from rotation through 180° about the normal to the layers the R 

cells are identical. 

o 

c c 

Fig. 7.5. Triply primitive hexagonal cells used to index rhombohedral 
crystals on the Miller-Bravais system. The alternative choices are shown 
in projection at the top and in perspective at the bottom; the obverse 
cell is on the left, the reverse cell on the right. 

The second relevant problem is the nature of the multiply primitive hexa¬ 

gonal cell employed when crystals with an R lattice are indexed on the Miller- 

Bravais system. Fig. 7.5 shows a projection of planar hexagonal layers stacked 

to form a rhombohedral lattice; from these points we can choose a triply 

primitive hexagonal cell of the same height as the rhombohedral cell in two 

different relative positions (the obverse and reverse orientations). Either 

orientation of the triply primitive hexagonal cell can be used for indexing by 

the Miller-Bravais method; from the diagram we see that the matrices relat¬ 

ing the axes of the cells are 
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R -> Triple hexagonal Triple hexagonal -> R 

2 1 1 
1 T 0 

3 3 3 

0 1 I I 1 1 

3 3 3 

1 1 1 I 2 1 

3 3 3 

Obverse 
orientation 

R -> Triple hexagonal Triple hexagonal -> R 

1 0 T 
1 1 1 

3 3 3 

I 1 0 
1 2 1 

3 3 3 

1 1 1 2 I 1 

3 3 3 

Reverse 
orientation 

These matrices may be used as described in Chapter 5.2 to relate rhombo- 

hedral plane indices (pqr) to Miller-Bravais plane indices (hk. /); the symbol 
i (= — {h + k)) is omitted. 

(/) Tetragonal System 

With an essential tetrad axis, tetragonal space lattices must be built from 

layers of planar square lattices. There are two different arrangements of the 

first two layers, whose relative displacements are described by the stacking 

vectors OOw and (Fig. 7.6). In the resultant arrays of lattice points, the 

unit cells are square-based prisms of the two tetragonal lattice types P and I. 

(g) Hexagonal System 

If this system is restricted to those point groups with a hexad axis, the space 

lattices must be formed by stacking hexagonal p-lattices which are consistent 

with this symmetry (Fig. 7.7). The layers can only be stacked exactly in 

register if the hexads are to be preserved, so that the stacking vector OOw leads 

to an array with a primitive hexagonal cell (P). 

(h) Cubic System 

This system is slightly more difficult to discuss in that the lattice array must 

display four equally inclined triad axis directions. Although it is possible to 

examine lattice layers normal to these essential axes, it is simpler to consider 

layers normal to the three perpendicular directions to which the triads are 

equally inclined (see the operation of triad axes in Chapter 3.3 and 4.2(f)). 
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These layers have diad symmetry in some cubic classes but are normal to 

tetrad axes in the more symmetrical classes. In this way cubic lattices are con¬ 

structed by stacking planar square lattices. However, the placements of succes¬ 

sive layers within the stack is more critical than before, in that the spatial array 

Normals to layers 

First layers unshaded, planes of second layers shaded 

(b) 

P I 

(c) 

Fig. 7.6. Tetragonal space lattices, (a) The square p-lattice and its tetra¬ 
gonal symmetry elements, (b) The alternative stacking of the first two 

stacking layers; the stacking vector D has possible components 00tv and 

(c) Projections of the cells of the two resultant space lattices 

normal to the layers. 
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of lattice points must be consistent with the triad axes inclined to the planes of 

the stack; this requires the component of the stacking vector w to have speci¬ 

fic values to give three identical mutually perpendicular lattice translations 

related by the triads. This can be achieved in either of the two ways shown in 

Fig. 7.8; these show the triad axes contained in one or other of the two inde¬ 

pendent sets of symmetry planes that will develop as the planar nets are 

stacked. From the two placements of successive layers for each orientation of 

Normal to layers 

f" Second layer 

D 

First layer 

(b) 

(c) 

Fig. 7.7. Hexagonal space lattices, (a) The hexagonal p-lattice and its 
hexagonal symmetry elements, (b) The stacking of the first two layers; 

the stacking vector D has components 00w\ (c) Projection of the cell of the 
space lattice. 

the triad axes, there are four possible stacking vectors 00a, ^~,00\/2a and 

- - The four resultant arrays of lattice points have P, I, C and F cells, 
22 V2 
but we realise that the C lattice is lacking in the essential cubic symmetry; to 

satisfy this, the other two cell faces must be centred, and thus there are only 

three independent lattice types with P, I and F cells. 
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Orthorhombic system 

Hexagonal and trigonal systems 

Fig. 7.9. The 14 space lattices. 
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(i) Summary 

This brief investigation has demonstrated that there are fourteen different 

space lattices found in crystalline matter; these are sometimes known as the 

Bravais lattices. Fig. 7.9 groups the unit cells in accordance with the crystal 

system. Each space lattice within a system can show the symmetry operators 

of the holosymmetric class, so that with a suitable form of pattern motif this 

symmetry will be found in the arrangement of the atomic structure; but the 

introduction of the translational elements can generate new types of sym¬ 

metry operators not found in point groups, and a full discussion of the per¬ 

missible symmetry elements in crystal structures is given shortly in Chapter 

7.3. Moreover, each space lattice within a system can also be consistent with 

all point groups of lower symmetry than the holosymmetric class (again with 

the possibility of new types of operators); this lower symmetry must arise from 

the nature of the pattern motif to be associated with each lattice point. The 

combination of repetition due to lattice type and all the different kinds of 

symmetry operators constitutes the different space groups, the ultimate sub¬ 

divisions in crystalline pattern theory to be discussed in Chapter 7.4. 

7.2. Dimensional relations in lattices 

All linear and angular values in arrays of lattice points are related to the size 

and shape of the unit cell. In Chapter 5 we saw how a system of indexing 

based on cell shapes could describe different rows or planes of lattice points 

and how the values of the angles between the rows or planes of different in¬ 

dices could be calculated from cell constants expressed as axial ratios and 

interaxial angles. Any calculation of dimensional values in lattices is, of 

course, also made from cell constants, but we need to know the magnitudes 

of the lattice translations a, b and c, not just their ratios. Methods of compu¬ 

tation vary with the geometry of the unit cell; it is not our intention here to 

perform such calculations system by system, but merely to draw attention to 

those linear values that are important in diffraction studies. 

Firstly, we can consider the families of lattice rows [UVW]. Each family 

has two distinct dimensional characteristics, the distances between the rows 

and the separation of points along any lattice row of the set; the separation 

Suvw of points on a row \UVW"\ is of most immediate concern, for it is 

relevant to the discussion of diffraction by the Laue equations in Chapter 

8.3(a). For P lattices the calculations are straightforward; for example in an 
orthorhombic crystal 

$uvw = (t/V + V2b2 + W2c2)V* 

an expression which can be adapted for orthogonal cells in other systems. 

But some care must be taken with multiply primitive lattice types; depending 

on the integers U, V and W, the additional lattice points will either change the 
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separation of the rows or the spacing of the points upon them. Fig. 7.10 shows 

two orthorhombic unit cells with identical dimensions, one primitive and the 

other C-face centred. For some directions Suvw is the same for both cells (e.g. 

•S'ioo = a for both lattice types); the extra points of the centred lattice have 

created additional members of the family without changing the separation on 

a given row. For a direction such as [112], S112 = (a2 + b2 + 4c2)% for the 

P-lattice, but is only -|-(a2 + b2 + 4c2)1/2 for the C-lattice; in such directions as 

this there are no extra members of the set, but the separation of points on each 

lattice row has been halved. In multiply primitive cells the effects of the extra 

lattice points on Suvw must be considered for each set of integers U, V and W. 

(a) (b) 

Fig. 7.10. The separation Suvw of points on lattice rows, (a) Orthor¬ 
hombic P-cell. (b) Orthorhombic C-cell. The zone axes [100] and [112] 
are marked for both cells. 

The other dimensional values that are important concern the various 

families of planes (hkl); these have two linear characteristics, the distribution 

of lattice points on a particular member of the family and the interplanar 

spacing dhkl separating the members of the set. Now it is the interplanar spac- 

ings which are most important to us, for they occur in the description of 

diffraction by the Bragg equation in Chapter 8.3(a); indeed their values for a 

particular substance can be used to characterise that material and aid its 

identification (see Chapter 10.4). Naturally, general expressions which relate 

dhkl to the cell constants gain in complexity as the cell shape becomes less 

specialised in lower symmetry systems; Table 7.2 gives expressions for 1 /d2kl, 

a form which is often useful in diffraction work. Fortunately, values of dhkl 

can nowadays be calculated from a known set of cell constants by standard 

computer programmes. We should perhaps mention here that in the use of 

these spacings in the Bragg treatment of diffraction it is convenient to leave 

the integers h, k and / in multiple form, i.e. we do not divide out any common 

factors; this implies that dhkl values relate only to cell constants and are inde¬ 

pendent of whether the cell is multiply primitive or not. In the orthorhombic 
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example of Fig. 7.10 (100) and (200) planes are parallel and there are identical 

values of <7100 (= a) and d200 ^ = for both cells. It is irrelevant in this use of 

lattice planes that alternate (200) planes contain no lattice points for the P- 

cell, whereas all such planes are populated for the C-cell; moreover, the pres¬ 

ence of an extra lattice point midway between the (100) planes for the C- 

lattice is taken to have no effect on the d100 value. No account of the siting of 

lattice points on planes is needed in this treatment to predict the expected 

positions of diffraction maxima; any difference in the arrangements of lattice 

points on the members of a family affects whether these maxima are observ¬ 

able or not. All these aspects of the use of interplanar spacings in diffraction 

will be clarified in the next chapter. 

7.3. Symmetry operators in space groups 

In the space groups which underlie the atomic patterns of crystalline matter 

we can expect to find rotation and inversion axes, mirror planes and centres 

combined as in the point groups; but since these elements are modified by the 

translational periodicity of the pattern we can also expect the development of 

new but related kinds of symmetry operators which can replace or supplement 

the elements of the point groups. In this section we examine the nature of 

these additional symmetry elements which may be found in space groups. 

Centres of symmetry are repeated unchanged by lattice translations, but 

glide planes (analogous to the glide lines of Chapter 2.1) can be developed 

when translations are combined with mirror symmetry planes. In planar pat¬ 

terns the glide line successively repeats right- and left-handed forms of the 

pattern motif on either side of the line with a periodicity of half the lattice 

translation in the direction of glide; in crystal structures, although glide planes 

operate in much the same general manner, the extra dimension permits a 

greater variety of glide movement to be followed after reflection. When the 

plane is normal to one cell edge, say a, any glide translation can be either in 

the direction of b or c or both; thus there are three different kinds of glide 

plane which can occur in this orientation. Some examples of planes in various 

orientations and their repetition of lattice points are shown in Fig. 7.11; note 

particularly the symbols indicating elements when they are normal or parallel 

to the paper for these are used in the diagrammatic representation of space 

groups later.* The nature of the plane is described by the direction of glide; 

* The symbol + is conventionally used to indicate a fractional co-ordinate z above the 
plane of the paper parallel to the third lattice translation; similarly the symbol — denotes 
a co-ordinate z below the plane of the paper. i + , •$•+, , etc. must be interpreted as 
heights } + z, } + z, i — z, etc. so that, for example, a point -\+ is one half of the cell 
edge above a point +. Remember too that all points must be repeated in every cell by the 
lattice translation, so that, e.g. f + = J+. 
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Normal to paper Parallel to paper 

o+ o+ fi>+ 

■*-b-► -b-► 

(a) 

(b) 

(f) 
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when the translational movement is in the x-axis direction it is called an a- 

glide plane, in the y-axis direction it is a 6-glide plane, and in the z-axis direc¬ 

tion it is a c-glide plane; when, after reflection, translations occur simul¬ 

taneously parallel to two cell edges the element is known as a diagonal n- 

glide plane. The orientation of a particular plane (e.g. normal to the x-axis) 

also needs to be specified in some symmetry groupings; this will be taken up 

at a relevant point in the discussion of space groups in the next section. All 

these glide elements may replace and supplement the mirror symmetry planes 

of point groups in repetitive pattern types. There is, however, a further glide 

plane also illustrated as Fig. 7.11(/) which is restricted to some multiply 

primitive lattices; this results from the effects of diagonal gliding with reflec¬ 

tion across a centred lattice plane. In the diamond (/-glide plane, the two 

simultaneous translations are only \ of the cell edges, whereas an n-glide 

plane would cause movements through distances of \ of these edges; in space 

groups (/-glide planes need only be considered in orientations parallel to the 
faces of an F-cell or the {110} planes of an /-cell. 

In Chapter 2.1 it was shown that combinations of rotation axes with lattice 

translations in planes normal to the direction of the axes did not give any new 

kinds of symmetry elements in planar patterns; but in atomic structures com¬ 

binations can also occur with translations in the axial directions. These lead 

to a range of new symmetry operators which are best considered separately 

for n = 2, 3, 4 and 6. Fig. 7.12 shows the effect for diad symmetry; a lattice 

point after rotation through 180° is translated through \ of the cell edge in the 

direction of the symmetry axis. This is a new symmetry element known as a 

screw diad (2J; conventional symbols used in space group diagrams are also 

shown in the figure. Extending this to triad symmetry, there are now two 

possible distributions of lattice points around the axial direction depending 

on the sense of rotation (Fig. 7.13), the two arrangements are enantiomor- 

phously related with opposing senses of screw. Conventionally we choose to 

Fig. 7.11. Symmetry planes in space groups. In all diagrams, a right- 
handed axial set is taken with the xy plane in the plane of the paper; a 
height z above this plane is indicated conventionally by the symbol +. 
(a) Mirror (m) plane, (b) Glide plane (a) gliding in x-axis direction, 
(c) Glide plane (b) gliding in y-axis direction, (d) Glide plane (c) gliding 
in z-axis direction; this cannot occur parallel to the xy plane, (e) Dia¬ 
gonal glide plane («) gliding in two axial directions, (f) Diamond glide 
plane (d) gliding in two axial directions with translations half those of 
A-glide plane. Note the conventional symbols used for these elements in 
space group diagrams. When planes are parallel to the paper, heights 
other than zero are indicated by writing the z-co-ordinate by the symbol 
(e.g. T i). In the left-hand diagram of (f) the arrow gives the directions 
of positive glide in the z-direction; in the right-hand diagram the arrow 
gives the actual direction of glide (no confusion with the n symbol can 
occur for this d-plane must be accompanied by another parallel plane 
with a height difference of \ with the symbol T*i)- 
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describe both sets of points in the same way by anti-clockwise rotations and 

upward translations; in these terms one axis translates through -y of the cell 

edge after each 120° rotation, whilst the other has a translation of f of the cell 

edge. They are then respectively described as the 3* and 32 screw triads (by 

analogy with the 21 screw diad which has a motion through \ of the cell edge 

Fig. 7.12. Diad axes in space groups, (a) The operations of 2 and 2i 
axes, (b) Diad axes (2) in projections, (c) Screw diad axes (2i) in pro¬ 
jections. As in Fig. 7.11 the symbol 4- indicates a height z above the xy 
plane. Note the conventional symbols for these elements in space group 
diagrams. When axes are parallel to the paper, heights other than zero 
are indicated by writing the z-co-ordinate by the symbol (e.g. —r£). 

after each rotation). With tetrad symmetry (Fig. 7.14(a)), the screw axes 41 

and 43 have the same enantiomorphous character as the two screw triads; 

these have upward translations of \ and £ of the cell edge respectively after 

each 90° anticlockwise rotation. But there can also be a 42 screw axis with a 
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translation of two-fourths of the cell edge after each rotation; like the 2X 
axis, this has no definite sense of screw. Finally, for hexad symmetry the 
implications are clear (Fig. 7.14(b)); the five screw axes form two distinct 
enantiomorphous sets, 61} 65 and 62, 64, with the 63 axis having no sense of 
screw. Screw axes of the appropriate degree can replace and supplement the 
rotation axes of point groups in crystal structures. 

Fig. 7.13. Triad axes in space groups, (a) The operations of 3, 3i and 32 
axes; note the opposite senses of rotation for and 32. (b) The axes 
normal to the plane of projection; 3i and 32 are both drawn with anti¬ 
clockwise rotation and upward translation. The symbol + indicates a 
height z above the xy plane. Note the conventional symbols for these 
elements in projection. 

In some atomic patterns glide planes and screw axes are the only symmetry 
elements relating the units of the structure, but such materials still develop 
crystalline forms for which the point group symmetry has such elements 
replaced by mirror planes and rotation axes. The angular relations between 
the faces of a crystalline form are unaffected by the nature of the axes or 
planes; screw axes and glide planes must cause a slight displacement of faces 
due to their translational components, but any displacement intervals are so 
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(a) 

Fig. 7.14. Tetrad and hexad axes in space groups, (a) Tetrad axes normal 
to the plane of projection, (b) Hexad axes normal to the plane of pro¬ 
jection. The symbol + indicates a height z above the xy plane. Note the 
conventional symbols for these elements. 
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small as to be undetectable for a macroscopic crystal. This emphasises again 
the relation between point groups and space groups, and leads us on to the 
derivation of space groups from isomorphous point groups outlined in the 
next section. 

7.4. Space groups 

In Chapter 2.4 we described how the seventeen planar space groups could be 
derived by combining the translational repetitions of the lattice type with 
those of the symmetry operations of the point group. Crystallographic space 
groups may be determined in much the same way; every permutation of 
permissible lattice type and related symmetry combinations (expressed as 
rotation, inversion or screw axes, mirror or glide planes, and centres) must be 
considered to see if it leads to a distinctive pattern type. This is a formidable 
task, and, although there are some ways to ease the labour, a full treatment is 
quite inappropriate in an introductory text. In the event, many possible per¬ 
mutations prove to be identical, and the total number of space groups is 
limited to 230. Even so, it is impossible to give attention to every one of these 
here; we shall only attempt any kind of detailed description within the tri¬ 
clinic and monoclinic systems, and confine discussion of the space groups of 
more symmetrical systems to brief comments on the symbolism and any 
general explanations that are demanded. 

The common symbolism is similar to that used for planar groups; each 
space group is designated by a lattice type and a point group symbol, but 
modified as necessary to embrace translational symmetry elements and 
descriptions of orientation. Triclinic space groups are very simple; there is 
only one lattice type with a P-cell, and the two point groups 1 and I have no 
replaceable elements. There are only two space groups, symbolised by PI and 
Pi. In the derivation of monoclinic space groups there are many different 
alternatives to be examined; each of the two lattice types, P and C, must be 
combined with all possible symmetry operations within the point groups 2, m 
and 2/m. These combinations may be set out thus: 

Class 2 Class m* Class 2/m* 

P2 C2 Pm Cm P2/m P2i/m C2/m C21/m 

P2x C2i . Pa Ca P2/a P2x/a C2/a C21/a 

Pc Cc P2/c P21/c C2/c C2i/c 
Pn Cn P2/n P21/n C2/n C21/n 

The equivalence of some of these symbols is immediately obvious; for 
example, those which only differ in the kind of glide plane which is combined 

* With the conventional choice of axes in monoclinic crystals, symmetry planes in point 
groups m and 2/m are normal to the y-axis; in associated space groups the only permis¬ 
sible glide planes are therefore a, c and n. 
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with a primitive lattice must give equivalent arrangements, for any choice and 

labelling of the x- and z-axes is arbitrary (i.e. Pc = Pa = Pn, etc.). In fact, 

there are only thirteen different monoclinic space groups listed by their con¬ 

ventional symbols in Table 7.3; equivalences with some of the other symbols 

Table 7.3. Conventional symbols for monoclinic space groups 

Class 2 Class m Class 2/m 

P2 C2 Pm Cm P2/m P21/m C2/m 
P21 Pc Cc P2/c P2Jc C2/c 

listed above are demonstrated by the diagrams of the conventional groups in 

Figs. 7.15 and 7.16. As with planar examples, it is usual to draw two diagrams 

for each space group; that on the right shows all symmetry elements in the 

cell, whilst that on the left contains the distribution of general equivalent 

positions (G.E.P.’s) produced by the operations of these elements on the 

points of the lattice. The diagrams of these figures illustrate some general 

points applicable to space groups of all systems which can be conveniently 

mentioned here. Firstly, whenever possible, the cell origin is chosen at a 

centre of symmetry; this simplifies co-ordinates of equivalent points, and is 

helpful in the calculation of diffracted intensities for any structure based on 

the space group (see Chapter 8.3(b)). 

If the group has no centres of symmetry, the origin is usually chosen to lie 

on symmetry elements appearing in the symbol; in more symmetrical systems 

convenient positions are often at the intersections of elements (though in some 

cases an origin is better placed symmetrically situated between the elements). 

In every space group additional symmetry to that specified by the symbol is 

developed; this can simply be extra elements of the same kind (e.g. the diad 

through the mid-point of the cell in P2) or new elements not mentioned in the 

symbol (e.g. the screw diads in C2/m). In all cases these extra elements are in 

accord with point group symmetry both in nature and orientation (e.g. in 

space groups developed from 2/m all axes must be diads parallel to the j-axis, 

all planes must be perpendicular to this direction and there must always be 

centres of symmetry). We notice that identical symmetry elements are always 

developed at separations of \ of the appropriate cell edge, and in any space 

group such repetitions may be inserted immediately; when elements are 

parallel to the paper, heights other than 0 (and £), are written beside the sym¬ 

bol (e.g. the diads at heights i (and by implication f) in C2/c). In groups with 

non-primitive lattices, further additional elements often not mentioned in the 

symbol are found in parallel interleaving positions (e.g. the screw diad axes 

and glide planes in C2/m); particular attention must be given to such possi¬ 
bilities in multiply primitive cells. 
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Diagrams of G.E.P’s show how the pattern motif (an atom or atom group) 

would be reproduced by the particular scaffolding of symmetry elements in 

the space group; in every case the number of G.E.P’s per cell is the product of 

the multiplicity of the lattice cell and the number of symmetry repetitions in 

the point group (e.g. P2 has 1x2 = 2 G.E.P’s per cell whereas C2/c has 

2x4 = 8 G.E.P’s per cell). For most space groups the number of equiva¬ 

lent positions per cell can be reduced if the lattice points are in special posi¬ 

tions with respect to certain symmetry elements (rotation axes, mirror planes 

and centres of symmetry). In C2/c, for example, there are only four equiva¬ 

lent positions per cell when lattice points are on diad (2) axes due to the 

coalescence of G.E.P’s in pairs; notice that this reduction cannot take place 

when the lattice points are on screw axes or glide planes due to the transla¬ 

tional components of these elements. There may be several different sets of 

special equivalent positions (S.E.P’s), and a complete study of a space group 

requires the evaluation of all different possibilities. Conventionally equiva¬ 

lent positions, general and special, are listed for each space group in terms of 

fractional cell co-ordinates; Table 7.4 shows the list for C2/m. The presenta- 

Table 7.4. List of general and special equivalent positions for space group C2/m 

Number of positions Co-ordinates of equivalent positions 
and point symmetry (0,0,0; 1, 0) + 

8 1 x, y, z\ X, y, z; 
4 m x, 0, z; x, 0, z. 
4 2 0, y, i; 0, y, b 
4 2 0, y, 0; 0, y, 0. 
4 I h i, i; i. L b 
4 1 i, i, 0; h h o. 
2 2/m 0, i, b 
2 2/m 0, 0, b 
2 2/m 0, i, 0. 
2 2/m 0, 0, 0. 

tion, a simplified version of the format of the standard reference text Interna¬ 

tional tables for X-ray crystallography, needs a little clarification. Listing of 

equivalent positions for multiply primitive cells is abbreviated by quoting the 

translations of the lattice type separately. In this case they are (0, 0, 0; 

0) + which implies that these translations must be added to those co¬ 

ordinates listed in each row to obtain the total set; thus in this example the 

co-ordinates of the eight G.E.P’s are x,y,z;x,y,z; x, y, z; x, y, z (quoted in 

the table) and \ + x, \ + y, z; \ + x, \ — y, z; \ — x, \ + y, z; %—x, 

\ — y,z (obtained by the addition of the lattice centring 0 to the listed 

co-ordinates). Each set of co-ordinates is accompanied by the number of 

equivalent positions and the point symmetry; often, as in this group, there are 
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several sets of S.E.P’s with the same point symmetry. A distinct set will arise 

for each position with the same point symmetry which is not repeated by the 

lattice translations and symmetry; for example, the interleaving diads (2) in 

the xy plane are equivalent but are not related to those at height Similar 

tabulations of equivalent positions clearly grow more complex for space 

groups of higher symmetry systems. 
Even space groups of the orthorhombic system cannot be treated here in 

comparable detail. They are formed by the combination of the space lattices 

P, C, I and F and the symmetry operators of the point groups mm2, 222 and 

mmm; the standard symbols for the fifty-nine different groups are given in 

Table 7.5, and we shall only make general comments on their interpretation. 

Table 7.5. Conventional symbols for orthorhombic space groups 

Class 222 Class mm2 Class mmm 

P222 C222 F222 1222 Pmm2 Cmm2 Amm2 Fmm2 Imm2 Pmmm Cmmm Fmmm Immm 
P222, C222, 72,2,2! Pcc2 Ccc2 Ama2 Fdd2 Ima2 Pmma Cmma Fddd Imma 
P2,2,2 Pma'2 Cmc21 Aba2 Ibdl Pmmn Cccm Ibam 
P2,2,2, Pnc2 Abm2 Pccm Ccca Ibca 

Pba2 Pmna Cmcm 
Pnn2 Pbam Cmca 
Pmc2l Pbcm 
Pca21 Pnnm 
Pmn21 Pnma 
Pna21 Pnnn 

Pban 
Pnna 
Pcca 
Pccn 
Pbcn 
Pbca 

It is conventional in this system that in listing the symmetry elements, the 

first place in the symbol refers to the x-axis, the second to the _y-axis and the 

third to the z-axis; thus P222x has rotation diads parallel to the x- and j-axes 

and screw diads parallel to the z-axis, whilst Pban has a 6-glide plane normal 

to the x-axis, an a-glide plane normal to the jr-axis and an n-glide plane nor¬ 

mal to the z-axis. In the list of groups derived from mm2 it will be noticed 

that a distinction has been made between one-face centred lattices C and A. 

With this type of point group symmetry, the symmetry planes are normal to 

the centered face for the C-cell, and parallel to the centred face for A(= B)- 

cells; new distributions of G.E.P’s can therefore be formed which cannot be 

described using a conventionally constructed symbol and a C-lattice. The 

standard symbols of the table depend on giving certain precedences in groups 

where there are different kinds of parallel elements (e.g. F222 = F212121) but 

also more importantly they depend on the orientations of particular elements 

with respect to the choice of x-, y- and z-axes. We have already mentioned the 

difficulties of labelling crystallographic axes in orthorhombic crystals in 

Chapter 5.4(c), and we must expect to find non-standard forms of space 
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group symbols arising in some descriptions. Alternatives are simply worked 

out in any particular case; suppose that we wish to discover the symbol for 

Pban when the axes are re-selected so that the old x new z, the old y -> 

new x and the old z -> new y (Fig. 7.17). The diagram shows that the plane 

normal to the new x-axis glides in the new z-axis direction, that normal to the 

new j-axis is a diagonal glide plane, and that normal to the new z-axis glides 

in the direction of the new x-axis. With this change of axes Pban Pena; 

Z0(yn) 

Fig. 7.17. Axial transformation for Pban Pena. Directions of glide are 
shown by arrows on the planes normal to the axes. 

similarly Cmca -> Bbcm, Iba2 -> Ic2a, C222x -> B22x2, etc. Possible permu¬ 

tations of symbol for each orthorhombic group are listed in the International 

Tables; the standard form is said to be in the abc orientation, and the new 

choice of axes in Fig. 7.17 would be described as the bca orientation. 

Combinations of the hexagonal P-lattice and the rhombohedral P-lattice 

with the symmetry of the point groups 3, 3, 3m, 3m and 32 give the twenty-five 

trigonal space groups listed in Table 7.6 by their conventional symbols. In the 

Table 7.6. Conventional symbols for trigonal space groups 

Class 3 Class 3 Class 32 Class 3m Class 3m 

P3 R3 P3 R3 P3\2 P32\ R32 P3m\ P3\m R3m P3lm P3m\ R3m 
P3X P3il2 P3x2l P3cl P31c R3c P3\c P3cl R3c 
P32 P3z\2 P3z2l 
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two lowest symmetry classes the symbolism is self-explanatory, but it is 

necessary to comment on those space groups with a P-lattice type in classes 

32, 3m and 3m. With this hexagonal cell, the symmetry can be oriented in two 

ways depending on whether the planes (or diads) are normal or parallel to the 

prism faces of the cell; the two orientations give different space groups, and 

the symbolism must be adapted to describe them. The device used is similar 

to that employed in the tetragonal class 42m (or 4m2) already discussed in 

point group symbolism (Chapter 4.3); as 42m the symmetry is oriented so that 

the diads are parallel to the x- and j-axes, but 4m2 indicates symmetry planes 

normal to these axes. Following this, P3ml has symmetry planes normal to 

hexagonal x- and y-axes inclined at 120°, i.e. the planes are rotated through 

30° from the xz, yz, uz planes; in P31m the symmetry planes are parallel to 

these axial planes. Similar relationships exist between P3ml and P31m (N.B. 

Although there are horizontal diad axes, their use in the symbol would only 

cause confusion; if P32m were written for P31m, it could be taken to mean 

that the diads are parallel to the x- and j-axes; which they are not.) In other 

groups P321 places the diads parallel to the x- and j-axes, whereas P312 has 

them normal to these directions. 

There are sixty-eight tetragonal space groups, the largest number associ¬ 

ated with any one system; their conventional symbols, given in Table 7.7, are 

constructed from the two lattice types P and / and the operations of the seven 

point groups 4, 4, 4/m, 4mm, 42m, 422 and 4/mmm. In the three classes of 

lowest symmetry the space group symbolism is self-evident; in the next three 

classes the second symbol (after the tetrad) refers to elements parallel to the 

x- and j-axes and the final symbol refers to directions bisecting these axes. 

Thus for class 42m, P42m has the diads along the axes to give a different 

space group from P4m2 in which the diads are at 45° to the x- and j-axes; 

PAbm has 6-glide planes normal (and parallel) to these axes which are bisected 

by mirror planes. In the holosymmetric class such directions are in the last 

two places after a symbol for planes normal to the tetrad axis direction; thus 

PAjnbm has an n-glide normal to the tetrad, vertical 6-glide planes normal 

(and parallel) to the x- and y-axes, with vertical mirror planes at 45° to these 

axes. It will be noticed that J-glide planes can occur at 45° to the x- and j-axes 

in some space groups with an /-lattice. 
The twenty-seven space groups of the hexagonal system all have the P- 

iattice cell in combination with the symmetry operations of 6, 6, 6/m, 622, 

6mm, 62m and 6/mmm (Table 7.8). As in the tetragonal system, interpretation 

of the standard symbols for the lowest symmetry classes 6, 6 and 6/m is 

straightforward, and the conventional order of symbols in the other four 

classes adapts the method just discussed for tetragonal space groups. For 

point group 62m (or 6m2), the symmetry planes contain the diad axes, and 

such planes can be set in two orientations with respect to the cell edges, per¬ 

mitting the occurrence of different space groups; by analogy with earlier 
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Table 7.8. Conventional symbols for hexagonal space groups 

Class 6 Class 5 Class 6/m Class 622 Class 6mm Class 62m Class 6/mmm 

P6 Pi P6/m P622 P6mm Pl2m P6/mmm 

P6x jP63/m P6i22 P6cc Pl2c P6/mcc 
P62 P6222 P63cm Plml P63/mcm 
P63 P6322 P63mc P6c2 P63/mmc 
P6t P6422 
P6S jP6522 

conventions, P62m has the diads (and the planes) along the a- and y-axes, 

whilst P6m2 has the symmetry planes (and the diads) normal to these axes. 

Table 7.9 lists the conventional symbols for the 36 cubic space groups 

formed from the lattices P, I and F and the point groups 23, m2, 43m, 43 and 

m3m; interpretation of these symbols requires no special elaboration, though 

the resultant groups are very complex. This is due to the multiplicity of 

equivalent points (up to 192 per cell) produced by a large number of sym¬ 

metry elements, some of which are inclined to any plane of projection; the 

normal diagrammatic representation is not usually attempted for cubic crys¬ 

tals, though they can be treated as if they were derived from certain ortho¬ 

rhombic groups (of the 222 and mmm types) and certain tetragonal groups (of 

the 42m, 422 and 4/mmm types) with the imposition of the dimensional 

regularity of the cubic cell. In general, however, a list of the co-ordinates of 

equivalent positions is sufficient to characterise each group. 

This brief discussion of crystallographic space groups has only allowed an 

introductory account of their nature and symbolic representation; the pat¬ 

tern types which they represent are fundamental to any analysis of crystal 

structure and fuller accounts both of their derivation and properties will be 

found in the bibliography. In particular we must make a special reference to 

Vol. 1 of International tables for X-ray crystallography, a definitive text on 

this subject; its nomenclature (based on the Hermann-Mauguin notation) has 

been followed here, with no reference to the older Schoenflies notation, 
though this is still occasionally used. 

The practical determination of space groups is briefly outlined in Chapter 

8.5 and later chapters; for a particular substance, this is not just an arid 

cataloguing exercise, for some knowledge of the space group is an essential 

part of the preparation for the determination of atomic structure, in which the 

detailed arrangement of cell contents is worked out. Uses of space group 

information in such work are manifold, and we cannot here penetrate far into 

the vast subject of crystal structure determination; nevertheless, as an ele¬ 

mentary illustration, we will consider two hypothetical examples concerning 

the use of S.E.P’s. Let us choose the orthorhombic space group Pccn, which 

can be recognised with certainty experimentally; the usual diagrams are shown 
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in Fig. 7.18 and the co-ordinates of equivalent positions are given in Table 

7.10. If the material is an element A, and Z (the number of formula units per 

cell) calculated from the density and cell dimensions, as in Chapter 1, is 4, all 

atoms A must be situated on one of the sets of S.E.P’s. With a single atom as 

pattern motif, positions with any point symmetry can be occupied; but 

examination of the co-ordinates of those S.E.P’s with point symmetry 2 as in 

i^l 

111 
4 4 4 

Fig. 7.18. Space group diagrams for Pccn projected on (001) plane. 

Table 7.10. List of general and special equivalent positions for space group Pccn 

Number of positions Co-ordinates of equivalent positions 
and point symmetry 

8 1 y. z; 4 - X, 4 - y, z; 4 + x. , y, 4 - z; x, 4 
x, y, z; 4 + X, 4 + y, z; 4 - x, ,y, 4 + z; x,i 

4 2 4»4, z; 4. z; i, 4,4 + z; 4, 4,4 - z. 
4 2 4 > 4) z; 4, 4, z; 4 » 4,4 + z, 4, 4,4 - z. 
4 I 0, o, 4; 4, 4, 4; 0, 4,0; 4, o, o. 
4 1 0, o, 0; 4, 4, 0; 0, 4,4; 4, o, 4- 

Fig. 7.19(a), shows that sole occupation of either set would lead to a halving 

of the c-dimension of the cell. We must therefore reject these possibilities and 

site the atoms on S.E.P’s with point symmetry T as in Fig. 7.19(b); with sole 

occupation these two sets are equivalent with only a change of origin, and 

lead to the conclusion that atoms A are arranged on an F-lattice. Although 

this would cause certain systematic absences in diffraction maxima (see Chap¬ 

ter 8.), the cell dimensions would be unchanged. A complete solution of an 

atomic structure in this manner is rare, and it is more likely that this use of 

space groups will only lead to some partial structural data, as in our second 

illustration. In this we will keep to the same space group and value of Z, but 

now assume that the specimen is a compound ABX4; within each cell there 

are 4 A atoms, 4 B atoms and 16 X atoms, so that, whilst the A and B atoms 
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are in S.E.P’s, the X atoms will occupy two sets of G.E.P’s. Once again, 

individual atoms of A and B can be placed in positions of any point sym¬ 

metry, and with two types of atom, arguments about the halving of cell 

dimensions are no longer valid. In this situation one is sometimes helped 

by a known form of atomic grouping expected to occur in the structure; for 

example, it could be that our compound is likely to have atomic complexes 

Fig. 7.19. Sole occupation of S.E.P.’s in space group Pccn. (a) Point 
symmetry 2. (b) Point symmetry 1. 

BX4 with a tetrahedral arrangement of the 4X atoms around a central B 

atom, as in an SOf ~ radical. With this grouping, the central B atoms cannot 

be placed at S.E.P’s with point symmetry T, for the tetrahedra of which they 

are a part do not have this kind of symmetry; however, they could be located 

on the S.E.P’s with point symmetry 2, and this would allow the X atoms in 

G.E.P’s to form tetrahedra around them. We deduce that the B atoms must 

occupy one of this type of S.E.P., and that the A atoms are either on the other 
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S.E.P. with point symmetry 2 or on one of the sets with point symmetry T. 

These conclusions, though more restricted than in the previous example, are 

still helpful in beginning to decipher the atomic structure of this compound; 

they could lead, for example, to the hypothetical structure of the compound 

ABX4 shown in Fig. 7.20, which shows atomic co-ordinates for the three types 

of atoms consistent with the space group considerations. Whether such a 

configuration is a realistic model of the most probable atomic pattern can be 

assessed by checking its consistency with other data on the packing sizes of 

the particular atoms to be contained in the cell of known dimensions, the 

co-ordination and bond distances that are implied, the physical properties 

of the compound, experience of known related structures, etc. When the 

structure which accords best with all available data (including space group 

deductions that we have outlined) is found, it can then be tested by com¬ 

parison of the observed and predicted intensities of diffraction maxima as is 
discussed in later chapters. 

7.5. Exercises and problems 

1. What are the lattice types for the structures of gold, Sn02 and CO(NH2)2 

described in Chapter 1.3? Determine the values of S110, S11U S112, d110, 
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dllx and d222 for (a) gold (a = 4-08 A), and (b) Sn02 (c = 3-19, a = 4-74 
(in A)). 

2. CdCl2 is trigonal, and the co-ordinates of the atoms in terms of a triply 

primitive hexagonal cell are: 

(0,0,0; f,i,i; *,$,*) + 
Cd: 0,0,0; Cl: ± ($,*,*) 

Draw a plan of several unit cells on (0001), and identify the minimum 

volume rhombohedral cell; write down the atomic co-ordinates for Cd 

and Cl atoms within this cell. 

3. Show that two perpendicular intersecting screw diad axes imply the exist¬ 

ence of a rotation diad normal to their plane. If the space group P212121 

contains only screw diad axes how must these be arranged? If the three 

screw diad axes of this symbol are intersecting, what distribution of 

G.E.P’s is produced? To which of the space groups listed in Table 7.5 

does this distribution belong? 

4. In a centric space group, the co-ordinates of G.E.P’s could be listed as: 

x,y,z; x, y, z; \ - x,y,z; }-x,y,z; 

i + x, \ + y, z; } + x,} - y, z; x,\ + y,z; x,$ - y, z. 

Identify the space group, and re-draw it with an origin on a centre of sym¬ 

metry; list the co-ordinates of G.E.P’s with respect to the new origin. 

5. Cnnb is an unconventional form of an orthorhombic space group listed in 

Table 7.5. Determine the conventional symbol, and write down the 

G.E.P’s. Give equivalent symbols for other choices of axes. 

6. Draw conventional space group diagrams for R3c and P6/mcc. In each of 

these groups how many G.E.P’s are there? Show that in both cases the 

S.E.P’s can be reduced to 2, and list their co-ordinates. 

7. Repeat (6) for the space group P4/nmm. 

8. In an idealised representation of the structure of aragonite (CaC03), the 

appropriate fractional co-ordinates of atoms in an orthorhombic cell 

(a = 4-94, b = 7-94, c = 5-72 (in A)) are quoted as follows: 

Ca: 0, T2, 1 JZ_ l. 0 I 
25 1 25 2 5 U5 125 ' 0; i,ii, 

C: i, i, i; 0, i, -j; 
ill1 
2s 4s 3 5 0s is i* 

O: i, i, i; 
3 I I. 
4? 6? 6 ? 

1 JL ,1. 
2s 12s 6 s 

ill. 
4? 6) 3? 45 is 3 5 o, A,i; 

i i z- 
4) 3> 3 s is is!; is 1; 

12 5.. 
4s 35 65 is is i; 0, ir, i- 

Draw a plan of the structure on (001). Identify the space group, and specify 

the different equivalent positions occupied by the Ca, C and O atoms. 

What is the conventional symbol for this space group ? 
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8 
X-RAYS AND THEIR 
INTERACTION WITH 
CRYSTALLINE MATTER 

8.1. X-rays 

(a) The Nature of the Radiation 

X-rays were discovered in 1895 by Rontgen during the operation of a cathode 

ray tube. Early experiments on their properties showed that they travelled in 

straight lines from which they were not deflected by electric or magnetic 

fields, and that they had considerable powers of penetration and could ionise 

gases and blacken photographic plates. Later work confirmed that X-rays are 

part of the spectrum of electromagnetic radiation with transverse waves 

similar to light; they occupy a band of wavelengths from about 10~6 to 

10_9cm whereas visible light has wavelengths between 10-4 and 10_5cm. 

Despite their formal similarities, visible light and X-rays have different inter¬ 

actions with matter. One of the most striking is in the power of penetration, 

where the term ‘X-ray’ has become synonymous with an examination of 

features underlying the surface, like bone structure, etc. But over the range of 

X-ray wavelengths the penetrating power decreases as the wavelength in¬ 

creases; this variation provides a crude division of the X-ray region into 

‘hard’ X-rays of shorter wavelengths and ‘soft’ X-rays of longer wave¬ 

lengths. Medical X-rays are hard, and many soft X-rays are so strongly ab¬ 

sorbed by matter as to severely limit their use in experimental work; 

nevertheless, there is a small region of the spectrum with wavelengths between 

about 5 x 10~7 and 3 x 10“8 cm which are neither too heavily nor too 

lightly absorbed and whose scattering by the atoms of an absorber is detect¬ 

able without great experimental difficulties. It is in this region that the X-rays 

are suitable for crystallographic work, and it should be understood that 

henceforward whenever we talk of X-rays we refer only to this limited sector 

of the spectrum. 
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(b) Production of X-rays 
Like other X-rays, the narrow spectral range of crystallographic radiation is 

produced by bombarding a target of a suitable material with fast moving 

electrons; the construction of X-ray sources (or tubes) will be described 

shortly, and for the moment we will confine discussion to the nature of the 

Fig. 8.1. Emission spectra for X-rays, (a) Target A, applied voltage V 
(full line), (b) Target A, applied voltage 2V (broken line), (c) Target B, 
applied voltage V (dotted line). 

radiation emitted under these conditions. All emitted X-ray spectra are simi¬ 

lar in general but detailed differences depend on two experimental factors: (i) 

the target material, and (ii) the conditions of excitation, in particular the ac¬ 

celerating voltage applied to the electrons. Fig. 8.1 shows diagrammatically 

the effects of these two factors; the full line (a) is the spectrum for target 

material A with an applied voltage V, the broken line (b) is from the same 

target but with a voltage of 2V, whilst the dotted line (c) represents the spec- 
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trum for a different target material B with the original voltage V. We see from 

this that an emission spectrum has two separable components, with sharp 

peaks at wavelengths dependent on the target material but also a continuous 

weaker background at all wavelengths greater than a minimum value related 

to the applied voltage. This background containing a continuous range of 

wavelengths is said to form white radiation. The intensity of white radiation 

rises sharply from the minimum wavelength but decreases again at longer 

wavelengths, with a spectral distribution that depends more on the conditions 

of excitation than the nature of the target material; the precise form of the 

curve is affected by the target, but the minimum wavelength is constant and 

there is always a peak at the lower wavelengths. A change in experimental 

conditions leads to a different minimum wavelength and the peak is modified 

both in height and wavelength even for the same target material. Superim¬ 

posed on the white radiation spectrum are relatively sharp spectral lines at 

wavelengths determined by the target material; this other part of the emission 

spectrum is known as the characteristic radiation. Although their intensities 

depend on the conditions of excitation, the positions of characteristic lines are 

always unchanged for a given material. The number of characteristic lines 

also depends on this material, but for most targets used in crystallographic 

work there are usually two peaks, the stronger of which at higher wave¬ 

lengths can be resolved into a doublet. 

