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Foreword 

Sir Nevill Mott 
Cavendish Laboratory, Cambridge 

It is a pleasure and honour to write an introduction to this book by 
Professors A. Guinier and R. Jullien. The senior author is an old friend. I 
have lectured in France both before and after the war of 1939-45, and the 
first work of his that I remember is that on Preston—Guinier zones, a form 

of precipitate within an aluminium alloy that hardens it, and on the 
mechanism of which I made a theory (with Frank Nabarro) in 1939. During 
his long career Professor Guinier has proved himself a master in the wide 
field of solid state science, and this book deserves to have the same success 

as his earlier book on atomic physics for students (The Structure of Matter). 
It covers the solid state — perhaps the most rapidly growing branch of 
physical science and that with the closest links with modern technology. 
After chapters on specific heat, thermal expansion, and other subjects that 
were clarified in the early part of the century, it goes on to describe the 
properties of electrons in metals and semiconductors, the understanding of 
which is based on quantum mechanics and could hardly have developed 
without it. I am interested in the way the author handles this. He does not 
appear to assume that the student has already attended a course or read a 
book on quantum mechanics, as in the United Kingdom would, I believe, 

have usually been the case. Instead he introduces it from the beginning, 
but only just as much as is needed. I believe this is the right way, perhaps 
especially for the future engineers and technicians for whom the book will 
be especially valuable. 

The last part of the book deals with diffusion, plasticity, dislocations, 
and Preston—Guinier zones. One feels here the contrast with semiconduc- 
tors and solid state electronics, where theory went before practice. The 
metallurgists produced excellent heat-resisting alloys without the aid of the 
modern theory of dislocations, useful though that has now become. 

In all advanced countries we need more and better educated scientists, 

engineers, and technologists, and the: way we should teach them is under 
intensive discussion. In the United Kingdom, we have had for young 
people of ages between 11 and 18 the Nuffield Science project with its 
emphasis on learning by doing, and we debate both for school and 
university the relative advantages of a broad and a more narrow education. 
At Oxford the students study chemistry alone for four years, and one 
distinguished alumnus of their chemistry school thanked his good fortune 
in that this allowed him time to savour all other branches of human 
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knowledge. In Cambridge we demand three experimental sciences and the 
timetable is rather too full for that to be easy. In the United States, too, a 
wider course is usual, at any rate for the first year. 

I remember, in planning the Nuffield project for school science, a 
discussion of teaching for ages between 16 and 18; one group said that, if 
we did not include something on modern physics, relativity, and quantum 
mechanics, the most talented students would be bored and desert science 
for the humanities; others on our committee, who on the whole prevailed, 

said ‘leave it to the universities; the duty of the schools is to give a sound 
understanding of classical science’. How and when to introduce students to 

modernity is a continuing problem. Perhaps Professor Guinier has the 
answer, in introducing modern theories as and when needed for practical 

problems. My first impression of the book was that it would be for students 
at the level of the second year of a British university. But perhaps, with the 
author’s method of putting the mathematics into ‘boxed’ sections for a 
second reading and introducing quantum mechanics as and when needed to 
understand devices that every schoolboy handles, it might be used earlier. 



Preface 

There are so many good texts in the world dealing with the physics of solids 
at various levels that the authors of a new one in the same field need to 
justify their production of another. Our objective in writing the present 
volume is twofold. 

In the first place, it is intended as a sequel to The structure of matter,’ 
written in the same spirit and addressed in part to the same readership: 
non-specialist scientists and physics teachers concerned with the final years 
in secondary schools and the earlier years at universities, polytechnics, and 
colleges. 

Our second aim is to provide material for readers who are engaged, or 

wish to engage, in a detailed study of one of the scientific or technical fields 
dealt with in the text. For such readers, our book will be an introduction to 

more advanced volumes, such as Jntroduction to solid state physics (Kittel, 
1986). In order to tackle these, however, a level of understanding is 

required for which the almost completely qualitative approach adopted in 
the majority of the text is inadequate. For that reason, we have inter- 
spersed ‘boxed’ sections throughout the book to provide mathematical 
justification for some of the results that are merely stated in the main text, 
and to give a simple description of some useful calculations in solid state 

physics. 
Our concern throughout has been to relate the macroscopic properties of 

solids (usually crystalline) to models of their atomic structure. This is not 
always possible: hence the very restricted choice of the phenomena 
included in the book and the omission of many details. We were keen to 
deal with mechanical properties alongside thermal, electrical, and magne- 

tic properties, unlike the often separate treatment of the two groups of 
topics according to whether the book concerned has a ‘metallurgical’ or 
‘solid state physics’ slant. In fact, such a distinction largely reflects the 
traditional compartmentalized way in which the subject is taught. 

It is often claimed today that provision for thorough scientific and 
technical training is essential for any nation. Taking the necessary steps to 
increase the numbers of young people going into advanced science courses 
is, of course, the job of politicians. But scientists have a responsibility too: 
if we are content to hang on to styles of teaching suitable only for a 

restricted public gifted in the field of abstract calculation, many of those 

‘Guinier, A (1984). The structure of matter: from the blue sky to liquid crystals, Edward 
Arnold, London. References to this book in the present text are given in the form (SM, 
p. 47). 
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who might otherwise have been attracted to the sciences will quickly be 
discouraged and go elsewhere. 

If science is really to be opened up to a wider public, scientists 
themselves must make greater efforts to ease the passage through the 
barriers formed by the difficulties surrounding their territory. There are 
cliffs around our subjects that only expert climbers can scale: we must 
carve out a path accessible to those of more modest talents. Those who 
engage in both teaching and research have a special responsibility for 
making science more accessible to greater numbers. That is what we have 
attempted to do for our own particular field in this book. 

There is, of course, nothing original in these pages. Our sources are too 
numerous to quote, but we should like to offer our very sincere thanks to 
those colleagues whose publications have helped us or who have contri- 
buted to improvements in the manuscript through discussion and com- 
ment: Gérard Fournet, Jacques Friedel, Hubert Gié, Jacques Joffrin, 
Charles Maziéres, and Jean Philibert. We are also very grateful to Yves 
Kaminsky, who offered us some perceptive criticisms from the point of 
view of a teacher. We also wish to express our warm thanks to those 
who have so willingly provided documents for the illustrations: Maurice 
Cagnon, Georges Cizeron, Charles Donadille, Jacques de Fouquet, Ber- 
nard Hennion, Guy Henry, Paul Lacombe, Charles Pénel, Jean Philibert, 
Irena Puchalska, Yves Quéré, and Colette Servant. 

Finally, we wish to express our deep gratitude to Sir Nevill Mott, who 
not only willingly contributed a foreword to this book but also provided 
material for it on a subject to which he has made such an important 
personal contribution, thus demonstrating that recent advances in science 

can be explained in simple terms. 

A.G 
April 1987 R.J. 

Translator’s note 
The section on superconductivity in Chapter 2 of the French edition has 
been revised and up-dated by Professors Guinier and Jullien for this 
edition. The new material takes into account recent advances in the field 
up to the beginning of 1989. 
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Thermal properties of solids 

The heat capacity of a solid and its coefficients of thermal expansion and 
thermal conductivity form a group of properties related to effects produced 
by a variation in temperature. This chapter deals with such properties and 
their interpretation from an atomic viewpoint, beginning with the most 
fundamental of them: the heat capacity. 

The heat capacity of a solid 

The temperature of a solid rises when it is supplied with heat, and the heat 
is given up when the temperature falls: the solid is therefore said to have a 
certain heat capacity, which will depend on the mass involved. We shall be 
concerned with the molar heat capacity of a substance at a temperature T, 
measured by finding the amount of heat needed to raise the temperature of 
a mole of the substance from T to T+1 (T is in kelvin, K). In a solid, the 

heat supplied goes almost entirely into increasing the internal energy of the 
substance and the molar heat capacity C can thus be defined as the derivative 
of the molar internal energy U of the substance with respect to temperature 
T, i.e. C = dU/dT. (The internal energy always increases with tempera- 

ture, so that C is always positive). 
In the case of solids, this definition is adequate as it stands and there is 

no need to specify whether the temperature variation occurs at constant 
pressure or constant volume since the thermal expansion is extremely 
small. We recall that it is different with gases, e.g. for a monatomic gas: 

Satl = 0.67 

whereas for copper this ratio is 10° * at 293K. With solids, therefore, only a 

single quantity C is used: in practice, theoretical calculations are carried 

out at constant volume, while measurements are made at constant 

pressure. 
Our aim is to relate the heat capacity to atomic structure with the help of 

models which are increasingly refined in order to achieve better and better 
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agreement with experimental data. For simplicity, we first consider the 
special cause of a monatomic substance in which all the atoms play the 
same role (this is the situation in common metals). 

The first model of atomic structure 

Books dealing with the atomic structure of matter (e.g. SM,' pp. 57-9) lay 
much stress on the model of a crystal with its atoms at the nodes of a 

perfectly regular lattice. In reality, the nodes are merely the sites of the 
average atomic positions, around which the atoms themselves are vibrating 
due to their thermal agitation. The increase in internal energy of a crystal 
as the temperature rises originates from an increase in the amplitude of 
these vibrations, and it is precisely this that we wish to evaluate. 

Let us first go back to the case of a perfect gas. Here, the atomic motion 

is completely disordered and atomic interaction is negligible, so that the 
thermal energy of the whole system is simply the statistical mean of the 
kinetic energy of the atoms. This mean energy is a measure of the 

temperature T (SM, p. 37), and the expression embodying the definition of 
T can then be written in the form: 

<tmv?> = 3kpT/2 

The coefficient kg is Boltzmann’s constant, with a value of 1.38 x 1077? J 
ke 

An atom in a crystal vibrates about its equilibrium position. When the 
atom is displaced from this position, a restoring force is brought into play 
which does work corresponding to the reduction in the potential energy of 
the atom. The total energy of the atom is the sum of its mean kinetic and 
mean potential energies. 

Take the simple case of a linear harmonic oscillator, with a point mass m 
subject to a displacement x = Asin wf and a restoring force —Kx. At any 
time f, the kinetic energy is 

dmv* = 4mA?w"cos? wt 

and the potential energy is 

Kx? = 4KA?sin7wt. NI- 

However, w* = K/m, so that the two mean values 4mA’w? and KA? are 
equal: the total energy of the oscillator is twice its mean kinetic energy. 

This result is still valid for an atom vibrating in three spatial dimensions 
about its equilibrium position. Moreover, whether the atom vibrates 

‘References given in this form are to Guinier, A. (1984). The structure of matter, Edward 
Arnold, London. 
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around a fixed point or suffers random displacements as in a gas, the mean 
value of its kinetic energy at a given temperature is the same: 3kp7/2. 

In a crystal, therefore, the mean energy is: 

for one atom: u = 2(3/2)kpT = 3kgT 
for one mole: U = Na.3kgT = 3RT. 

Avogadro’s number Na, is 6.02 x 107° mol~', and the gas constant R = 
Nakg is 8.31 J K~' mol '. It follows that the molar heat capacity is 

CadUidd =3R =25) K=' mol... 

This is an important result, of a somewhat surprising simplicity. 
So far, then, we have shown theoretically that: 

for any monatomic crystal, the heat capacity is independent of tempera- 
ture; 
the molar heat capacity has a universal value which depends on 
Boltzmann’s constant and which is the same for all chemical elements 
whatever the atomic mass or the crystal structure. 

This is Dulong and Petit’s law, which was established experimentally in 
1819. 

Justification of the theoretical calculation of heat capacity 

We have used a very simple method for the derivation of these fun- 
damental results, starting from the value for the kinetic energy of an atom 
‘in a perfect gas and extrapolating an elementary property of the linear 
harmonic oscillator. In fact, the calculation is rigorous since it relies on a 

general theorem of statistical mechanics known as the principle of the 

equipartition of energy or, more simply, as the equipartition principle. A 

precise statement of this principle and a proof of it is given in Box 1. 

Box! 

The principle of the equipartition of energy 

Take once again the example of the linear harmonic oscillator with 
mass m, restoring force constant K, frequency’ » = VK/m, displace- 
ment x = Asinwt. The constant total mechanical energy is the sum of 

‘Strictly speaking, the frequency is w/2m and w is the angular frequency or pulsatance. 
In this book, we adopt the abbreviated expression which is now normal among those 
specializing in the field. 



Thermal properties of solids 

the potential and kinetic energies and is therefore: 

E(, v) = E,(x) + E,(v) = 1Kx? + tm? = 3 KA’. 

Take a whole assembly of identical oscillators. The variables x and v, 

defining the position and velocity of the particle at a given time, fix 
the state of an oscillator determined either by its amplitude A or by 
its energy $KA°. 

Boltzmann’s statistical thermodynamics predicts the distribution of 
the states of the oscillators in the system and thus the probability that © 
an oscillator is described by the pair of variables x and v to within Av 
and Av. This probability is proportional to: 

exp[—E(x, v)/kpT)|AxAv. 

This statistical law is a quantitative expression of the idea of thermal 
agitation. Thus, when the temperature tends to infinity, the exponent 
tends to zero and all the energy states become equally probable (this - 
is complete disorder). On the other hand, when the temperature 
tends to zero, all the probabilities become negligible except that of 
the state of absolute rest, E = 0, which corresponds to x = 0,v = 0. 

Given this probability law, any macroscopic physical quantity 
characteristic of the system is calculated as an average, weighted 
according to the probabilities, i.e. as the sum of the possible values 
each multiplied by the probability of their occurrence. Thus, the 
average energy of an oscillator is calculated from: 

- _ E(x, v) : 
B=" || Bu ex | oo | aca 

Z is a factor required to ‘normalize’ the probabilities, since the sum of 
the probabilities over all states must be unity, i.e. 

“ie 
Since the energy E is the sum of two terms, E, and E,, we have that: 

E = E, = E. 

where: 

_ 1 1 ;  £aYy) By <2 {f+ Keep |-=E} aca, 
zZ\i2 : kat 
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_ Ev) v) 
i i. mv- exp dx dv. 
2 kpT 

Taking the case of E,,, the double integral amounts to the product 

I mv -) a 
of two single integrals: 

1 Kx =| 
dx ig exp 

3 kpT 

E Lee ne CE 
oa) Te 2g x7ex 

Ae : 2 kal 

1 <= es 1 me 
dx | Opi -- 

2 kel 

and the same for Z: 

£6 

< = ep( - Vit a 
it is clear that the Substituting the expression for Z into that for E 

integrals with respect to velocity cancel, leaving only those with 
respect to position: 

1, ( 1 ey 
i ~RYVEXD| —- 

Z Z Khel —e 

= 

1c (- 1 a 
ex an a 

The same calculation can be carried out for E,, and a similar 
1 ZL expression is obtained with Kx’ replaced by 3mv’ and dx by dv 

The values of these integrals can be found from standard tables and 
yield the expressions: 

K Va (427) 

22 K kal 

at) 

: ( 

The equality of E, and E, arises from the fact that they are both 
quadratic functions of x or v 
We therefore have that 

This result can be generalized to the case where there is a large 
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number of variables q;, q2, . . . and where the energy is the sum of 

terms of the type a,q/ only: 

E(q1, 92, - -) = Zag 
i 

As an example, for an atom vibrating around a fixed site: 

1 4 
E a Ka ty to) + ke +2 + v3). 

Each term contributes $kp7 to the total average energy and this is 
what is called the equipartition of energy. We have: 

E - na2kpT) 

where ng is the number of degrees of freedom, i.e. the number of 

independent quadratic variable terms entering into the expression for 
the energy. It should be pointed out that this number may be less than 
the number of independent variables defining the state of the system. 
Thus, in a perfect gas, the state of a particle is defined by its position 
and its velocity, but only the velocity variables occur in the expression 
for the energy. 

For a perfect gas in three dimensions: 

fa = 3, E = 3k, 172. 

For a three-dimensional harmonic oscillator: 

ig 6, E = 3kpT. 

Comparison of theory with experiment 

1 Points of agreement 

For many chemical elements (Table 1.1 gives a few examples), the heat 
capacity shows very little variation over a large temperature range and, 
except for a few such as Be or C, the experimental values of the molar heat 
capacity generally differ from the theoretical value by less than 5 per cent. 
This is clearly a distinct success for the extremely simple theory we have 
used. 
When Dulong and Petit’s law is obeyed, the heat capacity of a given 

mass of metal depends only on the number of atoms it contains. It does not 
depend on the atomic structure: thus, liquid mercury has the same heat 
capacity as solid mercury at the melting point. 

The historical importance of this law arises from the fact that it is directly 
related to the existence of atoms. By measuring the heat capacity of unit 
mass of an element (i.e., the specific heat capacity, 25/M in J kg~' K~'), an 
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Table 1.1 Molar heat capacity of several elements. (Theoretical value 
according to Dulong and Petit’s law: 25JK~' mol’). 

T 

Element 300K 500K 1000K 

Be 16.4 oe) 
C (diamond) 6.24 13.4 21.6 
Al 24.3 25.8 
Cu 24.2 26.1 28.9 
Pb 26.8 29.4 

approximate value for its molar mass M is obtained. Consider gold and 
copper, for example: the inverse ratio of their specific heat capacities at 
high temperature is 0.38/0.13 or 2.9. This gives an approximate value for 
the ratio of their atomic masses whose exact value is 197/63 = 3.1. 

2 Points of disagreement 

Although the heat capacity of elements such as Cu and Pb varies very little 
above room temperature, it decreases at low temperatures and for all 
substances it becomes zero at the absolute zero. For copper, for example, 
there is a pronounced decrease below 150K (Fig. 1.1). Furthermore, there 
are substances for which the molar heat capacity even at room temperature 

' is already well below the theoretical value, e.g. diamond has a value of 

only 6 instead of 25J K~' mol’. 
Nothing in the model we have used enables us to explain this behaviour, 

which is completely different from what is predicted. Such a large 
disagreement can only be resolved by introducing a new idea into the 
over-simplified theory. What we need is a modification in the low 
temperature region which leaves the results intact at medium and high 
temperatures, where the agreement with experiment is remarkably good. 

Fig. 1.1. Variation with 
temperature of the molar heat 
capacity of copper and diamond. 

250 500 750 1000 
T(K) 
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The second model: Einstein’s model 

We first look in more detail at what we have until now called atomic 
vibrations. In a crystal, particularly a metal, the atoms are attracted to each 
other by cohesive forces. In addition, since they cannot penetrate each 
other, a repulsive force comes into play when their centres approach too 
closely. The true interatomic distance is the separation at which these two 
forces exactly balance each other. Suppose that all the atoms in a crystal 
are at their equilibrium positions. If an atom is displaced, it experiences a 
restoring force which, to a first approximation, is proportional to the 
distance Ax from the equilibrium position (this is known as the harmonic 
approximation), i.e. F = —KAx. This is analogous to the force on a mass 
suspended from a spring. 
Remember that the vibration frequency is w = V(K/m). To find an 

order of magnitude for the vibration frequency of the atoms in a crystal, 
the value of the force constant K must be known, and this is derived from 

the macroscopic elastic properties of the metal. 
For iron, Young’s modulus E (see p. 178) is 20 x 10'° N m~?. This 

means that the force which extends the length / of a rod of unit 
cross-section elastically by Ax is EAx/Il. Now an atomic plane in iron 
contains n = 2.5 x 10!° atoms per m? and the distance between two 
adjacent planes is / = 3 x 10°'°m. The macroscopic force applied to the 
rod is equivalent to a force F per atom which would be related to Ax by the 
expression: 

F= NG Nes 
= |= 

The force constant K is thus given by E//n and, since the mass of an iron 
atom is m = 9 x 10° *°kg, the frequency of atomic vibrations is: 

o= V (Kim) = 1.7 x10) Hz: 

This is a very approximate calculation and all that we shall assume from it 
is that the frequency of atomic vibrations in solids has an order of 
magnitude of between 10! and 10'4 Hz. 

The atom vibrates in space: its motion can be regarded as the resultant of 
three linear oscillations along three perpendicular axes. This is the basis of 
Einstein’s model: the motion of the Na atoms in a mole of a crystal is 
represented by the motion of 3N, identical oscillators having the same 
frequency and not interacting with each other. These oscillators form the 
reservoir of energy which stores the heat supplied to the crystal: when it is 
heated, the oscillator amplitudes increase; when it is cooled, the ampli- 
tudes decrease. 
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The new idea contributed by Einstein was that of quantization. In 
classical physics, the total energy of an oscillator of mass m, amplitude A 
and frequency is mA’. It can therefore vary continuously since A may 
take any value. 
Quantum theory, on the other hand, only allows the energy of the 

oscillator to have one of a set of discontinuous values and any change in 
energy can only be by an integral number of energy quanta. The 

elementary quantum of energy is hw, where f is Planck’s constant divided 
by 27: 

h = 1.054 x 107*4 Js. 

The oscillator therefore has a set of energy levels which can be allocated 
numbers according to the number of quanta they contain. 

Later on, quantum mechanics retained the quantization of the energy 
changes in the oscillator but made one addition to Einstein’s model: the 
minimum energy of the oscillator at the absolute zero cannot itself be zero. 
If it were, Heisenberg’s uncertainty principle would be violated, since the 
vibrating mass would be stationary and its exact position and velocity 
would be known simultaneously. This means that there is a zero-point 
energy, and quantum mechanical calculations give this the value 3iw. The 
nth energy state of the oscillator thus has an energy: 

E, = (n+ 3)ho. 

However, this extra term does not affect the theory of the heat capacity. 
When the energy, and thus the amplitude, of the oscillator is large 

enough, the fact that the possible levels are discrete is not significant since 
the energy quantum is then much smaller than the experimental error in 
making the most refined measurements. This is so for any macroscopic 
oscillators that we could possibly construct. It is also true for atomic 
oscillators when the temperature of the solid is sufficiently high. Under 
those conditions, therefore, the Einstein model is almost identical with our 

first classical model, whose predictions are verified by experiment and 
continue to be valid. 

At temperatures close to the absolute zero, on the other hand, the 
oscillator energies are very small and the replacement of continuous 
variations by abrupt changes from one level to another can have appreci- 
able effects. It is because of this that the quantum model of Einstein is able 
to explain the behaviour of the heat capacity at low temperatures, a 

phenomenon that was incomprehensible in terms of classical physics. It 

was the very success achieved by Einstein in this problem that formed one 
of the first proofs of the existence of energy quanta. 

Consider now the set of 3N oscillators, corresponding to N atoms, in 

equilibrium at temperature T. According to classical theory, their average 
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energy is kgT. According to quantum theory, each contains a number of 
quanta given by (n + 3), which may be different for different oscillators. 
The mean number of quanta about which the value of n fluctuates is given 
as a function of temperature by Bose—Einstein statistics. 

Box 2 

The Bose—Einstein distribution 

Thermodynamic arguments lead to the following result: the probabil- 
ity that an oscillator at temperature T will be occupying the energy 
state E,, = (n + 2)hw labelled by its quantum number n is proportion- 
al to exp(—E,,/kg7T). The mean value of n at temperature T can then 
be calculated using the method of Box 1, except that here the 
expressions are discrete sums and not integrals: 

1 fo 

oat) eee aa aa 
kpT Z kpT 

EE. ( 1 ho nh “| 
= exp| —- > exp; — 

kpT 2 kpT kpT 

Denote exp (—fw/kgT) by y : n can then be expressed as the ratio 
of two sums: 

z= Sex| + 

n= tny sy". 

The denominator is the sum of a simple geometric series with ratio y: 

by =1tyty+...=1/—-y). 

The numerator is the following sum: 

any’ =ytdy+3y +... =y(l+2y+3y+._.) 

and this is simply the derivative of the previous sum multiplied by y, 
so that: 

Sny" = yi(1 — y)? 
. 1 

and hence: n= yl -— y)= —— 
exp(ho/kgT) — 1 
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The mean value n gives the average energy of the set of 3N 
oscillators: 

E=3NG +) 
or = ho h 

22 (42. 1 
ex oo 

4 kel 

What is the significance of this expression? It depends only on the 
one parameter hw/kgT. If a characteristic temperature Op, such that 
hw = kp@ z, is introduced, then we obtain a universal formula valid 

for any solid (i.e. for any oscillator frequency) in terms of the 
‘reduced’ temperature 7/Ox: 

S 1 1 
£-3kO,(- + 

CSO 

: T 

The molar heat capacity is obtained by differentiating the mean energy E 

with respect to T. We then obtain: 

Op 
mo xp 

dE OF? F 
C =— = 3 R | —_ ] ———__ : 

dT 7 (22) J 
exp, fh 

7 

This function has a ‘sigmoid’ shape (Fig. 1.2). It starts from zero when 
T = 0; it increases as T increases, slowly at first; it reaches the value 1.49R 

Fig. 1.2. The molar heat capacity 
according to Einstein’s theory. 
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for T = @O,/3 and then tends towards the classical value 3R. Above T = 

1.30 , the function has the value 3R to within 5%. 
At very low temperatures, a significant proportion of the oscillators are 

still in the ground state. A rise in temperature of AT only excites a small 
number, so that the amount of heat absorbed is well below the classical 

value 3RAT: the heat capacity remains small. 
The theoretical Einstein curve is very similar to many experimental 

curves. For example, the best agreement in the case of copper (Fig. 1.3(a)) 
is obtained by taking Og equal to 244 K, which corresponds to an oscillator 
frequency of 3.2 x 10'° Hz. 

However, a clear divergence can be seen near zero: the experimental 
curve runs very much above the theoretical curve (Fig. 1.3(b)). 

C (J K'! motr') 

100 200 300 T(K) 

Fig. 1.3. (a) The molar heat capacity of copper as a function of temperature: (¢) 
experimental points, (-———) theoretical Einstein curve with O; = 244K, ( ) 
theoretical Debye curve with @p = 315K. (b) The same curves over the range 

0-30K. 

For diamond, the agreement is satisfactory near room temperature if Of 
is taken to be 2000K. Diamond does not obey Dulong and Petit’s law at 
ordinary temperatures precisely because the characteristic temperature is 
so much higher. Einstein’s theory explains why this occurs: diamond is very 
hard with strong cohesive forces. The restoring force constant is therefore 
large and the frequency of atomic vibrations very high, and it follows that 
the characteristic temperature is also very high. Copper, on the other 
hand, is quite a soft metal: its vibration frequency is lower and its 
characteristic temperature is below room temperature. 

The value and the importance of Einstein’s theory are demonstrated by 
the close relationship it reveals between the elastic constant and the heat 
capacity of a crystal, two apparently unconnected quantities. Such rela- 
tionships cannot be chance coincidences: they show there is a valid ‘kernel’ 
in the theory which is an expression of reality. This kernel will persist 
during later refinements of the theory. 

There are, nevertheless, serious objections to Einstein’s theory, not 
simply because of disagreement with experiment (which is on the whole 
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quite minor) but mostly because it rests on an assumption that is 
undoubtedly incorrect: the independence of the motion of neighbouring 
atoms. It was to take into account the interactions between the motion of 
the atoms in a solid that Debye proposed the third model of thermal 
agitation in crystals. 

Elastic waves in a crystal: the Debye model 

We first review the classical results on longitudinal vibrations in a rod. The 
creation of a small local deformation (or strain) directed along the axis of 
the rod produces stresses in the same direction because of the elasticity of 
the material. These stresses produce strains in adjacent sections which, in 
their turn, react on their neighbours and so on. The cohesion and elasticity 

of the rod thus cause the deformation to be propagated along its length 
with a velocity v determined by the properties of the material of which the 
rod is made (Young’s modulus and density). 
We now suppose that, in place of the short pulse, we impose a steady 

longitudinal sinusoidal vibration of frequency w on a section of the rod. 
Interactions in the solid cause this local vibration to be propagated in such 
a way that all the sections vibrate with the same frequency and amplitude. 
However, the vibrations at two points separated by a distance / are out of 
phase because of the time /® taken for propagation (angular phase 
difference w/v). Points separated by a distance \ = v(271/w) or vT, T being 
the period of vibration, vibrate in phase. At a given instant of time, the 

displacements along the rod are represented by a sine curve with 
wavelength \. As time passes, the sine curve moves along the rod at the 
velocity v giving rise to a progressive wave characterized by its amplitude, 

Fig. 1.4. Normal modes of the 
longitudinal vibrations of a rod 
fixed at both ends. 
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its frequency and either its wavelength or, more commonly, its wave vector 

k =2t/d = w/v. 

If the rod is fixed at one end, the enforced immobility at this point causes 

the progressive wave to be reflected. If a rod of length L is fixed at both 

ends, these boundary conditions determine the normal modes of vibration 

of the rod, i.e. stationary waves whose wavelengths form a series of 

discrete values \,, = 2L/n, where n is an integer (Fig. 1.4, which is 

reminiscent of the bow-like shapes of the vibrating string in Melde’s 

experiment). Another way of putting this is to say that the wave vectors of 

the normal modes are integral multiples of a minimum vector w/L, so that: 

na nnlL. 

The frequency corresponding to the nth mode is », = vk,. 
Normal modes are essential for describing the vibrations of the rod: any 

actual motion can be analysed into a superposition of normal modes with 
suitable amplitudes and phases. 
We now transfer these one-dimensional results to the case of a solid, e.g. 

a cube of side L. An elastic wave is defined by its frequency, its wave 
vector and the vector amplitude of the vibration. The direction of the wave 
vector is normal to the plane of the wavefront, while its magnitude is 277/). 
The cube also has its normal modes of vibration: in other words, the wave 

vectors can only possess certain discrete values for their magnitudes and 
directions. We state the result that the projections of the allowed wave 
vectors on to axes parallel to the sides of the cube are n,(m/L), no(m/L), 
n3(m/L), where n,, nz, and nz are integers. This is a generalization of the 
result quoted above for vibrating rods. 

If we consider only those wavelengths that are large compared with 
atomic dimensions, the discontinuous nature of the material can be 

neglected and it can be described by its macroscopic properties (its density 
and elastic constants). Thus, for longitudinal waves in the acoustic and 
ultrasonic ranges (A > 1m), the velocity of propagation is independent of 
the wavelength and is equal to the speed of sound in the solid (of the order 
of 5000ms~'). 

However, when we wish to deal with the general case of vibrations in a 
crystal, the normal modes have to be calculated from the interatomic 
forces by taking into account the atomic structure of the crystal. It can well 
be imagined that such a calculation is extremely complex. Not only that, 
but the present state of our knowledge does not enable us to carry out the 
calculation using data on the types of atoms in the crystal and their 
positions alone: parameters derived from macroscopic measurements also 
have to be introduced. 

We shall be content with an account of those results from crystal 
dynamics which are of the greatest importance as regards their consequ- 
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ences and generality. Before that, however, we deal with the case of a 
linear chain of atoms (a one-dimensional lattice) in Box 3 below, an 
example in which only simple methods of calculation are needed. By 
comparing the results from this example with those of the classic case of the 
vibrating homogenous rod, the effects caused by the discontinuous nature 
of the solid are clearly revealed. 

Box 3 

Longitudinal vibrations in a chain of identical atoms 
connected by springs 

When the chain (Fig. 1.5) is in motion, each atom is described by its 
displacement u,(t) at time ¢ with respect to its equilibrium rest 
position x, = na, where n is an integer and a is the lattice spacing. 
The nth mass is subject to two forces: 

— one from the spring on the left, whose extension of algebraic value 
Un — Un—1 is caused by the nth and (n—1)th masses; 

— one from the spring on the right, whose extension of algebraic 
value u,, — U, +1 1s caused by the nth and (n+1)th masses. 

The resultant force is thus: 

J = — Ki, = Un—-1 + Uy — Un+1) 

—K(2u, —~ Un-1 — Uni). 

The equation of motion of the nth mass is thus: 

m du,/dt? = —K(2u, — Un—1 — Un+)- 

At rest Nn? (J, 2 “Iv OP Vvr* 
y | 
beg >| eo | 

(n —1)a na as 1)a 
| | : 5 | 

In motion @/\/\ -@4N AN 0A\/\ > 0N\/\-# 
age be 

Uu,_} lu, Uns) 

Fig. 1.5. Vibrations of a linear chain of atoms. 

The difficulty arises from the presence of the positions of the (n—1)th 

and (n+1)th atoms in the equation of motion of the nth atom. It is 

these coupling terms which cause the motion of one mass to be 

transmitted to neighbouring masses and thus to the whole chain. 
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We next attempt to find a solution in the form of a progressive 
wave: 

Un = Ugcos(wt — kna). 

The parameter u,, is interpreted as the longitudinal displacement 
which would be produced by a wave of amplitude ug, frequency » and 
wave vector k at the points x,, = na where the masses in the chain at 
rest are located. We substitute this expression in the equation of 
motion to see under what conditions that is possible. If we use the 
identity 

cos[wt — k(n—1)a] + cos[wt — k(n+1)a] = 2 cos ka cos(wt — kna) 

we obtain the equation: 

—mo)"Uy = —K(2 — 2coska)uy = — 4K sin?(ka/2) uo. 

This equation only has a non-zero solution for up if: 

mo” = 4Ksin?(ka/2) 

or (Fig. 1.6): (Fig. 1.6) e o's 
wm =2 _ /— |sin— 

\m 2 

@ 

Ae 
m 

a 0 20 k 

Te 
| 

Restricted interval 

for k 

Fig. 1.6. Dispersion curve for the linear chain: w, the vibration frequency, 
plotted against the wave vector k = 2m/n. 

Consequences of the expression w = f(k) 
For long wavelengths, or small k, the above expression can be 
written: 
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i.e. the velocity of propagation is v = aV K/m and is thus independent 
of the wavelength. Now for a homogeneous rod, the velocity of 
propagation isv = VE/y, where E is Young’s modulus and uw is the 
density. The two expressions are equivalent. In fact, if S is the 
cross-section of the rod and Aa the increment in the interatomic 
distance a due to the effect of a force F, we can write for the chain 
and the rod: | 

F=KAa and F/S = E(Aa/a). 

Furthermore, so as to give the atomic chain and the rod the same 
mass per unit length, ~S must be put equal to m/a. From these 
relationships, we deduce that: 

Ely = Ka2/m. 

At short wavelengths, say less than 10a, the frequency w is no longer 
proportional to k: the velocity of propagation decreases as k in- 
creases. Dispersion occurs, and this is a consequence of the atomic 
structure of the chain. 

(a) A=2.67a 

(c) A"=0.42a 

Fig. 1.7. The displacements of all the atoms in a chain of period a are the 
same for all wave vectors of the form k+2tp/a. (a) p = 0; A = 2.67a; k/2n = 
0.375/a; (b) p = 1; A’ = 0.72a; k'/2m = k/2m + Va = 1.375/a; (c) p = 2; A" = 

0.424; k"/2a = k/2m + 2/a = 2.375/a. 

17 
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The vibration frequency becomes a maximum when k = w/a. The 
wave is then represented by the equation: 

Un = Ugcos(wt — nt) = Uo(—1)”cos ot. 

Successive atoms have amplitudes of alternating sign. This wave can 
be considered as a stationary wave (constant phase, and amplitude 
varying from one atom to the next). Such a wave cannot transport 
energy (the group velocity dw/dk is zero). 

There is another, and very fundamental, consequence of the 
discontinuity on the atomic scale: there is a lower limit to the 
wavelength, i.e. an upper limit to the wave vector. This arises from 
the fact that the atoms form a regular lattice and that the elastic wave 
has a physical meaning only at points along it with coordinates equal 
to na. Suppose there is a wave vector k and another k’ = k + 2mp/a, 
where p is an integer. The displacement of the nth atom for the wave 
k' is: 

2717p 
Un, = UgCOS| wt —| k +—— }na | = ugcos (wt — kna — 2mnp) 

a 

i.e. 
Up, = Ugcos(wt — kna). 

The displacement u,, is the same as for the wave vector k, for any 
atom whatsoever (Fig. 1.7). Thus the wave k’ cannot be physically 
differentiated from the wave k. Hence, all the normal modes of the 
chain can be described simply by considering only those waves whose 
wave vector lies in an interval of magnitude 27/a, e.g. those for which 
k lies in the interval [—a/a, w/a] (Fig. 1.6) and are thus being 
propagated in both directions. 

In addition, the boundary conditions (arising from the fact that the 
chain must be finite in length and contain only N atoms) force the 
number of independent solutions, and thus the number of & values in 
the interval [—a/a, w/a], to be finite and equal to N. The exact 
positions of these k values depend on the imposed conditions, but 
their number is always N. 

Characteristics of the normal modes of vibration of a crystal 

The main results from similar calculations of the modes of vibration of a 
crystal are listed below without mathematical justification. Their meaning 
and significance can be appreciated by comparing them with the complete 
treatment of the linear chain given in Box 3. 
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1 Number of modes 

The modes of vibration of a crystal form a discrete and finite series. For a 
crystal containing N atoms, whatever the external shape, there are N wave 
vectors giving distinct modes. Three directions of the vector amplitude 
correspond to each of these modes: the total number of modes is therefore 
SN. 

In the linear chain (Box-3), we counted N longitudinal vibrational 
modes. However, the chain can also propagate transverse vibrations which 
can be resolved into two vibrations in perpendicular directions. This clearly 
means that there are three waves per wave vector. For crystals, the three 
amplitude vectors form an orthogonal triad: if the wave vector is directed 
along a symmetry axis of the crystal, one wave is longitudinal and the two 
others are transverse. For a general direction, this arrangement is only 
approximate. 

2 Upper limit for the wave vector 

For the linear chain of period a, the wave vectors corresponding to 
physically distinct waves are confined to the interval [—7/a, w/a]. There is a 
similar limitation on the wave vectors for a crystal: the ends of the wave 
vectors lie inside a polyhedral surface known as a Brillouin zone, defined 
geometrically in terms of the crystal lattice. A description of these zones is 
given in Box 4. 

Box 4 

Definition of the reciprocal lattice and construction of 

Brillouin zones 

For elastic waves propagated in a crystal, we shall generalize the 
limits for the wave vectors established for the linear chain (—t/a < k 
</a). 

In the linear chain, the atomic displacement is given by: 

U;, = UgcOS (wt — kx,) 

with x, = na. 

For the wave in the crystal (limiting ourselves to the case of a 

simple crystal containing one atom per unit cell), the expression 

becomes: 

Un nn, = YoCOS (ot- kr, 1.) 
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The vector uy, n,n, is the displacement of the atom with coordinates n,, 

Ny, N, at the site defined by the vector: 

Fnngn, = Naat + Nyb + n.c 

a, b, and c being the basis vectors of the unit cell, and the coordinates 

Na, Ny, and n, being integers. 

Just as the product kx, determined the phase at the atomic site in 
the linear case, so here does the scalar product k-r,, ,,,,, at the site (nq, 

Np, N.). A simple expression for the scalar product can be obtained if 
the vectors k are referred to three basis vectors a*, b*, c* defining the 

reciprocal lattice of the crystal. These vectors are defined by the 
following relationships:* 

a®*-a =2t b*-a =0 ca =0 

a®*-b =0 b*-b =2t c*b =0 

ac =0 b*-c =0 ce — 24. 

These relationships express the fact that the vector a* is normal to the 
crystal planes defined by the vectors b and c, and also that the 
magnitude of a*, apart from the factor 27, is the reciprocal of the 
interplanar spacing of the (b, c) planes. 

This property can be generalized: using the basis vectors a*, b*, 
and c*, the reciprocal lattice r*,,,; = ha* + kb* + Ic* can be 

Crystal Reciprocal lattice 

ha = 2n( i) 
hkl 

Fig. 1.8. Correspondence between the lattice planes of a crystal and 
reciprocal lattice vectors. 

The solution of this system of equations takes the form 
a* = (20/V)b xc, etc, where V is the unit cell volume given by a-(b xc). 
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constructed, where h, k, and / are integers. Any vector in this 

reciprocal space is normal to a family of lattice planes of the crystal 
and its length, apart from the factor 27, is the reciprocal of the 
interplanar spacing of this family of planes (Fig. 1.8). 
A vector k being defined by its projections on the axes of the 

reciprocal lattice (k = pa* + qb* + rc*), and a vector r,,,,,, being 
defined in the crystal lattice (r, ,,,, = Naa + nyb + n.c), the defining 
relations for a*, b*, and c* can be used to prove that the scalar 
product of k and ris 

Kron = 2m(pn, + qn, + rn,). 

This has the same simple form as in an orthonormal system but the 
expression is valid for any crystal lattice. Let us associate with the 
elastic wave of wave vector k all the waves with wave vector k’ = k + 
r*,x1, Where r* is a vector of the reciprocal lattice. It is found that: 

‘r= Kr, nn, = Vela as 

i.e. that 

Kr, = KP, py, + 27(Ang + ky + In,). 

Thus, k’-r, n,n, is equal to K-r, n,n, apart from an integral multiple of 

2a. The phases of the two waves are identical over all atoms. The two 
waves are physically indistinguishable since the displacement u,, of 
each of the atoms is the same. It follows that the study of elastic 
waves can be limited to those whose wave vectors lie within a certain 
volume of the reciprocal lattice, the Brillouin zone. This is a region 
such that any point within it is nearer the origin than any other node 
of the reciprocal lattice. 

Fig. 1.9. All modes of vibrations 
can be represented by wave 
vectors located inside the 
Brillouin zone. 

[+ Brillouin 
i Zone 

boundaries 

21 
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To demonstrate this, suppose that the end of A of a vector k =_ OA 
is nearer a node M than the origin. We can replace k by the vector k’ 
= OB’ = k — r*y. The point B is nearer the origin than the node M 
(Fig. 1.9). With this construction, we can find a wave with a wave 
vector lying inside the Brillouin zone that is equivalent to any given. 
wave in the whole of k-space. 

The Brillouin zone is constructed as follows: 

Let the origin of the reciprocal lattice be O and let M be one of its 
nodes. The median plane of the segment [O, M] divides space into 
two parts: the one containing O contains all the points closer to O 
than M. Median planes are similarly constructed for all the nodes. 
The whole set of these planes forms a closed polyhedron around the 
origin and centred on the origin: this is the Brillouin zone. 

In Fig. 1.10, we show as examples the Brillouin zones of a 
two-dimensional lattice and of the reciprocal lattice of a face-centred 
cubic lattice. 

Unit cell of 
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Fig. 1.10. (a) Brillouin zone of a plane lattice. It is defined by the perpen- 
dicular bisectors of the vector joining the origin to the nodes 1, 2, 3, 4,5, and 

6. For any other node, the perpendicular bisector lies outside the Brillouin 
zone. (b) The reciprocal lattice (a body-centred cubic lattice of unit cell 
parameter 2/a) of a face-centred cubic direct lattice of unit cell parameter a. 
The symbols indicates various heights perpendicular to the plane of the 
diagram: nodes at heights of 0, 2/a, . . . are indicated by * and those at +1/a, 
. . . by &. The Brillouin zone has the following vertices: 8 at height 0 (0), 8 
at heights +1/a (@), and 8 at heights +1/2a (x); and has 8 hexagonal faces 

and 6 square faces. All its edges are of length l/aV 2. 
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3 Frequencies of the modes 

There are three frequencies corresponding to the three modes associated 
with each of the N wave vectors. In a crystal, the frequencies of the two 
transverse modes may in practice be the same, as it would be in an isotropic 
solid. 

For small wave vectors (i.e. long wavelengths, say above 1m) the 
situation ties in with the case of ‘macroscopic’ waves in the continuous 
solid: the discontinuous atomic structure does not have any effect because 
of the large number of atoms on the scale of a wavelength. Under these 
conditions, the mode frequency is simply proportional to the wave vector : 
w = vk, where v is the velocity of wave propagation in the medium. 

There are three velocities: one for longitudinal waves giving the speed of 
sound; the other two, which may coincide, for transverse waves. Crystal 
anisotropy causes the velocity of propagation to vary as the direction of the 
wave vector changes in relation to the crystal axes. 
When the wave vector is no longer small in comparison with its limiting 

value, dispersion occurs: in other words, as in the linear chain, w/k is not 

constant. This is caused by the atomic discontinuity in the crystal. For each 
direction of wave propagation and for each type of wave, transverse or 
longitudinal, there is a maximum value of the frequency beyond which a 
wave cannot be propagated in the crystal. 

4 Energy of crystal vibrations 

‘The Einstein model replaced the vibrating crystal with a set of 3N 
independent linear oscillators having the same frequency. When atomic 
interactions are taken into account, we are led to analyse thermal agitation 
in a different way: the ‘element’ becomes a normal mode of vibration of 

the crystal involving all its atoms. The various modes are independent and 

all the modes are superposed in order to describe the atomic agitation in a 

crystal. 

There are 3N modes for N atoms. We see that, in spite of the differences 

between the two models, they both have the same number of ‘elements’, 

3N. In the classical theory, there is equipartition of energy between the 

normal modes, each having an amount of energy kg7. The total molar 

energy is therefore the same as in the Einstein model. At high tempera- 

tures, where classical theory is valid, Dulong and¢Petit’s law is once again 

satisfied. 
At low temperatures, however, the behaviour of the heat capacity 

proves that the energy of the vibrational modes in the crystal is quantized, 

as is the vibration of the Einstein oscillator. The quantum of energy of the 

mode with frequency w, known as a phonon, is hw. At equilibrium, 
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according to Bose-Einstein statistics (p. 10), the mean number of phonons 

in this mode at temperature T is: 

1 

ex a 

F kpT 

and the mean energy per mode is therefore: 

how hw 
+ 

2 hw : 
exp = 

kpT 

The difference between this model and that of Einstein is that there is no 
longer only a single vibration frequency wp: the phonon frequency, 
depending on the mode, varies from 0 to ®max- 

Finding the energy of a mode of wave vector k requires a calculation of 
its frequency. This is a very difficult operation: it has to be carried out 
afresh for each crystal and it involves parameters defining the atomic 
interactions, followed by a summation of the contributions from all the 
modes. To simplify the calculation, we make use of an approximation 
suggested by Debye. 

n= 

E= 

Debye’s model 

First of all, it is assumed that the distribution of the modes is spherically 
symmetrical, i.e. that the frequency of a mode depends only on the 
magnitude of its wave vector. This is quite a good approximation for 
crystals of high symmetry, such as cubic crystals. 

Secondly, dispersion is neglected: it is assumed, just as in the case of 
small wave vectors, that the frequency is proportional to the wave vector: 

w = vk, where v, which has the dimensions of a velocity, is chosen to lie 
between the velocities of the longitudinal and transverse vibrations. 
We show in Box 5 how the number of modes with frequencies lying 

between w and w + dw can be calculated, and also how the total number of 

modes with frequencies lying below a given frequency can be obtained by 
making some approximations. However, since the dispersion curve is no 
longer involved, the upper limit on w has disappeared. Nevertheless, we 
know that the number of modes is finite and equal to 3N. Debye therefore 
introduced a cut-off at a maximum frequency wp, so chosen that the total 
number of modes had the correct value of 3N. The value of wp is expressed 
in terms of a temperature, @p, known as the Debye temperature, such that 
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the energy hwp of the mode of frequency wp is equal to the classical energy 
at the temperature Op, and thus that 

h 
Sp = —_ 4p 

B 

The total vibrational energy of the crystal at the temperature T can be 
calculated with the Debye approximation in terms of the single parameter 
T/Op. 

Box 5 

Spectral density of low frequency vibrational modes. 
The heat capacity in Debye’s model 

Consider the possible modes of vibration of a volume in the shape of 
a cube with fixed faces defined by the coordinates x = 0,x = L; y = 0, 

y = L;z=0, z= L. In general, any wave with a given polarization 
corresponding to a possible vibration can be represented by the real 
part of the complex number: 

A exp ilwi — (K,x + ky + k,2)|. 

The conditions for reflection and zero amplitude over the face x = 0 
mean that this wave must combine with the reflected wave of wave 
vector (—k,, k,, k,) in such a way that the two cancel each other out 
at x = 0. The expression for the resultant wave can then be written: 

A sin(k,x) exp i[wt — (kyy + k,z)]. 

The same argument applied to the faces y = 0 and z = 0 leads to the 
final resultant wave: 

A sin(k,x) sin(kyy) sin(k,z) exp iot. 

Note that definite signs must be allocated to k,, k,, k,: for example, 

they may be taken as positive numbers. This is because the k, wave is 
combined with the —k, wave so that the two are no longer indepen- 
dent, and similarly with the k, and k, waves. 
We now turn to the conditions for reflection and zero amplitude 

over the faces x = L, y = L, z= L. These conditions can be written: 

sin(k,L) = 0,1.e.k, =n,n/L 
sin(k,L) = 0, i.e. k, = nyw/L 
sin(k,L) = 0,1.e.k, =n,n/L 
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where n,, ny, n, are positive integers (n, =0,1,2...). 
There is therefore one point k per elementary cube of side /L in k 
space. 
We now ask the question: how many points k are there in k space 

giving rise to independent waves having the moduli of their wave 
vectors lying between k and k + Ak? Since k,, ky, and k, are positive 

numbers, the points k lie in an octant of the volume between the two 

spheres of radii k and k + Ak, at a density of one per elementary cube 
of side 7/L. The number of points k is therefore: 

1 4ak? Ak V : 
= + | | ko AR 
8 (2) 27 

L 

where V denotes the total volume, L*. However, we have to deal 

with vibrational waves in a solid, in which three independent modes 
(one longitudinal and two transverse) are associated with each vector k. 
The number of modes with wave vectors lying between k and k + Ak is 
therefore: 

ov 
k7Ak. 

Qn 

For such waves, we know that the relationship between w and k, the 

dispersion relation, becomes linear at low frequencies, i.e. w = vk. In 

this expression, the propagation velocity v is assumed to be the same 
for transverse and longitudinal waves. The number of independent 
modes whose frequency lies between w and » + Aw is therefore: 

f(m)Aw = at wAw. 
21> 

The function f, known as the spectral density, is thus proportional to 

«w” at low frequencies. 
Debye made the following approximation: this w? law remains 

valid up to a maximum frequency wp, called the Debye frequency, 

calculated in such a way that the total number of modes (i.e. the 
integral of f over the interval [0, wp]) is equal to 3N. We therefore 
have that 

3V oI pe 

3 
= odo =3N 

Li wv 0 
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This relationship connects the cut-off frequency wp with the speed of 
sound: 

Op = (6n°n)"?v 

where n = N/V is the number of atoms per unit volume. 
Using wp, the density of states referred to a mole can then be 

written in the Debye approximation in the form: 

flo) = 9Naw*lop?. 

The calculation of the heat capacity is then continued by generalizing 
Einstein’s calculation. In a frequency interval between w and w + Aw 
there are f(w)Aw modes or oscillators with a mean energy at 
temperature T given by [f(w) + 3]f@, where A(w) is the mean 
quantum number of an oscillator at temperature T, given by the 
Bose-Einstein formula (Box 2). 

These modes thus contribute the following energy to the system: 

AE = te +e w f(o) Aw. 

The total energy is obtained by summing these contributions over the 
whole frequency ‘band’ from » = 0 to w = wp: 

op 1 
E= | co +t)p wf (@) dw. 

The heat capacity is then obtained by differentiating this expression 
with respect to temperature (which only appears in n(w)): 

f(o)dw. 
2 

ho 

OD ho eee) Jo \Kel ho 
exp i 

ket 

Cp 
) , ket 

Note that this formula is a priori valid for all forms of the density of 

states, but only the Debye approximation enables the calculation to 

27 
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be followed through in a simple way. By putting x = ho/kpT, we 

obtain: 

T \) -& @ 
C208 lo ie ——— x4dx 

Op 0 ic 1) 

In this formula, we have introduced the Debye temperature, Op = 

hwp/kg (p. 25). It can be seen that C is a function of the single 
parameter 7/Op. 

It should be pointed out that, when T is very large, the integral 
involves only small values of x and this enables e*/(e* — 1)? to be 
replaced by 1/x*. We then find once again that: 

T \> 8 
C= 90R | —— [t Pdr=3R 

@./ |. 

which is none other than Dulong and Petit’s law. On the other hand, 
when 7 is close to 0 K, we use the expression for the integral: 

+00 e* 4 4 art ee 
a (ce — 1) 15 

12 17 ( Tr ) 
C= Ki-] © 

5 Op 

When T tends to zero, the heat capacity tends to zero like T°, i.e. 

more slowly than the exponential variation given by the Einstein 
calculation (Fig. 1.3). 

It is found that the Debye formula, which is an interpolation 
between two regions (low and high temperatures) where it is strictly 
true, gives a remarkably good approximation to the variation of heat 
capacity with temperature for a large number of substances. In fact, a 
completely rigorous calculation would involve knowing the exact 

to find that: 

Fig. 1.11. Spectral density of the 
vibrational modes in copper: 
( ) theoretical curve taking 
into account the crystal dynamics 
of copper, (----) Debye approx- 
imation. 

Arbitrary units f (@) 0 0 0 3 40 50 
w (10's~') 
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form of the density f(w) of the modes of vibration in each case. Even 
if it were true that f(w) always varied as w° at sufficiently low 
frequencies, its behaviour at higher frequencies depends on subtleties 
in the dynamics of atomic vibrations that are specific to each crystal. 
In particular, crystal anisotropy produces a difference between the 
bands of transverse and longitudinal modes, which do not a priori 
have the same form. Figure 1.11 shows the spectral distribution for 
copper established from a fairly refined dynamic model, and how it 
compares with the Debye approximation. 

Comparison of the Debye model with experiment 

We have seen that the Einstein model already gives good agreement with 
the experiment values of the heat capacity. In the high temperature region, 
the Debye and Einstein models are both satisfactory, since they tend 
towards the elementary classical model leading to Dulong and Petit’s law. 
The replacement of a single frequency by a rather narrow band of 
frequencies does not have any significant consequences. For a given solid, 
it is possible to find a Debye temperature which accounts quite well for the 
experimental results (Table 1.2). 

At very low temperatures, on the other hand, the Debye model is better. 
This is because it includes low frequency modes which are capable of being 
excited, whereas the oscillators at the single Einstein frequency are not 
excited. The heat capacity predicted by Debye is greater than that 
predicted by Einstein and is in agreement with experiment (Fig. 1.3). 

The temperatures given in tables of constants are quite scattered, 
depending on whether Op is chosen to give better agreement with heat 
capacities at high or low temperatures. Debye temperatures can also be 
derived from mechanical properties. 

Table 1.2 Some Einstein and Debye temperatures 

Element O(K) @p(K) 

C (diamond) 1500 3000 
Al 300 390 
Cu 250 320 
Mo 290 380 

Ag 165 226 
Pb 70 90 
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Contributions made by theories of the heat capacity of 
monatomic solids 

In our search for a theoretical explanation of the heat capacity of a crystal, 
we have introduced several concepts which turn out to have a wider 
significance than appears at first sight. 

In the first approximation (Dulong and Petit’s law), the internal thermal 
energy of a solid depends only on the number of atoms it contains; it is 
independent both of the nature of the atom and the crystal structure. The 
atom is subjected to the action of all its neighbours, so that its motion boils 
down to vibration about a fixed point. In spite of the great complexity of 
this situation, the thermal energy of an atom in the solid is simply twice the 
mean kinetic energy of an atom moving freely in a perfect gas at the same 
temperature: 3k,T instead of 3k,7/2. 

This high temperature limit for the heat capacity per atom is a basic 
result that is still yielded by the most refined of the theories which have 
replaced the simplest form of classical theory.‘ 

The second new concept, the quantization of energy, was introduced to 
explain the behaviour of the heat capacity at very low temperatures. The 
existence of the photon, the energy quantum of electromagnetic radiation, 
had already been demonstrated by Planck in connection with black body 
radiation. Einstein quantized elastic vibrations with the phonon. 

The third new concept to be introduced was not brought in merely to 
improve agreement with experiment, but was proposed mainly because the 
Einstein model, with its independent atomic oscillators, was artificial. It 
seemed difficult to ignore the strong bonds between neighbouring atoms 
which are the very reason for the existence of solids. 

The basic phenomena were assumed to be the modes of vibration, which 
involve the crystal as a whole and which are also quantized: the thermal 
agitation of the atoms is then the result of superposing all the possible 
modes of vibration, which can be obtained accurately from the theory. 
Although this model is very different from that of Einstein, it yields more 
or less the same results. In addition, however, the agreement with 
experimental measurements at very low temperatures is significantly 
improved. 

The refinements of the Debye theory thus contribute nothing conclusive 
to the problem of the heat capacity. Nevertheless, it does bring the 
phenomenon of crystal vibrations into the picture, and the importance of 
this is much wider than the single question of the heat capacity. It is true 
that the experimental study of heat capacity provides no direct and 

‘The experimental values of C may be greater than the theoretical value of 3R. This is an 
effect arising from the anharmonicity of the vibrations, from the contribution of the free 
electrons in the case of metals and from the formation of vacancies in the lattice. 
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accurate information about the elastic waves in the crystal, but fortunately 
there are other physical methods for revealing them and providing more 
details about their properties. This is the aspect we are now going to 
investigate. It is important to do this because, in any model of the atomic 
structure of solids, thermal agitation is an essential complement to the 

static and perfectly regular picture that springs from crystallographic 
studies: we are approaching the field of crystal dynamics. 

Inelastic scattering of neutrons by phonons 

Vibrational waves are excited spontaneously in a crystal by the thermal 
agitation of atoms. Their amplitude increases as the temperature rises. 
These elastic waves are often called phonons, but we should point out that 
the term is used in two different senses. Its other, and principal, meaning is 
that of the quantum of vibrational energy fw for a frequency w. 

Phonons which can be propagated through a crystal have a minimum 

wavelength of the order of twice the linear dimension of the crystal unit cell 
and a maximum frequency of around 10'*Hz or 1 terahertz (THz). This 
corresponds to a velocity of propagation for elastic waves of the order of 
5000ms!. 

Thermal phonons are of the same type as those of the elastic waves 
excited in solids by an external mechanical or acoustic source, but the latter 
have much lower frequencies. For example, the frequency of ultrasonic 
waves has a practical upper limit of 10? Hz, which is very low in comparison 
with the 10'° Hz typical of thermal phonons. 

The most fruitful technique for studying phonons uses inelastic neutron 
scattering. This enables the phonon frequency to be measured as a function 
of its wave vector, i.e. it enables the dispersion curve to be determined. 
However, the technique is complex and tricky and no details will be given: 
we shall merely describe the information that can be extracted from the 
method by giving a few examples. First of all, however, we look at a closely 
related phenomenon: that of X-ray scattering. 

Consider a crystal without defects but traversed by the set of waves due 
to thermal agitation. The crystal is then irradiated by a monochromatic 
X-ray beam which gives rise to secondary waves through scattering by each 
atom. When they emerge from the crystal, the secondary wavelets 
scattered by all the atoms interfere, and the complex result of such 
interference is recorded. 

In the first place, by far the most important part of what is observed is 
the diffraction pattern: this is the set of Bragg reflections (SM, p. 71) used 
for the determination of crystal structures. When the geometry of the 
experimental arrangement (the directions of the primary and secondary 
rays in relation to those of the crystal axes, the primary wavelength) is such 
that there is no Bragg reflection, the interference that occurs would 
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completely cancel out any resultant X-ray scattering if the atoms in the 

crystal were stationary. 
If any scattering is observed outside the Bragg reflections, it will be due 

to the vibrations of the atoms around their theoretical positions. The 
remarkable fact that makes this inelastic scattering a useful method is that 
the only atomic waves involved in it are those with wave vectors deter- 
mined by the geometry of the experiment: all the others, infinitely more 
numerous, have no effect in the given set of observational conditions. It is 
this property that enables the scattering experiment to provide a natural 
analysis of the waves due to thermal agitation in terms of their wave 
vectors, as we have done theoretically. 

