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Preface 

As early as 1874 van’t Hoff and Le Bel introduced the concept of 

antipodes for molecules containing an asymmetric carbon atom. This 

was the first insight into the spacial arrangement of atoms in a mole- 

cule. These antipodes exhibit opposite optical rotatory power, but it 

was not possible to determine specific configuration and direction of 
the rotatory power. The convention of Fischer, however, gained 

general acceptance. Eighty years later Bijvoet and his co-workers 

showed that the Fischer convention happens to be in agreement with 
reality (1951). 

Organic stereochemistry is that of tetrahedral carbon atoms, 

while stereochemistry of co-ordination compounds mainly concerns 

octahedrally co-ordinated metal atoms. The stereochemistry of octa- 

hedrons was founded by Werner. In his magnum opus, Neuere 

Anschauungen auf dem Gebiete der anorganischen Chemie, are sum- 

marised his highlights on optical isomerism, beginning with the third 

edition published in 1913. After about forty years, the author and his 

co-workers determined the absolute configuration of the tris(ethyl- 
enediamine)cobalt(III) ion. Thus an absolute basis was given to dis- 

cuss the optical activity and molecular structure of co-ordination 

compounds. 

This book deals with the absolute stereochemistry of transition- 

metal complexes, the charge-density distribution in them and their 

circular dichroism spectra. The book is directed to students of inor- 
ganic chemistry and to others seeking a general impression of the 

recent advances in the field. 

The basic principles of crystal-structure determination by X-ray 

and neutron diffraction are briefly described in the hope that the 

reader may appreciate how the absolute configuration of a dissym- 

metric molecule can be determined by utilizing anomalous scattering 

of X-rays or a neutron beam. The procedure of strain-energy mini- 

mization of a metal complex is outlined, and the following chapter 

deals with the isomerism and structures of dissymmetric co-ordina- 

tion compounds, where octahedral complexes are mainly discussed 

with reference to their conformational energy. The choice of the 

complexes is largely determined by the author’s interests. In the next 

chapter the electron-density distribution of transition-metal com- 
pounds is described in some detail. This is a rather new field and 



VI Preface 

will play an important role in constructing a theoretical model for 

optical activity and other chemical and physical properties of the 
transition-metal complexes. In the last chapter the circular dichroism 

of transition-metal complexes is discussed where emphasis is laid on 
tris-bidentate complexes, since they have been most extensively 

studied. 

It is a pleasure to acknowledge the following bodies for permis- 

sion to reproduce certain figures or parts of figures: Acta Crystallo- 
graphica, Akademische Verlagsgesellschaft; The Chemical Society, 

The Chemical Society of Japan, Elsevier Publishing Company and 
Verlag Chemie. 

December, 1978 Yoshihiko Saito 
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Chapter I Introduction 

1 Preamble 

Chemists have not yet completely agreed on a simple definition of co-ordination 

compounds, because co-ordination compounds differ greatly in nature and in stabili- 

ty. What is meant by a co-ordination compound is perhaps very well laid down in the 

following definition. A co-ordination compound is a species formed by the associa- 

tion of two or more simpler species capable of independent existence. 

For instance, two or more compounds capable of independent existence often 

combine: 

AIF; + 3NaF > Na3[AIF] 

2KC1+PtCh > Ky[PtCl,] 

These products differ widely in their behaviour, particularly in water. If the crystal 
structure of these compounds are examined, a grouping of atoms will be recognized 

in which an atom M is attached to other atoms A or groups of atoms B to a number 

in excess of the charge or oxidation numbers of the atom M. Such a grouping of 

atoms is called a complex molecule or a complex ion (or simply complex). For ex- 
ample, crystals of K,[PtCl,] consist of potassium ions and the groupings of (Picigy?= 
in which a platinum atom is surrounded octahedrally by six chlorine atoms. When M 
is a metal atom the resulting entity is called a metal complex. The atom which is 

directly attached to the central atom is a co-ordinating atom. A chelate ligand is one 

using more than one of its co-ordinating (ligating) atoms. If a chelate ligand is co- 

ordinated to a metal atom, a closed ring is necessarily formed. This is called the che- 

late ring. The word, chelate was first introduced by Morgan and Drew (1920), which 
was derived from the Greek xn\7} meaning a lobster’s claw. For example, the mole- 

cule of ethylenediamine, H,NCH,CH,NHz2, has two amino groups. The nitrogen 

atoms are co-ordinating atoms and can form a five-membered chelate ring with a co- 

balt atom. 
The 1913 Nobel Prize in Chemistry was awarded to Alfred Werner for his co-or- 

dination theory. This distinguished work can be summarised as follows. Among many 

metal complexes the cobalt complexes were of dominant importance for Werner to 
elucidate the structure of metallic compounds. Due to the inertness of Co(III) and 

the lability of Co(II), dozens such complexes has already been prepared in simple 
ways from quite early on. Their distinct colours assisted in their discovery and 



o Introduction 

helped to distinguish different species from one another. Three complexes will be 
quoted to explain his co-ordination theory. 

CoCl3 - 6NH3 yellow (luteo salt) 

CoCl; - SNH3 purple (purpreo salt) 

CoCl; -4NH3 green (praseo salt) 

violet (violeo salt) 

For the third salt there are two isomers which can be easily distinguished by their 
colours. All these salts are soluble in water. Jf silver nitrate solution is added, all the 
chloride ions are precipitated for the first compound. In the case of the second salt, 
only two-thirds of the chloride ion can readily be precipitated and of the rest, one 
Cl is rather immobile and can only very slowly be precipitated by silver nitrate 
solution. For the last compound, only one third of the chlorine can readily form 
silver chloride, and the remaining two Cl’s are more tightly bound to the metal atom, 
by secondary valency (Nebenvalenz). Nowadays, this is called the co-ordinate bond. 
The nature of the co-ordinate bond as revealed by an accurate determination of the 
electron-density distribution in crystals will be discussed in Chapter V. If these 
chemical formulae are rewritten, two kinds of chlorines can be distinguished, 

[Co 6(NH3)]Cl, 
[Co 5(NH3)CI]Cl, 
[Co 4(NH3)2CI]CI 

There are always six atoms or atomic groups bound to the metal atom by secondary 
valency. Now what is the spacial arrangement of these six groups? If six identical 
atomic groups like ammonia enter into combination with the cobalt atom, there are 
three possibilities: hexagonal planar, trigonal prismatic or octahedral arrangements. 

For the compounds of the type [M ra how many isomers are possible? The 
experimental evidence is that there are only two isomers. This indicates that the six 
groups are arranged octahedrally around the metal atom. 

For hexagonal planar co-ordination, there are three possible isomers just like o- 
m- and p-substitution in benzene derivatives as shown in Fig. 1.2. For trigonal pris- 
matic co-ordination three isomers are also possible as shown in the figure. In the case 
of octahedral co-ordination alone, only two isomers are possible. It is to be noted here 
that at that time chemists had no means of determining the atomic arrangement in 

> 

A A A A 

ae sali 
— | whee A A 

A A 

Fig. 1.1. Possible arrangements of six atomic groups around the central metal atom 
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> > > | o > > 

> 
Da 

wD Fig. 1.2. Possible isomers of [M AY] 

solids. Laue’s discovery of the diffraction of X-rays by crystals was made in 1912. 

Werner has come to this conclusion by his ingenious speculation and painstaking 

experiments. The most conspicuous success of Werner’s co-ordination theory was the 

first isolation of optically active metal complexes in 1911 (Werner and King). The 

first series of compounds to be resolved were the cis isomers of [CoAB(en), ]X2 

(Fig. 1.3). 
In 1912 tris (ethylenediamine)cobalt(III) ions were resolved into optical isomers 

(Werner). The octahedral arrangement of the ligating atoms was indeed verified in 
1922 by the X-ray crystal structure analysis of K[PtCl,] (Scherrer and Stoll) and of 

[Co(NH3 )¢]I3 in 1926 (Stoll). 
This is the main point of Werner’s co-ordination theory. His work has been of 

the greatest importance for the development of co-ordination chemistry. Certainly, 

[CoAB(en),]** 

en 

; A A=NH3 
B= C1 

B B 

[Co(en)3]** 

) CF Fig. 1.3. The first series of complexes to be 

resolved by Werner 
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it was Werner’s remarkable ingenuity and powers of intuition that enabled him to 

deduce these principles from a study of chemical phenomena alone. 

However, there remains one unsolved problem. This is the problem of absolute 
configuration, that is the determination of the exact three-dimensional structure of a 

particular isomer, so that the position of each atom in the optically active complex 
is known relative to all other atoms. After the discovery of diffraction of X-rays by 

crystals in 1912, we had means of determining the atomic arrangement in crystals. 
Normal X-ray methods, however, do not tell us whether the optically active complex 
has a particular configuration or one related to this as its mirror image. In other words, 
it is not possible to assign the absolute stereochemical configurations to enantio- 
morphically related pairs of the complexes. This is a great challenge which has only 
recently effectively been met by the advent of the necessary instrumentation and tech- 
niques. Forty-two years after Werner’s resolution of tris(ethylenediamine)cobalt(III) 
ions, the absolute configuration of this complex ion was determined by means of 
X-ray anomalous scattering and the dextro-rotatory isomer, (+)sg9[Co(en)3]** , was 
found to correspond to the configuration (XIX),on p. 10 (Saito, Nakatsu, Shiro and 
Kuroya 1955). 

Here, we shall briefly recall two general concepts that are basically important in 
co-ordination chemistry: “‘symmetry“‘ and “isomerism”. 

2 Symmetry 

The concept of symmetry has been understood for a very long time, and the relation- 
ship of the symmetry of an object to its aesthetic appeal has been appreciated from 
the earliest ages. Nowadays it is of fundamental importance to understand rationally 
the structure and properties of the complexes. Symmetry is concerned with the rela- 
tions between the various parts of an object. The units of symmetry are called 
symmetry elements. Their precise definitions can be best understood in conjunction 
with their associated symmetry operations. A symmetry operation involves doing 
something to an object which leaves it in an indistinguishable (not necessarily iden- 
tical) situation. Thus the existence of a symmetry element can be demonstrated by 
applying a symmetry operation to a body. The symmetry operations are as follows: 

I Rotation About an Axis of Symmetry C, 

It is convenient to have a shorthand representation for the symmetry operation and 
element of symmetry for a particular object. Thus a rotation axis is given the symbol 
Cn, where (360/n)° is the rotation necessary to give an equivalent configuration. 
Such an axis is said to be an n-fold axis. Hexachloroplatinate(IV) ion, [PtCl,]?~ , for 
example, has three four-fold axes of rotation through each Cl and Pt atom. It also 
possesses a three-fold axis through the platinum atom and perpendicular to each face 
of the octahedron. There are twelve two-fold axes through Pt and each centre of the 
CI—Cl edge of the octahedron and through each Pt and Cl atom. 
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2 Reflection Through a Plane of Symmetry (or a Mirror Plane), m 

A plane of symmetry is any plane which divides an object into two equal and similar 
halves, each of which is a mirror image of the other. Thus the square-planar complex 

ion, [PtCl,]*~ has a plane of symmetry through four Cl atoms. It also possesses 

two mirror planes through the Cl—Pt—Cl bond and perpendicular to the plane of 

[PtCl,]?~ and another two through the midpoint of the Cl—Cl edge and the platinum 
atom and perpendicular to the co-ordination plane. 

3 Inversion Through the Centre of Symmetry (Inversion), i 

The complex ion, [PtCl4]?~ , for example, is symmetrical about the central metal 
atom, that is, every point (x, y,z) in the complex will have a corresponding point 

at (—x, —y, —z). The tetrahedral complex, [ZnClq]?~ does not possess this type of 
symmetry. 

4 Rotation Followed by Reflection on a Plane Perpendicular to the 
Axis (Improper Rotation), S,, 

This is know as an improper axis of rotation. The symbol S,, is given to the im- 

proper axis, where (360/n)° is the angle of rotation as before. A tetrahedral mole- 
cule, methane, has Sq. 

One can easily see that S,; and S$, are equivalent to m (mirror reflection) and 
i (inversion), respectively. 

For further details, the reader may consult textbooks on symmetry groups. 

H Fig. 1.4. A methane molecule, showing one of the three S4 axes 

3 Isomerism 

Isomerism is a rather comprehensive concept embracing several types of structural 

differences between molecules having the same chemical composition. There are 

two important isomerisms in co-ordination chemistry; geometrical isomerism and 

optical isomerism. 
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Geometrical Isomerism 

There are three possible ways of arranging the same six ligands evenly in space 

around a central metal atom: regular hexagon, trigonal prism and octahedron as 
illustrated in Fig. 1. 

Among these, isomerism in octahedral complexes will be illustrated by consider- 
ing some general kinds of compounds, since the majority of metal complexes are 
octahedral. 

The compound having the general formula [Magb.] can exist in two isomeric 
forms: J and II. 

b b 
a a a b 

a a a a 

b 

I II : 

trans cis 

In trans isomer I, the two groups in question, b, are opposed to one another 
about the central metal atom, while they are adjacent for the cis isomers, II. Thus 
the phenomenon is sometimes called cis-trans isomerism. There are also two iso- 
meric forms III and IV for the compound [Ma3b3].: 

a a 
b a b a 

b a b b 

b 

Ill IV 

facial (fac) meridional (mer) 

When two symmetrical bidentate aa replace four a ligands from [Ma4b,], two 
isomers are possible: trans V and cis VI. 

Vv VI 

trans cis 

But if the chelate ligand is unsymmetrical, there are five geometrical isomers. 
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a b a a 

b a b b 

VII Vill 

a b a 

b 5 a b 

b a ; a 

é b b 

Ix Xx XI 

Here, the letters a and b represent different ends of an unsymmetrical bidentate 

ligand, not necessarily different ligating atoms: propylenediamine, HN—CH(CH3)— 

CH,—NH, is an example. 

The tris-chelated complex with symmetrical ligands does not exhibit geomet- 

rical isomerism, but two geometric isomers are possible for those involving unsym- 

metrical ligands. 

Isomerism concerning multidentate complexes will be illustrated later with 

actual examples. 

Square Planar Complexes 

Two examples of geometrical isomers exhibited by square planar complexes are 

given below: 

[Mayb] 

XII XIII 

[M(ab)2 ] 

XIV XV 
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Optical Isomerism 

Optical isomerism occurs when a complex and its mirror image are not superposable. 

The most general statement of the criterion for the appearance of optical isomerism 

is that the complex must not possess an improper rotation axis. The simplest case 

of chiral molecules are those of the tetrahedral complex, [Mabcd], with symmetry 

C,, which implies lack of all symmetry elements (XVI and XVII). These complexes 

d d 

b ba 

XVI XVII 

are chiral and asymmetric, Among transition metal complexes there are many ex- 
amples of octahedral complexes which are chiral but do not lack all the elements of 
symmetry. For example, the tris-bidentate complexes such as [Co(en)3]>** possess D 3 
symmetry. They have one three-fold axis of rotation and three two-fold axes which 
are perpendicular to the former. 

Diastereoisomerism 

Diastereoisomers are stereoisomers that have the same elements of dissymmetry, some 
but not all of which are enantiomeric. For example, three isomers of tartaric acid are: 

CO,H CO 2H j CO 2H 

H-C_OH HO-C-H HO-C-H 

HO-C-H weotoH HOLOLH 

Cost COsH on 

R,R S,S R,S(meso) 

Here, R,R- and R,S-tartaric acids (or S,S and R,S) are diastereoisomers, whereas R,R 
and S,S' are optical isomers. Another example is A-[Co(—chxn)(+chxn),]** and 
A-[Co(—chxn)3]3* 9), 

Conformational Isomerism (Rotational Isomerism) 

Conformation means two or more non-identical three-dimensional arrangements of 
atoms in a molecule that can be interconverted by rotation around one or more single 

1 Unless otherwise stated all signs of rotation quoted in this book are at the sodium D-lines. 
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bonds. Isomers due to different conformations are called conformers. In co-ordination 

chemistry, however, the word “conformation” is often used to describe the spacial 

distribution of atoms in individual chelate rings and not a whole complex. 

4 Designation of the Absolute Configuration 

Absolute configuration concerning six-co-ordinated complexes based on the octahe- 

dron in this book is designated according to IUPAC proposal (1971, 1970; Thewalt, 

Jensen and Schaffer, 1972). 
Two skew lines that are not orthogonal define a helical system. 

By comparing Fig. 1.5 (a) and (c) one may easily see that the two skew lines AA’ and 

BB’ define a right-handed helix, namely AA’ determines an axis of a helix and BB’ 

makes up a tangent to the helix and defines its pitch. As far as a qualitative measure 

of helicity is concerned, the steepness of a helix (pitch) is in general of no im- 

portance. Alternately, if BB’ is chosen an as axis of the helix and AA’ as its pitch, 

a helix of the same hand is obtained. This is because there is a two-fold axis per- 

pendicular to the common normal (in fact there are two such axes and they are 

perpendicular to each other). Rotation around this axis will bring AA’ to BB’ and 

vice versa. This means that the second choice will give rise to the same helicity as 

the first one. In the same way Fig. 1.5 (b) defines a left-handed helix. The Greek 

letter delta(A referring to configuration, § to conformation) is associated with the 

two skew lines shown in Fig. 1.5 (a) and the Greek letter lambda (A for configura- 

Aorar 

(b) 

B B’ 

a) Gree veh 
E 

right-handed helix left-handed helix 

(c) (d) 

Fig. 1.5. Pairs of non-orthogonal skew lines are shown in projection along the common normal. 

The full line BB’ is above the plane of the paper, the dotted line AA’ below the plane. Lower 

figures (c) and (d) show corresponding helical systems to (a) and (b) respectively 
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XVIII XIX 

tion, A for conformation). The absolute configurations of the two optical isomers 
of a tris-bidentate-complex with symmetrical ligands are shown above (XVIII and 
XIV), where any pair of two edges of an Serahedr on on which a chelate ring is span- 
ned defines two skew lines A or A. 

5 Abbreviation of the Ligands 
. 

The following abbreviation of the ligands are used throughout this book. 

acac 

ala 

asp 

chxn 

cptn 

dien 

edda 

eddda 

edta 

en 

glut 

gly 
linpen 

mal 

N-Me-ala 

N-meen 

mepenten 

MeTACN 

Ox 

penten 

pn 

acetylacetonate 

alaninate 

aspartate 

trans-1,2-diaminocyclohexane 

(trans-1,2-cyclohexanediamine) 

trans-1,2-diaminocyclopentane 
(trans-1,2-diaminocyclopentane) 
diethylenetriamine 

ethylenediamine-N,N -diacetate 
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N,N,N’,N'-tetrakis-2'-aminoethyl)-1,2-diaminoethane 
propylenediamine 

1,2-diaminopropane 
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prolinate 

2,4-diaminopentane 

sarcosinate 

sarcosinate-N-monopropionate 

1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6 Jeicosane 

1,1,1-tris(aminoethyl)ethane 

5(R)-methyl-1,4,7,10-tetraazadecane 
3(S),8(S)-dimethyl-1,4,7,10-tetraazadecane 
5(R),7(R)-dimethyl]-1,4,8,1 1-tetraazaundecane 

6(R),8(S)-dimethyl-2,5 ,9,12-tetraazatridecnae 
1(R),3(R),8(R), 10(R )-tetramethyl-4,7-diazadecane- 
1,10-diamine 

1,11-diamino-3,6,9-triazaundecane 

(tetraethylenepentamine) 
thiooxalate 

1,4-diaminobutane 

trimethylenediamine 

1,3-diaminopropane 

trimethylenediamine-N,N,N’,N’-tetraacetate 
tribenzo[b,fj]-[1,5,9]triazacyclododecahexaene 

triethylenetetramine 

N.N’-bis(2’-aminoethyl)-1,2-diaminoethane 
(2,2,2-tet) 



Chapter II X-Ray Diffraction - 

1 Introduction 

In this chapter an outline of crystal structure analysis will be described. It is not the 
purpose of this chapter to give the details of the method but to explain a basic idea 
of X-ray diffraction. Emphasis will be laid on anomalous scattering of X-rays and 
its application for the determination of absolute configuration of dissymmetric mol- 
ecules. 

The physical method used for elucidating the structures of complexes falls into 
two classes: those that yield detailed information about the whole structure of the 
molecule and those that yield fragmentary information concerning individual bonds 
or particular groups of atoms in a molecule. The first class includes X-ray, neutron 
and electron diffraction, the second, various kinds of spectroscopy of the region 
ranging from microwave to ultraviolet, the measurement of electric and magnetic 
moments, optical rotatory dispersion and circular dichroism. 

Although chemical methods of investigation leave no doubt about the general 
structural features of metal complexes, such as the octahedral co-ordination and 
the existence of the chelate rings, X-ray crystal structure analysis reveals the 
lengths of chemical bonds, the angles between them and electron-density distribu- 
tion that could not be gained by purely chemical methods. Moreover, the distance 
between the atoms of neighbouring molecules and ions can be measured with the 
same precision as those between the atoms in the molecule itself. The quantitative 
knowledge of intermolecular distances gained in this way is of the greatest impor- 
tance, especially in structures involving special interactions such as hydrogen bonding 
or direct metal-metal interactions. It also gives an important clue to the discussion of 
the mode of association of the complex ion with other ions in solution. 

When the X-ray method was first applied to co-ordination compounds, the anal- 
ysis was often taken no further than a determination of the general shape and sym- 
metry of the complexes. Nowadays, with the help of greatly improved techniques 
including the use of electronic computers and automated single-crystal diffractom- 
eters, the method is now developing towards two extremes: one is the determina- 
tion of the structure of large molecules and the other is accurate determination of 

2 Those readers who are interested in the detailed procedures of crystal structure analysis may 
refer to a standard textbook, for example: (Woolfson, 1970). 
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electron-density distribution in comparatively simple molecules. For instance, struc- 
tures as complex as that of vitamin B,,, a cobalt(III) complex consisting of 105 
atoms, have been successfully solved. Moreover, the structures of complicated protein 

molecules such as haemoglobin (this is also a complex containing Fe atoms and with 
about 5,000 atoms) have been determined. These structures are the most complicat- 

ed that have yet been solved although not in such complete detail as vitamin B,2, and 

they have added considerably to the knowledge of the pattern of living matter. 

When the method is carried to its other extreme, it is possible to reveal the accurate 

distribution of the bonding electrons in a molecule of sufficient complexity to be of 

chemical interest. This topic will be discussed in Chapter V. It is possible to deter- 
mine the absolute configuration of a particular enantiomer by the use of anomalous 

scattering of X-rays. The knowledge of absolute configuration has made a great con- 

tribution to the understanding of molecular dissymmetry. This subject will be cov- 

ered in Chapters IV and VI. 

2 Space Lattice 

A crystal consists of a large number of three-dimensional repetitions of a basic pat- 

tern of atoms. Fig. 2.1 shows an example of a crystal structure, that of potassium 

hexachloroplatinate (IV), K,[PtCl,]. It consists of potassium ions and octahedral 

hexachloroplatinate (IV) ions. If the centre of each platinum atom is joined to those 
of its neighbours, the structure is divided into a number of identical units 

of pattern, each of which is a cube in this particular case. This is called the unit cell. 

The shape and dimensions of the unit cell, that is the three different sorts of edges 
and the angles between them, are characteristic for each crystal species. These are 

called cell constants. The directions of the three edges are crystal axes. If each re- 

peating unit of pattern is represented by a point, there arises a three-dimensional 
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Fig. 2.1. Arrangement of ions in K2 [PtCl¢] 
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Fig. 2.2. A space lattice, showing its division into a set of parallel 

equidistant lattice planes 

periodic arrangement of points. This is the:space lattice. Fig. 2.2 shows a space lat- 

tice. A characteristic feature of the space lattice is that it can be divided into a set of 
parallel equidistant planes on any one of which all the lattice points lie. Such planes 
are called lattice planes. A few possible ways of dividing the space lattice into lattice 
planes are illustrated in Fig. 2.2. Each set of these parallel planes is characterised by 
three integers such as (110), (321) etc., they are called Miller indices of the plane. 
This system of characterisation uses the three integers that are the reciprocals of the 
intercepts the plane makes with the three crystal axes. The idea is most easily under- 
stood for the cubic system. The plane shaded in Fig. 2.3 (a) is a (100) plane, the in- 
tercepts made on the a, b and c axes by the plane being 1, © and ~, respectively. 
Hence the Miller indices are 1/1, 1/0°, 1/o, In the same way the plane shaded in Fig. 
2.3 (b) is (110) and that in (c) is (321). If any intercept is made on the negative direc- 
tion, the corresponding index becomes negative, as shown in Fig. 2,3 (d). 

Fig. 2.3. Miller indices of lattice planes 

3 Symmetry of Crystal Lattices: Space Groups 

A solid body or a geometrical figure can be constructed to display any desired sym- 
metry. Order of rotation axis may range from 1 to ©, These rotation axes may be 
combined with a mirror plane or with an inversion. The symmetry operations appli- 
cable to crystals are, however, strictly limited. For instance, a crystal having a five- 
fold rotation axis has never been observed. A crystal formed by twelve pentagonal 
facets does exist, but it has no five-fold symmetry. The distinct rotation axes appli- 
cable to crystals are, in fact, only 1, 2, 3, 4, and 6. This is the direct consequence 
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of the lattice structure of crystals. To show this practically, take about 20 pentagonal 

cardboards of the same size cut out from a large piece and try to pack them tighly on 

a table. You will find it impossible to do so: there are always some spaces left. The 

only figures that can be used are the parallelogram (two-fold symmetry), the equilat- 
eral triangle (three-fold symmetry), the square (four-fold) and the regular hexagon 

(six-fold). Any other figure cannot be packed closely without leaving any gaps. To 
sum up, all the distinct symmetry operations applicable to crystals including the prop- 

er and improper rotation axes ar limited to eight as follows: 1, 2, 3, 4 and 6; 1(/), m(2) 
and 4 (Sq). 

Bravais (1850) investigated all possible combination of these symmetry elements 

in lattices and showed that 14 and only 14 different tpyes of lattice belonging to 

seven crystal systems, can be distinguished. An actual crystal structure like that of 

K,[PtCl,] (Fig. 2.1) may be regarded as an infinitely repeating pattern based on the 

lattice principle, extended in all directions. The problem is how many distinct com- 

binations of symmetry elements are possible that are applicable to the atomic ar- 

rangements in crystals. The eight symmetry elements mentioned above are not 

enough to describe the symmetry of crystal structures. The symmetry operations so 

far considered have always been such as to leave at least one point of the body un- 

moved. The space lattice can be brought into self-coincidence in a new way, namely 

by translations along any of the lattice directions. Thus the new symmetry opera- 

tions are obtained by combining a rotation axis with a translation and by combining 

a plane of symmetry with a translation: the resulting symmetry operations are called 

screw axis and glide plane, respectively. Fedrow (1885), Schoenflies (1891) and 
Barlow (1895) analysed carefully the combination of these symmetry elements and 

showed that there are 230 essentially different ways of combining them. The collec- 

tion of symmetry operations present in any given crystal structure forms a self-con- 

sistent set, or a group in the mathematical sense. Thus they are called 230 space 

groups. They are all listed and described in volume I of the International Tables for 

X-ray Crystallography (1959). 

4 Diffraction of X-Rays, Bragg’s Equation 

When the incident beam of X-rays passes over the atoms in a crystal, each atom scat- 

ters the incident X-rays. Owing to the periodic arrangement of atoms constructive 

interference between scattered wavelets takes place to give diffracted beams. Let us 

consider a very simple structure consisting of one atom on each unit of pattern on a 

space lattice. If such a three-dimensional point array is to produce a diffracted beam, 

the diffracted waves from all the atoms must be in phase. Waves scattered from some 

atoms have the same path length; those from the other atoms will have one wave- 

length behind the first set and so on. This condition is given by Bragg’s law. Figure 

2.4 is an edge-on view of successive lattice planes with Miller index (hkl), PLP PSP? .., 

P3P4 ... with an interplanar spacing of d(hk/). Diffraction takes place as if the in- 
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Fig. 2.4. Bragg’s condition 

cident X-ray beam were reflected by the lattice plane. One can easily see that if the 
angle of incidence, say BOP, is equal to the angle of reflection DOP; , the path 
length is the same for all the atoms on P,Pj, irre$pective of the value of 6. However, 
for waves from P,P/ and that from PP, to give constructive interference, the value of 
@ is strictly restricted by the requirement that the path difference, MA + AN must be 
an integral multiple of the wavelength A (Fig. 2.4). 

Therefore, 

MA + AN = 2d(hkl) sin 6, -2d(hkl) sind=2r_—, (2.1) 

This is Bragg’s equation. If this condition is once fulfilled, the reflected waves from 
successive lattice planes are all in phase and give strong diffracted beams owing to the 
periodicity of the lattice. Since is known, the interplanar spacing d(hkl) can be cal- 
culated by means of Eq. (2.1), if the direction of the diffracted beam is known. The 
unit cell dimensions can be derived from the values of d(hk/) and the geometrical re- 
lations between the diffracted beams. 

5 The Geometrical Structure Factor 

An actual crystal is not a simple array of points. Each pattern unit generally consists 
of a group of atoms. Each atom is not a point: electrons which scatter X-rays are dis- 
tributed around the nucleus like a cloud within a range comparable with interatomic 
distances. We can show that the form of pattern unit affects the intensities of dif- 
fracted beams but it does not affect their positions (direction of the diffracted 
beam). 

If the repeating pattern consists of two kinds of atoms 1 and 2 (Fig. 2.5), we 
may choose one of these P, arbitrarily as a lattice point and as an origin for co-ordi- 
nates. Draw in the traces of a lattice plane (nk/) through this atom and one repre- 
senting the next lattice point P,. Inspection of the figure at once reveals that the re- 
sulting structure is a superposition of two space lattices of the same dimensions, one 
consisting of atoms 1 and the other consisting of atoms 2. Both lattices are parallel 
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© atom 2 

Fig. 2.5. Diffraction of X-ray waves from a lattice composed of two kinds of atoms, 1 and 2 

and shifted by P,P,. If Bragg’s Eq. (2.1) holds, all the waves scattered from each 

lattice are in phase. Thus the condition for constructive interference is the same for 

both lattices. The wave diffracted from lattice 2 is, however, not in phase with that 

diffracted from lattice 1 and the resultant intensity of the diffracted beam from the 
whole lattice will be affected owing to the phase shift corresponding to P,P,. The 
path difference of the waves scattered by P, and P; is 2d(hk/) sin 6 = A (for the first 
order reflexion). In angular measure, the phase difference between the two waves is 

2m and the result is complete reinforcement to give a wave of double the amplitude. 

For the wave scattered in this direction from the atom 2 at P,, situated at a distance 

d'(hkl) across the plane, the path difference compared to the wave from the standard 
atom P, is 2md'(hkl)/d(hkl) in angular measure. As shown in Appendix II-1, this 
phase difference is given by 2m(hx + ky2 + Iz), where x2, yz, and 22 are the frac- 

tional coordinates of atom 2. The two waves are characterised by the amplitudes f, 

and f, in terms of the scattering amplitude of a free electron under the same experi- 

mental condition, which depend upon the scattering power of the atom for this angle 

of reflexion®) and the phase difference between the two waves is given as mentioned 

above. The reusltant amplitude |F(hk/)| is obtained by combining the waves scattered 

by lattices 1 and 2. This can easily be done by adding the vectors representing the 

component waves, as in Fig. 2.6. 

fo 

9 ni hx2 seh
yotl#2) 

Fig. 2.6. Combination of the two waves 

a a of different amplitudes and phase angles 

3 When X-rays are scattered by atomic electrons, destructive interference between the wavelets 

scattered from various parts of the electron cloud takes place to an increasing extent as 6 in- 

creases: f(hkl) therefore falls off from its initial value, f= Z, with increasing 6 (Z: atomic num- 

ber). 
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Expressed analytically 

F(hkl) = f, (hkl) + f(hkl) e2!*2 + ky2 +22) (22) 

If the repeating pattern consists of NV atoms (in other words, there are V atoms in the 

unit cell), an extension of the treatment which led to (2.2) gives the general expres- 
sion for F(hk/) as follows: 

N : 
F(hkl) = X f(hkl) eo? ryt kyjt?)) (2.3) 

j=1 

This is the most important equation in crystal structure determination. F(hkl) is known 
as the geometrical structure factor and f(hk/) is the atomic scattering factor. The struc- 
ture factor is characterized by an amplitude |F(/k/)| and a phase angle a(hkl). They 
can be evaluated as follows: 

|F(hkD)| = »/A?(hkl) + B?(hkl) (2.4) 

a(hkl) = tan~'B(hkl)/A(hkl) (2.5) 

where 

N 

A(hkl) = & (hkl) cos 2n(hx; + ky; + Iz;) 
j=1 

(2.6) 
N 

B(hkl) = & f(nkl) sin 2n(hx; + ky + Iz;) 
j=1 

The summations must be taken over all the atoms in the unit cell. Some of these atoms 
are, however, related to others by a symmetry element of the space groups: therefore 
(2.3) can be simplified to some extent. If an approximate trial structure can be derived, 
for instance, from known molecular geometry, packing consideration and other clues 
to the arrangement of molecules, such as anisotropy of optical properties of single 
crystals, combined with a knowledge of the space groups, the values of F(hkl) can be 
calculated from (2.3) and compared with the observed magnitudes of F(hkl). If the 
agreement is not satisfactory, the co-ordinates are adjusted to give better agreement. 
The final stage of this refinement is usually carried out on a computer by using the 
least-squares method. The estimate of agreement is usually given by the R factor: 

vee Fo(nkt)| — |Fe(nkt)|| 
D|Fo(hkd)| 

where Fo(hk1) and Fc(hkl) are the observed and calculated structure factors. Most of 
the refined structures have R value less than 0.10. In an accurate determination the R 
value reduces to less than 0.050. 
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6 Electron-Density 

Instead of finding the atomic positions by trial and error, a more direct approach to 
the problem can be made by the use of Fourier synthesis. The expression for the 
structure factor given in Eq. (2.3) is obtained based on the assumption that all the 
atomic electrons are concentrated into a number of spherically symmetrical atoms 
located at points (x;, yj, z;). This is not a good approximation. In an actual crystal 
the electrons are generally distributed aspherically between the atomic nuclei owing 

to bond formation and the electron-density varies continuously from point to point. 

Thus it is desirable to give a more general definition of the structure factors, which 
are also necessary to develop a method of structure determination based on the use 
of Fourier series. 

Let p (xyz) be a distribution function of the electron-density within the unit 

cell. This density will be expressed in electronic units, so that p(xyz) Vdxdydz will 

give the number of electrons in the volume element Vdxdydz, where V is the 

volume of the unit cell. The electrons in each volume element will contribute to the 

resultant amplitude from the whole unit cell content and, for hkl reflexion, the 

phase change due to path difference with respect to the origin at the point x, y, z is 

2m(hx + ky + Iz). The resultant vector is therefore 

ett 7 
F(hk) =V f f f p(xyze2™@Oxt +2) dydydz (2.7) 

000 

p(xyz) varies periodically from one unit cell to the other throughout the crystal, since 

the crystal is a periodic three-dimensional array of atoms. Because of this periodicity 

p(xyz) can be represented by means of a Fourier series in the general form, 

(xyz) = = > Dek Nem ueatken! (2.8) 

RL, 

h',k' and I’ being integers and c(h'k'l') is at present the unknown coefficient. We sub- 
stitute this series (2.8) in the general expression for the structure factor (2.7) and ob- 

tain 

etal } 
F(hkl = f Sf Vo(xyz)e?™*** 2) dxedydz 

000 

Pry C(h'K'T )e2M Uhh) x(k y+ I-12} dxdydz (2.9) 
ae 

Vagi f mS 
00 kid i. 

