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Ihave attempted to give you a glimpse . . . of what there may be of soul in 

chemistry. But it may have been in vain. Perchance the chemist ts already 

damned and the guardian of the pearly gates had decreed that of all the 

black arts, chemistry is the blackest. But if the chemist has lost his soul, he 

will not have lost his courage and as he descends into the inferno, sees the 

rows of glowing furnaces and sniffs the homey fumes of brimstone, he will 

call out: 

Asmodeus, hand me a test tube. 

G. N. Lewis, physical chemist, circa 1920 
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n looking back over this, my magnum opus, what strikes me is not 

how much there is, but how much has been omitted. Writing a his- 

tory of a science that makes the story accessible to scientist and non- 

scientist alike is a tricky proposition. For me, it meant leaving out the 

lives of many fascinating people for the sake of continuity and 

glossing over many intricate details when explaining concepts with 

words, rather than our accustomed equations. I do not feel too guilty 

as there are several wonderful histories of physical chemistry that have 

been written without these flaws (please see the bibliography and my 

endnotes). I gratefully used these sources throughout this writing. 

However, if I have offended anyone by my omissions, please accept 

my apologies, and if there are inaccuracies, please let me know. On an 

encouraging note, a student who read part of my manuscript com- 

mented, “I would have done better in thermodynamics if I had read 

this first.” On hearing this, I felt hope of achieving my goal. 
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Preface 

We most people think of physics they think of black holes, big 

bangs, and other astronomical events. While the physics of our 

celestial universe is decidedly astounding, there is another universe, 

right here on Earth, that is every bit as amazing. This universe 

embodies crushing forces and vast vacuums and energies sufficient to 

perpetuate or destroy life. This universe contains particles that zip 

around at incredible speeds or swim lazily in elaborate formation: col- 

liding, merging, glowing, and swirling in an intricately choreo- 

graphed ballet. This universe undergoes ordered pulsations and 

chaotic explosions. It exhibits astonishing symmetry and breath- 

taking beauty. It is the universe of atoms, molecules, and the interac- 

tions between them, and the physics that explores this diminutive 

world is as fascinating as the physics that probes the stars. 

This is the physics of chemistry—physical chemistry—and its goal 

is to tease out and tame the forces responsible for the structure and 

reactions of matter, be it in skyscrapers, enzymes, or stars. 

Physical chemistry began with attempts to understand reactions 

(J 
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wielded by sorcerers and alchemists and progressed by the use of 

mathematics, physics, imagination, and perseverance to comprehend 

and control what was previously attributed to magic. In the process, 

physical chemists have discerned the composition of planets and stars 

without leaving Earth. Physical chemists have learned how to predict 

if a reaction will fizzle or flame, heat or cool, explode or fail—before 

the beakers are poured together. They have developed three-dimen- 

sional models of biological materials and used these models to design 

drugs. Physical chemists have worked on the billionth of a meter scale 

in the curious world of nanotechnology and investigated the intricate 

interplay of interactions that lead to zebra stripes and the beating of 

the human heart. 

In these pages, I hope to paint a picture of the splendor and com- 

plexities of physical chemistry as clearly as I can. As an instructor of 

physical chemistry and an active researcher in the field for many years, 

I believe the concepts of physical chemistry can be rendered compre- 

hensible by analogy and example. I also hope to convey in the stories 

of the heroes and heroines of physical chemistry—the mavericks who 

ran outside the herd, the renegades who took the path less traveled, 

the visionaries who saw connections that others could not—the sin- 

gular liberation of their minds. It is a story of those who dared to per- 

form forbidden arts in their quest for understanding and suffered the 

consequences of their daring. It is a story of madmen and -women 

who drowned in paralyzing depression one moment and exploded 

with stellar creativity the next. It is a story of rebels, recluses, and mis- 

anthropes . . . but it is the very eccentricity of these pioneering cham- 

pions that allowed them to see beyond the obvious and defend their 

conclusions in the face of derision. 

In this history you will meet those who knowingly endangered 

their health for the sake of understanding and those who were 

attacked by their peers for dissenting ideas. You also will meet those 

who flirted with fraud to further their fame or based their conclusions 

on the flimsiest of grounds. You will meet those who merely strug- 

gled to understand, but were martyred by wars or extinguished by 

mobs who could not tolerate a freethinking mind. You will meet rule- 

breakers and soothsayers, prodigies, swindlers, and nerds—but with 
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one thing in common: the compulsion to go where others will not 

and the need to know, whatever the cost. 

The story of physical chemistry is a celebration of the free spirit, 

the glory of the unabashedly odd. Physical chemistry is about lis- 

tening to everyone, questioning everything, learning from every- 

where, and synthesizing it all, to create your own—unique—magic. 
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.. . physical chemistry is not just a branch but it is the flower of the tree. 

Wilhelm Ostwald, circa 1890 

sked about chemistry, most people envision boiling beakers and 

fuming flasks or recall vague memories of a class in organic, gen- 

eral, or biological chemistry, but few are familiar with physical chem- 

istry. Yet the theory of physical chemistry is what enables us to deter- 

mine the power of explosions, the composition of clouds, and the 

structures of particles millions of times smaller than the point of a 

pin. We use physical chemistry to decide the metabolism of dinosaurs, 

the makeup of stars, and the rates of reactions within the living cell. 

The goal of physical chemistry is to develop mathematical models 

that explain and predict the structures of molecules and the forces 

that govern the behavior of chemicals in reactions. Through the 

results of physical chemistry, a synthetic chemist can calculate, before 

pouring the potions together, what should react—or overreact—and 

how much heat should be required or produced: knowledge that 

(iw )° 
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could spell the difference between rocket liftoff or launch pad dis- 

aster. Using the tools of physical chemistry, a biochemist can build a 

model of a biological molecule, such as the enzyme the HIV virus 

uses to copy itself, and predict the shape of a molecule that would 

block its function and prevent HIV replication. 

But for all its importance, physical chemistry is far from a house- 

hold phrase. One reason is that physical chemistry is a mathematical 

science whose product is equations, and as such rarely finds itself in 

the popular press. Another reason is that physical chemistry, com- 

pared to the venerable fields of organic and inorganic chemistry, is a 

relatively young, science. Classical physics—that is, pre-quantum and 

pre-relativity physics (cannonball physics)—began with the observa- 

tions of Aristotle, advanced with the mathematics of Newton, and 

became a solid systematic science by the beginning of World War I. 

Chemistry—as a repertoire of materials and reactions—began with 

the need for medicines, grew with the industries of civilization, and 

became an impressive body of knowledge by World War I. In con- 

trast, at this time, physical chemistry was a still nascent science. The 

job of physical chemists is to explain the structure of molecules and 

the behavior of chemical reactions, but at that time they did not have 

a complete description of even the simplest atom. 

Chemistry’s lag behind physics in the development of mathemat- 

ical models has caused some commentators to regard chemistry as a 

somewhat humbler science. Anthony Standen, author of Science Is a 

Sacred Cow, captures the sentiment: “Chemists are, on the whole, 

like physicists, only ‘less so.” . .. Much of what they do is. . . related 

to cooking, instead of a true science.”! But this assessment is not 

accurate. The delayed development of mathematical models for 

chemistry has nothing to do with the relative mental capabilities of 

the physicist as compared to the chemist nor is it a question of the 

validity of either science. Rather it has more to do with the subject 

matter under study. Whereas the classical physicists were observing 

the motions of planets and apples falling off of trees, the chemists 

were trying to understand the behavior of matter, which is composed 

of atoms. And the atom is a very nebulous thing. 
An atom cannot be seen with the naked eye, not even with an 
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ordinary microscope. Nowadays physical chemists can “see” atoms 
with sophisticated microscopes that use electrons instead of light— 
but even then it is debated as to what exactly is being “seen.” To get 
an idea of the size of an atom, consider a single grain of sand. It’s very 
small, perhaps only a half of a millimeter wide, but you can still see it. 
How many silicon atoms would it take, lined up side by side, to span 
a grain of sand? About 2 million. 

In addition to dealing with subjects that are too small to see, 
physical chemists also have to contend with the fact that these atoms 

are always in motion. Atoms and molecules fly across the room like 

gas-phase bullets or squiggle and squirm like a can of worms in even 

the coldest of condensed materials. In the 1600s, when Johannes 

Kepler published his brilliant conclusions about the motion of the 

planets, he did so based on the observations of an unhappy hermit, 
Tycho Brahe. Brahe was able to provide ample data about the motion 

of the planets because he could go out and make a sighting; come in, 

have dinner, then make another sighting; go to sleep, wake up, then 

make another sighting—all without worrying that the planets might 
have moved out of view. The chemists’ object of study, however, can 

zoom around at hundreds of meters per second and suffer some bil- 

lions of collisions in the same amount of time. They have such low 

mass that any use of light to measure their position knocks them off 

course. Imagine how far astronomy would have progressed if the 

moon wavered in its orbit every time someone pointed a telescope at 

it. Atoms and molecules don’t even have the courtesy to have nice 

rigid boundaries or to bounce off each other in simple elastic 
rebounds. Atoms and molecules are sticky. They tend to deform or 

explode on collision in all manner of ways. At least the projectiles of 

cannonball physics have the good grace not to turn into new mate- 

rials when they roll into one another. 

Given the above considerations, the physical chemists may perhaps 

be forgiven their slower progress—or even be applauded for making 

any progress at all. Only after the foundations of mathematics, physics, 

and chemistry had been laid could the physical chemist begin to build. 

Before scientists could develop the physics of things you can’t see, 

they had to develop the physics of things you can see, which is why 
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our history of physical chemistry includes much that is the history of 

physics, too. Clear concepts of motion, force, light, and action at a dis- 

tance were essential to the development of physical chemistry. To 

develop a theory of chemistry, the physical chemist needed an infra- 

structure of mathematics; therefore, the history of mathematics factors 

into the history for physical chemistry, too. Physical chemists use the 

power of statistics, algebra, geometry, trigonometry, calculus, group 

theory, differential equations, vector analysis, and more. But physical 

chemistry is based on physical phenomena, and these phenomena have 

an existence independent of the mathematics used to describe them. 

In short, the physics of chemistry can be described through analogy 

and example, without the explicit need for equations, an objective that 

will be pursued throughout these pages. 

But perhaps the highest hurdles for physical chemistry, and 

indeed all science, can be summed up in one unwieldy word—para- 

digm. This unfortunate word has the power to repel by its very form 

and sound but it is the one word that suits our purpose. A paradigm 

is an organizing principle or pattern—the basic assumption on which 

the rest of a theory is built—and as such is very useful. Unfortunately, 

once a paradigm is embraced, it is exceedingly hard to unseat. The 

philosophers of Pisa still believed different masses fell at different 

rates—Aristotle’s dictum—even after Galileo offered powerfully log- 

ical arguments against it. Mendeleev, the originator of the periodic 

law on which the periodic table is based, refused to accept the exis- 

tence of the noble gases—helium, neon, argon, krypton, radon— 

because they did not fit his original version of the table. Berthelot, a 

major player in the development of thermodynamics and reaction 

rates, destroyed others’ careers because he could not accept the idea 

of spontaneous reactions that did not give off heat, effectively deny- 

ing the existence of modern portable “cold packs.” Einstein, in ref- 

erence to Max Born’s interpretation of matter waves as probability 

waves, said, “God does not play dice with the universe.” But, to chal- 

lenge another paradigm, given the success of Born’s theory, perhaps 
fhe does. 

Because the subject of physical chemistry is the study of objects 

you can’t always see, undergoing changes you can’t always measure, 
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and behaving in ways you can’t always predict, physical chemistry has 
a long history of encountering contentious resistance to the paradigm 
shifts it has proposed. Therefore the study of the history of physical 
chemistry is instructive because it cautions us to examine our ideas 
carefully and take care that we do not impose previously held beliefs 
on newly acquired data. History teaches that we must always question 
our assumptions and even authority. When it comes to science, skep- 
ticism is healthy. We only make progress when we see beyond the pre- 
sent paradigm. To appreciate or participate in the advancement of sci- 
ence, we must be prepared to revise, sometimes drastically, our per- 
ception of the universe. In many ways, the history of physical 
chemistry is an ideal venue for examining paradigm shifts, interwoven, 
as it is, with the history of chemistry, physics, and mathematics. 

Accordingly, in Part I of this book, “Aristotle and the Ancients,” 

we begin by examining how the Greeks, building on Egyptian and 

Babylonian mathematics, achieved an inaugural paradigm shift: They 

separated science from religion. One Greek in particular, Aristotle, 

parented another major paradigm shift: He put forth the idea that the 

input of the senses is more important than imagination in deducing 

the nature of the world. Unfortunately, the senses can deceive, as any 

optical illusion will demonstrate, and many of Aristotle’s conclusions 

were flawed. However, his efforts constituted an important begin- 

ning and an essential step forward in systematic thought. 

The Greek society was eventually conquered by the Romans, but 

their philosophy survived in the Byzantine civilization and became 

assimilated into the collected wisdom of the Arab Empire. Thus, the 

Greek tradition was transmitted to the budding European cultures via 

the Arab Empire and Byzantines fleeing the Turks. The Europeans, 

inspired by the ideas of Aristotle and the knowledge of the Arabs, 

absorbed both, but did not immediately digest them because they were 

locked in a Judeo-Christian tradition of not questioning authority. 

Even in this stifling atmosphere, however, a curious breed of magicians 

would sow seeds of skepticism that would be the earmark of the phys- 

ical chemist, and it is through these magicians that the physical 

chemists trace their intellectual heritage. Unlike the alchemists who 

laboriously sifted through ancient knowledge in the search for false 
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gold, the magician merrily collected the curious, both old and new— 

magnets, mirrors, potions, and explosives—and examined them with 

an attitude of incredulity, an eye to tomfoolery, and a realization that 

all that was to be known was not necessarily in the past, but could be 

in the future. During the European Renaissance change also came from 

another quarter—the artisans—as personified by Leonardo da Vinci, a 

painter and mechanical engineer by trade. The work of these artisans, 

driven as it was to build better armaments as well as create beauty, 

inspired a closer look at the conclusions of Aristotle. 

In Part II of this book, “The European Scientific Revolution,” 

which spans the period 1500 to 1800, we find that criticizing Aris- 

totle became fashionable in Europe in the early part of the era, even 

among the respective popes. However, the Protestant Reformation 

and the resulting Thirty Years War sobered the Roman Catholic 

Church into reasserting its authority in scholastic matters through 

the terrible tool of the Inquisition. As a result, Aristotle was rein- 

stated. But the Church could do little, as could anything else, to truly 

impede scientific progress at this point. Experimental refutations of 

Aristotle’s conclusions inspired the radical notion that even the input 

of the senses had to be subjected to empirical test. Hence, the impor- 

tant ideas of motion and force became quantified and more clearly 

understood. At the culmination of the Scientific Revolution, the 

vague notion of elements evolved from Aristotle’s earth, air, fire, 

water into Lavoisier’s distinct materials with quantifiable properties 
such as mass and reactivity. 

At the beginning of Part III, “The First Atomic Wars,” we will see 

how this clarified notion of elements led Dalton to propose an atomic 

theory of matter built on a solid foundation of experimental findings, 

thus setting the stage for a true science of physical chemistry. We will 

then see how the clarification of the concept of heat, coupled histori- 
cally with the European Industrial Revolution, was joined to the 
atomic theory of matter through statistical mechanics. This new 
theory brought about a momentous change in the way science per- 
ceived the world: No longer was nature a predictable, clockwork 
machine that could be quantified with infinite precision; now science 
had to admit some knowledge was only accessible through statistical 
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probabilities. By using this approach, in the shadow of an impending 
world war and surrounded by fervent controversy, the question of the 
atomic nature of matter was, for the moment, put to rest. 

In Part IV, “Physics and Chemistry Come to Light,” we will see 
how new discoveries in the nature of light, electricity, and structure 
fed into Dalton’s atomic theory and culminated in the quantum 
theory of energy and matter, the repercussions of which are still being 
wrestled with today. Building on the results of quantum mechanics, 
in Part V, “The Flourish of the Physical Chemist,” we will see how in 
the space of a hundred years there came a veritable explosion of 
understanding. From the mid-1800s to the mid-1900s, physical 
chemistry came into its own. Scientists around the world tackled the 

problems of quantum chemistry, heat, chemical equilibrium, solution 
properties, electrochemistry, and the rates of chemical reactions. The 

importance of intermolecular forces and the role of relativity were 
tackled. The puzzle of chemical affinity, that elusive, capricious 
attraction between chemicals, was subjected to mathematical mod- 
eling with unpredicted, yet pleasing, results. 

Then, in Part VI, “The Fruits of Their Labors,” we will examine 

some of the marvelous applications of physical chemistry, many of 

which, such as physiology, may seem surprisingly far flung from either 
physics or chemistry. But modern physical chemists take pride in the 

fact that they are able to contribute to all branches of science and that 

they do not fall into any particular fold. They are an independent lot, 

as their calling demands. They have to be able to bridge the disci- 

plines and converse in many camps. A good physical chemist is more 

than a student of mathematics, chemistry, and physics: Modern phys- 

ical chemists need to be students of biology, geology, and astronomy 

because this is where their skills apply. 
Hopefully this survey of the history of physical chemistry can help 

demystify the discipline and make the precepts more understandable, 

but it must be admitted that nothing can completely simplify the sci- 

ence. However, it is my hope, that in light of this history, the reader 

may come to see the beauty amid the complexity. To produce The Last 

Supper, da Vinci used the mathematics of perspective, the chemistry of 

pigment and paint, and the physics of the scaffold. To produce his tran- 
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sition state theory, Henry Eyring used the physics of quantum 

mechanics, the chemistry of molecular structure, and the mathematics 

of statistical mechanics—but when he was finished, for the world and 

all time, he, like Leonardo, had created a work of art. 



Part I 

Aristotle and the Ancients 

MATHEMATICS, MOTION, AND MACHINES 

INTRODUCTION 

Plato 1s dear to me, but dearer still ts truth. 

Aristotle, circa 350 B.C.E. 

eorge Santayana, American philosopher and poet, said, “Those 

who cannot remember the past are condemned to repeat it.”! 

While this statement may ring true for political history, how can it 

apply to the history of science? Surely we do not have to reinvent the 

telescope or rediscover the laws of motion just because we forget the 

circumstances of their introduction. Yet there are lessons we risk 

losing if we neglect our scientific past. The first is that science is 

evolving. It is not static. It is not complete. We must remember that 

perfectly intelligent people, in culturally rich societies, have con- 

structed reasonable and intuitive models that later proved to be 

incorrect. Therefore, if we are to progress, we must not become com- 

placent. We must continually question our assumptions, no matter 
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how authoritatively stated. The second is that scientific insight knows 

no boundaries. It may come from the rich or the poor, the free or the 

slave, the East or the West. Scientific inspiration may come to anyone, 

anywhere, who is willing to learn. 

And so we begin with the ancient Greeks. The Greeks assembled 

some of the earliest mathematical models for the physical world and 

introduced the notion that mathematics is an end unto itself; that is, 

mathematics for the sake of mathematics. Aristotle took Greek phi- 

losophy a step further: He showed that the ethereal philosophies of 

the ancients could also be applied to the natural world. We will pro- 

ceed to examine how the Arabs helped introduce Aristotle’s ideas, as 

well as new ideas in medicine and mathematics, to budding European 
societies. 

The early Europeans often venerated the knowledge of the 

ancients to the denigration of their own efforts because they had seen 

the wonders of the ancient world. For example, the earliest Euro- 

peans built from bricks discarded by the Romans because they did 

not know how to make their own.? For the medieval Europeans, 

algebra from the Arabs was like a bolt from the blue. We will see how 

this spell began to be broken by the skepticism of the European 

medieval magicians. The mechanical engineers of the European 

Renaissance will then provide two essential ingredients for the Euro- 

pean Scientific Revolution: the ability to measure and the belief that 

things should be measured. Early European science was not just a 

matter of learning about natural phenomena, it was a matter of 
learning that they could learn. 



Chapter I 

The 

Ancients 

HEAVENLY GEOMETRY 

MV SP KV & 
Whatever we Greeks receive we improve and perfect. 

Plato, circa 400 B.C.E. 

he ancient Greeks were excellent architects, perceptive politi- 

cians, and brilliant philosophers—but a bit muddle-minded 

when it came to the physical sciences. So it may seem rather incon- 

gruous, in this history of physical chemistry, to focus so much on the 

Greeks. But we will, and for several good reasons. While they added 

little in the way of actual scientific fact, they established important 

models and patterns of thinking in mathematics, logic, and 

astronomy. Because of certain political and social events, the prece- 

dents established by the Greeks would strongly influence, for better 

or for worse, the development of physical chemistry for 2,000 years. 

The names of the Greek philosophers, in particular Aristotle, would 

be invoked by academics, magicians, scholars, and sorcerers. Finally, 

it may be that the ancient Greeks were among the first in the Western 

world to divorce science from religion and attempt to explain 

observed facts without immediate reliance on divine intervention. 

Thus cast out of the garden of religion and superstition, they origi- 

( 297 | 
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nated new modes of thinking about mechanics, mathematics, logic, 

and astronomy. 
Though the importance of logic and mathematics to chemistry 

may be self-evident today, one may still ask how astronomy is related 

to chemistry. We belabored the point that atoms are so tiny they 

cannot be perceived by ordinary means, so how could the study of 

objects hundreds of quadrillions of times larger than atoms be impor- 

tant to physical chemistry? One reason is that atoms, like poles of a 

magnet, sometimes attract, sometimes repel. Understanding such 

forces that act at a distance is fundamental to the progression of phys- 

ical chemistry. One of the first such forces to be described was that of 

gravity, and the understanding of gravity came from astronomy. 

But the understanding of gravity did not come from Greek 

astronomy because the ancient Greeks had it wrong, which points 

out another connection between ancient Greek astronomy and phys- 

ical chemistry—models. The Greek astronomical models, which had 

the heavenly bodies traveling in perfect circles and mostly around 

Earth, were quite ingenious and very reasonable, given the instru- 

mentation of the day, but they were wrong. Therefore consideration 

of their work helps us acquire the healthy skepticism necessary for 

rigorous science. Models are only as good as the methods used to 

test them. Nice, neat models always need to be regarded with a crit- 

ical eye. In physical science, there is always the danger of falling in 

love with the system rather than the nature that inspired it. We shall 

see instances of this fallacy throughout our story of physical chem- 

istry. Perhaps the most important gift to be gleaned from the work 

of the ancient Greeks is that it is always possible to devise a perfectly 

plausible model that is wrong—a memory that will haunt the efforts 

of physical chemists through their history and one that cautions 
them now. 

Nonetheless, the ancient Greeks also provided a way over the 

hurtle they created: mathematics, in particular geometry and 

trigonometry. Geometry and trigonometry are essential tools for 

studying the motion of particles acted on by forces, which includes 

atoms as well as planets. It was not just the machinery of mathematics 

the Greeks provided, they initiated a new way of thinking about 
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mathematics, too. To the Greeks mathematics was an art, an enter- 
prise for its own sake, justified by its beauty alone. 

The people we call the ancient Greeks are actually the Dorian 
Greeks who came to Greece from places unknown around 1000 
B.c.E.1 By 500 B.c.£. they had also founded cities in Asia Minor, on 
the Mediterranean coast, on islands such as Crete, and in southern 
Italy and Sicily. The theory has been put forth that in some of the 
more far-flung outposts, where they experienced contact with other 
civilizations and were out of contact with their own, the Greeks 
learned the habit of thinking for themselves and relying less on tradi- 
tion.? Etymological evidence indicates that the word “philosophy” 
was an African word with roots found in southern as well as northern 
African languages? and there is good evidence that Thales (640-546 
B.C.E.), a representative of the earliest Greek philosophers, was edu- 

cated in Africa. Though later Greek philosophers would eschew 

work in any form and deem commerce demeaning, Thales was an 
entrepreneur who made his fortune by cornering the market in olive 

oil presses. Beginning the tradition that would become the classic 
custom of the Greek philosopher, he took up the study of mathe- 
matics, particularly the geometry he had learned from the Egyptians. 

Geometry, the mathematics of points, lines, angles, shapes, and 

the relationships between them, is an elegant discipline. Although the 

Egyptians and Babylonians had knowledge of some rudimentary rela- 

tionships, such as multiplying the length of two sides of a rectangular 

space to find the number of tiles needed to cover its area, they used 

this knowledge to help them construct buildings and mark off fields, 

but they did not attempt to extend their methods in ways that were 

not immediately useful. The ancient Greeks thought differently. The 

Greeks became enthralled with the game of mathematics. Although 

this approach may at first appear pointless to the engineers among us, 

this new way of thinking was to have a tremendous impact on the sci- 

ences. Time and again, pure mathematics—the pursuit of mathematics 

for its own sake—would result in mathematical tools that would even- 

tually find important, pragmatic applications. When the later Euro- 

pean mathematician, Reimann, had initially presented his geometry 

based on curves instead of straight lines, it had no practical application 
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whatsoever.> But when Einstein needed a mathematical system with 

which to frame his theory of general relativity, he found and used 

Reimann’s geometry. Accordingly, as we will see throughout this his- 

tory, the ancient Greeks will have geometry in place when Galileo 

needs it; Noether, Galois, and their ilk will have the mathematics of 

symmetry and group theory in place when the quantum chemists need 

it; the mathematics of statistics will be in place when Boltzmann needs 

it; and Newton will have calculus in place when everyone needs it. 

For the early Greeks, discoveries in mathematics were everywhere 

for the finding. Because of its beauty and symmetry, a ninety-degree 

angle—the “L” angle made by the sides of a perfect square—became 

a focus of interest. Thales found that extending two lines from the arc 

of a semicircle to the ends of its base will always form a right angle. 

He is said to have sacrificed a bull in thankfulness to the gods when 

he discovered this one. 

A right triangle is a triangle that contains one right angle. The 

side opposite the right angle is called the hypotenuse. The famous 

theorem that states that the sum of the squares of the sides of a right 

triangle will equal the square of the hypotenuse is called the 

Pythagorean theorem after Pythagoras, who was probably Thales’ 

student. The Babylonians already knew of this relationship, but the 

followers of Pythagoras, the Pythagoreans, were the first to offer a 

proof. Proof by logic was another way in which Greek mathematics 

differed from Babylonian and Egyptian mathematics. The beautiful, 

logical proofs had such elegance that the Greeks became enamored 

of proofs and decided that every proposition in every field could only 
be accepted if it had a logical proof. 

The Greeks employed three main systems of proof: induction, 

deduction, and reducio ad absurdum. The first, induction, is the 

development of a working premise based on a series of observations 

or an obvious truth and is the fundamental logic that we use every 

day to navigate our way through life. For instance, using induction, 

we might decide that “all dogs bark” based on the fact that all the 

dogs we have observed to date were able to bark. Thales, based on 
his observations on triangles, might have used induction to decide 
“all triangles with two equal angles have two equal sides.” 
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The next type of proof, deduction, is based on the premises 
found by induction. In deduction, the conclusion must follow from 
the premises. For instance, 

Premise: All dogs bark. 

Premise: That animal is a dog. 

Conclusion: That animal barks. 

Or for Thales 

Premise: All triangles with two equal angles have two equal sides. 

Premise: That triangle has two equal angles. 

Conclusion: That triangle has two equal sides. 

From these examples, perhaps, it can be seen why this elegant 

logic works well for mathematics, but is limited in it usefulness in the 

physical sciences. A biologist or a veterinarian may have seen the flaw 

in the first argument: While it is true that the vast majority of dogs 

bark, there is one breed of dog that does not: The basenji. In an 

inductive proof, all it takes is one contradictory example and the 

premise is false. So the first premise is false, and for the ancient Greek 

logicians, this would have been a showstopper. They would have 

thrown out the whole argument. But notice how the conclusion 

might still be useful to a biologist or veterinarian for purposes of 

species identification: Barking is one of the usual properties of a dog. 

So while rigorous deductive proof is useful in physical science, it 

cannot be regarded as the only goal as it was in ancient Greece. The 

premises must be weighed for their usefulness and conclusions tested 

for their validity. 
Reducio ad absurdum is the process of rejecting a premise by fol- 

lowing its consequences through to an absurd conclusion. Take again 

the premise “all dogs bark.” From that premise we would have to 

conclude that the neighbor’s dog, dead some several years and buried 

in the back yard, is capable of sitting up and barking—an obvious 

absurdity. We will see Galileo employ veducio ad absurdum in his 

analysis of motion. 
The Greeks delighted in the bounty and beauty of their mathe- 
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matics. After Thales and Pythagoras followed many others. The Ele- 

ments of Euclid (circa 300 B.c.£.) is such a refined compendium of 

geometry that it was used until the mid-1800s as the standard text in 

geometry.° 
It is easy to imagine how the Greeks, empowered as they were by 

their elegant system of geometry, must have believed that they could 

solve any mystery, including the mystery of the stars. And, in truth, 

they nearly did. Trigonometry, as a set of relationships between sides 

and angles of a triangle, was also known to the Babylonians and 

Egyptians and had been used by them to calculate distances and areas 

for the laying out of fields and the construction of buildings. The 

Greeks pointed their triangles to the heavens. 
Of the Greeks who attempted astronomical calculations, some of 

the most notable are Hipparchus (190-120 B.c.£.) and Ptolemy 

(100-170 c.£.)—not to be confused with the Egyptian dynasty of the 

same name. Although Hipparchus and Ptolemy flourished a few hun- 

dred years after Plato (circa 428-348 B.c.E.), they were still strongly 

influenced by his thinking.” 

Plato, whose name is usually regarded as synonymous with Greek 

philosophy, has not been mentioned so far in this history, but his 

influence cannot be understated. Plato is usually remembered for 

metaphysics rather than mathematics and as being diametrically 

opposed to the empiricist. He denigrated the input of the senses and 

argued that tangible objects were but imitations of the ideal object. 

Therefore, to Plato, the planets and stars were perfect orbs in the sky 

and their movements were in perfect circles.8 

Again, we dwell on this ancient astronomy because of the impor- 

tance of the lesson it teaches: The ancient Greeks were so skilled in 

geometry and trigonometry that they were able to piece together a 

very believable astronomical theory that accounted for their observa- 

tions, though based on completely erroneous assumptions. Later, when 

other theories such as the atomic model for matter were proposed, its 

defenders would point to how well the theory agreed with observation 

and its detractors would point to the errors of the ancient Greeks. 

The great moral of ancient Greek astronomy is that a perfectly 

plausible theory can be developed that explains and predicts—a sun 
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in orbit around Earth explains sunrise and predicts sunset—but is still 
incorrect. Therefore a careful scientist learns to use phrases such as 
“there is good evidence for” or “the data point to” but to eschew any 
statement that rings of “this proves.” Science must be viewed as a 
work in progress: A new premise must generate predictions that can 
be tested, then the results of the test must be used for refinement of 
the premise, which leads to refinement of prediction, which leads to 
refinement of test—which leads to refinement, refinement, refine- 
ment—ever closer but never at the end. It is easy to imagine why this 
approach did not sit well with the Greeks, who had cut their teeth on 
the beautifully exact systems of geometry and trigonometry. 

In mathematics, the definition of line and angle can be agreed 
upon and a proof based on these definitions is an end, a conclusion. In 

the sciences, the natural world cannot be “defined,” but has to be 

accepted as is. In physical chemistry, as in all science, our models are 

just that—models—not the real thing. A floor plan of a house is a 

useful model and can be used quite conveniently to predict how many 
people can live comfortably in the house. But people live in the actual 

house, not the floor plan, and there is a world of difference. In the sci- 

ences the word “prove” is shunned in deference to the realization that 

a final “proof” is only as good as the premises on which it is based. 
For example, an observer on Earth, such as an ancient Greek 

astronomer, would see Mars trace an apparent zigzag pattern across 

sky. Our modern explanation is that Earth and Mars are on two dif- 

ferent orbits around the sun, so we are like a child on a carousel 

watching a waiting parent: sometimes the parent appears to approach 

and sometimes the parent appears to recede. However, the Greeks 

were also able to account for the zigzag pattern with another geo- 

metrical construct: epzcycles, or circular orbits within circular orbits. 

To understand why epicycles would produce a zigzag pattern, envi- 

sion a ship far out at sea but still visible on the horizon. If this ship 

were steaming in small circles, to a watcher on shore it would appear 

to be going back and forth on the horizon. Two different models can 

thus explain the same result and given the measurements the Greeks 

were able to make at the time, there was no way to distinguish 

between the two. Eventually, with advances in instrumentation such 



34. AVC! Magick, Mayhem, and Mavericks 

as the telescope, enough evidence would be found for rejecting the 

epicycles, but it would still take a considerable effort to overcome 

intellectual inertia and unseat the notion for good. 

In summary, the ancient Greeks did science a great favor by 

adopting and cultivating mathematics as a pursuit in its own right. 

They also advanced the cause of systematic thought by insisting that 

their truths derive from logic. Some of their conclusions were flawed, 

but taught a valuable lesson in the use, and misuse, of models. And 

as we mentioned above, in addition to mathematics, logic, and 

astronomy, the ancient Greeks also considered mechanics: the study 

of forces and their effect on motion. Because of the importance of 

force and motion to physical chemistry, mechanics, along with its 

progenitor, Aristotle, will be allotted a chapter unto itself. 



Chapter 2 

Aristotle 

... that which is set... in motion, in turn . . . excites motion in another 

portion... 

Aristotle, circa 350 B.C.E. 

5 Woe is a major player in the history of physical chemistry, and 

it is unfortunate that much of the time we are forced to regard 

his influence in a negative sense. While it is true that he established 

erroneous conceptions of motion and matter that had to be uprooted 

before the current notions could thrive, Western science is forever 

indebted to Aristotle for a critical change in the manner in which 

explanations were sought: Aristotle, unlike his mentor Plato, placed a 

high regard on the input of the senses—sight, smell, taste, sound, and 

texture—and established a new legitimacy for observation. Misguid- 

edly, he, as many before and after, found his system so satisfying that 

he attempted to extend it to cover the whole of experience, which 

could not be done. And through a series of political, social, and nat- 

ural circumstances, the input of Aristotle’s senses would grow to have 

(x) 
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Fig. 1. An energetic teacher and writer, Aristotle taught while restlessly roaming around 

the grounds of his Lyceum, so much so that his teachings came to be known as the peni- 

patetic (walking or strolling) school of philosophy. Hecks Pictorial Archive of Military Sci- 

ence, Geography, and History, © 1994 by Dover Publications, Inc. 
SS a 0 Sa 

disproportionate importance in Western science. There would be, 
however, those who understood what Aristotle had actually intended. 
Galileo, while refuting Aristotle’s concept of the heavens, is said to 
have remarked that he wished that Aristotle could have seen his 
experiments. He believed Aristotle would have approved.! 

Busts of Aristotle (384-322 B.c.z.) reveal that he had a pleasant 
demeanor, and though he is said to have talked with a lisp, one can 
see how his countenance commanded respect. Aristotle was raised in 
the relative outback of the Macedonian court while his father served 
as physician to Philip I, the father of the future Alexander the 
Great.” Aristotle no doubt learned something of medicine from his 
father because he retained a fascination with biology and physiology 
throughout his life. At the age of seventeen he was sent to Plato’s 
Academy in Athens, where he remained for the next twenty years. On 
the death of Plato, he wandered through the various Greek colonies, 
traveling eventually to Asia Minor and marrying. After five years 



Aristotle QV & 37 

abroad, Aristotle returned to Macedonia and became tutor to the 
thirteen-year-old child who was to become Alexander the Great. This 
relationship would serve as one of the most important factors in 
securing Aristotle’s place in history.3 

After his years as a tutor, Aristotle returned to Athens, where he 
founded a school of his own, the Lyceum. Unlike Plato’s Academy, 
which was mainly devoted to social and political philosophy, Aristotle 
emphasized the study of biology and nature. Aristotle may have written 

some dialogues for popular dissemination while he was at Plato’s 

Academy, but these have been lost, and the body of Aristotle’s work that 

has come down to us is, in fact, his lecture notes from the Lyceum.4 

In contrast to the meandering style of the dialogues of those days, 

the lecture notes are organized, categorized, and illustrated. In the 

first half of his notes he examines topics such as logic, metaphysics, 

memory, sleep, dreams, longevity, youth, and old age. The entire 

second half, however, concerns biology: History of Animals. Aris- 

totle’s extant lecture notes contain some 700,000 words (as trans- 

lated into English from the original Greek) and when one considers 

that 100,000 words make a good-sized novel, this amounts to seven 

good-sized novels—handwritten in columns, on parchment, in 

scrolls, complete with anatomical diagrams. As energetic a teacher as 

a writer, Aristotle taught while restlessly roaming around the grounds 

of his Lyceum, and his teachings came to be known as the peripatetic 

(walking or strolling) school of philosophy. 

Aristotle was fascinated by the quest for system. Plato, Aristotle’s 

mentor, had expended a great effort to systematize politics, meta- 

physics, and even the art of living. Euclid would organize geometry 

by introducing an axiomatic system in which theorems are derived 

from basic principles. This type of systematization was what Aristotle 

envisioned for physical science: the synthesis of a set of axioms, based 

on common sense observations, from which the whole of physical 

experience could be explained. To this end he employed classification 

schemes and the system of deductive logic, taking as his premises the 

input of his senses. 

However, conclusions based solely on human sensation can be 

incorrect. A classic example is the moon. When we see the full moon 
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low on the horizon, we see an apparently gigantic orb. But later in the 

night, when we look up at the moon in the sky, we see what appears 

to be a much smaller object. Has the moon shrunk? Not according to 

modern science. Nowadays we explain this perception as an optical 

illusion: The mind compares the size of the moon to the objects 

around it, and on the horizon the moon appears huge with respect to 

the trees and buildings by it. High in the sky there are no similar ref- 

erence points, so the moon appears smaller. But in Aristotle’s world 

there were no optical illusions. What was perceived was real. 

Aristotle should not be blamed for his reliance on the input of the 

senses. The human mind has adapted for survival, not science, and 

the mind interprets its perceptions without conscious control, often 

for the better. Most babies, placed on the edge of a glass-covered 

precipice, will not venture out onto the glass, even when tempting 

objects are placed on the glass or a parent stands on the glass and 

coaxes.> The baby perceives a danger and will not be convinced it is 

not there. 

Plato suggested a more flexible system for arriving at premises: 

the dialectic method—a method of inquiry that utilizes a constant 

questioning of assumptions. The dialectic method is a complex and 

difficult approach, but it has the advantage of being open ended: A 

final conclusion may never be reached, but the theory can continu- 

ously be refined. But Aristotle rejected the dialectic method just as 
Plato rejected sensory intelligence. 

Our contemporary approach to science is a refined and extended 

combination of the Aristotelian and Platonic systems, which has 

come to be called the scientific method. In the scientific method one 

first observes then forms a hypothesis, or guess, to explain the obser- 

vations. The hypothesis is tested by systematic experiment and, based 

on the results of the tests, the hypothesis is refined and the cycle 

repeated. This method incorporates the Aristotelian approach of pro- 

ceeding from observation or experiment, but also allows for con- 
tinual refining of the interpretation. 

The open-endness of the modern scientific method would not 

have sat well with Aristotle. Aristotle’s passion for orderliness caused 

him to reject what he could not immediately see. Through his obser- 
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vations he arrived at his infamously erroneous theories, notably the 
four-element theory, the belief in the continuous nature of matter, his 
erroneous notions in mechanics, and his support of the geocentric 
theory of the solar system. 

Aristotle’s four-element theory is found in his compendium 
Meteorology, described by his biographer L. Minio-Paluello as being 
the corpus of Aristotle’s “physical chemistry.”© The contents of 

Meteorology indicate how closely he would have identified with the 

goal of physical chemistry as practiced today. For example, modern 

chemistry begins with the classification of materials by different phys- 

ical or chemical properties. A physical property is a characteristic that 
a material will have while standing alone on the shelf, such as its color 

or the temperature at which it melts. A chemical property requires 
the admission of another material to be measured, for instance, flam- 

mability is a chemical property and the tendency for flammability can 

only be measured by providing oxygen and heat. Aristotle spent a 

good deal of time delineating the physical and chemical characteris- 
tics of materials. He also described how materials could form from 

what he took to be the four basic elements: fire, air, water, and earth. 

Although the four-element theory did not originate with Aristotle, 

he embraced it on the grounds of sensory perception. The ancients 

could see that many substances had a watery component, such as 

blood, so they reasoned that water had to be part of their makeup. If 

they could see bubbles escaping when a liquid was boiled, they 

assumed air was part of the composition; a reasonable assumption. 

When wood is burning, the products—fire, smoke, sap, and ash— 

clearly resemble the four elements. Aristotle also used observation to 

support his contention that materials are continuous, not particulate 

(that is, atomic), in nature. He could look very closely at materials 

such as water and not see any separate particles; therefore, matter to 

Aristotle was plainly continuous—so said his senses. However, it is not 

in this arena that Aristotle had the most influence. It was Aristotle’s 

explanation of motion that was the most difficult to derail. 

Motion and its causes and effects were a focus of curiosity for the 

ancients and remain items of interest today. The reasons are practical 

as well as esthetic: The design of machines requires an understanding 
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of motion as does the explanation of the flight of cannonballs and the 

energy of atoms. Aristotle again based his notions of motion on 

observation. He observed that an object moved when he pushed it 

and eventually stopped moving when he didn’t. To explain continued 

movement, he postulated that when he initiated the motion in the 

object he also initiated a movement in the air: The air rushed into the 

spot where the object had been to prevent a vacuum and this move- 

ment of air perpetuated the motion when he removed his hand. Just 

as rationally, Aristotle concluded that heavier objects fall faster than 

light ones because he observed a feather fall more slowly than a rock. 

Nowadays we attribute this difference in the rate of falling to air resis- 

tance, and we know that a feather and a rock will fall at the same rate 

in a vacuum, but this notion still fee/s counterintuitive because it runs 

against our common experience. To Aristotle’s credit it must be 

noted that it took until about 1600 for Galileo to prove him wrong, 

until about 1700 for Newton to make a general statement of the law 

of gravity, until about 1900 for Einstein to provide an improved the- 

oretical explanation for gravity, and we still don’t know what exactly 

gravity is.” But, ironically, part of the cause for the delay was the suc- 

cess of Aristotle and his emphatic, authoritative statement of what his 

senses told him had to be true. It was also Aristotle’s insistence on 

sticking with the sensory that led to his most celebrated error: the 

geocentric model of the solar system. 

Actually, much of what the ancient Greeks knew about astronomy 

was correct and cleverly deduced. The spherical shape of the Earth 

was immediately obvious to the ancient navigators who noted that 

the positions of the stars relative to the horizon changed as they sailed 

north or south. And anyone who has witnessed a lunar eclipse has 

seen that the shadow of the Earth on the moon is curved, as had been 

reported by Aristotle. Eclipses also provided evidence that the moon 

is smaller than the sun: When the moon passes between the Earth and 

the sun the moon appears to cover the sun. If the moon were larger 

or the same size as the sun, it would appear to swallow the sun. (This 

principle can be demonstrated by moving one’s thumb between one’s 

eyes and a distant object larger, then smaller, than the thumb.) 

The model of the solar system that Aristotle adopted was based 
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on the notions of Eudoxus of Cnidus (408-355 B.c.z.).8 In this 
model Earth is in the center of the universe. To Aristotle, the obser- 
vation that all things fall toward Earth made sense if one assumed 
Earth was the center of everything. The motion of the sun was 
explained by locating it on a great sphere that rotates around Earth. 

The stars and planets, likewise, occupied rotating spheres in this 

model. Aristotle elaborated on the theory by adding more spheres 
until the total was fifty-five. Aristotle had heard of heliocentric (sun- 

centered) models for our solar system, but he rejected these for a 

geocentric (Earth-centered) model again on the grounds of what he 

could observe with his own eyes. He could see the sun rise and set. 

If the sun were at the center of the solar system and the Earth were 
rotating around it, then the only explanation for day and night would 

be that the Earth were spinning around. But if the Earth were spin- 

ning around, Aristotle reasoned, then an object tossed into the air 

would not return to the same spot. Ergo, the Earth does not spin and 
the sun is not the center of the solar system. 

Again, in all fairness to Aristotle, it must be recognized that 

although the notion was commonly accepted much sooner, it took 

until the 1700s for direct evidence to be found for the movement of 

the Earth around the sun: In 1729 James Bradley, after years of 

exacting observation and recording keeping, found a slight move- 

ment in the perceived position of very distant stars, in a direction 

opposite of what would have been predicted by rotation of the 

Earth.? He was able to show through careful calculations that the ef- 

fect—the aberration of starlight—was due to the movement of the 

Earth around the sun. 

Shortly after the time of Aristotle, Aristarchus (310-230 B.C.E.) 

proposed a sun-centered solar system. He was a brilliant astronomer 

and in his treatise On the Size and Distances of the Sun and the Moon 

he showed how measuring the angle between the quarter moon and 

the sun could be used to get at the ratio of the distances between the 

moon and the sun.!9 Using this ratio and other clever triangulations 

involving the shadows of the Earth and the moon during solar and 

lunar eclipses, he was able to measure the relative sizes of the Earth, 

the moon, and the sun. Because another philosopher, Eratosthenes, 
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had measured the circumference of the Earth by the shadow cast by 

the sun at two different locations and triangulation, Aristarchus was 

then able to estimate the absolute size of the sun and the moon. But 

Aristarchus had no real proof for his proposition that the sun was in 

the center of the solar system, and because his model, based on cir- 

cular orbits, did not explain phenomena such as the unequal length 

of the seasons, he was not very confident of his theory. His specula- 

tions were side-railed in favor of Aristotle’s geocentric theory for the 

next 1,500 years. 
The geocentric theory, as with many of Aristotle’s ideas, persisted 

because it seemed correct. Aristotle’s theories required only the senses 

for verification. Aristotle’s lecture notes read as an emphatic statement 

of fact, with none of the questioning tone of the dialogues. In addition 

to the intuitive appeal of his.arguments, another factor that conspired 

for ascendancy of Aristotle and his ultimate acceptance as a preeminent 

authority in medieval Europe was the legitimate success of some of his 

compatriots such as Euclid and a physician called Galen. 

We have already mentioned the work of Euclid and his clear and 

concise compendium of geometry. Given the power of geometry to 

calculate lengths, areas, and volumes of complicated figures, the 

methods of Euclid’s Elements must have seemed like manna to the 

ancient farmers and builders. Similarly, in the ancient world where 

people died routinely and in agony from infection, dental decay, and 

dysentery, Galen’s medicines and methods, though flawed by today’s 
standards, must have seemed like miracles. 

Galen learned medicine while treating gladiators, and in his trials 

with gladiators, he determined that more gladiators recovered if wine 

was poured on their wounds. Wine contains alcohol, which is a dis- 

infectant, so no doubt he had a higher healing rate than physicians 

who did not disinfect. Galen also learned that diet, exercise, bathing, 

and massage were good prescriptions for a number of maladies, but 

because he knew he could sell medicines many times but advice only 

once, he usually recommended these regiments along with an herb or 

two.!! Many of the herbs he used had potent physiological effects 

such as being laxatives and stimulants. Galen also learned that the 

pulse was a good indication of the emotional state, so in a manner 



Aristotle YVv& 43 

reminiscent of a fortune teller, he is said to have held the patients’ 
hands while questioning them about the source of their discomfort. 
The reputation of Galen and the success of some of his cures made 
his writings much valued, as were those of Euclid. As Aristotle was 
rediscovered by the Europeans, his writings gained some regard by 
simple association with the works of Euclid and Galen. 

There were political reasons for the persistence of Aristotle, too, 
namely the success of Alexander the Great. Since his tutelage, 
Alexander had admired the Athenian Greeks, but he was a cos- 
mopolitan conqueror and admired things Persian and African as well. 
He attempted to develop a homogenous civilization under his rule, 
but after he killed Aristotle’s nephew, Callisthenes, for lack of obedi- 
ence (Callisthenes had been dispatched by Aristotle to travel with 
Alexander and gather specimens), Alexander was remorseful for the 

offense to his mentor’s family and tried to make up for it by building 
Greek cultural centers and Greek libraries. He promoted Aristotle’s 
ideas in his Hellenized world, which extended like a scorpion with its 

pincers around the eastern Mediterranean and its bloated torso at the 
Hindu Kush. 

The survival of Aristotle’s ideas may have had to do with climate 

as well as politics and academics: The papyrus plant did not grow in 

Persia, so the peoples of the East had to use parchment for a writing 

material, which is more costly and less convenient, but lasts longer. 

Papyrus scrolls such as the ones Aristotle (or his students) used to 

record his lectures would have decayed in less than a hundred years, 

but the parchment of Persia on which they were copied was more 

durable. The writings of Euclid and Galen as well as Aristotle came 

to find themselves on Persian parchment because the Greek and 

Macedonian civilizations were already aging at Aristotle’s time and 

the conquerors soon became the conquered. Rome subdued Mace- 

donia about 200 s.c.£. and in 150 z.c.z. the Greeks were defeated, 

about the same time as Egypt succumbed. The Romans first sup- 

pressed the new Christian religion that was born in their eastern ter- 

ritories, but then in 313 c.E. legalized it. Christians, so long the per- 

secuted, became the persecutors. They attacked and destroyed the 

ancient institutions in sporadic riots. In one such outbreak they 
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killed, literally tearing limb from limb, one of the last Greek philoso- 

phers, Hypatia, renowned for her mathematical skills. Other scholars 

took heed, fled to Syria and the East, and began to copy Aristotle on 

parchment. So it was that the teachings of Aristotle survived to even- 

tually be transported to Europe. 

Among the important contributions of the ancient Greeks was 

certainly a “heads up” warning to future thinkers: Science must be 

skeptical. Data must be subject to test and verification. Acceptable 

theories must explain avd predict. But another was a “leg up” from 

Aristotle. After Aristotle, Western philosophers were liberated to dis- 

sect and study the natural world as well as the ideal and to use their 

eyes and ears to do so. While it may be true that his legacy was, for 

physical science, imperfect—input from the senses needs to be veri- 

fied—the importance of his contribution is incalculable. 



Chapter 3 

The Arabs 
MOHAMMEDAN AMALGAMATION 

I... think that never blows so red, the Rose as where some... Caesar bled. 

Omar Khayyam, circa 1000, 

The Rubatyat, as rendered by Edward Fitzgerald 

i: two metals mix, the result is called an alloy—except when 

one of the metals is mercury—in which case the mixture is 

called an amalgam. Why the special name for alloys of mercury? 

Because mercury is an unusual metal with unusual properties. To 

begin with, mercury is a liquid at room temperature, which is not true 

for any other metal. Mercury can also combine with an amazing range 

of other metals and does so at room temperature. Gold, for instance, 

is a mercury sponge, as anyone whose golden ring has accidentally 

touched mercury can tell you. The mercury will quickly seep into the 

gold and turn the surface from golden to silvery in appearance. 

It is the combining power of mercury that we allude to when we 

speak of Mohammedan amalgamation: The Islamic Civilization, after 

its inception in 622 C.E. (year 1 on the Islamic calendar) spread with 
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remarkable speed, assimilating along the way the accumulated knowl- 

edge of the Greeks, Hindus, Romans, Chinese, Egyptians, and East 

and West Africans. The causes of this phenomenon were manifold, 

including the Muslims’ ability in trade, their practice of tolerance, 

and their love of the good life. 
The Muslims were geographically well situated for trade through 

overland routes with the east, land and ocean routes with Africa, and, 

once established in Spain, land routes to the north. Travel was the 

Arabic way. The Arabs were originally nomadic and the acceptance of 

Islam brought with it five pillars of the faith, one of which is a pil- 

grimage to Mecca at least once during a lifetime. Muslim trade routes 

linked Asia, Africa, and Europe. 

In their travels, whether for conquest, pilgrimage, or trade, the 

Arabs retained a societal trait that subtly influenced the sciences: tol- 

erance. Of course this tolerance may have been born of practicality 

rather than idealism—only non-Muslims were taxed so it was good to 

have a lot of them around. It also must be noted that the tolerance 

was not universal: The Islamic empire was able to tolerate within its 

borders other monotheists such as Zoroastrians, Jews, or Christians, 

but they put to the sword the polytheists.! However even if they were 

able to tolerate only some, they were certainly able to trade with, and 

learn from, everyone. To understand the importance of this ecu- 

menical attitude, recall those portions of the now defunct Roman 

Empire that insisted on retaining their Roman identity: the Byzantine 

Empire and the Holy Roman Empire. They were also saddled with 

Roman numerals—I, I, HI, IV, V, and so on—for use in daily calcu- 

lations. For anyone who has ever attempted simple arithmetic calcula- 

tions with Roman numerals, let alone something like multiplication or 

division, the disadvantage of this awkward notation is apparent. How- 

ever, the Arabs could shift and bend in the direction that best suited 

their needs; therefore, the adaptation of the numeral system of the 

Hindus—l, 2, 3, 4, 5, etc.—including the all-important concept of 

zero, gave them considerable advantage in commerce and navigation. 

As a result of the affluence brought by trade, coupled with the 

tolerant acceptance of new ideas from different cultures, the Islamic 

peoples developed an appreciation for the good life, which included 
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silks from China, gold from Africa, jewels from India, and books from 

Alexandria. The Muslims introduced paper to the Western world, 

which they had learned to manufacture from Chinese captive 

laborers. Paper helped them copy and keep books and produce their 

own. The caliphs were wealthy and enthusiastic patrons of knowledge 

and, under their encouragement or command, works from other cul- 

tures were translated and scholarship flourished. But the Muslims 

were more than a conduit. They augmented and enhanced what they 

absorbed. They chose their own pragmatic approach over Hindu aes- 

theticism or Greek elitism and generated their own advances. Three 

clearly identifiable areas of Arab contribution important to the devel- 

opment of physical chemistry are mathematics, instrumentation, and 

that storehouse of chemical information, alchemy. 

Let us look first at mathematics and start at zero. Positional nota- 

tion means simply that the value of the digit depends on its position in 

the number. For instance, in the number 250 the 2 is in the hundreds 

position and we interpret the number 250 as having two hundreds, five 

tens, and zero ones. Positional notion was used by the Babylonians in 

their base-sixty system and by the Romans with their Roman numerals, 

but the problem was that they had no zero to mark the empty position. 

So the number 250 would be written as 25_, a two and a five followed 

by a blank space, but this was long before the day of uniform type and 

typesetting, so if the blank was a little bit short or a little bit long, 250 

could easily be interpreted as 25 or 2,500. The advantage brought 

about by the zero, and popularized by the Muslims, is apparent. 

Perhaps it was the acceptance of this idea of a symbol for nothing 

that allowed the acceptance of the idea of a symbol for anything, but 

for whatever reason, another important branch of mathematics that 

flourished under the Muslims was algebra, a system which derives its 

name from the Arabic word “al-jabr,” or “restoration.” 

There is some evidence that the Greeks knew the basic idea 

behind algebra—that a number could be represented by a set of facts 

about that number. For instance, a person could say, “the number 

I’m thinking of is four plus two.” Then the number is obvious, six. 

The “set of facts” about the number is the equation; therefore, 

algebra consists of representing numbers by equations. 
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Algebra, of course, is capable of doing much more than solving 

riddles. And it is also able, with the right number of equations, to 

solve for more than one unknown, which makes algebra a very pow- 

erful system. For instance, an ancient Arabic olive merchant may want 

to determine what to charge for olives and for oil if he has a hundred 

barrels of olives and two hundred barrels of oil and he wants to make 

a profit of ten dinars over his original investment in olive trees. A 

physical chemist may want to know how many liters of ethanol and 

how many liters of water to mix to have six liters of a 30 percent 

ethanol mixture, taking into account the fact that the solution shrinks 

as you mix it. In the hands of the Muslims, with help from the 

Hindus, algebra became capable of solving such problems and more. 

They used their intricate system of algebra in commerce, law, metal- 

lurgy, and agriculture. 

Of all the famous Muslim mathematicians, perhaps the most 

famous is Omar Khayyam—but he is known more for his poetry than 

his algebra. Khayyam, who flourished about 1000 c.£.,3 was an 

accomplished mathematician and wrote several treatises on the sub- 

ject. Another famous Arabic mathematician whose name is used every 

day by mathematicians, physicists, and chemists, though they prob- 

ably don’t know it, is al-Khwarizmi.* Al-Khwarizmi’s name in its 

Latinized form has come to mean a procedure for solving a mathe- 
matical problem: algorithm. 

Al-Khwarizmi, who flourished about 820 C.E., was mathemati- 

cian for the court for the caliph of Baghdad. Though he did not claim 

originality for the system of algebra, and made frequent reference to 

his Hindu sources, it was his books that survived to become impor- 

tant in Europe, and it was the name of one of his books—A/-jabr 

wal mugadbalah—from which the word algebra (al-jabr) is derived. 

Al-jabr is generally taken to mean restore, or fix (in Don Quixote the 

word algebrista means bone-setter), and refers to the process wherein 

the equation is fixed, or simplified, by adding or subtracting terms 

from both sides. It is interesting to note that al-Khwarizmi, like 
others of his time, wrote his equations in prose rather than the sym- 
bols that pervade modern algebra books. 

In addition to algebra, the Arabs made great advances in spher- 
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ical trigonometry, a three-dimensional trigonometry that could be 
used for astronomical calculations and navigational instruments such 
as the astrolabe, an ingenious device that resembled an elaborate 
handheld sundial. With the astrolabe, navigators could tell the time 
of day and estimate longitude and latitude. Astronomers could deter- 
mine positions and movements of stars. Another instrument for 
which the Arabs found extensive use was the balance, though it was 
used for a more earthly pursuit. 

The state of the Arabic art of mass measurement by balance is evi- 
dent in the writings of al-Khazini, who flourished in the early 1100s.5 
He was a Byzantine eunuch slave who had been well educated by his 

owner. In a treatise on instruments al-Khazini describes a balance of 

his own design, which, after employing an algorithm that he also 

devised, could determine the composition of alloys of two different 
metals. This ability to determine the purity of metal may have been 

influential in the development in another pursuit that would eventu- 

ally be of major importance to the development of physical chem- 
istry: alchemy. 

Alchemy, like other words such as alcohol and algebra, is dis- 

tinctly of Arabic origin because of the use of the article “al.” The 

Arab alchemists came up with some interesting new materials such as 

the “alcohol that burns,” meaning alcohol so pure it would catch fire. 

They also made sal ammoniac, or ammonium chloride, a material 

unknown to the Greeks, and better and more concentrated caustic 

solutions. But as far as their influence on later European alchemy, 

their myths may have meant more than their knowledge: The Euro- 

pean alchemists were so convinced that the Arabs knew the secret of 

transmutation—the conversion of base metal into gold—that some 

tried uttering Arabic-like words as part of their experiments. Some of 

these have come down to us today as the magical words of “ala- 

cazam” and “abracadabra.” But while alchemy has become most 

strongly associated with the later European efforts to make gold from 

base metal, the term originally referred to any chemical pursuit, that 

is, any effort to find recipes to manufacture materials. Alchemy 

encompassed all efforts to make stronger acids, purer metals, and 

better medicines, as well as attempts to make gold. For the Arabs, the 
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efforts to make gold did not dominate their culture. The reasons may 

include the fact that they were able to detect fake gold on their bal- 

ances because gold has a different density (a different ratio of mass to 

volume) than other metals. They also had plenty of gold through 

trade (in 1324 Mansa Musa, a West African king, distributed so much 

gold on his pilgrimage to Mecca that the gold market in Cairo fell).° 

Muslims believed efforts to make gold to be avaricious, and, perhaps 

through the influence of the Chinese, they found the manufacture of 

medicines to be as important a goal as the making of gold. 

The Arabic interest and knowledge of medicine was impressive 

and this may again have been a function of their amalgamating 

power. The pre-Islamic Arabs had their own medical tradition kept by 

the old women of the tribes, but in the Arab Empire, all the tradi- 

tions of the conquered territories were added. The Arabs conquered 

for knowledge as well as taxable territories. When one considers some 

of the known folk remedies that have a verifiable activity—salt, beer, 

and urine for antiseptics; kaolin clay for an antidiarrheal agent; 

rhubarb for a purge; willow bark for an analgesic; quinine for fever; 

and egg yoke for skin lesions—one has to wonder who had the 

audacity to try the material in the first place! In some cases the infor- 

mation may have come from observing animals and what they ate, 

but in other cases the discovery may have been sheer serendipity or 

sheer desperation. So the accumulation of pharmacopoeias had to 

have been a long, painstaking task, with only a few real treatments 

coming from any one group. Add to this the fact that not all plants 

grow in all areas, and it becomes apparent what an integrating force 

the Arabs were in compiling this knowledge. 

Once accumulated, this knowledge became valued by the Euro- 

peans. However it may not have been so much the special effective- 

ness of Arabic medicine as the magnitude of the hole it had to fill. A 

description of European treatment during the period of the Crusades 

can be found in the writings of Usama ibn-Mungqidn.” According to 

the writer, a Frankish noble requested medical assistance from a 

Muslim prince and the prince obliged. When the doctor arrived he 

was shown two patients, a knight with a leg abscess and a woman suf- 

fering from a condition described only as “dryness.” The Arab doctor 
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used a dressing to bring the abscess to a head and let it drain after it 
burst, a procedure that would have allowed the sore to heal if it had 
been allowed to proceed. But a Frankish doctor, who had also been 
called but arrived later, advised amputation saying that the patient 
would die without it. The patient did die—during the amputation. 

The Arabic doctor had ordered a diet that included fresh vegeta- 
bles for the woman, but this was discontinued on the advice of the 
Frankish doctor and her hair was cut instead. The “dryness” 
increased so the Frankish doctor declared that a demon had entered 
her body through her skull, and he initiated a horrific surgical proce- 
dure to extract it. The woman also died. The Arab doctor then 

returned home, his services no longer needed. However, it must be 

noted that the Arab physicians learned of several mineral and veg- 

etable substances with medicinal activity from the Franks and entered 
them into their pharmacopoeia with due acknowledgment to the 
Europeans. 

Islamic influence on Europe began with the occupation of Spain 

in 700 and reached the height of its vigor in the 900s. Contact 

increased through the eight major crusades held between 1095 and 

1291. But the eventual devastation of the Islamic Empire came from 

the east, not the west: the invading Mongol hordes of Genghis Khan. 

Along the trade routes established by the Muslims, the Europeans 

came in contact with the Mongols. 

Although there were Arab geographies and a book by a Spanish 

Jew, Benjamin of Tudela, explaining how to reach China by trade 

route, there was little interest in China by Christian Europe of the 

1100s. What did interest the Europeans were the letters from the apoc- 

ryphal Prester John who told of a rich Christian king in the Orient. 

Popes dispatched envoys in hope of making contact with this king and 

converting the Mongols they encountered along the way. Though 

these efforts met with little success, the new interest in the Orient gave 

a boost to traders, such as Marco Polo, who set down his account in a 

book written from prison. Although Marco Polo wrote his book some 

years after his adventures, it is not the fanciful account sometimes por- 

trayed. He did not describe any monstrous races—dog-headed men, 

pygmies fighting with cranes, giants, and so forth. These are products 
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of Greek and medieval European legend. At the end of the 1400s copy- 

ists added them as illustrations even though they were not found in the 

text. Because of this confusion, the bulk of Polo’s account was dis- 

counted. For the development of physical chemistry, this may have had 

a retarding effect. As we will see in our discussion of thermodynamics, 

the Industrial Revolution in Europe, fueled by coal, had a major impact 

on physical chemical theory. This interest might have come about 

sooner if Marco Polo’s account of “a kind of black stone existing in 

beds in the mountains which they dig out and burn like firewood” had 

been believed.8 
However, despite some unfortunate disbelief and some misplaced 

credulity, Arab and Eastern knowledge began to infiltrate into Euro- 

pean culture. Stimulated by the Muslims and the Mongols, Europe 

underwent a commercial revival beginning about 1300. The Euro- 

peans eventually embraced the new mathematics and Aristotle’s 

teachings, but did so only selectively. For instance, Aristotle rejected 

the notion of a disembodied soul because it could not be perceived 

by the senses, but the concept of soul was basic to medieval Chris- 

tianity. They readily accepted Aristotle’s Earth-centered universe, but 

in this Aristotle may have been the messenger, not the message. It is 

very probable that Christian Europe would have rejected a sun-cen- 

tered universe, even if Aristotle had proffered one, because the Earth- 

centered universe fit their concept of Earth being God’s first creation. 

Through the addition of commentaries, Christian authorities 

adjusted Aristotle’s notions to fit their own. This adjustment led to 

an ironic situation: Aristotle, who held so strongly that the senses 

should be believed, and the Arabs, who imported, experimented 

with, and added to information from other cultures, were now made 

the authorities in a rigid, closed system of Scholasticism, which did not 

allow for any deviation from the established norm. There were, how- 

ever, those who found a way around the system. They claimed the 

authority of Aristotle for everything they wished to try, and then 

while the scholars were searching their volumes for confirmation or 

contradiction, the natural magicians had their fun. 



Chapter 4 

Medteval Magick and 

Renatssance Revival 

..- here are two sorts of Magick; the one is infamous, and unhappy, .. . 

and consists of incantations and wicked curiosity; and this is called Sor- 

cery; .. . The other Magick is natural; which all excellent wise men do 

admit and embrace, and worship with great applause... 

Giambattista della Porta, circa 1600 

he span of time that includes the European Middle Ages (from 

around the fifth century to the early 1300s) and the Renaissance 

(from the early 1300s to the late 1500s), is a complex period of cul- 

tural history in which tradition did much to shape science. In the next 

two chapters we will examine primarily the lives of two Renaissance 

representatives, a magician and a mechanical engineer. The magician 

will serve as our backward-looking mirror of the Middle Ages and the 

engineer will be our telescope to view the future. It is perhaps a com- 

mentary on the importance of the individual, as much as tradition, to 

note that our forward-looking engineer actually predates our magi- 
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cian by about a hundred years. Our magician is Giambattista della 

Porta, and Leonardo da Vinci is our engineer. 

To appreciate the work of della Porta and da Vinci it is necessary 

to understand the context of their times. It was an age of 

dichotomies: Practical technology coexisted with sorcery and court- 

room logic was used to justify the madness of witchhunts. The forces 

that drove the developments of physics and chemistry were mani- 

fold—Arabs, plagues, Inquisitions, Scholastics, and homegrown tech- 

nology—and these forces converged over lands where pagan tradi- 

tions, including Celtic tales of elves, fairies, and Merlins, were fused 

with the Christian religion. The introduction of the compass cata- 

pulted Europe into an age of exploration, which meant more merri- 

ment for the mix, and it also introduced the fascinating phenomenon 

of magnetism that would eventually have extensive repercussions in 

physical chemistry. 
J. D. Bernal, in A History of Classical Physics,: put forth the theory 

that magnetism was discovered by the ancient Chinese. In a ritual for 

determining the location for their graves, they spun a precious object 

and dug where it pointed when it came to rest. Bernal points out that 

the future residents knew that they would spend a great deal of time 

at these locations, so the object spun was made with the most precious 

material available: gold, jade, or lodestone, a naturally magnetic 

variety of iron ore. Someone must have noticed that while gold and 

jade reported random locations, the lodestone would have a dispro- 

portionate number of people buried in the north (or south, 

depending on how the spinner was read). It wasn’t long before this 

curious locator was put to use in navigation. Better navigational tools 

increased European contact with non-Europeans, which triggered an 

economic revival, which brought with it a revival in learning and inno- 

vation. But increased contact had a downside: the spread of the 

bubonic plague or Black Death, characterized by hemorrhages under 

the skin that turned black and enlarged lymph nodes, or buboes, 

hence bubonic. The great plague and its aftershocks instilled a type of 

paranoia in the people that was intensified by the uneasiness of the 

popes in the face of the Protestant Reformation of the early 1500s. In 

an attempt to regain control of religion, the Catholic Church insti- 
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tuted a systematized effort to seek out and discourage freethinkers. 

This effort, known as the Inquisition, turned against all perceived ene- 

mies of the faith, including Jews, Muslims, worldly clerics or laity, and 

even midwives. Among midwives there were no doubt some who did 

dispense poisons or “inheritance powders” for a fee or indulge in self- 

administered hallucinogenics.? Yet, the majority of them practiced a 

benevolent art in which they prescribed herbal extracts of legitimate 

use such as ergot and belladonna to ease pain and aid in the recovery 

from childbirth or inhibit premature contractions.? But at a time when 

the sufferings of labor were considered just punishment for Original 

Sin, to ease such pain was considered heresy.* So interestingly, while 

the European Middle Ages is sometimes perceived of as a steady pro- 

gression from darkness to enlightenment, in this one regard, at least, 

the progression was backwards: Persecution of midwife witches accel- 

erated after the 1300s and peaked about the time of the Scientific Rev- 

olution of the 1600s.5 
However, the establishment of universities was also very much a 

function of the Catholic Church and it was Church scholars who 

eventually integrated Aristotelian logic and Arabic learning into 

European thinking, though in their own uniquely medieval way. One 

of the basic tenets of the monotheistic Judeo-Christian-Islamic tradi- 

tion is revelation, the acceptance of truth on faith, and revelation was 

the perspective from which the medieval mind viewed the world. But 

the powerful pull of Greek inductive and deductive logic could not 

be ignored. Initially medieval theologians wrestled with the reconcil- 

iation of reason with revelation. Eventually they were in the main 

convinced, through the efforts of Scholastic philosophers such as 

Thomas Aquinas,° that the two were not necessarily at odds. Yet 

when they assimilated both the logic and the science of the Greeks 

and Arabs, they used Greek logic to derive proofs of the existence of 

God while accepting the science verbatim, as a sort of scientific reve- 

lation, without any effort to explore or modify it. 

If the Middle Ages can be said to be a mix of forward steps and 

backward steps, then Scholasticism can be viewed as a side step. 

Scholasticism sought to reintegrate religion into science whereas the 

Greeks had endeavored to separate the two, yet Scholasticism allowed 



Medieval Magick and Renaissance Revival YVYE 57 

for examination of Aristotelian and Arabian ideas, which inched 
things forward. The Scholastics wrote extensive commentaries to 
expound Aristotle in a manner that was in accord with Christian pre- 
cepts and these commentaries came to carry the same, or more, 
weight as the works from which they derived. In the process of adap- 
tation of Aristotelian thought to a system based on faith, Aristotle 
himself became an icon of sorts; it became near heresy to deny the 
contents of any of the approved commentaries written about him. 

But one innovation was sufficient to break the cycle of commen- 

tary on commentary, and that was the European reinvention of 

printing with movable type in 1450 (the Chinese already had a similar 

technique).”? The effect was that the translated ancient Greek and 

Roman classics were made more available and this availability of the 

translations made the commentaries less useful. People started reading 

the translations for themselves. It also opened the door for a revival of 

an old trade: writing scientific treatises for profit. Previously writers 

needed a patron such as a caliph or other ruler to subsidize their 

writing, but now there opened the possibility of writing independently 

for profit. A new type of personality took on the challenge of science: 

not philosophers of means or employees of a monarch, but artisans 

and people in the trades. Our magician and our engineer were both 

tradespeople: Leonardo da Vinci, born 1452, was primarily a painter 

by trade and Giambattista della Porta, born 1535, was a writer. 

Della Porta was born in a villa outside Naples sometime in the late 

1500s.8 He had some tutors, but was mostly self-taught, a natural 

consequence of being a second son in an age of primogeniture. He 

probably received some support from his family because he was 

wealthy enough to join learned societies and to marry. However the 

additional income brought in by the sale of his books was apparently 

welcome. Although he wrote books on optics, mechanics of water 

and steam, mathematics, military fortifications, and distillation, his 

best known work by far is his compilation Natural Magick: Wherein 

Are Set Forth All the Riches and Delights of the Natural Sciences.? 