Consider an active elastic wave, i.e. one that causes the scattering 
observed in a certain direction. What information will the scattered 
radiation yield? Calculation of the interference produced by the crystal 
traversed by this single wave shows that the scattered radiation no longer 
has the same frequency as the incident radiation, 1, but a modified 

frequency 2’ = + w, where w is the frequency of the elastic wave causing 
the scattering. For X-rays © and w are of the order of 10'8 and 10!*Hz 
respectively, and so the theoretically predicted frequency shift is too small 
to be detected experimentally. 

The situation is different for neutrons. The formula for the frequency 
shift, obtained by calculation of the interference that occurs, can be written 
(in the special language of the method) in the form: AQ.’ = AO + ho, and 
interpreted in terms of particles. AQ’ and #O are the photons of the 
incident and scattered radiation respectively, or the energies of the 
incident and scattered neutrons, while fw is the phonon energy for the 
elastic wave. 

In this type of scattering process, described as inelastic, the incident 
neutron interacts with the wave due to the atomic vibrations, so that the 

scattered neutron has an energy that is greater than or less than that of the 
incident neutron: what was given to or acquired by the elastic wave can 
only be a phonon fw. This is what is described by the formula for the 
frequency shift. 

The difference between the technique using X-rays and that using 
neutrons lies in the orders of magnitude. The neutrons used in these 

experiments, termed thermal neutrons, have an energy of a few meV, i.e. 

comparable with that of the phonon. The energy of the X-ray photon, on 
the other hand, is of the order of at least several keV, thus confirming that 

the energy change of the X-ray photon is too small to be detected. 
The difference between the energies of the incident and scattered 

neutrons is easily detectable and, since it corresponds to the energy of the 

phonon responsible for the scattering, the frequency of the elastic wave can 
thus be measured. Moreover, since the geometry of the experiment 
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determines the value of the wave vector, inelastic neutron scattering enables 
the dispersion curve for the elastic waves in the crystal to be determined. 

Whereas X-ray or neutron diffraction reveals the mean positions of the 
atoms in the crystal, inelastic scattering involves crystal dynamics: the 
dispersion curve for phonons is determined by interatomic forces and, 
conversely, it is theoretically possible to find out about these forces from 
the curve. 

Figure 1.12 shows dispersion curves for a copper crystal determined by 
inelastic neutron scattering. The wave vector is parallel either to a side of 
the cubic unit cell or to a diagonal on one of its faces; it varies from 0 to the 
limit of the Brillouin zone. A longitudinal wave and transverse waves 
occur, the latter being coincident in the first case. The slope of the tangent 
at the origin gives the wave propagation velocities (acoustic or elastic) 
which can be measured directly. The agreement with the neutron scatter- 
ing experiments is very satisfactory. 

— bev) ~~ 

w (10s) 

Fig. 1.12. Dispersion curves for the phonons in a copper crystal (face-centred cubic 
lattice with unit cell parameter a = 0.361nm) with the wave vector k (a) along a 
cube edge and (b) along a side face diagonal. Tangents at the origin are calculated 
from the elastic constants of the crystal (By kind permission of B. N. Brockhouse). 

The heat capacity of polyatomic crystals 

In a monatomic crystal, all the atoms play exactly the same role: the 
theoretical consequence of this, verified at high temperatures, is that the 
mean vibrational energy is independent of the nature of the atom and has 

the value of 3kgT per atom. This result could be extended to a polyatomic 
crystal if it is assumed, in spite of their different bonds, that all the atoms in 

the compound vibrate independently. If p is the number of atoms per 
molecule, a mole contains Nap atoms. The molar thermal energy is then 
Nap.3kpT and the molar heat capacity is 3Rp. 

It is observed that the heat capacity of a compound decreases towards 

low temperatures and becomes zero at 0 K. As T increases, it tends to a 
limit which should be compared with the above predicted value. Table 1.3 
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gives data for compounds with different numbers of atoms per molecule. 
It can be seen that there is often quite good agreement (to within 10 per 

cent) between the data and the simplistic theory. When there is a large 
discrepancy, the experimental value is less than the theoretical value, as it 
is in the exceptional monatomic cases (diamond, p. 7). 

To proceed any further, the elastic modes of vibration of the crystal must 
be described. The complication here is that all the displacements of all the 
different atoms cannot be represented by a single wave: not only are the 
displacements of the whole atomic motif being propagated from one unit 
cell to another, but superimposed on these are the deformations of the 
motif itself due to the motion of individual atoms relative to their 
neighbours. 
We shall take a simple example, which has the advantage that it can be 

dealt with using simple calculations and that certain conclusions which can 
be drawn from it are capable of being generalized to a crystal. The example 
we choose is that of a linear chain of two atomic species of different masses 
M, and Mb), alternating regularly at the nodes of a one-dimensional lattice 
of period 2a. As in the case of a set of identical atoms, we restrict our 
treatment to longitudinal vibrations. The interaction between two neigh- 
bours (here all the pairs are of the same nature) is represented by a force 
proportional to the difference between the real distance and the equilib- 
rium distance a. Box 6 gives the detailed calculations for waves being 
propagated along the line of atoms. 

Table 1.3 Molar heat capacities of polyatomic crystals 

Theoretical Experimental 

Compound value value Ratio 
(3R X p) (J K7! mol~!) 

NaF 47 0.94 
NaCl a0) 1.10 
NaBr 32 1.04 
Nal 54 1.08 
KF 3R X 2 =50 48 0.96 
KCl 54 1.08 
KBr SL 1-02 
KI a2 1.04 
MgO 44 0.88 
CaO 53 1.06 

CaF, 3R X3=75 66 0.85 
S10, WS 0.97 
H,O (ice) Soe 0.5 

BaSO, 3R X 6 = 150 128 0.85 
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Heat capacities of liquid compounds 

CoHe p=12 15S 0.44 

25 .~ 12°=300 

C,H,O p=9 115 0.51 
25 x 9 = 225 

C3oH 62 pe 92 1224 0.53 

25 X 92 = 2300 

H,O p=3 IS 1.0 

DEX 3 => 

CS, p=8 16 1.0 
DIGS — lS 

Cc, pes 119 0.95 
29 X= 125 

CH;CO.,H p=8 118 0.59 
(C,02H,) 25 X 8 = 200 

CH3COCH3 p=10 128 0.53 

C,H,)0 p=15 170 0.45 
25 X15 = 375 

Box 6 

Linear chain of two different atoms 

Two different kinds of atom of masses M, and M, are located 

alternately along a straight line and are separated when at rest by a 
distance a (Fig. 1.13). All the nearest neighbours pairs are identical 
and consist of two dissimilar atoms. In all the pairs, the force 

experienced by any atom is proportional to the distance between the 
two atoms, with a single constant of proportionality K. 

The masses M,, of even order (2n), whose equation of motion can 

be written 
du, 

dt? 
M, = K{2 uy, > lo, +1 =U, 1); 
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Fig. 1.13. A linear chain with two different kinds of atom. 

must be distinguished from the masses M>, of odd order (2n+1), 
whose equation of motion Is: 

dur, ot 
2 GC ~ KZ, 6 1 an a 2) 

es 

Just as in the case of the monatomic chain, we shall seek solutions in 

the form of waves but this time the amplitude of the wave will be 
different for the masses M, and M>. Let these amplitudes be U, and 

U,. We shall put: 

U>, = U, cos [wt — 2nkal] 

Uo, « 1 = Us cos |wt — Qn + 1) kal. 

By substituting these expressions into the equations of motion, we 
obtain a system of equations that is linear and homogeneous in U, 
and U3: 

(2K ae M,o”) U; — 2K cos kaU> = 0 

— 2K cos kaU, + (2K — Myw*)U> = 0. 

Such a system of equations only has non-zero solutions for U,; and U, 
if the determinant of its coefficients is zero. By equating this 
determinant to zero, we obtain: 

M,Mow* — 2K(M, + M>)w + 4K? sin* ka = 0 

which is a quadratic equation in *. The two solutions for w*, when 
plotted as functions of k, yield curves known as the acoustic branch 
and the optical branch, for reasons explained later. 

Acoustic branch (Fig. 1.14) 

x M,+M, V(M,~— M2 + 4 M,M) cos? ka 

M,M> M,M> 

This solution tends linearly to zero as k tends to zero (long 

ae 
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Fig. 1.14. Dispersion curves for the diatomic chain (masses M, [O] and M, 
[@]). The small sketches show how the atoms vibrate at k = 0 and k = a/2a 

for the optical and acoustic branches. 

wavelengths). This can be seen by putting cos ka = 1 — ‘02/2 and 
simplifying, when we obtain, for small ka: 

2K 
O28 

M,+M, 

When M, = Ms, the expression for the speed of sound obtained in 

the case of a linear monatomic chain is obtained again. Moreover, 

when k tends to zero, the amplitudes U, and U, become equal: atoms 
(1) and (2) vibrate in phase. 

Optical branch (Fig. 1.14) 

, M,+M, V(M,— M,>)* +4M,M>cos* ka 
6-5 C—O 

M,M> MM, 

This solution tends to a non-zero limiting value as k tends to zero: 

2K(M, + Mo) 
EN Ma 1 2 

Close to this limit, we find that 

U,/U, =e M./M, 

so that atoms (1) and (2) vibrate in phase opposition. 

Limit when M, tends to Mz 

It is interesting to see how the solution for the linear monatomic 

chain is recovered as M, tends to M>. As long as M, remains different 
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from M), there is a non-zero difference (a gap) between the two 

branches at k = +7/2a, where w, = V2K/M, and wy) = V2K/M). The 

acoustic and optical branches tend quadratically to these limiting 

values as the quantity (m/2a — k) tends to zero: 

M, 
_When M, tends to M;, not only does the difference between w, and 
® tend to zero but both the coefficients A, and A> tend to infinity 
like 1/(m/2a — k) so that, when M, = Mp, we revert to a linear 
variation at k = m/2a as in Fig. 1.6. 

Another very subtle point is the following: when the condition 
M, = Mz is achieved by passing to the limit (MW, — M,), the period of 

the system in real space remains constant at 2a, whereas when M, 
actually equals M> it becomes a. We thus revert to the curve of the 
monatomic linear chain (which is normally defined over the complete 

| \ 
| 

| a 
MiM. | 1 | OK 

1) M, 
M, and Mj nearly equal — 

: 2K 

| Nm 
Loo b 

ne S 
2a 2a 

! | ! | 
| | | — 
{ | t | K 
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a 2a 2a a 

Fig. 1.15. Passing to the limit M, = M, (from the diatomic to the monatomic 
chain). 
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Brillouin zone +7/a) restricted to the half Brillouin zone +q/2a: the 
_ sections for |k| > a/2a have been shifted by a reciprocal lattice vector 
(Fig. 1.15). 

Elastic waves in polyatomic crystals 

We now comment on the results of the calculation for the linear chain and 

generalize them to the three-dimensional crystal. 

1. The wavelength of the vibration has a minimum value which is twice 
the period of the linear lattice, i.e. it is 2a. As in the case of the chain of 
identical atoms, all the waves can be represented by restricting the wave 
vector to the interval —a/2a < k < q/2a. In a crystal, the wave vector lies 
inside the Brillouin zone of the reciprocal lattice (see Box 4). 

Furthermore, for a crystal of finite extent, the ends of the wave vectors 
have a regular distribution depending on crystal size. The consequence of 
this is that the number of wave vectors is finite and equal to the number of 
unit cells, as in the monatomic crystal. 

2. The particular feature introduced by the different types of atom is 
that, corresponding to any wave vector k, there are two distinct types of 
wave having different frequencies, w, and wo, with w, < wo. 

For the lower frequency, the dispersion curve w, = f(k) (Fig. 1.14) is 
similar to that of the simple lattice: w, is zero when k = 0. For small k, , is 

proportional to k and the amplitudes for atoms (1) and (2) are more or less 
’ equal. This means that, for sufficiently long wavelengths, two neighbouring 
atoms vibrate together without an appreciable variation in their distance 
apart: we can say roughly that it is the whole unit cell which is oscillating 
and it is the motion of the unit cell which is being propagated. These are 
acoustic waves: they are an extension, on the short wavelength side, of the 
elastic waves excited by an external acoustic or mechanical source and they 
propagate at the speed of sound. This is the essential feature of the acoustic 
mode. However, when k increases (i.e. when k is no longer small 

compared with k,,,x), the acoustic mode is complicated because the unit 

cell becomes more and more deformed. Thus, when we reach k,,,,, all the 

heavier atoms are vibrating in phase and the intermediate lighter atoms 
remain stationary (Fig. 1.14). 

The other type of wave has a frequency 9 which is a maximum when 
= (). As k increases, wy slowly decreases and reaches a minimum at kyyax. 

At the limiting value k = 0, the two atoms in the unit cell are vibrating 
around their centre of mass, which remains fixed. Each set of atoms of the 

same type vibrate in phase and the two sets vibrate with opposite phases. 
There is no propagation and no overall displacement of the unit cell, 
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merely a periodic deformation. The vibrations of this type in a row of 
atoms are similar to those of a molecule responsible for its optical 
properties (the absorption and emission of light). That is why this type of 

wave is called the optical mode. 
For non-zero values of k, and increasingly as k increases, the vibration 

becomes a mixture of displacement and deformation of the unit cell. Thus, 
for k = kmax, the heavier atoms remain stationary and the others vibrate in 

phase. 
To sum up, the dispersion curve w = f(k) for the diatomic row consists of 

two distinct branches, the acoustic and the optical. In the first of these, the 

frequency varies from zero to a maximum w, at k = + w/2a; in the second, 

the frequency decreases from wp» to a minimum w, at k = + m/2a. Suppose 
that it is possible to excite a vibration of frequency w using an external 
source. The row of atoms can be set into vibration provided that w lies in 
one of the two bands [0, ,] and [w 2, wo]. Outside these ‘allowed’ 
frequencies, there is a forbidden band or gap from , to w . This 
constitutes a frequency filter and is a direct result of the periodicity of the 
structure. We shall meet another example of this when dealing with 
electrons in crystals (p. 90). 

3. As in the case of the monatomic crystal, the set of modes of vibration 
of a polyatomic crystal corresponds to wave vectors whose ends are 
distributed with a uniform density inside the Brillouin zone. There are N 
wave vectors if the crystal consists of N unit cells. 

In a diatomic crystal, just as in the case of a monatomic crystal, a given 
wave vector must be considered as corresponding to three associated waves 
having different vector amplitudes: one is a longitudinal wave and the 
other two are transverse. If the frequencies of the latter are equal, a crystal 
with two atoms per unit cell has two dispersion curves for the acoustic 
modes and two for the optical modes. A mole of the crystal contains Na 
unit cells and thus 2N, atoms, so that there are 3N,4 acoustic modes and 

3Na optical modes, which is 3Nq X 2 in all, i.e. three times the total 
number of atoms, as in the case of a monatomic crystal. 

This can be generalized to a crystal containing p atoms per unit cell. The 
total number of modes is 3Nap, and of these 3N,q are acoustic modes in 

which the unit cell vibrates en bloc, and 3Na(p — 1) are optical modes 
corresponding to different deformations of the unit cell. At high tempera- 
tures, where the classical theory is valid, each mode has an energy kT and 
we revert to the value 3Rp for the molar heat capacity already predicted 
(p33). 

4. The modes of vibration of a crystal can be classified according to their 
frequency. The number of discrete modes with frequencies lying between 
w and w+ Aw can be found as a function of w, and this yields a curve 
showing the density of modes or the spectral density (Fig. 1.16(b)). The 
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calculation involves crystal dynamics and is difficult because the interato- 
mic forces are not known with sufficient accuracy. From this curve, and 
from the formula for the mean energy per mode of frequency w as a 
function of temperature as given by the Bose-Einstein equation (p.11), the 
heat capacity of a polyatomic crystal can be calculated. At temperatures 
that are not too high, particularly at ordinary temperatures, many of the 
optical modes distributed in high frequency bands are not excited. The 
heat capacity is then lower than the Dulong and Petit value: this is what can 
be observed in the ‘exceptional’ cases of Table 1.3. 
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Fig. 1.16. Experimental dispersion curve for phonons in a polyatomic crystal 
(CuCl). (a) Wave vector along the edge of the cubic unit cell; (b) spectral density 

of phonons in the CuCl crystal (by kind permission of B. Hennion). 

5. Experimental data on waves in polyatomic crystals are provided by 
inelastic neutron scattering, since the frequency of a wave with a given 
wave vector can be measured. With polyatomic crystals, there are several 
frequencies per wave vector, thus confirming the multiplicity of branches 
of the dispersion curve. Since the intensity scattered by a mode depends on 
the orientation of the vector amplitude of the wave, longitudinal and 
transverse waves can be distinguished from each other. However, the 
resolution of the equipment used to measure the frequency is not very high 

and the results are not easy to interpret unless the branches of the 

dispersion curve are clearly separated (Fig. 1.16). 
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Thus, neutrons give a description of the modes of vibration of crystals, 
even complex ones, and from that it is possible to obtain information about 
the interatomic forces. The main conclusion of this section, however, 1s 

that the global parameter, the heat capacity, does not in fact depend very 
much on the details of the dynamics of the vibrating atoms. The ancient 
Dulong and Petit’s law of 3kg per atom gives a result that is frequently only 
approximate but the discrepancy, if it exists, rarely exceeds 50%. More- 
over, the sense of the discrepancy is known: the experimental value is 
almost always less than 3kg. 

The rest of this book will show that there are few properties of solids that 
can be quantitatively predicted to this degree of approximation in such a 
simple manner. 

Infra-red absorption in ionic crystals 

We now return to the diatomic linear chain (Fig. 1.13) but replace the 
neutral atoms with ions of opposite sign, thus obtaining a one-dimensional 
model of an ionic crystal such as NaCl. All that has been said about the 

vibrations of the atoms in the chain remains valid for the ions. 
If a beam of electromagnetic radiation is directed at this chain of ions, 

the vibrating electric field exerts opposite forces on adjacent positive and 
negative ions, which then tend to vibrate with opposite phases. The mode 
excited by the electromagnetic wave is the optical mode with zero wave 
vector (Box 6), because all the ions of the same sign vibrate in phase. 

However, we know that a forced vibration only has an appreciable 
amplitude if there is resonance, i.e. if the frequency of the electromagnetic 
wave is equal to that of the optical mode. There is then strong absorption 
of the electromagnetic radiation, located in the far infra-red (A ~ 50 pm), 
since the frequency is of the order of 10'* Hz. 

Using quantum language, we can say an infra-red photon can be 
absorbed by the elastic wave if the excess energy which is given to it is 
exactly equal to its quantum energy, that of the phonon hw. 

Isolated molecules in solution or in the vapour phase are known to have 
infra-red absorption lines corresponding to the excitation of intramolecular 
vibrations. An analogous phenomenon explains the infra-red absorption in 

Fig. 1.17. Transmittance of infra- 
Ara ce ee red radiation through a thin film 

legit) ot (0.17 um) of sodium chloride. 
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ionic crystals: these can be considered as giant molecules whose optical 
modes are the internal vibrations (Fig. 1.17). 

This model enables several special features of the properties of ionic 
crystals in the infra-red to be explained. Thus, as shown in Box 6, the 

frequency w, becomes smaller as the ionic mass increases. Now, it is in fact 
observed that the infra-red absorption band has a longer wavelength when 
the ions are more massive: it changes from 6 to 31 ym in going from LiF to 
KBr and reaches 150 ym with thallium iodide. 

The excitation of the elastic wave in the crystal depends on the direction 
of the vibrating electric field and thus on the polarization of the infra-red 
wave. This is indeed what is observed experimentally. 
When an electromagnetic wave encounters an absorbent medium, it is 

also reflected by the surface, an effect easily observed with metals. Ionic 
crystals have maximum reflecting powers in their infra-red absorption 
band. If a beam is reflected successively by several identical crystals, the 
intensities of the wavelengths centred on the absorption band are greatly 
increased in comparison with the rest of the spectrum. The reflected beam 
consists of what are sometimes called ‘residual rays’ (German Reststrahlen) 
which form the basis of a method used to isolate an infra-red band of long 
wavelength. 

We have mentioned that, in the whole spectrum of elastic waves, those 
of very low frequencies can be excited by external sources. These are 
acoustic or ultrasonic waves whose technical possibilities limit the frequen- 
cy to about 10°Hz. We now see that, at least for ionic crystals, there is 
another method of exciting elastic waves using electromagnetic radiation. 

' However, this is only possible for waves with high frequencies around 
10'*Hz. Between the two methods, there remains a range of frequencies 
extending from 10° to 10'°Hz which exist spontaneously in the crystals 
due to thermal agitation. Their energy increases with increasing tempera- 
ture and it is distributed between all the waves according to statistical laws 
(equipartition at high temperatures). In the intermediate range, however, 
only spontaneous thermal waves exist: there is no known method of exciting 
a particular wave as can be done in the ultrasonic and infra-red regions. 

Thermal expansion 

Solids increase in volume as their temperature is raised. The effect is very 
small, the relative expansion for a rise of 100K being only about one part in 
a thousand for any solid. If the unit cell parameters are measured as a 

function of temperature, it is found that they increase by the same relative 

proportions as the macroscopic dimensions of the solid. The expansion is 

therefore due to a uniform displacement of all the atoms. 
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We use a simplified model to explain this phenomenon. Instead of 
considering a crystal, in which the atoms are bound to several neighbours, 
we shall base our argument on a pair of isolated atoms. These atoms are 
bound by a force which is the derivative of a potential. The minimum in 
this potential corresponds to the equilibrium distance ag between the pair 
of atoms. The atoms are in fact vibrating as a result of thermal agitation, so 
that their separation fluctuates around the value ao. 
We assume first of all that the interatomic potential is represented close 

to dy by a symmetrical curve, more precisely by a parabola (Fig. 1.18). The 
restoring force is then proportional to the amount by which the separation 
differs from dg: the motion is said to be harmonic. For any amplitude of 
oscillation, and therefore for any temperature, the mean distance between 
the atoms remains constant at do, and there is therefore no expansion of 
the pair. It would be the same in a crystal if the vibrations of all the atoms 
were harmonic. 

(a) 
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Fig. 1.18. Vibration of a pair of atoms around their equilibrium distance apart ag at 
OK: (a) with a symmetrical potential leading to harmonic vibrations; (b) with an 

asymmetrical potential leading to anharmonic vibrations. 

However, this lack of expansion is contrary to experience and we must 
therefore abandon the basic assumption of the model, i.e. the parabolic 
shape of the potential curve near its minimum. This curve is, after all, 
clearly asymmetrical when taken as a whole (see Fig. 4.6, p.184): pushing 
the atoms closer together than the equilibrium separation ap requires the 
expenditure of more energy than pulling them further apart and this is still 
the case in the immediate neighbourhood of ap. 

Suppose the pair vibrates between M and M’ with an amplitude / centred 
about dp. If the pair vibrates with the same amplitude but between N and 
N’ centred about ap + €, the system loses more energy from M to N than it 
gains from M’ to N’. The increase in the mean distance between the atoms 
reduces the vibrational energy of the pair: the equilibrium distance will 
correspond to the maximum possible reduction (a separation greater than 
this would raise the energy again). 
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If the temperature is raised, the displacement of the mean position from 
dy increases; it can be shown that this displacement is in fact proportional 
to the vibrational energy. The pair of atoms is thus ‘expanded’ by a rise in 
temperature. This expansion is a direct result of the anharmonic nature of 
the vibrations, i.e. of the asymmetry between forces brought into play as 
the atoms move closer or further apart. It is the same in a crystal, where 
the interatomic potentials are also anharmonic. 

Using this as a basis for the theoretical calculation of the coefficient of 
expansion, the following result is obtained (Gruneisen’s law): the coef- 
ficient is proportional to a parameter depending on the degree of the 
anharmonicity in the crystal and to the molar heat capacity, and it is 
inversely proportional to the atomic volume and the compressibility (i.e. 
the ratio of the relative decrease in volume to the increase in pressure 
producing it). At ordinary temperatures, the first three terms do not vary 
much from one metal to another and this means that it should be the 
compressibility that has the greatest effect. In fact, Table 1.4 verifies that 
soft metals have large coefficients of expansion while hard metals have 
small ones. Towards low temperatures, moreover, the coefficient of 

expansion decreases in a similar manner to the heat capacity and tends to 
zero at the absolute zero just as the heat capacity does. 

Table 1.4 Coefficients of expansion for some solid elements 

Coefficient of Compressibility 
Substance expansion 

(10-°K~') (10; Pa) 

Cs 97 500 
K 83 310 
Li 45 86 
Ag 20 9.9 
Ni 13 5.4 
W 4.5 3x8 
C (diamond) Lie 1.8 

Some applications of expansion 

As a general rule, all bodies increase in volume as their temperature rises. 
However, superimposed on this normally quite regular and universal 
expansion there are variations, either continuous or abrupt, which are 

manifestations of changes in the structure of the solid with temperature. 
That is why dilatometry is a simple and highly sensitive technique for 
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Fig. 1.19. Difference between the relative expansions of iron and aluminium 
plotted against temperature, showing evidence of the a @ y and y @ 8 transforma- 
tions in iron. The Curie point does not correspond to any change of lattice but is 

only revealed by a small dip in the curve. 

detecting changes in the structure of metals and alloys as their temperature 
varies (Fig. 1.19). 

For example, a nickel steel known as invar has a normal expansion which 
is exactly compensated by a structural contraction: invar is used in 
metrological apparatus where no change in dimensions must occur even 
though the ambient temperature may vary. 

Thermal expansion is always small, but it plays an important role in a 
large number of techniques and must be taken into account in the design of 
any equipment. If two different solids are connected together in a single 
component, their coefficients of expansion must be very nearly equal for 
the component to withstand large variations of temperature. On the other 
hand, differences in expansion can be put to good use: a bimetallic strip, 
for example, can form a simple and robust temperature sensor. 

Thermal conductivity 

Until now, we have been dealing with solids in equilibrium at a tempera- 
ture which is uniform throughout the body of the material. If at any given 
instant the temperature in a solid isolated from its external surroundings is 
not uniform, it equalizes spontaneously: heat is transported between the 
hotter and cooler parts without any transport of matter. This is the 
phenomenon we shall now investigate. 

Consider a rod of cross-section S and length L, whose ends are put into 
contact with two thermostatic baths maintained at temperatures T; and T> 
(Fig. 1.20). A heat flux Q is permanently supplied to the hotter end and 
this is transported through the rod to the cooler thermostatic bath, which 
absorbs it. The whole system is in a steady state: quantitatively, it is 
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observed that the flow of heat per unit area, Q/S, is proportional to the 
temperature gradient (7,—T>)/L along the rod. The coefficient of prop- 
ortionality is called the thermal conductivity K of the material: 

In a rough and ready way, materials can be classified into two groups: 
good conductors, which are metals, and non-metallic materials (or electric- 
al insulators) which are poor thermal conductors. Some materials have 
such a poor thermal conductivity that they are called thermal insulators. To 
give an idea of the orders of magnitude involved: at room temperature, the 
thermal conductivity of silver is 430 Wm7! K~! and that of vitreous silica is 
1.4W m7! K“!. Separating materials into two such well-defined classes is, 
of course, an oversimplification. 

In metals, it is the free electrons which are responsible for the high 

thermal conductivity, just as they are for the high electrical conductivity. 
We shall leave this question for now and return to it after dealing with 
electrical properties (p. 76). We therefore confine our treatment for the 
moment to the thermal conductivity of the poor conductors that are 
electrically insulating crystals, i.e. ionic, covalent, or molecular crystals. 

Conduction of heat by solids is an everyday phenomenon and the 
measurement of the coefficient of thermal conductivity can be carried out 
directly and easily. Its theoretical basis, however, is very complex and we 
should point out straight away that we do not know how to account for it 
quantitatively using calculations from first principles. 
We analysed the thermal agitation of the atoms in a solid at a uniform 

temperature in terms of modes of vibration which are propagated through- 
out the whole crystal in all directions, the energy being equally distributed 
between all the various modes. In such a model, each wave propagates 
freely without interaction with any of the others. The amplitudes of the 
atomic oscillations are thus the same at all points in the crystal and the 
temperatures are therefore equal. It is impossible to explain how a 
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temperature difference could be maintained inside such a crystal: in other 

words, the thermal conductivity would be infinite. We must therefore look 

for a way of introducing into the model a cause of the observed thermal 

resistance. 
The problem is tackled by using two different approaches: in the first, 

the elastic waves used previously are preserved; in the second, the model 

adopted involves particles, the phonons we have encountered previously. 

Wave-particle duality is a fundamental concept in physics. The two models 

are both independent partial representations of a reality whose complete 

description is unknown to us. It is difficult to reconcile them: depending on 

the phenomenon to be explained, one will be more convenient or more 

fruitful than the other. 

Thermal conductivity in terms of elastic waves 

Because elastic waves cannot account for a finite conductivity while they 
remain independent, the idea of coupling between them is introduced. The 
independence of the modes of vibration follows from the assumption of 
linear elasticity in the crystal (i.e. the restoring force on the atoms being 
strictly proportional to their displacement). However, as we have already 
seen (p. 44), this is not exactly true: all crystals must be anharmonic 
because they expand with rise in temperature. 

Consider a crystal through which a longitudinal elastic wave of wave 
vector k is travelling. Such a wave produces a succession of regions where 
the crystal alternately suffers expansion and contraction. Now consider a 
second wave of wave vector k’. Because of the non-linearity of the crystal, 
the response of the atoms to the stress from the k’ wave will be different in 
the two types of region. The k wave acts like a lattice producing a 
diffracted wave of wave vector k”. Interference conditions lead to the 
relationship: 

k+k' =k’. 

A certain redistribution of energy between the different modes thus 
occurs because of the coupling. However, this process, known as the 
normal process, does not help us in solving our problem: since the 
relationship between the wave vectors is analogous to the condition for the 
conservation of momentum, there is no resistance to the flow of heat. 

There is, however, another possible process, known as an Umklapp 
process (umklapp = German ‘flipping over’). Because of the periodicity in 
the atomic structure of the crystal, we know that wave vectors k and k + 
r*, where r* is any reciprocal lattice vector, are indistinguishable (p. 18). 
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The interference condition can therefore also be written in the form: 

k+k’ =k" +r". 

The three vectors k, k’, and k” can be brought inside the Brillouin zone 
(Fig. 1.21): the wave k” and the waves k and k’ are propagated in opposite 
directions, a point that is explained in Fig. 1.22 for the case of a linear 
chain. This type of coupling between waves, where there is no longer an 
analogy with the condition for the conservation of momentum, is capable 
of producing resistance to the flow of energy transported by the elastic 
waves. 

There is also another source of resistance: diffraction of the waves can be 
produced by crystal imperfections, which alter the periodicity of the lattice: 
these may be local distortions, impurity atoms, or the presence of isotopes 
with their different atomic masses. 

The phonon gas model 

Corresponding to an elastic wave of frequency w and wave vector k there is 
a phonon whose energy is the quantum energy of the wave fw and whose 
momentum is Ak.’ Corresponding to the whole set of vibrational waves ina 
crystal there is a phonon ‘gas’ in the volume bounded by the crystal 
surface, just as the black body radiation in a cavity is represented by a 
photon gas permeating the cavity. As with photons, the total number of 
phonons is indeterminate: phonons can disappear and others, in different 
numbers, can be created. (There is an important difference here with 
particles such as electrons or neutrons whose numbers are conserved. ) 

Phonons collide with each other, and this corresponds to the interactions 

between elastic waves. Between two successive collisions, the phonon 
travels a mean distance known as the mean free path A. The phonon has 

‘The wavelength \ of the wave associated with a particle of momentum p = mvis given by the 
de Broglie relationship \ = h/p. Thus p = h/d = (h/277)(20/d) = hk. 
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Fig. 1.22. The Umklapp process. (a) At time t = 0, the displacements are 
represented both by wave (1): A; = 1.80a, ky = 27/1.80a and by wave (2): ky = ky 
— 2nla = —2m/2.25a, Az = 2.25a. (b) At time ¢, the displacements are represented 
by wave (1) having moved a distance /; to the right and by wave (2) having moved a 

distance J, to the left. 

one feature which distinguishes it from a material particle: momentum is 
not always conserved in a collision since the term fr* can be involved in the 
conservation equation, r* being any reciprocal lattice vector of the crystal. 

Figure 1.23 shows how, in the case of collinear phonons, it is possible for 
two phonons k and k’ to combine and give a phonon k” satisfying both the 
equation » + ' = w" and k + k = k". In the case illustrated, momentum is 



Thermal conductivity a 

Fig. 1.23. Combination of three 
phonons such that k + k’ = k’” 
and w + w’ =". 

conserved (no resistance to the flow of heat; this is no longer true if r* is 
different from zero). It will be noticed that the existence of a solution is 
related to the fact that the dispersion curve has several branches with a 
curvature of suitable sign and that transverse and longitudinal phonons 
must be involved. 

In a gas, heat is transferred by the molecular motion: if, at the end of 
their mean free path, they are in a cooler region, they give their excess 
energy to the surroundings through collision with their neighbours. Using 
this picture, kinetic theory gives the following expression for the conductivity 
of a gas: 

17-€ 
KS (£o) as 

3\A 

where C is the molar heat capacity; A is the molar mass; p is the density; v 
is the mean molecular velocity; A is the mean free path of the molecules. 
This formula is established in Box 7. 

Box 7 

Calculation of the thermal conductivity of a gas 

The thermal conductivity of a monatomic gas can be calculated using 
kinetic theory (SM, p. 51). The following treatment gives an approxi- 
mate derivation. 
Assume that, in the vessel containing the gas, the temperature is 

not uniform but varies along a single spatial direction x. All the points 

lying in a plane with coordinate x are then at the same temperature 

T(x) but the temperature varies from one value of x to another. At 

the coordinate x, there is a local temperature gradient d7/dx. We 
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assume that, just after a collision, a gas molecule possesses kinetic 
energy corresponding to the temperature at the point where it is 
situated: 

E = 4mm? = 3kpT/2. 

It transports this energy from one point to another in the vessel as 
long as it does not suffer another collision. Energy transfer in the gas 
thus only occurs during the course of collisions between molecules. 

Corresponding to these microscopic transfers of energy there is a 
macroscopic flux of energy or heat Q. This heat flux, defined 
algebraically across a plane at coordinate x, is calculated by adding 
together the energies of the molecules which cross unit area in this 
plane per unit time in the positive x direction and by subtracting the 
energies of the same number of molecules which cross it in the 
negative direction: 

OQ =v(E, —E_) 

where v is the number of molecules crossing unit area of a plane per 
unit time in a given direction. 

If all the molecules moved only along the x axis, v would be equal 
to the number of particles contained in a slice of unit cross-section 
and thickness v, since in unit time all these molecules would have 

travelled a distance v and thus crossed the plane (Fig. 1.24). We 
should therefore have that 

Ss Fig. 1.24. Illustration of the 
method of calculating the thermal 
conductivity of a gas. 

where n is the number of particles per unit volume and v their mean 
speed. A more rigorous calculation, which takes into account all the 
possible directions of the velocities with respect to the plane, gives: 

v= nov/4. 
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It remains to evaluate the energies E, and E_ transported by the 
particles crossing the plane in the direction of increasing and decreas- 
ing x respectively. E, corresponds to the temperature the molecules 
had at the time of their last collision. If, between two collisions, the 

molecules travel a distance A (the mean free path), E. corresponds 
to the temperature at a coordinate x — a, less than x, where a is of the 
same order as A. A calculation including all possible directions of the 
velocity shows that a = 2A/3. We therefore have: 

2 2 
Ly ee kpT x-- A. 

Z 3 

In the same way: 

3 2 
E_=- kot (x42). 

Z 3 

From these, we deduce that: 

=e nvts| 7 ~2n)—r(x+2a)) — B x ; a : 

If we are interested in macroscopic variations in the coordinate x 
much greater than A, the temperature difference between x + 2A/3 
and x — 2A/3 can be expressed in terms of the mean local tempera- 
ture gradient with respect to x, i.e. dT/dx. Hence: 

QO = —3nvkpAdT/dx. 

The minus sign indicates that the heat flow is in the opposite 

direction to the local temperature gradient and thus tends to make 

the temperature more uniform. The coefficient of d7/dx corresponds 

by definition to the thermal conductivity K, so that 

K= snukpi. 

The number of atoms per unit volume n and the density p are 

related by 

p= nA/Na 

where A is the molar mass and N, is Avogadro’s number. The value 

of K can then be expressed as 

53 
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Finally, we remember that the molar heat capacity C is 

C =3R/2 = 3Nakn2 

so that 

If, allowing ourselves some latitude, we use this formula for the case of a 

phonon gas, with the velocity v of the phonons becoming the speed of 

sound in the material, the mean free path can be derived from ex- 

perimental data and we end up with results that are not too absurd. Thus, 

for NaCl at 0°C, A = 2.3nm and for quartz at 0°C, A = 4nm. 

This justifies the use of the formula for a quick calculation of orders of 

magnitude and for qualitative arguments. If a more refined analysis is 

required, the calculations with both wave and phonon models are very 

complicated and, as has already been mentioned, do not enable thermal 

conductivities to be evaluated from first principles without the introduction 

of empirical parameters. 

Qualitative explanation of some experimental results 

Variation of thermal conductivity with temperature 

At high temperatures (T > @p), the heat capacity is almost constant. The 
coefficient K is therefore proportional to the mean free path, A. This is 
inversely proportional to the number of phonons present, and since the 
number of phonons excited as the temperature rises is proportional to T, it 
follows that A, and thus the conductivity, is proportional to 1/T. 

Near the Debye temperature, the heat capacity begins to decrease. The 
conductivity is therefore less than the value extrapolated from high 
temperatures by using the 1/T law. 

At very low temperatures, few phonons are excited, but the mean free 
path does not increase indefinitely, firstly because it is limited by imperfec- 
tions in the lattice and, secondly, even if the lattice were perfect, it is 
limited by the size of the specimen. (This is reminiscent of the ‘molecular 
regime’ or ‘Knudsen regime’ in rarefied gases; SM, p. 48.) It has been 
observed that the conductivity at low temperatures, measured on cylind- 
rical rods, depends on the diameter of the rod. If it is assumed that A 
becomes constant at low temperatures, the conductivity is proportional to 
the heat capacity: it is zero at the absolute zero and varies with T° at low 
temperatures. 
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In this way, we can account for the shape of the curve (Fig. 1.25) of the 
conductivity due to phonons (or, in other words, due to the lattice, so as to 
distinguish it from the conductivity of metals due to electrons). 

Fig. 1.25. Thermal conductivity 
6 of sapphire (crystalline alumina 

or corundum) and its variation 
with temperature. 
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Comparison of the conductivities of various solids 

It is remarkable that the thermal conductivity of a crystal such as alumina 
(sapphire) at the temperature of its maximum (40K) exceeds that of silver 
at room temperature: 6000Wm~'K~! compared with 420Wm7!K7}, 
which means that the mean free path of the phonons must be long. This can 
be explained by the perfection of the crystal and by the fact that, because 
of the high Debye temperature (very strong interatomic bonds), the high 
frequency phonons necessary for the Umklapp process are not excited in 
very large numbers. Diamond also has good thermal conductivity at low 
temperatures, which accounts for an ancient custom of jewellers: to 
distinguish a sapphire or ruby from glass, they place it on their tongue: the 
gemstone gives an impression of being cold, unlike the glass. 

On the other hand, materials in which the crystallization is imperfect 
such as polymers are very poor conductors of heat. The mean free paths of 
the phonons here are very short. 

Thermal insulators used for practical applications are of course produced 
from very poorly conducting solids, but their insulating properties arise 
largely from their porous structure. Thin solid layers surround cavities 
filled with air, which is a very good insulator as long as there is no 
convection. (This is why woollen fabrics are very good insulators.) 
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Electrical properties of solids 

What happens when a solid is placed in an electric field? In answering this 
question, we shall not be concerned with experimental details nor with the 
particular properties of various solids and the many applications that 
depend on them: these aspects are matters for texts on electricity or 
electronics. The aim in this chapter is rather to account for the electrical 
behaviour of solids in terms of their atomic structure. We shall see that we 
are led to refinements of the models used in more elementary accounts of 
the structure of matter (e.g. SM, Chapters 1 and 4). 

Observation shows that solids can be broadly classified into two groups, 
electrical conductors and insulators, depending on whether or not an 
electric field causes a current to flow in them. The property of solids giving 
the clearest indication of their ability to conduct electricity is their 
resistivity, a quantity showing enormous variations from one substance to 
another: the ratio of the resistivities of quartz and copper is 107° (which is 
of the same order of magnitude as the ratio of the sun’s diameter to that of 
an atom). The resistivities of real materials are in fact spread over the 
whole of this range, with no large intervals that are completely empty. In 
spite of that, it is possible to make a clear separation of substances into 
good conductors and good insulators, with the exception of some inter- 
mediate solids which we return to later because of their importance. 
A simple relationship between the electrical conductivity and the type of 

atomic bond is immediately apparent. Good conductors are metals, with 
crystal structures in which some of the electrons are free, i.e. not strongly 
bound to one or more atoms. Molecular, ionic and covalent crystals, on the 
other hand, are insulators. 

This is an elementary yet fundamental statement and it bears closer 
examination. Consider an insulating solid such as an ionic crystal (SM, 
p. 78), in which all the electrons are concentrated in either positive or 
negative ions. An applied electric field exerts a force on every one of the 
electrons but, even if the field is extremely strong, the force is still very 
weak compared with that binding the electron to the positive nucleus. 
Although its motion may be slightly modified, the electron remains bound 
to its nucleus, so that no electron current can flow in the crystal. 
Furthermore, there is no way that the ions as a whole can move since there 
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is nowhere for them to go in the close-packed structure of the crystal. The 
same is true for molecular and covalent crystals. 

High conductivity can only occur when electrons are almost free, i.e. 
when they are so weakly bound to the atomic nuclei that they can be set in 
motion by the external field. This provides the very simple basis for the 
theory of metallic conduction. However, simple classical models are 
inadequate when it comes to providing a quantitative explanation of the 
properties of metals, and this is even more so for semiconductors, whose 
conductivities are intermediate between those of conductors and insula- 
tors: here it is absolutely essential to introduce the concepts of quantum 
physics. 

Although an electric field applied to a solid insulator does not produce a 
current, it does have other effects, and these give rise to important 

properties both from the fundamental point of view and from that of 
technical applications. When these are being discussed, we prefer the term 
dielectric to ‘insulator’, which has a purely negative connotation. 

Dielectrics 

The application of an electric field to a dielectric produces effects of several 
different types. In discussing these, we shall assume that the dielectric is a 
perfect insulator or, more accurately, we shall neglect the possible 

" existence of a very small residual conductivity. 

1. When the previously empty space between the plates of a capacitor is 
filled with a dielectric, it is well known that the capacitance increases. Let 
us assume for the moment that the dielectric is electrically isotropic, which 
is true for crystals belonging to the cubic system, for polycrystalline 
dielectrics and for amorphous materials. The capacitance is then increased 
by a factor e,, the dielectric constant or relative permittivity. This is a pure 
number, always greater than 1 and normally with a value in single figures: 
only for a few exceptional solids is €, greater than 10. 

2. Unlike metals, dielectrics may be transparent to light waves and, 
more generally, to electromagnetic waves, at least over a certain range of 
wavelengths. This is revealed by their colour: it is a common observation 
that insulators are often coloured and never have a metallic lustre. The 
action of the electric field of the wave on the dielectric is revealed by the 

propagation of the wave: its velocity of propagation, c/n, is less than its 

velocity in a vacuum, c. The refractive index, 7, is related to the relative 

permittivity through the Maxwell expression ae. 

3. When subjected to a high frequency electric field, the dielectric in a 

capacitor absorbs energy to an extent that varies from one substance to 
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another: this is revealed by the dissipation of heat in the capacitor. 
Another aspect of this is that an electromagnetic wave passing through the 
dielectric is not transmitted without modification: there is a partial 
absorption of energy from the wave during its propagation. 

4. In crystals other than those belonging to the cubic system, the action 
of the electric field depends on its direction with respect to the crystal axes. 
Thus, the permittivity of a dielectric sheet between capacitor plates varies 
with the orientation of its surfaces in relation to its crystal axes. It is the 
same for the propagation of a wave through the sheet. The complex effects 
observed (birefringence, optical activity) and their diverse applications are 
the subject of an important branch of optics: crystal optics. 

It can be seen from this brief survey that a dielectric which is a perfect 
insulator is very far from being passive under the action of an electric field. 
The phenomenon underlying all the facts we have just described is that of 
the polarization of the dielectric. This forms the link between the distribu- 
tion of the electric charges in the material and its macroscopic properties. 

Dielectric polarization 

Dielectrics in zero electric field 

The atoms in a crystal consist of charged particles, the positive nuclei and 
the negative electrons. Whatever their arrangement, the total charge in a 
unit cell of the crystal is zero. 

Moreover, for the large majority of substances, the centroid of the 
positive charges in the molecule or unit cell coincides with that of the 
negative charges. The electric dipole moment of the molecule or unit cell is 
then zero and the molecule or unit cell is said to be non-polar. Such a 

O? =" 8ep'10e) 

(+e) 
Fig. 2.1. A polar molecule (HzO): the centroid of the negative charges is not 
located at the centre of the O*~ ion because the electron cloud is perturbed 
by the H* bonds. The dipole moment of the molecule is 10 x 4 = 40 electron-pm 

(1 picometre = 107m). 



Dielectrics 59 

molecule or crystal possesses no tendency to change its direction in an 
electric field. 

The opposite, less common, case is that of a polar molecule, which does 
possess an electric moment in the absence of an applied electric field. For 
example, the CO, molecule is linear and has a centre of symmetry, so it is 
non-polar; the water molecule H,O illustrated in Fig. 2.1, on the other 

hand, has an electric dipole moment. It is worth noting, however, that ice 

crystals are non-polar (SM, pp. 77-8) since the four molecules in the unit 
cell are so arranged that the total moment is zero. 

Polar crystals, in which the centroids of the positive and negative charges 
do not coincide, are less common, but we shall nevertheless be discussing 

them later because of their important properties. 

Dielectrics in an applied electric field 

When a steady electric field is applied to a non-polar dielectric, the positive 
and negative charges in the unit cell are subjected to forces tending to 
move them in opposite directions. As we have already said, these forces 
are insufficient to detach an electron from its atom or ion, but they will 

produce a slight displacement of the negative charges in relation to the 
positive charges, a change which is opposed by the forces both within the 
atom or ion and between ions. When equilibrium is attained, the centroids 
of the charges of opposite sign (G+ and G— in Fig. 2.2(b)) no longer 
coincide, so that in an electric field the unit cell of the crystal possesses an 

_ induced electric dipole moment. The distance G+G-— is proportional to the 
electric field E if the restoring forces are proportional to the displacements. 
Thus, to a good approximation, the dipole moment of the unit cell induced 
by the electric field is proportional to the field, as is the corresponding 
macroscopic property of the crystal: its electric polarization, the vector P. 
This means that 

P=€,xE 

where x is the electric susceptibility, a dimensionless number lying between 

(a) (b) 

Fig. 2.2 Projection of the unit cell of a non-polar crystal: (a) no applied electric 
field; (b) in an electric field E. 
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0 and 10 for most solids. The quantity €o is the permittivity of free space, 

with a value that depends on the system of units being used. In SI units, 

ene ss 10S Fmt 
When the laws of electrostatics are applied to such a system, they 

account for the increase in the capacitance of a capacitor due to a dielectric 
and show that the relative permittivity €, is equal to 1 + x. 

Take NaCl as an example. It is obvious from the regular alternation of 
positive and negative ions that the dipole moment of the unit cell is zero. 
When an electric field is applied, the crystal becomes polarized and its 
susceptibility x is 4.8. Thus, in an electric field of 10° Vm", the polariza- 
tion P is 42 x 10°°Cm~ and the dipole moment of the unit cell with a 
volume V of 175 x 107*°m? is m = 7 xX 10°*°Cm. Since the unit cell 
contains 4Na* ions and 4Cl” ions, the charges are +4e and —4e. The 
separation of the centroids of these charges is therefore m/4e or 1.1 xX 

10~°nm. This shows that the polarization hardly deforms the crystal at all. 
If the crystal is anisotropic, the atomic restoring forces depend on the 

direction of the displacements. Consequently, the displacements of the 
atoms, and hence the polarization vector, may not have the same direction 
as the electric field E (Fig. 2.3), although the modulus of P is still 
proportional to the modulus of E. The proportionality between P and E is 
no longer expressed as a scalar, but as a tensor: a tensor, moreover, that 
has the same symmetry properties as the crystal. All the optical properties 
specific to crystals, particularly their birefringence, follow from this fact. 

Fig. 2.3. Polarization of an 
anisotropic crystal. In any crystal, 
there exists an orthogonal system 
of axes such that: 
P= aE, + bE, + cE,. 

The mechanisms of electric polarization 

Electric polarization is the result of the relative displacements of charges. 
There are several possible ways in which this may occur, each giving rise to 
different dielectric properties: the alignment of polar molecules as a whole, 
the relative displacement of ions, or the deformation of atoms. 

The alignment of polar molecules cannot occur in a crystal since the 
position of the molecules is fixed, but it can in a liquid, which has a 
disordered structure. In the absence of a field, the molecular dipole 
moments are tightly packed against each other without any order and with 
random directions which are nevertheless continuously varying because of 
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the thermal agitation. The resultant dipole moment is therefore zero. 
When an electric field is applied, a couple is exerted on the molecules 
tending to align their dipole moments along the field direction. This 
tendency increases as the field increases and as the thermal agitation (and 
thus the temperature) decreases. As a consequence of this, there is a 
resultant dipole moment proportional to the field, although the molecular 
alignment always remains very far from being perfect. 

Thus, for water in a field of 100Vm', the polarization is 10-°Cm~?, 
whereas it would be 0.3Cm ~~ if all the molecules had their dipole 
moments parallel to the field. Not only that, but water in its liquid state is 
an exceptional dielectric with a very high relative permittivity (€, = 80), so 
that the alignment will be even less perfect in most substances. 

There is, however, a special class of crystal in which the alignment of 
polar molecules is possible: plastic crystals. In these, the molecular centres 
have fixed positions but the molecules as a whole are free to take up one of 
several directions. In an electric field, a molecule tends to choose the 

orientation giving it the minimum energy. 
The two important mechanisms of polarization in non-polar crystals are 

the relative displacement of complete ions (ionic polarization) and the 
deformation of ions or atoms (electronic polarization). These mechanisms 

can be distinguished from each other by subjecting the crystal to an 
alternating electric field. The technique involves the measurement of 
electric susceptibility as a function of the frequency of the applied field. 

Electronic polarization 
In this case, the atom or ion acquires a dipole moment by virtue of the 
relative displacement of the electrons and the nucleus. Since the inertia of 
electrons is very low because of their small mass, variations in electronic 
polarization can follow the vibrations of the field up to very high 
frequencies (10'° Hz) corresponding to waves in the ultraviolet region. 

Classical theory represents the complex motion of the electrons in the 
atom by a set of harmonic oscillators with natural frequencies ranging from 
the visible to the ultraviolet. When subjected to an alternating exciting 
force, the oscillators give rise to effects due to resonance: if the frequency 
of the applied field coincides with the natural frequency of an oscillator, 
the susceptibility increases and, at the same time, so does the energy 
absorbed from the wave by the atom. This is the origin of anomalous 
dispersion, a large variation in the refractive index over a narrow range of 
frequencies (Fig. 2.4). 

Ionic polarization 

Here, the ion is displaced as a whole and, since its mass is about 1000 times 
that of an electron, the natural frequencies of the ionic oscillations are 
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Fig. 2.4. Variation of the polarizability of a solid with frequency of the applied 
electric field. 

much lower than those of electrons. In fact, the ions cannot follow high 
frequency variations and the ionic susceptibility then becomes negligible. 
This transition occurs in the visible region or in the infra-red. We have 
already indicated (p. 42) that, for alkali halide crystals, the optical modes 
for ionic vibrations are located in the far infra-red. 

Piezoelectric crystals 

These are crystals that become polarized when subjected to mechanical 
stress, whether compressive or tensile: quartz is the best known example. 
The importance of piezoelectricity lies in its many modern applications: 
quartz watches, ultrasonic generators, and so on. 

Consider a crystal whose unit cell, when at rest and not subjected to an 
applied electric field, has a zero dipole moment. Its positive and negative 
charges are distributed in such a way that their centroids coincide. If 
pressure is applied to a thin slice cut from the crystal, it suffers a very small 
elastic strain (change in thickness of the order of 1/1000) proportional to 
the pressure. On an atomic scale, the unit cell suffers the same deformation 

and this produces small displacements of the atoms in it relative to each 
other. 

If the unit cell has a centre of symmetry, the crystal remains centro- 

symmetric after the strain and therefore acquires no dipole moment 
(Fig. 2.5). It is quite different if the unit cell lacks a centre of symmetry: 
the displacement of the positive and negative ions may separate the 

centroids of the two types of charge. The crystal then becomes polarized 
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Fig. 2.5. The unit cell, when deformed by a mechanical stress, is (a) not polarized if 
it has a centre of symmetry, but (b) may be polarized if it lacks such a centre. 

and, since the displacements are proportional to the applied pressure, so is 
the polarization. If the surfaces of the slice are covered with metal films 
(Fig. 2.6), a potential difference proportional to the applied pressure 
appears between them. 

Ad 

(a) (b) 

Fig. 2.6. (a) The direct piezoelectric effect: polarization charges created by 
pressure; (b) the inverse effect: the crystal slice is mechanically deformed when a 

voltage is applied across it. 

Although the elastic strain in a crystal is always very small, there are 
fairly rare cases in which the crystal structure is such that the electric 
polarization induced is large enough to be detected and used. For instance, 
if the 10cm by 2cm surfaces of a suitably oriented thin quartz slice of 
thickness 0.5mm are pulled apart by a force equal to the weight of 0.5kg, 
opposite charges of 2 x 10°C appear on them. 

There is also an inverse piezoelectric effect. If a voltage is applied across 
the faces of the crystal slice, it experiences an electric field and becomes 
polarized. The ions of opposite sign are displaced by electric forces acting 
in opposite directions, producing a deformation of the unit cell and thus a 
change in the shape of the slice. Its thickness varies by an amount 
proportional to the applied voltage. 
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If the applied voltage is alternating, the thickness of the slice oscillates at 
the same frequency, thus exciting elastic vibrations in it. However, the 
amplitude of these vibrations will not be large unless a natural mode is 
excited. The electrical and elastic vibrations are therefore coupled: the 
impedance of the electric circuit is controlled by the frequency of the 
natural mode of the slice. Now the vibrations in quartz have a very low 
decay constant and the resonance is therefore very sharp (high Q-factor). 
As a result, the quartz slice acts as a frequency stabilizer and it is this 
property that has led to the success of the quartz watch. In general, the 
natural frequency of a quartz slice varies with temperature. Fortunately, it 
is possible to cut a slice from the crystal in such a direction that the natural 
frequency is not sensitive to temperature variations around normal 
ambient temperatures. This means that a quartz oscillator can be stabilized 
to within 1 in 10°. The electric circuit only functions in an extremely narrow 
frequency band centred on a value determined by the quartz crystal: a 
small rod 4mm in length and 2mm in diameter gives a watch an operational 
stability of about 1 second per year. 

If a liquid is brought into contact with the vibrating surface of the quartz, 
elastic vibrations will be produced in it. The frequency of the waves 
transmitted through the liquid can be changed by altering the thickness of 
the slice. Quartz oscillators form practical ultrasonic sources in the frequency 
range from 10’ to 10'°Hz. The availability of such sources has led to the 
development of many applications in the ultrasonic field. Underwater 
communication is one such field: sonar is an ultrasonic form of radar for 
detecting an obstacle that reflects ultrasonic waves and for measuring its 
distance from the source. We might also mention the examination of the 
human heart using echocardiography. 

An experimental test to ascertain whether a small crystal is piezoelectric 
is quite easy to perform. Such a test, carried out on a macroscopic scale, 
thus enables a crystallographer to discover whether or not, on the atomic 
scale, the unit cell of the crystal has a centre of symmetry. 

Polar crystals 

A unit cell contains a total positive charge Q and a compensatory negative 
charge —Q. However, in a polar crystal, the atomic arrangement is such 
that the centroids of these two charge systems do not coincide even when 
there is equilibrium and no applied electric field. If the centroids are a 
distance / apart, the spontaneous polarization of the crystal is Q//V, where 
V is the volume of the unit cell. 
A crystal is only polar if its unit cell lacks a centre of symmetry. If it does 

have such a centre, the symmetry operation of inversion through it would 
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by definition leave the unit cell unchanged, but the electric dipole moment 

would be reversed: the latter must therefore be zero. 
It seems natural to assume that a polar crystal would be the source of an 

electric field around it, just as a permanent magnet is the source of a 
magnetic field which finds many applications. In practice, there is no such 
field: the electric polarization does not reveal itself in an obvious way, for 
the following two reasons. 

1. In the first place, the energies involved in normal electrostatic 
phenomena are very small compared with those associated with magnetic 
effects. Consequently, whereas forces of magnetic origin are easily detect- 
able in comparison with other forces such as weight, friction, etc, those 

arising from electrostatic effects are not. 

It should be remembered that electric polarization is at best only a small 
effect because the ions are close-packed in the crystal and can only be 
displaced through extremely small distances. 

2. The analogy between electric polarization and magnetization of 
materials is formally complete if ‘magnetic charges’ are invoked to 
correspond to the electric charges, but positive and negative electric 
charges have a separate existence, whereas the basic magnetic elements are 
dipoles. 

This explains why an effect that occurs with polarized solids has no 
counterpart with magnets. The surfaces of a polarized slice attract free 
charges existing in the solid (impurities) or present in the surrounding 
atmosphere in the form of the ions. The electric dipole moment of these 
‘real’ charges very quickly neutralizes the intrinsic polarization (Fig. 2.7), 
thus making it impossible to detect the effective polarization of the solid. 

Fig. 2.7. Neutralization of 
polarization charges by free 
external charges. 

Pyroelectric crystals 

Nevertheless, the spontaneous polarization is revealed in certain crystals 

where it shows a large variation with temperature. Tourmaline, a natural 

mineral with the general formula (Na, Li, Ca) (Mn, Mg, Fe, .. .)o 

(OH, F) (BO3)3 (Sigg), is an example. Its atomic structure changes with 



66 Electrical properties of solids 

temperature in such a way that the spontaneous polarization decreases as 
the temperature falls: at —250°C, it is no more than 7 per cent of its value 
at room temperature. When tourmaline is cooled, its polarization changes 
immediately, whereas the neutralization by external charges takes place 
only slowly. The polarization of the tourmaline is thus temporarily 
revealed, but the effect has not been used for any important applications. 