On integrating, every term is zero except that with h = h',k =k’ and 1=1', which gives 

F(hkl) = vf ii i c(h'k'l')dxdydz (2.10) 
000 

= Ve(hkl) 
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c(hkl) = F(hKD/V (2.11) 

Thus the distribution function of the electron-density p(xyz) can be expanded as a 

three-dimensional Fourier series whose coefficients are the structure factors: 

p(xyz) = 1/V z D DF (nklye~ 2x tky +12) (2.12) 
hkl 
— 3 

By using the relations 

F(hkl) = A(hkl) + i B(hkl) (2.13) 

and ; 

tan a = B(hkl)/A(hkl) (2.14) 

Eq. (2.12) can be rewritten in the form 

(xyz) = 1/V ZED |F(hkD)| cos (2n(hx + ky + Iz) — a AkD)} (2.15) 

If the electron-density distribution p(xyz) could be evaluated over a sufficient num- 
ber of terms, the result would provide a complete solution of the crystal structure. 
Unfortunately, the matter is not so straightforward, since the magnitude of F(hk/) can 
be evaluated easily from the measured intensity of the diffracted beam but the phase 
angle a(hkl) cannot be directly measured. This is the well-known “phase problem” 
of X-ray analysis. Inability to determine the phase of the reflected radiation experi- 
mentally forces the crystallographer to use a variety of more or less indirect methods. 
The most important of these methods is known as the heavy atom method, which 
makes use of an atom of considerable scattering power in the structure. In co-ordina- 
tion compounds the central metal atom acts as a heavy atom. The position of the 
heavy atom can be deduced from Patterson synthesis. 

The Patterson function is given by a series: 

P(uvw) = 1/V SEE |F(HK1) |? cos 2n(hu + kv + lw) (2.16) 

This is a Fourier series with the squares of the structure amplitudes as coefficients 
and does not require a knowledge of phases. It can be shown that the peaks in 
P(uvw) represent interatomic distances: if there is a peak at (u,v, w) in the Patterson 
synthesis it means that there are atoms whose co-ordinates differ by these values; 
and the peak heights are proportional to the product of the atomic numbers of the 
atoms concerned. If there are a few atoms (at least two) of a higher atomic number 
than the rest of the atoms in the unit cell, then the peaks due to these heavy atoms 
may well stand out in the majority of minor peaks and give clear interatomic vectors. 
With the aid of these interatomic vectors between the heavy atoms, combined with a 
knowledge of the space group, we can easily locate the heavy atoms in the unit cell. 
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Approximate phase angles can then be calculated on the basis of heavy atom 

positions. A preliminary Fourier synthesis can be carried out by the observed struc- 

ture amplitudes and the calculated phase angles. The electron-density map so ob- 

tained indicates heavy atom positions as expected and may reveal approximate posi- 
tions of lighter atoms which were not taken into account in the calculation leading to 

the assignment of phases. The new positions are used to recalculate the phase con- 

stants and a second synthesis is carried out. The process is repeated until the phase 
angles remain the same.after recalculation. This procedure consitutes a direct method 

of adjusting the atomic co-ordinates towards more probable values. It is known as 

Fourier refinement. At the final stage, the atomic co-ordinates are further refined by 

the least-squares method described earlier. The atomic co-ordinates are adjusted to 

minimize D w(|Fo(hkl)| — | Fe(hkl)|)* , w being an appropriate weighting function. 

7 Thermal Vibration 

Atoms in crystals vibrate at ordinary temperature with frequencies very much lower 
than those of X-rays. At any one instant some atoms are displaced from their mean 
positions in one direction: consequently, diffracted X-rays would not be exactly in 

phase and the intensity of the diffracted beam is thus reduced more than would be 
the case if all the atoms are at rest. Observed electron-distribution is the time average 

of such random displacements of atoms. The ratio between the actual intensity of a 
diffracted beam and the intensity which would occur if there were no thermal vibra- 

tions is exp — [2B(sin @/A)?], where B is a constant. Thus f(Akl) in Eq. (2.3) must be 

replaced by f; exp — [2B(sin 6/ d)?]. This expression was derived by assuming that all 
the atoms vibrate with equal amplitude and the vibration of the atoms have the same 
magnitude in all directions (isotropic thermal vibration). This is not strictly true: the 

amplitude of vibration must be different for different kinds of atoms and some 
atoms may exhibit marked anisotropic vibrations. The expression for anisotropic 

vibration is more complicated: f; must be multiplied by 

exp [— (811h? + Bok? + B33/7 + 28: 2hk + 2B23Kkl + 28 13h1)]. 

Values of B or Bj;’s can be estimated from the observed structure amplitudes by the 

least-squares method. Anisotropic motion of a particular atom in crystals can be con- 

veniently expressed as ellipsoids of thermal motion which are easily calculated on the 

basis of f;;’s. 

8 Experimental Procedure 

A source of homogeneous X-rays of known wavelength is used for crystal structure 

determination. A single crystal specimen bathed in the monochromatic beam will not 

in general be in a position to produce any diffracted beams. But if it is slowly rotated 
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around some crystal axis, one lattice plane after another will come to a reflecting 

position, satisfying Bragg’s condition, and the diffracted beam will flash out. The dif- 

fracted beam will be recorded on a photographic film surrounding the crystal or in 
the scintillation counter set at the expected position. It is necessary to collect as 

many reflexions as possible from different lattice planes, in order to calculate the 

electron density by Eq. (2.15). Photographically, the intensity data are most widely 

collected by the Weissenberg method. In the Weissenberg camera, a crystal specimen 

is mounted on a goniometer head and is oscillated to and fro around some crystal axis. 

The crystal is completely bathed in a narrow beam of monochromatic X-rays. Dif- 

fracted beams will be recorded on a film which is inserted into a co-axial cylindrical 

film holder. The film holder can move along the direction of its axis and it is mechan- 

ically coupled to the rotation of the crystal in such a way that it slides forwards and 

backwards as the crystal oscillates. Between the crystal and X-ray film is a cylindrical 

screen which is also co-axial with the rotation axis of the crystal. The screen has a 

circular slit and this slit can be so adjusted that only a certain groups of reflexions 

passes through it. In this way, one co-ordinate on the photograph gives the angular 

setting of the crystal and the other gives the spacing for each reflexion. Thus the 

assignment of the indices of reflexions is quite straightforward. The geometrical rela- 

tions between any two planes are also known. The unit cell dimensions can be cal- 

culated from the co-ordinates of the recorded reflexions. The intensities of reflexions 

are estimated visually or measured by means of a microdensitometer. 

Nowadays automatic X-ray diffractometers are becoming standard intruments 

for collecting intensity data in an increasing number of laboratories. The most 

accurate measurements of single crystal reflexions are made in this way. Fig. 2.7 is a 

schematic drawing of a typical fully automatic four-circle diffractometer most widely 

used. The term “four-circle’”’ refers to the number of rotational motions available: 
three of these, ¢, x and w., are associated with the crystal and one, 26 with the 

counter. The ¢ circle carries a goniometer head supporting the crystal, which is 
mounted on the x-circle. The x-circle is carried on the w-circle which is co-axial with 
the 20-circle. The x-axis is normal to the w-axis. The counter rotates about a vertical 
20-axis so that the plane containing the incident and diffracted beam is always hor- 
izontal. For a particular reflexion the counter is set at a position corresponding to 

incident beam 

crystal 

diffracted beam 

@ Fig. 2.7. Four-circle diffractometer 
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the Bragg angle. Once this has been done, the diffracted beam can be produced by 

positioning the crystal appropriately by rotating around the three axes, ¢, x and w. 

Once the setting of the crystal is known in terms of the ¢, x and w scale reading for 

a number of reflexions (at least two), then the three setting angles corresponding to 
other reflexions can be calculated on the basis of lattice dimensions. A computer 

built in or linked to the diffractometer, can supervise the process of collecting a 
complete set of diffraction data without any intervention by the crystallographer. 

The measured intensities are usually punched out on cards or paper tape, which can 

be used as an input for further calculations. 

9 Process of Crystal Structure Determination 

The determination of a crystal structure normally proceeds in three distinct stages. 

The first is the determination of unit cell dimensions and the space group. The 

second stage is measurement of the intensities of the Bragg reflexions and calculation 

from them of structure amplitudes corrected for various geometrical and physical 
factors depending on the experimental conditions. The third is the determination of 

atomic co-ordinates, This stage includes the solution of the phase problem, deduction 

of approximate atomic positions and finally their refinement so as to obtain the best 

possible agreement between the Fo(hkl) and Fc(hkl)’s. The first and the second 

stages are largely a matter of routine. Approximate unit cell dimensions can be 

derived from the measurement of co-ordinates of diffraction spots recorded on Weis- 

senberg photographs and refined on the basis of diffractometer data. From the vol- 

ume of the unit cell and the density of the crystal the number of formula units, Z, in 

the unit cell can be calculated 

7 = eV x 0.6023 x 10° . (2.17) 

where p is the density, V the volume of the unit cell and M the formula weight. In- 

formation about the space group is accessible from a simple study of reflexions re- 

corded on Weissenberg photographs, the systematically absent ones being noted. 
Some of the space groups can be determined uniquely from such systematic absences. 

When ambiguity remains, rigorous determination of the space group can be achieved 
first by the success of the structure analysis. The second stage, collection of the inten- 
sity data, is usually carried out by an automatic four-circle diffractometer. When a 

complete set of Fo(hkl)’s is given, the third stage begins. The number of atomic co- 

ordinates to be determined can be derived from Z and the space group. The positions 

of the heavy atoms are first deduced from Patterson maps. Positions of the lighter 
atoms are determined by successive Fourier syntheses of electron density and finally 

all the atomic co-ordinates so obtained are refined by least-squares methods. 

The bond lengths and angles can be calculated on the basis of the final atomic 

co-ordinates. The errors in bond lengths and angles arise from errors in cell dimen- 
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sions and atomic (fractional) co-ordinates. Thé former errors are much smaller than 

the latter. The latter arise from errors in intensity measurement. By statistical meth- 

ods the standard deviations of bond lengths and angles can be estimated from the 

errors in intensity measurement. The standard deviations estimated in this way are 

usually tabulated with the bond lengths and angles in many published structural pa- 

pers. 

10 Neutron Diffraction 

A beam of neutron of uniform velocity behaves ike a wave of definite wavelength 

and can be diffracted by crystals. In a nuclear reactor, because of the principle of 

equipartition of energy, the neutrons have a Maxwellian distribution of energy. The 

thermal energy of a neutron at temperature T is 3KT/2, where k is Bolzmann’s con- 

stant. This must be equal to the kinetic energy, mv/2, where m is the mass of 
neutron. 

Therefore, 

mv? |2 = 3kT/2, 

and from de Broglie’s relationship, 

r= h/my, 

where /; is Planck’s constant. 

Thus 

h=h/\/3mkT 3 (2.18) 

The neutron beam from the reactor is received on a single crystal large enough to 
cover the entire beam. At any particular angle of incidence, @, neutrons will be re- 
flected if their wavelength satisfies the Bragg equation: 

dA = 2d sin 6, (2.19) 

where d is the interplanar spacing. By selecting the angle, 0, appropriately, a beam of 
neutrons of the wavelength suitable for structural study can be obtained. With these 
monochromatic neutrons we can carry out the same kind of studies as with X-rays. 
A four-circle diffractometer is used for this purpose. The detecting counter is a pro- 
portional counter filled with !°B-enriched boron trifluoride, For nearly all atoms it is 
atomic nuclei that are responsible for scattering neutrons. The interaction between 
atom and neutron is quite different in nature. Unlike X-ray scattering the scattering 
of neutrons by diamagnetic atoms is purely nuclear. Most atoms scatter neutrons 
equally well, within a factor of two or three. This is in contrast to the rapid increase 
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with atomic number of the X-ray scattering amplitude. Thus neutron diffraction 
provides information on the location of the nuclei of light atoms like hydrogen to 
nearly the same accuracy as it does on other heavier atoms. In the study of co-ordina- 
tion compounds, neutron diffraction is often carried out to ascertain the positions of 
light atoms in the presence of heavier ones. 

Another important application is the study of bonding electrons in a molecule. 
Neutron diffraction gives the location of atomic nuclei, whereas X-ray diffraction 
provides electron density distribution in a molecule. Thus a combination of the two 
techniques will enable us to study the deformation of the electron cloud due to 
bonding more adequately than the X-ray diffraction study alone. 

Although neutron diffraction gives us the results that are unobtainable with X- 
rays, it has some shortcomings. Firstly it is expensive: nuclear reactors are required, 
Secondly, small crystals cannot be used, since the diffracted beam is too weak to be 
measured. Usually a single-crystal specimen should have the dimension of several 
millimeters in each direction. Thirdly, strict monochromatisation may lead to a great 
loss of intensity. This will prevent very precise intensity measurement, resulting in 
the loss of accuracy in atomic co-ordinates. 

11 An Example: X-Ray and Neutron Diffraction of (—)<¢y- 
tris(R-propylenediamine)cobalt(III) Bromide 

As an illustration of the methods, the crystal structure determination of (—)5g9- 
[Co(-pn)3]Br3 will be briefly sketched (Shintani, Sato and Saito, 1979). The com- 
pound was synthesized from Na3[Co(CO3)3] and (—)sg9-pn. The crystals were grown 
from an aqueous solution by slow evaporation. They are orange-red hexagonal needles. 
The crystal specimen was shaped into a sphere of radius 0.33 mm and used for X-ray 
intensity data collection. 

The crystals are hexagonal* with unit cell dimensions: a = b = 10.998(1) A and 
c = 8.567(1) A at 25 °C.5) The space group is P63. The observed density of the 
crystal was 1.91 g cm~>. By means of Eq. (2.17) the number of formula units in the 
unit cell was determined to be 2. The intensity data were collected on an automatic 
four-circle diffractometer. In total, 1,423 distinct reflexions were collected and used 
for the solution of the structure and refinement of atomic co-ordinates. The posi- 
tions of the heavy atoms, Co and Br in this case, could be deduced from the 
Patterson synthesis. Positions of the lighter atoms were determined by successive 
Fourier syntheses of electron density. The atomic co-ordinates thus obtained were re- 
fined by the least-squares method. The final R value became 0.056 for the 1423 ob- 

4 The angle between thea and b axes is 120°. The ¢ axis is perpendicular to the plane formed by 
the a and b axes. 

Standard deviations to the last digit are usually given in parentheses. 

6 For notation of the space group readers may consult International Tables for X-ray Crystal- 
lography, Vol. I (1959). 

n 
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Fig. 2.8. Composite three dimensional 

Fourier diagram of electron density in 

(—)5g9-[Co(R-pn)3]Br3. Contours 

around the cobalt and bromine atoms are 

drawn at intervals of 10 e A-3, and those 
* for other lighter atoms at 2 e A> 

served reflexions. Fig. 2.8 shows the final electron density map of (—)s5g9-{Co(R-pn)3] 

Br3. This diagram is composed of sections through each atomic centre. All the atoms ex- 

cept hydrogen come out spherically in the diagram. Peak heights increase with increas- 

ing atomic number. Peaks due to hydrogen atoms are not drawn, since the peak height is 

only 1 e A~3. The corresponding packing diagram is shown in Fig. 2.10. 
The crystal specimen used for the collection of the neutron intensity data was 

shaped into a sphere of 3.0 mm in radius. The relative intensities of a total of 364 in- 

dependent reflexions were measured. The structure was refined by least-squares 

methods. The final R value was 0.050 for the 364 observed reflexions. Table 2.1 
compares the scattering amplitudes of the atoms in [Co(R-pn)3|Br3 for X-rays and 
neutrons. A composite three dimensional Fourier synthesis corresponding to that 
shown in Fig. 2.8 is presented in Fig. 2.9. Owing to the difference in scattering ampli- 
tudes for X-rays and neutrons the peaks due to nitrogen and carbon atoms are even 
higher than the cobalt and bromine peaks. Hydrogen peaks come out clearly, but 

they are indicated by broken lines to show their negative scattering amplitudes. An 
interesting feature is that the hydrogen atoms attached to the methyl carbon are dis- 

Table 2.1. Scattering amplitudes for X-rays and neutrons 

Element Atomic number X-ray scattering amplitudes Neutron scattering 

in electrons amplitudes in 

10-1? cm 
sin 0/A= 0 sin 6/A = 0.50" 

ee eee 

H 1 1.0 0.07 —0.372 
C 6 6.0 ed 0.665 
N Hf 7.0 19 0.94 
Co 27 27.0 12.2 0.25 
Br 35 35.0 18.3 0.67 
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Fig. 2.9. Composite three dimensional 

Fourier diagram of neutron scatter- 

ing density in [Co(R-pn) 3Br3. Con- 

tours are drawn at intervals of 5 x 

1012 cm 43 

ordered. There are six negative peaks around each methyl carbon atom with a half 

peak height of other hydrogen peaks. Such arrangement of peaks seem to indicate 
that the methyl group takes two alternative sets of positions with equal probability. 
Neutron diffraction does not tell us whether this is a dynamical pseudorotation of 

the methyl group or simply the statistical orientational disorders. A packing diagram 
of (—)5g9-[Co(R-pn)3 |Br3 is shown in Fig. 2.10. 

Fig. 2.10. A packing diagram of (—)5g9[Co(R-pn)3]Br3 
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12 Anomalous Scattering 

X-ray methods can give the detailed geometry of a complex, interatomic distances 
and bond angles; however, it is not possible by the normal X-ray method to decide 
whether the optically active complex has a particular configuration or its mirror 
image. This is because diffracted intensities are usually measured under such condi- 
tions that the X-ray wavelength used is nowhere near the absorption edge of any atom 
in the crystal. A typical absorption spectrum of an atom for X-rays is shown in Fig. 
2.11. The absorption coefficient increases gradually with increase in \ and it decreases 
abruptly and begins to increase again. These sudden discontinuities in atomic ab- 
sorption coefficient are known as absoprtion edges. They can be understood in terms 
of the electronic structure of the atom. Within the atom, electrons exist in definite 
energy states and the absorption edges correspond to energies hc/ which are just suf- 
ficient to eject an atomic electron from the atom.’Thus absorption edges are classi- 
fied according to the electrons ejected by the incident X-rays: K, L, M etc. When the 
X-ray wavelength lies near one of the absorption edges of any atom in the crystal, X- 
rays are scattered anomalously from the particular atom. Let us first consider what 
happens when the incident X-rays are scattered anomalously. 

The physical basis of the anomalous scattering can be seen by carrying out a 
simple experiment. What we wish to do is to observe how one oscillator can affect 
others of different frequencies. Figure 2.12 illustrates the experiment. The black 
circle represents a heavy plumb suspended by a horizontal string, tightly supported at 
both ends. To the same string are attached other pendulums of different lengths, 
with less heavy plumbs. One pendulum should have the same length as the master 
pendulum. If one makes the master pendulum oscillate in a plane perpendicular to 
the horizontal string, it will oscillate slowly and then the other pendulums will also 
start to oscillate, because the pendulums are coupled together. One will find that the 
pendulum with the same length (hence the same natural frequency) as the master 
pendulum will have a far greater amplitude than any of the others. This is the well 
known phenomenon of resonance. If one looks at the other pendulums more closely, 
one may notice that when all their motions become stationary, they can be seen to 
be vibrating with the same frequency as the master pendulum. But those that are 
shorter than the master pendulum are vibrating out of phase. If the master pendulum 

ut 

absorption 

Fig. 2.11. Variation of linear absorption 
0 coefficient with wavelength for a typical 

wavelength Aa element 
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Fig. 2.12. Eight pendulums are shown. The black one is heavy: 

the others are lighter 

is considered to be the incident X-ray beam, and the driven oscillators to be the 
atomic electrons in the various energy levels of the scattering atoms, what happens 

in the pendulum system exactly represents what happens in the atoms. The scatter- 

ing by all kinds of electrons is in phase, since these electrons oscillate with the same 
frequency as the incident beam. In the region near to resonance odd changes in phase 
can take place: all the electrons do not now scatter in phase and the scattered X-rays 
have different phase angles. The anomalous scattering will be discussed in the next 
section on the basis of a classical model. 

13 The Forced, Damped Oscillations of an Electron 

In the classical theory, the scattered radiation of unchanged wavelength is produced 

by the forced oscillations of the electrons. If we consider one atomic electron, 

moving independently of all others, then its oscillational motion in the alternating 

electric field of an incident electromagnetic wave, Fy exp (iwt), can be described by 
an equation of the form 

2 
on + he + wx = — eh exp (iwt) (2.20) 

m 

In Eq. (2.20), m is the electronic mass, —e the electronic charge and «, is the resonance 

frequency of an electron weakly bound by the nucleus, thus the restoring force being 

given by — mw*x. y in the second term of the left-hand side of Eq. (2.20) is a positive 

constant and — my(dx/dr) stands for the loss of electronic energy by resonance absorp- 

tion which is represented as a damping force proportional to the velocity of the elec- 

tron. From (2.20), the dipole moment of this oscillating electron P is given by 

2 ; 

hs ae ie eo (2.21) 
TTC eee) TY, 

Classical electromagnetic theory tells us that the oscillating electric dipole emits 

an electromagnetic wave of the same frequency. The value of the electric vector of the 

scattered wave observed on a plane perpendicular to the oscillating dipole at a distance 

r (large compared to the wavelength) is given by P(t — r/c) x w* /cr?, where P(t —r/c) 
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is the electric moment at time t — r/c and c is the light velocity in vacuum. Thus the 

amplitude of oscillation at unit distance A can be written as 

2 

Ash Sorta Fl psoas (2.22) 
me W.-W. tly 

For a free electron (no binding force by the nucleus and no resonance absorption) one 
would have w, = 0 and y = 0. Its scattering. amplitude A’ becomes 

A'=—(e?/mc?)Eo (2.23) 

The negative amplitude indicates an oscillation of,the electron with the same frequency 
as the incoming wave but 7 out of phase. By writing (2.23) as 

A'=(e? /mc?) exp in 

the phase shift of 7 with respect to the incoming wave E = Ep exp (iwt) is made more 
evident. 

The atomic scattering factor ¢ of the oscillating dipole is the scattering amplitude 
measured in terms of that of a free electron at the same experimental condition. 

2 
¢=A/A'= geet s Nera (2.24) 

Oe a) FY 

If we separate ¢ into the real and imaginary components and put 

o= ¢' ci id” 
(2.25) 

we obtain 

Uti a G2) fies eee! Ae Le 8 
2.26 OG aly tye? ore 

3 

¢" = a (2.27) (a? — ot? +7? 
The most tightly bound electrons which therefore have the largest Ww, value are the 
K electrons. However, even for these w is much greater than w, and their behaviour 
is not very much different from that of a free electron. Hence ¢” is a small quantity. 
We have so far considered only one electron. In an actual atom, however, there are 
many atomic electrons in the various energy levels. Thus the real atomic scattering 
factor is given by a sum of terms like that given by Eq. (2.25) for all atomic electrons, 
namely, 

FH VO+tiTd=aforAf +idf' (2.28) 
J J 
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where fo is the scattering factor at infinite wavelength, Af’ is the small correction for 
the real part of the scattering factor at \ and Af” is the imaginary part of it. f can be 
further rewritten as: 

f=Vfo + Af’? + Af" exp (8) (2.29) 

SADA fae 

(fo + Af’) 

where 6 is the phase shift on anomalous scattering. From Eq. (2.27) we find Af’ is a 
positive quantity, hence 8 is a small positive angle. With the time factor exp (iw) this 
means that the anomalous phase shift on scattering has the effect of advancing the 
wave. It should not be assumed that this rather crude theory based on classical ideas 
gives good agreement with experiment but it does give a reasonable qualitative picture. 
The theory of anomalous scattering was first developed by Honl (1933, a and b). His 
first paper was a classical treatment and the second one was a quantum mechanical 
treatment. More advanced quantum field theory gives essentially the same result (see 
for example, Sakurai, 1967). The way in which Af’ and Af” depend on the incident 
wavelength in relation to the absorption edge is illustrated in Fig. 2.13. The values of 
Af’ and Af” were calculated by quantum mechanical theory. Af” is always positive 
when the wavelength of incident radiation is shorter than the absorption edge wave- 
length, whereas it is zero when it is longer than the absorption edge.” 

Calculated values of Af’ and Af” are tabulated in Vols. III and IV of Interna- 
tional Tables for X-ray Crystallography (1962, 1974). Experimental verification of 
these values is rather fragmentary, but the agreement is generally good, where ex- 
perimental data exist. 

tan B (2.30) 

Fig. 2.13. Variation of Af’ and Af” of cobalt 

with wavelength near K absorption edge 

7 Classical theory predicts a finite value of Af” when A > Ax [see Eq. (2.27)]. 
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14 Direct Consequences of Anomalous Scattering 

Let us consider a simple structure consisting of atom A and atom B. These atoms lie 
in periodically alternating planes. If the two planes A and B are arranged with equal 
spacing as shown in Fig. 2.14 (a), we cannot distinguish the upward and downward 
directions. However, if they are arranged with non-equal spacing between adjacent 
layers [Fig. 2.14 (b)], we can distinguish the two directions by the sequence of A and 
B and the distance between them: 

distance from A to B distance from B to A 

upward long short 

downward short ‘ long 

A A 
B 

B 

2 eA 
A (a) te Be) 

Fig. 2.14. Polar and non-polar direction in the structure (a) non-polar and (b) polar 

Such a structure is called polar as against the non-polar structure shown in Fig. 2.14 
(a). 

The polar and non-polar directions coexist in a polar structure. Figure 2.15 
shows the atomic arrangement in crystals of zincblende (sphalerite), a modification 
of zinc sulphide. The zinc atom is surrounded by four sulphur atoms at the corners 
of a tetrahedron, the sulphur being similarly surrounded by four metal atoms. The 
arrangement of the atomic planes parallel to (100) and (111) are shown in Pig. 25 
(b) and (c). One can easily see that the former arrangement is non-polar, while the 
latter is polar, the Zn and S planes occuring alternately in pairs. The polar nature of 
the atomic arrangement is reflected in its crystal habit. Figure 2.16 illustrates an 

Zn 1/4 

(b) (c) 

Fig. 2.15. The structure of zincblende (ZnS), showing the atomic arrangement (a), atomic ar- 
rangement in the planes parallel to (100) (b) and to (111) (c) 
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Fig. 2.16. Zincblende 

ideally well-formed single crystal of zincblende. It is a modified tetrahedron, showing 

additional facets on each corner. A small facet and a large face on the opposite side 

of the crystal are exactly parallel, corresponding to an atomic plane and its rear: 
(111) and (111) or their equivalents. One face is usually shinier than the other; the 
former becomes positively charged when the crystal is compressed to the direction 

perpendicular to the face. The etch figures and velocity of crystal growth are dif- 

ferent, too. Let us consider the reflexions from (111) and (111). For the normal dif- 
fraction the intensities of 111 and 111 are equal and hence indistinguishable. The 

situation is illustrated in Fig. 2.17. The wave scattered by the plane of S atoms is 

delayed by 360° x (1/4) (=90°) with respect to that scattered by the plane of Zn 
atoms for the 111 reflexion, while for the counter reflexion 111, the phase change is 

270° (= —90°). The figure shows how the Zn and S contributions combine to give 
the total wave amplitude |F(111)| and |F(111)|, respectively. We have 

|F(111)| = |F11)| 

hence 

7(111) =7011) 

The intensities of reflexions from 111 and 111 are equal and indistinguishable. 

Generally |F/hk1)| = |F(hkl)| for normal scattering, as will be shown in the next 

section. This is called Friedel’s rule. 

Fig. 2.17. 111 and 111 reflections from zincblende 
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The K absorption edge wavelength of zinc lies at 1.281 A. Thus the incident X- 
rays are expected to be scattered anomalously by the zinc atom, if the wavelength is 
selected to be close to (but necessarily shorter than) 1.281 A. WLB, (A = 1.2792 A) or 
Au La, (A = 1.2738 A) is suitable for this purpose. This classical experiment on anom- 
alous scattering was carried out by Nishikawa and Matsukawa (1928) and by Coster, 
Knol and Prins (1930). The anomalous phase shift on scattering has the effect of 
advancing the wave.from Zn relative to the wave from S according to Eq. (2.28). It 
was calculated that for Au La, radiation, the relative phase on scattering by zinc 
would be advanced by 10.5°. This small phase shift results in a stronger reflexion of 
Au La, radiation from the (111) face than the (111) as illustrated in Fig. 2.18. In this 
way the polar direction can be distinguished by means of X-ray anomalous scattering. 
The shinier face was found to correspond to (111) in Fig. 2.16. Knowledge of crystal- 
lographic polarity is important, for instance, in the theory of piezoelectricity and also 
in solid-state electronics, since this polarity influertces the band bending near the sur- 
face and thus such properties as photoemission depend upon the polarity (James, 
Antypas, Edgecombe, Moon and Bell, 1971). Brongersma and Mul (1973) verified the 
above assignment of the polar direction by a different method. They studied the oppo- 
site faces of ZnS by measuring the energy of noble gas ions scattered from the surface. 
Noble gas ions, like Ne* , which are back-scattered from a surface lose an amount of en- 
ergy characteristic for the mass of the surface atom with which they collide. The two sur- 
faces of ZnS were analysed by specular reflection of Ne* ions with an incident energy of 
1,000 eV in ultra high vacuum. Energy of the scattered Ne* ions was determined by mass 
spectrometry. The result showed that the (111) face is practically covered by sulphur 
atoms, while no sulphur was detected on the opposite (111) face, in agreement with 
the assignment based on anomalous scattering. 

We can extend this result to more complicated structures, comprising many 
atoms. In addition to A and B, there are more atoms, C, D, E, etc. As mentioned in 
section 5, the total wave amplitude from hkl is a sum of the waves scattered from 
each atomic plane with appropriate phase shift depending on the relative distance 
from the reference atomic plane. We still find that the total amplitude of the wave 
diffracted from hkl is the same as that diffracted from Akl for normal diffraction 

Zn 

Zn+S 

Z2n+S 

—_—- Fig. 2.18. 111 and 111 reflections from ZnS 
when X-rays are scattered anomalously from the 
zinc atom. Anomalous phase shift is exaggerated 
in the figure and is shown by an arrow 
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o 

cso =n0 

Fig. 2.19. Equivalence of Fp (hkl) and Fy, (hkl) 

(f;: teal) and the phase angles are equal in magnitude and opposite in sign, no matter 

whether the structure is polar or not. Now let us consider a dissymmetric structure 

D and its enantiomeric structure L. In Fig. 2.19 the two structures are represented 

by the enantiomeric octahedral complex [Mayb2c,]. It can easily be seen that the re- 

flexion hkl from L is equivalent to hkl reflexion from D: the total amplitudes as well 
as the phase shifts are the same®) 

Accordingly we have: 

Fp (hkl) = Fy (hkl) Cat) 

In the same way we find 

F, (hkl) = Fp (hkl) (2.32) 

By Friedel’s rule 

[Fp (hkl)? = |Fp (hk)? = [Fy (akd)? = Fak)? 

This result indicates that what we obtain from the D and L crystals by normal X-ray dif- 

fraction is two sets of intensity data that are equal to each other, thus we cannot 

determine the absolute configuration. When anomalous scattering occurs in one of 

the atoms in the crystal, Friedel’s rule is violated and if, for instance, 

8 The hkl and hkl can be assigned unambiguously for D and L crystals, as far as the same set of 

co-ordinate systems, say, a right-handed one, is used throughout. 
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[Fp (Akl)? > [Fp (hkl) |?, 

then 

IF (Akl)? < Fy (akl)|? 

by means of Eqs. (2.31) and (2.32). In other words, the inequality relations observed 

for one structure are the reverse of those found for its enantiomorph. This is the 
basis of the determination of absolute configuration by the anomalous scattering 

technique. The intensities can be calculated by assuming a particular enantiomeric 
configuration for the complex and the result can be compared with the observation. 
If the intensity relations are the reverse of those observed, then the inverted con- 
figuration represents the correct absolute configuration. 

15 Complete Expressions for Friedel’s Rule and its Breakdown 
by Anomalous Scattering 

Let us formulate what we have discussed in the previous section. For normal diffrac- 
tion we have 

F(hkl) = & fj exp [2ni(hx; + ky; + Iz;)] 
j 

where f;’s are all real quantities. For hk/ reflexion 

F(hkl) = Xf; exp [— 2ni(hx; + ky; + z))] 
J 

Therefore |F(hk/)| = |F(hk1)| or I(hkl) = I(hkl). This is Friedel’s rule. 
Consider a unit cell containing one dissymmetric molecule: an octahedral com- 

plex, [Mab c2] (Fig. 2.20). The structure factors for the hk/ and Ak/ reflexions can 
be written 

Fp (hkl) = & f; exp [2ni(hx; + ky; + lz;)] = A(hkl) + i B(hkl) (2.33) 
J 

Fig. 2.20. Dissymmetric molecule in a unit cell (a) and the structure in (a) inverted (b) 
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Fp (hkl) = & fj exp [— 2ni(hx; + ky; + Iz;)] = A(hkl) — i B(nkd) (2.34) 
J 

where 

A(hkl) = X fj cos 2m(hx; + ky; + 1z;) 
j 

and 

B(hkl) = & fj sin 2n(hx; + ky; + 1z;) 
j 

If the structure shown in Fig. 2.20 (a) is inverted, the enantiomorphous structure 

illustrated in Fig. 2.20 (b) is obtained. The atomic co-ordinates in this inverted struc- 

ture are (—x;, —y;, —2;), where x;, y; and z; are those of the structure shown in Fig. 

2.20 (a). The structure factor for the inverted structure can be written: 

Fy (Akl) = & fj exp [— 2ni(hx; + ky; + iz;)] 
j 

F, (hkl) = 2d fj exp [27i(hx; + ky; + Iz;)] 
j 

Accordingly we have 

Fp (hkl) = Fy (hkl) 

and 

Fp (hkl) = Fy (rk), 

the same result as that derived by inspection of Fig. 2.19. This is called Bijvoet’s rela- 
tion (Bijvoet, Peerdeman and van Bommel, 1951). If the wavelength of the incident 

X-rays is appropriately chosen in such a way that it is scattered anomalously by one 

kind of atom, say M, in the unit cell, the scattering factor for this atom is represented 

by a complex quantity (Eq. 2.28): 

fu =fom + Af + Afi (2.35) 

For simplicity, we assume that there is only one M atom in the unit cell. 

By inserting Eq. (2.35) into (2.33), 

Fp (hkl) = & fj exp [2ni(hx; + ky; + 1z;)] 
j 

= (fom + Af + iAfm) exp [27i(hxy + ky + 2) 

+ Df; exp [2mi(hx; + ky; + Iz;)] (2.36) 
J 
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where 2’ means that the summations are taken over all the atoms except M in the 
unit cell. 

Eq. (2.36) can be written 

Fp (hkl) = A(hkl) + i B(hkd) 

A(hkl) = (fom + Af) cos [2m (oy + ky + L)] — Afr sin [20(hxy + ky + 2) 

+ Lif; cos [2n(hx; + ky; + Iz;)] 
j 

BChkl) = (fom + Aft) sin [2m (hoy + ky + l2y)] + Af cos [20(hx yy + ky + lzy)] 

+ Lif; sin [2n(hx; + ky; + 1z;)] 
J 

Accordingly we have 

[Fp (hk1)| # | Fp (hkD)| (2.37) 

The situation is illustrated on an Argand diagram in Fig. 2.21. Note that the vector 
Af is perpendicular to fo + Af , Since the argument of the former is greater by 
90° than the latter (advance in phase). 

First application of anomalous scattering for the determination of the absolute 
stereochemical configuration of an organic molecule was made by Bijvoet, Peerde- 
man and van Bommel in 1951. They studied sodium rubidium d-tartrate tetra- 
hydrate, NaRbC,H40¢. 4H,0 using zirconium Ka radiation. The K absorption edge 
wavelength of rubidium atom was 0.814 A and the wavelength of Zr Ka radiation 
was 0.784 A. Accordingly the radiation was scattered anomalously from the rubid- 
ium atom and the difference in intensities of a reflexion and its counter reflexion was 
clearly discernible on the diffraction photographs. The absolute configuration of d- 

IN iy 

fom + Ary, 

fom + A fi, 

Afiy Fig. 2,21. The breakdown of Friedel’s rule by 
an anomalous scatterer. Frest represents the 
contribution from the remaining atoms 
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Table 2.2. Observed and calculated intensities 

Plane Calculated Observed 

hkl I(hkl) I(hkl) (4+)5g9-isomer (—)5g9-isomer 

142 1 133 << > 

212 3,700 3,450 eS <a 

S12 323 440 < = 

412 18 : 31 < > 

612 42 39 > a 

122 Til 150 < > 

222! 38 Si, <4 > 

322 142 87 = 3 

tartaric acid was determined as R,R. The result agreed, as it happened, with Emil 

Fischer‘s convention which had been arbitrarily chosen. 