In this age of dichotomies, magic was one more. Della Porta was 

one of several of his age to practice what was termed “natural magic,” 

as opposed to sorcery.! Sorcery, in the vein of Faustus, was based on 
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Fig. 3. Title page from della Porta’s Natural Magick. 

incantations and ritual. Those who 

indulged in natural magic, on the other 

hand, were interested in collecting tricks 

and curious marvels.!! To these magi- 

cians, magic meant wondrous effects and 

illusions, but illusions cleverly and know- 

ingly wrought. Della Porta took care to 

divorce himself from sorcery by pointing 

out that his magic didn’t involve incanta- 

tions. It was not that he disbelieved in 

witchcraft—in his book he offers guards 

against enchantments—he just rejected it 

as unproductive for him. He did realize, 

however, that much that was called sorcery was just trickery and in 

Natural Magick he counsels how to recognize deceit. To della Porta 

a magician was a “skillful workman” who knew how to extract tinc- 

tures and perform distillations and was versed in the “mathematical 
arts” such as astronomy. 

Della Porta published two versions of Natural Magick: a four- 

book version in 1558 and an expanded twenty-book edition in 1589, 

where a “book” is more the size of what we would call a chapter 

today. The books were compilations of what he termed “secrets” that 

he had been collecting since he was fifteen and covered an enormous 

range of practical, everyday problems with a smattering of the extra- 

ordinary. In some ways it reads like a medieval compendium of 

household hints, and in others, it reads like an experimental treatise 

on physical phenomena. 

In many ways, della Porta is a perfect symbol for the Middle 

Ages. His writings alternate innocently and unabashedly from incred- 

ibly gullible to nearly scientific. He quotes remedies, methods, and 

other particulars with reference only to Aristotle and other ancients 
for proof of their veracity, while at other times he is careful to add 
that he has tried the particular method for himself. For instance, he 
asserts that shellfish are generated out of mud, the hardness of their 
shells preventing any kind of commingling, and quotes Aristotle as 
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his source. But he also reports a method for catching fish by their 
attraction to light and explains how he personally tested this idea by 
constructing a metal tube with glass windows sealed with pitch into 
which he lowered a candle. He swings from a humane concern for 
human comfort in his prescription of medicines to a horrifying cru- 
elty in his attitude toward beasts, stating nonchalantly that the most 
tender meat is procured from an animal that has been tortured before 
death. He provides detailed diagrams and a table of measurements to 
show how to construct a parabolic lens for optimum focusing power, 
but gives recipes for chemical explosives as a bit of this and a bit of 
that, then says what more may be added if it doesn’t work. 

He covers practical problems such as animal husbandry, fruit pro- 
duction and grafting, food preservation, egg incubation, cookery, 

hunting, fishing, tempering steel, and medicines and remedies for 

teeth, eyes, conception, the pox, and the plague—but also the stuff of 

amusements such as beauty secrets for women, the crafting of musical 
instruments, and the extraction of perfumes. He exhibits his own sense 

of wonder when covering topics such as gunpowder, burning waters, 
invisible writing, eyeglasses, water clocks, alchemy, counterfeiting pre- 

cious stones, and magnetism in lodestone. He indulges his own sense 
of fun when describing a trick cup that delivers water instead of wine 

(and functions on the difference in density between water and wine), 
providing methods for turning a woman’s face green, or whimsically 
naming his last catch-all book of miscellaneous magic “The Chaos.” 

Notable is his omission of human birthing. Although he did not 

hesitate to recommend medicines for sleep, poisons and antidotes, 

and antiseptics including wine and salt—and he was familiar with the 

female anatomy (he recommends methods for tightening the vaginal 

canal after childbirth and blistering the cervix so that a woman will 

bleed on intercourse, indicating virginity, and whores “can scarce be 

known from maids”)!2—he mentions no medicines for childbirth. 

Undoubtedly this reticence was due to his desire to be dissociated 

from sorcery and thus midwives. But he did not manage to escape 

completely. The Inquisition examined him, but did not torture or try 

him. They satisfied themselves by only banning publication of his 

works from 1592 until 1598. 
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Also notable is the cursory coverage of alchemy. Although 

medieval chemistry is commonly associated with alchemy, della Porta 

devotes only ten chapters to alchemy as opposed to the fifty-six chap- 

ters devoted to magnetism and lodestone and the thirty chapters 

devoted to cosmetics. However, in this way della Porta is more rep- 

resentative of developments in the Middle Ages that unknowingly 

affected physical chemistry than were the European alchemists. 

Although European alchemy does play a part in a comprehensive his- 

tory of chemistry, in a history of physical chemistry it constitutes a 

diversion of the stream. Concisely viewed, alchemy had as its goal the 

transformation of materials, that is, transmutation, primarily with the 

objective of making gold from base metal and medicines from almost 

anything. The problem was that gold can’t be made from base metal 

(with perhaps the exception of transformations in a nuclear reactor) 

but most certainly not by ordinary chemical means. Moreover, the 

systematic development of medicines requires an understanding of 

disease, which did not yet exist. So although the Arabic alchemists 

made much practical progress, the European alchemists were on a 

fool’s errand, and with the exception of a couple of happy accidents, 

did not advance science very much. 

Della Porta was fascinated with fire and self-ignition and 

describes trials in which he ignites a paper by holding a candle close, 

but not touching, and an oil fire that will extinguish through smoth- 

ering but will ignite again when exposed to air. He repeatedly writes 

that these observations are “very strange” and “wondrous,” but he 

does not seem capable of formatting his questions in a precise manner 

that could be addressed by experimentation. He plays with vacuums 

and compressed air by making trick drinking cups and pop guns. 

When he describes his experiences with these phenomena he does so 

with a sense of fun and wonder, but not with an eye to improving 

them or deriving any general principles from them. Della Porta was 

trapped in an age when technology was presenting questions, but the 

prevailing philosophy left him without the means to answer them. 

Della Porta was aware of the magnifying properties of lenticular 
crystals (double convex lenses shaped like a pair of parentheses) and 
he did some experiments with optics, but fell short of inventing the 
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telescope that would later be critical in the Scientific Revolution. He 

was interested in mirrors, but he played more than experimented 

with the distorted images caused by warped, funhouse-type mirrors, 

and in true della Porta style, he became fascinated with multiple 

mirror reflections and tried to arrange them so he could see to 

infinity. Della Porta saw all the wondrous potential of his magic but 

was unaware of the careful, repetitious experimental work that would 

be necessary to understand it. In da Vinci, our engineer, we will find 

more confident steps toward experimentation, but they will still fall 

short of the revolution yet to come. 





Chapter 5 

The Merchants 

MATHEMATICS OF MONEY AND MACHINES OF WAR 

“up ot oi tie RO = 
Speculators about perpetual motion . . . take your place with the seekers 

after gold! 

Leonardo da Vinci, circa 1500 

he European Middle Ages are often envisioned as a technologi- 

cally impoverished period, with sewage systems consisting of 

chamber pots dumped into streets and irrigation systems powered by 

human feet. But by the time of the Renaissance, the Europeans had 

a respectable amount of technology available to them. They under- 

stood simple machines—levers, pulleys, screws, and wheels—and 

medieval Europeans integrated these simple machines into devices 

such as water-powered sawmills, pumps, and mechanisms for drawing 

wire and performing other routine manufacturing tasks. Although 

they did not understand the cause-and-effect principles of mechanics, 

the thousand years or so of the Middle Ages were long enough to 

arrive at these technologies through trial and error. Toward the end 

of the Middle Ages, the loss of human power to the plague and wars 

made machinery—and the principles of mechanics—increasingly 

important. So by the time of the Renaissance it could be said that the 

forerunners of physical chemistry, experimental chemistry and 

physics, were conceived, but yet unborn. However, the midwife, 

mathematics, was by then an old crone. 
Europeans were aware of the mathematical achievements of the 

63 \' 
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Arabs and the Greeks from about the year 1000, but much of the 

learning remained an exotic novelty. The educated Europeans—the 

priests, monks, nuns, and rabbis—could calculate the area of a field 

with Roman numerals and the date of Passover or Easter, which 

seemed sufficient. The economic revival, however, brought on by the 

new navigational tools, generated the need for rapid, complex com- 

putations such as currency exchange, pricing within an acceptable 

profit margin, interest calculations, and the division of proceeds in a 

partnership. No longer could Europe wait for the knowledge of 

mathematics to filter in. Knowledge of mathematics was sought out 

and adapted to fit the uniquely European need. 

One such person specifically sent to learn new mathematics was 

Fibonacci (otherwise known as Leonardo of Pisa), born in 1170 to 

the Pisan merchant family of Bonacci.! Around 1192 his father took 

him to Algeria, where his father directed a Pisan trading colony. 

Fibonacci used the nickname Bigollo, which meant bum or loafer, 

which may have suited this son of a wealthy merchant at one time. 

Once in Africa, however, Leonardo bloomed. He sought out and 

received instruction in the new Indian numerals and algebra. He 

developed his skills to the extent that his father began sending him 

on trade missions to Egypt, Syria, and Byzantium. When he turned 

thirty, Fibonacci returned to Pisa and spent the rest of his life writing 

books on mathematics for merchants. 
Fibonacci’s books are very practical—he gives many examples and 

offers methods for checking the answers—as well as algorithms for 

computing interest, profits, measurements, and currency conversion. 

But he did more than apply the mathematics to commerce. In a 

manner reminiscent of the ancient Greeks, he was a creative mathe- 

matician. He is credited with a series of numbers—called the 

Fibonacci series—that are generated starting with 1 and then adding 

the last two numbers to get the next number in the series: 1, 1, 2, 3, 

5, 8, 13, 21, and so forth. Ratios of adjacent Fibonacci numbers are 

found in nature in the 21:34 and 5:8 opposing-spiral pattern in the 

center of a daisy flower and the pinecone, respectively.2 Less whimsi- 

cally, Fibonacci also found that he was able to solve certain book- 

keeping problems only if he “conceded that the first man had a 
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debt.”3 In conceding this debt, Fibonacci introduced European mer- 
chants and mathematicians to the concept of negative numbers. 
Later, during the Renaissance, another mathematician, Luca Pacioli, 
would also write and sell books on mathematics for merchants. 
Pacioli’s Summa de arithmetica, written in 1494, included many of 
the topics of Fibonacci’s book as well as a treatise on the new method 
of double-entry bookkeeping referred to as the Venetian method. 
This method revolutionized bookkeeping and the concept of debit 
and credit would take root in other disciplines as well. In the mid- 
1700s we will see a revolution in chemistry based on a balance 
sheet—a mass balance sheet—filled out by a businessman by the 
name of Lavoisier. 

Pacioli, like Fibonacci, could not ignore the pull of recreational 
mathematics. His particular interest was in the geometry of solid 
bodies. This interest happened to overlap with the interests of 
another tradesman with whom he became a good friend: a painter, 
Leonardo da Vinci. 

The friendship between Pacioli and da Vinci was an older man’s 
friendship. Da Vinci was forty-seven years old and Pacioli was fifty-two 

when da Vinci illustrated one of Pacioli’s books on solid geometry. 
Beyond their common interest in geometry, they also seemed to share 
a similar approach to Renaissance life. For instance, both men were 

apparently celibate, though some speculate that da Vinci was homo- 

sexual. But given da Vinci’s own assessment of human reproduction— 
“The act of procreation . . . [is] so repulsive that if it were not for the 

beauty of the faces and the adornments of the actors and the pent-up 

impulse, nature would lose the human species”4—he probably was 

asexual rather than homosexual or heterosexual. Given the risks of an 

active social life of the times—which included exposure to syphilis as 

well as the plague—he may have chosen wisely. Pacioli, a friar, appar- 

ently made the same choice. But if both men had found peace in some 

areas of their lives, they were still intellectually restless. Their friend- 

ship was founded on da Vinci’s desire to learn more about mathe- 

matics. As it was, da Vinci, being the illegitimate son of an Italian 

noble and a peasant, had been taught basic reading and writing, but 

then was apprenticed to learn a trade instead of being sent to univer- 
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sity. The trade that he learned was painting, which was a fortunate 

choice for humanity, but it may not have been the choice he would 

have made for himself. From his own words and from the positions for 

which he applied it appears that he may have had an inclination toward 

another vocation—mechanical engineering—but his aspirations in this 

area would be clouded by his deficits in mathematics. 

During the Renaissance, however, painting was a lucrative trade. 

The new funds brought in by commerce had created a wealthy class 

who enjoyed spending their money on luxuries. For example, the 

Mona Lisa is now believed to be the portrait of the wife of a Floren- 

tine merchant. It was generally thought pointless to spend money on 

investigations of nature because it was believed that all that could be 

known was already known. There were a few who were swindled into 

investments in alchemy, but not many, and these ventures were short- 

lived: Either the swindlers absconded with the investment or were 

tortured by the impatient patron. Painting gave da Vinci the oppor- 

tunity to indulge his interests in engineering because painting was 

considered a trade at that time and painters, considered tradespeople, 

could be called upon to perform other design tasks such as contriving 

canals, bridges, and catapults. Aware that there was money enough to 

invest in art and war—the two major preoccupations of the Renais- 

sance ruling class—da Vinci soon established himself as a valuable 

commodity. He told potential patrons that he could design machines 

of war—and paint a bit as well.® 

The above should then explain why we have placed a painter in 

this history of physical chemistry. The principles of mechanics—the 

study of energy, forces, and their effect on bodies—will be central to 

the development of the theories of physical chemistry. While da Vinci 

is obviously best known as an artist, he also designed, built, and put 

into operation many mechanical devices and spent time investigating 

the principles of mechanics. His patron for sixteen years, Duke 

Ludovico Sforza—nicknamed the Moor—had him design a heating 

system for the duchess’s bath as well as stage shows employing 

mechanical devices. Another patron, Cesare Borgia, used da Vinci as 

a military engineer. Although da Vinci himself did not establish any 

new mechanical principles, he collected his information on mechan- 
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ical systems with the intention of compiling one or more books. 
Unlike della Porta and Fibonacci, however, da Vinci’s books were 
never written—or if they were written they were lost—but we still 
know much about what he did, and much about the Renaissance in 
general, because of his wonderful notebooks. 

Da Vinci began writing his famous notebooks when he was about 
thirty. While it is obvious he had every intention of organizing his 
ideas at some future time, in the notebooks he allowed himself to 
write or sketch whatever was on his mind at the moment, in a more 
or less random fashion. He doodled and wrote reminders to himself, 
drafts of letters, designs for weapons, anatomical drawings, building 
plans, and grocery lists—the outpourings of a tirelessly energetic 
mind. In fact it may be because of this intellectual energy that no 
compilation of his notes came about in his lifetime—he was continu- 
ously moving on to new projects, many times at the expense of the 
completion of the last. Evidence of da Vinci’s rapid thought processes 
can even be found in his handwriting: He habitually wrote back- 
wards, from right to left, in a mirror-image script that can be read by 

holding the text up to a mirror. It is now assumed that he did not do 

this for security purposes—with a little practice it is easy to read 
mirror-image print and when he wanted to keep something secret he 

wrote in code®—but he was left handed and, in a day of quill-and-ink 
writing, writing from right to left kept him from having to drag his 
hand through wet ink as he wrote. His rapid thoughts allowed no 
time for the ink to dry. 

Yet, for all the hodge-podge, we will forever be indebted to da 

Vinci for this undisciplined hopping about from idea to idea because 

of the wonderfully broad window it gives us into the Renaissance 

world and what was then known or believed about mechanics. For 

instance, in da Vinci’s time and even much later, engineers were con- 

vinced that machines could increase the work done by a person, even 

infinitely, if the right machine were found. This belief that such per- 

petual motion machines could be found led to much speculation and 

many fantastic, fanciful designs. Da Vinci tried his hand at a few, but 

then realized the pointlessness of the quest. He came to the impor- 

tant conclusion that machines do not generate work but only modify 
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the manner of its application. In other words, the best you can ever 

hope for is to get out what you put in—and you usually get out less. 

For example, you can move a pile of dirt in one load with one huge 

effort or in many loads with many smaller efforts, but the net amount 

of work is the same. If you need to move a heavy rock, you can use a 

lever to do so, and it may seem easier, but you have to apply the force 

on the lever arm over a much greater distance than the distance that 

the rock actually moves. Perhaps Archimedes (liberally paraphrased) 

said, “Give me a lever and a place to stand and I can move the Earth,” 

but he should have also explained that he would have had to transverse 

the diameter of several Earths to do so. But extending this analysis to 

all machines was not something easily accomplished with the medieval 

mentality, so speculations on perpetual motion persisted. 

Da Vinci was also unique in that he recognized and took account 

of friction in his analyses and realized there was no way to defeat this 

force either. Although a viable theory would not be put forth until a 

full three centuries later, da Vinci knew, through experience, that fric- 

tion could be reduced, but not eliminated. Friction has two compo- 

nents: drag due to plowing by surface irregularities as one piece tries to 

slide over another and the attractions of the surface atoms of one piece 

for another. This attraction is the “stickiness” of atoms that would have 

to await a full theory of atomic structure to be even partially under- 

stood. But because of this stickiness, any effort to smooth the surface 

also puts more surface atoms in contact with one another. So even an 

infinitely smooth surface will experience friction, maybe even more 

so—there can be a “welding” of one material to another through sur- 
face contact. 

To improve his machines, da Vinci made attempts to measure the 

relationship between velocity, time, and distance for an object 

moving under the influence of a gravitational field, but he lacked the 

measuring tools and the mathematical skills necessary to accomplish 

it. This conundrum caught da Vinci and the rest of the Renaissance 

world: If he had been given a university education he might have had 

the mathematical skills he needed. Had he been given a university 

education, however, he might not have tried to make the measure- 

ment because the universities were teaching that Aristotle had already 
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stated all that needed to be known about motion. Da Vinci, free from 

the scholarly community, was able to reject Aristotle at times. One is 

struck by the crudity of his measurements of both space and time: He 

used a braccio, which is approximately twenty-four inches, for his 

smallest unit of length, and he used hourglasses and water clocks to 

measure time. But though he did not have the means to do the mea- 

surement, his methods were on the right track. He understood the 

value of repeating the experiment with slight, controlled variations of 

parameters and he understood that errors of sensory observation— 

optical illusions—could occur. For instance, as an artist, he under- 

stood how a perfectly flat canvas could be made to have the illusion 

of three-dimensional depth: perspective. 

Da Vinci was certainly not the only Renaissance artist to employ 

the techniques of perspective. Da Vinci’s own specialty was aerial or 

atmospheric perspective, that is, the notion that light and dark are in 

sharper contrast and contours are more defined in objects that are 

closer than those that are far away. This technique is similar to a per- 

spective technique in use in eastern Asia at approximately the same 

time. But other Renaissance artists used fully mathematical analyses 

to achieve their realistic proportions. One of the leading contempo- 

rary proponents of perspective was Albrecht Diirer (1471-1528), a 

German painter who wandered as far as Italy during his journeyman’s 

years of travel.” (In those days a journeyman was really expected to 

journey!) There he became convinced that the new art should be 

based on mathematics. He methodically constructed the figures for 

his masterpiece Adam and Eve using the instruments of geometry: a 

compass and a ruler. 
This ability to project a three-dimensional object onto a two- 

dimensional surface would prove essential to the theoretical under- 

standing of chemistry. Molecules and atoms are three-dimensional 

entities that move in a three-dimensional world. While this may seem 

self-evident to someone reared on modern concepts, it is important 

to note that it would not be until the middle of the 1800s that the 

three-dimensional structure of molecules would be firmly established 

as a tenet of molecular theory. And, as mentioned above, painters 

such as da Vinci and Diirer were also concerned with other projec- 
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Fig. 4. The Four Witches. Engraving by Albrecht Durer, 1497. Devils, Demons, and Witch- 

craft, © 1971 by Dover Publications, Inc. 
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tions whose analysis would also figure prominently in the theory of 

chemistry—the projections of cannonballs. The Renaissance interest 

in cannonballs had recently arisen from a discovery that was old to 

Asia but new to Europe: gunpowder. 

Gunpowder was probably known in China as early as the 800s, but 

used only for firecrackers. This explosive mixture is a combination of 

saltpeter, sulfur, and charcoal that on ignition forms gas-phase oxides 

of the sulfur and carbon from the oxygen of the nitrates of saltpeter. 

The reaction is so rapid that a container holding the ingredients does 

not have time to expand gradually and instead explodes. By the time 

of the Renaissance, Europeans had used gunpowder to power projec- 

tiles for several hundred years. Da Vinci himself recorded various 

recipes for gunpowder for different applications.8 With the various 

conflicts of the Renaissance the stakes became higher for the design of 

new machines of war and more creative applications of gunpowder. 

The mechanics of objects in motion became critically important when 

they were needed not just to save the labor of peasants but to preserve 

the power of kings. And with the advent of mounted cannon on ships, 

no longer did an enemy ship have to close in for capture; the toy of 

della Porta—the magnifying lenticular lens—now had the power to 

alter sea battles and change the course of nations. 
So the stage was set for the next paradigm shift: the replacement 

of Scholasticism with pragmatism. Tradition mattered very little on 

the battlefield—rulers were more interested in winning wars than 

paying homage to Aristotle—and soon defiance of Aristotle in the 

name of scientific progress would become a parlor game for the 

young bloods of the universities. When these young bloods predicted 

the trajectories of cannonballs and pointed their telescopes at the 

stars, the parlor game became the Scientific Revolution. 
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Part IT 

The 

European 

Scientific 

Revolution 
THE PASSIONATE PURSUIT OF ORDER 

mir VCE 
INTRODUCTION 

The miracle of the appropriateness of the language of mathematics for the 

formulation of the laws of physics is a wonderful gift, which we neither 

understand nor deserve. 

Eugene P. Wigner, circa 1960 

hysical chemistry is a mathematical science, but history is not. The 

Scientific Revolution is generally placed between 1550 to 1700, 

but in a history of physical chemistry we must extend the time to 1800 

before completely consigning Aristotle to the history books. Physical 

chemistry is a composite science and revolutionary milestones are 

found from 1550 to 1800 in mathematics, physics, and chemistry. 

This broad expanse of time encompasses the Protestant Refor- 

mation, the Thirty Years War, the French Revolution, and the Amer- 

ican Revolution (though the Americas were not yet major players in 

the drama). The word “physics” began to show up in the English lex- 

(73) 
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icon in the early 1600s—although meaning all of natural science!— 

and the word “chemistry” about the same time—although described 

as “a kinde of prestigious, covetous, cheating magick.”* These two 

endeavors were not necessarily regarded as distinct and both fell 

under the umbrella of “natural philosophy” whose practitioners were 

sometimes referred to as “virtuosos.” The events of the Scientific 

Revolution came in waves: The first revolution was in mathematics, 

followed by a revolution in physics, which was followed by another in 

chemistry. No sooner had the chemical wash receded than physics 

and mathematics came crashing in again, followed by a tidal wave of 

chemical breakthroughs. 
The pattern is reasonable: The theory of chemistry builds with 

the tools of physics, and physics builds with the tools of mathematics. 

The discoveries of chemists often point the way for physical investi- 

gations and the needs of the’ physicists guide the efforts of the math- 

ematicians. The three are bound in a complex symbiotic relationship. 

But the interplay of the three takes time and such a broad timescale 

can make the Scientific Revolution seem less revolutionary. Revolu- 

tions are supposed to be sudden and violent upheavals. Was the Sci- 

entific Revolution sudden? Was it violent? 

The answer to the first question is yes. The period of time cov- 

ered in the first part of this book was about 2,000 years, while the 

time of the Scientific Revolution is about 300—so relatively speaking, 

the Scientific Revolution was, to some degree, sudden. To the second 

question, surprisingly, the answer is still yes. Most people don’t think 

of science as being an occupation that elicits violence, but in the case 

of the European Scientific Revolution, people died—horribly. The 

new age had its admirers, but it had detractors, too. 

What were the objections of the detractors? Shouldn’t scientific 

progress have appealed to everyone? Today many of the objections to 

change may be legitimate: Developments in science have brought 

about pollution, ecological shifts, and societal stress. In Europe, in 

the time of the Scientific Revolution, things could only get better. 

Disease still caused massive plagues, surgery lacked anesthetic or anti- 

septic, and industry relied on backbreaking manual labor. But the 

objections raised to scientific progress during the Scientific Revolu- 
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tion were objections over a shift in power as much as a change in a 
way of life. The 1600s saw the rise of secular rulers, supported by sci- 
ence, who wrestled power from the Catholic Church. 

The traditional Church, already under assault from the Reforma- 
tion, fought back. So it was, in this enlightened age, that witchhunts 
hit their peak (the last witch burning in Europe occurred in 1782 in 

France)? and religious persecution was virulent. Those in science 
risked being seen as on the side of the secular and on the wrong side 

by the standards of the Church, a rather perilous place to be.4 

But there was no safe haven. There was no social security. There 

was no welfare net. Tenure was rare rather than routine. When we 

speak of the infamous “publish or perish” now, we refer to the possi- 

bility of tardy promotion or early retirement—not being kicked out 

onto the streets to starve. In the second part of the Revolution, we 

will see less deprivation, but the memory of it will drive scientists to 

horde their secrets to impress their patrons, the secular rulers. 

The problems that the secular rulers needed science to solve were 

manifold, including three of far-reaching importance. The first was to 

make the cannon a practical weapon. In the 1600s, the availability of 

gunpowder was still only a questionable advantage in war. True, can- 

nons could hurl cannonballs at the enemy, but they had other 

machines that could do that as well. One invention, an uneven-arm 

throwing machine called the trebuchet, has been estimated to be able 

to fire a stone every twenty seconds.® These machines also ran on 

human power, not gunpowder, so they could be expected to work in 

the rain and were not subject to inopportune explosions. But plague 

had reduced the pool of available foot soldiers, and the cannon did 

not need food. So the utility of the cannon as a replacement for 

charging ranks became apparent. The problem was that the shooters 

didn’t know how to aim. They knew that firing the cannon point- 

blank could certainly breach a wall, but fired horizontally the can- 

nonball didn’t go very far. To seriously damage a fortress, they had 

to roll the cannon practically up to the door, at which point the 

shooters could be picked off by archers. They also knew that pointing 

the cannon up at an angle increased the range, but then they weren’t 

sure where the cannonball would land. 
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The second problem was naval battles. To ensure their coffers 

would grow, rulers needed to have uninterrupted sea trade and the 

ability to defend their ships. Cannons were more effective on the seas 

because a pointblank hit was more serious for a ship than a wall. So 

the problem became the ability to see the enemy coming. Enter the 

telescope. To understand how much of an improvement better tele- 

scopes brought, consider della Porta’s method for dealing with cap- 

ture by pirates: Take a potion to turn your urine red and rub your 

skin with an irritant to raise blisters. Why? In an age of pox and 

plague, these measures would at least keep the pirates from touching 

you, which is to say torturing you. With luck, the pirates would leave 

you adrift on your ship or allow you the opportunity to throw your- 

self to the mercies of the sea.® 

The third problem was navigation. In addition to being able to 

see trouble coming, ship captains needed to know their location. On 

the featureless expanse of the sea it is possible to get blown off course 

and disoriented. The compass helped to locate north, but that was 

not enough. Pinpointing exact position required a longitude and lat- 

itude: longitude running from the North to South Pole and latitude 

circling the globe, at right angles to the longitude. Because Earth, 

tilted slightly, is traveling slowly around the sun in a yearly revolution, 

the latitude could be determined by the position of the sun relative 

to the horizon, which changed a bit every day, so the captains knew 

latitude as long as they knew the date. The Earth’s spin, however, 

only takes twenty-four hours, so to know longitude they needed to 

know the position of some object, such as a fixed star, and a clock, 

and therein lay the rub. There were no clocks that worked well on 

shipboard. The problem was tackled by every scientist worth his or 

her salt. The British Admiralty offered a £20,000 prize for a method, 

but the prize went unclaimed until 1764 (and then the prizewinner 

got the glory but not the cash until he threatened to sue).7 Out of 

the effort, however, would come some very interesting science. 

These three problems, the need to maximize the range and aim 
of cannons, the need for better telescopes, and the need to determine 
longitude, encapsulate the problems facing the scientists of the Sci- 
entific Revolution. But why should a revolution be required to solve 
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these problems? Because Aristotle’s theories fell far short of what was 
needed. The only thing Aristotle had to offer on the subject of can- 
nonballs was that heavy objects seek the Earth because it is their 
nature. This explanation met with a cold reception from the warlords 

of Italy. They needed to know how far a cannonball would fly before 

it sought its nature. In other words, they needed the philosophers to 

put a number to it. The Scientific Revolution was a turn from quali- 

ties to quantities. To be successful (that is, to receive support and 

ultimately a pension if they were lucky) the scientists realized they 

were going to have to put off the “whys” for a while and just focus 
on the “hows” and “how fars.” 

But knowing that you need information and being able to get it 
are two different things. In the Scientific Revolution, the problem 

was even broader: They first had to discover they could discover— 

that it was possible to know more than the Arabs and Aristotle 

knew—and that this information might be of some practical use. So 

it was that the Scientific Revolution began (following the precedent 

set in the Renaissance) with hungry artisans, mathematicians, and 

machinists finding they could better their lot by cleverness and talent 

and by rising above (or stepping around) the conventional wisdom. 

For those of a mathematical bent, the work was in the counting 

houses of the merchants. For those with mechanical abilities, the 

employment was in armaments and military devices. For those clever 

with chemicals, the path lay in medicine, gunpowder, poisons, or cos- 

metics. Cosmetics were important because women had so few 

employment options that physical attractiveness could be tantamount 

to survival. For the male mathematicians, physicists, and chemists the 

most comfortable positions were in the universities, if their reputa- 

tions were good enough. 
For the mathematicians, this need to establish reputations led to 

a lot of secrecy in hopes of elevating the demand for one’s services. 

But reputation could also be established by publication—which 

sometimes led to publication of other people’s secrets—which 

resulted in bad feelings. These streetwise mathematicians, with a life- 

or-death stake in their art, were the first to make concrete and useful 

discoveries that went beyond the findings of the ancients. The physi- 
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cists who followed the groundbreaking mathematicians found it 

easier to wrestle with the long arm of Aristotle and to dispense with 

the search for ultimate truth in favor of the search for what ultimately 

works. These physicists, epitomized by Galileo, found the equations 

of motion that were needed for the field artillery and described the 

motion of the planets relative to the sun. The chemists, who had 

always felt more allied with magicians than mathematicians, gave up 

the search for gold in favor of the newly lucrative manufacture of 

medicines and gunpowder. Then the prototypical physical chemists, 

such as Robert Boyle, explored the properties of gas—the product of 

gunpowder reactions that causes the projectile to exit the barrel—and 

discovered mathematics applies to chemistry, too: a result that our 

medieval magician, Giambattista della Porta, would not easily have 

envisioned. 

In the second wave of physics, Isaac Newton related force and 

motion, correlated the motion of cannonballs to the motion of the 

planets, and laid out the essential concepts needed to defend an 

atomic theory of matter. Along the way he found that he needed a 

new technique in mathematics, so he invented the calculus. When 

Newton tackled chemistry, however, he found himself embroiled in 

the mystic heritage of this art. Chemistry is a crafty beast and would 

continue to elude the saddle of mathematics, even when chased by 

Newton. It would take Antoine Lavoisier, an accountant and tax col- 

lector, to find the key to unlock the secrets of chemistry—the equa- 
tions for the balance sheet of matter. 





Chapter 6 

Mathematics 

THE FIRST WAVE 

Vee Ce 
The King was in his counting house, counting up his money; The Queen 

was in the parlor, eating bread and honey. The Maid was in the garden, 

hanging out the clothes; down came a blackbird and snapped off her nose. 

English rhyme from the Renaissance period 

efore beginning our journey into the Scientific Revolution, we 

Bes to look back at Renaissance mathematics. The Renaissance 

mathematicians set the stage for the Scientific Revolution by 
breaching the wall of the ancient Greeks. They solved equations that 
eluded even Euclid. 

How were the mathematicians able to accomplish this feat? 
During these turbulent times, when scholars risked life and limb by 
expressing their ideas, what emboldened the mathematicians to tout 
their new thoughts? Were these mathematicians somehow more 
courageous and visionary then their kindred in the sciences? Hardly. 
Some of the mathematicians we will encounter will be some of our 
wiliest characters. But the mathematicians worked for the merchants 
and the merchants counted success in profits. As far as the merchants 
were concerned, the mathematicians could run roughshod over 
Euclid if their methods provided quicker or more accurate 
accounting. During these times alchemists/chemists were almost 
routinely hanged for their pursuit of what were considered the black 
arts. Proponents of the new celestial mechanics were hunted down 

(30) 
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and harried for what were considered blasphemous or anti-Aristotle 
utterings. But, as far as this author is aware, no mathematician was 
ever burned at the stake, and even those who had a close brush with 
such a death couldn’t blame their mathematics. 

The merchants also cared little for social pedigree, so mathe- 
matics provided an avenue to education and acceptance for the tal- 
ented from any walk of life. No lives better exemplify the power of 
mathematics to bring a mathematician up a notch or two on the 
social scale than those of Girolamo Cardano (1501-1576) and 
Nicolo Tartaglia (1499-1557), two of the roughest of the ruffians 
ever to find a route to respectability through mathematics.1 

It takes some understanding of Italy’s history to appreciate 

Tartaglia’s story. During the Renaissance, Italy was split into small 

defensive states by the rivalries between popes and powerful families. 

Born in 1499 in Brescia, a town situated in a fertile plain at the terminus 

of the Alpine pass, Nicolo Tartaglia lived in a perpetual battlefield. 

Tartaglia’s father, a medieval mailman of sorts, died when Tartaglia was 

six years old and left the family in poverty. When a shift in political winds 

caused Brescia to be attacked by French troops with artillery, the twelve- 

year-old Nicolo tried to take shelter in the town cathedral. He never- 

theless received several head wounds for his efforts, one of which tore 

his mouth and left him with a permanent speech impediment. For this, 

he gained the nickname of Tartaglia, based on the Italian “tartagliare,” 

which means “to stammer.” As an adult, he sardonically chose Tartaglia 

as a surname. His true surname remains unknown. 

According to his own account, this tough little boy paid a tutor 

to teach him to read and write but ran out of money by the time they 

got to the letter “k.” At that point, he resolved to teach himself and 

found his talent in mathematics. Soon he moved to Verona to 

become a tutor in mathematics. In those days, any mathematician 

with demonstrable knowledge and a pencil and paper could set up 

shop and attract paying students, so it became very important to 

retain one’s reputation for being a skillful scholar. In the manner that 

magicians attract apprentices through keeping the secrets of their 

magic, these mathematicians attracted students to tutor by promising 

to teach mathematical secrets. To publicize their mathematical exper- 
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tise, they would stage contests with other mathematicians. Often bets 

were made between combatants, so the contests could serve as sup- 

plemental income, but the main purpose was as an advertising venue 

to attract customers for their skills and students for tutoring. Though 

these contests began as a technique for increasing business, they 

became a tradition in European mathematics, even when the only 

stakes were reputation, but the battling was just as fierce, as we shall 

later see. It was in such an exhibition that the clash between Tartaglia 

and another major player in this story, Girolamo Cardano, took place. 

A few words of explanation are needed here on an algebraic con- 

cept: the degree of an equation. The degree of an equation refers to 

the number of times the unknown is multiplied by itself. In other 
words, if you are looking for just the unknown, then it is an equation 
of the first degree. If you are solving for the square of the unknown 
(unknown times unknown); you have an equation of the second 
degree. The common names for these various types of equations 
hearken back to the geometric constructions of Euclid. An equation 
of the first degree is called a linear equation because a straight line can 
represent it. An equation of the second degree is called a quadratic 
equation because a quadrant is a square and the area of a square is 
found by multiplying side times side. An equation of the third degree 
is called a cubic equation because the volume of a cube is found by 
multiplying side times side times side. 

By the 1500s methods for solving linear and quadratic equations 
were known. Ifa merchant knew that the vineyard produced two bar- 
rels a month, he could easily calculate how many barrels he would 
have in any given number months; this is a linear equation. In a sim- 
ilar fashion, another merchant might use a quadratic equation to 
determine the best loan. Let’s say the merchant had a bad wine year 
and needed to borrow money. The merchant finds a financier willing 
to loan the money with a flat fee of 50 ducats per month, but the 
local loan shark offers what appears to be a cheaper, but increasing, 
rate: the age of the loan squared. The first week, the charge is one 
ducat: one times one. The second week the charge is four ducats: two 
times two. After the first month, four weeks, the charge is only up to 
16 ducats: four times four. Of course, the loan shark’s explanation 
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will stop here because at this point the loan seems very reasonable. 
However, the merchant would be well advised to consult his or her 
mathematician because a little modern calculator math will show that 
in month three the charge is up to 144 ducats (12 times 12) and goes 
up to 576 ducats (24 times 24) in month six! The merchant can still 
take advantage of the initial cheap rates, however, if the merchant’s 
mathematician properly projects when to pay off the loan—or when 
to leave Venice. 

What does all this have to do with physical chemistry? A lot. 
There are several chemical quantities that depend on powers of fac- 
tors greater than one. An immediately understandable example is the 
rate of reactions. The rate of a chemical reaction depends on the con- 
centration of starting material, as any winemaker can tell you: The 
rate of fermentation depends on the concentration of sugar in the 
grapes. As can be seen by our example of a bad loan above, if the 
reaction rate increases as the second power of the concentration, this 
fact needs to be known to prevent potentially explosive conse- 
quences. So an understanding of the behavior of such mathematical 
systems had a direct impact on physical chemistry, but the effect was 

also indirect. Finding solutions to equations of the third degree— 
cubic equations—was the big breakthrough of the 1500s. Their solu- 

tion demonstrated that knowledge existed beyond what was provided 
by the ancients. 

There are several different types of cubic equations, and the 

Renaissance mathematicians treated them all as separate problems. 

For instance, there could be a cubic equation that included a squared 

term, a single power, or a constant thrown in for good measure. A 

rule for solving one of the simplest types of these equations—ones 

that contained just a cube term and a single power—was discovered 

by the mathematician Scipione Ferro early in the 1500s.2 He did not 

publish his result but saved it as ammunition for the mathematical 

duels. He handed down his secret to his student, Antonio Maria 

Fiore,? and in 1535 Fiore challenged Tartaglia to a mathematical dis- 

putation armed with the following problem: A man sells a sapphire 

for 500 ducats. The original price he paid was the cube root of his 

profit. What was his profit and what was his cost? Tartaglia worked 
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late into the night, found a method for solving the problem, pre- 

sented the answer, and won the contest. Fiore, unable to answer 

Tartaglia’s problems, lost. The victory put Tartaglia on top of the 

heap . . . for a while. Enter Girolamo Cardano. 

Most of what we know of Girolamo Cardano comes from his own 

account. As an old man he opted to write an autobiography, some 

portions of which have been substantiated from other sources. It 

appears to be true that he was born in 1501 in Rome, the illegitimate 

son of an educated father (indeed, a friend of da Vinci) and a brutal 

mother. He was encouraged in his education by his father and earned 

a degree in medicine, but he could not be accepted by the College of 

Physicians of Milan because of his illegitimate birth. Obliged to prac- 

tice medicine in the countryside, he took up mathematics as a hobby 

and as a way to help him supplement his income. Cardano was an 

inveterate gambler, as were ‘many of the mathematicians of his day. 

They either came to mathematics in hopes of bettering their chances 

at games or came to gambling when they saw the power inherent in 

mathematics. So it was that Cardano was triply motivated in his pur- 
suit of mathematics: He hoped it would improve his success in gam- 
bling, he hoped that it would add to his respectability, and he, too, 
realized, as many before him, that there were now profits to be made 
in the sale of books. He eventually published more than 200 works 
on everything from medicine to demonology, but it was while 
awaiting the publication of his first book on arithmetic, Practical 
Arithmetic, that Cardano learned that Nicold Tartaglia knew a 
method for solving a cubic equation.* 

Cardano approached Tartaglia and asked him for his solution, but 
Tartaglia, naturally, refused. Cardano accepted the initial refusal gra- 
ciously, and continued to improve his fortunes in other ways. Car- 
dano won acceptance to the College of Physicians, despite the cir- 
cumstances of his birth, by impressive cures such as his treatment of 
the rather severe respiratory problems of the archbishop of Edin- 
burgh. Cardano spent some time observing the archbishop’s habits, 
noted that the condition worsened at night, and then ordered that 
the archbishop’s feather comforter be replaced with a mattress of 
rags, which effected an immediate cure. Despite his success in medi- 
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cine, Cardano continued to run up some rather substantial gambling 
debts, which necessitated a supplementary income.5 To improve the 
value of his book on mathematics, he continued to ask Tartaglia for 
the latter’s solution to the cubic equation. 

Tartaglia continued to refuse until Cardano finally hit on the win- 

ning enticement: Tartaglia had been interested in artillery since the 

unfortunate incident of his youth and believed that he had conceived 

inventions that were good enough to sell. When Cardano promised 

to introduce him to the Milanese court for this purpose, Tartaglia 

consented to give Cardano his solution to the cubic equation, though 

Tartaglia did take some steps to protect himself. First he made Car- 

dano swear not to divulge the secret, and second he gave the equa- 

tion in the form of a poem to avoid having to write it down. 

For the next several years, Cardano kept his oath, but then, per- 

haps inspired by Tartaglia’s solution, he and his pupil, Lodovico Fer- 

rari, worked on other forms of cubic equations and found solutions 

to them as well. Ferrari even managed to find a solution to a form of 

a fourth-degree equation. Seeing a way out of his oath when he heard 

that Tartaglia’s solution was preexisting, Cardano and his pupil 

sought and found the notes of the original discovery. On the basis of 

this preceding discovery, Cardano published the solution to this par- 

ticular cubic, too, but was careful to give Tartaglia credit along with 

the original discoverer. 
As would be assumed, Tartaglia was furious. To be given credit is 

all fine and good, but the profits from the book went to Cardano. 

Threats and accusations flew until Tartaglia finally met Cardano’s stu- 

dent, Ferrari, in a public mathematical challenge. Tartaglia was bested 

by Ferrari and had to leave in shame, and Ferrari, bolstered by his tri- 

umph, received offers of employment from royalty. 

It is hard to establish in this cutthroat battle the villain versus 

victim, but none of the participants fared well in their future. 

Although he apparently did have a family at one point, Tartaglia died 

alone and in poverty. Ferrari died at the age of forty-three, probably 

poisoned by his sister in a family feud, and Cardano didn’t do much 

better. He first endured the death of his son, who was executed for 

murdering his own wife, and then was arrested by the Inquisition for 
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having the audacity to cast the horoscope of Christ. He was released 

after a few months in prison when he recanted and agreed to give up 

teaching. In his last book he wrote of his life and that, for all his mis- 

fortune, he had a grandson, a belief in God, and fifteen good teeth. 

But apparently he did commit suicide in the end. He had predicted 

the date of his death and did not want to be judged to be in error. 

Yet it was Cardano and Tartaglia and the rest of the Renaissance 

mathematicians who showed that there was more to be known than 

the knowledge of the ancient Greeks and Arabs. But major hurdles 

remained before the full power of this new knowledge could be real- 

ized. The first is well demonstrated by looking at the beginning of the 

Cardano-Tartaglia—Ferro solution to a cubic equation as expressed by 

Cardano: “Cube one-third of the coefficient of the thing; add to it the 

square of one-half the constant of the equation; and take the square 

root of the whole. You will ‘duplicate this and to one of the two you 

add one-half the number you have already squared and from the other 

you subtract one-half the same. . . .”© Renaissance algebra, following 

the Islamic tradition, was entirely rhetorical. 

An algebraic textbook from the Renaissance might be unrecog- 

nized as such by anyone today. There were no neat equations set off 

by white space, no symbols for operators such as “+” for addition or 

“x” for multiplication, and no single-letter unknowns. All the rela- 

tionships, manipulations, and operations were written out in words 

and the unknown was called Ja cosa or the thing. To subtract one from 

eleven, Fibonacci, the bookkeeper mathematician, would have 

written “a debit of one together with the sum of eleven becomes the 
number ten,” and this statement would have been buried in a para- 
graph of text. 

Moreover, proofs were worked out through geometry. To appre- 
ciate the cumbersome quality of a geometric proof consider the well- 
known distributive law of multiplication. If three girls and four boys 
buy shoes, they will buy fourteen shoes, whether it is calculated as 
two shoes per girl and two shoes per boy or the total number of chil- 
dren times two shoes each. For Euclid to prove this, he had to con- 
struct two rectangles, one of width two and length three for the girls 
and one of width two and length four for the boys. He then found 
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the total area of the two rectangles together and compared it with a 
rectangle with a width of two and a length of seven. 

Early in the fifteenth century some of the abacists (or professional 
mathematicians) began to substitute abbreviations for unknowns such 
as “C” for cosa, or “Ce” for censo or square, and “Cu” for cubo or cube. 
The resulting condensation helped, but things were still pretty awk- 
ward. Gradually the use of signs for “equals” and “square root” found 
their way into usage, promoted by mathematicians such as Michael 
Stifel, a cleric who used his mathematics for wortrechnung or word cal- 
culus: the interpretation of words through the numerical value of let- 
ters.” Using this system, he interpreted the Bible as predicting the end 
of the world on October 18, 1533. After his congregation waited in the 
church that whole day and nothing happened, they tossed him out. He 
eventually promised to give up predictions and was given another 
parish through the intervention of Martin Luther. 

Another much needed step toward systemization was taken by 

Francois Viete (1540-1603), who turned the search for solutions to 

equations into a study of the structure of the equations themselves.8 

He was a lawyer, but his reputation for his mathematical skill was 

such that the king of France recruited him to the French court. One 

of Viéte’s tasks was to decipher intercepted coded messages, which 

could have intricate mathematical relationships as their key. He was 

so good at his “black art” (as mathematics was sometimes referred to 

by those in awe of it),? that some thought he should be denounced 

for sorcery. But the king of France was in such need of his services 

that he was willing to overlook, and encourage others to overlook, 

any hint of a sorcerer in his mathematician. 

Viéte was one of the first to substitute letters for all numbers in 

equations, which allowed a general, rather than specific, solution to 

be found. Until his time, each equation was solved as an individual 

problem. In other words, Viéte’s contribution is analogous to invent- 

ing the general concept of a bridge: When you come to a new river, 

instead of having to reinvent bridges, you just build your general 

bridge using dimensions specific for your river. This innovation com- 

pressed all the specific types of cubic equations that Cardano and 

Tartaglia struggled with into one general equation. 
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All these successes added to the arsenal of the mathematician, 

which further emboldened them. By 1585 Simon Stevin (1548-1620) 

wrote a book on decimal fractions that openly contradicted the wisdom 

of the ancient Greeks.!9 For us moderns, shopping for items costing 

dollars and cents hardly seems revolutionary. But for Stevin in these 

early times, proposing decimal fractions, the 0.98 of $24.98, took 

courage. The last time it had been proposed, the proposer, Hippasus, 

a member of the Pythagoreans, was supposedly pitched overboard.1! 

Why the fuss? As Stevin had found, decimal fractions are easier to add, 

subtract, multiply, and so on, because they behaved just like whole 

numbers as long as you kept track of the decimal. The problem was 

that decimal fractions implied that numbers were continuously divis- 

ible—and Pythagoras had said that the number one was a pure ideal 

and that all numbers were built from this sacrosanct, indivisible 

number. Once the sanctity of one had been breached, what concept 

couldn’t be thrown out? This idea threatened the underpinnings of 

mathematics as it was known. Many saw this as the beginning of the 

unraveling of Aristotelian tradition, and they were right. 

In 1594 John Napier discovered that any number could be 

expressed as a power of ten, if you allowed for decimal powers: hence 

the birth of logarithms. The beauty of Napier’s system is that numbers 

can be multiplied by adding their logarithms and divided by sub- 

tracting, which allows mathematical manipulations to be carried out 

easily, even mentally. As Napier observed, logarithms circumvented the 

need for long calculations that are a “tedious expenditure of time” and 

are subject to “slippery errors.”!2 Napier was a Scottish Protestant, and 

his strong theological writings urging the king to “purge his- house, 

family and court of all Papists, Atheists and Newtrals” probably saved 

him from persecution as a warlock by those who were suspicious of the 

origins of his mathematical prowess. Then, in the mid-1600s René 

Descartes through brilliant insight tied together the new algebra with 
the old geometry and laid out the path to the calculus. 

By the time of Descartes we are foursquare into the Scientific 
Revolution with all its beauty, baroque elegance, and passion for 
order. Descartes, the scientist and philosopher, saw mathematics as a 
pure expression of logic and order. 
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Though known for independent wealth, good connections, and a 
penchant for sleeping late, Descartes lived as though he longed for 
the ruffian’s life and looked for his intellectual roots in the lives of the 
back-alley mathematicians and low-level soldiers, but he didn’t look 
too hard.!% Descartes was a French Catholic at a time when Protes- 
tants and Catholics were at odds in France. He joined a Catholic 
army warring against the Protestants, but apparently did not partici- 
pate directly in any battles. In 1622 he moved to Paris where he 
attended the theater and spent time gambling and fencing. Then, 
abruptly, he gave up his indolent life for that of a scholar. There are 
conflicting stories as to why he did this, but many seem to center on 

the well-recorded encounter between Descartes and an alchemist. 
Apparently the alchemist, Chandoux (who shortly thereafter was 

hanged for counterfeiting),!4 proposed that there was a probability 

associated with experimental results; though you might not achieve 

precisely the same result with each measurement, this was not a reason 

for discounting the experiment. This belief would ultimately prevail— 

and, indeed, without it science could not progress—but Descartes, 

who longed for precision and mathematical method in science, argued 

that the result had to be precisely the same every time for it to be valid. 

On hearing the eloquence of Descartes in the public argument 

between Descartes and the alchemist, a radical Catholic approached 

Descartes and tried to enlist him in the Catholic cause. Descartes knew 

this was not the optimal time to involve himself in religious politics: 

Lucilio Vanini had been tortured and burned in 1619 for giving nat- 

ural explanations of miracles, and the Parliament of Paris passed a 

decree in 1624 forbidding attacks on Aristotle on pain of death.15 

Descartes, who had a deeply rooted sense of self-preservation, found 

himself remembering his indiscreet youth and, with the crackling fires 

of the Inquisition in his ears, headed north to Holland. 

It was in Holland that Descartes remembered some musings he 

had while keeping warm in a small heated hut near the battlefield and 

began to solidify his thoughts in writing. In 1633 Descartes was 

about to publish his book, which supported the notion that Earth 

revolves around the sun, when he heard that Galileo Galilei had just 

been hauled in front of the Inquisition for this belief. He demurred. 
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Fig. 6. René Descartes. Edgar Fahs Smith Collection, University of Pennsylvania Library. 
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In 1637, however, Descartes decided the tide had turned and 
published his Discourse on Method. In his method, Descartes pro- 
claimed that all knowledge should be acquired through rigorous 
mathematical reasoning. The part that most interests us in this book 
is an extraordinarily long, 106-page footnote in which he provides an 
example of how the method might be applied to geometry. 

In those days, calculations and proofs were done through geom- 
etry, which meant they had to construct geometric figures and mea- 
sure lines. Descartes’s insight was to recognize that geometric con- 
structs, such as curves, could be represented by a set of points and 
therefore cast as equations. Many times equations can be manipulated 
more easily than the boxes and triangles of Euclid, and, conversely, 
some equations can be solved more easily when cast as curves. 

As an example of how a curve might be cast as an equation and 
vice versa, consider the growth charts routinely used by pediatricians 
to track the health of children. These charts are based on an average 
growth rate that is vigorous when the child is young and gradually 
slows as the child matures. To determine if a child is growing nor- 
mally the pediatrician generally rounds the age of the child, finds 
where the age line intersects the curve, and follows this point over to 
find the projected height. But the relationship between height and 

age could also be represented by an equation where the height would 

be equal to some curving function of time. Using this equation, the 
pediatrician could insert the exact age of the child and arrive at a 

more precisely predicted height. Before curves such as these could be 

realized, however, much work remained to be done. In particular, 

one important curve had to be solved first: the path that a particle 
takes when it acquires motion as a result of propelling force, such as 

a cannonball fired from a cannon, and under the influence of an 

attractive force, such as gravity. Understanding this curve would 

eventually lead to an understanding of the path of an electron under 

the influence of the force of a positive nucleus or the path of a par- 

ticle feeling no force at all. Progress in this direction would be made 

by the Italian whose troubles with the Inquisition caused Descartes 
to defer publication: the mathematician Galileo Galilei. 



Chapter 7 

Physics 
THE First WAVE 

Still it moves. 

. Galileo Galilei, circa 1640 

he description of motion is essential to physical chemistry. In the 

atomic model, atoms are always in motion. But Galileo’s dis- 

covery of the fundamental characteristics of motion is only half the 

story. Galileo and his ilk represent what was revolutionary about the 

Scientific Revolution. They changed “I know” to “I don’t know, but 

I can find out,” and without this change we would not have been able 
to progress. 

It is hard to give up the power of authority. Nobody likes to be 

wrong and nobody likes to admit they don’t know. So the motivation 

for the ancients to speak authoritatively finds its origins in human 

nature. At the time of the European Scientific Revolution, the 

impetus was even stronger. As we have said, the world was a bit 

harsher during this period and employment was of paramount impor- 

tance. For scientists to obtain and retain employment, they had to 

prove their worth and keep proving it. Nodding thoughtfully and 

saying, “Gee, that’s an interesting problem but I really have no idea 
what to do about it” wouldn’t pay the bills. 

So when it came to the important concept of motion, most scien- 
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tists had an explanation that they stated with as much authority as they 
could muster. Galileo had the advantage in that he had gained respect 
early in mathematics and with the design of scientific instruments. 
Once his reputation was established, he still couldn’t bring himself to 

say, “Gee, I don’t know. . . ,” but he did manage a fairly forceful “You 
don’t know, either.” Then Galileo proceeded to find out. 

Galileo was always outspoken, a trait he inherited from his father. 

Born in 1564 near Pisa, Galileo was the son of Vicenzo Galilei, a 

Renaissance rebel. One of those vital pieces of information imported 

into Europe from the ancient Greeks was the musical scale discovered 

by Pythagoras. Pythagoras found that if a stretched string makes a 

certain sound when plucked, then dividing the string in half and 

plucking it again will make the same sound, just an octave higher. 

Further, he found that when the ratio of lengths was 2:3, the two 

sounds weren’t the same, but they blended: They harmonized. This 

harmonizing also occurred when the ratio was 3:4 and other whole 

number ratios. This is the principle behind playing the guitar: One 

moves one’s fingers to hold the strings down at various lengths to 

make various pitches. While harmonic music is a mundane com- 

modity in the modern world, imagine the ecstasy of Pythagoras when 

he discovered this simple fact. No wonder he believed in the purity 

and power of whole numbers. 
Galileo’s father was a proponent of a new way of tuning instru- 

ments that was not based on the rigorous whole number ratios of 

Pythagoras. He, as others around him (such as the multitalented 

Simon Stevin of decimal fractions and the Chinese prince Chi Tsai- 

Yii), decided it was more important to please their ears than 

Pythagoras. Watching and helping his father stretch and weigh strings 

of different lengths and thickness to obtain just the right sound, the 

young Galileo learned the value of experimentation.1 

When he was seventeen, Galileo entered the University of Pisa 

with the objective of studying medicine, but soon turned to mathe- 

matics. He left the university when he was twenty-one, without a 

degree, but in those days reputation could take precedence over qual- 

ifications. He set up shop as a mathematics tutor in the tradition of 

Cardano and Tartaglia and eventually developed enough of a name 
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to be hired as professor of mathematics at Pisa. Here he found that 

while mathematicians, in the service of merchants, were allowed to 

sidestep Euclid, professors had better respect Aristotle. Galileo, 

pointedly, did not have his contract renewed. 
The point of departure between Galileo and the university fathers 

was that Galileo said flat out that Aristotle was wrong. Not maybe, 

not probably, but most definitively wrong—and he could prove it. 

The point of contention? Aristotle’s conception of motion. 

First let’s reexamine the understanding of motion of that era as 

based on Aristotle’s principles. Aristotle believed that motion was 

caused by an initial impetus and then perpetuated by air rushing in to 

fill the vacuum created by the object as it moved from its initial posi- 

tion. (Recall Aristotle’s famous dictum: Nature abhors a vacuum.) If 

this had been all Aristotle said, there probably wouldn’t have been a 

problem. But Aristotle, in his own effort to establish his authority, 

went one step further and made two predictions. The first was that 

the speed at which objects fall is proportional to their masses (that is, 

a hammer falls quickly while a feather drifts to the ground). Secondly, 

he said that in the absence of outside influence, all objects set in 

motion would eventually come to rest. 
As we now understand (and as was demonstrated by an astro- 

naut’s experiment on the moon, which showed a feather and a 

hammer landing together),? air resistance is the factor that causes the 

feather to lag behind the hammer. But Galileo couldn’t go to the 

moon, so it is said that Galileo debunked the first of Aristotle’s pre- 

dictions by dropping objects from the Leaning Tower of Pisa. 

Though the experiment most likely did occur, there is some question 

as to who conducted it. Some say it may be that Galileo did perform 

the actual experiment,? and some say Galileo hauled a cannonball and 

a musket ball up the steps himself.4 But whether or not Galileo actu- 

ally did the tower experiment, he performed the following thought 

experiment, which we can duplicate. Aristotle said that if the mass 

doubled, then the rate of fall would double. Galileo applied reducio 

ad absurdum: Could one envision a cannonball and musket ball being 

dropped together and the cannonball crashing to the ground, but the 

musket ball drifting down some several minutes later? However, it 
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was an argument of qualities versus quantities at a time when quanti- 
tative science was just being born, so the university cited any differ- 
ence in landing time as a proof of Aristotle’s idea. The slight discrep- 
ancy caused by the resistance of the air was seen as a triumph for the 
old ways. The administration of the university of Pisa tossed Galileo 
out on the street, but he wasn’t out for long. The same year he was 
appointed to the chair of mathematics at the University of Padua.5 

As his appointments would indicate, Galileo was no slouch in the 
area of mathematics. He was so talented that he invented a calcu- 
lating “compass,” an early version of a slide rule, which provided 
some income from its manufacture and sale. His infatuation with 

gadgets would eventually lead to his articulation of the mathematics 
of motion, but gadgets would also be the reason for a delay of twenty 
years in the publication of his results. In 1609 he heard about the 

invention of a new type of gadget from Holland: a telescope. 
Galileo made sure he was the first on his block to obtain one from 

a Dutch lens maker.® The first telescope he obtained was about as 

powerful as modern binoculars, but this was impressive enough. 
When he demonstrated the device in Venice, the university doubled 
his salary and he received tenure for life. By December of the same 

year, Galileo had designed his own telescope and improved it to the 
point that he could see mountains and craters on the moon. He also 

discovered the four largest moons of Jupiter, the phases of which he 
proposed might make a nice clock for determining longitude. He 

published these findings in The Starry Messenger, and the book’s fame 
won him appointment as court mathematician at Florence. This posi- 

tion released him from his teaching duties and allowed him to do 

research full time. It should be noted here that he was offered the 

title of “Philosopher,” which carried great prestige in itself, but he 
insisted in retaining “Mathematician,” too. He saw science as a math- 
ematical enterprise and wanted that reflected in his job title. The civic 

authorities obliged him because his improvements to the telescope 
enabled them to see ships coming sooner, but the religious authori- 

ties began to realize that Galileo was seeing things they’d rather he 

didn’t see—and he was ready to tell the world. As can be discerned 
from his difficulties with the university fathers of Pisa, Galileo never 
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was a conformist nor a soft-spoken man. He even got into trouble 

because he refused to wear the regulation academic regalia at all 

times. He wrote a poem in which, among other things, he com- 

plained that you couldn’t go into a brothel in regalia.” 

The new recognition he received emboldened him further. For 

instance, he began to back the theory of Copernicus. Back in 1543, a 

quiet cleric by the name of Nicolaus Copernicus had published a book 

entitled Revolutions of the Heavenly Bodies in which he proposed that 

the planets moved around the sun rather than the other way around.8 

He was very insightful but he wisely waited until he was on his 

deathbed to allow the publication of his book. The publisher, in an 

equally prudent act of self-protection, added an editorial preface in 

which he stated that Copernicus was just offering a mathematical 

model that made astronomical calculations, such as calculating the date 

of Easter, easier, which it did. However, there is little doubt that 

Copernicus believed what he wrote. He envisioned the orbits of the 

planets as circular, which they are not, but writing his book put a name 

to what scholars were gravitating toward anyway. The “Copernican 

system” became a rallying cry for the Scientific Revolution. 

When Galileo backed the Copernican system, as did many others, 

his investigations did not immediately bring him to loggerheads with 

the Church. There is every indication that Galileo wished to be a 

good Christian and had no quarrel with the religious establishment. 

True, there had been that nasty burning of the magician Giordano 

Bruno in 1600, supposedly for the same belief, but then that inter- 

national wanderer had rather recklessly offended established authori- 

ties in other ways as well.? Galileo probably would have hesitated if 

he thought he would cause discomfiture in the Church, but in fact, 

he discussed his ideas openly, thinking he was having intellectual dis- 

course. The popes were then as they are now: educated, intelligent 

men, knowledgeable in the sciences as well as the arts. 

In 1616 Galileo received a gentle scolding from the pope and a 

cardinal for too publicly and too confidently supporting the Coper- 

nican system. They said that this matter was best left to the Church 

fathers and Galileo obliged. However, when a new pope, Urban VIII, 

was elected in 1623, Galileo sensed a kindred spirit. He visited Rome 
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Fig. 7. Galileo Galilei. Symbols, Signs & Signets, © 1950 by Ernst Lehner, Dover Publica- 

tions, Inc. 
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to show Urban the telescope and in 1632 sent him a copy of his new 

book, Dialogue on the Two Chief Systems of the World, in which he 

openly embraced Copernicus’s theories. 

Unfortunately, the book arrived at a bad time. It had to be taken 

apart and fumigated before it could be handed to the pope (the 

plague still raged in waves) and when Urban received it, he was 

deeply embroiled in political problems. The Thirty Years War, which 

started when some Protestants threw some Catholics out a window,!° 

was threatening to tear the Church apart (and in fact it did), so it can 

be understood why the pope decided that the sun and Galileo would 

have to wait until he had time to deal with it. Consequently, the book 

was reviewed by a cardinal who was critical of the pope’s handling of 

the war and of Galileo, so the pope, in an act of appeasement, agreed 

to crack down on Galileo.1! Eight months after the book came out, 

Galileo was invited to appear before the Inquisition. 

Galileo was, by all indications, shocked. He had taken pains to go 

through all the proper channels and receive all the proper approvals 

for the book that were required. He wrote back that he was ill, which 

he was, as certainly anyone would be in such a situation. Finally in 

June, Galileo could delay no longer and arrived in Rome. Told that he 

could be interrogated as to true intent, and shown the instruments of 

torture, Galileo wisely recanted. In what was perhaps an act of kind- 

ness, he was merely put under house arrest—for life. Despite the 

indignation, illness, and, in the end blindness, Galileo used the 

enforced solitude to finally record the observations on motion he had 

made in his youth. His last book, Discourses and Mathematical 

Demonstrations Concerning Two New Sciences, was sent to the Nether- 

lands, where the Inquisitors had no power, and published in 1638. 

Among other topics in Discourses was Galileo’s mathematical 

analysis of motion, including his assertion that all objects in free fall, 

in the absence of air resistance, fall at the same rate. Galileo’s discovery 

can be easily demonstrated by dropping a set of keys from significant 

height (10 meters or greater) and timing how long it takes them to hit 

the ground with a stopwatch, a device Galileo didn’t have, but would 

have found wonderful. Keys work especially well because they are 

small and heavy and make a loud noise when they hit the ground. 



Physics Yvye 99 

Switching to more keys or fewer keys or even attaching a bowling ball 
to the keys doesn’t change the time it takes to hit the ground. In addi- 
tion, through careful analysis Galileo found that the velocity for an 
object in free fall increases, and this increase is also the same for all 
objects in free fall: the gravitational acceleration of 9.8 meters per 
second squared, everyone’s mantra from Physics 101. 

Another bit of brilliance from Galileo was the concept of inertia: 
the idea that, in the absence of outside forces, a body in motion will 

stay in motion and a body at rest will stay at rest, directly denying the 

dictum of Aristotle. It is fairly easy to see how one might deduce that 

a body at rest stays as rest, but how does one prove that an object in 
motion would stay in motion? The answer can be found in Galileo’s 

clever experimental design, careful measurements, and the use of an 

extension of inductive proof called extrapolation. The first thing he 

did was to select massive metal balls to minimize the influence of air 

resistance, then polish them to minimize the effect of friction. Galileo 
found his carefully polished balls rolled more and more slowly when 

he released them from the top of gradually flatter inclines, but they 

did not come to rest at the bottom. He mentally extended, or extrap- 

olated, his results to a plane with no incline whatsoever and said that, 

in the absence of friction, a ball set in motion on this surface would 

continue in motion forever. 
It is inertia that necessitates seatbelts in cars: A body in motion in 

a car will stay in motion, even after the car stops, unless a force is 

applied, such as a seatbelt. The concept of inertia is also very impor- 

tant to the analysis of molecular motion. Molecules of air do not 

experience air resistance—they are air resistance—so once set in 

motion, they stay in motion. From this fact many physical properties 

of matter, such as pressure, would soon be derived. 

So Galileo’s work had many direct ties to physical chemistry— 

and one curious indirect tie, too. Having found love with one not of 

his social strata, the beautiful Marina Gamba, he had several illegiti- 

mate children, one of whom was particularly dear to him, a daughter. 

Because of her illegitimate birth she was considered unmarriageable, 

and remained cloistered as a nun all her life. Her celestial choice of 

name on receiving her habit, Maria Celeste, shows she shared her 



100 SAVCY Magick, Mayhem, and Mavericks 

father’s fascination with the skies, and she remained her father’s 

closest confidante through correspondence and by careful solicitous 

care for his health. A moving account of Galileo’s life, Galileo’s 

Daughter, by Dava Sobel,!2 tells the story of how Galileo’s disciple 

attempted to have his master’s body properly entombed but was pre- 

vented from doing so by a still sensitive political situation. Because of 

this Galileo was consigned to a virtually unmarked grave until 1737 

when his remains were moved. Beside Galileo they found the body of 

his daughter, who had preceded him in death. She was carefully 

moved with him. 

Why does this daughter represent another of Galileo’s connec- 

tions to physical chemistry? Galileo’s daughter was a chemist. 



Chapter 8 

Chemistry 

... we began to pour quicksilver into the longer leg . . . until the air in 

the shorter leg was... reduced to take up by half the space it possessed 

before .. .; we cast our eyes on the longer leg... and we observed, not 

without delight . . . that the quicksilver in that longer tube was 29 inches 

higher than the other. 

Robert Boyle, circa 1660 

hemistry has roots in the healing arts and physical chemistry 

shares those roots through the measurements of the medicine 

makers. Galileo’s daughter, Maria Celeste, is part of this heritage 

because she was the apothecary at the convent where she lived. 

A misunderstanding that has come down to us in modern times 

is that the early remedies for illness were just magic and superstition. 

Some were. But some worked. Purgatives were important in 

northern climates where fruit was difficult to keep through the 

101 
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winter. Some herbal brews were sources of vitamins. Other remedies 

existed for pain and some were antiseptics. But one area where the 

medicines were a colossal failure was preventing or curing the plague. 

The first symptom of the plague was swollen lymph nodes under the 

arm or in the groin. These were the buboes that gave the disease the 

name bubonic plague. Most treatments centered on the buboes and 

ranged from burning or lancing to leeches or cauterizing with caus- 

tics. The dressings applied to the wounds ranged from animal dung 

to poison ivy to crushed glass.1 In most cases, however, death 

occurred in a week, if not sooner. People were as ignorant of the 

causes as they were of the cures, but some realized that contact with 

diseased people could spread the disease and that cleanliness and 

fumigation were guards against the disease. So Maria Celeste is to be 

congratulated: The plague did not breach the walls of her convent 

during her tenure as apothecary. 

There are wonderful insights into convent life contained in Maria 

Celeste’s letters to her father. His replies to her are lost, perhaps 

destroyed after her death for fear of association with an Inquisition 

convict. But from her letters we learn that Galileo was bedridden sev- 

eral times with various maladies that she attempted to ease by sending 

him remedies from her stores. But she did not write of her cures and 

concoctions except to mention successful cures occasionally in letters, 

such as curing her father’s messenger of face lesions. Fortunately 

others who experimented with substances wrote of their chemical 

knowledge. Of these, Marie Meurdrac is an outstanding and inter- 
esting example. 

Not much is known of Marie Meurdrac’s life, which may have 

been to her advantage while she was still alive.2 Consider the case of 

another woman interested in chemistry, the unfortunate metallurgist, 

Martine de Bertereau du Chatelet, who toured the mines of France 

with her husband and urged the king to further exploit his mineral 

resources. She wrote of the science of mining and the art of assaying 

and smelting ores, but her advice must have fallen on some unrecep- 

tive ears because she was imprisoned for witchcraft. She died in jail 

before she could come to trial. In contrast to the self-promoting du 

Chatelet, Meurdrac kept a much lower profile: She painted herself as 
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an unpretentious person who had some knowledge that she hoped to 
be of value. What we know or can glean of Meurdrac comes from her 
book, The Chemistry, Benevolent and Easy, Favorable to Women4 This 
book, first published in 1666 and approved by the Regents of the Fac- 
ulty of Medicine of Paris, went through several editions and was trans- 
lated from the original French into German and Italian. In it, Meur- 
drac refrains from making claims of miraculous cures such as were 
expressed by della Porta or Paracelsus, another chemical physician of 
the same era and one whose work is more commonly cited in more 
comprehensive histories of chemistry.> Instead she says simply that she 
has tried several of her recipes many times and has found them to be 
effective. We will examine Meurdrac’s book here in lieu of similar 
books such as those by Paracelsus for two reasons. The first is that 
Meurdrac’s book is well organized in contrast to the rambling style of 
Paracelsus, and the second is that Meurdrac represents a new direction, 
one that will be of pivotal importance to the Scientific Revolution: She 
emphasizes the importance of carefully consistent measurement. 

In the absence of a uniform system of weights and measures (we 

must wait for Lavoisier and his colleagues to devise the metric 

system) Meurdrac relates weights to standards such as common 

coins. For smaller weights, she has more of a problem. The basic unit 

of mass she uses is a grain, which she defines as the weight of a big 

kernel of barley. For a measure of volume she uses “a pinch,” defined 

by what three fingers can pick up. Meurdrac also gives detailed 

descriptions of her chemical operations. 

In the first part of her book she discusses distillation, sublimation, 

filtration, digestion, putrefaction, fermentation, and precipitation. 

She provides detailed descriptions of different kinds of fires and fur- 

naces as well as various vessels and how to seal them. It is obvious that 

she performed all these operations herself because she speaks of them 

knowingly, such as her discussion of the tarry material that is 

inevitably left in the bottom pot in organic distillations. This usually 

black, gooey residue of poorly defined carbonaceous material has 

been called GOK (God only knows) but Meurdrac prefers to call it 

“feces.” She briefly discusses the current theory of chemistry, which 

varied from authority to authority, but Meurdrac settled on the one 
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also put forth by Paracelsus: Salt, sulfur, and mercury are the three 

building blocks of all matter. She does not dwell on any particular 

proof or discussion of ramifications of this theory, but merely states 

it. Apparently she did not find it too helpful. 

The second part of the book tells how to extract and concentrate 

the active component of medicinal herbs. She gives methods for 

making salts, tinctures, oils, and essences. She is careful to caution 

against using heat in extractions when not necessary, which leads one 

to believe she had indeed experimented with her remedies: Heat can 

destroy an active ingredient and ruin the efficacy. She then goes on 

to describe the application of the medicines as well as the cosmetics 

that can be made from vegetable, animal, and mineral materials. 

Meurdrac’s book is much narrower in scope than della Porta’s 

eclectic collection of magic. There is no discussion of magnets or 

gunpowder because they do‘not relate directly to Meurdrac’s medi- 

cines and cosmetics, and Meurdrac offers numerous medicines for 

women and children, which della Porta does not. Specifically, she rec- 

ommends medicines for easing the discomfort of childbirth and treat- 

ments for worms in children: not a trivial problem in Europe in those 

times. Unfortunately, treatments that attacked the worms also tended 

to attack the host. But Meurdrac assures her audience that her reme- 

dies will work without undue discomfort and even offers the sugges- 

tion that the children’s stools be inspected in subsequent days for evi- 

dence of dead worms. Some of the medicines she prescribes have rec- 

ognizable efficacy, such as calcined eggshells for stomach upset, 

which contain calcium carbonate, a substance found today in over- 

the-counter antacids. She also recommends ointments for skin erup- 

tions that contain either antimony or mercury salts, which are known 

to be effective antibacterial agents. 