Electrets 

Electrets are made from certain polymers such as _ teflon 
(polytetrafluorethylene) in the form of thin sheets with thicknesses be- 
tween 10 and 50pm. They have the unusual property of keeping their 
polarization and/or their ‘real’ charges permanently. The sheet is polarized 
in a strong field and at a high temperature (above 150°C), and then cooled 
in the field. The dipoles that are oriented at the higher temperature remain 
fixed at ordinary temperatures. The deposition of the charges on the sheet 
is achieved by an electric discharge in the air in contact with it or by 
electron bombardment. The permanence of the charges implies that the 
dielectric has an extremely high resistivity. 

Electrets are mainly used in the manufacture of microphones. The 
charged polymer sheet, metallized over one surface, is stretched in front of 
an insulated metal plate from which it is separated by a thin layer of air. 
Sound waves falling on the elastic sheet deform it and the resultant 
displacements produce a voltage between the two electrodes whose 
variations faithfully follow those of the position of the sheet and therefore 
of the pressure. This is a simple type of microphone compared with others: 
it has a high sensitivity and has the great advantage of being able to 
function indefinitely without any external electrical supplies. 

Ferroelectric crystals 

These are unusual, and involve only a small number of crystal species, but 

their special properties find so many applications that we are justified in 
discussing them. However, we shall only deal with one fairly typical 
example, that of barium titanate (BaTiO3). 

Above 120°C, barium titanate is a crystal with a very simple and highly 
symmetrical structure: the unit cell is cubic, with a titanium atom at the 
centre, a barium atom at the corners, and the three oxygen atoms at the 
centres of the cube faces (Fig. 2.8). 

At 120°C, a change of phase occurs: the cubic unit cell becomes 
tetragonal (a rectangular parallelepiped with a square base) having a 
height that is slightly greater than the side of the square base (c/a = 1.04). 
What is more significant, however, is that the atoms do not keep the same 
positions below 120°C that they had in the cubic phase: the positive ions, 
Ba** and Ti*™, are displaced along the c-axis relative to the oxygen ions. 
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Ba2+ Fig. 2.8. Cubic unit cell of barium 
titanate. 

The crystal thus becomes polarized with a dipole moment directed along c. 
The ionic displacements are very small, only about 1/1000 of the interato- 
mic distances. 

As a general rule, the structure with the highest symmetry is the stable 
one at high temperatures, with the ions vibrating about their mean 
positions. Below the transition temperature, the symmetry is ‘broken’ and 
it is the slightly distorted arrangement which becomes the more stable one. 
However, more than one orientation is possible for the new phase: for 
example, the titanium atom in the unit cell can equally well be displaced in 
six directions (along the three cubic axes in either direction). 

The different unit cell structures are not, however, mixed up at random. 

The phase transformation is a cooperative phenomenon which creates 
domains of uniform structure of quite large dimensions (of the order of 
-10ym or even much more). There are several methods of obtaining a 
picture of these domains on the surface of a titanate crystal and remarkable 

Fig. 2.9. Domains in barium 
titanate. Observation of a thin 
section under the polarizing 
microscope reveals domains with 
different orientations. 

5mm 
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regularities are frequently observed (straight domain boundaries parallel 
to crystallographic planes, near periodicity in a set of alternate domains, 
etc) (Fig. 2.9). 

Each domain is polarized because of the unit cell structure, but the total 
dipole moment of a set of domains equally distributed between the various 
possible orientations is zero. Take a crystal slice whose faces are normal to 
one of the axes, c, and apply an electric field normal to the slice and of 
increasing strength. The slice becomes polarized, not through the deforma- 
tion of the structure as in the case of a non-polar crystal but through 
increasing orientation of the domains into a favourable position in which 
their moments become aligned more nearly parallel to the field. The 
favourably oriented domains grow at the expense of others until the crystal 
as a whole becomes a single domain. The polarization then has its 
maximum value and reaches saturation. When the applied field is reduced, 
the crystal at first remains a well-orientated single domain and, at zero 

field, is still polarized. If the field direction is reversed, domains with 
inverse polarization begin to grow, and then become enlarged, until with a 
strong enough field the crystal once again reaches its saturation polariza- 
tion, this time in the opposite direction: it is once again a single domain. 
Thus, with an alternating variation in the applied field, the crystal 
polarization follows a hysteresis cycle which is very similar to that of a 
ferromagnetic (Fig. 2.10). This explains the origin of the name given to this 
type of dielectric. 

ie Fig. 2.10. The polarization 
induced in a ferroelectric by an 
alternating electric field: a 
hysteresis loop. 

noe 
he penne 

Can ‘ferroelectricity’ be explained? 

How could the properties of ferroelectrics described above be explained? 
The essential aim here is to provide an explanation of how the structure of 
the ferroelectric phase comes about. To do this, we have to show that it is 
the structure with the minimum free energy. However, such a calculation 
cannot be carried out because we do not know with sufficient accuracy the 
atomic binding forces occurring in a configuration of given geometry. 
Here, we encounter one of the main difficulties faced by the physics of 
solids in connection with many phenomena: some other problems less 
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complicated that than of ferroelectricity still remain unsolved. For exam- 
ple, it is not known how to calculate ‘from first principles’ the relative 
permittivity or refractive index of a crystal with a simple structure. 
When projects turn out to be too ambitious, physicists abandon them 

and develop theories described as ‘phenomenological’. These start from 
equations which involve parameters chosen ad hoc, or even from models 
based on empirical data and assumed to have certain properties. Such 
theories are very useful to specialists in the field of ferroelectricity and 
enable whole sets of results to be brought together in a coherent whole. 
However, theories of this sort are not within the scope of the present book, 

where the aim is to relate properties directly to atomic structure. 

A general comment 

We have mentioned in this chapter several examples of crystals having a 
particular property that provides the basis for economically important 
techniques. The origin of these developments is, in general, an observation 
made ‘by chance’ or during an investigation undertaken with a very 
different aim. There are in practice no miracle materials which have been 
‘made to measure’ according to a recipe drawn up by theoreticians. 
(Further on, we shall encounter exceptions to this in the field of semi- 
conductors, exceptions that are all the more remarkable for being so rare.) 

Nevertheless, the initial discovery cannot be exploited without the help 
of theoretical physicists in analysing the first observations. Moreover, it is 
very unlikely that the first sample to be studied will be the one giving the 
best performance. Hence the need for a wide and systematic search for the 
best ‘candidates’, selected for theoretical reasons. 

Thus, technical success depends on close collaboration between theoretical 
and experimental solid state physicists, chemists capable of synthesizing any 
required materials, and specialists in the field of crystal growth. The 
last-named are vital since, for many applications, a microcrystalline 
material is inadequate, and single crystals must be available in large 
enough sizes, often of the order of a centimetre. It is thanks to collabora- 
tion between teams of research workers with varying specialities that the 
technical wealth from the physics of solids has been, and will in the future 
be, exploited. 

The electrical conductivity of solids 

A solid is a conductor of electricity if a current passes through it when a 

voltage is applied to it. The current is the result of the motion of charged 

particles or charge carriers through the solid. 
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Ohm’s law 

We choose the simplest possible geometry: a rod of cross-sectional area S 
and length L whose ends are maintained at fixed voltages 0 and V by an 
external source. If there is only one type of carrier, with charge q and 
density (number per unit volume) vn, and if v is their mean velocity 
projected along the axis of the rod, the current density is given by: 

J = I/S = nqv. 

Inside the rod, the uniform electric field is E = V/L. In the great majority 
of conductors, the drift velocity of the carriers, v, is proportional to the 

electric force on the particle and thus to the electric field, so that v = pE, 
where wy is the carrier mobility. Hence: 

J=nqpe_. 

This is an expression of Ohm’s law. If we write it in the form J/S = nqpV/L, 
we obtain: 

V = (1/nqp) (LIS) = p(L/S)I. 

The ability of a solid to conduct electricity is indicated by the parameter 
o = nqp, its conductivity, or by its reciprocal p = l/o = 1/nqp, the 

resistivity. 

The charge carrier is subjected to two forces: the electric force gE and an 
opposing force, the resistance to its motion through the solid. The drift 
velocity v has such a value that these two forces are equal in magnitude. 
This is similar to the way in which a parachute falls with a constant velocity 
when its weight is exactly balanced by the upward force due to the 
collisions of air molecules. Ohm’s law expresses the fact that the resistance 
to the motion of the carrier is proportional to the drift velocity. 

In order to explain electrical conductivity in terms of a model of atomic 
structure, the following problems have to be solved: firstly, the carrier or 
carriers of charge have to be identified; secondly, the causes of the 

resistance to carrier motion have to be discovered and analysed; thirdly, if 
Ohm/’s law is found to be valid, the resistivity must be calculated and 
compared with experimental values. Finally, we must investigate why some 
solids do not obey Ohm’s law. 

The nature of the carriers 

There are two types of charged particle capable of transporting electricity 
through matter: electrons and ions. 

Electrons are charged particles, characterized by their charge —e and 
their inertial mass in the free state m,. They are point-like, i.e. particles for 
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which the classical concept of a diameter has no meaning. 
Ions, i.e. atoms which have lost or gained a smail number of electrons, 

have a positive or negative electric charge of the same order as that of 
electrons. Their mass is broadly the same as that of atoms, and therefore of 
the order of a thousand times greater than that of an electron. Finally, they 
behave as if they had a fairly well-defined diameter (of between 0.1/and 
0.5nm, see SM, p. 9). 

Given these properties, it could be predicted that electrons will be the 
more highly mobile carriers and much more effective than ions, which are 
too bulky. Electronic conductivity does, in fact, turn out to be predomi- 
nant and we shall devote most of the chapter to it. Before that, however, 

we look at a few very special cases of ionic conductivity because of their 
important applications. 

Ionic conduction 

The most typical example of this occurs in electrolytic solutions, where the 
transport of electricity by ions is clearly revealed, at least if we are content 
with crude approximation. Although liquids fall outside the scope of this 
book, we look briefly at electrolytic conduction in solutions because it 
forms a good introduction to the study of the rare cases of ionic conduction 
in solids. 

The motion of ions in ionic solutions produces observable results in that 
substances are carried to the electrodes and in that there is a relationship 
between the amount transported and the quantity of electric charge passing 
through the electrolyte. Faraday’s law shows that each ion carries a charge 
determined by its degree of ionization. 

In the absence of an applied electric field, the ions in an electrolytic 
solution are dispersed among the water molecules. Since these molecules 
are tightly packed together, the motion of the ions due to thermal agitation 
is almost always confined to oscillations about fixed points in a cage formed 
by the surrounding water molecules. However, it may happen, very 
occasionally, that ions take advantage of a gap to jump into a neighbouring 
site: this is the effect responsible for normal diffusion in liquids. When an 
electric field is applied, the ions experience a force gE which tends to move 
them in the direction of the lines of E. The motion of an ion is, however, 

opposed by the presence of water molecules, and this is the origin of the 
resistance that limits ionic velocities, which are very low. They can be 
derived from a knowledge of the current density and the number of ions 
per unit volume, and the use of the formula on p. 70. The drift velocity in 
an electric field of 1 Vm! is of the order of Sums’. 

From what has just been said, it might be thought that ions of small 
diameter would have a greater mobility. This is not always what is 
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observed, because matters are complicated by the fact that the ions are not 
‘bare’ but attract water molecules which move along with them. The 
mobility of a hydrated ion depends on its general shape and size: the more 
the ion attracts water molecules, the greater its bulk and thus the slower it 

will move. 
Now consider a perfect ionic crystal. When an electric field is applied 

here, the ions experience the same forces as do the isolated ions in a 
solution. However, a crystal has a regular structure which is well-defined 
and held together by strong cohesive forces. This implies that, as soon as 
an ion is slightly displaced, it will experience a restoring force which 
quickly exceeds that due to the applied electric field. It is impossible for the 
ion to escape: the ionic conductivity is zero. 

Nevertheless, real crystals do exhibit a certain degree of ionic conductiv- 
ity, albeit very small and difficult to measure. This is due to the existence of 
vacancies (SM, p. 107), which allow an ion to jump into a similar but 
unoccupied neighbouring site. The effect is extremely small and ionic 
crystals are in practice very good insulators. 

Covalent and molecular crystals are also very good insulators because, 
when pure, they contain no free charge carriers. 

Dielectric breakdown 

A dielectric only remains an insulator if the electric field applied to it is 
below a certain limit. That is why high voltage equipment has to be fitted 
with increasingly bulky insulators as the operating voltage increases. 

The reason for the existence of a limiting field is that all dielectrics 
contain a very small number of free electrons, supplied particularly by 
impurity atoms, which can never be completely removed. In a strong 
enough field, these electrons are accelerated by it until they have sufficient 
energy to ionize any atoms they strike. This then liberates further 
electrons, and so on, until an electron avalanche is produced causing an 
abrupt discharge through the dielectric. The insulator can be permanently 
damaged by such a discharge. 

Another cause of breakdown that should be mentioned is the existence 
of gas bubbles inside certain ceramics. Under a high voltage, these may act 
as centres of arc discharges that ruin the insulation. 

Tonic crystals with exceptionally high conductivity 

In recent years, physicists have become interested in some unusual crystals 
possessing an abnormally high ionic conductivity. Their resistivity is of the 
order of 10°Qm, i.e. comparable with that of a semiconductor. We shall 
describe the special structure that gives rise to this important property by 
taking the example of B-alumina. 

The name of this compound is inappropriate since it is not a form of 
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alumina, but has a composition 11A103,1.3Na,O. The crystal consists of 

layers of tetrahedra, formed from one positive Al ion surrounded by four 
negative O ions joined at their vertices. Between two successive layers of 
alumina, there are sites that can be occupied by sodium ions. However, the 
positions of the Na™ ions are not well defined, because the potential energy 
minima defining the sites are very shallow: only a small amount of energy is 
needed to move the ion around its mean position. In addition, there are 
more sites available than there are ions to be accommodated. It follows 
that the sodium ions can easily pass from one site to another and can 
therefore move in the plane lying between the alumina layers. They 
cannot, however, cross these layers. The crystal is therefore an insulator if 

the applied field is normal to the alumina planes, but has a high 
‘two-dimensional’ ionic conductivity parallel to the planes. 
A collection of randomly orientated microcrystals has a good mean 

conductivity in all directions, since the conducting planes in adjacent 
individual crystals have different orientations. B-alumina is an example of a 
high conductivity ionic crystal. 

The interest in B-alumina arises from the fact that it is an essential 
component in new types of accumulator, light enough to make electric cars 
possible. In a sodium-sulphur accumulator, the compartments for each 
electrode must be separated by a sealed wall that is chemically inert and yet 
offers only a low resistance to the passage of an electric current. B-alumina 
has these properties, provided its temperature is at least 300°C. 

The electronic conductivity of metals 

By far the largest majority of substances that are very good conductors of 
electricity are metals. Their main characteristic is the lack of any transport 
of matter accompanying the passage of a current so that it has been natural 

to think of the electron, ever since its discovery, as being the agent of 
metallic conduction. Indeed, a simple electron model provided an immedi- 
ate explanation of the phenomenon and initially met with several suc- 

cesses. 
Metals have only a few valence electrons, normally one or two, 

occasionally three. They are outer electrons, easily detached from their 
atoms and leaving behind positive ions, which pack closely together and 
form the framework of the metallic crystal. At the same time, all the free 
electrons liberated from the atoms form a cloud that envelopes the ions 
and ensures the overall neutrality of the metal. 

The electron cloud is set in motion by an electric field, but it should be 

stressed that the resultant drift velocity is very small. If we take as an 
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example a copper wire with a cross-sectional area of 1mm? carrying a 
current of 1A, the current density is then 10°Am~*. The free electron 
density is equal to the number of atoms per unit volume, i.e. 0.9 x 
10°?m~3. Using the formula on p. 70, the drift velocity is calculated to be 
0.1mms~', which is insignificant in comparison with the velocities attained 
by the atoms of the solid during thermal agitation. 

While it is carrying the current, the conductor remains neutral: the 
external voltage source thus provides an electron flux at the negative 

terminal equal to the electron flux leaving the positive terminal. 
Many problems have to be solved if we are to arrive at a model yielding 

quantitative results. How can the resistivity of a given metal be predicted? 
Why does it vary from one metal to another when the number of free 
electrons is the same and the crystal structures are very similar? How can 
the variation of conductivity with temperature be explained? Why do 
impurities, even in very small proportions, have so much influence on the 
resistivity of a metal? And these are only some of the questions to be 
raised. 

Our understanding of conduction in metals gradually deepened through 
the use of models that were increasingly refined and adapted. However, it 
was the introduction of quantum ideas that produced the greatest advances 
in the theory of an apparently very simple phenomenon. 

The classical theory of electrons in metals 

In this theory, due to Drude and Lorentz (1905), it is assumed that the 
charge carriers are free electrons. The initial problem is to discover why 
there is any resistance to the drift velocity of the electron cloud. Our 
starting point is a representation of the cloud using a model inspired by that 
of a perfect gas. 

The motion of the electrons due to thermal agitation is completely 
random and they do not interact with each other. They are also free, 
although they move around in the electric field produced by the positive 
ions and the other electrons. Their paths are broken up by collisions with 
the other electrons or the ions. All these conditions are very similar to 
those governing molecular motion in a perfect gas. 

For a given metal at a given temperature, there is an average time taken 
for the free path between two successive collisions. We simply assume that 
these times are all equal to 1; the mean free path has a constant length 
corresponding to this time t. Such a model may seem very crude but, with. 
the degree of approximation we are adopting, it would not be particularly 
useful to complicate it further. 

While travelling over its free path, the electron experiences the electric 
force —eE and acquires a component of velocity along the direction of E 
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which varies linearly from 0 to v = eEt/m,. The subsequent collision sends 
the electron in a random direction, so that it is made to lose the whole of its 

velocity component parallel to E. During the next free path, this velocity 
component once again increases from 0 to v. It is therefore as if the 
electron had a constant drift velocity of v/2 = eE7/2m,. If n is the number 
of free electrons per unit volume, the current density is: 

J = nev/2 = ne?Et/2m,. 

The conductivity is therefore o = J/E = ne*t/2m,. Apart from the universal 
constants e and m,, and the easily determined free electron density n, a 
calculation of o involves only the single parameter t. Conversely, a value 

for t can be deduced from an experimental value of o. Thus for copper at 
ordinary temperatures, we find that t = 2 x 107'*s. 

Furthermore, if the perfect gas model is applied to the electron cloud, so 
that the ‘point charges’ play the role of the gas molecules, the mean kinetic 
energy of the electrons is 3kg7/2 and at 300K this corresponds to a velocity 
of 10°ms_', which is enormous compared with the drift velocity of about a 
millimetre per second due to the applied electric field. From the mean 
speed u due to thermal agitation, it is possible to calculate the mean free 
path A, which is the distance travelled during the time t. Thus A = ut, or 
o = ne*A/2m,u. In our example of copper at room temperature, this gives 
A =2nm. 

This value is a little high, since there is one electron per unit cell of side 
0.36nm, but it is not all that improbable. Conversely, it could be said that if 
a reasonable value for A is assumed, classical theory yields a value for the 
resistivity of copper of a satisfactory order of magnitude, which counts as a 
success for such a simple theory. 

On the other hand, serious objections can be raised against the theory in 
view of the very unlikely consequences that follow from it. 

1. From the expression adopted for the mean kinetic energy of agitation 
of the free electrons, 4m,.u’, their mean speed wu is predicted to be 

proportional to 7’. If the mean free path is independent of the tempera- 
ture, or nearly so, it follows that the resistivity p = 1/o should also vary as 

T'?. Now to a good approximation, it is observed that p varies linearly with 
T over a wide range of temperatures. 

2. If the mean kinetic energy of a free electron is 3kg7/2, a mole will 
have a heat capacity of 3R/2 due to the free electrons (one electron per 
atom), which is to be added to the heat capacity of the lattice equal to 3R 

(p. 3). This means that for a monovalent metal the molar heat capacity 
should tend to 9R/2 at high temperatures, which is not what is observed: 
the heat capacity of a metal is only slightly greater than 3R, as in the case of 

insulators. The electrons apparently have no heat capacity, and this is a 

fact that is inconsistent with the classical model of the electron gas. 
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In spite of these failures, credit must nevertheless be given to the 

Drude-—Lorentz theory for a correct prediction of a relationship between 

the electric and thermal conductivities of metals. It is well known that 
metals are good conductors both of electricity and heat and in both cases 
the active agents are the free electrons. We have already established a 
value for the thermal conductivity due to particles using the kinetic theory 
of gases. According to the formula on p. 54, and using the fact that the 
heat capacity per unit volume for the electron gas is 3nkp/2, we can write: 
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Dividing this equation by that for the electric conductivity o on page 75, we 

find that: 
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Since 4m,.u? = 3kpT7/2, we end up with 
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This therefore predicts that the ratio K/oT is a constant which is, moreover, 

independent of the nature of the metal since forming the quotient K/o 
removes the only parameter, A, which characterizes the metal. In fact, 

Wiedemann and Franz established empirically in 1853 that the ratio K/oT 
was close to 2.5 x 10-° W 0 K * for many metals. The extremely rough 
calculation we have made leads to a value of 2.2 x 10°°> WQ.K7?. 

What can be deduced from these various comparisons between theory 
and experiment? We have here a very common and typical situation. 
Disagreement with experiment invalidates a theory, whereas agreement 
does not constitute a certain proof of its validity, since it may be the result 
of chance or of interactions that have not been appreciated as relevant. 

Thus, it cannot be said that the Wiedemann-Franz law provides 

justification for the Drude theory. In fact, this theory is not a valid one for 
evaluating either the thermal or the electric conductivity on their own. 
What has happened is that the inaccuracies in the theory have fortunately 
cancelled each other out in calculating the ratio of the two conductivities. 

Drude’s theory predicts a parabolic increase in resistivity with tempera- 
ture, while experiment shows a linear increase. Whatever the coefficients 
describing the two curves, there is always one value of temperature at 
which they intersect (Fig. 2.11). Thus, in every case, there is a temperature 
at which Drude’s theory gives a result close to that obtained by experi- 
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ment. This is what happens by chance for a very common metal, copper, 
near room temperature. 

Fig. 2.11. Fortuitous agreement 
between the Drude theory and 
experiment: whatever the values 
of the coefficients A and B, there 

is one temperature at which the 
predicted and observed values of 
the resistivity agree. 

Quantum theory of electrons in metals 

Quantization of energy had to be introduced into the treatment of the heat 
capacity of solids to account for its falling to zero at the absolute zero. 
Until now, however, in this book as in the other (SM) dealing with 
structures, classical atomic models have been adequate since it has not 
been necessary to go as far as the subatomic scale. On the other hand, in 
order to relate the behaviour of electrons in metals to experimental results 
on conductivity, classical physics is no longer adequate: we have to call on 
quantum mechanics. 

To be logical and rigorous, our account should start from the basic 
equations and postulates of quantum mechanics, from which the ideas 
describing the behaviour of electrons are derived. We shall adopt a 
different approach: the quantum ideas will be ‘stepping stones’, assumed 
without proof, and we shall use them to explain the results, often without 

detailed calculation. One of the aims in this book is to familiarize those 
who cannot assimilate mathematical complexities with the results of 
modern physics: the semiconductor technologist, for instance, has to use 
quantum principles in everyday work without the need to use any 
complicated theoretical calculations. 
Two successive quantum mechanical models have been used to represent 

conduction electrons in solids: the-first, very crude, model is nevertheless 

important, since it removes the serious problem of the absence of a heat 
capacity due to the electrons in metals. The second, more realistic, model 
leads to a new way of looking at insulators and conductors and opens up a 
very rich intermediate area, that of semiconductors. 

Electrons in an empty box 

We start from the idea that ‘free’ electrons can move around inside a piece 
of metal but cannot get outside it. The electron moves in an electric field 
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created by the positive ions located at the nodes of the crystal lattice. 
Around each of these nodes, the electron is attracted by the positive charge 
which is surrounded by an attractive potential well. Note, in addition, that 
the potential due to the ions is modified by that due to the electrons, so that 
the situation is very complicated. 

The first approximation, made by Sommerfeld (1928), is to assume that 
the electrons inside the metal are moving in a uniform electrostatic 
potential, which is positive with respect to the potential in the space 
outside. The potential barrier (Fig. 2.12) thus confines the electron to the 
interior. Not only does this model neglect the spatial variations in potential 
due to the ions, but it also neglects the electric interactions between 
electrons. This is the empty box model, in which the only variation in 

potential that occurs is due to the metal surface. The whole assembly of 
free electrons, with a known density, is moving within this box. 

Ee Fig. 2.12. Principal features of the 
Vacuum Metal variation in potential energy of an 

electron in a metal along a row of 
ions. The broken line indicates 
the value used in the first 
approximation. 

First step: one electron in the box 

The first problem to be solved is how to describe the state of a single 
electron in the box. Consider first an electron in an infinite space at 
constant potential, and therefore moving in a straight line with a constant 
velocity. In classical physics, this is represented by a point mass m, with a 
well-defined position at a given instant and with a momentum p = megv. Its 
kinetic energy is: 

E=tn.? =p 2m. 

In quantum mechanics, the electron in uniform straight line motion is 
associated with a plane wave of wavelength \, which is generally defined by 
its wave vector k in the same direction as the velocity of the particle and 
having a magnitude k = 2m/). The position of the particle is indeterminate 
since the wave fills the whole of the space. 

The correspondence between the two representations is made through 
the de Broglie relationship: 

h=h/p or p=hk. 

The wave vector k is thus associated with an electron of kinetic energy: 

E = t?k?/2mag. 
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The free electron must now be ‘caged’ in a box. The fact that it cannot 
escape is expressed by saying that the wave is reflected by the walls. We 
start by taking a one-dimensional case in which an electron of momentum 
p, when confined to a segment of a straight line, oscillates between two 
fixed points a distance L apart. The associated wave, a sinusoidal wave 
with one variable, is reflected at both ends of the segment. 

Fig. 2.13. Two normal modes of 
the wave associated with the 
electron confined to the line 
segment L corresponding to the 
wave vectors k, = m7/L and k, = 
2u/L. 

We recognize here the well known problem of a vibrating string: there 
are normal modes whose wavelength is an integral fraction of the length 
2L, i.e. 2L/n, or in other words whose wave vector is an integral multiple of 
n/L, i.e. k, = naw/L (Fig. 2.13). In the same way, the electron in the 
segment L is found to be in a proper state or eigenstate characterized by a 
wave vector k, belonging to the arithmetic series k, = n/L. The possible 
electron states correspond to the discrete set of energies: 

hon 

2L?m,. 

This result can be generalized to the electron confined in a box, and we 
then find that we recover what has already been calculated in connection 
with the normal modes of the elastic vibrations in a solid (p. 25). We 
simply reproduce the conclusions from the analysis in Box 5. If we take a 
cubic box of side L, the wave vector k corresponding to a possible state of 
the electron in the box has components along the three directions parallel 
to the edges of the cube equal to n,m/L, not/L, n3n/L, where nj, nz, nz are 

integers. 

baw 

Box 8 

Density of states for an electron in a box 

The problem of an electron confined to a cubic box defined by 

Cex), Veyal, VaezeL 

can be reduced to a study of the associated wave. As we saw in Box 5, 
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because of the reflections at the outer surfaces of the box, the wave 

must take the form: 

A = Ag sin (k,x) sin(k,y) sin(k,z) exp(iwt) 

with k, = nyw/L, ky = nyw/L, k, =n m/L, 

where n,, ny, nN, are positive integers. Following the same argument 

as in Box 5, we find that the number of wave vectors with magnitudes 
lying between k and k + Ak is 

Vk AKI20? 

where V = L’ is the volume of the box. 
The present problem involves waves associated with an electron, 

which are scalar waves and not vector waves as they are in the case of 
lattice vibrations. Because of the spin 2 of the electron, we assume 
that there can be two possible states for each point k in k space. The 
number of states corresponding to wave vectors with magnitudes 
lying between k and k + Ak is therefore: 

Vk? Ak/a?. 

The only factor involved in this formula is the volume of the box and, 
although it has been derived for the case of a cube, it turns out to be 
valid for any shape. 

(a) (b) 

Fig. 2.14. (a) Density of occupied states at T = 0K and the upper limit at the 
Fermi level, Ey; (b) the distribution of the wave vectors of occupied states in 

the Fermi sphere of radius kp. 
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For free electrons, we know that the relationship between the 
modulus of the wave vector k and the kinetic energy of the electron 
iS: 

E=film.. 

By making a simple change of variable, we derive from this the 
number of electron states with energy between E and E + AE, 
denoted by n(E)AE: 

V | 2m. \ 
n(E)AE = 4 (28) VEAE. 

The density of states n(E) thus varies as the square root of E in the 
case of free electrons (Fig. 2.14). 

These results call for several comments. 
It is a characteristic of quantum theory to predict discrete states of 

constant energy for a system. One of the first successes of the new 
mechanics, it will be recalled, was accounting for the electron states in the 
hydrogen atom which explained the observation of sharp spectral lines. 

Although this system of the electron in a box is a simpler one, discrete 
states again occur. However, the differences between the wave vectors, or 

- between the energies of adjacent states, are extremely small because of the 
large ratio of the macroscopic magnitude L to interatomic distances: 
because of this, it might be thought that no significance should be attached 
to the fact that the variation of the vector is discontinuous. However, we 

shall see in the next section that the indirect consequences are fundamental 
to the behaviour of electrons. 

As we have already mentioned in connection with the elastic mode of 
vibration, it seems curious that the scale of the energy states is determined 
by an external magnitude which has no connection with the intrinsic 
properties of metal. In fact, the quantities V and L are simple intermediate 
parameters in the calculation and they do not appear in the evaluation of 
quantities capable of being compared with experiment. Neither the total 
number of free electrons nor the volume of the metal are separately 
involved, but only the number of electrons per unit volume, or the electron 
density, which is an intrinsic property of the metal. 

Second step: N electrons in the box 

We shall neglect any electrostatic interaction between electrons. This is 
again an approximation: in classical language, it means that the ‘electron 
gas’ is considered to be a perfect gas and, in quantum language, it means 
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that the electron waves are not coupled. The possible states for each of the 
N electrons are therefore those which were defined for the isolated 
electron in the same box. 

However, in quantum theory there is an additional constraint on 
electrons that did not exist in the case of lattice vibrations. This is the Pauli 
exclusion principle, which can be stated as follows: a single energy level can 
only ’be occupied by one or two electrons. If there are two electrons with 
the same wave vector, they must have opposite spins, i.e. if a magnetic 
field is applied, the magnetic moments of the two electrons align them- 
selves in opposite directions. 

The Pauli principle applied to the electrons in an atom provides the basic 
explanation for the building up of electron layers or shells in the atom and 
thus for the Mendeleev periodic classification of the elements. The 
principle also applies to the electrons confined in a single box since the 
wave associated with each of them is to be found over the whole of the 
space within the box. 

Because only two electrons can be accommodated in each energy level, 
the accommodation of N electrons must mean that at least N/2 levels are 
occupied. Consider first the situation at absolute zero: the equilibrium 
state of the system corresponds to that in which the total energy of all the 
electrons is a minimum. Starting from the lowest level, states with 
increasing energy must be occupied at the rate of two electrons per level. 
The level corresponding to the state with the maximum energy is known as 
the Fermi level and its energy is denoted by Er. The associated wave vector 

is the Fermi wave vector, kp. The waves associated with the occupied 
electronic states thus have a wave vector k with a magnitude less than kg. 
In k-space, the ends of the vectors k are contained within a sphere of radius 
kr: this is the Fermi sphere (Fig. 2.14). 

Box 9 shows how to calculate the Fermi wave vector in terms of the 
electron density and the mean energy of the N electrons. The calculation 

gives maximum energies of the order of 8eV and a mean energy of around 
SeV. 

Box 9 

Calculation of the Fermi level and the mean energy of free 
electrons 

In Box 8, we calculated the number of electronic states with energies - 
between E and E + AE. At OK, the N electrons are distributed at the 
rate of one per state over the states with energies ranging from 
E = 0to E = Eg. The value of Ep, the Fermi energy, is calculated by 
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expressing the fact that the total number of occupied states between 
FE and Ey is indeed equal to N: 

N= (n(B)dE. 
0 

(Note that n(£) contains the factor 2 relating to the two possible spin 
states. ) 

Using the expression for n(£), we obtain: 

V ( 2m. Ex h 
N= 

3a? h? 

and hence 

a 

Le (3n2n)? 
Me 

in which n = N/V is the electron density. 
From the relationship Ey = (h7/2m,)k¢?, the Fermi wave vector is 

obtained as: 

kp = (30°n)!, 

The mean kinetic energy of an electron can also be calculated using 
the following expression: 

- ply ae 
us ere ; 

N 502 \ # i 

Or E= 3E,-/S. 

We now calculate an order of magnitude for E and Eg. There is 
one electron per atom in a monovalent metal. That implies an 
electron density of the order of 107?m~? assuming an interatomic 
distance of a few tenths of a nanometre. Using the values for f (1.05 
x 10~*4Js) and the electron mass (m, = 9 X 107*!kg), we obtain: 

Ee = 12.6 10“ Jor7.9eV 

and 

BE = 47evV. 
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(The electron volt is a very appropriate unit for the orders of 

magnitude of kinetic energies of electrons in metals. ) 

The Sommerfeld quantum model, simple as it is, leads to results of 

considerable significance since they are in complete contradiction with 

classical predictions. 
In classical theory, the mean energy of a free electron is 3kg7/2, and is 

therefore zero at 0K. We now find that it is equal to the energy that a 
classical electron would have at a temperature of 50000K. At the Fermi 
level, the electrons have an energy that, in classical theory, is only reached 
at 80000K. The most energetic electrons have a speed of 10°ms_! at OK. 

If this is so, it is because of the Pauli principle: the N electrons cannot 

accumulate in the lowest energy levels. Since these levels are discrete and 
their energy increases as the square of k, the N electrons can only be 
accommodated by using levels with high energy. We shall see that these 
statements are confirmed by the facts. 

The effect of temperature on electron energies 

The distribution at absolute zero is modified at any higher temperature 
because the electrons are excited. Some leave their level to jump into one 
having a greater energy and with an unoccupied state available. However, 
even at a really high temperature, say 1000K, the energy due to thermal 
excitation of the electron, about kgT, is very small in comparison with the 

Fermi energy. Electrons inside the Fermi sphere are therefore unable to 
reach an empty level; only the states represented by a point located in the 
sphere’s ‘skin’ of thickness kgT have an appreciable chance of being 
promoted. 

As a result of this, the theory predicts that the Fermi sphere above OK, 

instead of having a sharp boundary, is terminated by a crust in which the 
population of levels is less than 2 and tends continuously to zero 
(Fig. 2.15). The thickness of the crust in terms of energy is kgT. The empty 
states left below E, are compensated by occupied states above Er. 

It follows that the mean electron energy is greater than that at 0K, but 
not by very much. This is because the number of ‘promoted’ electrons is 
relatively small: qualitatively, it can be seen that the number is proportion- 
al to the thickness of the sphere’s ‘crust’, and thus to kg7. Moreover, each 
promoted electron gains energy of the order of kg7 and the increase in the 
mean electron energy must therefore be proportional to the square of the 
temperature. 

The corresponding heat capacity per mole of free electrons is C = yT. Box 
10 shows how to calculate an expression for the parameter y. The main 
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Fig. 2.15. (a) The density of occupied states n'(E) at two different temperatures; 
(b) the distribution of the wave vectors of occupied states in the Fermi sphere 

at T> 0. 

point is that y7 is very small compared with 3R/2, which would be the heat 
capacity of the electron gas if it were treated classically. 

Box 10 

The Fermi-—Dirac distribution and the electronic heat 
capacity 

The effect of temperature on the distribution of electrons over the 
various electronic states is described quantitatively by the Fermi— 
Dirac function, which gives the probability that a state with energy E 
is actually occupied by an electron at temperature T: 

E)= flE) poe 
1 + exp 

B 

This function is plotted in Fig. 2.16. It can be seen that, for T = 0, it 
is a step function: f(E) = 1 for E < Ey and f(£) = 0 for E > Ef. This 
means that all the states are filled up to E = Eg, while all the states 

with higher energies are empty. 
Above 0K, the number of electrons with energies between & and 

E + AE, n'(E)AE, is equal to the product of the number of possible 
states n(E)AE in this energy range and the probability of occupation 
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Fig. 2.16. The Fermi—Dirac 
function: probabilities of 
occupation of a state with energy 
E at temperatures T = 0, 7, and 
T)>T;. 

of the state of energy E given by the Fermi function. This is how the 
distributions of electrons at various temperatures shown in 
Fig. 2.15(a) are obtained. 

However, as can be seen in Fig. 2.16, because of the exponential 
form of the denominator of f(£), the effect of temperature only 
makes itself felt in a ‘band’ of energy of thickness kg7 around 
E = Eg. Out of the Nj electrons in a mole of the metal, a certain 

number N, gain an additional energy of the order of kgT. At ordinary 
temperatures (below 1000K), this energy is much less than Ep. When 
the temperature rises from 0K to 7, the total gain in energy can be 
estimated to be: 

AE eae Nikp Ae 

The N, electrons involved occur in the band of energy of thickness 
kT about the Fermi energy, 

N, cae n(Eg)kpT. 

The increase in energy of the system is therefore: 

AE =nlEpky Tl. 

The heat capacity is obtained by taking the derivative of AE with 
respect to temperature: 

C ee ant Eka” L. 

It is found that this approximate argument gives a good order of 
magnitude for the electronic heat capacity. An exact calculation can 
only be carried out using what are known as ‘Sommerfeld’ integrals 
and taking into account the variation of the Fermi level with 
temperature. However, this only changes the coefficient and the 
exact calculation gives: 

2 

Ce . n(Ep) kp2T. 
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It can be seen that a knowledge of the electronic heat capacity 
enables the density of states of the Fermi level to be assessed. It is 
remarkable that we have assumed nothing about the form taken by 
the density of states. This expression is therefore very general and is 
valid outside the approximations of free electron theory. If we now 
restrict ourselves to the limitations of this theory, we can use the 
expression for n(E,) given in Box 8: 

V 2m, \2 1 
WE) = aA\ eg Ey’ 

together with the relationship between Ep and Na, the number of 

electrons per mole (Box 9): 

oy ( 2m.Er ) 
3a? A? 

We then arrive at the simple expression: 

n(Er) = 3NaA/2ER, 

A 

which enables us to rewrite C in the form: 

a kel 

{ k 
2 Fr 

where we have used R = Nakg. 

This last expression enables us to obtain some idea of the order of 

magnitude of C. The ratio kp7/Ey is no larger than a few hundredths 

at ordinary temperatures, and this means that the electronic heat 

capacity, although it increases with temperature, always remains 

much less than the contribution from lattice vibrations (which, by 

Dulong and Petit’s law, is of the order of 3R). 
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Experiment provides good verification of the quantum calculation. 
Although the electronic heat capacity is in general very small compared with 

oc Fig. 2.17. Molar heat capacity of 
ion 3 potassium at a temperature near 

ey ions tole T = 0K. The term due to 
E phonons, AT®, is supplemented 

- 2.0 by the term due to free electrons, 

io 

bw 0 0.1 02 0.3 yT: C= AT? + yTorC/T=y+ 
AT? 
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the heat capacity due to lattice vibrations, this is not so at very low 

temperatures. This is because the heat capacity due to phonons (p. 28) 

decreases to zero at T°, while that due to electrons decreases linearly with T 

and below 1K becomes predominant. Accurate measurements of heat 
capacity thus give an accurate value for y (Fig. 2.17). The experimental values 

have the right order of magnitude (from 0.5 to 5 x 107° Jmol” 'K ~*) but the 
agreement with the theoretical expression is not very good since the empty 

box model is oversimplified. 

The almost-free electron model: the introduction of band theory 

Although the first model of perfectly free electrons in a box has yielded 
some very important results, it is obvious that it cannot explain the 
properties of a particular crystal since none of its characteristics are taken 
into account. 

To proceed any further, it is necessary to introduce the fact that the 
electrons are moving in a region where the potential is varying because of 
the positive ions present. The main point is that, with the ions being 
arranged regularly in the perfect crystal, the potential they produce is 
periodic with the same periods as the crystal lattice. Apart from that, we 
retain the approximations already made in the case of the empty box: i.e. 
we examine the behaviour of an isolated electron without taking into 
account the interactions between electrons. 

The quantum view is considerably different from classical ideas. Accord- 
ing to the latter, the point-like mass is imagined to be forcing a passage 
through the metal ions, its motion being impeded by the collisions it 
suffers. Now, however, our model of the metal is an empty box in which 

the potential created by the ions is modulated, with a strict periodicity if 
the crystal is perfect. The wave associated with the electron is propagated 
inside the metal without decay or deformation in spite of the presence of 
ions. 

The difference between this model and that of the box at a uniform 
potential is that the wave function of the electron is no longer a single 
sinusoidal wave but has a spatial structure with the periodicity of the 
crystal. What that means is this: at constant potential, the electron is 
completely unlocalized, i.e. the probability that it is present is the same at 
all points in the space traversed by the wave. In the crystal, on the other 
hand, the wave amplitude is modulated at the same period as the lattice 
and the probability of finding the electron near the ions is greater than that 
of finding it some distance away from them. 

As in the first model, an electronic state is specified by its wave vector k 
and corresponds to a certain energy. In the empty box, this had the value 
h°k?/2m, for any value of k, but this is not always the case in the metal 
crystal. The difference is in fact small for small values of k: an electron with 
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a long wavelength is ‘almost free’. The effect of the modulation of the 
potential only makes itself felt when the wavelength becomes close to the 
interatomic distance. 

In this case, we revert to a situation already mentioned for phonons 
(p. 23). Elastic waves of long wavelength are propagated through the 
crystal almost as they are in a continuous medium of uniform density, and 
significant differences only appear when the wavelength is of the same 
order as the interatomic distances. 

The interaction between the electrons and the crystalline material is 
revealed by the phenomenon of electron diffraction. Consider a thin crystal 
slice cut parallel to a family of lattice planes (Fig. 2.18). A monoenergetic 
beam of electrons is directed perpendicularly on to this slice, the electrons 
being associated with a wave having a fixed wave vector determined by the 
energy. The electrons pass through the slice and are thus propagated freely 
through it, except when their wavelength is equal to twice the interplanar 
distance, in which case the electrons are reflected by the slice. This will be 
recognized as a special case of Bragg reflection of the waves by the crystal. 
We mention this experiment because it shows the reality of critical 
situations for the interaction of electrons and a crystal. 

A 42a A = 2a 

Fig. 2.18. Reflection of an electron beam directed along the normal to a family of 
lattice planes: a special case of the Bragg condition. 

Before beginning the study of the propagation of electron waves in a 
crystal, we look once more at the simpler example of a one-dimensional 
system: electrons are propagated along a segment of a finite straight line of 

length L. Along the axis, the potential varies periodically with the period a 
of the positive ions arranged along the line segment. If the modulation of 
the potential produced by the ions is small, the energy E(k) is not very 
different from that predicted by the free electron theory. The first critical 
values of k are + w/a (i.e. \ = 2a). Near these values, the energy of the 
state is different from the free electron value, becoming smaller below w/a 

and higher above w/a. For k = w/a, there are two levels with energies 
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separated by a gap (the forbidden band). These two values are the limits of 

the energy curve at each side of the critical point at k = m/a. Other critical 

values of k occur at integral multiples of w/a, k = n/a (Fig. 2.19). 

Fig. 2.19. Energy bands of 
electrons in metals. 
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All these values correspond to a solution of the Bragg equation adapted 
to the one-dimensional case, n \ = 2a. The reflection of the electron wave 

at critical values of the wave vector occurs because the propagation of the 
wave is considerably modified. Quantum mechanics shows that, when the 
wave vector is close to the critical values, the interaction of the wave with 

matter is always strong enough to produce a considerable change in the 
energy of the free electron. 

This example, oversimplified as it is, reveals two results which are 

important because they can be generalized to the real case of a metal 
crystal. 

1. Looking at the energies of possible states, a series of bands appears, 
within each of which the discrete states succeed each other very closely. 
Two successive bands are separated by a forbidden band: there are no 
possible states corresponding to an energy lying in a forbidden band. This 
set of gaps in the possible states is caused by the periodic modulation of the 
potential. 

2. Because the one-dimensional lattice is finite, the values of k corres- 

ponding to possible states are discrete and regularly spaced. The range of k 
values lies between —7/a and w/a, and thus corresponds to what we have 
called the Brillouin zone (see Box 4). In that case, we showed that the 
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number of states in k space is equal to the number of ions N in the line 
segment. The number of energy levels in a band is therefore N. Since, 
according to the Pauli principle, there can be at most two electrons per 
level, the first band can contain a maximum of 2N electrons. This result is 

expressed in a specific form related only to the atomic structure of the 
object: the number of levels in the first band is one per unit cell of the 
lattice, which corresponds to a maximum of two electronic states per unit 
cell. 

We now move on to the real case, that of a three-dimensional metal 

crystal. The waves associated with the electrons are propagated in any 
direction, so that their wave vectors specify both the value of the 
wavelength and the direction of propagation. Again, we revert to a 
situation already described for elastic waves. 

The critical values of k for which there are discontinuities in the electron 
energies are related to the reciprocal lattice of the metal crystal via the 
Brillouin zones (p. 19). The perpendicular planes (median planes) bisect- 
ing all the reciprocal lattice vectors starting from the origin are drawn. The 
nearest of these define a multi-faceted polyhedron centred on the origin 
which we have called the Brillouin zone. It would be more correct to call 
this the first Brillouin zone, since the median planes of all the reciprocal 
lattice nodes define volumes which are embedded inside each other, 

forming Brillouin zones of increasing order. 
The electron energy for small k values (at the centre of the first zone) is 

the same as that for an electron in an empty box, A*k*/2m,.. As k 
approaches the zone boundaries, the energy begins to differ from that of 
the free electron. At the zone surface, there is a discontinuity (the energy 
gap), and the energy then increases again in the next and successive zones. 
These discontinuities at the zone boundaries are related to the fact that, 

Fig. 2.20. The condition for Bragg reflection is satisfied by the wave associated with 

an electron when its wave vector reaches the boundary of the Brillouin zone. 
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when the vector k reaches the surface of a zone, the associated wave 

experiences Bragg reflection at a family of lattice planes (see Box 11). 

Box 11 

Bragg reflection of electron waves 

Let P be a node of the reciprocal lattice of the metal crystal 
(Fig. 2.20). The length OP isi is 277/d, where d is the interplanar spacing 
normal to the direction OF the vector k has a length 27/A and 
makes an angle 7/2 — 9 with OP: if it reaches the median plane PB 2 
pair of points [O, P], it has a projection p on to OP such that Op = 
20F, i.e. 

2a (2 1 20 
=—cos| = 0!|— 
rN 2a 

This relationship is exactly the same as the Bragg equation applied to 
waves of wavelength \ propagated along the direction of k and 
reflected by lattice planes of interplanar spacing d normal to OP: 

d\ = 2d sin 0. 

If the states are classified in groups of increasing energy, it may happen 
that there is a gap between the maximum energy of a state in the first zone 
and the energy of the states in the second zone. We find in the metal, as in 
the one-dimensional model, that there is once again a forbidden band 
separating two allowed bands. However, the case of a crystal is more 

complicated since it is essentially anisotropic. The energy values depend on 
the direction of the vector k: it is conceivable that overlapping of the 
energy bands of states whose wave vectors have different directions may 
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Fig. 2.21. Energy bands with forbidden band or gap and overlapping bands. 
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mean that no gaps are left in the energy range covered by all the electrons 
(Figh2:21); 

As regards the number of states in the first Brillouin zone, the situation 
is simple: whatever the crystal structure, the number of levels is equal to 
the number of crystal unit cells contained in the metal block; the first zone 
can contain at most two occupied states per unit cell, each level being 
occupied by two electrons with opposite spins. 

Free electrons and bound electrons in the metal 

In the model just described, the valence electron or electrons were clearly 
distinguished from those in the other atomic shells. While the valence 
electrons are almost free in the metal, it is assumed that the states in the 

inner shells are the same as those in the isolated atom. 
In reality, the representation of an electron by a wave traversing the 

whole crystal is valid for all the electrons. The consequence of this is that 
for all of them the precisely defined level in the free atom is replaced by a 
set of discrete levels distributed over a band of energies. For the inner 
shells, however, these levels are so close that they practically coincide. This 
is because the binding energy of an inner electron is of the order of 1keV, 
which is so large compared with that involved in the interactions between 
atoms that the latter have a negligible effect upon the inner shells. 

It is not the same with the electrons in the outer shells just below the 

valence shell since they are weakly bound to the nucleus. The environment 
_ then has a significant effect: the band of energy levels becomes wider by 
several tenths of an electron-volt as the binding energy decreases. 

n'(E) 

4s, 4p bands 

Nickel 

n'(E) 

4s, 4p bands 

Fig. 2.22. Density of occupied states for copper and nickel. 



94 Electrical properties of solids 

The band structure is determined by the curve of the density of states 
plotted against the energy. In general, we can say that the s and p bands 
(those which arise from the spread of the electronic s and p levels) are very 
wide and can be described to a good approximation by the free electron 
theory. The d and f bands, on the other hand, are much narrower and are 
better described by an approximate calculation from the electronic states 
of the isolated atom: an attempt is made in this case to evaluate the 
perturbations caused by the insertion of the atom in a crystal. 

Figure 2.22 shows diagrams of the density of states for copper and 
nickel. Each band is given the same label as that of the corresponding level 
in the isolated atom. These diagrams show that there is a continuous 

change from the very narrow level of the electrons in inner shells to the 
wide band of the valence electron. 

Insulators and conductors according to quantum physics 

Insulators 

The valence electrons of the atoms in a crystal occupy the states in a certain 
energy band. We deal first with the case in which the following conditions 
are fulfilled (Fig. 2.23): 

E E 

Empty 

band 

Gap 

Partly filled 
band 

Full 
band 

Insulator Conductor 

Fig. 2.23. Band structure in an insulator and a conductor. 

1. The band is completely full: this is what happens when the number of 
valence electrons is twice the number of levels in the band, i.e. two per unit 
cell. 

2. Above the full band, there is a forbidden band of considerable width, 
i.e. of the order of several electron volts. The allowed band just above the 
forbidden band is completely empty. 
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In the quantum picture, the wave associated with the electron is 
propagated throughout the whole crystal and, as we have seen, the 
electrons themselves have a high mean velocity. When the valence band is 
full, the ends of the state vectors k occupy all the possible sites inside the 
Brillouin zone. However, the zone is centrosymmetrical, i.e. to any state k 
there corresponds a state with an opposite wave vector —k. The electrons 
therefore occur in pairs with momenta which are equal in magnitude but 
opposite in direction. As a result of this, there is no macroscopic electric 
current in the absence of an applied electric field in spite of the great 
thermal agitation of all the electrons. 

If an electric field is now applied to the crystal, nothing appears to 
happen: an electron can only change state by jumping out of its level into 
another band, since the first band is full; to do this it has to acquire an 

energy greater than the appreciable gap separating the two bands. The 
applied field cannot supply this extra energy, so that the overall state of the 
electrons is unchanged by the application of the field. Whether or not there 
is a field, no macroscopic electric current is produced and the crystal is 
therefore an insulator. 

Thus, according to quantum theory, a crystal is an insulator not because 
there are no mobile and almost free electrons, but because their individual 

momenta are distributed in such a way that their resultant cancels out, 

even when a field is present. 

Conductors 

Suppose now that the valence band is not completely filled with electrons. 
This is the situation in monovalent metals such as copper and sodium. The 
first band (the s band) can accept two electrons per atom, whereas there is 
only one valence electron. The occupied states, those of lowest energy, are 
inside the Fermi sphere (p. 84) which is a long way from the Brillouin zone 
boundaries. 

In the Fermi sphere, just as in the completely full zone, the distribution 
of occupied states is centrosymmetrical, and the conclusion is the same as 
in the case of insulators: there is no current in the crystal in the absence of 
an applied electric field. 

However, the situation is different when a field is applied. Suppose an 
electric field E is applied for a short time Ar. Each electron then 
experiences a force —eE and the impulse —eKE Ar given to it causes its 
momentum to change by AAk = —eEAt. Since there are vacant sites in the 
zone, jumps can take place from one state to another: all the occupied 
states are given a translation Ak in k-space, so that after the impulse from 
the field these states are included in a sphere derived from the Fermi 
sphere by the translation Ak (Fig. 2.24). The origin of the vectors in 
k-space is no longer a centre of symmetry and so the momenta of the 
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(a) (b) A 

Fig. 2.24. Distribution of electron states in the Fermi sphere: (a) with no applied 
field; (b) after a short electric field pulse. 

electrons no longer exactly cancel out in pairs. The field has thus created an 
overall drift current of the electrons in the direction of Ak, i.e. parallel to 
the applied field E: the crystal is a conductor. The reason for the 
conductivity is that the valence electrons do not completely fill the 
Brillouin zone. 

Why are divalent metals conductors? 

In this case, the two valence electrons per atom completely fill the first 

Brillouin zone, so that divalent metals should be insulators: placing two 
electrons in each atomic level occupies every available state in the band up 
to those with the maximum energy. However, we have already explained 
(p. 94) that the bands in metals arise from a spreading out of the atomic 
levels. The s and p bands are generally very wide indeed and overlap each 
other over a large energy range. Because of the degeneracy of the atomic 
states (2 for s states, 6 for p states), these bands can receive up to 8 
electrons per atom and are thus only partly filled by the two valence 
electrons in a divalent metal. We thus arrive at a situation similar to that of 
the band in monovalent metals. 

Crystal imperfections and the electrical resistance 
of metals 

A problem arises when we ask what happens after the impulse received 
from the electric field has ceased. As we have mentioned several times, the 

electron wave is freely propagated in a perfect crystal with its atoms at rest: 
each state, specified by the vector k, is a stationary state, so that the 
distribution of states must stay constant in time, as it has been created by 
the impulse from the field. Once started, the current will continue without 
external excitation. In other words, this first attempt at explaining conduc- 
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tion from the quantum mechanical point of view leads to the prediction 
that a crystalline conductor will have zero resistance. This is not what is 
observed (except in superconductors, where the persistence of current is 
due to a special mechanism — see p. 126). 

What is observed in metals is that, as soon as the field is removed, the 

current falls rapidly to zero. This decrease is described as being due to the 
electrical resistance of the metal. Furthermore, the disappearance of the 
current is accompanied in k-space by a spontaneous return to the centrosy- 
mmetrical configuration of the electronic states in the absence of a field. 
The electrons lose energy in this process, since the confinement of all the 
states within the Fermi sphere is the configuration with the minimum 
energy. 

The resistance of real conductors is explained by the action of geome- 
trical imperfections in the crystal lattice, since no real crystal is perfect. 
The electron wave may be scattered by crystal defects such as lattice 
vibrations (phonons), lattice strains, etc. As a result of such scattering, an 
electron can change its state with a transfer of energy from the electrons to 
the lattice: this is the origin of the Joule heating effect, which is related to 

resistance. 
We shall not enter into a theoretical investigation of these complex 

phenomena but, assuming that there is such a link between crystal 
imperfection and electric resistance, we shall show how the idea of a 
connection between them enables certain special features of the resistance 

. of metals to be given a qualitative explanation. 

1. Even if a crystal is as pure as possible and even if any local strains are 
reduced to a minimum, the atoms never occupy the nodes of a geometrical- 
ly perfect lattice because of their thermal agitation. Elastic vibrational 
waves pass through the crystal (p. 13) and these have an amplitude that 
increases as the temperature rises. It is therefore immediately apparent 
why the resistivity of pure metals is very small near the absolute zero: the 
crystal is very nearly perfect. A calculation of the effect of the elastic waves 
on the scattering of electron waves shows that the resistivity of metals is, to 
a first approximation, proportional to temperature (see Box 12), which is 

Fig. 2.25. Theoretical curve for 
the variation of the resistivity of a 
pure metal with temperature. 

p Arbitrary units 



98 Electrical properties of solids 

in agreement with experiment (Fig. 2.25). This is the result which could 
not be explained by classical theory. 

Box 12 

The variation of the resistivity of a pure metal with 

temperature 

_ When we described the Drude theory, we found an expression for the 
conductivity of a metal involving the mean time t between two 
collisions for an electron: 

o = ne*r/2m, 

where nis the free electron density. This gives a resistivity of 

p = (2m,/ne’)/t. 

It is found that this expression remains approximately valid in 
quantum theory: it is the evaluation of + which is fundamentally 
different. Electron motion in a pure metal is hindered mainly by the 
vibrations of ions: it can be shown that the mean time between two 
collisions with a set of given objects is inversely proportional to the 
‘collision cross-section’ of these objects. 
Because of the thermal agitation, the collision cross-section of ions 

increases with rising temperature. At temperatures above the Debye 
temperature @p (p. 24), we know that all the contributions to the 
energy involved in ionic vibrations become proportional to the 
temperature. In particular, for the potential energy: 

sK<x'> oe kel 

where K is the restoring force constant (p. 3). This enables us to _ 
deduce that the mean square displacement <x*>, and thus the 
collision cross-section of the ion, is proportional to the temperature. 
From what we have said above, this means that p is proportional to 

T for temperatures above the Debye temperature. When the temper- 
ature tends to zero, departures from linearity are observed, just as 
the heat capacity deviates from Dulong and Petit’s law. A more 
detailed calculation shows that the resistivity due to ionic vibration 
varies as T° at very low temperatures. The general theoretical curve, 
valid for any temperature, is given in Fig. 2.25. 

2. The replacement of a normal atom by an impurity atom produces a 
local strain in the crystal lattice which scatters electron waves and thus 
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gives rise to resistance. At the absolute zero, when thermal agitation no 
longer occurs, an impure metal has a resistivity, termed its residual 
resistivity, which depends on the impurity level. For a given type of 
impurity, the residual resistivity is simply proportional to its concentration. 

If a really good conductor is required, the metal used must be of very 
high purity. The copper or aluminium used in the power lines of the 
electricity supply network must satisfy this condition and the copper is 
therefore refined electrolytically. 

3. The scattering of the electron waves by impurities and by phonons are 
two independent effects which are superimposed on each other. The 
resistivity due to impurities is independent of temperature and is added to 
that due to phonons which decreases to zero at the absolute zero: this is 
Matthiessen’s rule (Fig. 2.26). A measurement of the ratio of resistivities 
at two fixed temperatures yields a parameter indicating the purity of the 
metal. Thus, for standard platinum resistance thermometers, the ratio of 
resistivities at 100°C and 0°C must be at least 1.39250: impurities would 
increase both factors of the ratio and would therefore reduce its value. 

Fig. 2.26. Variation of the 
resistivity of an impure metal with 

Cu-!2.2% Ni temperature. 
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4. For metallic alloys in the form of solid solutions, the lattice nodes are 

occupied by several different kinds of atom. If the different types are 

present in comparable proportions, there may be considerable lattice 

distortion. Alloys therefore have a higher resistivity than pure metals. The 

wires used in electrical heating equipment must have resistance and for 

that reason are always made from an alloy (e.g. nichrome, an alloy of 

nickel and chromium). 
The residual resistance of alloys is so large that the variation of resistivity 

with temperature is relatively small. It can even happen that the resistivity 

remains constant over a wide range of temperature (e.g. as in constantan, 

an alloy of copper and manganese). 