Three years later, Saito, Nakatsu, Shiro and Kuroya determined the absolute 

configuration of tris(ethylenediamine)cobalt(III) ion by the same technique and they 
first demonstrated the reversal of inequality for a pair of enantiomorphous structures 
by employing crystals of (+)5g9- and (—)s5g9-[Co(en)3]2 Cle - NaCl - 6H,O and such 

inequality relations were unequivocally shown to be due to the effect of anomalous 

scattering and not to some other effect such as difference in surface roughness or ab- 

sorption. The K absorption edge of the cobalt atom lies at 1.608 A. In the experi- 
ment the crystal setting was adjusted by using Fe Ka radiation (A = 1.937 A; hence 

normal scattering) in such a way that the reflexions from hkl and hkl (the latter 

being equivalent to hkl by the symmetry requirement of the space group) showed 

equal intensity. Then Cu Ka radiation (A = 1.542 A), which was scattered anomalously 

by the cobalt atoms was used to take diffraction photographs: Af’ —2.5, Af” 3.6 so 
that the phase advance (8) is 8.3°. Table 2.2 shows the calculated intensities and ob- 

served relations for the two enantiomeric crystals. As seen from the table the inequal- 

ity relations are reversed for (+)s5g9- and (—)sgq-crystals. The calculated intensities 

based on the set of co-ordinates representing A-[Co(en)3]°* agree with the observed 

intensity relations for (+)5g9-isomer. Thus the dextrorotatory isomer was found to 

have A absolute configuration. 

Figure 2.22 (a) and (b) show the effect of anomalous scattering. These are 

Weissenberg photographs of (—)s5g9-[Co(S,S-chxn)3 ]Cl3- 5SH,O0. Figure 2.22 (a) was 
taken with Fe Ka radiation. Accordingly no effect of anomalous scattering is ob- 

served. Intensity distributions of a number of diffraction spots on a characteristic U 

shaped row-line are symmetric with respect to its centre. A pair of reflexions sym- 

metrically located on a row-line corresponds to a reflexion hkl and its counter re- 

flexion hkl (strictly speaking its equivalent). Therefore, we recognize that the Frie- 

del’s rule is obeyed. On the other hand, (b) was taken by Cu Ka radiation. X-rays are 

then scattered anomalously by the cobalt atom. Copious fluorescent radiation darkens 

the background of the film. The corresponding reflexions on a row-line are no longer 

equal in intensity and Friedel’s rule is violated. If a crystal of the A-isomer is used under 
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(a) ‘ (b) 

Fig. 2.22. Weissenberg photographs showing the effect of anomalous scattering. (—)5gqA- 
[Co(S,S-chxn)3]Cl3 - 5H 0, a-axis rotation, 0-th layer. (a) Taken with Fe Ka radiation 
(A = 1,937 A). (b) Taken with Cu Ka radiation (A = 1,542 A) (Saito, 1974) 

the same experimental conditions, the observed intensity will be inverted. Recent accu- 
rate measurement of the intensities of Bijvoet pairs show quantitative agreement with 
the calculated values. Table 2.3 compares the observed and calculated intensities of 
Bijvoet pairs for which the observed |F(hk/)| and |F(hkD)| of (+)5g9-[Co(linpen)] 
[Co(CN)¢] - 3H20 differed by more than 15%. The agreement in the table indicates 
that the complex ion (+)5g9[Co(linpen)]** has the absolute configuration AAAA 
(Sato and Saito, 1975). 

Table 2.3. Observed and calculated structure amplitudes of Bijvoet pairs: (+)5g9[Co(linpen) ] 
[Co(CN) 6] - 3H20 

ee 

hkl |\Fo| \Fe| hkl |\Fo| |\Fe| 

es ee 
610 33.2 31.8 421 43.7 40.5 
610 27.0 26.0 421 36.7 33.3 
630 34.0 32.2 621 41.6 39.6 
630 27 24.6 621 33.6 32.3 
411 Ligt 14.0 821 16.7 18.7 
411 35.0 35.8 821 28.0 28.1 
811 32.3 31.3 031 15.0 7.6 
811 22.3 24.2 031 21.8 24.2 a a a Sie aes ote irr iere: 
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Okaya, Saito and Pepinsky (1955) showed that a synthesis analogous to Patter- 
son function: 

P(UVW) = 1/V ZZ |F(hkD)|? sin [2m(hU + kV + IW)] (2.38) 

gives, when summed up for structure amplitudes of dissymmetric crystals measured 
under anomalous scattering conditions, the distribution of interatomic vectors be- 
tween anomalous scatterers and normal scatterers, including the absolute sence of the 
vectors; positive peaks represent vectors from anomalous scatterers to normal scat- 
terers, negative peaks represent vectors from normal to anomalous scatterers. This 
synthesis can be used to determine the absolute configuration of the molecule. 
Iwasaki (1974) showed that certain dissymmetric structures containing two or more 
kinds of anomalous scatterers cannot violate Friedel’s rule and their absolute config- 
uration can never be established by the usual anomalous scattering technique. No 
structure of this type, however, seems to have been recorded so far, though one 
might be found in the future. 

16 The Use of Internal Reference Centre 

A known absolute configuration in one asymmetric centre can be utilized to deduce 
that of other centres in the structure. In this case the whole structure is determined 
in such a way that the atomic group of known absolute configuration gives the cor- 
rect spacial arrangement. The method was first suggested by Mathieson (1956) and is 
now widely used, since the number of moieties of known absolute configuration has 
increased considerably. For instance, the absolute configuration of (—)sg9[Co(NO>)> 
(ox)(NH3)2]~ was determined with reference to the known absolute configuration of 
A-(—)sgq[Co(NO>)2(en)2]" by solving the crystal structure of (—)sg9-[Co(NO>)> 
(en) (—)sg9[Co(NO2)2(0x)(NH3)2] (Shintani, Sato and Saito, 1976). In some com- 
plexes the moiety of known absolute configuration is an intrinsic part of the com- 
plex for which the absolute configuration is to be determined. Such was the case 

with the (+)5g9-[Co(R -pn)3]°** ion (Kuroda and Saito 1974). The absolute config- 
uration was determined to be A-(0b3)-fac-isomer with reference to R-pn by the struc- 
ture determination of (+)5g9[Co(R-pn)3][Co(CN).¢] - 2H,0 (see p. 60). 

17 Neutron Anomalous Scattering 

Some of the nucleides like 113Cd, !4°Sm, IT Gd SEY. etc., scatter neutrons 

anomalously in the thermal energy region, where the neutron wavelength is compa- 

rable to that of X-rays used for structure analysis. Thus the absolute configuration 

can be determined in the same way as the X-ray anomalous scattering technique. The 
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phenomenon of anomalous scattering, i.e. resonance scattering is so marked in the 
neutron case in comparison with X-rays that the dispersion terms are generally one 
order of magnitude greater than the normal scattering amplitudes. Furthermore, the 
behaviour of the real and imaginary components of the scattering amplitudes with 
the wavelength is quite different from that in X-rays. The physical process leading to 
resonance behaviour is through the formation of a compound nucleus: 

eee n+113Cd coherent 

y+14!4Cd_ incoherent 

nt 113¢q a 114¢q 

Both processes are possible and the first gives coherent neutrons and the second in- 
coherent. For the first process the scattering length for neutrons is given by 

bo =b  +ib: : (2.39) 

The absolute configuration of aqua(S-glutamato)cadmium(II) hydrate was deter- 
mined by neutron diffraction (Flook, Freeman and Scudder, 1977). The nuclide 
113Cq which is present in naturally occuring Cd to the extent of 12.3%, was used 
as an anomalous scatterer for neutron wavelength of about 0.7 A. In this case, the 
neutron scattering length is 

(0.38 +70.12) x 107!? cm 

(Peterson and Smith, 1962). 



Appendix II-1 

In Fig. 2.23 OX, OY and OZ are crystal axes. Consider a set of planes hk/; one passes 
through the origin, O, the next intercepts with the axes at A, B and C. Then 

OA=a/h, OB=b/k and OC§=ell. 

Drop a normal from O to the plane ABC. The length ON (= d(hk/)) is the interplanar 
spacing. Let A’B'C’ be a plane parallel to ABC and through a point with fractional 
co-ordinates (x2, v2, Z2). The length ON’ is d'(hk/) in Fig. 2.5. The plane A’B’C’ 
makes intercepts of (a/h) (d'(hkl)/d(hkl)), (b/k) (d'(hkl)/d(hkl)) and (c/D) (d'(hkl)/ 
d(hkl)) on the axes. 

The equation of this plane can be written as: 

eed A eSB MCE ELS 
ad'(hkl) bd(hki) cd'(hkl) 
h d(hkl) k d(hkl) 1 d(hkl 

The point (x2, ¥2, Z2) is on this plane. Accordingly we have 

axy i by, f CZ a 

a d (hkl) b d'(hkl) cd' (hkl) 

h d(hkl) k d(hkl) 1 d(hkl) hy thy PF les = d'(hkl)/d(hkl) 

Z 

Ca 

Fig. 2.23. See text 



Chapter III Conformational Analysis 

1 Introduction 

Conformational analysis is usually concerned with the analysis of the physical and 
chemical properties of a molecule in terms of its conformational structure. It enables 
us to understand more deeply the properties of metal chelate complexes and the 
interactions of metal ions with ligands. We can predict the structure of unknown 
chelate complexes, estimate the strain energies of a series of conformers and predict 
the formation ratios with reasonable certainty and finally afford an explanation for 
the stereoselectivity from a detailed knowledge of the conformational features. 

The concept of conformational analysis is well established in the field of organic 
chemistry, but its application to co-ordination compounds lags somewhat behind. 
Mathieu first attempted to explain why one diastereoisomer of cis-[CoX(pn).] was 
formed preferentially (1944). He tried to calculate the energy difference between 
the diastereoisomers by considering London dispersion forces. Fifteen years later, 
Corey and Bailar published their classical paper (195 9). These authors discussed 
the stabilities of trans-[CoCl,(pn)2]* and [Co(en)3]>* isomers and showed the 
equatorial preference of substituted methyl groups in Co(pn) rings on the basis of 
calculations of non-bonded H...H interactions. In the 1960’s a number of more 
advanced papers on conformational analysis of co-ordination compounds appeared. 
They are summarised in excellent review articles (Hawkins 1971 ; Buckingham and 
Sargeson 1971; Niketic and Rasmussen, 1977). 

It is not intended in this chapter to give a comprehensive review of conforma- 
tional analysis but to describe an outline of the method, hoping that it might assist 
the reader to comprehend the discussions on each particular complex in Chapter IV. 

In this approach a molecule is considered as a system of point atoms held to- 
gether in a particular spacial arrangement. When interatomic forces are balanced the 
molecular conformation is said to be in an equilibrium. The potential function of the 
system is written down in terms of various parameters defining the molecular geom- 
etry. The function is then minimized to obtain equilibrium conformation. The poten- 
tial energy functions now used are largely empirical or semi-empirical containing 
several parameters which are adjusted to give the best fit to the observable molecular 
properties. In fact, the present state of theoretical knowledge is such that empirical 
functions often give a more realistic picture than the theoretically derived functions, 
which are usually laborious to obtain and often approximate in nature, Other ap- 
proaches to the calculation of molecular structures and poperties include semi- 
empirical SCF MO methods at various levels of sophistication and strictly ab initio 
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SCF MO methods. It should not be understood that the use of empirical and semi- 
empirical energy functions in strain energy calculations is “‘classical’’ in contrast to 
these latter quantum mechanical calculations. The basic difference may be that the 
calculation based on quantum mechanics is a deductive method, seeking to predict 
observable phenomena from the first principle (the Schrodinger equation), while the 
strain-energy minimization is an inductive method, searching a common analytical 
representation to a large assembly of observable phenomena. In fact, there is nothing 
classical in the energy-functions, but they can be considered as an empirical represen- 
tation of the Born-Oppenheimer approximation, according to which the ground state 
of a molecule is a continuous function of the atomic co-ordinates. 

At an early stage of conformational energy calculations, the analysis was car- 
ried no further than the difference in strain energies between conformers of a single 

species with a fixed atomic arrangement. The use of digital computers made it pos- 
sible to work out conformational energy surfaces of molecules or to find conforma- 

tion of minimum potential energy. The more fundamental approach may be to try to 

obtain an analytical expression for potential functions that is applicable to a large 

group of molecules. This is known as the consistent force field (CCF) and was de- 

veloped by Lifson and his co-workers (Lifson and Warshal, 1968; Lifson, 1972), to 

calculate helical structures of biopolymers and to correlate the physical properties of 

these systems with their conformation. For co-ordination compounds, Woldbye and 

his collaborators developed CCF calculations for a series of tris-bidentate complexes 
(Niketic and Woldbye, 1973a, 1973b, 1974; Niketi¢, Rasmussen, Woldbye and 
Lifson, 1976; Niketic and Rasmussen, 1977). 

2 Conformational Energy of a Complex 

The total conformational energy U of a complex can be expressed as a sum of five 
terms: 

U=U,+U¢ + Ug + Unp tales (3.1) 

where U, is the potential energy for bond length distortion, Ug, the potential energy 

for bond angle distortion, Ug, the torsional potential energy, Upp , non-bonded po- 

tential energy and finally Ua, electrostatic (Coulombic) interactions. In the literature 

this is described in various ways: total molecular potential energy, steric energy, 

strain energy etc. The total conformational energy thus defined is a measure of mole- 

cular strain within an isolated complex in a hypothetical state without any vibration. 

The absolute value of the total conformational energy has no intrinsic physical signif- 

icance, since it depends upon the choice of the potential functions and energy param- 

eters. The difference in the conformational energy for a series of conformers of the 

same kind of molecules is related to the molecular properties, which can be measured 

experimentally. Furthermore, the differences in strain energies provide a relative 

energy scale for a series of known conformers and also enable us to predict the stabil- 

ity of unknown conformers. 
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Table 3.1. Parameters for bond stretching potential functions 

Bond Vig (kJ mol~! A~?) ry? (A) Refs. 

Co—N 1,205 2.00 a 

N-C 3,616 1.47 b 
C-C 3,014 1.54 b 
C-H 3,014 1.093 b 
N-H 3,399 1.011 a 

a Nakagawa and Shimanouchi, 1966. 

b Wiberg, 1965. 

A. Bond Stretching Potential 

In most of the conformational calculations the harmonic potential function is used: 

U(r) = 5 Vilty — 147 (3.2) 

where ij is the interatomic distance between thei-th and thej-th atom, rj is the equi- 
librium distance between them and V;; is the force constant. Studies on infrared 
spectra and normal co-ordinate analyses of metal chelate compounds suggested that 
chelation does not affect the value of the bond stretching force constants of a li- 
gand. Values of V;;’s obtained from infrared and Raman spectra of the related com- 
pounds are listed in Table 3.1. 

Table 3.2. Parameters for bond angle deformation potential 

Angle Vo (kJ mol—! deg?) 0 ijk (deg) Refs. 
ee a eee 

N—Co-N 198.0 90.0 a 
Co—N-H 58.2 109.5 a 
Co—N-—C 116.4 109.5 a 
N-C2C 324.4 109.5 b,c 
N—C—H 190.9 109.5 b,c 
H—N—-H 160.3 109.5 d 
C—N-—-H 190.9 109.5 d 
H-—C-—H 160.3 109.5 b,c 
H-C-c 190.9 109.5 bic 
C-—C-C 324.4 109.5 b,c 
ed ee ep en 2 ae SS OO Ree eiLs, Oe 

Snow, 1970. 

Wiberg, 1965. 

Harris, 1966. 

Niketi¢, 1974. aad et 
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B. Potential Energy for Bond Angle Distortion 

A number of analytical expressions have been proposed to account for the energies 
of the angle deformation modes in the infrared spectrum of a molecule. It is assumed 

that the small deformation in bond angles is subject to harmonic restoring forces 
and the simplest form of these expressions is: 

Vo(Oyx) = ; Vig (8 ye — 917k)”, (3.3) 

where 6;;, is a bond angle formed by three consecutive atoms i,j and k and Dine is 

the unstrained angle. 
The relevant force constants are listed in Table 3.2 together with the unstrained 

values. 

C. Torsional Potential 

Various spectroscopic, diffraction and thermodynamic measurements indicate that 
rotation around single bonds in polyatomic molecules is hindered by a potential 

energy barrier (Orville-Thomas, 1974). In 1937, Kemp and Pitzer assumed a tor- 

sional function 

Ug = 5 Vg(1 + cos 39) (3.4), 

for the three-fold barrier in ethane and ¢ is the dihedral angle H-C—C—H. V4 was 

calculated to be 13.2 kJ mol! on the basis of entropy and heat capacity data 
(Kemp and Pitzer, 1937). Torsional barriers determined from microwave spectra 
and thermodynamic data for a number of molecules containing C—C and C—N bonds 

with a three-fold or pseudo three-fold (as in CH3NH)) distribution of substituents 
revealed that the size of barriers around C—C bonds is fairly insensitive to the sub- 

stituents and the height of the barrier is of the order of 13 ~17 kJ mol~!, 
The torsional energy around a bond between an octahedral six-co-ordinate 

metal and a ligand like ammonia or amine (three-fold or pseudo three-fold symmetry) 

is given by a sum of four such terms like Eq. (3.5) (Kim, 1960): 

4 

Uy = & 4 V;[1 + cos 3{6 + (i-1) x 90°}] (3.5) 
i=1 

This term would approach zero if Vi = Vz = ... = V4. Moreover, Kim showed that 
the rotation of NH3 groups in [Co(NH3),]** is free. Accordingly the torsional 

energy around the metal ligand bond in an octahedral complex is usually neglected 

(Gollogly and Hawkins, 1969). 
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D. Non-Bonded Interactions 

It is generally accepted that interatomic forces exist other than those causing chem- 
ical bond formation. Molecules assemble together to form liquids and solids, for ex- 
ample, by some kind of attractive forces, however, when they come close together 
they repel each other by strong repulsive forces and they are held apart. Similar inter- 
actions are considered to exist between nonbonded atoms in a molecule. These inter- 
actions are often very important in determining the molecular configurations and 
conformations. Though theoretically not justifiable, intermolecular potential func- 
tions are widely used in order to treat the intramolecular non-bonded interactions. 
Figure 3.1 shows an example of general behaviour of interatomic potential with 
interatomic distance. 

The attractive forces at larger separations arise from the coupling of electric 
dipoles, one being a dipole fluctuation in one molecule and the other the dipole in- 
duced by it in the other. London developed the quantum mechanical theory of these 
interactions (London, 1930, 1937) and the forces are known as London dispersion 
forces. He showed that the attractive potential depends on the polarisabilities and 
ionisation potentials of each attracting atom and its dependence on distance is as r~° 
(Pitzer, 1959). 

When the two atoms come close together and the electron clouds of the two 
atoms begin to overlap, the repulsive force becomes predominant. The expression for 
the repulsive potential is given by an exponential form or inverse power of r. The ex- 
ponential form of the repulsive potential is theoretically more justifiable. Since the 
form of the wave function is exponential, it is logical that the interpenetration (re- 
pulsive) energy should vary exponentially (Heitler and London, 1927). 

Various types of expression have been proposed for non-bonded potential func- 
tions. The most general form between a pair of atoms i and / is: 

ay exp (—byryz) cy 
U(Fij nv Se —2 (3.6) 

Vij J Vij 

On 

Fig. 3.1. Typical potential energy curve for 
non-bonded interactions 
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where the first term represents the repulsive potential and the second the attractive 
potential. When 5,; = 0 and dj = 12, the function becomes 

Urine = a5 — (3.7) 
Vj ij 

This is called the Lennard-Jones potential which was suggested on purely empirical 
grounds (Lennard-Jones, 1929). And if d;; = 0, the function reduces to the Bucking- 
ham type, i.e., 

U(rij nv = ay exp (— byri) — cy/riy® (3.8) 

A number of other interatomic potential functions have been proposed (see for ex- 
ample, Hirschfelder, Curtis and Bird, 1954; Torrens, 1972). The constants in these 

equations are determined by comparing various calculated potential energy curves 

with experimental ones for gaseous molecules like methane. 

For the non-bonded H...H distance of most interest to the study of chelate 

rings, ranging from 2.0 A to 3.0 A, Mason and Kreevoy’s values of aj, bj; and cj in 
Eq. (3.8) give rise to relatively large energies, namely the potential function is “hard” 

(1955). On the other hand, Hill’s parameters make the equation “‘soft” and it yields 
very small interaction energies (1948). Accordingly the coefficients are selected in 

such a way that the resulting potential curve lies somewhere between the “hard” 

and “soft” curves. As an example, Table 3.3 presents two sets of coefficients, I, and 

II, which were used for conformational analysis of tris-diamine complexes with six- 

membered chelate rings (Niketi¢ and Woldbye, 1973). The first set given by Liquori 

and coworkers is derived from the experimental data of DeCoen and co-workers 

(Liquori, Damiani and Elefante, 1968; DeCoen, Elefante, Liquori and Damiani, 

1967). The second set given by Ramachandran and co-workers gives rather “‘soft” 

H...H functions (Ramachandran, Venkatachalam and Krimm, 1966). However, the 

functions for other interactions are harder than the first set. The first set is widely 

used for a number of co-ordination compounds. 

Table 3.3. Parameters for non-bonded potential functions (in kJ/atom pair) 

I II 

aij X nO bi (A=) Ci (A) aij x rot bi Ci 

H...H 2.76 4.08 2059 3.47 4.6 195.9 
HC 13.14 4.20 506.9 32.61 4.6 694.0 

H...N 11.76 4.32 415.2 2 2eod) 4.6 652.9 
Exe 99.20 4.32 1,246.4 386.7 4.6 DSS) 
Cun 88.77 4.44 Ie O2IES DSoee 4.6 2,390.8 

N...N 78.02 4.55 837.1 169.1 4.6 2,289.0 



50 Conformational Analysis 

E. Electrostatic Interactions 

If point charges, permanent dipoles or higher multipoles exist in a molecule, their 

Coulombic interaction must be taken into account. A straightforward model uses a 

simple Coulombic potential function between two partial charges, q; and q; separa- 
ted by a distance rj;: 

Veltri) = — 2 qigi/D rij (3.9); 

where D is the effective dielectric constant. 

The charges can be estimated from the observed accurate electron density in 
crystals (cf. Chapter V). The charges are mostly assigned so that the observed 
dipole moments or the values of bond moments can be reasonably reproduced. 

¥ 

3 Computational Methods for Conformational Analysis 

The total conformational energy of a molecule can be written down as a function 
of the m parameters x; (i= 1, 2, ... n) that define the molecular geometry. 

Lom Vieux eX STEN PS). eh) (3.10) 

This general equation forms an n dimensional conformational energy surface. The 
minima correspond to various stable conformations, whereas the saddle points 
(maxima) between them represent the activated complexes for the change from one 
stable conformation to the other. 

Most minimization methods involve selection of a set of trial structures and 
minimizing their energy by iterative procedures. The computer program for solving 
the problem starts from a trial structure and moves down the energy surface along 
the steepest descent path (Wiberg, 1965; Bixon and Lifson, 1967). First the gradi- 
ents of the potential surface at the point corresponding to an assumed trial structure 
are evaluated for searching the nearest energy minima: 

(8V/dx,, 8V/ax,... 9V/dx;,... V/axp). 

They define the search directions: the increment 6x; in the search direction 2 V/dx; is 
obtained by one dimensional minimization of V(x; — aV/dx; - 5x;), ie. 

vA aV 
—— 1 mys (0) 3. (x ax; x] (3.11) 

in other words, 5x; is varied until the energy V stops decreasing. Using 5x; values a 
new set of parameters x;’s are obtained which may be used for recalculation of the 
second set of 6x;’s. The procedure may be repeated until 5x; becomes zero. The basic 
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ideas and the advantages of the method of the steepest descent have been discussed 
(Gleicher and Schleyer, 1967; Schleyer, 1971; Allinger, Hirsch, Miller, Tyminski and 
VanCatledge, 1968; Allinger, Tribble, Miller and Werz, 1971; Williams, Stang and 

Schleyer, 1968). 

The convergence of this method of the steepest descent is rapid when x;’s are 
far from minimum, but too slow near the minimum. At this stage the modified New- 

ton method is used. A set of equations for 5x; is obtained as follows: 

-V at the minimum energy point, (x4, x5, ...x,) is expanded around a point near 
it, (%1,X2,...X,) to the second order: 

VO aoe hn) = Vitis h 2p ea Xn), to oF 5x; sb pp a OXON) eto.) 
i OX; 2 i j Ox; 0x; ; 

The necessary condition that V(x}, x3, ...x,) is minimum requires: 

OV(x1,x2,--- Xn) 
Fe Dechy wb nk idava chi; : ax, i 2 n (3.13) 

Eqs. (3.12) (to the first order) and (3.13) lead to a set of linear equations: 

3? OWA XaeeX arian, 
Vida. 25,) xj = a i=1,2,...n (3.14) 

i j OX; Ox; 

5x;’s are obtained by a set of linear equations (3.14). The iterative procedure is re- 

peated as before. 
A starting set of molecular parameters can be obtained from the results of X-ray 

crystal structure analysis. If the positions of hydrogen atoms bonded to carbon and 

nitrogen atoms are not available from X-ray data, they are located by calculation 

assuming tetrahedral angles and appropriate bond distances. If the structure is un- 

known, the model may be constructed on the basis of known interatomic distances 

and bond angles. The iteration is terminated and the molecular geometry is calcu- 

lated from the final set of parameters when the parameter shifts became less than 

twice the observed standard deviations of bond distances or bond angles, say 0.01 A 

and 5°. The bond lengths and angles in the complexes can be reproduced to within 

several times the standard deviations of the values obtained by crystal structure anal- 

ysis. 

4 Geometrical Molecular Models 

The results of strain energy minimization emphasize that regular models (for in- 

stance, Dreiding), although useful for qualitative analysis, are at best crude for any 

quantitative evaluation of relative stabilities. In setting up models, the rod-and- 

cylinder method of linking sometimes cause an irregular distortion of a few bond 
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angles of a complicated multidentate structure, since the rods are more flexible 

than the cylinders. When the more flexible rods are used (for example rods made of 

plastic) for constructing multidentate complexes, the angles are found to be almost 
identical to those determined by means of X-rays. 

5 Conclusion 

As will be shown in the next Chapter for particular complexes, studies on various co- 
ordination compounds revealed that energy minimization calculations can predict 
the detailed geometries of the complexes. Where particular contacts are absent, the 

computed geometry of a co-ordination compound agrees with that observed in the 
crystal structure to within several standard deviations. Relative stabilities of various 
conformers can also be successfully predicted with reasonable certainty, unless other 
factors are operative. The calculation indicated that angular deformations are gener- 
ally important in deciding the relative stabilities of the conformers. The bond angles 
deform with comparatively small expenditure of energy for quite large angular 
changes. Likewise torsional distortions occur easily and both deformations alleviate 
close non-bonded interactions. A close balance is often observed between torsional 
and angular distortions against non-bonded terms. 



Chapter IV Structure and Isomerism 
of Optically Active Complexes 

Most of the optically active complexes for which experimental and theoretical study 
has been made involve chelate rings. Thus structure and isomerism of metal chelate 
complexes will be discussed in this chapter. One of the most striking properties of 
chelate compounds is their unusual stability due to chelate ring formation. Struc- 
tures of four-, five-, six- and seven-membered chelate rings have been reported, even 
eight- and larger membered chelate rings are known. Bonds in chelate rings may arise 
from two general types of groups: i) primary acid groups in which a metal ion re- 
places an acid hydrogen and ii) neutral groups which contain an atom with a lone 
pair suitable for bond-formation. When five-membered chelate rings are formed the 
resulting complex is most stable. 

1 Bidentates 

A, Four-Membered Chelate Rings 

The stereochemistry of metal chelate rings differs from that of carbon ring systems in 
that all of the atoms in the ring are not the same size and some of the bond angles 
normally vary from 109.5° (or 120°) as a result of the directed valences of the metal 
ion. These two factors may alleviate the strain involved in the four-membered ring 
systems. As an example the molecular geometry of the carbonatocobalt (III) ring 

Fig. 4.1. Bond lengths and angles of the carbonatocobalt (III) system (Toriumi and Saito, 

1975) 
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in (+)sg9cis-B-[Co(CO3)(3(S)8(S)-2', 2,2'-tet)]ClO4 is presented in Fig. 4.1 (Toriumi 
and Saito, 1975). The carbonato group is planar but makes an angle of 4.3° with the 
plane formed by Co, N(1) and N(3). The OCoO angle is compressed to 68.6(2)°, 
which is 90° in a strain free state. The dimensions of the co-ordinated carbonato 
group closely resemble those of other reported cobalt-carbonato systems (Kaas and 
Sgrensen, 1973; Geue and Snow, 1971; Barclay and Hoskins, 1962). 

Other examples of bidentate ligands capable of forming four-membered chelate 
rings are: nitrate, sulphate, sulphite and xanthate etc. 

B. Five-Membered Chelate Rings 

As early as 1933 Rosenblatt and Schleede suggested in their paper on platinum 
complexes that the five-membered chelate ring formed by ethylenediamine need not 
be planar. Six years later Kobayashi studied the circular dichroism of (+)5go[Co(en)3] 
Br3 and made the same suggestion (1939). This was indeed verified by a crystal struc- 
ture analysis of [Cu(en) ][Hg(NCS)4] (Scouloudi, 1950) and then of [CoCl,(en),] 
Cl - HCI - 2H20 by Nakahara, Saito and Kuroya (1952). 

Since the five-membered chelate rings formed by ethylenediamine are puckered, 
there exist two enantiomeric conformations 6 and X, as shown in Fig. 4.2. 

In the ¢rans-dihalogenobis(ethylenediamine)cobalt(III) ion, the following three 
combinations of two chelate rings are possible: (65), (AN) and (5A). (55) and (AA) are 
optical isomers and have the same relative strain energy. The relative strain energies 
of (65) and (5A), must however, be different. This energy difference has been calcu- 
lated by Corey and Bailar who found that the (56) configuration is more stable by 
about 4.2 kJ mole~! (1959). In this calculation only the interaction between non- 
bonded hydrogen atoms was considered for rigid structures. In crystals of trans- 
[CoX,(en)2]X - HX - 2H,0 (X = Cl, Br), the complex ion possesses a centre of sym- 
metry, thus being (5) form (Nakahara, Saito and Kuroya, 1952; Ooi, Komiyama, 
Saito and Kuroya, 1959). The (6A) form must be favoured by specific intermolecular 
forces in the crystalline state, such as hydrogen bonding. 

When the bidentate is propylenediamine, in which a methylene hydrogen atom is 
replaced by a methyl group, the stereochemistry is further complicated, since the 
ligand itself is optically active. From an X-ray examination of trans-[CoCl (pn)> | 
Cl - HCl - 2H30, obtained from rac-pn as a starting material, it was revealed that the 
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Fig. 4.2. Two possible conformations of a metal-ethylenediamine ring 
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Fig. 4.3. (~)sggfrans-[CoClo(R —pn)2]* (Saito and 
Iwasaki, 1962) 

general features of the crystal structure resemble those of the ethylenediamine ana- 

logue and the complex ion is again centro-symmetric and assumes the (6A) form, 

namely trans-[CoCl,(R—pn)(S—pn)]". But, if optically active propylenediamine is 

used, the resulting complex ion is no longer centrosymmetric. There are six possible 

stereoisomers of the trans-[CoX,(R—pn),]" ion. Firstly, there are two possible direc- 

tions of each C—CH; bond with respect to the chelate ring. The C-CH3 bond can lie 

approximately parallel to the ‘‘average” plane of the five-membered chelate ring or it 

can stand approximately perpendicular to the plane of the chelate ring. These forms 
are called “‘equatorial”’ and “axial” respectively. Secondly, there are two possible dis- 

positions of the methyl groups attached to the two chelate rings, namely trans and 

cis isomers. Thus six possible isomers may be represented as follows: 

cis(ax, ax), cis(ax, eq), cis(eq, eq), 

trans(ax, ax), trans(ax, eq), trans(eq, eq). 

The trans-[CoCl,(R—pn)2|* has been shown to have the trans(eq, eq) form (Fig. 4.3) 

(Saito and Iwasaki, 1962). In fact, the methyl group cannot have axial disposition 

owing to the repulsion between the bulky methyl group and the chlorine atom. The 

complex ion has an approximately two-fold axis along the Cl—-Co—Cl bond. The 

conformation of the chelate ring is \. The absolute configuration of the R(—)-propyl- 

enediamine molecule is represented by the formula: 

CH,NH, 
' 
' 

H—C—NH, 

CH 

This is in agreement with the result determined chemically with reference to R(—)- 

alanine (Reihlen, Weinbrenner and Hessling, 1932). It is to be noted here that when a 

molecule of R-propylenediamine is co-ordinated to a metal atom to form a chelate 
ring with its C-CH3 bond in the equatorial position, the conformation of the chelate 

ring necessarily becomes \. The equatorial preference of the methyl group is the 

same as in methylcyclohexane, however, the equatorial preference of the methyl 

9 All the figures in this Chapter correctly represent the absolute configuration. 
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group is much greater in the metal complex, since there are strong steric interactions 

in the complex with other ligands as mentioned above. In contrast to this there are 

only 1,3 interactions with the hydrogen atoms in the case of cyclohexane. Substitu- 

tion on the ligating nitrogen atoms produces similar results. In N-methylethylenedia- 

mine the difference between the axial and equatorial position is less pronounced 

than the substitution on methylene groups. The analogous complex ion, (—)s5g9- 

[CoCl,(N-meen),]* has a two-fold axis through the CI-Co—Cl bond and the con- 

formation of the two five-membered chelate rings is 5. Complexes of this type have 

stereochemical interest since the co-ordinated nitrogen centre is dissymmetric. The 

absolute configuration of the two nitrogen atoms is R. The two methyl groups are 

in equatorial positions (Robinson, Buckingham, Chandler, Marzilli and Sargeson, 

1969). The structures of the complex ions, trans-[PtX,(—chxn),]?~ (X = Cl, Br) 
and [Pt(—chxn), ]?* are known (Larsen and Toftlund, 1977). The geometry of the 

five-membered chelate rings is similar to that of ‘the Co-en ring, the conformation 

being A. The fused cyclohexane ring takes a chair conformation. 

When three bidentate ligands are co-ordinated octahedrally to a central metal 
atom, two optical isomers A and A can occur (XVIII and XIX in Chapter I). This 

type of isomerism has been proved for a number of compounds. The first investiga- 

tion by X-ray diffraction was that of tris(oxalato)chromate(III) ion (van Niekerk 
and Schoening, 1952). The absolute configuration.of the complex ion was deter- 

mined by Butler and Snow (1971). (+)sgo[Cr(ox)3]* has the absolute configura- 
tion A. 

Ethylenediamine 

Unlike the planar Cr-ox ring, the Co-en ring is puckered and dissymmetric. There 

are eight possible configurations for tris(ethylenediamine)cobalt(II) ions, viz. 

; | AG55) 
AQAA) 

A(S55A) x | A(SAA) a | A(AAA) 
A(ANS) A(\S5) A(555) 

They form two catoptric series and Fig. 4.4 shows the four diastereoisomers of the A 
series. The C—C axis is eclipsed in the combination, A(6) and staggered in the com- 
bination, A(A). In the former the C—C axis is nearly parallel to the pseudo-three-fold 
axis of the complex ion, while it is largely slanted obliquely in the latter. Accordingly 
they are called Jel and ob conformations respectively. Thus the four diastereoisomers 
can be designated as /el3-, lel,ob-, lelob2 - and ob3-isomers (Corey and Bailar, 1959). 

oe 
Fig. 4.4. Four diastereoisomers of A-[Co(en)3]3* 
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Fig. 4.5. A(+)5gq[Co(en) 3656 ]>* 

Figure 4.5 shows a perspective drawing of the (+)sg9 tris(ethylenediamine)cobalt- 
(IIT) complex ion. This is the first chelate complex whose absolute configuration was 
determined by means of X-rays (Saito, Nakatsu, Shiro and Kuroya, 1955). The ab- 
solute configuration is the A(555), /el3 form, in agreement with the result of calcula- 
tion that the /el3 form is more stable by about 7.5 kJ mol! than the ob3 form 
(Corey and Bailar, 1959). Several crystal structures containing this type of complex 
ion have been known: (+)sg9[Co(en)3]2Cl¢ - NaCl - 6H,0 (Saito, Nakatsu, Shiro and 
Kuroya, 1955, 1957); (+)s5g9[Co(en)3]Br3 - H2O (Nakatsu, 1962); (+)5g9[Co(en)3]- 
Cl3 - HO (Iwata, Nakatsu and Saito, 1969); (+)5go[Co(en)3](NO3)3 (Witiak, Clardy 
and Martin, 1972); [Co(en)3].(HPO,4)3 - 9H,O (Duesler and Raymond, 1971). The 
complex ion has D3 symmetry within the limits of experimental error. The shape 
and the size of the cobalt-ethylenediamine ring are as follows: 

Co—N = 1.978 + 0.004 A NCoN =85.4° 403° 
N-C =1.497+0.010A CoNC =1084 205° 
C-C =1.510+0.010A NCC = 105.8° +0.7° 

N=C=C=N =) 55.0°* * dihedral angle 

The C—C bond length in the chelate ring is significantly shorter than the normal C—C 

bond length of 1.544 A (diamond). A neutron diffraction study of [Co(—pn)3]Br3 
gave the C—C bond length of 1.518 A (Shintani, Sato and Saito, 1979). The octa- 
hedron formed by the six nitrogen atoms is trigonally twisted and slightly compres- 

sed along the three-fold axis: the upper triangle formed by the three nitrogen atoms 

is rotated counterclockwise by about 5° with respect to the lower triangle formed by 

the remaining three nitrogen atoms from the position expected for a regular octa- 

hedron. The Co—N bond makes an angle of 55.9° with respect to the three-fold axis 
of the complex ion. This angle is 54.75° for a regular octahedron. 