Meurdrac’s work also contains her share of medicines whose rep- 

utation is based more on hearsay than experience or, if based on expe- 

rience, the experience was coincidental: There were some people who 

contracted the plague and survived and certainly many documented 

cases of doctors and healers who worked among plague sufferers and 

lived to tell their tale.° So it was a natural temptation to look back 

and try to reconstruct whatever the survivor did in hopes of repeating 
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the cure, which inspired the more creative treatments. During the era 
of the mid-1600s, preparations from the human body were prized as 
medicines.” Meurdrac speaks of tonics made from extracts of human 
blood, skull, and marrow, though no mention is made of how the 
starting materials were procured. A bit of reflection on the current 
elaborate measures for handling and disposing of medicinal waste 
shows how reckless a practice this was in an age of plague. Such con- 
siderations lead one to suspect that the rats weren’t the only agents 
in the diffusion of the disease. 

But for all the imprecision and hearsay, the book’s emphasis on 
repeated, tested recipes and on weights and measures represents a 

very important step forward. Careful measurement would be as 

important to the evolution of chemistry as it was to physics, but 

chemistry would still have a much more difficult time throwing off 

the shackles of Aristotle than physics or mathematics. The reasons are 

manifold, but two can be singled out here. The first was that it was 

very difficult to get reproducible results in chemistry in those days, 

even if one allowed for experimental error. Methods for analyzing for 

purity were rare, and materials can react very differently if they con- 
tain even small amounts of contaminants. For instance, if one tries to 

make bread with self-rising flour instead of regular flour, the added 
salt and carbonates can inhibit the action of the yeast. A baker might 

wonder if demons and elves were making mischief if the same recipe 
were followed and the bread rose on one day and went flat on the 

next. The second reason is that the notion of qualities was very useful 

in chemistry. While the physicists were searching for quantities, the 

chemists were comfortable with Aristotlelian qualities. For chemists, 
it was helpful to know what materials had acidic qualities and which 

were explosive. Breakthroughs emerged when scientists who prac- 

ticed both physics and chemistry found they were able to note qual- 

ities and put numbers to things, too. In this respect, one of the most 

notable men of this time was Robert Boyle. 
Robert Boyle was born to a landed, wealthy family in Ireland in 

1627, the youngest of fourteen children.’ He was educated at home, 

then in England, and then on continental Europe. His family 

brought him home during the Anglo-Irish War and English Civil 
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Fig. 8. Robert Boyle. Edgar Fahs Smith Collection, University of Pennsylvania Library. 
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War, but when the smoke cleared, Boyle, having been disappointed 
in his marriage plans, went to live in his sister’s house in London. His 
brother-in-law was reportedly a brutal drunk, so his sister no doubt 
welcomed his presence, and for whatever reason he made himself a 
permanent part of the household, to the extent of setting up a labo- 
ratory in the house and making himself comfortable ‘as a self-sup- 
ported scholar. His fascination with chemistry is said to have arisen 
from an interest in medicines. A sickly man, he probably suffered 
from kidney stones. But for those of us who practice the art of chem- 
istry, we know that there is a fascination with the bumping and 

boiling of chemistry that engages and entraps those with no motive 
at all. So while Boyle may have started out with an interest in devel- 
oping medicines, he soon wandered far afield. 

Boyle investigated the qualities of various materials and 

attempted to classify some types of chemical reactions. For instance, 

both acids and bases can be classified as corrosive materials, but they 

are, in a sense, opposites. An acid will react with a base to produce 

water. This type of acid—base reaction is called neutralization and is 

the reaction that is responsible for the efficacy of calcium carbonate 

in treating indigestion. If the stomach is producing excess acid, the 

calcium carbonate, a base, reacts with the acid to produce innocuous 

water. One of the experiments Boyle employed to identify acids and 

bases can be reproduced in any kitchen with purple cabbage, though 

Boyle may have used colored flower petals or other brightly colored 

vegetation. If purple cabbage is finely chopped and cooked a bit in 

water, it makes a purple liquid that can function as an acid or base 

indicator. Cabbage juice turns vinegar, an acid, crimson red. Cabbage 

juice turns baking-soda water, a base, royal blue. It is also interesting 

to test clear carbonated water or a clear soda drink. These drinks test 

acidic. But though Boyle was enchanted by his acids and color 

changes, it was while working with air that he confirmed and studied 

the relationship that brought mathematics to chemistry. 

Boyle and his cronies formed a group known as the College for 

the Promoting of Physico-Mathematical Experimental Learning, 

which gained the king’s approval in 1662 and became The Royal 

Society for the Improvement of Natural Knowledge. The Royal 
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Society still exists today and is a major force in the proliferation and 

propagation of science—but back then, things were a bit different. 

Anyone who could pay dues could join. The king lent his name but 

not his money. 

Much of the experimentation was just curious poking and prod- 

ding with no systematic approach, which included animal experi- 

ments that were quite cruel, though there appeared to be little cog- 

nizance of the cruelty. These experiments included live dissection and 

the employment of the newly invented air pump to evacuate the air 

from a bell jar in which some creature was ensconced. They did 

experiments on all manner of beasts and insects and there is even a 

note in Boyle’s own hand that they thought to experiment on a fetus 

but could not procure one.? 

Boyle’s interest in air pumps and the effect of air led him in 1661 

to explore the relationship named after him, Boyle’s law. Although 

Boyle did not claim credit for discovering this relationship—he had 

heard of it from others who had tried it—he did study the effect and 

disseminate the knowledge. The law states that the volume of a gas is 

inversely proportional to the pressure: If pressure is applied to a gas 

in a confined space, the volume decreases (if you squeeze on a bal- 

loon it shrinks) and the amount it shrinks is directly proportional to 

the pressure applied. If you squeeze twice as hard, the balloon shrinks 

twice as much. Boyle demonstrated this effect by trapping a bubble 

of air in a sealed side of a U-shaped tube with a plug of mercury. He 

then poured mercury into the side of the “U” opposite the bubble 

and watched the bubble compress. He found that when the height of 

the column of mercury increased by a factor of two, the bubble com- 

pressed by a factor of two. This discovery delighted Boyle. They had 

discovered a mathematical relationship as predictable as the accelera- 

tion of Galileo’s cannonballs in free fall. 

Boyle’s experimentation was indeed seminal in the development 

of physical chemistry for two reasons. First, gas models would 

become extremely important in establishing the behavior of matter 

and the atomic theory. The gas phase makes for a good, simple model 

with many of the confusing and confounding factors, such as the 

stickiness of particles, removed. At sufficiently low pressure and high 
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temperature, gas particles behave as though they are alone in the uni- 
verse. They are still as sticky as ever, but they are not close enough 
together to have it matter. At room temperature and at normal 
atmospheric pressure, the ratio of the volume occupied by one 

nitrogen molecule to the surrounding empty volume is equivalent to 

a population density of about one person every 200 square feet. In 

addition to being far apart, gas-phase particles whiz around at a fairly 

good clip. Just as it is more difficult to catch a fast ball than a slow 
ball, the importance of the stickiness factor decreases as the relative 
speed increases. 

The second reason Boyle’s experiment was so important was that 

this experiment showed that yes, mathematics applies to chemistry, 

too—at a time when this possibility was very much in doubt. People 

believed in magic, and most chemistry seemed mystical. Boyle was very 

credulous himself and listened to and followed all tales of strange 

events and transmutations. His credulousness is really not so difficult to 

understand. The physics of chemical reactions would remain shrouded 

in mystery for a couple of hundred years more. When the basics of reac- 

tivity were finally understood to some extent, they required a physics 

and mathematics that Boyle could not even imagine. 

Boyle was not alone in his bewilderment. Our next hero would 

make tremendous progress with his major insights and innovations in 

physics and mathematics—but he, too, was mystified by chemistry. 

Sir Isaac Newton, it seems, was confounded by alchemy. 
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Chapter 9 

Mathematics 

and 

Physics 

WAVE AFTER WAVE 

a ote MKS = 
I thereby compared the force requisite to keep the moon in her orb with the 

Sravitational force at the surface of the earth and found them to agree 

pretty nearly. 

Isaac Newton, circa 1690 

Ss Isaac Newton an alchemist? The inventor of the calculus, the 

codifier of physics, and the lighthouse of logic in the Scientific 

Revolution? A serious student of allegory, mysticism, and magic? Yes. 

Virtually all biographers of Newton recognize the fact that he 

indulged in alchemy,! but most treat it as an unfortunate eccentricity 

and relegate it to the end of the story. They point to Newton’s other 

occasionally neurotic behavior or the common practice of self-pre- 

scription in those days (his mentor, Isaac Barrow, died from a drug 

overdose)? and say that Newton’s interest in alchemy may have come 

from a drug-induced delusionary state or perhaps mercury poi- 

soning.3 Even those who see it as a significant part of his research 

may explain it as a religious attempt to unite spirituality with science.4 

ets 
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While this is certainly a plausible explanation given his deep religious 

convictions and his religious writings, the actual explanation may be 

simpler than that. Newton may have delved into the illogic of 

alchemy because it was the logical thing to do. 

Consider, if you will, the reaction of the human race if an alien 

spacecraft should arrive on Earth and in it were found, among other 

things, the cure for all forms of cancer. Everything else in the space- 

ship would immediately look superior, too. This analogy works fairly 

well for the arrival in Europe of the knowledge of the ancient Greeks 

and Arabs. The geometry of Euclid had great practical power and the 

Renaissance mathematicians built on this foundation. The medical tra- 

dition of Galen included many useful remedies and the rediscovery of 

the harmonic tones described by Pythagoras must have felt like stum- 

bling on a key to the cosmic order. So after Newton invented a 

reflecting telescope, broke white light into its component colors (cre- 

ating a non-mythological explanation for rainbows), and found math- 

ematical models for gravity, he turned his attention to the mystery of 

chemistry and looked to the ancients as the logical place to start. After 

all, the calculus found its origins in the ancient works of Euclid. 

Newton’s success in physics came from studying the works of Ptolemy, 

Copernicus, and Kepler. It must have seemed reasonable to him to 

delve into the literature of alchemy to find the secret of chemistry. 

Why was he not put off by the alchemists’ claims of mystical 

forces? Probably because he proposed the mysterious force of gravity 

that acted through the vacuum of space. Why wasn’t he bothered by 

the alchemists’ obscure language and symbolism? Probably because 

he occasionally hid his own mathematical tricks in anagrams and used 

other devices of secrecy familiar to the wily Renaissance mathemati- 

cians. He, too, had been of humble origins and knew the value of 

keeping a trade secret. 

Newton was born on Christmas day the same year Galileo died, the 

son of an illiterate English farmer.5 He was a sickly child, severely 

undersized, not expected to live. His father died before he was born 

and his mother then married a man who did not want to take on a 

ready-made family. His grandmother raised Newton until he was 

eleven, when his mother was widowed again. He had an elementary 
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education that his mother did not intend to continue because she 
thought he would be a farmer like his father. However, a schoolmaster 
recognized his ability in mathematics, and his mother recognized his 
inability in the field, so they decided to continue his education. He was 
able to pay the fees at Trinity College when he was nineteen and 
impressed enough people to obtain a scholarship three years later, a fel- 
lowship three years after that, and a professorship two years after that— 
a stellar rise in anyone’s book. He was not a successful professor, and 
as attendance at his lectures was optional, he sometimes read to an 
empty room to fill the terms of his contract. How then had he received 
his professorship? Mainly by the recommendation of his mentor and 
the person who vacated the position in his favor: Isaac Barrow. What so 
impressed Barrow? Newton’s invention of the calculus. 

It is proper to use the article “the” before “the calculus” for the 

same reason you would say the British Isles, not just British Isles. The 

calculus is a system of calculating that encompasses two specific oper- 

ations: integration and differentiation. These two mathematical oper- 

ations are the inverse of each other as multiplication and division are 

inverse operations, just a bit more difficult to describe. What does 

integration do? It finds the area bounded by a curve. To understand 

how this works, imagine estimating the area of a curved, landscaped 

lawn that is bordered on one side by a sidewalk. You could accom- 

plish this by walking down the sidewalk and laying down planks until 

you had covered the whole lawn, trimming the planks to shorter 

lengths when necessary or splicing on more length if needed. You 

could then measure the length of each board and multiply it by the 

width to arrive at an approximation to the area of the lawn. The mea- 

sure would not be exact because the planks are rectangles and the 

lawn is a curve, so there would be an overshoot or undershoot with 

each board. In the calculus, the planks are made vanishingly thin, so 

the approximation to the area is very good indeed. 

What does differentiation do? It finds the slope, or rate of change, 

of a curve at any point on the curve. The grade of a road is a mea- 

sure of its slope. If you are on a road with a forty-five degree grade, 

then for every two feet you travel in the horizontal direction you also 

travel two feet up. This slope is pretty steep and you would need a 
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powerful car to pull any kind of load up a grade like this. Conversely, 

a downward grade of forty degrees would require good brakes and 

good driving skills. The role of differentiation is to find the grade of 

the road, that is to say, the slope of the curve. What Newton man- 

aged, building on the work of others, including Barrow, was to come 

up with a general method for finding the slope of any curve at any 

point. But more than that, he was able to show that integration and 

differentiation are inverse operations. 

To imagine why this is so, picture an accountant whose job is to 

keep track of construction costs. The accountant finds that the total 

cost of fencing material on one job is $100 the first day, $200 the next, 

and $300 dollars the next. By looking at the steady increase in the total 

cost of the fence, the accountant, without leaving the office, knows that 

it is a nice, level fence because every day’s work adds the same amount 

to the total. But on another job, the total cost is $100 the first day, then 

$300, then $400, then $600—changing by $100, then $200, then 

back to $100, then back to $200. Again, without leaving the office, the 

accountant can surmise that this fence has an up-and-down shaped top 

because of the way the total cost changes each day. By knowing the rate 

of change (derivative) of the total cost (the integral) per day, the shape 

of the curve describing the fence can be ascertained. 

But Newton had been a failure as a farmer and the shapes of 

fences didn’t interest him. What did interest him was the shapes 

traced by the orbits of the planets. Newton used his calculus to show 

how the motion of the moon was related to the motion of the planets 

and the motion of objects in free fall on Earth. In the process he 

invoked an enigmatic force called gravity. 

Here is the legacy that came down to Newton. After Coper- 

nicus’s statement of the heliocentric theory and the resulting furor, 

the story passes on to Tycho Brahe, a quarrelsome man who had his 

nose cut off in a duel and had to wear a false nose all his life. Brahe 

was given an island by the Danish government to set up an observa- 

tory for gathering astronomical data for navigational purposes, but he 

also built a lab and did alchemical experiments as well. His tenants 

hated him so much they burned his home, observatory, and labora- 

tory when he left. He was, however, an excellent astronomical 
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Fig. 9. Sir Issac Newton. Edgar Fahs Smith Collection, University of Pennsylvania 

Library. 
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observer and kept meticulous records. After his death, his assistant, 

Johannes Kepler, obtained the records and determined to find a pat- 

tern in all the numbers. Kepler believed strongly that the ancient 

Greeks had a special insight, and because they believed there would 

always be simple whole-number harmonies, Kepler searched for 

whole-number relationships in the orbits of the planets. He found 

first, by careful analysis, that the planets traveled in elliptical, not cir- 

cular, orbits (you obtain a circle if you cut an olive through the 

middle, an ellipse if you cut it end to end), then spent years searching 

for a simple relationship between the length of the solar orbit for the 

planets and their distance from the sun. After trying many relation- 

ships that did not work, Kepler finally found one that did: The square 

of the time of rotation divided by the cube of the distance from the 

sun is a constant for all the planets. He published his findings in a 

book, Harmonies of the World, in 1619. Newton used his calculus to 

show that the force that caused such heavenly orbits also predicted 

that objects on Earth should fall at a constant acceleration. 

Newton did not immediately publish his findings. In fact, it took 

about twenty years before his friend Edmond Halley convinced him 

to write them up and submit them for publication by the Royal 

Society of London (the same that fostered Boyle). The Royal Society, 

however, did not want to be involved and Halley ended up under- 

writing the publication of Newton’s book, Principia, himself. The 

reason? In the twenty years that Newton had kept his secrets others 

had come up with similar ideas, and in the tradition of the Renais- 

sance mathematicians, a fight would ensue over who discovered what. 

Isaac Barrow, Newton’s mentor, had also been looking for the 

secret to the calculus and was duly impressed by Newton for finding 

it. There were many other mathematicians working on the problem 

of the calculus, too, such as the Japanese mathematician Seki Kowa 

and a German, Gottfried Leibniz. It is undoubtedly true that Newton 

preceded Leibniz in his discoveries, but it is also true that Leibniz 

published before Newton. 

The German Gottfried Wilhelm von Leibniz was an interesting 

sort of entrepreneur who traveled all over Europe selling his services 

as a person who could research lineage and for the right price find 
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evidence of royal heritage—or for a better price, title to family lands 
or throne. He took up mathematics as a hobby, no doubt to pass time 
in long carriage rides from court to court and perhaps as a way of 
impressing learned clients. Leibniz had sufficient talent to see the 
relationship that Newton had seen ten years earlier but that Newton 
had deemed to keep to himself. Leibniz’s article in 1684 in Acta Eru- 
ditorum introduced methods for finding the derivatives (slopes) of 

diverse curves. He called the article “A New Method for Maxima and 
Minima as Well as Tangents, Which Is Impeded neither by Fractional 
nor by Irrational Quantities, and a Remarkable Type of Calculus for 

Them.”° He published a second article, “On a Deeply Hidden 
Geometry,” in which he explained integration, a few years later. 
When Leibniz published his discoveries, Newton was angry and 

defensive, claiming that Leibniz must have stolen the idea from him. 
Because of the nationalistic nature of the dispute, contests inevitably 
arose. In the tried-and-true fashion of the backstreet Bologna math- 

ematicians, but in correspondence rather than face to face, Leibniz 

threw problems at Newton and Newton responded with solutions, 

but the debate was never resolved. 
What was the reason for Newton’s reticence to publish that 

allowed him to be scooped by the continental mathematician? Some 

have said it was because Newton was a naturally quiet man (at one 

point he served in Parliament and his only recorded words were a 

request to open the window), and some have said it was because 

Newton was sensitive to criticism. Accordingly, he did not want to 

invite too close a scrutiny because he felt he had obtained his results 

without rigorous proof, which he knew would be criticized. But the 

reason may be simpler: Newton had advanced himself from a farm to 

London and had been appointed Lucasian professor, a position now 

held by Stephen Hawking, on the strength of his abilities in mathe- 

matics. No wonder he was close mouthed. He didn’t want to give 

away the secrets upon which his reputation was based. In addition, he 

had an application of his mathematics in mind that he knew would 

guarantee the prominence of his position: the analysis of motion. 

In modern parlance, Newton explained that the force produced by 

a moving object is equal to its acceleration multiplied by its mass. This 
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concept can be explained by picturing the all-too-common experience 

of a car crash. To begin with, consider acceleration: Acceleration is a 

change in velocity. Stomping on the accelerator pedal in a car causes a 

change in velocity. Acceleration is felt, but constant velocity is not. 

When you are moving at constant velocity you don’t feel the tug of 

acceleration: You can get up and move around in an airplane traveling 

at constant velocity and it can seem as though the plane were still sit- 

ting on the ground. But when the plane accelerates, takes off, you feel 

a definite tug. This tug is the result of acceleration. When an automo- 

bile is in a crash, the velocity also changes: from the speed you were 

going to zero. The severity of the damage will depend on two factors: 

how fast the cars were going when they hit and whether the crash was 

with a truck or a compact car. In other words, the force depends on 

the acceleration and the mass. As we will shortly see, one of our best 

pieces of evidence for the atomic model is that atomic-sized air parti- 

cles—constantly whizzing around and experiencing mini car crashes 

with objects such as the side of a balloon—create a force on the area 

of the balloon that we measure as air pressure. 

Newton also used his calculus to show that the force causing the 

balls to roll down Galileo’s wedge was the same force that held the 

planets in their orbits: gravity. His results brought him the criticism he 

dreaded, if indeed this is what he was dreading. The idea of a force 

acting through the vast emptiness of space was a difficult pill to 

swallow. It was too magical. Too mystical. Too alchemical. But Newton 

made no attempt to explain the force. He just pointed out it was there. 

Newton’s identification of gravity as a force acting at a distance, 

a force acting without direct contact with its target, will be extremely 

important to future theories in physical chemistry. Electrons in atoms 

are described as under the influence of an attractive force acting at a 

distance as gravity does. Intermolecular attractions between atoms 

and molecules are forces acting at a distance. In their search for 

chemical affinity, chemists tried to find a force similar to gravity in 

chemical reactions. They would not find affinity, but they would find 

other important mathematical models in the course of their search. 

We have much to thank Newton for: He legitimized the idea of force 

at a distance and he gave us many of the tools needed to build the 
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theory of physical chemistry. And when he was done he went back to 
alchemy. 

Why was Sir Isaac Newton interested in alchemy? For one reason: 
It tasked him. Mathematics and physics succumbed to his wonderful 
mind, so why not chemistry? He knew that Boyle had confirmed the 
mathematical relationship between the volume of a gas and the pres- 

sure exerted on it. Surely, Newton must have believed, if he tried 

hard enough he could apply mathematics to the mysteries of potions, 

too. So in a way, our consideration of Newton’s efforts in the realm 

of alchemy points out why physical chemistry emerged as a distinct 
endeavor and why it continues to be an active area of research: Atoms 

and molecules are tiny and tricky creatures, difficult to tame. The 

physics of the planets is awesome, indeed, but so is the physics of 

atoms. Newton had found many keys that would be important to 

chemistry, but he would not be the one to unlock its secrets. 

In the end, alchemy truly turned against him. It can never be 

known for certain if he suffered from mercury poisoning as a result of 

his experiments, but it is known that his laboratory caught fire in 1692 

and his notes burned. In 1693 he suffered what would now be termed 

a nervous breakdown. In his apparent paranoia he accused several 

friends of various conspiracies against him, but the majority of his asso- 

ciates recognized the stress he was under and did not abandon him. 

In 1696 Newton accepted the government position of Warden of 

the Mint and at the mint, Newton applied his knowledge of chem- 

istry to assaying coinage metals. However, his role was supervisory 

and he spent his time at a writing table rather than a laboratory 

bench. He continued to publish, but became embroiled in an unfor- 

tunate debate over the origin of the calculus that lasted until 

Leibniz’s death. However, he became president of the Royal Society 

in 1703 and held the post for the rest of his life. Queen Anne 

knighted him in 1705. Not a bad conclusion. 
So in our consideration of Newton we have seen how the many 

concepts from the ancients proved fruitful, but alchemy was mostly a 

dead end. The alchemists stumbled on a couple of new reactions to 

add to the collection, but contributed very little in the way of real 

explanation, as Newton was finally forced to conclude. But the 
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alchemists are not to be blamed. Knowing what we know now, we 

can safely say there was no way they could have made progress based 

on the scant information and tools they had at hand. But the tools 

and information were accumulating and coming from many diverse 

areas of human endeavor: Newton looked for codification of chem- 

istry in alchemy, but Lavoisier found it in accounting. 



Chapter 10 

Lavoisier 

THE CHEMICAL TSUNAMI 

MVS PX TE 
This theory is not, as I have heard said, the theory of the French Chemists, 
it is mine... 

Antoine Laurent Lavoisier, circa 1790 

it the mid-1700s the wave of the Scientific Revolution engulfed 

chemistry. As with all revolutions, it was the product of many 

minds, but we focus on primarily one—Antoine Lavoisier—as he 

would have wished. The difference between chemistry before and 

after Lavoisier is the difference between a story and a history. A story 

starts, “Once up atime...” A history starts, “In 1789 . . .” Lavoisier 

changed chemistry from a qualitative art to a quantitative science. 

Before Lavoisier, European chemistry was a morass of confusing 

and conflicting myth and mysticism. The chemists were painfully 

aware of Newton’s beautiful codification of physics and were groping 

for a unifying principle of their own. It all started when Newton’s 

Principia was translated into French by the Marquise du Chatelet. 

Although Lavoisier came to be the hero, a few words need to be 

added about the marquise for two reasons: She deserves more than a 

footnote, and her life helps set the scene that was France when 

Lavoisier stepped onto the stage. 

By the time of du Chatelet, our old friends the medieval mer- 

chants, who so happily supported the mathematicians, had become 

wealthy and influential to the point that they now challenged the 

®) 
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Church and the aristocrats for power. In France this new middle class 

was called the bourgeoisie and the bourgeoisie that bred Lavoisier 

bred du Chatelet, too. The parents of Gabrielle-Emilie le Tonnelier 

de Breteuil, Marquise du Chatelet (1706-1749) thought her too tall 

and plain to marry and not suited to convent life, so they allowed her 

to follow her natural inclinations and receive an education.! She mar- 

ried after all, a military man fifteen years her senior, who was often 

absent. The situation agreed with her as it allowed time to fraternize 

with the scientists and philosophers of the Enlightenment. It was 

through these associations that she met Voltaire, who became her 

lover and intellectual companion for some sixteen years. She was in 

the midst of translating the Principia when she found herself 

expecting her fourth child. She increased her pace in fear that she 

might not survive the birth, as many did not, and so managed to 

complete the translation and'a commentary before giving birth to a 

son. She died six days later.2 In happier times du Chatelet and 

Voltaire had built a rude chemistry laboratory in her chalet to inves- 

tigate what was then the burning question of chemistry: the nature 

of fire. This question was to fascinate Lavoisier, too. 

Lavoisier (1743-1794) was six years old when du Chatelet’s 

translation of the Principia was published, and there can be little 

doubt that he eventually read it.4 Coming from a wealthy family, 

Lavoisier was highly educated. As members of the French bour- 

geoisie, his family knew that their position was maintained by talent 

rather than title. Though Lavoisier would be a millionaire by today’s 

standards, he lived his whole life as though the wolf were at the 

door.4 As it turned out, it wouldn’t be the wolves that got him. 

Lavoisier’s family had originally thought that he might be a 

lawyer, so he was trained in law and letters as well as accounting, but 

they also allowed him to indulge his talent in mathematics and sci- 

ence. With the deeply ingrained lust of the bourgeoisie for fame as 

well as fortune, Lavoisier aspired to the position of paid researcher at 

the French Academy of Sciences, an early prestigious think tank 

founded by the French monarchy, but this position promised an 
annual income of only some 2,000 livres (about $80,000 in 1996 
U.S. dollars). To support the lifestyle to which he had become 
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accustomed, Lavoisier supplemented his income by investing, pri- 
marily in the French tax farm, an eventual fatal mistake. 

The fatality of his mistake, however, was certainly not immedi- 
ately apparent. A true descendent of the medieval merchants, the bal- 
ance sheet was always the sacred and ultimate logic for Lavoisier, and 
for him the tax farm seemed a natural investment. The tax farm was 
an institution, not uncommon in European governments of the time, 
whose function was to collect taxes for the monarch. The profit was 
the difference between the amount owed the monarch and the 
amount collected. This situation lent itself to abuse at the very least, 

and in France the system was particularly ugly. Part of Lavoisier’s 

duties as a tax farmer was to assess for tobacco and alcohol tax and to 

suppress smuggling of these commodities. The majority of French 
people at the time were quite poor, so smuggling was rampant. Tens 

of thousands of arrests were made annually and the majority of those 
arrested were children. The punishments were cruel, including whip- 

pings, hangings, or being left to starve in cages.© Lavoisier does not 
appear to have been a particularly harsh or unfeeling man, but it is 

apparent that he was first and foremost an accountant, and the books 
won out in any arguments he might have had with himself. In addi- 

tion, his investment netted him around $3 million a year (in 1996 

U.S. dollars). It also netted him two other factors that would be piv- 

otal in his chemical career: a wife and a governmental appointment as 

the administrator of the gunpowder arsenal in Paris. 
Marie Lavoisier’s place in her husband’s life can be concluded 

from numerous drawings of the laboratory done by her and the 

recorded recollections by friends of her participation in his work in 

the laboratory.” A daughter of a fellow tax farmer, she was thirteen 

when she married the twenty-eight-year-old Lavoisier. She came to 

the marriage with an education in languages. She learned chemistry 

from Lavoisier and their colleagues. Like du Chatelet, she had a 

talent for language, so she translated books and papers for Lavoisier, 

who was much better with numbers than foreign verbs. The marriage 

suited Lavoisier: He both realized a very generous dowry and gained 

an able assistant. The marriage also suited Marie Lavoisier. Again, like 

du Chatelet, she didn’t mind that her older husband was often absent 
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on inspection tours for the tax farm. She, too, was content to hold 

intellectual salons in his absence and eventually also took a lover: 

Pierre Samuel du Pont, the father of Eleuthére Irénée du Pont of 

E. I. du Pont de Nemours & Company, the American gunpowder 

manufacturer. The association was not coincidental. In the laborato- 

ries of the arsenal, Antoine Lavoisier had taught du Pont the gun- 

powder trade. If Lavoisier knew of the relationship, he did not reveal 

his knowledge. For Lavoisier, the balance sheet reigned supreme. 

Sometime early on in his life it must have occurred to Lavoisier 

that the very same methods that were so useful to him in business 

were also his ticket to fame and fortune in the chemical arts. By 1774 

Lavoisier developed a device, a mass balance, that could measure one 

one-hundredth the mass of a drop of water. He employed this balance, 

and a balance sheet, to revolutionize chemistry. One of his first assign- 

ments at the Academy of Sciences was to help settle a debate over the 

best way to measure the purity of water in order to find the best water 

source for Paris. The two choices were to look at the density of the 

water, which would change with the amount of dissolved impurities 

(just as a cup of gravy weighs more than a cup of pure water), or to 

evaporate the water to see how much scum was left in the pot. 

Lavoisier advocated the use of density as an indicator of purity because 

he thought some of the impurities could be carried off by the water as 

it evaporated. He was right. (That’s why it is wise to boil drinking 

water of uncertain quality. Boiling kills bacteria and drives off volatile 

impurities.) Robert Boyle, as well as others, had observed that when 

water is subjected to repeated distillation, some solid always seemed to 

be left in the still. Aristotle had proposed that all matter is composed 

of four elements, fire, air, earth, and water, and alchemists and others 

had long held the belief that there should be a way of changing one 

material into another by manipulation of these four basic elements, for 

instance changing lead into gold in a process called transmutation. So 

others who had found residue in their stills took it to be evidence of a 

transmutation that had taken place while heating the pot. But 

Lavoisier was a believer in the balance sheet and needed proof. He 

boiled water for a hundred days in a sealed glass container. He found 

that, yes, there was a residue in the water after boiling, but when he 
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weighed his water, residue, and container he found the same total 
mass as before the boiling. Where had the residue come from? When 
he weighed the container separately he found it had lost weight, the 
same weight as the residue. The credit and debit columns matched. 
The water had not transmuted into earth—prolonged boiling had 
resulted in dissolution of some of the glass container. 

Having consigned transmutation to fable with his balance sheet, 

Lavoisier proceeded to establish the principle of conservation of 

mass. This principle can be illustrated by a simple thought experi- 

ment: If a dirty child is put in a bathtub of soapy water, a solid called 
scum is often observed to form and accumulate on the side of the 

tub. Clearly a chemical reaction has occurred because a new sub- 

stance, scum, has been formed. But one would not expect the mass 

of the tub of soapy water plus child to have changed. The system— 
water, soap, and dirt—would change form, but mass would be con- 

served. With several experiments not much different than this one 

(but with chemicals, not children), Lavoisier decided that mass 
cannot change over the course of a chemical reaction.® If all the prod- 

ucts could be contained and collected, then the total mass before and 

after the reaction must be equal. The elements may regroup into new 

forms, but none of the original elements are lost and no new ones are 

gained. No miracles. No magic. Rearrangement of materials, but 

conservation of mass. This one principle served to bring chemistry 
from the Dark Ages to the Enlightenment. Chemists could now hope 

to predict and calculate the output of chemical reactions. The 

medieval recipes of a pinch of this and a pinch of that could now 

become procedures for production. 
Armed with his new principle, Lavoisier went on to tackle calci- 

nation reactions, which is the type of reaction that occurs when an 

empty tin or aluminum can is tossed into a campfire. The shiny, mal- 

leable metal becomes a gray, grainy, and fragile solid. Lavoisier estab- 

lished that when this reaction occurs in air, the mass of the solid 

formed is more than the mass of the metal before the reaction, and 

he wanted to know why. When he came up with his answer, it would 

not only sound the death knell for a quaint notion called phlogiston, 

it would also consign Aristotle’s four elements to the dustbin. 
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It started simply as the difference between good air and bad air. 

Good air was the type of air that could support respiration and com- 

bustion. Bad air could not. The chemists could show the difference 

by putting a mouse or a candle under a bell jar and noting that when 

the candle went out or the mouse expired, there was still gas in the 

jar: water admitted into the jar would not fill it completely. The air 

that had been used up—the air that had kept the candle lit and the 

mouse alive—was the good air. The air left in the jar when the candle 

went out was the bad air. Then, in addition to the good air and the 

bad air, some investigators noticed that they could generate another 

type of air: very good air. Good air allowed a candle to burn, bad air 

put it out, but this new, very good air caused it to burn brighter. One 

of the English workers who noticed this new air, Joseph Priestley, was 

a self-educated scientist who had written extensively in the history of 

science. His reputation became such that he was hired as a librarian 

by an English noble, Lord Shelburne, and given the freedom to con- 

duct experiments at Lord Shelburne’s residence. On a trip accompa- 

nying Lord Shelburne to Paris, Priestley reported the new air to 

fellow scientists on the Continent. He called his new air dephlogisti- 

cated air because it was thought to be lacking phlogiston—a hypo- 

thetical material supposed to be given off during combustion. 

Dephlogisticated air, he proposed, promoted combustion by 

absorbing phlogiston from heated material. Lavoisier was having a 

hard time accepting phlogiston because the theory contradicted is 

principle: the conservation of mass. If heated materials lost phlo- 

giston, why did calcined materials get heavier? 

In the course of a conversation shared with Lord Shelburne and 

his continental hosts, Priestley mentioned his discovery to Antoine 

Lavoisier. How, asked Lavoisier, might one obtain a sample of this 

new gas? Priestley explained it could be obtained from heating a cer- 

tain mercury salt. Where, asked Lavoisier, might one obtain a sample 

of this mercury salt? Priestley explained that it could be simply made 

by heating mercury metal in air. 

This exchange of information is said to have taken place at a 

dinner meeting. It is amazing that the other diners were not blinded 

by the lightbulbs going off in Lavoisier’s head: The gas given off by 
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the mercury salt must be the same as the gas absorbed by mercury 
metal from the air. The mysterious phlogiston? Aristotle’s element of 
fire? Aristotle’s air? No, a pure part of air that is different from other 
parts: a new element. But Lavoisier did not shout out his revelation. 
He, unlike Priestley, played his cards a bit closer to ae chest. He 
wanted this discovery for himself. 

Lavoisier did an experiment with tin. He heated tin in a sealed 
container and found it turned into a white powder (as a tin can will 
do in a campfire) and the container and contents weighed the same 
before as after the reaction. But when he broke the vessel open after 
the reaction, air rushed in. He concluded that some component of 

the air had been fixed onto the tin in the reaction, just as it fixed onto 
mercury. 

The pieces began to come together. Lavoisier experimented with 

other reactions that would not proceed in the absence of air, such as 

the combustion of diamonds. This curiously extravagant experiment 

had its origins in practicality. People who worked with diamonds— 

jewelers, diamond merchants—knew that when they heated dia- 

monds to remove certain blemishes they had to wrap them in cement 

and enclose them in crucibles sealed as tightly as possible: If any air 

got into the diamonds they could char black. Lavoisier burned some 

diamonds in a container with air and found that the residue in the 

sealed container weighed the same as the contents before burning, 

but the collected diamond dust had gained weight. Lavoisier burned 

phosphorus and sulfur to form acid and found they gained in weight. 

He then pronounced his theory: Air, once thought a primary ele- 

ment, was actually composed of more elementary parts. One of these 

parts was the very good air of Priestley. But Lavoisier claimed its dis- 

covery for himself and named it “acid former,” which in Greek is 

“oxygen.” In short, he showed that Aristotle was wrong. There were 

more than four elements, or even five. In fact, Lavoisier soon 

declared there to be some thirty-three in all. 

But why was this revolutionary? The four elements of Aristotle 

had been abandoned before: Meurdrac, in imitation of Paracelsus, 

had pointed to sulfur, mercury, and salt as being the primary ele- 

ments. The revolutionary difference in the elements of Lavoisier was 
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that his elements could stand alone. Aristotle, Meurdrac, Paracelsus, 

and others up until this time had been speaking of elements as the 

essential components of a// matter: They thought that a little bit of 

each must be found in all material. Different materials were the result 

of different relative amounts of the basic elements. Lavoisier said, no, 

he could purify and isolate at least one pure element—then he turned 

his attention to others. He revisited and reinterpreted the results of 

other workers in terms of his new theory (though rarely acknowl- 

edging their contributions). He isolated a gas Priestley called 

“inflammable air,” a gas that formed water when sparked with 

oxygen, and called it hydrogen, another element. With a lawyer’s 

appreciation of language, he realized his new system of chemistry 

would have to have a systematic vocabulary to describe it. When he 

wrote a textbook, An Elementary Treatise on Chemistry, in which he 

described his thirty-three basic elements, he included an entire system 

of nomenclature. 

The triumph was complete. Lavoisier became the premier 

authority on science and chemistry in France. He was named director 

of the Academy of Sciences in 1785. He was made a member of the 

commission on weights and measures in 1790. He became commis- 

sioner of the treasury in 1791.9 Then, in 1794, Lavoisier’s progress 

was interrupted. 

In Lavoisier’s time there were essentially three powers in France: 

the monarchy, the Church, and the bourgeoisie. The monarchy, how- 

ever, which required taxes from and collected by the bourgeoisie, was 

in financial difficulty. The bourgeoisie, being merchants and book- 

keepers by definition, thought that they might be able to handle 

finances better and, as a member of the bourgeoisie, Lavoisier was 

initially in favor of the French Revolution of 1789. He and others 

believed it would be settled fairly bloodlessly by the institution of a 

parliamentary form of government. 

But the change was not rapid or drastic enough to satisfy the pop- 

ulace. Conditions for the common peasant were brutish. There 

wasn’t enough food to go around and punishments meted out by 

local nobles could be unspeakably cruel. A popular revolt arose that 

threatened to completely destroy the governmental infrastructure, 
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and this drastic turn undermined foreign support for the revolution. 
There was widespread fear of foreign war, which did indeed result. In 
the ensuing panic the king was executed. Soon thereafter the queen 
was executed, and there was a general breakdown in economic, gov- 
ernmental, and judicial systems. Without regard to how one feels 
about Lavoisier’s rather cavalier attitude toward the contributions of 
others and his seeming disregard for suffering, one may feel some 
sympathy for the man who made system his life and was now the 
victim of chaos. 

Predictably—to everyone but Lavoisier—Lavoisier was arrested. 

No doubt the actual reason for his arrest was that he had been part 

of the hated tax farm, but the revolutionary court, going through the 

formality of trying him for a definite offense, charged him with falsi- 

fying the books for the tax farm and allowing tobacco to be adulter- 

ated. He was warned of the impending arrest and could have avoided 

capture, as many did, but his father-in-law refused to flee so Lavoisier 

likewise stayed and they turned themselves in together. In detention, 

while awaiting trial, he continued work on the books for the tax farm 

in the evident belief that he could explain to the tribunal each of their 

objections and show them that the charges were groundless. Unfor- 

tunately his wife felt the same way. It has been said that she was too 

arrogant when she made her plea for his life, that if she had been 

more supplicant or offered bribes she might have been able to free 

him. But if she were too arrogant, she was also too logical. She did 

not see why he had been arrested in the first place and said so.10 

What was Lavoisier’s defense to the charge of the tax farm’s adul- 

teration of tobacco with ash? He simply stated that he was aware of 

the addition of ash to tobacco and that in his experience he had 

found that customers seemed to like a small amount of ash because it 

added a certain pungent flavor. He had even developed a test for it. 

A major component of wood ash is various carbonates, such as 

sodium bicarbonate, or baking soda. Lavoisier knew, as all kitchen 

chemists do, baking soda reacts with vinegar to form a vigorously 

foaming mixture. Lavoisier took advantage of this reaction to test for 

the presence of ash in tobacco. He found that he could estimate the 

amount of ash by the amount of effervesce produced when acid was 
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poured on a sample. But he had carefully regulated the amount 

because too much ash lost customers. The defense was perfectly log- 

ical—and perfectly unacceptable. The execution by guillotine of the 

twenty-eight tax farmers took all of thirty-five minutes. 

Was this a great loss to science? Yes. Was this a travesty of justice? 

Perhaps. His friends were roundly railed for cowardice by Marie 

Lavoisier for not coming to his defense (though some of them tried),11 

and although fear was certainly a component of their reticence, they 

had other reasons, too, such as believing that the tax farmers deserved 

what they got. The farmers were a rather cool-blooded lot. 

In a bit of justice, the analysis of Lavoisier’s life comes down, 

once more, to a debate of qualities over quantities. Whatever his 

unmeasurable contributions or detractions to social welfare may have 

been, his contributions to chemistry are clear and definable. He 

applied the methods of physics to chemistry. He showed, incontro- 

vertibly, that mass is conserved over the course of a chemical reaction. 

He demonstrated that air is not one substance, but several, and that 
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one component of air, oxygen, is essential to combustion. He rede- 
fined the notion of element from Aristotle’s famous four that are 
found in everything to an unlimited number of pure materials that 
can, and must, stand alone. If there is a sadness to his ultimate 
demise, then there is a sadness to the end of those around him, too. 

Marie Lavoisier was herself imprisoned for over two months,12 
but in the end only had property confiscated. She tried to demand 
repayments of old debts from Pierre Samuel du Pont,!3 but du Pont 
fled to the new United States, as part of the wave of refugees fleeing 
the French Revolution. Enough of the Lavoisier fortune was eventu- 
ally returned so that she was able to regain something of her former 
lifestyle, and indeed she eventually married another man of science, 
with whom she no doubt hoped to share an interest. But her new 
husband, Count Rumford, had a different image of their life together 
and the marriage ended stormily four years after it began. She con- 
tinued, however, to entertain intellectuals in her home.!4 

We cannot conclude a chapter on Lavoisier without noting that 
this is only part of his story. In the title of this chapter we refer to him 
as a chemical tsunami, but we haven’t fully explained the allusion. He 
achieved an enormous body of work, both in science and in eco- 

nomics, which we have described only in part. He worked on many 
problems in chemistry and derived numerous brilliant and unique 

solutions. He designed methods for the analysis of organic materials, 
such as the materials that make up plant and animal tissue. He con- 

tributed to the theory of organic chemistry. He designed a systematic 
method for naming inorganic compounds, that is, nonorganic mate- 

rials, and investigated many inorganic reactions. He delved into the 

nature and the measurement of heat—an area fundamental to phys- 

ical chemistry. In a final bit of work immediately before his arrest and 

execution, he managed to demonstrate that metabolism is combus- 

tion, too. But the contribution we celebrate here, and the reason for 

his unique place in the history of physical chemistry, is that Lavoisier 

finished the job of legitimizing chemistry. After Lavoisier, chemists, 

whose art had evolved from that of witches and alchemists, could 

now walk with heads held high—despite Lavoisier losing his. Boyle 

had confirmed that mathematics applied to gases. Lavoisier showed 
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that numbers applied to chemical transformations, too. Newton cod- 

ified physics. Lavoisier codified chemistry—but then opened the door 

to a new conundrum: If the air is composed of various gases, then 

why don’t the dense gases settle to the ground and why don’t tall 

people faint? This question would be pondered by an English school- 

teacher by the name of Dalton. 



Part III 

The First 

Atomic Wars 

Damme | 
AVS 

INTRODUCTION 

Iam never content until I have constructed a mechanical model of what 

I am studying. If I succeed in making one, I understand . . . 

Lord Kelvin, circa 1850 

he beginning of the nineteenth century found European scien- 

tists delighting in what was termed the mechanical universe: the 

idea that straightforward equations, such as those that described 

Newton’s gravity and Lavoisier’s conservation of mass, would even- 

tually be found for all natural phenomena. This sense of control over 

nature was only reinforced when nature tried to take a little revenge. 

When London ran out of logs, England turned to coal, and as result 

acquired more equations. 

Coal is not nearly as clean a fuel as wood. Coal produces a black, 

sticky smoke, instead of white, billowy clouds, and early coal mining 

was brutal. But coal mining can be credited with inspiring the 

machinist, James Watt, to tune up the steam engine and make it a 

viable tool: the tool that brought about the Industrial Revolution. 

In this new industrial age, a collective return to realism took hold. 

The wig, powdered, plastered, and perfumed, went out of style and 

natural hair appeared in portraits. People all over, including the aca- 

"133 
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demics, rolled up their sleeves and got to work. The Newton effect— 

the search for system and codification that so inspired Lavoisier— 

inspired others. In the mid-1700s, Carl von Linné devised a classifi- 

cation system for plants and animals (and coined the term Homo 

sapiens to classify one peculiarly troublesome mammal), and in the 

1800s Charles Darwin organized a departure from the Garden of 

Eden with his Origin of Species. By the end of the 1800s an obscure 

Russian chemist, Dmitri Mendeleev, recognized the intriguing 

Pythagorean periodic properties of the new elements and organized 

some sixty-six elements into a periodic table. 

Diseases were classified and codified according to symptoms, and the 

approach to cause and cure began to be experimental rather than philo- 

sophical. Edward Jenner introduced the smallpox vaccination; Louis Pas- 

teur and Robert Koch, using the now quantitative methods of chemistry, 

established the germ theory of disease. Even psychology was put on a 

more mathematical basis when Gustav Fechner founded psychophysics. 

Fig. 11. Nineteenth-century laboratory of J. Bell and Company, London. William Henry 
Hunt 1790-1864) is thought to be the artist. J. D. Murray is the engraver. Edgar Fahs 

Smith Collection, University of Pennsylvania Library. 
LS 
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Systemization led to specialization. At the beginning of the 1800s 
“Physik” was generally taught at universities by the philosophical fac- 
ulty and “Chemie” by the medical faculty. Lavoisier imbued chemistry 
with new respectability, and the Industrial Revolution reinforced its 
importance. Soon chemistry was not just taught in conjunction with 
medicine but as a subject in itself. The first journals of chemistry began 
to appear in the late 1700s, and these journals became important cat- 
alysts for chemical progress.! Unfortunately, they also sometimes 
became pedestals for the high priests of science who refused to give 
voice to, and sometimes silenced, the expression of important new 
ideas. Chemists and physicists, conveniently ignoring their ancestry of 

freewheeling mathematicians, magicians, and machinists, began to 

exclude people from their club. We will still see some successful ama- 

teur and self-taught scientists such as James Joule and Michael Faraday, 
but they, too, paid some price for their lack of pedigree. 

With this new respectability came profitability, too. It became 

possible to work for a university and do experiments in a laboratory 

financed through students’ fees rather than one’s own pocket. But 

the gentleman-scholar would still retain a strong tradition. Well into 

the twentieth century we will find university professors paying for 

equipment on their own or hiring their own assistants. 

In mentioning “gentleman” scholars, it must be added that there 

were, of course, also “gentlewoman” scholars, as we shall see, but for 

much of the 1800s, the role of women in European science remained 

implicit rather than explicit. Such was the case with Marie Lavoisier, 

and such would be the case for Marie Pasteur.2 They were not usu- 

ally formally acknowledged as collaborators. In the late 1800s there 

were some researchers in some universities that welcomed and 

encouraged the contributions of female students,? but the majority of 

the universities excluded women. A woman who wished to express 

her talents either had to work without benefit of formal appointment 

(that is, for free) or align herself with a husband, brother, or male col- 

league. But in the 1800s, the universities of Europe were exciting, 

vibrant places to be and the manipulations necessary to be associated 

with one must have seemed well worth the effort. 

The competition that often made it nearly impossible for a woman 
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made it very difficult for a man, too.* In Germany, there were three 

formal steps to becoming qualified for a university position: the accep- 

tance of a second major piece of scholarship after the acceptance of the 

doctoral dissertation (a process that normally took six to ten addi- 

tional years of work), the successful organization of a scholarly con- 

vention, and the survival of a disputation with faculty and subsequent 

public presentation of one’s work. But even after this arduous process, 

one was allowed only to sit on one’s hands, carrying out independent 

research as well as possible, and wait, hoping that one’s reputation 

would engender an offer at a university. When and if a faculty decided 

they needed you, you would be “called.” Some waited as long as 

twenty years to be called, and some, of course, were never called. 

While waiting, it was normal to give private lectures or to tutor under 

the auspices of a university and to collect fees directly from the stu- 

dents for these services as Privatdozent. If such a Privatdozent was 

never called to a full position, he (rarely she) might, out of apprecia- 

tion for his work, at least be offered an associate professorship, which 

carried the title Extraordinarius and from which he would realize a 

small but steady salary. However, he (or she) also might manage to 

offend someone of the established scholarly community and thereby 

effectively end a career. In England, both teachers and students at 

Oxford and Cambridge had to accept the Thirty-nine Articles of Relli- 

gion of the Church of England and persons of dissenting religions 
who refused were excluded.® 

Remarkably, or perhaps some might say predictably, the first new 

hero in our story is one who operated completely outside these rigid 

societal structures, as his detractors were wont to point out. John 

Dalton was not a professor, but a mere schoolteacher, who was a dis- 

senter, at that. The members of our next cast, the nineteenth-century 

investigators of heat, were mainly university professors, but they were 

intellectual dissenters in that they strove to apply the principles of 

physics and chemistry to medicine as well as inanimate objects, thus 

crossing swords with some of the medical establishment. The kinetic 
theory of gas would fit into the picture of the mechanical universe, 
though the protagonists in this story did not fit so neatly into their 
social worlds. Those that initially promoted the kinetic theory of gas 
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ran so far outside the herd that they encountered great difficulty in get- 
ting their ideas published. 

Then, just as the paradigm of the mechanical universe seemed 

firmly in place, it was jolted by the discovery that some phenomena 

were best understood in terms of statistical, probabilistic models 

rather than mechanical levers and gears. When statistical treatments 

were proposed to deal with a curious quantity called entropy, they 
were met with resistance. This resistance evolved into grudging 

acceptance when similar treatments were used to find evidence for 

the invisible, elusive atom. 

Though acknowledgment of the existence of atoms would pose 

interesting questions and open more doors, reliance on statistical 

methods for their verification meant relinquishing the mechanical 

universe and accepting that in the future science would progress as it 

had in the past, through an unending cycle of guess, test, refine. 



Chapter 11 

Dalton’s 

Diminutive Friends 

AN ATOMIC THEORY 

ATOTKVE 
... each particle occupies the center of a comparatively large sphere, and 

supports its dignity by keeping all the rest .. . at a respectful distance. 

John Dalton, circa 1800 

| Be the wake of Lavoisier came a flood of questions, among them 

one most ancient: What is air? According to Lavoisier, air com- 

prises several elements, not just one, and he captured two of these 

elements—hydrogen and oxygen—and put them on display. Armed 

with Lavoisier’s balance and his emphasis on mass, his fellow scien- 

tists soon found hydrogen weighs less, volume for volume, than 

oxygen. In other words, hydrogen is less dense, just as cooking oil is 

less dense than water. But if this were so, asked a quiet Quaker 

schoolteacher, then why doesn’t air separate into layers, as oil sepa- 

rates from water? If this were true, John Dalton would have noticed; 

he kept a notebook on weather for fifty-seven years, the last entry 

being on the evening before his death.! And not once had he noticed 

stratified air. 
The answer Dalton gave was that the elements would separate if 

they came in sheets—so it must be that they did not. Just as Lavoisier 

the accountant understood the value of the balance sheet, Dalton the 

schoolteacher understood the value of a good instructional device. 

138) 
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Imagine, said the schoolteacher, that air is composed of many indi- 
vidual, indivisible, particles of gases. Then they would be randomly 
distributed in the mix, like many colored marbles in a bag. Dalton 
called his marbles “atoms.” 

John Dalton (1766-1844) wasn’t the first to propose the exis- 

tence of atoms. The Greek thinkers Leucippus and Democritus (circa 

500-400 8.c.z.) thought in terms of atoms (and provided us with the 

word), though Aristotle, a hundred years later, opposed the idea. 

Robert Boyle (circa 1650) was an atomist, that is, one who used 

atoms in his model of matter, although he preferred the word “cor- 

puscle.”2 So why do scholars credit Dalton with the invention of 

modern atomic theory? Because, like Lavoisier, he backed up his 

theory with numbers. Leucippus, Democritus, and Boyle believed 

that one type of atom was the basis of all materials. Dalton’s epiphany 

was to decide that the atoms of different elements were different, and 

what made them different was mass. An atom of oxygen, said Dalton, 

weighs more than an atom of hydrogen. This notion, combined with 

a limited set of assumptions, allowed him to assign a relative mass to 

a large set of elements, which in turn suggested answers for some 

puzzling observations, including one with the curious-sounding 

name of stoichiometry. 

The stoichiometry of a chemical reaction is the recipe for the 

reaction. Just as a recipe for a cake may call for two cups of flour for 

every one cup of sugar, a recipe for sulfuric acid calls for 80 grams of 

sulfur trioxide for every 18 grams of water. The word stoichiometry 

(from the Greek word for element, stozceton, and an ending meaning 

measurement, -metry) was invented by Jeremias Richter, and came 

into use after he and others began noticing that some materials 

seemed to always react in fixed, whole-number ratios.4 

In 1808, after ruminating on Lavoisier’s conservation of mass 

and Richter’s ratios, John Dalton decided that all the elements must 

react in fixed whole-number ratios, and these ratios were the result of 

elements existing as atoms of characteristic atomic weight. Dalton 

published a 916-page treatise on the stoichiometric approach to 

chemistry, A New System of Chemical Philosophy, allotting five pages 

to his proposed atomic theory.* 
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John Dalton must have known that his theory would cause con- 

troversy, but he was accustomed to that. As may be recalled from the 

trials of our medieval magicians and mathematicians, the Protestant 

Reformation in Europe took several quite radical turns and resulted 

in violent persecutions and devastating wars. In England, the Refor- 

mation, despite periodic violence, was more subdued than on conti- 

nental Europe. However, those not part of the English solution to 

the Reformation, the Anglican Church, found themselves on the out- 

side looking in. Because of the link between the Church of England 

and many of the universities, many members of dissenting religions 

had to do without education or form schools of their own.> John 

Dalton, son of a Quaker weaver, was such a dissenter who was pri- 

vately tutored and home educated. By the age of twelve he found 

himself giving lessons in the local Quaker meeting house. Teaching 

was obviously his forte, so when his cousin retired, he and his brother 

took over their cousin’s school, where they taught languages and 

mathematics. At the age of twenty-seven, Dalton found himself pro- 

fessor of mathematics and natural philosophy at New College, a col- 

lege for those of dissenting religions, in Manchester. The college 

grew and eventually relocated to a larger population center, but 

Dalton opted to stay where he was. His brother and friends were in 

Manchester, and Dalton, unmarried and free of urgent need of 

income, supported himself through private tutoring, in the fine tra- 

dition of many of our previous heroes. 

John Dalton’s exclusion from mainstream education may have 

been a blessing rather than an impediment. In the early 1800s, chem- 

istry was not yet taught at Cambridge or Oxford, because it was not 

considered suitable for a gentleman’s curriculum.® But Dalton, using 

Lavoisier’s Elements of Chemistry as a textbook, taught, experi- 

mented, and speculated on the nature of chemistry, perfectly free to 

form his own notions and not feel the need to conform. 

Perhaps it was this freedom that led him to reexamine Richter’s 

data and formulate what is now known as the /aw of multiple propor- 

tions, which can be visualized as follows. Chemicals are like people: 

They react in simple, whole-number ratios. They can be a family of 

5, a couple of 2, or even a mélange of 3, but a group of 2.5 would 
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mean sawing someone in half, which is not acceptable. Why should 
chemicals display this peculiar proclivity? Because, said Dalton, they 
are composed of individual units called atoms, and the atoms of each 
element are indivisible and unique. 

As such, this law was a pleasing speculation, but not much more, 
until Dalton took it one step further. He declared that if someone 
were to make a limited number of simplifying assumptions, then a 
table of relative weights could be deduced. Using Lavoisier’s conser- 

vation of mass, we can see that if the mass of one atom were known, 

then the mass of the other atom could be calculated by subtracting 
from the whole. The masses of compounds could be found by adding 
together the masses of the atoms that formed them. Elements were 

beginning to act more like numbers all the time. Lavoisier would 
have smiled. 

The first simplifying assumption that Dalton made was to suppose 

that if a single compound were to form between two elements, then it 

contained one atom of each element. This would be analogous to 

assuming that all marriages are monogamous. Unfortunately, this led 

to some erroneous results (for instance, the well-known formula for 

water, H,O, was taken by Dalton to be HO because it was the simplest 

compound between oxygen and water). But Dalton’s assumption was 

a start. Dalton also came up with a method for depicting atoms as cir- 

cles with different symbols within them (straight line, cross, star, and so 

on) for the different elements, and in so doing joined Lavoisier in 

doing for chemistry what the Renaissance mathematicians had done for 

algebra: taking chemistry from rhetorical form into the symbolic stage, 

which made it easier to think about and systematize. 

During the 1800s, several other experimental observations were 

made that supported Dalton’s conclusions about the atomic nature 

of matter. Perhaps the first evidence, or maybe even inspiration, for 

his theory, came from some results of an industrialist /experimentalist 

friend, William Henry (1774-1836), who made his observations on 

the solubility of gases.” 
Henry, who ran a chemical plant for the manufacture of milk of 

magnesia, was also a self-styled chemist, dedicated to careful experi- 

mentation. His hands had been crushed by a beam when he was a 
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child so he suffered from chronic pain, but he turned the enforced 

inactivity into an opportunity to study and pursue an interest in med- 

icine. He worked with Dalton to establish that methane and ethane 

were two separate compounds composed of a fixed ratio of 1:4 for 

carbon to hydrogen. 

Henry also found that the solubility of a particular gas in a solu- 

tion depends on the pressure of that particular gas, not the total 

pressure, a truism now known as Henry’s law. In other words, if a 

solution has an atmosphere of nitrogen above it, some of the 

nitrogen will dissolve in the solution. This is why fish can breathe: 

Some of the oxygen in the atmosphere dissolves in the water in which 

they swim. However, only an added pressure of nitrogen gas above a 

solution can force more nitrogen into the solution; that is, mixing 

helium to a mixture of nitrogen gas above a solution may increase the 

total pressure above the solution, but will not increase the amount of 

nitrogen in solution. Thus, Henry’s law is important to deep-sea 

divers who like to dive, but who do not want to get the bends. 

The pressure of the air in the tanks carried by deep-sea divers has 

to equal the pressure of the outside water or the lungs will be 

crushed. But increasing the pressure of the tanks by adding more reg- 

ular breathing air is not good. The air we breathe is mostly nitrogen 

with some oxygen mixed in, so if we increase the pressure of 

breathing air in the tanks, we are increasing the pressure of nitrogen. 

Increasing the pressure of nitrogen makes it more soluble in fatty 

tissue, which can lead to nitrogen narcosis or bubbles forming on 

ascent, the painful condition known as the bends. The answer to the 

problem is to increase the pressure in the tanks with helium: Helium 

will not force nitrogen into the fatty tissues; only nitrogen can force 

nitrogen into solution. Dalton saw this behavior of gases as added 

evidence for the individuality of atoms. 

His ability for precision experimentation, which had allowed 

Henry to observe the solubility of gases, became limited as he grew 

older. The injuries to his hands began to interfere with his dexterity 

and finally caused such acute pain that it deprived him of sleep. 

Henry committed suicide at the age of sixty-two. But Dalton con- 

tinued to find support, including from the team of Pierre Dulong and 
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Alexis Petit, who published their law of specific heats in 1819. Spe- 
cific heat is the amount of heat required to raise the temperature of a 
given amount of material one degree on a temperature scale. Another 
name used for the same idea with different units is “heat capacity,” a 
choice which better implies the meaning: the capacity of a material to 
hold heat. A material has a high heat capacity if a large amount of 

heat is required to raise the temperature; it holds more heat before 
the temperature goes up. The specific heats for different materials 
vary; for instance, the amount of heat required to raise the tempera- 
ture of copper is less than the amount of heat required to raise the 

temperature of stainless steel. For this reason, the bottom of the best 
stainless steel cookware is copper coated: Heat is transferred more 

evenly to the sauce in the pot via the copper. The team of Dulong 
and Petit was part of the new wave of French chemists coming out of 

postrevolutionary France. The breakthroughs of Lavoisier had 

breathed new fire into French chemistry, and the enthusiasm and 

productivity of the French chemists was impressive. However, unlike 

Lavoisier, Pierre Dulong (1785-1838) struggled against poverty and 

illness. Dulong was orphaned when he was four, but his parents left 
him enough funds to go to school. He practiced medicine for a while 

in the poorer part of Paris, but lost much of his inheritance overall 

because many of his patients could not pay.? He lost a finger and an 

eye in a laboratory explosion in the course of one research project but 

found his reward with another, the one for which his name was 

immortalized, along with that of his friend, the mathematician and 

physicist Alexis Petit (1791-1820).!° Dulong and Petit found that 

the product of the atomic mass (which is what Dalton’s relative mass 

is now called) times the specific heat was a constant for a large 

number of metals. Although we now know that this is only approxi- 
mately true, at the time it gave good evidence that there was some- 

thing to these atoms of Dalton’s and his scale of relative weights. 
But perhaps the most compelling arguments for the atomic 

theory came from organic chemistry—the lively field of chemistry 

that amuses itself with the oft ill-smelling and greasy carbon-based 

chemicals that compose the stuff of animals and plants. This field was 

undergoing a revival of its own during the 1800s because of the plen- 
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itude of new materials from coal tar and because the multitalented 

Lavoisier had contrived a way to measure the carbon, oxygen, and 

nitrogen content of organic compounds. His original methods were 

crude, giving only approximate values, but the chemists of the 1800s 

improved the methods until they were able to achieve quite accurate 

analyses. In the 1820s, through these methods, a German chemist, 

Friedrich Wohler, analyzed silver cyanate and found it to be of the 

same composition as silver fulminate, analyzed by his friend, Justus 

Leibig. They found that the same number and same type of atoms are 

in each compound; but silver fulminate explodes and silver cyanate 

does not. The explanation was one more stroke in the tally for 

Dalton’s atoms: These compounds functioned differently because of 

the way their atoms were arranged, just as the functionality of a car 

that has its wheels attached to the axle differs profoundly from one 

with its wheels attached to the roof. Limonene, a compound that 

lends odor to citric fruits, smells like oranges in one configuration, 

while its mirror image smells like lemons.1! 

But not everyone was happy with the atomic model. Physicists 

and chemists felt very uncomfortable postulating the existence of 

something they could not hold up to the light and examine. Many 

saw the atomic theory as a convenient device, just as the editor of 

Copernicus’s book rationalized Copernicus’s theory as a computa- 

tional convenience for the determination of the date of Easter. And 

so, like Copernicus, Dalton had his enthusiasts, but had his detrac- 

tors, too. By Dalton’s time, they may have been beyond burning free- 

thinkers at the stake, but they did roast him. Many scientists preferred 

the word “equivalents” to atoms in an effort to avoid the issue, but 

other, more outspoken chemists could be virulent. The strongest 

objection was perhaps most succinctly summarized by Ernst Mach 
when he said, “Have you ever seen one?”!2 

Although Dalton was awarded high honors in England (over the 

objections of the high clergy of the Church of England),!3 as Dalton 

aged, he found attacks on his theory more and more intolerable. 

Assuming a defensive posture, he began to resist even justifiable 

refinements to his model. Jéns Jakob Berzelius (1779-1848), a physi- 

cian and chemist, had the audacity to find a mathematical error in 
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Fig. 12. John Dalton. Edgar Fahs Smith Collection, University of Pennsylvania Library. 
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Dalton’s New System and to propose that the atoms were held 

together by an electrical attraction.!4 Berzelius also suggested repre- 

senting the elements with letters (in what later came to be the modern 

manner, e.g., H,O) rather than circles and symbols. Dalton resented 

such re-interpretation and new representations of /zs atoms. 

There were other points on which legitimate objections to 

Dalton’s atomic theory could be based. For instance, there was the 

well known fact that gases fill balloons. The atoms that Dalton envi- 

sioned were static, much like marbles in a bag, and it is an equally well 

known fact that marbles will not spontaneously blow up a balloon. 

Dalton offered an explanation: He said that each atom was sur- 

rounded by an atmosphere of heat and when a material was heated, 

this blanket of heat increased, which held the atoms apart and even 

allowed them to fill up balloons in the gas phase. As it stood, this 

explanation was a perfectly acceptable visual aid that would certainly 

help a schoolteacher instruct students in the properties of different 

phases of matter, but it was not very useful as a scientific theory. 

Dalton’s description of the atmosphere of heat was qualitative, not 

quantitative. It did not have a number associated with it. His theory 

of heat was a throwback to the “green cheese” approach to modeling: 

Saying that the moon is made of green cheese does explain its irreg- 

ular appearance, but more concrete data is needed to discern its true 

composition. Yet clearly heat would be involved in the explanation 

because heat is what caused the transition from one phase to the other. 

To move on in their understanding, the scientists of the 1800s would 

have to pay their respects to Dalton, then regroup, reconsider, and re- 

address another ancient question: What is heat? 



Chapter 12 

Thermodynamics 

THE WARMTH AND How It SpREADS 

A clay pot sitting in the sun will always be a clay pot. It has to go through 

the white heat of the furnace to become porcelain. 

Mildred Witte Struven, circa 1950 

Ww; is heat? We add heat to food to cook it, but we don’t weigh 

it out or measure it with a spoon. We can create heat by rub- 

bing our hands together, yet we can’t seem to store it. Even in a 

thermos bottle, food eventually cools. Temperature is not the same as 

heat. Heat added to a metal spoon makes the spoon too hot to 

handle; the same amount of heat added to a wooden spoon allows it 

to be held comfortably. A hand in a freezer results in a cold hand 

because heat seems to flow downhill from where it is to where it isn’t. 

But touching a chair results in no noticeable loss of heat, so the chair 

must contain heat. If the chair contained no heat, the first time you 

sat down would be your last. But as difficult as the concept of heat 

might be, in the 1800s there was an imperative to understand it. The 

(147 
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heat of the steam engine, based on coal, was quickly changing the 

nature of societies worldwide. 
The name of James Watt (1736-1819) is often associated with 

the steam engine, but James Watt did not invent the steam engine.1 

In fact, the steam engine is not even a nineteenth-century invention. 

Steam was used in the first century in Alexandria, Egypt, to power 

various mechanisms such as one used to open temple doors.? Thomas 

Newcomen (1663-1729), a blacksmith, reinvented the steam engine, 

but his steam engine was so inefficient that its only use was to pump 

water out of coal mines where there was plenty of poor quality coal 

laying around that could be used to power it and that would other- 

wise go to waste.3 For this reason, running out of logs is identified as 

the catalyst for the Industrial Revolution rather than the reinvention 

of the steam engine: Without the need to remove water from coal 

mines, the steam engine would have remained a curiosity rather than 

an instrument of societal change. 

A professor of natural philosophy at Glasgow in coal-rich Scot- 

land, John Anderson, tried to demonstrate a small-scale model of 

Newcomen’s engine in his lecture but couldn’t get it to work. 

Anderson was a bit at odds with the university administration because 

he allowed artisans and other nonuniversity personnel into his classes 

(a practice branded “anti-toga”),* and to help him with the steam 

engine he enlisted the aid of another maverick, the university instru- 

ment maker, James Watt. Watt found himself at the university because 

the local guild would not let him practice in town without the requi- 

site apprenticeship. In the course of Watt’s efforts he not only got the 

model working but made it run better than its full-scale counterpart. 

Understandably, Watt found himself fascinated with his better 

mousetrap and went on to study its workings. Watt found a way to 

assign.a number to the amount of work done by a particular engine: 

He measured the pressure in the cylinder as it changed over the 

course of a power stroke. The product of the pressure times the 

volume expanded was a measure of the work done (as it takes more 

work to blow up a big balloon than a small one). In this way, Watt 

could compare the amount of work a particular engine extracted 

from a given amount of coal. In other words, he showed coal pro- 

duced heat and coal produced work. Once it became apparent that 
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work and heat were beasts of the same stripe, some pieces began to 
fall into place. This new animal, which encompasses all expressions of 
the ability to move or cause change, is called energy. 

So now we see that some of our difficulties in understanding heat 

arise from imprecise language: We would be better off defining heat 

as the process of transferring energy from one body to the next and 

defining energy based on Dalton’s atomic model of matter, but with 
an important modification. Dalton assumed that atoms were static, 

that is, atoms didn’t move. Today we envision atoms in constant 

flight. It is the sum of this ceaseless motion of atoms that we call the 

energy content of a system—a concept that we can now use to tackle 
the difference between heating a system and raising the temperature. 

Energy is transferred from atom to atom or molecule to molecule 

by collision: Atoms and molecules bang into one another as they fly 

around and, in the process, transfer energy back and forth. The game 

of billiards (or pool or snooker) is based on the idea of energy transfer: 

The cue stick transfers its energy to the cue ball, which strikes and 

transfers its energy to the object ball. The motion of the billiard ball 

on the table and the motion of atoms or molecules flying across the 

room is called translation motion. A rise in temperature occurs when 

the molecules of a substance transfer their energy to a thermometer 

through translational motion; in other words, by hitting the ther- 

mometer. The atoms of the mercury in the thermometer start moving 

around more and taking up more space. This expansion of the mer- 

cury in the thermometer is what registers as a change in temperature. 

Now imagine that the corner pocket of a billiard table is a ther- 

mometer and the temperature goes up when an object goes into the 

pocket. Which object would more efficiently increase the tempera- 

ture, billiard balls or jellyfish? 
The obvious choice is billiard balls. Hard strikes on a billiard ball 

cause the ball to move forward vigorously. Even if the ball bounces 

randomly around the table, odds are it will eventually hit the corner 

pocket. Hard strikes on a jellyfish just cause the jellyfish to quiver and 

roll and move forward only sluggishly. Most of the energy is absorbed 

in the internal motion of the jellyfish, which doesn’t get it any closer 

to the corner pocket. 

An atom may behave like a billiard ball, but a molecule is more 
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like a jellyfish. When energy is added to a molecule, it will quiver 

(vibrate) and roll (rotate) as well as translate. When energy is added 

to a molecular material the temperature does not go up as much as 

when it is added to an atomic material. This is why metal kitchen 

utensils have wooden handles. The metal transfers energy efficiently 

to the wood, but the wood is made up of molecules and pockets of 

molecular air that absorb energy in rotation and vibration instead of 

transferring it all to your hand. And that is why heat isn’t the same 

thing as temperature: Adding heat to molecules doesn’t raise the 

temperature as much as adding heat to atoms. 

But none of this knowledge was known or even accessible to the 

early nineteenth-century scientists and therefore their accomplish- 

ments are that much more impressive. The number of great minds 

that engaged in the effort is just as impressive, but space forbids us 

naming them all. However, there are two fundamental principles in 

the mathematical model of heat, called the first and second law of 

thermodynamics, respectively, and we can use these as the focus of 

this chapter. The first law is that the energy of the universe is con- 

stant, and the second law is that the entropy of the universe is 

increasing. We will look at the conservation of energy first, and we 

will define and tackle entropy second. 