White and characteristic radiations are formed in different physical pro¬ 

cesses within the bombarded target. White X-rays are emitted when bom¬ 

barding electrons lose energy in deceleration caused by collisions, by the in¬ 

ternal fields of target atoms, etc.; a decelerating electron loses energy as 

radiation and so provides a continuous range of wavelengths, for the electrons 

may suffer many differing energy losses before they are finally arrested. It is 

also possible for an electron of maximum energy to lose it all as radiation in 

one packet; when this occurs it will fix a lower limit to the wavelengths 

emitted under given operating conditions. If the accelerating potential is V, 

this energy loss can be represented as 

eV 

where e is the electronic charge, h is Planck’s constant and vmax is the maxi¬ 

mum frequency of white radiation emitted. Substituting numerical values and 

writing the minimum wavelength Amin as c/vmax, this is expressed in convenient 

terms as 

Amln = 124 /V 

where Amin is measured in Angstrom units (1 A = 10"8 cm, a unit commonly 

employed in crystallographic work) and Vis measured in kilovolts (KV); thus 

with an applied potential of 50 kV, the cut-off limit of the white radiation 

spectrum is about \ A. 
The separate sharp lines of characteristic radiation have many parallels in 
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other forms of atomic spectra in different wavelength regions; all originate in 

the discontinuous energy changes that must occur as extranuclear electrons 

of an atom move from one orbital of fixed energy to another. Within the 

range of X-ray wavelengths we are concerned mainly with changes affecting 

the innermost shells of electrons of the atoms of the target material; normally 

these are fully occupied, and the bombarding electrons must be sufficiently 

energetic to dislodge electrons bound in these orbitals in order to create 

vacancies. Excitation of characteristic spectra from a particular target cannot 

occur until the accelerating voltage has been increased to a value at which 

bombarding electrons can acquire this minimum energy; this is known as the 

minimum excitation voltage for the target. Once vacancies in the innermost 

shells have been created, they will be filled by other extranuclear electrons of 

higher energies in the same atom; in such changes the excess energy is re¬ 

leased as radiation to give characteristic X-rays at wavelengths determined by 

the energy levels of the target atoms. The common notation for these discrete 

spectral lines is descriptive of the physical changes which cause emission. 

Suppose that an electron has been removed from the innermost K shell of a 

target atom by bombardment; this vacancy can be filled by a variety of extra¬ 

nuclear rearrangements. The most probable process is one in which it is 

filled by an electron from the adjacent L shell of the atom; this requires a loss 

of energy Eh — EK, a fixed value for the atoms of a particular target, say Cu. 

Characteristic radiation is emitted of wavelength A (— EL — EK/hc), and is 

described as CuXa, denoting the fixed energy levels of the target material by 

Cu, the vacancy by K, and the filling of this vacancy from an adjacent shell by 

a. In the same way CuKfi denotes radiation emitted by a copper target when 

a vacancy in the K shell is filled by an electron from the next but one (M) 

shell; this process is less likely than that which produces CuKa radiation and 

so the corresponding spectral line is not as intense. Of course vacancies 

created by the bombarding electrons are not confined to the K shell, and 

simultaneously one might expect CuL, etc. lines; but for most common target 

materials (except tungsten) the energy levels are such that wavelengths corres¬ 

ponding to such changes are so long as to be outside the normal range of the 

X-ray region and are completely absorbed within the target. In general, two 

characteristic peaks are observed due to Ka and Kfi radiations, though there 

is a fine structure which can be important in crystallographic studies. Whilst 

energy levels within the K shell are the same for all electrons, they are slightly 

different for various electrons in the L shell; this gives minor variations in the 

energy transitions of Ka radiation to form a doublet (e.g. CuX^ and CuXa2 

have a wavelength difference of about 0-004 A). It might also be expected that 

Kft radiation should be resolved into multiple peaks, but for most common 

target materials such resolution as occurs can be neglected in practice and 

only a mean value is quoted. Table 8.1 gives a list of common targets with 

their characteristic wavelengths and other data. 
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Table 8.1. Common X-ray target materials 

Element Line A (in A) Minimum excitation 
voltage (in KV) 

Absorption edge of 
target (in A) 

j8-filter 

Mo Kax 0-709 
Ka2 0-714 20-0 0-620 Zr 
Kp 0-632 

Cu Kax 1-541 
Ka2 1-544 9-0 1-380 Ni 
Kp 1-392 

Ni Kax 1-658 
Ka2 1-662 8-3 1-487 Co 
Kp 1-500 

Co Kax 1-789 
Ka2 1-793 7-7 1-607 Fe 
Kp 1-621 

Fe Kax 1-936 
Ka2 1-940 7-1 1-743 Mn 
KP 1-757 

Cr Kax 2-290 
Ka2 2-294 6-0 2-070 V 
KP 2-085 

(c) X-ray Tubes 

Technical problems involved in producing satisfactory X-ray sources have 

been gradually overcome until most modern X-ray tubes can be compared to 

bulbs for electric light and are inserted into a standard electrical system as a 

particular radiation is desired. The insert tube and its predecessors, gas and 

demountable tubes, all produce the kind of X-ray spectrum we have described 

by electron bombardment of a target. In the early cold cathode gas tube a 

controlled air leak maintained a pressure of about 10“3 cm of mercury bet¬ 

ween the cathode and anode (target). Electrons and positive ions, from ion¬ 

ised gas particles, move towards target and cathode respectively when an 

accelerating voltage is applied; further electrons can be produced by positive 

ion bombardment of a suitable cathode (e.g. aluminium). Such a simple 

system has many disadvantages, not least its low output of X-rays; but it does 

achieve a purity of radiation often lost in modern hot-cathode designs. In 

these tubes there is no discharge in the residual gas (at pressures of less than 

10“6 cm of mercury) and the bombarding electrons are emitted from a hot 

tungsten filament acting as cathode. Many of the earlier hot-cathode tubes 

were of a demountable variety, so-called because they were continuously 

evacuated by pumping; repairs such as the replacement of filaments and tar¬ 

gets could be undertaken by allowing the system to come to atmospheric 

pressures. Despite their flexibility and indefinite life, demountable tubes have 

gradually declined in popularity because of the maintenance that is essential 

for smooth running over long periods; many that now remain are used for 
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particular specialised purposes. A modern insert tube has the filament and 

target permanently sealed off at low pressure; Fig. 8.2 shows schematically 

the essentials of its design. Electrons are emitted from a heated filament and 

focused on to the target material, usually into a rectangular area about 

10 mm x 1 mm in dimensions; this source is viewed through windows of a 

lightly absorbing material (often Be or a glass of light elements). There are 

commonly four windows at 90° arranged so that foreshortening of the focal 

area by viewing at a slight inclination gives either a line or square focus; each 

Water 

Metal 

Spring contact 
for electrical 
connections 

of these two shapes of source is advantageous for certain experimental ar¬ 

rangements. As in all X-ray tubes, heat is generated in the target, which is 

cooled by the circulation of water through its hollow interior. In all designs 

the efficiency of the cooling system is an important factor in limiting the flux 

density of electrons which can be directed into the focal area on the target; 

this restricts the maximum output of X-rays from the tube, for the target 

must not be overheated and punctured; in insert tubes the maximum loadings 

are of the order of 0T kW/mm2. There have been a number of successful 

attempts to improve the efficiency of X-ray sources in demountable tubes by 

the use of very small focal areas, sometimes located on the periphery of a ro¬ 

tating target disc; such equipment has nearly always been developed by the 

demands of specialised experiments, and the normal output of an insert tube 

is quite adequate for routine work, particularly as the detection of scattered 

X-rays has become much more efficient. The practical advantages of sealed 

insert tubes in ease of operation greatly outweigh their disadvantages in 

capital cost, limitation of life and lack of interchangeability of targets. Like 

all hot filament tubes, they suffer from the gradual deposition of tungsten 

evaporating from the filament; on the target this can cause unwanted W 

radiation, whilst on the windows it will reduce the transmission of X-rays, 

both of which limit the useful life of an expensive insert tube. 
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(d) Properties of X-rays 

Like other electromagnetic radiations, X-rays are absorbed in their passage 

through a medium and refracted in passing from one medium to another. Re¬ 

fractive indices are less than 1, but in most cases differ from unity in only the 

fifth or sixth decimal place; the effects of refraction are only important in 

experiments of the highest accuracy, and refraction corrections can be neg¬ 
lected in routine studies. 

Absorption, however, can be of practical importance in any kind of work, 

and it requires rather fuller discussion. In their passage through a material 

the X-rays lose energy (i) to the secondary X-rays scattered in all directions, 

and (ii) by transformation of the radiation. In (i), the scattered X-rays can 

either be identical with the incident radiation (i.e. they can be regarded as 

diffraction of the incident X-rays by atoms of the material), or they can be 

changed in wavelength by a collision with an electron (the Compton effect); 

in (ii) the energy of the X-rays is transformed into /3-rays, fluorescent radia¬ 

tion, heat, etc. The sum total of all processes leads to an expression of the 

effects of absorption as 

/ = I0 exp (— pt) 

where I, I0 are the transmitted and incident intensities, t, the path length of 

X-rays of wavelength A, and p is a constant for a particular material, its linear 

absorption coefficient. In practice, it is rather more convenient to express the 

path within the absorber as the number of grams per square cm; this elimin¬ 

ates any variation in the absorption coefficient for a given element due to the 

state of aggregation, a complication which affects the values of linear absorp¬ 

tion coefficients. To do this we define a mass absorption coefficient (pM) inde¬ 

pendent of physical state such that 

Pm = pip 

where p is the density. The mass absorption coefficients of elements can then 

be used to calculate linear absorption coefficients of compounds in which the 

proportions of the component elements are known, for 

P = pZppM 

where p is the fraction by weight of an element of mass absorption coefficient 

pM- 

Values of pM for all the elements are tabulated in reference books in the 

bibliography; for a given element, pM increases with wavelength, often said 

to be as a A3 variation though a smaller exponent between 2-5 and 3 would be 

more appropriate in many cases. Within the range of X-ray wavelengths many 

elements show sharp discontinuities in this variation (Fig. 8.3), so that there 

is a sharp rise in pM with decreasing A. These are known as absorption edges, 
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and occur at wavelengths for which the energy of an incident quantum (he/A) 
is sufficient to dislodge an electron in, say, the K shells of atoms of the ab¬ 
sorber element; this causes a sharp drop in the intensity of the transmitted 
X-ray beam, so that p,M increases rapidly at these wavelengths. This process 
must also be accompanied by the simultaneous emission of a characteristic 
radiation by the absorber atoms (the fluorescent radiation in (ii) above) as the 
vacancy in the K shell is filled and the scattering power of the absorber will 
change. Values of the K absorption edges for the elements of common target 
materials are quoted in Table 8.1. The existence of absorption edges in the 
X-ray range can be both troublesome and advantageous in practical applica¬ 
tion. When studying diffraction, we must avoid the emission of fluorescent 

5 

x- 

Fig. 8.3. Variation of mass absorption coefficient with wavelength for an 
element. Note the sharp discontinuity at the wavelength of an absorption 
edge. 

radiation by the crystal for this can mask diffraction of the primary beam; 
this requires a careful selection of the wavelength of primary radiation used 
in any diffraction experiments. By the nature of the electronic changes an ab¬ 
sorption edge wavelength is necessarily shorter than that of the excited 
fluorescent radiation; to avoid fluorescence we must choose a primary radia¬ 
tion whose wavelength is longer than any absorption edge of the atoms of the 
crystalline specimen. For example the data of Table 8.1 shows that Fe atoms 
(absorption edge, 1-743 A) will fluoresce with CuXa radiations (A ~ 1-54 A) 
but not with FeXa radiations (A ~ 1 -94 A); any compound containing signi¬ 
ficant numbers of Fe atoms should not therefore be studied with CuKa 
radiation, but its diffraction pattern can be recorded with FeXa radiation. In 
practice it is not possible to select a primary radiation which will eliminate all 
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fluorescent effects for many compounds; fortunately for many elements 

fluorescent radiation is of very long wavelength and is absorbed by the speci¬ 

men or the air before it reaches a photographic plate. 

Absorption edges can, however, be turned to advantage in other circum¬ 

stances; in subsequent chapters we shall see that many diffraction techniques 

require incident radiation with a narrow wavelength band, such as that pro¬ 

vided by a characteristic peak. Strictly monochromatic radiation can only be 

obtained when the spectrum emitted by an X-ray tube is reflected from a 

suitably oriented crystal monochromator; but the intensity of crystal re¬ 

flected radiation is rather weak, and as incident radiation it will considerably 

lengthen exposure times necessary to detect even weaker scattered radiation. 

For most practical purposes it is sufficient to place a filter in the path of the 

X-rays from the tube to preferentially reduce the intensity of, say, unwanted 

K/3 radiation (and also white radiation to some extent). Suitable filters can be 

made from materials with absorption edges between the wavelengths of the 

Ka and Kj3 radiations; for example from Table 8.1, Ni (absorption edge 

1-487 A) will preferentially reduce the intensities of CuK/3 (A = 1-392 A) 
compared to Cu Ka radiations (A ~ 1-54 A), filters, listed for common tar¬ 

get materials in this table, are simply foils inserted into the beam from the 

X-ray tube; the thickness of the foil determines the reduction in the ratio of 

intensities K^/Ka, so that with a suitable material the ratio of transmitted in¬ 

tensity to incident intensity is, say, \ for Ka radiation but only 1/1000 for X/3 

radiation. Filtered radiation will also contain some regions of the white 

X-ray spectrum, but this can usually be discounted in interpreting diffraction 

patterns. There are also some occasions when an experiment requires the use 

of white radiation. In practice, this is normally provided by using unfiltered 

radiation from the tube, for superposed effects due to characteristic peaks are 

again easily identified and discounted; if white radiation alone is essential, 

this can be obtained from a tungsten target under running conditions that do 

not excite characteristic lines. 
Finally, it is well known that all X-rays can be harmful to the tissues of the 

human body; even the hard X-rays of medical radiography must be used with 

strictly controlled dosages. For the longer wavelengths of the diffraction 

range, there are much greater dangers; burns and the cumulative effects of 

relatively small doses can be very damaging to health, and all X-ray tubes and 

apparatus are shielded (usually with lead) to prevent direct or scattered 

radiation reaching the body. Nevertheless, regular medical checks must 

always be undertaken on any person in danger of frequent exposure. 

8.2. Optical principles of diffraction 

In Chapter 8.1(d) we mentioned that part of the interaction of X-rays with 

matter consists of the scattering of unmodified radiation; this occurs when 



188 THE CRYSTALLINE STATE 

extranuclear electrons of the atoms are set into forced vibration by the inci¬ 

dent X-rays and subsequently re-radiate X-rays of the same wavelength in all 

directions. Such behaviour is common to many types of electromagnetic 

radiation, and the study of scattered radiation can tell us about the nature of 

the scattering atoms and the way in which they are arranged. Crystalline 

matter, with its regular and repetitive atomic arrangements, might reasonably 

be expected to scatter into a series of relatively sharp discrete maxima analo¬ 

gous to those formed by the passage of light through a diffraction grating. In 

fact the optical principles of the diffraction of light by a regular array of 

scatterers are paralleled by those which control the more complex diffraction 

of X-rays by crystals. The purpose of this section is to re-state and clarify 

optical principles in such a way that they are relevant and instructive in the 
discussion of X-ray diffraction in the next section. 

Parallel 
incident light 

Fig. 8.4. Geometry of Fraunhofer diffraction. 

The optical patterns that are of value are those produced by Fraunhofer 

diffraction, using parallel light with planar wavefronts; Fig. 8.4 shows the 

essential geometry of the arrangement, and full experimental details for the 

observation of these patterns will be found in textbooks of physical optics. 

In analysing the nature of the diffracted beams formed from a repetitive dif- 

fractor like a grating, it is advantageous in the present context to consider the 

scattering by a single diffractor and then see how this is modified by regular 

repetition. The simplest unit is a single slit of finite width a; with normal 

parallel illumination, we can regard each element dx of the slit as scattering 

light in the direction <f> with a particular amplitude and phase (Fig. 8.5(a)). If 

the elements are of the same length, they will scatter with identical amplitudes 

kdx; but the relative phases of the scattered radiations will depend on the 

positions of elements within the slit. Let us assign a phase angle 0° to the 

element at the bottom of the slit and phase angle 2a to that at the top; the 

phase angle for any other element at a distance x from the bottom of the slit 
X 

must be - . 2a. We can then sum all the contributions from the elements on a 
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Phase angle 2a 

Phase angle ^-2a 

Phase angle 0 

(b) 

(0 

Fig. 8.5. Fraunhofer diffraction by a single slit of width a. (a) The pas¬ 
sage of light through the slit, (b) The phase-amplitude diagram, (c) The 
variation of intensity from the central maximum. 
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phase-amplitude diagram to give an arc of a circle of radius ka/2a (Fig. 

8.5(b)), so that the resultant amplitude of scattering at angle <f> is 

A = 
ka . 
— sin a 
a 

But the total phase difference can be expressed in terms of the path difference 

between the top and bottom rays as 

a sin </> 

so that the resultant intensity becomes 

/ = A2 
k2 sin2 (7t/A . a sin 4>) 

772 sin2 <f>!A2 

Fig. 8.5(c) shows the variation of this intensity function plotted against the 

scattering angle expressed as sin 9S/A; the central maximum is flanked by sub¬ 

sidiary maxima with minima of zero intensity whenever sin <j>/\ = m/a (m is 

an integer). This single slit pattern with its broad maxima is well known; the 

narrower the slit, the wider the central maxima and so on. 

The first step towards grating repetition involves the introduction of a 

second identical slit at a distance c from the first (Fig. 8.6(a)). Each separate 

slit will scatter as above at angle <f>, but their contributions must be combined 

in accordance with the phase difference introduced by the separation c; in 

other words between corresponding points on the two slits there is a phase 

difference 2/3^=~ . c sin </>j . Fig. 8.6(b) shows the phase-amplitude diagram 

for the two slit system, from which the intensity function is 

I — A2 = 4A2 cos2 ^ . c sin </>j 

i.e. it has the single slit distribution (A2) modulated by a squared cosine func¬ 

tion dependent on c; Fig. 8.6(c) shows the intensity function again plotted 

against sin <f>/A. In effect, the single slit pattern determines the relative intensi¬ 

ties of peaks which occur at positions fixed by the dependence of squared 
cosine fringes on c. 

In a similar way we should find that with three, four, five, etc. slit systems, 

the intensity function for a single slit forms an envelope which limits the 

height of maxima whose positions and widths are respectively determined by 

the slit separation c and the number of slits in the system. Moving on to a full 

grating of N slits of width a separated by c, the final phase-amplitude diagram 

is shown in Fig. 8.7(a); the contribution of each element of the grating is an 
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Fig. 8.6. Fraunhofer diffraction by a pair of slits of width a separated by 
a distance c. (a) The passage of light through the system, (b) The phase- 
amplitude diagram, (c) The variation of intensity from the central 
maximum; the pattern is drawn for the conditions 4a = c. The single 
slit pattern is indicated by the dashed line. 
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infinitesimal chord of a circle, and the resultant amplitude A is also a chord 

of the same circle, so that 

/ = A2 = A2 
sin2 Nft 

sin2 ft 

i.e. the intensity distribution has the single slit function modulated by the 

grating term sin2 Nftlsin2 ft dependent on the slit separation c. The grating 

term has maxima of two different kinds. 

(i) When ft = 0, it, 2tt, etc. there are maxima of height N2, often called the 

principal maxima; they will occur when sin <f>/A = 0, 1/c, 2/c, etc. 

Fig. 8.7. Fraunhofer diffraction by a grating of N slits each of width a, 
separated by distance c. (a) The phase-amplitude diagram; if N is large 
the polygon may be approximated to the arc of a circle, (b) The variation 
of intensity from the central maximum. The single slit pattern is indicated 
by the dashed line. 
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(ii) When Nft = 0, -n, 2tt, etc. there will be minima with zero intensity; 

these will occur when sin <f>/\ = l/Nc, 2/Nc, 3/Nc, etc. to give N - 1 

minima between two principal maxima, equally spaced except for those 

on either side of a principal maximum. Between these minima, the in¬ 

tensity function rises to give secondary maxima of very weak intensity; 

these secondary maxima are not of equal intensities but fall off away 
from principal maxima. 

1 

Fig. 8.8. Intensity distribution for Fraunhofer diffraction by a grating of 
N units separated by distance d. Each grating unit is a pair of slits of 
width a separated by a distance c; the dashed line is the pattern for the 
double slit system (cf. Fig. 8.6(c)). The pattern is drawn for 20a = 

5c = d. 

Such a grating pattern is schematically illustrated in Fig. 8.7(b); although 

some secondary maxima are shown in this diagram, for the large values of N 

of an actual grating they are either too weak or too close to principal maxima 

to be observed in practice. Compare the sharpness of the principal maxima 

with those in the same positions for a simple two-slit system. 

This analysis of diffraction by a simple grating shows that the pattern pro¬ 

duced by any repetitive diffractor can be described as the sampling of a scat¬ 

tering curve due to a single diffractor (the slit factor) at points determined 
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by the repetition interval (the grating factor). The unit diffractor can be 

more complex than a single slit, as for example in Fig. 8.8 which shows the 

intensity distribution in the pattern from a grating formed from units of two 

slits of width a at a distance c apart; each pair is repeated at intervals of d to 

build up the grating. The ‘slit factor’ now has an intensity distribution similar 

to that of a double slit system in Fig. 8.6; the ‘grating factor’ determines the 

points at which this distribution is sampled at unit intervals corresponding to 

the principal maxima. We can extend these arguments to planar gratings with 

a regular two-dimensional arrangement of circular scatterers; Fig. 8.9(a) 

shows part of a simple oblique pattern of holes each of diameter D. The ‘ slit 

factor’ is the diffraction pattern of a single aperture, which is a central maxi¬ 

mum with a number of fainter concentric rings of weaker intensity; the 

spacing of these circular fringes depends on D. The ‘grating factor’ is deter¬ 

mined by the geometry of the oblique pattern; rows of holes with spacing c\ 

will give perpendicular line fringes spaced at l/cu whilst the rows with spac¬ 

ing c2 give perpendicular line fringes spaced at l/c2. Diffraction by a grating 

with rows of this kind will combine the two sets of line fringes to give a ‘ grat¬ 

ing factor’ that will only be significant at points where they intersect (Fig. 

8.9(b)); the spacings c1 and c2 define a grid of sampling points at which 

diffraction maxima can be observed, but the intensity of any maximum is 

determined by the underlying pattern of the single hole on which this grid is 

superposed (Fig. 8.9(c)). Clearly the ‘slit factor’ can be made more complex 

(two holes, a hexagonal pattern of holes, holes of different diameter, etc.) but 

in every case the diffraction pattern from a planar grating will consist of a grid 

of maxima whose positions are determined by the repeat intervals of the unit 

diffractors and whose intensities are determined by the relation of this grid to 

the pattern from a single unit of the grating. 

We are now in a position to relate optical diffraction by planar gratings with 

a two-dimensional periodicity and X-ray diffraction by crystals with a three- 

dimensional periodicity. In the latter the various atoms and their arrange¬ 

ment within the cell may be compared to the ‘slit factor’, whilst the periodic 

repetitions by the lattice translations correspond to the ‘grating factor’. In 

any X-ray diffraction pattern we should therefore expect the positions of dis¬ 

crete maxima to be fixed by the shape and dimensions of the unit cell but the 

intensities of individual maxima will be determined by the details of the 

structural arrangements within the cell. In practice, this aspect of the optical 

analogy can be usefully applied to help with the solutions of problems in 

Fig. 8.9. Fraunhofer diffraction by a planar grating with an oblique 
pattern of holes, (a) A part of the grating, (b) The two sets of inter¬ 
ference fringes from rows of spacing Ci and c2; maxima are observed 
only at the points of intersection, (c) The grid of (b) superposed on the 
diffraction pattern of a single hole to determine the intensities of maxima 
at the points of the grid. 
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X-ray diffraction, particularly in the field of crystal structure determination; 

any discussion of these topics is outside the scope of this present book but 

they are pursued in some of the texts cited in the bibliography. 

8.3. Diffraction of X-rays by crystals 

(a) Positions of Maxima 

Attempts to diffract X-rays began almost from the time of their discovery in 

efforts to demonstrate the wave nature of the radiation; in 1899 a pattern was 

obtained with a very narrow aperture but the diffraction effects were so slight 

that they were not generally accepted as conclusive. Some years later von 

Laue suggested that the spacings of atoms or molecules in crystalline matter 

were of the same order as some X-ray wavelengths and that diffraction could 

be achieved by using crystals as diffraction gratings. In 1912 Friedrich and 

Knipping passed a narrow beam of white radiation through a thin crystal of 

zincblende (ZnS); a photographic plate beyond the crystal showed a sym¬ 

metrical pattern of sharp maxima of different intensities in addition to black¬ 

ening due to the undeviated beam. From this simple experiment the sophisti¬ 

cated techniques of modern X-ray crystallography have developed; they have 

been supplemented in recent times by the diffraction of electrons and neutrons 

to give a most powerful range of investigative tools for many aspects of solid 

state studies. From the discussion of optical diffraction in the previous section 

it is clear that any analysis of diffraction patterns from crystals can be con¬ 

sidered in two parts, those factors which influence the positions of maxima 

and those which determine the intensities of individual maxima. We shall 

start by considering the positions of maxima which, from the optical analogy, 

will be fixed by the lattice translations, i.e. the dimensions and shape of the 

unit cell. For simplicity we may consider the scattering matter within a cell as 

associated with lattice points which act as units of the diffraction grating; it 

is only the separations of these units which are important in deducing the 

directions of maxima. In an elementary treatment the lattice may be regarded 

either as a collection of parallel lattice rows or as a stack of equidistant 

parallel planar nets of lattice points. We shall demonstrate that both methods 

inevitably lead to the same results, though it is the latter conception which can 

be more readily developed and which dominates the descriptions of diffrac¬ 
tion today. 

In the first approach, usually associated with von Laue, the grating of the 

crystal is regarded as a three-dimensional array of lattice rows so that 

diffraction is an extension of the optical problem for a planar grid discussed 

in the preceding section. The optical pattern had maxima at the intersections 

of fringe systems whose positions were determined by the lattice repeats of 

two rows; in the same way the maxima in the scattering of X-rays by a crystal 

will be found at the intersections of fringe systems due to the lattice repeats 
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of three non-co-planar rows. For simplicity, we choose these rows to be the 

lattice translations defining the cell edges; Fig. 8.10(a) shows parallel mono¬ 

chromatic X-rays of wavelength A incident at angle ia upon a row of point 

scatterers separated by the lattice translation a from which they are scattered 

at angle da. The path difference for X-rays diffracted from successive points is 

a(cos da — cos ia) 

so that the condition for reinforcement to give a maximum requires 

a(cos da — cos ia) = hX 

(b) 

Fig. 8.10. The Laue conditions, (a) Diffraction by a row parallel to the 
x-axis. (b) Stereographic representation of the Laue conditions. Cones of 
diffracted radiation are small circles about the x, y and z axes which are 
shown as orthogonal for simplicity; maxima will occur only at points 

such as d, where small circles about the three axes intersect. 
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where h is an integer. Such lattice rows will produce fringes whose intensity 

maxima lie on a series of cones about the directions of a\ each cone corres¬ 

ponds to a particular value of h. For the two other lattice translations there 

will be comparable equations 

b(cos db — cos 4) = kX 

c(cos dc — cos 4) — Ik 

where k and / are integers; as before, the intensity maxima will lie on cones 

about the directions of b and c determined by the values of k and l. For a 

crystal lattice only when all three conditions are simultaneously satisfied in a 

direction common to cones about all three cell edges will a diffracted maxi¬ 

mum be observed; the three equations which must be satisfied are often 

known as the Laue equations. The geometry of a solution to these equations is 

represented on the stereogram of Fig. 8.10(b). It is clear that the equations 

impose such specific conditions that for a given set of cell constants and a 

single X-ray wavelength it is probable that few (if any) maxima will occur; in 

the next chapter we will discuss how experimental techniques overcome this 

problem either by using a range of wavelengths or by varying the orientation 

of the crystal. 

Whilst the Laue treatment is helpful in interpreting certain features of 

diffraction patterns, it is distinctly more cumbersome in other respects than 

another approach due to Bragg in which the crystal lattice is regarded as a 

collection of equi-distant parallel nets. It is instructive to develop the Bragg 

method from the Laue equations and this may be done geometrically using 

the stereogram of Fig. 8.11(a). On this the A-axis, with its rows of lattice 

points separated by a, is plotted at the centre of the projection, and the poles 

of the incident (i) and diffracted (d) beams are also shown; a great circle 

through i and d is constructed to represent the plane containing these beams, 

and a point n on this circle is found so that in = nd. Now this point n must 

represent the normal to a family of lattice planes, as we can show in the fol¬ 
lowing way: 

cos(77 — 4) — cos xn cos in + sin xn sin in cos n 

cos da = cos xn cos dn + sin xn sin dn cos(rr — n) 

from the spherical triangles xin and xdn respectively (see Appendix B). By 
addition 

cos da — cos 4 = 2 cos xn cos in 

since in = nd by construction. One of the Laue equations will therefore be 
satisfied when 

hX/a = 2 cos xn cos in. 
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By a similar procedure we can get equations 

kX/b = 2 cos yn cos in 

IX/c = 2 cos zn cos in 

for the other two Laue conditions relating the positions of i and d. In these 

equations, the angles xn, yn and zn define the direction of n relative to the 

crystallographic axes (Fig. 8.11(b)); a plane which is normal to n must have 

Fig. 8.11. Development of the Bragg law from the Laue equations, 
(a) Stereogram showing diffraction by a row parallel to the x-axis and 
the point n in th& plane of the incident and diffracted beams, (b) The 

orientation of the plane defined by xn, yn and zn. (c) The geometry of 
reflection. 

intercepts which are in the ratios of 1/cos xn: 1/cos yn: 1/cos zn on the a, y 

and z axes respectively. From the equations above, the values of these ratios 

must be a/h'.b/k’.c/l, which are just those defined by any member of the (hkl) 

set of lattice planes; thus, at conditions which satisfy the three Laue equa¬ 

tions, the pole n is in the direction of the normal to the (hkl) planes of a 
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lattice in which the cell is defined by a, b and c. The geometry is shown in 

Fig. 8.11(c); the directions of the incident and the diffracted beams are sym¬ 

metrically disposed with respect to the normal to a plane of the (hkl) set, and 

all three directions are co-planar. This is analogous to simple reflection as 

from a mirror, and it is for this reason that the term ‘ X-ray reflection’ is 

commonly used to describe a diffraction maximum. It cannot be too strongly 

stressed that this terminology implies no physical reflection of the incident 

X-rays in the sense that they bounce off planes of lattice points (or atoms) in 

a structure; it is merely that the concept is convenient in locating and describ¬ 

ing positions of maxima produced by the physical process of diffraction. 

Moreover, an analogy with simple mirror reflection is incomplete, for the 

geometry of Fig. 8.11(c) is critical; ‘reflection’ will only occur when in has a 

particular value determined by the crystal constants and the X-ray wave¬ 

length. The value of the angle which will allow us to observe a diffraction 

maximum in some direction as if incident X-rays were reflected from a plane 

parallel to (hkl) lattice planes is called the Bragg angle, 9hkl; it is defined as the 

glancing angle of incidence so that 

Ohki = 90° - fiz. 

The factors which determine 6hkl can be identified by choosing the plane of 

Fig. 8.11(c) to be the first plane (p = 1) of the set (hkl); this is legitimate, since 

i, n and d in this figure only represent directions. For such a plane the inter- 

planar spacing dhkl = ~ cos nx, etc. (see Chapter 5.1), so that the equations 

expressing the Laue conditions derived from Fig. 8.11(a) become 

A = 2dhki sin 9hkl 

which is known as the Bragg law, an equation basic to all X-ray diffraction 
phenomena treated in this way. 

The Bragg equation suggests a simple method of identifying the various 

diffraction maxima from the values of the integers h, k and /; these locate the 

planes from which ‘reflection’ takes place when the conditions of incidence 

are satisfied. In solving this equation interplanar spacings are needed; as we 

described in Chapter 7.2, dhkl values for a particular substance depend on the 

size and shape of the unit cell, but a lower limit (with the largest h, k and / 

values) is imposed by the X-ray wavelength on those that can be brought into 

a reflecting position. In older usage, the Bragg law was often written nX = 

2dhkl sin 6hkl so that various orders of reflection (with n = 1, 2, 3...) were 

said to occur from a given family of planes, rather as is done in some branches 

of spectroscopy. Nowadays it is more usual to regard these different orders of 

reflection as arising from new families, parallel to the parent planes but with 

spacings which are fractional parts of their spacing. Thus in the old termino¬ 

logy a maximum might be described as the 2nd order reflection from (100) 
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planes, i.e. 2A = 2d100 sin 9'i00; nowadays it is considered as a reflection from 

(200) planes, which are parallel to the (100) set but with only half their inter- 

planar spacing, i.e. A = 2d200 sin d200. Possible positions of maxima are 

computed from the Bragg law for all dhkl values greater than the limit (A/2), 

without the removal of common factors in (hkl); whether an individual 

maximum is observed depends on its intensity and the factors which control 
this are discussed in the next section. 

The concepts of the Bragg law and its reflecting planes are universally em¬ 

ployed in X-ray diffraction work, where maxima are described as hkl reflec¬ 

tions (without brackets); another view of their significance can be obtained 

from Fig. 8.12, which shows the conditions at reflection from a given set of 

Fig. 8.12. Path difference between radiation reflected from successive 
planes at Bragg position. 

planes. Incident X-rays lose energy as they penetrate the crystal, but meet 

any member of the family at the correct angle for reflection demanded by the 

Bragg law. For a particular plane there is no phase difference between X-rays 

scattered from any point on its surface, but clearly phase differences must 

occur between radiation scattered from one plane and any other plane of the 

set. For example, the path difference for the two uppermost planes of the 

figure is AB — AC; under the geometrical conditions of the Bragg law 

AB - AC = AB(1 - cos 2dhkl) = 2AB sin2 dhkl = 2dhkl sin 6hkl = A, 

so that the path difference between successive planes of a set is one wave¬ 

length. We can therefore regard the reflecting planes of the Bragg treatment 

as representing planes of constant phase for X-rays scattered in the direction 

of this maximum; a phase change of 2v is introduced when radiation is scat¬ 

tered from successive planes of a set. This interpretation of the significance of 

reflecting planes is of value when we consider the intensities of maxima later. 

The techniques of interpreting X-ray diffraction patterns are greatly as¬ 

sisted by transforming the Bragg conditions into a convenient geometrical 

form in a construction first proposed by Ewald. In this the reflecting planes of 

the direct Bravais lattice are represented by points of a reciprocal (or polar) 

lattice-, reciprocal lattice points are clearly analogous to the points of the grid 

on which maxima can be observed in optical diffraction by a planar oblique 

pattern of holes (Fig. 8.9). Possible solutions of the Bragg conditions are 
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determined by considering the intersection of points of the reciprocal lattice 

with a spherical surface constructed according to the conditions of the experi¬ 

ment. In this way a simpler treatment of the geometrical aspects of complex 

diffraction problems can be achieved, and the concept of reciprocal space is 

widely used in X-ray work; unfortunately, its full development and applica¬ 

tion must be regarded as beyond the scope of an introductory account of 

X-ray methods but excellent descriptions will be found in books listed in the 

bibliography. 
The geometry of diffraction has been discussed here for the scattering of 

X-rays, but diffraction patterns for the scattering of electrons and neutrons 

by crystalline matter have similar general features. These patterns are inter¬ 

preted in terms of the wave nature of such particles; the scale may be quite 

different (e.g. 50 kV electrons have a wavelength of about 0-05 A) and the 

physical process of diffraction may not be the same (e.g. it is not extranuclear 

electrons which are important in neutron scattering), but the positions of 

maxima can be located by solution of the Bragg law as above. Electron and 

neutron diffraction can give information which is unobtainable by X-ray 

methods; for example the scattering power of atoms may be quite different 

for neutrons and X-rays, so giving quite different relative intensities in pat¬ 

terns from the same crystal; sometimes this permits a much readier resolu¬ 

tion of some lighter elements which scatter neutrons more effectively than 

X-rays. The technical problems of obtaining satisfactory electron and neutron 

diffraction patterns are much greater than for X-rays, which remain the 

commonest means of structural investigation in the solid state. 

(b) Intensities of Maxima 

The intensity of a particular diffracted beam as recorded experimentally 

depends on a number of factors; apart from its relation to the incident inten¬ 

sity an experimental value can be affected by the method of measurement, 

and also by the micro-texture of the crystal under examination. We shall dis¬ 

cuss these and other factors briefly in the next section, but when they have 

been taken into account, the intensity of any maximum must be fundament¬ 

ally related to the various scattering atoms and the way in which these form 

the crystal structure. In terms of the optical analogy, the intensities are deter¬ 

mined by the scattering pattern of a unit of the grating; in a crystal structure 

it is the content and arrangement of atoms in a unit cell which determine this 

scattering pattern, and in this section we shall set up a method of calculating 

the expected intensities for structures in which atomic co-ordinates within a 

cell are known. To do this, the first stage is to devise a means of assigning 

suitable scattered amplitudes to each atom in the unit cell; these must then be 

summed with reference to the different locations of the various atoms, bear¬ 

ing in mind that we have just seen that this scattering pattern is only observ¬ 

able in directions determined by the cell dimensions. 
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Like other diffraction phenomena, the atomic scattering of X-rays implies 

that the atoms become sources of secondary wavelets of the incident radia¬ 

tion. The nucleus takes no part in this physical process both because of its 

small radius (~ 10“14 cm) and its large mass; any scattering must be due to 

forced oscillations of the extranuclear electron clouds whose radii are of the 

order of Angstroms. It is therefore reasonable to choose to measure ampli¬ 

tudes scattered by atoms in terms of the scattering by an isolated electron. 

Any given atom has, of course, a characteristic number of extranuclear elec¬ 

trons, but we cannot just use this number (Z) as a simple factor to obtain its 

scattering power under all circumstances; particular arrangements of elec¬ 

trons in various orbitals of different radii distinguish one kind of atom from 

another so that scattered amplitudes depend on the angle of scattering with a 

form of variation that is different from one atom to the next. Fig. 8.13 shows 

Fig. 8.13. Scattering of X-rays by an electron cloud of radius r in a 

direction given by <f>. 

scattering by a hypothetical atom in which all electron clouds are concen¬ 

trated in one particular orbital of radius r; for two limiting rays there must 

be a finite path difference of 2r sin </> for any non-zero value of the scattering 

angle <f>. When <f> = 0 (or 180°) all parts of the cloud scatter X-rays in phase; 

but in any other direction phase lags are introduced between radiation scat¬ 

tered from different parts of the cloud and these will cause interference; the 

amplitude scattered by this simple atom will consequently be reduced in a 

way that depends on the angle of scattering. In any general direction we can 

express this scattered amplitude as the product of a numerical factor and the 

scattering of an isolated electron under the same conditions; this numerical 

factor is known as the atomic scattering factor (/) and its variation with scat¬ 

tering angle will depend on the nature of the extranuclear electron clouds for 

any given atom. When <f> — 0,/= Z; but for all other values of <f>, f < Z; the 
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actual value of / denotes the number of electrons which would give an 

equivalent scattered amplitude. Atomic scattering factor curves showing the 

variations for different atoms can be calculated, though the methods are too 

complex for discussion here; values of/for different atoms are tabulated in 

standard reference texts (see International tables for X-ray crystallography in 

particular) usually as a function of sin d/X (= 1/2d), which provides a con¬ 

venient measure of scattering angle in diffraction work. Fig. 8.14 shows parts 

of the atomic/curves for three atoms, light, medium and heavy; there are 

significant differences in the fall-off of amplitudes as the scattering angle in¬ 

creases. 

sin d/\ -*- 

Fig. 8.14. Atomic / curves for three atoms. 

Before proceeding to the second stage of intensity calculation, there are two 

general observations to be made on / values. Firstly, the amplitude scattered 

by an electron is a very small fraction of any incident amplitude; the scatter¬ 

ing by atoms, even of the heaviest elements, is still quite small and conse¬ 

quently the total amplitude for all atoms in a unit cell must remain rather 

small even under the most favourable conditions; thus the fractional part of 

the incident intensity diverted into any diffraction maximum is small even for 

the strongest reflections. Secondly, the shape of atomic / curves will be de¬ 

pendent on any thermal motion of the atoms at finite temperatures. Standard 

tabulations of/values are quoted for atoms at rest; and, in general, thermal 

vibrations will cause the electron distribution to spread out and decrease the 

scattering power. The form of the relationship between the scattering factor 
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(/) for a vibrating atom and that (/0) for the same atom at rest is usually ex¬ 
pressed as 

/ = f0 exp (- B sin2 0/A2) 

in which B is taken to be a constant at a given temperature. This is not strictly 

valid, for B varies from atom to atom and with the direction of scattering; but 

the relation is sufficiently good for the accuracy of most work, and a value of 

B can be found from a comparison of observed and calculated intensities in 

any particular case. Corrections for thermal motion are only required in 

accurate work on structure determination. 

From atomic / curves we can obtain the amplitude of scattering (in terms 

of electron equivalence) for each kind of atom in the cell at a given angle of 

scattering; the next step in the calculation of the expected intensities involves 

the summation of these amplitudes for all atoms. Let us suppose that there 

are n atoms of various kinds with fractional co-ordinates x1y1z1; x2y2z2; ... 

x„y„zn in the cell; for a particular scattering angle defined by a set of reflecting 

planes (hkl) these will scatter with amplitudes/i,/2,... ,/n, but, owing to their 

different locations, the radiation diffracted by each atom will have a different 

phase; we will specify the phase angles as <f>r, <f>2,..., <f>n relative to the cell 

origin. Our first problem is to express these phase angles in terms of the 

atomic co-ordinates and the angle of scattering; this may be done by remem¬ 

bering that planes of the set (hkl) can be regarded as planes of constant phase 

spaced at phase intervals of 2tt under conditions that satisfy the Bragg law. 

The equations of these planes are 

x j a/h + y j b/k + z J'c/l = 0, 1, 2, 3, etc. 

An atom with fractional co-ordinates xnynzn will lie on a parallel plane, so that 

x a/h + y b/k + z c/l = axn a/h + byn bjk -f czn cjl = 
hxn + kyn 

+ lzn = m 

where m can be irrational, so that the phase difference between radiation 

scattered from this atom and the origin is 

</>„ = 2-n-m = 27r(hxn + kyn + lzn) 

Now we know both the phase and amplitude of the radiation scattered by in¬ 

dividual atoms in the cell; the summation can be made on a phase-amplitude 

diagram (Fig. 8.15), from which we see that 

OR2 - OS2 + RS2 

= (2/»COS^)2 + (2/nsill<^)2 

= [2-^ cos ^(hxn + kyn + /zn)]2 + p/» sin 2Tr(hxn + kyn + lzn)j . 
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OR, the total amplitude scattered in the particular direction defined by hkl by 

all atoms in the unit cell is usually called the structure amplitude (less desir¬ 

ably, the ‘structure factor’) and written F(hkl). For the various diffraction 

maxima, the scattered radiation has structure amplitudes which can differ 

both in magnitudes (OR) and phases (</>); experimentally relative phases for 

different reflections cannot be observed and we can only measure intensities. 

These can be related to the magnitudes of F(hkl)’s, though due account must 

be taken of other factors which influence experimental values, as we shall see 

shortly; the absence of experimental data on relative phases is particularly 

important in structure determination where many methods are concerned 

with overcoming the problems of this handicap. 

Fig. 8.15. Phase-amplitude diagram summing contributions to the total 
scattering by each of the n atoms in the unit cell. 