The carbon atoms of the chealte ring show thermal anisotropy best described as 

an oscillatory motion perpendicular to the C—C bond, (+)5g9[Co(en)3]Cl3 - H20, 

[Co(NCS)(SO3)(en),] (Baggio and Becka, 1969); [Cu(en).(H,0)]”* (Williams, 

Larsen and Cromer, 1972); cis-[Co(NO,) (en), ]* (Shintani, Sato and Saito, 1976). 

Hawkins calculated the conformational energy of a five-membered metal-ethylene- 

diamine ring (1971). The calculation was carried out by changing structural para- 

meters defining the conformation of the chelate ring. It was revealed that a whole 

range of conformations of minimum strain energy could be interrelated by holding 

the cobalt and nitrogen atoms steady while flapping the two carbon atoms on both 

sides of the plane formed by the cobalt and the two nitrogen atoms, maintaining a 
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relatively constant dihedral angle N-C—C—N..This equality in energy between 

various symmetric and asymmetric skew conformations was supported by the ob- 

served conformations of the chelate rings in various crystals. The observed feature of 

anisotropic vibrations of the carbon atoms mentioned above seems to support the 

existence of a puckering motion of the chelate ring in solution. Actually Mason and 

Norman (1964, 1965) measured the circular dichroism spectra of [Co(en)3]** ions in 

solution and suggested that different conformations of [Co(en)3]°* coexist in solu- 
tion (McCaffery, Mason and Norman, 1965a). Beattie examined the nmr spectra 
of [Co(en)3 ]3* and showed that the ligands undergo rapid inversion between 
5 and 4 conformations in solution (1971). Considering the statistical effect he sug- 

gested that the most abundant conformation in solution may be A(66A) and not 
A(665). 

Recently the complex ions, [Co(en)3]** with A(56A) and A(AAS) configurations 
were recognized in crystals of [Co(en)3][SnCl,]Cl, (Haupt, Huber and Preut, 1976). 
The /el,0b conformation of the complex ion favoured N—H ... Cl hydrogen-bond 
formation in crystals, resulting in the stabilization of the Jel,ob conformation. 

The complex ion, [Cr(en)3]** takes the Jel} form in crystals of racemic [Cr(en)3 ]- 
Cl3 - 3H2O (Whuler, Brouty and Herpin, 1975). All the other three possible con- 
formations of [Cr(en)3]>* were reported for the first time by Ibers and his co-work- 
ers in 1968. Previously all the crystal structures containing the [M(en)3]** complex ion 
were found to hold the Jel; conformers. In [Cr(en)3][Ni(CN)s] - 1.5H,O the com- 
plex cation takes /el,ob and lelob, conformations (Raymond, Corfield and Ibers, 
1968), whereas it takes the ob3 conformation in [Cr(en)3][Co(CN).¢] - 6H,0 (Ray- 
mond and Ibers, 1968). It turned out that hydrogen bonding specifically stabilises 
these conformations other than /e/3 since the crystal structure permits more hydro- 
gen bonds than the Jel; form. The /el3 form is the most compact and probably leads 
to better packing in the lattice. In crystals of rac-[Cr(en)3|(SCN)3 - 0.75H,O at 293 
K, the conformation of the chelate rings is disordered. For the complex ion, A- 
[Cr(en)3]**, one of the chelate rings exhibits disorder and the conformation can be 
represented as A[55(0.70 6 + 0.30 A)]. On lowering the temperature to 133 K, the 
conformation changes to A(665), whereby the unit cell volume contracts by 7.2%, 
reflecting the more compact Jel, conformers, but no change is observed in the pack- 
ing modes (Brouty, Spinat, Whuler and Herpin, 1977). Thus the lel; conformation 
of [Cr(en)3]°* appears to realize less frequently at ambient temperatures than that 
of the Co analogue. 

Recently Niketic and Rasmussen (1978) used a fast convergent energy mini- 
misation programme to calculate equilibrium conformations of the [Me( en)3] sys- 
tem. Table 4.1 lists various energy contributions. As can be seen from the Table, the 
ob3 isomer is less stable by 4.75 kJ mol! in agreement with Corey and Bailar’s 
‘classical calculation (1959). The average ob-lel energy difference is 1.6 + 0.9 kJ 
mol” !. Their detailed analysis of the [Me(en)3] system revealed the following 
features for the equilibrium conformation. Firstly, when the five-membered chelate 
ring carries no methyl group, the ring is highly puckered, the mean dihedral angle 
N—C—C-N being 55.3 + 1.5°. Secondly, a [CoN¢] octahedron is twisted around the 
three-fold axis, the upper triangle formed by three nitrogen atoms is rotated by 
about 5° from the position expected for a regular octahedron. The octahedron is 
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Table 4.1. Energy contributions for the [Me(en)3] system 

lel lelnob leloby ob3 

Bond stretching deformations 1.11 1.26 1.39 1.34 

Bond angle deformations 8.84 8.38 8.24 8.08 

Torsional strain 16.89 18.21 19.11 19.44 

Non-bonded interactions: —19.68 —18.01 —16.81 —16.96 
Total conformational energy 7.16 9.84 11.93 11.91 

Difference * 0.00 2.68 4.77 4.75 

All energies are given in kJ mol}. 

slightly compressed along the three-fold axis. These results agree satisfactorily with 

the observed geometries of [Co(en)3]** and [Cr(en)3]** in actual crystal structures 
as described earlier (see also p. 57). 

Propylenediamine 

When the bidentate is propylenediamine the number of isomers for the [Co- 
(+pn)3]°* system increases to 24, where equatorial preference of the C-CH; bond 

is assumed (Harnung, Kallesde, Sargeson and Schiffer, 1974). They constitute two 
catoptric series with absolute configuration A and A respectively. In each of the 

series there exist two types of geometric isomers, fac and mer, for Jel3 and ob3 con- 

formers and four with /el,0b and lelobz isomers. They are tabulated in Table 4.2. 

Jaeger and Blumendal supported absolute stereospecificity of optically active ligands, 

thus it was believed that (—)-propylenediamine favoured the formation of only the 
(—)sg9[Co(—pn)3]** isomer to the complete exclusion of the other. In 1959, Dwyer 

Table 4.2. Isomers of [Co(+pn)3]3* 

Configuration Optical isomers Geometrical isomers Number 

relating to methyl group of isomers 

lel3 A (+++) fac, mer 2 

A) fac, mer 2 

lelyob A (+45) fac, mer(3) 4 
A= =) fac, mer(3) 4 

leloby ANS) fac, mer(3) 4 
S(t) fac, mer(3) 4 

ob3 Ne) fac, mer yp, 

A (+++) fac, mer 2 

Total 24 
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Octs Fig. 4.6..(—)5g9[Co(—pn)3]>* (Iwasaki and Saito, 1966) 

and his collaborators first succeeded in separating the isomers of [Co(—pn)3]** by 

fractional crystallisation (Dwyer and Garvan, 1959) and by cellulose column chroma- 

tography (Dwyer, Sargeson and James 1964). They isolated (+)5g9- and (—)sg9[ Co- 

(—pn)3]°* . MacDermott (1968) separated the A(Jel3)(mer) isomer from the A(lel3)- 
(fac) isomer by fractional crystallisation. 

Yamasaki and his collaborators isolated A(ob3)(fac) and A(ob3)(mer) isomers 
of [Co(—pn)3]** by column chromatography on an ion exchange SP-sephadex 

(Kojima, Yoshikawa and Yamasaki, 1973). Among the 24 isomers of [Co(+pn)3]>*, 
the structures of only two facial isomers are known in detail. Figure 4.6 illustrates 
the most stable isomer, (—)sgo[Co(—pn)3]** (Iwasaki and Saito, 1966). The absolute 
configuration of the complex ion can be designated the A(AAA), lel, form. The three 
methyl groups are attached in facial positions. The geometry of the five-membered 
chelate ring resembles that of the cobalt-ethylenediamine ring. Methyl] substitution 
on the chelate ring does not seem to disturb the overall features of the rings, with the 
C—CH3 bond in the equatorial position. Methyl groups were shown to take two 
alternative azimuthal orientations around the C—CH; bond (Kuroda, Shimanouchi 
and Saito, 1975). 

Figure 4.7 shows a perspective drawing of the complex ion, (+)5g9[Co(—pn)3]>* 
as viewed down the pseudo-three-fold axis (Kuroda and Saito, 1974). This is the 
facial isomer. The three chelate rings take the ob conformation with methyl groups 
in equatorial positions. The absolute configuration can be designated as A(AAA). The 
geometry of the chelate ring is not very different from that of the lel; fac isomer. 
The only difference is that the N—Co—N angle is compressed by about 1.7°. 

’ 

Fig. 4.7. (+)5g9{Co(—pn)3]°* (Kuroda and Saito, 1974) 
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In contrast to the facial isomers, it has not yet been possible to determine the 
structures of any mer isomers since the salts containing mer isomers are amorphous 
glasses or the complex ions exhibit orientational disorder in the crystal lattice. For 

example, mer-(—)5g9[Co(—pn)3] (+)s5go[Cr(mal)3]- 3H 0 crystallizes in a rhombo- 
hedral space group, R32 and the complex cations are on a set of special positions 
with D3 site symmetry. mer-[Co(—pn)3]** has no strict overall symmetry, but the 
non-methylated fragment does have D3 symmetry. The electron-density distribution 
of the complex cation in the crystal looks like that of the tris (R,R -2,3-diamino- 

butane)cobalt(III) ion with a methyl group of a half weight (Butler and Snow, 1971, 

1976). The hexacyanocobaltate(III)-salt of the A(ob 3)(mer) isomer is cubic. Again 
the complex ions exhibit orientational disorder and no information was obtained 

on the structure of the complex cation (Kuroda and Saito, unpublished work). mer- 

(—)ss9[Co(—pn)3]Br3 - 2H, O is an amorphous glass (Crossing and Snow, 1972). It 
appears that the mer isomer can interfere with the crystal packing and amorphous 

glass or disordered orientation on the regular crystal lattice result with a structure 

which grossly resembles that of the facial isomer. 

The free energy differences at 298 K of the lel3 and ob3 isomers were calculated 

from the equilibrium concentration of isomers (Dwyer, MacDermott and Sargeson, 

1963). The Jel3 isomer is more stable by 6.7 kJ mol~!. Recently Schiffer and his 

collaborators determined the free energy differences between the isomers at 373 K as 
follows (Harnung, Kallesde, Sargeson and Schiffer, 1974): 

AG° (ob3 > lel3) = —6.73 kJ mol~! 
AG° (0b, lel > lel,ob) = — 2.56 
AG? (lel,0b > lel3) = +0.50 

Calculation of the conformational energy showed that the presence of a methyl group 
in an equatorial position changes the energy by —1.53 kJ mol~!, and in an axial 

position by 13.53 kJ mol~! (Niketi¢ and Rasmussen, 1978). 

trans-| ,2-Diaminocyclohexane 

The existence of a fused cyclohexane ring fixes the puckering motion of the five- 

membered chelate ring formed by trans-1,2-diaminocyclohexane. The isomers of 

[Co(+chxn)3 ]>* comprise two catoptric series with absolute configurations A and 
A around the cobalt atom. The absolute configurations of the chelate rings formed 

by (—)R,R-chxn and (+)S,S-chxn are \ and 6, respectively. For each of the con- 

figurational series, there exists four diastereoisomers: le/3, lelz0b, ob lel and ob3 

(Harnung, S¢rensen, Creaser, Malgaard, Pfenninger and Schaffer, 1976). In Fig. 

4.8 a perspective drawing is shown of the complex ion, (—)sg9[Co(+chxn), ]**. The 

complex ion has an approximate D3 symmetry. The absolute configuration is A- 
(565), lel, (Marumo, Utsumi and Saito, 1970; Miyamae, Sato and Saito, 1979). The 

geometry of the chelate ring system is very much like that of [Co(en)3]**. The 

average dihedral angle of N-C—C—N is 59.3°, which is almost identical with the 
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Fig. 4.8. (—)5g9[Co(+chxn)3]3* 
(Miyamae, Sato and Saito, 1979). 

Non-bonded H...H interactions 

are indicated by broken lines 

value expected in a free ligand molecule. The cyclohexane ring takes a chair con- 
formation and its shape and size indicate no strain in the ring system. 

In the ob3 isomer, (+)sg9[Co(—chxn)3]** , shown in Fig. 4.9, the central C—C 
bond in the chelate ring is inclined at an angle of 66° with respect to the three-fold 
axis, whereas it was nearly parallel to the three-fold axis in the case of the /e/ 3 isO- 
mer. The geometry of the Co-chxn ring is similar to that in the lel isomer, how- 
ever, the NCoN angle is 84.2°, being compressed by about 2.4° compared to the 
lel; isomer. The absolute configuration is A(AAA) (Kobayashi, Marumo and Saito, 
1972a). Non-bonded H ... H interactions shown in Fi igs. 4.8 and 4.9 clearly jodie 
that the /e/3 isomer is more stable than the ob 3 isomer. 
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oi Fig. 4.9. (+)59[Co(—chxn) ,]3* 
\ (Miyamae, Sato and Saito, 1979), 

Non-bonded H...H interactions are 
ds 0 indicated by broken lines 
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ste 
As} A Fig. 4.10. (—)5g9[Co(+chxn)2(—chxn)]3* (Sato 

oN and Saito, 1977) eae 

The /el,0b isomer, (—)5go{Co(+chxn) (—chxn)]** (Fig. 4.10) has an approxi- 
mate two-fold axis of rotation through the cobalt atom and the midpoint of the 
C—C bond in the ob chelate ring. The absolute configuration is A(55A) or in full, 
A-(—)s5g9[Co {(S,S)(+)chxn} 4 {(R,R (—)chxn}55\]3*. Each chelate ring has an un- 
symmetrical skew conformation. The dihedral angles about the C—C bond in the 
chelate ring are 53° on the average. The two C—C bonds in the /el chelate rings are 
inclined at a mean angle of 3.9° with respect to the pseudo-three-fold axis, while 
that in the ob ring makes an angle of 64.4°. The non-bonded short hydrogen -hydro- 
gen contacts occur between NH, and CH groups in adjacent chelate rings. The 
average H ... H distance is 2.46 A between the /el ring and the ob ring. The inclina- 
tion angle of the co-ordination plane formed by Co and the two N atoms of the ob 
ring with respect to the pseudo-three-fold axis of the ion, 35.7°, is significantly 
greater than those of the /el- and ob 3-isomers (31.8° and 31.5°, respectively). This 
difference in inclination angle may alleviate the non-bonded hydrogen-hydrogen inter- 
actions. 

The AG” at 373 K, pH = 7.0 are as follows (Harnung, S¢rensen, Creaser, 

Maegaard, Pfenninger and Schaffer, 1976): 

AG° (lel,0b > lel3) —0.93 kJ mol! 
AG° (ob,Iel > lel3) on 3 
AG° (ob3 > lel3) —8.20 

The complex ion, (—)sg9[Co(+chxn)(—chxn), ]** , has the absolute configuration 
A(6AA) and is the /elob isomer. It possesses a two-fold axis through the cobalt atom, 
bisecting the C—C bond in the /e/ chelate ring (Shintani, Sato and Saito, 1979). 

trans-1,2-Diaminocyclopentane 

The tris complex involving this ligand was recorded as early as 1928 (Jaeger and 

Blumendal, 1928). It was, however, suggested later that its existence was doubtful, 

since the chelate ring system involves much strain, when a molecule of trans-1,2- 

diaminocyclopentane is co-ordinated to a cobalt atom. In fact, the N ... N distance 
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Fig. 4.11. (—)sg9[Co(+cptn)3]>* (Ito, Marumo and 
Saito, 1971) 

of 3.14 A ina free state of the ligand rust decrease in length to 2.76 A, on forming 

a five-membered chelate ring (Phillips and Royer, 1965). The existence of the tris- 

bidentate complex was established by the crystal structure analysis of (—)5g9[Co- 

(+cptn)3] Cl3 - 4H,O (Ito, Marumo and Saito, 1971). Fig. 4.11 shows a perspective 

drawing of the complex ion (—)s g9[Co(+cptn)3]>* . The cobalt atom has a slightly 

distorted octahedral co-ordination of six nitrogen atoms with an average distance of 

2.00 A. The complex ion possesses an approximate D3 symmetry. The conformation 

Fig. 4.12. Bond lengths and angles of a chelate ring averaged by 

assuming D3 symmetry 

Table 4.3. Comparison of molecular geometry of the ligand cptn in the crystal 

with that calculated by energy minimization 

Observed in the Calculated for free 

[Co(cptn)3]3* ligand 

C(a)...C(b) 1.53 A 153A 

C(b)...C(d’) 1.53 1:52 

C(d)...C(d’) 1.51 doe 

N(a)...C(d) 1.49 1.49 

C(b)C(a)C(b’) 105° 106° 

C(a)C(b)C(d) 104 104 

C(b) C(d)C(d') 101 102 

N(a)C(d)C(d’) 106 a2 

N(a)C(d)C(b) 119 112 
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of the cyclopentane ring is half-chair. The NCoN angles in the chelate ring average 

86.7°. The distortion of the octahedron formed by the six nitrogen atoms is nearly 

the same as that for [Co(en)3]**. The geometry of the chelate ring is illustrated in 
Fig. 4.12. The bond lengths are normal, however, the bond angles C(b’)C(d’)C(d) 
and N(a’)C(d’)C(b’), both deviate largely from the normal tetrahedral angle. Table 
4.3 compares the results of strain energy minimization for a free ligand with the 

observed bond lengths and angles in the chelate ring. Large discrepancies in NCC 

angles are clearly due to chelation and hence a fused ring formation. This is the 

lelz isomer and the absolute configuration of the complex ion can be designated 
A(565). ; 

Sarcosine CH,—NHCH3 

CO,H 

The stereochemistry of sarcosinatobis(ethylenediamine)cobalt(III) complex ion was 

first studied as early as 1924 (Meisenheimer, Angermann and Holsten, 1924). They 
reported that four isomers could be isolated. When this work was repeated carefully 

only two forms were obtained (Buckingham, Mason, Sargeson and Turnbull, 1966). 

The second study suggested that sarcosinate ion was co-ordinated stereospecifically 

about one configuration of the Co(en), moiety. In fact an X-ray study of (—)s5go9- 
[Co(sar)(en),]I, - 2H,O (Blount, Freeman, Sargeson and Turnbull, 1967) revealed 

that the Co(sar) ring is slightly puckered, the conformation being \:!) The two 
Co(en) rings take 6 and A conformations respectively. These combinations presumably 

minimize the H(methyl)...H(amino) interactions. The absolute configuration of the 

entire complex ion can be fully designated as A(AgrAenden). The absolute configura- 

tion of the co-ordinated secondary nitrogen atom is S. In this stable A.S form the 

hydrogen atom is balanced over the adjacent Co(en) ring and the methyl group lies 

in the space between the two cobalt-ethylenediamine rings. Recently Fujita, Yoshi- 

kawa and Yamatera (1976) succeeded in separating all the four possible isomers by 

the chromatographic method with an SP-Sephadex column. The crystal structure 

of the less stable isomer has not yet been determined. From the formation ratio the 

A-[Co(R-sar)(en)]** isomer is only 3.8 kJ mol™! less stable than the A-[Co- 
(S-sar)(en),]** isomer. This experimental value of the AG difference is about half 
of the calculated value of 7.1 kJ mol! on strain energy minimization (Anderson, 

Buckingham, Gainsford, Robertson and Sargeson, 1975). 

11 In (+)436[Co(sar)(NH3)4]2* the Co(sar) ring is puckered, too (Larsen, Watson, Sargeson and 

Turnbull, 1968). 
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N-methyl-(S)-alanine ris 

H-C—NHCH, 
| 
CO,H 

In A-R-[Co(N-Me-(S)-ala)(en),]?* (Anderson, Buckingham, Gainsford, Robertson and 
Sargeson, 1975), the two cobalt-ethylenediamine rings take 5 and X conformations. 
The amino acid contains trans methyl groups with the R and § configurations about 
the N and C centres, respectively. The Co—N—C(methyl) angle of 120.2° differs 
markedly from the regular tetrahedral angle due to the steric hindrance of the adja- 
cent Co-en ring. This observed geometry of the complex ion agrees satisfactorily with 
the result of strain energy minimization. The calculated strain energy increases in the 
order: N(S)—C(R) < N(R)—C(S) < N(S)—C(S) < N(R)—C(R) for A isomers. This 
relationship results in large part from the non-bonded interactions between the ethyl- 
enediamine ring and/or the methyl group and the carbon atom of the amino acid 
ligand. In fact, in A-[Co(N-Me—(S)-ala)(en), ]?* mutarotation about the C centre of 
the alaninato chelate occurs at pH > 12 and at equilibrium the A-R : A-S ratio was 
ca. 4. 

C. Six-Membered Chelate Rings 

The conformational problem presented by complexes involving six-membered 
chelate rings is similar to that posed by cyxlohexane, except that the ligand-metal- 
ligand angle is nearly 90°. Three possible conformations exist for a single metal- 
trimethylene-diamine ring, one rigid chair form with mirror symmetry and two 
enantiomeric twist-boat forms with a two-fold axis of rotation. The third conforma- 
tion, the boat form with mirror symmetry, cannot be accommodated to form a 
tris-bidentate complex and is rarely observed in the structure of metal-chelate com- 
plexes. For each of the twist-boat conformations of the Co-tn ring two skew lines 
can be defined: one through the two nitrogen atoms and the other through the car- 
bon atoms that are bonded to the two nitrogen atoms. According to the helicity 
associated with these lines the two enantiomeric forms are labelled 5 and A. 

Niketi¢ and Woldbye (1973a) showed that 16 possible conformers exist of the 
[M(tn)3] system for each of the absolute configurations A and A, in which the 
chelate rings adopt any of the three stable conformations mentioned above. Three 
of these, chair3, twist-boat3 with lel3 , and twist-boat3 with ob3 conformations are 
called homoconformational and the remaining 13 forms are termed hetero-con- 
formational. 

When a M-tn ring takes a chair conformation in a tris-bidentate complex, the 
ring in question may adopt one of the two orientations which give rise to two con- 

‘formers if, and only if, the two other rings are not related by a two-fold axis of rotation (Fig. 4.13). 
Raymond designated these two ring conformations as p and a, depending on 

whether the fold direction of the ring, determined by the orientation of the C_C_C plane, is parallel or antiparallel to the chirality defined by the arrangement of the 
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Ve aaa 

Fig. 4.13. Two tris-bidentate complexes with A absolute configuration are shown. When the 
two rings A and B are not related by a two-fold axis of rotation, the folding direction of the 

third ring with chair conformation can be distinguished as p or a 

three chelate rings (left-handed for A absolute configuration (Jurnak and Raymond, 

1972). 

The absolute configuration of (+)5g9[Co(tn)3]~” was determined with the two 

isostructural bromide and chloride monohydrates (Nomura, Marumo and Saito, 

1969; Nagao, Marumo and Saito, 1973). Figure 4.14 presents the absolute con- 

figuration of (+)sg9[Co(tn)3]>*. It has an approximate three-fold axis and the 

three chelate rings take chair conformation. The three six-membered chelate rings 

are nearly but not exactly identical, reflecting the flexibility of the six-membered 

chelate ring. The chelate ring is rather flattened out due to non-bonded hydrogen 

interactions. Bond angles CoNC are much larger than the normal tetrahedral angle, 

the average being 122.0°. The mean NCoN angle in the chelate ring is 91.0°. El- 
lipsoids of thermal motion of one of the chelate rings which is most loosely packed 

in the crystal indicated that the largest amplitude of thermal vibration of the carbon 
atoms is primarily perpendicular to the plane formed by the two bonds (C—C or C—N) 

for each atom. This large thermal motion suggests a conformational equilibrium in- 

volving significant amounts of two or more conformers in solution at room temper- 

ature (Beddoe, Harding, Mason and Peart, 1971). Unlike the homoconformational 

complex ion, [Co(tn)3]**, the complex ion, [Cr(tn)3]** has a two-fold axis of rota- 

tion in [Cr(tn)3][Ni(CN),;] - 2H,0. One chelate ring takes a twist-boat conformation 

and the remaining two are chair forms, i.e. the complex ion can be designated A(ap6) 

(syn-chair,/el conformation) and its enantiomer (Jurnak and Raymond, 1974). The 

absolute configuration of (—)sg9[Co(acac)(tn)2]** is A and the two Co-tn rings 

take a chair conformation. This is an anti-chair, isomer, A(pp)[= A(aa)] (Matsumoto, 

Kawaguchi, Kuroya and Kawaguchi, 1973). 

ee 

Fig. 4.14. (+)5g9[Co(tn)3]>* (Nagao, Marumo and Saito, 1973) 
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2,4-Diaminopentane 

2,4-Diaminopentane acts as a bidentate to form a six-membered chelate ring. There 
are three isomers since the ligand has two asymmetric carbon atoms: 

ie eH eH 
H)N-C-H H-C-NH} H-C-NH) 

RR CH ts CH R,S(meso) CH, 

H-C_NH, Hy>N=C_H H-C_NH, 

CH CH; CH, 

Table 4.4 summarises the possible conformations of the chelate rings formed by 2,4- 
ptn. The structures of three homoconformational isomers have been determined. The 
stable conformation of the chelate ring formed by meso-ptn may be a chair form 
with the two methyl groups in equatorial positions (See Table 4.8) (Appleton and 
Hail, 1971). With three chairs A-[Co(meso-ptn)3 ]?* may adopt two conformations: 
A4ppp)[= A(aaa)] and A{paa)[= A(app)]. The former has a three-fold axis of 
symmetry and the latter lacks any symmetry element. The two isomers were synthe- 
sized and separated by Kojima and Fujita (1976). These authors designated the C 3 
and C; isomers as fac and mer respectively. Both isomers were resolved into optical 

Table 4.4. Disposition of the two C—CH3 bonds in the chelate rings formed 
by the isomers of 2,4-diaminopentane 
eee 

Ligand Conformation 
Se 

Chair 6-twist-boat A-twist-boat 

R,R-2,4-ptn a,e re e,e 
S,S-2,4-ptn a,é eve a,a 
R,S-2,4-ptn a,aore,e ae a,e 

o a mi DE 
- 4 
AX pe, 
ne dom ballat 

“Soi gad) Nw IT tp, Ye] 
o£ y—O 

Sf r Fig. 4.15. (+)5g 9-fac-[Co(meso-ptn) 3]>* (Sato and 
0 Saito, 1978) 
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Fig. 4.16. (—)546[Co(R,R -ptn)3]>+ (Kobayashi, 
Marumo and Saito, 1973) 

isomers. Figure 4.15 presents the complex ion, (+)s5g9-fac-[Co(meso-ptn)3]** (Sato 
and Saito, 1978). The three chelate rings take the stable chair conformation with 

the C-CH3 bond equatorial as expected. Unlike [Co(tn)3]**, no anomalous thermal 

vibration of the ring carbon atoms was observed owing to substituted methyl groups. 

The geometry of the Co(tn)3 portion is similar to that in [Co(tn)3]**. An interest- 
ing feature is that the geometries of the three chelate rings are slightly but signifi- 

cantly different from each other. This may be due partly to the specific packing 
forces in the crystal lattice and partly to the flexibility of the six-membered chelate 
rings. As the NCoN angle in the chelate ring increases from 87.8° to 92.7°, the CCC 

angle decreases from 117.0° to 113.8°. Corresponding to this change in opposite 

bond angles in the chelate ring, the inner fragment (C-_N—Co—N-C) flattens with 

slight puckering of the outer portion (N—C—C—C—N), namely the dihedral angle 

between the NCoN and NCCN planes increases from 144.5° to 156.8° and that be- 

tween the NCCN and CCC planes decreases from 125.1° to 117.8°. 
Structures of (—)54¢lCo(R,R -ptn)3]°** and (+)54¢[Co(R,R-ptn)3]>** are shown 

in Figs. 4.16 and 4.17 respectively. In both cases, the chelate ring takes a A-skew- 

boat conformation with the two methyl groups in equatorial positions as shown in 

Table 4.4. The former is A(AAA), the Jel; isomer (Kobayashi, Marumo and Saito, 

1973), while the latter A(AAA), the 0b3 isomer (Kobayashi, Marumo and Saito, 

1972b). Conformational analysis of tris-diamine complexes has been carried out by 

several authors, notably by Woldbye and his coworkers (Geue and Snow, 1971; 

Niketi¢ and Woldbye, 1973a, b, 1974; Niketi¢, 1974). The calculation reproduced 
the molecular geometry fairly satisfactorily ; however, the calculated strain energies 

for different isomers by different authors were sometimes inconsistent. Recently, 

a fast convergent minimization programme was applied to calculate equilibrium con- 

formations of all possible conformers of [Co(tn)3]** and ten species of [Co(ptn)3]** 

Fig. 4.17. (+)546[Co(R,R —ptn)3]>* (Kobayashi, Marumo and 
Saito, 1972b) 
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Table 4.5. Observed and calculated bond lengths and angles in 

[Co(tn) 3]3* with C3-chair3 conformation : 
SS ee eee eee 

Observed in [Co(tn) 3]>*# Calculated 
eee 

Co—N 1.979 + 0.003 A 2.045 +0.01A 
N-C 1.484 + 0.006 1.477 + 0.03 
C=C 1.499 + 0.006 1.543 + 0.01 

NCoN 90.4 + 0.1° 90.0 + 4.0° 
CoNC 122.2+0.2 : 120.0 + 2.0 
NCC 111.8 + 0.3° 111.5 + 0.7 
CUE 113.5 +0.3 110.8 + 1.0 

a a eee 2 eee eee 

a Nagao, Marumo and Saito, 1973; averaged assuming C3 symmetry. 
b Niketic, Rasmussen, Woldbye and Lifson, 1976. + and-— indicate the upper and the lower 

limits respectively of the values found in all minimum-energy conformations based on the 
different force fields adopted. 

c One anomalous angle due to anisotropic thermal vibration has been omitted from averaging. 

Table 4.6. Average bond lengths and angles in homoconformational 
[Co(ptn) 3]3* ions 

a eee eee 

fac-chair, lel3 ob3 

obs? calcd obs> sealed obs® calcd 
a es 

Co—N 1.999 2.043 1.985 2.043 1.988 2.954 A 
N-C 1.498 1.477 1.489 1.479 1.50 1.478 
C-C 1.510 1.544 1.516 1.549 AS3 $2550 
C—Cme 1.528 1.549 1.530 1.548 1.50 1.549 

NCoN 92.7 93.85 89.1 88.10 87.9 87.80° 
CoNC 12229 T2053) 118.0 114.10 1ST, 114.62 
NCC 110.8 110.68 112.0 111.83 109.0 111.96 
CCC 113.8 110.21 eles) 112.64 UL6t7 113.24 
NCCyfe 109.5 109.38 109.4 110.26 Pi22 110.24 
CCCMe 02 7, 109.53 111.0 109.38 105.7 109.26 

es Se te 
a_ Sato and Saito, 1978, averaged for one chelate ring with an obtuse NCoN angle assuming 

mirror symmetry. 
Kobayashi, Marumo and Saito, 1973: averaged assuming D3 symmetry. 
Kobayashi, Marumo and Saito, 1972b; averaged assuming D3 symmetry. 

d Niketi¢, Rasmussen, Woldbye and Lifson, 1976. 

oe 

(Niketic, Rasmussen, Woldbye and Lifson, 1976). The calculations demonstrated 
that various previously suggested conformations of the same type converge to a 
common equilibrium conformation having the highest possible symmetry. The C3- 
chairs conformer represents the gobal minimum in the selected force field. Table 
4.5 compares the observed geometry of (+)sgo[Co(tn)3]>* with the result of strain 



Bidentates 71 

energy minimization. The agreement in Table 4.5 indicates that the geometry of the 
complex is well reproduced. 

Table 4.6 compares the mean bond lengths and angles in homoconformational 
isomers of the [Co(ptn)3]** ions with the results of strain energy minimization. As 
seen from Table 4.6 the geometries of the complex ions are fairly well reproduced. 
Various energy contributions of strain energies are listed in Tables 4.7 and 4.8. De- 
tailed analysis of the 16 isomers revealed that no correlation exists between the 
various contributions from bond length and angle distortions, torsional strain and 
non-bonded interactions. The energy minima are reached by very delicate balancing 
of all energy contributions through adjustment of practically all internal variables in 
these flexible complex ions. The longer non-bonded interactions contributed mar- 
kedly to the stabilization. For example, in the case of the minimum global conforma- 
tion of M(tn)3, the non-bonded interactions shorter than 3 A contributed 42.2 kJ 
mol! and the longer ones —49.7 kJ mol~!. In the case of homoconformational 
isomers listed in Tables 4.7 and 4.8, the chair, conformations have relatively high 
angle deformation energies, owing to the flattening of the chelate rings and low 
torsional energies and torsional strain. The relative strain energies are in the order: 

C3-chair3 << lel — ob3 3 

Table 4.7. Energy contributions for homoconformational [Co(tn) 3]3* 

fac-chair3 lelz ob3 
a ee ee ee ee ee 

Bond stretching deformations 6377 6.5 orl 
Bond angle deformations 39.3 18.8 25.6 
Torsional strain bly, 29.9 31.8 
Non-bonded interactions — 7.5 —1.7 933 
Total conformational energy 50.2 53.5 716.4 
Difference 0.0 3.3 26.2 
a a es 

a All energies are given in kJ mol—!. 

Table 4.8. Energy contributions for homoconformational [Co(ptn) 3) 

isomers with the two methyl groups in equatorial positions 

fac-chair3 lel3 0b3 

Bond stretching deformations VASE 7.8 Tie 

Bond angle deformations 39.6 19.4 D522 

Torsional strain 12.6 29.5 31.4 

Non-bonded interactions —19.1 —14.6 — 3.8 

Tetal conformational energy 40.7 42.1 64.3 

Difference 0.0 1.4 23.6 

a_ All energies are given in kJ mol— - 
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Malonate ion 

The chelated malonato-metal ring has a high degree of conformational flexibility. In 

the structure of A[Co(R—pn)3]A[Cr(mal)3] - 3H 20, the three malonato-Cr(IID) rings 
are equivalent by symmetry and possess an envelope conformation in which only the 

methylene carbon atom is significantly displaced from the plane of the chelate ring 

(Butler and Snow, 1971,1976). In the diastereoisomer (+)54¢[Co(mal) (en) ](—)589- 

[Co(NO,) (en), } both rings are reported as having an approximately planar conforma- 

tion. The largest deviation from the mean plane of the Co-mal ring is 0.23 A of a ligating 

oxygen atom and the pattern for both rings suggests a distortion towards a skew-boat 

conformation (Matsumoto and Kuroya, 1971, 1972). 