Lavoisier thought the process of heating a material consisted of 

adding a substance, called caloric, to the material. This notion of heat 

as a substance would by challenged, interestingly enough, by the man 

who married Lavoisier’s widow: an American-born soldier of fortune, 

Benjamin Thompson, who was honored by the Holy Roman Empire 

with the title Count Rumford. He and Marie Lavoisier were fellow 

beneficiaries of the gunpowder trade, but the explosive mixture only 

lasted a few tumultuous years, as did the marriage.® 

Thompson’s place in the history of heat is due to observations he 

made while boring out metal barrels for use as cannons. He found 

that as long as he kept boring the cannon, the cannon kept heating 

up, thus putting the idea of heat as a substance, caloric, into question. 

He asserted that heat was the transfer of motion: The motion of the 

cannon bore caused motion in the cannon, which heated the cannon. 

Though Thompson’s argument for heat as the transfer of motion 

was compelling, it didn’t immediately carry the day because it didn’t 
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answer all the questions. For instance, although some transfer of energy 
might be explained by contact, the sun’s light will warm an object 
through the vacuum of space. This difficulty was dealt with by distin- 
guishing between conduction and radiative heating: Radiative heating 
is fast and conductive heating is slow. Because steam engines run well 
both on sunny and rainy days, radiative heating was moved to the back 
burner during the Industrial Revolution.® In an attempt, then, to show 
that conductive heating was caused by the transfer of motion, James 
Prescott Joule (1818-1889) demonstrated that a tub of water could be 
heated by a paddle wheel.”? He measured the amount of work done by 

the paddle wheel by powering it with a weight dropped from a mea- 
sured height. In this way, he arrived at a numerical equivalence between 
work and heat, which took the concept from the realm of speculation 
and put it on the bookshelf of science. In his honor, a unit of energy, 
the joule, is named after him. A similar unit of energy is the calorie. 
When we speak of a food containing some number of calories, we 

could as easily say it contains some number of joules. 

James Prescott Joule was born into a well-off family of brewers in 

Manchester. As a young man he was tutored by John Dalton and he 

shared with his mentor a love for basic science and an obligation to 

find altruistic outlets for his talents. Having been to Edinburg, he was 

aware of the lethal byproducts of coal, so he took as his aim the 

improvement of electric motors, hoping to replace steam engines 

with electric ones. He used a laboratory he set up in his father’s home 

to show that current passed through a liquid causes the temperature 

of the liquid to rise and then in 1850 he used his paddle wheel to 

show that mechanical movement causes temperature to rise, too. 

At first Joule received a cool reception from the scientific estab- 

lishment. He did not hold a position in the scientific community and 

he was not even a university graduate. However, his work gained the 

recognition of one William Thomson, better known as Lord Kelvin 

(1824-1907). Kelvin was a member of the inner circle, and after dis- 

cussions with Joule, and an accidental meeting with him in which he 

found Joule carefully measuring the temperature at the top and 

bottom of a waterfall, he decided this young man had something to 

offer, and backed Joule with his own respected reputation.® 

Kelvin’s place in the history of heat is a more difficult one to deci- 
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pher. He devised an absolute temperature scale that circumvented the 

problem of the zero and negative temperatures present in Celsius’s 

scale, but this was really a revival of an earlier idea put forth by Guil- 

laume Amontons (1663-1705).9 He produced a huge body of work 

but is noted for his computational errors and erroneous conclusions as 

much as for any one unique insight. He is sometimes credited with 

coining the word “thermodynamics” (thermo for heat and dynamics 

for its movement) that became the name of heat science, but William 

Rankine probably used the word before him. Then why is Kelvin 

always included in the history of thermodynamics? Because he had the 

good sense to recognize and support sound scientific effort whatever 

the source. Without Kelvin, Joule would have faced more adversity. 

But Kelvin could not shield Joule from all the cruelties that would 

befall him. Joule’s wife died young, leaving him with two small chil- 

dren. The monetary burden of raising these children coupled with the 

expense of personally financing his research used up his inheritance. 

He spent his last years poor and sick. There were other misfortunes in 

Joule’s life, too. He believed that not only were electrical energy and 

mechanical energy equivalent, but that all forms of energy could be 

interconverted, which meant that energy was not created or destroyed 

in a process, but conserved. However, his claim to be the first to state 

the principle of conservation of energy was disputed by others. The 

irony is that the basic idea had been around since Descartes and 

Newton. Descartes postulated a conservation of motion so that the 

creator wouldn’t constantly be called upon to wind things up. 

Newton’s third law, that for every action there is an equal and oppo- 

site reaction, is a statement of his intuitions regarding the conserva- 

tion of energy. Although Joule and others had the idea, they didn’t 

have the equations to support it. The mathematical formulation of the 

conservation of energy would come from a German doctor of medi- 

cine, Hermann Ludwig Ferdinand von Helmholtz (1821-1894).10 

The mother of Helmholtz was a reserved daughter of a German 

artillery officer. His father was a Romantic philosopher who shared 

music, painting, and Kantian philosophy with his son. His parents did 

not have the money to send their son to a university, so they encouraged 

him to seek support from the state to study medicine. Helmholtz’s 

approach to medicine was analytical, which now is the accepted, indeed 
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expected, approach to medicine. But in the mid-1800s, it was not. In a 
movement that came to be known as the “1847 school of physiology,” 
Helmholtz and others rejected the belief that there was something spe- 
cial or impenetrable about biological processes and insisted on 
grounding physiology firmly in the tangible principles of chemistry and 
physics. He even suffered a break with his father over the rigidity of his 
approach. Helmholtz’s life was marred by other tragedy: His wife suf- 
fered ill heath and died young, leaving him with young children. He 
endured personal attacks from colleagues offended by his placement of 
chemistry and physics alongside anatomy in medicine. But it was his 
command of physics that allowed him to sort out the various expressions 
of energy and show their equivalence through mathematical form. His 
mathematics clearly stated and demonstrated the first law of thermody- 
namics: The energy of the universe is conserved. 

The meaning of the first law may again be described by billiards. 

When a cue ball strikes an object ball, the object ball moves off, but 

the cue ball is also affected: It stops or at least slows down. Some (or 

all) of the energy of the cue ball has transferred to the object ball, but 

the net amount of energy contained in the system has not changed. 

(This concept will turn out to be very important in our later consid- 

eration of chemical thermodynamics.) In his formulation of the first 

law, Helmholtz read and drew from Joule, Kelvin, and others, 

including a quiet French military engineer, Sadi Carnot (1796- 

1832). Carnot deserves mention for his groundbreaking analysis of 

heat, but his unfortunate early death from cholera stopped him just 

short of formulating the second law of thermodynamics, that entropy 

is increasing.!!1 This principle would be enunciated by another 

German, Rudolf Julian Emmanuel Clausius. 

The studies by Clausius (1822-1888) of the work of Joule, 

Kelvin, and Carnot culminated in the publication in 1850 of a paper 

that makes a definitive statement of the law of conservation of energy, 

but does not stop there.!2 Clausius had ruminated on an observation 

made by Carnot: All real engines are less than 100 percent efficient. 

It is never true that all of the energy added to a system is completely 

converted to work. Some of the heating is wasted. Clausius worked 

another fifteen years on refining this concept and understanding its 

implications before he gave it a name: entropy. 
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We now think of entropy as the tendency of all systems to go to a 
state of maximum disorder. A deck of cards becomes more mixed when 

shuffled; it does not spontaneously re-order by suit and rank. A sack of 

red and green marbles exists as a uniform mixture of marbles; it will not 

suddenly separate into a layer of red and a layer of green. Systems mix 

spontaneously: A few drops of blood will color a basin of water red. 
These observations are more than just common experience, they are 

driven by the same force that drives chemical and physical change. Heat 

spontaneously spreads from hot bodies to cold bodies because that is 

the direction that causes the most disorder. A box of warm, jumping 

frogs is more chaotic than a box of cold frogs huddled in the corner. 
These thoughts were summarized in Clausius’s statement of the second 

law of thermodynamics: The entropy of the universe is increasing. The 
energy put into a system cannot all be converted to work because that 

would be too orderly. Nature insists on a bit of disorder, too. Entropy 
is the tax we must pay for borrowing nature’s power.!3 

The second law, as well as the first, is of major importance to 

physical chemistry. It is the two tugs of entropy and energy that 

determine which reactions will occur spontaneously and the extent to 

which they will occur, as we will see when we examine these concepts 

more closely. Entropy has its effect on Clausius’s life, too. Of Prussian 

birth, he carried out thermodynamic research at the University of 

Zurich, but was a German patriot all his life. In the German—French 

War of 1870, at fifty years of age, he organized and drove in an 

ambulance corps. The venture resulted in a leg wound that plagued 

him the rest of his life. In 1875 his wife died in childbirth, leaving 

him the job of raising their children, a task which he undertook per- 

sonally, to the detriment of his professional duties. Even so, two of 

his six children died before maturity. After his children were raised, 

however, Clausius still did not devote much energy to formulating a 

mathematical model for the molecular basis for entropy, which he 

knew must exist. In the end, he deferred this advancement to an Aus- 

trian physicist whose intellectual roots lay with the carousing 

medieval mathematicians. But perhaps Clausius did this with no 

regret. Perhaps he anticipated the battles Ludwig Boltzmann would 

have to face: Perhaps Clausius preferred to end his life in peace. 





Chapter 13 

Gnuats in Sunbeams 

IKONETIC THEORY OF GASES 

SRY 
... a vast multitude of small particles of matter, traversing backwards 

and forwards in every direction... a swarm of gnats in a sunbeam. 

John James Waterston, circa 1840 

he molecular theory of entropy did not spring full grown from 

the brow of Boltzmann; therefore, it is fitting, as well as instruc- 

tive, to pay homage to the theoretical mavericks who paved his way. 

These theorists had to travel outside the herd because the herd, in the 

main, trailed after Newton, and Newton assumed that atoms stood 

still. Newton had won his following by deriving Boyle’s law—that the 

pressure of a gas goes up when the volume goes down and visa 

versa—by assuming the particles of matter were static but they 

exerted a repulsive force on their neighbors. Because of Newton’s 

mathematical treatment and his stature, even Dalton, with his 

epiphany of atomic weight, still considered his atoms to be standing 

still. There were those, however, who were not comfortable with 

Newton’s almost ‘mystical action at a distance, which led them to 

explore other possibilities. A reasonable alternative was a model in 

which atoms were in constant motion and creating pressure by 

bumping each other out of the way. But the predictions of a viable 

theory must match experiment, and therein lies the story. 

One of the earliest versions of this model, which was to become 

known as the kinetic theory of gases, was proposed by Daniel 

Bernoulli (1700-1782), a son of the famous Bernoulli family that 
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produced a pack of mathematicians, physicists, and scientists of var- 

ious stripes in the 1600s and 1700s.! In the competitive tradition 

that seems so unique to early European mathematicians, Daniel 

Bernoulli even found himself pitted against his father, Johann 

Bernoulli, in mathematical contests. But when it comes to priority in 

the kinetic theory of gases, Daniel won the claim.? 

By kinetic, we mean motion, as in kinetic art, the art that pro- 

duces mobiles. The kinetic theory of gases takes the particles of gas— 

atoms or molecules—and predicts physical properties by assuming 

they are in motion. The theory is attractive because it, like Newton’s, 

predicts Boyle’s law, and in the hands of Bernoulli, made predictions 

beyond Boyle’s law as well. 

To understand the kinetic theory, we must put ourselves in the 

mindset of the theorists. They considered a collection of particles of 

gas to be like a swarm of gnats in a container, constantly moving in 

all possible, random directions. They recognized that the collective 

force of these gnats, continually striking an area of their container, 

would result in a pressure. If the container were made smaller, then 

the gnats would strike the area more often, and the pressure would 

go up: Boyle’s law. If the swarm of gnats were heated, they would fly 

around faster and there would be more collisions with the walls of the 

container. If these walls were movable (e.g., a balloon) the volume 

would increase, as was observed by the famous French hot-air bal- 

loonist of the late 1700s, Joseph Gay-Lussac: increasing the temper- 
ature increases the volume of a gas. 

But interesting as these results were, they still agreed only quali- 

tatively with the findings of Boyle and Gay-Lussac: They didn’t lead 

to a prediction that could be measured in any tangible way. To have 

this kind of comparison, the atomic theory, with its many different 
types of atoms, was necessary. For the Bernoulli father and son, all air 
atoms were the same. John Herapath, on the other hand, had the 
advantage of believing in different types of atoms in each different 
type of gas . . . not that it did him any good. The lesson to be learned 
from John Herapath is that if you want to be a famous scientist, take 

care that you are not born in the wrong place or at the wrong time: 
a caution John Herapath did not heed.3 
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English-born John Herapath (1790-1868) had some introduc- 

tion to the principles of chemistry by virtue of being born to a family 

whose business it was to process malt. But Herapath had little formal 

education. He taught himself enough French to read the works of the 

French mathematicians and gained a local reputation as somewhat of 

a mathematics prodigy, enough so that he was able to establish him- 

self as a teacher of mathematics. Then, apparently without knowledge 

of Bernoulli’s previous work, he derived a kinetic theory of gases. He 

wrote it up (along with a treatment of gravity and heat) and sub- 

mitted it for publication to the Royal Society. A certain Sir Humphry 

Davy (quite prominent in the annals of chemistry for his discoveries 

of elements and chemical reactivities) was then president of the Royal 

Society, and though Davy was a remarkably talented chemist, he 

wasn’t much of a mathematician, and rather than struggle with the 

paper, he deemed it inappropriate for publication. 

It was true that there were some difficulties with Herapath’s 

treatment and some out-and-out errors, though these were not 

Davy’s grounds for rejection. Herapath, with some justification, saw 

the rejection as an attack on his acumen. Herapath protested, and the 

ensuing exchange accelerated to the point of Herapath publishing a 

two-column tirade against Davy in the London Times and Davy even- 

tually resigning the presidency of the Royal Society, ostensibly ill but 

probably to avoid a challenge to a mathematical duel (shades of 

medieval mathematicians) that Herapath proposed. 

Herapath did eventually see the paper published in the Annals of 

Philosophy (after cleaning up some of the errors) but he would never 

gain the recognition he believed he deserved. In an interesting turn 

of events he became a contributor, then editor, of a publication called 

the Railway Magazine, and using as his justification the fact that 

trains travel through air and ice freezes on rails, he deemed a theo- 

retical treatment of air pressure and temperature as entirely appro- 

priate for a railroad magazine and used it as a venue for publication. 

If Herapath made errors in calculations, he could be excused for 

not catching them because he didn’t have a lot of experimental data 

with which to test his theory. This situation gradually changed 

through the 1800s. Scottish-born Thomas Graham (1805-1869) 
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added some information to the data bank by his study of gas effusion, 
the process by which gas escapes through a pinhole orifice.4 He 
demonstrated in 1833 that the rate of effusion for gases depends 
inversely on the square root of the mass. In other words, helium, a 
very light gas, effuses more rapidly than nitrogen, a heavier gas that 
is the main component of air: A helium balloon will deflate faster 
than a balloon blown up with air because helium will effuse faster 
through the microscopic pores in the balloon. 

Graham was so impassioned of the study of chemistry that he pur- 

sued it even though his father frowned on his career and withdrew 

financial support from his son. He supported himself by writing and 

tutoring (which have been the two stop-gap careers of many of our 

heroes) and Graham’s chemistry was decidedly physical. He studied 

gases, explosions, and colloids—the interesting bigger-than-molecules 

but smaller-than-solids particles that would later be germane to twen- 

tieth-century physical chemistry. In a clever, if decidedly delicate 

experiment, Graham was able to show that, at a given temperature, 

the rate at which gases seep out of a pinhole (the rate of effusion) goes 

up as the square root of the mass goes down. His finding that the rate 

of effusion should be inversely proportional to mass is intuitive. Even 

if one does not accept the atomic theory, it is commonly understood 

that heavier objects move more sluggishly than lighter ones (the same 

kick imparts more movement to a tennis ball than a bowling ball). And 

the faster the gas particles move around, the greater their chances of 

finding the pinhole and escaping. But that the rate of effusion should 

be inversely proportional to the square root of mass has no explanation 

until the kinetic theory is evoked. 

-Graham’s observations gave the kinetic theorists something that 

their theories had to account for, but they still were lacking some real 

numbers to compare with their calculations. Our next protagonist, 

John Waterston, recognized, as did others after him, that when 

absolute numbers aren’t available, ratios can work as well. This is the 

way Dalton contended with weighing his minuscule atoms: He knew 

he couldn’t assign absolute weights (it is hard to weigh one gnat, 

especially one you can’t see), so he assigned relative weights by 

finding the ratio of weights of atoms. Waterston did the same, but 
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with ratios of heat capacities, that is, the capacity of the gas to absorb 

energy without having the temperature go up. The originality of 

Waterston’s ideas should have caused notice ... but he didn’t fare 

much better than Herapath. In some ways he fared worse. 

John James Waterston (1811-1883) was another product of the 

British Isles and as the son of a wax manufacturer, he, too, had his 

first contact with chemistry though an industrial process.° Waterston 

wrote his first paper at the age of nineteen, and in it he sought to 

explain gravity without resorting to Newton’s mysterious action at a 

distance. To do this he invoked collisions between particles as a 

means of transferring influence. At twenty-one, needing employ- 

ment, Waterston went to work for the railroad as a surveyor. He 

found the work too intrusive on his time for scientific research, so he 

applied for employment with the East India Company, which meant 

he would have access to Grant College in Bombay and more leisure 

time to spend there. In 1843 he sent home a manuscript for a short 

book that was published anonymously. In the book he tackled several 

topics, including the physiology of the nervous system and a kinetic 

theory of gases that contained one of the first concrete statements of 
the equipartition theorem. 

The equipartition theorem, or the theory of equal partition of 

energy, says that energy will be equally distributed in all modes. For 

a gas made of individual atoms, this means that the atoms are as likely 

to be flying up as down, right as left, and all directions of the com- 

pass as well. This is because atoms colliding in a gas can be assumed 

to behave like hard billiard balls, colliding in perfectly elastic colli- 

sions, that is, not sticking together. But recall that molecules are 

more like jellyfish. When one billiard ball strikes another, the energy 
from the first will be transferred into translational energy for the 
second, and the object ball moves off straight and true, but the situ- 
ation is different for two colliding jellyfish. The object jellyfish will 
absorb some of the energy in vibrational and rotational modes as well 
as translation. The equipartition theorem says that energy will be 
equally distributed in all the modes, that is, all the energy won’t just 
suddenly and spontaneously concentrate in one particular vibrational 
mode or suddenly all concentrate in translation motion, abruptly 
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sending the jellyfish flying across the room. However, the name of 
the book, Thoughts on the Mental Functions, did little to alert poten- 
tial readers to the fact that it contained a kinetic theory of gases, let 
alone an equipartition theorem, so Waterston’s theory went 
neglected.® 

In December 1845 Waterston sought to rectify this situation by 

submitting to the Royal Society a paper entitled “On the physics of 

media that are composed of free and elastic molecules in a state of mo- 

tion.”” As with Herapath’s paper, the referees rejected it, one of 

whom went so far as to call it “nonsense,”® but unlike Herapath, its 

title was read into the meeting notes, and in that act, made it unavail- 

able for submission to another outlet. 

To understand the situation, it must be recognized that today it is 

still considered highly unethical to attempt to publish the same mate- 

rial twice. So the policy of the Royal Society was that once a paper was 

read into the meeting notes it became the property of the society. In 

Herapath’s case, he sensed the winds were against him, and elected 

not to have his paper read, which allowed him to ask for it back so he 

could publish it elsewhere. But Waterston was in India and did not, or 

could not, exercise this option. The paper remained inaccessible in the 

archives of the Royal Society until Lord Rayleigh found it in 1891, 

after Waterston’s death, and saw that it was published. 

Waterston’s idea of using the measured ratio of the heat capacity at 

constant pressure to the heat capacity at constant volume to compare 

with the predictions of the kinetic theory of gases turned out to be 

enormously useful and would eventually lead to necessary refinements 

in the theory. To explain why the heat capacities should be different for 

a gas at constant pressure and the same gas at constant volume, con- 

sider two swarms of gnats. One swarm is contained in a cylinder with 

rigid walls and another swarm in a cylinder with one movable wall, such 

as a piston. If energy is added to these systems, the temperature 

behaves differently. When energy is added to the swarm in the cylinder 

with the rigid walls, the temperature goes up significantly because 

energy is going into increasing the translational energy of the gnats. 

For the other system, however, the one with the one movable wall, 

some of the gnats will strike this wall with their additional energy, and 
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the wall will move, absorbing the energy. So the gnats in the cylinder 

with the piston will have to take in more energy for the temperature to 

go up by the same amount. The system with the movable wall will have 

a higher heat capacity, and the kinetic theory of gases should predict 

exactly how much. But for reasons known only to gnats, the situation 

is complicated by quantum mechanics (which we will consider later), 

and though the numbers Waterston calculated agreed with the experi- 

mental results of others, which gave him confidence in his theory, they 

were unfortunately based on an arithmetic error. Had he not made the 

error, he would have gotten different results, which would have been 

more discouraging. 

Waterston returned to Scotland in 1857 and with his accumu- 

lated savings attempted to establish himself as a scientist, but met 

with little success. He spent the rest of his days in retirement, visiting 

his nephew, and playing billiards and chess. By all accounts he was 

resigned to his unusual and out-of-step life, though reportedly used 

“unparliamentary language” when speaking of new scientific 

advancements.? Then one day he took a walk on a breakwater and did 

not return. It is doubtful that Waterston was suicidal, but one won- 

ders if he resisted the waves that carried him away.10 

But Waterston and Herapath might have taken some consolation 

in the fact that even Joule (who may have used Herapath’s theory as 

a starting point) attempted the same type of analysis and basically met 
with the same reception. In fact, the kinetic theory of gases did not 
really attract attention until 1856 when Karl Krénig published a short 
paper on kinetic theory that was essentially an encapsulation of the 
work of Bernoulli, Herapath, Waterston, and Joule. But it had the 
advantage that the time was right. As may be recalled from our dis- 
cussion of thermodynamics, Helmholtz, by then, had demonstrated 
the conservation of energy. Joule had demonstrated the equivalence of 
heat and mechanical motion. Clausius needed to get a better handle 
on entropy. The kinetic theory came into the hands of the master. 

Rudolf Clausius was aware that the theory didn’t match all the 
data, so he used a tactic that has often proved fruitful in chemical 
physics: He assumed, for the time, the missing part was simply a pro- 
portionality constant. In other words, he called it potatoes and moved 
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on. In an 1857 publication he presented a concise kinetic theory of 

gases and clearly introduced the concept of mean-free path, that is, the 

average length of the path that a particle travels before it collides with 

another particle. The idea of a gas particle’s path being short before it 

changes direction satisfactorily explained why gases and odors don’t 

instantaneously diffuse from one side of the room to the other. Clau- 

sius also suggested that there must be a distribution of velocities rather 

that just one velocity for all gas particles, which explains why evapora- 

tion takes time: A pot of water isn’t liquid one second and a cloud of 

steam the next. However, Clausius did not take this important idea 

any further. It was left to James Clerk Maxwell, as we shall see next, 

to derive an expression for the velocity distribution of a gas. Clausius 

also left Maxwell and colleagues with the challenge of assigning 

meaning to his nebulous proportionality constants. 

Now the stage is set for Ludwig Boltzmann, that is, Boltzmann 

and a couple of friends—Maxwell and Maxwell’s demon—and he’d 

have a devil of a time taming them. As he would summarize, “I am 

conscious of being only an individual struggling weakly against the 

stream of time. But it still remains in my power to contribute in such 

a way that, when the theory of gases is again revived, not too much 

will have to be rediscovered.”!! Bernoulli’s paper had been repub- 

lished in 1859, before the death of Herapath or Waterston, and Lord 

Rayleigh would uncover Waterston’s paper in the prime of Boltz- 

mann’s career, so Boltzmann was painfully aware of the fate of Her- 

apath and Waterston, and hoped to avoid it. In the end, he not only 

escaped their obscurity, he realized their ambition and his own. 
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Statistical Mechanics 

MAXWELL’S DEMON AND BOLTZMANN’S DREAM 
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T have never seen an astrologer who was lucky at gambling. . . 

Girolamo Cardano, circa 1550 

he advent of statistical mechanics as a predictive tool in physical 
science is a major turning point in the history of physical chem- 

istry and indeed in the history of science—but it was not an easy tran- 
sition. Science is the search for system, and nothing pleases a scientist 
more than to find a key that fits. So when Newton’s mechanics 
explained planetary orbits, cannonball trajectories, and, via the 
kinetic theory of gases, the behavior of air, no one wanted to 
abandon Newton. It fell to Boltzmann to remind his brethren that 
they had more work to do. 

Not only did Boltzmann have the dubious distinction of issuing 
this wake-up call, he had to deliver a bitter pill with it: Not only 
would science have to abandon the security of Newton, it would have 
to relinquish his certitude, too. With the arrival of statistical 
mechanics we see Newton’s universe of constants, absolutes, and cer- 
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tainties yielding to maybes, most likelies, and probabilities. But in 

some ways it was a return to an old idea. Who knew better than the 

medieval mathematicians that the future is a gamble? 

To begin, we revisit an old friend, the mathematician Girolamo 

Cardano, and hear a tale he relates in his Book on Games of Chance, 

written around 1550.! He conveys his own story of being twenty-five 

and experiencing some sexual dysfunction. He met a man who said 

he knew a beautiful prostitute who would soon set Cardano to rights. 

It turned out to be a lure to a dice game instead, and once baited, 

Cardano found he lost all his money and even some of his clothes. 

Cardano, as he tells it, went home and thought over the situation. In 

his ponderings, he realized that in the game he had seen certain 

numbers show up on the dice more often than others. He calculated 

that seven was the most likely number to show up because there were 

six ways of achieving it on two dice and that two and twelve were the 

least likely because there is only one roll each that would produce 

these numbers. He then decided to go back to the dice game with 

this knowledge, but took the precaution to tell his servant to inter- 

rupt him as soon as he had won back his clothes and money. He then 

bet only when the odds were in his favor and soon won back what he 

had lost. He noted that a fellow gambler commented that Cardano 

acted as though advised by a demon, but the loser accepted his losses 

graciously. Cardano adds that this is well because he knew of a man 

who had blasphemed after a gambling loss and had been arrested and 

condemned to hang. “Christians,” he comments, “tolerate gambling 

... but they do not allow cursing.” 

Although Cardano’s application may have been less than scien- 

tific, Boltzmann and physical chemistry owe much to the gamblers 

and gamers of the backstreets of the Renaissance and to the later card 

salons of Europe. In the 1600s, Blaise Pascal, a moralist who was also 

quite interested in mathematics, shared a long coach trip with a free- 

living nobleman by the name of Chevalier de Méré.? To pass the 

time, they discussed an old gambling problem: how to split the pot 

in a dice game that had to be discontinued before the final die was 

cast. After the coach ride, Pascal communicated the problem to a 

fellow mathematician and together they agreed that the pot should 
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be split according to each player’s probability of throwing a winning 

number, had there been time enough for them to take a turn. Their 

efforts at calculating probabilities were soon generalized to any situ- 

ation with multiple possible outcomes. In the 1700s Simon Laplace, 

a younger and politically more astute fellow bourgeoisie and fellow 

scientist of Lavoisier, built on this foundation. It is sometimes said 

that Laplace survived the revolution because the government needed 

him to calculate trajectories for the artillery, but he also had the good 

sense to test the political winds and align himself with the powers that 

be. An extremely talented physicist and mathematician, he designed 

a probability theory that allowed him to extract information from 

astronomical observations that were limited in their precision only by 

the precision of the instruments. The data he gleaned with his theory 

for handling error allowed him to take Newton’s calculations a few 

steps further and add some corrections to make them more accurate. 

Newton himself had credited a nudge from God to correct for the 

occasional discrepancies in his orbital theory. When Napoleon asked 

Laplace why he did not evoke the Creator in his system, he said “I 

have no need of that hypothesis.” Though this statement may or 

may not have been atheistic, it demonstrates that Laplace believed he 

had perfected his methods to the point where he did not need to 

invoke divine intervention. With Laplace, statistics had found their 
place in physics. 

Statistical methods were imported to England in 1850 through 

John Herschel (1792-1871), son of William Herschel, the astrono- 

mer who discovered Uranus.> John Herschel learned mathematics, 

chemistry, and physics at home from his parents and his aunt, Caro- 

line Herschel, who was a noted astronomer in her own right.© Ten 

years later, Scottish mathematician and physicist James Clerk Maxwell 

applied statistical methods to the kinetic theory of gases. 
One cannot begin a discussion of James Clerk Maxwell (1831- 

1879) without first noting that he contributed to several important 
areas of physics, all before dying at the age of forty-eight. Like 
Lavoisier, he had his finger in many pies. Here, however, we first 
encounter ‘him in the context of his contribution to the statistical 
treatment of the kinetic theory of gases.” 
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Maxwell’s parents also planned to educate him at home, but in a 
scenario all too common in those days, Maxwell’s mother died while 
he was still quite young, so he ended up attending Edinburgh 
Academy. At the academy he was dubbed “Dafty” because he was 

introverted and spent his time reading, drawing diagrams, and 

making mechanical models, but when he started winning prizes for 

scholarship, math, and poetry, the nickname vanished. He submitted 
his first paper to the Royal Society at the age of fourteen, and though 

it was only a revision of an older problem in Cartesian geometry, it 

was impressive for a fourteen-year-old. Maxwell earned an academic 
post by 1857 and when one contest was announced for the best 

explanation of Saturn’s rings, he decided to try his hand. His solution 

was to show that the rings could be stable if they were made up of 

small particles rather than one continuous ring. He defended his 

thesis sufficiently to win the prize and twentieth-century observations 
of the rings of Saturn proved him right. Later, the problem of a col- 

lection of colliding small particles (the kinetic theory’s swarm of 

gnats) became a constant theme in Maxwell’s work. 

Another constant in his life after June 1859 was Katherine Mary 

Dewar Maxwell, his wife. She helped him extensively in his work, as 

evidenced by the contents of a postcard from Maxwell to his old 

friend and fellow student at Edinburgh Academy, Peter Tait: “My 

better 1/2, who did all the real work of the kinetic theory is at pre- 

sent engaged in other researches. When she is done I will let you 

know her answer to your inquiry [about experimental data].”8 

The data they were collecting was to test Maxwell’s treatment of 

the kinetic theory of gases. Though it had been proposed that after 

enough collisions the molecules would have all exchanged energy so 

much that they would all share the same velocity, Rudolf Clausius had 

seen that this did not match experience (a glob of gas does not move 

across a room in lock step but drifts with reaching fingers). Building 

on the work of Clausius and using Laplace’s error function (the 

famous or infamous “bell curve”), he showed that many velocities 

were possible in a gas at equilibrium and the probability for a partic- 

ular velocity depends on the curve and the magnitude of the velocity; 

thus the resulting distribution of velocities is a skewed curve that has 
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a few particles at low velocity and a few at high velocity, and even 

some at very high velocity, but most in the middle. However, because 

it was not an exact bell curve, the average velocity is not exactly in the 

middle. The experimental velocity distribution of a gas can be mea- 

sured by blocking the path of a gas with two rotating, slotted disks 

that allow a blob of gas to pass only when it has the right speed to 

make it through both slots. An analogy would be traffic lights timed 

so that people going exactly the right speed traverse a series of inter- 

sections without stopping. Conversely the average speed distribution 

of cars on that road could be measured by varying the timing on the 

light to see how many cars made it through at various settings. To 

measure the average speed distribution of a gas, the timing of the 

slots is varied and the amount of the gas that passes through is mea- 

sured. The average predicted by Maxwell’s skewed curve agreed with 

the experimental average velocity. 
Maxwell then decided to re-examine the kinetic theory of gases. 

He knew of its failure to predict the correct ratio of heat capacities 

for the gases studied at that time, and he hoped to find the theory’s 

flaw. As we mentioned previously, John Waterston’s agreement with 

experiment was a happy accident and actually an arithmetic error. 

Maxwell was less prone to such errors (though not immune) and he 

knew he faced a real discrepancy between experiment and theory. 

In explaining the discrepancy, we must realize that it was known 

then that the common gases—oxygen, nitrogen, hydrogen—were 

diatomics; that is, they consisted of two atoms per molecule. A gas 

made up of diatomics can absorb more heat before its temperature 

goes up; that is, it has more ways that it can move (more like a jelly- 

fish than a billiard ball). It turns out that the ratio of heat capacities 

is predicted to be 1:3 to account for all those motions. But in actu- 

ality the heat capacities kept obstinately measuring 1:4. They had to 

admit the jellyfish were a bit tougher than predicted, which meant 

failure for the kinetic theory when it came to diatomics. 

Though Maxwell never solved the heat capacity ratio problem 

(the full solution would have to await quantum mechanics), he found 

another result that pleased him so much that he was able to overlook 
the heat capacity enigma and support the kinetic theory of gases. 
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What Maxwell found was that the kinetic theory seemed to imply that 
the viscosity coefficient for a gas should be independent of pressure 
and go up with the square root of the temperature. In other words, 
if you squeezed the gas into a smaller volume, it did not get more vis- 
cous, and if you heated it up, it did. In our normal day-to-day expe- 
rience, most of us have come to equate more dense with more vis- 
cous and higher pressures of gases mean a denser gas. We certainly 

equate a lower temperature with a higher viscosity (for example the 
expression “slower than molasses in January”). While Maxwell’s 
result seemed as counterintuitive to him as it does to most people 

now, he was unable to find his error, so he courageously went back 

and revisited the experimental data for gases. He and his wife were 

able to show experimentally that rarefied gas viscosities were indeed 

independent of pressure and did go up as the temperature went up, 
and when Maxwell was able to rationalize it theoretically in terms of 

the kinetic theory of gases, he became a believer. 

To understand why this might be so, it is a good idea to look at 

what viscosity is. Viscosity is the resistance to flow in a given direc- 

tion. A more viscous liquid (molasses) will resist being poured down 

while a less viscous liquid (water) pours more readily. In a liquid, the 

molecules are relatively close together and the attractions between 

the sticky molecules make them resist flow. When liquid is heated up, 

the molecules move around faster, the sticky attractions become less 

of a factor, and they do not resist flow as much. In a gas, however, 

the molecules are already so far apart that the attractions between the 

molecules aren’t as important (just as separating two magnets dimin- 

ishes the force felt between them). So the viscosity of a gas must be 

modeled by something nonsticky: for instance, cows being herded 

down a cattle chute. 

In a cattle chute, the cows in the center tend to be moving faster 

because the ones on the edges are bumping into the fence, which 

slows them down. Collisions between the fast cows and the slow cows 

speed up the slow cows and slow down the fast cows. At a higher 

density of cows (that is, a higher pressure) there are more collisions, 

but of both types: More fast cows are being slowed down by colli- 

sions with slow cows and more slow cows are being speeded up by 
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collisions with fast cows. Of course there are cow psychology and eth- 

ical questions that we are ignoring in this analogy, but atoms have no 

psychology, so pressure has no net effect on gas viscosity. 

Now let’s look at the increase in temperature. Viscosity is resistance 

to movement in a given direction. When the gas is heated, more energy 

is added to the whole gas, but not just in one direction. Borrowing our 

previous analogy, the herd is spooked, but not from just behind but 

from all directions at once. This will throw the herd into a random 

panic, which is not a bad analogy for what happens to the gas. Gas par- 

ticles are now moving faster in all directions, and in fact interfere with 

movement in the selected direction, so viscosity increases. 

Having put the viscosity problem to bed, Maxwell was tempted 

to tackle the more difficult question of a molecular basis for entropy. 

He had an inkling, however, as to how the explanation would have 

to go. Maxwell felt that the explanation would lie in the statistical 

treatment of gases, based on the known laws of physics, not on the 

discovery of some new physical law. Maxwell saw the situation not as 

a rule of nature but rather as a result of our clumsy attempts to model 

nature. In fact he could imagine a way to circumvent entropy if only 

the human frame were finer: A diminutive demon could sit at the 

boundary of a hot material and a cold material, operating a shutter, 

and defeat entropy by allowing only the cold atoms to move to the 

hot side and stop the hot atoms from going to the cold side. 

Maxwell’s demon first appeared in a letter to Peter Guthrie Tait on 

December 11, 1867.? But though he defined the problem, Maxwell 

did not devise the equations. Ludwig Boltzmann (1844-1906), a 

university professor thirteen years Maxwell’s junior, would take the 
heat for defining the devil.1° 

Boltzmann’s father was a bureaucrat in the office of taxation in 
Vienna. The son, a perceptive student, received his doctorate in phys- 
ics from the University of Vienna at the age of twenty-two. In the 
process of securing an academic appointment, he worked on the 
Kinetic theory of gases and extended Maxwell’s distribution of gas 
velocities to a distribution of energies and in doing so defined the 
proportionality constant between temperature and energy that has 
since been named Boltzmann’s constant. Boltzmann’s constant has 
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Fig. 15. Ludwig Boltzmann. AIP Emilio Segré Visual Archives, Segré Collection. 
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quite a respectable place in all of physical chemistry, but for a time, it 

went unheralded by everyone, including Boltzmann. However, the 

theory attracted enough attention so that the twenty-five-year-old 

was offered a university position while other, older candidates con- 

tinued their tutoring and waiting. Boltzmann then, too, turned his 

attention to entropy, though he had to try several approaches before 

he settled on his solution. When he did, he inaugurated a new para- 

digm in science. 

Building on Maxwell’s distribution of velocities, Boltzmann 

showed that a gas in any arbitrary initial state will continue changing its 

velocity distribution through collision until it reaches the skewed-bell- 

curve Maxwellian distribution; at this point it will continue to experi- 

ence collisions, but cease to evolve. When Boltzmann identified these 

velocity changes with entropy, he was able to recast his result and say 

that a system will tend to increase in entropy until it reaches its equi- 

librium state. In other words, an ordered deck of cards becomes disor- 

dered on shuffling, but on continued shuffling it eventually reaches its 

most chaotic state and though shuffled forever, will not become more 

disordered. Boltzmann’s theory was a major triumph for statistical 

mechanics (though not yet named “statistical mechanics”), but in its 
day it was received with skepticism, to say the least. 

One objection was the so-called reversibility paradox.!! In 
mechanical systems, it is a given that any forward process can be 
reversed. If a ball rolling downhill produces energy, exactly the same 
amount of energy is required to push it back up the hill.12 But 
entropy is unidirectional. Systems became more chaotic, not less. So, 
went the conclusion, entropy could not be based on a simple 
mechanical process such as atoms colliding with each other, as Boltz- 
mann had presumed. If so, why shouldn’t systems just as sponta- 
neously order as disorder? Reinforcing this objection was the idea of 
recurrence, that a mechanical system forced to move in a finite 
volume would eventually return to its initial conditions (a marble ran- 
domly bouncing around in a box will eventually hit its beginning 
point). Boltzmann knew intuitively that he was not contradicting 
either of these principles, it was just that the probability of their 
occurrence was extremely small. 
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To understand Boltzmann’s entropy, let’s revisit our card game. 

Assuming we are playing with a full deck (let’s hope we are), that 

means we have a deck of fifty-two cards that can be divided up into 

four suits of thirteen cards each. If we start with a well-shuffled, 

chaotic deck, and deal out all the cards to four players, the odds of 

dealing one particular ordered hand, for instance a thirteen-card hand 

that is all spades, is on the order of 640 billion to one.13 And this is 

only one hand. To have all the hands so ordered would be against 

astronomical odds. But if this hand is considered ordered, and every 

other hand is considered disordered, then there are 640 billion hands 

that qualify for disorder. This was Boltzmann’s point: Equilibrium is 

not one configuration, but many, many configurations. So the odds 

for disorder were just so much more probable that one would not wit- 

ness a spontaneous return to order in one lifetime or many lifetimes 

or a universe of lifetimes. In 1877, Boltzmann derived his famous rela- 

tionship that entropy, S, is equal to k (Boltzmann’s constant) times the 

logarithm of the number of ways a particular configuration can be 

achieved, S = k log W. This equation is engraved on his tombstone. 

Within ten years of Boltzmann’s death, new information and new 

philosophies would vindicate his theories and validate his results. 

Even as early as 1875 information began to gather on his side. When 

the ratio of heat capacities for monatomic gases based on billiard balls 

were calculated, no monatomic gases were known. In 1875, however, 

August Adolph Kundt (1839-1894) and Emil Gabriel Warberg 

(1846-1931) found one.!4 They had been working on measuring the 

heat capacity ratios of gases by measuring the speed of sound. Sound 

is a compression wave that propagates through a gas by rapidly 

squeezing the gas and then allowing it to expand. The rate at which 

the gas compresses and expands depends on its compressibility, which 

in turn is related to its heat capacity. By setting up a standing wave of 

sound (which can be obtained by blowing across the open mouth of 

a narrow-necked bottle, though they did it by stroking a glass rod) 

they could track the crests and valleys of sound in a finely divided 

dust. From these dust figures they calculated the speed of sound and 

the heat capacity ratios for many gases. 
What they found was that mercury vapor has a heat capacity ratio 
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that is in perfect agreement with that predicted by the kinetic theory 

of gases for a monatomic gas. There was still that troublesome busi- 

ness about the heat capacity ratio for diatomic gases, but Boltzmann 

arrived at what he found to be a convincing explanation in 1877. 

Suppose, he said, that a rotating diatomic is like a pencil rotating on 

a table. Then there are three mutually exclusive axes about which it 

can rotate: one rotation flat on the table, one rotation end over end 

as the pencil does cartwheels down the table, and one in which the 

pencil just rolls on the table. He then proposed that this last rota- 

tional mode would be unaffected by collision: A direct hit on one end 

of the pencil could set it spinning flat or cartwheeling, but a direct hit 

to the center of the pencil should just push it forward, not set it 

rolling (to get rolling it would have to be hit off center, that is, 
slightly high or slightly low).. By subtracting out this mode of motion 
as a place to put heat, the ratio of constant pressure heat capacity to 
constant volume heat capacity became 1:4 for diatomics, in excellent 
agreement with the measured heat capacities. 

Maxwell, weakened by the abdominal cancer that was to kill him, 
did not accept Bolzmann’s explanation for the anomalous heat 
capacity ratio, though many other physicists did.15 As it turned out, 
the true explanation for the missing mode would come only from 
quantum mechanics, but there were plenty of other reasons to sup- 
port Boltzmann’s statistical view of entropy. One Boltzmann sup- 
porter in particular would not only accept Boltzmann’s approach but 
reinforce it, extend it, and name it the science of statistical mechanics: 
US. citizen Willard Gibbs. In 1902 Gibbs would bring statistical 
mechanics to chemistry in his book Elementary Principles in Statis- 
tical Mechanics. But Boltzmann himself would work no more on his 
theory. In 1906, while on holiday and while his wife and daughter 
were out swimming, he hanged himself from a balcony window. 



Chapter 15 

Thermochemistry 

WILLARD GIBBS AND THE QUIET INSURRECTION 

POV) OR HCE 
A mathematician may say anything he pleases, but a physicist must be at 

least partially sane. 

J. Willard Gibbs, circa 1870 

n our discussion of thermodynamics and statistical mechanics thus 

far, there has been one notable omission: chemistry. We’ve dis- 

cussed change, but only physical change such as water expanding into 

steam, but remaining H,O. Chemistry is about another kind of 

change—material change—salts into semiconductors, dough into 

bread, petroleum into plastic, and plants into pills. Chemistry is what 

happens when our swarm of gnats evolves into a swarm of bees. In 

fact, not just a swarm of bees, but a conglomeration of bugs: some 

bees, some beetles, and some gnats left over, too. Chemical reactions 

do not neatly change all of one material into all of another, but 

instead result in an equilibrium mixture of both beginning reactants 

and the final products. It was this convoluted problem that was 

tackled by the steady hand of Willard Gibbs. 

To understand the role of equilibrium in chemical reactions, con- 

sider why cleaning a floor with dirty water won’t work. In mopping 

a floor, the dirt on the floor and the clean, soapy water can be seen 

as the beginning reactants. The dirty water with dissolved dirt is the 

final product. When the clean, soapy water is first spread over the 

floor, dirt dissolves in it, but eventually the water reaches its equilib- 

rium dirt load and the floor won’t become cleaner until the dirty 

177 



178 MVS Magick, Mayhem, and Mavericks 

water is mopped up and replaced with fresh. At equilibrium, some of 

the dirt is dissolved in the water, but some is still left on the floor. It 

would take an infinite number of swabbings to produce a floor that 

is perfectly clean. 

Before the advent of thermodynamics, chemists were aware of 

this tendency in chemical reactions to proceed just so far, and no fur- 

ther, and had identified at least one factor that governed the final 

amount of product: the mass of the reactants. In other words, the 

greater the amount of dirt on the floor, the greater the dirt load of 

the water with the first mopping. In 1864, Peter Waage and Cato 

Maxmilian Guldberg, both of Norway, quantified this observation by 

careful experimentation and showed that at a particular temperature, 

the equilibrium ratio of all the mass of product produced to all the 

mass of left-over reactant is.a constant. In other words, if one had an 

equilibrium mixture of products and reactants and added a bit more 

reactant, then more product would be produced until equilibrium 

was restored, or visa versa. The usual visual analogy offered is that of 

a board balanced on a pivot point: If weight is added to one side of 

the board, then weight must be added to the other side of the board 

to restore equilibrium. This quantified observation of Guldberg and 
Waage is called the law of mass action. 

The law of mass action explains why we are able to breathe. Free 
hemoglobin and oxygen are the reactants while the bound oxygen- 
hemoglobin complex is the product. In the lungs, the excess of 
oxygen in the oxygen-rich air forces the formation of more oxygen- 
hemoglobin complex. The blood containing this complex then 
travels to the cells where oxygen has been depleted. The situation 
then shifts in favor of free hemoglobin and oxygen, and oxygen flows 
into the oxygen-poor cells.1 

But there is more than mass involved in equilibrium, there is also 
energy. The fact that energy is an important ingredient in chemical 
reactions can be seen in cooking: Mixing the ingredients for a cake 
together and letting them sit on the table will not create a cake. 
Energy has to be added along with the eggs, flour, and sugar. The 
mixture has to be put in the oven. 

The fact that energy is a product of some chemical reactions can 
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be attested to by anyone who has placed themselves close to a com- 
bustion reaction, that is, close to a fire. But the role of energy in equi- 
librium was confusing to early investigators. It seemed reasonable 
that spontaneous reactions should all give off energy. If the reactants 
were attracted to each other, then coming together should take them 
to a lower energy state. The situation can be modeled by magnets: It 
requires energy to keep them apart; it is a lower energy situation to 
allow them to come together. However, several spontaneous reac- 
tions were known that required energy rather than produced energy. 
Instant cold packs used nowadays by athletes are made of two chem- 
icals that become cooler when they mix. When the chemicals mix, the 
reaction consumes energy, absorbing it from the skin and sur- 

rounding air. The fact that a chemical reaction should consume 
energy seemed counterintuitive. It was not until Clausius introduced 
the concept of entropy that researchers began to see how sponta- 
neous energy-consuming reactions could occur. 

We now know that the change in energy over the course of a reac- 

tion is the difference between the energy required to break the chem- 

ical bonds of the reactants and of the energy gained when chemical 

bonds re-form in the products. An analogy might be a trip to Las 

Vegas. The total cost of the trip is the difference between the money 

spent on the trip and the money won at gambling. Sometimes there 

is a net loss, sometimes a net gain. If it costs more energy to break 

bonds than is gained back by forming products, then the reaction 

requires energy. If more energy is recovered when the products are 

formed, then the reaction gives off energy. Reactions that cost energy 

overall can occur spontaneously if the reaction increases the entropy. 

Equilibrium is the point at which there is balance between the energy 

costs of the reaction and the entropy gains. 

We can explain the role of entropy in equilibrium in terms of two 

rival movie theaters, on opposite sides of town, both showing the 

same movie. One theater decides to attract customers by providing 

ample seating; that is, there is plenty of “elbow room” or room to 

spread out. Entropy can be thought of as the tendency to spread. To 

paraphrase Maxwell, entropy explains why a tumbler of water thrown 

in the ocean can never be retrieved.2 The wish to spread out is a 
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human desire, too. The other theater decides to attract customers by 

selling cheaper tickets, a cost factor that for us represents energy. 

Therefore there are two factors that result in the distribution of 

people between the two theaters: People will crowd into the cheaper 

theater until they start to feel claustrophobic, then they will shift their 

patronage to the more expensive theater for the sake of spreading 

out. Once some of the people have crossed town to the more expen- 

sive theater, the crowding is alleviated in the cheaper house, and the 

migration stops. When the lights dim and the movies start, there will 

be a fairly predictable ratio of the number of people in the cheaper 

theater to people in the more expensive one. In chemical reactions, if 

enough entropy is gained by reactants turning to products, then the 

reaction may still be spontaneous, even though it costs energy. 

Now let’s take the analggy a bit further. The law of mass action 

says if more reactant is added, then the reaction will produce more 

product until equilibrium is restored. In our theater situation, this 

might be an influx of students back to their two-theater town during 

summer break. Of course the majority of the new patrons will flood 

into the cheap theater, but as soon as they feel their space invaded 

they may be willing to pay the higher price to spread out. This shift, 

however, results in more-than-usual crowding at the higher priced 

theater, so eventually people are less willing to spend more money for 

a small gain in privacy. At equilibrium, there will be more people on 

average in each theater, but the ratio of people in the more expensive 

theater to the people in the cheap seats will be about the same. 

Now let’s take the analogy even further. If the higher priced the- 

ater decides to take advantage of the new situation and raise its price 

(the energy cost for the reaction is greater) the equilibrium ratio will 
shift in favor of the lower priced theater; people are willing to pay 
only so much for comfort. So in theaters, as well as chemical reac- 
tions, energy and entropy are both factors in determining the final 
ratio of populations, but they play against each other. To understand 
the fine balance of equilibrium requires an awareness of the principles 
of both physics and chemistry, which is a true test of physical chem- 
istry. With quiet conviction, Willard Gibbs undertook the problem of 
untying this Gordian knot. But then Willard Gibbs came from a 
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family used to difficult dilemmas and who had developed a patient, 
practical approach to their untangling. 

Josiah Willard Gibbs (1839-1903), whom biographers designate 
Willard Gibbs to distinguish him from his father, also Josiah Gibbs, 
was born New Haven, Connecticut, when it was a bustling, brawling, 

bawdy seaport in a country on the verge of civil war.3 But the Gibbs 
family managed to hold its dignity in the midst of this savagery. When 

the African captives who rebelled and took over the slave ship the 

Amustad were seized and jailed in New Haven, Josiah Gibbs, Willard 

Gibbs’s father, professor of theology and sacred literature at Yale, 

helped them in a unique, quiet way. He learned the language of the 

Africans and by communicating with them established their origin 

and legal status.+ 

The son, Willard Gibbs, must have inherited this penchant for 

quiet conviction and practicality from his father. As a child, Gibbs was 

too reserved and too academically inclined to be socially acceptable. 

He was teased by his fellow students and generally treated as an 

annoyance. However, he does not appear to have expended much 

concern over this, instead enjoying the company of his family and his 

studies. He entered Yale, as expected, and continued there until he 

had received a Ph.D. in engineering, the first awarded at Yale and one 

of the first in the United States.5 He remained at Yale as a tutor, not 

unduly concerned with money because his parents had left him and 

his sisters a comfortable inheritance. He worked on and received a 

patent for an improved railroad brake, then decided to go to Europe 

and study for three years, a common plan in those days for aspirants 

to a sound scientific education. 

He was accompanied on this tour by his two sisters and when 

they returned they all moved back into the family home, though one 

of the sisters eventually married and had a family. Two years after his 

return from Europe he received an appointment as professor of 

mathematical physics at Yale. This appointment may have seemed 

surprising because it was made before the thirty-two-year-old Gibbs 

had published any work (though he did have a patent). However 

there was probably not a great clamor for positions at the provincial 

backwater of New Haven and Gibbs himself went without salary for 
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Fig. 16. Josiah Willard Gibbs. Edgar Fahs Smith Collection, University of Pennsylvania 

Library. 
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the first nine years. Once situated, however, Gibbs tackled the 
problem of chemical equilibrium. 

Gibbs began by clearly defining entropy, a necessary first step. 
Peter Tait had confused its meaning in his book on thermodynamics 
and his friend Maxwell had propagated the error. Gibbs, not 

counting on his papers being discovered in the Transactions of the 

Connecticut Academy in which they had been published, sent copies 

to important European chemists and physicists, including Maxwell. 
Maxwell, on reading and working his way through Gibbs’s complex 

mathematical analysis, saw his own error and enthusiastically 
embraced Gibbs’s approach. 

Gibbs then proceeded to describe a new thermodynamic quantity 

that would relate the entropy and the energy cost or gain of the reac- 

tion to the equilibrium distribution of products and reactants. The 

quantity he came up with is today called “Gibbs’s free energy,” though 

Gibbs himself did not use that term (it is considered poor form to name 

things after yourself). What Gibbs managed to define in free energy is 

the pivot point for the balance board of chemical equilibrium. Gibbs 

showed that by calculating the change in energy and the change in 

entropy in going from reactants to products, and balancing them 

against one another, one could calculate how much energy was still 

“free” and this would predict the direction of the reaction. For 

instance, if there were no free energy, then the reaction would be at 

equilibrium and the reaction mixture would not change. If there were 

some amount of net free energy, then the reaction would either pro- 

duce more product or more reactant until it reached equilibrium. In 

the process of approaching equilibrium, like water falling from high 

ground to low, a chemical system can also do work; therefore free 

energy can be thought of as the energy free to do work. 

In our theater analogy, calculating the free energy would be tan- 

tamount to using data about the number of seats and the cost per seat 

to predict which theater would attract the most people. A successful 

marketing consultant who could tell a theater owner exactly how to 

build a theater and how much to charge would be very valuable 

indeed. In free energy, Gibbs gave chemists a valuable tool for con- 

trolling chemical reactions. 
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How important was this? Perhaps the importance is best con- 

veyed by the story of a French chemist of the day, Henry Le Chate- 

lier, who was engaged in an industrial problem. His task was to make 

ammonia from nitrogen and hydrogen. Ammonia is a fairly simple 

molecule, built from one nitrogen atom and three hydrogen atoms, 

and nitrogen and hydrogen are readily available reactants. But simply 

mixing nitrogen and hydrogen together doesn’t produce a large 

quantity of ammonia, so it was a problem in equilibrium—and one 

that needed to be solved. Ammonia is used to make nitrates and 

nitrates are used to make gunpowder and Europe at the turn of the 

nineteenth century was on the brink of war. 

Le Chatelier needed to find a way to tweak mixtures of nitrogen 

and hydrogen to make them produce more ammonia. But which 

factor should he change? Temperature? Pressure? Amount of reac- 

tants? If he tried them all individually, it would take him years, and he 

didn’t have years. He tried to force the reaction to the product side 

by turning up the pressure and the temperature at the same time; 

unfortunately some oxygen accidentally contaminated his high-pres- 

sure chamber. When the dust had settled, some pieces of the chamber 

were found in the ceiling and some embedded in the floor. Le Chate- 

lier gave up that approach, though an analysis of Gibbs’s free energy 

would have shown him he was on the right track. Within five years, 

the German Fritz Haber found the magic combination.® 

When Le Chatelier learned of Gibbs’s analysis of equilibrium, he 

was understandably enthusiastic. Gibbs’s equations showed how a 

calculation could be done to predict how temperature and pressure 

would affect an equilibrium. In a matter of hours reactions could be 

designed on paper that would otherwise take months or years of lab- 

oratory trial-and-error. It was a chemist’s promised land . . . but with 

one catch. Not all the data to plug into Gibbs’s equations was avail- 
able yet. 

Progress was being made by measuring energy produced or con- 

sumed by reactions. Gibbs himself had shown a way to experimentally 

measure some free energies via electrical potentials. Gibbs had also 

worked on Boltzmann’s and Maxwell’s idea of the distribution of 

energy in the various motions of molecules. He even christened the 
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science by calling his book on the subject—his last book— Elementary 

Principles in Statistical Mechanics. He had devised computational 

methods that would allow the calculation of the total energy of a 

system from the energy of the molecules . . . but therein lay the other 

rub. Physicists knew how energy should be absorbed by masses on a 

spring. They could model the energy distribution of a pendulum and 

collection of cannonballs. It seemed only reasonable that molecules 

made from atoms should behave in similar ways. But the pesky mole- 

cules just kept refusing to fit their mechanical models. Assuming mol- 

ecules behaved as vibrating and rotating masses on springs just wasn’t 

providing the right total energies. To make matters worse, there 

appeared to be some question as to whether atoms were even the bil- 

liard balls of Dalton’s vision. Studies of the interaction of light with 

atoms seemed to show that they were absorbing energy from the light 

in what looked like vibrational motions. In response to this conflicting 

information, theorists once again began casting about for different 

fundamental models of matter. Was it time to ditch Dalton? Was it 

time to scratch the whole system and start fresh? One thing was cer- 

tain, it was time to answer this question: Are there atoms or not? 

It was a physical chemist who stepped forward to take on the 

challenge: Jean Perrin. 
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Atoms or Not? 

THE TEST OF JEAN PERRIN 

V ORCR Uae 
. these articles simply serve to reveal an internal agitation of the fluid 

. much as a cork follows .. . the movements of the waves of the sea. 

Jean Perrin, 1909 

books reveals it is quite possible to write a text on physical chem- 

istry without mentioning Perrin at all. Perhaps this neglect is because 

he did not invent an equation that is in daily use like Gibbs or find a 

constant that would bear his name like Boltzmann. Perhaps it is 

because Perrin’s intricate and exacting experiments, once done, did 

not have to be repeated, and do not have to be redone each time a 

new atom is discovered. But we need to remember Perrin. He reminds 

us that we must always question the basis of our assumptions. Even 

the atomic model had to be proven and could not be accepted on 
intellectual appeal alone. Fortunately he was not so neglected in his 
own day: This physical chemist won the Nobel Prize for physics. 

When Perrin set out to prove the existence of atoms, he knew 
what he was up against. Josef Loschmidt (1821-1895) had made an 
estimate of the diameter of an air molecule (nitrogen or oxygen), 
based on the kinetic molecular theory and known pressures.! His 
estimate was about a billionth of a meter, which was still about four 
times too big. To imagine how infinitesimal this is, an atom would 
have to be magnified a million times to be seen with the naked eye. 
Loschmidt also estimated another quantity of importance to all phys- 
ical chemists and indeed all chemists: Avogadro’s number. 

ifs Perrin is sometimes a forgotten hero. A survey of modern text- 

(186) 
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The number is usually called Avogadro’s number to honor the 

Italian lawyer turned physicist, Amedo Avogadro (1776-1856), 

though Avogadro did not actually calculate Avogadro’s number. It 

was Perrin, not Loschmidt, who named this quantity Avogadro’s 

number (some still call it Loschmidt’s number), but whatever it was 

called, all physicists and chemists of the day were interested in it. 

Simply put, Avogadro’s number is the number of atoms in a handful 

of sand or in a big balloon filled with air. It is the number that allows 

for the calculation of the mass of one atom. No scale can weigh one 

atom, but if the mass of a handful of atoms is known, and the number 

of atoms in the handful, then the mass of an individual atom can be 

calculated by dividing the total mass by the total number. Dalton had 

suggested a method for finding the relative masses of some elements, 

but he had not shown how to arrive at the absolute mass. Loschmidt 

and others realized that if they could find the number of particles that 

made up a given reference quantity, then by weighing this quantity 

and dividing by the number of particles, one could find the absolute 

mass. A new method to weigh gnats. 
The reference quantity they decided on is called a mole. One of 

the many uses of the word mo/e—from a blind, furry animal to a skin 

imperfection—is to connote a large sample of something.* The word 

was first used in the context of chemicals by another champion of 

physical chemistry, Wilhelm Ostwald (1853-1932). But when Ost- 

wald used the word mole, he was not thinking in terms of molecules. 

Ostwald was one of the detractors of the atomic theory and one of 

the people Perrin had to convince.* 
When Loschmidt and others made the initial estimates of the 

number of molecules in a mole, the answer was astounding. A mole, 

which is about a handful of solid or about twenty-two liters of gas 

under normal conditions of temperature and pressure (a little more 

than a bucket and a little less than a bushel), is some 600,000 billion 

billion molecules. That’s a lot of gnats. 

Many analogies have been drawn to try to convey the enormity of 

this number, and considering these is instructive. For instance, it has 
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been calculated that one mole of marbles would cover the land area of 

the United States to a depth of 4 meters (about the height of a one- 

story house not counting the roof).5 Or if everyone on Earth (about 

5 billion people) counted at the rate of one atom every second, it 

would take them 4 million years to count all the atoms in a mole.© Or 

a personal favorite: if a million dollars had been given away each 

second since the beginning of Earth some 4.5 billion years ago, only 

about a quarter of a mole of dollars would have been given away in 

the history of Earth.” 

So going in, Perrin knew he was dealing with very small targets 

and very big numbers, so direct methods just weren’t going to work. 

But Perrin had the knack of standing back from a problem and con- 

sidering it from a novel and unprejudiced perspective. Jean Perrin 

was, after all, a free thinker.8 In his philosophy, he was agnostic. In 

his politics, he was socialistic. In his science, he was objective. When 

he went to weigh the atom he unapologetically and uninhibitedly 

turned to a phenomena that was far outside his field: the dancing 
pollen grains of Robert Brown. 

Robert Brown (1773-1858) was a botanist and one of England’s 

greatest. He served as librarian to the president of the Royal Society.? 

When offered a university position, he chose to stay at the library 

because it allowed him access to the glorious collections of the 

society.!0 He is known for his first observation of plant-cell nuclei and 

for the classification of several new plant species. But physical chemists 

should always think of him in conjunction with Brownian motion. 
A careful and inquisitive investigator, Robert Brown subjected 

the pollen of his new species to microscopic examination. But he had 
difficulty with some very small pollen grains. When he placed them 
with a drop of water on the microscope slide the little pieces of pollen 
just wouldn’t stay still. Naturally he found this a curious phenomena 
because he was aware that plant pollen should be inanimate, but the 
small particles didn’t seem to know this for themselves. 

What followed was a lot of effort by Robert Brown and several 
others to calm these bobbing corks. Brown himself tried treating them 
with alcohol and heat to kill any microscopic life that might be causing 
the animation. When this didn’t stop the pollen from moving, he 
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ground up small pieces of material, which he knew had to be dead, to 
see if they bobbed about, too. They did. Rock dust did. Soil dust did. 
Brown even combed the archives of the society for dust from a sphinx 
assembled thousands of years ago.11 It bopped about, too. 

Maxwell stated pragmatically that the movement must be an 
instrumental artifact or there must be an external cause, then let the 
matter drop. But others were not so easily assured and tried to dis- 
cern the source of this strange movement. They found that shielding 
the particles from stray light and purposefully illuminating them with 
varying intensities and colors of light did not affect the movement. 
Allowing the system to rest long periods of time did not stop the 
movement, or even slow it down. Running the experiment during the 
day in the city revealed the same movement as running the experi- 
ment at night in the country. But what struck Perrin was that the 
movement was not regular, such as particles being carried by current, 
but that each grain bobbed independently, as if being bopped about 
by invisible fairies playing a minute game of keep-the-ball-aloft. The 

fairies, said Perrin, were atoms, and the balls were kept aloft by the 

perpetual movement assumed in the kinetic molecular theory. 
There were other scientists, of course, who speculated that the 

motion of the pollen grains might be caused by the agitation of atoms, 

but Perrin was an heir of Lavoisier. He knew that a theory without 

numbers is not good enough. A profitable theory needs to make quan- 

titatively verifiable predictions as well as qualitatively describe observa- 

tions. He was a true physical chemist, and one of the best of his breed. 

For all intents and purposes, the birth of Jean Perrin (1870; he 

died in 1942) corresponded to the formal birth of the discipline of 

physical chemistry.!2 Ostwald started his career a mere twenty years 

ahead of Perrin, and by the time Perrin came on board, physical 

chemistry was the hot new area of research. Jean Perrin was of unpre- 

tentious origins. His father was an army officer who died of battle 

wounds, so his mother raised Perrin and his two sisters. His academic 

talents, through scholarships, supported his education. Even with the 

scholarships, he had to take time from his studies for the military, 

which resulted in delaying his doctorate until he was twenty-seven. 

Once back in academics he was assigned the task of organizing a new 
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course in physical chemistry at the Sorbonne and began writing a 

physical chemistry textbook. He married a woman with a university 

degree, which at that time was still a fairly unusual accomplishment, 

and they had two children, a girl and a boy. 

Perrin’s associates at the Sorbonne included Marie and Pierre 

Curie as well as other notables in the history of science.!? In this 

enlightened atmosphere, however, the word atom was still barely 

spoken; the term equivalent was used instead. Perrin, however, was 

an open advocate of the atomic model and kinetic molecular theory. 

Perrin’s first experiments on molecular motion were grounded in 

Maxwell’s analysis of the pressure gradient of the atmosphere, which 

was based on the kinetic theory of gases. 

In his analysis Maxwell showed that assuming a gas is composed 

of atoms in constant thermal agitation leads to the prediction of a 

pressure gradient in a column of gas: The pressure should be higher 

toward the bottom and less toward the top. This gradient derives 

from the tendency of the particles to move in all directions, including 

up, and the effect of gravity pulling them down. Maxwell also con- 

cluded that the exact pressure change could be calculated if one knew 

the temperature and the mass of the individual gas particles. How- 

ever, working backward—that is, calculating the mass of the indi- 

vidual gas particles from the pressure difference—is not a practical 

experiment: To have a pressure difference significant enough to be 

measured reliably, say a 10 percent difference at room temperature, 

one would have to have a column of gas over 700 meters (about one- 

half mile) tall. Even if such a column were constructed, it would be 

another problem to try to keep the temperature constant over the 

entire length of the column. The column would have to be filled with 

a pure sample of gas, otherwise the mass measured would be the 

average mass over several different types of gas molecules. And, of 

course, one would want to check one’s results by making the mea- 
surement several times at different temperatures and several different 
pressures—so this would be a truly ambitious project, especially con- 
sidering that the very existence of atoms was still in doubt. 

Perrin, however, saw a solution. Perrin suspended tiny pollen-like 
particles in water and measured their vertical distribution. Though tiny, 
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these particles were many times more massive than air molecules, so the 

gradient in their distribution was apparent over a much shorter distance, 

just as the vertical distribution of sand in a wind storm is less than the 

vertical distribution of leaves. The particles he used were from a mate- 

rial called gamboge, a yellow, tropical-tree latex that was traditionally 

used for a water-color pigment. The yellow color helped with visibility 

and the low density of the material made low-weight particles that were 

still large enough to be seen. Using a microscope, Perrin measured the 

height distribution of the particles in a drop of water. 

After accounting for the buoyancy of water, the mass per mole of 

gamboge was derived from the observed vertical distribution. Perrin 

measured the radius of the particles and from this could calculate the 

volume per particle. By measuring the density of the dry gamboge he 



192 MVC! = Magick, Mayhem, and Mavericks 

arrived at the mass per unit volume. Putting these three pieces of 

information together—the mass per mole, the mass per unit volume, 

and the volume per particle—enabled him to calculate the number of 

particles in a mole, Avogadro’s number. 
Absent from the above description of Perrin’s work, however, is 

a flavor for the excruciating exactness required for its execution, the 

elegance of the experimental design, and the heroic patience and per- 

sistence of Perrin. We are obliged to take a moment to consider these. 

To begin with, Perrin not only had to make very small particles 

of gamboge, he had to make them of uniform size. Initially he pro- 

duced these particles by rubbing the gamboge under water, like soap, 

then dissolving the foam in alcohol and centrifuging it to segregate 

particles by mass. He then dried them and examined them for uni- 

formity. The amount of work this required is evidenced by the fact 

that it took several months to isolate a few tenths of a gram of suit- 

able gamboge from the kilogram from which he started. 

Then, employing a new advance in microscopy that illuminated 

the sample from the side rather than the bottom, he measured the 

number of particles in successive layers by changing the depth of 

focus by a millionth of a meter each increment, using a screw-type 

micrometer to move the lens. But the task remained daunting 

because the particles swam around so much it was difficult to count 

them. He was able to project the microscope image and take pho- 

tographs of the larger particles so that the diminishing distribution 

with height could be clearly seen and evidenced in his publication. 

But to get the most accurate results he had to use the smallest pos- 

sible particles, and these did not photograph well. Deciding that the 

problem was that the particles swam in and out of his field of vision 

before he could count them, he narrowed the field by covering the 

eyepiece with a piece of foil that had a hole he made with a dissecting 

needle. In this way he saw only a few at one time, so he could count 

them quickly. This was necessary because he took readings every fif- 

teen seconds. For the first four papers he did all of the work himself, 
employing a graduate student only on the fifth paper. 

After calculating Avogadro’s number from the vertical distribution 
of gamboge particles and finding that his number agreed well with the 
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estimates, he began to cast about to see if more information could be 
extracted. After so many hours of staring at the tiny particles, he became 
convinced he was observing particles being displaced as the result of col- 
lisions, not particles moving with a definite velocity. He was considering 
ways to relate his findings to the kinetic motions of atoms, when a col- 
league brought to his attention the work of Albert Einstein. 

While Einstein is obviously best known for his theory of relativity, 
he also did considerable work on the kinetic molecular theory of gas, 
the hot topic for physicists of that day. Because we have the luxury of 
drawing on a great deal of knowledge of Einstein’s life, let it suffice 
to say that he was still in the patent office when he considered the 
kinetic molecular theory and how it related to Brownian motion. 
Basically Einstein said that if a particle is in a sea of molecules in 

thermal agitation, then its net displacement in any one direction 

should change as the square root of time. Einstein’s derivation was 

elegant and algebraic, but will be explained here by analogy with 
dirty clothes suffering displacement on laundry day. 

On laundry day, in a typical household, clothing is sorted into 

stacks for separate batches in the most convenient wide-open space, 

such as the kitchen. Imagine for a moment piles of dark colors, light 

colors, whites, blue jeans, towels, sheets, and socks. Now imagine 

children running randomly through the kitchen, kicking the piles. As 

can be imagined, the piles will start to break down and the individual 

pieces of laundry will start to migrate. Now for a moment consider 

one red sock on the pile of socks and how it might move toward 

some arbitrary direction, for instance the living room. The first kick 

is guaranteed to displace it from its original position and the dis- 

placement may be partially or wholly in the chosen direction. But 

though the next kick might move it farther toward the living room, 

it might also move the sock back toward its original location. Some 

subsequent kicks will move it farther, but some will move it back, too. 

With these random kicks, the sock slowly moves closer to the living 

room, but this is much different behavior than if the sock had a def- 

inite velocity. If it had been picked up and thrown into the living 

room it would have arrived there in a much shorter period of time. 

Perrin carefully observed the way his particles moved and noted their 



194 MYO Magick, Mayhem, and Mavericks 

displacement with time. He found the average displacement varied as 

the square root of time, which is how the particles would move if 

they were being randomly kicked by atoms. He then used Einstein’s 

equation based on displacement to calculate Avogadro’s number 

again. He found that the second number agreed well with the first. 

Therefore the assumption of the atomic structure of matter not only 

predicted one measurable, but two, and Perrin had measured them 

both. If these observations weren’t the result of atoms, it would be 

hard to explain where they did come from. 

When Einstein received a copy of Perrin’s paper, he commented, 

“I had thought it impossible to investigate Brownian movement so 

precisely. . . . In my eyes it was only a nice little game.”!4 Though 

Germany and France would soon be pitted against each other (Perrin 

would serve France in the engineer corps during World War I), these 

two men corresponded amicably and eventually met to shake hands. 