In solid solutions described as ordered, where the different atomic 

species alternate regularly throughout the lattice, the crystal is periodic. 

This is not the case, however, for the same alloy in a disordered state, so 



100 Electrical properties of solids 

the resistivity of the ordered alloy is lower, and this is indeed observed. 

5. There are other applications of the association between imperfections 
and resistivity. A metal deformed by work-hardening (drawing, rolling, 
etc.) has a higher resistivity than the same metal in a well crystallized state. 
A pure metal contains vacancies (SM, p. 107) at high temperatures, 

which disappear at room temperature. Each vacancy causes a slight 
increase in resistivity. If a metal is quenched from a high temperature, the 
vacancies are preserved during the rapid cooling and then gradually 
disappear as the metal tends towards its equilibrium state at room 
temperature. This process can be followed by measuring the resistivity of 
the quenched metal as a function of time. It is true that the resistivity 
variations are very small, but the measurements can be made with 
sufficient precision to detect them. 

Comparison between classical and quantum models 

It is clear that the classical model is simpler and easier to picture as way of 
explaining the difference between conductors and insulators. In conduc- 
tors, there are free electrons, which can be set in motion and will flow 

under the action of an electric field; in insulators, the electrons are bound 

to the atoms and do not respond to an applied field. 

Band theory, which rests entirely on quantum ideas, is much more 
abstract and less easily appreciated, and that is why the classical model is 
still sometimes used. In the case of semiconductors, we shall find an 

example of a dual approach — first classical, then quantum — whereas in 
describing the electrical properties of, say, sodium chloride, it is obvious 
that the classical picture of the individual Na* and Cl” ions is preferable. 
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Fig. 2.27. (a) Face-centred cubic unit cell of silicon (2 atoms per cell). Each atom is 
bound to four neighbours, e.g. (0) to (1), (2), (3), and (4). (b) Diagrammatic 

representation of the four covalent bonds each with a pair of electrons. 
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On the other hand, quantum ideas are indispensable if certain simple 
and basic features of the conductivity of metals are to be explained. This is 
because the picture of the electron as a material point obeying the laws of 
classical mechanics is as powerless to describe its behaviour between the 
atoms of a metal as it is to describe its motion inside an isolated atom. 

Nevertheless, the greatest success of quantum physics in connection with 
the electrical properties of solids lies in the field of semiconductors, an area 
of study which it opened up and explored. Not only are quantum concepts 
indispensable to an understanding of the physics of these materials, but 
they have also been a direct source of developments in solid state 
electronics. 

Semiconductors 

Intrinsic semiconductors 

The best known semiconductor is the silicon crystal (with germanium a 
close second). Its crystal structure is the same as that of diamond (SM, 
pp. 6-7): each atom is linked by a covalent bond to four neighbouring 
atoms at the vertices of a regular tetrahedron (Fig. 2.27). (This structure is 
sometimes drawn as if in a plane with the atoms at the nodes of a square 
lattice. In such a scheme, the number of bonds is correct, but not their 

directions. ) 
Diamond is an excellent insulator: the energy required to remove an 

electron by breaking a bond with the neighbouring atoms is very high (of 
the order of 7eV) and up to the highest accessible temperatures (3000 K) 
there are practically no free electrons in the classical picture. 

In silicon, and still more in germanium, the covalent bond is much less 
strong. An electron is liberated if it acquires, by virtue of thermal 
fluctuations, an additional energy W (0.55eV for silicon and 0.36eV for 
germanium). According to Boltzmann’s law, the probability that the 
electron is spontaneously liberated is proportional to exp(—W/kgT). The 
number of electrons liberated per atom still remains very small, but it is no 
longer negligible at temperatures near the melting point. 

According to the expression on p. 70, the conductivity is proportional to 
the number of free electrons and to their mobility. In metals, the number 
of free electrons is very large (of the order of one per atom) and is 
independent of temperature, while the mobility decreases as the tempera- 
ture rises (Box 12). 

The important feature in semiconductors, on the other hand, is the very 
rapid increase in the number of carriers as the temperature rises, so that 
the slight fall in their mobility can be neglected. It follows that we expect 
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the conductivity o of a semiconductor to increase with temperature like 
exp(—W/kg7). Pure silicon can be regarded as an insulator at room 
temperature and a poor conductor at very high temperatures (hence the 
name semiconductor). According to Boltzmann’s formula, a graph of In(o) 
plotted against 1/T (Fig. 2.28) should give a straight line whose slope will 
yield the value of the binding energy W of the valence electrons. * 

This is the characteristic behaviour of a pure semiconductor, known as 
an intrinsic semiconductor. The differences from a metallic conductor are 
quite significant: 

1. the orders of magnitude of the conductivities differ enormously: 
10’Q~'m7! for copper at room temperature and 0.10~'m™! for silicon at 
1000K; 

2. the conductivity of a semiconductor increases considerably with rising 
temperature: for silicon, the ratio of the conductivities at 1500 K and 750K 
is 100. The reason for this is the increase in the number of carriers; 

Fig. 2.28. Variation of the 
conductivity of pure germanium 

with temperature: Ino « 0.36/kgT. 
Below 400K, the intrinsic 

conductivity is masked by that 
due to residual impurities. 
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3. the conductivity of a metal, on the other hand, slowly decreases as the 

temperature rises: thus, for tungsten between the same temperatures of 
1500K and 750K, the conductivity is only halved, and this is due to the 
reduction in the mobility of the free electrons. 

Induced conductivity in a semiconductor 

Silicon also becomes a conductor if events other than a rise in temperature 
liberate electrons by breaking their valence bonds. Thus, an electron can 
become detached by the absorption of a photon or the collision of a high 
energy particle. 

'The parameter W in Arrhenius’s law (Fig. 2.28), interpreted classically as the binding energy 
of the electron, is equal to half the energy gap (p. 90), while the photoelectric threshold 
energy is equal to the gap. 



Semiconductors 103 

The maximum energy which can be transferred to an electron when the 
crystal is irradiated with radiation of frequency v is that of the photon hv. 
For the radiation to be effective, the value of hv must be greater than a 
certain threshold, e.g. 1.1eV for silicon: the resultant photoconductivity is 
only produced with light of wavelength less than 1.12 .m. 

In this case, semiconductors cannot be clearly distinguished from 
insulators. Even if the energy of the covalent bonds is large, energetic 
photons (i.e. very short wavelength radiation) can produce photoconduc- 
tivity. Diamond, for example, in which (hv) min is 7eV, is sensitive to the 

far ultraviolet. 
The induced conductivity is proportional to the number of electrons 

liberated, and thus to the illumination of the solid under the given 
conditions. This property is used in photoresistors and the construction of 
simple photometers. 

Doped semiconductors 

We have used the expression ‘pure’ silicon, but the degree of purity should 
be more precisely defined. It is much greater than that found in practice in 
chemicals and metals, where ‘high purity’ means that the impurity concen- 
tration is of the order of 1p.p.m. (part per million). For semiconductors, 
concentrations a hundred times less than this have to be achieved. The 
development of a semiconductor technology has only been possible 
through the discovery of an adequate purification technique (zone re- 
fining). No method of chemical analysis is capable of determining such low 
impurity levels without great difficulty, so that physical methods, particu- 
larly resistivity measurements, have become indispensable. 

Once strictly pure silicon was obtainable, it was possible to prepare a 
whole family of so-called doped silicons by introducing additional elements 
in very small and very precisely controlled concentrations (about 10~* to 
10~°), the added atoms replacing those of silicon at the lattice nodes. 
Doped semiconductors display a great diversity in their electrical prop- 
erties and it is this which has been the mainspring of the enormous 
developments in solid state electronics. 

n-type semiconductors 

Consider first a dopant of valency 5, such as As, P, etc. At a lattice node 
occupied by the dopant As, the ion has a charge Se instead of the 4e for 
silicon, and it is surrounded by 5 electrons: four are used in the normal 
covalent bonds made with the neighbouring silicon ions. The site occupied 
by the arsenic is different from a normal site in that there is an extra charge 
e associated with it and an additional electron moving around the centre of 

attraction: a hydrogen-like atom immersed in the silicon is thus formed. 
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This can be taken into account simply and macroscopically by assuming 
that the electron is moving in a region whose relative permittivity is that of 
silicon, which is very high at about 12. It follows that the Coulomb force of 
attraction experienced by the electron is 12 times weaker; the distances of 
the electron from the centre of attraction will be 12 times greater than in 
the free hydrogen atom; and finally the binding energy of the electron to 
the impurity centre is 12” times less than the binding energy of the electron 
in a hydrogen atom and is of the order of 

W, = 13.6/122 = 0.1eV. 

The additional electrons are thus so weakly bound that, even at room 
temperature, some of them are liberated. Silicon doped with arsenic 
possesses almost free electrons ‘donated’ by the arsenic, which is thus 
called a donor atom. This gives rise to a conductivity which varies with 
temperature according to exp(—W,/KT), where W, is the binding energy 
of the electron to the impurity atom. This conductivity, described as 
extrinsic, is very much greater than the intrinsic conductivity of silicon at 
room temperature, although it remains very small compared with that of 
metals. It should be remembered that the maximum number of carriers is 
equal to the number of arsenic atoms, i.e. 107° times the total number of 
atoms. The conductivity produced by donor atoms is known as n-type 
conductivity because the carriers are electrons and thus negative. 

The effect of impurities is completely different in metals and semi- 
conductors. In metals, impurities reduce the conductivity because they 
create strains in the lattice which reduce the mobility of free electrons. In 
semiconductors, the conductivity is increased because the donor atoms 
provide free electrons which do not exist in the strictly pure semi- 
conductor. 

p-type semiconductors 

What happens if the silicon is doped with atoms having a valency of 3, such 
as aluminium? To produce the normal bonds between neighbours, it lacks 
one electron, a defect which is electrically compensated since the Al 
nucleus has one positive charge e less than silicon. It is observed that silicon 
doped with aluminium also acquires an extrinsic conductivity, but of a type 
different from that produced by arsenic: the semiconductor is said to be 
p-type. 
A classical model of the kind we have used for n-type semiconductors is 

not suitable for p-type. It is necessary to call on quantum physics: only then 
is the symmetry existing between the two types of semiconductor revealed, 
enabling us to achieve a deeper understanding of both phenomena. 
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Extrinsic (or impurity) semiconductors and band theory 

General solid state theory tells us that the external electrons in the atoms 
of a solid have states specified by the wave vector k distributed over energy 
bands. In pure silicon, the electronic states are divided into two bands: the 
valence band and the conduction band, separated by an energy gap. At OK, 
the four valence electrons in each atom occupy the whole valence band, 
while the conduction band is empty. The feature of semiconductors that 
distinguishes them from insulators is that the gap between the valence and 
conduction bands is small, of the order of 1 eV or less. 

Because the gap is so small, electrons in the valence band can jump into 
the conduction band at higher temperatures and this obviously involves 
more electrons as the temperature is raised. Since the valence band is no 
longer completely full and the conduction band now contains a few free 
electrons, a drift current is able to flow under the action of an applied 
electric field: the silicon becomes weakly conducting at high temperatures 
and this is what we called intrinsic conductivity. We thus recover the same 
results as those obtained previously using the classical model. 
Now take the case of n-doped silicon. The four electrons per atom filling 

the valence band are supplemented by those provided by the donor atoms. 
If they were completely free, they would occupy the lowest levels of the 
conduction band. In fact, they are attracted by the positive centres formed 
by the donor atoms and this creates new states (Fig. 2.29) located just 
below the conduction band. At 0K, the conduction band is empty and the 
conductivity is zero. But even at temperatures only a little above zero, the 
additional electrons acquire sufficient energy to jump into vacant places in 
the conduction band, where they behave like free electrons. These are the 
carriers responsible for n-type extrinsic conductivity. 
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Fig. 2.29. Distribution of electrons in n-type silicon (a) at OK: the additional 

electrons are all occupying levels created by donor atoms; (b) at T # OK. 

The conditions governing the motion of these electrons at the bottom of 

the conduction band are not the same as those for free electrons in the 
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conduction band of a metal. In the latter case, the gain in energy between 
the state kK = 0 and a state k is purely kinetic in origin: 

E = dn? = (hk)*/2m,. 

On the other hand, for states close to the boundary of the Brillouin zone, 

the difference in energy between the state k and the state of minimum 
energy ky at the edge of the zone is not due only to a gain in kinetic energy. 
However, just as the energy of the free electron is proportional to k?, so 
the energy AE at the bottom of the band is, to the first order, proportional 
to (k — ko)* (Fig. 2.30). It can therefore be written in the form: 

t 2 RE =——— [alk ko) 
2m. 

This formula suggests that we adopt the following approximation: the 
electron behaves as if it were free but with an effective mass m, different 

from the normal mass mg. 

AE Fig. 2.30. The variation in the 

energy of states with the 
Conduction magnitude of the wave vector k 

band near the gap between the valence 
AE >05=—E" and conduction bands: the 

variation is a quadratic function 
of k — ko. 

| 

= — AE <0 

Valence 

band 

aa | e*e 

ko k 

We now move on to the case of silicon doped with an element of valency 
3 whose atoms are called acceptor atoms. Around each of these there is a 
deficiency of one electron in comparison with pure silicon: the valence 
band of doped silicon is therefore no longer completely full. Thus, under 
the influence of an electric field, the electrons can change state and an 
electron current can flow. However, the mechanism of this type of 
conductivity, described as p-type, is distinct from that of n-type conductiv- 
ity which is due to the presence of a few electrons in the almost empty 
conduction band. 

Consider an electronic state of wave vector k near the edge of the 
valence band, and with an energy less than that associated with the band 



Semiconductors 107 

edge (Fig. 2.30). The energy difference AE is negative and proportional to 
(k — ko)*, so that it can again be written in the form: 

1 
AE = — [h(k — ko)’. 

2m WV 

provided that the effective mass is given a negative sign. When an electron 
is in a state near the edge of the band, it does not behave at all like a free 

electron. Because of the stong interactions between the electron wave and 
the lattice, a force applied to the electron causes it to accelerate in the 
opposite direction: this is the physical meaning of the introduction of a 
negative mass. 

In the quantum mechanical equations, as in the equations of motion of a 
particle in classical mechanics, there is a single parameter involved: the 
ratio of charge to mass or the specific charge. A negative charge, —e, witha 
negative effective mass m, is equivalent to a fictitious particle with a positive 
charge e and a positive effective mass |m,|. This is what is called a positive 
hole. The movement of an electron in the top of the almost full band is 
equivalent to the movement of a positive hole at the bottom of a band 
‘empty of holes’. 

The idea of a positive hole is a product of quantum mechanics and band 
theory, and that is why classical physics cannot provide a satisfactory 
explanation of p-type conductivity. The existence of two different mechan- 
isms in n-type and p-type conductivity is an essential feature of the physics 

’ and technology of semiconductors. It is to deal with this sort of phe- 
nomenon that we wish to go beyond the stage of ideas accepted because 

they are familiar (or of formulae used because they work) to a point where 
we emphasize their physical meaning, but without necessarily appealing to 

the calculations that justify them. 
Consider a valence band which would be completely filled by N electrons 

and which lacks a single electron in an energy level near the band edge. We 
shall make use of the two following observations: 

1. The full band cannot give rise to a current: since its contribution to 
any current is the sum of that from the band with N—1 electrons and that 
from the isolated electron, these two contributions must be equal in 
magnitude and opposite in sign. 

2. If we unite the electron and the hole corresponding to it, we obtain an 

object with no charge whose contribution to the flow of current is zero. 

Thus, the contribution of the electron is opposite to that of the hole.' 

‘The hole, in the sense given to it in semiconductor theory, is a particle and not a region of 

empty space. It is the combination of the electron and the hole which is ‘nothing’. 
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By bringing these two propositions together, we deduce from them that 
the contribution from the band with N—1 electrons is the same as that from 
the isolated hole. More generally, the band with N—gq electrons, provided 
that g is small compared with N, behaves like a set of g independent holes. 

That is how the symmetry between the two types of conductivity 
emerges. The donor atoms introduce electrons into the conduction band 
which behave as almost free carriers of negative charge with an effective 
mass generally different from that of the free electron. The acceptor 
atoms, on the other hand, introduce holes into the valence band which 

behave as almost free carriers of positive charge with their own effective 
mass. 
We can go even further with the analogy. When an acceptor atom is 

introduced into pure silicon, a negative charge (the difference between the 
charge on the Si** and Al*? ions) and a positive hole is placed in a lattice 
site. At low temperatures, the hole is bound to the acceptor atom just as 
the electron is bound to the donor atom in the n-type material (Fig. 2.31). 
At OK, the holes are located in the levels created by the acceptor atoms. 
However, the bond energy is small and, at room temperature, the hole is 
liberated by thermal agitation and delocalized in the lattice. It becomes a 
positive charge carrier capable of generating a current, just as the electron 
is a negative charge carrier in n-type semiconductors. The positive hole, 
however, does not have a familiar classical image as the electron does: 
hence the difficulty of understanding p-type conductivity. 
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Fig. 2.31. Distribution of holes in p-type silicon (a) at OK, (b) at T # OK. Note: the 
energy changes in n-type and p-type silicon are in opposite directions (cf. Fig. 2.29) 

because the charges associated with electrons and holes have opposite signs. 

Distribution of electrons over the possible states of a 
semiconductor 

We have several times referred in previous sections to the effect of 
temperature on the distribution of states occupied by electrons in silicon, 
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whether pure or doped. This statement can be made more precise by using 
Fermi—Dirac quantum statistics (Box 10). 

At OK, the situation is simple: the levels arranged in increasing order of 
energy are occupied at the rate of two electrons with opposite spins per 
level, until the N electrons of the system are accommodated. The 
maximum energy level reached is the Fermi level: the probability of 

occupation of a state of energy E is 1if E < Ep and Oif E > Eg. There isa 
sharp drop from 1 to 0 at the Fermi energy. 

Above OK, the probability of occupation is still 1 for very small values of 
E and 0 for very large values. The Fermi—Dirac function describes the 
transition between 1 and 0 around the Fermi energy, and it has the 
property that the transition zone has a width of the order of kg7T, which 
therefore increases with rise in temperature (Fig. 2.16). 

In order to find the distribution of electrons in a given system, it is first 
necessary to determine the curve giving the density of possible states as a 
function of the energy of the state i.e. to find n(£) such that n(E)AE is the 
number of states with energies lying between E and E +AE. This density of 
states is then multiplied by the probability of occupation of a state with 
energy E at the temperature 7, this being given by the FermiDirac 
function. That was what we did for the electrons in a metal (see Fig. 2.15, 
p. 85). The problem is more difficult to solve in the case of semiconductors 
(Box 13), for two reasons. Firstly, the density of states is complex because 
there are the two bands, valence and conduction, separated by an energy 
gap. Secondly, for the calculation of the electron distribution, the Fermi— 
Dirac function depends on the parameter Ep which is not known a priori 
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Fig. 2.32. Distribution of electrons and holes in pure silicon, n-type silicon and 

p-type silicon. 
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but is determined by the condition that the number of occupied states is 
equal to the total number of electrons. 

Figure 2.32 shows the distribution of electrons and holes in three cases: 
pure silicon at high temperatures, n-type silicon and p-type silicon. In all 
cases, there are two types of carrier: electrons in the conduction band and 
holes in the valence band. The number of holes is equal to the deficiency of 
electrons compared with the full band. In intrinsic silicon, the number of 
electrons is equal to the number of holes: in doped silicon, there is a 
majority carrier, electrons in n-type and holes in p-type. 
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electrons, with the mass m, replaced by an effective mass m,. This 
arises from the fact that, near the edge of the band, the energy varies 
as the square of k: 

i?(k — ko)? , P= bo) 
EE. 

2m, 

just as for free electrons. 
As a result, we write: 

Vv 2s J VEE 
N= =~} 

h E— Eg 

kpT 

oe di 

1 + exp 

in which the replacement of upper limit of integration by + has only 
a minimal effect on the value of the integral since, when E >> E,, the 

product n(E)f(E) becomes negligible (Fig. 2.16). To continue the 
calculation, we make another approximation: 

E. ae Ep = kal. 

This approximation is valid for most normal intrinsic semiconduc- 

tors at room temperature. In that case, we can replace f(E) by 

exp[-(E — Ef)/kgT], since the 1 in the denominator becomes 

negligible. The expression for N then reduces to: 
oS in BE 

v= me) | VE~Ezex0( - dE. 
Qn h? E- kpT 

To calculate the integral, we put 

E-E.+kIxv 

and obtain: 
3 

N= a oe ) op - ae | ede. 
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we find for the number n = N/V of electrons per unit volume: 
3 

m.kpgT \? BE. Ee 
n=2 : Exp | -—-—— 

2th kpT 

The Fermi level appears in this expression, but because we have not 
included the overall balance in the number of carriers (number of 
electrons equal to the number of holes in an intrinsic semiconductor 
without impurities) the Fermi level is not yet determined. We must 
therefore calculate the total number P of holes in the valence band, 

the calculation being completely symmetrical with that of the number 
of electrons in the conduction band: 

P= { ” £ (E)n(E)dE 

where f(E)=1-f(/)= 
E-B 

7 Gee 7 B 

is the probability of finding a hole (or of not finding an electron) with 
energy E. Similarly, we shall use the expression for the density of 
states near the top of the valence band: 

3 

VY (2m V2 VEE 
Qn 

where my is the effective mass of the positive carriers. By noting that 
the product f,(E)n(E) quickly becomes negligible when going further 
down the valence band, we can calculate P as an integral from — to 

n{E) = 
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f= | el Od 
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We make the approximation Ey — E, >> kpT and we then put: 

Eek ii 

which finally gives the expression for the number of holes per unit 
volume p = P/V: 

3 
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We can now determine Er: putting n = p, we find: 

E+E, 3 
be = ht Cka/ In 

Z 4 

This expression confirms that, in general, the position of the Fermi 
level depends on temperature. However, in the completely symmet- 
rical case in which the effective masses are equal, it lies at an equal 
distance from the bottom of the conduction band and the top of the 
valence band. From now on, we shall assume that this is the case 

(m, = m, = m). By substituting the expressing for E- in the formulae 
for n and p, we then find: 

ae Hope.) Cea | 
ath? 2kpT 

an expression in which the energy gap G = E, — E, occurs. This 
quantitative result illustrates the sharp variations in m and p with 
temperature arising from the exponential factor. 

The classical model (p. 101) also predicts that the number of free 
electrons is proportional to an exponential, exp(—W/kg7). The 
calculation just carried out shows that the classical activation energy 
is not equal to the magnitude of the energy gap but to half of it. 

In the expression for the total conductivity: 

My 

Me. 

(2 are NeWy + pepy, 

it is the variations in n and p which will cause variations in o. By 
plotting In (c) as a function of 1/7, we should obtain a straight line 
whose slope will enable the energy gap to be determined (Fig. 2.28). 

The formula for n (or p) enables an order of magnitude to be 
obtained for the carrier concentration in an intrinsic semiconductor. 
If we assume that G is about l eV, and if we take the effective mass to 

be the same as that of the electron, we find at 7 = 300K that 

n=p~4x 10'%m-?. 

In fact, n = p ~ 6 X 10!°m~? for silicon and 2.5 x 10'’m~? for 
germanium, which has a smaller energy gap. It can be seen that such 

a carrier density is much lower than that in ‘good’ conductors (which 

is of the order of 10?7m~*). Another essential difference from good 
conductors is the large variation of n and p with temperature. If the 

calculation had been carried out at 30K instead of 300K, we should 

have found that n = p = 4 x 10-*°m ° instead of 4 x 10'°m™*! 
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It will be noticed that the product np is independent of the position 

of the Fermi level, but depends only on the magnitude of the energy 

gap G: 

np 4 | ep | . 
E Qh? c kpT 

This is a very important expression since it remains valid for doped 

‘semiconductors. Take the case of an n-type semiconductor: each 

donor atom provides an additional electron. The number Nq of 

donors per unit volume is equal to the number of excess electrons, 

ie. n — p, the difference between the number of electrons in the 

conduction band and the number of holes in the valence band. It 

follows that n = Ng + p, so that the expression for the product np 

enables us to write: 

np = p(Nat p) = nipi= 15 
where n; and p, are the electron and hole concentrations for the 

corresponding intrinsic semiconductor. 

This expression enables n and p to be calculated. In general, it : 

difficult to produce doping with a concentration lower than 10° mm, 

so that in practice we shall always have, in an n-type semiconductor. — 

n= Ng, p =idNg<n. 

We therefore see that the free carrier concentration in the semicon- 

ductor is directly determined by controlling the doping level. 

The ideas we have introduced are difficult to get to grips with because of 
their basically non-classical character, so let us now summarize them and 
add a few extra details. Pure silicon is a conductor only at high temperature 
and even then a poor one. By introducing impurities into the silicon, it can 
be made a much better conductor even at room temperature. However, 
depending on the nature of the impurity, there are two types of conductiv- 
ity, n-type and p-type. In both cases the real charge carriers are electrons, 
but in n-type semiconductors they behave like free negative charges —e 
with a mass different from their real mass, while in p-type semiconductors 
they behave to a first approximation like free positive charges +e, called 
positive holes. The latter are fictitious charges and it should not be thought 
that they are kinds of positive electrons entering into the constitution of 
matter. 

The drift of electrons and that of holes in the opposite direction produce 
macroscopic currents in the same direction. They are therefore added 
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together when silicon, if doped with several elements, contains both 
electrons and holes in comparable numbers. In pure intrinsic silicon, a rise 
in temperature liberates electrons: in fact, there is a simultaneous creation 
of a free electron and a free hole (Box 13) and both contribute to the 
production of currents which reinforce each other. 
A large number of semiconductors with a wide range of properties can 

be fabricated from pure silicon by simple doping operations. It is particu- 
larly important to realize that these properties can be determined from 
theoretical considerations. 

In addition, we have, for simplicity, taken silicon as the typical semicon- 
ductor, but there are many others: either elements such as germanium, or 
compounds like gallium arsenide, indium antimonide, mercury telluride, 
etc. The principles underlying their properties are the same as for silicon, 
but the parameters which determine them differ from one to another: these 
parameters include, for example, the band gap between conduction and 
valence band, the carrier mobilities on which the resistivity depends, etc. 

A semiconductor technology of great diversity has evolved from this 
group of materials and combinations of them, supported by the strength of 
the underlying theory. We need only mention one example: that of 
microcomputers, which would not exist without semiconductors. However, 
it is not our intention to enter into a discussion of the enormous range of 
such applications: we merely wish to show, using a small number of 
examples, how the theoretical principles outlined above enable the prop- 
erties of a few very common devices to be understood. 

The p—n junction 

Methods have now been developed for doping a silicon crystal by the 
introduction of the chosen element into a predetermined zone. Using such 
techniques, it is possible to produce a thin wafer (100 um thick) consisting 
of n-type material over one half of its thickness (formed by doping with 
arsenic) and p-type material over the other half (formed by doping with 
aluminium), creating what is known as a p-n junction. Note that it is 
technically feasible to reduce the transition zone between p- and n-domains 
to an extremely narrow region. Moreover, the continuity is perfect: this 
would not be the case if separate p-type and n-type slices were simply stuck 

to each other since, even if they were flat and very clean, they would be 
separated by an oxide layer. 

Both halves of the silicon wafer are conducting, but their electronic 
states are different. The main experimental observation is that, when an 
external potential difference of a few volts is applied across the junction 
with one polarity, a current passes through it; while, when the polarity is 
reversed, the current is negligible. The junction thus acts like a diode 
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current rectifier, the simplest type of solid state electronic component. We 
shall explain the operation of the diode in terms of the behaviour of free 
electrons and holes, the charge carriers whose properties were derived 
from band theory. 

In a homogeneous crystal, whether p-type or n-type, the average electric 
charge is zero everywhere, the excess or deficiency of electrons being 
compensated by the differences in the charges of the impurity nuclei. 

Imagine a homogeneous n-type region adhering to a homogeneous 
p-type region. The electrons and holes can diffuse from one region to the 
other, whereas the heavier and bulkier ions cannot do so. Thus, electrons 

leave the n-type region and penetrate into the p-type region where they are 
less numerous, and vice versa for the holes. An electrical double layer is 
thus formed in the transition zone, positive on the n-type side and negative 
on the p-type side. This double layer, like the charged plates of a capacitor, 
produces an electric field directed from the n region into the p region (Fig. 
2.33), and this retains the electrons in the n region and pushes the holes 
into the p region. In this way, there is opposition to any motion of the 
charge which created the layer and, in the absence of an applied voltage, 
equilibrium is established. This does not mean that there is no motion of 
charges across the transition zone, but merely that the currents in opposite 
directions exactly cancel each other out. 

Fig. 2.33. The p—n junction and the variation of internal potential (a) without an 
external applied voltage; (b) with the n-type region biased positively; (c) with the 

n-type region biased negatively. 

Because of the doping, there are holes in the p region and electrons in 
the n region. In addition, there are a few electrons in p and a few holes inn 
(see Fig. 2.32 and Box 13): these are ‘minority carriers’ in relatively very 
small concentrations. When the holes in p diffuse into n, they have to 



Semiconductors 117 

surmount the potential difference across the junction and they will do this 
if they have sufficient thermal excitation. In the other direction, holes in n 
can easily ‘slip’ into p at a lower potential, although this current is limited 
by the small number of holes in n. Such are the two currents which, in the 

absence of an externally applied voltage across the junction, compensate 
each other. We give the argument in terms of holes, but it can be 
transposed to electrons. 

It can thus be seen that the inert state of the p—n junction is asymmettri- 
cal, so that it is conceivable that an external voltage applied across the 
junction would have an effect that depended on its polarity. This is what we 
now demonstrate. 

Voltage applied with + polarity over the n region: reverse bias 

(Fig. 2.33(b)) 
The external voltage is localized in the transition region, and the potential 
difference between the p and n regions is therefore increased. Nothing 
changes for the hole current towards p: the holes are formed in n 
independently of the applied voltage and ‘slip’ into p as they did without 
the applied voltage. On the other hand, the holes in p have to surmount a 
greater potential difference to penetrate into n: the corresponding current 
is therefore reduced more and more as the applied voltage increases and it 
then no longer compensates the reverse current. Consequently, an overall 
current flows from the + to the — terminal of the external battery. This 
current tends to a limiting value, that of the hole current towards p. It is 
very small, because there are very few holes liberated in n by thermal 

excitation. 

Voltage applied with + polarity over the p region: forward bias 

(Fig. 2.33(c)) 
The potential barrier between n and p is reduced by an amount equal to the 
applied voltage V. The probability that a hole will jump from p to n is 
therefore higher: since it is a thermal excitation effect at temperature T, 
the current amplification factor is exp(eV/kgT). On the other hand, the 
reverse current has no reason to change and remains as small as ever. In 
all, there is a current in the direction from p to n, from the + terminal to 
the — terminal of the battery, which increases very rapidly with the 

voltage. 
The same type of argument can be applied to the electrons: it is found 

that, for either direction of the voltage, the currents carried by the 

electrons and holes add together. 
To sum up: the junction has a resistance that varies considerably as the 

applied voltage varies, being conducting when the p region is connected to 
the + terminal and becoming almost an insulator when the polarity is 
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Fig. 2.34. I-V characteristic of a 
p—n diode. The forward-biased 
current is a few tens of milliamps 
and the reverse-biased current is 
of the order of 1A for a V of 
several volts. 

reversed. The operation of the diode as outlined qualitatively in the above 
description can be subjected to a detailed calculation: the results of this are 
in agreement with measurements (Fig. 2.34). 

The p-n-p transistor 

Localized doping more complex than that of the simple p—n junction can be 
carried out. We shall describe the best known of these, the transistor in the 

form of a double p—n-p junction. The monocrystalline silicon wafer 
consists of three layers, of p-type, n-type and p-type material respectively. 
To give some idea of the orders of magnitude, the thicknesses of the n-type 
layer may be 5pm and that of the p-type layers 501m. The three layers are 
called the emitter p,, the base n and the collector p2. When there are no 

Fig. 2.35. The p—n-p transistor 
and the variation in potential 
within it: (a) with no applied 
voltages; (b) with a positive 
voltage applied to the emitter and 
a negative voltage applied to the 
collector. 
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external voltages applied between the various regions, the internal poten- 
tial curve has the general shape shown in Fig. 2.35(a) because the electrical 
double layers at the junctions produce the effects described in the last 
section. 

If the emitter is biased positively (1.5V) and the collector negatively 
(—3V) with respect to the base, the potential curve of Fig. 2.35(b) is 
obtained. 

The whole system thus appears like two junctions in series: the emitter— 
base junction is forward biased and the base—collector junction is reverse 
biased. If the latter were on its own, it would allow only a very small 
current to pass because of the scarcity of free holes in the n region (see 
p. 117). On the other hand, the n-type base is supplied with a large hole 
current coming from the emitter (hence its name) because the first junction 
is conducting. 

The key to the operation of the transistor is to be found in the fact that 
the thickness of the n layer is small compared with the distance travelled by 
the holes diffusing in the crystal. Thus, a very high proportion of the holes 
emitted by the emitter p, reach the junction with the collector and pass 
easily into p> since the potential of p2 is lower than that of n. A very large 
fraction (more than 95 per cent) of the current from the emitter leaves via 
the collector, the rest drifting towards the base n. An essential feature as 
regards transistor applications is that the emitter—collector current Jc is 
proportional to the emitter—base current Jz. The constant of proportion- 
ality, generally denoted B, depends on the transistor geometry and can 
vary from 50 to 200 for different types. However, when Iz (of the order of 

'0.1mA) increases, Jc cannot grow indefinitely since it is in any case less 
than the ratio of the battery supply voltage to the load resistance in the 
emitter—collector circuit (Fig. 2.36). The limit is called the saturation 
current of the transistor, and at this limit the potential difference between 
emitter and collector is very small. The transistor is roughly equivalent to a 
closed switch. The state can be changed to that of an open switch by cutting 

Fig. 2.36. Circuit connections for 
a p-n-p transistor. 
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off the base current. Such switching requires only a very small amount of 
power and can be very fast (a few nanoseconds), thus providing the basis 
for the extensive applications of transistors in computers. 

In the proportional regime Jc = Blg, the transistor operates like a 
current amplifier. It also operates as a power amplifier since the power 
needed for the control signal is less than the power that can be extracted 
from the collector current, the extra coming, of course, from the supply 

battery. High frequency signals (up to 25MHz) can be amplified in this 
way. 

The field effect transistor: integrated circuits 

Consider a wafer of p-type silicon (Fig. 2.37). Two n-type regions, S and 
D, are produced by diffusion with a suitable dopant. Going from one of 
these n-type regions to the other, there are two junctions in series but in 
opposite directions, and hence no current passes from S to D when a 
voltage is applied. Between S and D, the wafer is covered with a very thin 
(0.1m) insulating layer of silicon dioxide, and this in turn is covered by a 
metallic layer G. If a positive voltage is applied to G, the minority 
electrons in the p-type silicon are attracted to the surface and the holes are 
repelled from it. An n-type channel is thus formed in the surface with, 
below it, a highly nonconducting region. This n-type channel between the S 
and D regions allows a current to pass, of a size depending on the structure 
of the channel and thus depending on the voltage applied to G. Gis a ‘gate’ 
that controls the amplitude of the current between a ‘source’ S and a ‘drain’ 
D: the electrode G plays the same role as the control grid in a triode 
vacuum tube. Since the action of G is electrostatic, the power used in the 
control signal can be extremely low. 

Fig. 2.37. A field effect transistor 
(a MOSFET). 

This type of transmitter is known as MOSFET (for metal—oxide— 
semiconductor field effect transistor) and all the activity takes place in the 
very thin surface layer of the wafer. In addition, the dimensions can be 
reduced to such an extent that the area of the transistor is less than 
10-*mm/? (miniaturization). A very large number of transistors can be 
produced alongside each other on a very small wafer (a chip). Such 
transistors are connected via conductors (layers of metal deposited on the 
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Fig. 2.38. An Intel 80386 microprocessor showing an area of 1cm? carrying 275000 
transistors. 

surface) and it is also possible to interpose either a resistance between two 
conductors by giving the semiconductor the required resistivity, or a 
capacitor if the material is almost an insulator. In this way, we arrive at 
integrated circuits consisting of thousands of transistors covering a few 
square millimetres and having very complex functions (Fig. 2.38). These 
are the components which have made possible the astonishing achieve- 
ments of solid state electronics, particularly in the field of computing. 

Electronics based on vacuum tubes was developed with great success 
during the first half of the twentieth century. The second half of the century 
has witnessed not only the replacement of vacuum tubes by solid state 
components but an enormous expansion in the potential applications of 
electronics way beyond the capacity of the older devices. 
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Let us analyse the reasons for this revolution. The solid state compo- 
nents which have been invented are not only capable of fulfilling the 
functions of vaccuum tubes but have several other important advantages 
over them: 

1. The supply voltages are only in the region of a few volts instead of 
being over 100 volts. This is because the solid state devices are very small, 
of the order of a few micrometres across, so that very low potential 
differences are sufficient to produce appreciable electric fields. This is 
unlike vacyum tubes, in which the various components such as the 
filaments, grids and anodes are separated by several millimetres. They 
therefore need to be supplied with higher voltages if the fields acting on the 
electrons are to be strong enough. 

2. In a vacuum tube, the electrons are produced by thermionic emission 
and this entails a wastage of power in heating the filaments to the necessary 
temperature. Not only that, but the electrons must be emitted into a 
vacuum, and this requires a bulky vacuum-tight enclosure. 

3. Solid state electronics is faster because of the much shorter transit 

time of the carriers in the miniaturized components. 

4. Finally, the weight and volume of the two types of device, for a given 
level of performance, have very different orders of magnitude. Those who 
remember radio sets with ‘valves’ will realize this by comparing their size 
with that of present-day ‘transistor’ radios. 

The first computer, ENIAC, was built in 1944 and contained 18000 

vacuum tubes: it weighed 30 tonnes and occupied a very large room, while 
the time needed to carry out a multiplication was 3 ms. Its memory held 20 
words, each of six decimal digits. Today, a portable computer is a thousand 
times faster and has a much greater memory. 

Solid state electronics has one essential characteristic which it is impor- 
tant to emphasize. It was created and developed as a result of theoretical 
ideas: more precisely, the ideas of quantum physics. Classical physics is 
insufficient for an understanding of the fundamentals even of the simplest 
devices. 

Of course, experimental research and very subtle and sophisticated 
production techniques were needed to obtain the first components with 
worthwhile properties. But these efforts could only succeed, and succeed 
quickly, because they were guided by theory. The transistor did not 
originate from a discovery made more or less by happy chance. 

To ensure the industrial success of solid state electronics, the products 
had to be both highly reliable and cheap. This could only be achieved with 
techniques carried out to very high standards and thus at the cost of 
considerable investment both in personnel and equipment. The necessary 
financial outlay was forthcoming because it was very quickly realized that 
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the views of physicists were being confirmed and that this opened up the 
possibilities of very large markets. 

Although the architecture of transistors, and even more of integrated 
circuits, is highly complex, their manufacture can be automated and the 
components mass produced. Moreover, the useful life of solid state 
components, which operate at room temperature, is very much longer than 
that of electronic vacuum tubes. For several decades, we have been 

witnessing a very unusual phenomenon: solid state components have 
become capable of better and better performance and at the same time 
have become ever cheaper. 

There are few examples in modern science of such a close and rapidly 
exploited linkage between purely abstract ideas and their practical realiza- 
tion which has, in a few years, profoundly modified everybody’s way of life 
through the development of computerized data processing and new 
possibilities in communication. 

The conductivity of amorphous semiconductors‘ 

Our discussion up to this point has been confined to crystalline materials. 
Since the 1970s, however, scientists have given increasing attention to 
non-crystalline materials. These can be prepared in various ways: by 
deposition from the vapour phase on a cold substrate; by deposition from a 
glow discharge; by heavy ion bombardment of a crystal; or by rapid cooling 
from the melt (quenching). In the last of these, what is obtained is called a 
‘glass’. There are two types of glass: 

1. Those in which the number of nearest neighbours of each atom, as 

measured by X-ray or neutron diffraction, is not necessarily integral, and 
where there is no obvious sense in which chemical bonds exist between the 
atoms. This group includes most of the so-called ‘metallic glasses’ often 
produced by an ultrafast quench of the liquid metal; 

2. Those in which a coordination number, often characteristic of the 

crystal, is maintained. An example is vitreous silicon dioxide (SiO) in 

which, as in the crystal, each Si is linked to 4O and each O to 2 Si. A 

two-dimensional representation of the positions of the atoms in the 

crystalline and non-crystalline materials is shown in Fig. 2.39. We shall 

confine our discussion here to materials in the second class. 

Vitreous silicon dioxide is transparent far into the ultraviolet and is an 

excellent insulator. If we continue to use the expressions ‘valence band’ for 

the range of energies occupied by the bonding and non-bonding electrons 

* Although this book is limited in principle to dealing with properties of crystals, amorphous 

substances are important and we are pleased to be able to introduce the reader to material 

specially written for this book by Professor Sir Nevill Mott. 
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Fig. 2.39. Two-dimensional representation of the SiO, structure: (a) in the 
crystalline state; (b) in the amorphous state. 

of the silicon and oxygen atoms, and ‘conduction band’ for the range of 
possible energies of an extra electron injected into the material, it is 
obvious that there must be a wide energy gap between them of the order of 
10eV. 

In the band theory of a crystal, we related the existence of the energy 
gap to that of the Brillouin zone and thus to the Bragg reflection of electron 
waves (see p. 89). However, in a non-crystalline material, there are no 
sharp Bragg reflections for electrons or X-rays and the Bragg law does not 
apply. We must therefore conclude that the existence of a gap need not 

depend on Bragg reflection within the crystal. It may well be that the 
energy required to remove an electron from one atom, say in the liquid 
phase of an inert gas, and to relocate it in a distant atom, does not depend 
on whether the position of the atoms is or is not on a lattice. 

So we believe that the concepts of conduction and valence bands can be 
used for non-crystalline materials. There is, however, a difference. Follow- 
ing theoretical work by Anderson (1958) and Mott (1967), it is believed 
that, in a non-crystalline material, the lowest states in the conduction 
bands turn into traps: the electrons are said to be ‘localized’. An electron in 
a localized state cannot move without the help of energy given it by 
phonons. And since, if we neglect phonons, an electron is therefore ‘stuck’ 

or ‘not stuck’, there must be a sharp energy dividing the two classes of 
state. This is called a ‘mobility edge’. The assumed density of states n(E) in 
an amorphous material, with a mobility edge E,, is shown in Fig. 2.40. 
A very important non-crystalline semiconductor in which a mobility 

edge has been identified is hydrogenated amorphous silicon. This material 
can be obtained in the form of thin films by the deposition of silicon on a 



Semiconductors 125 

Fig. 2.40. Density of states in the 
conduction band of a non- 
crystalline material: E, is the 
‘mobility threshold’. n (E) 

0 E. E 

substrate from a glow discharge of silane (SiH4); it contains several per 
cent of hydrogen. Most of the silicon atoms have the same fourfold 
coordination as those of crystalline silicon, which has the diamond 
structure, but some have a threefold coordination, or less. As a result, 

there is a ‘dangling bond’: a silicon bond containing only one electron, 
giving an electron spin resonance signal. When the material is used as a 
photoconductor, this provides a very effective electron-hole recombina- 
tion centre. The hydrogen plays a useful role in passivating most of the 
dangling bonds by forming Si—H bonds. Without hydrogen, amorphous 
silicon is a very poor photoconductor. 

Experiments have been made to measure the drift velocity and hence the 
mobility of a pulse of electrons excited optically into the conduction band 
(or symmetrically of holes into the valence band). This turns out to be 
thermally activated, being of the form: 

L= woexp(—AE/kz T) , 

_ AE is usually interpreted as the energy interval between the bottom of the 

band and the mobility edge (although other interpretations have been 

proposed). 

A pioneer in the study of non-crystalline semiconductors is the school of 

B. T. Kolomiets in the Ioffe Institute in Leningrad. He worked on the 

so-called chalcogenide glasses formed from As, Se, Te, Si, and Ge. His 

work showed that, quite unlike crystals, these materials could not be 

doped: the conductivity was fairly insensitive to composition. The accepted 

explanation is the so-called 8—N rule, where N is the number of outer 

electrons in a given atom (6 for Te, 5 for As, 4 for Si or Ge). The rule, for 

which there is some evidence from neutron diffraction, states that, in a 

glass, each atom is surrounded by 8—N nearest neighbours (2 for Te, 3 for 

As, 4 for Si or Ge). All the electrons are therefore either bonds, or 

low-lying s states, or in the so-called ‘lone-pair’ orbitals, which do not take 

part in bonding. There are thus no loosely bound electrons: this is not 

possible in a crystal. 

In 1975, Spear and Le Comber showed, rather surprisingly, that 

amorphous silicon could be doped, by including PH; or BH, in the silane 

glow discharge. Amorphous silicon is not a glass, since it cannot be 
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obtained from the melt. It seems likely that the 8—N rule is widely valid in 
true glasses. In amorphous silicon, some of the phosphorus goes in with 
threefold coordination; two electrons then remain in low-lying s states and 
three in p states which form bonds with a neighbouring silicon, so these 
atoms are not electrically active. But other P atoms go in with fourfold 
coordination, as in the crystal. The reason why they can do this in spite of 
the 8—N rule appears to be that the fifth electron does not stay with the 
phosphorus but falls to a dangling bond site, which thus becomes neg- 
atively charged. This makes the state more stable. But doping will, 
therefore, raise the Fermi level from near mid-gap, where it normally 
resides. Exactly the opposite can be done by adding BH,g. 

It is therefore possible to construct films of amorphous silicon, with the 
kind of p—n junction described on p. 115, within the film parallel to the 
surface. A p=n junction, whether in a crystalline or amorphous material, 
generates currents under illumination because of the voltage drop to which 
electrons and holes are subject. The efficiency depends on the lifetime and 
mobility of the carriers and here crystals have the advantage. But by 
passivating dangling bonds with hydrogen (and in some cases with 
fluorine), long lifetimes have been obtained, together with stability and 
photoelectric efficiencies of the order of 10 per cent. Further work may 
well improve this value. 

At present, amorphous silicon solar cells are used mainly in the familiar 
pocket calculators and similar devices, but there is real hope that, in the 
future, they may become important as sources of electrical power on a 
large scale. Their advantage over crystals is mainly economic; it is possible 
to cover many square metres with these thin amorphous films relatively 
cheaply, and mass production could bring down the cost to an economic 
level. If this should prove to be the case, and large areas of arid land in 
sunny climates are put to use in this way, storage of electricity may turn out 
to be the main problem. One possibility may be the generation of hydrogen 
by the electrolysis of water. 

Superconductivity 

The resistance of a metal continually decreases as its temperature falls. As 
the absolute zero is approached, the resistivity tends to a limiting value 
which becomes smaller as the metal becomes purer and as its lattice is 
subjected to fewer perturbations (p. 99). 

These effects were being studied in detail, particularly at the specialist 
laboratory in Leyden (Netherlands), at a time when physicists were first 
able to explore the low temperature region of a few K as a result of the 
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liquefaction of helium. During these investigations, a spectacular and 
completely unexpected fact was discovered in 1911 by Kamerlingh Onnes 
(Nobel prizewinner, 1913): the resistivity of mercury fell abruptly to zero 
and remained strictly zero at lower temperatures. Some twenty metals are 
now known to have a sharp transition to what is called the superconducting 

state at critical temperatures T, which vary but are always of the order of a 
few K (7K for lead, 18K for niobium, etc). 

Some alloys are also superconducting: an enormous number of these 
have been studied in the search for higher critical temperatures, but the 
results have been disappointing: it has proved impossible to exceed the 
record of 23.2 K obtained in 1970 with the compound Nb3Ge. 

Superconducting organic materials have recently (1980) been discovered 
and these are only poorly conducting at temperatures above T,. It seems 
that the two properties of being a good conductor at room temperature and 
being a superconductor at very low temperatures are by no means 
correlated. Another example of this is the fact that good conductors like 
silver and copper are not superconducting even at the lowest temperatures 
at present attainable (below 10-°K). 

The situation was revolutionized in 1986 by the discovery of a complex 
oxide of lanthanum, barium, and copper which is superconducting up to 

35K (Georg Bednorz and Alex Miiller, Nobel Prize winners, 1987). As 
soon as this was announced, laboratories all over the world began testing 
oxides with slightly different formulae and the results were dramatic: in 
1987, a T. of 93K (i.e. above liquid nitrogen temperature) was obtained 
with the compound YBa,Cu;3O, and the even higher value of 125K was 

eventually achieved. Some research teams announced an observation of 
superconductivity at room temperature, but the effects were only transi- 
tory and not reproducible. 

The oxides involved in these latest developments have several features in 
common. They have a metallic type of conductivity at room temperature; 
they have similar crystal structures, the perovskite struture, with planes of 
Cu and O ions incorporating oxygen vacancies and separated by layers 
containing the other metals. Their conductivity is high in directions parallel 
to these planes and low in the perpendicular direction. The other common 
feature is that the copper ions have a ‘mixed’ valency, i.e. they are a 

mixture of Cu** and Cu* ** ions. 

Experimental demonstrations of superconductivity 

A superconductor can carry a current with no energy loss at all, although it 
should be added that this is only true if the current density in the 
superconductor is less than a critical value J, which depends on the 
material (e.g. for NbTi, J; = 10’A cm” and, with one of the new 
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Fig. 2.41. Demonstration 
showing the existence of 
superconductivity (Roubeau’s 
apparatus). 

Liqui 

superconductors, 10°A cm~* has been achieved with the material in the 
form of a thin film). Potential applications often depend on the value of J.. 

1. Zero resistivity can be demonstrated by the following experiment. 
Consider a tin-plated copper tube within which liquid helium can circulate 
(Fig. 2.41). The tin, which becomes superconducting at 3.7K, forms a 
closed conducting circuit with two loops: at the centre of the lower loop 
there is a small suspended magnetized needle, forming a very crude 
moving magnet galvanometer. Facing the upper loop and adjacent to it is a 

coil connected to a battery through a switch. Opening or closing the switch 
induces an emf in the tin circuit. 

Above the critical temperature, the galvanometer records a short pulse 
of current at each change in the magnetic flux linking the circuit (a normal 
demonstration of electromagnetic induction). The conduction electrons, 
accelerated by the electromotive induction field, all acquite a drift velocity. 
As soon as the motive force stops, the electron velocities recover their 
equilibrium distribution through scattering by the irregularities in the 
crystal lattice (phonons, strains, etc). The curent thus stops almost 
instantaneously under the conditions of this experiment. 

With the current flowing steadily in the inducing circuit, the tin is 
continuously cooled until it becomes superconducting at 3.7K. When it has 
reached this state, the current in the inducing coil is switched off: the 
galvanometer is deflected and the deflection becomes steady. The induced 
current is permanent and flows indefinitely in the tin circuit without any 
external source of power. Even in the most accurate experiments, no 
evidence has yet been found of any decrease in the current flowing in a 
superconductor: we must therefore assume that the resistance is strictly 
zero. 
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The conduction electrons were excited by the pulse of emf, but the 
process by which they return to their equilibrium distribution does not 
operate in the superconducting state. If the temperature of the tin is 
allowed to rise, this process becomes operative once more as soon as the 
critical temperature is reached and the induced current stops at once. 

2. The superconducting state is characterized not only by the elimination 
of all finite resistivity, but it is also accompanied by a magnetic effect, the 
Meissner effect. A superconducting metal is not generally a magnetic 
material in its normal state, so that when it is placed in a magnetic field the 
field lines pass through it without interruption (Fig. 2.42(a)). However, 
below the critical temperature, the superconductor becomes magnetized in 
a direction opposite to that of the applied field to such a degree that the 
field inside the material is reduced to zero: the lines of force are expelled in 
the superconducting state (Fig. 2.42(a)). 

(a) 

Normal Superconducting 
state state i (0) 

Fig. 2.42. (a) The Meissner effect: magnetic field lines pass through the metal 
without being affected when it is in the normal state and are expelled from the 
interior when in the superconducting state. (b) The converse of the floating magnet 
experiment: a superconducting sample of yttrium barium copper oxide floating 
above a permanent magnet. The sample has a critical temperature of 95K. 

(Courtesy of University of Birmingham Superconductivity Research Group.) 

This effect is demonstrated by the ‘floating magnet’ experiment, which 

has now become relatively simple to perform with the newest materials 

that are superconducting at liquid nitrogen temperatures. When a small 

magnet is placed near a horizontal superconducting plate, it is repelled by 

the magnetization induced in the superconductor as a result of the field 

from the magnet itself. The repulsive force is in the opposite direction to 

that of the weight of the magnet and causes it to rise. There is an 

equilibrium position in which the slightly reduced magnetic force is equal 

to the weight, so that the magnet floats in space by ‘magnetic levitation’. 

Conversely, if a small superconducting specimen is placed above a strong 

permanent magnet, it is also repelled by the magnetization induced in it 
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below its critical point. The specimen is then levitated, just as the magnet 
was in the previous version of the experiment (Fig. 2.42(b)). 

There is a limit to the Meissner effect. At any given temperature below 
T,, the internal magnetic field is only reduced to zero if the external field is 
less than a critical value H,. For fields greater than this, the material 

returns to the normal state even though its temperature is below T,. The 
magnitude of H, is an important factor in practical applications of 
superconductors. 

The theory of superconductivity 

Such a remarkable phenomenon was a challenge to physicists for a long 
time. They were unable to explain it using classical theory and, from the 
quantum point of view, the problem is difficult because it is a cooperative 
effect involving a large number of particles. 

The first fruitful approach was phenomenological, i.e. one that made no 
attempt to find an explanation based on an atomic model. London (1935) 
showed that a modification to Maxwell’s electromagnetic equations inside 
superconductors could account for the association of the two characteristic 
properties: the absence of all resistivity and the Meissner effect. 

It was not until 1957 that Bardeen, Cooper, and Schrieffer (Nobel 
prizewinners, 1972) conceived of the microscopic model which contributed 
what is now considered to be the definitive solution to the problem. 
However, it is applicable only to superconductors with very low critical 
temperatures: in spite of a great deal of research, there is not yet a 
generally accepted theory for the new superconductors with high critical 
temperatures. 

The ‘BCS’ theory is very complex and is outside the scope of this book. 
We shall only try to describe a few of the ideas which throw some light on 
the origin of superconductivity. What we need to understand is how 
electrons can move through a lattice disturbed by thermal vibrations 
(small, maybe, but not zero) without losing energy in collisions. 

The first feature of the BCS theory is that the electrons form pairs known 
as Cooper pairs. There is Coulomb repulsion between two electrons since 
they have charges of the same sign, so that if they are to pair up there must 
be an attractive force sufficient to compensate the repulsion. Such an 
interaction occurs through the intermediary of lattice phonons. An elec- 
tron passing near positive ions will attract them and disturb their configura- 
tion and their vibrations. A second electron, also passing nearby, is 
sensitive to this deformation and can take advantage of it to reduce its 
energy. The result is a pair interaction with an energy of the order of a 
milli-electron volt. An analogy is sometimes useful in understanding the 
formation of pairs, even though it is undoubtedly far from perfect. 
Consider a set of particles with identical masses and electric charges of the 
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same sign sliding without friction over the surface of a polished horizontal 
plate. The particles all repel each other. Now replace the rigid plate with a 
rubber sheet flexible enough to be slightly depressed by the weight of a 
particle, so that a small depression is hollowed out around it. Another 
particle passing nearby might fall into the potential well in spite of the 
electrical repulsion from the particle causing the depression. 

Accepting the formation of Cooper pairs in this way, let us pass on to the 
second feature of the BCS theory: that the pairs are condensed into the 
same quantum state and that this minimum energy state is separated from 
excited states by a gap due to the pair interaction energy. At very low 
temperatures, the energy of thermal vibrations is not large enough to 

enable this gap to be crossed. As a result, the pair cannot be split up and 
collisions it suffers cannot change its energy (collisions are perfectly 
elastic). During the motion of the pair, there can be no transfer of energy 
to the lattice or, in other words, there is no Joule effect and the resistivity is 
zero. 

On the contrary, for the conduction electrons in a normal metal, those in 

excited states (p. 95) can pass from one energy level to another that is 
extremely close, if it is vacant. The electron is then able to transfer its 
excess energy continually to the lattice: a Joule effect occurs in this case 
and hence there is electrical resistance. 

What emerges from the process described above is that superconductiv- 
ity can exist only at very low temperatures, and that is why theoreticians 
discouraged those attempting to find alloys with high critical temperatures. 
Furthermore, the conditions for the attractive force between the electron 

pair to be great enough are rarely encountered: there are relatively few 

superconductors. 
And now, suddenly, the new superconductors appear on the scene, 

confronting theoreticians with a whole series of difficult problems. Is the 
BCS theory still valid? How can the strong interactions between the 
electrons in a pair be explained? And so on. For the moment, no 
convincing and general answers are yet available to such questions. 

Predictions of the BCS theory confirmed by experiment 

At present, the BCS theory is an indispensable guide in research work on 
superconductivity and several of its predictions have been confirmed. We 
mention two simple examples. 

At first sight, it appears paradoxical that materials which are very good 
conductors at room temperature are not superconductors. However, the 
very fact of their low resistance accounts for this, because the interactions 
between conduction electrons and the ionic lattice must be particularly 
weak. This means that the interaction energy of the Cooper pairs will be 
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low and the metal has less chance of being a superconductor. 

The second example concerns what is known as the isotope effect. It is 

observed that the critical temperature of a superconductor varies with the 

mean atomic mass of the isotopes forming it. Thus, for mercury, T, 

changes from 4.85K to 4.46K when the mean isotopic mass changes from 

199.5 to 203.5; more precisely, it has been found that the critical 

temperature is inversely proportional to the square root of the isotopic 

mass. Now it turns out that the same type of variation with ionic mass is 

exhibited by the Debye temperature (p. 24), so for different isotopes, T, is 
proportional to @p. Superconductivity certainly has something to do with 
the lattice vibrations, which is what is predicted by the BCS theory. 

Applications of superconductors 

The Joule heating effect in conductors, arising from their resistance, is a 
cause of energy wastage in all electrical equipment and in carrying 
electricity over large distances. In spite of the high efficiency of the 
generating and transmission machinery, the energy wasted over the whole 
mains network is substantial in absolute terms, so that the possibility of 
using conductors without losses is of considerable industrial importance. 
Unfortunately, for superconductors that need to be cooled with liquid 
helium, the cost of running the necessary cryogenic plant is often greater 
than the saving that could be made by the elimination of Joule heating. 
However, the situation has been completely changed by the new supercon- 
ductors, which only need cooling with the much cheaper liquid nitrogen. 
The passionate interest aroused by this discovery is the result of the vast 
perspectives immediately opened up in possible fields of application. 

Nevertheless, long and difficult technological research is still needed 
before it is possible to pass from laboratory experiments to reliable 
industrial products. Oxide superconductors are ceramics and are thus 
difficult to work; they are also frequently subject to degradation by their 
environment (water vapour, carbon dioxide). 