The use of the structure amplitude expression to calculate \F(hkl)\2 (and 

hence intensities) for a known atomic assemblage is a formidable task if the 

arrangement is not very simple, but modern computational methods relieve 

the calculations of much of their labour. They are simplified when the space 

group is known, for each space group requires the repetition of atoms or 

atom groups at equivalent positions within the cell at co-ordinates determined 

by the symmetry and lattice operators. Calculations may proceed through 

geometrical structure factors formed by independently summing the trigono¬ 

metrical terms for the set of related co-ordinates in the particular space group; 

the product of the geometrical structure factor and the / value for atoms 

occupying these positions in the cell gives the contribution of this set of 

atoms to the structure amplitude. For example, the geometrical structure 

factor for the G.E.P’s in C2/m listed in Table 7.4 is 

A 8 cos2 2tt 
h + k 

cos 2n(hx + Iz) cos 2Trky; 5 = 0, 
4 
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where A is the summation of the cosine terms in the structure amplitude ex¬ 

pression, and B*, the summation of the sine terms; contributions of all the 

atoms at different co-ordinates may then be included in the expression 

\F(hkl)\2 = (2/^n)2 + (2/n5")2 

where An, Bn are the values calculated from the geometrical structure factor 

for the nth set of atoms scattering with amplitude /„. Geometrical structure 

factors for all space groups are listed in Vol. 1 of International tables for 
X-ray crystallography. 

8.4. The recording of diffraction patterns 

A complete study of diffraction by a particular crystal requires the location of 

all possible reflections and measurement of their intensities; to do this we 

must employ an experimental technique which allows Bragg conditions to be 

fulfilled for every family of planes, and have some means of detecting the 

X-rays scattered in various directions. Some of the simpler experimental 

methods are described in subsequent chapters; in this section we are con¬ 

cerned only with the manner of recording patterns without reference to the 

technique by which they are obtained. Historically the first diffracted X-rays 

were detected by the blackening of a photographic plate, and its successor— 

the photographic film—is still used for much modern work. The response to 

incident quanta depends upon the speed of the film, but most X-ray reflections 

are so weak that exposure times of hours (and sometimes days) are normally 

necessary to obtain detectable blackening on the developed film. (Recently 

Polaroid films have been introduced, but these are not yet suitable for accur¬ 

ate intensity work.) To measure X-ray intensities from films it is essential to 

relate the number of X-ray quanta to a particular blackening, defined as a 

function of the ratio of incident and transmitted light; experimentally it is 

found for most films that blackening is linearly related to the number of 

quanta per unit area of film, provided that a limiting blackening (depending 

on the film and its processing) is not exceeded. If all recorded reflections on 

the film are spots with blackening within this linear range, relative intensities 

of the various maxima can be compared from their blackenings by visual 

estimation or by photometry, as accuracy and circumstances demand. Much 

of the experimental data on intensities needed for structure determination has 

been (and still is) collected in this rather simple manner; but almost from the 

earliest days of X-ray crystallography attempts were made to develop quanti¬ 

tative direct methods to detect the scattered radiation so as to eliminate the 

* One of the advantages of listing co-ordinates of equivalent positions with respect to an 
origin sited on a centre of symmetry is that they must occur in pairs x„, yn, zn and 
xn, yn, zn\ when these pairs are substituted in the summation of the sine terms (B) they 

vanish, since sin (— 9) = — sin 6, so that B = 0. 
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uncertainties inherent in photographic films and their processing. Initially 

attention was concentrated on ionisation chambers in which currents due to 

gas ionisation by the X-rays were measured. These were cumbersome and 

often difficult in use, but the development of stable modern counters (Geiger, 

proportional and scintillation) with their associated electronic counting cir¬ 

cuitry has led to a more reliable and accurate method of measuring X-ray 

intensities; these are now increasingly employed when the highest accuracies 

are required. Naturally, this complex equipment poses many technical prob¬ 

lems, and we can do no more here than refer to the many books which de¬ 

scribe in detail these techniques of X-ray detection. 

We emphasised earlier that the positions of reflections are determined by 

the cell size and shape; their intensities depend on the arrangement of the cell 

contents as expressed by the structure amplitude, but there are many other 

factors which can influence values observed experimentally. Some of these in¬ 

volve the particular experimental arrangement and depend critically on the 

geometry of the camera; other geometrical factors are related to the partial 

polarisation of the reflected beams and the speed at which reflecting planes 

pass through the Bragg positions. Moreover, we must expect the properties 

of the specimen itself to be of some importance. For example, diffracted 

beams will be absorbed by the crystalline specimen, and the extent of this ab¬ 

sorption for a particular reflection will depend in a complex way on the 

camera geometry and the size and shape of the specimen; often the best policy 

is to employ crystals whose dimensions are so small that any absorption for 

the chosen radiation can be regarded as negligible (the upper limit of size is 

usually assumed to be 2//x). In the single crystal and powder methods de¬ 

scribed in subsequent chapters, any intensity formulae for powder records 

include a multiplicity factor (p) due to the superposition of reflections from 

different planes of the same form; in single crystal patterns all such reflections 

are separated. All these factors can be corrected, or minimised, so as to allow 

a comparison between observed intensities and those expected from calcula¬ 

tions of structure amplitudes; but there is a further factor, in some ways 

of rather a more fundamental nature, whose estimation is much more 

uncertain. 

When X-rays are re-radiated by the atoms of a crystal, the scattered radia¬ 

tion for any planes (hkl) is 90° out of phase with the incident beam; this is 

due to the difference between the frequency of the X-rays and the lower 

natural frequencies of the atoms. The geometry of the Bragg law allows 

multiple reflection of X-rays at adjacent parallel planes of a set, so that some 

scattered radiation travels in the same direction as the incident beam but is 

exactly out of phase with it; this causes destructive interference, which can 

lead to a rapid decrease in the amplitude of the incident beam as it penetrates 

into the crystal. The effect is most marked in a perfect crystal set in the re¬ 

flecting position for a family of planes, and it will be most noticeable for those 
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planes which scatter most strongly, i.e. those with the largest values of 

Fihkl); this progressive reduction in the intensity of the incident beam as it 

passes through successive reflecting planes is known as primary extinction, and 

it can have a profound effect on observed intensities. The total integrated in¬ 

tensity (i.e. the total energy scattered at all angles as a crystal passes through 

the reflecting position) can be calculated for a very small perfect crystal; rela¬ 

tive to unit incident intensity, this can be written as QdV, where dV is the 

volume of the crystal and Q is a complex factor including the geometrical 

terms, etc. that we have mentioned as well as \F(hkl)\2. In this very small 

crystal, the effect of primary extinction is negligible, but for a large perfect 

experimental crystal of volume V containing many hundreds of thousands of 

reflecting planes, we would not be justified in writing the integrated intensity 

as O V. Due to the shielding effects of primary extinction, the incident beam 

does not penetrate to the deeper regions of the crystal and the effective volume 

V' contributing to the integrated intensity is less than V. The value of V will 

depend on the particular reflecting planes, and to a reasonable approxima¬ 

tion we can write that V is inversely related to \F(hkl)\, with primary extinc¬ 

tion having more effect the stronger the reflection. The total integrated 

intensity is then QV, so that for a large perfect crystal it depends on \F(hkl)\. 

Early attempts to verify this dependence showed that it was reasonably valid 

for only very few crystals, and there were considerable difficulties in reconcil¬ 

ing experimental intensity measurements with those expected from calcula¬ 

tions of this kind. Explanation of these discrepancies lies in the realisation 

that real crystals rarely achieve the perfection of atomic arrangement that has 

been assumed (see Chapter 12); at the extreme, we may imagine that actual 

crystals have a mosaic texture in which small perfect blocks of structure are 

slightly misorientated from one another by structural imperfections. If in¬ 

dividual blocks in the mosaic are small enough for primary extinction to be 

negligible, the total integrated intensity is QV, so that for a large imperfect 

crystal it depends on \F(hkl)\2. A rigorous treatment of extinction is more 

complex, e.g. in ideally imperfect crystals there can be some shielding of 

deeper mosaic blocks by those nearer to the surface in parallel orientations; 

fuller discussion of these difficult problems is found in books listed in the 

bibliography, particularly that by James. Nevertheless, the present simplified 

exposition illustrates how profoundly experimental intensities can depend on 

the state of perfection of the crystal specimen. Schematically drawn in Fig. 

8.16 are the reflection curves from the same family of planes for the same 

crystal structure (a) for an ideally perfect crystal, and (b) for an ideally im¬ 

perfect crystal; in (a) the peak height is considerable, with a limited range of 

reflecting angle; but the total integrated intensity under the curve is very much 

smaller than for (b), which has a lower peak height but a much broader 

width of maximum since the slightly misorientated blocks reflect over a 

greater range of angles. 
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In any practical context, a value of \F(hkl)\ calculated from atomic para¬ 

meters can be compared with an experimental intensity (after correction for 

geometrical factors) only if some assumption is made about the state of per¬ 

fection of the crystal specimen. Most real crystals are neither ideally perfect 

nor ideally imperfect in their behaviour, but experience shows that they are 

more likely to approximate to the imperfect condition; indeed, we may at¬ 

tempt to destroy any suspected perfection before experimental measurement 

Intensity 

-- Bragg angle 

(a) (b) 

Fig. 8.16. Idealised reflection curves. Both are for the same structure and 
the same reflection, (a) Shows the narrow peak of a perfect texture and 
(b) the broad low peak of an imperfect texture. 

by a simple treatment (e.g. by dipping the crystal in liquid air). In practice, 

the crystal is then assumed to be ideally imperfect for all reflections, so that 

integrated intensities are related to \F(hkl)\2; even so there will remain dis¬ 

crepancies between observed and calculated intensities; but, provided these 

disagreements are confined to the strongest maxima, they may be reasonably 

written off as due to the uncorrected effects of primary extinction for such 

reflections. 

8.5. The determination of space groups 

In discussing computation of the structure amplitude expression earlier we 

mentioned that lattice and symmetry operators demand relationships between 

the co-ordinates of the atoms of the structure in which they occur; the geo¬ 

metrical structure factors formed from these co-ordinates imply that intensi¬ 

ties of different X-ray reflections are not always independent. Indeed, the 

form of the amplitude expression itself ensures that \F(hkl)\ = \F(hkl)\, so 

that the intensities of X-rays reflected from the opposite sides of families of 

planes are identical for any set of atomic co-ordinates.* This is known as 

* There are certain exceptional experimental conditions when this is not valid, but these 
are sufficiently unusual to justify omission here. 
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FriedeVs law, and means that it is not possible to deduce the absence of a 
centre of symmetry by comparing the intensities of the hkl and hkl reflections; 
consequently, it may be said that X-rays insert a centre into a diffraction pat¬ 
tern when one is not present in the crystal. Clearly this limits any deductions 
of symmetry from diffraction patterns, but more positively other symmetry 
operators in point groups can be identified by intensity comparisons; the 
presence of axes and planes necessitates atomic distributions giving identical 
intensities to maxima whose indices are related by the symmetry element. For 
example, the intensities hkl and hkl must be identical when the crystal has a 
diad parallel to the x-axis but would be unrelated in triclinic crystals where 
this element is not present. Broader categories of point group symmetries can 
be distinguished by a study of the relationships between the intensities of the 
various maxima and convenient experimental techniques are described in the 
next chapter. 

Once the point group has been established (or at least the broader Laue 
group as in Chapter 9.2), we can discover non-primitive lattices, screw axes, 
and glide planes by the systematic absences which they cause in certain classes 
of reflections; in this way we can assign the structure to a particular space 
group or, at the worst, deduce that it can belong only to a very limited num¬ 
ber of groups. Systematic absences are observed because certain lattice and 
symmetry operators relate atomic co-ordinates so as to reduce to zero the 
structure amplitudes (and intensities) of certain classes of reflections; they 
should not be confused with accidental absences of individual reflections 
whose structure amplitudes are so small that they are not detectable. As an 
example of a set of systematic absences, let us assume that our structure has 
an /-lattice, in which identical atoms must occur in pairs with co-ordinates 
related by the translation £) + ; if one atom is at xn, yn, z„, the other 
member of the pair must be at \ + xn, \ + yn, \ + zn. The geometrical 
structure factor for the space group must contain terms in pairs as 

cos 2n{hxn + kyn + lzn) + cos 2v (hxn + kyn + lzn + 

in the A summation, and 

sin 2ttihxn + kyn + lzn) + sin 2iT^hxn + kyn + lzn + 

h + k + /j 

h + k + /j 

in the B summation. 
On simple manipulation, such pairs become 

and 

2 cos 2tt 

2 cos 2tt 

h + k + l 
+ 4 + cos ^ (hxn + kyn + lzn + 

(h + k + l\ . ~ /, 7 ; h k l\ 
[-4-1 sin 2771 hxn + kyn + lzn +-^-j 

4 
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respectively; so that the geometrical structure factor has a common trigono¬ 

metrical factor cos 2tt ^ ——j, which is independent of any particular 

atomic co-ordinates. Since h, k and / are integers, this cosine term can only 

have values of 0 or +1, depending on whether h + k + l is odd (2n + 1) or 

even (2n) respectively; when it is zero, the structure amplitude F(hkl) will be 

zero. Thus all reflections for which h + k + l — 2n + 1 are absent from 

the diffraction patterns of crystals with body-centred cells; from these 

systematic absences we can deduce that a specimen has this lattice type. 

Other multiply primitive cells lead to different sets of systematic absences as 

can be demonstrated by similar arguments. Table 8.2 summarises the effects 

Table 8.2. Conditions imposed upon possible X-ray reflections by lattice type 

Lattice symbol Conditions for reflections of class hkl 

P None 
I h + k + l = 2n 
F h, k and / all even or all odd 
C h + k — 2n 
B h + / = 2n 
A k + l = 2n 

— h -f- k + / = 3 n 
or h — k + l = 3n 

a The reflections referred to are hk . I obtained on the Miller-Bravais system of indexing 
using a triply primitive hexagonal cell; with rhombohedral indices pqr of the Miller 
system of indexing there are no restrictions. The upper condition is that for the obverse 
orientation, the lower is for the reverse orientation. 

of lattice operators on diffraction patterns by specifying the conditions for 

possible reflections; owing to accidental absences not all reflections satisfying 

these conditions may actually be observed. Systematic absences due to lattice 

type may be accompanied and supplemented by those due to glide planes; 

these occur in restricted reflection classes in a manner which depends both on 

the translational element and orientation of the plane. For example, if the 

structure contains a c-glide plane through the origin normal to the x-axis, this 

requires pairs of identical atoms with co-ordinates xn, yn, zn and xn, yn, 

\ + zn. Following the same arguments as for an /-lattice, the pairs in the geo¬ 
metrical structure factor become 

2 cos 2tt (hxn - cos 2tr(kyn + lzn + ^ j 

in the A summation, and 

2 cos 2tr[hxn - sin 2?r{kyn + lzn + 
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in the B summation; there is no common trigonometrical factor in the terms 

needed to calculate \F(hkl)\2, for they will contain the different x co-ordinates 

of the various atoms. However, if we confine our attention to Okl reflections, 

we eliminate these co-ordinates from the expressions and have the factor 

cos 277 ^ common to all maxima. Since / is integral, this term will be zero if l 

is odd (2n + 1) and + 1 if / is even {In); as before, a zero term means that the 

structure amplitude F(0kl) is zero, so that reflections of the type 0kl do not 

occur when this glide plane is present in this orientation unless l = 2n. By 

similar arguments we can discover all the sets of systematic absences caused by 

glide planes in various orientations; Table 8.3 lists the various conditions for 

Table 8.3. Conditions imposed upon possible X-ray reflections by planes of symmetry 

Plane symbol Orientation 
(as () planes) 

Reflection class Conditions for 
reflection 

m Any Any None 
a (010) planes hOl h = 2n 

(001) planes hkO h = 2n 
b (100) planes Okl k — 2n 

(001) planes hkO k = 2 n 
c (100) planes Okl l = 2 n 

(010) planes hOl l = 2n 
(110) planes hhl l = 2n 

(1100) planes hh.l l = 2 n 

(1120) planes hh. 1 l = 2 n 

n (100) planes Okl k + l = 2n 
(010) planes hOl h + l — 2n 

(001) planes hkO h + k = 2n 

d (100) planes Okl k + l = 4n (k, l = 2n) 

(010) planes hOl h + / = An (h, l = 2m) 
(001) planes hkO h + k = 4m (h, k = 2m) 
(110) planes hhl 2h + / = 4m 

possible reflections under the common circumstances of normal space group 

orientations, with the omission of rhombohedral indexing. Further systematic 

absences are due to screw axes, and these too depend on the orientation of the 

axis and its nature. Taking a simple example of a screw diad through the ori¬ 

gin parallel to the x-axis, the pairs of related co-ordinates are xn, yn, zn and 

\ + xn, yn, zn which lead to terms in the geometrical structure factor of 

2 cos 277(kyn + lzn - cos 277(hxn + 

in the A summation and 
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in the B summation. If we restrict attention to the hOO reflections, the factor 

cos 2v - is common to all maxima, so that hOO reflections will occur only 
4 

if h = 2n; other conditions dependent on screw axes to be found in the nor¬ 

mal space group orientations are listed in Table 8.4; again rhombohedral 

indexing is omitted. 

Table 8.4. Conditions imposed upon possible X-ray reflections by axes of sym¬ 
metry 

Axis symbol Orientation 
(in [ ] direction) 

Reflection class Conditions for 
reflections 

2, 3, 4, 61 
2, 3, 4, 6/ 

Any Any None 

2i 1100] hOO h = 2n 

1010] OkO k = 2n 

[001] 00/ l = 2 n 

3i, 32 [00.1] 00./ l = 3rt 

4i,43 [100] hOO h = An 

[010] OkO k = 4n 

[001] 00/ l = 4 n 

42 [100] hOO h = 2n 

[010] OkO k = 2n 

[001] 001 l = 2n 

6i, 65 [00.1] 00 . / 1 = 6n 

62, 64 [00.1] 00 . / l = 3n 

63 [00.1] 00./ l = 2n 

The conditions for reflection imposed by the various lattice types and sym¬ 

metry elements listed in these tables can be used to identify these operators, 

and so a survey of diffraction maxima can lead to the deduction of the pos¬ 

sible space group or groups. In practice, this should proceed from the more 

general to the more particular reflection classes, i.e. from lattice absences to 

glide plane absences to screw axis absences, remembering that absences which 

are sub-conditions of a more general condition cannot be regarded as signi¬ 

ficant. Thus hkO and hOO reflections must have h + k — 2n and h — 2n 

respectively for a C-face centred lattice which imposes the general condition 

for all reflections hkl that h + k — 2n; they cannot be taken as indicating 

n-glide planes parallel to (001) (Table 8.3) and 2X axes parallel to [100] (Table 

8.4), elements which may or may not be present in the space group. Some 

space groups are uniquely characterised by their systematic absences; Pccn 

with conditions 0kl with l = 2n, hOl with / = 2n, and hkO with h + k = 2n 

is one such group. Some have the same kind of reflection patterns as several 

other groups so that an individual space group cannot be recognised by sur¬ 

veys of reflections alone; this is due to a lack of positive evidence for rotation 

or inversion axes, and mirror planes, so that for example Pm, P2 and P2/m 

all have no restrictions on any reflection class. Nevertheless, we should at least 



X-RAYS AND CRYSTALLINE MATTER 215 

recognise that our structure belonged to one of these three monoclinic space 

groups; any attempt to differentiate among them would require some means 

other than systematic absences. The limit of information that can be ob¬ 

tained in such diffraction studies is formally expressed by the diffraction 

symbol; this has three parts denoting the point group symmetry as deter¬ 

mined by diffraction (the Laue group of Chapter 9.2), the lattice type (from 

Table 8.2), and any symmetry elements which can be deduced from system¬ 

atic absences (Tables 8.3 and 8.4). Hence the diffraction symbol for a crystal 

of space group Pccn is mmmPccn, the completion of all places in the symbol 

implying an unambiguous interpretation of the diffraction data; the symbol 

for the three monoclinic space groups above is 2/mP-/-, the incomplete places 

in the symbol embracing the symmetry elements whose possible presence to 

give either P2 or Pm or P2/m is unresolved. All diffraction symbols are listed 

in Vol. 1 of International tables for X-ray crystallography, together with their 

associated alternative space groups; diffraction symbols are a convenient 

formality in a subject which generates formal symbolism; but they are not 

much used in practice, perhaps because the information they convey is stated 

more directly and usefully by quoting any alternative space groups permitted 

by the survey of diffraction maxima. 

8.6. Exercises and problems 

1. (i) Ag is sometimes used as the target material in an X-ray tube. If its K 

absorption edge is at 0-485 A, what is the minimum excitation voltage for 

AgK radiations? At this voltage what is the cut-off limit of the white 

radiation spectrum? 
(ii) In Table 8.1, Fe is suggested as a suitable j8-filter for Co radiation. 

Find what thickness of Fe foil is needed to reduce the KjS/Ka intensity 

ratio for Co from 1/5 to 1/500. What intensity reduction would this filter 

produce for CoKa radiation? 
(p.M for Fe is 59-5 for Co Ka. radiation, and 375 for Co Eft radiation; 

density of Fe is 7-9 gm/cm3.) 
(iii) Satisfactory diffraction patterns from alloys rich in Co cannot be ob¬ 

tained using CuXa radiation. Why not ? What radiation would be suitable ? 

(iv) Calculate the approximate thickness of lead needed to absorb at least 

99-95% of the most penetrating radiation emitted by an X-ray tube run¬ 

ning at 50 kV. 
(pM for Pb for MoXa radiation is 141; the density of Pb is 11 -4 gm/cm3.) 

2. (i) Sketch the intensity distribution for Fraunhofer diffraction by a com¬ 

plex line grating, like that of Fig. 8.8, in which 50a = 10c = d. 

(ii) Repeat (i) for a planar grating, like that of Fig. 8.9, in which a pair of 

equal holes separated by a distance a (||ci) are repeated with spacings cx 

and c2 inclined at 90°. 
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(iii) In a miniature Venetian blind, slats 2 mm wide just meet when the 

blind is closed. If the blind is used as a diffraction grating with a slit source, 

describe and sketch the variations in the observed Fraunhofer patterns as 

the slats are turned through 90°. At what angle are all the even orders of 

diffraction missing? 
3. In examining diffraction by a cubic crystal (a = 4-08 A, A = 1-54 A), 

one maximum was recorded when ia = 150^°, ib = 90°, ic = 60b and 

da = 119b, db = 90° and dc = 29b- Determine the indices of the family 

of planes which would give this maximum by reflection, and the value of 

the Bragg angle. Calculate the values of the Bragg angles for all other 

families of parallel planes which could be set into reflecting positions. 

4. Evaluate the geometrical structure factors for the space groups (a) Pm, 

(b) Pnnn, (c) Ccca. For each, list the conditions limiting possible reflections. 

5. (i) Diamond has a cubic structure in which the C atoms occupy the follow¬ 

ing positions: 

0, 0, 0; 0, b ii i, 0, \, 0; 1 1 JL- 3 2. X- 
4> 4j 4> * 4, 4 » 

1 A l- 
4, 4> 4 , 

1 1 1 
4, 4, 4' 

Draw a plan of several unit cells projected on (001), and insert traces of the 

planes (100), (200), (300), (400), (110), (220), (330) and (440). By consider¬ 

ing the positions of the atoms relative to these families of planes, decide 

which of these reflections are systematically absent for this structure. 

(ii) Repeat (i) for NaCl, another cubic structure in which the atomic co¬ 
ordinates are: 

Na: \, \, \ ; \, 0, 0; 

Cl: 0,0,0; 0,*,*; 

0, b 0; 

b 0, i; 

0, 0,i; 

b b o. 

(iii) By calculating the structure amplitude expression for each of these 

structures, confirm your deductions in (i) and (ii); use these expressions to 

generalise conclusions concerning systematically absent reflections for both 
diamond and NaCl. 

6. What conclusions can be drawn about possible space groups from the 

following observations on the classes of absent reflections ? 

(i) Monoclinic cell: 

00/ reflections observed only if / = 2n. 

(ii) Orthorhombic cell: 

hkl reflections observed only if h + k, k + /, / + h = 2n 

0 kl 99 99 99 99 k + / = An 
hOl 99 99 99 99 l + h = An 
hkO 99 99 99 99 h, k = 2n o

 
o

 99 99 99 99 h = 4 n 
OkO 99 99 99 99 k = 4n 
00/ 99 99 99 99 

1 
II s
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(iii) Hexagonal cell: 

hk . I reflections observed only —h + k + l = 3n 

hh. I ,, ,, ,,,,/ — 3n 

hh . I „ „ „ „ h + l = 3n, l = 2n 

00 . / „ „ „ „ / = 3n. 

7. Stokesite (CaSnSi309.2H20) is orthorhombic with four formula units per 

cell. The diffraction patterns show that 

0kl reflections observed only if k + l = 2n 
hOl 

hkO 

hOO 
OkO 

00/ 

99 

99 

99 

99 

99 

99 

99 

99 

99 

99 

99 

99 

„// + / = 2n 

99 h = 2n 

99 

99 

h = 2n 

k = 2 n 

99 l — 2 n. 

It was also observed that reflections with h = 2n, k + / = 2n tend to be 

very strong, particularly at high Bragg angles. Deduce the probable space 

group, and draw what conclusions you can about the atomic positions. 

8. Gahnite (ZnAl204) belongs to class m3m, and has a cell dimension a = 

8T A. The diffraction patterns show that 

hkl reflections observed only if h + k, k + /, / + h — 2n 

hhl „ „ „ „ l + h = 2 n 

0kl „ „ „ „ k + l = 4n(k, l = 2n). 

Determine the probable space group, and draw what conclusions you can 

about the atomic positions. 

(Density of gahnite, 4-62 gm/cm3; atomic weights Zn, 65-4, Al, 27-0, O, 

16-0.) 
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9 
DIFFRACTION BY SINGLE 
CRYSTALS 

9.1. General considerations 

The experimental techniques of X-ray diffraction can be broadly divided into 

two groups according to the state of the specimen; within each of these 

groups there are many different methods of examination, and in the next two 

chapters we shall consider some of the simpler experimental arrangements 

and discuss the nature of the diffraction patterns which they produce. Our 

objective will be to locate the positions of maxima to see how these can be 

used to give basic information (symmetry, cell constants, etc.) about the 

specimen; we shall not pursue in any detail the study of intensity relations 

among the various indexed maxima which is essential to structure determina¬ 

tion. The present chapter is concerned with one group of techniques, often 

known as single crystal methods because the specimen is a small fragment of a 

homogeneous crystalline material. 

The specific conditions for the occurrence of any diffraction maximum can 

be expressed by the Bragg law derived in the previous chapter; the geometry 

of a reflection in this treatment is represented simply and conveniently on the 

stereogram of Fig. 9.1(a). The pole i shows the direction of the incident 

X-rays; for any planes Qikl) a reflection will only occur when the Bragg con¬ 

dition sin 0hM — A/2dhkl is satisfied, i.e. for the normals to these planes to be 

in a position to reflect they must lie on the small circle of radius 90° — 9hkl 

drawn about the pole i. If the crystal is so oriented that an (hkl) normal does 

lie on this small circle, a reflection will occur in accordance with the simple 

geometry of the Bragg law, i.e. in the direction d in a symmetrical position on 

the great circle through i and the normal. When a stationary crystal is ir¬ 

radiated by X-rays of wavelength A, this stringent Bragg geometry will be 

fulfilled for very few reflecting planes; for most planes the situation is likely 

to be that of (Kk'l) in the figure where the orientation of the crystal places 

the normal off the appropriate small circle so that no reflection can take place. 

Under these conditions any diffraction pattern shows few (if any) maxima, 



2 8hke 

Fig. 9.1. The Bragg conditions for reflection, (a) Stationary crystal and 
X-ray wavelength A; hklreflects but h'k'l' does not. (b) Stationary crystal 
and white radiation; the shaded areas represent the limiting positions of 
small circles set by the wavelengths of the white radiation spectrum. 
hkl and h'k'l' both reflect but for different wavelengths, (c) Crystal 
rotated about axis normal to X-ray beam of wavelength A; the move¬ 
ments of hkl and h'k'l' are indicated by arrows, hkl and h'k'l' both reflect 
but at different positions of rotation. 



DIFFRACTION BY SINGLE CRYSTALS 221 

and their sporadic angular distribution makes interpretation difficult; it is far 

easier if many more maxima are permitted to occur by changing the condi¬ 

tions of the experiment. More planes will have the opportunity to reflect if we 

use an incident beam with a range of wavelengths and if we change the 

orientation of the crystal relative to the incident beam; in practice, interpreta¬ 

tion is simplified if one or other (but not both) of these methods are em¬ 

ployed, and with suitable experimental arrangements either technique yields 

well defined reflection patterns which allow fundamental crystallographic 

data to be obtained. In view of this single crystal methods may be sub¬ 

divided into those in which there is a stationary crystal and those in which 
the crystal moves. 

Laue methods, in which white radiation is diffracted by a stationary crystal, 

are similar to the original experiments of Friedrich and Knipping; we shall 

discuss the experimental techniques and the interpretation of the patterns in 

the next section but the essential principles are illustrated by the stereogram 

of Fig. 9.1(b). In this, for each set of planes a range of small circles is drawn 

about the pole of the incident beam between limits of 90° — 9hkl set by the 

maximum and minimum wavelengths of the white radiation spectrum; the 

poles of both (hkl) and (h'k'l') now lie within the shaded areas which show 

fulfilment of Bragg conditions and so both reflections hkl and h'k'l' are 

observed. In this kind of experiment the two families of planes are likely to 

be reflecting X-rays of different wavelengths within the continuous range; 

moreover some observed maxima will have the superposition of reflections 

due to different wavelengths. The value of sin 9 ( = A/2d) is the same for A and 

the planes (hkl) as it is for A/2 and the planes (2h, 2k, 21), so both reflections 

are in the same direction; superposed reflections are due to those wavelengths 

in the continuous range which are harmonics of the longest wavelength 

contributing to the maximum. Such problems are avoided in moving 

crystal methods, where the incident radiation is restricted to a single wave¬ 

length but the orientation of the crystal specimen is varied so as to permit 

more and more planes to pass through a reflecting position; reflections from 

the various planes are not simultaneous (as in the Laue method) but occur 

consecutively at different instants of time as the crystal is in motion. Moving 

crystal techniques can be very sophisticated with complex motions of the 

crystal; the nature of the pattern and its detailed interpretation depend on the 

kind of movement made by the crystal and other experimental factors and we 

shall give some account of these in later sections. In the simplest method the 

crystal is rotated about an axis perpendicular to the incident beam; such a 

movement is illustrated in the stereogram of Fig. 9.1(c). Rotation causes the 

(hkl) planes to move out of a reflecting position, but a little later the pole 

(h'k'l') intersects the appropriate small circle to give a reflection; the two 

maxima are due to the reflection of the single wavelength radiation but they 

occur at different positions of rotation. 
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Specimens for single crystal work are usually chips taken from a larger 

crystal or fragments obtained in a separation of one component in a crushed 

mixture; a lower limit of size is set by the need to manipulate the specimen 

crystal with reasonable ease under a binocular microscope; if the observation 

of intensities is important it is best to be below the optimum size set by ab¬ 

sorption considerations (see Chapter 8.4). An experienced experimenter can 

work with fragments as small as 0-1 mm diameter, though it is preferable for 

the specimen to be rather larger than this (up to 1 mm diameter) if possible. 

In practice, it is desirable that diffraction patterns are recorded when the in¬ 

cident beam is oriented with respect to the lattice geometry of the crystal; 

random patterns are much more difficult to interpret than those obtained 

with some alignment of the crystal. This implies some preliminary examina¬ 

tion of the fragment (and the material from which it comes). Whilst the frag¬ 

ment may have little external morphology, the occurrence of recognised 

cleavage planes (or traces) can give some help in orientation; often physical 

properties (particularly optical observations) such as those outlined in 

Chapter 11 can help to establish the kind of symmetry (if unknown) and 

orientation of the specimen. We should emphasise that all this is done only to 

smooth the path of the subsequent X-ray investigation, for the Laue methods 

described in the next section are most valuable in the determination of sym¬ 

metry (and orientation) even when there is no other data; but, like all X-ray 

methods, they can be most expeditiously applied in conjunction with any 

results from other work on the specimen. 

9.2. Laue methods 

The first X-ray diffraction record was a Laue photograph, and, as this sug¬ 

gests, Laue methods need only the simplest apparatus; however, there are 

some practical advantages if extra refinements (particularly for adjusting and 

orienting the specimen crystal) are included in the camera. In fact, most Laue 

photographs are taken on moving crystal cameras with the motion arrested 

and filters removed from the incident X-ray beam. The small crystal is 

mounted by a suitable gum at the tip of a glass fibre embedded in a small 

piece of plasticine; the plasticine is fixed to the rotatable central spindle of the 

camera so that the crystal can be brought into the X-ray beam from the col¬ 

limator by lateral movements on two perpendicular translation slides and a 

height adjustment which raises or lowers the top of the spindle. Laue photo¬ 

graphs with a symmetrical distribution of maxima require the crystal to be 

correctly oriented with respect to the X-ray beam; it is roughly set into an 

appropriate position (as suggested by the preliminary examination), and final 

adjustment to achieve a satisfactory pattern is made by tilts on two perpendi¬ 

cular arcs carried on the central spindle. The essential components in the 

mounting of the crystal on the camera are shown later in Fig. 9.3. Diffraction 
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of white radiation by a stationary crystal occurs in many different directions 

simultaneously and is invariably recorded on a photographic film; this film is 

either cylindrical with axis coincident with the central spindle, or a flat plate 

normal to the incident beam before (the ‘back reflection’ method) or after 

(the ‘transmission’ method) it strikes the crystal. Cylindrical films record 

more of the diffraction pattern than flat plates, though the simpler geometry 

of the latter makes detailed interpretation a little easier; whatever the film 

mounting, holes (or beam traps of some kind) must be provided to avoid 

fogging of the central areas of the film by the primary beam. 

Laue photographs taken with the X-ray beam travelling in a general direc¬ 

tion in a crystal lattice show a random distribution of spots on exposed films, 

but in certain directions patterns can usually be obtained in which the ar¬ 

rangement of diffracted maxima is symmetrical to a greater or lesser extent 

(Plate 1). Symmetrical Laue patterns occur when the X-ray beam is incident 

along a direction of symmetry in the crystal lattice; such patterns are com¬ 

monly used for the determination of crystal symmetry. We can best illustrate 

this by outlining a practical example; we will assume that photographs are 

taken by transmission and recorded on a flat plate film. On any Laue photo¬ 

graph of this kind the diffraction spots lie on conic sections all of which pass 

through the intersection of the undeviated primary beam with the film; each 

curve marks the locus of reflections from planes in a particular zone. Let us 

suppose that after a little trial and error the first symmetrical Laue pattern 

from our crystal shows a distribution of spots consistent with horizontal 

mirror symmetry both in position and intensity; the appearance of a few 

zones of spots is sketched in Fig. 9.2(a). The symmetry shown by diffraction 

maxima was discussed in Chapter 8.5, and this photograph allows us to begin 

an assessment of the point group of the specimen which apparently contains 

a mirror plane (m). We can continue by investigating the degree of any axis 

normal to this plane; if photographs are taken after the crystal has been ro¬ 

tated through 60°, 90°, 120° and 180° about the vertical axis, patterns identical 

in spot distribution with Fig. 9.2(a) will be obtained at any of these settings 

only if n = 6, 4, 3 and 2 respectively. This will establish any symmetry group¬ 

ing X/m and begin to clarify the crystal system; with possible implications of 

this grouping in mind we can extend our investigation by searching for any 

symmetry axes contained in the horizontal ra-plane. When the X-ray beam is 

incident along the direction of a symmetry axis, the patterns of Laue spots 

display the appropriate symmetry; for example Fig. 9.2(b) shows the appear¬ 

ance of a few zones consistent with the symmetry mm2 when the X-rays are 

incident along the direction of the diad axis. In this way we can gradually 

build up a picture of the spatial arrangement of the point group symmetry 

elements; it is sometimes necessary to obtain further symmetrical patterns 

after the crystal is re-mounted about another axis before the symmetry can be 

confirmed. 



m 

(a) 

(b) 

Fig. 9.2. Schematic representation of Laue patterns. Some of the spots 
occurring on transmission Laue photographs are shown; differing inten¬ 
sities are indicated by the size of circles; the broken lines (not present on 
photographs) indicate zones of reflecting planes, (a) Shows a horizontal 
m in the direction of travel of X-rays, (b) Shows the symmetry mm2 in the 
direction of travel of X-rays. 
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It must be stressed, however, that such procedures cannot provide an un¬ 

ambiguous determination of crystal class, for FriedeFs law implies that every 

crystal diffracts radiation as if it were centrosymmetric; with the addition of 

a centre of symmetry, each of the twenty-one acentric crystal classes becomes 

identical with one or other of the eleven centric classes, and so it is only the 

symmetry elements of these eleven classes which can be detected on Laue 

photographs. We can only divide crystalline matter into the eleven Laue 

groups listed in Table 9.1 by these methods; if the photographs of Fig. 9.2 had 

Table 9.1. The Laue groups 

System Laue group Other indistinguishable 
acentric classes 

Triclinic 1 I 
Monoclinic 21m 2, m 
Orthorhombic mmm 222, mm2 
Trigonal 3 3 

3m 3m, 32 
Tetragonal 4/m 4,4 

4/mmm 4mm, 4m2, 42 
Hexagonal 6/m 6, 6 

6/mmm 6mm, 6m2, 62 
Cubic m3 23 

m3m 43m, 432 

finally led to the conclusion of Laue group mmm for the specimen, the crystal 

class of the material could be mmm or 222 or mm2. Occasionally, further 

study of diffraction patterns and the systematic absences which they display 

will allow the particular class within the Laue group to be resolved, e.g. the 

absences for space group Pccn are unambiguous, so that if our specimen has 

a pattern with these characteristic absences it must belong to class mmm; but 

more often we must resort to some means other than diffraction (morphology, 

other physical tests, etc.) if it is essential to distinguish among the possible 

classes within a Laue group. Laue methods however can identify the crystal 

system in all cases and allow the recognition of those symmetry elements 

which can define a suitable choice of crystallographic axes. 

Other applications of Laue photographs include the determination of the 

orientation of a single crystal or a grain in an aggregate when the essential 

crystallography of the specimen material is known; it is particularly difficult 

to orient crystals of cubic symmetry in which most other physical tests cannot 

recognise any differences between the various lattice directions, and adap¬ 

tions of the Laue method are much used in the problems of metal single 

crystal orientation. Since any Laue photograph is characteristic of the lattice 

direction along which the X-ray beam is travelling, specimen orientation is 

established either by the use of standard photographs of the particular 
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material or by an analysis of the indices of zones of Laue spots. It is only in 

these rather unusual orientational problems that indices are assigned to the 

various reflections on a Laue photograph, although it is not particularly 

difficult to index them on symmetrical patterns (see Henry, Lipson and 

Wooster, Chapter 6). The lattice constants which determine the positions of 

maxima can usually be obtained more easily and reliably by other methods, 

as can any systematic absences; moreover, intensities of individual indexed 

spots are complicated by the possibility of contributions from several planes 

and the variation in the intensities of different wavelengths within the white 

radiation spectrum which have been selected for reflection. Indeed a routine 

determination of Laue symmetry from Laue photographs needs some care if 

it is thought that the specimen may have some pseudo-symmetry. Suppose, 

for example, that a monoclinic crystal has a dimensionally orthorhombic cell 

(i.e. /3 = 90°), as can happen with a reasonable degree of approximation; the 

diffraction maxima will be found in positions corresponding to the ortho¬ 

rhombic Laue symmetry mmm. Any recognition of the true Laue group as 

2/m would come from a study of the relative intensities of symmetry related 

spots, e.g. on photographs with the X-ray beam parallel to the x and z axes, 

the intensity distribution must have the symmetry m (rather than mm2). In¬ 

tensity differences which distinguish these distributions may be quite small; 

they should, of course, be apparent on symmetrical Laue photographs, but 

the slightest mis-setting of the crystal can have a marked effect on the intensi¬ 

ties of individual spots and lead to erroneous conclusions. When complica¬ 

tions like these are suspected, it is more reliable to make intensity comparisons 

(and Laue symmetry determinations) by single crystal methods which have 

diffraction patterns formed by radiation of a single wavelength. 

9.3. Rotation and oscillation methods 

These are the simplest of the many moving crystal methods, all of which em¬ 

ploy either monochromatic or, more usually, filtered radiation, and satisfy the 

Bragg conditions for a large number of planes by some motion of the crystal. 

The crystal is rotated (or oscillated over a small angular range) about an axis 

normal to the incident X-ray beam; the crystal is oriented so that a prominent 

zone axis (often a cell edge) is parallel to the rotation direction. The mount¬ 

ing of a crystal in a suitable orientation has been described in the previous 

section and the essentials of the camera are displayed schematically in Fig. 

9.3. A motor drive can be set to rotate the central spindle carrying the crystal 

or to oscillate it through a fixed angle (usually 5°, 10° or 15°) about a pre¬ 

determined position. A final setting of the crystal axis parallel to the spindle 

and any orientation with respect to the X-ray beam is achieved by preliminary 

photographs (often obtained in a preceding Laue examination) after the 

crystal has been roughly aligned by visual observation through the telescope. 
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In some modern instruments used to obtain the accurate intensity values re¬ 

quired in certain kinds of structural work, diffracted beams are detected by 

counters, often with the fullest automation of the whole apparatus; more 

usually reflections are recorded on photographic films either as flat plates in 

the back-reflection or transmission positions, or preferably on cylindrical 

films concentric with the axis of rotation. 

The nature of the diffraction pattern from this experimental arrangement 

is clear from consideration of the Laue equations (Chapter 8.3(a)). Let us 

suppose that the specimen has been oriented so that the crystallographic 

x-axis is parallel to the rotation axis; in this case ia = 90° at all positions of 

rotation, so that the Laue equation for the rows parallel to this direction 

becomes 

a cos da — hX 

For lattice rows along the directions of the other two axes we have 

b{cos db — cos 4) = kX 

c(cos dc — cos 4) = IX 

where 4 and 4 vary continuously as the crystal rotates about the x-axis. From 

the first equation, the cones of reinforcement for the various integral values 

of h are of fixed semi-vertical angles about the x-axis direction for all positions 

of the rotating crystal; for the other two equations with given values of k and 

/ the cones of reinforcement will have variable semi-vertical angles as 4 and 
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ic change. All three equations must be simultaneously satisfied for a reflection 

to occur; for particular values of lc and / the direction common to the two 

cones about the y- and z-axes will change as the specimen rotates. As this 

common direction changes, at some positions it will intersect the fixed cones 

about the x-axis; when this happens, all three Laue conditions are met and 

we shall get reflections. Any reflections, therefore, must be in directions along 

the surfaces of the fixed cones drawn about the x-axis around which the 

x-axis 

\ 
i 

Fig. 9.4. Cones corresponding to fulfilment of Laue condition for lattice 
row parallel to rotation axis, (a) Stereographic projection with pole of 
incident beam (j) normal to x-axis as rotation direction at centre of pro¬ 
jection. (b) Spatial arrangement of cones on which all reflections must lie. 

crystal is rotating; the diffraction pattern consists of separate reflections oc¬ 

curring at different positions of rotation whose directions must diverge from 

the crystal along the surfaces of cones whose semi-vertical angles are deter¬ 

mined by a, A and h (Fig. 9.4). In a complete rotation reflection conditions for 

many different maxima are satisfied to give a distribution of diffracted beams 

which is symmetrical in space; the number of maxima on a particular cone 

depends on the cell dimensions b and c, and is greater the larger these repeats. 

There can be superposition and overlapping of different maxima, which is 

undesirable when we wish to identify individual reflections and examine their 

intensities; this can be avoided by studying the diffraction pattern in stages in 
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each of which the crystal is oscillated through small angles (usually up to 15°) 

until all reflections possible in a complete rotation have been recorded. 