Even Ostwald, who had for so long distrusted the atomic hypoth- 

esis as unproved and unprovable, stated, “I have satisfied myself that 

we arrived . . . at the possession of experimental proof for the discrete 

or particulate nature of matter,”!> citing the work of Jean Perrin. An 
acclamation, but a touch reserved. Other commentators were not so 
reserved and some were downright critical. Le Chatelier remained 
skeptical and Mach, who had issued the challenge, “Have you ever 
seen one?” seemed impressed, but still, in his last published state- 
ment, called atomism “hypothetical-fictive physics.”!6 

Why didn’t the entire community of chemists and physicists imme- 
diately rise to applaud the evidence that provided for such a useful and 
explanatory model? Because there were still pieces of the puzzle that 
did not fit, especially those confounding results obtained when light 
interacted with matter—the purview of the maturing field of spec- 
troscopy. But Perrin had shown that if you cannot see the cause, you 
might see the effect and from this deduce the cause. Though he would 
have to flee his beloved Sorbonne ahead of the German invaders in 
World War II and would die in the United States a few years later, 
Perrin would live to see this dictum applied to spectroscopy and from 
its application the final vindication of his atoms. Spectroscopy, as Perrin 
understood, is another way to see the unseeable. At the turn of the cen- 
tury, spectroscopy would shed light on a whole new world. 



iy ara ala 

Physics and Chemistry 

Come to Light 
SPECTROSCOPY TO QUANTUM MECHANICS 

INTRODUCTION 

The wish to capture [photographic images]... is blasphemy. . . . Is it pos- 

sible that God should have abandoned His eternal principles, and 

allowed a Frenchman ... to give to the world an invention of the Devil? 

Leipzig City Advertiser, circa 1830 

ile it is true that the focus was on materials during the Indus- 

trial Revolution, there was, at the same time, another group 

struggling with the nature of light. These two groups used different 

models (particles versus waves), different mathematics (algebra versus 

calculus), and different instruments (microscopes versus telescopes), 

but they found common ground in their curiosity concerning energy. 

"195 
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Gradually, as the range of light extended into the invisible and the 

electromagnetic nature of light became understood, the two foci 

merged, and quantum mechanics resulted. 

A technological advance would come from the interaction of 

those studying light with those studying matter: photography. This 

technique, it may be recalled, was used by Perrin to illustrate the dis- 

tribution of his gamboge particles. It would be used by astronomers, 

biologists, and physicians as well as chemists and physicists to aug- 

ment their science. The development of photography required a 

blend of physics and chemistry. 

On the physics side was the camera obscura, a dark box or room 

that had a small hole on one side that allowed light to enter. Images 

illuminated by light outside the box appear on the wall in the box, 

opposite the hole, with the image inverted. European medieval artists 

used it as an aid to drawing. Our friend the medieval magician, 

Giambattista della Porta, was fascinated by it. He added a lens to the 
hole and wrote extensively of the effect.! 

On the chemistry side, by the 1600s many people had noticed 

that certain chemicals bleached or darkened over time; they tended 

to attribute the effect to heat or exposure to air, not light. Angelo 
Sala in the mid-1600s noticed that silver nitrate blackened in the 
sun.? Elizabeth Fulhame, in the mid-1700s, obtained patterns by 
soaking cloth in gold salts and exposing them to the sun. She wrote 
of her results in a book intended to support Lavoisier’s theories con- 
cerning the oxidation of metals. Undoubtedly Lavoisier would have 
appreciated her support, but he died on the guillotine six months 
before the book was published.# In the 1800s, Louis Daguerre and 
J. Nicéphore Niepce found a method for fixing images on a silver- 
coated copper plate.4 In 1908 Gabriel Lippmann was awarded the 
Nobel Prize in physics for his method based on the interference phe- 
nomenon for reproducing colors photographically. 

As late as the 1800s fallout from the Protestant Reformation was 
still being felt. Germany, the main battleground of the Thirty Years 
War of the mid-1600s, had suffered dismemberment into small prin- 
cipalities that an emperor loosely held together. The leadership of 
Otto von Bismarck eventually brought Germany under a strong cen- 
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tral government and made Germany a European power. However, 

Germany found itself behind in the Industrial Revolution. The result 

was increased German interest and support for science and tech- 

nology, but the race to catch up fostered a rivalry among Germany, 

England, and France. The divisiveness in politics led to divisiveness in 

science, which led to divisiveness in politics. In the arena of science, 

competing theories, such as the English and German theories of 

light, would emerge. In the political arena, the rivalry would culmi- 

nate in the lightning bolt of the world wars. But before that time, for 

a while at least, Europe would bask in the light. 



Chapter 17 

Spectroscopy 

RAINBOWS FROM THE SUN 

The sun . . . passeth through pollutions and itself remains as pure as 

before. 

Francis Bacon, circa 1600 

ile still debating the question of atoms, the question of light 
for many scientists was settled. Newton had used different 

models for light, particle or wave, depending on his needs of the 
moment,! but he was also quite comfortable with transmutation and 
action at a distance. Most scientists decided that Newton, in the 
main, had declared for the particle model and therefore so should 
they. Later, in the early 1800s, experiments were done that seemed to 
define light as a wave. These were again so convincing that the pen- 
dulum swung the other way. Such was the situation when there arose 
a breed of scientist that solved the problem by not worrying about it. 
These spectroscopists—people who study the interaction of light with 
matter—had as much in common with the botanists as the physicists. 

Ye 
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They were more interested in collecting and cataloging the beautiful 

colors and patterns from the sun than in tethering their light with 

theories. These practitioners of the art knew that eventually the the- 

orists would have to decide where the colors came from. But, for the 

moment, they saw as their mission the gathering of information for 

the theorists to digest. They were collecting rainbows from the sun. 

The word spectrum is commonly used to denote a range; for 

instance, one might speak of the broad spectrum of human behavior 

or the narrow spectrum of socially acceptable behavior. Today we 

know that the optical spectrum is a range of energy: Some light is 

high energy and some is low energy. The energy of light from a 

rainbow or a sunset is registered as color by our eyes, but there is also 

light that has energy outside the visible range. This light may not be 

seen, but may be felt, like heat from a stove burner, or can cause 

change, such as sunburn from ultraviolet rays. The discovery that 

light comes in a range of energies rather than just one was made by 

Newton. He broke up light into its various colors with a prism, which 

was not new, but then had the inspiration to use another prism to 

recombine his rainbow into white light, thus demonstrating the 

action of the prism was to separate and combine light, not to change 

it. It took another hundred years to decide that there was more to the 

spectrum than meets the eye: light that could not be seen. 

The first indication of light outside the visible range was found by 

someone whom we’ve encountered earlier, in reference to the work 

of his son, John Herschel. We applauded John Herschel for intro- 

ducing statistical techniques to England and we mentioned that he 

had grown up in a stimulating intellectual household where he and 

his aunt/tutor Caroline assisted his astronomer father, William Her- 

schel (1792-1871).2 William Herschel, who would become Sir 

William Herschel, came to England to escape the French occupation 

of Hanover and originally supported himself as a music teacher and 

organist. One of the father’s research programs resulted in the dis- 

covery of the planet Uranus and another resulted in the detection of 

light outside the visible range. In 1800 he measured the warming 

power of different colors of prism-separated light by placing a ther- 

mometer in a beam of each color light. He put a thermometer just 
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outside the red end of the spectrum as a control and found it still reg- 

istered warmth. The invisible light that was the source of this warm- 

ing came to be known as infrared light. Infrared light is the light 

given off by animals and that can be detected with infrared goggles. 

Johann Ritter (1776-1810) was likewise of humble beginnings. 

He was born the son of a Protestant pastor in what it now part of 

Poland. Originally an apothecary’s apprentice, he studied chemistry 

texts and did experiments on his own, even to the detriment of his 

apothecary work. He used his small inheritance to attend a university 

and study electrochemistry. When he gained a measure of success in 

this field he married the young woman with whom he had been living 

and by whom he had a child and they subsequently had more chil- 

dren. But fame did not bring happiness, as he was quarrelsome and 

tended to relocate, probably because of the quarrels. When he heard 

of Herschel’s discovery of energy at the red end of the spectrum, he 

imagined an analogy with the two poles of a magnet and looked for 

energy at the other end of the spectrum. In 1801 he found it. Silver 

chloride, a white crystalline solid that blackens in the presence of 

light, blackens even more rapidly in the region of the spectrum 

beyond violet where there is no color discernible to the human eye. 
Buoyed by his success he began to investigate other curious phe- 
nomena, including occult traditions such as water divining. He came 
to believe that magnets could influence the operation of the human 
body and invented the word “siderism” to describe the study of such 
effects. However these investigations fell so much outside the estab- 
lished range of scientific inquiry that despite his discovery of the light 
beyond the violet end of the spectrum—ultraviolet light—he was 
never called to a university position.* 

More progress was made by Joseph von Fraunhofer (1787-1826), 
the eleventh and last child of a family of German artisans in the glass 
and optical trade, who dreamed of being a master lens maker.5 Unfor- 
tunately his parents died when he was twelve and he was apprenticed 
by his guardian to a mirror maker who wanted him to make mirrors 
and not further his education. Then, in a twist of fate, his master’s 
workshop collapsed and Fraunhofer was pinned in the wreckage for 
several hours before he could be freed. A local German prince heard 
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of his misfortune and in a fairy-tale-like gesture gave the boy a sum of 
money sufficient to allow him to buy books on optics, a glass-working 
machine, and eventual freedom from his apprenticeship. In his quest 
to understand the workings of lenses and especially chromatic aberra- 
tions (unwanted colored fringes seen when using inexpensive binocu- 

lars), Fraunhofer found dark lines interspersed among the colors of the 

solar spectrum. Others had seen these lines, too, but Fraunhofer, 

knowing optics so well, was able to find ways to expand the spectrum 
and make the lines even sharper. Eventually he observed and cataloged 
some 500 lines in solar light. His published findings were so well 
received, the dark lines became known as Fraunhofer lines. But they 

were regarded for the moment as a curiosity rather than the useful tool 
they would eventually become. 

Around 1825 an English gentleman scholar, William Henry Fox 

Talbot (1800-1877), joined by John Herschel (1792-1871), began 

investigating the different colors that metal salts lend to flames (just 

as metal salts are used to add color to fireworks).” Particularly bright 

were the sodium, potassium, and lithium flames. They set a prism in 

front of these flames and found that each of the different metal salts 

produced a distinct, characteristic spectrum that was not a contin- 

uous rainbow, but a set of bright lines at very specific locations with 

respect to each other.® 

In 1832 this observation was elaborated on by David Brewster 

(1781-1868), a self-educated Scottish physicist. Though Brewster 

held no formal degrees, he had served as secretary to a gentleman 

scholar and had assisted in the assembly of microscopes, telescopes, 

and sundials. He invented the kaleidoscope and made substantial 

contributions to the field of optics,!° including investigations of 

refractive index, the property of light used by H. G. Wells in his 1897 

The Invisible Man. Refraction is the “bending” of light that takes 

place when the light travels from one medium to another, and the 

refractive index is a measure of the light-bending properties of a 

material. The bending of light is why you have to reach in front of 

the apparent position of the pebble when you pick a pebble from a 

stream. The refracted image makes the pebble seem like it’s some- 

where it isn’t. In The Invisible Man, Wells has a chemist discover a 
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material that will change the refractive index of skin so that instead of 

reflecting light it allows light to pass through. That this chemical 

might at least be philosophically possible can be demonstrated by 

wetting a paper towel and laying it on your hand. Dry, you cannot 

see through the paper towel. Wet—that is, after adding the chemical 

water—you can see your hand. Of course The Invisible Man strains 

credulity by suggesting that the chemical could affect the refractive 

index of all organs equally, but that’s what makes it science fiction 

and not science. 

Brewster’s place in the history of spectroscopy results from the 

experiment he performed in which he passed white light through var- 

ious gases. He saw that lines of light were subtracted from the white 

light as it passed through the gas and this “dark spectrum” was char- 

acteristic of the gas: Each different gas had its own pattern of lines. 

Several scientists then put forth the idea that the patterns of lines 

could be used to identify elements, but suggesting and proving, how- 

ever, are two different things. It required the studied eye and patience 

of a German theoretical physicist and a German experimental chemist 

to make the exacting measurements that turned the idea into a viable 

tool. The physicist was Gustav Kirchhoff (1824-1887) and the 
chemist was Robert Bunsen (1811—1899).11 

Kirchhoff, described as a rather private person, had suffered an 

injury early in life and had to use crutches or a wheelchair to perform 

research or teach. A member of a family of the German intelligentsia 

with loyalty to the Prussian state, he was nearly guaranteed a successful 

academic career when he completed the prescribed course of study and 

then married the daughter of an influential academic. He met Bunsen 

when Bunsen came to Breslau, the university at which Kirchhoff 

taught. Although Bunsen stayed only two years in Breslau, it became 

apparent to the two men that they could form a successful collabora- 

tion. Bunsen was a very practical man and so devoted to his teaching 

and his research that he never married.!? He apparently was engaged 

at one time, but his intended suffered from such neglect that the 

engagement was broken off.!3 In his teaching he focused on fact over 

theory and did not even present Avogadro’s hypothesis nor the peri- 
odic table, though it was developed by his own students, Mendeleev 
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Fig. 18. Gustav Kirchhoff. Edgar Fahs Smith Collection, University of Pennsylvania 

Library. 
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and Meyer. He was a hands-on researcher who made his own appa- 

ratus, including glassware, and unfortunately lost an eye to experimen- 

tation with an explosive substance.14 He was interested in the use of 

spectroscopy as an analytical technique, not particularly in its theory. 

Yet something of the theoretician Kirchhoff appealed to the technician 

and something in the technician appealed to the theoretician. In 1854 

Bunsen arranged for Kirchhoff to be called to Heidelberg. 

Bunsen was trying to distinguish different materials from the colors 

of their flames when Kirchhoff suggested that Bunsen pass the light 

from the flame through a prism and look at differences in the spectrum 

of the flame instead. They then engineered a method for studying the 

spectrum carefully and reproducibly by using a permanently mounted 

prism, scope, and a new type of device for producing a flame known 

today as the Bunsen burner. Anyone who has been in a chemistry lab- 

oratory for any amount of time has used this device. It allows natural 

gas fuel to mix with air from an intake that can be regulated. When 

properly adjusted the result is a clean, hot, steady flame. They purified 

their samples carefully and viewed the spectrum of the flame at an 

angle. With this instrument, they observed that indeed each element 

had its own characteristic set of fireworks-like lines. For instance, 

sodium produces characteristic yellow lines; mercury produces two 

violet, a blue, two green, several yellow, two orange, and a red line, the 

relative positions of which are as identifying as fingerprints. They 

devised a scale that allowed the positions of the lines to be catalogued 

carefully. By early 1861 the team had used the spectroscope to identify 

two new elements: cesium (from the Latin for sky blue) and rubidium 

(from the Latin for deep red). 

Kirchhoff got to playing around with the apparatus (which had 

earned the name spectroscope by now) and viewed sunshine through a 

sodium flame. What he found surprised him. When the sunlight was 

intense enough, the characteristic sodium light disappeared and was 

replaced by a dark line. He concluded, after some thought, that ele- 

ments must absorb the same light that they admit. When the debate 

began as to the source of atomic interactions with light, he was able 

to add a pivotal piece of information based on his observations. For 

the moment, however, he used it to suggest a very practical result: The 
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spectrum of the sun contained a dark line in exactly the same position 

as the one produced by burning sodium, so the sun must contain 

sodium in its atmosphere. However the characteristic lines for lithium 

were missing, so no lithium was in the atmosphere of the sun. 

One can only imagine the excitement this discovery engendered. 

Here now was a method of discerning the chemical composition of 

the stars. Not only were the heavens no longer Plato’s perfect orbs, 

they were chemical and knowable through these instruments. The 

romance of the notion did not escape one man in particular: Joseph 

Norman Lockyer (1836-1920). In 1868 he examined the solar spec- 

trum and decided that he could see a new substance that had not yet 

been identified on Earth. He named it helium for the Greek Helios, 

the sun god, and helium remains the only element that was identified 

extraterrestrially before being found on Earth.15 

Lockyer’s pronouncement, however, did not meet with rounds of 

applause because the scientific community had become dulled to pro- 

nouncements by Lockyer and had developed quiet a shield of skepti- 

cism toward them. For instance, Lockyer had decided that atoms dis- 

sociate in flames to hydrogen and other elements, but other chemists 

had been able to show that his samples were in fact contaminated 

with hydrogen. He also believed planets are condensations of swarms 

of meteorites and there was a correlation between sunspots and 

Earth’s weather. However in 1895 Sir William Ramsay found and 

identified helium from a terrestrial source and vindicated this one dis- 

covery of Lockyer. Lockyer had another legacy worthy of note. In 

1869 he founded the journal Nature, which he edited for the first 

fifty years of its existence. The juxtaposition of the date of the 

founding of the journal (1869) with his pronouncement for helium 

(1868) makes one wonder if he did not perhaps create this journal as 

venue for his own ideas. At any rate, the journal has now become per- 

haps the most prestigious scientific journal in the world presenting a 

broad, rather than specific, coverage of science. In all, Lockyer was 

probably best described by his biographer Herbert Dingle as an 

“adventurous rather than critical scientist.” !¢ 

But then adventure was the watchword of the day. In the 1890s, 

William Henri Julius (1860-1925), a colleague of Einstein, found 
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that organic compounds absorbed infrared light and that the portion 

of the infrared spectrum they absorbed was characteristic of the com- 

pound. He used invisible light to probe invisible molecules.!7 

But while the spectroscopists happily collected, photographed, 

and cataloged, a storm was brewing. Indications that there was more 

to the spectra that needed to be understood came when Lecoq de 

Boisbaudran (1838-1912) discovered the elements gallium, dyspro- 

sium, and samarium in his home-built laboratory by noticing that 

there were regularities in the spectra of certain elements—patterns— 

that were correlated with their atomic weights.!8 Moreover, in 1885 

Johann Jacob Balmer (1825-1898), at the age of sixty, found an 

arithmetic formula that predicted the spacing of the four lines of a 

published hydrogen spectrum. This Swiss secondary school teacher 

and father of six had earned a doctorate in mathematics, but had 

never been called to a university position. He told a friend who was 

a university professor about his formula and this friend told him that 

there was a fifth line that had been identified. Balmer’s formula 

matched the fifth. And then more.!? One can only imagine the feel- 

ings of a sixty-year-old schoolteacher on finding that he had discov- 

ered a fundamental new mathematical pattern in nature. True, his 

finding was to drive the spectroscopists from their garden out into 

the rigors of theoretical interpretation. But all in all, it may be 

believed that they had enjoyed their moment in the sun. 



Chapter 18 

Electromagnetism 

THE NATURE OF THE SUN 

RV SPVE Ee 
I have not had a moment’s peace or happiness in respect to electromag- 

netic theory... . I have been liable to fits of ether dipsomania, kept away 

at intervals only by rigorous abstention from thought on the subject. 

Lord Kelvin, circa 1896 

efore the interaction of light with matter could be understood— 

the interaction that gave rise to Johann Balmer’s beautiful lines— 

light had to be understood, and matter had to be understood. We 

will now walk with the physicists and chemists who determined light 

was a wave and then follow them as they discover exactly what was 

waving. In this journey we will have many heroes, but two in partic- 

ular: Michael Faraday and James Clerk Maxwell. Faraday, the 

chemist, made the essential observations and had the original con- 

cepts that allowed Maxwell, the physicist, to synthesize a mathemat- 

ical model of light. In regard to Kelvin’s quote above, it was Faraday 

and Maxwell that caused Kelvin’s condition. 

Early evidence for the wave nature of light came from Thomas 

Young (1773-1829).! Though raised an English Quaker, Young had 

a taste for music, dancing, and the theater. Well married and sup- 

ported by a wealthy uncle, Thomas Young was a classic example of a 

gentleman scholar of the age. But while the phrase “gentleman 

scholar” may conjure up an image of indolence, in Young’s case, at 

any rate, this was far from the truth. In addition to studying medicine 

and physics, he made a study of ancient Egypt and contributed to the 
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deciphering of the Rosetta Stone. He also applied his talents to the 

study of light and the search for evidence to convince others of what 

he believed, that light was a wave, and he succeeded. Young devised 

a demonstration of light interference that convincingly argued for the 

wave model of light. 

Interference is what happens when two waves meet. When two 

wave crests meet, they add to form a larger crest. When two wave 

troughs meet, they form a deeper trough. When a wave crest meets a 

wave trough, there is a calm. Wave interference can be modeled by 

two combs. If the combs are overlaid so that the teeth align, dark and 

light spaces can be seen between the teeth, which represents con- 

structive interference. If the combs are offset so that the teeth of one 

overlay the gaps in the other, this models destructive interference: 
There are still two combs, but no wave. 

Though considerably more difficult to execute in Young’s day, 

the phenomenon of light interference can be demonstrated by 

anyone today with access to a laser pointer and a metal ruler with a 

raised scale, that is, one with bumps rather than painted-on lines. In 

a darkened room (the darker the better) the ruler is laid atop a pile 
of books or a box and the laser pointer is mounted on a flexible- 
necked study lamp so that the angle with which the laser light hits the 
ruler can be easily adjusted. The laser is turned on and the lamp posi- 
tion changed until a pattern of light and dark lines is seen on the wall 
opposite the laser. A low angle with respect to the ruler works best. 
The pattern results because light waves bouncing off the ruler crest 
together at some positions and give rise to a calm at others. 

A laser pointer is necessary for the demonstration because it pro- 
vides monochromatic light, or light of a very narrow band of color. 
Young, obviously, did not have a laser, but he did have access to fairly 
monochromatic light. He split white light into colors by a process 
called diffraction. Wave diffraction can also be demonstrated in a 
pool, a bathtub, or even the kitchen sink. If something with a grid of 
uniform slots, such as a slotted spatula, is put in calm water and a 
wave is generated on one side, it can be seen that as the wave Passes 
through the slots to the other side, the wave bends so that the result 
is a circular wave on the opposite side of the slots. With light, the 
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amount of bending will depend on the color of light, so when light 

diffracts around an object it will separate into colors as though going 

through a prism. Young used diffraction to separate his light by 

putting a small card of paper in front of a pinhole source of sunlight. 

The shadow of the card had fringes of color, as he expected, but in 

addition he noticed that the shadow itself was cut by fringes. Young 

knew that just the observance of diffraction was not enough to prove 

the wave nature of light. True, it could be explained by waves, but it 

could also be explained by particles. If light were formed from parti- 

cles, like little bullets, then they should either go straight past the 

card or bounce back if they hit it, but at the edges they might rico- 

chet enough to have their trajectories bend at strange angles. How- 

ever Young took his experiment one step further. He held up a bar- 

rier so that the light from one side of the card was cut off. When he 

did this, the fringes in the shadow went away, which meant that it 

required light coming from both sides of the card to make the fringe 

in the center. This was not the behavior of bullets. If the ricocheting 

of the bullets were causing the pattern of fringes in the center, then 

the fringes caused by bullets ricocheting from one side should not 

change when the other side is covered. In other words, something 

happening in Tombstone should not change the way bullets ricochet 

three miles away at the OK Corral. 

Even though Young’s demonstration was powerful, there was still 

a need for a mathematical model with predictive power. In 1818 

Augustin Fresnel (1788-1827), entered a competition sponsored by 

the Academy of Science of Paris, the theme of which was light.2 He 

was a rather tragic figure who suffered in the political turmoil of 

Napoleon and the Restoration, who would die of tuberculosis at the 

age of thirty-nine. After many months of struggling with the very dif- 

ficult equations that described his waves (made possible, but not 

simple, by Newton’s calculus), Fresnel had a model to present. 

Siméon Denis Poisson (1781-1840) was a judge in the competition 

who was actually a proponent of the particle theory of light.? He real- 

ized that Fresnel’s mathematics predicted that there should be a 

bright spot behind a disk held up in a beam of light because the light 

would bend around it. (The realization of this prediction is often 
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credited to Fresnel himself, but it was Poisson who saw it.) Poisson 

challenged Fresnel to do the experiment, he did, and he saw the light. 

Although Fresnel was dismissed by Young as an opportunist cashing 

in on his (Young’s) genius, it is now well accepted that Fresnel was 

working independently, and although he acknowledged Young’s pri- 

ority in the demonstration of interference, Fresnel’s mathematical 

model was original. 

But while this revolutionary work was proceeding, an annoying 

question kept arising: waves of what? If light was a wave, what was 

waving? The answer, when it arrived, was from a seemingly unrelated 

area of endeavor: electricity. 

By 1800 Luigi Galvani had used electricity to make frogs’ legs 

twitch, and Alessandro Volta had assembled his voltaic pile from acid 

and metals. Because the voltaic battery was such a convenient source 

of electricity and straightforward to assemble, soon every physicist 

and chemist was zapping everything that wasn’t faster than they were. 

But electricity had always held a fascination for scientists and had 

been studied since the time of the ancient Greeks, who were aware of 

magnetism as well. (The Western name for both of these phenomena 

have their origins in the Greek language.) The Greeks and moderns 

were also aware that there must be some relationship between the 

two because they knew that lightning strikes sometimes cause metals 

to become magnetic. So Hans Christian Oersted (1777-1851), 

Danish natural philosopher and teacher, looked for this relationship 

between electricity and magnetism.* He knew one must exist, but he 
was stuck in a rut of preconception: He kept placing his current-car- 
rying wire at right angles to the magnetic needle that he was trying 
to move and continued to be disappointed. Then one day, in an in- 
class demonstration, in front of an assembly of students, he found his 
battery still had some charge and he still had some time in his lecture. 
So he decided to put the wire parallel to the magnetic needle. The 
needle swiveled under the influence of invisible force and turned at 
right angles to the current. He published his finding in 1820, at the 
age of forty-two, and for the next thirty-two years played with his 
wonderful device. The phenomenon that Oersted discovered is one 
that is still routinely demonstrated by wrapping a wire around a nail 
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and then running current from a low-voltage battery through the 

wire. The electromagnet assembled this way will pick up other metal 

objects and drop them when the current is cut off. Oersted had 

found that electric current induces a magnetic effect. The comple- 

mentary phenomenon, that is, an electric current created by a 

moving magnet, was demonstrated in 1821 by Michael’ Faraday. 

Michael Faraday (1791-1867) was a sort of antithesis to the gen- 

tleman scholar.> He was the son of a blacksmith who started his life 

as a common laborer, apprenticed to a bookbinder. His often re- 

peated but still noteworthy story includes reading Mrs. Marcet’s 

Conversations on Chemistry while working as a bookbinder and 

aspiring to a career in chemistry after hearing the notable chemist Sir 

Humphry Davy lecture.© Faraday wrote to Davy requesting any pos- 

sible position, but received no reply. Not to be dissuaded, he sent 

Davy a bound copy of his own notes taken in Davy’s lecture, and to 

this Davy replied. The next time Davy needed an assistant, he sent for 

Faraday. 

Because Davy was a chemist, Faraday did most of his work in 

chemistry. Through his association with Davy, though, he became 

familiar with electricity, too. Davy had used electrochemistry to iso- 

late the elements sodium and potassium from materials that Lavoisier 

had believed to be inert, primary elements. 

Faraday soon showed himself to be a talented experimentalist in 

his own right and began making discoveries on his own. Unfortu- 

nately this led to some uneasy feelings between Davy and Faraday. At 

one point in his career Faraday had acted as valet to Davy, and the 

dissolution of the distinction between classes was not easy to achieve 

in nineteenth-century England. A case in point was Faraday’s suc- 

cessful demonstration of the induction of electric current by a 

magnet. Davy, working with another notable chemist, had tried to 

demonstrate the connection between electricity and magnetism that 

they knew intuitively must exist, but they were unsuccessful. While 

they were on holiday, Faraday got into the lab and made a device that 

worked. In 182] Faraday succeeded in making a current-carrying 

wire rotate around a magnet and visa versa: electromagnetic induc- 

tion. Davy was not pleased. 
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But the rest of the world became excited. Electromagnetic induc- 

tion is the effect that is responsible for virtually all the electric power 

generation that doesn’t derive from batteries. So even though Davy 

was not pleased, Queen Victoria presented Faraday with a house to 

live in when he retired.” 
Like a fine race horse tethered to a plow, Faraday had a spark of 

genius that belied his humble circumstances. Had he had the benefit 

of an early education in mathematics and more leisure to cultivate his 

talents, he may have accomplished even more. Faraday was more than 

just experimentally clever. He also thought about the effects he wit- 

nessed and their nature and origin. The depth of his thoughts rivaled 

those of Newton. 

As we may recall, when Newton proposed his equations for 

gravity, there were those who were uneasy about the idea of action at 

a distance. How could the moon know it was supposed to be attracted 

to the Earth? If the Earth were to disintegrate spontaneously, would 

the moon instantaneously drift free? According to Newton it would. 

If there were no more Earth would its tug of gravity also instanta- 

neously cease? According to Newton it would. And now here in elec- 

tromagnetism this troubling action at a distance seemed to come up 

again. But these ideas ran against the grain of most experienced sci- 

entists. They felt there had to be something causing the communica- 

tion between Earth and moon. The ancient Greeks had postulated an 

additional element, ether, to fill the space between Earth and the 

moon, and now others postulated invisible filaments or particles 

bouncing back and forth. But neither the ether nor the particles could 

be caught or weighed or measured. For electromagnetism, however, 

Faraday found something that could. As everyone who has played 

with magnets knows (and those who haven’t played with magnets are 

hereby invited to do so), iron filings will form a very distinctive pat- 
tern around the periphery of a magnet. Here then was something 
visual and measurable. Faraday described it as lines or tubes of force 
and it has become known as a field. It would take some time to extend 
this notion to gravity, but for terrestrial electromagnetism, at least, 
there was now a way around action at a distance. 

The notion of a field is useful in many areas of physical science. A 
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Fig. 19. Faraday’s lab in the Royal Institution. Edgar Fahs Smith Collection, University 

of Pennsylvania Library. 

room with a central fireplace (or stove) has a temperature field. You 

can measure the field by measuring the temperature at different 

points in the room. Our bodies sense temperature fields but they do 

not sense normal electric fields, though they are there. A shark, on 

the other hand, can sense variations in the electric field through spe- 

cial sense organs on its skin.8 Similar to a temperature field set up by 

a fireplace, an electric field radiates out in all directions like a balled- 

up porcupine and falls off with distance from the source. Faraday 

identified both electric fields and magnetic fields and thought of elec- 

tromagnetic induction in terms of fields. The value of the concept of 

field, in addition to being visual and measurable, was that when the 

field is set up by an electric charge or a magnet, it exists whether 

another charge is in the locality or not. (Remove the stove and you 

still have a temperature field.) Thus it is not necessary to invoke 

action at a distance. The field is there and the force of the field is 

doing the communicating. 
Faraday also had some fundamental conceptions about matter: 

He knew from his own experiments that there was a magnetic field 

associated with the electric field; he knew electricity could decompose 
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matter; and he knew matter could polarize light, so he felt in his 

bones there must be a connection, and he looked for it. In 1845 he 

found it: He observed that a magnetic field could rotate the plane of 

polarized light. 

Among the Holy Grails of science, along with solving the human 

genome (done), finding an unlimited power source (pending), and 

finding a cure for all cancers (pending), is a goal called the Grand 

Unified Theory (GUT), which is the hope that a theory might be 

found that will unite all of the fundamental forces—gravity, electro- 

magnetism, strong internuclear forces, and weak internuclear forces. 

The first inkling that such a goal was even possible was Faraday’s uni- 

fication of the fields of electromagnetism and light. 

Though Faraday’s fields were difficult for many to come to grips 

with, not all were so shaken. For one, there was the unflappable 

Maxwell, who had calmly considered the rings of Saturn and dared to 

believe the inverse viscosity effects of gas. When he read of Faraday’s 

lines of force, he saw the light. Beginning with his 1856 paper “On 

Faraday’s Line of Force,” Maxwell began to publish a mathematical 

synthesis of the ideas and observations of Faraday.? 

Maxwell saw the world thus: A moving charge sets up a changing 

magnetic field and a changing magnetic field induces a changing elec- 

tric field to its front. The electric field creates a magnetic field, which 

creates an electric field, and this ripple effect, which has been de- 

scribed as leapfrogging,!° will perpetuate ad infinitum if there were 

nothing to absorb its energy. Energy from the fields is exchanged, not 

depleted. Then Maxwell took the idea further. In 1862 Maxwell used 

known data to calculate the time it would take for a magnetic field to 

induce a matching electric field and propagate itself forward. He 

found that this speed matched the known speed of light. Maxwell had 

found the nature of light: oscillating electric and magnetic fields, each 

field producing another field ahead of it, at a speed of light. 

Defining light as an oscillating electromagnetic field also helps us 

come to better terms with light interference. The cancellation of two 

opposing magnetic fields can easily be demonstrated with two bar 

magnets. Each magnet individually may be a strong magnet, but 
when they are joined, north pole to south, the resulting combination 
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has greatly reduced magnetic power (although there will probably 

not be complete cancellation due to imperfections in the magnets). 

The same may be imagined for electric fields. 

Maxwell, dead in 1879 at the age of forty-eight, did not live to 

see the experimental validation of his theory, which had to wait some 

twenty years until a spark source of a high enough frequency was 

developed. In 1888 Heinrich Rudolf Hertz (1857-1894) used such 

a spark to produce a changing electric field, which, according to 

Maxwell, produced a magnetic field, which produced an electric field, 

and so on, across the room.!! Hertz’s problem became the detection 

of the wave once it was generated. His inspiration was to use the same 

phenomena that generated his waves to detect them: He set up a gap 

between two metals similar to the gap in the spark generator and 

waited to see if the incoming electromagnetic wave would stimulate 

a spark in the receiver. It did, but one can only wonder at the patience 

and faith in ultimate success that Hertz displayed at this point.!2 To 

generate his spark, he used essentially the same setup that is used to 

generate a spark in a spark plug of a car. His detector was basically a 

radio receiver. But Hertz knew little about automobiles and nothing 

about radios. Karl Benz was busy building the first successful 

internal-combustion engine at almost exactly the same time as 

Hertz’s experiments and Hertz was, in essence, inventing radio. 

But have we moved far afield from physical chemistry with all this 

discussion of light and electromagnetic waves? Not at all. The essence 

of physical chemistry is discovering the fundamental character of 

materials and their interactions, and these are electromagnetic in 

nature. The most powerful tools in the physical chemist’s store are 

the interactions of light with matter—spectroscopy—as well as elec- 

trical and magnetic probes. To appreciate what makes these tools so 

important, it is necessary to understand the fundamental structure of 

matter, the discovery of which we follow next. 
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Chapter 19 

Atomic Structure 

| gO Se) VND OV AAR KS 

VOL XVE 
One day Rutherford, obviously in the best of spirits, came into my room 

and told me that he now knew what the atom looked like. 

Hans Geiger, circa 1910 

fter the Nobel Prize was inaugurated in 1901, many of the 

prizes in physics and chemistry were awarded for research on the 

structure of atoms. One of the first of this crop of Nobel Prize win- 

ners was J. J. Thomson. He achieved many of his results playing with 

the century’s new toy: the cathode ray tube. Though these cathode 

ray tubes would eventually be used in televisions and computer mon- 

itors, at the time, they were little more than a novelty to be studied. 

But from the study of these lovely glowing tubes would come infor- 

mation on the structure of the atom. 

An atom is built from three basic components that determine 

chemistry: electrons, protons, and neutrons. These components 

themselves are made from their own pieces, but these bits of bits do 

not change during the course of chemical reactions, and can be con- 

sidered chemically moot, though they do exert a fascination of their 

own. In the most simplified picture of the atom, the electron can be 

seen to travel in a sort of orbit about the nucleus, which is made up 

of the protons and neutrons, clumped together in the center. 

Electrons are the negatively charged particles that flow through 

current-carrying wires and are supplied by batteries or appliance 

chargers. For instance, the information on a charger of a cellular 

247 
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phone may say it supplies a current of about 250 milliamps. This cur- 

rent corresponds to about 10 million billion electrons per second 

flowing through the wires. We don’t see great lumps bulging out 

from these wires, however, because electrons are very fast and very 

tiny. In fact, the electron has a rest mass of almost one millionth of a 

billionth of a billionth of a kilogram. Why “rest mass”? Because when 

an electron isn’t holding still—which it never really does—it is 

moving at speeds comparable to the speed of light, and because of 

relativity effects, this means the mass varies with speed. 

The neutron is an electrically neutral particle found in the 

nucleus, or center, of the atom. It doesn’t contribute to the charge, 

but it does contribute to the mass. The proton is a positively charged 

particle also found in the nucleus of the atom. When the number of 

eléctrons and protons in the atom are balanced, the atom is electri- 

cally neutral. The proton is more massive than the electron, by a 

factor of about 2,000, as is the neutron, so the mass of the atom is 

determined by the protons and neutrons, though—like fleas on an 

elephant—the electrons are still very important. The mass of the ele- 

phant is determined by the elephant, not the fleas, and the elephant 

weighs the same with or without fleas, but the elephant is certainly 

aware of the fleas. The electrons determine the chemistry of the atom 

just as the fleas might determine the behavior of the elephant—they 

just don’t contribute to the mass. So how did Michael Faraday 

manage to get his hands on these slippery fellows? The answer, of 

course, is that he didn’t. What Faraday found were the tracks; it 
would be others who would bag the beast. 

In 1832 Michael Faraday was investigating electrochemistry, that is, 
using the action of electricity to induce chemical change or using 
chemical change to produce electricity. Electroplating, the process by 
which jewelry is gold- or silver-plated, is an example of using elec- 
tricity to induce chemical change. A battery is an example of using 
chemicals to produce electricity. Both of these processes come under 
the heading “electrochemistry.” Specifically, Faraday looked at the 
breakdown of salts by the action of electricity, the research that earned 
his mentor, Sir Humphry Davy, his initial fame. Davy, by wiring a bat- 
tery to a pool of molten sodium oxide, managed to obtain pure 
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sodium metal. He did the same for potassium. But after his initial suc- 
cesses Davy seems to have been kept out of the lab by his fame and its 
social demands. Faraday, the humble laboratory assistant who didn’t 
have to worry about fame, was free to indulge his curiosity in the lab. 
Through patience, he found that it required a definite amount of elec- 
tricity to decompose a definite amount of material, a relationship now 

known as Faraday’s law. For example, hooking up the battery to his 

apparatus for a few minutes resulted in a certain amount of material 

and hooking up the battery for twice as long resulted in twice as much 
material. But this was not the result he had expected. 

Chemists were aware that certain materials seemed to display 

greater or lesser degrees of affinity, or attraction, toward each other. 

For instance, calcium carbonate, or chalk, does not dissolve in pure 

water; it requires an acid solution to dissolve it. Therefore calcium 

and carbonate were thought to have a good deal of affinity for each 

other. On the other hand, calcium chloride is quite soluble in water, 

so calcium and chloride were thought to have less mutual affinity. Ini- 

tially electricity was thought of as a force that disrupted the affinity 

between elements. But if electricity were somehow exerting a force 

that broke the affinity, then it should require more electricity to break 

up compounds with more affinity. But it didn’t. When producing 

sodium metal, it required the same amount of electricity to produce 

the same amount of sodium, regardless of the compound it came 

from. Faraday was not a believer in atoms, so he expressed his find- 

ings in terms of equivalents. He found that the sodium-forming reac- 

tion required the same number of equivalents of electricity per gram 

of sodium, regardless of the source of sodium. 

Other hints arose suggesting there might be something material, 

rather than a force, that caused the changes. It had been established 

by then that the strength of an electric field varies as the inverse 

square of the distance, as does the force of gravity. In other words, 

the farther apart a positive and negative charge, the less the attraction 

between them. This can be demonstrated by creating a bit of static 

electricity in adhesive tape. If a strip of adhesive tape is pulled briskly 

from the dispenser, it will have a static charge. If this piece is allowed 

to dangle from a table ledge and another piece of tape, also pulled 
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briskly from the dispenser, is brought up to it slowly, there will be no 

interaction between them until they are very close; then the repulsion 

between them (two like charges) increases rapidly. But Faraday 

showed that distance did not matter when decomposing salts with 

electricity.! In addition, after the initial reaction, the material formed 

separated from the wire. Gravity, the classic force at a distance, does 

not release bowling balls once it has attracted them to the surface of 

the Earth. The wires used to conduct the electricity had been called 

“poles” by analogy with magnets. But Faraday said that the field 

description did not fit this case, and after consulting others, changed 

the name from pole to electrode. The equivalents of electricity, after 

1874 and by suggestion of George Johnstone Stoney (1826-1911), 

became known as electrons.” 

The next step was to take these electrons out of solution and into 

the air where they could be.dealt with without interference. It is hard 

to say who first set up an electrical discharge through a partial vacuum. 

But by at least the late 1850s, someone had placed a negatively 

charged electrode (cathode) in a glass tube opposite a positively 

charged electrode and seen a discharge (ray) between them. Soon 

playing with cathode ray tubes became a favorite pastime of chemists 

and physicists, including Faraday and almost anyone who could blow 

glass and build a battery. By drilling holes in their electrodes, Eugene 

Goldstein (1850-1930) and his student Wilhelm Wien found the dis- 

charge actually consisted of two rays, one negatively charged and one 

positively charged. They dubbed the positively charged rays canal rays 

because they went through the holes, or canals, of their electrode. A 

great deal of science has its origins in the study of both these rays. 

The fascinating canal rays and cathode rays caught the interest of 

the English physicist Joseph John Thomson (1856-1940) and con- 

tributed to his earning the Nobel Prize in Physics in 1906.4 Though 

he has been credited with “discovering” the electron, this is like 

saying Columbus discovered America: Plenty of other people knew it 

was there, they just weren’t looking at it quite the way he did. 
Thomson took an intellectual risk. On April 30, 1897, J. J. Thomson 
declared that cathode rays were negatively charged particles with a 
mass about 1,000 times smaller than the hydrogen atom, the least 
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massive of all elements. He went further to say that these corpuscles 

were building blocks for all matter. He proposed a model for the 

atom: a blob of positive charge with embedded electrons. This 

model, which has come to be known as the plum pudding model, did 
not contain protons as separate particles. 

Many of the same dabblers, professional and amateur, who were 

fascinated with cathode rays were also fascinated with the new tech- 

niques of photography. Though several of the photographers knew 

and even shared the information that photographic plates kept too 

close to cathode ray tubes tended to go bad, no one stopped to inves- 

tigate the cause until Wilhelm Conrad Réntgen.5 The German physi- 

cist R6ntgen (1845-1923), who received the first Nobel Prize in 

physics in 1901, took photographs of his own bones from the ema- 

nations of the cathode ray tube.® 

When it was established that glowing cathode ray tubes emitted 

penetrating rays that R6ntgen named X-rays, another question arose: 

Do other glowing bodies emit X-rays? Henri Becquerel (1852-1908) 

was well positioned to answer this question because Becquerel’s father 

as well as Becquerel had studied minerals capable of phosphorescing 

(that is, glowing even in the absence of light).” Glow-in-the-dark mate- 

rials require exposure to light before they start glowing. So at the start 

of his tests, Becquerel placed his minerals on photographic plates 

wrapped in black paper and set them in sunlight to start them glowing. 

One day the sun didn’t shine, so Becquerel took the sample he had 

intended for study, a chunk of uranium, and stuck it in his drawer. After 

a few days, probably thinking that it would be good to have an experi- 

mental control, that is, a sample for comparison that hadn’t been sub- 

jected to the stimulus, he decided to develop the film anyway. To his sur- 

prise, he found his control plate had been exposed, too. The uranium 

didn’t need sunlight to activate it. It glowed with emanations of its own. 

For his discovery of this radioactivity (named by Marie Curie four years 

later), Becquerel was awarded the 1903 Nobel Prize for physics. 

As more radioactive elements were found by the Curies and 

others, more scientists took up the problem of attempting to charac- 

terize these new “rays.” Ernest Rutherford, born into a New Zealand 

immigrant family of twelve children, came to work in J. J. Thomson’s 
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Fig. 20. Sir J. J. Joseph John) Thomson, Edgar Fahs Smith Collection, University of 

Pennsylvania Library. 
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lab in England. After his initial exposure to cathode rays in 

Thomson’s lab, he became caught up in the excitement over radia- 

tion. In his first studies of radioactivity, Rutherford accomplished 

three things: He established that the radiation from uranium and tho- 

rium was particulate, not electromagnetic radiation; it consisted of 

two different particles, which he named alpha and beta; and it was the 

result of atomic, not molecular disintegration, that is, the result of 

one element losing a piece of itself and turning into a new element— 

the first evidence that Newton had been right about transmutation. 

For this work Rutherford received the Nobel Prize in chemistry in 

1908. But while these findings were important and required perse- 

verance and talent to produce, if Rutherford hadn’t found them, it is 

likely someone else would have done so shortly. That alpha particles 

are material particles and not electromagnetic radiation can be shown 

with paper: A piece of paper held in front of an alpha source will 

block the radiation. It was Rutherford’s work on atomic structure, 

after he received the Nobel Prize for his characterization of alpha and 

beta particles, that was the true mark of his genius and for which he 

is most remembered. 

The device that made Rutherford’s work on atomic structure pos- 

sible was invented by another devotee of the cathode rays, William 

Crookes (1832-1919), eldest son of sixteen children born to a London 

tailor, a student of the Royal College of Chemistry, and an acquain- 

tance of Faraday.® The financial demands of his own family of ten chil- 

dren tended to encourage Crookes to apply his talents to enterprises 

and inventions as much as pure research. In one of his investigations of 

cathode rays he originated a device call a radiometer, a vane with black 

and white colored fins housed in an evacuated glass bulb that rotates 

when exposed to light, a device now sold as a toy.? The device that 

Crookes had invented in 1903 that Rutherford found so useful was a 

microscope that could be used to see the mark of alpha particles as they 

struck zinc sulfide. With Crookes’s device, Rutherford could track the 

fate of alpha particles as they passed through thin slices of metal. 

Rutherford’s purpose was to confirm or, at best, refine 

Thomson’s model. He expected that the alpha particles would 

encounter atoms of metal on their way through foils and be knocked 
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at a bit of an angle. Most of the alpha particles went straight through 

without changing their course at all, a few were scattered at a large 

angle, but, to Rutherford’s surprise, a very few rebounded directly 

back to the source. Rutherford scratched his head and did calcula- 

tions for a couple of years before he committed himself to a new 

model of the atom: a very small, very dense positively charged 

nucleus, surrounded by a lot of empty space, and then an outer shell 

of electrons. The plum pudding turned into a little solar system. Sci- 

entists began searching for positively charged particles in the nucleus. 

A young man named Henry Gwyn Jeffreys Moseley (1887- 

1915) joined Rutherford’s group and asked to follow up on some 

rather tantalizing hints from the work of others.!° He wanted to see 

if the X-ray spectra of elements might indicate how many protons 

were in the nucleus. At this point it should be remembered that 

appropriating a colleague’s.area of endeavor had earned Faraday the 

censure of his peers, but now in this time of rapid discovery it was 

anyone’s game, as perhaps it should be. Anyone can propose that the 

moon is made of green cheese, but the Nobel Prize will go to the 

person who provides the evidence. 

Prior to Moseley, a very talented and strong-willed chemist by the 

name of Mendeleev had posited that when elements are ordered 

according to their chemical properties, their order follows— 

roughly—their atomic mass. The word “roughly” is key because the 

relationship was not absolute. When ordered according to their 

chemical properties, on the pertodic table, as it has come to be called, 

there are a few places that show a “mass inversion”; that is, instead of 

the steady increase in mass that is generally observed as the elements 

are listed, there are a few one-element dips. Such is the case with 

copper and nickel. Nickel comes after copper on the periodic table, 

but it weighs less. For Mendeleev this caused little concern. He was 

so certain of his chemistry that he shrugged and assured others that 

the mistake in mass would someday be found. After an amazing 

amount of work, Moseley finally determined that one of the X-ray 

lines in the spectra of elements changed in a predictable manner as he 

moved across the periodic table—including those elements that dis- 

played a mass inversion. So Moseley and Mendeleev agreed: The mass 
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of the elements did increase as one traveled across the periodic table, 

but the mass wasn’t the factor that determined the position on the 

periodic table. What determined the position on the periodic table, 

Moseley found, was the magnitude of the positive charge in the 
nucleus, which was the number of protons. 

Moseley was one of the few of Thomson’s lineage who did not 

receive a Nobel Prize, but this was because of World War I rather 

than any lack on his part. Though Rutherford and others protested 

assigning trained scientists to front-line duty as a waste of their tal- 

ents, Moseley refused the scientific position he was offered and was 

killed in action.!! The Nobel Prize is not awarded posthumously. 

After Moseley’s work, a lingering question remained: Why didn’t 

the mass increase as the number of protons increased? It really 

seemed logical that it should do so. When the answer came, it was 

from someone who was also affected by the war, though not as finally 

as Moseley. 

Rutherford found new elements formed as a result of the atomic 

disintegrations that led to alpha and beta radiation. It fell to chemist 

Frederick Soddy (1877-1956) to investigate the properties of these 

new elements.!2 Soddy taught physical chemistry in England and in 

Canada, where he worked with Rutherford. In 1913, as a result of his 

research, he declared his finding that there could be atoms of the 

same element, that is elements with the same number of protons, that 

had slightly different mass. He called these different-mass atoms iso- 

topes, meaning “same place” on the periodic table. Soddy became a 

social and political activist in the period between the world wars. His 

message was simple: He advocated responsibility to society from sci- 

ence. He became a socialist and ran for office in 1920. The attempt 

to bridge socialism and science, however, made him a stranger in 

both worlds, and consequently his political career fizzled. He did, 

however, find one friend: Herbert George Wells. H. G. Wells, as he 

is better known, wrote a novel, The World Set Free, based on an idea 

of Soddy’s and dedicated it to him, though it is not one of Wells’s 

better-known works.!3 In the book, a society manages to tap the 
energy of the atom through a new element called carolinium. They 

use this new energy source to build a utopian society that flourishes 
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Fig. 21. Frederick Soddy. Edgar Fahs Smith Collection, University of Pennsylvania 

Library. 
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until someone figures out how to build a bomb from carolinium. The 

ideal world then disintegrates in a war of total destruction. Published 

in early 1914, the book has never been very popular, perhaps hitting 

a bit too close to home. 

Rutherford and others saw that Soddy’s isotopes indicated that 

there must be another particle in the nucleus contributing to the 

mass but not contributing to the charge. The neutron, as this particle 

came to be known, was not found until 1932, when James Chadwick 

(1891-1974), Rutherford’s student, found it.14 He proved its exis- 

tence by the effect it caused, a la Perrin. He measured the rebound 

of atoms the neutron hit to establish the mass of the object that hit 

them, and he won the 1935 Nobel Prize. With the confirmation of 

the neutron, the collection of the pieces of the atom was complete— 

but not the puzzle. To start fitting the pieces together, another of the 

descendants of Thomson, Niels Bohr, would have to return to spec- 

troscopy. He would find his key in the strange pattern of lines found 

by Joseph Balmer in the spectrum of hydrogen. 



Chapter 20 

The Quantum 

Revolution 

LITTLE BITS OF STUFF 

In this stage of affairs there appeared to us like a wonderful ray of light 

the beautiful hypothesis of [quanta]... . It has opened for us unexpected 

vistas, even those who consider it with a certain suspicion must admit tts 

importance and fruttfulness. 

Hendrik Lorentz, circa 1900 

he phrase “quantum revolution” is a bit of a misnomer, though 

this is the traditional label applied to the accomplishments of 

Planck, Einstein, and Bohr in the early years of the 1900s.! Before 

Bohr could interpret Balmer’s beautiful lines, a revolution certainly 

had to occur, but “quantum revolution” implies the concept of a 

quantum was revolutionary, which is not true. Dalton had already 

crossed that bridge. A quantum just means a very small portion. 

Dalton had proposed that matter comes in quanta called atoms, and 

he was backed by Boltzmann, Perrin, and Rutherford. What was rev- 
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olutionary about the quantum revolution was the way science was 
forced to deal with the quantum world. 

Quantum mechanics has its origins in thermodynamics, electro- 

dynamics, spectroscopy, and radiative heating. It may be recalled that 

the early thermodynamicists focused on conductive heating and 

neglected radiative heating because steam engines run as well in rain 

or sunshine. But there loomed in the background the question of the 

heat from the sun, and in the late 1800s, theoretical physicists, casting 

about for ways to make themselves more attractive as academic can- 

didates, began to examine radiation on a more fundamental level. 

The narrative begins with Gustav Kirchhoff, the wheelchair- 

bound physicist who had built the successful spectrometer with 

Robert Bunsen. Kirchhoff knew, as did others, that if the spectrum of 

the sun and the spectrum of a sodium flame were superimposed, some 

dark lines in the solar spectrum were replaced by the bright lines of the 

sodium flame. But Kirchhoff took the experiment one step further. He 

allowed the sun to shine though the sodium flame of the Bunsen 

burner before the sunlight was disbursed by the prism. When he did, 

he found these same dark lines in the solar spectrum got darker. He 

realized that this meant that the sodium in the flame was absorbing 

light from the sun—the same light that it could emit when heated. 

Kirchhoff then asked the question, What if this were true of all 

materials? If all materials absorb light at the same wavelength that 

they emit, then it should be possible to construct a “blackbody,” that 

is, a material that would absorb all frequencies of light (therefore be 

black), and, reciprocally, emit all wavelengths of light when heated.? 

If this blackbody were found, then it could provide the link between 

thermodynamics and spectroscopy: the link between heat and light. 

Why was this a desirable goal? It doesn’t take a Kirchhoff to know 

that hot bodies give off light. Turning on a stove burner will demon- 

strate this fact, and considerations of a stove burner will also point up 

the problem. As the burner warms, the wavelength of light it emits 

starts in the invisible infrared range and shifts toward the high-energy 

visible range, as can be demonstrated by putting a hand close to (but 

never on!) a warming burner. The burner will feel warm, that is, it will 

glow with infrared radiation, long before it glows with visible radia- 
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tion, that is, before it turns red. However, it can be shown that even 

if the burner continues to heat, it will not continue to emit only higher 

and higher energy. If it did, it would eventually blind someone who 

looked at it. So even as a body gets hotter and hotter, the wavelength 

of light that carries the heat stays peaked in the visible . . . and the 

physicists didn’t know why. According to classical physics, if more 

energy is added to the burner, then the light it gives off should be 

more energetic. Kirchhoff offered the following poser: Could an equa- 

tion be found for the actual energy distribution of the light coming 

from a blackbody? This turned out to be a very good question. 

In 1893, Wilhelm Wien (1864-1928), the student of Goldstein’s 

who had worked on canal rays, devised an oven with a small hole to use 

as a blackbody.3 The arrangement was a good simulation of a black- 

body because any radiation impinging on the hole should be trapped 

inside (perfect absorber) and‘therefore, when heated, it should emit all 

frequencies (perfect emitter). In 1899 Otto Lummer (1860-1925) 

measured the output of this blackbody accurately and showed that the 

energy was distributed in a sort of skewed curve that peaked in the 

middle and died off at the end, not the exponentially increasing curve 

heading up toward infinity that classical theory predicted.+ Much later, 

historians described the problem as the “ultraviolet catastrophe,” but 

at the time it was not viewed as a catastrophe. It was a curiosity, but not 

one that was interfering with the train schedule, as we said. So Kirch- 

hoff?s poser remained until Max Planck tackled the problem. 

Max Karl Ernst Ludwig Planck (1858-1947) did not have a par- 

ticularly brilliant scholastic career and was not the first choice for 

Kirchhoff’s position when Kirchhoff went to join Bunsen. Before 

offering it to Planck, the Heidelberg University elders had offered the 

position to Boltzmann, who declined. For his research, Planck 

studied thermodynamics and applied himself to one problem in par- 

ticular: showing that entropy could be explained by radiation and did 

not require Dalton’s atoms for an explanation. He felt, as many did, 

that light, which you can see, is a better basis for building a theory 

than atoms, which you cannot. As such, he was familiar with the work 

of Boltzmann because he was trying to disprove Boltzmann. He was 

a good mathematician and had worked through all of Boltzmann’s 
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formulas for himself. So when Planck tackled Kirchhoff’s challenge 
he had in mind the mathematics of statistical mechanics. He was 

aware that the Maxwell—Boltzmann treatment of the distribution of 

energies gave a skewed curve similar to the one he was trying to find, 

but their statistical analysis was built on the assumption of small par- 

ticles of matter. As a first try Planck split his energies up into small 

packets so he could use the mathematics of statistics. The size of the 

packet, however, he made proportional to the wavelength of the 

light. The result was an equation that reproduced the skewed curve 

of blackbody radiation, but Planck didn’t know why. He presented it 

anyway. The year was 1900 and Planck was forty-three years old. 

As we now understand it, Planck’s method of breaking energy 

into small packets worked because a blackbody gives off energy in 

packets, too. The molecules within a blackbody vibrate, which means 

the electrons and protons in the molecules are moving with respect 

to each other, which sets up electromagnetic waves, just like Hertz’s 

spark. But the molecules can’t vibrate at just any arbitrary frequency, 

they vibrate at particular set frequencies that are characteristic of the 

material of the blackbody. To excite a particular vibrational mode, 

just exactly the right amount of energy had to be absorbed, and no 

less. When a molecule vibrates, it gives off this amount of energy, a 

quantum of energy, and no more. Planck, however, did not make this 

intellectual quantum leap. He didn’t know why his model worked. 

There is nothing wrong with presenting a equation that works 

without necessarily knowing why it works. This approach has been 

used many times as a good first pass. For instance, Galileo could see 

that cannonballs flew in curves and derived equations to match that 

motion. Newton proposed the inverse square law for gravity because 

he knew that the orbits of the planets were ellipses. Planck chose to 

put energy into packets of increasing size because that created an 

equation that fit the data. 

To explain why Planck’s model worked to reproduce the skewed 

output of the blackbody, consider a field of cups in a rainstorm. 

Planck’s packets of energy will be our cups, and as the size of Planck’s 

packets depended on the wavelength of light, so will the size of our 

cups. Planck was considering the whole spectrum of light, which the- 
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Fig. 22. Max Planck. Edgar Fahs Smith Collection, University of Pennsylvania Library. 
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oretically stretches to infinity, but for practical purposes starts at low 

energy with radiowaves, has visible light toward the middle, and ends 

at high energy with gamma rays. For the sake of visualization, we will 

consider only visible light, which starts with red light at low energy 

and then proceeds through orange, then yellow, then green, then 

blue, then violet at the high-energy end. Because we want our cup size 

to depend on the wavelength, we will have our red cups be very short, 

our orange cups slightly taller, our yellow cups taller, then taller green, 

then taller blue, then have our violet cups be the tallest of all. Our cups 

have another property: When they fill with rain water they start to 

glow. Now let’s look at what happens to our cups in a rainstorm. 

We'll start with a gentle spring shower. All of the cups get wet, 

but only the smallest ones fill up. So the field glows with a gentle red, 

but that’s all. When there is a heavier storm more cups fill up, 

including some of the bigger ones. The total glow from the field is 

stronger and is now a mixture of orange and red light—but no blue 

because there is not enough rain to fill any blue cups. With a still 

heavier rainstorm, the trend continues: The total glow from the field 

is even brighter, with contributions from the red, the orange, and the 

yellow. But even though the rainstorms may get progressively heavier, 

there still isn’t any contribution from the tall cups. It just takes too 

much to fill them, and they have to be filled to start glowing. Even 

in a monsoon, the red, orange, yellow, and maybe even some green 

will be glowing and the total light may be quite bright, but there will 

be no contribution from the violet because it just takes too much 

water to fill the violet cup. 

In our cup analogy, the rain corresponds to the energy input, or 

the heating of the blackbody. If each wavelength of light requires a 

certain minimum amount of energy to be put in before it is acti- 

vated—if its cup has to be full before it contributes to the output— 

the output will be peaked in the middle and will not extend to the 

short wavelength end. Planck eventually became reconciled to his cup 

picture of the blackbody output, but he never liked it. 

At first the equations of Planck were treated as interesting but not 

particularly useful because no one was sure why there should be dif- 

ferent-sized energy cups in a blackbody. Then Einstein found another 
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phenomena that could be explained by quanta. Einstein had always 

been interested in Maxwell’s electromagnetic radiation, so he had 

studied Maxwell’s equations and Hertz’s experimental confirmation 

of them. Einstein was aware of an anomalous behavior Hertz had 

observed: That sparks generated at his detector could be made 

stronger by impinging light. Hertz had placed different light- 

blocking substances in front of the sparker and found that ultraviolet 

light was the only light that increased the spark. Hertz would not live 

to fully explore the effect but our friend J. J. Thomson would find 

that ultraviolet light caused electrons to be ejected from the metal 

and these extra electrons added to the spark. The effect, called the 

photoelectric effect, is used in some sensors such as the ones that 

open automatic doors. As you approach the door, you block or reflect 

a light beam and the alteration in the flow of electrons caused by that 

light beam can be detected ‘by circuitry that opens the door. Philipp 

Lenard (1862-1946), another Nobel Prize winner, found that there 

was a certain threshold energy that was required to start the electron 

flow. In other words, the cup had to be full.© 

In 1905, Einstein addressed the photoelectric effect. His paper on 

the photoelectric effect was one of three he wrote that year, his famous 

annus mirabilis, while working at the patent office, and, legend has it, 

while working in intellectual isolation without consultation with any 

other physicist. While this misconception has been perpetrated by 

many Einstein biographers,’ recent biographers have begun telling the 

story a bit differently. He did consult with another physicist: his wife, 

Mileva Maric. That Maric helped Einstein in his work is now fairly 

well established.? How much of a help was she to him? That is hard 

to say. Einstein had unquestionable genius and a wonderful ability to 

see connections where others could not. But his mathematics was not 

all that strong, as he would willingly admit, and thus throughout his 

career he sought help from mathematicians and other physicists with 

a more mathematical bent. It only makes sense that he would ask help 

from the person sitting across from him at the dinner table. 

In his paper on the photoelectric effect, Einstein stated that the 

effect may be explained if one assumes light comes in small packets 

called quanta, little bits of light to go with Planck’s little bits of 
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energy, though Einstein only made brief reference to Planck’s work. 

However, it is essential to note that Einstein was in no way rejecting 

Maxwell’s equations or the wave model of light. What he was saying 

was that sometimes the wave model works well, and sometimes the 

particle model works well. 

Many people since have found this concept difficult to assimilate. 

How can light be a particle sometimes and a wave at other times? The 

answer is that light is not a particle or a wave—sometimes it acts like 

a particle and sometimes it acts like a wave. Sometimes one model 
works best to describe the behavior, sometimes it’s the other. 

Both models work for sound waves, too. To understand how 

sound behaves as a wave, consider a wave passing through an opening. 

All waves tend to bend around the corner when they go through an 

Opening (as water waves will bend around a pier), but the amount of 

_ bending depends on the size of the opening. If the size of the opening 

is about the size of the wave, the bending is pronounced. But if the 

size of the opening is many times bigger than the wave, then the wave 

“sees” open space and does not bend much at all. When a television is 

on in another room, you cannot see the television screen because light 

does not bend around doorways. The doorway is many million times 

bigger than the wavelength of visible light. However, you can hear the 

television because sound waves are big and do bend around corners. 

To understand how sound behaves as a particle, consider a sound 

that can shatter glass. The sound has to be of just the right frequency, 

and when the glass shatters, it does so all at once, just as though it had 

been hit by a bullet. A bullet of sound. A particle of sound. This is what 

Einstein hoped to convey about the behavior of light, too: Sometimes 

it is best modeled as a wave, sometimes it is best modeled as a particle. 

In 1907 Einstein used quanta of energy to explain anomalous heat 

capacities, that is, heat capacities that did not follow the behavior 

observed by Pierre Dulong and Alexis Petit. As it may be recalled, the 

heat capacities of solids were found to be a fairly constant function of 

their atomic mass; this in fact was taken as good evidence for the 

atomic theory. However, as cryogenic technology improved, it 

became apparent that the relationship was not holding at low temper- 

ature. At low temperature the heat capacity fell off drastically with 
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Fig. 23. Albert Einstein. Edgar Fahs Smith Collection, University of Pennsylvania 

Library. 
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temperature, that is, all heat seemed to go immediately into raising the 
temperature and none of it went into other modes, such as vibration 
or rotation. Einstein showed that this behavior could be explained if 
one assumed that the energy of the vibrational modes is quantized. 

The analogy we might use here is with a frozen bolt versus a 
freely turning bolt. If a bolt is freely turning, then any amount of 
energy will turn the bolt. If the bolt is frozen, then a threshold 
amount of energy is required to break the bolt free before it can turn. 

Einstein said that the vibrational modes required a threshold amount 

of energy to get them vibrating (or using our previous analogy, the 

cup had to be filled). At high temperatures there are many vibrational 
modes available, so any amount of energy put in will find some vibra- 
tional mode to absorb it and the energy will partition itself between 

vibrational and translational modes. At low temperatures, however, 
the vibrational modes are “frozen” so energy put into the system will 

go into raising the temperature until it is high enough to break loose 

the vibrations. The quantum model worked well again. 

The next use for quantum mechanics was found by Niels Bohr 

(1885-1962), the son of a Danish professor of physiology and a 

mother from a family of academics. After completing his degree in 

physics he went to England to study with J. J. Thomson, but he did 

not get along well with Thomson.!° Soon he went to work for Ernest 

Rutherford instead. With Rutherford, he found himself trying to put 

together a picture of the atom, and they weren’t the only ones. Perrin 

had suggested a solar-system-type ‘model. Hantaro Nagaoka 

(1865-1950) of Japan had discarded Thomson’s plum pudding 

model, saying that positive and negative electricity would not inter- 

mingle; he suggested instead an atom with a positive central charge 

and electrons arranged in Saturn-like rings around it.1! However, 

neither of these models predicated a quantitative relationship that 

could be tested. 

In 1913, two years after completing his doctoral dissertation, 

Niels Bohr wrote the paper that would earn him the Nobel Prize for 

1922, a mere eleven years later. Why the rapid recognition? Bohr 

found something quantitative that could be related to the structure of 

the atom: the atomic spectra. Bohr assumed that electrons are located 
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in orbits around the central nucleus, and that the absorption of a 

quantum of light of just the right energy promotes an electron from 

one orbit to another. Then with this model and Balmer’s formula for 

the spacings between hydrogen lines, he could calculate a spectro- 

scopic constant that agreed with the one measured for hydrogen. In 

addition, it predicted the spectrum that could be observed for the 

helium ion (helium missing one electron). This quantitative agree- 

ment between theory and experiment won him the praise of his fellow 

physicists, though it bothered Bohr that it was not more general. He 

also was not pleased by the fact that he had to postulate moving elec- 

trons. Why did Bohr’s electrons have to be moving? Because of the 

experimental results of another wunderkind, Pieter Zeeman, who had 

shown in 1896 that spectral lines could be split by a magnetic field.12 

Pieter Zeeman (1865-1943), like Bohr, was only thirty-seven 

when he won the Nobel Prize. Zeeman’s demonstration of the inter- 

action of the electrons in the atoms with a magnetic field meant that 

the electrons had to be moving (Faraday showed that a current pro- 

duces a magnetic field, a static charge does not). However, if they 

were moving, then this led to another puzzlement. Hertz had 

demonstrated pretty convincingly that moving electrons generate 

electromagnetic radiation. If the electrons were giving off light, then 

they should be losing energy and spiraling into the nucleus. But it is 

common experience that materials don’t continuously glow and 

spontaneously self-destruct. As we will see next, the problem would 

soon be resolved, but when it was, it would not be in a way that 

would please Kelvin: It would require another quantum leap. More 

bits and bugs. 



Chapter 21 

Quantum Riddle 

WHEN Is A PARTICLE NOT A PARTICLE? WHEN IT’S A WAVE. 

AT ILLITE 
I think that I can safely say that nobody understands quantum 

mechanics. 

Richard Feynman, 1965 Nobel Prize, Physics 

Raa Niels Bohr’s conundrum could be attacked, an entire new 

system of mechanics had to be created: quantum mechanics. In 

spirit, quantum mechanics shares the goal of classical mechanics. 

Quantum mechanics, just like classical mechanics, is a system of equa- 

tions that relates forces and motions. But quantum mechanics has 

atoms and electrons as its objects, not cannonballs, and therein lies a 

world of difference. The utility of quantum mechanics is indisputable. 

Through quantum mechanics we can explain and predict spectra, elu- 

cidate the structure of molecules, and even predesign materials to meet 

specifications.! Yet the premises on which quantum mechanics is based 

are, to put it mildly, philosophically disturbing. Galileo, Newton, and 

Lavoisier conditioned humanity to expect a predictable, regular, and 

programmable world and to reject mysticism and magic. But, as we will 

see, in quantum mechanics we seem to regress to the unexplained and 

inexplicable. The acceptance of quantum mechanics feels like an act of 

faith. It requires a certain liberation of mind to appreciate quantum 

mechanics—and it required those of liberated mind to conceive it. 

The story begins in 1924 in France with the doctoral thesis of 

thirty-two-year-old Louis de Broglie (1892-1987).2 As may be 

recalled, the main difficulty with Bohr’s model was the conflict with 

classical electrodynamics: A negatively charged particle in orbit 

(239) 
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around a positively charged nucleus should radiate energy and spiral 

into the nucleus. De Broglie no doubt agreed that a negatively 

charged particle would do this, but an electron wouldn’t—because an 

electron is not a particle, it’s a wave. 
Prince Louis Victor Pierre Raymond duc de Broglie was born into 

a venerable French family that had earned titles for its members 

through military service to the state, including support of the 

monarchy during the French Revolution.? De Broglie earned his doc- 

torate in physics rather late in life because he took his first degree in his- 

tory. World War I also intruded. Conscripted, he staffed the wireless 

communications position at the Eiffel Tower for the whole of the war. 

When he returned to his studies, he remained interested in the physics 

of waves such as those that had made the wireless communication pos- 

sible and performed experiments in an X-ray laboratory set up in the 

family mansion.* In his doctoral thesis, de Broglie reasoned thus: If 

light, which is a wave, has particle-like properties, then why should not 

matter, which is a particle, have wave-like properties? He took Ein- 

stein’s famous equation for the energy—mass equivalence, E = mc?, and 

compared this energy to the energy of light, which depends on the 

wavelength, and arrived at an equation that related the wavelength of 

light to a quantity with the same units as momentum, mass times 

velocity. If light, which has wavelength, also has momentum, he rea- 

soned, then particles, which have momentum, should also have wave- 

lengths. An interesting speculation, but was it true? His equation gave 

a means for predicting the wavelength of an electron at a given velocity, 

a number that someone could measure, so pretty soon someone did. 

The experiment took place in the United States where Clinton 
Joseph Davisson (1881-1958), the son of a contract painter and a 
schoolteacher, accidentally found that when he bombarded nickel 
with electrons in a cathode ray tube, a few of the electrons bounced 
off with the same energy as the ones he fired in.5 He measured the 
distribution of these electrons in space and found that it peaked in 
two spots, but was still fairly spread out. Then in April 1925 an acci- 
dent intervened in Davisson’s life again: The pure nickel sample he 
was using as his electron target got in the way of an exploding liquid- 
air bottle and he had to clean it by prolonged heating. This type of 
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prolonged heating is now carried out routinely in modern surface-sci- 
ence labs to achieve the effect Davisson discovered by chance. The 
many tiny crystals that made up his nickel sample re-formed into a 
single crystal with a very regular surface. When his electrons bounced 
off the many tiny ridges in his regular crystal target, he found that 
they formed a regular pattern, similar to that formed when Young’s 

light passed through his narrow slits. But this wasn’t light: This was 

electrons. After learning more about de Broglie’s equation, he calcu- 
lated a wavelength that de Broglie predicted for electrons that had 

the same energy as his and calculated the diffraction pattern these 
waves should produce. The patterns matched. 

But when de Broglie presented his dissertation, these measurements 

hadn’t been made yet, and de Broglie nearly failed. Luckily, one of the 

examiners, Paul Langevin, advised de Broglie to send the dissertation to 

Einstein for comment. Einstein declared, “He has lifted a corner of the 

great veil.” Needless to say, the dissertation was accepted. 

Why did Einstein believe de Broglie had explained so much? 