The first applications are expected to be in the field of computing (the 
miniaturization of the components is at present limited by the need to 
dissipate Joule heat) and in the production of intense magnetic fields (for 
NMR scanning in medical applications, as in Fig. 2.43, and for magnetic 
levitation in transport systems). For the time being, however, these remain 
aspirations, albeit reasonable ones. 

The older superconductors such as Nb3Ge and NbTi, on the other hand, 
are already used in the laboratory for the production of very strong 
magnetic fields. When fields much greater than 1T are needed, iron-cored 
coils become inefficient and we have no other option than to rely on fields 
generated by large electric currents (p. 166). In such a situation, with 
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VISTA MR 

Fig. 2.43. A magnetic resonance body scanner. Machines at present installed in 
hospitals already use superconducting coils to attain the necessary high field. It has 
been estimated that changing from helium to nitrogen for the cooling system could 

reduce costs by £17000 a year. (Courtesy of Picker International.) 

steady fields and currents, all the energy consumed in the windings is 

dissipated as heat, so that very bulky water-cooled conductors have to be 
used. 

If the windings are superconducting, no energy is needed to maintain the 

magnetic field indefinitely. The advantages of this are so great that the 
constraints and the cost involved in installing a liquid helium plant are 
acceptable, particularly in large particle accelerators. As we have already 
mentioned, there is a critical field above which a metal ceases to be 

superconducting, but materials have been found which enable fields of 15T 

to be produced. 

In a superconducting coil producing a very strong magnetic field, the 
energy density is considerable, and is of the same order as that contained in 
a liquid fuel. The metallic components are subjected to enormous mecha- 
nical stresses. If, because of an accident, the temperature were to rise and 
destroy the superconductivity, dangerous explosions could occur in the 

windings. Safety considerations thus require special precautions to be 
taken in the construction of large superconducting coils. 
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The development of our knowledge in the field of superconductors is 
typical of the way progress has occurred in the physics of solids. The initial 
discovery was unexpected and for many years there was merely the 
accumulation of experimental data. It was not until the advent of the BCS 
theory that systematic advances in the depth of our understanding could 
begin to take place. In spite of that, it should be pointed out that the theory 
does not start from ‘first principles’: it does not permit us to calculate the 
critical temperature of a given metal. The best superconductors have been 
discovered by trial and error. 

The 1986 discovery has, also unexpectedly, opened up a new area that 
holds out the promise of a wealth of applications. However, because it 
currently lacks any theorectical support, it is still at the empirical stage. 
The full potentialities will only be rationally exploited with the advent of 
new ideas and, if success is to be achieved, there must be a parallel 

large-scale effort on the purely technological side. 
The whole field provides a good example of the need for the simul- 

taneous development of theoretical and experimental research in the 
physics of solids. 

New conductors 

It has long been assumed that good conductors are metals because of their 
free electrons. Since the 1970s, however, organic molecular crystals have 
been discovered with conductivities approaching those of metals. We shall 
show with the aid of examples how the structure of these solids explains 
their unusual properties. 

One-dimensional conductors: TTF-TCNQ‘* 

The two molecules, both quite flat, are stacked in columns of TTF and 

TCNQ alternating regularly in the crystal. In each molecule, there are 
electrons whose wave functions considerably overlap those of adjacent 
molecules. On the other hand, there are very few contacts between one 
chain and another. Thus, the electrons are delocalized along the chain with 
wave vectors parallel to the axis of the chain: the discrete energy levels 
form a one-dimensional band, which would just be filled by electrons from 
all the molecules in the chain. 

But one important event occurs: there is charge transfer from the TTF 
chain to the TCNQ chain. This is an experimental fact: it has even been 
possible to measure that on average one TTF molecule donates 0.59 

‘A tetrathiofulvalene—-tetracyanoquinodimethane complex 
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electron to the TCNQ acceptor. It follows that the energy bands are not 
full: thus, under the influence of a electric field along the axis of the chain, 
electrons are promoted over the more energetic states. A current is 
created, while the crystal is an insulator in the perpendicular direction 
because electrons cannot pass from one chain to another. The conductivity 
of TTF-TCNQ is 5 x 10*Q~'m~! along the axis of the chain and 100 times 
less in a direction perpendicular to the axis. 

In reality, the electrical properties of this type of compound are 
complex. There are phase changes with variations in temperature and 
pressure: the conductivity of TTF-TCNQ is 50 times greater at 60K than at 
room temperature. 

Organic compounds have the attraction of being very diverse because of 
the enormous number of different molecules that can be used in synthesiz- 
ing them. As a result, there is always the chance that materials might be 
found with interesting and worthwhile properties, whereas the possibilities 
opened up by metals and alloys are very limited and have already been 
explored. Thus, superconducting organic compounds have been dis- 
covered and it is hoped that they will turn out to have high critical 
temperatures. 

There are other one-dimensional conductors with a completely different 
structure. We might mention polyacetylene or (CH), with a formula: 

Pe Ee ee ery 

eee 
—C=C—C=Cc— 

and polythiazyl (SN), formed from a chain of alternating S and N atoms. 
These materials can have a high conductivity when suitably doped. 

Two-dimensional conductors: intercalation compounds 
of graphite 

The graphite crystal is formed from stacked hexagonal layers of carbon 
(SM, p. 86). Graphite is a conductor, but its conductivity is much greater 
in the plane of the layers than it is in a direction perpendicular to them. 

Graphite has the property of absorbing many atoms or molecules, such 
as alkali metals, bromine, HNO3, etc. The absorbed atoms form layers 

which are interposed (intercalated) between the planes of carbon. Some of 
these intercalation compounds are very good conductors in the plane of the 
layers (conductivity comparable with that of copper, about 10 times greater 
than that of pure graphite). Although the electron mobility in the carbon 
planes is very high, the number of free electrons in pure graphite is 
comparatively small. The intercalated layers, on the other hand, are more 
abundant sources of free electrons and these are easily propagated in the 
adjacent carbon planes. 
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Magnetic properties of solids 

The action of a magnetic field on a solid 

What happens when a solid is placed in a magnetic field? An experiment to 
find out is easy to perform: a specimen merely has to be introduced into a 
current-carrying solenoid where the magnetic field is both uniform and 
accurately known from the current flowing in the winding and the number 
of turns per unit length. The value of the magnetic field near the specimen 
is then compared with its value before the specimen was introduced. 

The result is very clear cut. Almost all substances (solids or liquids, 
whatever their nature and structure, whether metals, minerals, organic 
materials, etc) produce only a very small change in the magnetic field at 
any point in space when they fill the region within the solenoid: the change 
is no more than about one part in a thousand. In other words, the great 
majority of solids have virtually no effect on a magnetic field in which they 
are placed and, to a first approximation, the field has no appreciable effect 
on the structure or the properties of solids. 

However, there are a few exceptional substances, described as magnetic, 

for which the effect of the magnetic field is enormous: the field near the 
specimen may be increased by a factor of 100 or 1000. Iron, as we all know, 
is such a substance and, because it is abundant and cheap, many important 
technological advances have been made possible through the strong 
magnetic fields that can easily be produced with it. If iron, or any other 
material as common as iron, did not possess these properties, the present 
state of our civilization would certainly be very different. 

Comparison between the action of magnetic and 
electric fields 

The effect of a magnetic field on matter is markedly different from that of 
an electric field. First of all, there is no division of materials into two classes 
similar to conductors and insulators. Secondly, any insulator filling the 
space between the plates of a parallel-plate capacitor (this is the counter- 
part of the experiment with the solenoid) always increases its capacitance 
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significantly: it is generally increased by a factor of between 2 and 10. On 
the other hand, although there are several exceptional solids which have a 
high relative permittivity (and thus produce large increases in electric 
fields), their values of €, in no way approach those of the relative 
permeabilities of strongly magnetic materials. 

There is another difference: strongly magnetic materials can be spon- 
taneous sources of a magnetic field in the absence of an applied magnetic 
field, forming the permanent magnets which are in everyday use. There is 
no electrical counterpart of comparable importance. There are, of course, 
electrets with a permanent polarization (see p. 65), but these are somewhat 
out-of-the-ordinary objects whose external effects are always fairly weak. 
Although some applications of electrets have recently been developed, 
they remain very marginal compared with those of magnets, which were 
discovered and exploited many centuries ago, particularly in relation to the 

compass. 
We shall concentrate our attention on those providential exceptions to 

the natural order of things, the strongly magnetic materials. Our first and 
main problem here is to explain why they are different from the over- 
whelming majority of normal substances. We shall then pay particular 
attention to the properties that are the basis of their most important 
applications. 

The weak magnetic effects mentioned previously, while negligible in 
practical terms, can nevertheless be measured and investigated if sensitive 
methods are used. They are theoretically. significant since they provide 
information about the structure of atoms and molecules. Thus, chemists 

use paramagnetic measurements as a means of identification. However, 
that would take us outside the scope of this book since it is an atomic or 
molecular property and not a property of solids as such. 

The magnetic moment of the atom 

The first condition that must be satisfied if a magnetic field is to exercise a 
strong influence on a solid is that at least one group of the atoms in it 
should behave like small magnets, possessing a magnetic moment’ whose 
value is a characteristic property of the atom concerned. In addition, a 
description of the solid from the magnetic point of view includes a 
specification of the direction of the magnetic moment at each lattice site: 
the direction may vary from one atom to another even though they may be 
crystallographically equivalent. 

Atomic moments are the basic data as far as magnetism is concerned. It 

*A small magnet of moment M is magnetically equivalent to a current loop of area S carrying 
a current J, such that JS = M. 
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would be possible simply to consider the magnitudes of the various atomic 
moments as given experimental facts, but it is much more enlightening to 
relate the moment to the electronic structure of the atom. The relationship 
is, however, complex and we introduce it in gradual stages. 

1. The electron, whether free or bound to an atom, has a spin of 3. This 
is an inherently quantum mechanical concept for which it would be 
pointless to seek a classical picture. It means that the electron has an 
intrinsic angular momentum which can only assume one of the two 
opposite values 2/ and —3h in any given direction, where 

h = h/2m = 1.054 x 107*4Js. 

This angular momentum gives the electron a magnetic moment whose 
magnitude is known as the Bohr magneton, 23: 

ip = eh/2me = 9.27 X 10724 A m2. 
As in the case of the angular momentum, a measurement of the 

magnetic moment of the electron along any direction can only yield one of 
the two opposite values pp and — pp. 

As well as the electrons, of course, an atom contains a nucleus consisting 

of particles (protons and neutrons) which also have a spin and a corres- 
ponding magnetic moment. However, it can be seen from the expression 
for the Bohr magneton that the mass of the particle occurs in the 
denominator. It follows that the magnetic moment of the nucleus is 
negligible compared with that of the atomic electrons. 

2. An atomic electron makes a contribution to the magnetic moment of 
the atom in another way. In its motion around the nucleus, an electron 
creates a magnetic field just as a small current loop does: the field is that of 
a magnet whose magnetic moment is related to the orbital angular 
momentum of the electron. The projection of this momentum on to an axis 
can take on values equal to mh, where m is the magnetic quantum number. 

The projection of the magnetic moment on to the same axis is 

w= Mz. 

In Box 14, we show that this quantum expression is exactly the same as one 

that can be obtained in an elementary way from the very naive picture of a 
point-like charged particle moving in a circular orbit around the nucleus. 

Box 14 

Classical calculation of the magnetic moment of an orbiting 
electron 

We assume that the electron is a point mass m, with charge e located 
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at a point M in space moving in an orbit around a fixed centre O at 
which the nucleus is situated. 

In addition, it is assumed that the orbit is circular and plane, and that 
the velocity of the electron in the orbit has a constant magnitude v. 

The classical expression for the angular momentum is 

J= OM X m,.v = m,.Rvun 

in which R is the radius of the orbit and ma unit vector normal to the 
plane of the orbit and in a direction such that it forms a right-handed 
orthogonal system with the velocity and radius vectors. 

The orbiting electron is equivalent to a current loop in which the 
charge —e is passing any point once during the time for one 
revolution t = 27R/v. It therefore corresponds to a current J given by 

[= —e/t = —ev/2uR. 

The magnetic moment of the small loop is then: 

uw = [Sn = —(ev/27R)7R?n = —SevRn. 

This shows that p can be written as yJ, where y = —e/2m,. The 
quantity y is known as the gyromagnetic ratio. If J = mh, we obtain: 

p = —m(eh/2m,.) = —mpg. 

The negative sign (arising from the negative charge of the electron) 
can be removed without any inconvenience as was done on p. 138 
since, in any applications, a set of m values are involved which are 
equally likely to be positive and negative, and hence —m and +m are 

equivalent. 
In a classical calculation, for an object of mass M and total charge 

QO moving in an orbit, the ratio of magnetic moment and angular 
momentum (y) is always found to be Q/2M whatever the distribution 
of charge and mass in the object. 

3. We now compare the two expressions for the magnetic moment of the 

electron, the orbital moment and the spin moment. Both involve the 

elementary quantity, the Bohr magneton, pR = eh/2m. The angular 

momenta in units of f are 4 for the spin and m for the orbital contribution. 

The formulae for orbital and spin moments can be written in the same way: 

uw = gp (angular momentum)/h, 

the factor g being 2 for spin and 1 for the orbital contribution. The 

difference between these two values shows that it is no good attempting to 
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explain the intrinsic magnetic moment of the electron in terms of a rotation 
about its own axis since any classical calculation would give g = 1 as for an 
electron moving in an orbit (see Box 14). 

4. The total contribution of an electron to the magnetic moment of an 
atom is the sum of the two effects, one due to orbital motion and the other 

due to spin. Complications arise because these two terms are not indepen- 
dent: there is an interaction between them because the magnetic field 
created by the orbital motion of the electron affects the orientation of its 
spin moment. Moreover, in the atom as a whole, the contributions from 

different electrons add together and, again, are not independent of each 
other. 

Overall, the atom has a total angular momentum Jh, to which there 
corresponds a total magnetic moment given by the general expression: 

w= Shp, 

where g is the Landé g-factor (or just the g-factor), a quantity depending on 
the electronic configuration of the atom. If only the spin moments of the 
electrons were involved, g would be equal to 2; if only orbital moments 
were involved, g would be equal to 1. In fact, for real atoms, g lies between 

1 and 2. 

Values of atomic magnetic moments 

1 For the free atom 

The Pauli principle allows only two electrons with opposite spins to be 
accommodated in a given orbital. When an orbital is full, the total angular 
momentum due to the spin of the pair of electrons is zero. In a complete 
shell or sub-shell, there is an equal number of spins in opposite directions; 
moreover, the distribution of all the electrons in a complete shell around 
the nucleus is spherically symmetrical. It can be shown that, in this case, 
the sum of the orbital momenta is also zero. 
A completely filled shell thus contributes nothing to the magnetic 

moment of the atom. Jt is the incomplete shells and ‘unpaired’ electrons (i.e. 
those not matched in opposing pairs) which are the sources of the atomic 
magnetic moment. 

We can now see why the magnetic moments of atoms always have a 
magnitude equal to a small number of magnetons only. It is because, in an 
atom with many electrons, most of them are located in the inner complete 
shells and therefore contribute nothing to the moment. In particular, in 
atoms where all the shells or sub-shells are full, as in the inert gases, the 

atomic moment is zero. 
We can also see why the strongest magnetic moments are to be found 
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among the transition elements, since these are characterized by the 
existence of an incomplete shell inside the outer shell. 

2 Foranatomina solid 

The situation is simple for ionic crystals: the constituent ions have an 
electron cloud that is highly localized around the nucleus and which ends in 
a completely filled outer shell. If ions have a non-zero magnetic moment, 
they have an incomplete inner shell. 

With metals, the model of a moment attached to each lattice site in the 

crystal is not completely satisfactory since, as well as the electrons localized 
in the inner electrons shells, there are also the conduction electrons, 

non-localized and subject to quantum physics alone. A theory of the 
magnetism of metals has been created from band theory but, in general, we 
shall restrict ourselves to the idea of a moment localized in the atom. 
However, it should be pointed out that for metals, because of the 

non-localized nature of the free electrons, the atomic moments are not 

integral multiples of the Bohr magneton, e.g. 2.22 for iron, 0.6 for nickel. 
There is quite a subtle point which needs clarification when we are 

discussing the magnetic moment of atoms. We treat it as an ordinary 
vector, of the same nature as the angular momentum of the atom. The 
latter is, however, a quantum property and does not have the same 
characteristics as a classical vector based on classical geometry. Thus, the 
angular momentum Jf has a magnitude VJ(J_ + 1) and its projection 
along any direction can take on the values mjh, where my, is one of the 
2J+1 values —J, —J+1,...,upto/J. This is unlike the classical vector p, 

- whose projection varies continuously from —p to +p depending on the 
angle it makes with the direction concerned. If the individual moments in 
the crystal have a random orientation, their resultant projection on any 
axis is zero. In quantum theory, this means that all the values of my, are 
equally probable. 

In practice, particularly if J is large, the difference between the two 
representations is not very great and this is our justification for treating the 
magnetic moment like an ordinary vector. 

Diamagnetism and paramagnetism 

Atoms with zero magnetic moment: diamagnetism 

The magnetic field created by the solid in this case can only be zero because 
the atoms have no resultant magnetic moment. It is also true that an 

externally applied magnetic field has virtually no effect on the solid. 
However, there is a residual effect due to electromagnetic induction. 
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It is well known that, when a magnetic field is established near a 
conducting circuit, the free electrons in the metal are set in motion: there is 
an induced current flowing in such a direction that the magnetic field it 
produces opposes the inducing field (Lenz’s law). 

In an atom subjected to a magnetic field, the electron motion is modified 
by the force due to electromagnetic induction. The effect is not transient as 
it is in a metal with its electrical resistance, but is permanent since there is 
no decay of the electronic motion within the atom. Thus, an atom with zero 
magnetic moment acquires a moment under the influence of the field, but 
in a direction opposite to that of the applied field since it is the effect of 
electromagnetic induction. A calculation shows that the moment is ex- 
tremely small. 

This phenomenon is called diamagnetism and it occurs in all atoms. 
However, when the atom does have a magnetic moment, the diamagnetism 
is masked by a greater effect which we look at in the next section. In 
practice, therefore, this very weak magnetic effect can be neglected and we 
merely mention it for completeness. 

Atoms with a non-zero magnetic moment: paramagnetism 

Each atom experiences the force exerted by an external magnetic field on 
its atomic moment. However, we should first of all dismiss an idea 

suggested by our experience of macroscopic objects but which is not 
accurate on an atomic scale: that the effect of the force exerted by the field 
would be to align the atomic moment along the field direction. A small 
magnetized needle behaves in that way, but this is because of damping due 
to friction. If the needle were perfectly free to move around its pivot, it 
would oscillate indefinitely around the direction of the applied field. 
However, atomic motion is not damped and in fact, by the gyroscopic 
effect, the atomic moment moves around the field direction at a uniform 
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Fig. 3.1. Precession of the atomic magnetic moment around the direction of an 
applied field. 
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speed and making constant angle with this direction. This type of motion is 
called precession and, while it is taking place, the projection of the moment 
on the field direction remains constant (Fig. 3.1). 

According to the quantum picture, this projection can take one of the 
values gugm;, the number m, varying in steps of 1 from J to —J. The 
energy of the magnetic moment in the field’ is: 

E = —gppmjpoH 

The precession induced by the action of the field on the atomic dipole 
leaves the quantum number m, constant. But the energy of the atom may 
vary: as these variations occur, the atomic moment may jump from one m, 
value to another, i.e. it may change its orientation with respect to the field. 
What makes these variations in orientation occur? There are two opposing 
effects: one is the tendency of m, to be as large as possible so as to reduce 
the magnetic energy to a minimum; the other is thermal agitation which 

favours disorder, i.e. a uniform population of all the m, levels from —J to 
oe 

In this system, as in others we have encountered (p. 4), equilibrium is 
defined by Boltzmann’s law: the probability that a level my, is occupied is 
proportional to the exponential factor: 

E val | 
exp| — =exp| gppmy : 

esr ce eer 
Let us specify some orders of magnitude for a real everyday situation. 

_ For example, H is a field easily obtained with an ordinary solenoid 
(10°?A m7! or oH ~ 10-°T). T is room temperature. We shall take g = 2 
and a system where there are two possible values for my: +3 and —3. We 
then find that, between the levels with the lower and higher energies, the 
difference in occupation is only 1/1000 in relative values. The distribution 
of moments over the two levels is thus very nearly uniform. The magnetiza- 
tion of the solid as a whole is therefore very weak. The situation would be 
the same for systems with many m, levels. 

This is the explanation of the fact which we mentioned at the beginning 
of the chapter: that the magnetic field has in general only a small effect on 
the solid. If its atoms have magnetic moments, they are only very partially 
oriented by the applied magnetic. field: this is paramagnetism. Although 
paramagnetic effects can be neglected in practical terms, we are going to 
look at them in more detail because they form an essential introduction to 
the understanding of the properties of strongly magnetized materials. 

‘We shall not introduce the magnetic induction vector B which, outside magnetized material 
is given by B = oH. Our aim is not to deal with the physics of magnetic fields, but to describe 
the relationships between magnetization and the structure of matter by considering simple 
and easily appreciated situations (e.g. Fig. 3.15). 
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The magnetization of a solid is specified by the quantity M, the intensity 
of magnetization or simply the magnetization, defined as its magnetic 
moment per unit volume, i.e. the ‘mean’ atomic moment multiplied by the 
number of atoms per unit volume. A calculation using Boltzmann’s law 
(Box 15) shows that, for fields that are not too strong and temperatures 
that are not too low, M is proportional to H. The ratio, known as the 
magnetic susceptibility, y,,, is typically of the order of 107°. This is the 

paramagnetic state. The susceptibility is inversely proportional to the 

temperature (Curie’s law’): 

Xm = M/H = C/T 

where C is the Curie constant. 
However, in a strong field and when the atomic moment is large and the 

temperature very low, Curie’s law is no longer valid: we approach 
saturation, where all the moments are aligned (see Box 15). Thus, at 1K 
and in a field of 3 x 10°Am', gadolinium sulphate has a magnetization of 
3 x 10°?Am/'. This is the first example we have met of a solid that can be 
appreciably magnetized, and even here the solid has to be placed in 
extreme conditions. 

Box 15 

Calculation of the magnetization as a function of tempera- 
ture and applied field 

Consider a body consisting of identical atoms, characterized by the 
quantum number J placed entirely within a uniform magnetic field H. 
If the field lies along the z-axis, the energy of a single atomic moment 

in the field is: 

E = ~pol'H = — pow fT 

where the projection 1, of the atomic magnetic moment along the 
direction of the field can only take the following 2/+1 discrete values: 

B= Mj§P-B 

with, =—-J,-J4+1,...,J/. 

It follows that the energy of the magnetic moment is quantized: 

E=—mgpppolt. 

‘What is in fact observed is the paramagnetic susceptibility minus the diagmagnetic 
susceptibility, the latter existing in all atoms whether or not they have a magnetic moment. 
The diamagnetism is, however, completely negligible in relative terms. 
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The quantum state defined by m, exists at a temperature T with a 
probability proportional to the Boltzmann factor exp(— E/kgT). 

The probability of finding the projection of the magnetic moment 
along Oz being equal to mg is therefore: 

ty [n gu pol 

g aT 

where Z is introduced to normalize the probabilities: 

J 
a Lol 

Z= 2) exp [mcr ie 

When the magnetic field is not zero, there is a greater probability that 
my, 1s positive than there is that it is negative. This means that, at 
temperature 7, the magnetic moment has on the average a positive 
component along the field H. This mean value becomes greater as H 
increases or as T falls, and is calculated in the usual way (see Boxes | 
and 2) by multiplying each possible value of the projection mjgupz by 
the probability of its existence, and then summing over all the 
possible values of my: 

J 

E22 > exp|m Holl Oe f= My§ MB EXP\ EB keT 

The rest of the calculation, although posing no great problems, is 
nevertheless quite tedious and laborious. It therefore seems prefer- 
able to give a detailed calculation just for the simplest case in which 
the magnetic moments are due to spin momentum only, i.e. J = 3, 
g = 2 and where m, can only take the values +3 and —3. In this case, 
the expressions for Z and (yw) become 

HH HH 
ZL= exp a + exp| ees 

kpT kpT 

Ge 1 exp( ton - exp S PBRoll ) 

, Z kpT kpgT 

(p) = pptanh(pprol/kpT), 

where tanh x is the hyperbolic tangent with the value (e* — e “*)/ 

(e +e ). 
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Fig. 3.2. Intensity of 
magnetization and its variation 

with x = gJ/phoH/kgT calculated 
for the Brillouin function @, (for 
J = 4, g = 2) and for the Langevin 
function ¥ , the limit of the 
Brillouin function as J tends to 
infinity. 

We then obtain the magnetization by multiplying (uw) by the 
number of atoms per unit volume, N: 

M= Npptanh(ppyo/kpT). 

The curve giving M as a function of x = ppyoH/kgT is plotted in 

Fig. 3.2. When x tends to infinity, i.e. for strong fields or low 
temperatures, the orientation in the field is perfect and M becomes 
equal to Nu. On the other hand, when H is weak and/or when T is 
high, the hyperbolic tangent can be put equal to its argument x, and 
we then obtain 

BHO A M=N 
hoor 

The magnetization M is proportional to H and the constant of 
proportionality, or magnetic susceptibility x,,, is given by: 

2 1 yy Bho 
Xm — . 

ka 

The susceptibility varies inversely with temperature, which is 
Curie’s law. We emphasize that the law is only valid if 

PBWoH < kpT. 

However, the range of validity is very wide. Even for strong fields 
(wolf ~ 1T), the temperature has to fall to a few K to cause Curie’s 
law to fail. 
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In the general case, where J is different from 2, the calculation 

gives the following result: 

M = NgJppB (x) 

where x = gJupyoH/kpT, and where &,, the Brillouin function, is 

given by the following expression: 

1 2J +1 1 x 
coth x |}—— coth —— 

QI 2) 2d 

This function, which reduces to the hyperbolic tangent for J = 3, 
behaves qualitatively in a similar way to the tanh function. It has a 
limiting value of 1 towards infinity, which describes saturation, and 
near zero it is linear: 

ao 

which gives Curie’s law x, = C/T, with 

Le N perelLo 

3 kp 
C and perp = VI + lg pe. 

A particularly important value is the ‘classical limit’, obtained for 
large quantum numbers. When J tends to infinity, the Brillouin 
function simply converges to a limiting function, the Langevin 
function, given by 

1 
Ga) = coun x = -. 

x 

The curves for #,(x) = tanh x and Y(x)= B.,.(x) are given in Fig. 3.2. 

Ferromagnetism 

We now come to the exceptional cases of substances which can be strongly 

magnetized under ordinary conditions. Among the thousands of natural 

minerals in the Earth’s crust, there is one, an oxide of iron, Fe3;0,, known 

as magnetite, which can be strongly and spontaneously magnetized: this 
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has been known since antiquity in the form of ‘lodestone’. Among the 
metals, there is one, iron, which can be strongly magnetized at ordinary 
temperatures in a current-carrying coil, and two others, nickel and cobalt, 
which can be magnetized a little less strongly. After a considerable amount 
of research into magnetism and magnetic materials, the number and 
diversity of ‘magnetic substances’ has in fact been somewhat extended, but 
in spite of that they remain rare exceptions. 

The physicist’s task is to discover the origin of the extraordinary 
properties of these materials, while attempting to retain the model 
incorporating the atomic carriers of magnetic moment that is valid for 
non-magnetic substances. 

The molecular field 

The great majority of solids are magnetically inactive. This is not because 
the individual atomic magnetic moments are too weak, but because the 
moments are randomly oriented and remain so even in an external field 
which, however intense, has only a small effect. 

The condition for strong magnetization is that the atomic moments 
become globally ordered. This is not normally possible because the action 
of the field tending to align the moments is swamped by the disordering 
effect of thermal agitation. We have mentioned that better alignment can 
be achieved by increasing the field strength or lowering the temperature. 
Yet iron is magnetized at ordinary temperatures and in fields that are 
weak, or even zero. Under these conditions, the external field is not 

capable of producing sufficient alignment of the atomic moments on its 
own, so what is it that does? 

In 1910, Pierre Weiss responded to this question by suggesting an idea 
which, with modifications and refinements, still remains the basis for the 

theory of how iron behaves in a magnetic field and, more generally, for 
ferromagnetism. 

In this theory, the applied field is assisted by a much stronger magnetic 
field created by the iron itself, which Weiss called the molecular field.' 
Without attempting to discover the origin of such a field, Weiss first 
showed what could be deduced from such a hypothesis. 

The existence of the molecular field at a site is due to the action of 
neighbouring atoms as they begin to align themselves in the direction of the 
applied field, and thus when the magnetization is not zero. Weiss then 
simply assumed that the molecular field parallel to the common direction 

‘This name has been kept even though it appears unsuitable today since there are no 
molecules in metallic iron. A more correct nomenclature, now used in statistical mechanics, is 
the mean field approximation (MFA). 
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of M and H is proportional to the magnetization M. The effective field 
acting inside the solid is therefore of the form H + \M. 

Suppose in addition that the action of the effective field is determined by 
Curie’s law, which takes into account the action of the external field on a 
paramagnetic. We can then write: 

M Cc 

H+vXM iG 

which can be put into the form: 

This is the Curie-Weiss law in which a new parameter, AC, appears, with 
the dimensions of temperature and denoted by T¢. 
When T = T¢, the susceptibility becomes infinite. This means that at the 

temperature 7, the magnetization may be different from zero, even for an 
external field that tends to zero. Physically, this describes the possibility of 
spontaneous magnetization, which is exactly what occurs in a ferromagnetic 
below a critical temperature known as the Curie point. The Curie point for 
iron, for example, is 7c = 1043 K =~ 770°C. 

When T > T¢, iron behaves more or less like a paramagnetic: the 
magnetization remains very small and the susceptibility varies with temper- 
ature as predicted by the Curie-Weiss law. 

Below Tc, M can be very high and we are no longer in the region where 
M is proportional to H, so that the Curie-Weiss law has no meaning. We 
must use the real M = f(H) curve (p. 146), but here, the effective field is 
H + XM. In fact, we can take this field as equal to AM, since we wish to 
calculate the spontaneous magnetization, i.e. in zero applied field. The 
result of such a calculation, given in Box 16, is an expression giving the 
sponteneous magnetization as a function of temperature (Fig. 3.4). 

M Fig. 3.3. The calculated 
li > Te ’ . * 

i= ie spontaneous magnetization and 

T=<Tc _ its variation with temperature. 



150 Magnetic properties of solids 

Box 16 

Calculation of spontaneous magnetization using the 
molecular field approximation 

In the molecular field approximation of Weiss, it is as if the individual 
magnetic moments were subjected to an external field H sup- 
plemented by another field XM proportional to the magnetization. 
The magnetization can then be calculated as in Box 15, replacing H 
by H + XM. In the general case of magnetic moments characterized 
by the quantum number J, we therefore have: 

M = NgJppB(x) 

with 

J _ & Peo eet eM, 

Bl 

It is then a question of solving this equation for M, as an unknown 
appearing on both sides. We shall use a graphical method for the case 
of zero applied: field (H = 0), when we have to solve the ee of 
equations: 

M = NgJppB,(x) 

a S\J LBRO 

kpT 
M. 

By using the expression for the Curie constant: 

_ NIG + (ge)? bo 
3 kp 

and that for the critical temperature Tc = AC, we can not write the 
system of equations in the form: 

A 
NgJip 

M J>i 7 
— oncere 

NegJ pp a Tc 
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Fig. 3.4. Comparison of the 
theoretical and experimental 
values of the spontaneous 
magnetization in nickel: Tc = 
631K. 

We plot both the variation of the Brillouin function @, and that of 
the linear function 

de] 7 
= 

3/ OU 

in the same figure (Fig. 3.3). The value of the vertical coordinate at 
the point of intersection of these two curves gives the value of 

The slope of the Brillouin function at the origin is (J+1)/3J. It can 
be seen that, if T > T¢, the only solution is M = 0. Above T¢, the 
iron is therefore unmagnetized in the absence of an external field and 
it behaves like a paramagnetic. 
On the other hand, when T < 7¢, the straight line cuts the curve at 

a point away from the origin, giving rise to a non-zero magnetization 
M,,. A consideration of the energy of the system would show that it is 
lower for this solution than for M = 0. As a result, the iron naturally 

possesses a non-zero spontaneous macroscopic magnetization M,, in 
the absence of an applied field. - 

This graphical solution yields M,, as a function of T, and the 
resultant curve is shown in Fig. 3.4. The magnetization M,, falls from 
its maximum value M, (saturation), NgJup, and tends to zero at 

T = Tc. The behaviour of M,, near T¢ is obtained by expanding the 
Brillouin function to the third order term in x. This shows that M,, 
varies as (Tc — T)'”” near Tc. 

The molecular field approximation, used more generally under the 
name of the mean field, ignores fluctuations of the atomic magnetic 
moments around their mean values: it is assumed that the ‘molecular’ 
field at any atomic site is exactly \M. 
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This approximation would undoubtedly not be justified for a 

one-dimensional chain of atoms. (In that case, it is found that there 

can be no spontaneous magnetization as soon as the temperature 

differs from zero.) On the other hand, for a two-dimensional plane of 

atoms, or in the more realistic case of a three-dimensional crystal, the 

approximation does enable the existence of spontaneous magnetiza- 
tion to be found below a characteristic temperature Tc. 

In theories more advanced than the mean field theory, it can be 

shown that M,,, approaches zero at T¢ like (Tc — T)°. The value of B, 
known as the critical exponent, is not in general equal to 2, but 

depends on the symmetry of the interactions between magnetic 

moments and on the dimension of space. 
The renormalization group theory of Kadanoff, Fisher, and Wilson 

(Nobel Prize winner, 1982) has shown that the mean field theory 
- becomes exact in the abstract case of spaces of more than four 
dimensions. This theory has also enabled the critical exponents to be 
calculated with great accuracy. 

To compare theory with experiment, the spontaneous magnetization 
must be measured as a function of temperature. It is only after we have 
made a more thorough study of ferromagnetism that we can show that the 
spontaneous magnetization M,,, is represented by the magnetization of iron 
at saturation, i.e. the value towards which it tends as the field applied to 
the iron is increased (see p. 164). 

Weiss’s idea, even though its application involves only simple calcula- 
tions, accounts satisfactorily for the ferromagnetic state and for its upper 
limit at the Curie point. Clearly, we must now tackle the problem of the 

origin of the molecular field, but before doing that we offer two comments 
from a phenomenological point of view. 

1. According to Fig. 3.4, the ferromagnetic-paramagnetic transition is 
very sharp. This is a characteristic of a cooperative phenomenon. The 
aligning action of the molecular field becomes stronger as the atomic 
moments themselves become more aligned. Starting from a crystal with 
completely aligned moments at a very low temperature, we raise the 
temperature gradually. While it is still low, the magnetization remains 
constant, i.e. the moments remain aligned because of their interaction and 

in spite of thermal agitation. Then a few moments become misaligned: the 
action of the molecular field on each atom is weakened, which causes a 

misalignment of some more moments. The interactions become even 
weaker, the disorder grows, weakening the interactions further, and so on. 

The process is self-accelerating: there is no slow and gradual decrease in 
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the alignment of the moments. As the critical temperature is approached, 
the situation tends to become catastrophic and the order disappears 
abruptly. 

This is characteristic of cooperative phenomena, and many examples 
with similar features are known in physical transformations: they are 
second order phase transitions. 

2. The Weiss theory is one example of a method of approximation known 
as the mean field approximation. An atom interacts mainly with its nearest 
neighbours and it is assumed that the interaction is the same as if all the 
neighbours were in the average state of the complete atomic assembly. 
This is an approximation that makes the calculation easier but it neglects 
fluctuations in local order. A refined version of the theory takes these into 
account. 

What is the molecular field? 

Although it appears obvious that the assumption of the molecular field is 
the key to the explanation of ferromagnetism, we cannot remain content to 
postulate its existence without asking what physical phenomenon is the 
cause of it. 
We first reject one possible origin of the effect, even though it seems the 

most natural one: this is the action of classical magnetic forces between 
neighbouring atomic moments. Our rejection is based on the following 
argument. 

The value of the molecular field can be evaluated for a given substance 

. by using the relationship T7¢ = AC. Since the Curie point T¢ is known and 
the paramagnetic constant C can be deduced from the atomic magnetic 
moment (see p. 147), the value of \ can be calculated and we find that for 
iron A = 5000. The magnetization of iron at saturation is M = 2 X 
10°Am~!, so that the molecular field \M would be of the order of 
10!°Am~'. But the field created at a lattice site by the moments of 
neighbouring atoms, assumed to be all parallel, is less than a thousandth of 
this value. The origin of the molecular field postulated by Weiss must lie 
elsewhere. 

Classical physics proves powerless to provide a solution to the problem. 

Quantum mechanics, however, has been able to do so by predicting the 
existence of coupling forces or interactions between the magnetic moments 
of neighbouring atoms which cause the moments to align themselves 
preferentially in directions parallel to each other. These coupling forces, of 
purely quantum origin, differ in type according to the atomic structure and 
the type of chemical bond involved. One contribution is the ‘exchange’ 
term (Heisenberg) in the calculated energy of the system. This term arises 
from the indistinguishability of electrons: an interchange of two electrons 
must not change either the wave function or the energy. The exchange 
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energy always tends to make the magnetic moments of neighbouring atoms 
align themselves parallel to each other but in opposite directions. This 
term, which is predominant in some insulators, only plays a small part in 
metals since the delocalization of the valence electrons necessitates the 
introduction of other terms. One of these, known as the Coulomb term, 

encourages the spins to align themselves in the same direction because of 
the Pauli principle. The coupling results from all these effects and from 
others that are more complex. The interatomic distance, the more or less 
strong delocalization of the electrons, the degree to which the electron 
shell responsible for magnetism is filled, all these are factors determining 
the sign and the value of the total coupling between the magnetic moments 
of neighbouring atoms. 

To attempt an explanation of how such a coupling follows from quantum 
theory, we take the simple example of the hydrogen molecule (SM, p. 16), 
which can be calculated. The hydrogen molecule consists of two H* nuclei 
separated by 0.108nm and two electrons. Starting from Schrédinger’s 
equation, a quantum mechanical calculation yields the mean distribution of 
the electrons or, what amounts to the same thing, the mean distribution of 

the negative charge density around the nuclei. The binding energy between 
the atoms can also be found: it is the difference between the energy of the 
H, molecule and the two separated H atoms. The spatial distribution of the 
charge and the binding energy of the molecule are different for the two 
cases in which the electron spins are parallel or antiparallel. The binding 
energy is positive if the spins are parallel and the molecule then tends to 
split spontaneously into two atoms; if the spins are antiparallel, the binding 
energy is negative: the two atoms are then attracted to each other to form 
the molecule, as if there is a force between them, the coupling force. The 

energy gained when the nuclei are separated by their equilibrium distance 
(0.108nm) is 4.75eV. This is electrostatic energy, since it arises from a 
modification in the distribution of the negative charge. It is of purely 
quantum origin, since in classical theory the position of the electrons is not 
influenced by their spins, while the orientation of the latter is involved in 
quantum theory because of the Pauli principle. 

If the coupling energy were attributed to a ‘molecular’ magnetic field 
H,, the work needed to reverse a magnetic moment would be 2upuoH pn. 

In the Hy molecule, H,, would be 3 x 10'°A m7’. This is a very high value 
and is of the same order as that found in iron. 
We now pass on to the case of an iron atom in a crystal. The large 

number of neighbours and the complexity of the atom with so many 
electrons makes it impossible to carry out exact calculations. But the facts 
revealed by the Hz molecule explain qualitatively what happens in iron. 
The electrons in the incomplete sub-shell, which are responsible for the 
magnetism of iron, have distributions which, for a pair of neighbours, 
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partially overlap each other. The electron distribution therefore depends 
on the orientation of the spins, just as the atomic binding energy does. 

It is found that, in metallic iron, the energy of atoms with parallel 
magnetic moments is lower than that when they are antiparallel. This is 
what produces the tendency for the moments to align themselves in the 
same direction, which is the basic phenomenon of ferromagnetism. 

As in the simple hydrogen molecule, the effect is of quantum origin and 
is due to electrostatic interaction between electrons. However, the inter- 

action may be formally expressed as a magnetic interaction through the 
medium of an internal magnetic field due to the atomic moments: this is the 
mysterious molecular field that Weiss postulated a priori. 

The ferromagnetic elements 

Quantum theory provides a rational basis for the Weiss conjecture: it 
explains why the number of ferromagnetic substances at ordinary tempera- 
tures in so small. The first condition to be satisfied is the existence of an 
appreciable atomic magnetic moment. As we have seen, few electronic 
configurations permit this, so that there are not many ‘candidates’ for 
ferromagnetism. Secondly, the coupling energy must have such a sign that 
it tends to make the moments parallel. Finally, this energy must be great 
enough compared with the energy of thermal agitation kgT for the 
alignment of moments to persist up to temperatures above room tempera- 

ture. 

Table 3.1. Curie point and spontaneous magnetization at 0K for some 
ferromagnetics 

Curie Atomic magnetic Spontaneous intensity 

Substance point moment of magnetization at OK 
(K) (magnetons) (10°A m7!) 

Iron 1043 Dam 17 
Cobalt 1400 sey 1.4 
Nickel 631 0.6 0.51 
Gadolinium Zoe dak Zz) 
Dysprosium 85 10.1 Zo 
Cu,MnAl 710 oe 0.50 
MnBi 630 JD 0.68 
crve 339 DS 0.25 
CrO, 392 2.0 0.51 
EuO 69 6.8 1:9 
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According to Table 3.1, there are only three ferromagnetic metals at 
room temperature: iron, nickel, and cobalt. Two others, dysprosium and 
gadolinium, have large moments but are only ferromagnetic below 85K 
and 292K respectively. Manganese has quite a large magnetic moment, 
larger than that of iron, but the interaction energy does not produce 
alignment of moments. However, if manganese atoms are incorporated in 
the crystal structure of an alloy along with two other non-magnetic 
elements, copper and aluminium, the conditions are such that the magnetic 
interaction aligns the moments of the manganese. This forms a Heusler 
alloy, CuyMnAl, which is ferromagnetic up to 710K. 

Other types of magnetic ordering in crystals 

Crystals are now known in which the interaction between magnetic 
moments produces types of ordering different from that in the simple case 
of ferromagnetism. These are revealed by unusual magnetic properties: 
either the magnetism is weak but the behaviour is different from that of 
normal paramagnetics, or else there is a strong magnetization comparable 
with that of ferromagnetics. The magnetic structures described below were 
first proposed in order to account for these macroscopic properties: Néel 
(Nobel Prize winner, 1970) discovered antiferromagnetic order in this way. 
Today, however, we can use neutron diffraction to map out the orientation 
of the magnetic moments in the unit cell of a crystal directly. This is 
possible because the amplitude scattered by an atom depends on the 
direction of its magnetic moment in relation to that of the neutron. 

Antiferromagnetism 

Consider the compound MnO. Above 122K, X-rays and neutrons give the 
same diffraction pattern, from which the structure shown in Fig. 3.5(a) is 
deduced. Below 122K, a critical temperature known as the Néel tempera- 
ture, neutron diffraction shows that the magnetic moments of the Mn+ 
ions have regularly alternating directions in successive reticular planes as in 
Fig. 3.5(b). The magnetic interaction favours pairing between neighbours 
with antiparallel moments, giving rise to the antiferromagnetic structure. 

In the absence of an applied field, the magnetic moment of the crystal as 
a whole is zero, both in the ordered and disordered state. An antiferro- 
magnetic material never becomes strongly magnetized, but its behaviour 
when a field is applied is unusual (Fig. 3.6) and this is what drew attention 
to MnO in the first place. 
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Fig. 3.5. The arrangement of Mn” ions (@) and O™ ions (©) in a basal plane of the 
cubic unit cell of MnO. (a) When T > Ty, the magnetic moments in zero field are 
disordered. (b) When T < Ty, the moments alternate regularly from one plane to 
the next and this doubles the size of the unit cell as revealed by neutron diffraction. 
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Helimagnetism 

.Much more complex types of ordering have been revealed by neutron 
diffraction. Thus, in the alloy MnAu,, the Mn atoms are arranged in 

identical parallel planes separated by a distance d. In each plane, the 
magnetic moments are all parallel, but in passing from one plane to the 
next their direction turns through a constant angle: 51° in this case. The 
whole crystal has a zero moment. For a given column of Mn atoms, the 
moments form a helix (Fig. 3.7) with a pitch that is not a simple fraction of 
d (360/51 = 7.06), i.e. the crystal unit cell and the pitch of the helix are 
incommensurable. This is an example of a phenomenon that has been 
observed in various forms in certain crystals and is currently the subject of 
a great deal of research. 

To explain such complications in the ordering of the magnetic atoms, the 
concept of frustration is introduced. Assume that there is an interaction 
not only between the magnetic moments of nearest neighbour atoms, but 
also between those of next nearest neighbours. Suppose also that nearest 
neighbours have a tendency to align themselves parallel to each other, 
while next nearest neighbours have a tendency to become aligned antipara- 
llel to each other. In a group of three adjacent atoms, 2 will align itself 
parallel to 1, and 3 parallel to 2, but the most favourable direction for 3 in 
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Fig. 3.7. Helical magnetism: the 
helical arrangement of the 
magnetic moments in a column of 
ions. 

relation to 1 is antiparallel, which conflicts with its tendency to be parallel 
to 2. Atom 3 is said to be in a frustrated state. The situation is alleviated by 
the adoption of a helical structure with an angular displacement between 
successive moments of 51°. This makes the interaction between nearest 
neighbours slightly positive and that between next nearest neighbours 
(with a relative angular displacement of 102° and thus greater than 90°) 
slightly negative. 

Ferrimagnetism' 

Ferrimagnetics are important materials, strongly magnetic and with many 
applications. Unlike the substances considered so far, they contain two 
types of ion with different magnetic moments. One example is that of the 
earliest known natural magnet, magnetite, which has a chemical formula 
Fe30, (or FeO.Fe,03), i.e. two Fe** ions and one Fe?* ion per molecule. 
The Fe** and Fe** ions have magnetic moments of 5 and 4 magnetons 
respectively. The relatively bulky oxygen ions form a close-packed cubic 

‘No chemical significance should be attached to the prefixes ferro- and ferri-. In this case, they 
are not used to denote the valence states of the iron ion. 
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Fig. 3.8. The unit cell of Fe3;O,4: the spinel structure. 

lattice (Fig. 3.8) in which there are two types of interstitial site, both 
accommodating iron ions but with different geometries: one type of site is 
tetrahedral and the other octahedral. The magnetic ions are thus distri- 
buted over two sub-lattices: in one, there is one Fe** ion per ‘molecule’ 
and in the other, there is one Fe** and one Fe** ion. In each sub-lattice, 
the exchange interactions align the moments parallel to each other, but the 

essential point is that the orientations in the two sub-lattices are antipara- 
_ lel. Their contributions to the total moment must therefore be subtracted 
from each other: the moment of the crystal per molecule is thus (5S + 4) — 5 
= 4 magnetons, and this is confirmed by experiment. As with ferromagne- 

tics, the ordering of the moments disappears sharply at a critical tempera- 
ture also called the Curie point (Table 3.2). 

Magnetite is representative of a whole series of ferrimagnetics known as 
ferrites. Their general formula is (Fez03.MO) where M is a cation such as 
Zn, Cd, Fe, Ni, Cu, Co, Mg, etc. Another group of ferrimagnetics is that 

of the iron garnets: YIG (yttrium iron garnet) has the formula Y3;Fe;5Ojp. 
The total moment of a ferrimagnetic results from a partial offsetting of 

the moments in one direction by antiparallel moments with a different 
magnitude, whereas in antiferromagnetism the resultant is zero because 
the moments in opposite directions have equal magnitudes. Although their 
maximum intensity of magnetization is reduced by the partial compensa- 
tion between antiparallel moments, ferrimagnetics still have very attractive 
properties. 

In the first place, they are electrical insulators, whereas usual ferro- 

magnetics are metals. If a metal is subjected to a high frequency magnetic 
field, induced currents are set up in it, causing a substantial dissipation of 
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Table 3.2. Curie point and spontaneous magnetization at 0K for some 
ferrimagnetics 

Curie Magnetic moment Spontaneous intensity 

Substance point of the unit cell of magnetization at OK 
(K) (magnetons) (10°A m7!) 

Fe;0, 858 4.1 0.48 

CoCr,0, 98 0.18 

Spinels 
NiFeVO, 610 0.70 

YIG (Y3FesO,2) 560 5.00 0.13 

energy as heat. The losses increase with frequency and this restricts the use 
of ferromagnetic metals to low frequency applications. In contrast to that, 
the magnetic properties of ferrites and garnets can be used with advantage 
even in high frequency circuits (transformers with ferrite cores). Iron 
garnets are magnetic materials transparent to microwaves or light and have 
several important applications. 

Finally, it is worth pointing out that, while there are only a few 
ferromagnetics, a large number of ferrimagnetics have been synthesized 
and this has enabled a wide range of products with a great variety of 
magnetic properties to be created. 

The behaviour of ferro- and ferrimagnetics in 
a magnetic field 

So far, we have shown how spontaneous magnetization can occur below 
the Curie point because of the magnetic interaction between atomic 
moments, but there are many observations still to be explained. The 
magnetic state of a piece of iron at room temperature is extremely variable. 
In particular, it may be completely demagnetized: how is this consistent 
with spontaneous magnetization? When it is magnetized, its magnetization 
depends not only on the field it is currently experiencing but also on the 
fields to which it has previously been subjected. The behaviour of different 
materials with the same field variations is also highly variable. 

Measurements made to establish the way strongly magnetic materials 
behave yield very complicated sets of observations. The theoretical idea 
that throws light on the results is the concept of the Weiss domain. Without 



The behaviour of ferro- and ferrimagnetics in a magnetic field 161 

going into details, we shall show how this concept explains, at least in 
outline, several of the typical properties of magnetic substances, particular- 
ly those which have important technical applications. 

Weiss domains 

Consider a crystal of iron at room temperature, i.e. well below the Curie 
point. It is observed that in a zero magnetic field the crystal may have no 
overall magnetic moment. Now, we know that on the atomic scale the 
magnetic moments of neighbouring atoms are aligned parallel to each 
other in the same direction. In order to resolve this apparent contradiction, 
Weiss put forward the idea that the crystal is divided into domains, of a size 
small compared with that of the whole crystal but quite large in comparison 
with interatomic distances (at least several micrometres). The moments are 
aligned within every domain, which are therefore spontaneously magnetized, 
but the directions of magnetization of different domains are different, so that 
the magnetic moment of the whole crystal can be zero (Fig. 3.9). 

Fig. 3.9. Diagrammatic 
representation of Weiss domains. 
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The existence of such domains has now been demonstrated ex- 
perimentally, and the Bitter experiment in particular provides a very direct 
demonstration of them (Fig. 3.10). The polished surface of the iron is 

covered with a thin layer of liquid containing a suspension of very fine 

magnetic particles. At the boundary between two domains with different 
orientations, there exists outside the metal and near its surface a magnetic 

field localized along the wall between the two domains. This field attracts 

the particles, in the same way that iron filings are attracted by the poles of a 
magnet, thus making the domain boundaries visible. 
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Fig. 3.10. Domains in a thin slice of garnet magnetized in both directions normal to 
its own plane. Domain boundaries made visible by the Bitter method (by kind 

permission of I. Puchalska). 
< 

The appearance of the domains varies enormously from one ferro- 
magnetic to another. Some of the observations can be explained by the 
following ideas: 

1. The magnetic field created by the magnetized domains outside the 
material has a certain energy, and the arrangement of the domains is such 
as to minimize this energy. That explains why, for example, domains are 
formed in such a way that the lines of magnetic flux, instead of emerging 

Fig. 3.11. Closure domains 
eliminating the external magnetic 

NHS field. 
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into the region outside the material are turned back into the interior, thus 
producing no external field (Fig. 3.11). 

2. The crystal is magnetized anisotropically: the atomic moments have a 
tendency to align themselves not just in any direction but along certain 
crystal axes known as directions of easy magnetization. 

The hysteresis cycle 

Because the magnetized state of a ferro- or ferrimagnetic depends on the 
history of the treatment it has had, the phenomena can only be studied 
quantitatively if the experimental conditions are simple and exactly 
specified. We shall limit ourselves to the following experimental proce- 
dure. 

The specimen is inserted into a uniform field of fixed direction which is 
oscillating regularly between two opposite extreme values poHy and 

—yoHm. Under these conditions, the magnetization, for a given value of 

the applied field, woH, has two values depending on whether the field poH 
has been reached through increasing or decreasing values. This is the 
hysteresis effect, characteristic of the behaviour of ferro- and ferrimagne- 
tics. When, starting from a value of oH, the field returns to the same value 

after having performed a complete cycle, the material has followed what is 
called a hysteresis cycle (Fig. 3.12). 

MA Fig. 3.12. The hysteresis cycle of 
a ferromagnetic. 

We can explain this effect with the help of the Weiss domains. There is a 

particularly interesting experiment which enables the variations in magne- 

tization and the evolution of the domains to be followed in parallel with 

each other (Fig. 3.13). In a thin transparent section of a ferrimagnetic 

garnet crystal, the domains cross the slice and matters can be arranged so 

that their moments are normal to the plane of the slice: they may be 

oriented in either direction. Examination under the polarizing microscope 

reveals the two types of domain (because of the magnetic rotary power of 
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Fig. 3.13. Domains in a garnet crystal: growth of one type in an increasing magnetic 
field (by kind permission of M. Cagnon). 

the garnet, the transmitted intensity depends on the direction of magne- 
tization). The two types are designated, say, as positive and negative. 
We start from the saturated state of magnetization (Fig. 3.12), where the 

applied field has its maximum value oH. All the domains are ‘positive’, 
aligned in the direction of the field. The total magnetic moment is 
therefore simply the atomic moment multiplied by the number of atoms. 
The crystal has the moment already calculated for spontaneous magnetiza- 
tion (p. 150). If oH were increased beyond the value poHy, nothing 
would happen since the system is in a state of minimum energy. 

Moreover, if the field is reduced slightly, nothing happens either. 
However, if oH continues to decrease, domains begin to appear in the 
negative direction: the field is no longer strong enough to oppose local 
fluctuations in the direction of magnetization corresponding to fluctuations 
in the energy of the system. When the decrease in H is continued, the 
overall magnetization decreases because the number and extent of the 
negative domains increases. When H reaches zero, the two directions of 

magnetization are equivalent from the energy point of view, but the 
positive domains were in the majority and remain preponderant. The 
material is still magnetized and this remanent magnetization or remanence 
is the ‘memory’ of the initial state. 

The field direction is now reversed and its magnitude gradually in- 
creased. Now it is the negative domains which have the lower energy. New 
negative domains appear and the existing ones grow at the expense of the 
remaining positive domains. When the two types of domain have equal 
volumes, the magnetization is zero: the coercive field, or coercivity, —wH. 

has been reached, the negative field necessary to make the initial positive 
magnetization disappear. 

When pol falls below —poH,, the negative domains predominate and 
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gradually take over the whole volume. The negative magnetization grows 
and reaches the negative saturation value, clearly equal in magnitude to 
the positive saturation value we started with. In the second half of the 
experiment, with oH increasing from —ypoHy to +o, the observed 

effects show complete symmetry with those observed in the first half and 
the hysteresis cycle is complete. 

The variations in magnetization arise from changes both in the orienta- 
tion of the domains and in the domain volumes caused by movement of 
their walls. These changes can be abrupt, giving rise to what is known as 
the Barkhausen effect, demonstrated by the following experiment. A coil is 
wound round an iron bar in which the magnetization is changing. The 
abrupt alterations in the domain structure induce pulses of current in the 
coil which, after amplification, can be detected by a loudspeaker. The 
noise emissions, sharp and irregular, show that many atoms are acting 
together because they are linked by strong interactions. The strong 
interaction is precisely the reason why ferromagnetics with their high 
intensity of magnetization exist at all. 

The form of the hysteresis cycle varies considerably from one ferro- or 
ferrimagnetic material to another, and the characteristics that are used to 
distinguish one material from another are the shape of the hysteresis loop 
and its three main parameters: the saturation value of magnetization, the 
remanence, and the coercivity. Broadly speaking, we can say that there are 
two extreme types between which all real magnetic materials are found and 
it is these two limiting cases that we now examine. 

Soft magnetic materials 

The hysteresis loop here is very narrow, so narrow that to a first 
approximation the magnetization takes the same values for the same 
applied field whether the field is increasing or decreasing. The single 
average curve can be represented as in Fig. 3.14: the magnetization M is 

Mh Fig. 3.14. The hysteresis cycle for 
a soft ferromagnetic. 
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proportional to the field up to saturation at the field H, and remains 
constant for poH > poH;. When H is less than H;, the susceptibility x,, = 

M/H (or the permeability p, = 1 + xm) is constant (remember that B = 

How = po(H + M) = poH(] + Xm))- 
The main characteristic of ‘soft’ materials is a very high permeability, i.e. 

a high magnetic field can be obtained with a small exciting current and one 
which, in addition, is proportional to the current. 

For pure iron, usually known as soft iron, the permeability is of the order 
of 1000; for silicon-iron (an alloy of iron and 3% silicon), it can be as high 
as 15 000 provided that the alloy is given a suitable crystal texture (SM, 
p. 126). Some special alloys, such as permalloy and mumetal, reach 
permeabilities of 10* to 10°. 

To bring out the significance of the high permeability, consider a 
current-carrying solenoid filled with a very good soft ferromagnetic in the 
centre of which a gap has been cut (Fig. 3.15). The field in the gap is 
between 1000 and 10 000 times greater than the field produced by the 
current alone without the ferromagnetic core as long as saturation is not 
reached: this greatly increased field then faithfully follows variations in the 
magnetizing current. 

Fig. 3.15. Air gap in the iron core 
of a solenoid. eS 
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Very strong fields are required for the production of powerful electrical 
machinery. It is only because high permeability ferromagnetics have been 
available that we have been able to build the electric generators and 
motors, together with the high efficiency transformers, that are essential 
for the transmission of electrical energy over large distances. 

There are, however, several limitations in the use of soft magnetic 
materials: 

1. The magnetization of iron is limited by saturation. If we return to the 
arrangement of Fig. 3.15, the field in the gap is the sum of the field poH 
produced by the current in the solenoid and the field j1pM created by the 
magnetized iron. The latter is limited to its saturation value of 1 to 2T 
depending on the material. When the field in the gap is less than 1T, the 
effect of the iron is overwhelmingly predominant. For very strong fields, 
however, the field due to the current becomes the greater of the two (Fig. 
3.16), so that iron-cored coils have no advantage over air-cored coils and 
we are reduced to producing intense fields by using very large currents. 
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Fig. 3.16. Magnetic field in the air 
gap of Fig. 3.15 as a function of 
the magnetizing current. The 
increase in the field due to the 
presence of the iron is 
considerable for fields below 1T, 

Current in the coil —_ but very small for a field of 5 T. Field in air gap (T) 

This is technically very difficult: either a considerable amount of energy is 
wasted in the resistance of the conductors, which has to be dissipated by 
rapid circulation of cooling water, or we have to use superconducting 
circuits with their need for the production of low temperatures. It is easy to 
see why new superconductors with high critical temperatures are awaited 
with so much impatience. 