D. Seven-Membered Chelate Rings 

Only a few structures containing seven-membered chelate rings are known. One im- 

portant member of the bidentates forming a seven-membered chelate ring is 1,4- 

diaminobutane(tetramethylenediamine). The crystal structure of (+)5g 9[Co(tmd)3]- 

Br3 has been determined (Sato and Saito, 1975). Figure 4.18 shows a perspective 

drawing of the complex ion. It has an approximate D3 symmetry. In Fig. 4.19 che- 

late ring is puckered and chiral. The ring conformation can be designated as A, pro- 

viding the helicity is defined by the line joining the two ligating nitrogen atoms and 

the line joining the two carbon atoms bonded to the nitrogen atoms. The absolute 

configuration is A(AAA), lel3. The Co-N—C—C and N—C—C-C groups take 5 and \ 

conformations respectively. The seven-membered chelate ring is strained: the mean 
CoNC, NCC and CCC angles are 122.9, 113.0 and 116.1° respectively. The NCoN 

angle in the chelate ring is, however, close to 90°, the mean value being 89.2°. 
The ornithinate ion, HyN(CH)3 - CH(NH,)CO3, acts as a bidentate on chela- 

tion to palladium(II) to form seven-membered chelate rings. In crystals of bis(S- 
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s ie Fig. 4.18. (+)5g9[Co(tmd)3]>* (Sato and Saito, 1975) 

Fig. 4.19. A projection of the chelate ring along the two-fold 
axis (Sato and Saito, 1975) 
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ornithinato)palladium(II), the chelate rings take a twist-chair conformation with the 
carboxylate group in a quasi-equatorial position (Nakayama, Matsumoto, Ooi and 
Kuroya, 1973). 

2 Terdentates 

Structures involving three types of terdentates are known: i) linear, ii) branched and 
iii) cyclic. 

Diethylenetriamine 

This linear terdentate is a strong chelating agent and three isomers are possible as 

illustrated in Fig. 4.20. Among the three geometric isomers, the u-facia- and mer- 

isomers are optically active and have pairs of catoptromers respectively, whereas 

the s-facial isomer is optically inactive. All the geometric and optical isomers in 

this system have been isolated and characterised (Keene, Searle, Yoshikawa, Imai 

and Yamasaki, 1970). Structures of s-facial and u-facial-[Co(dien)2]** are known. 

In the complex ion, s-fac-[Co(dien),]** , the ligand co-ordinates to the cobalt atom 
with the terminal amine group in cis-positions. The five-membered chelate rings take 

an unsymmetrical skew conformation (Kobayashi, Marumo and Saito, 1972c). The 

complex ion has a centre of symmetry and has an approximate mirror plane through the 
cobalt and the two secondary nitrogen atoms and bisecting the NCoN angle formed by 

the two terminal nitrogen atoms of a ligand. Figure 4.21 illustrates the two con- 

Fig. 4.20. Schematic drawings of (I) s-facial- 

(II) u-facial- and (II) mer-isomer of 

[Co(dien) ]3* 

HIC81) 
Q 

A(SX) A(X) 

Fig. 4.21. Perspective drawings of the two conformers of (—)5g9-u-fac-[Co(dien)2 at (Konno, 

Marumo and Saito, 1973) 
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formers observed in (—)s5g9-u-fac-[Co(dien),][Co(CN)¢] - 2H,O (Konno, Marumo 

and Saito, 1973). The complex ions have a two-fold axis of rotation. The absolute 

configuration can be designated as skew chelate pairs AAA. However, the conforma- 

tions of the two chelate rings formed by a dien molecule in one complex ion are 

6A, while those in the other are AA. The two fused chelate rings with conformations 

5X have eclipsed envelope and symmetrical skew conformations, whereas those with 
AA conformations are both eclipsed envelope conformations. 

Yoshikawa (1976) carried out the conformational analysis of the [Co(dien),]** 
system based on Boyd’s procedure (1968). Table 4.9 shows the observed and calcu- 

Table 4.9. Average bond lengths and angles in [Co(dien) 2]3* isomers 

s-fac u-fac-1© ‘ u-fac-2° mer 

obs calcd obs calc obs© calc calc 

Co—N 1.97 1.966 1.957 1.958 1.951 1.952 1.976 A 

1.969 1.968 1.968 1.973 

Co—N? 1.95 1.944 1.970 1.960 1.970 1.971 1.942 
C—N 1.48 1.491 1.491 1.490 : 1.488 1.488 1.495 
G=N2 esi 1.494 1.496 1.495 1.499 1.497 1.486 
C=C eon! (esis 1.516 1.513 1.509 1.514 1.514 

NCoN 86.6 88.3 85.4 87.0 84.9 86.8 86.0° 
S72 88.9 86.4 88.3 85.7 87.0 86.1 

CN@C 116.0 113.8 113.4 TIS L0) 110.4 110.3 114.5 
nee OS EAE EERE 8 SS AE) Be Ee ees Ss ee 

a Secondary nitrogen atom. 

b Kobayashi, Marumo and Saito, 1972c. 

c Konno, Marumo and Saito, 1973. 

d Yoshikawa, 1976. 

e u-fac-1: AAA(6A) and its catoptromer. 

u-fac-2: AAA(AQ) and its catoptromer. 

Table 4.10. Energy contributions for the [Co(dien) 2]3* system 

s-fac u-fac-14 u-fac-24 mer 

ee eee eee 

Bond stretching deformations 323 B25 4.6 4.6 
Bond angle deformations 9.6 10.0 11d, 22.8 
Torsional strain 32.9 Son 29.8 22.6 
‘Non-bonded interactions 25.4 25.6 26.1 21.4 
Total conformational energy T1e2, 72.2 122 71.4 
Difference 0.0 1.0 1.0 0.2 

eee 

All energies are in kJ mol~!. 

a u-fac-1: AAA(6A) and its catoptromer. 

u-fac-2: AAA(AX) and its catoptromer. 
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lated interatomic distances and bond angles. The agreement in the Table is good, be- 
cause the energy parameters have been adjusted for better fitting of the minimized 

structures with the observed ones. The final energy contributions are tabulated in 
Table 4.10. The total strain energies of the isomers differ very little. It is not possible 
that the reliability of the strain energy differences could be better than +8 kJ mol~!. 
In fact, the formation ratios experimentally determined in the equilibrium mixture 

of bromides at 298 K were s-fac :u-fac :mer = 7:30:63. The discrepancy may be 

ascribed to an inadequate choice of energy parameters, negligence of longer non- 

bonded interactions and/or zero level imbalances (Dwyer and Searle, 1972; Dwyer, 

Geue and Snow, 1973). However, the energy parameters were successfully applied 

for energy minimization of the [Co(linpen)]** system (see p. 83). 

1,1,1-Tris(aminoethyl)ethane _CH2—-NH2 

CH; —C—CH —NH, 
CH,—NH, 

The bis complex of Co(III) has its non-ligating atoms above and below the trigonal 

planes of the ligating nitrogen atoms, whereas the tris(bidentate) complexes, such as 

[Co(en)3]>*, have the nonigating atoms between opposed trigonal planes. The 
IUPAC scheme for the designation of the absolute configuration cannot be directly 

applied for assigning a label to this type of complex. The crystal structure of (+)539- 

[Co(tame), ](+)s5g9[R,R-tart] - xH 0 has been determined (Geue and Snow, 1977). 
The complex cation is shown in Fig. 4.22. It has an approximate D3 symmetry. The 

conformation of all the six six-membered chelate rings is \ and is intermediate be- 

tween that of the regular skew-boat and a boat form and may be described as an 

asymmetric skew-boat. When this complex is viewed down its triad axis, the atoms 

of the ligands form a right-handed helix, hence this complex ion can be fully desig- 

nated as AAA-[Co(tame),]**. Three conformational isomers are possible, which can 

be designated AA, 66 and 5A or Ad. The minimum strain energy form of the 66 

(or AA) isomer has D3 symmetry and the A6 (or 5A) form, C3;. These isomers may 
interconvert by a trigonal twist of one ligand, whereby the CH, groups move from 

Fig. 4.22. AdAd-[Co(tame)  ]>* 
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N Os Os . 

Os—|———0¢ Os—|—\-0, =O: Fig. 4.23. Schematic drawings of (a) the 

trans(N), (b) the cis(N)-trans(O5) and 

/ : / f i / / (c) the cis(N)-trans(O¢) isomers of the 

| S js 3 [Co(S-asp)9]" ion (Oonishi, Shibata, Ma- 
rumo and Saito, 1973) 

(a) (b) (c) 

one side of the Co-N-quarternary C plane to the other. The strain energy minimiza- 

tion indicates that the racemic isomer is more stable by 6.7 kJ mol7!. It is antici- 

pated that the interconversion may be rapid in solution. 
¥ 

S-Aspartic acid 

When S-aspartic acid, HO,C—CH(NH,)—CH,—CO H, acts as a terdentate to form an 
octahedral complex, there are three possible isomers as shown in Fig. 4.23. O, and O, 
refer to those oxygen atoms that form five- and six-membered chelate rings with 
amino N atoms respectively. Figure 4.24 shows cis(N)-trans(O5) and cis(N)-trans(O¢) 
isomers (Oonishi, Shibata, Marumo and Saito, 1973; Oonishi, Sato and Saito, 1975). 
Two aspartic acid residues are octahedrally co-ordinated to a cobalt atom through two 
amino N atoms and four carboxylic O atoms. Five-membered, six-membered and seven- 
membered chelate rings are formed. Two N atoms are in cis-positions. The co-ordina- 
tion octahedrons are slightly distorted, probably owing to the non-bonded hydrogen 
interactions as well as to the formation of strained chelate rings. 

Fig. 4.24, (a) cis(N)-trans(O5)- and (b) cis(N)-trans(O ¢)-[Co(S-asp)2 |’ (Oonishi, Shibata, Marumo 
and Saito, 1973) 
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S-2,3-Diaminopropionic acid HO, C—CH(NH), )—CH, —NH 

The ligand can form a bis complex ion with Co(IID) analogous to [Co(S-asp)]~. 
There are three possible isomers: i) trans, cis, cis ii) cis, cis, trans and iii) cis, trans, 
cis, where the carboxyl groups are designated first, then the a-amino group and final- 

ly the B-amino group. They all have catoptromers. When R- and S-2 ,3-diaminopropi- 

onate ions co-ordinate, two more geometric isomers are possible (Freeman and Liu, 

1968). The structure and absolute configuration of (—)54¢6[Co(C3H 7N20>)2]Br has 
been determined (Liu and Ibers, 1969). The crystal was proved to contain an S-cis, 

trans, cis-isomer. X-ray determination was necessary since the assignment of the abso- 

lute configuration was impossible on the basis of circular dichroism spectra. 

Sarcosinate-N-monopropionic Acid 

The O.N,O-terdentate ligand, HO, C—CH, —N(CH3)—CH —CH, —CO>H, co-ordinates 

facialy to the metal atom. In (+)54¢-cis(O)-[Co(sarmp)(NH3)3]", the resultant six-mem- 

bered chelate ring takes the skewboat conformation, the N—CH3 and C=O bonds 

both being in equatorial positions. The five-membered chelate ring assumes an asym- 

metric envelope form with A conformation. The absolute configuration of the N atom 

is R (Okamoto, Tsukihara, Hidaka and Shimura, 1973). 

Tribenzo[b,f,j]-[1,5,9 ]triazacyclododecahexaene 

The ligand is the trimer formed by the self-condensation of o-aminobenzaldehyde in 

the presence of metal ions. It is stereochemically rigid. The complex ion, [Co(TRI)2 eM 

has quite a different geometric array of chelate rings compared to the familiar 

H 

ace) —=N 

| 

basalt N H 
tH 

[Co(en)3]3* ion. The absolute configuration of (+)s46{Co(TRI)2]** has been deter- 

mined (Wing and Eiss, 1970). This is a six-co-ordinate octahedral complex. The 

cobalt atom is sandwiched midway between the two parallel planes (2.36 A apart) 

formed by three N atoms. The three N atoms of each ligand form an equilateral tri- 

angle; the upper one is rotated counterclockwise by 8° with respect to the lower 

triangle from the position expected for a regular octahedron, as in the case for A- 

(+)s g9[Co(en)3]°”. The TRI ligand is propeller shaped, the mean pitch of the planar 

benzene being 14° with respect to the plane formed by the N atoms. The benzene 

pairs are opened away from each other at the perimeter of the complex with an 

average angle between benzene pairs of 1s 
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R(=)-2-Methy]-1,4,7-triazacyclononane 

The cyclic ligand also acts as a terdentate and gives an analogous bis-complex with 
cobalt(III). The crystal structure of (—)5g9[Co(R-MeTACN),]I; - 5H,O has been 
determined (Mikami, Kuroda, Konno and Saito, 1977). The complex ion is disor- 
dered on a site of D3 symmetry around the triad axis. Two molecules of the cyclic 

NH 
oe" 

Oe, )a ae da 

Se eae —NH 

CH 

ligand co-ordinate to the Co atom with six secondary N atoms from above and below 
the Co atom to form an octahedral complex. There are six five-membered chelate 
rings with \ conformation. The C—CH; bond is equatorial with respect to the mean 
plane of the chelate ring. The [CoN¢] chromophore is elongated and twisted around 
the triad axis. The direction of twist is the same as that of A(—)sg9-[Co(en)3]>*. 

3 Quadridentates 

Structures containing linear, branched and cyclic quadridentates have been exten- 
sively studied. The linear quadridentates are largely aliphatic tetramines: 

HN—(CH)_—NH—(CH),,-NH—(CH)p—NH m,n, p = 2,3 

When m = n = p = 2, the ligand is triethylenetetramine (trien). Other related tetra- 
mine ligands are often abbreviated as m, n, p-tet and a prime indicates substituted | 
methyl groups (cf. abbreviation of ligands on p. 10). A great number of complexes 
containing synthetic macrocyclic quadridentates has been prepared and their stereo- 
chemistry has been extensively studied notably by Busch and Curtis. The most funda- 
mental macrocyclic ligand is 1,4,8,1 1-tetraazacyclotetradecane(cyclam): 

CH, 
jaa 

a CH, 

HN NH 

Hae Cue 

Ha Cx CH. 

a NH 

H, q ibe 
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These complexes will not be described here, since a number of excellent review 
articles on this subject have already been published (Busch, 1967; Curtis, 1968; 
Busch, Farmery, Goedken, Katovic, Melnyk, Sperari and Tokel, 1971; Lindoy and 

Busch, 1971). 

1,8-Diamino-3 ,6-diazaoctane(triethylenetetramine) 

The linear quadridentate can co-ordinate to the Co atom to form an octahedral com- 

plex. There are three possible geornetrical isomers as shown in Fig. 4.25. The cis-a 

and cis-8 isomers are chiral. Furthermore, there exist two conformers for the cis- 

6 isomers arising from alternative configurations of the two secondary N atoms as 

illustrated in Fig. 4.26, where the conformations of the two chelate rings on the 

equatorial plane are different. In solution, A-cis-8-(R,R)- and A-cis-6-(R,S)-[Co(trien)- 

(H,0),]** ions mutarotated to the thermodynamically more stable conformer 

(~12.6 kJ mol~'!) and the A-cis-B(R,S) isomer could not be obtained in a stable crys- 

talline form (Buckingham, Marzilli and Sargeson, 1967). The crystals of racemic cis- 

B-[CoCl(trien)(H,0)] ClO, are composed of A-cis-6-(S,S) and A-cis-B-(R,R ) isomers 

(Freeman and Maxwell, 1969). The two outer chelate rings have unsymmetrical skew, 

conformation and the central one is envelope type. In contrast to this, a substituted trien 

ligand, 3(S)8(S)-2',2,2'-tet, gives the cis-8-(R,S) isomer in a stable crystalline form, to- 
gether with the cis-a-isomer (Yoshikawa, Saburi, Sawai and Goto, 1969). This is due to 

the equatorial preference of C-CH3 bonds. Figure 4.27a—c illustrate the structure of the 

cis-~B-, cis-a- and trans-[Co(NO})(3(S)8(S)-2', 2,2'tet)]" as revealed by X-ray analysis of 

x ls x 

N ere N a x —N rs ke 

ii ka V ra ‘a Une Fig. 4.25. Three possible cobalt-trien co- 

N ah x ordinations 

| he hi Se (a) trans, (b) cis-c., (ec) cis-B 

N (mm) (ff) (mf)'?) 

Fig. 4.26. (a) A-cis-64R,R) and 

(b) A-cis-B4R,S) isomers 

12 For the notation in parentheses see p. 83. 
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Fig. 4.27. (a) cis-B-, (b) cis-w- and (c) trans-isomers of [Go(NO2)2(3(S)8(S)-2',2,2'-tet) ]* (Ito, 
Marumo and Saito, 1970; 1972a,b) 

their perchlorate crystals (Ito, Marumo and Saito, 1970, 1972a, 1972b). In all these 
isomers, the C—CH3 bonds are in equatorial positions. Accordingly the conformations 
of the five-membered chelate rings with substituted CH; group are 6 and that of the 
central chelate ring is \. The cis-8 isomer takes the absolute configuration A and the 
absolute configurations of the two asymmetric N atoms are R and S. The apical che- 
late ring is in the eclipsed envelope conformation, while the in-plane terminal chelate 
ting has the two C atoms on the same side of the co-ordination plane. The central chelate 
ring has an unsymmetrical skew conformation. The steric strain which arises from the 
cis-8 co-ordination of the ligand is partly alleviated by distortion of the chelate rings. 
The cis-a isomer has an approximate two-fold axis. The absolute configuration is A 
and the two N atoms have the absolute configuration S. The two outer chelate rings 
take the unsymmetrical skew conformation. The central chelate ring assumes nearly 
symmetrical skew conformation. The trans-isomer also possesses an approximate 
two-fold axis through the cobalt and bisecting the C—C bond in the central chelate 
ring. The ligand forms a girdle around the Co atom. The absolute configuration of 
the two secondary N atoms are R. The NCoN angles of the outer chelate rings are 
85° and that of the central one is 88°. The ligand angular strain is further evidenced 
at the two asymmetric N atoms and at the two C atoms in the central chelate rings. 
The bond angles involving these atoms deviate largely from a regular tetrahedral angle. 
The two outer chelate rings have an unsymmetrical envelope conformation, whereas 
in the central ring the two C atoms are on the same side of the co-ordination plane. 
The conformational analysis of these complexes was carried out by Boyd’s method 
(Ito, Marumo and Saito, 1972b). The bond lengths and angles in the complexes were 
reproduced within twice the standard deviation of the values obtained by structure 
analysis. The major angular distortions observed were accurately predicted from the 
minimization calculations. The final energy terms are listed in Table 4.11. The result 
indicates that the cis-8 form is the most stable of the three isomers. This is supported 
by the observation that the trans-isomer is easily isomerised to the cis-8 form by 
recrystallisation from water. 
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Table 4.11. Distribution of conformational strain energy in kJ mol~! 

cis-a cis-6 trans 

Bond length deformations 2.5 5.4 ve) 

Bond angle deformations 5.9 8.8 24.3 

Torsional strain Deez 17.6 10.0 

Non-bonded interactions 23.0 14.6 14.2 

Total conformational energy 53.6 46.4 51.4 

Energy differences eh 2 0.0 5.0 

When trien forms an octahedral complex with unsymmetric bidentates such as 

amino acid in cis-8 co-ordination, two geometric isomers are possible: cis-8, with the 

amino group in a trans-position to a terminal NH group of a trien ligand and cis-8, 

with the NH, group in a trans-position to the secondary N atom of the quadridentate. 

The structures of A-(—)sg9-cis-8-(R,R) and A-cis-B 1(R,S)-[Co(gly)(trien)]?* have 

been determined and the observed geometries adequately reproduced by strain ener- 

gy minimization (Buckingham, Cresswell, Dellaca, Dwyer, Gainsford, Marzilli, Max- 

well, Robinson, Sargeson and Turnbull, 1972). The total strain energy difference be- 

tween A-cis-8,;-(R,R) and A-cis-8 ,-(R,S) isomers is calculated as 3.4 kJ mol~! in 

favour of the R,R-isomer. The measured difference in AH, obtained from the temper- 

ature dependence of the equilibrium constant is less than 1.3 kJ mol~! which is in 

reasonable agreement. 

The structures of A-cis-8,(R,R,S)-[Co(S-pro)(trien) ]?* and A-cis-B,-(S,S,S)- 

[Co(S-pro)(trien)]?* are also known (Freeman and Maxwell, 1970; Freeman, Marzilli 

and Maxwell, 1970). The observed cis-8 co-ordination of S-proline agrees with the 

prediction that large non-bonded interactions would occur in the alternative cis-B; 

configuration. The major geometrical difference between the A-cis-82(R,R,S) and 

A-cis-B(S,S,S) isomers consists of the relative orientations of the proline moieties. 

In the A-cis-6,-(S,S,S) form the pyrrolidine ring is oriented toward the apical trien 

rings, whereas in the A-cis-8.-(R,R,S) form it is remote from the apical chelate ring. 

X-ray studies showed that the formation of the A-cis-82-(S,S,S) isomer is much more 

reasonable than originally expected from molecular models. The expected severe 

non-bonded interaction between the bulky pyrrolidine ring and the apical trien ring 

is alleviated largely by expansion of the bond angles. In fact, the measured free ener- 

gy difference between these isomers by equlibration on activated charcoal was only 

5.4kJ mol~! in favour of the A-cis-8.-(R,R,S) isomer. 

Ethylenediamine-N,N’-diacetic acid HO,CCH,HN—CH,—CH,—NHCH ,CO,H 

In octahedral complexes of the type [Co(edda)(L)], where L represents a bidentate 

ligand, the quadritentate ligand can co-ordinate in two ways: cis-a and cis-8. When 

the ligand is unsymmetric R-pn, four isomers are possible for the cis-B form. The 

structure of one of the four isomers, AAAA-cis, trans-(N—O)-cis-6-[Co(edda)(R-pn)] 

has been established by X-ray method (Halloran, Caputo, Willet and Legg, 1975). 

+ 
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The ligand edda is a fragment of the larger sexidentate edta. The absolute configura- 
tion of the two secondary N atoms is R and S. The glycinato-Co ring is not so 
strained as in [Co(edta)]~ (see p. 87), since there are only three fused chelate rings in 
the structure. 

4 Quinquedentates 

Structures involving only one quinquedentate, 1,4,7,10,13-pentaazatridecane(tetra- 
ethylenepentaamine) are known. There are four possible geometric isomers when this 
ligand forms an octahedral complex (Fig. 4.28). 

aa has a mirror plane if the conformations of the chelate rings are ignored and 
a8, 88 and 6 trans will have catoptromers. In addition to this, there is the possibility 
of the existence of diastereoisomeric forms arising from alternative configurations 
around the secondary N atoms. This leads to two diastereoisomeric forms for the 
a8 structure and four such forms for the B-trans structure (Snow, 1972). Several 
isomers of [CoCI(tetraen)]** have been isolated (House and Garner, 1966; Mazrzilli, 
1969). Structures of (+)54908S5- and (+)54908R-[CoCl(tetraen)]** were determined 
(Snow, 1972), where R and S refer to the configuration about the secondary N 
atom fusing the chelate rings in the same plane. They are shown in Fig. 4.29. The 
absolute configurations are both A and with reference to the ring numbering of Fig. 

POD 
aa B trans 

Fig. 4.28 Four possible geometric isomers of [CoX(tetraen) ]2* 

Fig. 4.29. (+)5 agaBR- and (+)5 49@BS-[CoCI(tetraen) ]2* (Snow, 1972) 



Sexidentates 83 

4.29 the rings in sequence I ~ IV have the conformations 5\A5 for the a8S and 

d5A5 for the aBR isomer. The calculations of the strain energy confirm the experimen- 

tal result that the a85 isomer is more stable by ca. 8.4 kJ mol~!. 

5 Sexidentates 

Sexidentate complexes of transition’metals whose structures are known may be clas- 

sified into three groups: i) those containing linear ligands, ii) those containing 

branched ligands and iii) cage compounds. 

1,14-Diamino-3,6,9,12-tetraazatetradecane(pentaethylenehexamine) 

H,N—CH,—CH,—NH—CH,—CH,—NH—CH,—CH,—NH—CH , -CH,—NH—CH,—CH,—NH) 

This ligand consists of two dien moieties linearly linked by an ethylene group be- 

tween the primary nitrogen atoms. The complex ion [Co(linpen)]** can exist in four 

geometric isomers which are shown in Fig. 4.30. In the isomer A, all the secondary 

amine groups are arranged in facial positions and can be designated as fff. In B, sets 

of three N atoms are arranged successively in facial (e, a, b), facial (a, b, c), meridional 

(b, c, d), and facial (c, d, f) positions. 
Thus starting from one end of the chain, this may be designated ffmf (or fmff). 

In the same way C and D can be designated fmmf and mffm respectively. The above 

designation, ffff, ffmf, fmmf and mffm can be written down as acbfed, acbfde, 

aebcdf and acfbed respectively by using the locant designators. The former notations 

have an advantage in that they can be used for catoptromers of unknown absolute 

configuration. When the absolute configurations of the secondary nitrogen atoms are 

taken into account, the number of co-ordinated isomers increases to eight: I, ffff- 

RSSR, II-1, ffmf-RSRS; 1-2, ffmf-RSSS, Ul, fmmf-SRRS; IV, fmmf-SSSS; V, 
mffm-RRRR; VI, mffm-RRRS; VII, mffm-SRRS, where R and S stand for the ab- 

Fig. 4.30. Four possible geometric isomers of [Co(lin- 

pen)]>* (Yoshikawa, 1976). Letters a ~ f are the locant 

designators according to IUPAC nomenclature (IUPAC, 

1971) 
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Fig. 4.31. (+)5g9[Co(linpen) ]3* (Sato and Saito, 1975b) 

solute configuration of the co-ordinated secondary N atoms and are written in the 
same order as that of f and m. All these isomers have been separated and resolved 
into catoptromers (Yoshikawa and Yamasaki, 1973). The characterisation was made 
by absorption, circular dichroism and pmr spectra. The two conformational isomers 
II-1 and II-2 can interconvert very rapidly in solution and could not be obtained in 
pure states. One of the isomers, I, (+)5g9[Co(linpen)]>* gave crystals suitable for 
X-ray work as hexacyanocobaltate(III) trihydrate. The structure is shown in F ig. 
4.31 (Sato and Saito, 1975b). This is a ffff isomer as expected. The absoulte con- 
figuration is AAAA and the conformations of the chelate rings are 6, A,5,A and 6 
in turn. The absolute configurations of the secondary N atoms are R,S,S,R. Three 
of the chelate rings assume unsymmetrical skew conformations and the remaining 
two are of an eclipsed envelope type. Since all the isomers except I were characterised 
by physical methods other than X-ray diffraction, strain energy minimization was 
carried out for all the possible isomers to check the results of characterisation. Table 
4.12 lists the final energy terms and formation percentage of the isomers (Yoshikawa, 
1976). The isomer, I, contains only the facial arrangement of the co-ordinating N 
atoms. Thus the bond angle strain is smaller than any others that contain meridional 
structures. The isomers III to VII, except V, show appreciably large angle bending 

Table 4.12. Final energy terms for the isomers of [Co(linpen) ]3* 
le 

Isomer Bond length Bond angle Torsional Non-bonded Total conforma- Formation 
deforma- deforma- strain interac- tionalenergy _ percentage 
tions tions tions 
ee A See 

I 5.8 LSet 42.9 38.9 102.6 kJ mol~! 9 
‘II-1 5.6 D3 41.0 S57 105.6 15 
II-2 6.1 22.8 BOM, 36.4 105.0 
Ill 5.6 5919 34.5 29:9 109.9 1 
IV 5.6 34.5 S257) 31.9 104.7 2 
Vv 5.8 22.8 36.1 3153 “el 47 
VI 6.7 33:1 SSH S22 105.0 2S 
Vil 7.4 333 33:3 36.1 LUSs7 3 re 
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H-1@0-2 , 
ou 

Vv 
log (formation percentage) 

100 710 720 Fig. 4.32. Plot of log (formation percentage) versus 

Energy (kJ/mol) minimized energy for the isomers of [Co(linpen) ]3* 

strain, since they contain two mer arrangements of N atoms. The strain in V seems 

to be alleviated by sacrificing the torsional energy. In Fig. 4.32 logarithms of the 

observed formation percentage of the isomers are plotted against the minimized 

total strain energies. As seen from the figure, a roughly linear relationship exists. (The 

formation percentage of II-1 and II-2 is assumed to be equal and is taken to be one 

half of the net formation percentage of the two conformers. Furthermore, each 

formation percentage is divided by 2 for statistical reasons.) As seen from the figure, 

a roughly linear relationship exists. Such a linear relationship supports the above 

assignments for the isomers. The relative high abundance of the isomers, VI and VII, 

when considered with their energies, may suggest a mechanism of formation and/or 

interconversion in which the very high stability of the isomer V seems to result in 

their excess formation. 

N.N,N’.N'-Tetrakis(2’-aminoethyl)-1,2-diaminoethane 

The ligand, pentene can function as a sexidentate giving complexes structurally related 

to those derived from edta. Figure 4.33 shows the complex ion, (+)5 g9[Co(penten)]>* 

(Muto, Marumo and Saito, 1970). Five five-membered chelate rings are formed in the 

complex ion. Roughly speaking three chelate rings, A, B and C form a girdle about 

H, N—CH,—CH, CH,—CH,—NH, 
__N-CH)—CHy Ne 

H, N-CH, —CH3 CH,—CH>—NH, 

the Co atom. Approximately at right angles to the girdle and to one another are the 

two remaining chelate rings D and E. The co-ordination octahedron is distorted owing 

to the constraints attending multiple, as well as, fused ring formation. The unique ring 

A takes unsymmetrical gauche form with 6 conformation. Those of the rings B, C 

and E are A, whereas that of D is 6. In the rings B and C, the two carbon atoms are 
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Fig. 4.33. (+)5g9[Co(penten)]3* (Muto, Marumo and 
Saito, 1970) 

on the same side of the plane formed by the Co and the two N atoms. The ring D 
takes an envelope conformation. Accordingly, the complex ion, as a whole, does 
not have a two-fold axis through the midpoint of the C_C bond of the ring A and the 
Co atom. The absolute configuration can be designated skew chelate pairs AAA. 

(—)N,N,N',N’-Tetrakis-(2'-aminoethyl)-1,2-diaminopropane 

H,N—CH,—CH, CH,—CH,—NH, 
~CH—CHy NT 

Hz N—CH,—CH; CH3 CH —CH,—NH), 

This ligand is a methyl substituted penten and forms an analogous Co(III) complex 
with [Co(penten)]**. The absolute configuration of (—)s5g9 [Co{(—)mepenten}]3* 
has been determined (Kobayashi, Marumo and Saito, 1974). The absolute configura- 
tion is AAA and catoptric to (+), g9[Co(penten)]>*. The structure of (—)sg9[Co- 
{(—)mepenten}]** resembles the mirror image of Fig. 4.33 with a substituted 
methyl group at C(8). However, the conformations of the chelate rings are not ex- 
actly the mirror image of (+). g9[Co(penten)]>*. The unique ring A takes X con- 
formation with the C-CH; bond in an equatorial position. The conformations of 
rings B and C are 6, whereas they are d in rings D and E. Thus the ring D takes the 
same conformation as (+)5g9[Co(penten)]>*. This may be due to the packing forces in the crystal lattice. The conformational analysis of these complexes had been car- tied out before these structures were determined by X-ray diffraction (Gollogly and Hawkins, 1967). The predicted structure can be summarized as follows. i) The methyl group is bonded in equatorial position. ii) Ring A has only one possible conforma- 
tions( for AAA absolute configuration and X for AAA and rings B and C have a single conformation type which nevertheless permits a small range of conformations 

with similar bond angles and torsional strains. iii) As to rings D and E, they can 
exist in either of two distinct conformations which experience similar structural strain. The observed geometries of the two complex ions agree well with these pre- dictions. 
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Ethylenediaminetetraacetic Acid 

HO,C-CH, CH,—CO;H 
—DN-CH)—CH,—N7_ 

HO C—CH} CH, —CO,H 

The structure of [Co(edta)]~ was determined by Wiekliem and Hoard. by X-ray dif- 
fraction (1959), however, its absolute configuration has only recently been establish- 

ed (Okamoto, Tsukihara, Hidaka and Shimura, 1973). (+)54¢[Co(edta)]~ has the 

absolute configuration AAA and the unique five-membered chelate ring takes \ con- 

formation. What makes the difference between this complex and [Co(penten)]** is 
the four glycinic rings. The two glycinic rings that form a girdle with the unique ring 

are strained and take envelope form, while the remaining two out-of-plane chelate 

rings are less strianed and nearly planar. 

Trimethylenediaminetetraacetic Acid 

HO, C—CH, CH,—-CO,H 
a a 

__N-CH,—CH, CH, —No 
HO, C—CH3 CH, 2COoH 

The ligand forms an analogous Co(III) complex. The potassium salt, K[Co(trdta)] - 
2H,0 resolves spontaneously (Ogino, Takahashi and Tanaka, 1970). (—)54¢[Co- 
(trdta)]~ is shown in Fig. 4.34. The complex ion has a rigorous two-fold axis of 
symmetry through the Co atom and the central C atom of the six-membered che- 

late ring. The shape of the complex ion is broadly similar to that of [Co(edta)]~ . The 

absolute configuration of the entire complex is AAA and the six-membered chelate 
ring assumes a twist-boat form with 5 conformation. The two glycinic rings in the 

plane of the six-membered ring exhibit significant departure from planarity and take 
envelope form. The other two glycinic rings in the plane nearly perpendicular to the 

girdle are approximately planar. 

Fig. 4.34. (—)546[Co(trdta)]~ (Nagao, Marumo and 

Saito, 1972) 
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Ethylenediamine-N,N’-diacetic N,N’-di-3-propionic Acid 

HOOC-CH,__ CH,—CH,—COOH 
__N-CH)—CHy—N—_ 

HOOC—CH,—CH} CH,—COOH 

es 

The sexidentate is analogous to edta. The complex ion (—)sg9[Cr(eddda)]~ takes 

the absolute configuration AAA (Helm, Watson, Radanovi¢ and Douglas, 1977). Co- 

ordination of the Cr(III) ion by eddda créates three five-membered chelate rings 

and two six-membered chelate rings. The five-membered acetate rings occupy trans- 

axial co-ordination sites, whereas the two-six-membered propionate rings lie in the 

same plane as the unique five-membered ring (in the girdle plane). 

¥ 

1,3,6,8,10,13,16,19-Octaazabicyclo[6.6.6]eicosane 

The octamine ligand acts as a sexidentate and encapsulate metal ions in its cage-shaped 
skeleton. The [Co(sep)]** salt was synthesized by condensation of [Co(en)3]** with 
formaldehyde and ammonia (Creaser, Harrowfield, Herlt, Sargeson, Springborg, Geue 

CH, —NH—CH, —CH, ~NH—CH_ 
N&CH ~NH—CH, ~CH,—~NH—CH) =N 

CH, -NH—CH,—CH, -NH—CH; 
and Snow, 1977). Figure 4.35 presents the (—)5g9(S)-[Co(sep)]** ion, where S refers 
to the secondary N atoms. The complex ion has an approximate D; symmetry and 
can be most easily described as a A(555)-[Co(en)3]** ion with the tris(methylene)ami- 
no caps added at both ends. The crystal structure analysis revealed that synthesis occurs 
with retention of the chirality of the [Co(en)3]>* ion. Molecular models suggested 
other possible conformations: a C3 /el and a D3 conformer has catoptric caps and the 
D3 conformers have caps of the same chirality. The strain energy differences of the 
conformers are 5.9, 5.9 and 0 kJ mol~!. The calculations indicate that the conformer 
shown in Fig. 4.35 is not the most stable one and it is probably stabilized by hydrogen 
bonding to lattice Cl~ ions. [Co(sep)]** can be easily reduced to {Co(sep)]?* and 
reoxidizes to [Co(sep)]** again with the retention of its chirality. The electron transfer 
rate is 10° fold greater than that for [Co(en)3]**. The reason for this difference is not 
yet well understood. 

Fig. 4.35. (—)5g9(S)-[Co(sep)]3* 



Chapter V Electron-Density Distribution 
in Transition Metal Complexes 

1 Introduction 

If we wish to gain insight into the question of what happens when an atom unites with 

another atom to forma molecule, one of the most direct ways may be to examine the 

changes which the electronic charge-densities undergo in a process of bond formation. 