Naturally, oscillation patterns are generally similar to the rotation patterns of 

x-axis 
I 
i 
i 
i 

h = A 

h— 3 

h— 2 

h= 1 
h= 0 
h= 1 

h= 2 

h= 3 

h=4 

(a) 

Fig. 9.5. The recording of diffraction patterns from a rotating crystal. 
(a) Cylindrical film, (b) Flat plate film in transmission position (overleaf). 
In each case the upper diagram shows the film mounting and the inter¬ 
section of the cones of Fig. 9.4; the lower diagram shows the appearance 
of the processed film. 

which they are a part, though the spatial distribution of maxima in any one 

range need not be so regular; any symmetry depends on the choice of oscilla¬ 

tion range, and symmetrical oscillation photographs are often used for Laue 

symmetry determinations in which intensity comparisons are important. 
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Apart from direct recording by counter diffractometers, most rotation or 

oscillation patterns are examined by cameras which have a cylindrical film of 

small radius (usually 3 cm) whose axis is coincident with the rotation axis; the 

incident beam enters through a gap in the film and undeviated radiation 

passes through a hole punched in the centre. A cylindrical film enables a large 

angular range of diffracted beams to be recorded on one exposure, and has 

x-axis 
i 

Fig. 9.5(b). (For caption see preceding page.) 

the advantage that it is intersected in horizontal lines by the cones on which 

maxima must lie (Fig. 9.5(a)); we can readily identify which reflections are on 

the different cones from these lines, usually known as layer lines. With flat- 

plate films a much more restricted portion of the pattern is recorded on a 

single exposure, and layer lines, although recognisable, are curved unless 

h = 0 (Fig- 9.5(b)). Usually photographs are taken with filtered radiation 



Plate 1. Laue photographs of vesuvianite (a complex alumino¬ 
silicate); (a) X-rays parallel to [001]: symmetry 4mm\ 
(b) X-rays parallel to [UV0]: symmetry m. 



P
la

te
 2

. 
R

o
ta

ti
o

n
 p

h
o

to
g

ra
p

h
 o

f 
a-

q
u

ar
tz

 c
ry

st
al
 (

S
i0

2;
 t

ri
g

o
n

al
, 

P
3x

21
, 

c 
=
 
5

4
1
 

A
, 

a
 =

 4
-9

1 
A

).
 

P
h

o
to

g
ra

p
h
 t

ak
en

 w
it

h
 C

uA
T

a 
ra

d
ia

ti
o
n
 o

n
 a

 c
y
li

n
d
ri

ca
l 

fi
lm

 o
f 

6 
cm

 d
ia

m
et

er
 w

it
h 

[0
0

.1
] 

as
 r

o
ta

ti
o
n
 a

xi
s.

 



<u 
o 

o 
JC 
a 03 Up 
60 — o a* 

11 Q. O 

II c/> 2 
C/5 . _ <D —; 
o 55 <u 
^ X Oh ^ 

. a, 
^ £ <u o 
o3 

c 
o 
-a u. 
O 
<u 

a> .2 
V2 4^ 

C w - c 
<D C 

II 
2 ^ ’ c 

.2 ■ 
Up W O <L> 

53 . D 
O <L) o 
03 £ 5 H c cr

y
st

al
; 

n
o
te

 t
h
e 

u
n

d
is

to
rt

ed
 o

rt
h
o
g
o
n
al

 
d
is

tr
ib

u
ti

o
n
 o

f 
th

e 
ch

ar
ac

te
ri

st
ic
 m

ax
im

a.
 



. 

bO 
c 

<D M 

c £ 
03 ^3 

1 GO 
>C/5 
C c .h 

■>< i « _ O.SZ 

^ ■£ o 
11 £ c 
*.§ S 
S 0,5 'S 

m h Cl <u 
,? a <u a-c 

> 3 ■*■* CJ .. on 
5 ^ S 3^0 
U-C 
.- c M 
0.2S 
“3 it 
S ^ o 
w 2 u 
S « - 
.2 ^ g 
Su 5 

r-< ON 

<U 

■C _ 
Q. <u 

? JJ 
CD 

c E 
a3 .2 
bO <& "O 

03 VC 
J- ■'tf 

3 I- 
5/5 £ f! o3 , "to r> s— Q» ^ <D 
5s -C t3 

E 
o so'-g 

. 4= 0 z, 
■Nt O. -3 £ 

«2 j= § £ 
« o o 5 

CL m E o 

(D 
-a 
£ o 
cu 

<D 

bO-r O £ 



DIFFRACTION BY SINGLE CRYSTALS 231 

(Plate 2), and require exposures of the orders of hours rather than minutes; 

on heavily exposed films the effects of residual white radiation (and occasion¬ 

ally /3 radiation) are seen as streaks around stronger low angle reflections. 

Resolution of the two doublet wavelengths of Ka radiation is found at high 

angles (see Chapter 10.4) often causing the appearance of two closely spaced 

spots for some planes towards the outer edge of the film. 

No matter how the pattern is recorded it is possible to identify individual 

spots as reflections from particular planes and use their positions to obtain 

dimensional data about the crystal lattice. In fact, the repeat distance Suvw 

(Chapter 7.2) between points on a lattice row [ UVW\ parallel to the rotation 

axis can be found from simple measurements on the film to determine the 

semi-vertical angles of cones corresponding to the layer lines. For example, 

when rotation is about the x-axis (or [100]), the height (H) of the /zth layer 

line on a cylindrical film is R cot da, where R is the radius of the film (Fig. 

9.5(a)): S100 = a, so that from the Laue equation the semi-vertical angle of 
the corresponding cone is 

da = cos-1 (hX/a), 

to give a = hX/cos (cot-1 H/R). 

On flat-plate films a measurement of H must be made on the vertical median 

line to avoid distortions due to the curvatures of layer lines. Other cell dimen¬ 

sions, b and c, can be obtained by similar measurements on photographs 

taken with the y- and z-axes along the rotation direction. For more general 

zone axes, photographs will yield Suvw from which any non-orthogonal 

interaxial angles could be determined as well as the lattice type; for example 

in a monoclinic crystal, S101 = (a2 + c2 — 2«ccos(180° — /3)) so that 

measurements on patterns with [101] as the rotation axis can be used to find 

the angle /3; also S110 = (a2 + b2)1/z for a P-lattice but S110 — ^(a2 + b2)v* for 

a C-lattice, so that layer line positions on [110] photographs can differentiate 

between the two cell types. In more sophisticated single-crystal techniques 

this kind of information can be more easily obtained without the necessity of 

re-mounting a crystal about each of the zone axes; nevertheless an under¬ 

standing of simple rotation methods is essential to the efficient use of these 

more complex cameras and much preliminary and survey work is still carried 

out on rotation cameras. 

Individual spots on the films can be identified with reflections from particu¬ 

lar families of planes when this is necessary. When indexing, the Laue condi¬ 

tion controlling the cones of reinforcement which define layer lines, ensures 

that, for rotation about [UVW], spots with indices hkl are segregated on the 

layer lines in such a way that the condition 

Uh + Vk + Wl = n 

relates reflections on the nth layer line. On rotation about [100] (the x-axis) 
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indices on the zero layer line must be 0kl, on the first layer above the zero 
layer 1 kl, on the first below Ikl and so on. Indexing spots on particular layer 
lines requires us to find the k and / values for each and this is best carried out 
by using the Bragg law in some way. In principle, if 9hkl can be determined 
from the spot position, we can calculate the interplanar spacing dhkl (— A/2 
sin 6hkl); since this is a function of the known cell constants and h, k and / 
(Table 7.2) it should be possible to assign the appropriate values of k and /. 
In practice, a direct measurement of 9hkl values from spot positions is simple 
enough on flat plate films (Fig. 9.5(b)), but is rather more difficult on cylindri¬ 
cal films, for which the general relation between spot position and Bragg 
angle is rather complex, though on the zero layer reflections are situated at 
R . 290kl (radians) from the centre of the film (Fig. 9.5(a)). Even if we could 
determine all 9hkl values with sufficient accuracy this method of indexing 
would prove to be very tedious and often ambiguous, and simpler systematic 
procedures employing a graphical solution of Bragg conditions in terms of the 
reciprocal lattice and Ewald sphere (Chapter 8.3(a)) are preferable. Full ac¬ 
counts of these techniques of indexing rotation and oscillation patterns will 
be found in references mentioned in the bibliography. 

9.4. Other methods 

Rotation of the specimen about a zone axis to give a diffraction pattern re¬ 
corded upon a stationary cylindrical or flat film is the simplest and earliest 
moving crystal method; as we have seen, it is particularly suitable for a pre¬ 
liminary determination of cell constants and is still much used for rapid 
general surveys of diffraction patterns. Inevitably the recording of a three- 
dimensional pattern on the two dimensions of a film presents difficulties of 
interpretation and we have already mentioned that relatively cumbersome 
graphical methods are necessary to identify and index individual maxima. 
Subsequent developments in camera design have had the objective of simpli¬ 
fying the interpretation of photographs to the point at which indexing is clear 
even on a simple visual inspection; this involves complex instrumentation 
to satisfy certain geometrical requirements, and we do not propose to discuss 
the detailed design of any modern single crystal camera here. However, it is 
relevant to give some consideration to the principles which control camera 
construction and to mention briefly the techniques which are in commonest 
use. 

We can regard the rotation pattern from a particular zone axis as consist¬ 
ing of layers of reflections; maxima on a particular layer line constitute one 
of these layers and the new cameras are designed to analyse the complete 
pattern layer by layer in separate exposures. The nature of each layer of re¬ 
flections is apparent from the optical analogy. In the discussion of Chapter 
8.3(a) optical diffraction by a planar two-dimensional grating has maxima at 
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the intersection of two linear fringe systems when the pattern is plotted 

against sin <f>/X; similarly the maxima of a pattern from a crystal are to be 

found at the mutual intersections of the three linear fringe systems formed by 

the cell repeats when plotted in a corresponding fashion (the reciprocal space 

of the Ewald treatment of the Bragg law). Each layer of reflections constitutes 

a layer of the reciprocal points formed by these mutual intersections, and the 

cameras are designed to record one of these layers so that we can recognise 

the arrangement of the maxima and index them easily; in an undistorted form 

the patterns of spots on the film from a given layer is comparable to the grid 

shown for a planar optical grating in Fig. 8.9. In all these cameras both the 

film and the crystal move so that reflections occurring at different angular 

positions are spread out on to the two-dimensional surface of the film at 

positions which depend on its movement and the way in which this is coupled 

to the motion of the crystal; for this reason they are often said to be moving- 

film cameras. In addition, all cameras must have some kind of absorbing 

screen placed between the crystal and the film to ensure that only reflections 

from a selected layer reach the film on each exposure. 

The simplest moving film method is that of a Weissenberg camera; essen¬ 

tially this is a simple rotation camera in which the cylindrical film travels 

backwards and forwards parallel to the rotation axis as the crystal oscillates, 

the angular motion of the crystal and the translation of the film being coupled 

by a fixed gearing. A cylindrical screen with a circumferential slot is set to 

select the layer line for each exposure. The geometry of reflection in a Weis¬ 

senberg camera is such that the pattern of spots on the film is a distorted 

projection of the grid of reciprocal points forming the layer; nevertheless, 

interpretation is relatively simple when aided by specially constructed charts, 

and an experienced user can often index by inspection alone. Later moving 

film cameras are designed to give undistorted projections of this grid, and the 

two most commonly used direct projection methods are those of the rotation- 

retigraph and precession-retigraph cameras*; in both these, undistorted 

projection is achieved by using a flat film which is always kept in the same 

relation to the selected layer of reflections while Bragg conditions are being 

satisfied. Both have a flat screen with an annular aperture to eliminate all un¬ 

wanted reflections; this is stationary in the rotation-retigraph, but follows the 

motion of the selected zone axis in the precession method. Indeed an import¬ 

ant difference between these two methods, as their names imply, is that in a 

rotation-retigraph the crystal movement is simple rotation about the selected 

zone axis, whereas in a precession-retigraph the zone axis precesses about the 

incident beam, rather as the motion of a top. Naturally, the mechanisms of 

these cameras are rather complicated; full details will be found in the refer¬ 

ences in the bibliography, together with discussions of the ways in which 

* The term ‘retigraph’ is an adaptation of the Greek for ‘a drawer of nets’. 



234 THE CRYSTALLINE STATE 

geometrical conditions for undistorted direct projections of layers are ful¬ 

filled. For our part, we will merely note that modern instrumentation has re¬ 

duced the problem of identifying and indexing maxima in single crystal 

diffraction patterns to one which can be undertaken with little or no inter¬ 

pretative skill (see Plate 3). In these latter two methods, the use of flat-plate 

films means that only limited regions of each layer of the rotation pattern can 

be observed, at least without further mechanical adjustment; with a crystal 

set to oscillate over a 180° range, the Weissenberg camera will record all 

possible reflections for a layer on one film. This can be embarrassing, how¬ 

ever, when spots are too closely spaced (due to large cell repeats), and little 

can be done about this with a Weissenberg camera of fixed diameter; on both 

direct projection methods, the scale of the projection can be increased, where 

necessary, by simple adjustments to the camera. All of these common moving- 

film techniques have their advantages and drawbacks, and a selection of the 

most suitable method must be made according to experimental demands. 

9.5. Exercises and problems 

1. What symmetry could be observed on Laue photographs taken with the 

X-ray beam incident along [100], [Oil] and [111] directions for a crystal 

with (a) an orthorhombic cell, (b) a tetragonal cell and (c) a cubic cell ? 

2. Gallium belongs to the Laue group mmm, and single-crystal rotation 

photographs taken with CuXa radiation (A = 1-542 A) on a cylindrical 

camera of radius 3-0 cm provided the following data: 

Axis of rotation 1100) [010] [001] [Oil] [101] [HO] 
Order of layer line 
Distance from zero 

2nd 2nd 3rd 2nd 3rd 3rd 

layer line (cm.) 2-81 2-81 2-27 2-89 1-83 3-16 

Determine the cell dimensions and lattice type for gallium. 

3. A rotation photograph of NaCl (cubic, a = 5-64 A) is taken with [001] as 

the axis of rotation; unfiltered radiation from a Cu target is incident on the 

crystal, and the diffraction pattern is recorded on a flat-plate film in the 

transmission position 3 cm from the crystal. On the zero layer, a strong 

spot due to characteristic radiation is found at 1-855 cm from the centre of 

the film; a streak due to white radiation passes through this spot and 

extends to within 0-33 cm of the centre of the film. Estimate the voltage 
applied to the X-ray tube during the exposure. 

4. A certain crystal belongs to the Laue group 2/m, and single-crystal rota¬ 

tion photographs taken with CuKa radiation (A = 1-542 A) on a cylindri¬ 

cal camera of radius 3-0 cm provided the following data: 

Axis of rotation [100] [010] [001] [101] [Oil] [110] [111] 
Order of layer line 2nd 4th 6th 3rd 7th 5th 8th 
Distance from zero layer 

line (cm) 2-25 4-00 3-40 3-36 3-32 4-50 4-75 
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Determine the cell dimensions and the lattice type for this crystal. It is 

possible to choose a smaller conventional cell. Find the dimensions and 

lattice type for such a cell, and re-index the rotation axes above in terms of 
your choice. 

5. The following data were obtained during the examination of single crystals 
of anatase (Ti02): 

Laue photographs Direction of incidence 
Symmetry 

[001] 
4 mm 

[100] 
mm2 

Rotation photographs 
(A = 1-542 A 

Axis of rotation [001] [100] [111] 

camera radius 3 cm) Order of layer line 
Distance from zero layer 

3rd 1st 2nd 

line (cm) 1-70 1-36 2-10 

Determine the Laue symmetry, cell dimensions, lattice type and the num¬ 

ber of formula units per cell for anatase. 

(Atomic weights Ti, 47-9; O, 16-0; density of anatase, 3-9 gm/cm3.) 

6. A crystal of class m3m (lattice type, F) showing faces of the form {110} was 

set up on an oscillation camera of radius 3 cm with [110] parallel to the 

axis of rotation; the height of the first layer line was measured as 1-90 cm 

(A = 1-542 A). Determine the inclination of the X-ray beam to [lTO] at 

which the 111 reflection occurs. 

7. The morphological description of a crystal is quoted as: Class 2/m, 

a:b:c = 0-7143:1:1-714, j8 = 109° 28', showing the forms {010}, {101} 

and {12l}. For this crystal rotation photographs on a cylindrical camera of 

radius 3 cm, A = 1-542 A, give the following data: 

Axis of rotation [010] [101] 
Order of layer line 3rd 3rd 
Distance from zero layer line (cm) 2-64 4-21 

Reconcile the X-ray and morphological observations, and give a descrip¬ 

tion of the crystal in terms of the cell suggested by the X-ray examination. 
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10 
DIFFRACTION BY POWDERS 

10.1 General considerations 

In this chapter we deal with the second main group of diffraction techniques, 

usually known as the powder methods, in which the specimen consists of a 

randomly oriented aggregate of very small single crystals. Powder specimens 

are often prepared by crushing larger single crystals to a fine powder and then 

cementing these particles together to form the random aggregate; sometimes 

the growth process itself produces a polycrystalline aggregate (as in the 

bulk crystallisation of metals or metallic alloys) which can serve as a suitable 

specimen. We shall only consider some aspects of simpler experimental 

arrangements and be mainly concerned with the use of positions of diffrac¬ 

tion maxima to determine lattice geometry; powder methods are extensively 

employed in a variety of technological problems and a selection of some of 

the more important applications is discussed in the last section. 

The character of the diffraction pattern from a powder specimen irradiated 

by X-rays of a single wavelength can be simply deduced by examining the 

Bragg condition for reflection represented by the stereogram of Fig. 10.1. 

For any family of planes (hkl) and a specimen with a completely random array 

of crystallites, we must regard the whole stereogram as occupied by possible 

positions of normals to these planes. When the small circle of radius 90°-dhkl 

is drawn about the pole of the incident beam i, every point on it must corre¬ 

spond to a small crystallite in a reflecting position; diffracted radiation is 

therefore transmitted in all directions represented by the upper small circle of 

the figure. Physically this diffracted radiation forms a cone of semi-vertical 

angle 29hkl about the direction of the undeviated X-rays; this cone is the locus 

of all beams reflected from hkl planes for the many different crystallites which 

happen to be in an orientation suitable for such a reflection. In any crystalline 

material there are many different discrete values of dhkl (related to the values 

of h, k and / and the cell constants as in Table 7.2); for each of these there is a 

distinct Bragg angle to satisfy the conditions for reflection. The diffraction 

pattern from the powder specimen will therefore consist of a series of cones 

about the direction of the undeviated beam, each with its characteristic semi- 
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vertical angle related to the dhkl value, and limited only by the condition that 

sin 8hkl — A/2dhkl ^ 1; Fig. 10.2 shows the general form of a powder pattern. 

This ideal powder pattern requires that crystallites in every possible orien¬ 

tation are to be found within the finite irradiated volume of the powdered 

Fig. 10.1. The Bragg conditions for a reflection hkl for a random 
powder. 

Undeviated 
X-rays 

Fig. 10.2. Diffracted cones of radiation diverging from a powder speci¬ 
men. Each cone corresponds to reflections for particular hkl planes, and 
has a semi-vertical angle 20hM. 

specimen; in practice, a reasonable degree of approximation may be difficult 

to achieve. For bulk specimens, the crystallite size may be too large and there 

may be some restriction of the orientations present (see preferred orientation 

in Chapter 10.4 later). Even when there is some control over specimen pre¬ 

paration from crushed powders, there are certain snags in obtaining a suitably 
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random aggregate. At first sight it might seem advantageous to have crystal¬ 

lites as small as possible; quite apart from any technical difficulties in pro¬ 

ducing very small grain sizes, there is a lower limit that is desirable for powder 

diffraction work. When the particle size decreases below about 10“ 5 cm, each 

diffracted cone is broadened to reflect over a range of Bragg angles, so that the 

pattern is less well defined and any measurements are consequently less 

accurate and significant; this broadening may be compared to that developed 

by the spectra from an optical diffraction grating as the number of lines in the 

grating is reduced. (Broadening may also be due to other causes such as 

imperfections and strains in the crystallites, and it is sometimes necessary to 

try to reduce these by annealing before X-ray examination.) The crushed 

material is usually sieved to give uniform crystallite dimensions, but often the 

grain size is large enough to prevent a sufficiently random array within the 

irradiated volume of the specimen; this results in the appearance of separated 

reflections from individual crystallites around the cones. Although ‘spotty’ 

cones are sometimes used in estimates of grain size (particularly for bulk 

specimens), most powder work relies on accurate measurements on smooth 

continuous diffracted cones; in practice, a sufficiently good approximation to 

the random array of the ideal powder pattern is ensured by continuously vary¬ 

ing the orientation of the specimen with respect to the incident beam. For 

cemented aggregates a simple rotation is usually adequate, but for some bulk 

specimens with large grain sizes more complex motions may be essential. 

10.2. Experimental methods 

(a) Photographic 

There are many different designs of camera used for particular experiments 

with various kinds of specimen; it would be inappropriate here to give an 

account of all these technical developments and we shall only outline the 

simplest cameras that are universally used for routine powder work. In these 

a cylindrical specimen (length ~ 2 cm, diameter ~0-5 mm) is usually made by 

rolling a paste of the crushed material and gum tragacanth (whose scattering 

does not interfere with the diffraction pattern); occasionally, if the paste 

method is unsatisfactory, the crushed powder is packed into a fine tube of 

borosilicate or silica glass. The rotation cameras mentioned in Chapter 9.3 

can be used to record diffraction patterns from such powder specimens, but 

they have various disadvantages. With flat plate films in the transmission or 

back-reflection positions, diffracted cones will appear as concentric circles at 

radii dependent both on the specimen-film distance and on the Bragg angles, 

but only a very limited range of 9 angles is recorded. On cylindrical films, the 

cones trace out complex curves around the loci of constant 9; in the equatorial 

plane of the film, however, it is possible to simply relate 9hkl values to the 

intersections of the cones (as in Fig. 9.5(a)) over a very wide range of 
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Bragg angles; but in practice, the accuracy of measurement is not very high 

due to the relatively small diameters of single-crystal cameras. Moreover, 

collimation of the incident beam is normally circular, and this can lead to 

unnecessarily long exposures due to the weakness of the beams diffracted 
from powder specimens. 

In purpose-built powder cameras larger diameters are used and collimation 

of X-rays, preferably from the line source of the tube, produces an incident 

beam of rectangular cross-section which bathes the cylindrical specimen; 

although this causes a set of cones displaced along the length of the specimen 

for each reflection, the width in the equatorial plane is not appreciably 

affected and the exposure time is much reduced. Usually a suitable filter is 

placed in the path of the incident beam, though occasionally crystal-reflected 

monochromatic radiation is necessary to define a complex pattern; this in¬ 

creases the normal exposure time (up to a few hours) by a factor of 5-10. The 

Collimator for 
rectangular beam 

Rotation by 
motor drive 

<^__Slides for 
centring 

'Specimen cylinder 

/^^Cylindrical 
'I film strip 

Fig. 10.3. The essential features of a powder camera. 

specimen is on the central axis of a narrow cylindrical film strip placed around 

the equatorial plane containing the incident beam (Fig. 10.3); only a small 

sector of each diffracted cone is recorded, and it is customary to refer to the 

short arcs on the film as powder lines (Plate 4). Apertures must be provided to 

prevent incident and undeviated X-rays from striking the film, and this 

restricts the maximum and minimum Bragg angles that can be recorded. 

Many commercial instruments are of 9 cm or 19 cm diameter, the greater 

resolution of the larger camera inevitably demands longer exposures; more 

recently a radius of 5-73 cm has become popular, a value chosen so that a 

distance of 1 mm on the film corresponds to a change of 1 ° in 26 angle. The 

specimen is carried on mutually perpendicular cross-slides to permit align¬ 

ment in the incident beam and coincidence with the camera axis, about which 

it is rotated by motor drive. On a developed film line positions at the centres 

of the arcs are roughly measured with a steel scale, though greater accuracy, 

when necessary, can be obtained by some form of travelling microscope. 

The three simplest common powder cameras differ only in the way in which 

the strip film is arranged (Fig. 10.4). In (a) and (b), patterns interchange the 
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locations of low and high angle lines on the film; in the Bradley-Jay mount¬ 

ing, high angle lines with large values of 6hkl (recognised by the doublet 

resolution which occurs at such angles) are at the outside of the processed film, 

whereas in the van Arkel setting they are in the centre. In most cameras 

Fig. 10.4. Common film mountings in powder cameras. A plan of the 
camera arrangement is shown in each case, with a sketch of a developed 
film beneath. In the upper diagrams low angle cones are indicated by full 
lines and high angle cones by broken lines; on the films low angle lines 
are single and high angle lines are sketched with resolution of a doublet. 

screening the film from fogging by the incident and undeviated X-ray beam 

restricts the recording of diffracted radiation to 9 angles between about 4° and 

86°. The separation, S, of the two arcs due to the same diffracted cone is used 

to deduce the Bragg angle 9hkl for the particular set of reflecting planes; for 
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rough measurements the simple geometry of the arrangement is sufficient (e.g. 

9hkl = S/4R in the Bradley-Jay mounting, where R is the camera radius). For 

more accurate measurements, cameras are calibrated by means of ‘knife- 

edges ’; these are metal strips built into the instrument whose sharp straight 

edges parallel to the camera axis throw well-defined shadows at the low and 

high angle limits of the film by intercepting background radiation due to air 

scatter, Compton scattering, etc. A camera constant <f>K is obtained from the 

pattern of a standard specimen; it is usually defined as the Bragg angle for 

reflections which would fall on the knife-edge shadows. Values of S can then 

be related to 9 in terms of <f>K and SK, the measured distance between knife- 

edges on the film (e.g. 9hkl = S<f>K/SK, in the Bradley-Jay mounting). Assum¬ 

ing that linear distances on the film change uniformly during processing, a 

correction from calibrated knife-edge shadows will help to eliminate errors in 

line positions due to this cause. But, apart from film shrinkage, there are 

many other possible factors which can affect the measured values of S; these 

include absorption, failure to place the specimen at the centre of the camera, 

refraction, etc. All of these must be taken into account when the highest 

accuracy is required, and in Chapter 10.3 we will discuss extrapolation 

methods to eliminate or minimise systematic errors of this kind. Although 

9hkl values of quite high accuracy can be obtained from either of these mount¬ 

ings under favourable circumstances, rather more reliable and accurate data 

on line positions (particularly at low-medium Bragg angles) are found nowa¬ 

days by direct-recording powder diffractometers, which will be described 

shortly. Photographic methods are confined mainly to rough measurements 

and surveys of patterns, for which the third mounting in Fig. 10.4(c) is well 

suited. levins and Straumanis suggested that such an asymmetric film mount¬ 

ing would allow the positions corresponding to 9 — 0° and 90° to be found at 

the mid-points between pairs of lines belonging to the same low or high angle 

cones; knife-edges are unnecessary, for the distance between these positions 

provides the calibration for film shrinkage. In practice, it is often difficult to 

define these positions with great accuracy, particularly from the high angle 

regions of complex patterns with rather weak lines; but such cameras are 

quite accurate enough for the majority of modern photographic powder 

work, and they have become increasingly popular. 

Before the advent of the direct-recording methods which now dominate 

modern powder work, cameras were designed for specialised purposes such as 

low- and high-temperature experiments, the examination of block specimens, 

etc. Many of these photographic techniques are still important, particularly 

if they are not readily adaptable to diffractometry; we cannot pursue the 

design of such cameras here. Nor is it worthwhile to discuss other cameras in 

which increased resolution is attained by divergent beams and focusing geo¬ 

metry, although, as we shall see, most modern diffractometers use a similar 

technique. The past and present ramifications of photographic powder 
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methods are very extensive, and they are well documented in the biblio¬ 

graphy. 

(b) Diffractometers 

An alternative to the photographic film in the recording of diffracted X-rays 

had long been desired, but it has only been with the development of reliable 

detectors such as Geiger, proportional or scintillation counters over the past 

twenty years that direct-recording of diffraction patterns has become a routine 

operation. Both because of their wider technical applications and their simpler 

experimental geometry, powder methods were the first to be adapted to these 

new techniques in commercial instruments; at the present time most modern 

crystallographic laboratories possess (or have access to) powder diffracto¬ 

meters, but the more complex and expensive instrumentation of single 

crystal diffractometers does not yet justify a similar widespread use. 

All powder diffractometers employ some kind of focusing geometry to aid 

resolution, and most adopt a form of the Bragg-Brentano system illustrated 

diagrammatically in Fig. 10.5(a). Filtered X-rays diverge from a fixed line 

source at A to strike the specimen (in the form of a flat rectangular or circular 

disc of powder) at the centre C of a circular diffractometer table; reflected 

radiation is focused on to the detector slit B, when the normal to the plane of 

the specimen bisects ACB (perfect focusing would be achieved only if the speci¬ 

men surface were curved so as to lie on the circle through A, C and B). Once 

the instrument has been adjusted to satisfy this condition, this approximation 

to perfect focusing is maintained at all angles of incidence by ensuring that the 

detector rotates about the central axis of the table in the same sense as the 

specimen but with twice the angular speed. Different gear systems allow a 

choice of scanning speed for the detector, usually in the range between 0-05° 

(#)/min. and 1-2° (0)/min.; faster speeds are used for general surveys of pat¬ 

terns, whilst slower speeds are reserved for accurate measurements within a 

limited range of Bragg angles. The detector converts an X-ray quantum into 

an electrical impulse, so that the intensity of X-rays (or the rate of arrival of 

quanta in the counter) is matched by a corresponding rate of output of pulses 

from the detector; with suitable electronic circuitry these pulses can either be 

counted individually over a unit time interval for every counter setting, or—as 

is more usual—averaged electronically over a few seconds whilst the detector 

is in continuous motion to give an output that activates a pen-recorder. When 

the detector output is coupled to a pen-recorder, the peaks of a powder pat¬ 

tern are displayed on a chart as in Fig. 10.5(b); the scale of this chart depends 

on the chosen relation between the scanning speed and the chart speed of the 

pen-recorder. Most commercial instruments also include a second pen to 

indicate the scale of angular intervals on the chart, and these suffice for rough 

measurements of line positions. Accurate determinations of line positions 

need a calibration of the pattern which is usually made by mixing a small 
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quantity of a standard with the specimen; measurements on the chart are then 

made relative to the known positions of the standard lines. 

(a) 

1O°(0) 15°(0) 

(b) 

Fig. 10.5. Powder diffractometers, (a) Bragg-Brentano focusing sys¬ 
tem. (b) Part of a diffractometer chart showing peaks over the range of 
Bragg angles marked. 

Around instruments of the kind outlined, a field of diffraction technology 

has grown up; this is concerned with improving the geometry of reflection, 

the counters and their associated electronic circuits, and the automation of 

diffractometers and their adaptation for specialised work, etc. It is still a fast 
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developing area, and the more detailed accounts of diffractometry which will 

be found in the bibliography will probaby have to be changed as new techni¬ 

ques are developed. In our context we can recognise that, whenever the highest 

accuracy in relative line positions (and intensities) is demanded, this is most 

likely to be obtained from some sort of powder diffractometer; nevertheless, 

there will always remain many simpler routine tasks in which the humbler 

powder photographs provide all that is needed with relatively inexpensive 

equipment, not least in the field of very accurate determinations of cell con¬ 

stants from the positions of sharp, indexed high angle lines, as discussed in 

the next section. 

10.3. Interpretation of powder records 

However a powder pattern is recorded, its measurement will provide (i) 

values of 6hkl for all lines, and (ii) the relative intensities of the various lines. 

Detailed studies of intensities are mainly relevant to structure determination, 

and the many factors that influence line intensities in complex patterns militate 

against the determination of accurate \F(hkl)\ values; whenever possible, this 

work is best carried out by single crystal methods, and structure determina¬ 

tion from powder data alone is relatively rare. In this section, we shall address 

ourselves only to the interpretation of line positions and the dimensional 

values that can be derived from them. 

Measured 9hkl values can be converted into a set of interplanar spacings 

dhkl for the specimen by the Bragg law; to use these dhkl values to find cell 

constants, we must be able to associate particular values of h, k and / with the 

different diffracted cones, i.e. we need to index the lines. The problems of 

indexing a powder pattern are less formidable when rough values of the cell 

constants have already been found; indexing ab initio is particularly difficult 

in the lower symmetry systems where dhkl depends on an increasing number of 

unknown cell parameters (see Table 7.2) and there are many more lines. For 

cubic crystals it is always relatively simple, for there is only one variable, the 

cell edge a. We can combine the relationship 

dhkl = a/(h2 + k2 + /2)% 

with the Bragg equation to give 

sin2 9hkl = (h2 + k2 + l2) 

For a particular pattern A2/4a2 is a constant, so that sin2 dhkl values must be 

directly proportional to h2 + k2 + l2; by examining our measured values we 

should be able to identify the constant factor (= 4a2/A2) by which they must 

be multiplied to give a set of integers formed by summing the squares of the 

indices. In general h2 + k2 + l2 can have all integral values except those 

given by m2(8n - 1), where m and n are integers, i.e. a sequence 1, 2, 3, 4, 5, 



DIFFRACTION BY POWDERS 245 

6, 8, 9, 10, 11, 12, 13, 14, 16,... from which certain integers (7, 15, etc.) are 

excluded; not all lines in this sequence are necessarily observed on all cubic 

powder patterns, due to the accidental and systematic absences described in 

Chapter 8. For example, assuming no accidental absences, the sequence above 

would be that found for a cubic P-lattice; when the material has an /-cell, 

systematic absences modify the sequence to 2, 4, 6, 8, 10, 12, 14, 16,..., and 

for a cubic P-lattice, the sequence becomes 3, 4, 8, 11, 12, 16,.... In fact, 

provided there are not too many accidental absences, the indexing of cubic 

powder photographs is a relatively straightforward exercise, and with a little 

experience can often be accomplished by an initial inspection of the sequence 

of low angle lines. In other systems the complexity of patterns increases with 

the degeneration of cell shape; in cubic crystals all planes of the form {100} 

have the same spacing (a) and contribute to one line of the pattern; but in 

tetragonal crystals there will be two lines corresponding to dl00{— dQ10 = a) 

and </0oi(— c); in the orthorhombic system there will be three independent 

reflections for 100, 010 and 001, and so on; without some prior knowledge of 

the cell constants, the problem of indexing the observed sin2 6hkl values be¬ 

comes more and more difficult. When there are only two unknown para¬ 

meters—as in the tetragonal, trigonal and hexagonal systems—ab initio 

indexing is usually possible by trial and error methods; these can be syste¬ 

matised by graphical or numerical techniques. With three, four, or six undeter¬ 

mined parameters—as in the orthorhombic, monoclinic and triclinic systems 

—the difficulties of ab initio indexing are greatly magnified; various numerical 

procedures have been proposed, and these have had some success in restricted 

applications. But in general, in these three systems it is preferable, if possible, 

to obtain some idea of the cell constants by single crystal examination before 

attempting to identify powder lines by comparing observed dhkl values with 

those calculated from the equations of Table 7.2; even so, there are often 

ambiguities in identification, particularly at larger Bragg angles where there 

can be considerable overlapping of line positions which are more sensitive to 

small changes in dhkl values. 
Once a powder pattern has been indexed, we can derive values for the cell 

constants. For example, a rough value of a for a cubic crystal can be obtained 

from any sin2 9hkl value from the equation above. But the powder method is 

capable of higher accuracy more readily than most other simple X-ray 

techniques; the greatest accuracies will be obtained by measurement of those 

lines which are most sensitive in position to small changes in dhM (and the cell 

constants). By differentiating the Bragg equation we find that 

hki = ~^dhkl/dhkl cot 6hkl 

so that for a given change in spacing (Adhkl), the change in angle (Mhkl) 

increases as 9hkl -> 90°. (It is for a similar reason that the closely spaced emis¬ 

sion peaks of a Ka doublet are resolved for high angle reflections.) The best 
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values of cell constants will be those calculated from the measured positions 

of high angle lines, particularly when there is doublet resolution. When 

extreme accuracy is required, it is necessary to use extrapolation methods to 

minimise the effects of systematic errors (mentioned in Chapter 10.2(a)) by 

extrapolation to 9 — 90°; for a cubic crystal, values of a calculated inde¬ 

pendently for a number of high-angle reflections are plotted against a suitable 

angular function Q(cos2 6/9 + cos2 9/sin 9)) to provide a linear extrapolation 

to the best value of a at 9 = 90° (this does not allow for refraction, which 

must be subsequently corrected). Whenever high angle lines can be indexed, 

these extrapolation techniques can be adapted for use in any crystal system; 

they can provide cell constants with far greater accuracy (about ±0-0001 A) 
than is normally obtainable by any other method. But, as we remarked above, 

reliable indexing of such lines in the patterns of many crystals of the three 

lower symmetry systems is often impossible, and in these circumstances the 

best values of cell constants are calculated from very accurate diffractometer 

measurements of the positions of unambiguously indexed low-angle lines; 

cell dimensions are then fitted to the observed dhkl values by a least-squares 

deviation method. This numerical process can be carried out by standard com¬ 

puter programmes, and although the quality of results is not comparable with 

that obtainable by high-angle extrapolation methods, the accuracies (usually 

about 0-001 A and 0-005°) are sufficient for most purposes. 

More detailed accounts of the indexing of non-cubic patterns and the deri¬ 

vation of accurate cell constants will be found in references in the biblio¬ 
graphy. 

10.4. Some applications of powder methods 

In many ways powder methods are less valuable in providing fundamental 

crystallographic data on a substance than an examination of single crystals; 

but they form the basis of a plethora of important technical applications of 

X-ray diffraction. It is impossible to provide an exhaustive list of the ways in 

which powder techniques are applied, and this section contains a few illus¬ 

trative examples selected for their universality and importance. 

We will consider first the identification of an unknown crystalline substance. 

If every crystalline material has a characteristic structure with its own pecu¬ 

liar cell constants and contents, it should have a unique powder pattern by 

which it can be recognised. This kind of ‘finger-print’ identification has been 

systematised in the X-ray Powder Data File (published by the American 

Society for Testing and Materials with the assistance of many other learned 

societies); in its basic format, this file is a catalogue with card entries for 

each substance. Each card shows as its prime data the interplanar spacings 

and relative intensities of the three strongest lines of the powder pattern, and 

is identified by a file index number. Additional data on the substance are 
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listed on each card; these include a complete set of dhkl values and relative in¬ 

tensities (with indices where known), the experimental method by which the 

pattern was recorded, the name and chemical formula, space group and cell 

dimensions (if known), some account of physical properties (usually optics, 

density, colour) and any references to related or obsolete earlier data. Cards 

are arranged in the file in ascending order of prime interplanar spacings. In 

the original format each substance had three cards at the three positions in 

the file corresponding to the dhkt values for each of its three strongest lines. 

Nowadays each substance has only a single card in the file, but the cards are 

accompanied by a catalogue index in book form; in this, each substance has 

three entries in positions corresponding to its three strongest lines. The file 

contains entries for many thousands of substances, and additional supple¬ 

ments are published regularly; in recent years these have been separated into 

organic and inorganic materials, and automatic sorting by punched cards or 

computer tape provides extra refinements. 

In theory, identification of an unknown follows from the set of inter¬ 

planar spacings calculated from measurement of the powder lines. Entries 

in the catalogue index with spacing values of the strongest lines are in¬ 

spected; since each substance occurs in three positions, any ambiguity in 

selecting the most intense line of the pattern is unimportant. Each catalogue 

entry actually states the spacings (and rough relative intensities) of the six 

strongest lines, so that a fuller comparison of the dhM values and their inten¬ 

sities for very few cards extracted from the file should serve to identify the 

specimen. In practice, there are some obvious snags in identification by this 

method. Firstly, there is a possibility that two quite different substances 

fortuitously have indistinguishable powder patterns; fortunately this seems 

to be relatively rare. More importantly, it is clear that the efficacy of the 

method depends on the purity of the specimen; the recorded pattern of a 

mixture is the superposition of all the lines due to the various components 

weighted according to their relative proportions. When there are only two or 

three components, it is often possible for their separate patterns to be disen¬ 

tangled and identified, though the measure of success depends on the nature 

of the components; for complex multicomponent mixtures this is not usually 

practicable. A more fundamental difficulty relates to the basis of recognition 

by a pattern characteristic of each substance. Many of the structural configur¬ 

ations which determine' the general character of a powder record allow the 

substitution of chemically different atoms in some, at least, of the cell sites; 

when this happens the overall powder pattern retains its general character¬ 

istics but the precise positions of lines (and the values of their relative inten¬ 

sities) may be affected by the different sizes (and scattering powers) of atoms 

introduced in the substitution. The crystallographic significance of substitu¬ 

tional solid solution of this kind will be mentioned again in Chapter 12, but 

its widespread existence promotes difficulties in identification by the Data 
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File which we can illustrate by a simple example. The metallic elements Cu 

(,a = 3-608 A) and Ni (a = 3-517 A) have a similar structural arrangement 

with a simple cubic T-cell; the two elements can form binary alloys of any 

intermediate composition in which appropriate numbers of Cu and Ni atoms 

are arranged statistically on the face-centred pattern of sites. In this binary 

system at all compositions we observe powder lines corresponding to a cubic 

jp-cell but with slight but significant shifts in position as the proportions of the 

small Ni and larger Cu atoms are varied. It is not possible for any data file 

to take account of variations in dhkl values due to this cause in any satis¬ 

factory systematic manner; our simple example may not seem to pose many 

problems, but in the inorganic field, particularly with natural materials such 

as minerals, solid solutions (and their effects) can be extremely complicated. 

In summary, identification by powder methods is an excellent, non-destruc¬ 

tive test, especially if only a small amount of a pure specimen (< 1 mg) is 

available; whilst unique solutions can be obtained, there are often limitations; 

and the value of identification by powder methods is greatest when it can be 

used in conjunction with other tests, such as chemical or electron-probe 

analysis, optical examination, etc. 
Powder techniques are widely employed to investigate the crystallisation 

of multicomponent systems under various physico-chemical conditions, i.e. in 

the establishment of phase diagrams. Such diagrams often contain ranges of 

substitutional solid solution as, for example, in the Cu-Ni alloys above, 

where the change in cell dimensions is linear to a reasonable approximation 

and so the movement of a line can be used to estimate the composition of the 

alloy; in more complex substitution series the changes in cell constants (and 

line positions) are not necessarily linear, but once a variation has been 

established it can subsequently be used to estimate the extent of atomic 

substitutions, which otherwise might require long and tedious chemical 

methods. Moreover, each of the limited number of phases which crystallise 

within a system has a characteristic structural pattern, and in this restricted 

context each can be recognised from its powder pattern without difficulty 

despite any small changes due to solid solution; in a multicomponent system 

therefore, we can readily identify the various phases that occur at different 

points under varying conditions of temperature, pressure, etc., and establish 

their composition fields to construct the phase diagram. Powder methods are 

particularly suitable for this work, for patterns can be obtained from aggre¬ 

gates of grain sizes too small to be conveniently examined by most other 
methods. 

Some physical properties of crystals are related to changes in interplanar 

spacings in the structure, and powder techniques can be adapted for the 

measurement of some physical constants. An obvious example is the measure¬ 

ment of thermal expansion coefficients where, from powder records of the 

same material at two different temperatures, we can determine the line shifts 
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(and changes in interplanar spacings) caused by the temperature change; 

since the expansion coefficient normal to (hkl) planes (ahkl) is defined as 

Adhkl/dhkl • At, where Adhkl is the spacing change caused by a temperature 

interval At, reasonably accurate values of ahkl can be obtained quite simply. 

Moreover, as we shall see in the next chapter, thermal expansion (like many 

other physical properties) can vary with the direction of measurement in the 

crystal lattice; the different values of expansion coefficients for various planes 

in different lattice orientations are derived from the shifts of the relevant lines 
on the powder pattern. 