2. Soft magnetic materials are generally used in alternating fields and, 
although the hysteresis loop is very narrow, it does have a finite area which 
corresponds to the dissipation of heat in the material per cycle. The wasted 
power is proportional to the area of the loop and the frequency of the 
alternating field, so that it becomes large at high frequencies. For that 
reason, attempts have been made with some success to produce soft 
magnetic materials with very low magnetic losses. 

3. There is also, of course, a second cause of energy wastage: electrical 

losses due to electromagnetically induced currents in cores and armatures, 
which can be reduced in metals by using stacks of thin sheets separated by 

. insulating layers. These losses can also be prevented by using an insulating 
material for the cores, and this has led to the use of ferrites (p. 159), whose 
discovery greatly facilitated the production of high frequency electric and 

electronic circuits. 

Hard magnetic materials 

These are characterized by a very wide hysteresis loop, i.e. by high 
remanence and coercivity. An extreme case is that of a rectangular cycle: 
the magnetization remains almost at its saturation value up to a reverse 
field of —oH,, and it then falls abruptly to the opposite value for any field 
oH below —poH, (Fig. 3.17). 
Whereas soft. materials are used to reinforce the magnetic field of a 

current and faithfully follow its variations, hard materials are used for the 
production of permanent magnets. The material is magnetized to satura- 
tion and the field is removed: the material then remains magnetized. It 
would seem that the magnetization should be equal to the remanence since 
the applied field is zero. In fact, the situation is not quite so simple: the 
block of magnetized material produces its own magnetic field called the 
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M Fig. 3.17. A ‘rectangular’ 
hysteresis cycle for a hard 
ferromagnetic. 

demagnetizing field, which depends on the external shape of the block. It 
varies throughout the volume of the magnet, but is always in the opposite 
direction to the magnetization, which is therefore reduced to a value below 
the remanence. Not only that, but during use the magnet may find itself in 
magnetic fields from various external sources and such fields might be in 
the opposite direction to the magnetization. If the coercivity is low, the 
magnet could then be accidentally demagnetized. 

If the ‘permanent’ magnetization is to be strong and stable, therefore, 

both the remanence and the coercivity should be high. More precisely, a 
‘quality factor’ is used for permanent magnet materials consisting of the 
maximum value of the product j19/HM| over that part of the hysteresis loop 
between the points (M = M,, H = 0) and (M = 0, H = —H.,) (Fig. 3.12). 
With older magnet steels, this parameter was 250Jm~*. Much better 
ferromagnetic alloys are now known, such as alnico (2000Jm~*) and 
ticonal (8000Jm~°). A ferrite known as ferroxdur has a quality factor of 
1200 and a coercivity of 0.2T, where the latter was only 0.05T in the older 

magnet steels. 

Advances in hard magnetic materials have enabled the fields produced 
to be increased and, at the same time, their volumes to be considerably 

reduced. With the older magnet steels, long bar magnets or large 
horseshoe magnets were necessary to produce sufficient reduction in the 
demagnetizing field. Today, using ferrites, small 1cm cubes are strong 
magnets (used for door closure, electrical measuring equipment). The 
repulsive force between the two like poles of two ferrite magnets can be 
used to make one float above the other (Fig. 3.18), since it is sufficient to 
counterbalance the weight. 

Ferrites like (CoFe)O, FeO3 have highly rectangular hysteresis loops 
(Fig. 3.17) and were used as memories in first generation computers. To a 
good approximation, ferrites can be said to have only two possible states of 
magnetization, which can be denoted by 0 and 1. In magnetizing the ferrite 
by a field stronger than the coercivity, a 0 or 1 is ‘written’ into it, depending 



Magnetic properties and the structure of matter 169 

Fig. 3.18. A magnet levitated by 
the repulsive force between two 
like poles. (Courtesy of Palais de 
la Découverte.) 

on the direction of the magnetizing current. This figure is kept in the 
memory as long as no field is applied with a magnitude greater than poH,. 
The figure stored in the memory can be read without erasing it by using a 
signal induced in another circuit. 

Relationships between magnetic properties 
and the structure of matter 

Can the great variety in magnetic properties be explained by the atomic 
structure of matter? In fact, we are not in a position to account for every 
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peculiarity that might be observed and above all we cannot predict 
structures that will exhibit a particular macroscopic property. Neverthe- 
less, considerable progress has been made in the theories of magnetism 
since the 1930s, in close harmony with the increase in empirical knowledge. 
We shall merely give one example here: we describe the general idea that 
enables us to understand the existence of soft and hard magnetic materials. 

In a soft material, the magnetization faithfully follows variations in the 
applied field. The volumes of the domains therefore change almost 
immediatelyand this means that the domain walls move through the crystal 
without encountering any resistance. It is easy to see that this will be easier 
in a lattice without irregularities and in a crystal without impurities. In fact, 
soft iron is a high purity iron. Moreover, it is observed that, in high 
permeability materials, any mechanical strain, however slight, reduces the 
permeability considerably. 

On the other hand, when the applied field is varied in hard magnetic 
materials, the domains have a tendency to remain as they are, as least as 
long as the gain in energy by reversing the domain is insufficient. This is the 
type of behaviour that is almost exactly like that observed in ferrimagnetics 
with rectangular hysteresis loops. Thus, in hard magnetic materials, the 
domain walls only move with difficulty, and they are pinned at anchoring 
points from which they can only be freed at the cost of a certain amount of 
energy. These anchoring points may be small grains of a second phase or 
lattice defects. That is why hard materials are always observed to have 
complex structures and are often alloys with a complicated composition. 



4 

Mechanical properties of solids 

General survey 

So far, we have been examining properties of solids which lead to 
specialized applications for certain classes of them, e.g. as electrical 
conductors or magnets. However, for the vast majority of solids surround- 
ing us, it is only their mechanical properties that are of any concern, i.e. 
their behaviour under the action of the forces to which they are subjected. 

As a result, we could say that this is a question of ‘non-properties’ rather 
than properties. After all, the normally accepted and most elementary 
meaning attached to the word ‘solid’ is that of resistance to various forms 
of onslaught without apparent change: resistance to pressure, tensile 
stress, twisting, vibration, collision, friction, etc, as well as to attack by 

atmospheric agents: water, air, and so on. Solid building materials, for 
example, have been chosen from the earliest times for their ability to 
provide a long-lasting and reliable shelter from the elements. Weapons and 
tools from the very beginning, and machines in later periods, have been 
made in such a way that, as a primary objective, they did not break, 
deform, or wear away. 

However, there is a limit to the unalterability of any solid: when the 
external action exceeds a certain threshold, permanent deformation or 
breakage occurs. The behaviour of solids varies widely, both qualitatively 
(e.g. some are brittle, some ductile) and quantitatively (e.g. in their 
ultimate strength, durability, and ability to withstand external forces). 
Thus, glass, which is brittle, breaks without undergoing any deformation. 
Metals, which are ductile, deform without breaking and among them some 
are rather soft and others very hard. This has led human beings, from the 
very beginning of their history, to seek out and select materials for their 
specific properties: flint for cutting tools, wood because it can easily be 
shaped, steel for weapons, bronze for implements, etc. 

When these artefacts were first produced, the conditions under which 
they were used subjected the materials in them to stresses that were far 
below the limits beyond which they would fail, so that an accurate 
knowledge of such limits and of the behaviour of the materials in extreme 
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conditions were not necessary: the Romans building an aqueduct did not 
worry about the exact value of the maximum load that could be supported 
by the blocks of stone without damage. It was technological improvements 
that led to the need for a better use of the properties of materials. The 
safety factor (the ratio of the maximum stress that a material can support to 
the stress it is subjected to in normal use) is still enormous in present-day 
houses, but is reduced for an aircraft. 

As a consequence of this, more extensive and detailed studies of the 
behaviour of solids under stress have become increasingly necessary. It is 
because of such studies that safety factors can be deliberately lowered, 
which is often a precondition for the development of certain projects: e.g. 
because of the need to reduce the production cost of machinery or because 
an aircraft can only be built if there is sufficient knowledge to produce a 
reliable structure that is both light and strong. 

Thus, the concept of an unalterable solid is only valid over a certain 
restricted range whose limits must be ascertained, and the behaviour of the 
solid beyond these limits must then be determined. 

Moreover, it appears that, even within its range of validity, the idea of 
unalterability is only a first approximation: the solid is in fact deformed 
even by very small forces, but only by a very small amount and even then 
its original state is recovered when the external stress is removed. A 
detailed knowledge of this behaviour, known as elasticity, is needed by 
engineers if they are to design a machine correctly. 

In spite of the initial, somewhat superficial, impression, the mechanical 
properties of solids thus constitute a complex body of knowledge which is 
of considerable importance to many techniques. Engineers must have at 
their disposal a complete catalogue of all the various materials available in 
order to be able to choose the best for their purposes and to use them 
under optimum conditions. A catalogue of that type is the result of purely 
empirical tests and is therefore not something that concerns us in this book. 

Our purpose is to relate the mechanical properties to atomic structure 
and to the elementary interactions between atoms. The reader might well 
wonder why, given the role of mechanical properties in everyday life, we 
did not begin the book with a study of this aspect of solids. The reason is 
that we are still, and are likely to remain for a long time to come, a long 
way from our objective, i.e. from an understanding of, and an ability to 
predict, the mechanical behaviour of solids from the properties and 
geometrical arrangement of the atoms contained in them. 

The models which proved to be so useful in studying the thermal, 
electrical, and magnetic properties are fundamentally inadequate for the 
mechanical properties, and those that would be valid are so complex that 
they cannot be completely exploited to give quantitative results. 
We shall see that an essential role is played by rare and very small 
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structural defects which interrupt the regular arrangement of the atoms in 
an ideal crystal. These are the entities we shall be dealing with throughout 
the chapter: the ‘crystal defect’ will be a sort of leitmotif constantly 
recurring in our account. Yet we cannot, unfortunately, obtain an accurate 

knowledge of the defects existing in a given specimen. 
We find ourselves here at the centre of major difficulties in the physics of 

solids and are forced to recognize that some of them are in practice 
insurmountable. Nevertheless, it would not be right for us to make this 
introduction to the study of mechanical properties too pessimistic, for it 
must also be said that the physics of solids has had an important role to play 
in the advances made over the last fifty years. The dense and tangled 

thicket of raw experimental data has been unravelled, clarified, and 

generally understood in a qualitative fashion. Although physicists cannot 
use first principles to achieve any numerical result needed by technologists, 
the general ideas they have developed have guided experimental research 
and without them it would not have been possible to create the new 
materials which are the basis of the advances made in major technologies. 

Elasticity 

We consider one of the simplest possible examples of an elastic system: a 
metal wire attached at its upper end to a fixed support and with a load of 
variable mass suspended from its lower end. The distance between two 

_ marks engraved on the wire is measured very accurately as the load is 
increased. It is observed that the wire becomes longer and the following 
facts are noted: 

1. The extension is proportional to the load. 

2. For all solids, apart from some exceptional materials, the relative 
extension is very small: e.g. for mild steel, a length of 10cm increases by 

0.05mm under a stress of 100 MPa.' 
3. If the load is removed, the wire recovers its original length exactly. 

However, this is only true if the stress is less than a certain limit, e.g. 
approximately 200 MPa for mild steel. 

These are the characteristic features of an elastic deformation or strain. 

Some aspects are worth examining in more detail. 

Normal solids, i.e. those in which the elastic strain is small, include all 

crystalline materials whatever the type of interatomic bond, together with 

glasses or amorphous bodies. For strong solids, the maximum elastic strain 

+A stress (force per unit area) of 10 megapascals (MPa) is, to a very good approximation, 

equal to the weight of a mass of 1 kg acting over an area of 1 mm?. 
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is less than 1 per cent and the stresses they can withstand without damage 
are considerable: several GPa. That is why it is a good approximation to 
regard solids as unalterable under normal conditions. 

There are, however, exceptional solids with a very high elasticity, a 
typical example being rubber. A strip of rubber can be extended by 100 per 
cent under a stress of only 1MPa. The strip recovers its original length 
when the stress is removed. Rubber, and all the materials with similar 

elastic properties, are formed from long chain polymers with a fairly 
disordered arrangement. Such structures are described in texts dealing 
with polymers (e.g. SM, p. 187) and they show how the structure explains 
the unusual elastic properties. Whereas a metal under stress retains the 
same atomic structure with very little change in its crystal parameters, the 
structure of rubber does change: the polymer chains, curled up in the 
unstressed state, unwind under stress. In the rest of our treatment of solids, 

we shall only consider elasticity of the type exhibited by metals. 
A very common piece of apparatus, based on the elasticity of metals, is 

the coiled spring (often used in elementary physics courses). We know that 
the spring extends considerably with quite small forces, but this does not 
contradict what we have been saying previously about the elastic deforma- 
tion of metals. This is because the change in the shape of the coil is the 
result of the movement of different segments of the wire under tension. 
But each segment, in itself, has suffered only a small strain, as is shown by 
an analysis of the extension of such a spring. 

Box 17 

Geometry of the extended spring 

A spring is a metal component so designed that a considerable overall 
extension can be obtained with only very small local strains. Thus, 
while each small section of the material remains elastically deformed, _ 
a linear relationship between force and displacement is obtained over _ 
an easily observable range of extensions. 

Take the example of a coiled spring (Fig. 4.1), formed from a wire 
wound into a helix with a circular cross-section of radius R. The total | 
length of the wire is denoted by / and this is clearly much longer than | 
the length of the spring, h. The helix has 1 turns. 

With the upper end A attached to a rigid support, a force F is 
applied to the lower end B in a vertical direction as shown and the _ 
turns of the coil separate from each other, producing a total extension _ 
of Ah in the spring as a whole. Consider a half-turn M,MM, in 
isolation, and replace it by a flexible joint M between two rigid pieces 
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Fig. 4.1. Elastic extension of a 
coiled spring. 

> 

ec i 

F 

of wire M,M and MM). The joint M is subjected to a torque of 

moment FR and, since the vertical distance between M, and M,> has 

increased by 3Ah/n, the joint experiences a twist of: 

1 ( Ah 
Aa= —|- |. 

Kio 

In reality, the twist is not localized at M, but is distributed along 

the wire. The angle of twist of the wire per unit length is: 

Ao 8 an 

i ine 

2n 

The intrinsic strain of the wire is that of a wire of length / twisted 
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through an angle A@ = Ah/R under the action of a torque of moment 
FR. If C is the torsional constant of the wire, we have that: 

Ah 
FR=CAQ=C—. 

R 

This gives the following relationship between F and Ah: 

Ah 
hel, 

R2 

The theory of elasticity also enables us to calculate the constant C, 

which is related to the rigidity modulus p (defined later in Box 18). 
The expression for C is: 

a ns ad 

a2 
where d is the diameter of the wire. 

What happens when the stress on a solid exceeds the elastic limit? The 
behaviour displayed by different materials covers a very wide range but, 
for the moment, we merely distinguish two extreme types since many 
materials have properties intermediate between them. The first type is 
exhibited when the specimen used in our initial experiment remains 
stretched when the stress is removed, leaving a permanent strain. If the 
elastic limit is greatly exceeded, the permanent strain can be of the order of 
several per cent, i.e. much greater than the maximum elastic strain. The 
external shape of the solid is therefore changed considerably, yet its 
internal cohesion is maintained. This behaviour is known as plastic 
deformation or ductility: most metals are ductile. 

The other possibility is that the specimen, without an appreciable change 
of shape, suddenly breaks into two. Such a material is said to be brittle, 
and this is typical of ionic and covalent crystals and glasses. 

In this chapter, we shall be examining both ductility and brittle fracture, 
together with the relationship between them. First of all, however, we look 
at elastic behaviour, i.e. the state in which any deformation is completely 
reversible. The elastic and plastic regions are in fact continuous, and the 
elastic limit cannot be precisely defined since it is difficult to determine the 
onset of a permanent strain: the result depends on the sensitivity of length 
measurements. However, this is not of fundamental significance and we 
shall not discuss measuring techniques. 
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The theory of elasticity in mechanics 

We first considered a very simple case: that of a solid in the shape of a 
cylinder subjected to a single force along its axis. We now take a solid, 
assumed to be homogeneous, of any shape and subjected to a general 
system of forces. Provided the stresses at any point in the solid do not 
exceed the elastic limit, the theory of elasticity enables the strain at each 
point to be calculated from the system of forces (or vice versa). The 
behaviour of the material is defined by a certain number of coefficients, the 
elastic moduli, which are measurable. Mechanical engineers are not 
concerned with the structure of matter on the atomic scale, nor with the 

properties of the constituent atoms: for them, matter is completely 
modelled by the macroscopic empirical coefficients and they do not 
question their origin. 
A homogeneous solid may be anisotropic: the strain produced by a stress 

then depends not only on the magnitude of the stress but on its direction as 
well. This is what generally happens in crystals. The number of coefficients 
characterizing the solid varies with the lattice symmetry. The calculations 
are more complex in the anisotropic case, but the theory copes perfectly 
well with them (it was precisely for this purpose that mathematicians 
developed tensor calculus). 

To give some idea of the bases of the theory of elasticity, we shall stick to 
the case of an isotropic solid. This can still embrace the case of a crystalline 
material since, if the solid is formed from a large number of very small 
crystal grains stuck to each other, the whole system is isotropic even 
though each grain might be anisotropic, provided that the axes of different 

crystallites are randomly oriented in space. 
Consider a small cube of material with edges (equal) of 1,, Lb, J. It is 

subjected to a stress o (force per unit area) parallel to one edge, /, for 
example (Fig. 4.2). The cube is extended by Al, which is proportional to « 

i Fig. 4.2. Elastic deformation of a 
ee ie ; 

casas oi uniform cube. 

1,+ Al, hi 

| \ 

re 

l, + Al, (Al, <0) 
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since we are in the elastic region. The coefficient of proportionality 
between the stress o and the strain, A/,//,, is known as Young’s modulus E, 

so that: 

AL,/L, a o/E. 

At the same time as it is extended, the small cube also contracts laterally in 
such a way that the changes in /, and J; satisfy: 

Al, Alb, Al, 

es I 

where v is Poisson’s ratio. 
Poisson’s ratio and Young’s modulus are the two parameters which are 

sufficient to define the elastic properties of a given material if it is isotropic. 
It should be pointed out that, if the elastic strain of the specimen brought 
about no change in volume, the value of v would be 3. In fact, it is always 

less than 2, indicating that the volume always increases (the relative 
increase is very slight, of the order of 1/1000 for a 0.3 per cent strain). 

Young’s modulus can be measured by the extension test described at the 
beginning of this chapter. It can also be derived from a measurement of the 
speed of sound in the solid. Poisson’s ratio is determined by a second test, 
as we Shall see from Box 18. This box deals with two examples of the 
calculation of elastic strain from E and v: first, the compressibility or 
change of volume under a hydrostatic pressure (uniform in all directions); 
secondly, the shear, or change of shape of the cube under a stress parallel 
to one of its faces. 

: Box. 18 

i oe. for sie con pees ill and rigidity in terms o 
. ee s modulus and ages s ratio. _ 

: “Under the action of ihese forces, the 2 edges “ exte 
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Fig. 4.3. (a) Deformation under an isotropic stress; (b) deformation under a 
shear stress. 

Al,. Denote the relative extensions (i.e. the tensile strains) by e,, e2, 
€3. : 

Al, Al, Al, 
A 

h 2 I, 

The theory of elasticity postulates that there is a linear relationship 
between the stresses and strains. In the experiment described to 
define E and v, we applied a single stress o,, the two others being 
zero (o> = 03 = 0). From the definitions of E and v, we then had 
é, = 0,/E and e> = e3 = —ve;. By imagining that the stresses o;, o>, 

and o3 are applied in turn to the three faces and by adding the 
respective strains algebraically, we obtain: 

1 
ej FB [o; — v(o2 + 03), C= ele = 03 + o})], 

1 
es ao — (0; + o)]. 

We now show that these relationships enable us to find expressions 
for the two coefficients, the compressibility and rigidity modulus, 
involved in two very common types of stress. 

If a solid is subjected to a uniform pressure over the whole of its 
external surface, the relative change in volume (negative) AV/V is 
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given as a function of the pressure AP by the compressibility K: 

i ay 

_ var 
(Note that in some texts, the reciprocal of the compressibility is 
defined instead: this is called the bulk modulus.) In the case of our 
parallelepiped, we see that the application of a pressure AP amounts 
to the application of equal negative stresses 01, 2, 03: 

0, =0,=03,=-—AP 

over the three faces. In addition, the relative volume change can be 
expressed simply in terms of the extensions: 

AV AG) Al AL By Aide fe 8 =é€,+@4+ é. 

VY fe 9) be 

Using the expressions for e,, e2, and e3; obtained above, we then 

obtain: 

AV 1 = 2p S3(1 = 2y) 
iy Oe ee Cae 

and hence: 

307 2) 
z : 

A shear stress involves the application of a force on the upper 
surface of the parallelepiped parallel to that surface, while keeping 
the lower surface fixed (Fig. 4.3). 

It can be shown that the angle of shear a of the lateral surfaces 
depends only on the ratio F/S, where S is the area over which the 
tangential force creating the shear stress is applied. Below the elastic 
limit, a is proportional to F/S, and the rigidity modulus w is defined 
by: 

K 

We now show that p can also be expressed in terms of E and v. 
Consider a cube (Fig. 4.4) of edge /, and let stresses o, and o> be 
applied normally to the surfaces perpendicular to the plane of the 
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Fig. 4.4. Calculation of the rigidity modulus from Young’s modulus and 
Poisson’s ratio: (a) cube before deformation; (b) cube after deformation 

(exaggerated for clarity). 

figure in such a way that the expansion of the whole volume 

AV 
— =e, ++ 63 

V 

is zero. Since o; is zero, one of the previous equations gives us that o, 
+ o> = 0, and hence that o» = —o,. We then have that the extensions 
in the two directions are equal and opposite: 

lt+p 

E 

The pair of stresses o, and o> produces a shear along the diagonal 
plane denoted by EF: the square ABCD is changed into a rhombus 
A'B'C'D’. To the first order, A’D’ is equal to AD and the distance 
between A’D’ and B’C’ is still equal to AB. The angle of shear a is 
such that a + 7/2 = L D'C'B’. Now: 

T 
ab ee 

Z OD' 1+ ey 

tan se 
2 OC 1-2, 

Since the elastic strains are always small, this is equivalent to 
o/2 = ej. 

Moreover, the resultant of the applied forces 0/7 and oI? is 
VV 20,/7. However, this force is exerted over an area of V2/?. The 
shear stress is thus simply o,. Using the definition of and the 
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relationships between e, and oy, we find: / 

| oe 

If a compressive axial stress is applied to the specimen instead of a 
tensile stress, it contracts elastically and with the same Young’s modulus, 
but the elastic limit may be different for tensile and compressive strains. 

Data for the elastic properties of several common metals are assembled 
in Table 4.1 to give some idea of orders of magnitude. This shows that 
materials are available with a wide range of properties. 

The elastic properties of some real materials 

So far, we have described only the simplest types of elasticity, but there are 
materials in which the strain, while being completely reversible, is not 
proportional to the stress over the whole elastic region. This is the situation 
in elastomers like rubber, where Young’s modulus decreases with increas- 
ing strain. 
We might also mention the case of wood, because of its practical 

importance. It has the special feature that it deforms differently under 
compression and tension (Fig. 4.5). This is because it is a composite 
material, with elastic fibres incorporated in a rather soft matrix of lignin. 
The interactions between the two constituents are not the same under 
tension and compression. 

The elastic moduli are determined from systematic tests carried out 

under simple and well-defined conditions. At present, the mechanical 
theory of elasticity enables the behaviour of a material to be predicted in 

Table 4.1. Elastic constants of some common metals in polycrystalline form 

Metal Young’s Poisson’s Elastic Melting 

modulus ratio limit point 

(10MPa) (10MPa) (K) 

Aluminium 6900 0.33 2? 933 
Copper 12800 0.36 34 1356 
Lead 1400 0.4 0.6 600 
Tungsten 34000 0.28 10 3653 
Tron 12000 O17 26 1809 
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Strain Fig. 4.5. The stress-strain 
relationship for wood in the 
elastic region. 

Compression Tension 

Stress 

Elastic 

region 

any situation provided it remains in the elastic region: the needs of the 
engineering design and manufacturing sector can thus be satisfied. 

On the other hand, the theory cannot answer the questions which are the 
main concern of this book: what are the relationships between the atomic 
structure of a solid and its elastic properties and elastic limit? Is it possible, 
for example, to calculate the elastic moduli from properties of atoms and 
their mutual arrangement? 

Elasticity and atomic structure 

Consider a crystal whose elasticity is more or less isotropic. We thus leave 
aside for the moment the very serious difficulties arising from the fact that 
adjacent grains in a polycrystalline solid are differently oriented and may 
.be deformed in different ways. 

The macroscopic elastic strain is reflected by a similar strain at the scale 
of the crystal unit cell: the atoms therefore move through relatively small 
distances and the atomic structure is only slightly modified. 

Consider a cubic crystal with a unit cell of side a subjected to a tensile 
stress parallel to a cubic axis. Transposing the results obtained on the 
macroscopic scale, it can be predicted that the cubic unit cell changes into a 
tetragonal cell with parameters a(1 — ve), a(1 — ve), a(1 + e). This 
deformation is confirmed by experiment: each family of lattice planes in 
the cubic crystal is transformed, in the stressed crystal, into a family of 
reticular planes which is very similar but whose separation is slightly 
different, depending on the orientation of the planes with respect to the 
stress. Thus, the interplanar spacing changes from a to a(1 + e) for planes 
normal to the stress axis and from a to a(1 — ve) for planes parallel to the 
other two cube faces. There are X-ray diffraction methods sensitive 
enough to measure these small variations in interplanar spacings very 
accurately, and the measurements confirm the theory. It is also possible, 
using the measurements of the elastic strains in the unit cell, to deduce the 
system of stresses to which the metal is subjected from the values of EF and 
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v. This provides a non-destructive method of finding the internal stresses in 
a material, which are important data for an engineer. 
We must now address the main question: is it possible to calculate the 

coefficients E and v for a given crystal, if we retain the approximation that 
the solid is isotropic? 

The temperature is taken to be 0K so that we can neglect atomic 
vibrations. With the crystal in a free state, the interatomic forces balance 
each other and equilibrium is attained when the atoms occupy the sites 
described by the crystal structure. Put another way, we can say that, in the 
equilibrium state, the potential energy of the whole crystal assembly is a 
minimum. 

Consider first the simplified case of a pair of atoms, one we have already 
looked at (p. 44). There is both an attractive and a repulsive force between 
these atoms, the latter arising because their electron clouds cannot 
penetrate each other. The pair thus possesses a potential energy, whose 
derivative with respect to the distance separating them gives the sum of the 
opposing forces. 

It is easy to imagine the shape of the curves giving the potential and force 
as a function of distance apart (Fig. 4.6). At the equilibrium distance do, 
the energy is a minimum. For a < do, the resultant force is repulsive and for 
a > dp it is attractive. The minimum value of the potential energy is the 
work needed to separate the atoms from dp to infinity. For a very small 
change in the separation around the value do, the displacement is pro- 
portional to the force exerted and the atoms return to their equilibrium 
positions when the force is removed: this is the elastic region. 

(a) JE Fig. 4.6. (a) The potential energy 
between a pair of atoms and its 
variation with distance apart; (b) 
the corresponding force between 
the atoms. 

(b) AF 



Elasticity 185 

Various mathematical functions have been suggested empirically to 
represent an energy curve similar to that of Fig. 4.6. On the other hand, 
and this is an important fact, we are quite unable to determine precisely the 
potential energy of a pair of atoms from a knowledge of their configuration 

in the free state, i.e. from the nature of the nucleus and the wave function 
describing the electron cloud around it. If we cannot solve the case of an 
isolated pair, it follows that we cannot do so for the crystal, which is more 

complex since each atom has many neighbours. 
The close-packed hard sphere model is unable to represent the elastic 

deformation of the unit cell. To see that this is so, take a copper crystal 
(face-centred cubic) subjected to a tensile stress parallel to a cube edge. 
Consider the group of six atoms at the vertices of an octahedron inscribed 
in the unit cell (Fig. 4.7): nearest neighbours are 0.256nm apart, and atoms 
(1) and (2) at opposite vertices are 0.362nm apart. For a 1 per cent 
extension, the separation of atoms (1) and (2) changes by 4pm. It can be 
appreciated how small this is by comparing it with the mean amplitude of 
the atomic vibrations in copper at room temperature, which is five times 
greater. Considering only the four atoms (1) to (4): when (1) and (2) 
separate, atoms (3) and (4), in order to remain in contact with the first two, 
will approach each other, which would explain the lateral contraction 
accompanying the axial extension. But this is impossible because of the 
presence of atoms (5) and (6), if it is assumed that the atoms in contact are 
hard spheres. We are therefore led next to a model in which the atoms are 
slightly deformable. When the tensile stress changes the equilibrium state 

- of the free crystal, the atoms are not only displaced but are deformed as 

a=0.362nm 

fakioy wT (5) 

(3) (4) 

(6) 
— (2) 

(b) 

WS 

(3) (IQ) (4) 

© (6) O 

(a) 

Fig. 4.7. (a) The face-centred cubic unit cell of copper; (b) the positions of the SIX 

atoms at the vertices of the octahedron inscribed in the unit cell; (c) elastic 

distortion, with atoms (1) to (4) remaining in contact; (d) if the atoms are hard 

spheres, the deformation cannot be the same for atoms (5) and (6) as it is for atoms 

(3) and (4). 
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well. This again cannot be calculated exactly, so that the problem is very 
difficult. However, instead of relying on calculations from first principles, 
we can take the elastic constants of various metals into account quite 
satisfactorily by introducing parameters given by experiment. 

We can provide a qualitative explanation of some of the elastic pro- 
perties observed in real solids by using the model of a pair of atoms. Figure 
4.6, for example, can be used to predict the elastic behaviour of a pair of 
atoms, the modulus of elasticity being the same for compression and 
extension. If thermal vibrations are neglected, i.e. at OK, the modulus is 
given by the second derivative of the potential energy. This increases as the 
potential energy minimum becomes deeper, and thus as the cohesive 
energy of the solid becomes greater. This can be seen from Fig. 4.6 if we 
use the fact that the width of the potential well does not vary much from 
one element to another. It is therefore normal for solids with high melting 
points to have high Young’s moduli. Thus, using a very simple argument, 
we are able to explain the correlations appearing in the experimental data 
given in Table 4.1. 

Another fact related to atomic structure is the anisotropy in the elastic 
properties of a crystal. Even when there are many symmetry elements, the 
relative arrangement of neighbouring atoms is not the same in all direc- 
tions: it is thus natural that Young’s modulus should vary with changes in 
the direction of the.tensile stress with respect to the crystal axes. 

In its normal form, a metal is a collection of small crystals or grains with 
different orientations all adhering to each other. If the crystal is aniso- 
tropic, the individual grains suffer different strains, yet under stress their 
mutual adhesion is faithfully maintained. A grain within the polycrystal 
does not therefore suffer the same strain as it would if it were isolated. It 
can be seen from this that it would be very difficult to analyse the elastic 
strain of a polycrystal from the properties of a single crystal. We might 
expect a polycrystalline metal to be isotropic on the average if the grains 
were very small and had completely random orientations. The elastic 
parameters of the metal would then be the ‘averages’ of those of a single 
crystal. However, if such calculations are to be feasible, they must rest on 
simplifying and somewhat arbitrary assumptions. 

When the metal has been subjected to cold-working, as in a rolled sheet 
or a drawn wire, the crystallites are no longer oriented at random: they 
have preferred orientations along characteristic directions such as the axis 
of the wire or the plane of the sheet. Under these conditions, the mean 
values of the elastic parameters of the individual grains will depend on 
direction. Thus, in a thin sheet, the ‘longitudinal’ Young’s modulus (i.e. in 
the direction of rolling) is different from the ‘transverse’ Young’s modulus. 
Here again, however, a theoretician can only make approximate predic- 
tions. 
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Secondary effects of elastic strain 

The reversible change in the crystal unit cell (and in the neighbouring 
atomic motifs in amorphous materials (SM, p. 160)) caused by the 
application of an external force has consequences other than changes in 
shape. For example, the displacement of atoms in transparent materials, 
although small, modifies the conditions for the propagation of light waves: 
a cubic crystal or a piece of glass, both isotropic in the free state, become 
birefringent under compression. 

In a quartz crystal, whether under tension or compression, the centroids 
of the positive and negative charges in the unit cell, which coincide in the 
free state, are separated in the stressed crystal and it thus becomes 
electrically polarized. The electric moment, like the strain, is proportional 
to the applied mechanical stress. This is the origin of piezoelectricity, 
whose important applications were mentioned in a previous chapter 
(p. 62). 

Anelasticity 

Elastic strain is due to the relative displacement of atoms, but the motion 
cannot be strictly instantaneous. Furthermore, since the atoms are in 
contact, their displacement involves frictional forces, which absorb energy. 
Real phenomena are thus more complicated than the description we have 
given so far: the elastic strain does not depend only on the force applied, 
but also on time, and the motion of the solid is damped to a greater or 

‘lesser extent. These effects give rise to what is called anelasticity and we 
describe several ways in which it manifests itself. 

1. If we apply a tensile stress o slowly and gradually to a specimen of 
length /, the elastic strain is AJ; but if it is applied abruptly, the 
instantaneous strain is less than A/ and it reaches this value only after a 
certain time delay (Fig. 4.8). This is known as relaxation, i.e. an evolution 
towards a more stable state. The rate of change varies from one solid to 

another and is characterized by a relaxation time t.' In the same way, when 
the stress is removed, the solid does not regain its initial length instan- 
taneously but only after a decay time characterized by the same parameter 
Te 

2. When a solid is subjected to a sinusoidally varying stress, the induced 
strain also varies sinusoidally at the same frequency. The system is similar 

‘The time 7 is the time needed to reach two thirds (more precisely 1 — 1/e) of the total 
relaxation according to the exponential law: 

t 

Al(t) = Al(0) + [Al.. — Al(0)] 1-e( - >i 
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Fig. 4.8. Anelasticity: the 
variation of strain on loading and 
unloading. 

Loading Unloading 

to a damped harmonic oscillator. Because of the delay between the cause 
(the applied force) and the effect (the atomic displacements), the phase of 
the forced oscillation lags behind that of the external agent. It follows that 
the vibrating system absorbs energy, which is transformed into heat. This 
effect is known as internal friction. 

In a torsional pendulum, the wire on which the weight is suspended is 
elastically strained by the torque. If the weight is set free, it oscillates with 
an amplitude that decays in time: the dominant factor in the damping is the 
internal friction in the elastic deformation of the twisted wire, provided the 
experiment is carried out with care so as to avoid mechanical friction. 

3. When the frequency of the applied force varies, it is observed that the 
energy dissipated by the induced strain passes through a maximum when 
the frequency is 1/7. This enables the relaxation time of a solid to be 
determined experimentally by studying the oscillations produced by a 
periodic stress of variable frequency. 

Because the relaxation time depends on temperature, there is another 
method of determining 1. If the solid is subjected to a stress at a fixed 
frequency and variable temperature, the temperature at which the damp- 
ing is a maximum can be measured: at this temperature, t is the reciprocal 
of the forcing frequency. 

We now attempt to explain these phenomena on an atomic scale, where 
the internal friction originates. The complexity of the problem arises from 
the fact that several different causes may be involved, so that there might 
be several different relaxation times for a given solid. 

In order to show the variety of the atomic phenomena that cause 
anelasticity, we need describe only two very different sources of internal 
friction. 

The effect of dislocations 

We know that any real crystal contains dislocations. Texts on the atomic 
structure of solids describe the geometry of these defects (e.g. SM, p. 110) 
and we shall see later in this chapter how much they are involved in plastic 
deformation. Along dislocation lines and up to several atomic distances 
away, the atoms are considerably displaced from their equilibrium sites in 
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the lattice. When the crystal is elastically stressed, the unit cells in the 
‘sound’ parts of the crystal are only slightly deformed, but the atomic 
displacements along dislocation lines may be greater. As a result, the 
dislocation line can be moved within the crystal. 

Suppose, as often happens, the dislocation line is ‘pinned’ at two fixed 
points one or two micrometres apart. The pinning is due to impurity atoms 
or intersections with other dislocation lines. Under the action of the force, 

the line is stretched between the fixed points just as it would be if it were an 
elastic cord fixed at the points. When the external force is removed, the 
dislocation line returns to its initial position under the action of internal 
elastic forces. When the crystal is subjected to an alternating force, the 
dislocation line vibrates between the pinning points: the resultant motion 
of the atoms is large enough to cause the vibration to absorb energy: this is 

one cause of the internal friction. 

The effect of interstitial diffusion 

Consider a crystal of a-iron (with a body-centred cubic unit cell) containing 
carbon. The iron atoms occupy all the lattice sites and the carbon atoms are 
added where there is most space: at the centre of the cube edges (Fig. 4.9). 
In spite of their small size, the carbon atoms distort the lattice and they are 
only ‘tolerated’ if the carbon concentration is very low, so that only a small 

proportion of the interstitial sites are occupied. 
If the crystal is subjected to a tensile stress below the elastic limit parallel 

to the c-axis, the c edges will expand and a and b will contract. The carbon 
.atoms have less space on the latter edges than on the c edges. Now the 
carbon atoms are not rigidly fixed to a site: they can jump from one 
position to an adjacent one and, if this is a more favourable site, will tend 

to remain there. The increasing occupation of the c edges and the removal 
of carbon atoms from the a and b edges produces a relaxation of the 
crystal, which extends until equilibrium is reached. Conversely, when the 

Fig. 4.9. The diffusion of carbon 
atoms in a-iron during an elastic 
tensile strain. 
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stress is abruptly removed, the carbon atoms gradually fall back into a 
random distribution which is the same for all three cube edges: the initial 
dimensions of the crystal are gradually restored. 

Such ‘directed’ diffusion of carbon atoms in the iron delays the deforma- 
tion under stress and is therefore a cause of internal friction. The 
relaxation time 7 (or the frequency 1/t) is a function of the mobility of the 
carbon atoms in the iron and, since this depends strongly on temperature, 
it can be seen that t also varies with temperature in this case, as it does in 
general. The value of t for iron—carbon alloys is of the order of 1 second at 
ordinary temperatures. 

The mobility of atoms in the iron lattice varies from one element to 
another: thus, nitrogen is also a cause of internal friction but with a 
different relaxation time from that due to carbon. This gives us an 
understanding of how measurements of internal friction can identify the 
nature of the interstitial atoms present in the iron. 

It is remarkable that simple macroscopic experiments like the damping 
of a torsional pendulum can yield an assessment of the probability that 
interstitial atoms will jump from one site to another in the lattice. 

_ Plastic deformation 

Ductile and brittle solids 

When the tensile stress applied to a metal rod exceeds the elastic limit, it 
suffers a ‘permanent set’ or permanent extension after the stress is 
removed: this is the simplest manifestation of plastic deformation. In 
general, under the action of a system of sufficiently large forces, a solid can 
undergo a definite change of shape while remaining a coherent mass and 
very approximately preserving its volume. Thus, a cylindrical rod of 
cross-section S and length L passed through a drawplate can be trans- 
formed into a wire of smaller cross-section S/n and of length nL. A thick 
ingot passed through a rolling mill becomes a thin sheet with a large surface 
area. 

Such behaviour, known as plastic deformation or ductility, is not typical 

of every solid. There are some that break suddenly without being 
deformed: these are said to be brittle. We shall be studying fracture 
properties in a later section. 

For a given solid, ductility increases with rising temperature, sometimes 
appreciably. Man discovered long ago that iron can be shaped much more 
easily by forging at red heat (over 500°C), whereas it is very difficult to 
work when cold. Similarly, plastics are very soft above 100°C and quite 
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hard at room temperature. A crystal of magnesia (MgO) is brittle at room 
temperature, but becomes ductile above 1200°C. 

To a first rather crude approximation, the two contrasting properties, 
ductility and brittleness, can be related to the nature of the interatomic 
bonds. Even if such a simple idea does have to be modified in a number of 
ways, it is important to make the point that crystals with metallic bonds are 
ductile, while other types, ionic’, covalent, and molecular, are brittle. It is 

well known that, at room temperature, a copper wire is easily bent while it 
is impossible to deform inorganic crystals or crystalline minerals: a piece of 
rock salt or a sugar crystal, for example. 

Apart from metals, there are organic solids whose ductility is of great 
industrial importance: we call them, very appropriately, plastics. They are 
high polymers, i.e. having long-chain molecules assembled in the solid in a 
very imperfectly ordered state. The structure cannot be regular since the 
individual chains are flexible and have no well-defined shape. Their great 
ductility at moderate temperatures (about 100°C) is due to the fact that the 
polymer chains become deformed and slide over each other. A description 
of the behaviour of plastics under the action of external forces can be found 
in texts dealing more thoroughly with their structure (e.g. SM, p. 174). We 
shall not be dealing with the subject in detail in spite of its practical 
importance because of the great complexity of the structures involved. We 
restrict ourselves to the ductility of metals, since only for very simple 
structures can we develop suitable atomic models. 

Ductility from the macroscopic point of view 

The main facts are as follows: 
The solid changes shape without an appreciable change in volume. 
In tensile tests, where the metal is subjected to a single stress along the axis 
of the specimen, the maximum extension varies between a few per cent and 
50 per cent from one metal to another. It is thus considerably larger than 
the elastic strain, which is of the order of 0.1 per cent. The permanent set 
increases steadily with the applied stress up to the point at which the 
specimen begins to suffer damage (Fig. 4.10). Narrowing then occurs over 
a small section, an effect known as necking, which causes a local increase in 
stress; finally, the specimen breaks at the point where necking has 
occurred. The limits of the ductile state depend on the type of stresses 
imposed and they are therefore not an intrinsic property of the metal. For 
example, by repeated passages through a rolling mill, a sheet can be 
reduced to a tenth of its initial thickness, whereas in a tensile test the same 

metal cannot be stretched by more than 50% without failure. 

‘Except at high temperatures or with very pure single crystals. 
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Fig. 4.10. A tensile curve: the 
relationship between stress and Rut--------== Fracture strain. 
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When the stress is removed after a certain extension, the metal has 

different mechanical properties from those it possessed before being 
strained. If it is subjected to a new tensile test (Fig. 4.11), its strain is 
elastic up to the maximum stress it has experienced: its elastic limit has thus 
been increased, sometimes considerably. For example, steel with an initial 
elastic limit of 1000 MPa may, after being drawn into a wire (a piano wire 
say), have an elastic limit of 4000MPa. The plastic deformation has 
increased the strength of the metal, which can now withstand greater 
operational stresses without alteration. In short, the metal has been 
hardened and the process is known as work-hardening. The importance of 
such a simple method of improving the properties of metals can easily be 
appreciated: in fact, the majority of metals used in construction are in a 
work-hardened state. 

The role played by metals in the civilized world stems largely from their 
ductility. A rough ingot can be given a shape approximating to the one 
required and we can then machine this material (described as semi- 
finished) into components which can withstand operating loads up to an 
appreciable fraction of those to which they were subjected during manufac- 

Fig. 4.11. Work-hardening. First 
experiment: for a stress R,, the 
strain is €,. Second experiment: 
the elastic limit has become R,, 
which is greater than R,. 

O 1 Al/l 
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ture. In contrast to that, think of a non-ductile material such as stone, 

where the slab needed for a building, say, can only be cut directly from the 
rough block extracted from a quarry. 

Slip in metal crystals 

To throw some light on the atomic mechanism of plastic deformation, we 
start from some simple empirical facts of general validity. 

In the first place, whatever the change in the external shape of the metal, 
even if it is very large, the material remains crystalline with the same 
crystal structure. To put this more precisely, the great majority of atoms 
after deformation are surrounded by the same arrangement of neighbour- 
ing atoms as before. For example, X-ray diffraction patterns show that 
copper, whatever deformation it experiences, is always crystalline with a 
face-centred cubic cell of side 0.36nm. 

The crystal grains, on the other hand, are affected a great deal: the 
deformed metal is still a polycrystalline aggregate, but it now consists of 
grains so fine that, for large strains, they are no longer visible under the 
optical microscope, being much smaller than a micrometre across. The 
large grains of the unstressed metal have been fragmented into a large 
number of crystallites with various orientations different from those in the 
initial grain. The new orientations are not randomly distributed: a given 
crystal axis in the various grains generally has a preferred direction that 
depends on the mode of deformation: this gives the solid a texture (SM, 
p. 126). 

Fig. 4.12. Slip lines on an 
aluminium crystal (by kind 
permission of G. Wyon). 

WN \ 
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The most important feature, however, is the existence of slip planes in 
the plastically deformed metal. We start with the metal in an equilibrium 
state brought about by a long anneal. This has made the crystal as nearly 
perfect as it can be, and the crystals are large enough to be easily visible on 
a polished surface after it has been chemically etched. When the metal is 
subjected to a small plastic deformation, e.g. by a tensile stress, a series of 
fine parallel straight lines appears on the surface (slip lines: Fig. 4.12). The 
directions of these lines differ from one crystallite to another, showing that 
they are related to the specific orientations of the individual crystallites. 

It can be shown that the slip lines are parallel to the intersection of a 
family of lattice planes with the surface. In a face-centred cubic metal, for 
example, they are planes normal to the cube diagonal (SM, p. 59). An 
examination of the surface at a greater magnification under an electron 
microscope reveals that a slip line marks out a step on the surface with a 
height that is variable but always very small, less than a micrometre 
(Fig. 4.13). A slip band can be resolved into a group of slip lines. 

Fig. 4.13. Diagrammatic 
representation of slip bands 
resolved into groups of closely 
spaced slip lines. 

These observations are explained by the slip model. A cubic crystal can 
be regarded as resulting from the close-packed stacking of planes of atoms, 
each plane consisting of a hexagonal array (SM p. 117): this is a structure 
typical of a metal crystal. For the stacking to be really close-packed, each 
layer must be so placed that its atoms lie in the hollows between the atoms 
of the previous layer. However, because the crystal has a regularly 
repeating period, one layer can be placed on another in an infinite number 
of equivalent ways. Two of these are shown in Fig. 4.14, and it can be seen 
that, although the external shape is different, the local atomic structure will 
remain unchanged. One layer will slip or glide over another when all the 
atoms in the first jump from one hollow to a neighbouring one. Such a 
process produces a strain with two of the characteristics of the plastic 
deformation of metals: a change in external shape and no change in the 
volume or the crystal structure. 

In a stack of hexagonal layers, there are three equivalent slip directions 
at 120° to each other. The minimum step is equal to the distance between 
the atoms in contact and the slip in any one direction is equal to an integral 
number of steps. Moreover, a face-centred cubic crystal can be considered 
as a close-packed stacking of hexagonal layers in four different ways (these 
being normal to the four diagonals of the cube). For this crystal, therefore, 
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Fig. 4.14. When slip occurs between lattice planes, the external shape changes but 
the crystal structure remains the same. 

there are twelve slip systems in all: each leaves the atomic structure intact, 
but it is easy to see that combinations of these various slip systems can lead 
to many different changes of shape for the crystal. In fact, it can be shown 
geometrically that a crystal can be given any shape whatsoever, all of the 
same volume, by the action of only five of the twelve possible slip systems. 

To initiate slip in a crystal in stable equilibrium, a shearing force parallel 
to the slip direction must be applied. The force required is that necessary to 
make the atoms of a lattice plane leave the hollows in which they are 
lodged and take them through a non-equilibrium state until they fall once 
more into another set of hollows, when the crystal is once again in stable 
equilibrium but with a new configuration. 

For such a process to be possible, it must not need too great a supply of 
energy to the crystal. This condition is satisfied by metals because the 
interatomic bonds are undirected: their only effect is to make the whole 
atomic assembly as close-packed as possible. In the slip process, it is true 
that the configurations intermediate between the two stable ones of the 
same volume do involve a departure from the closest possible packing, but 
it is not very large and therefore does not require too much extra energy. 
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On the other hand, slip is difficult in covalent crystals because the bonds 
change direction during the process. The bonds have to deviate from the 
arrangement determined by the covalency and that cannot occur without 
the supply of considerably more energy than in the case of metals. For 
example, silicon shows no plastic deformation at room temperature and 
only begins: to show it above 400°C, when the thermal vibrations of the 

atoms have sufficient amplitude. 
Similarly, slip in ionic crystals could upset the local electrostatic equilib- 

ria and would thus require a larger input of energy. 
Two ways in which slip can occur can be envisaged. In homogeneous 

slip, every plane is translated by the same vector with respect to the 
adjacent plane. If the slip is heterogeneous, it is concentrated in certain 
planes or groups of neighbouring planes called bands, while the crystal 
between two slip bands remains intact. The macroscopic effect on the 
external shape is almost the same as in the first case if the bands are close 
enough. 

Experiment shows clearly that the process is heterogeneous, since 
distinct slip lines can be seen (Figs 4.12 and 4.13) separated by patches of 
smooth surface with widths of the order of at least a micrometre: these 
contain several thousand lattice planes which have suffered no slip. 

Thus, the slip model, based soundly on experimental observations, 

provides a qualitative explanation of plastic deformation and of the 
ductility of metals. But is it possible, using this model, to arrive at a 
quantitative explanation of ductility? 

An attempt at a theoretical evaluation of the elastic limit 

Our aim is to predict the minimum stress that needs to be applied to a 
metal to initiate plastic deformation. To simplify the problem, we shall 
consider an isolated single crystal of the metal and base our argument on a 
two-dimensional case, which may be unrealistic but is enough to reveal a 
fundamental difficulty. 

Consider two rows of atoms in contact (Fig. 4.15) and in stable 
equilibrium, which means that they are stacked so that each atom sits in the 
hollow formed between two atoms of the other row. If a small shearing 
force is applied to the system, it starts to move the atoms from their 
equilibrium position but does not make them leave their ‘hollow’. As soon 
as the stress is removed, the atoms return to their equilibrium positions, so 
that we are in the elastic region of strain. 

By increasing the shearing force, the atoms eventually leave their 
hollows and are taken to a position directly over the atoms in the adjacent 
row: this is a position of unstable equilibrium. A very small increment of 
force in the direction of the initial stress makes the atoms fall into the set of 



Plastic deformation 197 

Fig. 4.15. Calculation of the theoretical elastic limit in a perfect crystal. 

interstices adjacent to those they occupied initially. Slip has occurred over 
a distance equal to the atomic diameter. The elastic limit corresponds to 
the minimum force that had to be applied in order to produce a slip of one 
step. : 
A simplified model of this sort enables us, if not to calculate accurately, 

at least to make an estimate of the elastic limit in terms of the modulus of 
elasticity (Box 19). 

Box 19 

Theoretical calculation of the elastic limit 

The elastic limit is reached when two planes of atoms can slip with 
respect to each other, thus producing an irreversible strain in the 
material. 

Suppose therefore that there is a stress o tending to displace all the 
atoms in a plane with respect to those in the plane immediately below 
it (Fig. 4.15). As long as this stress remains small, the displacements 
are also small compared with the interatomic distance and the stress 
needed to produce the strain is proportional to the displacement. 
However, this relationship soon fails when the displacement amounts 
to a significant fraction of the interatomic distance a. A special 
situation occurs when the displacement is a/2 and the unstable 
position shown in Fig. 4.15B is reached. The stress is then zero and, 
by however small an amount the position shown in Fig. 4.15B is 
exceeded, the plane of atoms is attracted naturally into a new 
equilibrium position (Fig. 4.15C), displaced by a from its starting 
position (Fig. 4.15A). A reasonable expression for the stress as a 
function of the displacement is given by the upper half of a sinusoidal 
curve: 
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2X 
o = 0, sin ——. 

a 

The maximum oy, corresponds to the minimum stress that must be 
applied for slip of the planes to occur: this is the theoretical elastic 
limit. It can easily be related to the rigidity modulus: for small 
displacements, o can be expressed approximately by: 

27x 
0 = Oy . 

a 

Now, according to the definition of rigidity modulus (Box 18), the 
displacement of the upper plane with respect to the lower, when 
small, must be x = ad, where d is the interplanar distance and a is the 

angle of shear of the lateral faces given by a = o/p (p. 180). 
We therefore have x = od/w, which gives 

bw a 

Qn d 

The interplanar spacing d is approximately equal to the atomic 
diameter a, so that we have: 

Om 

Ont p/' 6. 

In fact, it can be seen from Table 4.1 that there is a good 

correlation between the elastic limit and Young’s modulus and 
therefore between the elastic limit and the rigidity modulus wp 
(p. 182), but the ratio o/p is much smaller than the value predicted by 
this theory. 

The important feature of the calculation is the order of magnitude of the 
result. It predicts that the stress which must be applied to make the first slip 
lines appear is of the order of a tenth of the rigidity modulus. 

Experimental values of the elastic limit 

Consider the case of a tensile stress applied to a test specimen consisting of 
a single crystal (Fig. 4.16). The slip lines determine the orientation of the 
slip plane. The effective shearing force is equal to the projection on this 
plane of the axial tensile force and is therefore Fcos a. The shear stress is 
the ratio of this projection to the area of cross-section of the specimen in 
the slip plane, S/sin a, and is thus (F/S) sin @ cos a. 

When the experiment is repeated with various crystal orientations, slip 
appears for different values of the tensile force, but the value of the stress 
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Fig. 4.16. Schmid’s law: the 
stress in the slip plane is 
Fcos a/(S/sin a). 

along the slip plane is the same (Schmid’s law): it is this stress which must 
be compared with the calculated value for the onset of slip. 

The highly significant result is that the experimental value is between 100 
and 1000 times smaller than the theoretical value. Such a large discrepancy 
cannot be corrected by the mere refinement of a calculation that is so 
obviously imperfect. It is the model itself that has to be abandoned, a step 
that lies at the root of one of the main ideas in the physics of solids, at least 
as far as mechanical properties are concerned. 

Our model is inadequate because it is based on the assumption of a 
perfect crystal, which simply doesn’t exist.’ All real crystals contain defects 
which play such an important role in mechanical properties that calcula- 
tions starting from the perfect crystal model are no longer valid at all. 

Dislocations: their role in plastic deformation 

The defects mainly involved in plastic deformation are dislocations. These 
are described in detail in texts dealing with the atomic structure of solids 
(e.g. SM, p. 110) and methods for making them visible are also usually 
described. We review here the structure of a single type of dislocation, the 
edge dislocation, which is the easiest to represent diagrammatically. 
A half plane is removed from a set of parallel atomic planes (Fig. 4.17) 

and the empty space left behind is filled by the relaxation of the crystal, its 
two halves coming closer together. The re-formed crystal is very nearly 

It is said (e.g. SM, p. 106) that silicon crystals as large as several cubic millimetres can be 
obtained without any defects, but silicon does not undergo plastic deformation at ordinary 
temperatures. 
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Fig. 4.17. The structure of an 
edge dislocation in a simple cubic 
lattice. 
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perfect, except inside a ‘tube’ surrounding the dislocation line which runs 
along the edge of the half plane of atoms and forms the core of the 
dislocation. The disturbance of the lattice becomes negligible compared 
with thermal agitation at about 5nm away from the core. 

In the model with two rows of atoms used previously, we can introduce 
something similar to a dislocation by removing an atom from one of the 
rows. Figure 4.18 shows that the arrangement of atoms in the two rows is 
normal except in a small group of atoms that are in an unstable state. If a 
shearing force is applied, the disordered group is displaced along the row 
until it reaches the end, where it disappears, leaving a step. If a second 

F Fig. 4.18. The glide of a 
of, dislocation represented by a 

missing atom. Under the action of 
an external stress, the atoms 

around the dislocation slip to the 
—-> = right. The dislocation moves to 

GORBREEY the left and eventually 
disappears, leaving a surface step 
with a depth equal to one 

PREY ”aomernanns 
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dislocation is created at the beginning of the row, it will also slip to the 
other end and double the size of the step. A single dislocation crossing the 
system produces slip of one atomic step. 

It is the same in a crystal: the displacement of the dislocation line along a 
lattice plane produces slip equal to a single interatomic spacing. 

The essential feature of the slip process in a crystal containing a 
dislocation is that the shearing force needed to produce the slip is 
considerably reduced by the presence of the defect. Only a few atoms near 
the dislocation are displaced; and, what is more, half of them tend 

spontaneously to fall into their new position. It follows that very few atoms 
need be subjected to the force needed to change their position. The final 
deformation is the result of successive displacements of the atoms, where- 
as, in the perfect crystal, all the atoms simultaneously resist the shearing 
force when slip begins. 

This explains why real crystals containing dislocation lines have elastic 
limits that are several orders of magnitude smaller than those calculated for 

perfect crystals. 
It was in fact precisely this situation that led theoreticians to introduce 

the concept of a dislocation well before there was direct experimental 
proof of their existence. As we shall see, the model does not enable us to 
calculate the elastic limit from first principles but it does explain several 
experimental facts. 

1. The Bragg bubble raft, described in many texts on defects in solids 
_ (e.g. SM, p. 110), is a two-dimensional model of the close-packed stacking 
of atoms. The apparently regular array of bubbles in this experiment can 
be observed to contain dislocations exactly like the edge dislocation shown 
in Fig. 4.17. If the raft is held between two parallel glass rods, they can be 
moved in such a way as to apply a shearing force to the array and during 
the resultant deformation dislocations can be seen slipping rapidly along 

the dense rows of bubbles. 

2. In an electron microscope picture of a very thin section of a metal, the 

dislocation lines appear black. If the section is slightly deformed in situ, the 

dislocation lines can be seen to move and their motion can be filmed. 

3. The variation of elastic limit with temperature is particularly large in 

body-centred cubic metals (SM, ‘p. 92), which is of great importance 

technically: this property is related to the atomic structure in the disloca- 

tions core. 

4. If a metallic crystal contained no dislocations, its elastic limit ought to 

be considerably greater. However, it is impossible in practice to prepare 

large metallic crystals that are perfect. In certain reactions, on the other 

hand, very fine metallic spikes are formed, several micrometres in dia- 

meter and several millimetres long, known as whiskers. These are single 
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Fig. 4.19. A whisker (diameter Sym), fixed at both ends, is curved elastically by 
applying a force at its centre with a hook 

crystals and the electron microscope shows that they contain no disloca- 
tions. It has also proved possible to bend whiskers under an optical 
microscope (Fig. 4.19) and to evaluate the maximum stress below which 
they remain elastic. The observed elastic limit is found to be much greater 
than that of the bulk metal and to approach the value for a perfect crystal. 

Towards a quantitative theory of the ductility of real 
crystals 

We can be confident that the key to the phenomenon of plastic deforma- 

tion is the motion of dislocations in a crystal under the action of the applied 
force. However, the physicist wishes to be able to make quantitative 
predictions of the mechanical properties of metals, particularly as functions 
of temperature and, to achieve this, the model of the crystal with 

dislocations must be subjected to calculation. Many problems arise when 
this is attempted, some of which have not yet been completely solved. In 
this section, we describe some of the difficulties and show how far we can 

go in spite of them. 