To obtain a measure of this change one can construct a molecule which would result if 

the atoms making up the molecule were united without perturbing each other, i.e., 

with spherical charge-density around each nucleus. One can then characterise a chemi- 

cal bond by the function: 

6p(R) = py (R) — pa(R) (5.1) 

pu (R) is the electronic charge-density of the molecule M, at some point in space R 

and pa (R) is the electronic charge-density at the same point which would occur if the 

constituent atoms were simply superposed at the molecular equilibrium distance, leav- 

ing the molecular geometry unchanged. Thus 6p(R) is positive in regions of the mole- 

cule where the charge-density has accumulated and negative where charge-density has 

moved away. Since net charge is conserved, the integral of 5p(R) over all space is zero. 

When the molecules assemble together to form crystals, py (R) is replaced by the elec- 

tron-density distribution in the unit cell, which is given by a Fourier series, Eq. (2.15) 

in Chapter II: 

pu (R) = Po (xyz) = 1/V Z| Fo(hkD| cos [21(hx + ky + Iz) — a(hkl)] (5.2) 

This can be calculated on the basis of observed structure amplitudes at the final stage 

of the crystal structure analysis. On the other hand, p, (R) can be given as a Fourier 

series with calculated structure amplitudes as coefficients: 

pe(xyz) = 1/V X|Fe(hkD| cos [2a(hx + ky + Iz) — a,(hkl)] (2.5) 

where 

F.(hkl) = & fi(hkl) exp 2ni(hx + ky + Iz) (5.4) 
j 

In this equation f;(Hk/) is the usual spherical atomic scattering factor. Thus 
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Pa(R) = pe (xyz) 

and 

6p(R) = D(xyz) = 1/V Z| Fo(hkl) — Fe(hkl)| cos [2(hx + ky + Iz) — a,(hkl)] (5.5) 

D(xyz) is called “difference synthesis” which is familiar to X-ray crystallographers. 
Difference synthesis is used to refine atomic parameters during the process of the 
structure determination and at the final stage it gives us valuable knowledge of the 
asphericity of electron density. 

The effective charge of an atom in a molecule can be estimated by direct integra- 
tion of the observed electron-density given by Eq. (5.2) in an appropriate volume, Yj, 
around each atom: . 

ny =S Sf S e(xyz)Vdxdydz (5.6) 

where 

p(xyz) = 1/V LXZ|Fo(hkl)| cos [2n(hx + ky + Iz) — (hkl). 

For instance, the number of electrons in a sphere of an arbitrary radius R around an 
atom, C(R), can be easily calculated (Sakurai, 1967). In this way, an effective charge 
of the central metal atom of a number of complexes has been determined which will 
be described later. It is difficult to allocate an appropriate volume to each atom, since 
n, Clearly depends upon the choice of this volume. 

Another approach to the problem is the least-squares refinement of the atomic 
charge-density on the basis of observed structure amplitudes, which is called “elec- 
tron-population analysis”. The atomic scattering factor f; in Eq. (5.4) is rewritten as 
a sum of the contribution of core and valence electrons: 

Sj = fi(core) + Difi(valence) (5.7) 

where p; is an adjustable parameter and measures the population of valence electrons. 
The population of the valence shell can then be determined by least-squares methods 
after the positional and thermal parameters have been obtained from a conventional 
least-squares refinement. This was first proposed by Stewart (1970) and called the 
L-shell projection method. Coppens and his collaborators extended this procedure 
by refining simultaneously all structural and thermal parameters as well as the popu- 
lations in the valence shell (1971). In addition the total number of electrons was 
constrained to be constant in order to keep the crystal neutral during the refinement 
(the extended L-shell method). One shortcoming of this procedure is that the popu- 
lation parameters depend upon the choice of atomic wave function on the basis of 
which the core and valence scattering factors are calculated. 

The method is further refined and its application will be illustrated later. 
Although it has long been recognized that X-ray diffraction determines the 

electron distribution rather than the atomic positions in a crystal, relatively little 
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attention has been given to a detailed study of charge distribution. This is because 
most experimental data have not been of sufficient quality for such a study. With 
the advent of automated four-circle diffractometers and the advance of new data 
processing techniques both the quantity of data and their quality have improved. 
Earlier studies were limited to those compounds of lighter elements such as simple 
organic molecules or metals in the case of heavier elements. Since the 1960’s the ob- 
servation of the effects of bonding electrons has accumulated on organic compounds 
(Coppens, 1977), however, studies on charge densities in co-ordination compounds 

have only just been initiated. 

As mentioned above the intensity data must be of a good quality. Some atten- 

tion will now be given to the problems to be faced in obtaining good enough inten- 

sity data to warrant charge density analysis. Not all crystals are suitable for an ac- 

curate study. The crystal should be stable in air and under X-irradiation. It should 

give sharp diffraction patterns even at higher Bragg angles. The Fourier series given 

by Eq. (5.2) is an infinite series and as many intensity data as possible must be col- 
lected to minimize termination effects. If the crystal specimen is cooled, the thermal 

vibration is reduced and the intensity of X-ray reflexion at high Bragg angle is in- 

creased which is often too weak to be measured at room temperature. 

The intensity of X-ray ismeasured by scintillation counter. As is well known, 

when N counts are made in a given time, t, the standard error due to statistical 

fluctuation is N'/* . Thus the diffracted beam intensity (the energy per unit time 

passing through unit cross section perpendicular to the diffracted beam) is pro- 

portional to N/t with a fractional standard error of N~Y*. The weak reflexions are 
measured repeatedly to reduce the standard errors. 

The observed structure amplitudes are obtained from a set of measured inten- 

sity of reflexions after applying various corrections. 

E(hkl) = C |F(hkl)|? (5.8) 

where E(hk/) is the total energy received by a counter during one Bragg reflexion 

and C represents various correction factors. In addition to factors concerning the 

geometry and other conditions of the experiment, the following corrections must 

be considered: 

i) When X-rays pass through a material their intensity is attenuated by absorp- 

tion. An incident beam entering a crystal as well as the emergent diffracted beam 

would be attenuated by absorption. This effect can be corrected readily if the shape 

and size of the crystal specimen and the absorption coefficient are know. 
ii) The expression (5.8) will only hold for minute, almost submicroscopic 

crystals of the order of 10~> cm in diameter. If ordinary macroscopic crystals (usual- 

ly with a dimension of about 0.2 mm) are perfect throughout their volume, inter- 

action of the incident beam with the diffracted beam in the crystal results in a de- 

structive interference and the total energy of reflexions is less than that indicated by 

Eq. (5.8) and is proportional to |F(hk))| (not its square). It is found however that 
Eq. (5.8) is in fact applicable, to many single crystal specimens providing allowance is 
made for this effect, called primary extinction. It is believed that the crystal behaves 

as if it consisted of a number of blocks, each block being a perfect crystal but adja- 

cent blocks not accurately fitting together (mosaic structure). This imperfection is 
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perhaps connected with crystal dislocations accompanying crystal growth. The inten- 
sities of the strongest reflexions are reduced sometimes by a “secondary extinction 
effect”. The top layer of a crystal, i.e. the part nearest to the incident beam reflects 
away an appreciable proportion of the primary beam, thus in effect partially shield- 
ing the lower layers of the crystal: the strongest reflexions are experimentally less 
strong than they should be in comparison with the weaker reflexions. The secondary 
extinction effect depends upon the distribution of the shape and size of the mosaic 
blocks and their mode of alignment. The extinction effects are not yet fully under- 
stood and the theory is based on a rather artificial mosaic block model. Methods for 
correcting extinction effects have been proposed (for example, see Coppens and 
Hamilton, 1970). 

iii) Atoms in crystals undergo thermal vibrations with very low frequencies 
compared to the sort of transmission time of X-rays in crystals. For this reason we 
may imagine that, at any instant of time, the diffraction pattern produced is that of 
a “frozen crystal” in which all the atoms are stationary and displaced randomly at 
some distance from their equilibrium positions. The total intensity of reflexion 
measured over any long period of time is a time average of patterns which are ob- 
tained at successive instants. Thus thermal vibration has the effect of smoothing out 
the charge-density distribution. An obvious way to reduce this effect is to collect the 
intensity data at low temperatures, where the thermal vibrations are suppressed. The 
second way of avoiding this effect is to use crystals in which thermal vibration ampli- 
tudes are very small even at room temperatures. Examples of such crystals are double 
oxides such as spinel and some actual examples will be described later. 

iv) The atomic positions are usually obtained by the least-squares fit between the 
observed and calculated X-ray structure amplitudes. Calculation of the structure 
amplitudes is based on the spherical atomic scattering factor and the deformation of 
charge-density from spherical distribution is neglected. Thus the atomic parameters 
will be biased where atoms are placed in an asymmetric environment, like terminal 
oxygen atoms, nitrogen and especially hydrogen atoms. The atomic parameters ob- 
tained from neutron diffraction data are, however, quite free from the bias men- 
tioned above, since neutron interacts with atomic nuclei rather than with the elec- 
tron clouds around the nuclei. Accordingly, the atomic parameters based on neutron 
diffraction data are used for the calculation of Pc. Such syntheses are called K—N 
syntheses and frequently used. It is, however, possible to obtain good approximation 
to X—N synthesis on the basis of X-ray data, without recourse to expensive neutron 
diffraction experiments. The theory of X-ray scattering indicates that the intensity 
of high angle reflexions is almost exclusively determined by the core electrons of the 
atoms and relatively unaffected by the valence density. Thus the reasonable way of 
obtaining the deformation of electron-density due to bonding exclusively from X-ray 
data would be to employ the atomic parameters obtained on the basis of high angle 
‘X-ray diffraction data for the calculation of P¢(xyz). The results obtained for the X- 
ray and neutron studies on identical transition-metal complexes indicated that these 
two difference densities resemble each other quite closely. The same consideration is 
applicable to electron population analysis. 
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2 Earlier Work 

Prior to discussion of the recent advances gained with regard to transition-metal 
complexes, some important results obtained by earlier workers will be described in 
order to show how the electron-density distribution changes according to the nature 
of the bonds in crystals. Figure 5.1 is the electron-density distribution of sodium 
chloride (Witte and Wélfel, 1955). The contour lines are circular, indicating that the 
electron clouds around the atomic nuclei are spherical. Between the region of Cl and 
Na, the electron-density is zero. Electron clouds are not continuous. The number of 
electrons was estimated by integration of p(xyz) over a reasonable volume. It was 
shown that the number of electrons around Na is 10.1 and that around Cl is 17.8. 
The atomic numbers of Na and Cl are 11 and 17 respectively. The result indicates 
that the sodium atom is in the state Na* and the chlorine atom is in the state Cl-. 
Thus sodium chloride is composed of Na* and Cl7 ions, which may be condisered 
as incompressible spheres and are usually only slightly polarised by the ions of op- 
posite charge. This is a typical ionic crystal. The crystals of NaCl are hard and have a 
high melting point, because the ions are held together by electrostatic forces. The 
ions cannot move in the crystal lattice, thus the crystal is an insulator. When NaC] is 
dissolved in water or molten, the ions can move and the aqueous solution or the melt 
is conductive. 

With regard to results obtained for metals, aluminium for instance, crystallizes in 
a cubic face-centred lattice, i.e. cubic closest packing of spheres. The results of ac- 
curate determinations of the electron-densities can be summarised as follows 

Fig. 5.1. Electron-density section in a NaCl crystal through the plane xyO (Witte and Wélfel, 
1955). Numerals indicate e A= 
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free electrons 

Fig. 5.2. Free electron model of a metal 

(Bensch, Witte and Wélfel, 1955; Brill, Hermann and Peters, 1944; Bensch, Witte and 

Wolfel, 1954): Unlike NaCl, the electron-density does not reach the value zero any- 

where in the lattice. The background density is 0.18e A~*. This density corresponds 

to about 3 electrons per aluminium atom uniformly distributed throughout the lat- 

tice. By integration over the spherical atom a total of 10.2 electrons per aluminium 
atom was obtained. This result is close to the 10 electrons for the Al?* ion. Such 
electron-distribution in a metal agrees well with*the suggestion made by Lorentz that 
a metal consists of an array of cations in a sea of free electrons (Fig. 5.2). “Free elec- 
trons’ can move about from atom to atom, thus accounting for electrical conductiv- 
ity, and can respond to electromagnetic waves, thus accounting for the reflection of 
light. 

Figure 5.3 illustrates a diamond structure, in which a carbon atomis tetrahedrally 
bonded to four others. They are bonded covalently by electron pairs which occupy 
localised molecular orbitals formed by overlapping sp* hybrids. The four carbon 
atoms A, B, C and D are on one plane. Figure 5.4 shows the section of the difference 
synthesis through this plane. There is a positive peak with height 0.51 e A~> between 
the carbon atoms, indicating that the electron density has moved to the centre of the 
bond. This peak is due to o-bonding electrons (Gottlicher and Wolfel, 1959). 

Fig. 5.3. Diamond structure 

Fig. 5.4. The section of the difference syn- 
ek thesis of a diamond crystal through the plane 
gf oo of carbon atoms formed by A, B, Cand D 

(20) (x9 shown in Fig. 5.3 (Géttlicher and Wolfel, 
1959) 
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3 Charge-Density Distribution in Transition-Metal 
Complexes: Preamble 

Two important features are revealed by an accurate study of charge-density distribu- 
tion in transition-metal complexes: the nature of the metal-ligand bond and the be- 
havior of d-electrons in the ligand field. 

i) Metal-Ligand Bonds 

A co-ordination bond is formed by sharing an electron-pair between a metal atom 

and a ligand. The electron pair is donated by the ligating atoms. One important fac- 

tor that affects the stability of the bond is the partial ionic character. Another fac- 

tor may be the multiple bond character of the metal ligand bonds. Let us consider 

hexaamminecobalt(III) ion, [Co(NH3),]°" . If the Co-N bond were ionic, the elec- 

H3 H3 
N N* a 

H3N: :NH3 H3N?: "3 NH3 
ewe Coat H3N: ~~ :NH3 H3Nt: ~° : NH3 
N Nt 

H3 H3 

tric charge 3+ would be located on the cobalt atom, and if they are extremely cova- 

lent in nature, the cobalt atom would have the charge 3— and each nitrogen atom 

the charge 1+. Such charge distribution may be unstable and the bond may in fact, 

have partial ionic character. 

ii) d-Electron Distribution in a Ligand Field 

When a transition metal ion is surrounded octahedraliy by six ligating atoms, the 

five-fold degenerate 3d levels have no more equal energy but split into an upper 

doublet eg and a lower triplet t2,. Figure 5.5 compares the environments of d,2_ y2 

and d,y orbitals placed in an octahedral arrangement of six ligating atoms. By sym- 

metry, the ligating atom along the z axis influences the d,2_ 2 and d,, orbitals to 

the same extent, but the situation for those on the x and y axis is clearly different. 

The electrons in the d,2_ 2 orbital are repelled more strongly by the ligating atoms 

than those in the d,y orbital. Similar consideration for other orbitals leads to the 
conclusion mentioned above and the resulting energy level schemes are shown in 

Fig. 5.6 (a). Next consider the case of a transition-metal ion placed in a tetrahedral 
environment (Fig. 5.6 (b)). Comparison of Figs. 5.5 and 5.7 at once reveals that the 

dyy, dyz and d,, orbitals are destabilised to a greater extent than the d,2 and 

d,2_y? orbitals, leading to the energy level schemes shown in Fig. 5.6(b). 
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de say 2 d,? dry dye , ez So eg Sa 

Geiger Gee dx? y?, Gea ee By ——— 
a 

(a) (b) 

Fig. 5.6. Energy level schemes for (a) octahedral and (b) tetrahedral co-ordination 

Fig. 5.7. The dy?_ y2 and dyy orbitals in a tetrahedral environment 

In the language of molecular orbital theory, a more realistic physical picture of 
the interaction between ligand and inetal is based on the recognition that the 
atomic orbitals necessarily become mixed to form molecular orbitals when the 
nuclei approach to within a few Angstroms of one another. It is immediately clear 
that there can be no net overlap between a t2,'*) orbital on the metal and ao orbit- 
al of a ligand lying on one of the co-ordinate axes (Fig. 5.8). 

13 Lower case letters e and t are used when referring to energy states or orbitals whereas upper 
case F and T are reserved for symmetry species. 
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e 

Kes %-orbital of a ligand 

Fig. 5.8. Zero overlap of a tzg orbital 

with a o orbital on one of the co-ordi- 
a metal atom nate axes 

Now we consider the charge-density distribution of tog and e, orbitals. Neglect- 
ing the radial part, the angular part of the five d orbitals are: 

dy = (15/167)? sin? @ sin 26 
dy, = (15/47)? sin 6 cos @ sin ¢ 
dx = (15/42) sin @ cos @ cos ¢ 

d,2 = (5/16m)"? (3 cos? @ — 1) 
d,2_ y2 = (15/167)? sin? @ cos 2¢ 

By squaring and adding, the total charge density of ty, and eg orbitals are obtained 
as follows: 

tzg orbital charge density = dy + d?, + d3, 

= (15/167 sin? 6 (4 cos? 6 + sin @ sin? 2y) (5.9) 

(a) (b) 
& 

Fig. 5.9. tag and eg orbital charge density (a) tzg, (b) eg 
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€, = orbital charge density = d,2 + d,2 _ y2 

= (5/167) (3 sin* @ cos? 2y + 9 cos* 6 — 6 cos? 6 + 1) (5.10) 

By differentiation with respect to @ and y, one can easily verify that ty, orbital charge 
density has eight lobes on the diagonals of a cube and that eg has six lobes pointing 
towards the faces of a cube as shown in Fig. 5.9. 

4 Charge-Density Distribution in Transition-Metal 
Complexes 

A. [Co(NH3)6][Co(CN)g] 
* 

The crystal contains two types of the most familiar and fundamental complex ions of 
cobalt(III). Figure 5.10 shows the packing diagram of the complex salt. The crystal is 
ionic and the complex cations and anions are arranged like the ions in caesium 
chloride. The ions are held together by hydrogen bonds between N—H and the 
nitrogen atom of a cyanide group. They are shown by dotted lines in Fig. 5.10. The 
number of electrons in a sphere of radius R around the cobalt atom was computed 
by direct integration of the observed electron-density, The standard deviation of the 
observed electron-density at the general position is 0.06 e A~? and that at the metal 
site is 0.2 e A~3. The result is shown in Fig. 5.11. The observed curve for [Co- 
(NH3)6]°* agrees well with the calculated values obtained by means of the Thomas- 
Fermi method (Kamimura, Koide, Sugano and Tanabe, 1958). The original result is modified for the effect of thermal vibration, the root-mean squared amplitude of 
vibration being 0.12 A. The number of electrons around the cobalt atom in [Co- (NH3)¢]** in a sphere of radius 1.22 A (covalent radius of cobalt) is 26.3 + 0.3. In Table 5.1 the number of electrons determined from C(R) for the two complex ions and from the least-squares fitting of the scattering factor curves is compared with the calculated values. The number of electrons around the cobalt atom in the complex 

Fig. 5.10. A packing diagram of [Co(NH3)¢] 
{Co(CN) 6] (Iwata and Saito, 1973) 
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50 
C(R) 

Fig. 5.11. Number of electrons in a sphere of 

radius R 

_____ observed value for [Co(NH3)6]>* 

— — — calculated value for [Co(NH3)6]?* 

—-—:— observed value for [Co(CN) 6]>— 

(Iwata and Saito, 1973) 

cation, [Co(NH3).]°*, is in good agreement with the calculated values. The nature 

of the electron cloud about a nucleus, however, makes it difficult to define the size 

of an atom. Thus the covalent radius of an atom has no precise physical significance. 

As will be described below, there is a peak due to bonding electrons between the 
metal and the ligating atom. Accordingly, if the covalent radius is replaced by the 

distance from the nucleus to the bonding electron-density peak, the concept of 

“charge density of the central metal atom” will be much clearer. Table 5.2 lists the 

effective charge of the central metal atoms in [Co(NH3)¢]** and [Co(CN),]>~ de- 
fined in this way, together with those obtained for other complexes. The results 

listed in Tables 5.1 and 5.2 indicate that the central metal atom is largely neutralised 

by electron donation from the ligating atoms. The effective charge on the metal 

atom is about +0.5 e in [Co(NH3)¢]** . More detailed electron population analysis 

revealed that the effective charge on NH; is about +0.5 e (Iwata, 1977). This means 

that the charge 3+ of the complex ion, [Co(NH3)¢]°" is distributed on six ammonia 

groups (mainly on eighteen hydrogen atoms). Such charge distribution is consistent 

with that on a macroscopic body: when one gives electric charge to a body, the charge 

distributes on the surface. These results indicate that Pauling’s electroneutrality 

tule holds for transition metal complexes (1960). The ionicity of the metal ligand 

bond is thus ca. 50%. 

Table 5.1. Number of electrons around the cobalt atom 

eee 

Direct integration Least-squares Kalman and Kamimura 

of electron density fitting of scat- Richardson et al. 

tering factor (1971) (1958) 

curves 

ee ee eee 

[Co(NH3)6]3* 26.3 + 0.34 26.2 + 0.1 26.4 25.9 

[Co(CN)6]>* 26.8 + 0.3 26.6 + 0.1 — = 
ee ee 

a Within a sphere of radius 1.22 A 
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Fig. 5.12. Section of final difference synthesis through 
a Co—N bond and a three-fold axis of [Co(NH3)6]3* in 

crystals of [Co(NH3)¢6][Co(CN) 6] (Iwata and Saito, 
1973). An arrow indicates the three-fold axis. The solid 

contours are at intervals of 0.1 e A~3. Negative con- 

tours are dotted, zero being chain dotted 

Figure 5.12 shows a section of the final difference synthesis containing a three- 
fold axis of the complex ion and a Co—N bond. A maximum appears between cobalt 
and nitrogen atoms while there are minima on either side of the bond. The height of 
the positive region between the cobalt and nitrogen atoms is approximately 0.30 e 
A? and the minima range from —0.20 to —0.40 e A~?. Such an arrangement of 
maxima and minima suggests that electron density has moved to the centre of the 
bond due to donation of the lone pair electrons from an ammonia molecule. The 
four maxima around the cobalt atom are due to the asphericity of 3d electron distri- 
bution in the octahedral ligand field, which will be discussed below. The correspond- 
ing section of the difference synthesis of [Co(CN),]°~ is presented in Fig. 5.13. The 
arrangement of the maxima and minima in the section is much the same as that ob- 
served for [Co(NH3)]>* . However, the residual electron densities between Co and C 
and between C and N are much more elongated perpendicularly to the bonds than is 
observed for the Co—N bond. The difference Fourier sections bisecting the bonds are 
presented in Fig. 5.14. The elongations may be ascribed to d, — p, and p, — Dz 
overlap respectively. The section of the C—N bond shows a distribution like a torus 
around the bond, the maximum density of the torus being about 0.10 e A~3 witha 
radius of about 0.7 A. It can be seen that the 7-lectron density calculation on the 
basis of a wave function of the form (2p,.) =.Nx exp (—cr/2) shows a maximum of 

Fig. 5.13. Section of the final difference Fourier 
synthesis through a Co—C—N bond and a three- 
fold axis of [Co(CN)6]3~. An arrow indicates 
the three-fold axis. The scale is the same as in 
Fig. 5.12 (Iwata and Saito, 1973) 

Fig. 5.14. Difference Fourier sections bisecting 
the Pore: The contours are at intervals of 0.05 e a~ 
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Fig. 5.15. Section of difference Fourier synthesis through a C—N bond and a hydrogen atom 

hydrogen bonded to the nitrogen atom. The contours are at intervals of 0.05 e Kae. Negative 

contours are broken, zero being chain-dotted (Iwata and Saito, 1973) 

0.12 e A~3 at 0.70 A from the midpoint of the carbon and nitrogen atoms (Coulson, 

1961). Similar features have been observed in the residual electron-density maps of 

other organic compounds (for example, Mathiews and Stucky, 1971; Tsuchiya, 

Marumo and Saito, 1972; Tsuchiya, Marumo and Saito, 1973). Another interesting 

feature is observed in the section through a cyano group and a hydrogen atom bonded 

to the nitrogen atom of the cyano group, which is shown in Fig. 5.15. A small peak 

indicated as A lies at 0.75 A from N(1) and slightly off the line through the C—N(1) 

bond. Though not significant, this small peak appears to be due to the localized 

nitrogen lone pair directed towards H(3). 

B. [Co(NH;3)6 \LCr(CN J] 

Figure 5.16 shows sections of the difference synthesis of [Co(NH3)¢][Cr(CN)g] at 

80 K. (a) and (b) correspond to Figs. 5.12 and Fig. 5.13 respectively. At 80 K, 

amplitudes of thermal vibrations of atoms were reduced to about two-thirds of 

those at room temperature. The bonding electrons are clearly seen in the sections 

through the Co—NH3, Cr—C and C—N bonds. In particular the section of the C—N 

triple bond shows two circular sections of a torus shaped charge distribution of the 

Pa — Pa bond. 

Co N 

Fig. 5.16. Sections of the difference map of [Co 

(NH3)6][Cr(CN) 6] at 80 K. (a) a section through a 

Co—N bond and the three-fold axis (4); (b) a section 

through a Cr—CN bond and the three-fold axis. Con- 

tours are at 0.1 e (ge intervals; negative contours are 

drawn by dotted lines, zero being chained. The crosses 

indicate atom positions (Iwata, 1977) 
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C. Asphericity of d-Electron Distribution in [Co(NH3 )5 |[Co(CN ) 6] and 
[Co(NH3)¢ ][Cr(CN)¢] 

The aspherical charge distribution of transition metal atoms in complexes was first 
detected by Iwata and Saito for [Co(NH3)¢][Co(CN)¢]. The residual electron density 
map shown in Fig. 5.12 corresponds to a section through a face diagonal of the cube 
formed by eight residual peaks due to six 3d electrons in the non-bonding fz, orbital 
of [Co(NH3),]** (See Fig. 5.9). There are four peaks at 0.45 A from the cobalt 
nucleus with a peak height of 0.3 e A~3. In fact, eight peaks are arranged approxi- 
mately at the corners of a cube around the cobalt nucleus as predicted theoretically. 
Similar features are observed for [Co(CN),¢]>~ (Fig. 5 .13). The positions of the 
maximum density of tz. orbitals for a free cobalt atom lie at 0.35 A from the 
nucleus (Clementi, 1965). This distance generally increases when the atom is placed 
in a ligand field. For instance, in NiO this distance increases to 0.6 A (Watson and 
Freeman, 1960). Shull and Yamada showed by neutron diffraction that the maxima 
due to 3d electrons are located at 0.5 A from the nucleus in Fe crystals (1962). 

The asphericity of d electron distribution observed for [Co(NH3)¢]** and 
[Cr(CN),¢]?~ at 80 K [Fig. 5.16 (a) and (b)] differs considerably from the asphericity 
at room temperature (Figs. 5.12 and 5.13). The reason is that the symmetry of the 
complex ions (as well as the site symmetry) is not octahedral O,, but, in fact, trigonal 
C3;, although the deviation from regular octahedral symmetry is very small: NCoN’ = 89.50 + 0.03", CCrC’ = 90.16 + 0.04°, where the primed atoms are related to 
those without primes by a three-fold axis. Under such trigonal field the ty, orbital 
further splits into a lower singlet a, and a doublet eg. This situation is more clearly 
reflected in the difference synthesis at 80 K than at room temperature, since the 
asphericity is blurred owing to the thermal vibration of atoms. In Fig. 5.16 (a) and 
(b) the peaks on the three-fold axis are higher and the maxima are closer to the 
metal atoms. On closer examination of Figs. 5.12 and 5.16 one can see that even at room temperature the distribution of the eight peaks is not regular octahedral but distorted trigonally to a small extent: the peaks on the three-fold axis differ slightly from other peaks. Further detailed analysis of the charge distribution has been car- ried out (Iwata, 1977). 

D. K2Na[Co(NO,)g] 

The compound is non-stoichiometric. The ideal empirical formula is K,Na[Co(NO,)¢]. The crystal structure is cubic and cryolite in type. Na* and [Co(NO3)¢]3~ ions are arranged like the ions in sodium chloride and the potassium ions are located at the centre of a cube formed by four Na* and four [Co(NO,)_]3- alternately occupying eight corners of the cube. The crystal specimen used for this work has the composi- tion: Ky 64Nay 36[Co(NO>)¢] and the excess sodium ions were found to occupy the K-site randomly (Ohba, Toriumi, Sato and Saito, 1978), Six nitro groups co-ordinate to Co(III) octahedrally with a Co—N distance of 1.952 A. Fig. 5.17 (a) shows a section of the final difference synthesis through the cobalt atom and the two three- fold axes of rotation, which corresponds to Fig. 5.12 and Fig. 5.17 (b) is a section 
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wa 

A : 

RQ (a) 

Fig. 5.17. Final difference synthesis 

of [Co(NO)6]?~. (a) A section 
through Co and the two three-fold 

axes. (b) A section through the plane 

perpendicular to the Co—N bond at 

0.246 A from the cobalt nucleus. 

Contours are drawn at intervals of 

0.2 € A~3 in (a) and (b) (Ohba, 
Toriumi, Sato and Saito, 1978) 

through the plane perpendicular to the Co—N bond and at 0.246 A from the cobalt 

nucleus. This is a section through the cube face formed by the residuel electron- 

density peaks. Eight peaks with heights of 1.7 (0.1)'® e A”? are arranged at the 

eight corners of a cube at 0.43 A from the cobalt nucleus. This feature is exactly the 

same as that predicted by ligand field theory for 3d electrons in non-bonding orbitals. 

A peak due to bonding electrons is located on the Co—N bond at 1.43 A from the co- 

balt atom. A simple molecular orbital model for the NO2 group can be constructed 

14 Number in parentheses stands for the estimated standard deviation. 
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Px 

ai 5 ZB NSS" 

(J eae 
Py? 

hy? Fig. 5.18. A simple molecular orbital 
model of NO 

as follows: The NO group is planar with the nitrogen atom at the centre and has 
a ONO angle of about 120°. The valence state of N must be described in terms of 
three similar hybrid orbitals pointing towards the corners of a regular triangle. Such 
orbitals of the N atom can be formed by mixing the 2s atomic orbital and two 2p 
atomic orbitals, say 2p, and 2p, ; the hybrid orbitals lie in the yz plane of the latter 
and are precisely equivalent (Fig. 5.18). If these hybrids are denoted by h,, hy and 
h3, the appropriate nitrogen valence state must be N(is?, hi ,h},h}, 2p?). N(h?) 
forms a lone pair and its lobe is oriented toward the cobalt atom to form a co-ordina- 
tion bond. The relevant orbital on the O atom is the digonal hybrid formed by 2s 
and 2p, (z referring to the N—O axis) and the valence state is O(\s?, hy : ha: 2pi, 
2p;), where h, and hy denote the two lobes of the digonal hybrids. O(h3 ) forms a 
lone pair located at the rear of the O atom with respect to the N atom. O(2p;) is also 
a lone pair and the lobes are perpendicular to the N—O bond and in the plane of the 
nitro group. The N(h} ) orbital overlaps with O(h}) to form a o-bond and N(2p}) and 
O(2px) overlap to form a 1-bond. An excess electron is delocalised on both O(2p,) 
orbitals: 

Figure 5.19 shows a section of the difference synthesis through the plane of a 
NO) group. The distribution of the residual electron density agrees well with the 
simple picture outlined above. A bonding peak with height 0.32 (0.1) e AW 3 is ob- 
served between N and O atoms and two peaks are located on a line through the O 
atom and perpendicular to the N—O bond. They may be ascribed to 2p} lone pair 
electrons; however, the peak heights are unequal; a peak in the ONO angle of 0.4 
(0.1) e A~3 is much higher than the other one outside it 0.2 (0.1) e A~3. This is 
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Fig. 5.19. A section of the final difference synthesis through a nitro group. Contours are drawn 

at intervals of 0.1 e A~> (Ohba, Toriumi, Sato and Saito, 1978) 

(\ be-c Le i ae a) “= | { im? ac 

Fig. 5.20. A section of the difference synthesis through an N—O bond and perpendicular to the 

NO, group. Contours are drawn at intervals of 0.1 e A~3 (Ohba, Toriumi, Sato and Saito, 1978) 

because a sodium ion lies on the Co—N axis at 5.12 A from the Co atom and the elec- 

trostatic interaction between Na’ and the lone pair electrons stabilises the lobe in the 

ONO angle. 
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A peak near the O atom on N—O axis resembles lone-pair electrons in one of the 
two digonal hybrids, however, its significance is low, since such a peak near the O 

atom is seriously affected by the errors of the positional parameters of the O atom. 

Fig. 5.20 shows a section of an N—O bond perpendicular to the plane of the NO, 

group. The bonding electron in the N—O bond is largely extended perpendicularly 

to the plane of the NO, group, giving two peaks of 0.3 (0.1) e A? at 0.31 A above 

and below the plane of the group. This feature may indicate that the N—O bond is 

m-bond in character. Charge density distribution around the cobalt atom is very 
similar to that of [Co(NH3),]3*. The number of electrons within a sphere of radius 
1.22 A is 26.3 (0.1) e. Effective charge on each atom was estimated as follows: N, 
—0.07 e; O, —0.22 (0.02) e. 

. E. Charge Distribution in Spinels 

The asphericity of d electron distribution in a ligand field can be more clearly ob- 
served in spinel crystals in which thermal vibration amplitudes of the constituent 
atoms is small (r.m.s. amplitude is 0.07 A on the average, while it is about 0.1 A in 
transition metal complexes). The spinels are minerals with the empirical formula 
AB, Og. There are 2:3 spinels containing A** and B** ions, and 4:2 spinels con- 
taining A** and B?* ions. In a normal 2:3 spinel structure, the array of oxide ions 
forms a cubic close packed structure and each B>* ion is surrounded octahedrally 
by six oxide ions and each A** ion is tetrahedrally surrounded by four oxide ions. 
The asphericity of d electron distribution was observed first in a 4:2 spinel, y- 

C1107 

Fig. 5.21. The section of the dif- 

ference Fourier synthesis through 

the plane y = x of y-Ni2SiO4. Con- 

tours are at intervals of 0.2 e A~3. 
Zero contours are in broken lines, 

and negative contours are dotted 

(Marumo, Isobe, Saito, Yagi and 

Akimoto, 1974) 
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Ni,SiO, (Marumo, Isobe, Saito, Yagi and Akimoto, 1974). The compound has a 

strictly normal spinel structure, in which the Ni2* ion is surrounded octahedrally by 

six oxygen atoms and Si atoms have tetrahedral sites. A section of the difference 

Fourier map through the plane y =x is shown in Fig. 5.21. All the crystallographical- 

ly independent atoms and chemical bonds in this structure appear in this section. 
One Ni-O bond is shown in the figure. A remarkable feature of the map is the exis- 

tence of four salient peaks 0.46 A from the nickel atom. In the three-dimensional 

maps, there are eight such peaks around the nickel atom, of which two are crystal- 

lographically independent. The heights of the peaks on the three-fold rotation axis 

of the crystal are 0.9 e A> and the other 1.0e A” >. These eight peaks are disposed at 
the eight corners of a cube surrounding the nickel atom. Six negative peaks of height 
—0.6 e A~> are located at about 0.4 A on each Ni—O bond from the nickel atom. 
The negative peaks are at the apices of an octahedron. Since the Ni** ion is placed 

in a nearly octahedral field, six out of the eight 3d electrons of the ion are in the 
tog orbitals and the other two are in the e, orbitals in the ground state. Then 

excess electron density is expected in ta, orbitals and deficiency for eg orbitals, on 

the difference map which shows the deviation of the electron density from spherical 
distribution. The observed features in the difference map reflect such aspherical dis- 

tribution of d electrons. A nickel atom in an octahedral site might vibrate with a 
larger amplitude along the body-diagonals perpendicularly to the octahedral face 

than along the Ni—O bonds. Such thermal vibration would also give rise to the fea- 

ture mentioned above. This effect might not be serious in the case of ionic crystals 

like spinels with rather small thermal vibrations (r.m.s. amplitude of the Ni atom 

being 0.066 A). Because of such small thermal vibrations, the asphericity of charge 

5 gj 000 2-500 0 2.500 5.000. 

3.750 3.750 

2.500 2.500 

1.250 -1,250 

O 0 

-1.250 -1.250 

-2.500 -2.500 

-3.750 -3.750 

“80000-2500 0 2.500 5000. 

Fig. 5.22. A section of calculated deformation density for [CoO,]1°-. First contours are re- 

spectively +0,0025 e (a.u.)73. Neighbouring contours differ by a factor of 2 (Johansen, 1976) 
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distribution can be observed more markedly than in the case of Werner complexes. 
The same feature is observed in the difference Fourier synthesis of isostructural 
y-Co2Si04 (Co?* : 3d”) (Marumo, Isobe and Akimoto, 1977). 