Because a wave, if it exactly fits its container, can form a standing 

wave. An example of a standing wave is the sound-wave tone that can 

be created by blowing across the top of a narrow-necked bottle. As 

anyone who has tried to generate a tone by blowing across the top of 

a bottle can attest, just the right angle and power are needed to elicit 

a tone. This is because the sound wave generated has to be just the 

right size to fit the bottle. When the sound wave is of just the right 

size to fit the bottle, it will reinforce itself as it hits the bottom of the 

bottle and bounces back. At other frequencies, the wave does not 

self-reinforce, and dies out. The self-reinforcing wave is a standing 

wave. The container for the electron wave was the orbit around the 

nucleus. If the electron wave were of just the right wavelength, if the 

end of a crest exactly met the beginning of a trough, then it would 

form a standing wave around the nucleus. This explained two things. 

First, electrons don’t spiral into the nucleus because they are in stable 

standing waves. Second, only certain wavelengths fit around the 

nucleus, so only certain wave orbits are stable. To go from one wave 

orbit to another, just exactly one amount of energy would be 

required and no other—a quantum of energy. 
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But now there was another problem. Davisson shared the 1937 

Nobel Prize with English citizen George Paget Thomson, the son of 

J. J. Thomson, because the younger Thomson had seen the same 

effect for electrons fired through an ultrathin metal sheet. J. J. 

Thomson had declared that electrons are corpuscles; now his son had 

declared that they are waves. So who was right, father or son? 

The answer is both and neither. It turns out that matter can be 

modeled as a particle or as a wave, just like light. The description will 

depend on the measuring instrument and the point of view. This 

same type of thought was summarized (more eloquently and thor- 

oughly) by Bohr in 1927, in a principle he called complementarity, 

which meant that the full description of the electron includes knowl- 

edge of its wave nature and its particle nature, too. So with this phi- 

losophy and de Broglie’s discovery, quantum mechanics entered a 

new phase of understanding’ 

The first to fully exploit the wave model of matter in quantum 

mechanics was the Austrian physicist Erwin Schrédinger (1887- 

1961). Schrédinger seems to fit our picture of an ideal quantum 

mechanic in that he did not adapt well to the academic mold—his 

early work was not stellar and his committees were not always unan- 

imous in their recommendations for his advancement. And he cer- 

tainly was a free thinker. Schrodinger had many mistresses as well as 

a wife with whom he stayed married,’ and at one point he lived com- 

fortably with a mistress and his wife at the same time, while the mis- 

tress was carrying his child. This creative lifestyle was mirrored in 

Schrédinger’s creative approach to quantum mechanics. Around 

1925 Schrédinger derived an equation that produced functions 

describing electron waves around the nucleus.’ These electron waves 

had energies that agreed with the positions of Johann Balmer’s mys- 

terious lines. But to have his wave equation work, Schrédinger had to 

introduce something nearly as mysterious: an imaginary number, the 
square root of minus one. 

The tradition of calling the square root of minus one an imagi- 
nary number is unfortunate. There is nothing otherworldly about the 
square root of minus one. Our old friend the Italian mathematician 
Girolamo Cardano called this number “fictitious,”? but since that 
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time imaginary numbers had found a respectable place in algebra. 

Why did this odd little number surface in Schrédinger’s equation for 

the electron wave? Because it has precisely the behavior needed for 

Schrédinger’s wave: If the square root of minus one is squared, it 

equals minus one, if it is raised to the fourth power it equals one, if 

it is raised to the sixth power it equals minus one again, and so on. 

The values for the powers keep cycling between one and minus one. 

Oscillating. A wave. The right behavior to fit de Broglie’s model, but 

imaginary numbers in real systems can be philosophically unsettling. 

And there was more trouble ahead. 

A German researcher by the name of Johannes Stark (1874- 

1957) found that in an external electric field, the individual Balmer 

lines split into several lines, similar to the way Pieter Zeeman had 

found they split in a magnetic field.!9 An explanation for this be- 

havior came from the Dutch physicist Samuel Goudsmit (1900- 

1988). Goudsmit suggested that the electron was spinning while it 

was orbiting and generated a second magnetic field that could then 

interact with an electric field.11 Fine. With one problem. That model 

went right back to the miniature solar system picture of the atom. 

How can an electron be spinning if it is a wave? It can’t... which 

means it’s not a wave . . . but it’s not a spinning top, either. Spin is 

another model for electron behavior, but the electron cannot be lit- 

erally spinning because if it were it would be spinning faster than the 

speed of light. While many learned minds were discomfited by this 

fuzzy view of nature, then as now, there gradually arose a group of 

people who were not so disturbed. One in particular was the German 

Werner Heisenberg. 

When twenty-four-year-old Werner Heisenberg (1901-1967), 

research assistant to Bohr, stood for oral exams he nearly failed. One 

of the professors asked him a laboratory question related to the 

resolving power of a microscope, and Heisenberg got it wrong. He 

still got it wrong when he proposed his famous uncertainty principle 

two years later,!2 but it was a minor correction on a major idea. 

Basically what Heisenberg said was that there was no use in trying 

to fit the atom into the classical mold because there was no way of mea- 

suring the atom for the fit. To apply classical mechanics to electrons, 
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one would have to know where the 

electrons were and how fast they were 

moving. But given the size of the 

electrons and our optical instrumen- 

, tation, Heisenberg said this would 

never be possible. Actually the state- 

ment is stronger than that: It is not 

just a limitation of our instrumenta- 

tion, it is a limitation of nature. 

The problem is that a light wave 

will knock an electron head over 

_ heels—hence no simultaneous mea- 

= surement of position and velocity is 
possible. It would be like trying to 

measure the position of a ping-pong 

ball by bouncing a bowling ball off 

it. Heisenberg, of course, stated this 

Fig. 24. From left to right: Quantum 

physi cist Victor Frederick Weisskopf, 

Maria Goeppert Mayer (see Epilogue), sae ; 

and Max Born. AIP Emilio Segré principle more mathematically and 

Visual Archives. eloquently and made it more gen- 

eral, but the root cause of the 

problem is the same. 

Many were not happy with the new turn of events, notably Ein- 

stein and even Schrodinger, but others were more able to live within 

the limitations Heisenberg imposed. One in particular found a cre- 

ative rationalization, German Max Born, the originator of the 

descriptor “quantum mechanics.”!3 Max Born (1882-1970) likewise 

had a lackluster scholastic career and originally intended to study his- 

tory, but took up science to please his father.14 Born proposed that 

even if you could not throw a saddle on the electron, you could still 

ride the wave: He interpreted Schrédinger’s waves as probability 

waves. They did not describe where the electron was, but where the 

probability for finding the electron was the highest. 

With this pronouncement, Born sounded the final death knell for 

the predictable, neat, geometric universe of Aristotle, Newton, and 

Galileo. Granted, Boltzmann and Maxwell had used statistics to 

describe their system of particles. But there was always the underlying 
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assumption that if you cooled down these particles, or trapped them 

in a field, they would again start acting as well-behaved billiard balls 

and would stand still long enough to be measured. But now Heisen- 

berg said that this could never be so: An electron never stands still. 

Heisenberg’s uncertainty principle and Born’s probability wave 

became known as the Copenhagen interpretation of quantum 

mechanics, named for the school of thought that grew up around 

Neils Bohr at the University of Copenhagen in the capital of Den- 

mark.!5 As one would suspect, these theories produced considerable 

debate, some of it bordering on antagonism. 

But it was an antagonistic age. Of the German scientists, Einstein, 

Bohr, and Born eventually had to flee the Nazi regime and the Aus- 

trian Schrdédinger was persecuted into emigration when he spoke out 

against the Nazi government. Heisenberg remained in Germany but 

was called a “white Jew” by Stark and Zeeman because of his lack of 

enthusiasm for the Nazi government. To this day there remains spec- 

ulation that he purposefully delayed the development of the German 

atomic bomb, though there can only be as much uncertainty in this 

as he envisioned for the electron.!® 

Despite the difficulties, political, personal, philosophical, and 

otherwise, the work of these freewheelers endured. The sentiment 

was summarized in 1929 by Paul Dirac: 

The general theory of quantum mechanics is now almost complete, 

the imperfections that still remain... are .. . of no importance in 

the consideration of... ordinary chemical reactions. ... The 

underlying physical laws necessary for the mathematical theory of a 

large part of physics and the whole of chemistry are thus completely 

known, and the difficulty is only that . . . these laws lead to equa- 

tions much too complicated to be soluble. It therefore becomes 

desirable that approximated practical methods of applying quantum 

mechanics should be developed, which can lead to an explanation 

of the main features of complex atomic systems without too much 

computation.!7 

Finding “practical methods of applying quantum mechanics” is 

exactly what the physical chemists proceeded to do. 





Part V 

The Flourish of the 

Physical Chemist 

AFFINITY AND FORCE 

MVOSOLK VE 
INTRODUCTION 

This is physical chemistry, formerly a colony, now a great free land. 

Jacobus van’t Hoff, circa 1900 

ne definite outcome of the new theories in physics—from elec- 

trodynamics to quantum mechanics—was the emergence of sci- 

entists both versed in physics and grounded in chemistry. The new 

work in the overlap areas between chemistry, physics, and mathe- 

matics was sometimes called chemical philosophy or theoretical chem- 

istry, but by the late 1800s the name physical chemistry came into 

general acceptance. In the new era, many of our heroes are now 

born-and-bred physical chemists, though contributions continue to 

come from those with roots in other disciplines: mathematicians with 

a background in physics, physicists with a background in chemistry, 

and engineers with a background in all three. 

The major areas that lacked a firm theoretical footing at the 

beginning of the 1900s were chemical bonding, equilibrium, and the 

speed with which a reaction occurs. Given all the wonderful progress 

in physical theory, why couldn’t the physicists derive a set of equa- 

tions that would describe bonds or mimic the behavior of chemicals 

247 
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in reactions? Basically, because atoms are not billiard balls and doing 

chemistry is not playing pool. To begin with, atoms and molecules 

are sticky. They don’t rebound perfectly from each other and the 

walls. And they aren’t always electrically neutral: Charged particles, 

ions, have a chemistry all their own. And molecules don’t only exist 

as gases. They become liquids, solids, and complicated mixtures and 

solutions, and then have the audacity to bounce around from one 

phase to another. Add to this, every reaction involves an interface of 

some sort, even if it’s only between solution and container. These fac- 

tors provide a fairly clear picture of what the physical chemists were— 

and are—up against. 

In response to the complexity and enormity of the task, there 

arose two schools: the Ionists and the quantum chemists. The Ionists 

took the top-down approach. They applied the methods of physics to 

describe the behavior of chemical systems. A skeptical lot, they con- 

fined their speculations to effects that could be quantified by their 

careful measurements. Unwilling at first to even admit to atoms, they 

developed powerful empirical relationships that set the bar for the 

theorists. The quantum chemists approached chemistry from the 

bottom up. They used the power of quantum mechanics and mathe- 

matical models to discern the structure of molecules and from this 

structure attempted to predict how chemical systems should behave. 
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These two approaches were, to some extent, geographically sep- 

arated as well. The development of quantum chemistry took place 

primarily in the United States, while the Ionists thrived in Europe, 

especially Germany. This division, of course, was not absolute. Many 

of the physical chemists in the United States had been educated in 

Europe and the European scientists often visited the United States on 

lecture circuits and to confer. 

In this part of our story we will trace the development of 

quantum chemistry and see how it merged with the observations of 

the Ionists. These physical chemists will deal with the challenging 

questions of intermolecular forces, the three-dimensional nature of 

molecules, and the statistical nature of energy and entropy. But being 

challenged is not the same as being confounded. The physical 

chemists would persevere. 



Chapter 22 

Rebels and Radicals 

QUANTUM CHEMISTRY IN THE UNITED STATES 

KT K VE 
Planck... and Bohr... have invented systems containing electrons of 

which the motion produces no effect upon external charges. ... [Not only 

[is this] inconsistent with the accepted laws of electromagnetism, but I 

may add, is logically objectionable, for that state of motion which produces 

no physical effect whatsoever may better be called a state of rest. 

G. N. Lewis, physical chemist, 1916 

| tem the premises of quantum mechanics ran somewhat counter 

to the chemist’s experience and intuitions. By applying the 

chemist’s insights to the physicist’s models, a link between quantum 

physics and quantum chemistry would eventually be forged, though 

the fit, albeit quite serviceable, would never be exact. The task 

required those with the insight to see connections where others could 

not. The United States, unique in its time for being a country born 

of revolution rather than tradition,! and populated by people who 

traced their heritage to refugees, outlaws, opportunists, slaves, and 

nomads, served as a breeding ground for such liberated spirits. Add 

to that some of the most talented scientists in the world fleeing Hitler 

and war-torn Europe, and the results would be remarkable. 

The first problem confronting both chemists and physicists intent 

on applying quantum mechanics to chemistry was to explain the 

chemical bond. This was no trivial task. They knew that the main 

force holding atoms together in molecules had to be electrical. 

Humphry Davy and Michael Faraday had offered ample evidence 

that electricity disrupts bonds in salts and forms them in metals. And 

250 
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electrostatic interaction was well understood. The strength of the 

attraction between positive and negative charges is called Coulomb 

attraction, and the fact that the force falls off with the square of dis- 

tance, like gravity, is called Coulomb’s law—though Coulomb was 

not the first to discover Coulomb’s law. Two of the earlier discoverers 

kept their finding to themselves in the protective style of the medieval 

mathematicians, another published in Russian, and another presented 

his results only at a meeting. In 1785 Charles Coulomb did a crude 

experiment, published immediately, and was immortalized. 

We used adhesive tape to show how electrical repulsion varies with 

distance and we can use adhesive tape to demonstrate Coulomb attrac- 

tion, too. Again a strip of tape is pulled vigorously from the roll and 

attached to the side of a table so that most of the strip dangles free. If 

this time the remaining roll (or any other good source of electrons) is 

brought close to the dangling strip, it will attract the strip, and the 

attraction will rapidly becoming stronger at shorter separations. 

But while electrostatic attraction explained the bonding in salts such 

as sodium chloride (table salt), where the sodium ion and the chloride 

ion have opposite charges, it did not explain why two atoms of the same 

element would be attracted to each other. We mentioned previously that 

hydrogen gas is formed from two atoms of hydrogen; oxygen gas is 

formed from two atoms of oxygen; and nitrogen gas is formed from two 

atoms of nitrogen; but neither the chemists nor the physicists could say 

why. The chemists and physicists also could not explain the observed 

valence, or combining power of elements. For instance, it was well estab- 

lished that carbon likes to form attachments to four other entities in 

hydrocarbons, therefore has a valence of four, while hydrogen attaches 

only to one thing at a time, and has a valence of one. 

The path to understanding began with the results of Henry 

Moseley and Dmitri Mendeleev. Moseley showed that the number of 

protons in the nucleus, and hence the number of electrons in a neu- 

tral atom, increases regularly across the periodic table. At the turn of 

the century, a new group of elements were discovered: helium, neon, 

argon, krypton, xenon, and radon. The first one, helium, was found 

in the sun by the spectroscopist Joseph Lockyer, but it took longer to 

find the rest because these elements are singularly unreactive. For 
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instance, we would never consider giving a hydrogen balloon to a 

child to play with because hydrogen is too reactive, too explosive. But 

we give helium balloons to children to play with all the time because 

helium is unreactive. As these elements were discovered, some argu- 

ment arose as to where to place them on the periodic table. Most 

people agreed that they belonged in their own new column to be 

tacked onto the right side of the table. Mendeleev protested because 

he was ready to retire and was not interested in revising his table, but 

in the end he was overruled. 

When they assumed their rightful place, a peculiar pattern 

emerged: helium, which finished out the first row, had two electrons, 

but neon and argon, which finished out the second, had ten and 

eighteen, respectively. Two for helium plus eight to get neon plus 

eight more to get argon. And these elements were particularly stable. 

Was eight a special number that gave stability? 

In England, J. J. Thomson, who was familiar with chemical reac- 

tivity, proposed the electrons arranged themselves in shells in his 

plum pudding model. The physical chemist Charles Rugeley Bury 

(1890-1968), a veteran of an Iranian campaign in World War I, used 

chemical evidence to propose that electrons arranged themselves in 

layers of two, eight, and eighteen, which has subsequently turned out 

to be correct.? Credit for this idea is often given exclusively to Neils 

Bohr, perhaps due to Bohr’s penchant for enthusiastically embracing 

ideas without always taking the time to acknowledge the source. 

Thomson’s and Bury’s observation, along with much experience with 

chemistry, led German chemistry professor Richard Abegg (1869- 

1910) to suggest that the basis of chemical reactions is elements 

seeking to have eight electrons around each nucleus.* They achieve 

this, posited Abegg, by sharing electrons with other elements in close 

contact. However, Abegg was killed in a balloon accident when he 

was just forty-one and did not have time to explore his idea fully. The 

chemist who did explore this idea in depth would hail from the 
United States. 

Gilbert Newton Lewis (1875-1946), could trace his lineage to 

Plymouth Colony of 1632.5 Lewis (or G. N. Lewis, as he is affec- 

tionately referred to by the chemical community) could read by the 
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Fig. 25. G. N. Lewis. Courtesy of the Bancroft Library, University of California, Berkeley. 
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age of three and reportedly read Robinson Crusoe by the age of five.® 

He was tutored at home until his family moved to Lincoln, Nebraska, 

at which time he entered a university preparatory school and then 

entered the University of Nebraska. He transferred to Harvard to 

complete his schooling, where he earned a Ph.D. in physical chem- 

istry by age twenty-four. After a year of teaching he performed the 

requisite pilgrimage to study at the premier institutions in Europe 

and visited the labs of some of the Ionists. When he returned, con- 

flicts with his research advisor at Harvard, T. W. Richards, a Nobel 

Prize-winning chemist, inspired Lewis to serve for one year in the 

Philippines as superintendent of the Bureau of Weights and Mea- 

sures. This was a brutal, ignominious episode in U.S.—Philippines his- 

tory, and Lewis did not often speak of his experiences there. But he 

did manage to publish in that year and when he returned to the 

United States he joined thé faculty at the Massachusetts Institute of 

Technology (MIT), though he was lured away seven years later to 

Berkeley. Before he moved west he married Mary Sheldon, the 

daughter of a Harvard professor. 

He stayed at Berkeley for some thirty-four years and published 

papers on topics as far-ranging as relativity, isotopes, thermodynamics, 

and the role of unpaired electrons, or radicals as they have become 

called, in photochemistry. In fact, the bulk of Lewis’s work was more 

in line with the efforts of the Ionists than the quantum chemists and 

will be considered in that context. His contribution to quantum 

chemistry—the two-electron bond—is the concept we examine here. 

Apparently the idea occurred to him when he was teaching at 

Harvard. While sketching the arrangements of electrons around the 

nucleus for various elements, Lewis mistakenly drew helium with 

eight electrons because he knew helium to be exceptionally stable. 

He caught his mistake, but it started him thinking about the number 

eight and what it might represent. He took to drawing the electrons 

around a nucleus at the eight corners of a cube (perhaps to help him- 

self keep track of the electrons and not make further mistakes at the 

board). He then found that by allowing incomplete cubes to fill in 

their missing parts by sharing sides with other cubes, that is, linking 

the cubes together like puzzle pieces, he could build compounds on 
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the chalkboard that had all the corners of their cubes filled. When he 

stood back and looked, the resulting figures had ratios of elements 

that were the same as known formulas for compounds. Lewis had 

found a rationale for a bond without having to invoke electrostatic 

attraction: Bonds formed by sharing sides, by sharing pairs of elec- 

trons, so that their eight-cornered cubes were complete. He also had 

found a rationale for valence, the number of attachments an atom is 

apt to take on: Cubes sought the number of other cubes needed to 
complete their sides. 

Did atoms stack together like building blocks to form molecules 

or was this just a fortuitous device? The idea was shaky enough that 

the other faculty at Harvard did not stand up and cheer (in fact, his 

research director, Richards, denigrated the “Twaddle about bonds: A 

very crude method of representing certain known facts about chem- 

ical reactions” )” and Lewis, sufficiently dissuaded, did not publish his 

idea. But he stored it away in his mind. 

The biggest problem with the cubic model is that it requires static 

electrons. By then Pieter Zeeman in Germany had shown that spectral 

lines would be split by a magnetic field, which indicated that electrons 

in atoms were moving. But chemists knew that the structures of mate- 

rials such as crystals were rigid, which was difficult to explain in terms 

of a moving electron. Later, at MIT, when Lewis saw that others were 

proposing ideas similar to his, he decided to come forward with his 

cubes. Lewis showed how electrons completing the cube explained 

the charge carried by common ions and used his cubic atom to explain 

the structures of a variety of compounds that had not been previously 

explained. He also postulated an explanation for nonelectrostatic 

bonding: The two electrons of the bond, the two electrons that 

formed the edge of one cube, were spinning and therefore creating a 

magnetic field. If the two electrons had opposite spins, then their 

magnetic fields would be opposite and attract. This idea was not 

retained in future bonding theories, but it worthy of note that Lewis 

provided an early, intuitive, postulation for electron spin in the atom.8 

At the time, however, his theory received no particular notice. 

In 1919, a chemist with a broader reputation, Irving Langmuir 

(1881-1957), adopted and extended Lewis’s ideas and began lec- 
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turing on them, though always giving credit to Lewis as the origi- 

nator.? Lewis, ever sensitive to slights, real or imagined (he refused 

an honorary degree from Harvard, still smarting from the treatment 

he received there as junior faculty), exchanged a series of restrained 

but pointed letters with Langmuir, though a warmer relationship 

eventually developed. 

The two-electron bond described by Lewis was picked up by the 

German physicists Walter Heitler (1904-1981) and Fritz London 

(1900-1954) in 1927 when they tackled the problem of finding a 

model of the chemical bond that incorporated quantum mechanics.10 

They were glad to have a starting premise, although they reasonably 

chose the simplest possible bond to start with—the bond between two 

hydrogen atoms. They knew they were going to end up with an 

approximation, so they wanted to start as close to reality as possible. 

How did they know that they would end up with an approximation? 

Because even helium, with just one nucleus and two electrons, had yet 

to be solved exactly. For helium the problem is called the three-body 

problem: Interactions between the positive nucleus and both negative 

electrons have to be accounted for as well as the repulsions between the 

electrons themselves. For the hydrogen molecule the problem is even 

more complicated: The hydrogen molecule has two nuclei and two 

electrons, and they are all moving around with respect to each other. 

Heitler and London considered electrons on atoms to be moving 

in the fuzzy electron orbits (electron clouds) described by the Copen- 

hagen interpretation of quantum mechanics. They envisioned a chem- 

ical bond forming by a sort of coalescence of electron clouds: some- 

what like the way two bubbles on the surface of a liquid might merge 

into one. To model this behavior, they first simplified the picture by 

assuming that the motion of the electrons is so fast relative to the nuclei 

that the two nuclei can be considered to be standing still, an assump- 

tion called the Born—Oppenheimer approximation. Next they turned 

to the mathematics of statistics!! and said that the probability of 

finding two electrons together at any point in space is the product of 

their separate probabilities. The well-known result that probabilities 

should multiply can be understood by considering two coins. The 

probability of flipping one and have it come up heads is one out of two, 
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or one half. The probability of flipping the other and getting heads has 

to be the same. But the probability of flipping both and getting two 

heads is less likely (and can be satisfactorily demonstrated by a series of 

10 or more duo coin flips), which is the case for multiplied probabili- 

ties: One half times one half is one fourth. According to the so-called 

Copenhagen interpretation, the probability for finding the electron is 

given by the function for the electron wave. The imaginative leap that 

Heitler and London made was to assume that electron-wave probabil- 

ities behaved like coin-flip probabilities. They treated the total proba- 

bility for finding an electron on two nuclei as the product of the prob- 

abilities on the separate nuclei; that is, they multiplied the two proba- 

bilities together by multiplying the two wave functions together. 

Of course electrons are not coins, so some adjustments had to be 

made for the realities of the electron world. Werner Heisenberg had 

pointed out that because the electrons are indistinguishable (you 

can’t put a label on something you can’t pin down) any complete 

solution would have to reflect this blurriness. To account for this 

restriction, Heitler and London added on the product of the wave 

functions for the hydrogen atoms with the electrons exchanged. 

Heitler and London then put the composite wave function in Erwin 

Schrédinger’s wave equation to find the total energy. They found 

terms for the electrostatic attraction between electrons and nuclei; 

the repulsion between the two nuclei and the two electrons; and, in 

addition, an odd “exchange” energy that results from quantum fuzzi- 

ness. This fuzziness derives from the fact that you can’t find the posi- 

tion and the velocity of an electron at the same time, which was 

Heisenberg’s uncertainty principle. There is no classical analog for 

this exchange energy, but the exchange energy, as it turns out, is 

much greater than the electrostatic energies. The magnitude of the 

exchange energy shows that quantum mechanics has to be evoked to 

make any quantitative predictions concerning the chemical bond, 

such as the binding energy (the energy required to break the bond). 

However, using the Heitler-London model, the calculated values for 

the bond energy of the hydrogen molecule compared well with 

experimental values. The Heitler-London theory became known as 

the valence bond theory because it combined the waves of electrons 
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located on separate nuclei to form a bond, in essence treating the 

hydrogen molecule as an atom combining with another atom. 

Heitler and London were both forced from Germany by the 

Nazis, Heitler for his Jewish ancestry and London for being a Jew. 

Heitler stayed in Europe, although he was interned as an enemy alien 

in Britain for a short time because of his German citizenship. He 

eventually settled in Switzerland. London settled in the United 

States, teaching at Duke University in Durham, North Carolina. 

But though the work of Heitler and London was progress, there 

is very little chemistry that involves only hydrogen gas, so a more 

general approach was needed. The torch was taken up again in the 

United States, and this time by Linus Pauling. 
Linus Pauling (1901-1994) was born in Oregon. His father was 

the local druggist, which meant he sometimes served as a doctor, too, 

but he had a difficult time making much of a living at either. When 

Pauling was four, the family was forced to seek financial assistance from 

his mother’s family, a circumstance that seems to have left a strong 

impression on Pauling’s mother.!2 When Pauling’s father died, his 

mother thought that Pauling should quit school and secure work to 

help his family. Pauling never did quite quit school, but he did have to 

work all the time he attended classes. In fact, he didn’t formally com- 

plete his requirements for a high school diploma, but his high school 

graciously awarded him one after he won his second Nobel Prize. Even 

without the high school diploma, however, he was able to enroll in the 

chemical engineering program at Oregon Agricultural College, which 

later became Oregon State University. His performance at the college 

was such that he was given the position of instructor in quantitative 

chemical analysis, even though he had just finished the course. His 

future wife, Ava Helen Miller, was a student in this class. 

Though he still had to provide substantial financial help to his 

family, he decided to go to graduate school, again while working. He 

wanted to study under Lewis at Berkeley but he couldn’t wait around 

for the school to decide if they would accept him, so he went to Cal- 

ifornia Institute of Technology (Cal Tech) instead, where he could 

work as a teaching assistant while taking classes. He received his 

Ph.D. there at the age of twenty-four. 
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A year later he received a scholarship to study in Germany, where 

he started working on the quantum mechanics of bonding. He ran into 

his own quarrels with notables over priority of ideas and was rather 

harshly accused of ethical malfeasance by British physicist W. L. Bragg, 

whom we will meet in another context, though Pauling had no diffi- 

culty speaking in his own defense. Then he was offered an assistant pro- 

fessorship back in the United States at Cal Tech. He believed he was 

receiving a joint appointment as professor of theoretical chemistry and 

mathematical physics, but when he arrived his plaque read “professor 

of chemistry.” Miffed but undaunted, he proceeded to produce land- 

mark work in theoretical chemistry and mathematical physics. 

There were other theories of the chemical bond that were emerg- 

ing at about this same time, but Pauling preferred to stay with modifi- 

cations of the valence bond theory because it was something that could 

be visualized and made pretty good predictions for chemists. 

To understand why the valence bond is something you can visu- 

alize, for a moment consider a rodeo and a cowherder doing rope 

tricks. In a typical rope trick, a cowherder twirls a rope, being careful 

to flip the rope, to put energy into the rope, at just the right time so 

that the rope maintains a stable orbit, tracing a figure such as a circle 

or a figure eight. An electron in its circuit around the nucleus can be 

thought of as doing something similar: tracing out a stable orbit that 

can be calculated and predicted by quantum mechanics. 

One important difference between a rope trick and an electron 

orbit is that the orbits are three-dimensional instead of flat: The circle 

of the rope trick becomes a spherical orbit and the figure eight of the 

rope trick becomes a set of three three-dimensional dumbbell shapes. 

The dumbbell shapes appear to line up on an atom like the staff and 

arms of a weather vane: one arm pointing north/south, one arm 

pointing east/west, and the staff pointing up/down. But please bear 

in mind that the atom neither knows nor cares what we call north or 

south. In the absence of an electric or magnetic field, a collection of 

atoms would have these weather vanes oriented in all possible 

random directions. By visualizing orbits this way, one can speak of the 

bond that forms when these orbits overlap and begin to share elec- 

trons. When two electron-orbit weather vanes come close enough to 
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touch, there can be an overlap and blending of the orbits to make a 

bond. There is one small problem, though. For even the simple mol- 

ecule of methane, the orbits have the wrong shape. 

A molecule of methane, swamp gas, is formed from a central 

carbon nucleus surrounded by four hydrogen nuclei. Because the 

electrons associated with the bonded hydrogens are all negatively 

charged, they can be thought of as repelling each other. Each of the 

hydrogen nuclei moves as far way from the other as possible, which 

results in a four-pointed figure, sort of like four balloons tied 

together by their ends, pointing in four opposing directions. But the 

best electron orbits that the carbon atom has to offer are the dumb- 

bell orbits, which are pointed in six directions, not four. Pauling’s 

inspiration was to mathematically combine the spherical orbit with 

the three dumbbell orbits (sort of a championship rope trick), which 

produces four new orbits that have the right directionality. This 

imbued valence bond theory with new life. 

Pauling continued to develop the valence bond theory and reap 

the rewards of its application, but like everyone else, his work was 

interrupted by World War II. Though he did work on projects in sup- 

port of the war, he turned down work on the Manhattan Project. He 

and his wife fought the internment of Japanese Americans, some of 

whom they knew personally. As he became more politically involved 

during and after the war he found himself beset by difficulties from 

the government. Not given to conciliatory sentiments, he took it on 

the chin more than a few times, despite his later accomplishments 

concerning biologically important compounds. 

For the record, there were other people working on ideas similar 

to Pauling’s, notably John Slater (1900-1976).13 Like Pauling, Slater 

also recognized that atomic electron orbits could be combined to 

create new solutions to the Schrédinger equation and provide the 

three-dimensional features required for real-world molecules. Slater 

introduced the term directed valence for what he and Pauling were 

doing. British chemists, notably Nevil V. Sidgwick, predicted the 

shapes of molecules by employing Pauling’s and Slater’s ideas about 

the ability of electrons to adjust their orbits and positions to mini- 

mize repulsions.!4 The resulting theory, valence shell electron pair 
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repulsion theory, was highly successful, predicting structures that 

could be verified by spectroscopy. These methods and theories, as 

well as ways of depicting atoms as a nucleus surrounded by static elec- 

trons, came to be called Lewis dot structures, and are still used today 

because of their power to predict three-dimensional shape and 

bonding. The valence bond approach is also still widely employed to 

visualize how atoms and molecules come together to form new com- 

pounds. Chemistry occurs when orbits overlap, and these simple 

models have impressively accurate predictive power. 

But the chemists were aware that there had to be a more complete 

picture to bonding. The valence bond approach could be likened to a 

stick-figure model of the human form: very useful in some applica- 

tions, but still a far cry from the real thing. There were unsolved prob- 

lems in spectroscopy, statistical mechanics, and reactivity that needed 

a better model. But, as we have seen before, as better models emerge, 

the pictures become less simple, which is what happened in this case, 

too. But though some visual power was lost, the elegance of the 

system was certainly preserved. The new bonding model grew, once 

more, out of the work of the marvelous mathematicians. 



Chapter 23 

System and Symmetry 

THE FURTHER DEVELOPMENTS OF QUANTUM CHEMISTRY 

I heave the basketball; I know it sails in a parabola, exhibiting perfect 

symmetry, which is interrupted by the basket. It’s funny, but it 1s always 

interrupted by the basket. 

Michael Jordan, basketball player, circa 1990 

o flesh out our stick figure picture of molecular orbits, to advance 

the art of divining molecular orbits from atomic orbits, more 

methods had to be imported from the mathematicians and from more 

mathematicians than there is room to mention. However, to pay our 

respects, we will acknowledge two that are particularly worthy of note: 

Emmy Noether and Evariste Galois. Although their work was in 

abstract fields of mathematics—symmetry and group theory—it will be 

these types of techniques that will be needed. What Noether noticed 

was that from snowflakes to rainbows to starfish to antimatter, there is 

262)” 
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an inherent connection between symmetry and natural law. What 

Galois noticed was that if you turn a starfish over, you still have a 

starfish, but if you slice it down the middle, you have a different beast. 

Emmy Noether (1882-1935) was born to a Jewish-German family, 

the oldest of four children. Her father was a well-respected professor of 

mathematics. At that time in Germany, women had to gét explicit per- 

mission from the professor to take a university course, but Noether’s 

father’s influence may have helped her. She earned her doctorate by the 

age of twenty-five, summa cum laude. Though she was not allowed to 

start a university teaching career, she continued to publish and live in the 

enriched academic environment of her father and his colleagues.1 

In 1915, when she was thirty-three, she was persuaded by the fac- 

ulty at G6ttingen to teach there unofficially while they worked to 

have her added to the permanent faculty. In the arguments over her 

appointment, one of her supporters is said to have stated, “I do not 

see that the sex of a candidate is an argument against her admission 

as Privatdocent. After all, we are a university not a bathing establish- 

ment.”2 While at Géttingen, Noether gained an excellent reputation 

as a mathematician in the field of invariants; that is, mathematical 

objects that are not changed under certain transformations (such as 

turning the starfish over). Because of her skill, she was asked to 

examine a particularly sticky problem in the developing theory of 

general relativity. She found the solution requested and in the process 

developed a general theorem to cover similar situations. The essence 

of Noether’s theorem was to show that symmetry is of fundamental 

importance in the physical world. Noether’s theorem was read and 

praised by Einstein and others for its far-reaching applicability. Of 

course, praise from Einstein did her no good—or worse—when the 

Nazis came to power. Bryn Mawr College in Pennsylvania was 

nonetheless glad to receive her, so she moved to the United States. 

She taught there and also at the Princeton Institute for Advanced 

Study until her death at the age of fifty-three. 

Noether’s theorem, though more far-reaching than is being pre- 

sented here, can be explained by a very practical concern: surgery. 

There is an inherent symmetry in the human body and any operation 

that disturbs that symmetry is not good medicine. Someone going in 
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for a nose job does not want to come out with an ear attached to a 

leg. Similarly, any operation applied to a model of a physical system, 

such as a wave function, cannot change the symmetry of that model if 

any believable result is to be obtained. Applying Schrédinger’s equa- 

tion to ethanol, which has oxygen attached to carbon and hydrogen, 

should not return the energy for diethyl ether, which has the same 

atoms but with oxygen attached to two carbons. So how does one 

know if an operation is going to disturb the symmetry? Read on. 

Our second hero has a sad story. Evariste Galois (1811-1832), 

was born in France and was an indifferent student until he took his 

first class in advanced mathematics at the age of sixteen.? During his 

final university exams, his mathematics examiner was impressed with 

his knowledge, but his language examiner was worried, believing the 

boy might even be half-witted. Once out in the professional world, 

he was encouraged by respected mathematicians of his day, but bad 

luck haunted him. He submitted an important paper to be consid- 

ered for a prize, but the paper was misplaced when a referee died. He 

tried the well-trod path of tutoring for a living, but his communica- 

tion skills were so poor that no one would pay him his fee. 

The famous mathematician Sophie Germain knew of his plight 

and wrote a letter to a friend describing his financial and emotional 

difficulties, but by that time he was beyond help, even if it were forth- 

coming. He was arrested for making drunken threats against the 

king, acquitted, and arrested again. On his release, he was killed in a 

duel over love and politics, though the exact reasons were never clear. 

Abandoned by his second, he was found dying by a peasant. His 

brother and a friend, following his wishes, copied his mathematical 

papers (some of which, tradition has it, were scribbled on the last 

night of his life) and sent them to famous French mathematicians. 

Finally, in 1846, fourteen years after his death, Galois’s work was 

understood, fully appreciated, and published. 

What Galois had discovered was the basis for what became group 

theory. for any given solution of an equation there is a group of opera- 

tions that are associated with it. What does this mean for physical chem- 

istry? It means that when the symmetry of a molecule is known, there is 

a group of operations that will preserve the symmetry of the molecule 



XV& 265 

Fig. 26. Emmy Noether. Courtesy of the Bryn Mawr College Library. 



266 MVC! = Magick, Mayhem, and Mavericks 

and other operations that will not. Group theory provides us with the 

set of mathematical operations that preserves the symmetry of the mol- 

ecule: just as invariant as you would wish to be after a surgical procedure 

or upon seeing your reflection in a mirror. This is as important a con- 

sideration in physical chemistry as it is personally: Molecules are changed 

by chemistry, not mathematics. The first important application of sym- 

metry and group theory to consider will be the development of the 

prime rival to valence bond theory: molecular orbital theory. 

In 1929 John Edward Lennard-Jones (1894-1954) suggested 

deriving functions for molecular orbits by adding atomic orbits 

instead of multiplying them. The result was one big orbit around the 

bonded nuclei: a molecular orbit for the electron. But how did one 

go about choosing which atomic orbits to add? The spheres? The 

dumbbells? The complicated rope tricks that emerge after that? And 

how would you know when to quit? Almost any arbitrary shape can 

be created from a set of building blocks if you use enough of them. 

The answer was symmetry. Once the symmetry of the molecule was 

fixed, Galois’s work suggested that there would be a limited group of 

operations that could manipulate the molecule and leave the sym- 

metry unchanged. So any atomic orbit that contributed to the mole- 

cular orbit would also have to survive these operations with its sym- 

metry unchanged. These restrictions narrowed the field enough to 

make the calculations tractable. The resulting wave function could 

then be put into the Schrédinger equation and solved for energy. 

But these new molecular orbits manufactured from atomic orbits 

lost their resemblance to their original structures. The sacrificed 

spherical and figure-eight orbits were replaced by odd-shaped com- 

posite clouds that extended over the entire molecule. The word 

orbital was introduced by R. S. Mulliken to stress that these electron 

clouds were regions of electron probability, not electrons circling a 

nucleus (Heisenberg had shown that you could never locate an elec- 

tron long enough to know if it were moving in an orbit). Mulliken 

received the Nobel Prize in 1966 for his molecular orbital theory. 

Naturally a question arises: Why work so hard on a new bonding 

theory when you already have one that seems to be functional? Ini- 

tially, at least, this was a nontrivial question and there were some hos- 
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tile words exchanged between those of the valence bond camp and 

those of the molecular orbital camp. Both theories produced energies 

that were slightly off the mark. It could be argued that time would 

be better invested in improving valence bond theory than clouding 

the issue with a new method. But these arguments fell by the wayside 

as profitable applications of molecular orbital theory continued to 

surface. For one, molecular orbital theory had some interesting 

things to say about reactivity. 

A cloud really isn’t a bad image for a molecular orbital. The mol- 

ecular orbital clouds are a bit more uniform and smoother than the 

ones we are used to seeing in the sky, but the lumps, bumps, and 

extensions into space of molecular orbitals are cloud-like. If idealized, 

smooth clouds can be imagined, this would be close to a picture of a 

molecular orbital. The theorists soon found that several different mol- 

ecular orbitals could be formed from combinations of atomic orbitals. 

For instance, you could add wave equations or you could subtract 

them and various combinations like that. In fact, it is possible to build 

as many molecular orbitals as atomic orbitals are used in their con- 

struction. The molecular orbitals are filled by electrons from the atoms 

that went into making the molecule, two per orbital, starting with the 

lowest energy and filling up, though the molecular orbital, like a house 

on a street, exists whether it is occupied or not. In 1952 in Japan, 

Kenichi Fukui (1918-1998) found that by calculating the energies of 

the molecular orbitals and finding the shape of the frontier orbitals, he 

could predict how one molecule would react with other molecules.® As 

we have mentioned, chemistry happens when electron clouds overlap: 

When two nuclei with electrons around them get close enough, the 

electrons of each will feel the tug of the positive nucleus of the other 

and the push of the alien electron cloud. The colliding nuclei will then 

either separate or their electron clouds will rearrange to minimize the 

tensions and form a bond between them. Fukui showed that the shape 

of the highest energy occupied molecular orbital determines how it 

will fit, how it will react, with other molecules. 

Although Fukui, son of a foreign trade merchant in Japan, 

reported that chemistry was not his favorite course in high school and 

his chemical career was basically chosen for him by his father and his 
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father’s friends, he no doubt felt new affection for the subject when 

he received the 1981 Noble Prize in chemistry. Fukui shared the 

prize with Roald Hoffmann, who developed another important appli- 

cation of molecular orbital theory. 

The team of Robert Woodward and Roald Hoffmann found that 

an interesting class of reactions could be explained in terms of mole- 

cular orbital theory. In 1965 they reported that nature’s insistence on 

the conservation of symmetry in molecular orbitals accounted for the 

behavior of some ring-closing reactions; that is, a reaction where one 

part of the molecule reacts with another, sort of like someone 

touching their toes. They found that if the structure of the highest 

occupied molecular orbital was such that the molecule could react 

and preserve the symmetry, then the reaction would proceed by 

merely warming the molecules. If the structure of the highest occu- 

pied molecular orbitals was such that the reaction would not preserve 

the symmetry, then the reaction would not proceed—unless light 

energy were used to promote an electron to a higher molecular 

orbital. If this molecular orbital had the right structure, then the 

reaction would commence. Thus, molecular orbital theory and sym- 

metry elucidated an entire class of reactions that had previously gone 

unexplained. The situation might be understood by recalling child- 

hood games in which everyone joins hands and forms a ring. As long 

as the symmetry is right—and as long as everyone has a hand to 

offer—a solid ring can form. However, if some children are standing 

on their heads and offer a foot instead, there is no solid ring. Wood- 

ward and Hoffmann were saying that the right input of light energy 

could flip these wayward children and set them to rights, and addi- 

tionally, by knowing the symmetry of the situation beforehand, one 

could predict if light energy would be needed. 

Robert Burns Woodward (1917-1979) was born in Boston, 

Massachusetts, and entered MIT when he was sixteen years old, but 

he was suspended for a term in 1934 for failing to attend classes.® 

After he was allowed back he barreled through and finished his Ph.D. 

by the time he was twenty. He then moved to Harvard, where he 

became instructor at twenty-four, assistant professor when he was 

twenty-seven, associate professor when he was twenty-nine, and full 
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professor by the age of thirty-one. Anyone familiar with academics 
knows this is not a stellar rise—it is explosive. 

Roald Hoffmann’s career progressed a bit differently. Hoffmann 

was born in Poland in 1937. As Jews, he and his family were interned 

in a labor camp during the war until his father managed to smuggle 

the mother and child out with the help of a sympathetic Ukrainian. 

His father attempted to organize an escape for himself and others, 

but the attempt was discovered and he was put to death along with 
most of the rest of Hoffmann’s family. 

After the war Hoffman and his mother left Poland and lived in var- 

ious displaced person’s camps until they managed to make their way 

to the United States. Hoffmann began college with a medical career 

in mind but soon concentrated on organic chemistry and then theo- 

retical chemistry. His background in organic chemistry made him the 

logical choice for Woodward to consult on ring-closing reactions (the 

touching-your-toes reactions). Together they worked out the correla- 

tions between the reactivity and the symmetry of the molecular 

orbitals. Woodward received the Nobel Prize in 1965 in recognition 

of his extensive body of work in organic chemistry. Hoffmann would 

likewise receive a Nobel Prize in chemistry in 1981 and has become a 

published poet and writer, as well as remaining an active researcher.” 

In addition to the wonderful results detailed above, molecular 

orbital theory provided valuable insights into the premier probe of 

molecular structure: spectroscopy. Spectroscopy, as we’ve noted, is the 

technique that gave the first evidence that there is an internal struc- 

ture to the atom, and now the light would be turned on molecules. 

To understand why light interacts with molecules, recall that light 

can be modeled as an oscillating electromagnetic field. The molecules, 

with their lumpy peaks and dips of electron clouds always rotating and 

vibrating (our squiggly jellyfish), should interact with the push and 

pull of a waving electric and magnetic field. But not all wavelengths of 

light interact with all molecules. In fact, the exact wavelengths of light 

that are absorbed by a particular molecule are as characteristic of that 

molecule as fingerprints. Why are only some wavelengths of light 

absorbed by the rotating and vibrating molecule but not others? 

Because molecules aren’t jellyfish. They’re more like wishbones. 
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If you throw a jellyfish across the room it will rotate and vibrate 

as well as fly forward, but a wishbone will not vibrate because the two 

sides are too stiff to bend and vibrate. Molecules are also vibrationally 

“stiff.” Like the cups in Planck’s field, definite amounts of energy 

have to be put in before the molecule starts vibrating at excited levels. 

Not just any amount will do. When the full spectrum of light is 

shown on a molecule, just these particular wavelengths of light will 

be absorbed. The pattern of discrete wavelengths that a molecule 

absorbs makes up the fingerprint for the molecule. 

Once the quantum nature of molecular vibrations was understood, 

a long awaited result emerged: the near fit between heat capacity and 

the kinetic theory of gases. Maxwell and Boltzmann couldn’t quite fit 

the experimentally measured ratio of heat capacities because they knew 

molecules had to be vibrating as well as rotating and translating, but 

they had to assume any amount of energy could excite vibrations, just 

as in classical mechanics. They didn’t know about quantum mechanics. 

Without knowing about wishbones, they had to assume jellyfish. But 

when the rigidity of molecules was calculated by quantum chemistry, 

it became apparent that at room temperature there just wasn’t enough 

energy to boost the molecule to an excited vibrational mode. So less 

energy was being absorbed by the molecule as a whole. When theo- 

rists took quantum mechanics and statistical mechanics into account, 

they got their match with the kinetic theory of gases. The main con- 

tributors to the marriage of quantum mechanics and _ statistical 

mechanics include Niels Janniksen Bjerrum (1879-1958), one of the 

few people Jean Perrin tolerated to work with him on his delicate 

experiments, and John von Neumann (1903-1957), the mathemati- 

cian who developed game theory, a method by which winnings can be 

maximized or losses minimized in a competition with an opponent of 

known means and resources.8 Neumann’s game theory had been used 

to predict market trends and diplomatic strategies. 

Group theory is used to determine the nature of the vibrational 

motions of molecules: Once the symmetry of the molecule has been 

established, no vibrational mode can be proposed that would break this 

symmetry. Symmetry also dictates which light-induced transitions 

between vibrational states will be allowed and which will not be observed. 

Once these vibrational levels are identified, it must be acknowl- 
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edged that they are quantized, meaning they can only be excited by a 
certain basic amount of energy (recall the sudden shattering of the 
wine glass when hit by the right pitch of sound). However, higher 
vibrational levels can be excited by integral multiples of this basic unit 
of energy. So, like climbing the rungs on a ladder, the molecule can be 
excited to higher and higher vibrational levels until it simply flies apart. 
This idea of a ladder of vibrational energies was used by Hertha 
Sponer (1895-1968), the co-creator of a classic physical chemistry 
technique, the Birge-Sponer method, which is used to calculate, from 
vibrational spectra, the energy required to break a chemical bond. The 

procedure consists of summing up all the energies required to boost 

the bonded atoms to successively higher vibrational levels until the 
bond vibrates apart.? Hertha Sponer developed the technique while 

working with Raymond Thayer Birge (1887-1980), an influential 
researcher in molecular spectroscopy and quantum physics at the Uni- 

versity of California at Berkeley.!9 Sponer joined the department of 

physics at Duke University in Durham, North Carolina, in 1936 and 

1946 she married James Franck (1882-1964), the 1925 Nobel Prize 
winner in physics and also an important contributor to the theory of 

molecular spectroscopy. Sponer had come to the United States from 

Germany about the same time as Emmy Noether. A former physics 

student at Duke recalls that Sponer was wont to speak excitedly about 
her work and frequently walked the campus with two Doberman pin- 

cers that only understood German commands and were nearly as tall 

as Sponer herself. This same student remembers being very grateful 
for having passed the class she took from Sponer, though she finished 

at the top of her class in the second semester of the course, taught by 
a different instructor.!1 In the archives of Duke University resides a 

letter from Robert Millikan (1868-1953), the person credited with 

first measuring the fundamental charge on an electron, to then presi- 

dent of Duke University, W. P. Few, explaining that he believed Few 

would “get more for [his] expenditure if in introducing young blood 

into a department of physics [he] picked one or two of the most out- 

standing younger men, rather than ...a woman.”!? President Few 

evidently discounted Millikan’s advice, as Sponer served thirty years 

on the faculty at Duke. 

While group theory helped to sort out vibrational spectra, the 



272 SVC! = Magick, Mayhem, and Mavericks 

electronic spectra of molecules, wherein light promotes an electron 

from one molecular orbital to another, still posed challenges. In 1929 

Gerhard Herzberg (1904-1999) proposed that adding atomic wave 

equations would form bonding orbitals, whereas subtracting them 

would form antibonding orbitals.13 This important concept helped 

not only clarify the spectra of compounds with electrons in higher 

energy orbitals (excited states) but also offered an explanation for 

why oxygen is attracted to a magnet. It also explains why the Starship 

Enterprise had so much trouble with its dilithium crystals. 

In bonding orbitals, electrons find themselves spending time 

between the two nuclei and holding the nuclei together like glue. 

The electrons are attracted to the nuclei and shield the positively 

charged nuclei from each other. If an electron is removed from a 

bonding orbital and promoted to an antibonding orbital then the 

bond becomes weaker or disappears. Dilithium would have two elec- 

trons in a bonding orbital, but if light of the right wavelength hit it, 

an electron would be promoted to the next closest antibonding 

orbital and that would be the end of the dilithium bond. Diatomic 

neon, on the other hand, is never observed because molecular orbit 

theory predicts that it should have equal numbers of bonding elec- 

trons and antibonding electrons. Diatomic oxygen (atmospheric 

oxygen gas) ends up having two unpaired electrons because there are 

two molecular orbitals at the same energy, and the two electrons that 

are available to fill them go into separate orbitals to get as far away 

from each other as possible. They also have their spins oriented in the 

same direction. This means there is a net magnetic field generated 

and that oxygen gas can be trapped by a magnet. Linus Pauling used 

this magnetic property of oxygen to develop monitors for oxygen 

levels in submarines in WW II,!* and this process is still used to mon- 
itor oxygen in blood during anesthesia. 

Gerhard Herzberg, born in Hamburg, Germany, worked with 

both Heitler and Lennard-Jones.!5 He originally wanted to be an 

astronomer but was told he would have to be independently wealthy 

to pursue that career. So he studied physics and engineering instead 

and set off on an academic career. In 1935 he had to leave Germany 

because his wife and collaborator, Luise Oettinger, was Jewish. They 
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were allowed to leave with only ten German marks each, equivalent 
to $2.50, but they were able to take their spectroscopic equipment 
and personal belongings. 

The Herzbergs fled to the University of Saskatchewan, where 
Herzberg had accepted an appointment. He pursued research grants 
(his first was for $1,500), and he and his wife did extensive spectroscopic 
research, collecting and interpreting the spectra of small molecules of 

atmospheric importance. His wife died in June 1971. He learned that 

he had received the Nobel Prize in chemistry later that year. 

With the advent of electronic computers in the 1950s the tedious 

computations required by molecular orbital theory became feasible. 

Since then molecular orbital theory has become the tool of choice for 

all applications except one: the simple intuitive explanation of mole- 

cular bonding and three-dimensional structure. Here valence bond 

theory is still very useful and is a well-respected pedagogical device. 

So now that the problem of molecular bonding and molecular 

structure had been developed to a point of a reasonable usefulness, 

was the job of the physical chemist reduced to tidying up loose ends? 

Not by a long shot. There remained and still remain major challenges 

for the physical chemist. Molecules aren’t just fluffy white clouds 

floating freely in the sky. They can also be thunderheads, charged 

with electricity. This was the problem tackled by the next group we 

will consider: the Ionists. The Ionists (or, in German, Ioner)1© were 

named for their radical belief in the independent existence of a 

charged particle, or zov, in solution. Why should this be such a rad- 

ical stance? Because two oppositely charged particles, like the oppo- 

site poles of a magnet, should be attracted to one another. But we 

never see beakers mysteriously sliding toward each other or slamming 

together on the laboratory bench. Yet we say we have established the 

existence of ions in solution. It is because of these current-carrying 

characters that people are so strongly advised against changing light 

bulbs while standing in a puddle. So what is really going on and why? 

Let’s look for the answer with the Ionists, and join them as they ques- 

tion why ions don’t always slam together but neutral molecules 

sometimes do: the result of an elusive quality they called affinity. 
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.. . theory should be measured by its fruits. Here . . . applies the proverb: 

“Virtue must show itself.” 

Jacobus van’t Hoff to Svante Arrhenius, circa 1900 

he Ionists were so named because of their belief in the existence 

of electrically charged species, that is, zons, in solution.! But they 

were much more than that. Just as Isaac Newton found an ingenious 

and elegant model for his force of gravity, the Ionists sought a sim- 

ilar model for another force—chemical affinity—the force they 

believed attracted one element to another in a chemical reaction. But 

even as the Ionists admired Newton’s model of gravity, they knew 

they could not hope for such economy in their model of affinity. 

Newton, on a nightly basis, could look up into the sky and assure 

himself of the reality of his objects, but the Ionists had to remain 

skeptical of the yet unproven atoms. Newton contended with an 

attractive force that diminished with distance, but the Ionists dealt 

with forces that were at times attractive and at times repulsive. 

Newton’s planets followed the same force law, winter or summer, but 

the affinity of the Ionists behaved differently on hot days than on 

cold. Newton’s masterful formulas explained the paths of cannonballs 

and the orbits of the constant planets, but the Ionists dealt with 

materials that changed form and identity—sometimes lazily, some- 

times explosively. 

(275 
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Given the difficulties, it is easy to understand why a more estab- 

lished, more sober school of chemists saw the Ionists as on a fool’s 

errand. They saw as the mission of the chemists to continue to syn- 

thesize and characterize new materials and to leave physics to the 

physicists. The first inroads into the new physical chemistry, then, had 

to come from those on the outside looking in. The academics in this 

new field had to work with lower budgets and carry heavier teaching 

loads. They had to risk ridicule and even censure. Though photos of 

these first physical chemists, taken when they were older and more 

entrenched, convey an aura of authority and austerity, they began as 

a raucous and rebellious lot. It would be more fitting to see snapshots 

of them in shirtsleeves, leaning over long tables in dimly lit beer halls, 

scribbling down equations on scraps of paper, using steins and 

sausages for models, and arguing far into the night over mass action, 

electrochemistry, osmosis, and affinity. 

In 1864 efforts to put mathematical reins on chemical affinity 

came from the two Norwegians that we first met in our discussion of 

the contributions of Willard Gibbs—Cato Guldberg and Peter 

Waage. They had been friends from youth and became brothers-in- 

law when they married two sisters. Waage was a chemist and Guld- 

berg was a mathematician, and they both taught for a living. Their 

goal was to find a mathematical relationship that would describe the 

course of chemical reactions, and to a fair degree, they succeeded. 

Newton’s gravitational attraction is proportional to mass, so accord- 

ingly, they looked for mass to play a role in affinity. What they found 

was by no means a tidy proportionality between the amounts of the 

reactants and the force of the reaction. But they did find a constant 

ratio between the masses of the products and reactants at equilib- 

rium, now known as the equilibrium constant. It wasn’t exactly what 

they were looking for, but they liked it. The observation that adding 

more of one species would cause reaction to occur until equilibrium 

was reestablished became known as the law of mass action. 

An analogy for the law of mass action might be a party in an 

apartment with three rooms: a living room, a bedroom, and a 

kitchen. The first wave of people arrives, comes into the living room, 

but quickly disburses to the other rooms. If the roof were taken off 
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of the apartment, you would see some people in the kitchen, some 

people in the living room, and some people in the bedroom, and the 

relative populations would be pretty constant. 

Now let’s see what happens when a new group of people arrives. 

This new group again crowds into the living room, but soon distrib- 

utes themselves into the kitchen and the bedroom. At equilibrium 

there will be more people in each room, but about the same ratio of 

kitchen people to living room people and bedroom people to living 

room people and kitchen people to bedroom people. The party is an 

example of social mass action. Chemical reactions were said to obey 

the law of mass action if increasing the concentration of reactant (let- 

ting more people into the party) increased the amount of product 

(people in other rooms) or vice versa. The Ionists were very pleased 

with their knowledge of this mathematical ratio, but they would have 

been more pleased to know why it existed. They kept looking for 
chemical affinity. 

Another place the early physical chemists looked to find the force 

of affinity was in the action of electricity on materials, and for good 

reason. They knew that positive and negative charges were attracted to 

each other, so they hoped that electrical charge might account for all 

affinity. But the current required to produce a certain mass of product 

didn’t seem to depend on the affinity, that is, on how strongly the ele- 

ments were attracted to each other. For the same amount of current, 

the same amount of zinc could be collected from zinc chloride as zinc 

hydroxide, but zinc chloride dissolves readily in water and zinc 

hydroxide does not. As we now understand the problem, the current 

is a flow of electrons and the number of electrons required to electri- 

cally neutralize positively charged zinc should be the same no matter 

what it is bonded to. But the early investigators of electrochemistry 

were loath to accept atoms, let alone electrons. 

They also had problems explaining how a current might be car- 

ried through an aqueous solution when it wasn’t carried at all 

through air and only very poorly through pure water. Faraday had 

proposed that when two electrodes are placed in a solution and 

hooked up to a power source, the electrical strain between them tem- 

porarily breaks down the solution into charged particles that can 
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carry current. But in some situations—such as batteries—current can 

flow even in the absence of an applied potential. This phenomenon is 

easily demonstrated with a lemon, a galvanized (or zinc-coated) nail, 

a penny, and a voltmeter. When a penny is stuck in one end of a 

lemon and a galvanized nail in the other, a voltage is measured across 

them: a lemon battery. So although electrochemistry offered hope for 

explaining affinity, there remained many unanswered questions. 

Working with solutions many times more dilute than lemon juice, 

Svante August Arrhenius, in his doctoral dissertation of 1864, made a 

rather tentative suggestion. He said that current could be carried in 

solution in the absence of applied potential by certain “active agents” 

that existed at all times in the solution. Though Arrhenius would not 

go so far as to name them in his dissertation, these active agents would 

soon be called ions. Although the empirical evidence was on his side— 

solutions carry current—he hesitated because he couldn’t explain, 

once separated, why the ions didn’t simply come back together again. 

To ease his conscience on this point, Arrhenius proposed that only a 

small portion of a material is ionized at any one time. Arrhenius said 

ionization could be described by the law of mass action. 

Svante Arrhenius (1850-1927) was born to a Swedish farming 

family. When his father obtained a management (nonacademic) posi- 

tion at the University of Uppsala, the family moved to the city. Arrhe- 

nius matriculated at Uppsala but after five years there went to Stock- 

holm to work with a physicist on the electrical conductivity of solu- 

tions. His dissertation, however, was evaluated at his home institution 

at Uppsala and his examiners, one chemist and one physicist, passed 

it, but with such a poor evaluation that he had virtually no hope for 

a university position. Arrhenius, looking for a second chance, sent his 

dissertation to Rudolf Clausius, who had once been a young rebel 

himself, but now the staid professor did not respond. Still hoping, 

Arrhenius sent his dissertation to a couple of outlanders: Jacobus 

van’t Hoff in the Netherlands and Wilhelm Ostwald in Russia. Van’t 

Hoff read it and responded favorably. Ostwald did better than that; 

he met with Arrhenius and asked him to join the faculty at his insti- 

tution in Russia. Arrhenius was not enthusiastic about leaving 

Sweden for Russia, but with the leverage of an outside offer, he got 
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a position at Uppsala. Then the physicist under whom he had done 

his conductivity work helped him secure funds to travel to the labs of 

Ostwald, van’t Hoff, Boltzmann, and others. When Arrhenius 

returned he had more confidence in his results.2 

Why had Arrhenius’s proposal caused him so much difficulty? 

One reason, as stated, was that the ions, once separated, should 

recombine, and indeed, a satisfactory answer as to why they didn’t 

would not be found until the early 1920s. But another problem was 

that nobody knew what to do with the theories. The chemists didn’t 

think of them as chemistry and the physicists didn’t think of them as 

physics. But the physical chemists would give them a home. One 

physical chemist in particular, van’t Hoff, appreciated Arrhenius 

because Arrhenius helped van’t Hoff get a handle on his own weighty 

problem with affinity: osmosis. 

Jacobus Henricus van’t Hoff (1852-1911) decided to be a scien- 

tist after working one summer in a sugar factory and surmising fac- 

tory work was not what he wanted to do.? In 1877 he was appointed 

lecturer in theoretical and physical chemistry at the University of 

Amsterdam, where he began his investigations into osmotic pressure. 

Osmosis is the process by which skin puckers in the bathtub and 

pickles pickle in the vat. When solutions of two different concentra- 

tions are separated by a semipermeable membrane (solvent can flow 

through but solute cannot) the solvent will flow in the direction that 

will cause the greatest dilution. Skin cells are filled with a concen- 

trated soup of salts, proteins, and other materials. In the bathtub, the 

bath water flows into the salty solution of the skin cells in an attempt 

to dilute the cells. Because the skin forms a semipermeable membrane 

(water can flow in, but the cells cannot flow out) the skin swells and 

buckles into folds. In pickles, water flows from the cucumber cells 

into the salty brine in an attempt to dilute the brine and the pickle 

shrivels. But pickles don’t shrivel to dust and our skin doesn’t 

explode in bath water because the solvent flow stops when an 

opposing, pressure is built up within the skin or in the brine. This 

opposing pressure, the pressure that allows osmosis to go so far and 

no further, is called the osmotic pressure. 
As we understand it now, osmosis is an entropy effect—it is an 



280 MC __ Magick, Mayhem, and Mavericks 

attempt by nature to create more chaos. Dilute solutions are more 

chaotic than concentrated solutions in the same way that a messy desk 

‘5 more chaotic than a neat one. The ability to locate something isa 

measure of order: If you can locate everything on your desk, your 

desk is ordered; if you cannot, it is disordered. A dilute solution is 

more disordered than a concentrated solution because it is more dif- 

ficult to locate the solute in a dilute solution: You can locate and 

extract a drop of red dye when it is concentrated in a teaspoon, but 

not when it is diluted in an ocean. Osmosis is important to many life 

processes and at the time was of interest to physicians, biologists, and 

botanists; however, van’t Hoff was interested in osmosis because he 

was attempting to get a handle on affinity. 

Van’t Hoff wasn’t thinking in terms of entropy. Van’t Hoff’s 

premise was that affinity attracted solvent to the semipermeable mem- 

brane or the solute molecules on the other side. What he found, how- 

ever, was that his dilute solutions seemed to display a gaslike behavior: 

His osmotic pressure increased as the temperature increased, when 

kept at a constant volume, just like steam pressure in a pressure 

cooker. According to the story, the similarity between osmotic pres- 

sure and gas pressure occurred to van’t Hoff when he ran into a 

botanist friend on the street outside his laboratory.+ The friend men- 

tioned he had received a letter from a fellow botanist, William Pfeffer 

(1845-1920), who was experimenting with the temperature depen- 

dence of osmotic pressure.5 When the botanist relayed that the pro- 

portionality between osmotic pressure and temperature was | /270, a 

light bulb went on for van’t Hoff. He knew that the lowest possible 

temperature on the gas-law temperature scale, established by Kelvin, 

was minus 273 Celsius. Could gas laws be related to solutions? He 

tried using gas-law equations for osmosis data and found a good fit. 

Osmotic pressure increases with increasing temperature, just as gas 

pressure increases with temperature. Osmotic pressure increases as 

more solute is added, just as gas pressure increases when more gas is 

added. Osmosis had gotten him no closer to chemical affinity, but he 

had dramatically demonstrated that physics applies to behavior of 

solutions as well as the behavior of gases. He found a set of straight- 

forward algebraic equations to describe solution behavior. 



The Ionists and Affinity X VE 281 

Van’t Hoff soon found that for certain solutes he had to introduce 

a correction factor, now called the van’t Hoff factor, to help them fit 

the gas-law pattern. What was the origin of this factor? Arrhenius, the 

struggling postdoctorate he had encouraged, managed to return the 

favor by explaining the van’t Hoff factor. Arrhenius wrote van’t Hoff 

a letter saying that it appeared that the solutes that were causing prob- 

Jems were also solutes that enhanced the conductivity of aqueous solu- 

tion. Van’t Hoff had found that osmotic pressure depended on the 

amount of solute in solution. If this were interpreted as the number of 

particles in solution, then this number would be greater if the solute 

dissociated into ions, which was what Arrhenius had claimed enhanced 

conductivity. For van’t Hoff this was the missing piece to his puzzle 

and convinced him of the correctness of his theory. Arrhenius wrote 

up his ideas in the first volume of a new journal, Zeitschrift fiir 

Physthalische Chemie, which had just been founded by another of 

Arrhenius’s old friends, Wilhelm Ostwald. 

Wilhelm Ostwald (1853-1932) was of German ancestry, but 

born in what was then Russia. At the age of thirty-five he was offered 

a position at a university in Leipzig, Germany, but only after van’t 

Hoff and three others had turned it down, probably because it car- 

ried a heavy teaching load. But Ostwald accepted the teaching load 

and less-than-lucrative support for his research (he ended up paying 

for extra assistants out of his own not-too-deep pockets) because 

Russia was beginning to phase out foreign academics. He was glad 

for the opportunity for a graceful exit. He also saw it as a chance to 

pursue research on his ideas on affinity. Ostwald, as we have noted, 

was intrigued by Arrhenius’s ions, especially an extension of Arrhe- 

nius’s ideas: that conductivity might be a measure of affinity. The 

basis for Arrhenius’s proposition was that solutions of acids and bases 

make good conductors and the reaction between acids and bases also 

gives off heat (our lemon battery is an example of an acid solution 

contained in a lemon skin). 
The notion that heat given off by a chemical reaction might be a 

measure of chemical affinity had been around for sometime. It was 

assumed that elements attracted to each other should give off energy 

as they come together because energy is required to keep them apart. 
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Fig. 27. Wilhelm Ostwald. Edgar Fahs Smith Collection, University of Pennsylvania 

Library. 
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The amount of heat given off, it was thought, should be proportional 

to their mutual affinity. In the mid-1800s Marcellin Berthelot 

(1827-1907) had stated this idea in the form of a fundamental prin- 

ciple: The only reactions that are spontaneous are the ones that give 

off heat.7 However, annoying investigations kept cropping up that 

found that this was not quite right, and a few dissenters bravely said 

so. The extent to which this was a downright dangerous stance, how- 

ever, is demonstrated by the fate of Pierre-Maurice-Marie Duhem 

(1861-1916). In 1884 Duhem presented a dissertation that followed 

Willard Gibbs and Herman Helmholtz and argued that the balance 

of energy and entropy determined the spontaneity of a reaction. In 

our discussion of statistical mechanics, we illustrated this idea with 

our theater example: People will tend to choose a theater based on 

price and seating. They are willing to pay a higher price if they can 

spread out and be comfortable. Unfortunately Berthelot was still very 

influential in French science and saw to it that Duhem’s dissertation 

was turned down. 

Not only did Duhem have to prepare a new dissertation on a new 

topic, his career was effectively scuttled. He was never called to a 

prestigious position in Paris, even though his work warranted it. 

Van’t Hoff, however, already out of the mainstream as it were, was 

able to develop his own ideas without incurring quite so much hos- 

tility. Van’t Hoff incorporated heat into the law of mass action and 

showed how spontaneous reactions could take in heat, too. 

This idea can be illustrated by returning to our party for a 

moment. At equilibrium, there will be a certain number of people in 

the kitchen, a certain number in the living room, and a certain number 

in the bedroom. The percentage of people in each room will stay 

approximately constant, though the total number of people at the 

party may change. But even though the percentage of people in each 

room will stay approximately constant, the situation is dynamic, not 

static. The kitchen people will not stay in the kitchen all night. They 

will get whatever beverage they want and go into the living room. 

When they enter the living room, some of the living-room people will 

feel the room growing a little more crowded and decide to go into the 

kitchen or bedroom. And so it goes, with people milling from room 
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to room, but, on average, the population of each room staying fairly 

constant. The situation, as van’t Hoff saw it, was similar for chemical 

reactions. He emphasized the dynamic nature of equilibrium by intro- 

ducing double-headed arrows into his equations for reactions. 

To put this idea into mathematics, van’t Hoff adopted an equation 

found by August Friedrich Horstmann (1842-1929) for the temper- 

ature dependence of vapor pressure, and simply said the form also 

applied to solutions.? The beauty of his adaptation was that it showed 

how the equilibrium concentrations would shift with temperature for 

both reactions that gave off heat and those that required heat. Van’t 

Hoff’s equation gave physical chemists a new level of control over 

reactions: They could shift the equilibrium toward products or reac- 

tants by heating or cooling the reaction mixture. They had leverage. 

They had numbers. Chemistry was beginning to feel a bit like physics. 

But though the new equations meant great progress on one 

front, the physical chemists still had no direct handle on affinity. Con- 

ductivity was not a measure of affinity. Osmosis was not a measure of 

affinity. Heat was not a measure of affinity. And when it was estab- 

lished that reactions that required heat could be just as spontaneous 

as ones that gave off heat, some began to question if the concept of 

affinity was useful at all. So in the end it may be said that the Ionists 

accomplished their mission, though perhaps not in the manner they 

had envisioned. The Ionists solved their problem of affinity by for- 

getting affinity. They did not find one simple law to fill the role of 

Newton’s gravity in their chemical systems, but they found a series of 

complex, though reliable, relationships that reflected the complexity 

of the task they had undertaken. 
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Intermolecular Forces 

THE Tik THAT BINDS 

fame es le - 
We see that wine flows through a strainer as fast as it is poured in; but 

siuggish oil loiters. This is no doubt either because oil consists of larger 

atoms or because they are hooked and intertangled .. . 

Lucretius, circa 50 B.C.E. 

Big whorls have little whorls; Which feed on their velocity; 

And little whorls have lesser whorls; And so on to viscosity. 

Lewis F. Richardson, circa 1950 

f all the complexities faced by physical chemists, intermolecular 

forces—the stickiness and repulsions of atoms and molecules— 

has to top the list. People have been thinking about intermolecular 

forces for a very long time, and understandably so. If it weren’t for 

the matter’s stickiness, there would be no condensed phase, and if 

there were no condensed phase we would not exist. But modeling 

intermolecular forces is one of the most complicated topics in phys- 

ical chemistry and has yet to be completely sorted out. 

Why are intermolecular forces so complex? To begin with, these 

intermolecular forces include repulsions as well as attractions. Mate- 

rials stick together, but they aren’t infinitely compressible, either: 

Trying to compress water in a swimming pool with a belly flop will 

result in a sore belly. But the dual nature of intermolecular forces is 

only a minor part of the problem. 

Intermolecular forces are electrical in nature, basically the 

Coulomb interaction we demonstrated with the roll of adhesive tape; 

285 
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the force becomes stronger the closer you get and falls off just as 

quickly, unlike electrical charges attract and like charges repel. But the 

situation is much more complex. The kinetic theory of gases states 

that particles of matter are in constant motion: vibrating, rotating, 

and flying across the room. Moreover, they are not all flying at the 

same speed, but a range of speeds. They are not all rotating at the 

same rotational frequency, but in a range of frequencies. On top of 

that, materials can form charged species, ions, made from one, two, 

or many atoms. And in addition to that, molecules are mushy. 

One of the most contentious questions for researchers of the 

1800s and early 1900s was why water is so sticky. We now know that 

there are several reasons water molecules stick, one of which is called 

dipole interaction. Molecules made from unlike atoms can form elec- 

trical dipoles; that is, they can have a more negative end and a more 

positive end, so they can behave rather like magnets as far as attrac- 

tions are concerned. But magnets that are rotating, vibrating, and 

flying across the room. 