Among the crystalline solids of technical importance are bulk materials 

which are neither single crystals nor randomly oriented aggregations of small 

crystallites; their textures show a preferred orientation in the arrangement of 

constituent single crystals, so that they are, in a sense, intermediate between 

the ideal single crystals and powders that we have already discussed. Although 

preferred orientation textures can be found in the crystallisation of natural 

mineral formations, they are more importantly developed in some of the 

common industrial processes for the production of metallic sheets or wires, 

synthetic fibres, etc. In this context they can have a significant effect on 

physical properties such as strength, ductility, etc., and study and control of 

the textures formed by different manufacturing processes is essential to the 

quality of products; X-ray methods, among others, can give the essential data 

on any preferred orientation within a material. Basically there are two dif¬ 

ferent kinds of preferred orientation texture, those of fibres and sheets. In an 

ideal fibre texture, a particular zone axis in all crystallites is oriented parallel 

to a fixed external direction, though individual crystals are free to assume any 

orientation about this direction; for example, when a cast metal with ran¬ 

domly oriented crystallites is extruded through a die to produce a wire, not 

only is the size of the metal crystallites changed but also they tend to assume 

a fibre texture with a common zone axis parallel to the length of the wire, 

which develops a kind of cylindrical symmetry in crystallite orientation. In an 

ideal sheet texture two or more zone axes are parallel to external directions, 

so that if a texture were perfect all crystallites would be identically orientated 

to build up a single crystal; in practice, textures are imperfect, so that when, 

for example, a cast metal block is passed through a rolling mill to produce a 

sheet, there is only a tendency to a greater or lesser extent for the same 

mutually perpendicular zone axes of all crystallites to be parallel to the rolling 

direction and the normal to the sheet. For both fibre and sheet textures, 

diffraction patterns can be interpreted to find the particular zone axes 

parallel to external directions and an estimation of their misalignment from 

the ideal orientation; we will illustrate this by considering diffraction by a 

specimen with a fibre texture. 
Let us suppose that a wire has been produced from a cubic metal with an 

F-lattice of known cell dimensions for which the process has developed an 
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ideal texture with <111) zone axes for all crystallites parallel to the length of 

the wire; we will work out the appearance of a diffraction pattern from this 

specimen which is recorded on a flat-plate film in the transmission position 

when monochromatic X-rays are incident normal to the length of the wire. A 

powder specimen of the cubic metal has a first low-angle cone for which 
/j2 + £2 + /2 = 3. with a random orientation of the crystallites this would 

Trace of plane 

Fig. 10.6. Geometry of reflections from an ideal fibre texture, (a) Stereo¬ 
gram showing the distribution of {111} normals in the wire and the 
conditions for 111 reflections, (b) The appearance of spots on a 111 
powder ring. 

intersect the film as a continuous circle of radius R tan 20111} where R is the 

distance of the film from the wire. But the ideal fibre texture of our wire 

considerably restricts the possible orientations of {111} reflecting planes in the 

specimen, and this limits the distribution of diffracted beams around the 111 

powder ring. Using stereographic projection of the Bragg geometry, reflecting 

normals must lie on a small circle of radius 90° — 0m about the pole i of the 
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incident beam; in cubic crystals the only possible angles between the fibre 

axis <111) and {111} normals in the crystallites are 0°, 70° 32', 109° 28' and 

180°. In an ideal fibre texture cylindrical symmetry about the fibre axis gives 

the possible positions of {111} normals for crystallites within the wire as the 

centre and small circles of the stereogram of Fig. 10.6(a); there are just four 

positions at which crystallites are oriented to satisfy Bragg conditions for 

these planes. At any one of these points, say P, the direction of the diffracted 

beam (Q) is such that the plane iPQ is inclined to that containing i and the 

axis of the wire at an angle ip; blackening will occur on the film at the point at 

12 

Fig. 10.7. The appearance of spots on the low angle rings for a cubic 
specimen with an ideal <111> fibre texture. 

which the 111 powder ring is intersected by the plane iPQ, and the three other 

intersections on the stereogram will give other symmetrically disposed spots 

as shown in Fig. 10.6(b). (In practice, the texture is likely to be imperfect with 

some misorientation of {111} normals from their ideal positions of Fig. 

10.6(a). This would draw out the four spots into limited arcs around the pow¬ 

der ring; it might even cause additional regions of blackening, as, for example, 

if there were sufficient misorientation around the fibre axis at the centre of the 

stereogram to intersect the small circle locus of the Bragg condition. From 

such effects the extent of any departure from the ideal texture can be judged.) 

For the rest of the diffraction pattern, the same geometrical arguments can 

be adapted to locate ideal spot positions on the powder rings for other reflect¬ 

ing planes; the results for a few low-angle lines are shown in Fig. 10.7. The 

appearance of this pattern emphasises the regularity of the arrangement 

parallel to the fibre axis, for we can distinguish curved layer lines at positions 
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corresponding to an 5ni value of y/3a, just as might be expected on a photo¬ 

graph of a single crystal rotated about [111]. 

Photographs from specimens with a sheet texture are generally similar in 

having a pattern of discontinuous arcs around powder rings; but the lack of 

cylindrical symmetry implies that the distributions of blackening on indi¬ 

vidual rings depend not only on any degree of misorientation from the ideal 

texture but also on the particular orientation of the incident beam relative to 

the external reference directions. To find both the texture and the extent of 

departures from ideal orientations it is necessary to combine data from a 

number of photographs taken at different inclinations of the X-ray beam to 

the sheet; for any one family of planes, e.g. {111}, the results are usually pre¬ 

sented as a pole figure, a stereogram in which the external reference directions 

are marked together with shaded areas whose densities represent the popula¬ 

tions of {111} poles in these orientations. The importance of pole figures in 

materials technology has led to the development of more complex cameras 

with moving films, diffractometers, etc. whose purpose is to obtain the densi¬ 

ties of crystallites in various orientations from a single exposure; details of 

these instruments will be found in the bibliography. 

10.5. Exercises and problems 

1. A powder photographic technique will resolve two lines if their Bragg 

angles differ by not less than 1°. At what minimum Bragg angle will there 

be resolution of the doublet components of CuXa radiation? (ACuJro(1 = 
1- 5405 A; A0uKa2 - 1-5443 A.) 

2. The following 6 values were obtained for the first few lines on a powder 

photograph of Cu20 taken with radiation of wavelength 1-542 A: 

14° 47', 18° 13', 21° 09', 26° 14', 30° 40', 36° 46'. 

What are the probable indices of these lines and the cell side of Cu20 ? 

Why does the observation on a single-crystal rotation photograph about 

[111] that the height of the 3rd layer line above the equatorial plane is 

2- 35 cm (camera radius 3 cm; A = 1-542 A) confirm this interpretation? 

If the powder camera can record Bragg angles up to 86°, what are the 

indices of the highest angle line which can occur on the photograph ? 

3. A powder photograph of VN (cubic) is taken on a Straumanis camera of 

radius 5-73 cm with FeXa radiation. Measurement with a travelling micro¬ 
scope gave the following readings for line positions: 

2-085, 4-655, 5-420, 14-630, 15-395, 17-965, 19-725, 20-315, 22-925, 

22-975, 25-945, 26-075, 29-975, 30-105, 33-075, 33-125, 35-735, 36-325 
(all ±0-005 cm). 

(The scale zero of the microscope is at an arbitrary position with the two 
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holes in the film at readings ~ 10 cm and ~28 cm.) Index the lines, deter¬ 

mine the lattice type and cell side. (AFeffai = 1-936 A; XFeKc/2 = 1-940 A.) 
4. A powder photograph of a specimen known to be a mixture of two cubic 

compounds is taken on a 9 cm diameter camera (A = 1-542 A) with van 

Arkel geometry. Measurement of the lines on the left- and right-hand sides 
of the film are as follows: 

24-90, 23-46, 22-35, 22-29, 21-38, 21-32, 20-52, 19-72, 18-26, 18-16, 17-57, 

16-90, 16-25, 16-12, 15-62, 15-47, 12-90, 10-91, 10-23, 7-10 (all in cm). 

Identify the lines belonging to each compound and determine the probable 
lattice types and cell sizes. 

5. In the experimental syntheses of the mixed oxide CaTi03, other oxides can 

be formed. For a fine-grained product formed under particular conditions 

of synthesis, the results of a diffractometer scan with CuXcc radiation 

(A = 1-542 A) over a limited low angle region of the powder pattern are: 

9 (degrees) 11° 38' 13° 05' 14° 55' 15° 39' 16° 18' 
Intensity 70 50 10 20 60 
9 (degrees) 16° 28' 16° 35' 16° 41' 17° 31' 
Intensity 100 120 100 30 

From the data on CaTi03 and possible contaminants below, demonstrate 

that the product of synthesis is impure, and determine the most probable 

impurity. 

CaTi03 Ca3Ti207 Ca4Ti3Oio CaTi204 

d( A) Intensity d( A) Intensity d( A) Intensity d( A) Intensity 

3-82 60 3-76 8 3-80 10 2-99 20 
3-41 40 3-30 4 3-34 6 2-86 30 
2-72 80 2-73 100 2-73 100 2-74 100 
2-69 80 2-72 65 2-72 100 2-56 30 
2-56 10 2-71 45 

6. A single crystal was set on an oscillation camera (radius 3 cm) with a pro¬ 

minent zone axis parallel to the rotation axis. Laue photographs showed 

identical patterns with symmetry mm2 at 90° intervals as the crystal is 

rotated; it was also observed that Laue symmetry mm2 is displayed by 

directions midway between those for which the first set of Laue photo¬ 

graphs were taken, though the patterns were different from those of the 

first set. On a rotation photograph about this axis with radiation of wave¬ 

length 1-542 A, the height of the first layer line is 0-493 cm. On the zero 

layer of this photograph, reflections are symmetrically disposed about the 

exit of the undiffracted X-rays, and measurements of pairs of correspond¬ 

ing reflections across the exit gave the following separations: 3-802, 5-488, 

9-256, 12-964, 14-494 and 16-734 (all in cm). On a powder diffractometer 
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trace of the same material, the first few low angle lines occurred at spacings 

of 4-95, 3-27, 2-475, 2-447, 2-389, 2-193, 1-740, 1-719 (in A). 

Assuming that the only absences are systematic, what does this data imply 

about the crystallography of this material ? How would you confirm your 

deductions ? 

7. In a solid solution series between Mg2Si04 and Fe2Si04, the interplanar 

spacing d130 varies linearly with composition from 2-7659 A for Mg2Si04 

to 2-8328 A for Fe2Si04; members of this series have the space group 

Pbnm, and approximate cell dimensions a = 4-78, b = 10-33, c = 6-03 (in 

A). For an intermediate member of the series, a diffractometer record gave 

the following values of l/d2(x 10s) for low-angle lines: 

3779, 6563, 7165, 8112,11069,12917,14899,15708,16409,17947. 

Index these lines, and from the value of d130 find the composition of this 
specimen. 
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11 
SYMMETRY RELATIONSHIPS IN 

PHYSICAL PROPERTIES 

11.1. Introduction 

In most elementary treatments of physical properties of solids it is assumed 

that any relation between cause and effect is the same in all directions within 

the body; whilst such isotropic behaviour may occur for some crystals and 

some properties, the nature of atomic structures suggests that it is unlikely to 

be universally valid. For example, many materials are known to have layered 

structures in which sheets of relatively tightly bound atoms are stacked in a 

repetitive sequence, with rather weaker binding forces between the layers; for 

a crystal with this kind of structure we would expect that a property such as 

thermal expansion would vary with the direction of measurement, i.e. coeffi¬ 

cients must be larger normal to the sheets than for any direction within them. 

Variations of this kind are typical of the anisotropic behaviour which is wide¬ 

spread in the properties of many crystalline materials; in elementary physics 

they are neglected, either because we are referring to a particular crystal or 

are describing a particular property which is not anisotropic, or because 

experiments are carried out on solids which are inherently isotropic by their 

nature (e.g. a non-crystalline glass, a polycrystalline metal block with a ran¬ 

dom orientation of grains so that average bulk properties mask any aniso¬ 

tropy of individual crystallites, and so on). 

In a sense, there are two levels of enquiry into the physical properties shown 

by a crystal with a particular structure. One of these is concerned with the 

origins of properties; we must decide, for example, why one material is a good 

electrical conductor and another is not, why a given stress only causes elastic 

deformation of one body but permanent deformation of another, and so on. 

Discussion of this kind requires a fundamental investigation of the source of 

each property in so far as it depends on the atoms and their interactions in the 

crystal structure; with the exception of a brief description of the structural 

origins of optical properties in Chapter 11.5, this is not attempted here. We 

shall accept the occurrence of the different properties, but pursue an enquiry 
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at a different level into their relationships to the symmetry of crystals in which 

they are found; even when a crystal is a good electrical conductor, the con¬ 

ductivity can be isotropic or anisotropic, and our concern is with the way in 

which this kind of behaviour is dependent on any symmetry the crystal may 

possess. The relationship between symmetry and the physical behaviour of a 

crystalline solid depends on the nature of the property in such a way that 

various properties may be grouped together for common discussion; in this 

chapter we shall not investigate all the different possible groups in detail but 

describe in simple terms one behavioural category so as to clarify the prin¬ 

ciples of this division into particular groupings with separate relationships to 

symmetry. 

11.2. Properties relating two vectors 

For some properties of isotropic bodies there is a simple linear relation be¬ 

tween vectors representing cause and effect; in thermal conduction (some 

other properties of this kind are listed later in Table 11.2), a temperature 

(a) (b) 

Fig. 11.1. Relations between cause (q) and effect (p) vectors in a general 
direction (a) in an isotropic body and (b) in an anisotropic body. 

gradient causes a resultant heat flow, and both of these quantities can be 

represented in magnitude and direction by vectors. In elementary physics 

these two vectors are always taken to be parallel, whatever the direction of 

measurement, and they are related by a constant scalar quantity, the thermal 

conductivity coefficient of the material; this kind of relationship is shown in 

Fig. 11.1(a) where p is the effect (viz. heat flow) produced by the cause q (viz. 
temperature gradient) according to the equation 

in which T is the appropriate physical constant (viz. thermal conductivity). 

In crystal physics, experiments show that the situation is complicated by the 

possibility of non-parallelism of the cause and effect vectors as shown in 

Fig. 11.1(b); a temperature gradient applied in one direction produces a 

resultant heat flow in another. In any general direction, this disposition of the 
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vectors is characteristic of an anisotropic body, in which, moreover, the pre- 
• ——y 

cise relationship between p and q both in relative magnitude and inclination 
varies with direction. Our first problem is to decide how the kind of aniso¬ 
tropic relationship typified by Fig. 11.1(b) can be described, for clearly the 
simple vector equation above is not valid; this is most elegantly treated by 
tensor notation, but we will eschew such mathematical sophistication in 
favour of more rudimentary methods. 

—v —> 

For this kind of property, whilst there is non-parallelism of p and q in 
general directions, there are always in any crystal at least three mutually per¬ 
pendicular directions in which physical measurement shows the cause and 
effect vectors to be parallel. As we shall see shortly, some crystals exhibit this 
parallelism in more than the minimum of three directions; but for the moment 
we will treat the most general case and select these perpendicular directions as 

Z 

Fig. 11.2. General relations of p and q with respect to the orthogonal 
axes X, Y, Z. 

a set of reference axes X, Y and Z (not necessarily related to crystallographic 
axes x, y and z). In these directions we can write the equations 

Px — Txqx\ Py — TYqY', Pz — Tzqz 

as for an isotropic body, except that the coefficients Tx, TY and Tz are of dif¬ 
ferent values, so as to express the essential anisotropy in the behaviour of 

the crystal. In such a crystal ~q applied in some general direction (specified by 
the direction cosines /, nl and n with respect to the reference axes) will cause a 

resultant p in some other direction (Fig. 11.2). We can choose to define a 

coefficient Tlmn which relates the applied vector q to that component of p 
which is parallel to the direction Imn, and an expression for the coefficient 

Tlmn specified in this way can be simply derived. If q is resolved on to the 

reference axes, qx = ql, ~qY - qm, qz = qn, so that from the relations above 

Px = Txql\ pY = TYqm; pz = Tzqn. 
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When these components of the resultant ~p are resolved back into the direction 
—> 

Imn of the applied vector q, we get 

Pimn = Pxl + pY™ + Pzn = (Txl2 + Tym2 + Tzn2)q 

so that Tlmn = Txl2 + TYm2 + Tzn2. 

Thus, if the values of the principal coefficients Tx, TY and Tz are known, other 

coefficients defined in this way can be calculated for all general directions; 

whereas in an isotropic body there is only one coefficient of thermal conduc¬ 

tivity, an anisotropic material has at the most three independent values of the 

principal thermal conductivities. In general, we need to know at least the 

values of all the principal coefficients before we can calculate the components 

of the resultant heat flow normal and parallel to a pair of opposite crystal 

faces across which a temperature gradient is maintained. 

Z 

Fig. 11.3. A representation surface as a triaxial ellipsoid. 
i 

The general relationships between p and q in crystals can be conveniently 

visualised by a form of representation surface, like the triaxial ellipsoid of 

Fig. 11.3; this is constructed on the axes X, Y and Z, so that its principal 

semi-axes are of lengths l/\/Tx, l/\/Ty and 1 I\/Tz, i.e. it is the ellipsoid 

Txx2 + TYy2 + Tzz2 = 1. A radius vector of length r in a direction Imn de¬ 

fines a point on the surface with co-ordinates (/■/, rm, rn), so that by substitu¬ 

tion 

r2 = 1 j(Txl2 + TYm2 + Tzn2) = l/Tlmn. 

Hence, when a radius of the representation surface is identified with the 

applied vector q, its length is a measure of the reciprocal of the square root of 

the coefficient in this direction. Moreover, since the tangent plane to the sur¬ 

face at the point (rl, rm, rn) is 

Txrl. x + Tyrm . y + Tzrn . z = 1 

the normal to the surface at the same point has direction cosines proportional 

to Txrl, Tyrm and Tzrn. We showed earlier that the components of a resultant 
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P produced by an applied vector q were px = Txql,pY = TYqm and pz = Tzqn, 

so that the direction of p must be that of the normal to the surface at the end 

of the radius vector identified with q. Generalising and summarising this brief 

account of a representation surface for this group of properties: 

(i) A representation surface is erected on mutually perpendicular prin¬ 

cipal axes X, Y, Z so that the lengths of the principal semi-axes are 

l/VTx> 1 IVTy and l/\/Tz, where Tx, TY and Tz are the principal 

coefficients. In general such surfaces must be of a quadric form; prin¬ 

cipal coefficients are usually of the same (positive) sign to give ellip¬ 

soidal shapes, but occasionally they can have different signs to give a 
hyperboloid. 

(ii) When a radius is drawn parallel to the direction of the applied vector q 

with direction cosines /, m and n, the direction of the resultant vector 
■ > 

p is that of the normal to the surface at the end of this radius. 

(iii) The length of this radius is 1 IVTimn, where Tlmn is the value of the 

coefficient by which q must be multiplied to give the component of p 

in the direction Imn. 

Having established that properties within this grouping have variations 

described by such representation surfaces we can turn to the main problem of 

their relationship to crystal symmetry. For any physical property this is deter¬ 

mined by Neumann’s principle which is formally stated: ‘Any kind of sym¬ 

metry which is possessed by the crystallographic relations of the material is 

possessed by the material in respect of every physical quality’; more loosely, 

this may be interpreted as indicating that the symmetry shown by a physical 

property is greater than, or equal to, that of the crystalline point group. The 

symmetry of the representation surfaces for the present group of properties 

can only be of three distinctive types. When Tx ^ TY ^ Tz, it is identical 

with that of the point mmm; when Tx = TY =£ Tz, there is an axis of revolu¬ 

tion normal to an m plane; when Tx = TY = Tz, the surface is completely 

symmetrical; with the common positive principal coefficients, these three 

shapes are respectively a triaxial ellipsoid, an ellipsoid of revolution, and a 

sphere. A spherical surface must denote isotropic properties, for the radius is 

constant and the normal to the sphere is parallel to the radius at any point. 

Both ellipsoids must represent anisotropic behaviour, though of a different 

kind; in an ellipsoid of revolution, any direction within the circular principal 

section normal to the axis of revolution will show isotropic relations between 

p and q, but any general direction inclined to this axis will be anisotropic; in a 

triaxial ellipsoid all principal sections are elliptical and indicate the most 

general form of anisotropic behaviour (though there are two inclined circular 

sections of such a surface which are of particular importance in the optical 

properties discussed in Chapter 11.4). From Neumann’s principle, the sphere 

(and isotropic behaviour) is the only possible surface to be linked to the high 
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and distinctive symmetries of the classes of the cubic system; the other two 

surfaces are not symmetrical enough. Grouping together the classes of the 

trigonal, tetragonal and hexagonal systems, their symmetries would be most 

in accord with surfaces of revolution in which the axis of revolution is parallel 

to the direction of the triad, tetrad or hexad axis; complete isotropy would not 

be expected, and the other anisotropic surface is not symmetrical enough. The 

most general surface must be reserved for the properties of the classes of the 

remaining orthorhombic, monoclinic and triclinic systems. In orthorhombic 

classes the relationship to symmetry is clear; a triaxial ellipsoid must be 

aligned so that its principal axes are parallel to the crystallographic axes 

(which are always diad symmetry directions). In monoclinic classes this con¬ 

trol over the orientation of the triaxial ellipsoid is relaxed; the only essential 

symmetry axis is a diad (along the j-crystallographic axis) and, whilst one of 

the principal axes of the representation surface must be parallel to this, the 

ellipsoid is free to assume any orientation by rotation about this direction. 

While the other two principal axes must lie in the (010) plane, they need have 

no particular relationship to arbitrarily chosen x and z crystallographic axes 

in directions without symmetry significance; for the same crystal the orienta¬ 

tion of principal axes in this plane could be different for different properties 

or even for the same property at different temperatures. In monoclinic crystals 

the complete physical relationships require a knowledge both of the magni¬ 

tudes of principal coefficients and the orientation of principal axes in the xz 

plane. Extending this to triclinic crystals there is no symmetry control over 

the orientation of a triaxial representation surface whose principal axes may 

assume any inclination to arbitrarily chosen crystallographic axes. A sum¬ 

mary of the relationships between properties represented by these kinds of 

surfaces and crystal symmetry is given in Table 11.1; the number of inde- 

Table 11.1. Representation surfaces for properties relating two vectors (positive co¬ 
efficients) 

Crystal system Surface and orientation Independent constants 

Cubic Sphere 1 (coefficient) 
Trigonal 
Tetragonal > 
Hexagonal J 

Ellipsoid of revolution; axis of revolu¬ 
tion parallel to principal axis of sym¬ 
metry. 

2 (coefficients) 

Orthorhombic Triaxial ellipsoid; principal axes 
parallel to crystallographic axes. 

3 (coefficients) 

Monoclinic Triaxial ellipsoid; one principal axis 
parallel to diad (y-axis), with other 
two in general orientation in (010) 
plane. 

4 (3 coefficients and 1 
orientation parameter) 

Triclinic Triaxial ellipsoid; no necessary relation 
between principal axes and crystallo¬ 
graphic axes. 

6 (3 coefficients and 3 orient¬ 
ation parameters) 
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pendent constants is the minimum necessary to completely specify each 

property for each crystal system. 

Representation surfaces of this kind can be used for a group of quite 

unrelated properties; some of the commoner ones are listed in Table 11.2. 

Table 11.2. Common properties with representation surfaces of Table 11.1 

Electric polarisation 
Electric flux density 
Intensity of magnetisation 
Heat flow 
Current density 
Change in length per 

unit length 

dielectric susceptibility x electric field strength 
permittivity x electric field strength 
magnetic susceptibility x magnetic field strength 
thermal conductivity x temperature gradient 
electrical conductivity x electric field intensity 
thermal expansion x temperature interval 

Whilst this tabulation is not exhaustive, in all cases except one the vectors in¬ 

volved in the physical relationship are readily identifiable (and in heavy type 

in the table); only in cubic crystals will there be isotropic behaviour for any 

of these properties; in all other systems, there is some kind of anisotropy with 

physical relationships described by an appropriate representation surface. An 

exception to the vector-vector relations is the last entry, which is an ele¬ 

mentary statement about thermal expansion. The variations of thermal 

expansion coefficients in crystals may be represented by the same kind of sur¬ 

faces as all the other properties, but an interpretation of the surface in terms 

of cause and effect vectors p and q is not possible, for the physical qualities 

involved are different from the rest of the list. This raises the fundamental 

question of how physical properties are to be grouped in regard to their rela¬ 

tion to symmetry; so far we have established a form of representation surface 

common to one group; in the next section we try to disentangle the criteria for 

inclusion in this group so that we may see how the other groupings arise. 

11.3. Order in properties of crystals 

In thermal expansion, it is clear that the temperature change which causes 

expansion is a scalar quantity; it cannot be applied in a particular direction 

in the crystal as can vector quantities like a temperature gradient. In this 

sense, it cannot change the nature of the right-hand side of the equation for 

expansion in Table 11.2, and this suggests that the key to the constancy of 

behaviour which allows the grouping of physical properties in this Table lies 

in the significance of the coefficients Tlmn. Coefficients for the properties of 

Chapter 11.2 cannot be generally regarded as scalars or even vectors; in 

mathematical terms, they are the components of a particular kind of second- 

order tensor, whose properties are described by a certain type of representa¬ 

tion surface. It is for this reason that the properties in Table 11.2 can all be 
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grouped together as second-order; although such properties commonly arise 

in a general relation of two physical quantities expressed as vectors, the 

example of thermal expansion shows that there can be exceptions. When 

second-order coefficients are multiplied by a scalar property, the product 

must be a second-order property itself; in the case of expansion, this product, 

a change in length per unit length, is a strain (more accurately a homogeneous 

strain) and the implication must be that such strains can only be generally 

expressed in the form of a second-order tensor. In turn, this implies that we 

must first examine the nature of the physical quantities involved when trying 

to place a property in one of these general groups; they may be scalars (like a 

temperature interval) or vectors (like an electric field) or second-order tensors 

(like a strain). 
The different orders of properties arise from the form of the independent 

coefficients that are necessary to relate the two physical quantities of a parti¬ 

cular kind; again in mathematical terms, these coefficients are the components 

of various orders of tensor, and the properties that they describe are grouped 

accordingly into orders as in Table 11.3. In the preceding section we discussed 

Table 11.3. The nature of the different orders of common properties 

Order Physical quantities related Example 

Zero Two scalars Heat capacity 
First A scalar and a vector Pyroelectricity 
Second Two vectors Thermal conductivity 

or a scalar and a second-order tensor Thermal expansion 
Third A vector and a second-order tensor Piezoelectricity 
Fourth Two second-order tensors Elastic properties 

the common form of second-order properties* and established their relation¬ 

ship to crystal symmetry through the representation surface; a systematic 

study of the physical properties of crystals requires a similar treatment of the 

different orders listed in Table 11.3. In each case we should find that the sym¬ 

metry dependence of a property depends on the nature of the tensor and its 

order, which also affects any division between isotropic and anisotropic be¬ 

haviour; for example, even cubic crystals need more than one independent 

modulus to specify their elastic properties. Representation surfaces change, 

becoming more complicated to visualise and less useful for the higher orders, 

which are better treated by mathematical analysis; appropriate references are 

given in the bibliography. It is sufficient for us to recognise that the symmetry 

dependence of all properties is not the same, so that in the converse problem 

(discussed in Chapter 11.6), in which physical measurements are used to 

* There are some different second-order properties, notably optical activity, which due 
to their different qualities have different surfaces and symmetry relationships. 
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help with symmetry determination, we realise that different properties can 
give different data according to their order. 

11.4. Optical properties 

In the next two sections we shall look in rather greater detail at the optical 

properties arising from the transmission of light waves through a crystal; for 

optical techniques are the commonest form of physical examination in prac¬ 

tice. Firstly, we shall briefly establish the general nature of the phenomena, 

neglecting the effects of absorption, optical activity etc., and omitting also any 

description of the practical methods; in the following section we shall give 

some account of the origins of optical behaviour and the way in which this is 

linked to structural arrangements within a crystal. In this section we are con¬ 

cerned only with optical properties as they arise from the propagation of 

Wave normal and ray direction 

electromagnetic waves through the general continuum of a crystalline solid; as 

the dielectric and magnetic properties of crystals are second-order, we would 

expect optical behaviour to have some resemblance to that of the second-order 

properties described in Chapter 11.2; nevertheless, there are important dis¬ 

similarities due to the essentially different character of optical phenomena. 

When light waves pass through an isotropic dielectric medium, at any 

given point the electric field of the radiation E causes an electrical displace¬ 

ment D; under isotropic conditions these two vectors are parallel. At the 

same time the periodic waxing and waning of the electric field at this point is 

associated with a similar magnetic field H perpendicular to D and E; this in 

turn causes a magnetic induction B, parallel to the direction of El in the iso^ 

tropic medium. The disposition of these vectors for a point on a planar wave- 

front advancing through the medium is shown schematically in Fig. 11.4. 

Under these conditions, solution of Maxwell’s equations, which control 

propagation, shows that the velocity of the wavefront is c/\/K, where c is the 

velocity of light in vacuo and i^is the dielectric constant of the medium; the 
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refractive index n is therefore \/K, a constant for an isotropic material. The 

wave-form shown in the figure is linearly polarised and conventionally its 

vibration direction is taken to be that of the electrical vectors; similar planar 

wavefronts would be propagated in this medium with the same speed (and 

refractive index) in any direction of travel and for any vibration direction. In 

propagation of this kind the direction of movement of a bounded part of a 

wavefront (i.e. the direction of the flow of energy)—often called in optics, the 

ray-direction—is parallel to the normal to the wavefront—often called the 

wave-normal direction. Moreover, unpolarised fight will not be changed in 

character by its passage through the medium, for it can be regarded as a suc¬ 

cession of linearly polarised pulses at random intervals with random vibration 

directions; apart from a reduction in velocity, each of these will move 

unmodified through the medium to constitute a transmitted unpolarised 

beam. These, then, are the elementary conditions of electromagnetic wave 

transmission in isotropic media and are the basis of ordinary isotropic optics; 

they depend on isotropic dielectric properties and we know that these occur 

only in cubic crystals. 

For all other crystalline matter dielectric (and magnetic) behaviour is aniso¬ 

tropic; although B remains parallel to H to a high degree of approximation 

for most transparent or non-ferromagnetic solids owing to their very small 

magnetic susceptibilities, there can be significant departures from parallelism 

of the electrical vectors D and E. For a particular point on a planar wavefront 
- 'y ■ ^ 

defined by B and D, the general relations between the vectors are shown in 

Fig. 11.5; although D and E are in a plane normal to B (and H), E is inclined to 

D out of the plane of the wavefront. As the wavefront advances, the ray direc¬ 

tion (along the flow of energy perpendicular to E and H) is different from the 

wave-normal direction; the vibration direction D of the fight is contained in 

the wavefront which moves forward in a crab-like manner through the medium. 

The refractive index is related to the velocity of advance of the wavefront, and 

this is determined by the dielectric constants relating D and E; in an aniso¬ 

tropic body the values of dielectric constants vary with the direction of D, so 

that the refractive index will depend on the vibration direction of the trans¬ 

mitted fight waves. A full solution of Maxwell’s equations under these condi¬ 

tions (see Appendix H, Nye) shows that propagation is restricted, in the sense 

that only two mutually perpendicular directions of the displacement D are 

possible for a general wave-normal direction; if fight is travelling along this 

direction, only two waves (of the type in Fig. 11.5) are permissible; each is 

linearly polarised but their vibration directions are mutually perpendicular. 

Naturally, the two waves travel with different speeds, i.e. they have refractive 

indices determined by the two permitted vibration directions; they will also 

have separate ray directions which are, in general, different from their com¬ 

mon wave-normal direction. In contrast to isotropic behaviour, unpolarised 
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light cannot be transmitted unchanged along such a direction but must be 
resolved into the two linearly polarised disturbances. 

This short account of electromagnetic wave propagation in an anisotropic 

dielectric medium outlines the complexities of crystalline optical properties; 

in practice, it is essential to describe optical behaviour by some kind of repre¬ 

sentation surface. The most convenient represents the variation of refractive 

index with vibration direction and is known as the optical (or Fletcher) 

Wave normal 

Fig. 11.5. Propagation of electromagnetic wave in an anisotropic body. 
(a) The relations between the electric and magnetic vectors, (b) Succes¬ 
sive positions in the advance of a planar wavefront. 

indicatrix. As might be expected, it corresponds closely to the related surface 

for dielectric properties; it has the same directions of principal axes but the 

lengths of the semi-axes are \/Kx, \/KY and s/Kz, i.e. they are determined by 

values of principal refractive indices. Like the second-order dielectric surface, 

the shape of the indicatrix may be a sphere, an ellipsoid of revolution, or a 

triaxial ellipsoid; in the relations between shape and orientation and crystal 

symmetry the principles set out in Table 11.1 are followed; but in its proper¬ 

ties and use the indicatrix is somewhat different from the normal second-order 

surfaces of this table. Its most important properties may be stated thus: 

(i) By its method of construction, a radius parallel to the vibration 
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direction of light waves in the crystal has a length which is the 

refractive index for these waves. 
(ii) The two permitted perpendicular vibration directions for wave propa¬ 

gation along a given direction are parallel to the principal axes of a 

central section of the indicatrix perpendicular to the wave-normal. 

A justification of these (and other) properties of the indicatrix can be found 

in the references cited in the bibliography, and they are the foundation of its 

practical utility in describing and predicting the common optical properties of 

crystals. Let us suppose that the shape and orientation of the indicatrix is 

known; for propagation in a general direction along a wave normal such as 

OP, we draw the central section of the figure perpendicular to OP (Fig. 11.6). 

P 

Fig. 11.6. The use of the optical indicatrix. The indicatrix is an ellipsoid 
whose principal semi-axes along OX, OY and OZ are the principal 
refractive indices nx, nY and nz. With a general wave normal OP, we con¬ 
sider the central shaded section of the ellipsoid perpendicular to OP; the 
semi-minor and semi-major axes of this section, OA and OB, indicate the 
permitted vibration directions and, by their magnitudes, the associated 
refractive indices for waves propagated along OP. 

In general, this will be elliptical and we can identify the semi-major and semi¬ 

minor axes of the ellipse, OA and OB. From (ii) above, these denote the per¬ 

mitted vibration directions for waves travelling along OP; from (i) the lengths 

of OA and OB represent the two refractive indices associated with such waves. 

Numerical computation of vibration directions and refractive indices is not 

too tedious, and constructions can be adapted to stereographic projection; 

often qualitative consideration of the indicatrix is sufficient to solve practical 

optical problems. The surface can also be used to predict the two different 

ray directions associated with waves travelling along OP which are respon¬ 

sible for the two images found in the well-known phenomenon of double 

refraction. 

Whatever the shape of an indicatrix, there are certain directions of OP for 
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which a central section is circular with no distinction between OA and OB. 

In such directions of propagation all possible vibration directions within the 

plane of the circular section are equally favourable and can be found in waves 

travelling along OP; in these directions the crystal behaves as if it is optically 

isotropic. In cubic crystals, any central section of the spherical indicatrix is 

circular, as is expected for completely isotropic behaviour. For trigonal, 

Fig. 11.7. Indicatrices for optically uniaxial crystals. Both figures are 
ellipsoids of revolution for which a central section containing the optic 
axis has been drawn (a) for an optically positive crystal with ne > n0 and 
(b) for an optically negative crystal with ne < n0. 

tetragonal and hexagonal crystals, the circular section of an ellipsoid of 

revolution is normal to the triad, tetrad or hexad axis; when light travels along 

these symmetry axes, the optical behaviour is isotropic. Directions of iso¬ 

tropy in an anisotropic body are known as optic axis directions, and crystals 

of these three systems are said to be optically uniaxial for they have only one 

optic axis; uniaxial crystals are further sub-divided by optic sign, positive or 

negative, depending on whether the principal refractive index along the axis of 

revolution (ne) is greater or less than the second principal refractive index 

(n0), which is the radius of the circular section (Fig. 11.7). Less symmetrical 
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crystals in the orthorhombic, monoclinic and triclinic systems have optical 

properties described by the general indicatrix, a triaxial ellipsoid. Such a sur¬ 

face has two circular sections symmetrically disposed about the direction of 

the greatest principal refractive index (ny); the normals to these sections lie in 

the plane containing the greatest (ny) and least (na) principal refractive indices 

Fig. 11.8. Indicatrices for optically biaxial crystals. Both figures are 
triaxial ellipsoids for which a central section containing the greatest (nv) 
and least (na) principal refractive indices has been drawn, i.e. a section per¬ 
pendicular to the third principal refractive index (ne). (a) For an optically 
positive crystal in which the acute bisectrix of the optic axes is ny (or 
(ny — ne) > (n,j — na) (approx.)), and (b) for an optically negative 
crystal in which the acute bisectrix of the optic axes is na (or (ny — 
K/») < («/j - »«) (approx.)). 

at an inclination which depends on the relative magnitudes of all three prin¬ 

cipal refractive indices ny, ne and na. Since they have two optic axis directions, 

crystals of these three systems are said to be optically biaxial; like uniaxial 

crystals, biaxial substances may be sub-divided by optic sign in terms of the 

inclination of the optic axes to the direction of ny (Fig. 11.8). 

Further developments concerning the propagation of light in uniaxial and 

biaxial crystals and the practical techniques for the determination of optical 
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constants (principal refractive indices, orientation of the indicatrix, optic sign, 

double refraction, optic axial angle, etc.) are fully described elsewhere. For 

our purpose, these preceding elementary remarks are sufficient description of 

optical properties for the discussion which follows of their general depen¬ 
dence on structural features. 

11.5. Optical properties and crystal structure 

It might be thought that it is possible to relate any property of a crystalline 

material to the structural arrangement of its individual atoms; but some pro¬ 

perties depend more on the imperfections which characterise a given crystal 

than its atomic structure (see Chapter 12); and even when this is not true, 

detailed quantitative calculations are difficult owing to the complexities of 

crystal structures. Optical data are more widely known than any other 

physical property of crystalline material for they are easier to obtain in prac¬ 

tice and are part of the routine investigation for many crystalline solids. Since 

they are effectively constant for a given structural arrangement and do not 

appear to be significantly changed by any imperfections which distinguish one 

crystal from the next, there has been some attempt to relate them both 

quantitatively and qualitatively to crystal structure; in this section there is a 

short account of the important features of this work. The optical properties 

with which we are concerned originate in the dielectric behaviour of the solid, 

and it is with this in mind that we can try to separate (i) those aspects of 

crystal structures which cause the general range of values of refractive indices 

shown by crystals, and (ii) those which are responsible for the isotropic and 

anisotropic behaviour implied by optical indicatrices. 

In the passage of light through matter the effect of the fields represented by 

the electric vector will be to displace centres of positive and negative charge 

for an atom so that it becomes polarised and behaves as an alternating dipole. 

The frequency of light waves is about 1014 cycles per second; at such fre¬ 

quencies the nucleus is too heavy to respond, so that polarisation depends on 

the distortion of the extranuclear electronic charge clouds. For a given atom 

the dipole moment induced by a particular field strength is measured by its 

polarisibility; this will depend on the charge cloud system both in its size and 

looseness of binding, and will vary from one atomic species to the next. For a 

particular atom, even though these extranuclear clouds may be affected by 

any binding forces linking it to neighbouring atoms, we can regard its polarisi¬ 

bility as constant (at least to a first approximation) over the range of fre¬ 

quencies in visible light; if atomic polarisibilities are known, the total 

polarisation (or electric moment per unit volume) produced by an electric 

field can be calculated from the numbers and kinds of atoms in unit volume; 

this enables us to deduce the dielectric constant (and hence the refractive 

index). Such a calculation can only be valid for gases in which atoms are 
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relatively distant from one another, for in the other states of aggregation we 

must expect neighbouring atomic dipoles to have mutual induction effects; 

values of refractive indices for gases are very different from those of liquids 

and solids. The effects of mutual induction in liquids and solids will depend 

on the arrangement of neighbours; with the random distribution of closely 

packed atoms of a liquid or amorphous solid, statistical electrostatic methods 

show that the polarisation of each atom is increased by mutual induction to 

give much larger refractive indices than those of gases. For a given atom, this 

treatment leads to the Lorentz-Lorenz equation 

n2 - 1 
n2 + 2 

|TraN’ 

which relates the refractive index n to cc, the atomic polarisibility and N', the 

number of atoms per cc; this can be adapted for polyatomic systems and has 

been used with some success in predicting the refractive indices of liquids. 

Electric field 

(a) 

Electric 

field 

(b) 

Fig. 11.9. Induction effects for a pair of isolated atoms. 

In crystalline matter, although atoms are in close proximity their spatial 

distribution is often far from random; we might reasonably expect ‘mean’ 

refractive indices comparable to those of liquids, etc., but the mutual induc¬ 

tion effects of particular spatial arrangements of near neighbours may act so 

as to decrease or increase the polarisation of an atom from any mean value 

that it would have in a random array. Such changes in polarisation affect di¬ 

electric constants, and in both magnitude and sign they depend on the orien¬ 

tation of the electric vector (or vibration direction) of the light wave; they are 

responsible for any variations about a mean refractive index for a particular 

atomic assemblage. We can demonstrate this by considering the two atoms of 

Fig. 11.9, which are close enough to have marked mutual induction but far 

enough from any other atoms to allow all other induction effects to be neglec¬ 

ted. In (a) the electric vector is parallel to the line joining the atoms; at a 

given instant the dipoles induced by the field can be as indicated, and the 
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moment of each will be increased by induction due to its neighbour. In (b) 

the electric vector is normal to the line of atomic centres; the dipoles due to 

the field at a given instant are again shown, and their moments will be re¬ 

duced by mutual induction. For (a) the effective dielectric constant (and 

refractive index) has been increased by mutual induction, whereas in (b) their 

values have been decreased. In most crystals we can therefore expect the re¬ 

fractive index to vary about a mean value in a manner which depends on the 

asymmetries of their atomic patterns; the departure of the refractive index 

from its mean value is determined by the vibration direction of the light 

waves, and it is, of course, this variation which is plotted by the optical 

indicatrix. In theory, this approach to crystalline optical properties permits de¬ 

tailed calculation of the indicatrix for a known structure; an average refrac¬ 

tive index can be computed rather as for liquids, and then the induction effects 

can be evaluated for different orientations of the light vector within the atomic 

configuration. In practice, this has been done with reasonable success in a few 

cases (e.g. see Chapter IV, Hartshorne and Stuart for a simple account of 

methods used by Bragg for CaC03); in complex structures induction effects 

due to more distant dipoles are difficult to compute accurately, and calcula¬ 

tions that have been attempted are not entirely satisfactory. 

Nevertheless, qualitative treatments on this basis can often provide an 

order of magnitude and sign for the maximum difference between principal 

refractive indices (or double refraction) to be expected for a particular crystal. 

In many structures there are complexes (molecules or ion groups) that 

dominate optical properties because of their greater polarisibilities; in the 

calculations on CaC03 mentioned above, Ca (and C) atoms make very little 

contribution to the average refractive index and even less to the optical aniso¬ 

tropy, so that the essential optics are controlled by the more numerous 

oxygens arranged in triangular planar groups (around the C atoms). If we 

restrict discussion to the extent of optical anisotropy as measured by the 

double refraction, this must depend primarily on the form of any highly 

polarisible atomic groups and their mutual arrangement in the structure; we 

can distinguish three different general shapes for these groups, roughly 

spherical, rod-shaped or plate-like. For a spherical group, there will be little 

or no anisotropy and so, whatever their mutual dispositions in any structure, 

the optical properties of the crystal will be isotropic or nearly so. Individual 

rod-like groups will behave similarly to the diatom of Fig. 11.9 and develop 

the greatest polarisation when the electric vector is parallel to the length; the 

optical properties of a crystal containing rod-like highly refracting groups, 

however, will be determined by the mutual orientations of the rods in the 

structure. If these are effectively random, the crystal must appear isotropic 

despite the anisotropy of separate groups; if there is preferred orientation, the 

anisotropy of individual groups will become apparent in the crystalline optics. 