The origin of dislocations 

According to our model, slip of one atomic step corresponds to the 
disappearance of one of the dislocations in the crystal. It might be 
concluded from this that the stage during which slip occurs easily must stop 
when there are no longer any dislocations in the crystal, producing an 
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overall deformation that is in fact quite small. After that, the crystal could 
not be deformed any further without the application of a much greater 
external force. 

This is not what is observed. Plastic deformation goes on until strains of 
several per cent have occurred, after which the increase in stress takes 
place more slowly but still continues (Fig. 4.10). Dislocations must there- 
fore always be present, even though some disappear; it follows that 
dislocation sources must exist within the crystal to replace those that 
disappear and even to multiply the number that are already there. 
Observations under the electron microscope show that the number of 
dislocations increases rapidly with the amount of plastic deformation. 
We recall that slip in a crystal is not homogeneous: over narrow bands, 

the slip may amount to several thousand interatomic distances, while 
intermediate blocks are not significantly deformed. This arises from the 
fact that the dislocation sources needed for large amplitude slip are not 
uniformly distributed throughout the crystal, and slip only occurs where 
such sources are located. 
A mechanism by which dislocations could multiply was suggested by 

Frank and Read (1950). We shall not describe it here, but it is worth 
pointing out that the ‘Frank—Read source’ was eventually observed exactly 
as theoreticians had predicted several years previously (as has happened 
several times in the history of solid state physics). 

Dislocation dynamics 
' Ductility relies on the displacement of dislocations in a crystal. The 
corresponding laws governing their motion in a force field must be known 
if we want to calculate, for comparison with experiment, the minimum 

stress for slip to occur, and to explain its increase when the metal is 
deformed (work-hardening) or when the temperature is lowered. 

The elementary process is the glide of a dislocation in an otherwise 
perfect crystal along a lattice plane having a high density of atoms. The 
gliding speed cannot exceed that of sound (about 5 x 10°ms~') since no 
interaction between atoms can be propagated any faster than this, and in 
fact the speed at which dislocations move is thought to be considerably 
smaller. 

The force required to maintain this motion can be evaluated and is found 
to be much less than the experimental elastic limit. The situation is 
therefore as follows: for a perfect crystal without defects, the calculated 
value is too high, but a model involving isolated dislocations in an 
otherwise perfect crystal yields a value that is too low. It is clearly 
necessary to find some reason for the resistance to the motion of 
dislocations in a real crystal. 

The cause might be the fact that a dislocation moves in a crystal that is 
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not ‘otherwise perfect’ but is full of various other imperfections: grain 
boundaries in polycrystalline metals, other dislocation lines with their 
cores within which the lattice is distorted, point defects such as vacancies 
and, unless the metal is very pure, impurity atoms, either dispersed, or 
assembled in small grains of a second phase or in GP zones (p. 210: see 
also SM, p. 119). 

The problem thus appears extremely complex. Firstly, it is clearly 
difficult to define a real structure of the crystal on which to operate, since 
the imperfections are, by their very nature, irregular. Secondly, the 
interaction of a dislocation with each of the other types of imperfection 
poses a problem for which there is no exact solution. How does the gliding 
dislocation line cut the ‘forest’ of lines normal to the slip plane? How does 
it move in the crystal structure of a solid solution, where the atoms 
replacing those of the matrix produce slight but very frequent perturba- 
tions? What effect does a variation of temperature have on the different 
interactions? And so on. 

The difficulty with each of the problems is obvious: not only are there so 
many interacting atoms that it is impossible to know the exact positions of 
all of them but, as we have often said, the laws governing the atomic 
interactions in terms of their distance apart and their surroundings are not 
known with sufficient accuracy. 

All these problems have received attention in recent decades and some 
progress has been made. It has proved possible to estimate the orders of 
magnitude of interactions for several types of defect and to show how the 
effects are combined in a real crystal. Nevertheless, a calculation of the 
macroscopic properties of a metal from first principles appears to be 
beyond us: even the tensile curve for a single crystal of a pure metal, which 
would be an extremely simple case, cannot yet be predicted. 
We also expect the variations from one specimen to another to be large 

and unpredictable, since the defects in them might be very different and 
there is no non-destructive method of determining them in a given 
specimen. Experiment is unfortunately of little help to the theory, because 
it is seldom that the effect of a particular defect can be isolated. 
Measurements are made on specimens which are bound to contain many 
types of defect and it is almost impossible to extract data on a single type 
that could be used in a theoretical calculation. 

Some qualitative applications of the theory of ductility 

As a counter to the above somewhat pessimistic comments, we should 
instance some of the technologically important results obtained by metal 
physicists, whose ideas have enabled metallurgists to rationalize their 
observations and measurements. When their empirical research receives 
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guidance in this way, it is possible for them to pick out the directions which 
have some chance of success and reject those that would only be a waste of 
time and money. 

We illustrate these points with several important examples, starting from 
the very simple and rather vague idea that dislocations are easily moved in 
a perfect crystal and that they are retarded by anything that disturbs the 
order in the crystal. We shall show how it is possible to exploit the idea that 
mechanical strength depends on the number and nature of the structural 
defects. 

Work-hardening 

A metal crystal is never free of dislocations, however much care is taken in 
preparing it. The density of dislocation lines is specified by the length of the 
lines contained in unit volume and is measured in cmcm7”, i.e. in cm” 
(this is also the number of lines crossing unit area). After a long anneal at a 
high temperature, which enables the atoms to take up energetically 
favourable positions, the dislocation line density is of the order of 
10°cm~?, which means an average distance between lines of about 10m. 
When plastic deformation begins, the original dislocations certainly 

move, but the predominant effect is the creation of a much greater number 
of new dislocations generated by localized active sources. The movement 
of these dislocations enables the deformation to continue and to increase. 
Some dislocations disappear in the process, but many more persist in the 
crystal, which thus becomes more and more imperfect. This is revealed by 

- electron micrographs taken at various stages of deformation. Finally, in a 
metal that has been heavily rolled or drawn, the dislocation density can be 
as high as between 10!° and 10'*cm~°, or an average of one line every 

Fig. 4.20. Dislocations in work-hardened stainless steel (by kind permission of 
C. Donadille). 
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10nm, although the dislocations are in fact non-uniformly distributed and 
form a highly tangled network (Fig. 4.20). 

In the deformed metal, the dislocations have to move through a crystal 
with a dislocation density that increases as the strain becomes greater, and 
the motion of some will be blocked if the external stress is insufficient. 
There is certainly a greater resistance to the movement of dislocations and 
it also becomes more difficult for new sources to be produced. 

This is the origin of work-hardening, i.e. the increase in the strength or 
hardness of a metal resulting from deformation. A metal crystal containing 
no dislocations would, of course, be very strong, but it is impossible to 
remove them all, so that this is not a feasible method of hardening. The 
other possible method is to impede the motion of the dislocations that do 
exist, and this is achieved in work-hardening through the interaction 
between dislocations whose density is very high. 

It has long been known that work-hardened copper tubes (i.e. after cold 
working of the metal) are rigid while annealed copper tubes can easily be 
deformed. The difference between the two states can be strikingly 
demonstrated by quite simple experiments (e.g. SM, pp. 133-4). In the 
annealing operation, the small and very imperfect crystals of the 
work-hardened copper disappear and are replaced by larger and more 
perfect crystals: many dislocations disappear and others are grouped 
together in a way that is energetically more favourable. The decrease in the 
strength of a metal in the annealed or ‘recrystallized’ state is caused by a 
reduction in the dislocation density. 

Effect of grain size 

This is a general effect which is easily observed. For a given metal, an 
isolated single crystal is not nearly as strong as a polycrystalline aggregate 
of small contiguous crystal grains. The strength is also increased by a 
reduction in the average grain size. To give some idea of orders of 
magnitude: the elastic limit of copper doubles when the average grain size 
falls from 100 um to 25 um. 

These effects are quite easy to explain. In a single crystal, the disloca- 
tions move through the whole specimen during slip and eventually 
disappear at the free surface, forming steps. In the polycrystal, on the 
other hand, a slip plane in one grain does not correspond to a slip plane in 
an adjacent grain, so that the moving dislocation cannot pass the grain 
boundary. The two grains remain contiguous and so the dislocation cannot 
disappear and leave a step on a free surface. The dislocation is therefore 
blocked and, in turn, blocks the following dislocations. This causes them to 
pile up against the grain boundaries, an effect that can be observed in 
electron microscope pictures (Fig. 4.21). A calculation of the interactions 
between dislocations has even made it possible to explain the variation in 
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Fig. 4.21. Dislocation pile-up at a grain boundary (electron micrograph taken with 
a 1 million volt instrument) (by kind permission of C. Donadille). 

the interval between successive blocked dislocations with increasing dis- 
tance from the boundary where pile-up occurs. 

Dislocations can also be created at the grain boundaries and there will 
thus be more of them as the total surface area of the grain boundaries 
increases, i.e. as the grain size is reduced. Many of these dislocations 
remain blocked in the grains, so that the dislocation density is greater with 
smaller grains and the strength of the metal is increased. 
A large number of measurements have shown that this effect exists. For 

a metal of given composition and a given degree of strain, the yield stress 
(at which plastic deformation begins) increases as the grain size decreases 
according to the Petch equation (Fig. 4.22, which also shows that the effect 
of work-hardening adds to that of grain size). 

This example typifies the state of our knowledge in metal physics: the 
effect can be explained qualitatively, but the law expressing the effect is 
empirical. 

Fig. 4.22. Relationship between 
2 the yield stress of mild steel and 
= 50 20% grain size for various strains, 
= illustrating Petch’s equation: (o = 
. A+ Bd~"). 
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§ 
2 
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A technically important consequence of all this is that the quality of a 
metal can be improved by giving proper consideration to ways of controll- 
ing grain size. This is how high performance steels are produced, and it 
demands detailed and thorough research to determine the optimum 
conditions for heat treatment (temperature and time), as well as very strict 
monitoring and control of the industrial manufacturing process. It has also 
been found that the addition of certain elements to steel, such as niobium 

in very small proportions (0.04 per cent), produces a smaller grain size. 
This is because the added elements form compounds that crystallize as very 
fine grains distributed throughout the bulk of the metal. These then fix the 
grain boundaries, so that the grain size cannot increase during annealing. 

Ductility in alloys 

Alloys contain several constituent metals, which are generally mixed in the 
liquid phase to obtain the final product. Their mechanical properties, like 
those of pure metals, are affected by work-hardening or grain size. 
However, there are in addition other effects related directly to their 
composition. 

Solid solutions 

The simplest type of alloy consist of a single phase: it is then a solid 
solution. There are two main categories of solid solution: substitutional 
solutions in which the dissolved atoms replace those of the basic metal at 
equivalent lattice sites in a single crystal; and interstitial solid solutions, in 
which the added elements are lodged in interstitial sites between the 
normal lattice sites of the solvent element. The latter type can only be 
formed if the added elements have atomic diameters that are small 
compared with that of the solvent element and if the proportions of the 
added elements are not too high. The most important example of this 
second class is that of an interstitial solution of carbon in iron, as found in 

steels. 
The dissolved atoms deform the crystal lattice of a solid solution on an 

atomic scale by amounts that depend on their nature and concentration 
and on the type of solid solution. In substitutional solutions, the lattice 
distortion arises because of the difference in the atomic diameters and the 
interactions of substituted atoms with neighbours. In interstitial solutions, 
the distortion is greater since the interstices are always markedly smaller 
than the atoms they accommodate. During plastic deformation, the 
dislocations are therefore moving through a medium with a large number 
of irregularities, which impede the motion to a greater extent than in a 
pure metal. 
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Fig. 4.23. The effect of various 
elements dissolved in iron on its 
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We thus predict that the elastic limits of homogeneous alloys will be higher 
than those of pure metals and this turns out to be the case: a gold alloy 
containing 10 per cent copper is three times harder than pure gold. The 
increase in the elastic limit becomes greater as the lattice distortions increase. 
Figure 4.23 shows that, for iron alloys, this increase is proportional to the 
concentration of the added element and that, for the same atomic 

concentration, it varies from one element to another. Finally, it is considerably 
greater for interstitial solutions than for substitutional solutions. 
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Fig. 4.24. Microprecipitates of Fe2.Mo in an Fe-Mn—Co-Mo alloy (by kind 
permission of C. Servant). 

Alloys containing precipitates (precipitation hardening) 

We consider two-phase alloys in which the principle phase (or matrix) is 
predominant and the precipitated phase is dispersed in the form of 
numerous very fine grains incorporating a high proportion of the atoms 
added to the principal constituent (Fig. 4.24). The deformation of such an 
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(a) (b) 
I 

Fig. 4.25. Encounter between a dislocation line and precipitate grains: (a) shearing 
of a small grain; (b) the line bypassing grains (four successive positions of the line 

are shown). 

alloy takes place via slip in the matrix. When mobile dislocations encounter 
the precipitated phase, these small, hard, not very ductile grains become 
serious obstacles: the force produced along the dislocation line may be 
enough to shear the small grain, or the grain may be bypassed by the 
dislocation. Figure 4.25 shows both possible processes. In either case, the 
presence of small grains included in the matrix strengthens the metal 
considerably. This is one of the best methods available to metallurgists for 
hardening metals. 

Alloys with GP zones: the duralumins 

Some alloys are in a state intermediate between those just described. The 
dissolved atoms are not distributed uniformly as in a homogeneous solid 
solution and they are no longer separated from the matrix in the grains of a 
second phase. Instead, the crystal contains Guinier—Preston or GP zones 
(SM, p. 119). These are very small, of the order of 10nm across. The 
concentration of dissolved atoms in these zones is very high compared with 
the average concentrations; the structure nevertheless remains close to that 
of the matrix, but the lattice is highly distorted. The zones may have a 
particular shape: very thin platelets, parallel to the faces of the cubic unit 
cell if the matrix in which they are formed has a cubic lattice. 
A typical example is an alloy of aluminium and copper (5 per cent 

copper), which at high temperatures (550°C) is a homogeneous solid 
solution. If the alloy is suddenly cooled by quenching, it remains a solid 

solution, but it is no longer in a stable state. This is because, although the 
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5 per cent of copper is soluble in the matrix at the high temperature, only 
0.5 per cent is soluble at room temperature: the solid solution preserved by 
quenching is supersaturated and the copper atoms therefore tend to 
separate out from the aluminium. The equilibrium structure would consist 
of two phases: an aluminium matrix, with precipitates rich in copper (in 
this case, these are crystals with a composition Al,Cu). 

If we now maintain the quenched alloy at room temperature, this 
equilibrium state cannot be reached because the copper atoms have to 
diffuse through the aluminium matrix over distances of the order of several 
micrometres. This is impossible at room temperature because thermal 
agitation is too small, and so the copper atoms become grouped together in 
the aluminium crystal in a large number of very small zones: the atomic 
migration needed is only over a few nanometres and takes place slowly (in 
one day). The zones are revealed by X-ray diffraction and electron 
microscopy. The solid solution has become heterogeneous on a scale of 
10nm and, in these zones, is in a metastable state different from the 

equilibrium state but more stable than the homogeneous solution. If the 
alloy is annealed at a temperature of about 300°C, the mobility of the 
atoms is sufficient for equilibrium to be established: the precipitation of the 
copper in the Al,Cu phase is complete in a few minutes. 

The changes in structure are accompanied by a change in mechanical 
properties. After the quench, the alloy is not very strong but it becomes 
harder when the GP zones are formed by ageing at room temperature. It 
becomes soft again after an anneal, when the precipitates appear. 

Such a complicated set of changes is well explained by theory. In all 
three states, there are local deformations of the crystal which impede the 
movement of dislocations. In the homogeneous solid solution, distortion 
around the isolated copper atoms is small: the alloy is therefore not very 
strong, although it is much stronger than pure aluminium. In the precipi- 
tated state, each Al,Cu grain is a considerable obstacle: but the precipi- 
tates are a long way from each other and, between them, the crystal is 
sound and dislocations can move easily. In this state, the metal is not very 
strong and its properties revert approximately to those of the 
homogeneous solution. When the crystal contains GP zones, on the other 

hand, the lattice distortion is large, firstly because the zones are very 
numerous and therefore very close, and secondly because the crystal is 
highly distorted inside the zones. The overall result is that the propagation 
of dislocations is made particularly difficult and the alloy has hardened. 

The Al-Cu alloy is typical of the structural hardening of certain alloys 
which was discovered empirically (Wilm, 1911). Thanks to the dislocation 
model, we now understand the behaviour of these remarkable alloys and it 
has been possible to make continual improvements in them. During the 
few hours after a quench, the highly ductile alloy can be worked easily. 
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Then, through spontaneous ageing and without any change in external 
shape, the alloy hardens so that it can withstand large operational stresses 
without deformation. Not only that, but when the basic constituent is 
aluminium, the alloy is light: for equal weights, duralumin structures have 
a performance close to that of steels. The alloy used in Concorde, for 
example, containing 2 per cent copper, 1.5 per cent magnesium, and 1 per 
cent nickel, has an elastic limit of 450MPa up to an operating temperature 
of ROC: 

Steels: martensitic transformations 

Steels are alloys of iron and carbon, often with the addition of other metals 
in various proportions. For all of us, steel is the typical example of a hard 
and very strong metal. Hundreds of varieties with different compositions 
are at present commercially available, possessing properties that cover an 
extremely wide range because they depend not only on the composition 
but also on the treatment to which they have been subjected. Hardened 
steel, for example, has been used for thousands of years in the production 
of efficient weapons and reliable tools. 
How can theory help us in understanding all the various properties of 

steels? We make no attempt here to provide a general answer to this 
question because of the wide variety that exists in their composition and 
treatment: our description is instead confined to an outline, with the help 

of structural models, of the effects that a phenomenon characteristic of 
steels has on their ductility: namely, the martensitic transformation. 

Pure iron occurs in two forms with different crystal structures: elements 
behaving in this way are described as allotropic and their various forms as 
allotropes. Above 911°C, iron crystallizes with a face-centred cubic unit 
cell (y-iron), while below that temperature it is body-centred cubic (a-iron) 
(Fig. 4.26). This is still the situation in steel, although the transition 
temperature then varies with the composition of the alloy. 

Consider a very simple steel, an Fe—C alloy with 0.5 per cent carbon. 
When in equilibrium at 950°C, it crystallizes in the y form: the carbon is 
distributed uniformly in an interstitial solid solution known metallurgically 
as austenite. This is now brought suddenly to room temperature by 
quenching, i.e. by plunging it into a large volume of cold water. Contrary 
to our experience with light alloys, it is impossible to preserve the high 
temperature structure as a structure ‘frozen in’ at room temperature: 
however quickly the cooling takes place, the y crystals are transformed into 
the a form. Nevertheless, the rapid quench does prevent large displace- 
ments of the carbon atoms and these remain dispersed uniformly through- 
out the newly formed a-iron. 

Several aspects of this need to be specified in more detail. The 
transformation from y-iron to a-iron is not necessarily complete. The steel 
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Fig. 4.26. Polymorphism in iron. 

can be quenched from 950°C to a temperature different from room 
temperature, and the proportion of austenite still remaining depends on 
this final temperature. Thus, for the alloy in question, the transformation 
begins at 320°C and is almost complete at 110°C. The transformed part 
appears in the form of fine needles, whose directions are not random but 
are related to the symmetry axes of the y crystal in which they are inserted. 
The orientations of the a grains are therefore related to the principal axes 
of the y lattice. The crystallographic transformation takes place by abrupt 
movements of groups of atoms (it is even possible to record the noise 
produced when these movements are triggered). 

The phase formed in the quench, known as martensite, consists of a-iron 
crystals with a greatly distorted lattice. There are two reasons for this: 
firstly, because of the very abrupt change in conditions accompanying its 
formation, the martensite contains a large number of defects and, in 
addition, the needles distort the austenite surrounding them. Secondly, 

since it contains all the carbon which was dissolved in the austenite and 
which is not very soluble in the a-iron at equilibrium, the martensite is 
supersaturated with the excess carbon and this causes considerable distor- 
tion of the a-iron lattice. 

It is these large perturbations of the structure that are responsible for the 
exceptional strength of the quenched steel. The movement of dislocations 
is blocked by the martensite needles, and is impeded in the distorted 
regions of the austenite. After quenching, the 0.5 per cent carbon steel has 
an elastic limit of 1000 MPa, a very high value compared with any we have 
quoted so far. Very little plastic deformation occurs in quenched steel: any 
increase in the external stress causes the metal to break. A steel of this type 
is thus brittle and has very little ductility, so that, in spite of its great 
hardness, it is almost unusable because of the risk of failure. 

Because of this, attempts are made to improve its ductility at the expense 
of a modest reduction in hardness. This is the aim of the process known as 
tempering, achieved by annealing. After quenching, the steel is reheated to 
a temperature below 800°C and certainly well below that at which any of 
the original austenite might be re-formed. The martensite first becomes 
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heterogeneous, with regions where carbon atoms assemble in groups. 
After that, when the annealing temperature rises above 250°C, the 
mobility of the atoms is sufficient for the formation of a new crystalline 
phase: Fe3C, or cementite. The steel then contains two phases: ferrite (i.e. 
the a-iron without carbon) and cementite. The ferrite grains are very small, 
but the cementite grains are even smaller and are dispersed amongst the 
ferrite. These two factors, the small grain size and the dispersion of the 
cementite, give the metal strength without the loss of all its ductility, so 
that it is no longer brittle. By choosing appropriate annealing conditions 
(temperature and time), the metallurgist can, within certain limits, vary the 
properties of steel in any required direction. 

The procedures for quenching and annealing of steel were for a long 
time a matter of craftsmen’s recipes, but theory has now justified them and 
enabled them to be taken further. Two recent examples of advances in the 
iron and steel industry are of considerable importance: maraging and 
ausforming steels. 

Maraging steel 

Consider an alloy of iron and nickel (18 per cent) with additions of cobalt 
(6 per cent) and molybdenum (5 per cent), forming a steel containing 
practically no carbon. As with other steels, this one is austenitic at high 
temperatures, where the added elements are soluble, and is martensitic 
when cooled. This is an alloy with some very special properties: it does not 
need quenching for the martensitic transformtion to be induced — it is 
sufficient to allow an ingot to cool in the free atmosphere. The advantage 

of this is that the martensitic transformation is then not just an effect that 
can be induced to occur in objects thin enough for a quench to be effective, 
but it can be made to occur throughout the body of a component, even one 
with a large volume. 

Other features of the nickel martensite are: 

1. it is not only very strong but is not brittle; 

2. it can be reheated up to 500°C without such an anneal causing it to 
decompose. 

During this treatment, however, the added elements, which are in a 

supersaturated state, are precipitated in the form of very finely dispersed 
grains. The structural hardening resulting from this fine precipitate is thus 
added to the hardening process due to the formation of martensite. Very 
high elastic limits for steels (2000 MPa) can be achieved in this way without 
sacrificing any of their ductility. 

Thermomechanical treatments 

These involve a combination of the effects of heat and deformation. In 
ausforming, for example, the steel in an austenitic phase, and therefore at 



Plastic deformation 215 

high temperature, is subjected to a considerable deformation, e.g. to very 
heavy rolling. It is then quenched to produce the martensite and finally 
tempered by annealing. The violent mechanical treatment at high tempera- 
ture produces extremely small grains, and these remain very small during 

the subsequent quench and anneal. This so improves the quality of the 
steel that elastic limits of 3000 MPa can be attained. The importance of this 
technique lies in its ability to give an ordinary low-alloy steel qualities that 
are comparable with those of much more expensive special steels. 

Interaction of dislocations with impurities: ageing effects 

A metal containing a small concentration of foreign atoms could be 
regarded as a very dilute alloy, but it is generally considered more as a 
metal with impurities since the extra atoms have often not been introduced 
deliberately: they come either from the raw materials or from contamina- 
tion during the processes involved in the production of the metal. 

The impurity atoms are randomly distributed and produce distortion in 
their immediate vicinity, particularly if they occupy interstitial sites in the 
crystal lattice. A lattice is disturbed along a dislocation line and in its 
immediate neighbourhood, and here the interstitial sites between sets of 
neighbouring atoms have a larger volume than they have in the perfect 
crystal. If an impurity atom moves near a dislocation during its migration 
within the crystal due to thermal agitation, it finds sites that will accommo- 
date it so easily that there is little chance of it moving away again. The 
dislocation becomes ‘decorated’ in this way with a cloud or atmosphere of 

’ foreign atoms which is produced in a time that is significantly greater than 
the duration of experiments (varying from a few seconds to a few tens of 

minutes, depending on the temperature). 
The impurity cloud that condenses along the line of a dislocation holds it 

more stable in position, so that a greater stress is needed to move it than 
would be necessary if the dislocation were ‘bare’. If the dislocation is freed 
by a large enough stress, it is propagated too quickly for the impurity cloud 
to follow it. When the dislocation stops, however, the cloud re-forms and, 

after a certain time, it once again pins the dislocation in place. 
A model of this type accounts for several aspects of the ductility of 

certain metals which at first sight appear to be very strange. 

The upper yield point on the tensile curve for mild steel 

Figure 4.27 shows the tensile curve given by an extra mild steel (less than 

0.1 per cent carbon) used in car-body panels. The steel may contain 

nitrogen as an impurity, apart from the carbon. When subjected to stress, 

the elastic region terminates at a limit known as the upper yield point 

where the stress is R.,. As soon as yielding starts, however, the stress falls 

(the yield drop) to a lower value R,; at the lower yield point, where the 
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Fig. 4.27. The upper yield point 
on the tensile curve of mild steel. 
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extension is now several per cent. After that, the usual stress-strain curve 
is followed, during which the normal processes of plastic deformation and 
work-hardening occur. 

In the metal prior to deformation, the dislocations are pinned by their 
impurity clouds (of C and/or N atoms). When the stress reaches the value 
R.., the dislocations are set in motion and are thus freed from their clouds. 

These bare dislocations, as well as those created by active sources, which 
also lack impurity clouds, can all be moved by the lower stress R.;. The two 
values for the elastic limit both correspond to dislocations being set in 
motion, but in one case they are accompanied by their impurity clouds and 
in the other they are ‘bare’. 

Fig. 4.28. Liiders bands in a mild 
steel under tension at room 
temperature. 
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At this stage (stress R.;), the deformation is not uniform but is 
concentrated in bands (Liiders bands) across the test specimen, as can be 
seen in Fig. 4.28. It is not until the specimen is completely covered by these 
bands that the plastic deformation continues as usual under a continually 
increasing stress. 

Ageing 

There is one type of experimental observation that very clearly reveals the 
effect of impurities in mild steel: this is the phenomenon of ageing. At the 
stage when work-hardening has occurred (extension €,, Fig. 4.29), suppose 
we stop any further deformation by removing the stress o,. After a very 
short time, the stress is applied once again. The metal behaves normally: it 
deforms elastically up to the stress o,, and the plastic deformation 
continues as if there had been no interruption. However, if the time during 
which the stress is removed is long enough (at least an hour), the upper 
yield point that was observed with the fresh mild steel specimen occurs 
once again. This shows that the impurity cloud has had enough time to 
re-form around the dislocation so that, after ageing, the dislocations have 
to be freed from their clouds once more, whereas they were still bare when 
the strain was almost immediately reapplied. 

(a) (b) 

Stress Stress 

ey et 
Strain Strain 

Fig. 4.29. Ageing tensile curves for a reloaded test specimen. (a) Reloading 
immediately after unloading at D; (b) reloading after ageing for one day. 

Blue brittleness 

Craftsmen have long known that mild steel becomes brittle at a tempera- 
ture near 150°C, where treatment in air covers it with a thin oxide layer 
and gives it a blue colour. The impurity clouds on the dislocations form 
much more rapidly at these temperatures than at room temperature, since 
the diffusion of impurity atoms through the metal is much easier. As soon 
as the dislocations are released on reaching the stress R.,, they are joined 
almost at once by their impurity clouds: the strain at the stress R,; cannot 
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occur as it did in Fig. 4.27. Even for small extensions, the plastic stress 
exceeds R., and is observed to increase rather irregularly, so that for an 

extension that is still quite small the failure stress is reached. The steel 
behaves almost like a brittle material. 

Other modes of plastic deformation 

A very general feature of plastic deformation is its non-uniformity, arising 
from the fact that the crystal defects which play an essential role in its 
initiation are themselves not distributed uniformly throughout a crystal. 
Slip, for example, is always concentrated in a series of fine bands. 
Although the numerous slip bands that normally occur are distributed 
fairly regularly over a specimen, there are exceptions, as we have already 
seen in the case of mild steel (Liiders bands, Fig. 4.28). 
We give a couple of other examples below: true, these are special cases, 

but they do show quite dramatically the complicated and sometimes 
unpredictable behaviour of a real solid. We must be wary of imagining that 
we know everything about a metal when we have a complete knowledge of 
its crystal structure: it is the real structure, with all its defects, that we need 

to know, even if it departs only very little from the ideal structure. 

1. Consider a rod formed from a single crystal of zinc and subjected to 
compression along ‘its axis. The most uniform plastic deformation that 
could possibly occur would be a shortening of the rod with an accompany- 
ing increase in its diameter. However, what can happen is that the 
shortening is the result of a very localized bend in the specimen, like the 
‘kink’ shown in Fig. 4.30, with the rest of it remaining virtually intact. Zinc 

Fig. 4.30. A kink in a zinc crystal 
(by kind permission of C. 
Barrett). 
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crystallizes in the hexagonal system and this type of crystal has fewer 
possible slip systems than a cubic crystal. It can be appreciated that there 
will be some orientations in which a uniform strain cannot be achieved by a 
combination of slip systems. Models of the dislocation distributions that 
might explain the bending of the crystal have been devised, but it should be 
realized that we do not know why the bending takes place nor where it 
might occur in a given specimen. 

2. Twinning is described in texts (e.g. SM, p. 118) on the structures of 
real crystals formed by the stacking of hexagonal planes of atoms. The two 
parts of the twin have the same intrinsic crystal structure, but are arranged 
in such a way that one is the mirror image of the other in a plane located in 
the twin plane. To change a single crystal into a twinned crystal, the atoms 
need to be displaced by a shear stress applied parallel to the twin plane. Ifa 
given deformation of a specimen (e.g. its extension by a tensile stress) 
happens to produce changes in shape that coincide with those required to 
produce a twin, then it is clear that twinning could be initiated by external 
forces (mechanical twinning). 

In some metals, the existence of twins is revealed by examining the 
polished surface of a strained specimen under the microscope. The pairs of 
crystals forming the twins are recognizable because they are separated by a 
perfectly straight junction (Fig. 4.31). The production of a twin by the 
displacement of atomic planes in a small volume is abrupt and is sometimes 
audible. For example, if a rod of tin is twisted by hand, a series of clicks or 
creaks can be distinctly heard (the ‘cry of tin’), each corresponding to the 
appearance of a set of small twins in the tin crystals. 

(ah 
Fig. 4.31. Twinned crystals: (a) under an optical microscope (by kind permission of 
P. Lacombe); (b) under an electron microscope (by kind permission of C. 

Donadille). 
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Plastic deformation by twinning occurs mainly in crystals where only a 
few slip systems are possible: metals with hcp (hexagonal close-packed) 
lattices twin more easily than those with a cubic lattice. There are some 
orientations of a crystal with respect to the applied stress for which 
deformation is more easily accomplished by twinning than by slip. 

Once again, we have to rely on qualitative explanations: we do not know 
the precise conditions under which a twin can be produced in a given 
crystal subjected to a given external stress. 

Fracture 

It is vital that no component of a machine or structural element of a 
building should fail in service. This is clearly an absolutely essential 
condition from the point of view of safety, but it is also a condition for the 
durability of an installation, which is an important economic consideration. 
To prevent accidents, engineers have to calculate the stresses at every 
point in a given machine or structure in the light of the operational 
requirements placed on it, and this is what theoretical mechanics enables 
them to do. They also need to know the intrinsic properties of the 
materials, and these are provided by the systematic tests carried out on the 
products of the metallurgical industry. 

Brittle fracture 

We start with a simple case, which is also one of the most typical: that of a 
glass or a crystal of rock salt. When solids like these are subjected to a 
gradually increasing tensile stress, they suffer only very small elastic 
extensions before breaking suddenly and without any plastic deformation. 
This is known as brittle fracture. 

In a glass rod, the break occurs in a direction nearly normal to the 
direction of the tension: the surface that is revealed is rounded and 
smooth. In crystals, the break is parallel to a lattice plane and they are said 
to cleave. In a specimen of NaCl, for example, the cleavage occurs in a 
plane parallel to one face of the cubic unit cell. If the solid is formed from a 
polycrystalline mass, as is generally the case for crystalline solids, the break 
reveals facets that are oriented in various directions since the cleavage 
planes have different orientations in the different grains (Fig. 4.32). Ina 
polycrystalline metal, brittle fracture can also take place through a loss of 
cohesion between adjacent grains. 

The cleavage of a NaCl crystal can be very simply described on an atomic 
scale (Fig. 4.33). The Na* and Cl” ions are arranged in dense planes of 
atoms that are identical: cleavage separates two adjacent atomic planes P, 
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Fig. 4.32. Brittle fracture: (a) fracture of iron by cleavage at low temperature; (b) 
intergranular impact fracture (scanning electron micrograph, by kind permission of 

G. Henry). 

and P, a distance dp apart. In equilibrium, the force between these two 
planes is zero: the attractive Coulomb force between ions of opposite 
charge is exactly balanced by the repulsive force between the electron 
shells which cannot penetrate each other. When the distance between the 

Fig. 4.33. Calculation of the theoretical stress needed for the cleavage of NaCl. 
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planes is greater than do, the attractive force becomes predominant, passes 
through a maximum, and then decreases to zero as the planes move far 
apart. Under the action of an external stress, the planes P, and P are 
pulled apart, although only through a relatively small distance since we are 
in the elastic region. When the stress exceeds the maximum value oy, 
equilibrium can no longer be maintained and cleavage occurs. 

This atomic model is simple enough for us to be able to use it in making a 
theoretical estimate of the stress oy, needed for fracture by cleavage. 

Box 20 — 

Calculation of the theoretical stress needed for the cleavage 
of rock salt 

_ A stress o is applied to a crystal Of unit cross-section in order to 
separate two adjacent atomic planes by a distance ay + x, where do is 
the equilibrium distance between the planes. ‘At the beginning of the 

_ deformation, when the strain is elastic, o is pr portional to x; it then 
passes through a maximum value oy, decreases and eventually 

_ becomes zero: the planes are then completely separated. 
We represent, o approximately by the sinusoidal variation 

Om Sin(tx/x,) up tO x. and by zero if x > x, (Fig. 4.33). 
The strain is small in the elastic region, so that the sine can be 

replaced by its argument: the stress is then to,4x/x,. Since Young’s 
modulus E is defined by o = Ex/ay, we can relate E to oy4/x,: 

Oy E 

Xe TAY 

When the crystal is split into two pieces, two free surfaces are © 
created and this increases the energy of the system by 2 y, where y is © 

_ the surface energy of NaCl. We identify this increase with the work 
done by the tensile stress in separating the planes, i.e. with the 
integral: 

OmSID 
Xe : TX 20 MXc 
| dx = : 

0 Xe a 

We thus obtain the relationship: 
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or 

Otc = TY. 

Using the previous result that: 

Om E 

Xe TA, Z 

we arrive at: 

Ey 
Om = Soy 

do 

It turns out that the experimental values for the stresses needed to 
fracture any crystal are much less than the theoretical predictions. This is 
the same situation as occurred with the elastic limit of ductile solids, i.e. a 

considerable discrepancy between calculation and experiment. We are led 
to a similar conclusion: the model of the perfect crystal is inadequate for an 
understanding of fracture phenomena. The effective strength of a brittle 
crystal is in fact limited by defects in the structure. 

There was also something a little illogical in our model of cleavage. In a 
perfect crystal, all the planes are identical: there is no reason why cleavage 
should occur between two planes P; and P rather than any other two. If 
these two planes are distinctive in some way, it can only be because some 
irregularity or defect is present in their locality. 

While the defects responsible for plastic deformation are on an atomic 
scale, those connected with fracture are more extensive: of the order of a 

micrometre rather than a tenth of a nanometre. In 1920, Griffith put 
forward an idea which still forms the basis of theories of brittle fracture, an 

Fig. 4.34. Concentration of stress 
lines at the ends of an elliptical 
cavity. 
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idea that is suggested by everyday experience. If we have two strips of 
paper, one with perfectly smooth edges and the other with edges nicked by 
a small tear, and try to pull each of them apart with a sudden application of 
the same tensile stress, the first offers strong resistance while the second 
splits easily into two. The small tear in the edge has initiated the fracture of 
the strip. 
Now consider a sheet of uniform material which has a transverse crack in 

the surface or an internal cavity with a width much smaller than its length. 
When a tensile stress is applied to the sheet in a direction perpendicular to 
the crack or to the longer dimension of the cavity, the lines of force of the 
stress field circumvent the crack or cavity and become much denser around 
their extremities (Fig. 4.34). A concentration of the stress thus occurs at 
the ends of the crack or cavity, which can be calculated if it assumed that 
the whole specimen is strained elastically. Some idea of the order of 
magnitude of the stress concentration produced can be obtained by taking 
the case of a hole having an elliptical cross-section with an axial ratio of 10. 
The maximum stress in the surface around the point at the end of the cavity 
in this case is 20 times the applied stress. In regions like this, therefore, the 
effective stress experienced by the material may exceed the theoretical 
stress needed for cleavage, which can then be initiated at a defect. The 
specimen may fracture, even though the overall stress applied to it is quite 
small. 

Microcracks occur over the surface of any crystal, which then breaks at 
the point where the stress concentration is greatest. Given the irregularity 
of natural microcracks, fracture can be expected to occur for stresses which 
are always very much lower than the theoretical values predicted for 
perfect crystals, but which vary quite a lot from one specimen to another. 
This is confirmed by experiment. 

Several observations support the Griffith theory. If the surface of a rock 
salt crystal is dissolved away, any superficial cracks that might have existed 
on the specimen are removed. If it is then subjected to a tensile test 
immediately after this treatment, the stress required to fracture it is found 
to be higher. Certain experiments carried out with glass are also quite 
convincing. A thin glass rod freshly drawn in a flame is stronger because its 
surface is very smooth and defects have not had the chance to occur. It is, 
however, very easy to make them appear: a single contact with a steel 
needle is enough to cause a small scratch which, even if it is no more than 
one or two micrometres deep, reduces the fracture strength. If the fibre is 
elastically bent, a scratch is only effective when it occurs on the surface in 
tension, where it can open up and be propagated: when it occurs on the 
surface under compression, it closes and is blocked. 

This effect is the basis of a process for reducing the brittleness of glass 
sheets (‘toughening’). By cooling the surfaces quickly (a superficial 
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quench), they are put under compression, thus reducing the embrittling 
effect of accidental surface scratches.’ A similar application is the method 
used to increase the toughness of ceramics by glazing. It is impossible to 
reduce the number of surface cracks to any appreciable extent and 
attempts are therefore made to increase the resistance to their propagation 
instead. 

Brittle fracture in metals is more complex than that in glasses or ionic 
crystals. It is well known that metals are not breakable in the same way as 
glass. There is always a certain amount of ductility but, when they are 
brittle, the amount of plastic deformation before fracture is very small. 

In this case as well, it is thought that failure is the result of the 
propagation of microcracks or microcavities. However, except in fatigue 
fracture (p. 234), the centres where the fracture is initiated are generally 
internal and no direct experimental data on them are available. 

Several mechanisms have been suggested for the formation of these 
internal defects. In a dislocation, there is a line of voids at the edge of the 
interrupted plane of atoms: if several dislocations glide in the same plane 
and are blocked by an obstacle such as a grain boundary, they coalesce and 
form a microcavity which can grow further by the addition of vacancies or 
the loss of cohesion between the side walls of the cavity (Fig. 4.35). 
Microcracks can also be produced at the surface of grains of a second 
phase. Thus, graphite flakes in grey iron (SM, p. 208) make it brittle 
because of a loss of cohesion between the graphite and the ferrite. The loss 
of cohesion may be due to the segregation of impurity atoms along the 
grain boundaries, which modifies the interatomic bonding at the grain 
surface. This can be described macroscopically as a reduction in the surface 
tension of the metal: thus, the free surfaces of the cavity can grow quite 
easily since only a small input of energy is required. 

In metals that are brittle but nevertheless retain a certain ductility, the 
atoms in the surface of microcavities or cracks have a tendency to 
rearrange themselves so as to round off the sharp angles between the walls. 
As a result, the increase in stress is lower for a metal than for brittle 

pre Fig. 4.35. Formation of a 
microcrack by the coalescence of 

ey em Sa te kt Mp - blocked dislocations at a grain 
boundary. 

‘Toughened glass produced in this way (e.g. car windscreens) can be recognized by 
interference colours due to double refraction arising from internal stresses. 
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non-metallic materials like glasses and the discrepancy between real 
fracture strengths and theoretical values is therefore less. 
A crack initiated by a microcavity in a polycrystalline metal must, if it is 

to grow, propagate itself from grain to grain. However, because of the 
different orientations of the cleavage planes in adjacent crystals, the crack 
is deviated after crossing the boundary. This hinders its extension, at least 
at low temperatures when thermal agitation is limited. The smaller the 
grain size, the more obstacles there are to be surmounted in a given length 
of path and the greater the stress required to cause fracture. Any treatment 
which produces a smaller grain size is useful in reducing the brittleness of a 
metal (as it is in increasing the elastic limit (p. 206)). 

Brittleness seriously handicaps the technologist: it prevents the use of 
very hard materials (e.g. fibres of carbon, glass, silicon carbide, etc.) which 
are strong but liable to premature fracture. A solution to the problem is 
provided by composite materials in which the fibre is embedded in a plastic 
matrix that opposes the propagation of any microcracks existing in the 
surface. This removes the centres from which fracture is initiated and the 
brittleness is greatly reduced. Some present-day composites are among the 
strongest materials ever produced and their use in such sports activities as 
polevaulting and in forms of transport from sailing boats to spacecraft has 
brought the attention of the advances in this field to a very wide public. 

Ductile fracture 

When metals are taken beyond their elastic limit, they generally undergo 
plastic deformation. In brittle materials this process is very quickly 
interrupted, but even when they are not brittle the deformation does not 
go on indefinitely but ends in a type of fracture known as ductile fracture. 
When a specimen is plastically deformed in a tensile test, for example, 

the extension is not uniform but is concentrated in a short region where the 
cross-section becomes smaller: this is known as necking (Fig. 4.36 — see 
also p. 191). Once it starts, the necking can only increase since the reduced 
cross-section causes the stress in the narrowed region to rise. 

If the metal were perfectly plastic, the specimen would become in- 
creasingly narrow at the neck until the cross-section was zero. In reality, it 
breaks before that: fracture occurs at the neck when the diameter has 
decreased by an amount that varies with the type of metal and even from 
one specimen to another. 

The appearance of the fracture surface is not the same as in the case of 
brittle failure. There are no facets corresponding to the cleavage of grains, 
but an irregular surface with quite a soft or fibrous profile (Fig. 4.36). In 
this part of the metal, the grains have been broken and the metal is very 
greatly deformed. 
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(a) | 2mm . 

Fig. 4.36. (a) Ductile fracture with necking; (b) appearance of the ductile fracture 
surface of a stainless steel (electron micrograph, IRSID). 

In this case as well, fracture is due to the propagation of a crack across 
the specimen. It is initiated by the growth of microcavities produced during 
the large deformation of the metal at the neck at sensitive points such as 
grain boundaries, small grains of a more brittle phase, etc. 

The transition between ductile and brittle fracture 

Many materials can be classified unambiguously in one of the two 
categories described above. However, there are some which may be ductile 
or brittle depending on the conditions: the temperature, the rate at which 
stresses are applied, the purity of the metal, etc. Mild steels (i.e. those 
containing less than 0.5 per cent carbon), together with other metals 
having a body-centred cubic lattice, become brittle below quite a well- 
defined transition temperature. 

Brittleness is measured by the Charpy V-notch impact test (Fig. 4.37). 
The specimen is in the form of a bar with an accurately defined shape and 
has a groove cut in it in order to facilitate and localize the fracture. The 
ram is dropped from a known initial height and, after its sudden impact on 
the specimen, its remaining kinetic energy is sufficient to carry it through to 
a second measured height. The energy absorbed by the fracture is 
calculated from the two heights: the more brittle the material, the less the 
energy absorbed by fracturing. 

The ductile—brittle transition occurs over a temperature range of about 
ten degrees. The transition temperature varies with the type of steel: for 
many, it occurs a little below 0°C, i.e. within the range of possible ambient 
temperatures. This is what gives the effect its practical importance. An 
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Fig. 4.37. Measurement of impact strength by the Charpy V-notch test. The ram is 
released at a height h, and carries on to the height h’ after breaking the specimen. 

The energy absorbed by the impact is mg(h — h’). 

example that illustrates the point very well is that of the barrels of the 
heavy artillery which broke up during the severe winter of 1939-40 
(although this did not surprise the gunners, who were often of peasant 
origin and were very familiar with tools that fractured during very cold 
weather). Another example is the break-up of Liberty ships in service. 

The existence of a brittle transition is explained as follows: the elastic 
limit of mild steels is greatly increased at low temperatures. This is partly 
because dislocation sources become less active but mostly because the 
mobility of the dislocations falls: this arises from the particular structure of 
the dislocation core in body-centred cubic crystals. At low temperatures, 
therefore, plastic deformation only starts when the stress is very high. On 
the other hand, the stress required to initiate crack propagation does not 
vary much with temperature. Thus, below the transition temperature, a 

stress that is enough to initiate the propagation of cracks is reached before 
plastic deformation has begun: the metal then behaves like a brittle 
material. Above the transition temperature, on the other hand, the plastic 

deformation is already appreciable when the applied stress is still insuf- 
ficient to activate the centres initiating fracture. 

The embrittlement of a metal is a complex phenomenon because 
temperature is not the only factor involved. The conditions under which 
brittleness tests are carried out on metals must therefore be very precisely 
specified. We shall discuss in turn the method of distributing the stresses in 
the specimen, the rate at which the stress is applied and the presence of 
impurities. 

For body-centred cubic metals at room temperature, a notched specimen 
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is brittle whereas one with a smooth surface is not. The complex system of 
stresses distributed around the notch can block any plastic deformation, so 
that the fracture load may be reached without any deformation having 
occurred. 

If the stress is applied to the metal very abruptly by an impact, the 
specimen may break, whereas it would have withstood the same stress if it 
had been applied slowly and steadily. We have already mentioned the fact 
that the rearrangement of atoms in the surface of microcracks, by making 
the angles less acute, reduces the stress concentration. During an impact, 
such rearrangement does not have time to occur and so, around the initial 
crack, the stresses are high enough for fracture to begin. 

It seems surprising that very small changes in the composition of a metal 
should have significant effects on its brittleness, yet it is observed that the 
addition of a few parts per million of an element can induce brittleness and 
the complete removal of a very minor impurity can eliminate it. The 
explanation of this is that only a few small and scattered grains of a second 
phase are needed to create centres at which fracture can begin. Moreover, 
when impurity atoms collect at grain boundaries, their surface concentra- 
tion may be large enough to have an effect on intergranular cohesion, even 
though their overall density seems negligible. 
We can give several examples of this: chromium was long considered a 

brittle metal, but this was simply because there was no known method of 
preparing it with a sufficient degree of purity; the compound Ni3Al1, which 
is involved in heat resistant ‘superalloys’, loses its brittleness with the 
addition of a trace of boron; gallium, on the other hand, can be regarded as 

a ‘poison’ as far as aluminium is concerned since it drastically reduces 
intergranular cohesion. 

Creep 

So far, we have implicitly assumed that the deformation of a solid depends 

on the stress applied to it at a given temperature. In fact, it is true that a 

permanent equilibrium state is reached, at least at low temperatures: ‘low’ 

meaning, say, a temperature below half the melting point expressed in K. 

At high temperatures, however, the plastic deformation under constant 

stress increases with time and therefore depends both on the applied stress 

and the time of application. This phenomenon, known as creep, becomes 

significant (and complicates our interpretation of observations) not only 

when a metal is deformed slowly but even during rapid deformation at a 

high enough temperature, e.g. as in the thermomechanical treatments 

mentioned above (p. 214). 
Creep can be measured using a tensile testing machine in which the 

specimen is placed in a vessel at a constant but adjustable temperature. A 
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Fig. 4.38. Creep curves for the 
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constant stress greater than its elastic limit is applied to the specimen and 
its length is then plotted as a function of time (Fig. 4.38). At low 
temperatures, there is an initial almost instantaneous deformation, after 
which the rate of extension steadily decreases until a limiting length is 
eventually reached. At higher temperatures, on the other hand, after the 
initial transient stage, the extension continues at a uniform rate and there is 
then a third stage during which the extension accelerates until the specimen 
finally breaks. 

In the ‘linear’ stage, the rate of extension with time increases with the 
temperature and the applied stress. Creep is only significant if the 
temperature is higher than about 40 per cent of the melting point expressed 
in K, but it then becomes appreciable: the extension can be as much as 
several per cent and can last for hundreds, or even thousands, of hours. 
The following figures for a widely-used steel containing 0.4 per cent 
carbon, 0.24 per cent silicon, and 0.9 per cent manganese give some idea of 
the orders of magnitude involved: with the steel subjected to a stress of 
7MPa, the creep is 2 per cent after 5 hours at 670°C, after 50 hours at 
625°C, or after 500 hours at 585°C. 

It is obviously essential that no appreciable creep should occur in a 
machine in permanent use, and this clearly limits the operating tempera- 
ture of a metal. The effect assumes the greatest importance in machines 
which, by their very nature, have to operate at the highest possible 
temperatures (e.g. the rotors in jet engines). 

The atomic mechanisms involved in creep 

In looking for mechanisms on the atomic scale to account for creep, we 
shall confine our attention to the second linear stage. The tertiary stage, 
where the effect accelerates, simply corresponds to the onset of damage in 
the metal: cracks and cavities are formed, develop, and become centres for 
the initiation of fracture. 

As is the case during the plastic deformation accompanying cold 
working, creep in metals involves the multiplication of dislocations by 
active sources and their glide along lattice planes within the crystal grains. 
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However, other types of atomic motion can occur because the higher 
temperature increases atomic mobility so that diffusion, which is discussed 
in Chapter 5, is then possible. For example, atoms diffusing through the 
crystal may arrive at a dislocation line or may diffuse away from it. One 
result of this is that the dislocation, instead of moving parallel to the slip 
plane (glide), is moved in a direction perpendicular to it (dislocation climb, 
Fig. 4.39). 

There are also deformation processes not involving dislocations. For 
example, a crystallite under tension becomes elongated if atoms in the 
lateral surfaces of the grain migrate towards the end faces by diffusion 
(Fig. 4.40). It has also been demonstrated experimentally that two adja- 
cent grains in a polycrystalline metal can slip with respect to each other, 

while remaining contiguous, because of the atomic disorder existing along 

the boundary. 
During low temperature plastic deformation, dislocations are increas- 

ingly multiplying and modifying the state of the metal: this is the 
' work-hardening we have already discussed. In high temperature creep, on 
the other hand, the metal reaches a steady state: the disorder due to the 
deformation is compensated by a restoration of order through local 

Fig. 4.40. Elongation of a grain 
by the migration of atoms from 
the lateral boundaries to the 
upper and lower ends. 
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Fig. 4.41. The annihilation of two 
dislocations of opposite signs: the 
atoms become dispersed in lattice 
vacancies. 

rearrangements of atoms by diffusion. Pairs of dislocations of opposite 
signs annihilate each other (Fig. 4.41), and dislocations gather in such a 
way that a rather distorted domain is replaced by two more regular 
domains with different crystallographic orientations separated by a sub- 
boundary where the dislocations are assembled. This is an effect known as 
polygonization (SM, p. 116). 

The various mechanisms we have been describing involve the displace- 
ment of atoms from one lattice site to another by diffusion (Chapter 5). 
This is a slow process, unlike dislocation glide which occurs at a speed close 
to that of sound, but diffusion rates do increase very rapidly with rising 
temperature. This accounts for the main features of creep: a slow process 
that is only significant at high temperatures. 

Solid state physicists have been able to quantify all the qualitative ideas 
mentioned above, and their calculations have shown that the various 

mechanisms envisaged are possible and have effects conforming to macro- 
scopic observation. One thing is certain, however: creep is a very complex 
phenomenon. We may understand why it occurs, we may be able to 
account for the orders of magnitude of the observed effects, but we do not 
yet have an indisputable quantitative picture of it. 

High-temperature alloys 

When the performance of a machine improves as its operating temperature 
increases, it is ultimately limited by the need to remain in a temperature 
range where no significant creep occurs in the main components. The jet 
engines powering aircraft are a typical example. How can we produce 
creep-resistant materials for use in such cases? 

One solution would be to use materials with very high melting points: 
refractory materials like tungsten (MP = 3663 K) or molybdenum (2883 K). 
Since creep is negligible at temperatures below 40 per cent of the melting 
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point, operating temperatures above 1100°C could be achieved and this 
would be very worthwhile. Unfortunately, refractory metals are too readily 
oxidized in air to be usable. 

The best materials available at present are alloys, known as superalloys, 
based on nickel and chromium with aluminium and titanium as additional 
elements. Their first desirable property is that, when exposed to air, they 
are covered by a continuous coating of chromic oxide which protects the 
surface and prevents oxygen from penetrating the alloy: this is the same 
effect that is used in stainless steels. The second and more important 
feature of these alloys is that they can be used at temperatures considerably 
above 40 per cent of their melting points (which are around 1350°C) 
without appreciable creep. Such unusual creep resistance is due to the 
presence within the nickel-chromium matrix of precipitates containing the 
additional elements in the form of very finely dispersed grains. These 
provide obstacles to the movement of dislocations and thus oppose any 
deformation. Although this is the same process as that occurring in 
hardened light alloys (p. 211), the latter only harden at low temperatures: 
as soon as the temperature rises above about 250 to 300°C, the precipitates 
coalesce into large grains which are too widely spaced to retain any 
hardening effect. In superalloys, the precipitates remain finely dispersed 
up to 1200°C. A possible explanation for this is as follows: precipitates with 
the composition Ni3Al crystallize with a lattice very similar to that of the 
nickel matrix. These form obstacles sufficient to block the movement of 
dislocations, but the lattices are coherent enough for any atomic disorder 

' at the interfaces to be minimal. Because of this, the surface energy of the 
grains included in the matrix is small, so that their enlargement would not 
lower the energy of the system very much through the reduction in the 
interfacial area: such enlargement does not therefore occur. Above 

1050°C, however, the solubility of the added elements increases: the 
precipitates that are responsible for the creep resistance progressively 
disappear as the temperature rises and the performance of the alloy 
deteriorates. 

To avoid this problem, the hardening particles should be strictly 
insoluble in the metal, as is the case with thorium or aluminium oxide. 

These can be incorporated into the metal using powder metallurgy: a fine 
powder of the metal is mixed with a little oxide powder (10 per cent) and 
the mixture is agglomerated into a solid by sintering (compression at high 

temperature). 
This is the process used for the production of tungsten filaments for 

incandescent lamps. If the tungsten were pure, it would recrystallize when 
the lamp is in use and the grains would then be in the form of large crystals 
lying end to end along the filament: this could not retain its shape since it 
would creep under its own weight. When grains of thorium oxide are 
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introduced, the tungsten crystals cannot become enlarged and no creep 
occurs in the filament even when it is incandescent. 

Another advance in technique is based on the following fact: one cause 
of creep in a polycrystalline metal is the slip that takes place between two 
adjacent grains along the boundary separating them, an effect that does not 
occur in a single crystal. The conditions under which superalloys solidify 
have been so modified that a whole turbine blade, for example, is virtually 
a single crystal: in fact, it is more a mosaic of crystallites with very similar 
orientations. In this way, the atomic disorder along the grain boundaries is 
slight and is no longer a cause of creep. Another technique that has been 
developed is to induce crystallization with such an orientation that the 
grain boundaries are perpendicular to the principal tensile stress and so 
make no contribution to.creep. 

One result of the continual advances in the field of superalloys is that the 
maximum operating temperature of jet engines has, in a single decade, 
been raised by between 50 and 100°C, a feat that has led to a considerable 

improvement in their efficiency. 

Non-metallic creep resistant materials 

Refractory oxides, such as those of aluminium, magnesium and silicon, 

have very high melting points, as do certain carbides (SiC) and nitrides 
(SizN,). The interatomic forces in these compounds, whether ionic or 
covalent, are much greater than those in metals, so that they are all very 
hard solids. Small crystals of such substances, bound together in a compact 
mass, form ceramics, a class of material whose good mechanical properties 
are preserved without creep up to very high temperatures (more than 
2000°C). Research is currently being carried out with the aim of replacing 
some of the metallic components in motor vehicles with ceramic equiva- 
lents. 

However, ceramics do not perform very well under tension because they 
are brittle: surface cracks are easily propagated when the materials are 
subjected to tensile stresses and they break. Under compression, on the 
other hand, the cracks close up and are not propagated, so that the 
materials can withstand considerable compressive loads even at very high 
temperatures. That is why ceramics are the best materials to use for 
furnace linings. 

Fatigue 

Consider a ductile metal having a typical tensile curve of the form shown in 
Fig. 4.10, from which we infer that the test specimen breaks when 
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subjected to a stress greater than the maximum Ry. With stresses up to R;, 
less than Ry, the specimen is once again in a state where the strain is 
elastic, the elastic region having been extended by work-hardening after 
the initial plastic deformation (Fig. 4.11). The metal has a stable atomic 
structure if stresses less than R, are applied: the interatomic distances 
between all atoms undergo only small elastic variations (of the order of 0.1 
per cent) and are therefore completely reversible. 

This is true if the stress is steady or slowly varying, but a new effect 
appears when the component is subjected to an alternating load with a 
regular frequency of oscillation, an effect that causes problems in many 
technical applications. In rotating machinery, for example, each compo- 
nent experiences a regular cycle of stresses, while vibrations or cyclic loads 
are very common in mechanical equipment. Experience then shows that a 
component subjected to an alternating stress of magnitude much less than 
the static ultimate strength Ry, may break after a certain number of cycles 
in service, often a very large number. This is called metal fatigue. 

To characterize the effect more precisely, a test specimen is subjected to 
a cyclic load of known amplitude and frequency, 100 Hz for example. The 
number of cycles before fracture is measured as a function of the maximum 
applied stress. The test may continue for tens of millions of cycles and 
might therefore take a very long time. 

With mild steel, it is observed that there is a maximum stress, the 

endurance limit, below which the specimen does not break, however many 
cycles there are. Its value is approximately half the static tensile strength. 

' As the stress is increased above this limit, the number of cycles before 
failure decreases, at first rapidly and then more slowly (Fig. 4.42). 