On the other hand, theoretical calculation was made for the asphericity of d- 
electron charge density by using ab initio Hartree-Fock and configuration interaction 
methods (Johansen, 1976). Fig. 5.22 shows the deformation density for [CoO,]!°- 
in the ory ground state, the calculation having included configuration interaction. 
The result is quite similar to those shown in Figs. 5.12, 5.13 and 5.21. The calculated 
map shown in Fig. 5.22 is drawn quite differently from that obtained experimentally. 
Firstly the density at each contour is double that of its neighbour so that the contour 
intervals are not equal. Secondly the density contours are drawn in units of electrons 
per cubic atomic unit, where 1 e (a.u.)~* = 6.74876 e A~>. Therefore care must be 
taken when making comparisons. The pronounced peaks close to the nucleus are at 
distances of 0.25 A, with heights of 4 e A~>. The peaks are located closer to the 
nucleus and higher than those detected experimentally. The main reason for this 
discrepancy may be the inadequate description of the thermal motion in the theo- 
retical treatment. Fig. 5.23 shows a section of the difference map of y-FeSiO, 
through the plane corresponding to that of Y-Ni,SiO, (Marumo, Isobe and Akimoto, 
1977). In y-FeSiOg the Fe?* ion is in the high-spin state with six 3d electrons. The 
cation is octahedrally surrounded by six oxide ions; the co-ordination octahedron 
is not regular but flattened along its three-fold axis. Because of this trigonal defor- 
mation the triply degenerate t, level is split into one singlet a, and one two-fold 
degenerate level e,. From the flattened shape of the co-ordination octahedron, 
the singlet a, is presumably stabilised. Accordingly five out of the six 3d electrons 

Fig. 5.23. A section of the dif- 
ference Fourier map of y-Fe2SiO4. 
Contours are drawn in a similar 
way to Fig. 5.21 (Marumo, Isobe 
and Akimoto, 1977) 
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occupy each of the five 3d orbitals, and the remaining one occupies the singlet level 
ag in the ground state. The electron-density distribution in the half filled 3d shell has 
a spherical symmetry. The latter orbital a, has a lobe elongated along the three-fold 
axis. The observed peaks of heights 1.2 e A~> at 0.46 A from the Fe nucleus on the 
three-fold axis may originate in the electron in an ay Orbital. 

X-ray evidence showing that these residual electron-density distribution are due 
to d electrons in non-bonding orbitals has been obtained by a study of electron- 
density distribution in rutile crystals. In rutile, a modification of TiO, the co-ordina- 
tion around Ti is octahedral, while there is a triangular arrangement of the nearest 
neighbours around the oxide ions. Electron-density distribution in rutile crystals 
has been calculated based on a set of accurate intensity data (Shintani, Sato and Saito 
1975). The compound is non-stoichiometric and the exact formula is TiO; 9g4. The 
crystal consists of Ti** and O?~ ions, thus the charge-density around titanium may 
be spherical, since Ti** possesses no d electrons. A section of the final difference 
synthesis through the titanium ion and perpendicular to the c axis is shown in Fig. 
5.24. The resulting maps are featureless to within 0.3 e A~*. There are no meaning- 
ful peaks around the titanium atom, indicating that the charge-density around the 
Ti** is spherical. 

The electron-density distribution in diaquaperoxo(2,6-pyridine-dicarboxylato)- 
titanium(IV), [TiO.(C7H304N)(H20),] - 2H0, presents a striking contrast to that 
of rutile (Manohar and Schwarzenbach, 1974). Co-ordination around Ti is pentagonal 
bipyramidal. The titanium atom is almost neutral. In the final difference synthesis, 
there are maxima due to bonding electrons on every bond around the titanium atom 
in the molecule. 

Asphericity of 3d charge-density in a tetrahedral environment has been examined 

for CoAl,04 (Toriumi, Ozima, Akaogi and Saito, 1978). This has a normal spinel 

structure: the Co** ion is in the tetrahedral site and the Al®* ion is in the octahedral 

site, however, the arrangement of Co and Al is somewhat disordered. The population 

of the Co** ion in the tetrahedral site is 84%. This means that 16% of the tetrahedral 

site is occupied by Al** ions. The calence-electron populations of the atoms were 

refined and the net charges of Co, Al and O atoms were estimated to be +1.5 (0.1), 

> 

Fig. 5.24. A section of the difference Fourier 

synthesis through the titanium ion and per- 

pendicular to the c axis. Contours are at 

intervals of 0.2 e A~. Negative contours 

are broken lines, zero contours being 

chained (Shintani, Sato and Saito, 1975) 
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> [110] 

Fig. 5.25. A section of the difference Fourier map through the plane y = x. Contours are drawn 
at intervals of 0.2 e A~3. Zero contours are in dotted lines, and negative contours are in broken 
lines (Toriumi, Ozima, Akaogi and Saito, 1978) 

+2.8 (1) and —1.8 (1) e, respectively. Thus the compound is largely ionic. A section 
of the difference Fourier map through the plane y =x is shown in Fig. 5.25, which 
corresponds to Fig. 5.21 for y-Ni2SiO,. All the crystallographically independent atoms 
and chemical bonds are contained in this map. A remarkable feature is the distribu- 
tion of residual electron-density around the Co2* on the tetrahedral site: two 
positive peaks of 1.3 e A~* appear on the a3 axis at 0.40 A from the nucleus. In all, 
six peaks are located at the apices of an octahedron centred at the Co nucleus. On the 
other hand, four negative peaks appear on the three-fold axes through the Co and O 
atoms. Two out of the four negative peaks are at 0.40 A from the Co toward to O 
atoms with peak heights of —1.0 e A~*. The remaining two with peak heights of —0.5 

‘e A~? are situated on the extension of the O—Co bond at about 0.5 A from the Co 
nucleus (i.e. on the opposite side of the Co atom with respect to the O atom). These 
negative peaks are arranged at the eight corners of a cube centred at the Co nucleus. 
The arrangement of positive and negative peaks is contrary to that observed for the 
transition-metal ions in an octahedral environment. As described in Section 3 ii), the 
energy level of 3d electrons in a transition-metal atom placed in a tetrahedral environ- 
ment splits into a lower doublet e and a higher triplet t> (Fig. 5.7). Then four out of 
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seven d electrons of the Co?* ion occupy the e orbital and the remaining three occupy 

the t, orbital in the ground state. In other words, two electrons are added in the e 

orbital to the half-closed shell ground state with spherical symmetry, e7t3 + e”. Thus 

the expected deformation density around Co?* may be the positive charge density 

in the direction of the e orbital and the negative charge density in the direction of the 

t, orbital. The observed deformation density shown in Fig. 5.25 exactly agrees with 

the expected one described above. Though not significant, residual density is observed 

around the 0? ion on the Co—O bond. The positive peaks are directed twowards 
Co?* and the negative peaks are at the rear of the O atom with respect to the Co atom. 

This indicates that the O?~ ion is polarised in the field of positive ions, being con- 
sistent with a slightly neutralised charge of the Co?*. In other words, the Co—O bond 

is slightly covalent. 

F. Charge Density Distribution in D3 Complexes 

Recently, the crystal structures of Jel - and ob3-isomers of the complexes [M(chxn)3 ]- 

(NO3)3 - 3H20 (M = Co, Rh) have been determined (Miyamae, Sato and Saito, 1977, 

1979). The four crystals are isotypic and the complex ions are in a similar environment. 

Table 5.2 lists the effective charges on the central metal atoms together with those of 

[Co(NH3),]>* and [Co(CN),]°~ . In the estimation of the effective charge, the radius 

of a sphere centred at the metal atom was taken as a distance between the metal 

nucleus and the peak due to bonding electrons. The central metal atom is largely 

neutralised owing to the donation of electrons from the ligating nitrogen atoms. 

Figure 5.26 illustrates schematically the change in the distribution of the residual 

charge density around the metal atom on descending the symmetry from O;, to D3. 

Figure 5.26 (a) is the residual charge density (ie) with one of the three-fold axes 

being vertical. The six N atoms co-ordinate octahedrally. Figure 5.26 (b) illustrates 

what happens in the D3 environment of a /el3-isomer. In the complexes [ML¢] the 

octahedron is twisted around the three-fold axis owing to the chelate ring formation. 

oa 
( AS 

(a) (b) (c) 

Fig. 5.26. Illustration of the change in residual electron density distribution around the metal 

atom (a) in O;-, (b) D3(Jel3)- and (c) D3(0b3)-environment. In (b) and (c) only one chelate 

ring is shown (Miyamae, Sato and Saito, 1979) 
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Table 5.2. Effective charge on the central metal atoms 
ia ee eh a) A ee ee ee eee eee 

Complex Zs Re C(R) Effective M-Lbond Refs. 
charge length 

ee ee 

[Co(NH3),6]3* 27 1.218, 26.20 D)a5 40.5 dete 1.972 Beth 
[Co(CN)¢]3— 27 Pty 26.4(0.1) +0.6 1.894 b 
A-lel3-[Co(S,S—chxn)3]3* oF 1.30 27.7(0.1) -0.72 1.972 b 
A-ob 3-[Co(S,S—chxn) 3]3* om) 1.30 27:700.1) 0.7?" 1.976 b 
A-lel3-{Rh(R,R—chxn) 3]3* 45 1.52 44.6(0.2)  +0.4 2.071 c 
A-0b3-{Rh(R,R —chxn)3]3* 45 1.52 44.6(0.2)  +0.4 2.071 b 
SS Se tlt NAD 2 Vie 

a The distance between the central metal nucleus and the peak due to bonding electrons. 
b Miyamae, Sato and Saito, 1979. c Miyamae, Sato and Saito, 1977. 
d If R is taken to be 1.22 A, the effective charge becomes +0.2. 

The electrons in the non-bonding orbital have a tendency to avoid regions of high 
field due to ligand molecules. Thus the two lobes on the three-fold axis are more 
stable because no chelate ring spans across this direction. The six remaining peaks are 
fused to form three lobes in such a way that they keep away from the chelate ring 
plane. In the 0b3-isomer, Co—N bonds make larger angles with the three-fold axis 
than those in the /el3-isomer and the C—C bond in the chelate ring is disposed nearly 
in the equatorial plane. Thus the residual charge-density near the equatorial plane 
differs from that in the /e/;-isomer. The change is schematically illustrated in Fig. 
5.26 (c). The distribution avoids repulsion due to bonding electrons in the C—C bond. 
The symmetry of the distribution is no longer octahedral but D3. Figure 5.27 (a) 
shows a section of the difference synthesis through a three-fold axis and a Co—N 
bond in the /el3-[Co(chxn)3]** ion and in Fig. 5.27 (b) a section is shown through 
the cobalt atom perpendicular to the three-fold axis. Figure 5.27 (a) is analogous to 
Fig. 5.12. The sections of the three lobes can be clearly seen in Fig. 5.27 (b). The 
peaks on the triad axis are located at 0.52 A from the cobalt nucleus, the height being 
0.53 (0.12) e A~>. The peaks on the equatorial plane have heights of 0.51 (0.10) e 
A~? and 0.50 A apart from the nucleus, The long axis of the lobe is inclined by 
about 11° with respect to the equatorial plane, thus the distribution is chiral. In the 
lel;-Rh complex, 4d electrons spend most of their time outside the Ar core, on the 
other hand the geometry of the [RhNg] chromophore does not differ very much 
from that of [CoNg]. Thus the electric field felt by the 4d electrons from the ligand 
is much stronger than by the 3d electrons. Accordingly the trend of non-bonding 
electron distribution is more marked. Figure 5.28 shows the difference synthesis of 
lel-[Rh(chxn)3 ]**. There are five prominent peaks: two are on the three-fold axis 
at 0.61 A from the Rh nucleus with heights of 0.29 e A~3 and the remaining three 
are on the equatorial plane; they are located between the two adjacent chelate rings 
with peak heights of 0.44 e A~? at 0.53 A from the Rh nucleus. 

In the ob3-isomer of cobalt, the distribution of non-bonding electrons shows the 
trend referred to earlier; however, the result is not very significant owing to poor 
intensity data. In the Rh ob3-isomer, no significant peaks were observed in the equa- 
torial plane, but the non-bonding electrons accumulate on the three-fold axis to 
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(a) 

(b) 

Fig. 5.27. Sections of the difference synthesis, lel 3[Co(chxn)3]>*. (a) A section through a 

three-fold axis and a Co—N bond. (b) A section through the Co atom and perpendicular to the 

three-fold axis. Contours are drawn at intervals of 0.1 e A> (Miyamae, Sato and Saito, 1979) 
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(a) 

Fig. 5.28. Sections of the difference syn- 

thesis, /el3-[Rh(chxn) 3]>*. (a) A section 
through a three-fold axis and a Rh—N bond. 

(b) A section through the Rh atom and per- 

pendicular to the triad axis. Contours are 

drawn at intervals of 0.05 e A—3 in (a) and 
at 0.10 e A~3 in (b) (Miyamae, Sato and 
Saito, 1977) 

form large lobes: 0.48 e A~3, 0.64 A from the Rh nucleus. The observed difference 
in residual charge distribution in the Co and Rh complexes seems to reflect the differ- 
ence in the ligand field strength felt by the central metal atoms. The difference in 
residual electron density distribution in the /el;- and ob3-isomers indicates that the 
ground state wave function differs between the two isomers. In fact, the circular 
dichroism spectrum of the /el3-isomer gives two peaks with opposite sign and differ- 
ent magnitudes, while that of the ob3-isomer gives only a single peak in solution 
(see Table 6.3). 

In the /el;-[Rh(chxn)3]**, a peak due to bonding electrons of height 0.15 e A~3 
in the Rh—N bond appears at 0.6 A from the N atom (at 1.52 A from Rh), slightly 
off the Rh—N bond. The peak-Rh-peak angle is 91°. This feature may indicate that 
the bonding orbital of the N atom is not directed exactly towards the Rh atom. 
Similar features were observed in the Co analogues but were not very significant. The 
same trend was observed in 0b3-[Co(chxn)3]Cl3 - H,O (Kobayashi, Marumo and 
Saito, 1972). 
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5 Conclusions 

To sum up, recent advances in techniques of the intensity measurements of diffracted 

X-rays and the development of electronic computers have enabled us to determine 
accurate charge-densities in transition metal complexes that have moderate complex- 

ity and are of sufficient chemical interest. 
Firstly, the central metal atom is largely neutralised by donation of electrons 

from the ligating atoms. Accordingly, Pauling’s electroneutrality rule has indeed been 

verified for transition-metal complexes. Secondly, charge-density of d-electrons in 

non-bonding orbitals of a transition-metal atom in a complex is aspherical owing to 

the ligand field. The distribution of non-bonding electrons has a tendency to 

avoid regions of high field due to the ligands. The distribution can be reasonably 

accounted for by ligand field theory. Thirdly, we can observe the distribution of 

bonding electrons and the location of lone-pair electrons, and estimate the effective 

charge on each atom with reasonable certainty. In some chelate complexes, the 

“Jone-pair” orbitals of the ligating atoms are not directed toward the central metal 

atom. If the electron-density distribution and geometrical arrangement of the 

atomic nuclei are all known, it is possible, at least in principle, to predict all the 

physical and chemical properties of the complex on the basis of quantum mechan- 

ical calculations. In this respect, the accurate determination of the electron-density 

distribution in transition-metal complexes will certainly play an important role for 

the prediction as well as the rationalisation of the chemical and physical properties 

of the complexes. 



Chapter VI Circular Dichroism 

1 General Introduction 

It may be useful here to recollect briefly the physical optics of circular dichroism. 
The basic principles under discussion have already been covered by several recent 
books (Woldbye, 1965; Caldwell and Eyring, 1971; Hawkins, 1971 ; Ciarrdelli and 
Salvadori, 1973) and reviews (Mason, 1963; Schellman, 1975) to which the reader is 
referred for more details. 

The vibration of a light wave is described by the form traced out by the electric 
vector of the light wave in a plane perpendicular to the direction of propagation. 
Figure 6.1 illustrates the types of polarisation with which we shall deal. The light 
wave is considered to propagate towards the direction of the observer’s eye. Figure 
6.1 (a) shows the vibration form of plane polarised light in which the electric field 
and the magnetic field vectors are confined to oscillate in two perpendicular planes. 
The plane on which the electric vector lies is usually referred to as plane of polarisa- 
tion. We need not consider the magnetic vector, since this vector is perpendicular to 

(a) 

Fig. 6.1. Two vibration forms of a light wave, (a) plane polarised light and (b) elliptically polar- 
ised light 
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the electric vector. The figure also shows the resolution of plane (or linearly) polari- 

sed light into two interfering circularly polarised waves with opposite senses of rota- 

tion. The two component vectors rotate with the same angular velocity in opposite 

directions. Viewed in space the vector of circularly polarised light traces out a helix 

in which the pitch corresponds to the wavelength and the radius to the amplitude. 

Figure 6.1 (b) shows elliptically polarised light. The figure also shows that the ellipti- 

cally polarised light can be resolved into two interfering circularly polarised lights 

with different amplitudes R, and R,. The ellipticity is defined by the following equa- 
tion: 

tan 0 =(R, — R)/(R, +R) (6.1) 

The refractive index of an isotropic medium is a measure of the velocity of light 

in the medium: the refractive index n of the medium with respect to vacuum is the 

ratio of the velocity of light in vacuum, c, to that in the medium, 2, i.e., 

v=c/n (6.2) 

It should be noted that the frequency v of the light remains unchanged. 

If the medium absorbs light of the wavelength under consideration, the inten- 

sity, 7, decreases exponentially with the distance traversed. In the case of a solution, 

this relation can be expressed in terms of molar concentration, C,.of the solute and 

decadic molar extinction coefficient, €, 

hedex 1053S (6.3) 

where / is the incident beam intensity and d is the thickness of the layer. 

Let us consider what happens when linearly polarised light travels through a 

layer of optically active medium. The left and right circularly polarised components 

pass through the medium with different velocity and are absorbed differently. These 

twin phenomena are called circular birefringence and circular dichroism respectively. 

As a result there will be a phase difference between the two components and the 

amplitudes are also different. When combined, they will give rise to elliptically 
polarised light, with the major axis of the ellipse inclined with respect to the original 

plane of polarisation. The situation can be formulated as follows: Let the refractive 

indices of left- and right-handed polarised light be n, and n,, respectively, and the 

molar extinction coefficients of the medium for both components be « and €,, 
where we assume 71, >n, and ¢ > €,. Now Fig. 6.1 (a) is supposed to represent the 

cross section of the light wave at the moment when the light wave enters into the 

medium. The two component vectors of the left- and right-handed circularly polar- 

ised light are assumed to make an angle of with the original plane of polarisation. 

The amplitudes of the left- and right-circularly polarised component of the incident 

beam are both equal to //p/2. After traversing a distance, d, the intensities are re- 

duced according to Eq. (6.3). The amplitudes of the left- and right-handed com- 

ponents, R, and R,, are given by 
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Ry = (Vp /2) 107 (1/2)e14€ (6.4) 

and 

Re =(/lp{2) 10- Gerd (6.5) 

respectively. These components pass through the layer with different velocities: 

Y=c/n and v,=Cc/n,, 

and thus the times required to travel the distance, d, are 

d(n/c) and d(n,/c), 

respectively. The difference d(n,/c — n,/c) corresponds to a phase difference of 

2nvd(n, —n,)/c, 

namely 

2nd(n, — n,)/r 

since c = vd. 

The situation at the cross section eed by d is shown in Fig. 6.1(b). The fig- 
ure shows the instant when the right-handed component makes an angle of 6 with the 
original direction of polarisation. At this moment the left-handed component makes 
an angle of 5’ with the original direction, which is given by 

5’ =6 + 2nd(n,—n,)/r (6.6) 

since the left-handed component lags behind the right-handed one by the amount 
given above. 

Let the direction along which the resultant electric vector becomes maximum 
(direction of the major axis of the ellipse) be inclined at an angle a with the original 
plane of polarisation. We have 

§+a=8' —a (6.7) 

_ Since the two component vectors rotate with the same angular velocity. 

From Eggs. (6.6) and (6.7), we obtain 

a =nd(n, —n,)/r (6.8) 

And the ellipticity is given by 
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fae (Re — Ri)i(Re +R) = (107 0 Mere 19 -G/De1ee 7) 

Ge age at Tg ese) 

Multiplying the numerator and denominator by 

10¢r* €)dC/4 

we obtain 

tan 0 = [101- €)aC/4 _ 4 9- €1- €r)4C/4 1/1 1Q(€1- €r)AC/4 4 1Q- €1- er) Ge |=) 

= tanh (In 10) dC(e,— €,)/4 

For small values of 0, 

6 (in radians) = tan 0 = tanh 0 

Thus we have 

6 = (In 10)/4 dC(e, — €,) = 0.576 dC(e, — &) (6.9) 

To sum up, the electric vector traces out an ellipse in the same sense of rotation 
as that of the less absorbed circularly polarised component, i.e., €; — €, > O corre- 

sponds to a clockwise rotation in Fig. 6.1(b). The major axis of the ellipse is rotated 

by an angle, md/A(n, — n,), i.e., ny > nN, means dextro rotation. 

The modern definition of specific rotatory power (or rotation), [a], was origi- 

nally introduced by Biot((1812, 1835). It is defined by 

[a], =a/lp for pure liquid 
=a/Ic — for solution, 

where a is the observed rotation in degrees, / the path length in decimetres, p the den- 

sity of the liquid and c is the concentration of the optically active solute in g/ml. The 

subscript and superscript stand for the wavelength of light used for the measurement 

and temperature, respectively. Molar rotation is obtained by multiplying the specific 

rotation by one hundredth of the molecular weight: 

[o]k =M/100 [o]x 

Ellipticity is a measure of circular dichroism. This is usually measured in degrees rather 

than in radians. The specific ellipticity, [y], is defined by analogy with the specific 

rotation, as [W], = ,/lo for pure liquid or 4) /Ic for solution, where 0) is the measured 

ellipticity and the quantities /, p and c have the same significance as in specific rota- 

tion. Similarly, the molar ellipticity, [@],, is given by 

[9], =[W], M/100 (6.10) 
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From Eq. (6.9) 

4,500 

T 
[4], = 2.303 (€;— €,) = 3,300 (€, — €,) = 3,300 Ae (6.11) 

In practice, the molar coefficient of circular dichroic absorption can be measured con- 
veniently by means of a dichrometer, thus, €, — €, is by far the important quantity 
rather than the ellipticity itself. The circular dichroism, e; — e, is exclusively used by 
chemists. 

2 Interaction of Light with a Medium Containing Optically 
Inactive Molecules 

¥ 

A plane-polarised light wave moving in the positive z-direction has an oscillating elec- 
tric field represented by the real part of 

E = Ep exp iw(t — z/c) (6.12) 

and the magnetic field is given by 

H = Ho exp iw(t — z/c) ‘ (6.13) 

where |E| =|H| provided that E is expressed in electrostatic units and H is expressed 
in electromagnetic units. The oscillations are both in a plane perpendicular to the direc- 
tion of propagation at right angles with each other. E is assumed to point in the posi- 
tive x-direction, thus Ho points in the positive y-direction, if a right-handed co-ordinate 
system is used (Fig. 6.2). Let it fall perpendicularly on to a plane layer of thickness d 

H 

YJ 

Fig. 6.2. Oscillating electric and magnetic field accompanied by a plane-polarised light moving 
in the positive z-direction 
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xi 

H 

Fig. 6.3. Scattering of a plane-polarised light from a thin layer of molecules 

containing N optically inactive molecules per unit volume, d being small compared to 

the wavelength A of the incident light beam (Fig. 6.3). The electric field will induce a 

dipole moment 

P = aE exp iw(t — z/c) (6.14) ) 

in each molecule, where a is the polarisability. This oscillating dipole will emit electric- 

magnetic radiation of the same frequency as the incident light. The magnitude of the 

electric field in the wavelet from the oscillating dipole observed at a distance r from the 

dipole is 

|E,| = |Eo| (aw?/rc?) sin 0, exp iat — z/c)'), 

where 6, is the angle between Ep and r. The scattered spherical wavelet from each 

molecule will merge at some distance from the layer to form a plane wave front paral- 

lel to the wave front of the incident light. The incident wave front is parallel to the 

layer of molecules, so that at a given instant each molecule undergoes the same elec- 

tric field and the induced dipole moment is the same for each molecule. The net elec- 

tric field at a point located at a distance z from the plane can be calculated in the fol- 

lowing way. First let us set up a polar co-ordinate system ( and ¢) on the plane as 

shown in Fig. 6.3. From Fig. 6.3 symmetry consideration indicates that only the 

vertical component of E, from all the molecules need be summed up, although E, is 

perpendicular to r. It can easily be shown that the magnitude of the vertical compo- 

nent is given by |E,| sin 0,. Accordingly the net field is 

15 This equation can be derived easily from the following fundamental equation relating an accel 

eration of a point charge and the electric field in the pulse emitted from it. 

E= (1/¢?r?) {rx3rx 32P/at?] 

Since it takes time for an electromagnetic pulse to travel from the charge to an observer, the 

above expression gives the electric field due to an acceleration that occurred at a time r/c 

earlier. See for example, [Compton and Allison 1935]. 
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27 a 

E = Ey(aw?/c?)Nd exp (iwt) f f (1/r) sin? .6 exp (— iwr/c)pdpdy'® (6.15) 
0 0 

It can easily be shown that 

sin? 0 = sin? y+ (z?/r”) cos? yp (6.16) 

and 

pr? =p2 +72 ; (6.17) 

Inserting (6.16) and (6.17) into Eq. (6.15) and integrating over y, we obtain 

E, = TE (aw? /c* Nd exp (ivat) f p/x/z? + p? fl + 27/(z? + p?)] 
0 

x exp (— iw Vp? +2z?/c)dp (6.18) 

It is not difficult to show that the integral in Eq. (6.18) can be integrated by parts to 
give — 2ic/« exp (— iwz/c) plus a term that varies as c/wz”, which is negligible for 
sufficiently large z > c/w. 

E, = — 271 Eg(aw/c)Nd exp [iw(t —z/c)] (6.19) 

It should be noted here that the factor 1/r in Eq. (6.15) has dropped in (6.19). This 
shows that the resultant is a plane wave, and the factor i indicates that the scattered 
wave is retarded in the phase angle by 7/2 behind the incident wave. 

Likewise the magnetic field also can induce a magnetic dipole, M, in each mole- 
cule and this, in turn, emits electromagnetic radiation. The electric field strength 
observed at a distance r from the dipole is given by 

Em = (1/c?r?) [x x 07M/dt?] (6.20) 

In deriving Eq. (6.19) it was assumed that the magnitude of electric field at 
the molecule in the layer is equal to that of the incident wave. Strictly speaking, this 
is incorrect. At optical frequencies, the field is increased by a factor of (n? + 2)/3, 
where n is the refractive index of the medium (Lorentz field). This correction can 
easily be made, when necessary, so that this fact was not considered. 

16 Strictly speaking, this integral is ill-defined since the integrand oscillates with a finite amplitude 
even for large values of p. Such an integral can be made convergent by setting w > w — ia, 
where o is an infinitesimal real positive parameter. 
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3 Interaction of Light with a Medium Containing Optically 
Active Molecules 

If the molecule is optically active, it has an ability to give rise to an induced electric 

dipole moment by a changing magnetic field and an induced magnetic dipole moment 

by a changing electric field, in addition to an electric dipole moment induced accord- 

ing to Eq. (6.14). The induced electric and magnetic moments are thus given by 

P=aE — (6/c) dH/at (6.21) 

M = (y/c) dE/at (6.22) 

where 6 and y are constants. 

Putting Eqs. (6.12) and (6.13) into (6.21) and (6.22) respectively, we obtain 

P = aBpi exp iw(t — z/c) — i(w/c)BEoj exp ivo(t — z/c) (6.23) 

M = i(w/c)yEpi exp iw(t — z/c), (6.24) 

where i and j are unit vectors along Ey and Hp respectively. 

These oscillating dipoles produce the scattered spherical wavelets and they combine 

to form a plane wave front at some distance from the surface which is large compared 

to the thickness d of the layer. The net wave motion can be calculated in the same 

way as described in the previous section on the basis of Eqs. (6.23) and (6.24). The 

resultant wave motion, when combined with the transmitted wave, is represented by 

E exp iw(t —z/c) = {[1 — 2dNi(w/c)a]Eoi — IndN(w3/c)? 

x (B + y)Eoj} exp iw(t — z/c) (6.25) 

The second term in the square bracket can be ignored with respect to unity and we 

have 

Fig. 6.4. Rotation of the plane of polarisation by 

an optically active medium 
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E exp iw(t — z/c) = (Epi — E,j) exp iw(t — z/c) (6.26) 

where E, = 2ndN(w/c)? (6 + y)£o (6.27) 

When B + ¥ is real, Eq. (6.27) represents a plane polarised wave propagating along 

the positive z-direction whose plane of polarisation differs from that of the incident 
wave. Referring to Fig. 6.28 the angle of rotation, x, is given by 

2 
tan x= oie dN(6 + y) = (877/A7) dN(B +7) (6.28) 

c 

When x is small, 

X = (2nw*/c?)AN(6 + 7) ; (6.29) 

The angle x is defined in such a way that if the plane of polarisation is rotated clock- 
wise when one looks towards the source of the incident light, then x is positive. This 
is in accordance with convention. If 6 + y is positive, it is dextro-rotatory and if it is 
minus, it is laevo-rotatory. 

We shall try to generalise Eq. (6.29) for complex 6 + y. In this case x is also a 
complex and we put 

pantech yy (6.30) 

B=, +iB” (6.31) 

yoyo (6.32) 

The electric field along the x and y axes can be written 

E,, = Eo = E exp iwt cos x (6.33) 

Ey = E, = — E exp iwt sin x (6.34) 

If the co-ordinate axis is rotated clockwise by an angle x’, let the new co-ordinate 
axes be & and n. 

E& = Ey cos x’ — E, sin x’ = E exp iwt cos (ix") = E exp iwt cosh x" (6.35) 

‘En= Ep sin x' + E, cos x’ = E exp ict sin (— ix") =— iE exp iwt sinh x" (6.36) 

Since the electric field is given by the real parts of the above expressions, we have 

E& =E cos wt cosh x” (6.37) 

En=E sin wt sinh y" (6.38) 
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It is evident that Eqs. (6.37) and (6.38) represent an ellipse with £ and 7 as the prin- 

cipal axes. The elliticity is defined by 

tan 9 =— sinh x’ /cosh x” = — tanh x” (6.39) 

or @=— x" for small x” 

The negative sign in the equation was taken in such a way that the electric vector 

represented by Eqs. (6.37) and (6.38) traces out the ellipse in the same sense of rota- 
tion as that of the circularly polarised component less absorbed in the medium i.e., 
€, — €, > O corresponds to positive (clockwise rotation) within the ellipse (see Fig. 

6.1). Thus Eq. (6.29) still holds for complex x, B and y, namely, 

X = (2ms*/c? dN(G + 7) (6.40) 

real part: x’ = @ = (217/c?)dN(6' + 7’) (6.41) 

imaginary part: x” = — 0 = (2mw*/c?)dN(6" +") (6.42) 

Thus the real part of (8 + y) governs optical rotation and the imaginary part the ellip- 

ticity. Optical rotation and ellipticity (circular dichroism) depend on the wavelength 

of the incident light. 

4 Quantum Theories 

The quantum mechanical treatment of optical activity was initiated by Rosenfeld 

(1928). He used perturbation theory and showed that 6 and y in Eqs. (6.21) and (6.22) 

are presented as follows: 

B= = (¢e/3mh) D Roal(vz — »”) (6.43) 

where h is Planck’s constant, v is the frequency of the incident radiation and v, is 

the frequency corresponding to transition from a ground state 0 to an excited state 

a. The summation is taken over all electronic transitions. Rog is the rotatory strength 

of the transition and is given by 

Roa = Im (O|P|a) - <a|M|0) (6.44) 

where P and M are electric and magnetic dipole operators respectively. Thus Rog is 

defined as the imaginary part of the scalar product of the electric and magnetic mo- 

ments associated with the transition. The “‘bra” “ket” notation in Eq. (6.44) is de- 

fined as follows: 

OlPla) =f WoPWadr  etc., 
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where Wo and wW, are the ground and excited state wave functions and an asterisk 
stands for the complex conjugate. This is called a matrix element of P. 

It can be shown that 

x Rog = 0 (6.45) 
a 

From the definition of Ro, we have 

z Ro, = Im[ (O|Pla) - (a|M|0)] 
a a 

= Im (O|P - M|0)=0 . 

Since (O|P - MJO) is a diagonal element of a real observable, the imaginary part of 
{O|P - MjO) must be zero. This is called “sum rule” (Kuhn, 1929; Condon, 1937). 

For an electronic transition to be optically active, its rotational strength, Roa; 
must not be zero. This will impose certain restrictions on the symmetry of the mole- 
cule. It is not difficult to show that the rotational strength vanishes, if a molecule has 
a centre of symmetry or a mirror plane. The operators P and M have the form in Car- 
tesian co-ordinate system, 

Beer) (ix, Fy, + Kz) : (6.46) 
n 

M = (—eh/4mmc) i Z [iZp 9/8Vn — Yn 9/zq) 

717 8/82, — 2p 0/Oxn) +k(p 9/8xp —Xn 9/0yn)] (6.47) 

where i, j and k are unit vectors along the co-ordinate axes. The integrals such as 
(O|P|a) and (a|M|O) may be evaluated in any co-ordinate system. In particular an inte- 
gral may first be evaluated in an arbitrary system and then in the system obtained by 
applying one of the symmetry operations of the molecule: both must be identical. 

If the molecule in question has a centre of symmetry, the states of the molecule 
can be classified as odd or even according to whether the wave function for a given 
non-degenerate state changes sign or retains the same sign when subjected to an inver- 
sion at the origin of co-ordinates: 

x,y, Z * —X, —y, —Z. 

The operator P changes sign upon inversion, whereas the operator M does not change 
Sign on inversion. Accordingly we have 

(O|P|a) - <a|M|O) = — (O|P|a) - <a|M|O) 

irrespective of the parity (even or odd nature) of the wave functions |0) and |a). There- 
fore 
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{O|P|a) - (a|M|0) = O 

and the optical rotatory power vanishes. 

If the molecule has a mirror plane, Ro, vanishes, too. Let the mirror plane be the 

xy plane and again we classify the wave functions as odd or even with respect to re- 

flection in this plane: 

X,Y, Z many, wae 

It is evident from the form of the operators given by (6.46) and (6.47) that the z-com- 

ponent of P is odd and the z component of M is even, whereas the x and y components 

of P are even and those of M are odd on reflection with respect to the xy plane. It can 

easily be seen that the scalar product (O|M|a) - (a|M|O) is again identically zero lead- 

ing to vanishing of rotational strength. 

It is further possible to show that Rog is identically zero, if the molecule has an 

improper axis of rotation in which a centre of inversion and a mirror plane are included. 

Molecules that lack the improper rotation axis all have the property of being non- 

superposable on their mirror images. This fact has traditionally served as a criterion 

for optical activity. 

The Eq. (6.43) applies only outside the absorption regions, where |v, — v| > 0. 

If v = v,, the equation has no value. In classical theory, the absorption is treated by 

introducing the damping term in the equation of motion of electrons as in Eq. (2.20). 

The effect of damping appears in the denominator as an imaginary term, ‘yw, in the 

steady state solution of Eq. (2.20). 

= —ex = (e?/m) [1/(w2 — w? + iyw)] (6.48) 

In quantum theory the absorption is represented in terms of the lifetime of excited 

states and their spontaneous decay; however, the effect of absorption can be treated 

in exactly the same way as in classical theory. Thus the corresponding generalisation 

of equations to include the absorption region would be by a similar alteration of the 

denominator of Eq. (6.43). 

B= 7 = (c/3mh) E Rogl v3 —v? + Toa) (6.49) 

where Ip, is a positive constant and measures the strength of the damping and we 

assume Ipg <vy. 