When the rods are all parallel in the structure, the refractive index associated 
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with light vibrating parallel to this common direction will be very much grea¬ 

ter than for any other vibration direction, i.e. one principal refractive index is 

very much larger than the other(s) and the indicatrix has a shape associated 

with a high positive double refraction. When the rods are all parallel to a 

plane but not to each other, refractive indices for any vibration direction 

within this plane will be much the same but far larger than the value for light 

waves vibrating normal to the plane, i.e. one principal refractive index is very 

much less than the other(s) and the optical indicatrix is that for high negative 

double refraction. Plate-like refracting groups (as the O groupings in CaC03) 

can be considered in the same way. Individual groups are more highly 

polarised by fields within their planes than by fields across their planes; the 

optical properties of a crystal then depend on the mutual orientations of the 

planes of the plates in the structure. A summary of these qualitative con¬ 

clusions is given in Table 11.4; in a practical context the measured optical 

Table 11.4. Qualitative relationships between the optical properties of crystals and the 
shape and arrangement of highly refracting complexes in their structures 

Shape and arrangement Qualitative optical Structural inferences 
of groups properties of crystals from optical data 

Roughly spherical (e.g. S04, 
C104, PtCl6 groups) 

Rod-shaped (e.g. paraffins, 
COa molecules) 
(a) All parallel to one 

direction 

(b) All parallel to a plane 
but not to each other 
within the plane 

(c) Inclined in all direc¬ 
tions 

Plate-like (e.g. N03, C03 
groups, aromatic mole¬ 
cules) 
(a) Planes parallel to one 

another 

(b) Planes all parallel to 
one direction but not 
to each other 

(c) Inclined in all direc¬ 
tions 

Isotropic or weakly aniso¬ 
tropic; double refraction 
about 0 01 or less 

Strongly anisotropic; large 
positive double refrac¬ 
tion greater than about 
005 

Strongly anisotropic; large 
negative double refrac¬ 
tion greater than about 
005 

Isotropic or weakly aniso¬ 
tropic; double refraction 
about 0 01 or less 

Strongly anisotropic; large 
negative double refrac¬ 
tion greater than about 
005 

Strongly anisotropic; large 
positive double refrac¬ 
tion greater than about 
005 

Isotropic or weakly aniso¬ 
tropic ; double refrac¬ 
tion about 0 01 or less 

None possible 

Rods parallel to vibration 
direction of greatest re¬ 
fractive index 

Plane containing rods nor¬ 
mal to vibration direction 
of least refractive index 

Cannot be either of the ar¬ 
rangements of (a) or (b) 

Planes of plates normal to 
vibration direction of least 
refractive index 

Plates all parallel to vibra¬ 
tion direction of greatest 
refractive index 

Cannot be either of the ar¬ 
rangements of (a) or (b). 
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properties for a crystal of unknown structure can infer the mutual arrange¬ 

ments of any highly refracting groups known to be present; these are given in 
the last column. 

11.6. Symmetry determination by physical properties 

A key point in the study of the crystallography of any material is its assign¬ 

ment to one of the 32 crystal classes; once this is done, its ultimate classifica¬ 

tion by the methods of Chapter 8.5 into one of the 230 space groups is usually 

possible. As we saw in Chapter 6, the determination of point group symmetry 

from crystal morphology is unambiguous only when certain diagnostic forms 

are present; if they are not, the material may belong to any one of several 

classes within a system. But often we have to work with specimens without 

well-developed crystalline faces, so that symmetry must be found by physical 

examination. This can start with the X-ray methods described in the past few 

chapters; but in the majority of cases, these can only establish membership 

of one of the Laue symmetry groups of Table 9.1, which embrace two or three 

possible crystal classes. To separate the classes within a Laue group, we must 

use other physical tests for symmetry and those most commonly employed are 

described in this section. Earlier in this chapter we saw how physical properties 

vary in their relationship to symmetry with their order. Some properties, like 

those of the second-order described in Chapter 11.2 and the optical properties 

of Chapter 11.4, are not suitable for point group determination, for the sub¬ 

divisions that they establish are far too large; their value in this work is in¬ 

direct as when, for example, optical examination recognises important 

directions (such as an optic axis) in the specimen along which X-ray and the 

other symmetry tests can be carried out. But some other properties are more 

informative in their symmetry relations. 

Since less symmetrical classes within a Laue group are not differentiated by 

X-ray methods due to the addition of a centre of symmetry in the diffraction 

pattern, tests for this element are particularly valuable; the most common 

involve the properties of pyroelectricity and piezoelectricity. Pyroelectricity is 

the development of an electrical dipole due to a distortion of the charge-cloud 

systems of the atoms when the crystal is heated (or cooled); in terms of Chap¬ 

ter 11.3, it is a first-order property in which a vector (the dipole moment) is 

related to a scalar (the temperature change). It should occur only in those 

classes in which there is a unique direction along which the separation of 

charge can take place; these are the ten polar classes described in Chapter 4.4. 

Piezoelectricity is the term used to describe either the development of an 

electric dipole on the crystal by an applied stress (the direct effect) or the 

development of a strain within a crystal subjected to an electric field (the 

indirect effect); in either case, it must be regarded as a third-order property 

which relates a vector to a second-order tensor and its relationship to symmetry 
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should be different from that of the first-order property pyroelectricity. 

Analysis of the direct effect shows that it can occur in all twenty-one acentric 

classes except 432 when tensile or shear stresses are applied. Now these 

twenty classes include the ten polar classes in which pyroelectricity is possible, 

and this can cause difficulties in the interpretation of simple experiments. The 

temperature change of a pyroelectric experiment can cause strains due to 

anisotropic expansion within a crystal; these in turn lead to dipole formation 

by the direct piezoelectric effect; thus a piezoelectric class in which there is no 

unique direction can show a separation of charges due to this coupling of 

pyroelectric conditions and piezoelectric phenomena. A fuller discussion of 

the relationships between the two effects is given in Chapter X of Nye, and 

practical details of pyroelectric and piezoelectric tests are described in Chap¬ 

ters 6 and 7 of Experimental crystal physics by Wooster and Breton. For our 

part, we must recognise that, in the absence of any special precautions to 

distinguish true and false pyroelectricity, the only safe conclusion to be drawn 

from the formation of an electric dipole when a crystal is stressed or heated 

is that it belongs to one of the acentric classes (other than 432). We must 

emphasise that not only must the crystal have the requisite symmetry but, 

more importantly, its atomic structure must have certain other features 

necessary for these properties; so that a positive test eliminates centric 

classes but a negative test is without any significance. For example, in 

Laue group mmm the development of a dipole is not compatible with point 

group symmetry mmm; but the absence of piezoelectricity or pyroelectricity 

must be interpreted to allow the crystal to belong to any of the three classes 

mmm, mm2 and 222 within this Laue group. 

From this example we see that tests for other elements are often required 

even when electrical dipoles are found under stress or on heating. One of these 

relates to optical activity, which in its simplest form may be described as a 

rotation of the vibration direction of linearly polarised light as it advances 

along an isotropic direction in the crystal (such behaviour is also observed in 

certain solutions, where it has a different but related origin). Although optical 

activity can be thought of as a second-order property, its nature is rather 

unusual and its relationship to symmetry is unlike that of the ordinary 

second-order and optical properties that we discussed earlier. A detailed 

analysis shows that it is possible in all acentric classes except 4mm, 43m, 3m, 

6, 6mm and 6m2.* As with other properties, optical activity depends on the 

existence of certain kinds of structural configurations which may or may not 

* It has often been said that optical activity is associated with enantiomorphism; but this 
is not strictly true, for it can occur in the non-enantiomorphic classes m, mm2, 4 and 
42m. In these classes there are experimental difficulties in detecting optical activity and 
examples are rare, so that it is only recently that its existence has been demonstrated for 
the uniaxial classes; from this it is probable that a practical association between optical 
activity and enantiomorphic classes has grown up. 
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be present in crystals belonging to one of the fifteen possible point groups; a 

positive test allocates the crystal to one of these classes, but a negative test is 

without significance. The elementary form of optical activity is an aspect of 

wider problems in the propagation in crystals of light with general polarisa¬ 

tions; accounts of the theory of optical activity and its relationship to sym¬ 

metry will be found in the books by Nye and Shubnikov, whilst practical 

aspects of observation are described elsewhere in the bibliography. 

There are a few further physical symmetry tests, which are so complicated 

or so restricted in use that their inclusion in an introductory text cannot be 

justified; but there is one other procedure (of rather different character) which 

has been sufficiently regularly used for it to be mentioned briefly. It is restricted 

to those crystals which have well developed faces or which can be cut parallel 

to known planes, and it involves a controlled solution of the specimen by a 

suitable solvent. This solvent must not attack the crystal too violently to pro¬ 

duce rounded-off shapes; the rate of solution should be slow and controllable 

to leave the specimen faces flat but with pitted regions. Etch pits so formed are 

polygonal with a shape and orientation determined by the differential rates 

of solution in different directions; they might reasonably be expected to be 

related to the underlying structure in such a way that they reflect the sym¬ 

metry of its arrangement. In fact, the symmetry of etch figures can be regarded 

as a projection of the point group elements on to the plane of the face on which 

the pits are produced. However, in their interpretation we must accept that 

under a given set of experimental circumstances solution might take place at 

the same rate in two or more directions unrelated by symmetry; significant 

conclusions can only be related to any lack of symmetry shown by the 

figures. 

The study of etch pits is well suited to crystals whose shapes are composed of 

forms which may be characteristic of several different classes; we will illus¬ 

trate this by a short example. Let us suppose that our specimen always 

crystallises as a cube, a special form in all five classes of the cubic system; 

X-ray examination indicates the Laue group m3m, which contains the pos¬ 

sible classes m3m, 43m and 432, but other physical tests are negative. If we 

find a suitable solvent, we can attempt to establish the crystal class by exam¬ 

ining the shape and orientation of etch pits formed on the {100} cube faces; 

possible etch figures are shown diagrammatically in Fig. 11.10. The outline of 

the pits is either rectangular or square; rectangular shapes cannot be con¬ 

sistent with the operation of a rotation tetrad normal to the face but can occur 

with inversion tetrad (or diad) symmetry. When rectangular pits are formed 

as in (b) we may conclude that the crystal belongs to class 43m; notice, too, 

that the pits are oriented on the face so that their symmetry lines are consis¬ 

tent with the diagonal symmetry planes that occur in this class. The observa¬ 

tion of square pits as in (a) or (c) is not conclusive evidence that the crystals 

must belong to one of the other two classes. Such shapes might be developed 
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in 43m by the particular conditions of solution; the repeated formation of 

square pits with other reagents might be interpreted as reinforcing the elim¬ 

ination of 43m, but they do not provide incontrovertible proof. Similar con¬ 

siderations apply to the orientation of pits; in 432 they should be in a general 

(0 

Fig. 11.10. Etch pits on the faces of a cube with Laue symmetry mlm. 

orientation as in (a), but in m3m we would expect their symmetry lines to be 

contained in the symmetry planes of a crystal belonging to this class as in (c). 

However, the only firm conclusion from the pits of (c) is that the maximum 

symmetry is m3m; they might be developed in the less symmetrical cubic 

classes by particular solution effects. In some cases we can also make use of a 
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lack of orientation between pits on two adjacent faces related by different 

symmetries in the different classes; but the limitations of etch pits in symmetry 

determination are clear from our example. 

Problems of symmetry determination can be resolved in many cases by 

physical tests, but we must recognise that the best that can be done with some 

specimens is to establish a limited choice of related alternative point groups 

(and space groups). Ultimately their space group (and point group) symmetry 

could be found by a determination of crystal structure; structures based on 

the alternative space groups are considered to find that which gives the best 

agreement between the observed and calculated intensities of X-ray reflections. 

As may be imagined, this is a complicated and tedious process so that it 

would be undertaken only with the objective of determining the atomic 

structure; the resolution of point and space group symmetry would be inci¬ 

dental to the main purpose. 

11.7. Exercises and problems 

1. The principal coefficients of thermal conductivity of a certain tetragonal 

crystal are: kx = kY = 100 x 10-4, kz = 400 x 10-4 cal. cm-1 sec.-1 

°C-1. 

(i) On a suitable scale, draw a section of the conductivity surface parallel 

to the YZ plane. 

(ii) Use this drawing to find the coefficient of thermal conductivity for the 

direction cosines (0, vT/2, %). 

(iii) Determine the components of heat flow parallel to the principal axes 

when a temperature gradient of 100°Ccm-1 is established along the 

direction in (ii). 

(iv) Use these to find the magnitude and direction of the resultant heat 

flow. Compare this direction with the normal to the surface at the extre¬ 

mity of the radius in (ii). Check the value of the coefficient found in (ii) by 

determining the heat flow produced by this temperature gradient in the 

direction (0, \Z3/2, £). 

2. A trigonal crystal (c/a = T50) has principal coefficients of thermal con¬ 

ductivity kx = 4-0, kz = 12-0 (x 10-6 cal. cm-1 sec-1 °C-1); it has a 

good (10T1} rhombohedral cleavage. One face of a cleavage rhombo- 

hedron is coated with a low melting point wax, and a point source of heat 

applied. What is the shape of the melted wax a short time later ? 

3. The principal coefficients of thermal expansion of silver iodide (hexagonal) 

are: ax — 0-65, az = —3-97 (x 10-6 0C-]). 

(i) Calculate coefficients of thermal expansion in directions inclined at 

angles 0°, 10°, 20°,..., 80°, 90° to the hexad axis, and use these to draw a 

principal section of the representation surface for a plane containing the 

hexad axis. 
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(ii) Determine the angle between the hexad axis and the direction of invari¬ 

ant length; notice the significance of this direction in the section of the 

representation surface. 

4. (i) Rutile (a form of Ti02) belongs to class 4/mmm with cell dimensions 

c = 2-96, a = 4-59 (in A) and has principal refractive indices n0 = 2-61, 

ne = 2-90. Determine the permitted vibration directions and associated 

refractive indices for light travelling normal to the face (011). 

(ii) A crystal of class mmm with cell dimensions a = 8-878, b = 5-450, 

c = 7-150 (in A) has good {001} and {201} cleavages; its optic properties 

are described as na — 1-637, ne = 1-639, ny = 1-649, a = z, — y, y = x. 

Determine the permitted vibration directions and associated refractive 

indices for normal incidence for the two kinds of cleavage flake. 

(iii) The following crystallographic and optical data are given for a sub¬ 

stance : 
Class 2/m, a:b:c = 1-4:1:3-2, /3 = 150°; ny = 1-60, ne — 1-59, na = 

1-56; y — ft, zy = 25° in the acute xz angle, with 2Vy — 120°; good {110} 

cleavages. Draw sketches of (100) and (010) faces showing the trace of the 

cleavages; on each indicate the permitted vibration directions and asso¬ 

ciated refractive indices for normal incidence. 

5. What conclusions can be drawn about the orientations of refractive com¬ 

plexes from the following data: 

(i) Planar groups; Laue symmetry mmm; na = 1-531, nB = 1-682, ny = 

1-686, a = z, = x, y = y. 

(ii) Planar molecules; Laue symmetry 2/m; na = 1-561, ne = 1-590, ny = 
1-594, j8 = y, a = z (approx.). 

(iii) Linear molecules; Laue symmetry 6/mmm; n0 = 3-00, ne = 4-04. 

6. (i) A crystal has Laue symmetry 3m. What conclusions about its possible 

crystal classes can you draw if (a) it exhibits piezoelectricity, (b) it also 
shows optical activity. 

(ii) A crystal has Laue symmetry 4/mmm. The following data on classes of 
X-ray reflections were obtained: 

0kl reflections present only if k + l = In 

hhl „ „ „ „ l = In 

It is found that it displays piezoelectricity. What is the space group ? 

(iii) Crystals of a certain cubic material only exhibit the octahedral form 

{111}. A Laue photograph with X-rays normal to one of the faces of the 

octahedron shows the symmetry 3m. It does not exhibit pyroelectricity, 

piezoelectricity, or optical activity. Etch pits formed by a suitable reagent 

on the faces are triangular in shape, but in a general orientation with 

respect to the edges of the octahedral faces. What is the probable crystal 

class? If subsequent X-ray examination revealed that the only systematic 
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absences occurred in hOO when h = 2n + 1, OkO when k = 2n + 1 and 00/ 

when / = 2n + 1, how would this confirm your deductions? 
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12 
IMPERFECTIONS IN REAL 

CRYSTALS 

12.1. The nature of imperfections 

In most of the discussion in earlier chapters we have assumed a perfection of 

atomic structure consequent upon the precepts of classical crystallography. 

Any crystal, whether of macroscopic or sub-microscopic dimensions, is con¬ 

sidered to be composed of a strictly ordered and regular arrangement of con¬ 

stituent atoms in a repetitive three-dimensional continuum; identical atoms 

are situated in the same structural sites in every one of the equivalent cells 

that are stacked together to form the crystal. To be realistic, we must recog¬ 

nise that the locations of these structural sites represent only mean positions 

for the atoms. At any finite temperature an atom has a thermal motion whose 

amplitude and direction depend on its electronic configuration and the restor¬ 

ing forces determined by its binding into the general structural arrangement. 

Sometimes these restoring forces can be overwhelmed by thermal energies in 

localised volumes so as to bring about a continuous free rotation of some atom 

groups (such as molecular or ionic complexes) without total disintegration of 

the overall structural pattern; for example, at temperatures slightly below 

their melting points some paraffins go into free rotation about the lengths of 

molecules; but neither this nor any other effect of thermal atomic vibrations 

conflict seriously with the concepts of classical perfection. Nor indeed do 

most of the modern generalised theories of binding which suggest that similar 

atoms behave quite differently in close proximity and in relative isolation; in 

solids charge cloud distributions are modified by the presence of neighbouring 

atoms, even to the extent that some valency electrons cannot be regarded as 

attached to particular atoms, but these changes are not out of harmony with 

a strict structural regularity in crystalline materials. Again on a realistic view, 

we must expect some departure from ideal uniformity near the surface of a 

crystal, due to the asymmetry of the binding forces acting upon atoms, but 

the effects will be restricted to surface layers, except for crystals of very small 

dimensions, and the main body of the crystal remains perfect. 
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In fact, real crystals cannot have such perfection of atomic arrangement, 

and in the past fifty years it has become increasingly clear that for some pro¬ 

perties structural imperfections can be just as important as the overall atomic 

pattern; it is these defects which give a degree of individuality to crystals with 

the same structure and constitution. We have already described in Chapter 8.4 

how the observed intensities of X-ray reflections are profoundly affected by 

the textural perfection of a specimen, and there are many other important 

properties* (such as mechanical deformation, strength, ionic and electronic 

conductivity, diffusion, etc.) which depend critically on the micro-textures 

formed by the imperfections within a specimen. In much of the earlier work 

the presence of many different kinds of defect was inferred in order to account 

for particular crystalline properties, but recent technical improvements in the 

resolution of electron microscopes, etc. have confirmed many of the imperfec¬ 

tions by more direct methods. We shall not explore the origins of properties 

except in so far as this is necessary to introduce a description of those defects 

commonly found in any real crystal; no description of crystalline matter 

would be complete without some account of these. They are usually classified 

according to the geometrical nature of the lattice imperfection, e.g. a point 

(or zero dimensional) imperfection has a centre of disruption at a point in the 

structure; line (or one-dimensional) imperfections cause disruptions along a 

line, surface (or two-dimensional) imperfections along a surface, and so on. 

12.2. Point imperfections 

Some types of point defect are essential to any understanding of the chemical 

constitution of much of crystalline matter. In compounds an exact identity in 

every unit cell is possible only within the restriction of stoichiometric combina¬ 

tion in which elements of the appropriate valencies are present in fixed 

proportions according to the chemical formulae; but in many crystalline 

compounds, particularly in the inorganic and metallic fields, the chemical 

combination is non-stoichiometric. This is often due to some kind of solid 

solution in which a parent structure is able to take in foreign atoms (or ions) 

without its structural pattern being significantly changed; in one simple form, 

this was studied by early crystallographers in ‘mixed’ crystals grown from 

solutions containing a mixture of pure end members, e.g. the hydrated mixed 

sulphates known as the alums, still much used in elementary demonstrations 

of crystal growth. Non-stoichiometric mixed crystals are no different in 

general character from those of pure end members with stoichiometric com¬ 

bination; indeed, the concepts of classical crystallography were often based 

on many observations and measurements on crystals of naturally occurring 

minerals, which usually contain variable amounts of impurity elements. If the 

* These properties are sometimes referred to as ‘structure-sensitive’, a term which has 
unsatisfactory connotations; the use of ‘texture-sensitive’ might be preferable. 



282 THE CRYSTALLINE STATE 

overwhelming evidence that stoichiometric combination (and chemical for¬ 
mulae) are of no fundamental importance in the chemical constitution of 
crystalline matter is accepted, we must replace our present abstraction of 
ideal perfection by some more realistic conception of atomic structure. In 
effect, the structure must be regarded as a three-dimensional pattern of sites 
available for occupation by the atoms of the crystal; subject to the rules of 
crystal chemistry for the occupation of particular kinds of site, we may find 
chemically different atoms in crystallographically equivalent sites in different 
parts of the structural continuum, and, sometimes, some sites may be unoc¬ 
cupied. It is the distinctive pattern of sites which distinguishes one structure 
from another and determines its basic crystallographic properties; to this 
extent the particular atoms which occupy individual sites are secondary in 
their influence on any averaged properties by which a given structural pattern 
can be recognised. In these terms point defects are natural and quite permis¬ 
sible in the detailed atomic arrangement in any real crystal. 

Impurity atoms which define some of the point defects can be accom¬ 
modated in two different ways in the structural pattern. In substitutional solid 
solution they replace atoms of an ideal perfect structure on certain kinds of 
site; the particular foreign atoms which are acceptable on given sites and the 
range of solid solutions brought about by their substitution are dependent on 
a wide variety of factors, including the relative sizes and chemical natures of 
solute and solvent atoms, the binding forces which are operative, the physico¬ 
chemical conditions of formation, etc. In the simple Cu-Ni alloy system 
(mentioned in Chapter 10.4) there is a complete range of substitutional solid 
solution, as there is at high temperatures for mixed crystals in which Ba2 + ions 
replace Sr2+ ions on the divalent cation sites of the strontium carbonate 
structure; but in another alloy, formed from Ag and Cd, the amount of Cd 
atoms that can be taken into solid solution by Ag is limited and varies with 
the temperature, and other carbonates have very restricted solid solution even 
at high temperatures. Certain kinds of impurity atoms can also be taken into 
solution if they are small enough to fit into cavities between atoms of the 
parent structure without causing too much distortion; this leads to interstitial 
solid solution in which the foreign atoms are in positions that are not sites of 
the original structural pattern. Interstitial solid solutions are particularly 
important in metallic systems where small atoms, like H, B, C and N, 
introduced to fill to a greater or lesser extent the interstices of a parent 
metal framework can cause marked changes in properties; the technology 
of steels is vitally concerned with the behaviour of C atoms in various 
metallic structures at different temperatures. Solid solution ranges can 
also be due to the absence of atoms from some available sites. For ex¬ 
ample, analyses of the mineral pyrrhotite (FeS) have an irregular sulphur 
content which is always greater than the stoichiometric 50at.%; this ori¬ 
ginates in lattice vacancies on structural sites which should be occupied by Fe 
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atoms. But lattice vacancies are possible even in strict stoichiometric com¬ 

binations, and they are essential to modern explanations of the colour, 

luminescence, etc. of many ionic solids. Various kinds of defects have been 

postulated; the simplest are the Frenkel and Schottky imperfections. In the 

former the lattice vacancy is created when a small cation leaves its structural 

site but is retained in an interstitial position in the structure, whilst in the 

latter a vacant cation site is accompanied by a vacancy on a neighbouring 

anion site; in most structures, simple Frenkel defects (cation vacancy and 

intersitial cation) are less probable than simple Schottky defects (cation and 

anion vacancies) due to the lack of sufficient empty space to accommodate 

a displaced cation. However, both kinds of defect are present in ionic crystals 

at normal temperatures, either as simple or complex clusters of vacancies 

(sometimes with captured electrons which form colour centres). 

Other kinds of point defect cause changes in the electronic configurations 

of particular atoms, as, for example, when excited states are produced by 

bombardment of the crystal by radiation of a suitable frequency. We must 

expect all real crystals of elements or compounds of stoichiometric or non- 

stoichiometric proportions to contain point imperfections of some kind; their 

distribution is statistical, and their presence must exclude the strict identity of 

all unit cells.* Their effect on the continuity of a structural pattern will be to 

cause localised regions of distortion, rather as knots in a piece of wood distort, 

but do not interrupt, the flow of the grain. Lattice and symmetry operators 

are only strictly valid in a statistical sense over the crystal as a whole; since we 

observe the behaviour of many hundreds of thousands of unit cells in most 

experimental techniques, we shall only detect the averaged effects of individual 

structural irregularities, e.g. in substitutional solid solution in the Cu-Ni 

system we shall see a gradual decrease in the averaged cell edge as the larger 

Cu atoms are randomly replaced by increasing numbers of smaller Ni atoms. 

12.3. Line imperfections 

A realisation that real crystals must contain line (as well as point) imperfec¬ 

tions grew from explanations advanced for the mechanism of slip, one of the 

important processes in the plastic deformation of crystals. It had long been 

known that when a crystal is permanently deformed by an applied stress, 

plastic flow takes place by the movement of lamellae of the crystal relative to 

each other; this movement occurs on particular parallel planes spaced at 

* For some compounds and some defects, the random distribution can sometimes be in¬ 
duced to become more regular. At certain compositions for some mixed crystals, for 
example, a change in the physical conditions of formation can lead to a regular (ordered) 
occupation of certain structural sites by the foreign atoms as opposed to the random 
(disordered) occupation of solid solution; this is the basis of the widespread order-dis¬ 
order phenomenon. Regular distributions of interstitial atoms and lattice vacancies can 
also occur. 



THE CRYSTALLINE STATE 284 

relatively narrow intervals by the translation of whole blocks of structure be¬ 

tween the active planes. Early studies of crystalline deformation showed that 

displacements always take place on crystallographic planes (known as slip or 

glide planes) along a lattice direction within the plane (known as a slip or glide 

direction); the particular slip system that is operative is related to the crystal 

and its structure and the method of deformation, and the effect of structural 

movements during deformation are often visible as slip lines formed by the 

intersection of slip planes with the surface of the crystal (Fig. 12.1). At first 

Fig. 12.1. Plastic deformation by slip, (a) The displacement of blocks of 
a crystal by movements on active slip planes in a glide direction indicated 
by the arrows, (b) Slip lines appearing on the surface of a single crystal 
wire of a metal during extension. 

sight, the atomic mechanism of a process in which blocks of structure glide 

over one another on well-defined slip planes in certain slip directions presents 

no real difficulties; most slip systems describe atomic movements which are 

reasonable from the viewpoint of the structure within which they take place, 

and the shearing effect of these movements, like that of a pack of playing 

cards, can generate the macroscopic slip lines. Unfortunately, however, this 

simple picture encounters difficulties when any attempt is made to calculate 

the stresses necessary for the onset of slip; if perfect blocks of structure are 

required to move bodily over one another, the initiation of movement re¬ 

quires stresses that are 103-104 greater than those actually measured, i.e. the 

observed plastic yield point of most materials is far smaller than it ought to 

be on this basis. 

The dilemma of an acceptable slip mechanism involves retaining those 

features of simple block movement that account for the observed geometry 

while resolving the discrepancy between the observed and theoretical yield 

points. It was recognised that theoretical yield points would be reduced if the 
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atomic forces acting across the slip plane could be overcome one at a time 

rather than simultaneously over the whole area, i.e. the movements involved 

in the slip process should spread consecutively across the slip plane. Even¬ 

tually a mechanism was postulated in which slip is caused by the movement 

through the structure of line defects, known as dislocations', this is illustrated 

schematically in Fig. 12.2, which shows the passage of one kind of dislocation 

through a crystal; the diagrams depict a small section of a plane of atoms 

(b) 

(0 (b) 

Fig. 12.2. Passage of a dislocation through a block of crystal, (a) The 
perfect block, (b) The block containing the dislocation centred at _L. 
(c) The block containing the dislocation centred at J_. (d) The block after 
the passage of the dislocation. 

normal to the line of disruption, the dislocation line. In (b), the imperfection 

has moved from the left into the perfect region shown in (a); its centre is 

marked, and around this line there is compression of the atoms in the upper 

half of the crystal and tension in the lower half, i.e. across the slip plane on 

which the imperfection is moving there are (n + 1) atoms in the upper half 

opposite n atoms in the lower half. In (c) the dislocation line has moved far¬ 

ther to the right (notice the small atomic adjustments required by this move¬ 

ment), whilst in (d) the imperfection has passed out of this section of the 

crystal; the visible effect of its passage is in the shearing of one half of the 

crystal over the other, as in slip. The mobility of this type of imperfection 
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must be quite high, for there are only small atomic adjustments between (c) 

and (d), and restoring forces acting across the glide plane close to the disloca¬ 

tion line are almost exactly balanced; it can be set in motion by relatively 

small applied stresses. Provided that crystals contain line imperfections of this 

kind, the motion of dislocations allows a slip mechanism that is compatible 

both with the observed geometry and the measured plastic yield points. 

Extra half plane 
of atoms 

Fig. 12.3. An edge dislocation. Fig. 12.2 (c) is a section of this block 
normal to the dislocation line. 

Initially this hypothesis was slow to be accepted, but gradually the favour¬ 

able evidence became overwhelming, and it is now recognised that many 

important crystalline properties are closely related to the presence of line 

imperfections; the field of dislocation studies has developed into one of the 

most active branches of solid-state work. In this advance it has become clear 

that the particular dislocation shown in Fig. 12.2 is really a special case of a 

more generalised form of line imperfection. Fig. 12.3 shows a three-dimen¬ 

sional representation of the imperfection in Fig. 12.2(c), and from this we see 

that the line of the dislocation is at the terminating edge of an extra half plane 

of atoms in the upper portion of the crystal;* for this reason this imperfection 

* This extra half plane could be in the lower portion of the crystal, when its movement 
to the left under an applied stress would produce exactly the same slip as in Fig. 12.2(d); 
for convenience, these two imperfections are described as positive (as in Fig. 12.2) and 
negative. 
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is usually known as an edge dislocation. Its geometry (and that of other dislo¬ 

cations) is best described in terms of the Burgers vector which defines both 

the magnitude and direction of atomic displacements. If we make an atom- 

to-atom circuit around the dislocation line, it is incomplete in the sense that a 

corresponding circuit in a perfect crystal returns to the initial atom; the cir¬ 

cuit marked in Fig. 12.2(b) is incomplete when compared with the equivalent 

circuit in Fig. 12.2(a). The Burgers vector b is required to close the circuit in 

the crystal containing the imperfection, i.e. in Fig. 12.2(b) it has a length of 

one atomic spacing in a direction perpendicular to the dislocation line. A 

Fig. 12.4. A screw dislocation. The Burgers vector b is now parallel to 
the dislocation line. 

Burgers vector must always have a magnitude which is a multiple of the atomic 

spacing so as to ensure continuity across slip planes, but its inclination relative 

to the dislocation line can be varied; it is this inclination that distinguishes 

various line imperfections. An edge dislocation always has a Burgers vector 

normal to the dislocation line, but Fig. 12.4 shows an imperfection in which b, 

still with a magnitude of one atomic spacing, is taken parallel to the disloca¬ 

tion line. We see that successive traverses around the dislocation line provide 

a continuous descent through the crystal, which can be regarded as a single 

spiral ramp of atoms extending through the whole volume; for this reason 

such an imperfection is known as a screw dislocation.* When a screw 

* Again it is convenient to describe screw dislocations of different signs according to the 
sense of the Burgers vector along the dislocation line. 
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dislocation is set in motion by an applied stress, its passage through a crystal can 

also produce the visible displacements of slip. In fact, the line of any dislocation 

may be conveniently considered as the boundary between slipped and un¬ 

slipped regions of the structure; in any real crystal these lines of imperfection 

must wander through the structure to intersect the surface or form closed 

loops; their movements under applied stresses are responsible for the slip 

process. A closed dislocation loop is of particular interest, for it illustrates 

the relationship between the edge and screw dislocations that we have 

described, and establishes the existence of mixed (or hybrid) dislocations 

which must have edge and screw components. Fig. 12.5(a) shows schemati¬ 

cally a closed dislocation loop on a slip plane around the boundary between a 

central portion of the crystal which has slipped and an outer portion which 

has not; Fig. 12.5(b) depicts a simple arrangement of atoms in part of this 

region. At all points around the loop, the magnitude and direction of atomic 

displacements denoted by the Burgers vector are the same, but their inclina¬ 

tions relative to the line of the imperfection are variable. At A, we may 

describe the imperfection as a pure edge dislocation (also at A', though with 

opposite sign); at B there is a pure screw dislocation geometry (also at B' 

though again with opposite sign); but at all other positions the Burgers vector 

is at some general inclination to the dislocation line to give an imperfection of 

mixed character with edge and screw components. 

The original slip hypothesis asserted that some dislocations must be pre¬ 

sent in any real crystal; later experimental work showed that even those cry¬ 

stals which appear to be highly perfect still have dislocation densities of 103- 

106 lines intersecting a square centimetre of a random section. Naturally, the 

micro-texture of individual crystals depends on their conditions of formation, 

but further imperfections may be generated by subsequent treatments. The 

increasing stress essential for successive deformations of the same crystal is 

interpreted as due to an increasing density of dislocations which causes 

mutual hindrance to easy movement and an increase in the stress necessary to 

initiate motion; an increase in density requires some sources of dislocations 

within the crystal, and these must become active during mechanical deforma¬ 

tion. Certain combinations of dislocations produce atomic distortions which 

are less mobile than the simple systems we have described; some of these 

anchored systems can generate further imperfections under applied stresses so 

that densities can be as high as 1012 dislocation lines per square centimetre in 

heavily worked materials. The motion of dislocations can be more complex 

than the simple movements that we have discussed, and their role in mechani¬ 

cal behaviour and other properties is so complex that it has developed a 

language of its own; dislocations may dissociate into partials, can climb or 

cross-slip to different slip planes, can contain jogs, and so on. We cannot here 

examine the enormous volume of work over the past few decades which has 

been devoted to interpreting various crystalline properties of technically 



IMPERFECTIONS IN REAL CRYSTALS 289 

important materials in terms of dislocation systems and their interactions; 

further reading on this aspect of crystallographic studies will be found in the 
bibliography. 

Unslipped 

Unslipped 

(a) 

(b) 

Fig. 12.5. A closed dislocation loop, (a) The line of the dislocation marks 
the boundary betwepn a central region all parts of which have slipped 
with the same Burgers vector and an outer region which has not slipped. 
(b) Representation of an atomic arrangement across a segment of the 
loop. 

12.4. Other imperfections 

Individual point and line imperfections cannot account for inhomogeneities 

in any crystalline solid in which ideal structural perfection is disrupted over 

continuous surfaces; though, as we shall see shortly, atomic distortions in 
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these boundary regions can be interpreted in terms of arrays of defects of 

simpler geometry in some cases. Surface imperfections have the effect of 

separating blocks of structure within the solid; their existence is implicit in 

the occurrence of polycrystalline solids whether their crystallites are in ran¬ 

dom array or have some sort of preferred orientation, and also in the majority 

of monocrystalline solids which behave as if they were constructed of a mosaic 

of slightly misorientated blocks (as in Chapter 8.4). Boundary regions have 

different characters; they can be non-structural, as in ferromagnetics where 

domain walls separate regions of different magnetisation, but we will consider 

only those which relate structural changes across the surface. In general we 

can divide such boundaries according to the misorientation of the blocks of 

structure that they separate; the greater any misorientation between the 

blocks, the more easily they are distinguished due to the more severe atomic 

distortions within the boundary regions. 

Some surface imperfections, however, separate regions in which there are 

no orientational differences. In a sense the process of slip produces such a 

boundary, but there is another rather more distinctive surface imperfection 

for which orientational registry is maintained. The atomic structures of many 

materials can be built up by stacking layers according to a particular repetitive 

sequence; thus in many simple cubic metals the perfect crystal structure can 

be described as a stacking sequence ABCABCABCA... in which identical 

layers of atoms are stacked with particular lateral displacements according to 

the letters of this repetitive pattern. In some crystals, due to an accident in the 

growth process or dislocation movements, the sequence might become 

ABCABABCABC... so that a particular layer (the sixth in this example) is 

out of step with the ideal repetitive pattern (it is in the A position rather than 

the C position); subsequent layers continue in the normal sequence. This 

produces a thin boundary region with an incorrect alternative stacking pat¬ 

tern separating perfect regions in parallel orientation with the correct stack¬ 

ing pattern; this type of surface defect is known as a stacking fault. 

In boundaries which mark orientational changes between relatively perfect 

structural regions we can separate those which lead to constant angular dif¬ 

ferences (large or small) determined by the particular nature of the atomic 

structure from those which give rise to the variable orientational changes 

found in the different textures of individual crystalline solids. Most important 

in the former category are boundaries between the sub-components of twin¬ 

ned crystals (described in Appendix D); these are regions of structure which 

are consistent (at least as far as neighbouring atoms are concerned) with the 

atomic arrangements in both adjacent sub-components of the twin, so that, 

whatever the angular change, there is a high degree of structural coherence 

across the boundary. In textural boundaries the continuity of structure be¬ 

tween adjacent blocks depends on the extent of their misorientation; with 

large misorientation, as in a polycrystalline aggregate, the boundary regions, 
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although only a few cells thick, must be highly distorted with little or no 

coherency with the structures of the regions on either side of them; with 

small misorientation (up to a few degrees), the atomic arrangement in the 

boundary is to some extent coherent with that of the adjacent crystalline 

blocks. Low angle boundaries are often formed by local concentrations of dis¬ 

locations to relieve the strain energy of the crystal. Fig. 12.6 shows a low-angle 

tilt boundary formed by a wall of similar edge dislocations; there is a small 

rotational misorientation about an axis in the boundary wall to an extent 

which depends on the Burgers vectors and average separation of the disloca¬ 

tions. A wall of at least two sets of parallel screw dislocations produces a low- 

angle twist boundary in which the small rotational misorientation is about an 

axis normal to the boundary wall. Congregations of dislocations can form the 

boundary regions (part tilt, part twist) which delineate the mosaic texture of 

imperfect single crystals. 

There are other forms of crystalline imperfection (even volume imperfec¬ 

tions achieved by thermal excitation, etc.) that are important in the context of 

certain properties and certain materials, but these must be omitted here. As 

we remarked earlier, our aim is not to become deeply involved in the highly 

important and diverting topic of imperfections but only to dispel any idea of 
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strict classical perfection in the atomic structures of real crystals that may 

have developed in the earlier chapters. For most crystallographic purposes a 

single crystal may be regarded as a regular and repetitive three-dimensional 

continuum in an averaged statistical sense, but detailed inspection on an 

atomic scale reveals that it must contain many flaws; at best, its texture will 

consist of small relatively perfect regions (still containing some defects) 

linked together through distorted boundary regions in which there are higher 

concentrations of imperfections of all kinds. 
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APPENDIX A 

PROJECTIONS AND THEIR 
PROPERTIES 

A.l. Stereographic projection 

The principles of construction for this projection and practical manipulations 

in conjunction with the stereographic net have already been described in 

Chapter 3. In this section we shall demonstrate the validity of fundamental 

propositions that were assumed there and describe those geometrical con¬ 

structions which can be used to draw the great and small circle loci on a 
stereographic net. 

In Chapter 3.2, three main virtues of stereographic projection were listed: 

the representation of all directions in space, the preservation of angular truth, 

and the ease of projection of great and small circles which appear as arcs of 

geometrical circles; the first of these properties is self-evident but the other 

two require some justification. 

(a) Angular Truth on the Stereogram 

In Fig. A. 1 two great circles on the surface of a sphere intersect at the spheri¬ 

cal pole P. Tangents to these great circles are drawn at P to cut the tangent 

plane to the sphere at the south pole in U and V; W and X are respectively 

the points at which these tangents intersect the equatorial plane of stereo¬ 

graphic projection. Q is the stereographic pole obtained by joining P to the 

south pole of the sphere. 

In this diagram UP = US, for both are tangents to the sphere from the 

same external point; by the same argument VP = VS. Hence UPV = USV, 

and, since the triangles USV and WQX are parallel, it follows that WQX = 

USV = UPV. But WQ and XQ are projections on to the equatorial plane of 

the two tangents to the great circles through P; in this projection they must 

represent tangents to the projected great circles which intersect at Q, and, as 

we have just shown, their mutual inclination is identical to that of the tan¬ 

gents UP and VP constructed to the two great circles on the sphere. In this 

way a stereogram preserves angular relationships exhibited by a spherical 

projection of the subject. 
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N 

-J 

Fig. A.l. Angular truth on the stereogram. 

Equatorial 
plane 

Fig. A.2. The stereographic projection of small (and great) circles. 
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(b) Projection of Great and Small Circles on the Stereogram 

Fig. A.2 shows a central vertical section of a circumscribing sphere which con¬ 

tains a diameter PiP2 of a circle (great or small) on the surface of the sphere; 

Qi and Q2 are stereographic poles formed by joining Px and P2 to the south 
pole of the sphere. 

The volume generated by joining all points on a circle on a spherical surface 

to the south pole is a cone with apex at S; P2PiS is a central section of this 

cone. Any right section of this general cone will be elliptical, but inclined 

sections can be circular; the inclination of the plane which intersects the 

sphere to give a circle of diameter PiP2 on its surface defines one set of circu¬ 

lar sections. There is however a second set of planes which will also give cir¬ 

cular cross-sections; these are symmetrically disposed with respect to the axis 

of the cone, i.e. in our central section they are inclined at the same angle to 

the second generator (SP2) as PiP2 is to the first (SP^. But from the figure 

P2P1S = 90° + a = QiQ2S, for the angle subtended by the arc NP2 is the 

same at all points around the circle; thus QiQ2 and PiP2 are symmetrically 

inclined to the axis of the cone, and both must be circular sections. Hence a 

circle with diameter P^ on the sphere must project on to the stereogram as 

a circular locus with QiQ2 as diameter. 

All constructions on the stereogram described in Chapter 3.2 using a net 

can be carried out by graphical methods alone. Such procedures are less con¬ 

venient and rather tedious, and with the ready availability of nets of all sizes 

they are rarely used in practice. We shall describe only two geometrical con¬ 

structions, those needed to draw the loci of great and small circles inscribed 

on a stereographic net. In both of these, as in many other graphical construc¬ 

tions on the stereogram, a simple stratagem is employed. The plane of the 

stereogram is visualised as a vertical section of the circumscribing sphere and 

a diameter drawn through the relevant stereographic pole P (Fig. A. 3); this 

diameter is regarded as the equatorial projection plane with ‘north’ and 

‘ south ’ poles placed on the primitive at the ends of a perpendicular diameter. 

By this device we can construct the position of another stereographic pole Q 

at an angular distance a from P on the same diameter. P is projected from the 

* south ’ pole to cut the section of the sphere (the primitive) at P'; P' can be 

thought of as a spherical pole formed by the radius of the sphere CP'. CQ' is 

then drawn inclined at a to CP'; the point Q' (on the primitive) is again 

thought of as a spherical pole which is subsequently projected to the ‘south’ 

pole to give the stereographic pole Q on the same diameter as P. The angular 

separation of P and Q on the stereogram must now be a. (In construction (iii) 

of Chapter 3.2, this device, with a = 180°, is used to re-project poles in 

different hemispheres into positions on the same diameter outside the primi¬ 

tive, i.e. as the points A' and B' at the bottom of Fig. 3.6.) We can use this 

method to construct any of the circles on a stereographic net. 
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o' P 

Fig. A.3. Device for use on the stereogram to construct a pole a parti¬ 
cular angular distance (a) from a given pole. 

"South” 

Fig. A.4. The construction of a great circle inclined at angle a ( = 75°) to 
the centre of the projection. 
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(c) Great Circles of All Inclinations 

Apart from the vertical circle at the base of the net, there are arcs of circles 

which pass through the ends of the base diameter. To construct any one of 

them we need only find another point on the appropriate circular arc; the 

device described above will locate a pole at the required inclination to the 

centre of the projection, as illustrated in Fig. A.4. The geometric centre of the 

circular arc of this projected great circle is at the intersection of bisectors of 
its chords. 

(d) Small Circles about a Point on the Primitive 

These are circular arcs whose geometric radii are determined by the angular 

radius a of the small circles they represent (if a = 90°, we have a vertical 

“South1 

Geometric 
centre 

Fig. A. 5. The construction of a small circle of radius a ( = 20°) about a 
point on the primitive. 

great circle, an arc of infinite radius, which appears as a radius perpendicular 

to the base of the net). To construct any small circle, we must find a third 

point on the appropriate circular arc, in addition to its two intersections with 

the primitive at A and B which are inclined at a to the angular centre; Fig. 