For other metals, such as light alloys, the endurance limit is not 

well-defined. As the stress is reduced, fracture is delayed for longer and 
longer times but, even for stresses that are very small in comparison with 
the static limit, the specimen may break after a sufficiently large number of 
cycles. 

It is clear that fatigue is of considerable practical importance. In order to 
guarantee complete safety when using steel components under cyclic 

a Fig. 4.42. Metal fatigue. The 
Wohler diagram or S—N curve for 
mild steel, i.e. the stress plotted 
against the number of cycles 
before failure. 

Ryo Static breaking 
load 

Endurance 

limit 

10S ON) 



236 Mechanical properties of solids 

conditions, we have to be prepared to reduce the maximum permitted 
loads to 50 per cent of those allowed under static conditions. With light 
alloys, the situation is still more serious: even if we impose severe 
restrictions on the maximum operating loads, predetermined limits must 
be laid down for the useful life of a machine if all risk of accident is to be 
avoided. 

Atomic mechanism of metal fatigue 

What atomic structures are basically responsible for fatigue fracture? As 
with any other type of fracture, the immediate cause is the presence of 
microcracks in the metal which grow, slowly at first during the cyclic 
loading, and then catastrophically when the crack reaches a critical size. 
What needs to be explained is why microcracks can develop under cyclic 
stresses, whereas they do not do so when the stresses are applied statically. 
When the surface of a metal in the initial stages of fatigue (i.e. after only 

about 5 per cent of the number of cycles likely to produce fracture) is 
examined under the microscope, their crystals are seen to be crossed by 
slip bands, described as ‘persistent’ since they cannot be removed by light 
polishing. The bands are thin slices of the material in which a large number 
of slip lines are concentrated. It follows that dislocations must have been 
propagated along the planes in these bands, and that this must have 
involved them in a to-and-fro movement since the stresses were cyclic. The 
oscillating dislocations must cause the metal in the slip bands to receive a 
considerable ‘shake-up’, and it can well be imagined, after our experiment 
on macroscopic objects, that this might produce a type of atomic motion 
that would not occur in a metal subjected to a constant or steadily 
increasing stress. It is by starting from this idea that physicists have 
attempted to establish models for the atomic motion which are confirmed 
by direct observation. 

If the fatigue test is interrupted and a tensile test is carried out on the 
fatigued metal, a greater degree of hardening or work-hardening is often 
observed after a large number of cycles than at the beginning of the test. 
Fatigue hardening, as it is called, is likely to be caused by the presence of 
clusters of vacancies hindering the propagation of dislocations: these 
newly-created micro cavities are initiated by the fatigue process but not by 
a mere increase in plastic deformation. This interpretation is confirmed by 
the fact that fatigue hardening is minimal at low temperatures, where 
vacancies cannot be involved since they are not mobile enough. It is now a 
well-established and seemingly quite general fact that there are, in the 
persistent slip bands, displacements of material on a microscopic scale (of 
the order of a micrometre). An examination of the free surface of materials 
under the microscope reveals both small voids or crevices, known as 
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Fig. 4.43. Extrusions and intrusions along slip planes during a fatigue test (scanning 
electron micrograph, Laboratoire de mécanique, ENSMA, Poitiers). 

intrusions, between the slip planes and eruptions or thin tongues of 
- material, known as extrusions, growing out of the surface (Fig. 4.43). All 
such displacements of material can be explained in terms of oscillating slip 
bands. 

As a result, a long sequence of alternating stress cycles, by activating 
motion on an atomic scale, induces the formation of a large number of 
microcracks. It is true that there is no direct proof of their existence. It is 
impossible to obtain electron microscope images of them because of the 
difficulty of preparing suitable samples. A special method using neutron 
diffraction (small angle scattering) seems capable of detecting microcavities 
within the metal but no decisive results have so far been obtained. 

All that we can do, therefore, is to observe the ultimate effect of the 

microcracks: fatigue fracture. Only’a few of the initial microcracks develop 
any further and to be capable of this they must have an appropriate shape 
and be located in a region where there is a high stress concentration: this 
often occurs at the surface of the component, e.g. near an irregularity with 
a Sharp profile. 

Examination of a component that has suffered fatigue fracture suggests 
the failure mechanism. Figure 4.44 shows the characteristic appearance of 
a fatigue fractured surface with two quite distinct regions. Over the first, 
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Fig. 4.44. Fatigue fracture surface on an engine shaft. The crack initiation appears 
on the left and the final fracture zone on the right (IRSID). 

the metal is rather smooth with successive grooves centred on a point in the 
surface which is evidently the origin of the fracture. A microcrack would 
originally have been located at this point, initiated by what is often quite a 
minor event at the surface and subsequently extended by successive cycles 
of the alternating stress. The initial crack progresses by joining up with 
other cracks. In this way, the metal is slowly damaged over a very large 
number of cycles. The visible contours mark the successive stages at which 
the opening and closing of the tip of the crack encountered local resistance 
of varying magnitude during its propagation. Then, when the crack had 
become large enough, it initiated the sudden failure of the whole specimen. 
This is the second very rapid stage, corresponding to the second distinct 
region of the fracture surface: it resembles normal brittle failure, with 
facets having orientations that vary from grain to grain according to the 
directions of the cleavage planes in the different crystals. 

How can fatigue strength be improved? 

It is quite clear that fatigue depends on many details of the structure of a 
component which we cannot determine: two specimens produced in as 
identical a manner as possible are, on a microscopic scale, as different as 

two individuals from the same species of living beings. It follows that we 
can only make statistical predictions of the behaviour of a single compo- 
nent. Under such conditions and for such metals, there is a risk that the 



Some comments on the mechanical properties of metals 239 

‘disease’ of fatigue will be fatal: under other circumstances the possibility 
of an accident can reasonably be excluded. 

Fatigue fracture generally starts at the surface of the component, so that 
the condition of the surface is an important factor. Systematic removal of 
any irregularities that can create stress concentrations increases the 
endurance limit of the metal: this is the effect produced by deep polishing 
or surface hardening (by cementation, nitriding, or shot peening). In 
designing the outline of a component, sharp notches or edges that are not 
carefully rounded must be avoided. A dramatic demonstration of the need 
for such precautions was provided by the accidents with Comet aircraft in 
1950. These, the first commercial jets, had passed all the traditional tests 

and the first regular flights had been accident-free. Nevertheless, two 
aircraft broke up in flight after three thousand hours of service. A long 
enquiry, which was a model of its kind, showed that the cause of the 
accidents was the failure of the cabin and that the source of the fatal crack 
was the edge of a cabin window with a defective design. The cruel 
conclusion is that the accidents could easily have been avoided. 

Apart from taking care in the design and surface treatment of compo- 
nents subjected to cyclic loading in service, there is little we can do to avoid 
metal fatigue. In many cases, it is the main effect restricting the technolo- 
gical potential of a metal. The endurance limits of all commercial products 
are established by carefully controlled systematic tests and in this way it has 
been possible to discover the best compositions and the most effective heat 
treatments for alloys. However, there is no known theoretical recipe for 
reducing the susceptibility of a material to metal fatigue. 

Furthermore, there is at present no reliable method of assessing the state 
of a component in service as far as fatigue is concerned. Of course, a 
minute examination of the surface of a component towards the end of its 
useful life might sometimes reveal the crack that will soon cause failure. 
But there is no non-destructive test for distinguishing a component which 
can still withstand millions of cycles without damage from one that might 
well fail after only a few thousand more cycles. 

Some comments on the mechanical properties 
of metals 

We have made a point of providing a general overview of the mechanical 
properties of metals. We have emphasized only a few important character- 
istics and have deliberately omitted a detailed description of the properties 
of the various metallurgical products in current use. 
A catalogue of that sort would demonstrate the wide range of properties 
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possessed by alloys, yet the number of different metals incorporated in 
them is very restricted. From the complete list of metals, we have to 
exclude those that are too scarce in the Earth’s crust (and therefore too 
expensive) and those that are affected too greatly by the atmosphere. In 
fact, a mere three metals, iron, aluminium, and copper, form the basis of 

almost all the alloys used in mechanical construction. 
If it were true that, overall, the properties of an alloy are a linear 

combination of those of its pure constituents, the range of possibilities in 
metallurgy would be extremely restricted. That is certainly what happens 
in the case of properties like density that are independent of atomic 
structure. Whatever the structure of an alloy, the volume occupied by all 
the atoms is directly related to the sum of the volumes occupied by the 
different types of atom. Consequently, adding 1 per cent of a new element 
only brings a contribution from its own density of about 1 per cent to the 
overall density. All steels have relative densities of 7.9 to within 5 per cent. 

On the other hand, the failure load of titanium or zirconium is 

profoundly affected by the presence of a few parts per million of oxygen. 
Or again, the elastic limit of a given steel may be doubled by a minimal 
change in heat treatment. 

In this chapter, we have revealed the underlying cause of such behaviour 
in mechanical properties. The deformation or failure of a metal is not 
determined only by the composition and the crystal structures of the 
various phases that are present, but depends on the existence of defects in 
the solid (dislocations, microcracks, etc.) and their reaction to external 
stresses. The entities involved are details in the real structure of the metal: 
local deformation of the crystal lattice, the texture of grains and grain 
boundaries, and so on. It becomes clear that the properties depend on the 
treatment to which the metal is subjected during its production and that 
trace elements can have an effect out of all proportion to their very low 
concentration, rather like a catalyst. 

It has proved possible, thanks to alloys, to create materials with varied 
properties that are much superior to those of the pure constituents. The 
advances made in mechanical construction through the use of steels and 
light alloys would not have been possible with pure iron and pure 
aluminium on their own. Another great advantage of metallic alloys is the 
ease with which they can be prepared by mixing the melted components 
and then cooling the liquid to give a homogeneous mass. 

Lengthy and thorough laboratory research has produced better pro- 
ducts. But the greater the progress, the more the conditions for the 
preparation of a product become ‘specialized’. Thus, minute changes in 
industrial production can seriously alter the quality of a metal: for 
example, ‘poisoning’ by a minor impurity coming from a new source of raw 
material or a slight drift in the conditions of treatment. An aluminium 



Some comments on the mechanical properties of metals 241 

factory was manufacturing zip-fasteners without any trouble, when sud- 
denly it was noticed that cracks were occurring where the hooks gripped 
the cloth. The number of rejected items became prohibitive and it needed 
long and difficult research to find the nature of the fault responsible and the 
possible remedies. 

Maintaining the quality of an alloy is an operation requiring very high 
standard of control at every stage of production. Monitoring must be 
thorough and accurate and, to be effective, it must be based on reliable 

fundamental knowledge. As a result, theoretical solid state physicists are 
not only involved in laboratory research directed towards the discovery of 
new materials but are also concerned with the industrial quality control 
aimed at ensuring that the standard of the finest products is maintained. 
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Diffusion 

The structural elements (atoms, ions, or molecules) in all matter, whatever 

its state, are subject to thermal agitation. The thermal energy per particle 
associated with this agitation at a temperature T is of the order of 
10-*T eV. 

In gases, where the molecules are widely separated and the interactions 
between them very small, the thermal energy is purely kinetic: molecules 
have mean velocities due to thermal agitation of the order of 100 metres 
per second. The velocities have random directions and are constantly 
changing as a result of collisions. 

In a crystalline solid, each atom or ion is associated with a well-defined 
site in the crystal lattice: thermal motion then consists of oscillations about 
the theoretical site, which becomes the mean position of the vibrating 
atom. 
We thus have two very different situations. In gases, because the 

translational velocities of the molecules are high and in random directions, 
there is continual mixing of material. This is diffusion. A given molecule 
gets further and further away from its initial position but, because the 
motion is completely random, its drift velocity is much less than its 
instantaneous velocity and is only of the order of a few millimetres per 
second at room temperature. Nevertheless, after a sufficiently long time, a 
molecule will have occupied every point in the vessel containing the gas. If 
two vessels containing different gases are put into communication with 
each other, the gases will mix and become homogeneous within a few 
minutes. 

Such spontaneous diffusion also occurs in a liquid (a condensed and 
disordered state of matter), but molecular motion is impeded by the 
interactions between the molecules which are quite closely packed 
together. Diffusion rates in liquids are low compared with those of gases 
(in a ratio of 1 to 1000). Experiment shows that two miscible liquids, 
initially separate, interdiffuse and become homogeneous only very slowly. 
A mixture is made in practice by shaking the containing vessel, i.e. creating 
convection. 

Diffusion would be impossible in a perfect crystalline solid, since the 
atoms remain imprisoned by their neighbours in fixed positions in spite of 
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their thermal agitation. However, experiment shows that, in real solids, 
diffusion does occur, although it is very slow in comparison with that 
observed in liquids. Thus, if two blocks of metal, one of lead and the other 

of gold, are pressed strongly together after the surfaces in contact have 
been scrupulously cleaned and smoothed, lead atoms are found to have 
penetrated into the gold and vice versa. After being held at a temperature 
of 300°C for several days, however, the atoms have travelled a distance of 
less than a micrometre. 
We are led to the idea that diffusion can take place in real crystals 

because of the existence of defects, playing a vital role here as they do in 
other properties of solids. The defects responsible for diffusion are 
vacancies (SM, p. 107): in spite of their rarity (there is never more than 
one atom in a thousand missing), they have an observable macroscopic 
effect. 

Diffusion is of considerable importance in the physics of solids, especial- 
ly in metallurgy. It determines what physical transformations and chemical 
reactions can occur in the solid state and how they proceed. It is found 
that, at easily attainable temperatures, diffusion enables structural changes 
to take place in alloys over times that are quite short on the human time 
scale. It is obvious that industrial heat treatment of alloys at 500°C would 
not be economically feasible if it had to last a month, and that it would not 
even be considered if it needed to last a year. Times of the order of a few 
minutes or even a few hours, on the other hand, are acceptable. The 
preparation of components in the semiconductor industry also involves 
diffusion: here again, it is only because they can be produced in ‘short’ 

- times that they can be marketed at an economic price. 

Experimental data on diffusion 

The simplest phenomenon is self-diffusion, i.e. the motion of atoms inside 
a pure solid. But how can such motion be revealed if all the atoms are 
identical? We achieve this in fact by ‘marking’ a small proportion of them: 
the normal atom is replaced by a radioactive isotope which has exactly the 
same physical and chemical properties, but which can be tracked by 
detecting the radiation it emits when it decays. The motion of a collection 
of atoms can be followed on this way. 

The type of diffusion that is important from a practical point of view is 
interdiffusion in solids containing several different types of atom. We shall 
restrict ourselves to the case of a solid solution with two components. The 
A and B atoms are at the nodes of a single lattice whose sites may be 
occupied randomly by either type of atom. This is a situation that occurs in 
metals: the solubility of the components is often only partial, but below the 
solubility limits the effects remain simple. The basic process is an inter- 
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change of A and B atoms between the lattice sites they occupy. We shall 
not consider the more complex cases where there are intermediate 
compounds A,,,B,, with structures that are different from that of the pure 
metals. 

No diffusion will occur if the elements are mutually insoluble: this is 
seldom the case with metals, but is common in minerals and other 

inorganic crystals. 
The diffusion conditions depend on the geometrical arrangement of the 

metals present. Thus, when a grain of B is included in A, the atoms of B 
will spread out through A around B. The diffusion will be described by the 
variation with time of the concentration of B (or A) atoms at each point in 
the whole system. In order to extract data relevant to diffusion itself and 
eliminate geometrical complications, it is worthwhile choosing as simple an 
arrangement as possible. A bar of metal A is pressed firmly against a bar of 
B so that the contact between them is perfect (Fig. 5.1). The observable 
diffusion is then in one dimension, along the common axis of the bars. The 
concentration of B is a function of the distance from the initial interface 
and of the time from the beginning of the diffusion. 

Before diffusion begins, the number of atoms of B per unit volume 
increases abruptly from 0 to cg at the boundary between the metals A and 
B. The metal B then penetrates A and vice versa, and this causes the sharp 
step in the concentration curve to become rounded off and the slope at the 
origin to become less and less steep. If there was total mutual solubility of 
A and B, the equilibrium state would be a uniform distribution of the A 
and B atoms. In practice, the situation always remains a long way from this 
theoretical equilibrium state. 
Two main features are revealed by the experiment: 

1. Diffusion in solids is a slow process, so that its progress can easily be 
observed. To specify what is happening more precisely, we consider the 
transition zone containing both A and B atoms with relative concentrations 
lying between 25 per cent and 75 per cent. Table 5.1 relates to a typical 
case of intermetallic diffusion: nickel into iron at 1200°C. It gives the 
thickness of the transition zone for various diffusion times. After several 
days, the transition zone is about a tenth of a millimetre thick. 

Fig. 5.1. Diffusion of nickel in 
(Fe) (Ni) iron held at 1200°C for 48 hours. 

Cyj 1S the number of nickel atoms 
per unit volume. 

— 100 0 100 pm 
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Table 5.1. Diffusion of nickel into iron at 1200°C 

Diffusion time Thickness of transition zone 

45 minutes 15pm 

3 hours 31m 

12 hours 63 um 

2 days 126m 

8 days 250 pm 

2. The diffusion rate increases very rapidly with temperature. Although 
almost zero at room temperature, it becomes appreciable near the melting 
point of the metals concerned. To give some idea of the magnitude of the 
effect, we can say that the diffusion rate approximately doubles for every 
10° rise in temperature. 

The diffusion coefficient 

Consider a block of a solid solution of two metals A and B, which are 

soluble in all proportions. If the A/B solid solution is initially hetero- 
geneous, the system will tend spontaneously to become uniform as is 

_ predicted by thermodynamics. Diffusion is the mechanism by which this 
homogenization takes place: a flux of B atoms leaves the regions rich in B 
and makes for regions poor in B: it is the same with A. The flux is greater 
when the variation in the concentration of B atoms with distance is steeper, 
i.e. when the concentration gradient is higher.’ 

The transport of matter is analogous to the transport of heat in a body at 

a non-uniform temperature or the transport of electric charge in a 

conductor whose potential is not uniform. In the latter case, we know that 

the flux of electric charge is proportional to the potential gradient or 

electric field. In the other cases, the flux is proportional to the gradient of 

the quantity playing the same role as the electric potential: temperature in 

the case of heat and concentration in the case of diffusion. 

To go beyond this qualitative approach, we shall define the parameter 

which gives a measure of the diffusion that takes place: the diffusion 

coefficient. We return to the one-dimensional diffusion in a bar, where the 

*Since the concentration c at a point is a function of three coordinates x, y, and z, the gradient 

of c is a vector with components dc/dx, dc/dy, dc/dz. In a one-dimensional system, c is a 

function of x only, and the gradient is a scalar, the derivative dc/dx. 
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concentration c giving the number of B atoms per unit volume depends 
only on the x coordinate. The diffusion is governed by Fick’s law: the 
number of B atoms crossing unit area per unit time in the x direction at a 
cross-section of the bar located at x is proportional to the gradient of the 
concentration, i.e. to its derivative with respect to x: 

J(x) = —D de/dx. 

The negative sign means that diffusion tends to make the concentration 
more uniform, i.e. to reduce dc/dx. 

D is the diffusion coefficient. It plays a similar role to the electrical 
conductivity or the thermal conductivity in the transport of electricity and 
heat respectively. 

The diffusion coefficient, usually measured in cm*s~', is generally 
negligible at room temperature (with a value of about 10~*°) and is of the 
order of 107° at the melting point of metals. 

1 

Interpretation of the diffusion coefficient on an 
atomic scale 

Diffusion of an atom ina pure crystal 

The fundamental feature is the fact that an atom has a chance of changing 
places with any one of its immediate neighbours: the mobility of an atom 
will be measured by the average number I’ of jumps that it makes per 
second. Suppose an atom is radioactively marked in a pure element. We 
consider the case of a crystal with a simple cubic lattice. Although this is 
not a realistic example, since no element crystallizes with this type of 
lattice, by using it we avoid geometrical complications in the arguments 
and we end up with a result that can be generalized to the lattices of real 
metals (face-centred cubic, body-centred cubic, etc). 

After 1 jumps, and thus after a mean time ¢ = n/I’, the marked atom is at 
a distance from the origin given by a vector L(t). Because the diffusion is 
completely isotropic, any displacement has an equally probable displace- 
ment in the opposite direction, so that the mean value <L(t)> is zero. On 
the other hand, the magnitude of the mean distance travelled is not zero. 
The atom follows a zigzag path, consisting of n steps each of length a. It 
therefore travels a distance na but the root mean square displacement of 
the atom isaVn ." Thus: 

a (he? aaa. 

‘We are using the solution to a classic problem in the probability calculus, the random walk 
(constant steps in random directions). 
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It is therefore the square of the distance covered by the atom on average 
that is proportional to the time of diffusion. 

When the A and B atoms form an ideal solid solution, i.e. when A and B 

play the same role, an isolated B atom in the A crystal diffuses like the 
marked A atom and it is the same for an isolated A atom in a B crystal. 

Fick’s law 

We have just evaluated the displacement of an atom due to its random 
motion in a solid. We must now show what consequences this has in 
one-dimensional diffusion in a cylindrical bar in which the concentration of 
Bis a function of the x coordinate, and thus obtain Fick’s law. 

We consider a highly simplified situation: a single crystal of a solid 
solution of A and B with a simple cubic lattice, so oriented that one of the 
cubic axes is directed along the axis of the bar (Fig. 5.2). The concentra- 
tion is uniform over each atomic plane but varies from one plane to 
another. Although the atoms move by random jumps in three dimensions, 
the observable result is diffusion in one dimension: the variation with time 
of the concentration of B atoms in successive lattice planes. 

Let two atomic planes P,; and P> have coordinates x and x+a. A B atom 

will jump from P; to Pz with a frequency [/6: this is because it is one of the 
six elementary jumps possible for this atom. The number of B atoms per 
unit area of P, is ca (because the average number of B atoms per unit cell 
of volume a? is ca* and there are 1/a’ unit cells per unit area). The number 
of atoms passing from P, to P, per second is therefore c(x)aI’/6. In the 

same way, the number of B atoms jumping from P to P, is c(x+a)al/6. 
' The two contrary currents do not cancel each other since there is a 

different concentration in the two adjacent planes. 
The flux of B atoms will be: 

r 1 
I) = 6 [c(x) — c(x+a)] = — 3 aTc'(x). 

Py 6 
c(x) c(x+a) 

Py 3 

Fig. 5.2. Calculation of the diffusion coefficient. 
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By identifying this result with Fick’s law, we obtain an expression for the 
diffusion coefficient in terms of a characteristic of the atomic model, the 

frequency with which an atom jumps into a neighbouring site: 

Dia 6 

Or 

D= a Is 

where the symbol I's = ['/6 denotes the jump frequency along the direction 
of the diffusion. 

Diffusion is the result of completely disordered atomic motion. In the 
case of self-diffusion in a pure solid or of interdiffusion in an ideal solid 
solution, there are no ‘forces’ pushing the atoms towards uniformity of 
concentration: it is a spontaneous process, in conformity with thermodyn- 
amics (the increase of entropy in a system with constant internal energy). 

Variation of the diffusion coefficient with temperature 

An atom jumps from one site to a neighbouring one because it is vibrating 
about its mean position as a result of thermal agitation. In general (and 
that means almost always), an atom that is displaced from its site is taken 
back to it by the action of the neighbours forming a cage around it. 
However, the amplitude of vibration is not constant, but fluctuates 

randomly. A fluctuation may occur that is so great that the atom acquires 
sufficient energy to enable it to force its way through the barrier that keeps 
it in place: it will then be found in the neighbouring site. 

Consider a mechanical analogy of this: a ball is rolling on an undulating 
track with two neighbouring minima M, and M, (Fig. 5.3). If the move- 
ment has only a small amplitude, the ball will oscillate in the valley M,. If, 
however, it is activated by an energy greater than mgh, where h is the 
height of the hill between M, and Mg, it will reach the hill, pass over it and 

fall into the valley M>. In a similar way, an atom vibrating around a site, 
will pass into the neighbouring site if it is activated by an energy of 
‘liberation’ Q,. According to Boltzmann’s law, the probability that an 

Fig. 5.3. Mechanical analogy for 
diffusion: a ball on a slide. The 
activation energy for it to jump 
from M, to M, is mgh. 
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atom has an energy Q, is exp(—Q,/kgT). Out of the v vibrations made by 
the atom per second, the number of jumps I will be: 

T= vexp(—Q,/kgT). 

Hence: 

va> 4 D 
D= 1 oxp( 2) Doexo| - 2}. Doexo| -2) : 

6 kpT kpT RT 

Q, is the energy per atom and Q the energy per mole (the ratio Q,/kp = QO/R 

has the dimension of a temperature). 
This is Arrhenius’s law (Fig. 5.4) describing the variation of D with 

temperature, as it does for many chemical reactions that are initiated when 
a potential barrier is surmounted. The exponential in the expression for D 
accounts for the very rapid variation of the coefficient with the tempera- 
ture. 

Fig. 5.4. Coefficient of self- 
diffusion for gold as a function of 

10-' temperature. Confirmation of 
mS 10-8 Arrhenius’s law with Q/R = 

20200 K. 

210" 
Q 107 15 

107 16 

Ieptoe lee 1.6 1.8 
103/T (K~') 

———+—_+4—__+——_ 
823, 9710 625 555 

T (K) 

Experimental measurement of the diffusion coefficient 

How can we predict the curve showing the distribution of concentration in 
a diffusion experiment from the value of the coefficient D? Conversely, 
how can we deduce the value of D from an experimentally determined 
concentration curve? 

Once again, we use the case of one-dimensional diffusion along a bar 
formed from two metals A and B welded together. The concentration c of 
B atoms is a function of two variables: the distance from the interface and 
the time of diffusion. The mathematical tool we use is a partial differential 
equation, which turns out to be the transposition of the equation for heat 
flow (Fourier’s equation) to the case of diffusion. Integration of this 
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equation gives c(x, t) as a function of the diffusion coefficient D. 
Conversely, if c(x, t) is measured, D can be calculated. 

Box 21 

The diffusion equation: solution to the bar problem 

Consider the problem of one-dimensional diffusion along a bar of 
constant cross-section S. The concentration of B atoms c(x, ¢) 
depends both on the space variable x and the time variable t. We 
assume that it is independent of any other space variables, i.e. that it 
is constant over any plane cross-section of the bar. We have seen that 
the flux of atoms diffusing across unit area at the coordinate x is given 
by Fick’s law: 

J(x) = —Doc(x, t/ox. 

(Remember that the notation dc/dx indicates the partial derivative of 
c with respect to x, i.e. the derivative with respect to the single 
variable x, the time being constant.) 
We shall now complement this equation by another which connects 

J and c. This is the equation of conservation or of continuity, which 
simply expresses the balance in the quantities of matter involved. 
Consider a slice of the bar between the coordinates x and x + Ax 
(Fig. 5.5). During an interval of time At, J(x)SAt atoms arrive at the 
left-hand surface of the slice and J(x + Ax)SAt leave the right-hand 
surface. If J(x) and J(x + Ax) are different, the total number of atoms 
contained in the slice Ax will vary: there is an accumulation if J(x) > 
J(x + Ax), i.e. more will arrive than leave. The excess number of 
atoms is: 

oJ (x) 

Ox 
SAxAt. [J(x) — J(x + Ax)|SAt = — 

Dividing by the volume of the slice, SAx, we obtain the variation in 
concentration during the time Ar. Hence: 

0c oJ 

ot Ox 

Fig. 5.5. Diffusion along a 
selection of a bar in the 

establishment of the diffusion 
equation. J(x + Ax) 
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Combining this equation with Fick’s law, we obtain: 

dc 0 0c 
—— 2 D “| = 0. 
ot Ox Ox 

By taking the case in which D is independent of x (i.e. of c), the 
following equation, known as the diffusion equation, is obtained: 

dc a-c 
D ee cess 

ot ax? 
= 0. 

This is an equation relating the partial derivatives of c(x, t) and which 
enables c(x, f) to be found by integration if the initial ‘profile’ c(x, 0) 
is known. 
We give the solution of the equation for a simple case in which: 

c(x, 0) = cp forx <0 
c(x, 0) = Oforx > 0. 

We introduce the dimensionless variable u = x/2V Dt and see 
whether c might be a function of this variable only. To do that, we 
first calculate the partial derivatives of c with respect, to x and ¢ in 
terms of the partial derivatives of c with respect to u: 

ao od ft 

ax 8x du 2VDi du 

Differentiating again: 

ac 1 de 

ac ADE da 

Similarly: 
gc. du dc x dc 

Substituting these expressions in the diffusion equation, we have: 

de 1 d*c 

AV Dt? du 41 du? 

It can be seen that the derivative c’ = dc/du satisfies the differential 

equation: 

de’/c’ = —2udu 
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which can be integrated to give: 

c'(u) = ae 

This can be integrated once more to give: 

c(u) =a L e “dv + b. 
0 

The initial conditions rewritten with the variable u are: 

liimc=0 and limc=cp. 
+2 Ze 

wT : 
, we obtain: Using the fact that | * edu = 

0 

b= e/2 anda=c/V 7. 

c(u) = co _ e’'dy |. 
2 Veto 

Thus: 

The term: 

2 u 2 

erf (u) = | e dv 
Vv 0 

is usually called the error function and is an integral of the Gaussian 
distribution function. Returning to the variables x and ¢, we thus 
have: 

_ 2)... c(x,f) = 5 1 = err (, ; ) : 

Figure 5.6 gives the curve of c(x, ¢) as a function of x at different times 
and for a diffusion coefficient equal to 0.16 x 10°°cm*s!. 

Fig. 5.6. Solution of the diffusion 
equation for a bar: c(x, t) fort = 
Is, 4s, and 16s and with D = 0.16 
x10 °on’s |. 
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The main experimental difficulty is the measurement of the local 
concentration with sufficient geometrical accuracy. The transition zone 
after diffusion is always very thin, of the order of a tenth of a millimetre. 
Measurements will therefore only be meaningful if the analysis is made on 
slices which are about a micrometre thick. The Castaing electron micro- 
probe makes this possible without affecting the specimen (Fig. 5.7). There 
are many other techniques, but they involve the destruction of the 
specimen to be analysed. _ 

100 

aD 

= 
3 50 uranium zirconium 
= 

32 

25 

400-200. 0 200 400 600 800 am 

Fig. 5.7. Measurement of the diffusion profile with the Castaing electron micro- 
probe: a U-Zr pair held at 1000°C for 48 hours (by kind permission of J. Philibert). 

Experimental measurements are in good agreement with the main 
theoretical results we have just given. Firstly, we often find that the curve 
showing the measured concentration in the interdiffusion of a pair A-B is 
described by the equation derived from Fick’s law, i.e. that a value for D 
can be found for which the theoretical concentration curve agrees well with 
experiment. In particular, it is confirmed that the thickness of the 
transition zone (Table 5.1) is proportional to the square root of the time of 
diffusion. If D is determined at various temperatures, the diffusion 
coefficient is found to obey Arrhenius’s law: the logarithm of D varies 
linearly with 1/T (Fig. 5.4) and the slope of the line gives the parameter 
Q./kg = Q/R. 

For metals, this parameter lies in the range from 10000 to 30000K. An 
empirical relationship in common use that gives more precise values is: 

Q/R ~ 17T; 

where 7; is the melting point. There is one important exception: silicon has 

an activation energy which is about twice that of a normal metal. 
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Finally, in the theoretical formula: 
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the measured values of D give a value for v which is very much the same 
order of magnitude as the frequencies of atomic vibrations (10’* to 
10° Fiz). 

For a metal in its solid state at the melting point, the diffusion coefficient 
is about 10-°cm?s~'. For the metal in liquid form at the same tempera- 
ture, the coefficient is about 10~°. This indicates how much easier it is for 

diffusion to take place in matter in a disordered state. Silicon at its melting 
point has a coefficient of only 10~'* because of its unusual value for the 
activation energy of atomic jumps. This property makes the operation of 
doping silicon (or germanium for that matter) by diffusion a very long 
process. On the other hand, it ensures that components with zones having 
different doping levels are stable, even at operating temperatures above 
room temperature. 

The role of vacancies in diffusion 

So far, we have assumed that atomic jumps are the cause of the interchange 
of atoms between lattice sites without specifying the mechanism by which 
such an exchange might occur. We have simply characterized it by its 
activation energy, which can be measured experimentally from the varia- 
tion of D with temperature. We must now attempt to find out whether the 
activation energy predicted for the atomic jump by an atomic model agrees 
with the value obtained experimentally. 

In a perfect crystal, where the atoms are as close-packed as possible, the 
jump of an atom into a neighbouring site must be accompanied by the jump 
of the dislodged atom in the reverse direction: there is no room for an 
interstitial atom in a close-packed lattice. When two neighbouring atoms 
exchange sites, they must pass through an intermediate position in which 
the lattice is greatly distorted around them (Fig. 5.8). The energy required 
to reach this situation has been calculated and is of the order of SeV per 
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atom, or more than twice the experimental activation energy (about 2eV). 
This would correspond to a value for D that is 10° times smaller at 1200K 
than the measured coefficient. In other words, to reach a given state of 
diffusion at a given temperature would require a time that was 10° times 
longer than is actually observed. The process is therefore impossible. 
Other mechanisms for the interchange of atoms in a perfect lattice have 
been suggested, with equal lack of success. 

The difficulty is resolved by invoking vacancies (SM, p. 107), which 
occur in all crystals at high temperatures. An atom adjacent to a vacancy 
can become lodged in the empty site by leaving its own site empty (the 
vacancy is then said to migrate). Because there is plenty of space in a 
vacancy, this movement requires a much smaller activation energy than 
that needed for a displacement in a close-packed crystal. It is easy to see 
from simple models (e.g. SM, pp. 108-109) how vacancies and their 
migration make it possible for atoms to move over large distances. 

The mechanism of vacancy-assisted diffusion can be subjected to an 
accurate calculation. First of all, the number of vacancies at equilibrium at 
a given temperature is known: the probability that a site will be vacant is 
proportional to exp(—E;/kg7T), where E; is the energy of formation of a 
vacancy. We also know that the probability of a vacancy migrating to an 
adjacent site is of the form exp(—E,/kpT), where Ey is the activation 
energy for the displacement of the vacancy. The two quantities E; and 
Eq, can be measured using experiments that are independent of the 

phenomenon of diffusion. 
There are two conditions to be fulfilled if an atom is to jump: (1) there 

must be a vacancy at a neighbouring site and (2) the vacancy must migrate. 
The probability that such a jump will occur is therefore the product of the 
two probabilities, i.e. 

eee een aes kpT . lool 2 an we 

In the expression for D (p. 249), therefore, the parameter Q, will be 
replaced by (E; + Eg). The measured values for Q, and for Ey and Eg 

provide satisfactory confirmation of the predicted relationship, which is a 
convincing demonstration of the reality of vacancy-assisted diffusion. 
An accurate calculation of the diffusion coefficient based on this 

mechanism is complicated by the following effect. The marked atom, 
located at M, jumps into the adjacent vacant site N: there is a chance that 
the next jump would take the atom from N back to the site M that has 
become vacant. Both jumps are then ‘lost’ since we are back in the initial 
situation. The diffusion coefficient is reduced by such a ‘correlation’ 

between two successive jumps. 
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(a), 

Fig. 5.9. Intergranular diffusion of radioactive Fe in iron: (a) metallographic image; 
(b) autoradiography. There is no diffusion along the twin boundaries since no 

disorder occurs there (by kind permission of P. Lacombe). 

Any increase in the number of vacancies above their concentration at 
thermal equilibrium or, more generally, any local distortion reducing the 
closeness of the packing of the atoms, will accelerate diffusion. In a 

polycrystalline solid, the grain boundaries are disordered regions: along 
the common surface between the lattices of adjacent grains, interstices 
occur between atoms located in irregular positions with respect to both 
lattices. Intergranular diffusion is easier than that taking place through the 
body of the grain, as is shown by the following experiment. A radioactively 
marked metal layer is deposited on the surface of the specimen, which is 
then heated to a temperature that is not high enough for normal diffusion 
to be appreciable. Intergranular diffusion, however, is already active: 
marked atoms that have travelled along the grain boundaries can be 
detected by autoradiography (Fig. 5.9). 

Diffusion in real systems 

We have envisaged the interdiffusion of one element into another in a very 
simple case, the ideal solid solution, i.e. such that the replacement of one 

element by another does not cause any appreciable change in the overall 
structure or the energy. This was a first approximation, rather unrealistic 
but nevertheless useful. 

To go any further, we must take into account the fact that the atoms are 
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different. Although they may mix in a solid solution, the various sites that 
an atom can occupy are not equivalent from the energy point of view, some 
being more favourable than others. It follows that the motion of this atom 
in the solid is no longer purely random. The atom is subjected by its 
environment to forces that affect its motion. The result of this is that 
several of the statements made in this chapter are not always true. Thus the 
diffusion coefficient of A into B may be different from that of B into A or 
the coefficient may depend on the concentration, which would prevent 
Fick’s law from being integrated as it was in Box 21. 
We shall not tackle these complications, even though they are essential 

for a correct description of diffusion in real solids, since they require the 
introduction of ad hoc parameters that cannot be derived from atomic 
models on their own. Once again, we meet the problem raised by 
insufficient knowledge of interatomic interactions. We should not forget, 
however, that the simplified model is correct for self-diffusion and that it 
has enabled us to establish the role of vacancies in diffusion. 
We give a few examples of some experimental observations that only a 

more refined theory of diffusion can explain. 

The Kirkendall effect 
We return to the experiment involving diffusion between two metal bars in 
intimate contact, but in a case where the diffusion rates are very different 
in the two directions. Thus, for a silver—gold pair, silver diffuses more 
easily into the gold than vice versa: the ratio of the two coefficients at 
915°C is about 3. 

The two bars are welded, and at the same time the interface 1s marked 

with very fine filaments of an inert metal, tungsten. After treatment at 
915°C for 24 hours, the gold-silver boundary is observed to have moved by 
100 um from the plane marked by the tungsten filaments. The region in the 
gold that has absorbed silver has a greater volume than that in the silver 
containing gold: this is the Kirkendall effect. 

In addition, in a polished cross-section of the bar, small cavities several 
micrometres across located in the transition zone can be seen under the 
microscope (Fig. 5.10). These cavities are due to a condensation of 
vacancies that have become supersaturated following their migration 
during the diffusion process. The Kirkendall effect is a direct indication 
that vacancies play a role in diffusion. 

Inverse diffusion and the formation of GP zones 
In general, diffusion is the atomic mechanism by which a solid can evolve 

towards its equilibrium structure. When, for a pair of metals, this 

equilibrium state is a single solid solution phase, the effect of the diffusion 

is to make the local composition uniform. There are, however, other 

possibilities. 
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Fig. 5.10 The Kirkendall effect: interdiffusion in the U-—Zr pair held at 750°C for 
160 hours (by kind permission of J. Philibert). 

Consider a supersaturated solution A—B obtained as follows: starting 
from a homogeneous solid solution at a high temperature where the 
solubility of B is high, we take it suddenly to a low temperature where the 
solubility of B is much lower. Immediately after the quench, the solid 
solution is supersaturated since its composition cannot change instan- 
taneously: the equilibrium state is a two-phase alloy of ‘precipitates’ rich in 
B included in an A-B solution at the saturation limit and therefore poor in B. 

This equilibrium state is reached by means of diffusion. In this case, the 
diffusion creates heterogeneity: this is inverse diffusion, whose mechanism 
we now examine. 

Because of random atomic motion, it is possible for a group of B atoms 
to gather at a particular point and these, together with a few A atoms, 
assume the structure of the precipitated phase over a volume amounting to 
a few unit cells. Since it is the equilibrium structure, the B atoms arriving at 
the surface of this small seed find energetically favourable positions there, 
so that they remain attached to the seed. As a result, the motion of atoms 
towards the seed is not compensated by motion in the opposite direction as 
occurs in normal diffusion. Thus, in the first place, the seed grows because 
of the B atoms coming from a halo of the matrix poor in B; secondly, the 
halo receives B atoms arriving by normal diffusion from regions of the 
matrix still rich in B. The matrix at the equilibrium concentration develops by 
surrounding the precipitated grains: this is the equilibrium state (Fig. 5.11). 

This process of ‘inverse diffusion’ causes the alloy to become hetero- 
geneous. However, a detailed analysis shows that, except near the 



Diffusion in real systems 259 

Fig. 5.11. Inverse diffusion. 
Enlargement of precipitate grains 
(concentration c3) in the 
supersaturated solution (c2) and 
the formation of the equilibrium 
matrix (c;). 

precipitates, which are like potential wells as far as the B atoms are 
concerned, the diffusion in the space between the precipitates is in fact 
normal and this region tends to become homogeneous. 

Such a mechanism can only operate if the temperature of the metal is 

high enough to produce an adequate diffusion rate. Consider an aluminium 
alloy with 5% copper. We have already described (p. 211) the develop- 
ment of the saturated solid solution after a quench. At a low temperature it 
becomes heterogeneous, but the Al,Cu precipitate is not formed: the 
copper atoms gather into very small clusters (10nm) at the nodes of the 
solid solution, the Guinier—Preston or GP zones. The single phase of the 
solid solution persists, but becomes heterogeneous. This is another inverse 
diffusion process. 

Although the GP zones are very small and numerous, they can only form 
if the copper atoms travel through distances distinctly greater than those 
predicted from the normal diffusion coefficient of copper in aluminium at 
room temperature. 

The explanation of this paradox is as follows: the calculated diffusion 
coefficients are related to the solid solution containing the number of 
vacancies at thermodynamic equilibrium: at room temperature, this is 
almost zero, whereas at 550°C it is about 10~* per atom. Quenching the 
alloy not only keeps the copper atoms dispersed in the supersaturated solid 
solution but it also preserves an excess of vacancies which have not had 
time to disappear towards the surface, the grain boundaries and other 
sinks. Thanks to the excess vacancies, diffusion in quenched alloys is much 



260 Diffusion 

faster than it normally is at room temperature. That is why GP zones can 
be formed: their existence is a good demonstration of the involvement of 
vacancies in diffusion. 

Some applications of diffusion in solids 

Diffusion plays an essential role in all solid state reactions and structural 
transformations, particularly in alloys. As the diffusion coefficient varies 
very rapidly with temperature, it is easy to understand why the latter must 
be carefully controlled in all high-quality metallurgical processes. 
We mentioned in the last section the precipitation that occurs in 

supersaturated solid solutions. The reverse effect is the homogenization of 
alloys after their production by casting the fused metal and before putting 
them into use. We showed in a special case (Box 21), that the concentra- 
tion of an element in a heterogeneous metal is a function of the parameter 
x/V Dt. This is a general relationship, easily applied and extremely useful. 
If, for example, we need to eliminate heterogeneities of dimension x, the 

treatment times at a given temperature vary as the square of x. In addition, 
the treatment time is also inversely proportional to the diffusion coef- 
ficient: if this doubles for a temperature rise of 10°C, the treatment time is 
halved. 

When two metal components adhere to each other, there is a transition 

zone between them formed by mutual diffusion. This clearly requires the 
surfaces (a) to be very clean, (b) to have shapes that fit each other exactly, 
and (c) to be pressed firmly together. Even if all these conditions are 
satisfied, however, diffusion will only occur if the metals are mutually 

soluble. Thus, lead is completely insoluble in iron: an iron sheet quenched 
in a bath of melted lead emerges from it without retaining a surface layer of 
lead. This is the opposite of what happens when the iron sheet is plunged 
into a bath of melted tin or zinc (tinplate, galvanized iron), since tin and 
zinc are soluble in iron. 

The brazing of two metal components involves interposing a thin liquid 
film of a fusible alloy (Pb—Sn or Cu-Ag) between them. The elements in 
this alloy diffuse into the components, giving the brazed joint a good 
mechanical strength. 

Sintering enables a compact and solid metal component to be obtained 
from fine powders of one or more metals, and is achieved by compressing a 
block of the powders while maintaining it at a high temperature. Densifica- 
tion occurs because diffusion takes place between the grains in contact: 
high temperature treatment homogenizes the product and enables alloys to 
be obtained that are difficult to produce by solidification from the melt. 
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Diffusion can also occur in non-metallic solids. The adhesion of the iron 
in reinforced concrete is due to the diffusion of the surface layer of iron 
oxide both into the iron and into the calcium silicates of the concrete. 

Cementation 

A mild steel component (i.e. one with a low carbon content) is held at a 
high temperature for several hours in contact with powdered carbon or ina 
CO-rich atmosphere. The surface of the iron is covered with the carbon, 
which then diffuses into the iron, while its surface concentration is 

maintained constant by the action of the carbon monoxide. The carbonized 
metal layer gradually increases in thickness at a rate proportional to the 
square root of the time of treatment, as indicated above. Eventually, when 
the layer has become about Imm thick, the steel is quenched: the 

carbonized layer is then transformed into martensite (p. 213) and the 
component thus has a hardened surface. This is cementation or case- 
hardening, a technique long used in the steel industry. 

The surface of steel can also be hardened by nitriding: nitrogen is made 
to diffuse into the iron, producing grains of extremely hard iron nitride. 
This process is used for hardening the pinions used in car gearboxes. 

The diffusion of carbon or nitrogen into iron are examples of completely 
asymmetrical pairs. If a carbon block is placed in contact with iron, the 
carbon diffuses into the iron because an interstitial iron—carbon solid 
solution can exist (SM, p. 94). The iron, on the other hand, is completely 
insoluble in the carbon and cannot diffuse into it. 

Oxidation of metals 

Most metals exposed to the atmosphere become covered with an oxide 
layer even at room temperature and the process generally occurs more 
quickly as the temperature is raised. The applications of a metal are partly 
determined by the nature and degree of the oxidation that takes place, 
which in turn depend crucially on diffusion. Out of the many oxidation 
processes that occur, we take a look at one which is quite common. 

Consider a metal whose surface is covered by a homogeneous and 
continuous oxide layer. The metal and the oxygen in the atmosphere are 
therefore separated from each other by this layer (Fig. 5.12), so that it can 
only grow if the reacting atoms diffuse through the oxide. At the internal 
metal—oxide interface, an atom or, more precisely, a metal ion M* and an 

electron, leave the metal. Both diffuse through the oxide. At the external 
oxide—oxygen interface, the electron transforms an oxygen atom into an 
O™ ion and the M*O™ pair is deposited on the oxide crystal and makes it 
grow. The layer therefore grows on its outer surface. 

The rate of growth is determined by the slowest of the complex diffusion 
processes of the M* ion and the electron. Here, this is the diffusion of the 
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metal ions since the electron is much more mobile. The diffusion is assisted 
by defects in the oxide crystal, which are vacancies, or missing ions. As a 
result, diffusion is far from being negligible even at room temperature. The 
ion flux across the layer is proportional to the concentration gradient of the 
ions and, since the difference between the concentrations at the two 

surfaces is constant, the diffusion rate decreases as the layer becomes 
thicker. The oxidation rate is indeed observed to fall as time goes on: the 
thickness of the layer increases as the square root of the time. 

For some metals, it is not the metal ion but the oxygen ion which diffuses 
most quickly through the oxide. In this case, the M*+O™ reaction takes 
place at the inner interface: the layer then grows at its base and no longer 
on its outer surface. 

The condition for fast growth of the oxide layer is that the diffusion 
through the layer should be easy, which implies that many vacancies should 
be present. This is so in oxides with non-stoichiometric compositions. 
Thus, iron oxidizes very quickly above 600°C because ferrous oxide FeO, 

which is only stable above 560°C, is particularly rich in vacancies. 
Conversely, the oxides Cr,O3 and Al,O; contain few vacancies: the layer 

grows slowly and even this growth almost stops as soon as its thickness 
exceeds ten nanometres or so. In these cases, an oxide layer protects the 
metal from further oxidation. This is what happens in the so-called 
stainless steels, Fe-Ni—Cr: these are covered with a thin film of Cr,O3 
which completely seals it. In the Ni-Cr superalloys with Al, used because 
of their mechanical strength at high temperatures (p. 233), the protective 
layer is of alumina. 

Oxidation is only one of a whole family of chemical reactions taking 
place in the solid state. All of them are controlled by diffusion, the process 
that enables the reacting atoms to encounter each other. Diffusion in the 

solid state is a difficult process, however, so that the reactions are relatively 

slow: they are faster in liquids and faster still in gases. 
Chemical reactions and structural transformations in the solid state are 

manifestations on a macroscopic scale of the perpetual ‘jostling’ of atoms, 
which increases as the temperature rises and is in fact a measure of the 
temperature. Yet instruments of the highest resolving power, electron 
microscopes or X-ray diffractometers, give us a picture of a perfectly 
ordered crystalline solid. 
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The two points of view are not incompatible because by far the majority 
of the atoms in a crystalline solid are merely vibrating about fixed 
positions, and it is the order displayed by these that X-ray and electron 
diffraction are revealing. 

Nevertheless, out of all the many millions of vibrations that each atom 
makes every second, there is one now and again which, because of its large 
amplitude or because of a fortuitous correlation between the movements of 
its neighbours, enables it to escape and become lodged in a neighbouring 
site. Such displacements become more frequent as the mean atomic 
agitation increases. They are more likely to occur in perturbed regions of 
the crystal and near the few empty sites persisting in the close-packed 
structure of the solid. 

On a time scale related to the period of atomic vibrations, such 
displacements are very rare events indeed, yet it is these events that 
underlie many of the practical properties of solids and make it possible to 
produce many of the structures most sought after by technologists. 
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g-factor 140 
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glasses 123 
fracture 220, 224-5 
toughened 225 

glasses as semiconductors 124 
glide, dislocation 203 
gold, heat capacity 7 
GP (Guinier—Preston) zones 210, 259 
grain size 214-15 

and plastic deformation 206 
graphite 135 
grey iron 225 
Griffith theory of fracture 223-4 
group velocity 18 
gyromagnetic ratio 139 

hard magnetic materials 167 
hardening 

precipitation 209 
structural 211 
work 192, 205-6 

harmonic oscillator 2, 6, 44 

heat capacity 1 
Debye model 13, 25 
Einstein model 8 
electronic 75, 85 

of gases 1 
molar, defined 1 
of monatomic crystal 3 
of polyatomic crystal 33 
table of values 7 

Heisenberg’s uncertainty principle 9 
helimagnetism 157 
holes 107, 112 
hysteresis 163 

impurities and mechanical strength 216 
impurities and resistivity 99 
impurity clouds in dislocations 215, 217 
inelastic neutron scattering 31-3, 40 
infra-red absorption 42 
insulators 56 

band theory 94 
integrated circuits 120 
intercalation compounds 135 
interdiffusion 243 
internal energy 1 
internal friction 188 

interstitial diffusion 243 
interstitial solid solutions 208 
intrusions 237 
invar 46 
inverse diffusion 257 
ionic conduction 71 
ionic crystals 42,56, 61, 72 

brittle fracture 220 

Index 

cleavage 220, 222 

high conductivity 72 
ionic polarization 61 
ions as carriers 71 
iron 

diffusion of carbon in 189 
diffusion of nickel in 244-5 
ductility 190 
elastic properties 182 
ferromagnetic properties 155 
ferromagnetism 148 
magnetically soft 166 
Young’s modulus 8 

iron garnets 159 

jet engines 234 
junction transistor 118 

kinking in zinc 218 
Kirkendall effect 257 

Landé g-factor 140 
Langevin function 147 
lead 

Debye temperature 29 
Einstein temperature 29 
elastic properties 182 
heat capacity 7 

linear chain, vibrations 
diatomic 35 
monatomic 15 

lithium 
compressibility 45 
thermal expansion 45 

Liiders bands 216-17 

magnetic field, action on solids 136 
comparison with electric field 136 

magnetic moment 
atomic 137 
current loop 137 
of electron 138 
orbital 138 
spin 138 

magnetic permeability 166 
magnetic susceptibility 144, 166 
magnetite 147, 158 
magnetization 

calculation of 144 
spontaneous 149, 150, 160 

magneton, Bohr 138, 141 
magnets, permanent 137, 167 



manganese oxide 156 
maraging steels 214 
martensite 213 
martensitic transformations 212 
mean field approximation 148, 153 
mean free path 

electron gas 74-5 
molecules in gas 51-4 

Meissner effect 129, 130 
mercury, superconducting 127 
metal fatigue 235 
metals 

brittle fracture 225 
conductivity 73, 95 
oxidation 261 

mobility 
of carbon atoms iniron 190 
of carriers 70 

modes of vibration 13-14 
acoustic 39 
crystal 18, 23, 30 
electron in box 79 
optical 40, 42 
rod 13-14 

molecular field, Weiss 148, 153 
molybdenum 
Debye temperature 29 
Einstein temperature 29 

mumetal 166 

necking 191, 226 
_ Néel temperature 156 
neutron diffraction 31-3, 156 
neutron scattering, inelastic 31-3, 41 

nichrome 99 
nickel 

band structure 93 
compressibility 45 
diffusion into iron 244-5 
ferromagnetic properties 148, 155 
thermal expansion 45 

nitriding 261 
non-polar dielectrics 58, 61 
normal modes, see modes of vibration 

n-type semiconductors 103 

Ohm’s law 70 
optical branch 37, 40, 42 
orbital angular momentum 138 
orbiting electron 138 
organic conductors 134 
oxidation of metals 261 
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paramagnetism 142-7 
Pauli exclusion principle 82,91, 140 

permalloy 166 
permanent magnets 137, 167 
permeability, magnetic 166 
permittivity, relative 60 
permittivity of free space 60 
Petch’s equation 207 
phonon energy 23 
phonons 23, 30, 31, 42, 49 

scattering of electron waves 99 
photoconductivity 103 
photoelectric threshold 102 
photoresistors 103 
piezoelectricity 62, 187 
pinning of dislocations 189 
Planck’s constant 9 
plastic deformation 176, 190 

plastics 191 
p-njunction 115 
p-n-p transistor 118 
Poisson’s ratio 178 

table of values 182 
polar molecules 59, 60 
polarization 58 

of dielectrics 59 
electronic 61 
ionic 61 
mechanisms 60 

polyacetylene 135 
polycrystalline materials 186, 193, 204, 206, 

226 
polygonization 232 
polythiazyl 135 
positive hole 107, 112 
potassium 

compressibility 45 
heat capacity 87 
thermal expansion 45 

precession of atomic moments 143 
precipitation hardening 209 
preferred orientation 186 
ptfe (teflon), electret 66 
p-type semiconductors 104 
pyroelectricity 66 

quanta, energy 9, 23 
quantization 9, 23, 30 
quantum numbers 9 

magnetic 138 
quantum theory 

of heat capacity 9 
of metallic conduction 77, 84 
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quartz 
piezoelectric effect 62, 187 
resistivity 56 

quartz oscillator 64 

reciprocal lattice 20, 39, 50 
refractive index 57 
refractory alloys 232 
reinforced concrete 261 
relaxation time 187 
remanence 164 
resistivity 56 

defined 70 
residual 99 
variation with temperature 76, 97, 99 

rigidity modulus 176, 179-80, 198 
rock salt, cleavage 220, 222 

rubber 174 

sapphire 55 
saturation 

ferromagnetic 164, 167 
magnetic 144, 147 

scattering 
inelastic neutron 31-3, 40 
X-ray 31 

Schmid’s law 199 
self-diffusion 243 
semiconductors 101 

amorphous 123 
carrier density 110 
doped 103 
extrinsic 105 
impurity 105 
intrinsic 101 
n-type 103 
p-type 104 

shear stress 180 
silica, vitreous 123 

silicon 
amorphous 124-6 
carrier density 113 
conductivity 102 
doped 103 
energy gap 101 
intrinsic semiconductor 101 
perfection of crystal 199 
photoconductor 103 

silicon carbide 234 
silicon-iron 166 
silicon nitride 166 
silver 

compressibility 45 
Debye temperature 29 

Index 

Einstein temperature 29 
non-superconductor 127 
thermal conductivity 55 
thermal expansion 45 

sintering 260 
slip 193 
slip bands 194 
slip planes 194 
sodium, conduction 95 
sodium chloride 

cleavage 220, 222 
electric susceptibility 60 
heat capacity 34 

soft magnetic materials 165 
solar cells 126 
solid solutons 208 
solid state electronics 

compared with vacuum tubes 122 
source (transistor) 120 
spring, extension of 174 
steel, mild 

ageing 217 
elastic properties 173 
tensile curve 215 

steels 212 
ferromagnetic 168 
maraging 214 

stress 173 
substitutional solid solutions 208 
superalloys 229, 233 
superconductivity 126 
susceptibility 

electric 59 
magnetic 144, 166 

temperature 
critical (superconductivity) 127 
Debye 24, 28, 29, 54, 98, 132 
effect on conductivity 76 
effect of ductility 190 
effect on electron energy 84 
Einstein 11, 29 
Néel 156 
variation of resistivity 76, 97, 99 

tempering 213 
tensor 60 
thermal conductivity 46, 51 
thermal expansion 43 
ticonal 168 
tin, cry of 219 

torsional pendulum 188, 190 
toughened glass 225 
tourmaline, pyroelectric 66 
trace elements 

effect on properties 240 



transistor 
field effect 120 
p-n-p 118 

TIF-TCNO 134 
tungsten 

compressibility 45 
elastic properties 182 
thermal expansion 45 

tungsten filaments 233 
twinning 219 

ultrasonics 64 
Umklapp processes 48 

vacancies 72 

and diffusion 243,255 
and resistivity 100 

vacuum tubes (valves) 121 
compared with solid state devices 121 

valence band 95, 105 
valence electrons 93 
vibrations 

atomic 8 
linear chain 15, 35 

rod 13 

water, electric polarization 61 

Index Pil 

wave propagation 
in a linear chain 17 
in polyatomic crystals 39 
inarod 13 

wave vector 14 

elastic waves 48 
electron 88,95 
phonons 49 

Weiss domains 160 
Weiss molecular field 148, 153 
whiskers 201 
Wiedemann-Franz law 76 
Wohler diagram 235 
work-hardening 192, 205-6 

and resistivity 100 

X-ray diffraction 31-3, 211 
X-ray scattering 31 

yield drop 215 
yield points 215 
YIG (yttrium iron garnet) 159 
Young’s modulus 178, 186, 198 

relation to other moduli 78 
table of values 182 

zero-point energy 9 
zinc, deformation of 218 
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Solid-state physics is a rapidly developing subject of wide-ranging 

interest. In a clear and accessible style, this book provides an introduc- 
tion to the solid state, and looks at the technological importance of 
some of the recent advances in this field. 

In his previous book, The structure of matter: from the blue sky to 

liquid crystals, André Guinier described various models for the atomic 
structure of matter. Here, the authors show how the macroscopic 

properties of solids—electrical, magnetic, thermal, and mechanical— 

can be understood in terms of such models. The approach is descrip- 

tive, and provides the non-specialist with a clear, up-to-date account of 

the science of materials. For those who wish to study the subject in 

more depth, a detailed mathematical treatment is presented in boxed 

sections, which can be omitted on first reading. 
This book provides an excellent introduction to the solid state for all . 

interested scientists, and will be of value to students, teachers, and 

research workers in solid-state physics and related fields. 

André Guinier, former President of the International Union of Crys- 

tallography and Member of the Académie des Sciences, is Emeritus 

Professor of the Université Paris-Sud. 

Rémi Jullien is a professor researching solid-state physics at the 
Université Paris-Sud. 
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