Water has a more positive end and a more negative end because 

it is made of two different kinds of elements, hydrogen and oxygen, 

and there is an uneven sharing of the electrons in the electron cloud 

around the nuclei. But liquid nitrogen is made of just one kind of ele- 

ment, and an electron doesn’t discriminate between one nitrogen 

nucleus and another, so there is no reason for uneven sharing of elec- 

trons. But liquid nitrogen exists, albeit at a very low temperature 

(liquid nitrogen is used to treat warts by freezing them). What holds 

liquid nitrogen together if it isn’t monopole or dipole attractions? 

Quantum chemistry shows that the molecules aren’t rigid billiard 

balls or magnets, they are more like mushy clouds that can deform 

and distort. These distortions can cause a momentarily uneven distri- 

bution of charge, a temporary dipole, even in a spherical atom or 

molecule, which can be a source of attraction. 

So the problem becomes apparent. The molecules are in constant 

motion. There are attractions and repulsions. There are interactions 

between ion and ion, dipole and dipole, temporary dipole and tem- 

porary dipole—and there are interactions between ion and dipole, ion 

and temporary dipole, and so on. In mixtures and solutions the situa- 
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tion is even more complex: The magnitude of each of these attractions 

depends on the species involved. Thus the permutations explode. 

But the effort to understand these forces is well spent. The exis- 

tence of intermolecular forces is responsible for soft towels soaking 

up water, fluffy clouds forming in the sky, and enzymes carrying out 

the process of life. Intermolecular forces cause the friction that con- 

founded Leonardo da Vinci and delayed the understanding of 

motion. Intermolecular forces are extremely important—and their 

understanding has challenged many the clever mind. 

Newton thought there was only one force between particles and 

that he should be able to model this force with a universal law as 

powerful as his gravitational law. He knew the force couldn’t be 

gravity: Although he had no real notion of the size of atomic parti- 

cles, he knew they were smaller than could be seen, even with a 

microscope, so they were too small for gravity to be a significant 

source of attraction. Given our current understanding, we agree with 

Newton. We can calculate that the gravitational attraction for parti- 

cles of typical atomic mass, at typical interatomic distance, is tril- 

lionths of trillionths of trillionths times smaller than the energy of a 

human heart beat. But Newton also believed the force between par- 

ticles was different from gravity because he thought the force should 

be entirely repulsive, which would explain why materials weren’t infi- 

nitely compressible. He wasn’t worried about explaining attractions 

because he, like others of his day, assumed atoms stood still. 

Pierre-Simon Laplace (1749-1827), the mathematician who 

worked with Lavoisier but kept his head during the French Revolu- 

tion, was so successful at astronomy (he added corrections to 

Newton’s calculations) that he was emboldened to tackle interpar- 

ticle forces.1 He basically accepted Newton’s theory of a repulsive 

force acting at a distance but then added the radiation of particles of 

caloric and short-range attraction to account for capillary action: the 

attraction of the narrow pores in a paper towel for molecules of 

water that allow the towel to pull up the water against the force of 

gravity. Such was Newton’s authority that John Dalton assumed the 

repulsive force law had been proven beyond doubt. Dalton only 

added that the repulsions originated from a cloud of caloric sur- 
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rounding each atom and that the amount of caloric was different for 

each type of atom. In this way he was able to explain why paper 

might soak up water without invoking attractions: The water parti- 

cles were a different size than the paper particles, so the water parti- 

cles insinuated themselves in the paper particles the way sand fills the 

cracks in cement. While this theory, like the models of Newton and 

Laplace, painted a picture that qualitatively reflected reality, there 

were no quantitative predictions, no numbers that could be mea- 

sured to confirm or contradict the theory. 

Inroads into a quantitative approach were made in the mid-1800s 

by chemist Thomas Andrews (1813-1885). This Irishman came to 

chemistry as many did at that time, through the study of medicine and 

then teaching at a medical school.2 He noted in his researches (as 

others had) that Boyle’s law—increasing the pressure on a gas will 

cause the volume to decreasé in a regular fashion—failed at high pres- 

sures. In fact, at a high enough pressure, many gases condensed. But 

Andrews went further. He noted that if the gas were heated, then a 

temperature would eventually be reached above which the gas would 

not condense, no matter what the pressure. This temperature, which 

Andrews called the critical temperature, assigned a number to a gas that 

was characteristic of the intermolecular forces present in the gas. 

Initially no one was quite sure what to do with this new number. 

The theorists working on the kinetic theory of gases, in the main, chose 

to ignore intermolecular forces. Dealing with what is known as ideal 

gases, that is, gases at high enough temperature and low enough pres- 

sure that the intermolecular forces are negligible, they proceeded, 

though acknowledging the obvious defect in their theory. Ultimately, 

however, a valid physical model must reflect reality. Hence, intermole- 

cular forces continued to bedevil the kinetic theory of gases. As volume 

is decreased, the kinetic theory implied, the particles would start run- 

ning into each other and the gas would be less compressible. But unfor- 

tunately the opposite seemed to be true: As pressure increased, the 

volume for a typical gas would reach a point at which it dropped dra- 

matically and eventually the gas would condense. John Herapath, one 

of the early authors of the kinetic theory of gases, is said to have been 

delighted when it was discovered that hydrogen behaved the way it 
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should, even though nothing else had. When Maxwell found that his 

equations for an ideal gas predicted that the viscosity of a gas should 

increase with temperature rather than decrease, he was at first skeptical 

of his equations. He checked them very closely and consulted with 

friends. It was only after experimentally confirming his result that he 
seemed to be comfortable with it. 

Maxwell attempted a mathematical model for intermolecular 

interactions that assumed a repulsive force that fell off as the fifth 

power of the distance. But even as he did this, he knew it was just one 

of any number of force laws that would work. He hoped it might 

serve as a computational device even though he had no theoretical 

basis for choosing it. This technique of finding an equation that fits 

the data and then trying to explain the equation may seem a bit shaky, 

but has often proved to be valuable. Max Planck, a few years later, 

would employ the same method in describing blackbody radiation 

and would do so with great success. However, Boltzmann rather 

humorlessly criticized Maxwell for trying such a simple relationship 

for what had to be a much more complicated problem. Boltzmann 

knew that there had to be attractions as well as repulsions, though 

neither man made much progress with the problem. 

James Joule and J. J. Thomson threw in their two cents when they 

observed that a certain class of gases cool when they expand. This 

effect, the Joule-Thomson effect, is the basis for refrigeration: A 

working fluid is compressed and then allowed to expand. As it expands, 

it absorbs heat from the surroundings and uses the energy to break the 

intermolecular attractions between particles. They found that the tem- 

perature of hydrogen was the only one that seemed to increase slightly 

when it expanded, which can be understood in hindsight. The inter- 

molecular attractions are small for hydrogen, the force of repulsion is 

much greater, so hydrogen gas is at a lower energy when its particles 

are spaced farther apart: Heat is released when hydrogen is allowed to 

expand. In other words, most gases are sticky; they require an input of 

energy to separate them. Compressed hydrogen is more like a com- 

pressed spring. When hydrogen is allowed to expand, it releases energy. 

The next advance came from a young Dutch physicist, Johannes 

Diderik van der Waals. He put forth an equation in his Ph.D. disser- 
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tation that Maxwell declared sufficient to win van der Waals’s name a 

lasting place in the annals of science. It did. 
The parents of Johannes van der Waals (1837-1923) could not 

afford to send him to a secondary school that would prepare him to 

enter a university.3 At the time universities required a knowledge of 

classical languages for entry, as well as other basics, which required 

more schooling than most people received. So on completion of the 

schooling available to him, van der Waals took a job teaching and 

studied mathematics and physics on his own. He could not, how- 

ever, manage to teach himself Latin and Greek, so he still could not 

meet the entrance requirements for a university. Eventually the gov- 

ernment voted to drop the requirement for classical language and at 

the rather late age of twenty-nine van der Waals entered the Univer- 

sity of Leiden. When van der Waals wrote his famous doctoral dis- 

sertation, he was thirty-six, had a family, and was teaching secondary 

school for a living. 

The equation that van der Waals proposed, and which won him 

the praise of Maxwell (it might have remained buried if Maxwell 

hadn’t published an enthusiastic review of it in Nature), was com- 

piled from the gas laws of Boyle and the French balloonists. How- 

ever, he included two correction factors that could be adjusted to fit 

the behavior of real gases. The breakthrough was that van der Waals 

provided one universal equation that could be made to fit different 

gases by assigning each gas its own set of correction factors. These are 

known as the van der Waals constants for the gas. This pleased the 

kinetic theorists—there was one equation for all gases—and it pleased 

the realists—each gas was allowed to behave differently. The equation 

modeled real behavior: A gas compresses easily until it suddenly con- 

denses, and then it is much more difficult to compress. The beauty of 

van der Waals’s equation is that it modeled the behavior of gases 

when they were acting ideally at high temperature and low pressure, 

but also in the region where they weren’t behaving ideally—with the 

same equation. In addition, the correction factors could be related to 

physical characteristics. One of the factors accounted for the finite 

size of gas particles, which kept the gas from being infinitely com- 

pressible, and the other was a measure of the stickiness of the inter- 
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molecular attractions. Van der Waals accomplished two things. He 

showed that the three states of matter were basically a continuum, 

not three separate problems, and that there should be a way to liquify 

all gases: There was no such thing as a “permanent gas.”4 

Van der Waals went on to find a way to measure his constants for var- 

ious gases using the critical point that Thomas Andrews had described. 

And he found time to enjoy playing billiards, like the early kinetic gas the- 

orists. But van der Waals knew atoms aren’t billiard balls: Atoms are 

sticky. In 1910 van der Waals received the Nobel Prize for physics. 

Though van der Waals had provided the machinery for account- 

ing for intermolecular forces, he did not solve for the origin of the 

attraction. Another Dutch physicist, Peter Joseph William Debye 

(1884-1966), made headway in this area.5 

In 1912 Debye proposed an explanation for the observed fact that 

some materials were more easily penetrated by an electric field than 

others; that is, molecules could have a uneven distribution of charge, 

called a dipole. Debye posited that when molecules had a permanent 

partial positive charge on one end and a permanent partial negative 

charge on the other, they could align themselves with an electric field 

to varying degrees depending on the magnitude of their dipole, which 

meant they would interact differently in an electric field. Not only did 

this account for an important intermolecular attraction—the positive 

end of one dipole could be attracted to the negative end of the 

other—but Debye also provided a mathematical model that could be 

used to extract quantitative information from his assumption. By mea- 

suring how the material interacted with an electric field, the magni- 

tude of the dipole could be obtained, and from the magnitude of the 

dipole, the geometry of the molecule might be deduced.® 

Debye was a prolific worker who won the Nobel Prize in 1936. He 

trained a generation of physical chemists, though his work was dis- 

rupted by World War II. Debye moved to several positions at different 

universities as was usual for that day. He was at the University of Got- 

tingen at about the same time as Emmy Nocether, so they probably 

crossed paths. He was holding a position in Germany when the 

National Socialists gained power, but he had not relinquished his 

Dutch citizenship. Informed by the Nazi government that he could not 
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Fig. 28. Johannes Diderik van der Waals. Edgar Fahs Smith Collection, University of 

Pennsylvania Library. 
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go into the lab unless he became a German citizen, he left Germany 
and went to the United States. He became a U.S. citizen in 1946. 

At first Debye thought all molecules must have some dipole, but 
as his work progressed, it became apparent that some molecules did 
not. To account for the existence of attractions even in the absence 
of a permanent dipole, Fritz London (of Heitler and London valence 
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bond theory) proposed that there may be a temporary dipole that 

arises spontaneously in the mushy electron cloud of an atom or mol- 

ecule. Its uneven distribution of charge could induce an uneven dis- 

tribution of charge in a neighboring molecule, as one magnet can 

cause another magnet to flip so that opposite poles align. These were 

the dispersion forces, also sometimes known as London forces. By 

invoking dispersion forces, even the condensation of noble gases such 

as helium and neon could be expected and were observed.” 

However, understanding the origin of the individual intermolec- 

ular forces wasn’t enough to harness their cumulative effect. In early 

1900, however, G. N. Lewis introduced a way of accounting for the 

net effect of intermolecular attractions in thermodynamic equations. 

He invented a quantity, fugacity (he also came up with the name), 

that has the same units as pressure, but it is a corrected pressure: cor- 

rected for intermolecular attractions. The correction factor, the 

fugacity coefficient, can be calculated for a given gas from its com- 

pressibility, which is also a measure of the intermolecular forces pre- 

sent. Fugacity is an old English word meaning readiness to run away 

or an inclination to flight (the choice of terms provides another 

glimpse into the poetic soul of the person who came up with the 

cubic atom). Lewis also came up with the notion of activity, a cor- 

rected value to replace concentration in thermodynamic equations. 

Activity has the same units as concentration, but it is a corrected con- 

centration: corrected for intermolecular attractions. 

Even though these labors produced some elegant explanations 

for intermolecular forces, some ways of measuring these forces, and 

some ways to incorporate them into calculations, there is to this day 

no way of calculating the net influence of these forces in any one 

given situation from first principles. In other words, given the struc- 

ture of the solvent and the solute, it is not possible to plug these para- 

meters into a computer program and have it tell what activity or 

fugacity to expect. There are just too many variables—vibrational, 

rotational, and translational motion as well as dispersion, ionic, and 

dipole attractions and repulsions. Nonetheless, an appreciation of 

importance of intermolecular forces is absolutely necessary to an 

understanding of physical chemistry. It was by invoking intermolec- 
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ular forces that Peter Debye, with his assistant, Eric Htickel (1896- 

1980), developed a model that finally explained why Arrhenius’s ions 

didn’t slam back together again. Debye and Hiickel showed that in 

aqueous solution an ion would be surrounded by a sphere of water 

molecules, attracted through their dipoles to the charge on the ion. 

This bulky atmosphere prevented oppositely charged ions from 

coming back together, which answered the question that had caused 

so much debate among the Ionists. 
The model worked, that is, for fairly dilute solutions. When the 

concentration of ions got too great, then the situation got sticky 

again. The Ionists had found their laws by working in dilute solu- 

tions, but concentrated solutions are a fact of life. The problem of 

concentrated solutions was to fall to the heirs of the Ionists. 



Chapter 26 

Heirs to the Iontsts 

PHYSICAL CHEMISTRY CROSSES THE OCE 

Any good mathematician can put on the mathematical frills . . . but the 

result 1s unsatisfactory if the figure inside is a doll stuffed by human 

hands, and not a real being of flesh and blood. 

Theodore Richards, American physical chemist, circa 1900 

he Ionists found an impressive set of equations that model the 

chemistry of solutions, that is, between chemicals dissolved in 

liquid. But as one of their heirs would declare, they were dealing with 

only “slightly polluted waters.”! A more generous assessment might 

be that the Ionists were working with idealized solutions, and that 

they were searching for fundamental relationships that would form 

the basis for more complicated solution chemistry. But it must be 

admitted that Wilder Bancroft, the author of the “polluted waters” 

comment, had a point: There is much more to solution chemistry 

than dilute solutions. Indeed, nearly all real-world solution systems— 

blood, rivers, waste streams, manufacturing processes—are concen- 

trated. In their effort to model more realistic situations, the heirs to 

the Ionists found themselves confronting a murky soup. 

Much of the effort to extend the work of the Ionists occurred in 

(295) 
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the United States. The reasons for the change of venue are legion, 

but one certain cause was that Europe was already hearing the rum- 

blings of war, which, to some degree, slowed down information 

exchange. The United States, on the other hand, found itself in a 

state of political isolation but scientific sharing: The heirs to the Ion- 

ists still traveled to Europe to receive their intellectual parenting. 

When they returned, they brought home physical chemistry. 

Many of the generation that would bring physical chemistry to the 

United States initially went to Europe to study organic chemistry, but 

were seduced by the excitement of physical chemistry. In the United 

States there had been a significant lack of appreciation for the ties 

between physics and chemistry as well as a disregard for mathematics 

as a preparation for chemistry. Before the end of World War I, it was 

still possible to get a Ph.D. in chemistry in the Unites States with no 

more mathematics than algebra.2 Even at major universities there was 

either no program in physical chemistry or such a weak program that 

the labs were located in old water towers and in cellars and professors 

found themselves financing their own research.? But they patiently 

planted the seeds, and physical chemistry soon began to grow. 

Because of the need for independent support, many of the early 

physical chemists in the United States were a newer version of the 

gentleman scholar. In 1850, Cooke Josiah Parsons Jr. (1827-1894) 

dipped into his personal fortune to finance much of the chemicals 

and equipment that he purchased to outfit his basement lab at Har- 

vard. He was a patient and insistent proponent of laboratory-based 

education in physical chemistry though he had to work with poor 

eyesight and hand tremors throughout his life.4 
Born in Pennsylvania, Theodore William Richards (1868-1928) 

was the son of a poet and a painter, and his parents tutored him as they 
traveled through Europe. His advanced education took place at Haver- 
ford College and then Harvard. After receiving his Ph.D., he traveled 
on his own to Europe and studied with leading organic chemists. His 
chemistry didn’t turn physical until he returned to the United States. 

Richards’s physical chemistry at Harvard consisted of exploring 
the physical properties of chemicals. Though he carried out other 
research programs, his most important work was the determination of 
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atomic weights. While this many seem pedestrian, he developed tech- 

niques to deal with interferences such as moisture and contamination. 

It was solid, necessary, elegant work, and it won Richards the Nobel 

Prize in 1914. He also attempted to study atomic volumes, and in the 

course of this work came up with his concept of “compressible 

atoms.” However, any development of this theory to a substantial 

conclusion would have required a mathematical model, and Richards 

was not strong in mathematics. This same problem of an unsure 

mathematical grounding was to dog the torchbearer at MIT, too. 

At MIT the work was carried forth by Arthur Amos Noyes (1866- 

1936), who could trace his heritage directly to the Puritans.5 He 
retained a bit of the Puritan leanings in that he never married, worked 

horrendously long hours, and spent his money on research. He origi- 

nally went on his pilgrimage to Europe with the objective of study in 

German organic labs, and he eventually found himself in Leipzig admir- 

ing Wilhelm Ostwald’s new lab. He opted for physical chemistry, which 

meant he had to teach himself basic calculus and thermodynamics. 

When he returned to MIT, Noyes volunteered to pay half of the 

money needed for a purely research facility if the regents of MIT 

would pay the rest. They did. Noyes made a significant contribution 

to the understanding of the physical chemistry of concentrated solu- 

tions when he recognized that additional salts can sometimes enhance 

the solubility of slightly soluble salts rather than depress them, as 

would be dictated by the law of mass action. Ostwald had made exten- 

sive studies on slightly soluble salts, such as sodium bicarbonate 

(baking soda). As anyone who has used the old standard cure for acid 

stomach can attest, when sodium bicarbonate is added to water, most 

of it stays on the bottom of the glass, undissolved. But we know some 

of it dissolves in the water because the water tastes chalky. Ostwald 

described the behavior of these slightly soluble salts in terms of mass 

action: If another source of sodium, such as sodium chloride, were 

added to a solution of sodium bicarbonate, then the equilibrium 

would shift in favor of solid sodium bicarbonate. More would come 

out of solution. For Ostwald’s dilute solutions, the description of the 

equilibrium by mass action worked quite well. But Noyes found that 

for concentrated salt solutions the situation was, as usual, more com- 
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plicated. As we now understand it, in very concentrated solutions, 

extra ions intervene to keep solute particles apart and the salt can be 

more soluble instead of less soluble. All these complications almost 

make one yearn for the simplicity of quantum mechanics. 

With the success of his research, Noyes became comfortably situated 

in his Research Laboratory of Physical Chemistry. He answered only to 

the president of MIT. He ruled the same roost at MIT that Richards 

ruled at Harvard and Wilder Dwight Bancroft ruled at Cornell. 

Wilder Dwight Bancroft (1867-1953) was the author of the 

“slightly polluted waters” statement given above. Bancroft’s family had 

settled on the North American continent in the 1600s, not far from 

where the family of Noyes had landed. Bancroft’s family was well off to 

the point that he could decline his salary for several years at Cornell and 

sometimes he paid assistants out of his personal funds. He played foot- 

ball at Harvard until in his senior year, when he decided he needed a 

respectable profession, at which point he doubled his efforts until he 

could graduate with a degree in chemistry. Consequently, his back- 

ground in mathematics was weak and remained weak throughout his 

career. On his eventual sojourn to Europe he met and worked for 

Jacobus van’t Hoff. On his return he hoped for a position at Harvard, 

but the call went to Richards, and Bancroft went to Cornell. 

Drawing on the self-assurance implanted in him by his grandfa- 

ther and his family background, Bancroft confidently began editing 

the new Journal of Physical Chemistry. Not having worried much 

about building his skill in mathematics, he then set about finding a 

research program that was more qualitative than quantitative. With 

this criterion, consciously or unconsciously, he settled on two areas: 
applications of the phase rule and colloids. 

Though the origins of Gibbs’s phase rule were mathematical, the 
relationship was straightforward and algebraic, and the results of its 
application can be represented on a diagram, a phase diagram. This 
diagram shows at a glance which phases are present under different 
conditions of temperature and pressure. The utility of the phase rule 
was that it allowed one to decide, based on its phase-change behavior, 
how many components were in a mixture or, given the number of 
components, determine how the mixture could be treated without 
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having it change phase. An understanding of the value of the phase 

rule might be derived by looking at a modern application: shampoo. 

Modern consumers would be upset to find their bottle of shampoo 

separated into layers after it sat in the shower for a couple of days. 

What most consumers don’t know is that it is a minor miracle that it 

doesn’t. A glance at the ingredients list on the side of a shampoo 

bottle will give an appreciation for the number of components in a 

typical shampoo, and they are all in aqueous solution. Anyone who 

has ever cooked extensively, made Hollandaise sauce or other delica- 

cies, realizes how difficult it is to get organic-aqueous suspensions 

just right. The shampoo manufacturer has to be able to calculate how 

many phases will be present (hoping for one) and what conditions 

will shift the mixture to two phases or more: pressure (can it be 

shipped by air?), temperature (can it be stored on a loading dock?), 

or concentration (can the cap be left off in the shower?). A tall order 

by any account, but one that can be filled if the phase diagram is 

known or the phase rule can be used.® 

Phase diagrams have also been put to very good use to predict the 

composition of solid solutions, such as the alloys that hold up build- 

ings and bridges. These materials age as the metal solutions gradually 

change. A phase diagram will help predict how ambient conditions 

will affect the change. Unfortunately, though the phase rule had 

many uses, Bancroft tended to overextend it. Bancroft’s assumption 

of the position of authority on the phase rule prompted his admirers 

to salute him as the Phase Ruler.” Bancroft was suspicious of the 

atomic model of matter, as was Ostwald, and he said he liked research 

on the phase rule because it did not require this assumption. He also 

used this rationalization when he studied his other main field of 

interest: colloids. 

Colloid means “gluelike,” and colloids are aggregates of particles 

that are much bigger than individual solute particles, but too small to 

be separated from the solution by just letting it sit or by filtering it. 

An apt analogy for colloids might be the clumps of people that form 

in large social gatherings. The test to see if a solution is colloidal is to 

shine a beam of light through it. If the shape of the light beam is 

clearly distinguishable, like car headlights in the fog, then the system 
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Fig. 29. Wilder Dwight Bancroft. Edgar Fahs Smith Collection, University of Pennsyl- 

vania Library. 
SS 
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is a colloid. This light scattering by colloids is called the Tyndall effect 
after Irishman John Tyndall (1820-1893), a contentious and fierce 
liberal politician as well as natural philosopher.8 He died when he was 
sick from insomnia and indigestion and his young wife accidentally 
administered an overdose of a sleep remedy. 

The pioneer of colloid chemistry was Thomas Graham (1805- 
1869), whom we met earlier in our discussion of the kinetic theory 
of gas.? Graham was the one who found that the rate of gas effusion 
depends inversely on mass: The heavier the gas, the slower the effu- 
sion. He discovered colloids while examining how one liquid diffuses 

into another. Now we know that homogenized milk and gelatin are 

colloids. Jean Perrin’s gamboge particles, used to confirm the exis- 

tence of atoms, were colloids.19 The story is that Bancroft became 
involved in colloid chemistry after a fire in his lab, and with the small 

amount of glassware he had left, there wasn’t much of anything else 

he could do.!! The Tyndall effect can be demonstrated by shining a 

flashlight through a glass of water to which a quarter teaspoon or less 

of milk has been added, so he was right about the study not requiring 
much in the way of glassware. 

Unfortunately Bancroft came to some erroneous conclusions 

concerning colloids, once again trying to overextend the concept. He 

decided that proteins were colloidal aggregates, not the extremely 

large molecules that they have been shown to be: The mass of myo- 

globin, a protein, is almost 1,000 times that of water.!2 In his 

defense, Bancroft wasn’t the only one confused about the subtleties 

of colloid chemistry. Both Jean Perrin and Albert Einstein theorized 

that colloids should behave as solutions under dilute conditions (they 

don’t). The problem was that Bancroft’s influence, through the 

Journal of Physical Chemistry, made it difficult for researchers trying 

to put forward opposing views. In addition, he promoted his quali- 

tative chemistry by neatly avoiding articles on the advances in math- 

ematical chemistry and quantum chemistry in the Journal. His veto 

on the review board, it seems, was impenetrable because of his 

authority and because of his personal control. During the economic 

downturn after World War I, he kept the Journal afloat many times 

through personal donations. 
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By the 1930s Bancroft felt he needed to have some conclusion to 

all his work as nothing substantial had come out of it yet. He believed 

he had found it when he read a paper by a French physiologist, 

Claude Bernard, in which Bernard explained that anesthetics worked 

because of a coagulation of a substance on nerve cells. Bancroft 

immediately saw colloids. He rushed into print in his journal and 

others. He and the people he managed to convince described an 

entire series of nervous disorders including alcoholism, insanity, and 

drug addiction that could result from colloidal proteins undergoing 

phase transitions on the nerve cells. He decided that an effective 

therapy might be to administer a coagulant to cause the wayward 

proteins to re-coagulate. He announced that sodium thiocyanate, a 

poison if given in too great a dose, could accomplish the effect and 

was therefore a near cure-all. 

Bancroft subjected his theories to test, even to in vivo trials, with 

what he claimed to be positive results, and for a time he basked in the 

limelight. He was written up in Time magazine. The American 

Chemical Society voted him a medal. But others could not reproduce 

his optimistic results, and the American Medical Association bestirred 

itself to protest both his methods and his dubious results. As a result, 

the American Chemical Society hastily asked that he take the medal 

for his work with the phase rule instead, but Bancroft, insulted all the 

way around, declined.!% Bancroft could never manage to back down 
from his claims. In his defense, it must be said that although Bancroft 

sometimes advanced by bluster rather than brilliance, he had the 
courage to tackle very difficult problems. 

And so it became increasingly evident in the generation following 
the heirs of the Ionists that for chemists, a firm grounding in mathe- 
matics was critical. G. N. Lewis got a grip on more concentrated 
solutions by introducing fugacity and activity in a mathematical 
model. He also tackled the most fundamental challenge for the 
models of the physical chemist: how to predict the plausibility of a 
chemical process, in other words, predicting the extent to which 
chemical A and chemical B might react to make chemical C. Would 
the equilibrium favor profitable product or lie lazily on the side of 
unreacted reactants? In grappling with this important problem, Lewis 
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built substantially on the mathematical theories of a hitherto unac- 
knowledged European Ionist: Walther Nernst. 

Walther Nernst (1864-1941) was the son of a Prussian civil ser- 

vant whose earliest ambition was to be a poet, but he became 

attracted instead to the romance of physics and chemistry. A col- 

league of Svante Arrhenius and assistant to Wilhelm Ostwald, Nernst 

reached his professional maturity at the time of the blossoming of 

physical chemistry in Europe. Walther Nernst occupies a special place 

in the history of physical chemistry not only for his contributions but 

for the color and flavor that he lends. The staid portraits of a portly 

Nernst as a mature scholar belie the hard-living, hard-drinking, out- 

spoken individualist that he was.14 

When he was in his mid-twenties, Arrhenius reported that Nernst 

woke him in the middle of the night dead drunk and that this was not 

an isolated incident. In his early thirties Nernst engaged in polemics 

with Max Planck and tried to engage Ostwald on his side.15 Though 
Nernst won the Nobel Prize when he was fifty-six, in his forties he was 

passed over it because of concerns that the money would be invested 

in night cafes in Berlin. But when Emil Rathenau, the German 

statesman, industrialist, and tireless worker for the German cause in 

World War I, was beaten to death on the streets of Berlin because he 

was a Jew, Nernst denounced the death and those who caused it in a 

public address as rector of the University of Berlin. 

He was equally outspoken and forthright in his science. Of his 

substantial contributions to the field, two in particular are of interest 

here: his equation to describe the potential of an electrochemical cell 

under arbitrary conditions and his enunciation of the third law of 

thermodynamics. 
The potential of an electrochemical cell depends on the concen- 

tration of the reactants; that’s why batteries run down. As a voltage- 

producing reaction occurs in an electrochemical cell, reactants are 

consumed. Nernst not only recognized this fact but found the math- 

ematical relationship that described the behavior. His equation was 

essential to Lewis’s extensive cataloguing of electrochemical potentials 

and accompanying free energies. The equilibrium constants of a host 

of important reactions were gleaned from this free energy informa- 
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tion. But while electrochemistry provided a handle on the behavior of 

many reactions, there were other reactions, such as combustion reac- 

tions, that did not fit well into electrochemical cells. Nernst, however, 

also helped out in this area, too. It has been pointed out that free 

energy is the energy free to do work; that is, the heat of the reaction 

less the amount of energy wasted through entropy. Measuring the 

heat of many reactions was possible using a device pioneered by Mar- 

cellin Berthelot, the bomb calorimeter, which was literally that: a 

rigid-wall container in which an explosive reaction could take place 

and the consequent heat measured. Measuring the entropy, however, 

was not as straightforward. The total entropy could be calculated as 

the sum of different contributions to the entropy—these contribu- 

tions might be the chaos introduced by phase change or by changes in 

pressure or temperature—but to complete the total, the beginning 

amount of entropy had to be known. This is the same principle used 

in balancing a checkbook: You can sum the credits and debits, but you 

don’t know how much you have unless you know the beginning bal- 

ance. In 1905, Nernst, based on experimental evidence, enunciated 

what is now known at the third law of thermodynamics: The entropy 
of a pure substance is zero at absolute zero. 

The idea is intuitively plausible: At the lowest possible tempera- 

ture, materials are in a completely ordered state, neatly frozen into 

position. In reality, there are some difficulties with this picture for 
certain substances, and the third law had to be revised somewhat, but 
Nernst had difficulty accepting these refinements. Nernst was a 
strongly opinionated and assertive individual, but one with a sense of 
humor. He is said to have stated it had required three people to come 
up with the first law of thermodynamics, two people to come up with 
the second, and only one to come up with the third—himself—so 
there could be no more laws discovered. He was also a sensitive 
person who was devoted to his family. His wife, Emma, to whom he 
dictated all his papers, transcribed notes he made on his shirt cuffs 
before laundering them. He spoke out against the policies of the 
Nazis when they came to power, which no doubt would have even- 
tually caused him difficulty, but he died in Germany in 1941, while 
his reputation was still able to protect him. 



Heirs to the Ionists VE 305 

The newer generation of physical chemists, with their regained 

respect for the mathematical arts, built substantially on Nernst’s third 

law. A method for calculating the free energies of gas phase reactions 

followed from the efforts of many dedicated intellects, from both 

sides of the Atlantic. The elegant and intricate theory involved the 

symmetry of Emmy Noether, the group theory of Evariste Galois, the 

quantized energy levels of Max Planck, the statistical mechanics of 

Ludwig Boltzmann, and the thermodynamics of Willard Gibbs. Phys- 

ical chemistry evolved into a powerful theoretical system that could 

predict and explain many aspects of chemical reactivity. But chal- 

lenges remained. 



Chapter 27 

Reaction Rates 

PHYSICAL CHEMISTRY KEEPS PACE 

As far as the laws of mathematics refer to reality, they are not certain; 

and as far as they are certain, they do not refer to reality. 

Albert Einstein, circa 1950 

A: room temperature and normal atmospheric pressure, a typical 

air molecule experiences about 7 billion collisions per second. 
During a chemical reaction, the electron orbitals (that is, the electron 
clouds) on individual reactants overlap and coalesce, the way two bub- 
bles will come together and merge into one. The time for the reaction 
is determined by the time it takes for the bubbles to find one another. 
Once they collide, if they have enough energy, the coalescence is very 
fast. During a collision between two chemical reactants, the time it 

306), 
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takes for the electrons in the individual orbitals to readjust themselves 

into the orbitals around the products (the time for their electron- 

orbital bubbles to coalesce) is about a quadrillionth of a second.! So 

why aren’t all fires explosions and every heartbeat a coronary? 

The reasons are easy enough to list. Gas-phase reactants may 

encounter each other billions of times per second, but solution-phase 

reactants can be held apart by a sea of solvent and therefore en- 

counter each other far less often. And when the reactants bump, the 

desired reaction still may not occur if there isn’t the right amount of 

energy. Even if the minimum amount of energy is available, we know 

from the kinetic theory of gases that not all molecules have the same 

energy, they have a distribution of energies. So not all encounters will 

result in a reaction. They also have to come together in the right ori- 

entation to be successful, as a key has to be held at the right orienta- 

tion to fit into its lock. And, if an encounter manages to be successful, 

it may be only a single step in a series of steps from reactant to final 

product, any one of which might be a bottleneck. 

Many-step reactions can also have mass effects that are counter- 

intuitive. The early Ionists found that a version of the law of mass 

action applied to most reaction rates: The higher the concentration 

of reactant present at the beginning of the reaction, the faster the 

reaction occurred. This idea makes intuitive sense—the greater the 

concentration of single people, the higher the rate of marriages. In 

many cases it is true with chemicals, too: If concentrated vinegar is 

added to baking soda, the reaction is immediate and vigorous. If the 

same amount of vinegar is added in a one-to-ten dilution, the reac- 

tion is markedly slower. But for some reactions, the inverse can be 

true. Higher concentrations of some reactants can sometimes impede 

a reaction. An analogy might be found in an accounting firm: The 

more paychecks they have to process, the slower they go, not faster. 

Reaction rates do not always respond in a predictable way to 

changes in temperature, either. Granted, the vast majority of reac- 

tions speed up as the temperature increases because raising the tem- 

perature increases the speed at which the molecules are zooming 

around, which further increases the number of collisions and the 

energy of the collisions. However, if certain step in the reaction pro- 
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duces heat, then heating up the reaction can drive the equilibrium to 

the product side. In our discussion of the theories of Jacobus van’t 

Hoff, the Ionist, we used the analogy of a party. We said that the 

people at the party would settle into an equilibrium distribution 

throughout the rooms. But now if we turn up the heat in one room, 

they may gravitate to cooler rooms, and the equilibrium distribution 

will shift. Similarly, for some reactions, heat can drive the reaction 

back toward the starting materials, away from products, and can slow 

the reaction. 
Still more complications exist. The state of the reactants can influ- 

ence the rate of the reaction: Liquid gasoline burns; gasoline vapor 

explodes. Foreign surfaces are always present in a reaction, even if it 

is just the surface of the container, so they have to be considered, too. 

Sometimes these surfaces increase the rate of reaction by adsorbing 

one reactant and holding it in at an advantageous orientation. But the 

surface can impede the reaction, too, by cooling the reactants on col- 

lision or by promoting a reverse reaction. 
Given all of the above, it can be seen why the early investigators 

of reaction rates found themselves wading in deep water. But wade 

they did. It is important to know when a reaction is going to explode 

and when it is going to fizzle. And if it does explode or fizzle, it 

would be nice to know why, so next time things could be different. 

A lot of credit needs to be given to these early investigators—they 

sorted out some important clues—but physical chemists are still 

working on this problem today. 

The beginning of a quantitative picture was painted by Ludwig 

Ferdinand Wilhelmy (1812-1864). He originally studied to be a 

pharmacist, intending to go into business with his father, but found 

the pharmacy business dull.? At the age of thirty-one he went back to 

school to study chemistry and physics and received his doctorate at 

the age of thirty-four. He assumed his first academic position at the 

age of thirty-seven, but held the position for only five years before 

taking up the life of a reclusive scholar (having sufficient means from 

the inheritance from his father’s dull pharmacy business). During his 

brief academic career, he established a mathematical form for 

expressing the rates of reactions. Rates are basically a measurement of 
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the amount of change in something over a given amount of time: 

miles per hour, words per minute, kilometers per second. Wilhelmy 

said that the rate of a chemical reaction is the change in concentra- 

tion of one of the reactants or products per unit time. (For instance, 

the change in the amount of alcohol in fermenting wine per day is a 

measure of the rate of fermentation.) He also said that this change 

should be proportional to the concentrations of the various reactants 

in some fashion. For example, the rate at which bread rises could 

increase proportionally when the amount of sugar is doubled, but 

increase twice as fast when the amount of yeast is doubled. But Wil- 

helmy couldn’t predict these changes from theory, they had to be 

found experimentally, and it is worth noting that we still have to find 

these dependencies experimentally because there are too many vari- 

ables (intermolecular interactions, orientation dependence, multiple 

steps) to be able to predict them directly for any arbitrary reaction. 

Wilhelmy measured the rate of the change of sucrose in an acid solu- 

tion and found how the rate changes for acid and sucrose, but not 

much else. His work received little notice until discovered by Wil- 

helm Ostwald. It did, however, earn him his place in the history of 

physical chemistry. 

When reaction rates were tackled by Ostwald and his cohorts, it 

was with an eye to getting a handle on affinity, that elusive attraction 

between molecules that eluded the Ionists. Another chemist—mathe- 

matician team—chemist Vernon Harcourt (1834-1919) and_ his 

mathematician friend William Esson (1838-1916)—extended the 

work of Wilhelmy by measuring precisely the mass dependence of the 

rates of many different reactions, but found the mass dependence was 

just the tip of the iceberg.? In the 1890s Russian chemist Nikolai 

Alexandrovich Menschutkin (1842-1907) found that the solvent 

could make as much of a difference as the mass of reactants, but that 

it wasn’t just a viscosity effect.+ Jacobus van’t Hoff, our paragon of 

physical chemistry, found a correlation between this solvent effect 

and Peter Debye’s dipole moment for the solvent, but he could not 

interpret his finding. 
Van’t Hoff’s starting premise in his investigation of reaction rates 

was that affinity was a gravity-like force between the molecules and 
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that the rate should always be proportional to the amount of the 

principle reagents in the reaction. We could compare van’t Hoff’s 

theory to one explaining the rate of deer sightings on a highway: We 

would assume that the rate of sightings would be proportional to the 

number of cars and the number of deer. Fewer cars on the road, fewer 

sightings. Fewer deer, fewer sightings. One would not expect that 

increasing the number of deer slightly would cause the number of 

sightings to explode, or that increasing the number of deer would 

cause the number of sightings to go down, but that was basically 

what van’t Hoff found. While some reactions were well behaved, 

increasing the concentration of reagents caused some other reaction 

rates to increase explosively; for other reactions, increasing the con- 

centration of reactants caused the rate to plummet. These observa- 

tions were correctly interpreted by van’t Hoff to indicate that reac- 

tions aren’t always simple, one-to-one events. There could be some 

complicated mechanisms at work. 
A reaction mechanism is a series of steps that lead from the initial 

reactants to the final product and can involve any number of twists 

and turns. For instance, in our accounting firm, the process of cut- 

ting checks may begin with the receipt of the payroll, but may involve 

some back and forth interplay in the form of audits and error 

checking; it may involve some bottlenecks in the form of slow pho- 

tocopying machines; and ultimately the rate of work may be limited 

by factors external to the accounting firm. The post office may also 

slow things down. So van’t Hoff wrote a book on the subject that 

went through a couple of editions and translations with the help of 

assistants such as Ernst Julius Cohen (1869-1944), who died in the 

gas chambers of Auschwitz.® 
But without information on the size or shape of molecules (and 

not completely convinced that they even existed) and skeptical of the 

rate of collisions predicted by the kinetic theory of gases, van’t Hoff 

made little progress in unraveling the actual mechanisms for reac- 

tions. However, van’t Hoff persevered in his investigations in the 

hopes of finding some mathematical relationships, which he did. As 

we noted above, almost all reaction rates tend to increase as the tem- 

perature is increased. This is the reason food is refrigerated: The rate 
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of food decomposition reactions increases at higher temperature. 

Van’t Hoff found that for these reactions, the rate constant, as 

defined by Wilhelmy, increases exponentially as the temperature 

increases. Though van’t Hoff enunciated this mathematical model 

first, it is often called the Arrhenius equation because Svante Arrhe- 

nius worked with it extensively. But van’t Hoff did not seem to mind. 

Wilhelm Ostwald’s primary interest in reaction rates seemed to 

center on another complication: catalysis. A catalyst is something that 

changes the rate of a reaction without being changed itself in the course 

of the reaction. Some surfaces can speed reactions, and it was soon dis- 

covered that other substances could sometimes perform that role. Ost- 

wald’s contribution was to note that catalysts increased the rate of the 

reaction, but did not affect the final equilibrium concentrations: At the 

end of the reaction there was the same ratio of products to reactants, 

but equilibrium was reached faster. This observation was correctly 

interpreted by Ostwald to mean that catalysts simultaneously increase 

the rate of the forward and the reverse reaction. Liquid refreshment 

might play the role of a catalyst at our party: At equilibrium there will 

be the same ratio of people in all the rooms for a wet or dry party, but 

people might tend to move in and mingle more energetically if there is 

a beverage or two to be enjoyed. A catalyst, likewise, facilitates both the 

forward and the reverse reactions, so the equilibrium distribution is not 

affected, but equilibrium is reached faster. 

Jean Perrin, and others who had faith in the atomic theory of 

matter, showed how the rate of collisions between gas-phase mole- 

cules could be calculated using the kinetic theory of gases. Perrin, 

however, as well as others, also proposed what became known as the 

radiation hypothesis: the idea that certain types of reactions involving 

only one molecule had to be initiated by absorbing electromagnetic 

radiation. It was subsequently shown that they were wrong, these 

reactions could be self-induced by mutual collision, but no real harm 

was done. In the process of working on the radiation hypothesis, the 

collision theory was refined and improved. 

One person who profited from this theoretical development was 

Max Bodenstein (1871-1942), the son of a brewery owner, who set 

up a home lab as a boy and decided on chemistry as a career.® For his 
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Fig. 30. Jacobus Henricus van't Hoff (seated on right) with Frank Wigglesworth Clarke 

(seated on left) and Harold Bailey Dinn (standing). Edgar Fahs Smith Collection, Uni- 

versity of Pennsylvania Library. 



Reaction Rates YW & Pe 

doctoral research he was given the assignment of studying the thermal 
decomposition of gas-phase hydrogen iodide, a simple molecule made 
up of one hydrogen atom and one iodine atom. Initially he was not 
thrilled by the assignment, but when he found his results fit very nicely 
with the kinetic theory of gases, he was quite pleased. He was prob- 

ably also pleased when his doctorate was awarded summa cum laude. 
Unfortunately, hydrogen iodide was the last system he would find that 

would work so simply, and subsequent study has shown that even this 

one was an accidental, fortunate fit. But Bodenstein was a careful and 

persistent experimentalist, and his work provided a wealth of valuable 
information for theorists to ponder. 

Bodenstein also investigated the photochemical reaction of 

hydrogen chloride. Photochemistry, light-induced chemistry, is re- 

sponsible for sunflowers turning toward the sun and brewers brewing 

beer in brown glass to keep sunlight from degrading the beer. A few 

years earlier, Einstein had suggested that light can be treated as a 

stream of particles called photons. The number of photons that strike 

a sample can be calculated from the intensity of light and the length 

of time the light is turned on. The yield of a reaction should depend 

on the number of photons that are absorbed by the sample. There are 

many reactions in which this is the case: one photon, one reaction. 

But for the reaction of hydrogen chloride, this was definitely not the 

case: One photon started an amazing avalanche that resulted in 

10,000 or more reactions. 

What was going on? A chain reaction. The first photon created a 

radical: a highly reactive atom or molecule with one unpaired elec- 

tron. Most people are familiar with the term chain reaction and use it 

to describe everything from nuclear reactions to accidents on high- 

ways. The highway analogy is a good one: The effect of the reaction 

multiplies as one reactant creates two reactants, etc., just as one car 

will cause another car to hit two cars, etc. 

In the 1920s and the 1930s, theorists began applying the con- 

siderable power of quantum mechanics, thermodynamics, and statis- 

tical mechanics to the problem of reaction rates, in particular Mihaly 

Polanyi (anglicized to Michael Polanyi) and Henry Eyring. 

Hungarian Michael Polanyi (1891-1976) had a businessman for 
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a father and a left-wing Marxist for a mother. Polanyi originally 

studied medicine, but even at the age of nineteen showed an inclina- 

tion to the more experimental side of the art. In the same year as he 

received his medical license, he submitted his doctoral dissertation on 

the adhesion of gases to surfaces, and three years later he married a 

fellow scientist, a chemist. He served as a medical officer in the Hun- 

garian army, then accepted a position at a university teaching physical 

chemistry. He eventually joined the Kaiser Wilhelm Institute for 

Physical Chemistry.” In 1931, working with U.S. doctoral student 

Henry Eyring (1901-1981), he made an attempt to exactly describe 

a single reaction from first principles. They constructed a three- 

dimensional plot of the energy of interaction that would be felt by a 

hydrogen atom approaching a hydrogen molecule in the course of a 

reaction. Although the system is the simplest possible atom—molecule 

reaction pair, the calculation was important because it was the first of 

what is now called potential energy surfaces to be solved. Later Polanyi 

developed a reaction-rate theory based on the fleeting, delicate com- 

plex formed at the instant of collision called the transition state. Back 

in the United States by then, Eyring developed a very similar theory. 

Henry Eyring’s father was a cattle rancher in Mexico whose own 

family had emigrated from Germany in the 1800s. Eyring studied 

mining engineering for his Bachelor’s degree and received a Master’s 

in metallurgy, but after a short stint as a metallurgist in a copper 

smelter, he decided to go back to school and study chemistry.8 He 

joined G. N. Lewis’s group at Berkeley, by now a virtual breeding 

ground of excellent chemists, and received his Ph.D. in 1927. In 

1934 Eyring submitted his paper on his version of the transition state 

theory to the Journal of Chemical Physics. The editor at that time 

rejected it on the basis of one reviewer’s evaluation. But an English 

physical chemist who had worked with Max Bodenstein spoke up on 

behalf of Eyring’s paper and it was published. 

Eyring presented a method for calculating a rate constant from 

first principles. Eyring assumed that the transition state vibrated just 

like stable molecules, but that only one of its vibrational states led to 
a reaction. This vibrational state, like all good molecular vibrations, is 
quantized, so Planck’s constant came into the equation. The proba- 
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bility for this state could be found statistically, so Boltzmann’s con- 
stant was also invoked. An equilibrium would exist between the reac- 
tants and the transition state product, so there was also a thermody- 
namic equilibrium constant involved. To account for the fact that even 
those that hit the right vibration would not necessarily progress to 
product, there was a “transmission coefficient” factor; that is, he intro- 
duced a constant that can be adjusted to account for more exotic reac- 
tion behaviors, should they be present. Thus, in some ways Eyring’s 
equation can be seen to summarize physical chemistry: It involves 
thermodynamics, quantum mechanics, statistical mechanics, a rate 

constant, and, in the transmission coefficient, a little wobble room to 

allow the mathematics to accommodate reality. The value of the equa- 
tion is not necessarily in the number it predicts, but in its form. By fit- 

ting measured rates to the theoretical form, conclusions can be drawn 
about the shape and nature of the collision complex. 

Another investigation into the elusive transition state stemmed 

from the work of Jacob Bigeleisen and Marie Mayer. Mayer coau- 

thored their paper on the effect of isotopic mass difference on reaction 

rates, then moved on to other projects, as we shall see when we meet 

with her again. Jacob Bigeleisen (b. 1919), however, made the study 

his life work. Bigeleisen turned to the study of chemistry in the 

Depression of 1935 in hopes of becoming a dye chemist in the local 

textile plant.? But the war effort turned him to physical chemistry and 

investigations of transition states. 

Mayer and Bigeleisen were attempting to find ways of separating 

uranium isotopes. Separation is a very necessary step in weapons- 

material research because only one isotope of uranium is fissionable 

and it must be in a concentrated form. The premise of their work was 

that the compounds of the two important isotopes of uranium should 

have different vibrational frequencies because of the difference in 

mass. Heavy, wet cloth moves less in the wind than light, dry cloth. 

They used quantum mechanics to calculate the difference in vibra- 

tional frequency based on mass difference and the methods of statis- 

tical mechanics to calculate energy, entropy, free energy, and finally 

equilibrium constants for reactions that they hoped would concen- 

trate one of the isotopes in a particular compound. In their work they 
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had to consider not only mass differences in isotopes but also sym- 

metry differences that might be introduced by the isotopic substitu- 

tion (the sort of difference that might be caused by having one leg 

slightly heavier than the other). 

Bigeleisen’s method of using isotopes to probe transition states 

was necessarily indirect. In gas-phase reactions, the transition states, 

those fleeting states that are not reactants but not quite products yet 

either, can be so short-lived that only recently has a direct experiment 

probe been found. In 1999 Egyptian-born Ahmed Zewail performed 

Nobel Prize-winning work in which he used light pulses a few 

quadrillionths of a second long to probe transition states. A first pulse 

photochemically initiated the reaction and a second served as a spec- 

troscopic probe of the transition state. But Zewail, though making 

much headway toward the understanding of chemical reactions, was 

working in the gas phase and with a rarefied gas at that, which is a 

long way from the dirty world in which we live. However, progress 

has been made toward understanding reaction rates in solutions and 

solids, too. In fact, impressive progress has been made toward under- 

standing reactions in human physiology—and there can be no 

soupier soup than living organisms. 

Leonor Michaelis (1875-1949), from a German Jewish family of 

modest means, was a medical student who found himself better in the 

lab than at surgery and gynecology.!9 His skills won him an assist- 

antship with Paul Ehrlich, the famous bacteriologist who found the 

first chemotherapy since mercury to treat syphilis. To fulfill his oblig- 

ation, Michaelis studied dyes, physical chemistry, and mathematics. 

He went into practice for a while and then to the University of Berlin, 

but he did not attain a permanent position or laboratory space. How- 

ever, he established a small private laboratory with a chemist friend 

where they proceeded to do research. The quality of the research 

soon won them sufficient recognition that they attracted students. 

Working with Canadian guest Maud Leonora Menten, he published 

a paper in 1913 that provided a now-classic Michaelis-Menten math- 

ematical model for rates of enzyme catalyzed reactions. Michaelis was 

eventually invited to teach at the University of Nagoya, Japan, where 

he was given laboratory facilities and worked with research students. 



Reaction Rates XY v & a7, 

He subsequently moved to the Rockefeller Institute for Medical 

Research in New York and went on to do important work in the 

physical chemistry of dyes and proteins, as well as study the new 

quantum mechanics and lecture on it. Maud Menten went on to be 

one of the first Canadian women to receive a medical degree and 

eventually became chief pathologist at Children’s Hospital in Pitts- 

burgh. She always maintained a strong research component to her 

work, integrating physical chemistry methods and models into her 

study of biochemical problems. She was a pioneer in the use of elec- 

trophoresis, a technique that separates molecules on the basis of their 

rate of migration through a gel under the influence of an applied 

electric field—the technique later used by Linus Pauling and 

coworkers to isolate the cause of sickle cell disease. 

While it may seem surprising to learn that Pauling, a physical 

chemist, did research on biological materials, in the next section we 

will see that one of the most important applications for physical 

chemistry has been always been physiology. The human body is a 

physical chemical machine. 





Part VI 

The Fruits of Their Labors 

THE PRODUCT OF PHYSICAL CHEMISTRY 

INTRODUCTION 

Physical chemistry is the chemistry of the future. 

Wilhelm Ostwald, 1887 

A physical chemist does what a physical chemist does. 

G. N. Lewis, circa 1930 

y the mid-1900s, physical chemistry was firmly entrenched in col- 

lege chemistry curriculum. Nowadays the electron-dot structures 

of Gilbert N. Lewis, the osmosis of Jacobus van’t Hoff, the valence 

bond theory of Linus Pauling, and the free energy of Willard Gibbs 

can be introduced in high school chemistry. The mathematical models 

of chemistry, decried in 1830 by Auguste Comte as being “profoundly 

irrational and contrary to the spirit of chemistry”! have become so 
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important that algebra and precalculus are prerequisites for college 

chemistry, and calculus is necessary for a chemistry degree. 

Chemistry is part and parcel of medicine, geology, astrophysics, 

biology, agriculture, structural engineering, and more, and physical 

chemists now find themselves involved in all of these fields. Unfortu- 

nately, space prohibits our detailing all the areas to which physical 

chemists contribute. Therefore, in these closing chapters, we will con- 

tent ourselves with a look at the applications of physical chemistry to 

physiology, nonlinear dynamics, and nanotechnology and take a 

glimpse at the challenge of unsolved issues in quantum mechanics. 

Many of the advances in recent years have been made possible because 

of new technologies such as computers and lasers, and an extension of 

the study of the interaction of light with matter, spectroscopy. 

Just as photography enabled the scientists of the 1800s to record 

exactly what their eyes saw, spectroscopy excites scientists today 

because it allows them to see what their eyes cannot. As may be 

recalled from our earlier discussion of spectroscopy, it has long been 

known that light causes changes in matter and matter causes changes 

in light. In the mid-1800s it was recognized that the wavelength of 

light that causes certain changes can be very specific: A photograph 

cannot be developed in daylight because sunlight exposes all of the 

film, but a photographer can use a red light to see in a “dark room” 

because red light does not expose the film. When it was realized that 

a listing of the wavelengths of light that interacted with a specific 

material, or spectrum, could be used as a fingerprint of that material, 

spectroscopy became a powerful tool for chemical identification. 

But beyond identification, when Max Planck, Albert Einstein, and 

many others had put the phenomenon on a theoretical footing, it was 

possible to derive information about molecules from the wavelength 

of light with which they interacted. For instance, molecular vibrations 

can be modeled as two balls on a spring. By knowing the mass of the 

atoms that make up the molecule and the energy of the light that 

causes them to vibrate, the strength of the spring—the chemical 

bond—that connects them can be calculated. The rotation of a mole- 

cule can be modeled as a Frisbee or discus, and by knowing the energy 

of light needed to excite a rotation, the diameter of the discus—the 
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bond length—can be calculated. It turns out that ultraviolet radiation 

can stimulate the movement of electrons from orbital to orbital (the 

mechanism by which the sun’s ultraviolet light can burn skin); 

microwave radiation can stimulate rotational motion in molecules (the 

mechanism by which microwave radiation cooks food); and infrared 

light is of the right energy to stimulate vibrations (the.mechanism by 

which you feel a warm stove burner before touching it). But not all 

vibrational modes of all molecules can be excited by the absorption of 

infrared light. If there is an even distribution of electrons in the mol- 

ecule—if there are none of Peter Debye’s permanent dipoles or 

dipoles caused by vibrations—then there is no molecular field with 

which the oscillating electromagnetic field of infrared light can inter- 

act. But the vibrational modes of molecules with no dipole can some- 

times still be detected by looking at how they scatter light. 

Light scattering is a phenomenon that affects us on a daily basis: 

The scattering of light is why the sky is blue. The shorter the wave- 

length of light, the more efficiently it is scattered from the sunshine, 

so the high-energy, short-wavelength, blue light is very efficiently 

scattered. In fact, it is scattered all over the sky, making the sky a baby 

blue. Some vibrational energy can be subtracted or added to the light 

in the course of scattering, which can make scattering a probe of 

vibrational motion. This scattering was first experimentally observed 

by Chandrasekhara Venkata Raman (1888-1970) of India, and for 

this discovery he became Asia’s first Nobel Prize recipient.” 

It is a tribute to the patience and perseverance of Raman that he 

was able to see the effect, because it is very small. However, scattering 

became a viable spectroscopic technique with the advent of the laser. 

A laser can provide a very intense light, so even though the per- 

centage of light scattered is small, enough is scattered to be detected. 

The laser also helped make possible another important new spectro- 

scopic technique: Fourier transform spectroscopy. 

Fourier transform spectroscopy is based on the mathematics of 

Jean Baptiste Joseph Fourier (1768-1830), a near-victim of the 

French Revolution. However, Robespierre proceeded him to the 

guillotine, the political tide turned, and Fourier walked away intact. 

Fourier described how one might mathematically sort out the relative 
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intensity of a particular wavelength signal from a background of 

many wavelengths, as the ear may pick out the sound of the violins in 

a symphony or the sound of a child’s voice in a crowd. The spec- 

troscopy based on the mathematics, however, had to wait until the 

advent of lasers. The trick involves sliding a mirror back and forth 

very rapidly to change the pathlength of the light, and the laser tracks 

the position of the mirror. The advantage to the Fourier technique is 

that it allows all wavelengths of light to be shown on the sample at 

once and the change in specific wavelengths to be sorted out later, 

which amounts to a tremendous savings in time and in the equipment 

needed to break the light up into its component wavelengths with a 

prism or other wavelength selection device. However, the mathe- 

matics to sort out the changes in individual wavelengths was so time- 

consuming initially that any time saved in the experiments was lost in 

the computation until we had computers. 

In addition to making the mathematics of the Fourier transform 

more tractable, computers also made possible another important 

advance in physical chemistry: molecular modeling. Molecular mod- 

eling, also called computational chemistry, computer-aided chem- 

istry, or computer-aided molecular design, is a method for finding the 

three-dimensional shape of molecules and for using knowledge of 

their shape to predict reactivity. The idea behind molecular modeling 

is that certain characteristics are similar for the same group located on 

different molecules. For instance, a length of a bond between two 

carbons can be considered to be approximately the same from mole- 

cule to molecule. The van der Waals’s repulsions between nitrogen 

and oxygen on an amino acid will be approximately the same from 
protein to protein. The results have been remarkable. 

Nowadays such calculations can be carried out on a desktop com- 

puter or even a laptop for smaller molecules. More complex calcula- 

tions have enabled researchers to design drugs to enhance or inter- 

fere with the activity of biologically important molecules.4 Though 

the method had been suggested in the 1930s, the actual practice had 

to wait for computers to make the required calculations practical. But 

as we paint these pretty pictures of molecules on computer screens, 
we again come up against the question that plagued Jean Perrin. Are 
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the calculations reflecting something real? Or are they just numbers? 

Wouldn’t it be better if we could actually “see” molecules? In the 

twenty-first century, we believe we can. 

The smallest object the unaided human eye can distinguish is a 

tenth of a millimeter. With a light microscope, the microscope used 

in biology classrooms, one can see objects one hundred times smaller 

by shining light through a thin section of material or by reflecting 

light off the surface. In 1933, twenty-six-year-old doctoral candidate 

Ernst Ruska (1906-1988) broke that barrier by using electrons 

rather than light to image objects and achieved a resolution of one- 

millionth of a meter. At first the new instrument, the transmission 

electron microscope (TEM), did not receive much notice because its 

beam burned the material it was imaging. But improvements allowed 

Ruska, his brother, and another colleague to take pictures that pro- 

vided evidence for the existence of viruses. (But knowing they are 

there does not tell us what color viruses are: As soon as we aban- 

doned light, we abandoned color. All of the images taken by nonop- 

tical methods, such as TEM, lack information on color. The pictures 

in magazines and journals are often color enhanced to bring out 

detail, but the color is purely at the discretion of the artist.)° 

The TEM method has its limits. For one thing, the electrons have 

to travel in a vacuum and the sections that they travel through must be 

very thin (about a thousandth of the thickness of a page of a book) 

because electrons are not able to penetrate to the same extent as light. 

Another method uses reflected electrons rather than transmitted elec- 

trons, the scanning electron microscope (SEM), which was introduced 

in 1966. This method allows thicker samples to be imaged, but it does 

not have the resolving power of the transmission electron microscope. 

In the 1980s, however, the scanning tunneling microscope (STM) was 

invented, which allows imaging of down to a tenth of a billionth of a 

meter (a unit known as an Angstrom, named for the nineteenth-cen- 

tury Swedish spectroscopist who determined methods for measuring 

the wavelength of light on the thousands of Angstrom scale). This new 

advance in imaging took an entirely different tack. This new imaging 

technology relies on the ability of electrons to find themselves where 

they’re not supposed to be: a phenomenon called tunneling. 
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Tunneling refers to the ability of an electron to penetrate a bar- 

rier that classical physics, cannonball physics, says it shouldn’t. In 

other words, no matter how many times handballs have been 

slammed against the walls of handball courts over the several mil- 

lennia that variations of the game have been played, not once has a 

handball escaped the court by penetrating the wall. But if the hand- 

balls were electrons bouncing around in a metal needle tip, once in a 

while an electron would pop right through the wall of the metal-tip 

court. The explanation for this electron tunneling is that the equa- 

tions that describe the motion of electrons can be interpreted as 

probability waves. Though the probabilities may be very, very small 

for an electron to penetrate a barrier, they are not necessarily zero, 

and occasionally an electron will tunnel right through. For electrons 

leaving the tip of a fine stylus being moved over a surface, the prob- 

ability for tunneling from the stylus depends on the distance of the 

stylus from the surface. So by scanning the tip over a surface, the hills 

and valleys of the surface can be detected, and in fact, the hills and 

valleys of atoms have been detected. Heinrich Rohrer and Gerd 

Binnig inaugurated the technique of STM in 1981, and in 1986 Rus- 

sell Becher and his coworkers were able to move atoms around on the 

surface using the electric fields of the tunneling microscope.’ In the 

famous spelling out of the IBM logo with xenon atoms cooled to 

within a few degrees of absolute zero, Ernst Mach’s challenge, “Have 

you seen one?” was answered. Yes. 



Chapter 28 

Physical Chemistry 

ana Physiology 

Nor So STRANGE BEDFELLOWS 

MV OSL KV E 
Physical chemistry 1s power, it is exactness, it is life. 

Sinclair Lewis, circa 1925 

he opening quote for this chapter doesn’t come from a physical 

chemist, or even a chemist. These are the words Sinclair Lewis, 

in the novel Arrowsmith,! put into the mouth of Max Gottlieb, pro- 

fessor of bacteriology at a pre-World War I medical school. The 

words are spoken to Martin Arrowsmith, aspiring first-year medical 

student and protagonist of the novel. Gottlieb goes on to explain, “If 

you are not going to be a cookbook bacteriologist, like most of them, 

you must be able to handle some of the fundamentals of science. All 

living things are physico-chemical machines. . .. How can you make 

progress if you do not know physical chemistry? . . .”2 

For anyone who has leafed through a modern textbook of medi- 

cine, this statement may seem a bit odd. The pages are replete with 

equations and graphs long familiar to the physical chemist. But this 

has not always been the case. A textbook of medicine from the early 

1900s reveals a few graphs of the rhythmic variations of blood pres- 

sure or a graph of the change in body temperature over the course of 

a disease, but little of the numbers and formulas that now seem so 

necessary for diagnosis and treatment. The transformation of medi- 

cine required young rebels, as portrayed in Martin Arrowsmith, to 

take the lead and battle disease in the laboratory patiently with the 

eg 

( 325) 
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“mysteries of freezing-point . . . osmotic pressure . . . [and] mathe- 

matical laws which strangely predicted natural phenomena.”? 

Martin Arrowsmith was a fictional character, but in the history of 

physical chemistry there are ample examples of real-life analogues. 

Physiology is the science that attempts to explain physical and chemical 

processes in the body. At one point, the prevailing sentiment was that 

the whole organism could never be entirely understood by looking at 

its parts. Physiologists spoke in terms of vital forces* and special bio- 

logical processes that were somehow beyond the normal descriptions 

of chemistry and physics. However, in the mid- to late-1800s there 

grew to be another school of physiologists who saw connections 

between physical chemistry and physiology: the thermodynamics of 

body heat, the structures of biomolecules, the rates of enzymatic reac- 

tions, the diffusion of gases and water through cell walls, and the law 

of mass action in immunity reactions. Called “followers of Helmholtz,” 

they believed in the application of quantitative science to medicine; that 

is, they utilized the principles of physics and models of mathematics to 

describe chemical processes in the body. Some experimental physiolo- 

gists, the mechanical physiologists as they were sometimes called, 

believed all biological processes, including thought and will, would 

ultimately be reducible to chemical and physical actions. In fact, the 

real-life character that Sinclair Lewis used as his model for what he 

believed a physiologist should be was Jacques Loeb (1859-1924). 

Loeb started out as a philosopher, looking for the origins of will, but 

decided he was more apt to find it in physics than philosophy.§ 
The son of a successful businessman, Loeb switched his studies 

from philosophy to science when he found the philosophers at the 
University of Berlin to be “wordmongers.” He completed his med- 
ical degree in 1884, with a thesis on the relationship between specific 
brain injury and blindness, though he also felt this work was still 
removed from what he was attempting to understand. However, 
when he found some readings on plant tropism, the mechanical 
response of plants to external stimuli such as gravity and light (the 
mechanism by which roots know to grow downward and flowers 
know to open to the sun), he realized he had found his area of 
interest. He would show tropism in animals, thereby demonstrating 
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a basis for what people had, in his estimation, been mistakenly calling 

“will,” but were actually responses beyond conscious control. 

Loeb met with impressive initial success. A breed of caterpillar 

that climbs to the top of branches had been previously thought to be 

driven to climb by the instinct for self-preservation. Loeb was able to 

show that they were merely climbing toward the sunlight. When he 

placed a light source at the bottom of the plant they climbed down- 

ward and stayed there until they starved to death, ignoring the buds 
on the dark top of the plant. 

In another revolutionary study, he showed that it was possible to 

stimulate unfertilized sea urchin eggs to develop to the larval stage by 

manipulating the salt content of the solution in which they were 

immersed, thereby reducing the activation of an egg to a physico- 

chemical phenomenon. However, these early followers of Herman 

Helmholtz ran into resistance just as the Ionists had: Some physicians 

saw medicine as more of an art that a science and were loath to apply 

the rigorous techniques of experiment and control. 

In the United States, the idea of an intimate relationship between 

physical chemistry and physiology found fertile ground. Rudolf Otto 

Anselm Hoéber (1873-1953), who was forced to emigrate from Ger- 

many by the anti-Jewish laws, used van’t Hoff’s concept of osmotic 

pressure and Arrhenius’s concept of conductivity to describe how 

materials move in and out of cells. After making a study of Walther 

Nernst’s textbook of physical chemistry and incorporating physical 

chemical principles into his interpretation of physiological processes, 

he wrote his own textbook, Physical Chemistry of the Cell and Tissues.’ 

During the time of the first World War and between wars, many 

of those trained in physical chemistry entered the field of physiology. 

In the 1930s, Edwin Cohn (1892-1953) headed the department of 

physical chemistry at Harvard Medical School. He had established a 

protein research program based on the principles of physical chem- 

istry, but he was initially noted more for his pedestrian approach than 

any particular discovery.8 But the patience and care that were the 

source of derision became his special gift: When the war demanded, 

he was able to develop a method to separate serum albumin using 

alcohol. Serum albumin is the protein part of serum that maintains 
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the osmotic pressure of the blood and is used as a substitute for 

plasma in the treatment of shock. Cohn’s contribution has saved an 

untold number of lives over the years of its use. 
In Europe, the fortunes of physical chemistry and physiology 

were linked in another way: the determination of the structure of 

complex biological molecules. Wilhelm Réntgen’s discovery of 

X-rays had found application in the determination of anatomical 

structure, and now it would find its use in atomic-level determina- 

tions of structure. 
In 1912, Max Laue (1879-1960), a German physicist, consid- 

ered the phenomenon of light diffraction and realized that if he could 

find a diffraction grating fine enough, he should be able to diffract X- 

rays, too.? When he realized that a crystal would make a fine enough 

grating, he proceeded to produce a diffraction pattern by allowing X- 

rays to impinge on a crystal of salt. The next year, 1913, William 

Henry Bragg (1862-1942) and his son William Lawrence Bragg 

(1890-1971) demonstrated that measurements of the spacings of 

lines in the diffraction pattern could be used to calculate the spacings 
between atoms in a single crystal.1° 

The father sprang from a humble but honest English family. 

Bragg did well in school, but was not very productive in his subse- 

quent academic career at the University of Adelaide in Australia. 

Then in 1903, at the age of forty-one, he became intrigued with the 

exact nature of X-rays, which still had not been decisively determined. 

It had been supposed that X-rays were particles or waves or transverse 

pulses in the hypothetical ether. His rapid series of experiments and 

publications resulted in a position in England and he returned in 
1909. There he and his son worked together to sort out the signifi- 

cance of the patterns of light generated in X-ray diffraction. 
William Henry Bragg’s son, William Lawrence Bragg, started out 

working for J. J. Thomson on a different problem. However, he soon 
became intrigued by his father’s line of inquiry. With his father, he 
worked out the equations that could be used to calculate the distance 
between atoms in crystals from X-ray data. The publication of the 
formula appeared in 1913, before the son’s twenty-third birthday. 
Father and son won the Nobel Prize in 1915 (a first), and the son is 
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the youngest recipient to date. The son held the title of Nobel lau- 
reate for fifty-six years (another record). 

The technique they developed for analyzing crystals with X-rays 
is known as X-ray crystallography and may be understood by recon- 

sidering the laser-pointer—-ruler demonstration that we described in 

our discussion of electromagnetic radiation. In that demonstration, a 

diffraction pattern, a pattern of light and dark bands, is generated by 

the light of the laser pointer reflected from the ridges of a metal ruler. 

The same thing happened with the Braggs’ crystals. The difference is 

that the crystals are an atomic scale “ruler” and very short wavelength 
X-rays are used instead of visible light. The Braggs got their good 

results from sodium chloride, which is a fairly simple cubic crystal. 
But not all crystals are so simple. A body of mathematical theory had 

to be derived, using the tools of group theory and symmetry, to pro- 
vide a general method of analysis. Kathleen Yardley Lonsdale 
(1903-1971) came to the attention of the elder Bragg through her 

competent performance as a student of mathematics and physics, so 

he invited her to work with him in his laboratory.!! Working with 

William Astbury (1898-1961), a chemist, she developed a theory of 

X-ray diffraction that could be used for general structural determina- 

tions.12 In 1945 she was the first woman elected a Fellow of the 

Royal Society, though she also spent a month in prison for her paci- 

fist convictions during World War II. William Astbury, who worked 
with Lonsdale on the development of a theory of X-ray diffraction, 
used the technique in 1930 to examine a single strand of wool, thus 

opening the door for the use of the technique for biological mole- 

cules. His premier finding was that he obtained two different patterns 

depending on whether the wool was stretched or relaxed, which 

implied that the molecules of the wool were somehow folded in on 

themselves. From this initial study began the search for the three- 

dimensional structure of biological molecules. 

John Desmond Bernal (1901-1971) was the son of an Irish 

squireen, which is a position intermediate between farmer and squire, 

and his father was at least well-off enough to send his son to Cam- 

bridge.13 Afterward Bernal worked for the Braggs at the Royal Society 

and then secured a position back at Cambridge, being put in charge 
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of their new X-ray diffraction facility. The account has it that Bernal 

was a gregarious redhead who went by the nickname Sage and who 

embraced communist politics and a free-wheeling lifestyle. He once 

defused a bomb in Liverpool Street Station though the place was evac- 

uated and the bomb squad was on the way. Though he married and 

remained married to the same woman his whole life, he was notorious 

for his romantic interludes.1* Bernal’s two great achievements in sci- 

ence were to solve the structure of graphite (it forms flat sheets that 

are free to slide past one another, which is why it is a good lubricant) 

and to recruit Dorothy Crowfoot Hodgkin to X-ray diffraction. 