A.5 shows how such a point on the base of the net can be found. The geo¬ 

metric centre of the circular arc for this small circle is at the intersection of 

bisectors of its chords; notice that by the geometry of the figure it is also the 

intersection of the tangent to the primitive at A (or B) with the base diameter 

produced. 
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A.2. Gnomonic projection 

As an alternative to stereographic projection, this method is employed 

sufficiently often in certain crystallographic work to merit a brief description 

here. It has some features in common with stereographic representation and 

is also developed after a projection subject has been replaced by a distribution 

of spherical poles on a circumscribing sphere as in Chapter 3.1; it differs in 

that subsequent projection of these poles into two dimensions takes place on 

to a non-equatorial plane, conveniently a tangent plane to the sphere. The 

gnomonic projection of a spherical pole is obtained by extending the radius 

of the sphere through the pole to cut the projection plane (Fig. A.6); each 

Fig. A.6. Gnomonic projection. Gnomonic poles are obtained by pro¬ 
ducing radii through P and Q to cut the tangent plane at the north pole 
of the sphere. 

gnomonic pole will be at a distance of r tan i[i from the centre of the projection, 

where r is the radius of the sphere and ift, the inclination of the radius defining 
the spherical pole to the N-S axis. 

Comparing its qualities with those of the stereogram, it is obvious from the 

figure that the directions in each hemisphere that can be represented on a 

single projection are restricted; as ift -» 90°, gnomonic poles become farther 

and farther from the centre of the projection. A particular virtue, however, is 

that all great circles project as straight lines on the gnomonogram; this is 

readily apparent, for all those that pass through the centre of the projection, 

and a little consideration will show that all straight fines, whether they pass 

through the origin or not, may be interpreted in the same way. But small 

circles present some difficulties; their loci will be formed by the intersection 
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of the projection plane with the cone generated by radii of the sphere to all 

points of a circle on its surface. When the angular centre of a small circle is at 

the origin of projection, these loci will be circular; but for any other angular 

centre, loci will be conic sections in the form of ellipses when all points are in 

one hemisphere and hyperbolae when the circle lies in both hemispheres. In 

practice, this can be a disadvantage which more than offsets the simplicity of 

great circle construction; more importantly, it means that principles of angu¬ 

lar measurement are more complex than on the stereogram. 

Fig. A.7. Angle point construction, (a) The location of the angle point. 
(b) Its construction on a gnomonogram. 

Most graphical measurements are carried out by an angle point construc¬ 

tion, i.e. the location of a point in the plane of projection at which a pair of 

gnomonic poles subtend the true angle between the two directions that they 

represent. In Fig. A.7(a), we wish to determine the true angle between gno- 

monic poles P and Q on a general zone line in a projection whose origin is at 

C; O is the centre of the circumscribing sphere of radius r, and another line 

SA in the projection plane is drawn perpendicular to PQ to pass through C 
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so that AS = OS. The true angle is subtended at the centre of the sphere as 

POQ, but this must be equal to PAQ subtended by the line PQ at an angle 

point A. In constructing the position of A in the gnomonogram of Fig. A.7(b), 

there is no difficulty in drawing the line SC produced, but the precise position 

013 012 

013 

(oo) 

010 
(CO) 

010 

010 

Fig. A.8. Projections of an orthorhombic crystal, (a) Stereogram, 
(b) Gnomonogram. Both diagrams show the same section of the pro¬ 
jections made from the same circumscribing sphere with the same 
angular relationships between the poles (hfcl). 
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of the angle point A along this line is not immediately obvious. It is best found 

by constructing CB of length r perpendicular to SC, when SB = SA; in Fig. 

A.7(a), OS = r sec ifj = AS, but from Fig. A.7(b), SB = (SC2 + BC2)% = 

(r tan2 ifj + r2),/2 = r sec ifj. The angle point A is then located on the extension 

of SC, when PAQ is measured to give the angular separation of the two gno- 

monic poles. When available, gnomonic nets (used in a similar way to stereo¬ 

graphic nets) are very helpful in manipulations on the projection; they usually 

show, for a particular value of r, the loci of perpendicular great circles at 

small intervals as a square mesh together with the loci of small circles at simi¬ 

lar angular intervals in the form of the hyperbolic curves that appear when 

the angular centre is on a diameter of the sphere parallel to the projection 

plane. 

The merits of gnomonic projection are best utilised in certain specialised 

circumstances. For example, in some morphological studies (or indeed in 

other work where it is necessary to project a group of approximately similar 

directions), a gnomonogram can avoid the crowding of poles which can occur 

on a stereogram particularly in the central regions; Fig. A.8 shows both gno¬ 

monic and stereographic projection of some normals to planes of an ortho¬ 

rhombic crystal. Gnomonic projection is also often used in the interpretation 

of Laue patterns when indexing of individual spots is required; there is a close 

connection between a gnomonic projection and the reciprocal lattice (which 

arises in the Ewald treatment of the Bragg conditions mentioned in Chapters 

8 and 9) in that the gnomonic poles of plane indices can be formed by allow¬ 

ing the projection plane to be intersected by lines from the origin to the cor¬ 

responding reciprocal lattice points. 

Further reading 

See the Selected Bibliography for Chapter 3. 



APPENDIX B 

CALCULATIONS ON THE 

STEREOGRAM 

B.l. Spherical trigonometry 

Angular measurements on an accurate stereogram are often insufficiently 

precise, and in many cases it is more convenient to proceed by calculation 

from a sketch of the distribution of poles. These calculations involve the solu¬ 

tion of spherical triangles, which are areas on the surface of a sphere bounded 

by the intersections of three great circles (Fig. B.l). Each triangle has six 

angular elements, three angles between tangents to the great circles at their 

points of intersection (A, B, C) and three angles subtended at the centre of the 

sphere by the circular arcs forming the sides (a, b, c); clearly these angular 

elements of any spherical triangle are related in a manner which is independ¬ 

ent of the size of the sphere. We can express relationships between various 

elements in forms which are often analogous to those found in planar trigono- 

Fig. B.l. The angular elements of a spherical triangle on the surface of a 
sphere centred at O. 
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metry; there are, however, some important differences (in particular that the 

sum of the included angles A, B and C in a spherical triangle is not constant). 

For those who are unfamiliar with the elements of spherical trigonometry 

required for stereographic calculation, some of the important formulae are 

derived in this section. 

Fig. B.2 shows a general spherical triangle ABC on the surface of a sphere 

0 

Fig. B.2. The derivation of general triangle formulae. The lower figures 
show the plane faces of the pyramid LMNOA. 



304 THE CRYSTALLINE STATE 

of unit radius whose centre is at O; a set of orthogonal reference axes is 
chosen with the x-axis placed for convenience along the radius OB. AM is 
drawn perpendicular to the xy plane, with LM and NM normal to OB and 
OC respectively. For clarity the planar faces of the pyramid LMNOA are 
drawn out separately in the lower diagrams of the figures; the values of 
the sides and angles of this pyramid are expressed in terms of angular ele¬ 
ments of the spherical triangle. We see from these that 

AM = sin c sin B = sin b sin C 

sin c sin b ( sin a , . , , • \ 
i e. ——- = -—— ( = -—-> by a similar construction 

sin C sin B \ sin A / 

a general relation of spherical trigonometry, usually referred to as the sine 

formula. Moreover in Fig. B.2 

om = ol + lm = on + nm 

and the x and y components of vectors in this identity are 

OL = (OL, 0), LM = (0, LM), ON = (ON cos a, ON sin a) and NM 
= (MN sin a, — MN cos a). 

Equating x components of the vectoral identity and substituting values for 
OL, LM, ON and MN from the figure, we get 

cos c — cos a cos b + sin a sin b cos C 

a relation often called the cosine formula. (Other forms of the cosine formula, 
e.g. cos b = cos a cos c + sin a sin c cos B would, of course, be obtained by 
similar constructions from the other apeces of the spherical triangle.) Finally 
equating y components of the identity, another relationship is obtained 

sin c cos B = sin a cos b — cos a sin b cos C 

the five element formula, which can again be expressed in terms of related 
combinations of elements. Manipulation of these formulae will also produce 

cot b sin a — cos a cos C + sin C cot B, etc. 

the cotangent-sine formulae, and 

tan M sin (5 — b) sin (s — c)) 
sin s sin (s — a) J etc. 

where s = (a + b + c)j2, the half-angle formulae. 

In effect when three elements of a spherical triangle are known, the values of 
the remainder can be found by application of the most suitable trigono¬ 
metrical formulae; in practice it is the first two, the sine and cosine formulae 
which are most used. 
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For some purposes, it is convenient to consider a polar triangle A'B'C' of 
the original triangle ABC, defined in such a way that A' is the pole of the great 
circle through B and C which lies on the same side of the plane of BC as A, 
B' is the pole of CA on the same side of the plane of CA as B, and C' is the 
pole of AB on the same side of the plane of AB as C. Under these conditions 
the sides and angles of the polar triangle are the supplements of the angles 
and the sides, respectively, of the original triangle (i.e. a' = 180° - A, A' = 
180° — a, etc.). By applying to the polar triangle A'B'C' any of the general 
formulae established above, we can obtain a supplemental formula for the 
triangle ABC involving sides and angles opposite to these of the original 
formula; for example, since c' = 180° - C, C' = 180° - c, etc. the cosine 
formula quoted above becomes 

cos C = —cos A cos B + sin A sin B cos c 

in its supplemental form. Such variations are often invaluable in practical 
calculations. 

In many crystallographic calculations, particularly in higher symmetry 
systems, we are concerned with the solution of right-angled triangles; natur¬ 
ally the formulae above are considerably simplified, e.g. 

if B = 90°, sin c — sin b sin C or if c = 90°, cos C = — cot a cot b 

cot b — cot a cos C, etc. sin B = sin b sin C, etc. 

A convenient method of memorising the manifold reductions of general tri¬ 
angle formulae was devised by Napier; it can be applied to obtain the com¬ 
plete solution of any right-angled spherical triangle (often called a Napierian 

triangle) in which two elements, other than the right angle, are known. Fig. 

B.3 shows the use of this device for Napierian triangles in which B = 90° (on 
the left) and c = 90° (on the right). Beneath the triangle a five-compart- 
mented diagram is drawn with three sectors to the left of a vertical line and 
two on the right divided by a horizontal line; angular elements of the triangle 
are written into the five compartments in sequence as they are encountered 
in moving round the triangle whose right angle is set on the right-hand hori¬ 
zontal line. The sense, clockwise or anti-clockwise, of movement around a 
triangle is immaterial, but elements must be in the correct sequence from the 
position of the right angle and those in the three left-hand sectors must be 
subtracted from 90°. All Napierian solutions involve the use of this diagram; 
in solving a particular problem, two compartments must contain known ele¬ 
ments, and, together with the unknown that we seek to calculate, they form 
three sectors that are either adjacent or have two sectors opposite the third; 
an example of both kinds of sector distribution is given for each triangle in 
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the figure. All the necessary formulae are then summarised by the statement 

for alternative dispositions of the sectors: 

sine of a middle part = product of tangents of adjacent parts 
or 

product of cosines of opposite parts. 

■B = 90° Napierian diagram c = 90 

90°-b 

Adjacent parts 

Opposite parts 

Fig. B.3. The Napierian device for the solution of right-angled spherical 
triangles. 

Applying this to the examples in the figure for the left hand triangle, we get 

sin (90° — C) = tan a tan (90° — b) 

i.e. cot b = cot a cos C, 
and 

sin c = cos (90° - b) cos (90° — C), 

i.e. sin c = sin b sin C, 
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which are reductions of general triangle formulae for B = 90° already quoted. 
For the right hand triangle, in which one side is a right angle, the procedure 
is similar, except that when the included angle opposite the right angle is in¬ 
volved products are negative unless this angle is one of the opposite parts. 
For the examples in the figure we have 

sin (90° - C) = -{tan (90° - a). tan (90° - 6)} 

i.e. cos C = —cot a. cot b 
and 

sin B = cos (90° — b) cos (90° — C), 

i.e. sin B = sin b sin C 

which are two of the general triangle reductions for c = 90° given earlier. 
(Alternatively such solutions can be developed by taking the sector opposite 
the side which is a right angle as C - 90° (instead of 90° - C); the correct 
sign is then derived during the evaluation of the appropriate product.) 

B.2. The rational sine ratio 

In any crystal the angular dispositions of planes (or faces) around the same 
zone can be related to their indices defined in terms of any choice of unit cell. 
In its most convenient form, this relationship is known as the Law of Rational 
Sine Ratios (occasionally as Miller's Law) and is expressed in terms of four 
non-parallel planes with indices {hikJi), etc. inclined at angles 012, 
913, etc. around the same zone as shown in Fig. B.4(a). This law states that 
the ratios of the sines 

sin 9i2 U12 V12 Wi2 
Sin 0i2 _ U!3 _ V 12 _ W 12 _ p 
sin 042 U42 V42 w42 Q 
sin 942 u42 V42 W43 

wherep and q are integers, and [U\2V\2W12], [U^V^W^], etc. are the zone 
symbols formed by cross-multiplication of the corresponding plane indices 
as in Chapter 5.1. This expression can be manipulated into 

p cot 0i2 — q cot 013 — (p — q) cot 014 

a form which is less cumbersome and more convenient for certain types of 
calculation. A proof of these expressions is not particularly difficult but is 
rather too lengthy and tedious to merit inclusion here; it will be found in 
many of the older books on mathematical crystallography. Since the four 
faces are tautozonal, zone symbols produced by the cross-multiplication of 
any pair of indices must indicate the same lattice row direction, but in deriv¬ 
ing the numerical value of the sine ratios, symbols are not divided out and are 
allowed to contain common factors; indeed to avoid incorrect solutions great 
care must be taken to construct zone symbols in strict conformity with 
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angular subscripts. The equations are of most practical value in solving two 

kinds of problems, as we shall illustrate by example. 

(a) When the angular positions of four planes in a zone are known as well as the 

indices of three of them, to find the indices of the fourth: 

Fig. B.4(b) shows the angular positions of four planes together with their 

1_2_3_4 

110 111 hkf 112 

■«-43° 00'—-—>—«—I1° 26'—>—*—7° 15'-- 

(b) 

\_2_3_4 

ITO 201 111 021 

-*-33° 20'-*- 

. ---79°I6'---*- 

(c) 

Fig. B.4. The rational sine ratio. 

known indices; the problem is to find (hkl). The sine ratio in this example is 

sin 43° 00' 

p _ sin 54° 26' _ x 

q sin 18° 41' ~ T 

sin 7° 15' 
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ana the corresponding zone symbols are 

12: 110110 13: 110110 42: 112112 43: 

111111 hklhkl 

[1 1 0] [/, l, k — h\ 

so that from the sine law 

1 
/ 

1 

min 
[T 1 0] 

i 

/ 
i 

112112 
hklhkl 

[l - 2k, 2h- l, k- h\ 

l - 2k 2 h - l 

which implies that 3(2h — /) = /, for h = k in this zone or 

6 h = 41 

to give (hkl) as (223). 

(b) When the indices of four planes in a zone are known as well as the angular 

positions of three of them, to find the position of the fourth: 

Fig. B.4(c) shows the four planes in a zone together with their known posi¬ 

tions ; the problem is to find the position of (111). Firstly we can compute the 

value of pjq from the zone symbols 

12: 110110 

201201 

13: 110110 

111111 

42: 021021 

201201 

43: 021021 

111111 

[T T 2] [T T 2] [2 2 4] [1 1 2] 

so that pfi = Using the alternative cotangent relationship, we have 

cot 012 — 2 cot 913 = —cot #14 

cot (ll0)(l 11) = cot d13 = i(cot #i2 + cot 0u) 
= Kcot 33° 20' + cot 79° 16') - 0-8565 

to give (1 lOXlll) = 49° 28'. 

These two examples give some illustration of the practical application of 

rational sine ratios; there is a high probability of tedious computational error 

unless a systematic and orderly procedure is followed, and it is often prefer¬ 

able to avoid their use if at all possible by employing less direct solutions 

involving spherical trigonometry. Nevertheless, many zones in more sym¬ 

metrical crystals have planes at intervals of 90°; and if problems can be 

formulated so that 014 = 90°, the sine ratio is simplified to 

tan 912 = - tan 9 13 

a relationship which can be particularly useful in calculation. 
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B.3. Euler’s construction 

This is concerned with the permissible combinations of rotational symmetry 

operators passing through a point, and, as mentioned in Chapter 4.2(a), can 

be used in a systematic derivation of the point group symmetry associated 

with crystal classes. 
On the stereogram of Fig. B.5, we show two inclined rotational operators, 

one acting through P with angular rotation a and the other through Q with 

angular rotation j3. The points R and R' are on diameters symmetrically in¬ 

clined to PQ at an angle of a/2, i.e. on great circles related by the operator 

through P; moreover the positions of R and R' on these diameters are such 

that great circles through their poles and Q are symmetrically inclined to PQ 

at an angle of j8/2, i.e. they are also on great circles related by the operator 

through Q. If we consider the effect of both operators on the point R, rotation 

about P will place it at R' from which subsequent rotation about Q will re¬ 

store it to R. Thus combination of the two operators leaves R unmoved, so 

that the net movement of any other pole implies a rotation about R; there 

must be another rotational operator present acting through R. P is moved to 

P' after rotation through /3 about Q, when subsequent rotation about R must 

restore it to P; hence the angular rotation through R is y where PRQ in the 
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figure is y/2. The spherical triangle PQR expresses angular relationships be¬ 

tween the three rotational operators at its corners in terms of their angular 

rotations and mutual inclinations, and after spherical trigonometric manipu¬ 
lation in this triangle we can write 

cos r = sin y/2 + cos a/2 cos ft/2 
sin a/2 sin /?/2 

together with other similar equations. 

So far the construction has been quite general and has shown that a rota¬ 

tional operator (a) can be combined with another rotational operator (/3) at 

an intersection angle r to give a third rotational operator (y) in another speci¬ 

fic orientation. But in crystalline matter, the only possible values of y are those 

associated with monad, diad, triad, tetrad or hexad rotations (see Chapter 

2.1); thus values of the intersection angle r are restricted. From the relations 

above we can derive all the permissible combinations of crystallographic ro¬ 

tational operators passing through a point by eliminating impossible and 

trivial combinations. For example, the combination 236, with a/2 = 90°, 

jS/2 = 60°, y/2 = 30° gives r = 0°, a trivial solution, whereas 246 is also re¬ 

jected because it gives an impossible value for cos r. Systematic investigation 

shows that apart from 211, 311, etc. the only permissible combinations of 

crystallographic rotations are 222, 223, 224, 226, 233 and 234, each with its 

own set of interaxial angles demanded by the equations above. A complete 

derivation of the crystal classes by this method requires us to examine all 

possibilities for each of these six combinations including both the proper and 

improper rotational operators described in Chapter 4.1; after establishing 

equivalences and decomposing improper elements (where necessary) into 

more conventional symmetry operators, we shall be left with the point group 

symmetries of the thirty-two crystal classes. 

B.4. Examples 

Calculations on a stereogram of the angular relations between crystallo¬ 

graphic directions are needed for many purposes and can be undertaken in 

many different ways. The art of such calculations lies in expeditiously com¬ 

bining the techniques of this appendix with the basic relations between cell 

constants and geometry that have already been established for the various 

crystal systems in Chapter 5.4. In this section we present the outline of a solu¬ 

tion for a problem with each different cell shape. No brief discussion of this 

kind can be in any way representative of the wide range of stereographic 

calculations, and it is not suggested that the solutions (using the Napierian 

triangles only) are unique; our only purpose is to introduce the reader by 

example to this aspect of crystallographic calculations. 
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(a) Triclinic system: CuS04.5H20 belongs to class 1 and has cell constants 

a — 6-11, b = 10-67, c = 5-95 (in A), a = 97° 35', j8 - 107° 10', y = 

77° 33'. Determine the angle [001 ](001) implied by this description, an angle 

sometimes required in single crystal X-ray studies. 

Fig. B.6 shows a sector of a sketch stereogram with the poles (100)(010) and 

(001); the required angle is part of a radius drawn through the centre at z (or 

[001]) to cut the primitive at P (the pole P is unlikely to have any crystallo¬ 

graphic significance). An angle <j> is marked between this vertical great circle 

and the zone (001)(010) at their point of intersection (001); the other angles 

correspond to the relations of Chapter 5.4(a). 

(i) In the triangle P(010)(001), cos (180° — /?) = cos (001)P . sin (/> 

(ii) In the triangle P(100)(001), cos (180° — a) — cos (001)P . sin (<f> + y). 

(iii) Eliminating cos (001)P from these two equations and substituting 

numerical values for a, /3 and y, we obtain </> = 77° 18'. 

(iv) From the equation of (i), (001)P = 72° 19'. 

(v) Since [OOflp = 90°, [001](001) - 90° - 72° 19' = 17° 41'. 

(b) Monoclinic system: In a crystal of class 2/m, three angles were measured 

as (121X121) - 103° 46', (00T)(ITT) = 37° 03' and (lOOXlIl) = 28° 27'. 

Determine the axial constants for this crystal, a problem that can arise in 
morphological studies. 

The sketch stereogram of Fig. B.7 shows these three angles, but from the 
symmetry of this class we see that 

1(121X121) = (010X121) 

(OOlXTTT) = (OOIXIH) 

(100X111)= (100X111) 

(i) From a multiple tangent relationship in the zone (010)(121) (111)(101), 

tan (010X111) = 2 tan (010X121) so that (010X111) = 68° 35' and 

(101X111) = 21° 25'. 

(ii) In the triangle (001)(111)(101), cos(001)(lll) = cos (001X101). cos 

(101)(111) and sin (101X111) = sin 001 .sin (001^(111), to give 

(001X101) - 31° 00' and 001 = 37° 18'. 

(iii) In the triangle (100)(111)(101), cos (100X111) = cos (100X101). cos 

(101)(111) and sin (101)(111) = sin 100 . sin (100X111), 

to give (100X101) = 19° 12' and 100 = 50° 01'. 
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Fig. B.6. Triclinic calculation. 

m 

(iv) From the relations of Chapter 5.4(b) 

(100X101) + (101X001) - (100X001) = 180° - j8 

001 = <f> i = tan ~1(a/b) and 100 = </>3 — tan _1(c/^) 

so that for this crystal 

?: 1 :£ = 0-762:1:1-193, B = 129° 48'. 
b b 1 
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(c) Orthorhombic system: A crystal of class mmm has cell dimensions a = 4-82, 

b = 11 -08 and c = 6-37 (in A). On a fragment of this crystal there are only 

three recognisable faces p, q and r; the angles between them were measured 

as pq= 105° 46', qr = 86° 43' and pr = 31° 42'. Physical examination 

suggests that the z-axis is the bisector of pq, and these faces lie in the (010) 

plane. Determine the possible indices of p, q and r, again a problem in mor¬ 

phological description. 

If the faces p and q lie in the (010) plane and are symmetrically disposed 

about the z-axis, their indices must be of the type (AO/) and (hOl), so that 

(OOlX/iO/) - \pq. 

(i) From Chapter 5.4(c) tan cf>5 — ^ = tan (001)(/i0/), so that on substi¬ 

tution we obtain ^ — 1 to give the indices as (101) and (101). They are 

so marked on the sketch stereogram of Fig. B.8, together with the 

position of r as (hkl); zones are drawn through (010) and (hkl) to 

locate (A0/) and through (101) and (hkl) to a pole (0k'l'). 

(ii) In the triangle (hkl)(\0l)(h0l), cos (101)(/i&/) = cos (101)(/z0/). sin 

(hklfhOl). 
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(iii) In the triangle (M/)(101)(M)/), cos (101){hkl) = cos (101)(/z0/). sin 

(hki)(h0l). 

(iv) Eliminating sin (hkl){h0l) from these two equations and substituting 

numerical values, we obtain (101)(/z0/) = 19° 26'. 

(v) Hence (001XA0/) = (001X101) - (101)(/z0/) = 33° 27'. 

h 
(vi) Using the relation quoted in (i), -j = i.e. {hOl) = (102). 

(vii) In the triangle (M/)(101)(102), cos 101 = tan (101X102). cot 

(101 ){hkl), from which 101 = 55° 00'. 

(viii) In the triangle (101)(0U/')(001), sin (001X101) - tan (OOlXOfc'/'). cot 

101 from which (OOlXOfcT) = 48° 43'. 

dr ^ 
(ix) From Chapter 5.4(c) tan <f>3 = = tan (001)(0/c7'), so that on sub- 

k' 
stitution we obtain -j = 2 to give (Ok'l') as (021). 

(x) r is at the intersection of the zones (102)(010) and (101)(021); by cross¬ 

adding, its indices must be {hkl) = (122). The data is, of course, con¬ 

sistent with solutions involving negative axes, e.g. (122)(122), etc. 

(d) Trigonal and hexagonal systems: A cleavage rhombohedron of a crystal of 

class 3m was indexed in morphological examination as {10l 1} and the angle 

(lOl 1)(T 101) measured as 74° 56'. Later X-ray examination showed that a 

minimum volume hexagonal cell had dimensions a = 4-99, c = 17-06 

{in A); systematic absences in reflections indexed on this cell revealed that 

the structure has a rhombohedral lattice. Give a description of the cleavage 

rhombohedron in terms of (a) the minimum volume hexagonal cell, and {b) 

the minimum volume rhombohedral cell. 

Fig. B.9 shows part of a stereogram with poles p and q representing the meas¬ 

ured faces of the cleavage rhombohedron. 

(i) The point r on the zone containing p and q would be indexed by the 

morphologist as (01T2). In the triangle (0001)/>r, 

sin (000 l)r = tan %{pq). cot 0001 

to give (0001)r = 26° 16'. 

(ii) From Chapter 5.4(f) tan (0001)(01l2) = c^s ^q~ so that the mor- 

c 
phological axial ratio is - — 0-855. 
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(iii) The axial ratio for the minimum volume hexagonal cell of the X-ray 

examination is — = 3*418, a value four times larger than that assigned 
a 

in the earlier morphological examination. In this class (Chapter 6.3(e)) 

there can be no ambiguity in the choice of axial directions, so this 

discrepancy must correspond to an incorrect selection of parametral 

plane in the morphological study. 

Fig. B.9. Trigonal (and hexagonal) calculation. 

(iv) The poles (1011)(0112)(1101), etc. corresponding to the X-ray cell are 

inserted on the sketch stereogram at positions different from p, q and 

r, e.g. using the relation of (ii) the angle (0001)(0ll2) for this cell is 

63° 08'. r must now be indexed as (0hh2l), so that 

tan (OOOlYOhhH) h = 1. 

tan (0001X0112) ~ / ~ 4’ 

the indices of r now become (0ll8). 

(v) Reversing the procedure of (i), the cleavage faces p and q would be in¬ 

dexed as (10l4) and (T104), so that the morphological description of 

the cleavage rhombohedron on Miller-Bravais axes corresponding to 

the X-ray cell should state that it is the form {1014} with axial ratio 

c/a = 3-418. 
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(vi) Indexing in terms of the smallest rhombohedral cell transforms 

(1011) -> (100), (0ll2) -> (110), (0001) -> (111), etc. as described in 

Chapter 7.1(e). On this basis (10l4) -> (211). 

(vii) From Chapter 5.4(f), the axial constant a, the interaxial angle of the 

cell edges is 180 — 2<f>1; (j)1 is calculated from (111)(110)(100) as 

cos <f>i = sin 111 . cos (110)(111) to give a value of 66° 59'. The mor¬ 

phological description of the cleavage rhombohedron on Miller axes 

corresponding to the X-ray cell should state that it is the form {211} 
with a = 46° 02'. 

Plane Oil 

(e) Tetragonal system: A section of a crystal of class 4/mmm with a — 4-59, 

c — 2-96 (in A) is cut parallel to the plane (011). When light is incident 

normally on this section determine the angles between the permitted vibra¬ 

tion directions and the traces of{ 110} cleavages, a problem which can occur 

in practical optical .work. 

From Chapter 11.4, this crystal is optically uniaxial with optic axis in the 

[001] direction; the indicatrix is an ellipsoid of revolution, and the permitted 

vibration directions are the principal axes of the central elliptical section per¬ 

pendicular to the common wave normal direction. Fig. B.10 shows a sketch 

stereogram with the poles (001), (110), (llO), etc. 

(i) The great circle of which (011) is the pole denotes the orientation of the 

appropriate indicatrix section for light travelling along the normal to 
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(Oil) planes. One of the principal axes of this ellipse must be normal 

to the optic axis, i.e. at the pole (100); the other must be perpendicular, 

i.e. at the pole R in the same plane. 

(ii) Great circles of which (110), (lTO), etc. are the poles represent the 

cleavage planes, and these will intersect the plane of the section in 

directions given by P and Q. 

(iii) In the triangle (001)RP, sin (001)R = tan RP . cot 001; but 

(001)R = 90° - (001X011), 

and from Chapter 5.4(d), tan (001)(011) = cfa. With (001)R = 57° 11' 

and 001 = 45°, RP = 40° 03'. 

(iv) The permitted vibration directions for light incident normally on the 

section are the internal and external bisectors of the traces of {110} 

cleavages which are inclined at 80° 06' in the plane of the section. 

Fig. B.ll. Cubic calculation. 

(/) Cubic system: A crystal of class m3m shows the form {332}. Determine the 

plane angles of one of its faces; these faces could then be assembled to build 
a cardboard model of this form. 

The form {332} in this class is a triakisoctahedron; a sketch of this shape and 

part of a sketch stereogram are shown in Fig. B.ll. The plane faces are 
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isosceles triangles whose edges are zone axes formed by the intersections of 

pairs of faces. The plane angles of a face are therefore the angles between 

the appropriate zone axes, i.e. the angles between corresponding zones at 

their points of intersections. 

(i) One angle of a triangular face (f> is defined by zones containing (332) 

(332) and (332)(233). The former will pass through the pole (110) and 

the latter through (530) and (035). 

(ii) From Chapter 5.4(e), tan (001)(035) = f = tan (100)(530). In the tri¬ 

angle (035)(010)(530), sin (010X530) = tan (010X035). cot 530 to give 

530 = 62° 47'. 

(iii) In the triangle (110)(530)(332), cos 332 — cos (110)(530) . sin 530, 

from which 332 = <f> = 30° 24'. 

(iv) The plane angles of a triangular face of {332} in class m3m are therefore 

30° 24', 30° 24' and 119° 12'. 

Further reading 

Spherical trigonometry 

Donnay, J. D. H. 1945. Spherical trigonometry. Interscience. 
Macrobert, T. M. and Arthur, W. 1938. Trigonometry: part IV, Spherical trigono¬ 

metry. Methuen. 

Crystallographic calculations 
Ducros, P. and Lajzerowicz-Bonneteau, J. 1967. Problemes de cristallographie. 
Terpstra, P. 1952. A thousand and one questions on crystallographic problems. Wolters, 

Groningen. 
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THE GROWTH OF CRYSTALS 

C.l. Crystallisation 

When conditions within a medium (solution, melt or vapour) at a given 

supersaturation, temperature, pressure, etc. are such that it is energetically 

favourable for the constituent atoms (or ions) to form permanent links in a 

regular and orderly manner, crystallisation becomes possible. In practice, the 

nucleation and growth of crystals is much more complicated than this might 

imply; conditions may change too rapidly for the constituent atoms to assume 

the regularity of the crystalline state and we may be left with a glass or an 

amorphous solid; or sometimes, even when a solid is formed slowly under 

conditions which are more or less constant, spontaneous nucleation does not 

occur and the medium crystallises only after seeding. Anyone with experience 

of elementary growth experiments will have encountered these or other diffi¬ 

culties, and extensive studies have revealed the sensitivity of the crystallisation 

process to a wide variety of factors (rate of cooling, concentration and tem¬ 

perature gradients, impurities, etc.); the crystallisation of a particular medium 

under various experimental conditions becomes a complicated study whose 

results all too often remind us of the unpredictability of many natural pro¬ 

cesses. Nevertheless, there are some remarks on nucleation and subsequent 

growth as they should occur in ideal controlled crystallisation that are rele¬ 

vant and they are set down briefly here. 

The formation of nuclei requires atoms to form attachments after the man¬ 

ner of their arrangement in the appropriate crystal structure, at least over 

small volumes of the medium. In the medium, the atoms are in constant mo¬ 

tion and these random movements must from time to time provide the 

essential aggregations of atoms held together by attractive forces developed 

by close proximity; in the flux of atomic movements such aggregates appear 

and disperse locally as random events. The size (and frequency) of such 

embryonic nuclei will be determined by conditions within the medium; for 

crystallisation to occur these must allow nuclei larger than a certain critical 

volume to be formed spontaneously. Just as drops of liquid evaporate unless 

they have achieved a critical radius, so the embryonic nuclei are broken up by 

thermal agitation unless aggregates of sufficiently large size are developed by 
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random atomic movements. (It is by overcoming difficulties in the spon¬ 

taneous formation of adequate nuclei that the seeding of supersaturated 

solutions with a small crystal is often successful in stimulating crystallisation.) 

Once suitable nuclei are present they will grow by assimilating more and more 

atoms from the medium, and by joining together. In this latter case of the con¬ 

junction of nuclei, energy considerations favour their orientation into a single 

structural continuum, though sometimes it is thought that this mechanism 

might be responsible for a slightly less favourable arrangement which develops 

into the different sub-components of a twinned crystal (see growth twins in 

Appendix D.2). The frequency of nuclei of suitable size will also depend on 

crystallisation conditions; if the number per unit volume is large, the crystal¬ 

line texture will be that of a fine grained aggregate; but when spontaneous 

nucleation is rare (or crystallisation requires the introduction of a seed), the 

texture is coarse and large single crystals have an opportunity to grow. 

Another important factor in any crystallisation sequence is the growth rate, 

and this, too, must be related to conditions within the medium. In the assimil¬ 

ation of material on to a growing crystallite, it is reasonable to assume that 

any growth surface will be irregular on an atomic scale; there will be pits due 

to atomic vacancies and projections in the form of incomplete atomic layers 

(Fig. C.l). In the process of adding the atoms required for growth, some will 

form permanent attachments immediately or shortly after collision with the 

crystallite, but some will merely be adsorbed temporarily to return to the 
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medium after an interval on the growth surface; in growth there must be a net 

flow from the medium to the crystal and this will determine the growth rate. 

Clearly some sites on an irregular growth surface are more favourable for 

permanent attachment than others; as illustrated in the figure, these are in the 

pits, or adjacent to the kinks within steps or edges of steps where atoms will be 

more securely bound. A few atoms will be deposited directly in such sites, 

but the majority will be adsorbed elsewhere on the surface and must migrate 

to such positions within the short period which elapses before they are dis¬ 

lodged and returned to the surrounding medium by thermal agitation. Under 

such circumstances, the density of inhomogeneities on a growth surface is an 

important factor in determining growth rates; but we must realise that such a 

mechanism tends to eliminate the pits, steps and kinks as extra atoms are 

added to the growing crystal. The step in Fig. C.l will be removed as the extra 

layer of atoms advances across the surface, and for growth to continue at the 

same rate similar irregularities must be created on the new surface. Vacancies 

will be generated as occasional atoms are lost to the medium by thermal agi¬ 

tation, but steps and kinks can only be formed by clusters of adsorbed atoms 

produced by their random motions; such surface nucleation can maintain the 

the irregularities which are an essential part of the growth process. The prob¬ 

lem presented is similar to that of the original spontaneous nucleation in that 

only if an aggregation of a critical minimum radius is possible can it remain 

on the surface to provide further growth points for the crystal; if conditions 

in the medium do not allow enough surface nuclei of sufficient size to develop 

before the adsorbed atoms are removed by thermal agitation, the crystal can¬ 
not continue to grow at the original rate. 

For various conditions of crystallisation, statistical treatments can be used 

to predict growth rates; densities of surface inhomogeneities can be calculated, 

the probability of the formation of suitable surface nuclei can be assessed, and 

eventually theoretical growth rates can be derived to compare with those 

measured in carefully controlled experiments on growing crystals. In general, 

such comparisons are fairly satisfactory at medium and high supersaturations, 

and it is justifiable to assume that under such conditions the processes that we 

have outlined represent a reasonable approximation to a possible growth 

mechanism. But at lower supersaturations, predicted and observed growth 

rates are very different; in some cases the divergence is so great that a crystal 

which should not perceptibly change in size over millions of years is seen to be 

growing by a human observer. At these supersaturations, it is the assumption 

of surface nucleation which causes the discrepancies; the probability of ran¬ 

dom aggregations of a critical size is so low that this mechanism could not 

possibly produce the density of inhomogeneities needed to maintain a 

detectable growth rate. However, the stage of surface nucleation could be 

omitted if the crystal contained a suitable form of inhomogeneity which was 

not eliminated by the addition of atoms during growth; this could be provided 
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by one of the imperfections described in Chapter 12.3, the screw dislocation. 

When the Burgers vector is parallel to the dislocation line, a step, whose 

height depends on the magnitude of this vector, is formed on the surface of the 

crystal. We can regard the crystal as a single spiral ramp of atoms, so that, 

although atoms added to the side of this surface step will cause the crystal to 

i'TTT'nimnitii xmnmniu 
•7/7777777777/7/77/7 • 

(a) (b) (c) (d) 

Fig. C.2. Formation of a growth spiral, (a)-(h) Show successive stages in 
the advance of the surface step due to a screw dislocation normal to the 
paper; the surface on the unshaded side of the line is lower than that on 
the shaded side; the step changes position as atoms added to the un¬ 
shaded side but is never eliminated, (i) Shows the appearance of the sur¬ 
face after growth in this manner. 

grow, the step will not disappear. The result of growth from such an imper¬ 

fection will be to form spiral patterns on the surface of the crystal, as shown 

in Fig. C.2; a simple pattern will produce a surface which is like the slide 

of a helter-skelter tower. In practice, the surface patterns may be more com¬ 

plicated with spirals and closed loops of various kinds due to interactions of 

growth at various points of the network of line imperfections contained in 

any crystal. Initially the role of dislocations in the growth process was hotly 
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disputed, and definitive evidence in the form of residual growth spirals and 

other patterns was hard to obtain, for the height of steps is usually small (of 

the order of a few lattice translations for b). Eventually direct observations of 

simple growth spirals on paraffins by electron microscopy were decisive, and 

since that time growth patterns have been found regularly on the surfaces of 

an extensive range of crystalline materials; the steps are often detected by in¬ 

terferometry and occasionally are large enough to be seen with an ordinary 

optical microscope. The importance of crystalline imperfections in the growth 

process, at least at lower supersaturations, is now universally accepted. 

C.2. The external shapes of crystals 

In crystallisation, the opportunity for individual crystals to develop charac¬ 

teristic external shapes depends on the processes of nucleation and growth 

that we have just described. Rapid crystallisation from a large number of 

nuclei is unlikely to allow the formation of any recognisable shapes in the 

crystallites, and the texture of the fine-grained aggregate will resemble an 

interlocking mosaic of irregular fragments. But limited nucleation and slow 

growth will permit the formation of single crystals of appreciable size; under 

these conditions there is a wealth of different morphological forms and habits 

to be observed, often within the same point group and even among crystals of 

the same material. Naturally, the particular conditions of crystallisation must 

be expected to play some part in determining external shape, but even in 

undisturbed and controlled growth there are wide variations in form and habit 

between crystals with the same point group symmetry but different atomic 

structures. From this it seems probable that features of the atomic structure 

must control growth forms to some extent, and in this section we shall con¬ 

sider their role in determining crystal shape. 

In a general way, morphological data support the view that the assembly of 

constituent atoms into a crystal structure takes place in the most economic 

and efficient manner; if the structure contains dominating extensible com¬ 

plexes, it is easier to continue to add atoms to one of these than to start to 

build another. For example, when a crystal structure is dominated by long, 

continuous, tightly bound, parallel chains of atoms, it is simpler for extra 

atoms to continue existing chains than to start new ones; the growth rate will 

be faster along a chain than normal to it, and any crystal develops a fibrous 

elongated habit. By similar arguments we might expect crystals with well- 

developed layered structures to have platy, tabular habits in their growth 

forms. But apart from these reasonable but rather vague generalisations, it 

should be possible to offer some explanation of the predominance of specific 

growth forms for different structures, even if the atomic arrangements do not 

contain such obvious dominating features. Such problems exercised earlier 

crystallographers, particularly in France, who sought first to establish the 



APPENDIX C 325 

precedence of forms shown by crystals of a particular substance and then to 

provide some kind of structural basis for their observations. For example, 

they might have found that the order of precedence (roughly the frequency of 

occurrence) might be cube, rhombic dodecahedron, octahedron for one 

material of class m3m but octahedron, cube, rhombic dodecahedron for 

another; they then tried to relate such a change in precedence to facets of the 

structural patterns of the two materials. 

In treatments of this problem much work was carried out by Friedel by 

applying the Law of Bravais, which asserts that crystalline forms which tend 

to occur must frequently are those whose faces are parallel to lattice planes 

containing the greatest density of points; the general validity of this state¬ 

ment is borne out by the low values of plane indices for most natural crystal¬ 

line faces which are therefore parallel to lattice planes with high concentrations 

of points; as atoms are added, such planes show the largest increases in sur¬ 

face area and will eliminate any other planes with higher indices which 

attempt to develop. An illustration of this approach is provided by Fig. C.3, 

in which the distributions of lattice points on (100), (110) and (111) planes for 

the P, F and / cubic lattice types are drawn; the smallest area is marked in 

each case, and this can act as a measure of the density of lattice points. From 

this diagram we see that the relative dominance of the three shapes derived 

from these planes depends on the lattice type so that: 

P-lattice has cube, rhombic dodecahedron, octahedron 

F-lattice has octahedron, cube, rhombic dodecahedron 

/-lattice has rhombic dodecahedron, cube, octahedron.* 

Experimentally there does seem to be some correlation between lattice types 

and distributions of these forms; the dominant form for NaC103 (P-lattice) is 

the cube, for diamond (P-lattice) the octahedron, for garnets (/-lattice) the 

rhombic dodecahedron, and many other examples can be found to support 

the predictions of this illustration, and those for the different cells and lat¬ 

tices in other systems to which similar arguments can be applied. Promising 

though this is, there are many anomalies even among the simplest materials, 

as when NaCl and KC1 (both with P-lattices) commonly crystallise as cubes. 

Clearly, a treatment which seeks to differentiate various atomic structures 

solely on grounds of their different lattice types and cell shapes cannot be 

more than the first step in a theory of growth forms. 

Later work by Donnay and Harker takes into account the presence of 

associated symmetry elements (particularly the glide planes and screw axes of 

space groups). These authors have worked out lists of forms in expected 

order of precedence for all space groups, and have shown that these account 

for many of the anomalies of the earlier treatment; for the various space 

* Actually on these arguments two other forms the icositetrahedron {211} and the tetra- 
hexahedron {310} have precedence over the octahedron for an /-lattice. 
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groups of the cubic system, for example, the dominant form can be {100} or 

{110} or {111} for P and F lattice types and {100} or {110} or {211} for / lattice 

types, depending on the particular symmetry elements of the group. They even 

suggest that, for a particular material, a list of forms in an observed order of 

precedence can be used to resolve any ambiguities in space group determina¬ 

tion which remain after X-ray examination and other physical tests. Despite 

the successes of these refinements, there are still, unfortunately, many 

examples which confound what is essentially a geometrical approach. 

Undoubtedly some of these discrepancies may be discounted as due to the 

many and various extraneous factors that are known to be important in 

experimental crystallisation; but at best geometrical considerations can only 

represent an aspect of the atom-by-atom assemblage of a crystalline solid. 

Ultimately, explanations must be sought in an assessment of the detailed 

energy changes in nucleation and growth; this requires calculations based on 

the positions of atoms, the attractive forces between them, etc., at present a 

formidable undertaking for even the simplest structure. Until this is possible, 

we must accept that the less sophisticated geometrical arguments that have 

been illustrated provide the best available framework for an understanding of 

the influence of structural factors on external shapes of crystals; we should 

not be surprised, however, by the unexpected forms and habits shown by 

natural and synthetic crystals; and the important technical field of the con¬ 

trolled growth of crystalline materials in varying shapes and sizes must 
remain something of an art. 

Further reading 

Buckley, H. E. 1951. Crystal growth. Chapman and Hall. 
Strickland-Constable, R. F. 1968. Kinetics and mechanism of crystallisation. Academic 

Press. 
Van Hook, A. 1961. Crystallisation. Chapman and Hall. 
Verma, A. R. 1953. Crystal growth and dislocations. Butterworth. 
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TWINNING IN CRYSTALS 

D.l. The nature of twinning and its geometry 

The aggregates of separate crystals which form most polycrystalline solids 

can be randomly oriented or they can have some degree of preferred orienta¬ 

tion; in either case, the angular orientations between a grain and its neigh¬ 

bours are variable from one crystal to the next. There are, however, some 

Fig. D.l. Cubes in parallel growth. 

composite crystalline solids which have sub-components related to one another 

in a fixed orientation according to the geometry of their crystallographic 

lattices. Such solids may be large and recognisably composite, as when the 

sub-components display morphological shapes, or they may be small, as when 

sub-components are contained within only a single irregular grain of a poly¬ 

crystalline aggregate; whatever their dimensions and shape, the structure 

within each sub-individual is the same, but they are distinguished by bound¬ 

aries across which there is a specific orientation change. Composite crystals of 

all kinds were encountered in the earliest morphological studies, which 

showed that, apart from simple random aggregation, there are often types of 

parallel growth in which all recognisable sub-components are strictly parallel 

to one another; Fig. D.l depicts two cubes in parallel orientation (there are 

often many more) but there must be structural continuity throughout the en¬ 

tire solid. More significantly, however, composite crystals with sub-individuals 

in different but fixed angular positions were found so regularly for the same 

material that they could not be dismissed as accidents of crystallisation; the 
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two cubes of Fig. D.2 are intergrown in different orientations, but the angular 

dispositions of the two sets of faces are always the same whenever such an 

intergrowth is found. Composite crystals of this kind are described as 

twinned and their shape and angular relationships were specially studied by 
the morphologist. 

As a result of this work, the nature of the twin laws which describe the 

relations between the orientations of the lattices of sub-components was dis¬ 

covered ; in simple geometrical terms it was found that every twin law could 
be formulated either: 

(a) in such a way that the orientation of one sub-individual to the next is 

described by rotation about the normal to a lattice plane {hkl) through 

360°/n. In most common rotation twins n = 2, and, although the twin axis 

can be a lattice row in more symmetrical systems, it cannot be assigned a 
simple symbol [UVW] in every case, 

or (b) in such a way that the orientation of one sub-individual to the next is 

described by mirror reflection across a lattice plane {hkl); such combinations 
are known as reflection twins. 

Fig. D.2. A cube twinned by rotation about a triad axis. 

From this it is clear that the twin axes which relate sub-components 

by rotation cannot be symmetry axes of even degree and that the twin 

planes of a reflection relationship cannot be mirror-symmetry planes, for 

these would always produce sub-individuals in parallel orientations. 

Moreover, the distinction between reflection and rotation twins is significant 

only in acentric crystal classes. Fig. D.3(a) shows schematically the develop¬ 

ment of a composite crystal by both types of operation in a centric class; 

an identical twinned crystal is produced by reflection in a plane and 

rotation (through 180°) about the normal to this plane so that the composite 

shape could be described as a crystal of class mmm (with certain axial ratios) 

showing the forms {001} and {MO} twinned by reflection in (MO) or twinned 

by rotation about the normal to (MO). In Fig. D.3(b), however, the centre of 

symmetry has been destroyed by hatching the (MO) face; the arrangement of 

hatched faces is now different in the composite shapes produced by the two 
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types of twinning operation, and we must recognise this distinction in any 

description. 

During these morphological studies, twinning acquired an extensive 

descriptive terminology; apart from names specific to twins of particular 

substances (after a locality, viz. a Brazil twin of quartz or after the shape of 

the composite crystal, viz. a butterfly twin of calcite), there are some more 

general terms in common use that merit some explanation. Twins are simple 

when only two sub-individuals are present, and multiple when there are more 

than two orientations; they are said to be interpenetrant (or penetration) twins 

Fig. D.3. Schematic representation of twinning by reflection and rota¬ 
tion. (a) Equivalence in a centric crystal, (b) Non-equivalence in an 
acentric crystal. 

when sub-components are intimately embedded in one another (as in Fig. 

D.2) or contact twins when sub-components are joined along a definite plane 

(as in Fig. D.3); in this latter case the composition (or junction) plane may, or 

may not, be the same as the twin plane and will need description. A crystal is 

described as having lamellar twinning when it is divided into thin plates of 

sub-components formed by multiple twinning on parallel twin planes: or as 

having mimetic twinning when it is multiply twinned so that, considered as a 

homogeneous solid, the arrangement of faces is apparently indicative of 
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higher symmetry than the material actually possesses. Rotation twins are sub¬ 

divided into: (i) normal, in which the twin axis is perpendicular to the com¬ 

position plane; (ii) parallel, in which the twin axis is a possible zone direction 

in the composition plane (which is not necessarily a possible crystallographic 

100 

Fig. D.4. Twinning by rotation on the stereogram, (a) The general move¬ 
ment of a pole, (b) The stereogram of a cube twinned by rotation about 

[III]. 
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plane); and (iii) complex, in which the twin axis is a direction in the composi¬ 
tion plane normal to a possible zone axis for the crystal. 

The angular relationships between lattice directions in sub-components 
related by a particular twin law are readily displayed on a stereogram. Rota¬ 

te) 

Fig. D.5. Twinning by reflection on the stereogram, (a) The general 
movement of a pole, (b) The stereogram of an orthorhombic crystal 
showing the forms {001} and {hkO} twinned by reflection in (MO). 
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tion twinning requires twinned and untwinned poles to be related by the 

stereographic operation of rotation axes, which has already been described in 

Chapter 3.3. Unless otherwise stated, the rotation may be taken as 180°, and 

this causes all great circles through the poles of the twin axis to be brought 

into coincidence with themselves in a reversed position; in other words, as 

illustrated in Fig. D.4(a), an untwinned pole P is repeated in a twinned posi¬ 

tion P by transporting it along the great circle to the pole of the twin axis and 

on to a point which is angularly equidistant on the other side; Fig. D.4(b) 

plots the poles for the interpenetrant twin shown in Fig. D.2 developed when 

the cubic {100} form is twinned about [TT1 ]. Reflection twinning relates twin¬ 

ned and untwinned poles by the operation of a mirror symmetry plane; in 

other words, as illustrated in Fig. D.5(a), the untwinned pole P is carried 

along a great circle, which intersects that of the twin plane at right angles, to a 

symmetrical twinned position P on the other side of the point of intersection; 

Fig. D.5(b) plots the poles for the contact twins shown in Fig. D.3 produced 

when orthorhombic forms {001} and {hkO} are twinned by reflection in (M0). 

Whatever twin law is operative, it is important to realise that the crystallo¬ 

graphic directions represented by twinned poles must be indexed in terms of 

the twinned orientations of lattice translations defining the cell; their indices 

must, therefore, be the same as those of the corresponding untwinned pole, 

but they are distinguished from these by underlining; thus in Fig. D.4(b), 

(100) must be interpreted as the position of the (100) pole when twinned by 

rotation about an axis [TT 1]. 

D.2. The genesis of twins 

We have introduced the concept of twinning and its geometry from morpho¬ 

logical studies in which certain crystals, by some quirk of the growth process, 

develop as regular composite solids; such crystals are at all times visibly 

twinned (i.e. there is no detectable stage in growth at which the solid is a 

homogeneous single crystal) and are often called primary (or growth) twins. 

There are, however, other origins of twinned crystals in which sub-com¬ 

ponents are formed in a homogeneous single crystal after growth; such 

crystals are often known as secondary twins. In this section we discuss probable 

atomic mechanisms responsible for both primary and secondary twins. 

Growth twinning is very widespread and is found in some form in about a 

quarter of crystalline substances; its incidence is variable, and some materials 

rarely, if ever, develop single crystals of any appreciable size, whilst some are 

never twinned; observed twin laws are many and diverse as are the forms and 

arrangements of the sub-individuals that are produced. Undoubtedly, par¬ 

ticular conditions of crystallisation must play some part in the nucleation of 

growth twins, but the ability to grow twinned associations must also be re¬ 

lated to the internal atomic structure and its geometry. Early in the study of 
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twins it was found that twin axes and planes were often the directions of 

pseudo-elements of symmetry in a particular material; this suggests that 

twinning is most likely when the underlying structure has a pseudo-cell which 

approximates in symmetry and shape to a higher crystal class. When such a 

structure is twinned, this pseudo-cell is maintained throughout all the sub¬ 

individuals, which are separated by boundary regions with atomic arrange¬ 

ments in conformity with the structural orientations adopted by adjacent 

o o o o 

v ’ v rv] v 
° £ <J> 

v' v * v * v o o o 

(a) 

• at height 0 ^ at height 6 
Ca , . , i C03 , 

oat height g ^7 at height 3 

y 

o o 
• .—, • ,—,\« 

00000 

4 ’ V * A * V * 
\v:a:v 

• • _ • 

o o ' o 

y o 

\ \ • 
\ 
\ . 
o\ o\ 

v: v: v\v\a : v ; 
a\a'W (b) 

o\ O \ o 
a _ • 

000 

, \# \ 

V V V v\v\ o \ o \ 

\ (110) 

planes 

Fig. D.6. Growth twinning in aragonite (CaC03). (a) The structure pro¬ 
jected on (001); only the contents of the lower half of the cell are shown, 
(b) The structure of an aragonite crystal twinned by reflection in (110). 

sub-components. It is possible to provide structural explanations for most 

twin laws in this way, and twin formation is then taken to be an accident in 

the growth process when some atoms in the boundary region are attached in 

incorrect sites. These ideas are best demonstrated by example, and one of the 

most suitable is provided by aragonite, a variety of CaC03. Aragonite is 

orthorhombic but pseudo-hexagonal (a = 4-96, b = 7-97 (in A), i.e. a ~ 

\Z3b), and shows twins on {110} which may be repeated to give mimetic twins 

in crystals of approximately hexagonal cross-section. Fig. D.6(a) shows an 
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idealised representation of the aragonite structure projected on to (001); for 

clarity, only the contents of the lower half of the cell are included (in the upper 

half of the cell the planar C03 groups are rotated through 180° and are at 

heights of § (above the shaded triangles) and i (above the unshaded tri¬ 

angles)). The hexagonal pseudo-symmetry is obvious in the arrangement of 

Ca ions, and a truly orthorhombic cell is defined only by the different heights 

and orientations of C03 groups. When twinning takes place by reflection on 

(110), the structural pattern of Fig. D.6(b) will be formed; a hexagonal 

pseudo-cell in the arrangement of Ca ions is continuous through the composite 

crystal and the transition layer (between the dashed lines) may be thought of as 

part of the structure of either of the adjacent sub-components. As an accident 

in growth to initiate twin formation, we may imagine that as the lower crystal 

grows from left to right, the atoms of a C03 group continuing one of the rows 

parallel to the x-axis are added in the wrong orientation and at the wrong 

height, i.e. as a shaded triangle instead of an unshaded one or vice versa. 

This mistake will raise the energy of the crystal above the minimum which it 

has when the C03 group is correctly oriented to extend the original single 

crystal, and the magnitude of this energy change determines the probability 

of such a mistake; when it is too large, even if incorrect siting of the atoms 

occurred there would be little chance of permanent attachment, and the group 

would evaporate from the growing surface to be re-deposited in a much more 

energetically favourable correct position. Under the conditions of structural 

conformity in boundary regions, as in aragonite, the energy increase due to a 

mistake cannot be very large; for with the continuity of first nearest neigh¬ 

bours in both sub-components, any energy difference between correct and 

incorrect locations is determined by the effects of more distant neighbours, 

which must necessarily be quite small. Once the growth mistake has been 

made, it will play its part in influencing the orientation of further atoms (in 

C03 groups) as they are added, and the second sub-component will begin to 

grow in the twinned orientation. 
Moving from growth twins to secondary twins, these may be divided into 

two categories according to their origins; but we should perhaps emphasise 

first that all twins (primary or secondary) have the same kinds of geometrical 

relationships (twin laws, etc.) and it is only in their modes of formation that 

they differ. Transformation twins are secondary twins which can develop in 

certain types of transition between alternative structural arrangements of the 

same constituent atoms; polymorphism (or the occurrence of alternative 

crystal structures with the same chemical constitution) is very common in 

many crystalline solids. In one kind of structural transformation, atoms have 

the same first nearest neighbours in both polymorphs which differ only in the 

arrangement of second nearest and more distant neighbours; sometimes the 

transition does not involve the breakage of any permanent bonds; for the 

structures change from one to the other by simple geometrical movements in 
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the linked framework of atoms (often called a displacive change). Fig. D.7 

depicts a model for such polymorphic change; a shaded square represents an 

atom and its first nearest neighbours (such as the co-ordination polyhedron 

of anions surrounding a cation). A segment of relatively open and symmetrical 

structure is represented by B, and A± and A2 represent similar segments of less 

symmetric collapsed structures based on a similar linkage of shaded squares; 

we notice that transitions between all three structures can be effected without 

breaking any links within or between the square structural units, and that the 

energies of Ax and A2 are identical for they are mirror images of one another. 

The more open symmetrical structure of polymorph B is likely to be stable at 

I 

plane 

Fig. D.7. A model for transformation twinning. 

more elevated temperatures when the atom sites linking the units together at 

the corners of squares will represent average positions of atoms which have 

considerable thermal motion. In fact, these mean positions are midway be¬ 

tween the corresponding atomic sites for the alternative polymorphs Ax and 

A2, and an interpretation of structure B is that it is the pattern of sites that we 

shall observe when the thermal motion is sufficient to provide atoms with the 

energy necessary to oscillate between the positions of and A2. As the 

temperature is decreased, the amplitude of atomic thermal vibrations will 

become smaller, until the motion of the atoms is insufficient to pass through 

the neutral point between Ax and A2; the less symmetrical collapsed structure 

will be developed and we shall recognise that our material has undergone a 
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polymorphic transformation. But as this happens some regions of the homo¬ 

geneous crystal of B will nucleate and grow the low temperature structure in 

orientation Ax and others will produce a similar structure in orientation A2; 

the crystal will become composite with differently oriented structural regions 

related by mirror symmetry, i.e. we have formed a twinned crystal. Two of the 

many polymorphic modifications of SiOa, high quartz (hexagonal) and low 

quartz (trigonal), both with structures based on linked frameworks of Si-0 

tetrahedra, undergo such a transition at 573 °C; transformation twinning by 

this mechanism is considered to be the origin of sub-components twinned 

according to the Dauphine law which are found in many low quartz crystals 

and which may be removed permanently to give homogeneous single crystals 

of low quartz after suitable controlled heat treatments. 

\ 

Fig. D.8. Atomic movements on a (110) plane of a cubic metal with an 
F-lattice to produce glide twinning. 

Secondary twinning can also occur as part of the process of plastic deforma¬ 

tion of single crystals; it is particularly important in metals for which the 

atomic mechanism has been widely studied but is also found in many other 

inorganic materials and minerals (such as calcite CaC03, sphalerite ZnS, etc.). 

The twinned orientations are produced by atomic movements comparable to 

those of slip (Chapter 12.3) though they differ in the form of movement and 

do not necessarily have the same glide planes or directions for a given struc¬ 

ture. In slip there is uniform displacement of an entire block of structure 

across the glide plane, whereas in glide twinning the twinned orientation is 

produced by atomic displacements which are proportional to their distance 

from the twin plane. Fig. D.8 shows the atomic movements within a (110) 

plane of a face-centred cubic metal which produce sub-components twinned 
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by reflection in a {111} plane; in this twinning the glide planes are {111} and 

the glide direction is <112), but, as the diagram shows, the atomic displace¬ 

ments of planes are those of a uniform shear strain with movements related to 

distances from the twin plane. Notice, too, that the glide movements must be 

made with the correct sense, for a simple reversal will not produce the twinned 

orientation; in slip the direction of movements can be in either sense. Stresses 

necessary to initiate twinning movements tend to be larger than those required 

for slip, and twins are often formed during deformation so as to reorient a 

structure into a position where slip on an alternative system is favourable. 

The general similarity of the atomic movements of deformation twinning to 

those of slip suggests that they may also be caused by dislocation motion 

(Chapter 12.3); any dislocations involved, however, would have to have Bur¬ 

gers vectors which are not units of the atomic repeat and would have to be 

active on all the successive glide planes on one side of the boundary between 

sub-components formed by the twin plane. Systems of dislocations which can 

account for the necessary atomic movements in relatively simple metallic 

structures have been proposed, but direct confirmation of such mechanisms 

has not yet always been obtained. In more complex inorganic structures the 

atomic movements in deformation twins are usually capable of a rational 

structural explanation, but any dislocation systems involved in their 

propagation are less well understood. 

Further reading 

Hall, E. O. 1954. Twinning. Butterworth. 
Kelly, A. and Groves, G. W. 1970. Crystallography and crystal dejects. Longmans. 
Klassen-Neklyudova, M. V. 1964. Mechanical twinning of crystals. Translated by Con¬ 

sultants Bureau, New York. 
Phillips, F. C. 1963. An introduction to crystallography. Longmans. 



ANSWERS TO EXERCISES 

Chapter 2.6 

4. pmg; m, ±(}, y): 2, (0, *); (}, }): 2, (0, 0); (}, 0). 

Chapter 3.5 

2. (iv) Angle between great circles ~ 89}°; (vi) Angle between great circles ~ 58°. 
3. (a) 4-fold axis, m-planes and a centre; (b) 4-fold axis, two 2-fold axes; (c) 4-fold axis, 

two m-planes. 
New group contains 4-fold axis, four 2-fold axes, five m-planes and a centre. 

4. (i) 2770 miles range; (ii) 190 days; 73° W. of S.; (iii) (a) yes, (b) no, (c) yes, (d) yes. 

Chapter 4.5 
3. mmm, 6/mmm, m3m; they are all centric. 
4. 3 (the triad), 32 (the diads); 3 (the triad). 

Chapter 5.5 

1. (ii) 126°; (iii) 13-6 mm; 8-2 mm; (iv) 25°; (v) a' = 6-95 cm, b' = 3-00 cm, y' = 126°; 
(vi) (12); (81). 

2. (i) a is [503]; b is [311]; (ii) (335) in (a), the rest in (b); (iii) (345). 
3. (112)„; [Oil],. 

4. (i) (100)(C)01) = 77°; (010X001) = 86°; (100X010) = 74°; (ii) (100)010) = 34°; 

(100X1 TO) = 51°; (iii) (110X110] = 11°. 
5. 0-66:1:0-55; jS = 116°. 
6. (315); 251°. 
7. (411); (310), (532); c/a = 2-228. 
8. 26° 31'; h = 3, l = 1. 
9. 66° 48'; (i) [12.1], [11.1], [2I.I]; (ii) [Olll], [HOT], [1011], 

Chapter 6.6 
1. (i) 3; {hOl}, {010} special, {hkl} general; (ii) 7; {100}, {010}, {001}, {M0}, {0kl}, {hOl} 

special, {hkl} general; (iii) 10; {0001}, {0001}, {1010}, {0110}, {1120}, {M/0}, {hOhl}, 
{0kkl}, {hhThl} special, {hkil} general; (iv) 8; {001}, {100}, {110}, {MO}, {AO/}, {hhl}, 
{hkl} special, {hkl} general; (v) 3; {0001}, {M/0} special, {hkil} general; (vi) 8; {100}, 
{110}, {MO}, {MO}, {111}, {hll}, {hhl} special; {hkl} general. 

2 2 
2. (i) 3, 32 and 3m; (ii) 4/m, 422, 42m and 4/mmm; (iii) 5; (iv) 432, — 3, m3m; — 3. 

3. (ii) [010] zone: (001X101) = 50° 06'; (101X001) - 129° 54'; (001)001) = 50° 06'; 

(lOlXOOl) = 129° 54'; [001] zone: (010XT10) = 59° 22'; (IlOXlIO) = 61° 16'; 

(IIOXOTO) = 59° 22'; (OlOXlTO) = 59° 22'; (110)010) = 61° 16'; (110X0T0) = 
59° 22'; (iv) 24° 05'. 

4. (i) 4/mmm; (ii) c/a = 0-537 with forms {100}, {110}, {111} and {311}. 
5. 0-734; 143° 42'. 
6. 6/m, 62 or 6/mmm; {2131}, another hexagonal bipyramid, class 6/m. 
8. {110}, {014}; ax = bm, bx — 2Cm, cx — Qm\ {101}, {180}. 
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Chapter 7.5 
1. Cubic F-lattice for Au, tetragonal P-lattices for Sn02 and CO(NH2)2; (a) Sno, Sm, 

Sn2 are 2-89, 7-06, 5-00 (A); d110, dllu d222 are 2-89, 2-36, 1-18 (A) respectively; (b) 
Sno, Sm, Sii2 are 6-71, 7-43, 9-26 (A); d110, dllu d222 are 3-35, 2-31, 1-15(5)(A) 
respectively. 

2. Cd: (0, 0, 0) Cl: ± (u, u, u). 
3. Screw diads non-intersecting in P2i2i2i; 1222. 
4. C2/m; (0, 0, 0; 0) + : ± (x, y, z); ± (x, y, z). 
5. Ccca; for G.E.P’s and S.E.P’s see Vol. 1, International tables for X-ray crystallography, 

p. 157; Ccca (abc); A baa (cab); Bbcb (bca); Bbab (acb); Cccb (bad); Acaa (cba). 
6. Rlc: 12 G.E.P’s (on rhombohedral axes); 2 3 0, 0, 0; hi, i; 

2 32 hiiil $• 

P6/mcc: 24 G.E.P’s; 2 6/m 0,0,0; 0, 0, i; 

2 62 0,0, i; 0, 0, l 

7. 16 G.E.P’s; 2 4mm i,i,z; \, J, z; 

2 42m hhi; hhi; 

2 42m i, i, 0; i, *, 0. 

8. Pmcn; Ca: 4 S.E.P’s on m; C: 4 S.E.P’ s on m; O: 4 S.E.P’s on m, 8 G.E P’s; Pnma. 

Chapter 8.6 
1. (i) 25 KV; i A; (ii) 0-0019 cm; 43%; (iii) To avoid fluorescence, wavelengths greater 

than 1-6 A must be used; (iv) 0-10 cm. 
2. (iii) 60°. 
3. (101) planes, $10i = 15^°; (202) planes $202 = 32-1°; (303) planes, 03o3 = 52 9°. 
4. (a) A = 2 cos 2tt (hx + ky) cos 2-nlz; B = 2 sin 2v (hx + ky) cos 2nlz. No condi- 

tions. 

(b) A = 8 cos 2n (hx — \ cos 2n( ky - 4 )c°s2 ”(lz 4 ) B = 0 

0kl reflections observed only if k 4- / =2n 
hOl 99 „ „/i + /= 2n 
hkO „ 99 „ „ h + k — 2 n 
hOO 99 „ „ h = 2n 
OkO 99 99 99 Jc — 2n 
00/ „ 99 „ „ / = 2 n 

(c) A = 16 COS2 2tt ^ COS 2tr(hx — 

k + / 
4 

j cos 2TT^ky + - j cos 27i[lz 

+:-) 
;£ = 0 

hkl reflections observed only if h + k = 2n 
0 kl 99 „ / = 2n, k = 2 n 
hOl 99 „ / = 2n, h = 2n 
hkO 99 „ h = 2n,k — 2n 
h00 „ 99 „ h =2n 
OkO 99 „ k — 2n 
00/ „ 99 „ l = 2n 

5. (i) 100, 200, 300, 110, 330 are absent. 
(ii) 100, 300, 110, 330 are absent. 
(iii) For diamond, hkl reflections are absent unless h + k, k + l, l + h = 2n and 

h + &+ / = 2n + 1 or 4/z 
0kl reflections are absent unless k + l = 4n (k, l, = 2n), etc. 
hOO reflections are absent unless h = 4n, etc. 

For NaCl, hkl reflections are absent unless h + k, k + l, l + h = 2n. 
6. (i) Diffraction symbol 2/mP21/-; space groups P2X or P21/m. 

(ii) Diffraction symbol mmm Fdd~; space group Fdd2. 
(iii) Diffraction symbol 3mR—c; space groups R3c or R3c. 

7. Diffraction symbol mmmPnna; space group Pnna. Intense reflections with h = 2n, 
k + l = 2n due to heavy scatterers (Sn) in S.E.P’s at T. 
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8. Space group Fd3m; Zn atoms in S.E.P’s at 43m. 
A1 atoms in S.E.P’s at 3m. 
O atoms in S.E.P’s at 3m. 

Chapter 9.5 
1. (a) [100], mm2; [Oil], m; [111], I. 

(b) In Laue group 4/m, [100], m; [Oil], I; [111], I. 
In Laue group 4/mmm, [100], 4mm; [Oil], m; [111], I. 

(c) In Laue group m3, [100], mm2; [Oil], m; [111], 3. 
In Laue group m3m, [100], 4mm; [011], mm2; [111], 3m. 

2. a = b = 4-50, c = 7-17 (in A); lattice type, A. 
3. 40 KV. 
4. a = 5-15, b = 1'1\, c = 12-35 (in A), = 107° 54'; lattice type, B. 

Matrix for change of axes to smaller conventional cell, a = 6-20, b — 7-71, 
c = 12-35 (in A), fi — 156° 52', lattice type P: 

0 T 0 

0 0 1 

[100] ->[201]; [010] [0T0]; [001] -> [001]; [101]^ [100]; [Oil][Oil]; [110] 
[211]; [111]—> [212]. 

5. 4/mmm, c = 9-50, a — 3-75 (in A), lattice type /, 4 Ti02 units per cell. 
6. 36° 38' or 107° 10'. 
7. Morphological description corresponds to B lattice type. A description in terms of P 

lattice type is: 
Class 2/m, a:b.c — 0-811:1:1-714, j8 = 155° 32', showing the forms {010}, {001} 

and {02l}. 

Chapter 10.5 
1. 82°. 
2. h2 + k2 + l2 = 2, 3, 4, 6, 8, 11; a — 4-27 A (for lattice type P); (521). 
3. h2 + k2 -f l2 = 3, 4, 8, 11, 12, 16, 19 (the last two lines are doublets); lattice type, F; 

a = 4-290 A. 
4. Compound A: lines 1,2, 3, 5, 7, 8, 9, 11, 12, 13, 15, 18 in the list, with h2 + k2 + l2 = 

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 19 respectively to give lattice type P, a = 4-13 A. 
Compound B: lines 4, 6, 10, 14, 16, 17, 19, 20 in the list, with h2 + k2 + l2 = 3, 4, 

8, 11, 12, 16, 20, 24 respectively to give lattice type F, a = 4-04 A. 
5. CaTi204. 
6. Laue group 4/mmm, lattice type / with c = 9-90, a = 3-46 (in A). 
7. Indices of lines are: 002, 021, 101, 120 and 111, 121 and 002, 130, 022, 131, 112, 200 

and 041. 22% Fe2Si04 approx. 

Chapter 11.7 
2. An ellipse with one principal axis \/2 times the other; the shorter axis is ||y-axis. 
3. (ii) 67° 58' 
4. (i) n„ = 2-61, n’e = 2-68; o vibration direction parallel to trace of x-axis. 

(ii) {001} cleavage fragment will show inclined {210} cleavage traces; «,(= 1-649) is 
associated with vibration direction parallel to bisector of obtuse angle between cleav¬ 
ages, 1-639) is associated with other vibration direction parallel to bisector of 
acute angle. 

{210} cleavage fragment will show perpendicular cleavage traces; parallel to one of 
these is vibration direction with associated na(= 1-637), parallel to the other there is 
intermediate refractive index (1-643). 
(iii) (100) face: vibration directions parallel (and perpendicular) to cleavage trace, 
with «*(= 1-586) parallel and «fi(= 1-590) perpendicular. 
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(010) face: vibration directions inclined to cleavage trace with ny = 1-600 at 25° 
and na = 1-560 at 65°. 

5. (i) Planes of groups all parallel normal to z-axis. 
(ii) Planes of molecules likely to be in several directions. 
(iii) Molecules all parallel to z-axis. 

6. (i) (a) Classes 32 or 3m; (b) Class 32. 
(ii) P4nc. 
(iii) 432; Space group P4232 which is uniquely determinable. 
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Absent reflections, 211 
Absorption coefficients, 185 
Absorption edges, 185 
Absorption of X-rays, 185, 208 
^-centred cells, 142 
Acentric classes, 73 
Acicular habit, 134 
c-glide planes, 159 
Alpha (a) doublets, 182 
Alums, 281 
Amorphous state, 2 
Anatase, 235 
Angular relationships, 90 

on the stereogram, 38, 302 
Anisotropic behaviour, 255 
Aragonite, 177, 334 
Atomic scattering factors, 203 
Axes of symmetry, improper, 57 

inversion, 57 
rotation, 50, 56 
screw, 159 

Axial ratios, 86 
Axial systems, choice of, 84 

cubic system, 101 
hexagonal system, 103 
monoclinic system, 94 
orthorhombic system, 98 
tetragonal system, 99 
triclinic, system, 91 
trigonal system 102 

Axial systems, space groups, 163 
transformation between, 88 

Back reflection photographs, 223 
Barker index, 135 
Basal pinacoids, 119 
5- centred cells, 142 
Beryl, 128 
6- glide planes, 159 

Biaxial properties, 268 
Bipyramids, dihexagonal, 125 

ditetragonal, 125 
hexagonal, 125 
orthorhombic, 119 
tetragonal, 125 

Biterminal axes, 73 
Body-centred (/) cells, 142 
Bradley-Jay mounting, 240 
Bragg angle, 200 
Bragg-Brentano focusing system, 242 
Bragg law, 200, 219, 236 
Bravais lattices, 154 

cubic, 149 
hexagonal, 149 
monoclinic, 144 
orthorhombic, 144 
tetragonal, 149 
triclinic, 143 
trigonal, 145 

Bravais, Law of, 325 
Burgers vector, 287 

Cadmium chloride, 177 
Calcite, 125 
Camera constant, 241 
Cassiterite, 9 
C-centred cells, 142 
Cell contents, calculation, 10 
Cell shapes, determination by powder 

methods, 244 
three-dimensional, 141 
two-dimensional, 22 

Centre of symmetry, 58 
c-glide planes, 159 
Characteristic radiation, 181 
Circumscribing sphere, 34 
Closed forms, 119 
Cold-cathode X-ray tubes, 183 



344 INDEX 

Complex twins, 332 
Composition plane, 330 
Conductivity, 261 
Constancy of angle, law of, 112 
Contact goniometer, 113 
Contact twins, 330 
Co-ordination, 3 
Co-tangent relationships, 307 
Covalent binding, 5 
‘Cross-adding’ in zones, 82 
‘Cross-multiplication’ of plane integers, 80 
Crystal chemistry, 4 
Crystal classes, 32, 59 

determination by physical methods, 273 
holosymmetric, 59 
symbolic notation, 69 

Crystal forms, 117 
Crystal habit, 134, 324 
Crystal structures, 2 

cassiterite, 9 
gold, 6 
heterodesmic, 5 
homodesmic, 5 
urea, 10 

Crystal systems, three-dimensional, 59 
two-dimensional, 27 

Crystallinity of solids, 2 
Crystallisation, 320 
Crystallographic axes, choice of, 84 
Cube, 132, 325 
Cubic system, cell shape, 64, 149, 244 

space groups, 172 
Cuprite (Cu20), 252 

Defects, 280 
Density, 11 
rf-glide planes, 159 
dhki values see Interplanar spacings 
Diad axes, 50, 56 

screw, 159 
Diad points, 21 
Diagnostic forms, 134 
Diagonal glide planes, 159 
Diamond, 5, 216 
Diamond glide planes, 159 
Dielectric susceptibility, 261 
Diffraction by powders, 236 

single crystals, 219 
Diffraction symbol, 215 
Dihexagonal bipyramid, 125 

prism, 125 
Direction indices, 76 
Dislocations, 285 

edge, 287 
screw, 287 

Displacive changes, 336 
Ditetragonal bipyramid, 125, 137 

prism, 125, 137 
Ditrigonal scalenohedron, 120 
Dodecahedron, rhombic, 132 
Domes, 120 
Double refraction, 266 

and structure, 271 

Edge dislocation, 287 
Elastic properties, 262 
Electrical conductivity, 261 
Electromagnetic waves, in isotropic media, 

263 
in anisotropic media, 264 

Electron diffraction, 202 
Elements of symmetry, in crystalline point 

groups, 56 
in crystalline space groups, 157 
in planar point groups, 27 
in planar space groups, 28 

Enantiomorphous classes, 73, 274 
pairs, 18 

Equations to the normal, 79 
Equivalent positions, general, 29, 164 

special, 30, 167 
Errors, in powder lines, 241 
Etch pits, 275 
Euler’s construction, 310 
Excitation voltages, 180 
Expansion, thermal, 261 
Extinction, 209 
Extrapolation methods for powder records, 

246 

Face-centred cells, 142 
Face (or plane) indices, 77 

at intersection of zones, 82 
Faults in crystals, 280 
F-centred cells, 142 
Fibre textures, 249 
Film blackening, 207 
Film shrinkage, 241 
Filters, X-ray, 187 
First-order properties, 261 
Fletcher indicatrix see Optical indicatrix 
Fluorescent radiation, 186 
Focus of X-ray tube, 184 
Forms, crystal, 117 

closed, 119 
general, 117 
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open, 118 
special, 117 

Fourth-order properties, 262 
Fractional cell co-ordinates, 7, 167 
Fraunhofer diffraction, by a double slit, 190 

by a line grating, 192 
by a planar grating, 195 
by a single slit, 188 

Frenkel defects, 283 
Friedel’s Law, 211 

Gahnite, 217 
Gallium, 234 
Garnet, 132 
Gels, 4 
General equivalent positions, 29, 164 
General forms, 52, 59, 117 
Geometrical structure factors, 206, 211 
Glasses, 4 
Glide lines, 19 

planes, 157 
twinning, 337 

Gnomonic projection, 298 
angle point construction, 299 

Gold, 6 
Goniometers, contact, 113 

single-circle, 114 
two-circle, 115 

Graphical constructions on a stereogram, 
295 

Grating factor, 195 
Great circles, 36 

construction of, 40, 295 
pole of, 36, 41 

Growth forms, 324 
rate, 321 
twins see Primary twins 

Habit, 134, 324 
Heat capacity, 262 
Hermann-Maugin notation, 172 
Heterodesmic structures, 5 
Hexad axes, 50, 56 

screw, 161 
Hexad points, 21 
Hexagonal bipyramid, 125 

indexing, 105 
prism, 125 
system, cell shape, 64, 149 
system, space groups, 171 

Hex(akis)octahedron, 132 
High quartz, 337 
Holosymmetric crystal classes, 59 

morphology of, 119 
Homodesmic structures, 5 
Hot-cathode X-ray tubes, 183 
Hydrogen bonds, 5, 10 

/-centred cells, 142 
Icositetrahedron, 132 
Identification by powder methods, 246 
levins and Straumanis mounting, 241 
Improper rotation axes, 57 
Indexing, by ‘cross-adding’ in zones, 82 

cubic system, 101 
hexagonal system, 102 
monoclinic system, 94 
orthorhombic system, 98 
tetragonal system, 99 
triclinic system, 91 
trigonal system, 102 

Indexing powder patterns, 244 
Indicatrix, optical (or Fletcher), 265 
Indices, direction (or zone), 76 

plane (or face), 77 
Integrated intensity, 209 
Intensity of X-ray scattering, 202 

dependence on perfection, 209 
Interaxial angles, in crystal systems, 59, 91 

two-dimensional, 23 
Interfacial angles, 90 
Interpenetrant twins, 330 
Interplanar angles, 90 

spacings, 79 
spacings, for crystal systems, 155 

Interstitial solid solutions, 282 
Interzonal angles, 90 
Inversion axes, 57 

operations, 56 
operations, on a stereogram, 50 

Ionic binding, 5 
Isometric system see Cubic system 
Isotropic behaviour, 255 

Junction plane see Composition plane 

Ka doublets, 182, 245 
Knife edges, 241 

Lamellar twins, 330 
Lattice cells, symbolism, 142 
Lattice rows, 75 

separation of points (Suvw), 154 
Lattice translations, 15,75, 84, 141 
Lattice types, three-dimensional, 141 

two-dimensional, 16, 22 
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Lattice vacancies, 283 
Laue equations, 198, 227 

methods, 221, 222 
symmetry and groups, 225, 273 

Layer lines, 230 
Line broadening, 238 

imperfections, 283 
Linear absorption coefficients, 185 
Linearly polarised light, 264 
Liquids, 3 
Lorentz-Lorenz equation, 270 
Low angle boundaries, 291 
Low quartz, 337 

Magnetic susceptibility, 261 
Mass absorption coefficients, 185 
Maxwell’s equations, 263 
Mechanical twinning see Glide twinning 
Miller-Bravais indices, 105 
Miller indices, 103 
Miller’s law see Sine ratios 
Mimetic twins, 330, 334 
Minimum excitation voltage, 182 
Minimum wavelength, 181 
Molecular structures, 5 
Monochromatic X-rays, 187 
Monoclinic prism, 119 
Monoclinic system, cell shape, 94, 144 

space groups, 163 
Moving crystal methods, 221 
Moving film cameras, 233 
Morphological analysis, 116 
Morphological analysis in holosymmetric 

class, cubic system, 132 
hexagonal system, 125 
monoclinic system, 119 
orthorhombic system, 119 
tetragonal system, 125 
triclinic system, 119 
trigonal system, 120 

Mosaic texture, 209, 291 
m-symmetry lines, 18, 27 
m-symmetry planes, 50, 56 
Multiple twins, 330 
Multiplicity factors, 208 
Multiply primitive cells, 17, 26, 154 

Napierian triangles, 305 
Net, stereographic, 38 
Neumann’s principle, 259 
Neutron diffraction, 202 
n-glide planes, 159 
Normals to planes, 34, 77 

Normal twins, 331 

Obverse orientation, 148 
Octahedron, 132, 325 
Olivines (Mg2Si04—Fe2Si04), 254 
Open forms, 118 
Opposite of a pole, 40 
Optic axial directions, 267 
Optic sign, biaxial crystals, 268 

uniaxial crystals, 267 
Optical activity, 274 
Optical anisotropy, 263 

and structure, 269 
Optical indicatrix, 265 
Optical principles of diffraction, 187 
Optical properties, 265 
Order-disorder, 283 
Orders of reflection, 200 
Orientation by Laue photographs, 225 
Orthorhombic bipyramid, 119 

prism, 120 
Orthorhombic system, cell shape, 62, 144 

space groups, 168 
Oscillation photographs, 221, 226 

Parallel growth, 328 
twins, 331 

Parametral planes, 86 
cubic system, 101 
hexagonal system, 107 
monoclinic system, 95 
orthorhombic system, 98 
tetragonal system, 100 
triclinic system, 92 
trigonal system, 103, 107 

Penetration twins see Interpenetrant 
twins 

Permittivity, 261 
Phase angles, 205 
Phase diagram determination, 248 
Photographic blackening, 207 
Physical properties, 255 
Piezoelectricity, 273 
Pinacoids, 119, 120, 125 
Planar lattices, 16, 22, 142 

hexagonal, 23 
oblique, 23 
rectangular, 23 
square, 23 

Plane of projection, stereographic, 37 
Plane indices (or face indices), 77 
Plastic deformation, 283 
Plastics, 4 
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Point groups, three dimensional, 69 
two dimensional, 27 

Point imperfections, 281 
Polar classes, 74 

directions, 73 
Polarisibility, 269 
Pole figures, 252 
Poles, gnomonic, 298 

spherical, 35 
stereographic, 38 

Polymorphism, 335 
Powder diffractometers, 242 

lines, 239 
photographs, 238 

Precession camera, 233 
Preferred orientation, 249 
Primary extinction, 209 

twins, 333 
Primitive cells, 17, 141 

circle, 37 
Principal coefficients (of conductivity, etc.), 

258 
Prismatic habit, 134 
Projections, gnomonic, 298 

stereographic, 37, 293 
structures, 7 

Pseudo-symmetry, 334 
Pyroelectricity, 273 

Quartz, 337 

Radiation, characteristic, 181 
white, 181 

Ray-directions (for light), 264 
Reciprocal lattice, 201 
Reflection lines, 18 
‘Reflection’ of X-rays, 200 
Reflection twins, 329 
Refraction of X-rays, 185 
Refractive index, 264 
Representation surfaces (for second-rank 

properties), 258 
Representation surfaces, relation to sym¬ 

metry, 259 
Retigraph cameras, 233 
Reverse orientation, 148 
Rhombic dodecahedron, 132 
Rhombohedral (R) cell, 64, 103, 148 

indexing, 103, 149 
Rhombohedron, 125 
Rotation of axes, 50, 56 

photographs, 226 

points, 17 
projection plane, 45 
twins, 329 

Rutile, 278 

Scalenohedron, ditrigonal, 120 
Schottky defects, 283 
Screw axes, 159 

dislocations, 287 
Second-order properties, 261 
Secondary twins, 333 
Separation (Suvw) of lattice points, 154 
Sheet textures, 249 
Silver iodide, 277 
Simple twins, 330 
Sine ratios, law of rational, 307 
Single crystal methods, 219 
Slip directions, 284 

planes, 284 
Slit factors, 193 
small circles, 37 

construction of, 42, 297 
Sodium chloride, 216, 234 
Solid solution, 281 

interstitial, 282 
substitutional, 247, 282 

Solution of crystals, 275 
Space groups, determination of, 210 

three-dimensional, 163 
two-dimensional, 28 

Space lattices see Bravais lattices 
Special equivalent positions, 30, 167 
Special forms, 117 
Spherical triangles, 36, 302 

solutions of, 302 
Stacking faults, 290 
Stereogram, 38 

angular measurements on, 43 
for twinned crystals, 332 
rotation of, 45 

Stereographic net, 38 
Stoichiometric combination, 281 
Stokesite, 217 
Straumanis mounting see levins and Strau- 

manis 
Structure amplitude, 206 
Surface nucleation, 322 
Symmetrical Laue patterns, 223 
Symmetry axes, 56 
Symmetry elements, 56 

in space groups, 157 
Symmetry plane, 57 
Systematic absences, 211 
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Systematic errors on powder records, 241, 
246 

Systems, crystal, 59 

Tabular habit, 134 
Targets (of X-ray tubes), 183 
Tetrad axes, 50, 56 

screw, 160 
Tetrad points, 21 
Tetragonal bipyramid, 117, 125, 137 

prism, 118, 125, 138 
Tetragonal system, cell shape, 63, 149 

space groups, 171 
Tetrahexahedron, 132 
Thermal conductivity, 256, 261 

expansion, 248, 261 
Third-order properties, 262 
Three-dimensional patterns, 141 

lattice operators, 143 
symmetry operators, 157 

Tin dioxide, 9 
Titanium dioxide, 235 
Transformation matrices, 88 

for rhombohedral and triple hexagonal 
cells, 149 

Transformation twins, 335 
Translational repetitions, 15 
Transmission methods, 223 
Triad axis, 50, 56 

screw, 160 
Triad point, 21 
Tri(aki)soctahedron, 132 
Triclinic system, cell shapes, 60, 143 

space groups, 163 
Trigonal system, cell shapes, 64, 145 

space groups, 169 
Triply primitive hexagonal cell (in rhombo¬ 

hedral lattice), 148 
Tungsten radiation, 184, 187 
Twinned crystals, 135, 290, 328 

Two-dimensional patterns, 14 
lattice operators, 22 
symmetry operators, 27 

Uniaxial properties, 267 
Unique directions, 73 
Unit cell, 16, 141 

contents, 10 
multiply primitive, 17, 142 
primitive, 17, 141 

Uniterminal axes, 73 
Unpolarised light, 264 
Urea, 10 

van Arkel mounting, 240 
van der Waal’s binding, 5 
Vibration direction (of light), 264 

Wavelengths of X-rays, 179, 183 
Wave-normal direction (for light), 264 
Weiss zone law, 81 
Weissenberg camera, 233 
White radiation, 181 

X-rays, 179 
characteristic, 181 
nomenclature, 182 
white, 181 

X-ray Powder Data File, 246 
‘reflection’, 200 
tubes, 183 

Z (contents of unit cell), 10 
Zero-order properties, 262 
Zircon, 125 
Zone, 80 
Zone axis, 80 
Zone indices (or zone axis symbols), 76, 80 

formation by cross-multiplication, 80 
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