Dorothy Hodgkin (1910-1994) was born Dorothy Mary Crow- 

foot in Cairo, where her family was located while her father, an 

archaeologist, worked for the Egyptian Education Service. Her 

father’s work was a family affair; her mother became an authority on 

ancient weaving and Hodgkin herself almost gave up chemistry for 

archaeology, though her first love won out. She found chemistry 

through a home lab and was allowed to take chemistry with the boys 

at school. She became an experimentalist, working with delicate and 

intricate instrumentation, though at an early age she had been 

afflicted with rheumatoid arthritis. Consequently her hands were 

severely malformed and painful most of her life. She studied chem- 

istry at Oxford and was encouraged to follow her inclination to learn 
X-ray crystallography.15 

From Oxford she went to Cambridge to work for Bernal. 

Together they discovered the technique that would make X-rays of 

large, complicated biomolecules possible: They left them in the solu- 

tion from which they had been crystallized to ensure they were well 

structured enough to give a sharp pattern. Biological molecules are 

meant to hold their shape in liquid, namely body fluids. Once dry, 

they deform in unpredictable ways and break up the periodic struc- 
ture that is necessary for X-ray patterns. 

As Hodgkin’s biographer, Georgiana Ferry, relates, the relation- 
ship between Bernal and Hodgkin was intimate as well as intellec- 
tual.!© This union no doubt gathered strength from their mutual pas- 
sion for science, unrestrained embrace of life, and refusal to be teth- 
ered by convention. Though the physical aspect of the relationship 
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ceased when Hodgkin opted for a settled life, they remained close 
colleagues and friends. 

After her work with Bernal, Hodgkin returned to Oxford to build 

up an X-ray crystallography lab there. During this same period she 

met and married her husband, a historian. Her labs at Oxford con- 

sisted of a hodgepodge of rooms and a hodgepodge of workers 

including students, assistants, and visitors. But all help was welcome. 

In her time, the calculations to determine the structure of molecules 

as complicated as the ones she worked on, such as penicillin and vit- 

amin Bj, required months of slide rule and pencil time. Nowadays 

these same calculations are handled by computers in minutes, but the 

samples are still prepared by talented human hands. In 1964 Dorothy 

Hodgkin became the only British woman to receive a Nobel Prize, 

but it is easy to see why she was selected for this honor: If anyone 

could pull it off, Hodgkin could. She purportedly sent an assistant to 

meetings of the organic chemists so that the assistant could interject 

into the conversation how the structure of vitamin B), had been 

found—and in whose lab—so that her work would not be appropri- 

ated. Once, when asked to leave a scientific meeting that was held in 

males-only quarters, she refused and had to be carried from the 

room. She even took on Margaret Roberts, who later became Mar- 

garet Thatcher, Prime Minister of Britain, as a student.!7 Dorothy 

Hodgkin also worked out the structure for insulin, though the effort 

took many years from start to finish. 

The story of insulin makes an interesting sidebar to our narrative 

on the connection between physical chemistry and physiology. Prior 

to the mid-1920s, a diagnosis of diabetes was a death sentence, a 

slow, painful death from starvation. The cause of diabetes is an insuf- 

ficient supply of the hormone insulin, which is needed to regulate the 

metabolism of sugar. In 1922 the idea for a treatment came from a 

Canadian country doctor.!8 At the time it was fairly well known that 

there is a substance produced by the pancreas, insulin, that is neces- 

sary for the proper regulation of blood glucose. But attempts to 

extract it from the pancreas seemed doomed to fail because a pancre- 

atic digestive enzyme was extracted along with it. Frederic Banting 

(1891-1941), the Canadian doctor, came up with the idea of tying 
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off the pancreas in dogs and letting the organ atrophy.!? Extracts of 

materials from these organs, then, were rich in insulin but lacked the 

interfering digestive enzyme. Banting’s extract proved to be effective 

on dogs, but was too impure to be used on humans. The person 

Banting had talked into letting him use research facilities, John 

Macleod (1876-1935), hired a chemist to do the purification, James 

Collip (1892-1965).29 Collip managed to isolate insulin in a pure 

enough form to be usable on humans, using a method similar to the 

one Cohn used to isolate serum albumin.?! Macleod (who did even- 

tually share the Nobel Prize with Banting) started talking about the 

insulin that “we” extracted and other people started referring to 

“Collip’s extract.” Banting, stewing over this one day, sought out 

Collip and tackled and throttled him.22 
Though not always so overtly violent, there were other harsh 

exchanges that occurred in the early investigations of biological mate- 

rials. The cause for the tensions may be traced to the high stakes that 

these discoveries were tied to as well as the incredible difficulty of the 

work, which results, in part, from the fact that many biochemical 

materials are relatively huge. Water is made up from three atoms. 

Rubbing alcohol is made from twelve atoms. Hemoglobin is made up 

from some several thousand atoms. Large biologically active mole- 

cules also have a highly convoluted, but highly specific structure. The 

molecule itself may appear as a jumble of tangled yarn, but each 

tangle and knot is important to the function of the molecule, as can 

be demonstrated by the following simple experiment: If a raw egg is 

placed in a bowl and a teaspoon of salt is poured directly on a spot of 

egg white, the egg white will appear to “cook”; that is, the clear glob 

of material surrounding the egg yoke will turn the characteristic 
white of cooked egg white. (But note: Heat is necessary to kill bac- 
teria in raw egg, so regardless of its appearance, the egg is still unsuit- 
able for consumption.) This change is wrought by the proteins of the 
egg denaturing, or abandoning their natural shape, in a fluid that is 
too dissimilar to their natural environment. The forces responsible for 
the three-dimensional shape of large biomolecules are intermolecular 
forces, but among them is a type of intermolecular force not previ- 
ously discussed, hydrogen bonding. 
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Hydrogen bonding is a type of intermolecular attraction, but it is 

a particularly strong attraction. Hydrogen bonds occur in materials 

that are composed of hydrogen and another electron-attracting ele- 

ment, such as oxygen. Water is a prime example, because water has 

two hydrogens and one oxygen. Alcohol also has a hydrogen-oxygen 

group, but only one. The strength of hydrogen bonding can be 

demonstrated by putting equal amounts of water and rubbing alcohol 

in two different spoons and then tipping the spoons slowly. The 

alcohol will break loose and flow from the spoon at a smaller angle of 

tilt than the water because the water is being held to itself in the spoon 

with twice as many hydrogen bonds. Comparing water with liquid 

cooking oil, which has no hydrogen bonds, drives the point home. 

Dorothy Wrinch (1894-1976), born in Argentina of English par- 

ents, grew up in London. She earned a doctor of science degree from 

Oxford, and in 1935 Wrinch received a research grant from the Rock- 

efeller Foundation with the object of finding mathematical models for 

biological systems. From her research, she proposed a structure called 

the cyclol bond. The idea was that proteins are formed from a kind of 

colloid coagulation, along the lines of Bancroft’s description, but with 

much bigger molecular units forming the colloids.2? Though her idea 
was embraced by Irving Langmuir (who was also the supporter of 

G. N. Lewis’s cubic atom for a while) it was rejected by John Bernal. 

The controversy eventually involved Linus Pauling, who effectively 

debunked the cyclol bond. Once cornered, Wrinch tenaciously clung 

to her initial hypothesis, to the eventual detriment to her career, basi- 

cally spending the rest of her life defending an insupportable concept. 

The Braggs and others had a strong interest in discerning the 

underlying patterns to biological molecules, but they made some erro- 

neous assumptions concerning the many twists and turns, including an 

underestimation of the importance of the results of quantum chem- 

istry in deciding shapes. As a result they could not arrive at a model 

that would satisfactorily match the X-ray data. The person who suc- 

ceeded in sorting out the basic structure underlying the complex 

tangle of yarn was someone versed in quantum chemistry and X-ray 

crystallography, someone we have met before: Linus Pauling. 

During his career, Pauling tackled an amazing range of topics in 



334 MVC’ Magick, Mayhem, and Mavericks 

physical chemistry and was therefore prepared to take on the problem 

of the huge biochemically active molecules. But it took him a while to 

get around to it. By the time Pauling started studying biochemicals, it 

had been fairly well established that proteins, such as the material of 

the egg white of our demonstration, are made up of chains of units 

called amino acids, chemically bonded to each other, end to end. 

Pauling, working with others, had tried for some time to develop a 

structure for these chains that would match the available X-ray pat- 

terns. In 1948, by his own account, he came upon his breakthrough 

while he was confined to bed with an infection. Playing with paper 

cutouts of the chains, he found that if he aligned the hydrogen bonds 

between the amino acids he could form a corkscrew pattern, called the 

alpha helix, that would match the requirement of the X-ray data. 

In 1954 Linus Pauling would receive the Nobel Prize for his 
work on molecular structure, especially his work on the structure of 

proteins. But in 1952 when he requested a passport to discuss his 

alpha helix with European scientists, the request was denied because 

the State Department was not convinced that he was sufficiently anti- 

Communist.?4 From the late 1940s Pauling had been a supporter of 

several peace organizations and groups concerned with fallout from 

nuclear weapons testing. In 1963 the Nuclear Test Ban Treaty would 

be announced on the same day that it was announced that Pauling 
would receive the Nobel Peace Prize. But in 1952, Pauling couldn’t 
get a passport. Had he received a passport and been able to attend 
the meeting he wanted to attend, he may have seen Rosalind 
Franklin’s X-ray spectra of DNA. Rosalind Franklin’s sharp and 
detailed X-ray spectra enabled Watson and Crick to propose their 
famous double helix structure for DNA. 

DNA, which stands for deoxyribonucleic acid, has become a 
household phrase, and most people are comfortable with the notion 
that DNA is a material found in the cell that carries genetic informa- 
tion. After World War II an intense effort was underway to under- 
stand the structure of this important molecule. In 1953 James 
Watson (b. 1928) had just received his doctorate in zoology from the 
University of Indiana and was in Europe to study. Francis Crick (b. 
1916) was a student still working on his doctorate under Bragg, the 
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Fig. 31. Linus Pauling, April 28, 1962, outside the White House, protesting U.S. atmos- 

pheric nuclear tests. National Archives and Records Administration, photo no. 306- 

PSA.62-3422, courtesy AIP Emilio Segré Visual Archives. 

elder. Rosalind Franklin (1920-1958) was a physical chemist at 

King’s College who was performing X-ray diffraction studies on 

DNA. Watson and Crick used the X-ray data of Rosalind Franklin 

(though sometimes without her knowledge)?5 and models (in the 

style of Pauling) to successfully propose a structure for this important 

biological chemical. 

But physical chemists have long been interested in the structure 
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and function of biochemical materials. For instance, two of our pre- 

vious acquaintances among the Ionists, Walther Nernst and Svante 

Arrhenius, argued bitterly over the application of the law of mass 

action to toxin—antitoxin systems, but their thinking was linear. Many 

biochemical systems—the heart, lungs, endocrine system—work with 

a feedback, switching mechanism: when an enzyme is needed, it is 

produced; when it is not needed, its production is suppressed. Such 

systems are nonlinear. They oscillate. Nonlinear dynamics, the study of 

the peculiar structured and regulated systems that exist in our chaotic 

world, has become an important research area for physical chemists. 



Chapter 29 

Nonlinear Dynamics 

... our bodies are just wavelets on the surface of the earth... 

Gustav Fechner, circa 1828 

scillations are a part of life. Swings swing. Waves crash. Old 

Faithful gushes, and the sun also rises. Oscillating chemical 

reactions are found—and are necessary—in many biological systems, 

including contractions of the uterus, the beat of the heart, and bio- 

logical clocks.! 

Spontaneous, sustained oscillations can be demonstrated by 

anyone with carbonated soda and some raisins. If the raisins are 

soaked overnight in water and then dropped into soda, they will 

eventually start rolling or rising and falling periodically as the bubbles 

underneath them accumulate then escape. But this type of oscillation 

is purely physical, that is, it does not involve a change in the material. 

What interests us here are purely chemical oscillating systems or those 

that combine physical and chemical mechanisms. 

Oscillating reactions have been recorded in the Western world 
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since the 1600s. Robert Boyle observed oscillating flashes from solid 

phosphorous in a flask with a loose stopper.2 The mechanism for this 

oscillation is both chemical and physical: The phosphorous burns 

until it runs out of oxygen; then when enough oxygen has diffused 

back in, it flares again. James Joule observed oscillating electrochem- 

ical systems.? The type of oscillating system that Joule observed is 

fairly well understood; when a voltage is applied to an electrode in a 

reactive solution, such as a corrosive acid, there is a battle between 

two forces: the push of the applied voltage to grow an oxide layer 

(such as rust on iron or tarnish on silver) versus the pull of the acid 

to clean it away. However, oscillations in current-producing cells are 

a bit more difficult to explain. For instance, one would normally not 

expect one’s AA batteries to suddenly start oscillating. But in 1828, 

nearly two decades before Joule made his observations, that is what 

Gustav Fechner saw: oscillations in his battery. 

To students of psychology, the name of Gustav Fechner (1801— 

1887) is familiar. He developed a well-known mathematical model 
for the response to sensory stimulus known as the Weber—Fechner 
law, though Fechner insisted on calling it Weber’s Law.4 Fechner’s 
name is less well known to physicists and chemists. This anonymity 
may stem from the fact that he turned from the study of chemistry 
and physics to the study of psychology, where he became famous. But 
it is also partly explained by a propagated bibliographic error. 
Fechner’s papers on his oscillating reactions were published in 
Schwergger’s Journal for Chemistry and Physics, a journal founded and 
edited by Johann Salomo Christoph Schweigger (1779-1857) from 
1811 to 1828.5 However, probably due to space constraints, the 
journal’s name became truncated in some citations to the Journal of 
Chemical Physics, which did not begin publication until 1933. So any 
requests for Fechner’s work would be turned away as an erroneous 
citation. Such a situation is known as a bibliographic ghost. 

Fechner started out his life in a normal manner. He was born near 
Halle, Germany, in 1801, to a Lutheran preacher and his wife, but his 
father died when Fechner was five.6 In 1817 he began attending the 
University of Leipzig and continued there as student, then professor. 
He initially studied medicine, but did not practice it, concentrating 
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instead on chemistry and physics. At the age of twenty he started 

writing a series of social satires using the pseudonym “Dr. Mises.” 

The origin of his nom de plume is not known—Mises was a family 

name in that area of Europe at that time—but it is also reminiscent 

of the archaic word misease, which means extreme distress or dis- 

comfort. In 1828 Gustav Fechner began his experiments with elec- 

tricity. One day, while measuring the current flowing between a silver 

wire and iron wire in concentrated nitric acid/copper chloride solu- 

tion, he saw a strange thing: The current oscillated. 

To measure the current oscillations Fechner used a floating- 

needle galvanometer, which consists of a thin iron wire floating in 

water in a covered shallow dish.” The current-carrying wire from the 

reaction would run underneath and at right angles to the iron wire. 

Michael Faraday had demonstrated that electric current induces a 

magnetic field, which in turn deflects iron wire. The setup made an 

effective current meter: Every time current flowed, the iron wire 

would move. In Fechner’s experiment it moved right, then left, then 

right, then left. Fechner, however, did not follow up on his initial dis- 

covery, and the exact mechanism for his oscillating reaction is still not 

completely understood. The reason Fechner did not pursue this fur- 

ther was his other interest: the psychology of sensation. 

It was known by that time that electrical discharge to a sense organ 

could produce sensation. This effect can be readily demonstrated by 

briefly touching one’s tongue to both poles of nine-volt battery: The 

resulting sensation is a slightly salty taste. These findings are no sur- 

prise to us today. The electrical nature of nerve impulses and brain 

activity is well established, and an instrument has been devised to mea- 

sure these tiny variations in these voltages, the electroencephalograph. 

However, to Fechner and his colleagues, these discoveries must have 

felt as fundamental as Joseph Priestley’s isolation of oxygen. 

Fechner, like Loeb, was very interested in the connection be- 

tween physicochemical systems and how the mind works. Unfortu- 

nately, it was this interest in sensation that caused his catastrophic 

decline in health, both physical and mental. In the course of pursuing 

his interest in the physiological origin of sensation, Fechner became 

fascinated with afterimages, the dark images in the eyes after exposure 



340 MVOC Magick, Mayhem, and Mavericks 

to bright light, such as the spots before the eyes after the flash of a 

flashbulb. These visual afterimages, which are now regarded as little 

more than a mildly entertaining optical illusion, became a focus of 

interest for Fechner. Unfortunately, in 1840, he went so far as to gaze 

at the sun to produce the effect. Although he used colored glasses 

during the experiment, he went blind. The stress of the blindness, in 

turn, seems to have caused Fechner to suffer a nervous breakdown, 

which resulted in his resignation as chair of physics at Leipzig. 

After three years of blindness, while out in his garden, he 

removed his bandages and found he could see—in fact he could see 

so well he was convinced that he could see the souls of plants. 

Fechner seemed to struggle with his own madness the way a physi- 

cian might struggle with his own cancer. Although at first he was 

forced to be qualitative in his efforts to understand the workings of 

the human mind, he was no doubt nagged, by his training in physics 

and chemistry, with a desire to be more quantitative. His wish was 

fulfilled when he hit on the idea for a mathematical model that would 

relate the increase of physical stimulation to the increase of the cor- 
responding mental sensation.8 

Fechner’s finding was influenced by the observation made by 
Ernst Heinrich Weber (1795-1878) that the change of stimulus nec- 
essary to be noticeable increases as the stimulus increases—which 
might be summarized by saying “the more you have, the more it 
takes to notice a difference.”? An analogy might be found in weight 
loss: If a 300-pound person loses ten pounds, the difference is not 
likely to be noticed. If a 100-pound person loses ten pounds, the 
change is profound: Weber said this was true for sensation, too, and 
he demonstrated his rule by having subjects judge differences in 
weights, line lengths, and some tactile sensations.19 The reader may 
confirm the effect by a simple experiment with pennies. A subject, sit- 
ting with eyes closed, is handed the two containers with pennies and 
asked to judge if they contain the same or a different number of pen- 
nies. The greater the number of pennies, the greater the relative dif- 
ference necessary before the subject can make the distinction. In 
other words, if the subject is trying to decide between one penny and 
two pennies (one more penny), the difference is obvious. However, 
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Fig. 32. Gustav Fechner. Archives of the History of American Psychology, Photograph 

File, The University of Akron. 
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the difference between forty pennies and forty-one pennies (again, 

one more penny) is difficult to detect. 
Although Fechner relied on subjective judgment of sensation to 

validate his relationship, it has been subsequently shown, using elec- 

trophysiological measurements of response, that the relationship 

really does follow Fechner’s mathematical function over a limited 

range of stimulation. In 1860 Fechner published his mathematical 

formulation of Weber’s law in Elements of Psychophysics, which is con- 

sidered the first publication of that discipline. The importance of 

Fechner’s contribution to the field of psychology—finding a psycho- 

logical phenomena that could be modeled with mathematics—is evi- 

denced by references to Fechner’s law in standard textbooks in psy- 

chology and Freud’s inclusion of Fechner’s insights into his 1900 The 

Interpretation of Dreams.+1 

Gustav Fechner, true to his age, was a virtuoso of science, inter- 

ested in all problems to which he might apply his skills. As a result he 

made significant contributions to psychology as well as electrochem- 

istry. He received substantial accolades for his foundation of psy- 

chophysics, but he would have been disturbed by the neglect of his 

contributions to chemistry and physics. Hopefully we have laid this 

bibliographic ghost to rest. 

Fechner’s oscillating reaction is a heterogeneous system; that is, 

it takes place in two phases: the solid-phase electrode and the liquid- 
phase solution. In the early 1900s other heterogeneous oscillating 
systems, such as periodic dissolution of iron wire in nitric acid,!2 were 
discovered. Though reported in the literature, these reactions caused 
little stir. Since the work of Helmholtz and Gibbs, it had become 
chemical dogma that all well-mixed chemical reactions proceed 
smoothly toward equilibrium, not in fits and starts. Saying that a 
homogenous, well-stirred, solution-phase chemical reaction could 
oscillate was like saying that a bowling ball might spontaneously start 
jumping up and down. In 1921, William C. Bray, an associate of 
G. N. Lewis originally from Canada, found that hydrogen peroxide 
could be made to decompose periodically if a catalyst were added. 
Anyone who has used drugstore hydrogen peroxide as a disinfectant 
has seen the way it spontaneously bubbles. When the proper catalyst 
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is added to concentrated hydrogen peroxide, the bubbling comes in 

periodic bursts that can be as regular as a heartbeat. Though this 

reaction occurred entirely in the solution phase, the report received a 

cool reception. The reaction was written off as an experimental arti- 

fact caused by an impurity. This skepticism of his results and ques- 

tioning of his methods must have been highly offensive to the taci- 

turn Canadian. Though the reaction has subsequently been shown to 

be a true homogenous oscillating reaction, Bray does not seem to 

have pressed this line of research. In 1955 Ilya Prigogine demon- 

strated theoretically that oscillations can exist in homogenous systems 

where the reactant and product concentrations are greatly different 

from what they will be at equilibrium, a condition known as “far from 
equilibrium.” 

Ilya Prigogine (b. 1917) a physical chemist, was born in Moscow 

a few months before the revolution of that year. His father, a chem- 

ical engineer, took his family to Germany after the revolution and 

then Belgium. Prigogine did not originally intend to study chemistry. 

His interests lay more in history, archaeology, and music (he report- 

edly could read music before he could read words). But physical 

chemistry won him over because of its strong link between chemistry 

and mathematical theory. The basic idea underlying Prigogine’s 

model is well represented by the analogy with rabbits and wolves. In 

a lush field of grass, a pair of rabbits will blossom into a troop of rab- 

bits. As long as the fields stay lush, the rabbits will multiply. Eventu- 

ally a large rabbit population will attract wolves. When the wolves 

move in, they have plenty of rabbits to eat, so they will multiply. 

Eventually the wolves will become so populous that rabbit repopula- 

tion will not be able to keep up, and the rabbit count will start to go 

down. When the rabbit population drops, it will reach a point where 

the wolves find themselves strapped for food and the wolf population 

will start to drop, too. When the wolf population reaches a low, the 

rabbits will start to rebound. And so it goes. In the model, the situ- 

ation is held “far from equilibrium” by the fact that there is a lush 

field of grass: a continued supply of food keeps the system from run- 

ning down. If the grass ran out, the wolves would win for the 

moment, then they would die out, too. 
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Strong objections were raised to this concept. How could oscilla- 

tions be sustained if the basic laws of thermodynamics were to be 

obeyed? Didn’t all reactions have to proceed toward the maximum 

evolution of heat and the maximum entropy? Prigogine pointed out, 

once again, it was the net of these two effects—the free energy—that 

was important. While the free energy did have to proceed downhill 

toward equilibrium, there was nothing to prevent the heat, the 

entropy, or even concentrations from oscillating along the way. In the 

systems he described, there was plenty of opportunity to do this 

because they were far from equilibrium, just as the rabbits and wolves 

are held far from equilibrium by the lush fields. As long as there is a 

supply of grass, the cycle can continue. If there is a drought and no 

more grass, the system runs down. But Prigogine needed an accept- 

able real-life example to substantiate his ideas. Prigogine won the 

Nobel Prize in 1977 for his work, but he might not have if it weren’t 

for an obscure fellow Russian by the name of Boris Belousov. In the 

1950s a student of Prigogine came back from a visit in Russia to 

report a reaction that matched Prigogine’s model. 

Boris P. Belousov (1893-1970) spent his youth in czarist Russia, 

though after the revolution of 1905 his family left for Switzerland, 

were he studied chemistry. As a young man Belousov returned to 

Russia. From there, the details of his life remain sketchy. Belousov dis- 

covered his oscillating reaction around 1951, but was unable to get an 

article on it published because no reputable journal would believe that 

such a reaction were possible. When enough people heard about it by 

word of mouth, he was urged to find a venue for publication just to 

establish his priority of discovery. In 1959 he finally did: He slipped it 

into an in-house publication issued by the institute for which he was 
working. The reaction appeared in a booklet entitled A Collection of 
Short Papers on Radiation Medicine.\3 

The reaction is now known affectionately among physical 
chemists as the Belousov-Zhabotinsky or BZ reaction. The B is for 
Belousov and the Z is for Anatol Zhabotinsky, the chemist who 
started its systematic investigation. It is a beautiful reaction to wit- 
ness: The stirred reaction solution cycles periodically between rich 
red, deep blue, and new-leaf green in a series of sudden and dramatic 
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color changes that can be made to repeat for thirty minutes or more. 

Recipes for the reaction can be found in many handbooks for chem- 

ical demonstrations,!4 and the reaction itself has been widely investi- 

gated since its popular reception. But initially it was known only by 

one person telling another. One of the people who varie the infor- 

mation was Anatol Zhabotinsky (b. 1938). 

Zhabotinsky, a graduate of the biophysics department of Moscow 

State University, was intrigued by reports of oscillations in glycolysis. 

Glycolysis is the series of reactions in the body in which sugar is 

broken down for energy. However, while trying to assemble the 

materials to study this reaction Zhabotinsky heard about Belousov’s 

solution. When he tried it and saw the beautiful pulses of color, he 

wrote enthusiastically to Belousov of his desire to study the reaction 

and asked to meet with him. But Belousov had retired by that time 

and pleasantly but firmly asked not to be disturbed. 

Zhabotinsky continued to study and publish on the reaction. 

Eventually knowledge of it spread outside Russia and to the United 

States. In the United States, a distant cousin of Arthur Amos Noyes, 

one of the heirs of the Ionists, Richard Macy Noyes (1919-1997), 

heard of the reaction. It soon became the passion of his life, too. 

Richard Noyes’s father, William Albert Noyes (1857-1941), 

chairman of the department of chemistry at the University of Illinois, 

was sixty-one years old when Richard Noyes was born.!5 The story is 

told that the dean hinted that the elder Noyes should think about 

retiring, at which point the dean was invited to attend the christening 

of Richard’s younger brother. 
Not only was Noyes’s father a chemist, but so was his half-brother. 

When Richard Noyes entered Harvard he majored in chemistry be- 

cause, by his own account, he had no imagination. His experience at 

Harvard was actually his first formal training in chemistry; his father 

had advised him against taking chemistry in high school. Noyes grad- 

uated summa cum laude. Though he had the opportunity to work with 

Linus Pauling in graduate school, he decided not to because he was 

more interested in chemical processes than the structure of molecules. 

Noyes married a chemist, Winninette Arnold. Their early life 

together was marred by sadness. His wife suffered from diabetes and 



346 ATO Magick, Mayhem, and Mavericks 

two of their children died in infancy. In addition he chose some 

unprofitable areas to investigate, and after a thirty-year career, it did 

not appear that Richard Noyes was going to make much more than 

a prosaic contribution to science. 

Then, in 1969, he learned of the Belousov—Zhabotinsky reaction 

from a colleague returning from work with Prigogine. Noyes’s many 

years of study then came to fruition. By 1971 he had found he could 

account for the observed oscillations by a reaction mechanism that 

involved a series of eighteen separate steps and twenty-one different 

chemical species, including the transition states. In other words, our 

rabbits and wolves are a highly simplified model; Noyes found he had 

to consider the entire food chain. He offered a simplified model of five 

idealized steps that exhibited oscillations and called it the Oregonator 

(he was living in Oregon at the time). For the next twenty-five years 

he wrote over 104 publications on the BZ and other oscillating chem- 

ical reactions, basically establishing this area of research in physical 

chemistry. All of this work was accomplished after his fiftieth birthday. 

Originally, the BZ reaction was studied as oscillations over time, 
but Prigogine, Noyes, and Zhabotinsky were also interested in reac- 
tions that changed as a function of distance. These reactions are called 
spatial oscillations, or waves. If the BZ reaction is initiated in a shallow 
dish that is not stirred, the reaction will start with a blue spot that will 
expand outward. After it has expanded some distance, the center 
where it started will turn red. This pattern of reaction and diffusion 
continues until there is a red and blue design of squiggles and swirls. 

Other reactions also display pattern-forming behavior.16 The 
curious nature of spontaneous pattern formation and organized 
structure interested the mathematician Alan Turing. Turing (1912- 
1954) was a British mathematician who did important work in com- 
puter design and who was instrumental in deciphering German 
encrypted messages in World War II, work for which he was awarded 
the Order of the British Empire.!7 In 1952 in a landmark paper in 
theoretical biology, Turing presented a mathematical model for a 
chemical mechanism that could cause patterns such as those seen in 
the stripes of zebras or a leopard’s spots.!8 The mechanism incorpo- 
rates reaction followed by diffusion, such as in the spatial waves in the 
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BZ reaction. Though the actual mechanism for natural patterning is 

now thought to be more complicated, Turing presented the founda- 

tion on which further studies would build. 

But further work would have to be done by others. In 1952 

Turing called the police to report a robbery of his home. While the 

police were there to investigate the robbery they also found evidence 

that Turing was homosexual. Turing, an academic who was fairly 

naive, had never taken pains to cover up his personal life, apparently 

not believing that it was necessary. However, an 1885 law was invoked 

to arrest Turing and he was subsequently tried and found guilty of 

gross indecency. Although fellow scholars and colleagues spoke up for 

him, he was sentenced to undergo drug therapy meant to suppress his 

homosexuality. He survived a year of drug treatment and a year after 

that, but in 1954 he was found by his housekeeper, dead of cyanide 

poisoning. There was no note.!? He was forty-two years old. 

Turing would have been gratified to know that in addition to the 

fascinating zebra-like patterns that emerge from a perfectly uniform 

BZ solution, there are also structures that can develop on a scale 

indiscernible to the eye. With the advent of new microscopy instru- 

mentation we can now image surfaces on the billionth of a meter 

scale.29 Sometimes microscopy reveals the rough and erratic moun- 

tains that we would expect to see, but sometimes we see delightful 

patterns of honeycombed or gridded surfaces. These minuscule struc- 

tures are said to be on the nanoscale. A nanometer, a billionth of a 

meter, is the standard unit in this strange, diminutive world. 
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Nanotechnology 
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There’s plenty of room at the bottom. 

Richard P. Feynman, 1959 

he U.S. military once tested Richard Feynman’s IQ and rated it sub- 
standard, as Feynman likely intended it to be.! Richard Feynman 

(1918-1988) had a good sense of humor and went on to share the 
Nobel Prize anyway, for his work on quantum electrodynamics. In 1959, 
before he won the prize, already a well-respected physicist, he was invited 
to give a talk at the American Physical Society. He decided to make the 
topic of talk rather speculative, but he didn’t talk big. He talked small. 
He spoke about the possibility of building motors tenths of a millimeter 
on a side, writing libraries on the head of a pin, and contriving machines 
that could be swallowed to perform microsurgery. 

Feynman’s idea captured the imagination of many, including a 
name that has become associated with the nanoworld—the world on 

348. 
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the billionth of a meter scale—Eric Drexler (b. 1956). Drexler has 
made a career out of predicting the future of nanotechnology. He, 
with his wife, Chris Peterson, a chemist, founded the Foresight Insti- 
tute in Palo Alto California in 1986 where they sponsor seminars and 
write on the possibilities of nanotechnology.? Drexler’s predictions 
are even more ambitious that Feynman’s. Drexler envisions a world 

where nanoscale robots manipulate individual molecules and atoms, 

positioning them with tiny tools, building minuscule machines, and 

assembling replicas of themselves. Though Drexler’s specific forecasts 

have come under considerable criticism,? nanotechnology is currently 

an exciting area of research in physical chemistry, though not exactly 
in the fashion Feynman imagined. 

To begin with, we need to excuse Feynman from the fantastic 

because Feynman was still talking about scaled down but micro- 

scopic, not subsubmicroscopic devices. Feynman issued a challenge 

to make a motor a tenth of a millimeter on a side, a challenge that 

was quickly met. But the millimeter scale is still 10,000 times bigger 

than such a motor on the nanometer scale. A nanometer is about the 

diameter of one molecule of sugar.4 A nanometer compares to a 

meter as a meter compares to the distance to the moon. On the 

nanometer scale, systems behave differently from what we are accus- 

tomed to. To use what has become a trade witticism, size matters. 

For instance, if you scale down an airplane to nanoscale dimen- 

sions, it could no longer fly. It would be bombarded by air molecules 

as big as cannonballs and there would be nothing but vacuum 

between collisions. And you wouldn’t be able to machine parts to fit. 

You can build only with integral numbers of atoms. You couldn’t 

shave off a quarter of an atom here or an eighth of an atom there. 

And there would be those pesky intermolecular forces to deal with. 

It wouldn’t be simply a matter of picking up an atom and placing it 

where it needs to be. You would have to find a way to shake it off, 

too. The intermolecular attractions would make it more like trying to 

stack magnets with steel pliers than laying bricks.® 

The difficulties mount. Properties of materials are different on 

the nanoscale. To understand why this might be, consider a large 

group of people carrying a twelve-foot canoe over their heads. A 
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group of people can do this, but 

one person cannot. But the 

canoe-carrying properties of the 

group don’t decrease gradually as 

the number of people in the 

group is reduced: Removing one 

person from the group doesn’t 

just lower the canoe a couple of 

inches and removing another 

: 4 person lower it a few inches 
Fig. 33. Richard Phillips Feynman witht nok. Cher eusome cee die 

Toichiro Kinoshita, June 1961. Clarice 

Schwinger, courtesy AIP Emilio Segré number of people necessary to 

Vestal Arches: carry a canoe, and when there 

aren’t enough people, the canoe 

drops to the ground. The analogy carries over to the nanoscale. 

Nanoscale droplets of water, known as nanowater, do not act like 

bulk water until some 5,000 molecules have accumulated. Because 

there are so few molecules in the structure, when nanoaggregates are 

hit with a heat source they don’t melt from the outside in, the inte- 

rior starts melting at the same time as the outside. Nanoparticles can 

be invisible, in the literal sense: not only hard to see, they can be 

transparent, too. Sunscreen is made of nanoparticles of titanium 

oxide, the stuff that used to look like a white paste on sunbather’s 

noses when sunscreen was non-nanosized. You may have noticed 

there haven’t been a lot of white noses at the beach lately. Researchers 
are also looking at ways to incorporate nanoparticles into a paint that 
would provide a visible-light-rejecting sunscreen for cars. Paint 
would last longer and the interior would remain cooler. So an entirely 
different mode of thinking has to be adopted for engineering on the 
nanoscale. But somebody must believe it is possible. There is mega- 
financing for nanoscience. Research is currently being funded to the 
tune of hundreds of millions of dollars per year.® 

Hype and hyperbole aside, something is already working on the 
nanoscale. Nature is. There is no more impressive, entropy-defying, 
energy-utilizing, self-assembling, self-repairing, environment- 
responding nanorobot than the human cell. Many researchers are 



Nanotechnology XV 35) 

looking to use biomolecules to do a lot of the work for them. In this 
way, nanotechnology may just be an old concept with a new name. 
The idea, of course, is to do it a bit better. High on the nano wish-list 

are things like nanodevices to detect cancer when it is still only a few 

cells wide and devices to deliver drugs directly and exclusively to the 

site.’ It has been proposed that a virus, emptied of its infectious con- 

tents, would make an excellent vehicle for tiny drug deliveries. Viruses 

naturally target specific cells. In addition, the viruses reproduce 
readily, so they could be farmed for a continued supply of nanovessels. 

Some progress has been made in not-so-natural nanogizmos, too. 

A nanobalance has been devised that can determine the mass of 

nanoparticles. How does a nanobalance work? The frequency with 

which a fiber vibrates is proportional to its mass. When as little as a 

quadrillionth of a gram is absorbed on these tiny balances the change 

in resonance frequency can be detected by seeing what frequency of 

light makes it vibrate. Such a device, with a selective molecule 

attached, could make a single-molecule sensor.’ For instance, an 

enzyme that binds with sucrose could be attached to the fiber and 

when one molecule of sucrose finds the enzyme, the vibrational fre- 

quency of the fiber would change. A similar technique might be 

adapted to find a single molecule of a toxin or a defective strand of 

DNA. Methods for manipulating atoms with macroscale machinery 

have been contrived, as evidenced by the famous IBM logo men- 

tioned previously that was assembled from xenon atoms.? Atomic 

switches have been devised: minuscule structures called quantum 

dots have been made to trap single electrons and could be made to 

function as nanotransistors in miniature computers.!0 

However, there are lots of items on the nano wish-list. Nanogears 

and nanowrenches are needed for the nano toolbox. Nanopumps and 

nanomotors are needed for active devices. Some ingenious ideas have 

been put forward for these last two. The biological world, again, pro- 

vides a model for a nanopump to emulate. In living cells there can be a 

flow of material against the concentration gradient; that is, there can be 

material flowing from areas of low concentration to areas of high con- 

centration (like water running uphill). To effect this flow for water, a 

pump would be required; to effect this flow in cells, similar devices are 
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needed, and nature has found them. The best example is an ion pump. 

This biological structure pushes material in one direction only and 

against the concentration gradient. A nanopump could be designed 

similarly. It could have an entrance that randomly opened and closed 

but only one exit. Net movement would be in one direction only. Such 

a pump could send material against the entropy gradient from areas of 

low to high concentration: Maxwell’s demon come to life. 

A nanomotor would be tricky to devise, but there are some inter- 

esting ideas in the works there, too.!! The problem with nanomotors 

is that they cannot operate on macroscopic gas expansion like internal 

combustion engines or relatively massive electron flows like electric 

motors. These tiny machines would be just slightly bigger than the 

gas particles themselves and would constantly be bombarded from all 

sides at once. But there is one way the motor could take advantage 

of the random bombardment: by ratcheting. 

To understand how this works, consider bathing babies in a sink 

versus a bathtub. In the bathtub they splash and play randomly and 

send the water in all directions, but there is no net movement of 

water. In the sink they splash and play randomly, too, yet there is a 

net movement: The water moves out of the sink and onto the floor. 

The difference is that the bathtub water, temporarily displaced, can 

roll right back because of the relatively high sides on the bathtub. In 

the sink, the water goes out, but can’t come back in. So the random 

motions of the babies in the bathtub don’t cause a net displacement 

of water, but those of the babies in the sink do. Ratchets in a turn- 

stile work on the same principle: They turn in one direction but 
won’t turn in the other direction. Researchers have devised a Y- 
shaped molecule and a G-shaped molecule that they managed to fit 
together in a turnstile-type arrangement where the Y molecule allows 
the G molecule to turn in one direction only by jamming motion in 
the reverse direction. Many of these proposed products will incorpo- 
rate a structural component that may be nominated the nanobrick in 
the nano arsenal: buckminsterfullerine. Bucky balls. 

One of the first triumphs of X-ray crystallography was J. D. Bernal’s 
solution to the structure of graphite, which turned out to be sheets of 
carbon that can slide over one another. One of the first triumphs of nano- 
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techology was to identify a new form of carbon, a sixty-carbon ball that 
has remarkable resemblance to a soccer ball and has been named buck- 

minsterfullerene. Buckminister Fuller, of course, was the architect who 

incorporated the geodesic dome in his designs, which buckminster- 
fullerene resembles. This name was quickly shortened to “bucky balls.” 

At the time they were discovered, however, the discovers didn’t know 

they were contributing to nanotechnology because “nanotechnology” 
had yet to come into the common parlance of physical chemistry. 

Richard Smalley (b. 1943) (a last name that begs comment in our 

discussion of nanoparticles) was using a laser to blast a few atoms at a 

time from a solid to make small-number clusters of atoms, on the order 

of ten to twenty atoms per clump. At the suggestion of Robert Curl 

(b. 1933), Harry Kroto (b. 1939) visited Smalley’s lab to find out if 

long-chain carbon molecules might be made in carbon-rich stars.12 

Carbon’s ability to form long chains and complex structures by 

binding to itself accounts for its prevalence in living materials. They 

found the mass of their clusters using a mass spectrometer—an instru- 

ment built on the idea that J. J. Thomson and his colleagues used to 

find the charge-to-mass ratio of an electron. That is, Thomson bent a 

charged beam with a magnet. The curvature will depend on both the 

strength of the magnet and on the mass of the particle in the beam. 

Thus, through this method, after they knocked one or more electrons 

off their clusters, they were able to measure the mass. They found that 

the mass spectrum was definitely dominated by one particular mass: a 

mass that corresponded to a particle made up from sixty carbon 

atoms.!3 They made a model of the molecule and decided it resembled 
a geodesic dome. They won the 1996 Nobel Prize for their efforts. 

Then in 1991, as Sumio Iijima was inspecting pure carbon soot 

with an electron microscope in a laboratory in Japan, he noticed 

there seemed to be odd-looking threads running through the mate- 

rial. On closer inspection, he found them to be long hollow sym- 

metric tubes now known as nanotubes. These nanotubes may eventu- 

ally be the nanoframework for nanostructures or the nanowire for 

nanocomputers. The intermolecular forces between multiwalled nan- 

otubes, working as a temporary attraction rather than a permanent 

chemical bond, may allow such nanotubes to act as nanobearings.!4 
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Nanotubes are amazingly strong structures: Pound-per-pound 

they are stronger than steel but pound-per-volume they are one-sixth 

the weight. They also have been found to have extraordinary tensile 

strength and thermal stability, which has led to speculation on their 

use in the macroscale world as well. Suggested ideas have included 

earthquake-resistant structures and car bodies that absorb shock and 

bounce back from dents. The nanotubes conduct heat and electricity 

better than copper. A paint that incorporates nanotubes has already 

been developed that can support a static charge and therefore make 

a better bond to the surface being painted.!° 

But for all the wonder and dreams of possibility, a moment’s pause 

must be taken to consider Eric Drexler’s second thoughts. Drexler 

introduced into our thinking what he has called the “gray goo prob- 

lem.” If we have skin-cell sized robots that can self-replicate, what’s to 

stop them from self-replicating uncontrollably? Should we panic and put 

the skids on all this nanotechnology research? What are the possibilities? 

What are the limitations? To gain an idea of the nature of the answer to 

this last question, let’s take a glance at another area of physical chemistry 

research that is of great interest to Smalley: molecular beams. 

For those who remember the Star Wars initiative of the Reagan 

presidency, the term “molecular beam” might be familiar. Yuan T. Lee 

did epoch-making research with molecular beams and shared the 

1986 Nobel Prize with John Polanyi and Dudley Herschbach. 

Although molecular beams have some definite limitations as satellite- 

based weapons (a lightning-bolt molecular beam in space would have 

diverged to a spring shower by the time it reached Earth), they are 

very effective tools for studying chemical reactions on a particle-by- 

particle basis; they remove the confounding effects of multiple colli- 

sions or solution interference. When material is put into a beam 

(which can be accomplished by allowing it to expand through a small 

orifice), all the molecules are basically traveling in the same direction 

and there are far fewer intermolecular collisions. The first molecular 

beam work was done in the United States in the late 1920s by Harold 

Urey and Francis Owen Rice. By using molecular beams they were 
able to provide the first truly convincing evidence against the radiation 
hypothesis. They showed that the extent of reaction depended on the 
number of collisions, not how much light was shining on the material. 
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Richard Barry Bernstein (1923-1990), was the son of Russian im- 

migrants. While working toward his Ph.D., he joined the Manhattan 

Project. He decided to remain with the army and ended up being part 

of the first Bikini Atoll atomic weapons testing. The experience was an 

interesting one for him because he and a crew were sent to do a last 

check of the instruments before the test and got stranded on the island. 

When it became apparent that no one had noticed their absence they 

spelled out “SOS” on the beach with strips of underwear. When that 

didn’t work they sent back falsely high radiation readings on the instru- 

ments they had been sent to check. This last one got the attention they 

needed and they were lifted off the island.!° Bernstein helped to 

develop an extensive body of theory for molecular beam studies. 

What do molecular beams have to do with the possibilities and 

limitations of nanotechnology? Two of the effects that Bernstein 

observed in molecular beam studies, rather poetically called rainbow 

scattering and the glory effect (or Bernstein’s wiggles),17 are actually 

quantum effects caused by interference. Atoms causing interference 

patterns? Aren’t atoms big with respect to electrons? When Richard 

Smalley’s sixty-carbon bucky balls are put in a molecular beam appa- 

ratus, they create interference patterns, too: spots of dark where the 

material was and spots of clear where the material was not.!8 Con- 

structive and destructive interference. Wave behavior. 

There is something about bucky balls behaving as waves that 

- offends the sensibilities. We have become used to the idea of sound 

waves acting as particles and light particles acting as waves, but sound 

and light are things we can turn on and off. How can you turn on 

and off a particle of soot? Something as big as a bucky ball is just not 

something you expect to blip in and out of existence. An electron 

maybe. It’s small and moving at a significant fraction of the speed of 

light. But a bucky ball? 

These are the considerations that pose limitations to how nan- 

otechnology can ever emulate macroscale engineering. At the atomic 

level there is a physics that has to be acknowledged and dealt with. In 

technical parlance, these are called “weird quantum effects,” and they 

will determine the possibilities of nanotechnology. 
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Chapter 31 

Extreme Quantum 

THE QUESTIONS KEEP COMING 

RV SIPLIE 
Anyone who is not shocked by quantum theory has not understood tt. 

Niels Bohr, circa 1930 

()* thing that must be clearly stated before we dive into any crit- 

icism of quantum mechanics is that quantum mechanics has 

been very good to us. Quantum mechanics provides the basis for 

spectroscopy, the single most powerful analytical tool to date. It has 

made possible imaging techniques used for noninvasive diagnosis in 

hospitals. Quantum mechanics has given us the semiconductors and 

lasers that have advanced technology from surgery to weaponry, as 

well as information storage and retrieval.! Warts and all, it’s still a 

pretty good system. 

Researchers have dealt with many of its bugs or worked around 

them. Among the major triumphs of quantum mechanics in recent 

years has been the discovery of mathematical algorithms to simplify 

the daunting equations and the use of computers to crank through 

the intense calculations. In 1998 the Nobel Prize went to Walter 

Kohn (b. 1923) and John Pople (b. 1925) for accomplishing just 

this. Walter Kohn developed density-functional theory, a mathematical 

model that reduces the complexity of many-electron problems by 

using a sophisticated averaging method. John Pople developed com- 

puter methods to make the computations possible. 

Walter Kohn was born in Vienna, Austria, in 1923 and by his own 

account, genius was not foreshadowed in his life.? Initially, Kohn 

387) 
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received only average grades in mathematics and did not display 

exceptional interest in science. However, when Germany annexed 

Austria, his parents managed to get Kohn, his sister, and brother out 

of Austria. In England, his guardians encouraged him to go to school 

where he studied mathematics, chemistry, and physics. When he was 

seventeen, because of his Austrian citizenship, he was interned as a 

foreign national of an enemy state. But the school he had been 

attending continued to send him books. Scientists, likewise interned 

for their “enemy alien” status, set up impromptu lecture series, a for- 

tunate event in the midst of misfortune. This haphazard education 

was continued when he was shipped with other internees to Canada. 

In 1942, at the age of nineteen, he was released. 

At that point Kohn planned to become an engineer so he could 

take care of his parents after the war, still believing them to be alive. 

But he was convinced to study physics instead, being assured that he 

could make a living in this field as well. Special dispensation was pro- 

cured so that he could proceed in this program without the benefit 

of a chemistry course because, as a German national, he was not 

allowed into the chemistry building. From there on, his life resumed 

a more regular course, excluding the fact that his research eventually 

culminated in the Nobel Prize. In 1963, on achieving what was to 

become density-functional theory, he recalls that the results were so 

extraordinary that at first he did not believe them himself. 

John A. Pople was born in England in 1925, to a father who was 

the owner of a men’s clothing store and a mother who was a some- 

time tutor and librarian. He was the first in his family, to his knowl- 

edge, to attend a university. He credits his parents’ ambitions for him 

for his subsequent success at school, despite having to attend classes 
in the midst of air attacks. When he was twelve years old, he became 
very interested in mathematics but, probably thinking it too imprac- 
tical, hid the fact from his parents. He completed his own school 
books on the subject and then found some discarded textbooks for 
further reading. Taking things to an extreme that would occur only 
to a twelve-year-old, he actually hid his preoccupation by purposely 
introducing errors into his mathematics classwork.3 However, his joy 
in his accomplishments eventually became too difficult to suppress, 
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and when the school realized his talent, his education in mathematics 

began in earnest. 

These two men formulated powerful methods that are used to 

model large, intricate molecules and complex chemical interactions. 

And they accomplished their results using the “shut up and calcu- 

late”4 approach, that is, ignoring all the quantum weirdness. The 

reason they, and the rest of us, are able to proceed with our lives 

despite the nagging weirdness is probably because there are really two 

categories of quantum peculiarities. One is a weirdness that has been 

accepted for so long that we have come to believe it or for which 

there are enough real-world analogs that it can be dressed up to be 

palatable. The other we’ll address later. 

In the first category we can put tunneling, spin, and the 

wave-particle duality. The first of these, tunneling, is the weird 

process on which the scanning tunneling microscope functions. As 

may be recalled, tunneling is the ability of an electron to be in a 

region that in classical physics is forbidden, such as a baseball pene- 

trating a brick wall. We accounted for tunneling by saying that the 

wave function can be interpreted as a probability wave, and even 

though there is no probability that a baseball will go through a brick 

wall, there is some finite probability that the electron will tunnel out 

of the tip of a stylus that is being scanned over a surface. Tunneling 

doesn’t seem completely bizarre if you accept the electron wave as a 

probability wave. 
Spin, likewise, can be fathomed. We have already said electrons 

aren’t really “spinning.” Paul Dirac showed that spin is a conse- 

quence of Einstein’s relativity and arises naturally from the 

Schrédinger wave equation when it is acknowledged that electrons 

can travel at close to the speed of light. But a spinning top is a good 

model for this property of electrons and it is a great temptation to 

start believing that the electrons must really be spinning. However, 

recall that a sound wave can shatter glass so it has a virtual mass and 

real velocity, so the mathematics that model a bullet flying through 

air can also be used to model a sound wave—but sound isn’t bullets 

and electrons aren’t really spinning. We call it spin because that is a 

concept we can envision. We accept that it is a metaphor and proceed. 



360 VC’ Magick, Mayhem, and Mavericks 

The spin model can be used to calculate energy levels that agree with 

spectroscopic measurements and thus has gained some legitimacy. 

The wave-particle duality of light may take a bit longer to accept, 

but again isn’t completely unpalatable. We said that sound also acts 

as a wave when it bends around corners and behaves like a particle 

when it shatters glass. We explained interference patterns created by 

light waves in terms of crests and troughs in water waves and with 

combs. Interference patterns formed from electrons and bucky balls 

are a bit stranger (and are probably what prompted Feynman to call 

interference “the mother of all quantum effects”).5 But we can repli- 

cate interference patterns in our own living room, if we like, with a 

laser pointer and metal ruler, as we described in our discussion of 

electromagnetism, and this seems to lend credence to the concept. 

Another manifestation of the wave nature of matter that scientists 

have accepted is the existence of Bose-Einstein condensates. This 

new phase of matter owes its existence to spin. We have said that two 

electrons cannot occupy the same place in space at the same time 

(which makes sense), but it turns out this is only because they have a 

half unit of spin. Particles that have a whole unit of spin, such as pho- 

tons, turn out to have an interesting property: There is nothing that 

prevents them from coming together and moving as one. In the 

quantum world, sometimes you can park your car where your neigh- 
bors have already parked their car. 

The person who came up with this idea was Satyendranath Bose 
(1894-1974), who was educated at the University of Calcutta and 
then taught there, with one interruption to teach at another Indian 
university, until retiring in 1956. Bose recognized that photons have 
an integral spin (they have a spin of one). He used this fact and a sta- 
tistical approach similar to the one used by Maxwell and Boltzmann 
to reproduce the skewed curve of blackbody radiation that Planck 
had wrestled with.© He submitted his work to a respected English 
journal for publication, but they rejected it. He then sent the paper 
to Einstein, who appreciated the work, translated it into German, and 
submitted it to a respected German journal with his recommenda- 
tion. They published it. 

Einstein, being Einstein, took the matter one step further. He 
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said the theory was not only true for photons, but for any particle 
with an integral spin, which included many fairly substantial atoms. 
The tantalizing consequence was that these particles should be able 

to condense if they were cooled enough—but not condense in the 

manner of a gas condensing to liquid, but condense right into one 

another. The matter waves should overlap. They would no longer be 

separate particles. They would share the same quantum state and 
move together in unison. 

A protest, as expected, arose. Some said that it was a reach to 

apply mathematics meant for photons directly to atoms. Some said 

that Einstein had done the math wrong. But Einstein and Bose 

would have been gratified to know that in 1995 Eric A. Cornell and 

Carl E. Wieman managed to achieve a condensate of 2,000 rubidium 

atoms that lasted for ten seconds after they cooled it to a tenth of a 

millionth of a degree above absolute zero.” Once again, although we 

may not like it, we seem to accept it. After all, laser light is produced 

by many waves of light moving together in the same state of motion. 

Superconductivity is now explained in terms of coherent motion of 

pairs of electrons. 

However, there is another class of weirdness, alluded to above, 

that has no classical pattern to explain it. First there is a phenomenon 

called superposition. When a measurement of a quantum system could 

have one of two possible outcomes, the system exists as a superposi- 

tion of those two states until the measurement is made, and then the 

system suddenly “becomes” just one state—the state that is measured. 

In the parlance of the trade, this is called “collapsing into the mea- 

sured state.” There is no need to make up an analogy to explain this 

idea; Erwin Schrédinger already did it for us. Shrédinger’s Cat is one 

of the most famous analogies in quantum mechanics. 

Schrédinger said to consider the following: For an hour, a cat is 

placed in a box with a vial of poison gas, a radiation detector, and a 

radiation source that has a fifty-fifty probability of emitting radiation 

in that hour. If the source does emit radiation then the detector will 

detect it, and circuitry and machinery hooked to the detector will 

open the vial and kill the cat. So in an hour’s time the cat has a 

fifty—fifty chance of ending up dead. (For cat lovers out there, please 
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accept the appropriate apologies. The cat was Schrédinger’s choice.) 

For that hour that we are waiting, the cat is in a superposition of 

states: dead and alive. There is no way to tell if the cat is dead or alive 

except to look in the box. As soon as someone looks, the situation 

collapses into one solution: dead or alive. Initially, this may not 

appear too weird. After all, the outcome of a coin toss is not known 

until the coin stops. Until that time it could be said that the coin is 

both heads and tails. 

But it gets weirder. There is also a property of quantum mechan- 

ical systems called entanglement. Entanglement means that quantum 

particles can be so intimately connected that when a measurement is 

made for one, the outcome for both is determined. Measuring one 

predicts the state of the other. Again, this may not appear all that 

strange on the surface. When the coin is determined to be heads-up, 

that assures us that is it also tails-down. But for quantum mechanical 

systems there appears to be some evidence that this entanglement may 

be true even if the particles are separated in space. It’s as if one coin 

landing in New York flipped another coin in Los Angeles. Or looking 

in at Schrédinger’s cat and finding it alive immediately killed another 

cat in another box somewhere else. Cat lover or not—that’s weird. 

There have been experiments done with particles (leaving the cats 

alone) that seem to confirm the effect. To understand the experi- 

ments, first consider the different possible states of spin. If we men- 

tally paint our particle orange on top and white on the bottom then 

we can look at it and say if it is spinning top-up or top-down. It can 

also be spinning left or right. Taking all these together, then, we have 

four possible combinations: up versus down and left versus right. If 

we measured the spin of a stream of electrons from an arbitrary 

source (such as Thomson’s cathode rays), we would find half with 

top up and half with top down. We would also find half spinning left 

and half spinning right. This seems right and it probably would have 

made Emmy Noether feel good, too, because it agrees with her 

finding that there should be a conservation of symmetry. 

Now, in the experiment, a beam of right-spinning electrons is 

selected from a random beam. These right-spinning electrons are 
then divided into spin-up and spin-down beams. When these 
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up-down beams are recombined, the resultant electrons are just as 

they were before the up-down split: spinning right. But when the 

spin-up beam is blocked and not allowed to recombine with the spin- 

down beam, the spin-down beam can be analyzed and found to have 

both left- and right-spinning electrons. At first we may feel relief— 

some down spins have turned to up spins, flipping from right to left 

in the process, and symmetry is preserved—but at what cost? How 

did the electrons know that the other beam was blocked and that they 

ought to switch their spins to half and half? 

If all this spinning is getting confusing, consider the following 

model for a similar situation. Say we have a jacket zipper that opens at 

the bottom. Now let’s paint one side of the zipper red and the other 

side green. When we zip the zipper up we will have red and green inter- 

locked teeth, colors changing every other tooth. But now consider 

unzipping the zipper, throwing one half away, and running the zipper 

up the side that is left, say the red side. You would not expect to look 

down and see that this side of the zipper had suddenly changed from 

all red teeth to a pattern of red and green teeth, colors changing every 

other tooth. But this is what the electrons did when they switched to 

half left and half right spins. To restore its symmetry this way, the one 

zipper side would somehow have to know that the other side was 

missing.” It is knowing the fate of the other particle that is the difficult- 

to-rationalize aspect of superposition and entanglement. 

Evidence seems to show, however, that this is what happens, 

though some have questioned the experimental methods.1° Of 

course this is not the first time quantum mechanics has faced a 

conundrum. Neils Bohr’s model was used to explain quantized 

energy levels although its orbits should have instantly destroyed the 

atom it modeled. Samuel Goudsmit talked about electron spin, but 

Dirac showed that electrons could not actually be spinning. 

Quantum mechanics has a history of insupportable hypotheses, but 

you have to start somewhere. The keyword is “start.” Quantum 

mechanics is a work in progress. Adjustments to the theory and rein- 

terpretations are proposed to this day. Though textbooks may give 

the opposite impression, not everyone was completely pleased with 

the Copenhagen interpretation. It may be recalled that Einstein was 
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never wholly comfortable with quantum mechanics. Louis de 

Broglie, likewise, kept revisiting the system for other possible expla- 

nations or interpretations. 

But other proposed theories have, for various reasons, fallen by 

the wayside. One such theory was proposed by David Bohm (1917- 

1992), and he defended it his entire life. David Bohm expressed fears 

that the “bigshots” would handle his theory with a “conspiracy of 

silence” so his theories, from a “smaller shot,” would seem unimpor- 

tant.11 This is basically what happened. 

David Bohm did not start out with a rough life, but it got 

rougher. Born in Pennsylvania, he did undergraduate work in physics 

at Pennsylvania State College and graduate work at Berkeley under 

Oppenheimer. He became assistant professor at Princeton University 

in 1946 and then in 1949 was cited for contempt of Congress by the 

House Committee on Un-American Activities. Oppenheimer, him- 

self persecuted, began turning in to the Federal Bureau of Investiga- 

tion names of friends and acquaintances who he thought might be 

communist agents. Bohm apparently was one of the accused.!2 In 

1951 Bohm was forced to leave Princeton University and was unable 

to find employment as a physicist anywhere else in the United States. 

The next year, when he published his alternate formulation of 

quantum mechanics, it met with a cool reception. True, the theory 

made no initial predictions that were different from the Copenhagen 

formulation, but then no Dirac rose up to investigate the relativistic 

implications and no Pauling applied it to chemical bonding. Bohm’s 

theory was basically ignored or passed over as superfluous. 

In Bohm’s theory particles are particles and waves are waves. 

There is no wave-particle duality. The particles are moved around by 

fields, but not the types of fields we have dealt with before, such as 

electric or magnetic fields. Electric and magnetic fields die off with 

distance and they exert a force on the particles with which they 

interact. Bohm’s fields are called pilot waves because they pilot the 

particles around, but do not change the energy of the particles and 
do not die off with distance. The pilot waves do provide an explana- 
tion for entanglement: When one particle is spin-up, it communicates 
this information to its symmetric partner via the pilot wave that con- 
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tains them both. The advantage to Bohm’s theory is that wave—par- 

ticle duality is gone, but something else is back that we thought we’d 

gotten rid of: The pilot wave sounds suspiciously like ether. So it was 

a name-your-poison situation. Granted, the notion of mystical 

undying fields that pervade everything and change nothing is hard to 

swallow, but so are cats killing other cats. 

Bohm wandered to Brazil, then Israel, then England, where he 

finally settled in 1961. He continued to work on his theory, though 

he eventually turned to other pursuits. He discontinued his interest 

in Marxism, if indeed he ever had much of any, and became a follower 

of the Indian guru Jiddo Krishnamurti.!? After many years of associ- 

ation with the guru, Bohm lost faith when it was revealed that the 

spiritual leader was also an adulterer. Bohm had received psy- 

chotherapy for depression, and now he needed to be hospitalized. He 

underwent shock therapy for his mental state and heart surgery, later 

dying of a massive heart attack at the age of seventy-five. 

Did Bohm have a “secret theory” that held a “truth” and has 

been “suppressed”? Probably not. Does his work demonstrate that 

there are other ways to model atomic level physics? Yes. 

Other approaches to solving the mystery of superposition and 

entanglement have included a search for some hidden variables that 

might somehow be controlling the outcome of the experiments. In 

fact, it was this search for hidden variables that prompted John Bell 

(1928-1990) to suggest the set of experiments on spin we described 

above. These experiments, if they are valid, show no uncontrolled 

variables have been detected so far. An interesting “many worlds” 

explanation was put forward by Hugh Everett II in his Princeton 

doctoral thesis.!* In this equally difficult-to-fathom interpretation, 

each of the outcomes is equally real, and indeed the observer is in two 

different mental states and so able to perceive fully the two different 

outcomes. The advantage is mathematical: It simplifies the treatment 

(if such a thing is possible) but requires mental gymnastics to 

ingest.15 Another approach, proposed by Dieter Zeh of the Univer- 

sity of Heidelberg, is to say that decoherence, that is, the condition of 

being in several states at once, is really the nature of the world. The 

reason we don’t perceive the world as such is because any contact 
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Fig. 34. David Bohm. Photograph taken May 1949 after Bohm refused to testify before 
the House Un-American Activities. ACME Telephoto, courtesy AIP Emilio Segré Visual 

Archives. 
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with the environment suffices to collapse the superposition of states. 

So being struck with an air particle or light ray is enough to collapse 

this dual reality to the single reality that we are used to. 

But is all of this creativity and burning of mental energy necessary? 

We have said that quantum mechanics and quantum chemistry are 

already used in virtually all branches of chemistry arid atomic and 

chemical physics. Why is there need for more speculation? Because if 

a new formulation of quantum mechanics could be found, it might 

bring us closer to a major goal in theoretical science. In the context of 

nanotechnology we mentioned that Richard Feynman had received 

his Nobel Prize for quantum electrodynamics (shared with Julian 

Schwinger and Shinichiro Tomonaga), but we didn’t mention what 

quantum electrodynamics is. Quantum electrodynamics is a more 

complete description of the interaction between light and matter, and 

calculations based on it have been shown to be correct to better than 

one part in a thousand. In addition, the theory combines Maxwell’s 

electromagnetic wave with quantum mechanics and special relativity 

to give a united theory. This discovery, in turn, has encouraged scien- 

tists to believe that there may exist one grand “theory of every- 

thing”!® that will unite the remaining disparate theories—quantum 

mechanics, internuclear forces, and general relativity—under one 

Grand Unified Theory, or GUT,!” the current Holy Grail of science. 

But what do internuclear forces have to do with physical chem- 

istry? Isn’t that nuclear physics? Doesn’t the concern of the physical 

chemist stop at quantum mechanics? 

I believe we have time for one more story. 





Epilogue 

Lt even See 

PO ey CE 
I think we have no cage for such a bird. 

S. H. Burbury, circa 1900 

arie Mayer (1906-1972) started life as Maria Gertrud Kate 

Geoppert, the only child of a German professor of pediatrics 

and his wife.! Géttingen, the town in which she was born, has stone 

walls dating to the German middle ages, and Marie and her father 

would take walks together in the forest. 

Marie’s parents encouraged her education. She started out 

studying mathematics, but then became acquainted with quantum 

mechanics and decided to study physics as well. Max Born, her 

mentor, spoke of her in glowing terms. Her doctoral dissertation 

consisted of an extension of Dirac’s work on the theory of the inter- 

action of light with matter. 

Joseph Mayer was a young American chemist who had recently 

obtained his degree while working with Gilbert Lewis at Berkeley. In 

wandering to the shrines of science in Europe, he met Marie when he was 

a boarder in her home. Marie and Joe married in Germany while Marie 

was completing her degree, then moved to the United States so Joe 

could assume an assistant professorship in chemistry at Johns Hopkins. 

Most large universities employ a considerable part-time instruc- 

tional staff to lighten the teaching load of their full-time research pro- 

fessors. Following a well-precedented pattern, Marie was employed at 

the university in this capacity. As her husband was part of the perma- 

aot 
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nent staff, she was given a desk and work space, though much of her 

work was without compensation. After a few years at Johns Hopkins, 

she had basically assumed the role of an assistant professor—teaching, 

doing research, and taking on students—but without a formal 

appointment. This situation did not seem to pose any particular dif- 

ficulty for her. There were nepotism rules that did not allow her to 

be officially employed while her husband was on the faculty. She was 

also used to the European system that could keep an academic 

working strictly on students’ fees for an entire career. She was busy 

and she was happy. 
Adapting her interests to her surroundings, she became a physical 

chemist. She taught mostly chemistry and collaborated in theoretical 

chemical research. She wrote a textbook with her husband on the 

application of statistical mechanics to chemistry that went through 

many printings. 

During this period Marie and Joe also became parents to a son 

and a daughter. Domestic demands began to occupy her, including 

hosting faculty gatherings in their home. It was the 1930s and the 

jazz age. During Prohibition the Mayers practiced their chemistry 

making wine, and they were said to be the last to leave the dance floor 

at many a late night party. Then the Depression, perhaps combined 

with some xenophobic reactions to Joe’s German wife, resulted in 

Joe’s being dismissed from Johns Hopkins. Harold Urey offered Joe 

a position at Columbia University, so the family moved to New York. 

Marie again had no official appointment, but she routinely gave lec- 
tures and was able to continue her research. 

With the advent of World War II, Urey was asked to assemble a 
group to work on the problem of isotope separation for the Man- 
hattan Project, and he recruited Marie. It may be recalled that we first 
met Marie in this context, investigating isotope effects on reaction 
rates. The project required her to use her knowledge of symmetry, 
group theory, quantum mechanics, statistical mechanics, thermody- 
namics, and spectroscopy to solve a problem in radiochemistry, and 
Marie thrived on this work. Joe was called to the Aberdeen Proving 
Grounds in Maryland to work on conventional weapons and was 
home only one day a week. This partial separation seems to have been 
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Archives, Goudsmit Collection. 

pivotal for Marie: She was now required to work independently and 

was responsible for the work of a group of professionals under her 

supervision. 

Despite the stimulating research, this was a difficult time for 

Marie. She still had friends and family in Germany, she was isolated 

from her husband, and she had less time to spend with her children. 

Her work, however, remained penetrating, quick, and incisive.” After 

the war, Joe and Marie accepted positions at the University of 

Chicago, where she now held an official appointment as associate 

professor, but because of nepotism rules it still had to be voluntary, 

an arrangement that was not unusual at the time for married acade- 

mics. She was also offered a half-time position as a research physicist 

at the Argonne National Lab, another turning point in her life. 

She did not know much about nuclear physics at the time but was 

used to the idea of learning a new field when the job required it. As 

it turned out, her lack of knowledge was to her advantage. In 1947, 

sorting through some data regarding isotopes, Marie saw that certain 
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numbers of neutrons and protons kept showing up more often than 

others, and she became convinced there was a pattern. After a math- 

ematician derisively called her numbers “magic numbers,” she 

adopted the phrase. 
She published her findings, only to find that others before her 

had noted the same coincidence, although she had made the rela- 

tionship stronger with additional evidence. Yet there was no theory 

to go with the data. So Marie kept playing with various models, 

hoping to find an explanation for the magic numbers. When Marie 

found that spin could be assigned to the nucleus, and that it varied 

depending on the number of nucleons that the nucleus contained 

(that is, protons and neutrons), she had an inkling that this property 

might somehow be connected. She discussed the idea with Enrico 

Fermi, the Nobel laureate she had become acquainted with through 

her university teaching and work on the Manhattan Project. 

As the story is told, Fermi mentioned that the coupling between 

electron spin and orbital angular momentum contributed to the 

observed shell structure of atoms—at which point he was called to 

the telephone—and by the time he returned from his phone call, 

Marie had fit the idea of spin coupling into her nuclear shell model. 

Spin-orbit coupling might be understood by considering how a base- 

ball thrown with a spin results in a curve ball (though the actual 

mechanism for a curve ball involves air resistance).*+ A ball will curve 

left if thrown with a counterclockwise spin, and it will curve right if 

thrown with a clockwise spin. Thus the two trajectories are “split” 

into left and right. When Marie incorporated the coupling of the 

spins of the nucleons in her model, she found energy level splittings 
at precisely her magic numbers. 

Why had this idea been missed by others? Because the leading 

authorities of the day had decided the forces within the nucleus pre- 
cluded independent spins for the nucleons; the protons and neutrons 
were just too tightly bound. The dominant model of the day, the 
liquid-drop model, which essentially treats the nucleus as one entity 
instead of composed of individual particles, had been used to explain 
the fission reactions of the Manhattan Project. Nobody seemed inter- 
ested in modifying it. But Marie hadn’t been raised in the faith and 
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she wasn’t worried about losing her reputation because she had no 

reputation to lose. She used her knowledge of physics, but as her 

biographer notes, she approached the problem as a chemist, patiently 

compiling large amounts of data and sifting through to find a pat- 

tern.5 She was a mathematician turned physicist turned chemist, and 

this was her great strength: She had the ability to assume all roles and 

cross all boundaries, because for her boundaries did not exist. 

In 1948, at the age of forty-two, she published her theory in a 

short letter, so brief that is was almost overlooked, but so powerful in 

its simplicity that it soon gained recognition. Experimental evidence 

was found to support the predictions of her theory, and in 1959 the 

University of California at San Diego offered both Joe and Marie full, 

paid professorships. At this point the University of Chicago decided 

it was time to drop the nepotism rule. But the Mayers opted for Cal- 

ifornia. Unfortunately, within a month of arriving, Marie suffered a 

stroke. Although she recovered, her left arm was essentially paralyzed 

and she had difficulty speaking. She continued her work and travels, 

but she never completely recovered. When awarded the Nobel Prize 

in 1963, at the age of fifty-seven, she was concerned that she would 

not be able to navigate through the ceremony given her physical con- 

dition. When the time came, however, she managed. She accepted 

the gold medal and the diploma and offered her hand to the king. 

Turned to the king as she was, she could not see that her husband 

was crying.® 

Ne eng 

Breakthroughs come from those who can see connections where no 

one else can. Those who see invisible light. Those who throw a spear 

where the fish isn’t. Are breakthroughs still out there to be made? 

Yes. Friction and intermolecular forces have yet to be fully elucidated. 

Energy and entropy cannot be calculated instantly for any arbitrary 

reaction. The rates of reactions cannot be predicted neatly from first 

principles. The mechanisms for many complicated reactions, 

including biologically important interactions, have yet to be fully 

mapped out. The ultimate possibilities of nanotechnology await the- 
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oretical as well as experimental development. Chemical oscillations 

and waves, those strange, symmetric structures that spring from 

seemingly chaotic solutions, have yet to be completely understood. 

And all that quantum weirdness . . . 

But progress will come. Progress may come in the form of a new 

fundamental principle. Like Newton’s gravity. Or Boyle’s gas law. Or 

Dalton’s atoms. Or Gibbs’s free energy. Or Maxwell’s electromag- 

netic wave. Or Faraday’s fields. Or Noether’s symmetry. Or Clau- 

sius’s entropy. Or Lewis’s two-electron bond. 

Progress may come when someone with a different perspective 

jumps into the fray. An iconoclast like Lewis. Or accountant like 

Lavoisier. Or bohemian like Schrédinger. Or gambler like Cardano. 

Or eclectic like Aristotle. Or perfectionist like Perrin. Or recluse like 

Gibbs. Or dissenter like Dalton. Or magician like della Porta. Or 

hausfrau like Mayer. 
Progress will come when the time is right—though it is impos- 

sible to say whose services it will choose. Progress will be made by 

someone with imagination, vision, and valor, too. Some rebel, some 

radical, some maverick. Some spirit, who for some reason, insists on 

being free. 
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