Putting Eqs. (6.49) into Eq. (6.40), we have 

= (161?N/3hc) x ewan Regen ev rerio? | (6.50) 

6 = (16m? N/3hc) x vit, Reales —P)-* Nosy" | (6.51) 

On rewriting these equations, we have 
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6,( Ae) 

Fig. 6.5. The Cotton effect. A broken line represents optical rotation, ¢g and a full line ellipti- 
city (circular dichroism). (a) Rog > 0, (b) Rog < 0 

$=Zdbq $a = (16m? N/3hc)v? (vz — v?)Roall (v2 — v?)? + 12,07] (6.52) 

O=2 6, 0, =(16n7N/3hc)v*TogRoall@2 — v7)? + Te,v7] (6.53) 
a 

Figure 6.5 illustrates the changes of ¢, and 6, within the region of absorption. If 
Roa > 0, 64 shows a positive peak at v, and ¢, is positive at the lower frequency side 
of the absorption region and changes sign on passing va as Shown in Fig. 6.5(a). If 
Roa <0, 8g gives a negative peak at v, and ¢, behaves as illustrated in Fig. 6.5(b). 
It should be noted here that the sign of 8, coincides with that of the rotational strength, Roa!” 

In 1896, Cotton discovered the effect which now bears his name. He observed anoma- 
lous rotatory dispersion and a circular dichroism band in the vicinity of an absorption 
band in solutions of potassium chromium(III) (or copper(II)) (+)-tartrate (Cotton, 
1895, 1896). These two phenomena are called the Cotton effect. In this book, opti- 
cal rotatory dispersion will not be considered further, since the circular dichroism is 
far more suitable for the study of co-ordination compounds. Unlike optical rotatory 
dispersion, the circular dichroism bands are restricted to the regions of absorption. 
This fact often facilitates the resolution of observed cd spectra into components for 

17 Owing to the introduction of a term Toa» %q (and also Ae) no longer causes catastrophe at 
v = vg, and the behaviour of 6, is close to what is actually observed. However, it should be 
noted that there are other strong reasons for the broadening of the absorption spectrum in 
addition to that described above. These are basically connected with the Frank-Condon prin- 
ciple. The transfer of d electrons from the ground state to higher d levels leads to excited 
states in which the equilibrium internuclear distances are greater than in the ground state. 
Thus the metal ion in its excited state interacts with its environment in a quantitatively dif- 
ferent way from the same ion in its ground state. If the environment is somewhat variable, 
like a complex ion in a solution, the energy of the transition then depends on the momentary 
positions of neighbouring molecules and hence is itself slightly variable. This leads to a broad- 
ening of the absorption band. More generally, complex ions undergo thermal vibration, and 
if the optically excited molecule happens to be produced in a vibrationally excited condition, 
optical transition may occur at an instant when the internuclear distance is the same as that 
of the ground state. If so, many lines corresponding to different vibrationally excited states 
may appear so close that they cannot be distinguished from one another, resulting in a broad 
absorption band. The band shape depends upon the distribution of the energy levels due to 
vibronic coupling, 
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individual transitions. Moreover, the cd band shows a positive peak or a negative 

trough. This characteristic feature often enables us to resolve the two transitions as 

positive and negative cd peaks which are close in energy and this resolution is not pos- 

sible in the ordinary absorption spectrum. Such resolution is essential for the assign- 

ment of absolute configuration, since the sign of the rotational strength is the crucial 

issue for the determination of absolute configuration. 

' The relation between the observed circular dichroism and the rotational strength 

can be derived as follows: consider an integral of 0,/v from v = 0 tov=©, 

[= f (6,/v)dv 
0 

= (160?NMI)gRoal3he) f v2 [[(v2 —v?)? + 12,2] av (6.54) 
0 

As shown in Appendix VI-1, the definite integral in Eq. (6.54) has the value 7/(21oq). 

Hence 

Roa = Ghe/8n2N) f (6,/v)dv (6.55) 
0 

Combining Eqs. (6.55) and (6.9), we obtain 

Roa = [3hc103(In 10)/(32m3Na)] f (Ae/v)dv (6.56) 
(0) 

where we put d = 1 cm, C= 1 mol/1,000 ml and N =V10°) This equation was 

first derived by Moffitt and Moscowitz (1959) by a different route. Thus the rotation- 

al strength may be obtained from the area of the corresponding circular dichroism 

band. For a Gaussian cd band with maximum at vp and half width Av,/., integration 

and insertion of the appropriate constants in (6.56) yield: 

Roa = 2.45 x 10° 99(€ — €)max AY1/2/Yo (6.57) 

The sum rule for circular dichroism is then 

S[(1 — €r)/v]dv = 0 (6.58) 

where the integration is carried out over the whole spectrum. 

The rotational strength is a quantity analogous to the dipole strength, Dog, which 

for a given transition represents the sum of the squares of electric dipole and magnetic 

dipole transition moments. The dipole strength is given, in c. g. s. units, from the area 

of the corresponding absorption band by 

Doa = [3he 10° In 10/(877.Na)] S (e/v)dv (6.59) 

where € is the decadic molar extinction coefficient. The dipole strength is related to 

the classical oscillator strength, fo,, by the equation, 
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foa = 81° cvDyq|(3he?) | (6.60) 

The oscillator strength gives the number of electrons promoted in the transition 
responsible for the absorption band. 

5 Experimental Device; Dichrometer 

The circular dichroism, Ae, is the difference in extinction coefficients for left and 
right circularly polarised light. Accordingly, the direct procedure to measure Ae is to 
carry out the usual measurements of absorption by using circularly polarised light. 
An ingenious principle (Grosjean and Legrant, 1960) makes up the basis of commer- 
cial instruments (the Jouan, Cary and Jasco spectrophotometers). Figure 6.6 shows 
schematically a typical dichrometer. A monochromatic linearly polarised light beam 
is periodically transformed by means of a birefringent plate, M into a right and left 
circularly polarised light. The sample placed at S absorbs the two components dif- 
ferently. The rippling of the light intensity produces a d—c and an a—c signal at the 
photomultiplier and the periodic variation of the signal is proportional to Ae which 
is to be measured. The transformation of the linearly polarised light into left and 
right circularly polarised light can be achieved by the electro-optic plate (Pockel’s 
cell). The ammonium dihydrogen phosphate crystal, when exposed to longitudinal 
oscillating electric field, modulates the relative phase lag between the two circularly 
polarised components of the original linearly polarised light in such a way that their 
vibration form oscillates between the left and right circular polarisation. Alternatively, 
a photoelastic effect can be used to produce left and right circularly polarised light. 
An isotropic medium, when stressed periodically, exhibits a birefringence propor- 
tional to the stress. Such a plate can be used in place of Pockel’s cell (Billardon and 
Badoz, 1966). 

6 Optical Activity of Transition-Metal Complexes 

After Cotton’s and Werner’s work (Cotton, 1895; Werner, 191 1) the optical rotatory 
powers of transition-metal complexes were extensively studied in an attempt mainly 
to establish the relative configurations of the complexes. Notably Jaeger (1930) stud- 
ied the optical rotatory dispersion and Mathieu (1946) the circular dichroism of Wer- 
ner complexes. However, the theoretical configurations based on the proposed opti- 
cal method (Jaeger, 1937) were not always consistent with the assignments of chiral- ity based on solubility methods (Werner, 1912; Delépine, 1934). Until the advent of 
ligand field theory and the establishment of the absolute configurations of the com- 
plexes by X-ray methods, the electronic transitions responsible for the rotatory power 
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Fig. 6.6. The principle of a dichrometer, O: light source, P: polariser, M: modulator, S: sample, 
P. M.: photomultiplier. Upper diagrams show vibration forms of the light 

of the metal complexes were not understood in any detail. In 1934 Kuhn and Bein 

developed a coupled oscillator model in order to correlate the absolute configuration 

to the sign and the form of the visible Cotton effects in chiral complexes (Kuhn and 

Bein, 1934a and b; Kuhn, 1938). An isotropic harmonic oscillator was assumed at 

the metal atom and three harmonic oscillators were placed along the edges of an 

octahedron spanned by chelate rings in a tris-chelated complex, such as [Co(en)3]**. 

The charge displacements in each oscillator were correlated electrostatically with 

each other and with a linear charge displacement at the metal to generate an optical 

activity in the visible region. After a period of comparative neglect, ligand field 

theory, the basic idea of which had been originally developed by Bethe, Van Vleck 

and others during the period 1929 ~ 35, was applied to the interpretation of spectros- 

copic properties of transition-metal complexes in 1950’s (Orgel, 1960 and Ballhausen, 

1962). It was shown that the visible absorption band of the transition-metal complexes 

was due to the transition between d-levels split by the ligand field and the charge dis- 

placements at the metal atom were circular rather than linear. Saito and his collabo- 

rators gave a definitive answer to this problem by the first determination of the abso- 

lute configuration of [Co(en)3]°* by the X-ray anomalous scattering methods. They 

showed that the result was enantiomeric to the model proposed by Kuhn and Bein. 

Moffitt (1956) introduced the first quantum mechanical theory of optical activity 

of chiral transition-metal complexes. He combined ligand field theory and “‘one- 

electron theory” of optical activity proposed by Condon, Altar and Eyring (1937) 

to derive expressions for the rotational strengths of the d—d transition. This work 

and those of other workers along this line provided the basis of recent spectros- 

copic and stereochemical applications. 

In 1955, the tris(ethylenediamine)cobalt(II]) isomer which is dextrorotatory 

at the sodium D line, (+)5g9[Co(en)3 ]°*, was shown to have the A-absolute config- 

uration. An absolute basis was thus provided for Mathieu’s empirical relation. He had 

proposed that tris-chelated complexes with the same configuration as (+)5g9[Co(en)3]** 
give a predominantly positive circular dichroism in the longest wavelength absorption 

band (1936). Since then, the number of complexes for which the absolute configura- 
tion has been studied by means of X-rays has grown at an increasing rate. At present, 

the absolute configurations of about 120 metal complexes have been established in 
this way.!®) They provide basic data for constructing a theoretical model for optical 

18 A list of absolute configurations determined by the X-ray method up to the end of 1972 has 

been published (Saito, 1974). 
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activity and at the same time they give important criterion to evaluate many of the 
assignments of complex ion chirality on the basis of circular dichroism. At present 
it is possible to deduce the absolute configuration of the transition-metal complexes 
from the circular dichroism spectra with reasonable certainty. 

7 Circular Dichroism Spectra of tris-Bidentate Complexes 

A. Solution Circular Dichroism 

Transition metal complexes of trigonal dihedral (D3) symmetry have played a promi- 
nent role as model systems in both experimental and theoretical studies of optical 
activity, since they are stable and can be synthesized and resolved into optical isomers 
without difficulty. The high symmetry of the complexes makes detailed theoretical 
calculations more or less feasible. Tris(ethylenediamine)cobalt(III) ion is one of the 
most familiar and fundamental complex ions with D3 symmetry and has been most 
extensively studied. Figure 6.7 shows the absorption and circular dichroism spectra 
of (+)5gq[Co(en) 3 ]**. The values of rotational and dipole strengths are listed in 
Table 6.1. 

When a cobalt(II) ion (3d°) is placed in a ligand field of O, symmetry, the five- 
fold degenerate orbitals are split into two groups, an upper doublet (e,) and a lower 
triplet (ty,) (octahedral splitting). On descending the symmetry to D3, the lower 
triplet is further split into a stable singlet, a,, and a higher doubiet, e, (trigonal split- 
ting). The absorption spectra of [Co(en)3 ]** consists of five bands: two bands of 
very weak intensity in near infrared or long wavelength visible region (A and B), 
two of moderate intensity in the visible and near ultraviolet region (the first and 
second absorption bands, I and II) and finally a very strong band in the ultraviolet 
region (CT). The excited states of the first four absorption bands are all te es and 
these transitions are called d—d transitions, while the last is due to the ligand to metal 
charge-transfer. The corresponding energy terms are depicted in Fig. 6.8. and the as- 
signments of the observed bands are indicated in Fig. 6.7. The absorption spectrum 

A(nm) 
500 400 300 200 

4.0} (eats 
# in 

xo c 

# 2 

a 3 

yi ° 
n 

~ 1 20 
w 2 < : | 10 Fig. 6.7. The absorption (——~—-—) and the 

circular dichroism spectrum ( ) of 
(+)5g9[Co(en)3]>* in aqueous solution 
and the circular dichroism of the single- 
crystal (+)5g9[Co(en)3]>Cl¢ - NaCl - 6H20 
(———) for light propagated along the c 
axis (optic axis) 

€,;—€,) (crystal) \ON\X 1/20] 2 
Ne Nelsen (ns 



133 Circular Dichroism Spectra of tris-Bidentate Complexes 

Cc + 

6L 
+ C
o
m
e
 

8900 
+ 

L9 

8r'0 70 

— 

vy 

-duis} 
W
o
o
y
 
{
 

108 # 

+ + od 

s3°0 G
'
S
 

“pueq 
Joysuel} 

oSIeYO 
[e}OU! 

OJ 
puesIT 

q 

-sixe orjdo oy} 0} Joyfered ureaq 
YI] 

(LL 6
1
 ‘V4eOd PUR 

UOSeW 
*€96T 

‘UOseW 
pue 

ATOFFeDOW) 
O7HY 

- IOPN 
- PIDT[E(Ua)op]O8S(+) 

ke 

Cima 
0°67 

0
0
S
T
 

OTT 
v
6
C
 

i
c
e
s
 

L
a
c
 

o0s‘T 
$6 

vine 

S
T
O
 

ee 
0'8T 

¢
c
o
0
0
 

+ 
O'vT 

1c 
TLV 

sOTX 
€ 

pOlX 
ST 

18h 
O
S
T
0
 +
 

S87 
0
6
 

vL 
v
6
C
 

O
9
1
 

Oe 
v
e
c
 

6
8
1
+
 

£
0
7
 

007'T 
v8 

E
L
C
 

800°0 
+ 

LEl 
v 

se0 
L
e
 

(;-"9 OT) 
(,;-™ 

01) 
43-15 

xewly 
od 

> 
xeul, 

WISTOYOIp 
IepNoND 

eryeds 
d1U01}99]q 

II I a Vv alo II 

pleysAio 
o[sulsg 

uoljnjos 
s
n
o
o
n
b
y
 

D
e
e
n
 
e
e
 
e
e
e
 
e
e
 

pel &(u2)09]685(+) 
JO WSTOIYOIP 

Tepnono 
pure esydeds 

NUON 
I
q
 

“19 
O
Q
e
L
 



134 = Circular Dichroism 

| 

En ae ie } I 
oe — 

cee 

tie Pe 
| excited state a ae eS A, 

Wes “Ge —— I << ee \9 = E I 

Se 3 “it 
Neos ip 
Nes : 
\ 3 
Ss ie 

2 ‘A 19 A, ground state se 
3d, 0, dD; 

¥ 

free ion 

Fig. 6.8. The splitting of d orbital energy terms in Oy and D3 environments for 346 configura- 
tion 

of [Co(en)3]** of D3 symmetry shows a great resemblance to that of octahedral 
[Co(NH3)¢ ]>*, since the visible absorption spectrum is largely determined by the 
nature of the ligating atoms, in both cases the chromophore being [CoNg ]. Actually 
the first absorption band consists of the two Components, 'A, > 'E and 1A.> 
1A, , however, these two transitions cannot be recognized as two separate bands in 
the first absorption region. The first absorption bands exhibit the largest rotatory 
power and two circular dichroism bands exist with opposite signs and of different 
magnitude in this region, reflecting the trigonal splitting. For a transition to be 
optically active, the associated magnetic moment must have a non-zero component 
along the direction of the associated electric dipole moment, as indicated by Eq. 
(6.44). The magnetic dipole selection rules for D3 symmetry shown in Table 6.2. 
predict the occurrence of two cd components: 1A, > 1E and 1A, > 1A, in band I 
and only one component ‘A, > 'E in band II: another component 'A, > !A, is 
magnetic dipole forbidden. The observed circular dichroism spectra shown in Fig. 
6.7 confirm all these predictions. The A, and E components are polarised respec- 
tively parallel and perpendicular to the three-fold axis of the complex ion. McCaffery 
and Mason (1963) measured the single crystal circular dichroism spectrum of 
(+)sgo[Co(en)3]2Cle - NaCl - 6H0 with light propagating parallel to the optic axis, 
in which all the complex ions are arranged with the three-fold axis parallel to it. In 
this condition only the E component is excited. As shown in Fig. 6.7, this crystal 
measurement showed that the intrinsic rotational strength of the 'A, > 'E transition 
is positive and substantially larger than that of solution circular dichroism. Accord- 
ingly the intrinsic rotational strength of ‘A, > 1A, must be negative and almost as 
large as that of the E component. Thus what is observed in a solution circular dich- 
roism spectrum is a result of large cancellation due to the overlapping of the two 
rotatory strengths with opposite signs when the complex ions are randomly oriented 
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Table 6.2. Magnetic dipole selection rules for O; and D 3 symmetries 

On 

Aig A2g Eg Tig T2g 
ee ee eee eee 

Aig x x x oO Xx 
A2dg x x x x oO 
Eg x x x oO oO 
Tig oO x oO oO oO 
T2 x oO oO oO ° 

D3 

Ay Ad E 

Ay x 4 Bl 

A2 4 x ale 

E Hl 1 gels 

o: allowed, x: forbidden; /: parallel to the C3 axis; 

1: perpendicular to the C3 axis. 

in solution. In fact, the band origins of the E and A, components lie close together 

(Dingle, 1967) and the appearance of separate circular dichroism bands in the solution 

spectrum originates in the different distribution of rotational strengths over the E and 
A, vibronic progressions (Richardson, Caliga, Hilmes and Jenkins, 1975). The separa- 

tion of the crystal circular dichroism spectra into E and A, components will be des- 

cribed in the next section. Table 6.3 lists the circular dichroism spectra of some tris- 

bidentate complexes with five-membered chelate rings in the first absorption region (1). 

With only one exception, (+)5g9[Co(cptn)3]**, those complexes which show promi- 

nent positive circular dichroism in the first absorption region possess A absolute con- 

figuration and if it is negative the absolute configuration is A. The empirical rule can 

be slightly modified to include the case of (+)sg9[Co(cptn)3]** as follows: those 

complexes which show a positive circular dichroism band in the longer wavelength 

side of the first absorption region have A absolute configuration. 

The empirical rule mentioned above generally holds for most tris-chelated d° 
or d? complexes with five-membered chelate rings, even if the complex contains 

ligating atoms other than nitrogen. Table 6.4 lists the circular dichroism spectra 

of tris-chelated complexes containing six- or seven-membered chelate rings. The 

absolute configuration of all the complexes listed in the table has been established 

by means of X-rays. As can be seen from Tables 6.3 and 6.4, a series of complexes, 

A-[Co {NH2(CH),NH) }3]** (n = 2, 3, 4), has a common feature in that they all 
exhibit a positive circular dichroism band at the longer wavelength side of the first 
absorption region, although the magnitudes differ considerably, and they all show 

a negative circular dichroism band at the longest wavelength region of the charge 

transfer absorption (not shown in Table 6.4). 
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Table 6.3. Circular dichroism spectra of tris-bidentate complexes of Co(III) and Cr(IID 

with five-membered chelate rings® 

CD 

Complex Chromo- D Ae Absolute Refs. 
phore 103cm—! configuration 

(+)5g 9[Co(en)3]3* [CoN¢] 20.28 +2.18 A (666) lel3 d 
23.31 — 0.20 

(+)5g 9[Co(S-pn)3]°* [CoNg] 20.28 = 1.95. A (885) lel e 
FUR ES — 0.58 

(+)5g 9[Co(R-pn)3]°* [CoNg] 21.0 + 2.47 A (AAA) 0b3 f 

(—)5g9[Co(S,S-chxn) 3]>* [CoNg] 20.0» -+2.28 =A (888) lel 2 
22.5 — 0.69 

(+)5g9[Co(R,R-chxn)3]>* [CoN] 20.8 +3.9 A (AAA) 0b3 g 

(+)5g 9[ Co(S,S-cptn) 3]3* [CoNg] 18.9 +0.59 A (888) lel3 
21.1 S91 

(—)5g 9[Co(sar)(en)2]?* [CoN50] 19.4 = 80) > yANEE Sb oh eed 

(+)495[Co(S-glut)(en) 2] [CoNs50] 19.6 . +2,55 A (88) j, n* 

(+)58 9[Co(S-ala) 3] [CoN303] 18.5 #13 A k, o* 
21.0 M2 

(—)sg 9[Co(ox)3]3— [Cog] 16.2 +33 A ae 
(+)546[Co(thiox)3]3— [CoS¢] 15.8 =32 A m, q* 

(+)5g 9[ Cr(ox)3]3— [CrOg] 15.9 — 0.6 A Lr 
18.9 +2.8 

(+)5g 9[Cr(mal)3]>~ © [CrO6] 16.1 SO. PWN i 
18.0 + 0.20 

SN  ——— 

All the absolute configurations have been established by the X-ray method. 
Taken from the figure. 

Six-membered chelate rings. 

Sato, Saito, Fujita and Ogino, 1974. 

McCaffery, Mason and Ballard, 1965. 

Douglas, 1965. 

Piper and Karipides, 1964. 

Ito, Marumo and Saito, 1971. 

Buckingham, Mason, Sargeson, and Turnbull, 1966. 

Dunlop, Gillard, Payne and Robertson, 1966. 

Denning and Piper, 1966. 

McCaffery and Mason, 1963. 

Hidaka and Douglas, 1964. 

Gillard, Payne and Robertson, 1970. 

Drew, Dunlop, Gillard and Royers, 1966. 

Butler and Snow, 1971b. 

Butler and Snow, 1972. 

Butler and Snow, 1971a. 

Among the two references in a row, the one with an asterisk concerns the absolute configuration 
not described in Chapter IV. 

e4 ORV OB FORO sm he ao oe 
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Table 6.4. Circular dichroism spectra of tris-diamine complexes of cobalt (III) 
with six- and seven-membered chelate rings 

ee" 

Complex CD Absolute Refs. 
configuration 

~ 

v Ae 

103cm7! 
unenneetmere es <n ye ee ae ae ee 

(—)5go[Co(tn) 313° 18.69 + 0.08 A C3-chair 3 b 
30.0 = 0.17 

(—)546[Co(R,S-ptn) 3]3* 20.0 =6:1 A C3-chair3 c 

(—)546[Co(R,R-ptn) 3]>* 19.6 = 6.2 A (AAA) lel3 d 
(+)546[Co(R,R-ptn) 3]3* 20.9 + 26.8 A (AAA) 0b3 d 

(+)58 9[Co(tmd)3]>* 18.2 =O A (AAA) lel3 e 
20.5 + 1.83 
ee ae 

All the absolute configurations have been established by the X-ray method. 
Gollogly and Hawkins, 1968. 

Mizukami, Ito, Fujita and Saito, 1972. 

Mizukami, Ito, Fujita and Saito, 1970. 

Sato, Saito, Fujita and Ogino, 1974. cna ot BP 

B. Tests for the Theoretical Models 

Three sources of dissymmetry exist in the structures of octahedral complexes: 

(i) Configurational dissymmetry 

This is the dissymmetry arising from the distribution of chelate rings around the cen- 

tral metal atom and distortions of the ligating atoms from a regular octahedral ar- 

rangement. 

(ii) Conformational dissymmetry 

This is the inherent dissymmetry possessed by each chelate ring by virtue of its adopt- 

ing a chiral conformation. 

(iii) Vicinal effect 

This is the optical activity induced in the d—d transitions by the substituents attached 

to the asymmetric centres. 

These effects are empirically separable by adding or subtracting the observed circular 

dichroism spectra of appropriate complexes, since the potential exerted by the atoms 

in the ligands is additive [See Eq. (6.70)]. Where the configurational and vicinal ef- 

fects are opposed, the former appears to be generally dominant. Usually substitution 

on the chelate ring is accompanied by smaller changes in ring conformation and dis- 

tortion of the ligating atoms, which may give rise to a change in circular dichroism 

spectra. Thus vicinal effects may be rather indirect. 

Attempts have been made to test the theoretical models for optical activity on 

the basis of solution cd and the known geometry of the complexes. The geometry 

and absolute configuration of [ML¢] chromophores are relevant to the evaluation 
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Fig. 6.9. Angles characterising a tris-bidentate complex 

of the optical activity models of Piper and Karipides and of Richardson. According 

to theory (Karipides and Piper, 1964; Richardson 1971a, b, c, 1972a, b)!?), the 

trigonal splitting parameter K [= 2/3(Dg - ¥a)] of the *Ayg > “Tog (Cr) and 1Ay, 
> i (Co!) transitions may be controlled by whether an angle @ is greater or less 

than the octahedral value of 54.75°, where @ is an angle of inclination of the metal- 

ligand bond with respect to the three-fold axis of the complex ion as illustrated in 
Fig. 6.9. The angles characterising structures of some D3 complexes of Cr! and 

Co!!! are listed in Table 6.5. It is known that the sign of the E component inverts 

from the circular dichroism spectrum of A(+)5g9[Cr(ox)3]*~ to that of A(+)sgo9- 
[Cr(mal); ]*~ (McCaffery, Mason and Norman, 1964; McCaffery, Mason and Bal- 
lard, 1965). This is consistent with the observed change in 6. The reversal in com- 
ponent energies between A(+)5g9[Co(thiox)3]°~ and A(—)s5g9[Co(ox)3]>~ is also 
in agreement with theoretical prediction (Butler and Snow, 1972). The situation is, 
however, not so straightforward. The [CoN¢] chromophore in A(—)sg9[Co(en)3 ]** 
is trigonally compressed and azimuthally contracted, whereas that in A(+)5g9- 
[Co(tmd)3 ]** is trigonally elongated and azimuthally contracted. In both these 
complexes, the longer wavelength band is known to be that of E symmetry (Sato 
and Saito, 1974). Thus the energy order of E and A, is not inverted whether the 
[CoNg¢] chromophore is trigonally elongated or compressed. In fact, Strickland and 
Richardson (1973) calculated the rotatory strengths on a molecular-orbital model and 
showed that the d—d rotatory strength is very sensitive to details of the electronic 
structure within the chromophore. 

19 See also Section D. 
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Table 6.5. Geometry of tris-bidentate complexes 

a w 0 Refs 

[Co(ox)3]3* 84.3 (30) 54.0 56.4 a 
[Co(thiox)3]3* 89.7 (2) 57.0 53.8 b 
[Cr(ox)3]>— 82.4 50.3 56.3 c 
[Cr(mal) 3 ]3— : 91.9 (6) 60.2 Sas c 
lel3-[Co(en)3]3* 85.4 (3) 54.9 55.9 d 
lel3-{Co(tmd)3]3* 89.2 (2) S57 53.5 e 

Butler and Snow, 1971b. 

Butler and Snow, 1972. 

Butler and Snow, 197 1a. 

Iwata, Nakatsu and Saito, 1969. 

Sato and Saito, 1975b. ona op 

[Co(TRI)]** , [Co(R-MeTACN),]** and [Co(tame),]** have their non-ligating 

atoms above and below the trigonal planes formed by the ligating nitrogen atoms, 

while those of the tris-bidentate complexes such as [Co(en);]>* , are between the op- 

posed trigonal planes. The [CoN, ] chromophore in (+)s4¢[Co(TRI)2]** possesses a 
small twist distortion around the three-fold axis. This is anti-clockwise as in the case 
of A(+)sg9[Co(en)3]>* which has a remarkably similar circular dichroism in the region 

of the first absorption band (Wing and Eiss, 1970). This similarity may constitute sup- 
port for Piper’s model. The [CoN,] chromophore in (—)sg9[Co(R-MeTACN),]>* is 
elongated along and twisted around the triad axis(@ = 51.3°, w = 52.4°). The twist 
direction is similar to that observed in A(—)sg9[Co(en)3]** . The single-crystal circular 

dichroism shows a negative peak at 487 nm with light parallel to the optic axis, which 

is the trigonal axis of the complex ion, while that in an aqueous solution has a posi- 

tive peak at about 477 nm. This observation indicates that the E band has a negative 

sign. The rotational strength of the A transition seems to be greater than that of the 

E transition (Mikami, Konno, Kuroda and Saito, 1977). A similar study has been 

made with regard to (+)<sg9[Co(tame), ]°* (Geue and Snow, 1977). 
In fact, rotational strength may be classified as a second-order optical property 

and its extreme sensitivity to details of the electronic structure of the overall system 

requires very accurate theoretical calculations including all the atoms in the ligands 

and interactions between them. 

C. Solid State Circular Dichroism of tris-Diamine Cobalt(III) Complexes 

The physical properties of crystals, such as refractive index and extinction coeffi- 

cient, are in general not the same for all crystal directions, owing to the fact that on 

passing through a crystal the sequence of atoms encountered depends upon the 

direction taken. It should be noted that in a crystal the refractive index and absorp- 

tion coefficient depend not on the direction in which the electromagnetic waves are 

travelling but on the vibration direction of the electric vector. The phenomena are 
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called double refraction and linear dichroism(pleochroism), respectively. Thus 
Ae (= €; — €,) measured for a single-crystal plate cannot be directly compared with: 
that measured for a solution, since e depends on the instantaneous direction of vibra- 
tion of the electric vector. 

Crystals with cubic unit cells have the same atomic arrangements along all three 
axial directions. The optical properties are found to be the same not only along these 
three directions but also for all other directions, thus the cubic crystal is optically iso- 
tropic. Those crystals which belong to trigonal, hexagonal and tetragonal systems pos- 
sess only one direction along which light travels with one refractive index(and also 
one absorption coefficient) independent from the vibration direction. This direction 
is called an optic axis and these crystals are called uniaxial. The optic axis is parallel 
to the four-fold axis in the case of tetragonal crystals and is parallel to the three- 
fold and six-fold axes for trigonal and hexagonal crystals respectively. A crystal plate 
cut perpendicular to the optic axis behaves isotropically for light waves propagating 
along the optic axis. Thus the measured circular dichroism spectra of such plates have 
the same significance as that obtained for a solution and the results may be compared 
without further correction. Crystals belonging to other crystal systems are biaxial, i.e., 
they possess two optic axes, but they have not been used for single crystal measure- 
ments before 1976 (Jensen). Mostly single-crystal measurements of circular dichroism 
are carried out for uniaxial crystals. 

With the aid of the known crystal structures, it is possible to resolve the circular 
dichroism spectra of D3 complexes in the first absorption region into the two compo- 
nents E and A, by combining single-crystal and the microcrystalline circular dichroism 
spectra of uniaxial crystals (Kuroda and Saito, 1976). Figure 6.10 illustrates the inter- 
action of circularly polarised light with the complex ion in a uniaxial crystal. The light 
propagates along the optic axis OZ. The direction of the three-fold axis in the com- 
plex ion is indicated by a small closed triangle. The three-fold axis is inclined at an 
angle of a with respect to the optic axis. Let OY be a projection of the three-fold axis 
on a plane perpendicular to OZ. OX is chosen in such a way that OX, OY and OZ form 
a right-handed Cartesian co-ordinate system. When the circularly polarised light pro- 

Z 

Fig. 6.10. Illustrating the interaction of circularly 
polarised light with the complex ion in a uniaxial 
crystal 
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pagates along OZ, its electric vector E rotates on the XY plane. The E component can 
be excited with the light whose electric vector is perpendicular to the three-fold axis 
of the complex ion, whereas the A, component can be excited when the electric vec- 
tor is parallel to the three-fold axis. At a given instant, let the electric vector E make 
an angle of y with OX. The intensities of the E and A, components excited at this 
instant will be proportional to 

E? cos” asin? y+ E? cos? y forE (6.61) 

and 

E? sin? asin? y for A> (6.62) 

respectively. The average intensity over a period of rotation of the E vector will be 

obtained as follows: 

27 

57 J (E? cos” asin? y + E? cos y)dy=E*(1+cos?a)/2 for E (6.63) 
0 

and 

27 

5 n f (E*sin? asin? y)dy=E*(sin?a)/2 for A, (6.64) 
0 

Since the E level is doubly degenerate, the difference between e, and e€, of the single 

crystal, Ae,, can be written as a sum of Ae(Ex ), Ae(Ey ) and Ae(A,) as follows: 

Ae, = + (i+ Boyd Ae(Ex) + i (1 + cos?.a)/4 Ae(Ey) + 5 (sin? a)/2Ae(A>) (6.65) 

On the other hand, in a microcrystalline state the three-fold axes of the complex ions 

are randomly oriented, hence Ae in a microcrystalline state, Ae,,, can be written as 

Aém = 4 Ae(Ex) + £ Ae(Ey) + 5 Ae(Az) (6.66) 

where 1/3 is a random orientation factor. 

Since Ae(Ex ) = Ae(Ey ), Eqs. (6.65) and (6.66) become 

Ae, = + (1 + cos” a)/2 Ae(Ex) + 4 (sin? a)/2 Ae(A2) (6.67) 

and 

Aém = = Ae(Ex) +  Ae(A2) (6.68) 

Now we can obtain the two simultaneous Eqs. (6.67) and (6.68) involving Ae(Ex ) and 

Ae(A,) as two unknowns. Using Ae, and Ae,, measured at an arbitrary wavelength, 
Ae(Ex) and Ae(A, ) can be easily calculated by means of Eqs. (6.67) and (6.68). In 

this way the observed circular dichroism spectra can be resolved into E and A, com- 
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18 20 22 24 26 28 30¥103cm-1 

Fig. 6.11. The circular dichroism spectrum of a single-crystal ( ) and that in a KBr matrix 
(—=—=— = ) of A-[Co(S,S-chxn) 3]Cl3- 5H20 

ponents. Figure 6.11 represents two circular dichroism spectra in the single-crystal 
and microcrystalline state of hexagonal A-[Co(S,$-chxn)3]Cl, - 5H,O. Figure 6.12 
shows the result of resolution of the circular dichroism spectra shown in Fig. 6.11 
into E and A, components. 

By the procedure described above, the circular dichroism spectra of seven tris- 
(diamine)cobalt(III) complexes of known crystal structures were resolved into E and 
Az components. The results are summarised in Table 6.6, together with those obtain- 
ed by other workers and are compared with the calculated values. 

Jensen and Galsbgl (1977) directly measured the E and A, components by means 
of a phase modulation spectrophotometer (Hofrichter and Schellman, 1973). This 

-5 

Fig. 6.12. The E and Ay components obtained from 
600 550 500 450 400 nm _ the spectra shown in Fig. 6.11 
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spectrometer installs an optical modulator (see Fig. 6.6) which is a piece of fused si- 
lica. It is made to oscillate by mechanical coupling to a quartz crystal cut so that it 
has a resonance frequency of 50 kHz. The oscillation is selceted in such a way that 
it provides a periodically varying birefringence in the silica plate with an amplitude 
that is determined by the strength of the signal from the driving oscillator. After leav- 
ing the modulator the light passes through the sample and is received by a photomul- 
tiplier. The photocurrent is then sent through a lock-in-amplifier. By selecting the 
modulation appropriately a component proportional to Ae(= €,—e,) can be detected 
by the electronic circuit (Jensen, 1976). In this way, the crystal circular dichroism 
spectra of A-(+)s5g9 tris(ethylenediamine)cobalt(III) ions diluted in a host crystal of 
racemic 2[Ir(en)3]Cl3 - NaCl - 6HO were measured. The crystal is hexagonal and 
the measurement was made with light propagating both parallel and perpendicular 
to the three-fold axis of the complex ion. The result is also included in Table 6.6. 

As discerned from Table 6.6, the absolute values of the observed rotational 
strengths of the E and A, bands, separated by the method of Kuroda and Saito pos- 
sess nearly the same magnitudes and opposite signs in conformity with theoretical 
prediction. The result was further supported by phase modulation spectrophotometric 
data (Jensen and Galsb¢l, 1977). Thus it was established that what is observed in so- 
lution circular dichroism is the result of large cancellation of the two large com- 
ponents with different sign. R(E) and R(A,) are uhequal: |R(E)| > IR(A,)| for com- 
plexes with five-membered chelate rings, while |R(E)| < |R(A)| for complexes with 
six- and seven-membered chelate rings. R(T, ) is the sum of R(E) and R(A,) and this 
value can be estimated by measuring the area under the observed circular dichroism 
curve. R(T, )’s obtained from solid state circular dichroism spectra generally agree 
well in magnitude and sign with those obtained from solution circular dichroism spec- 
tra, except for A{Co(S,S-cptn)3]°*, A-[Co(S,S-ptn)3]>* and A-[Co(tmd)3]>*. For 
the latter three, some changes in conformation or in the mode of ion association may 
be expected in solution (Toftlund and Pedersen, 1971; Kuroda, Fujita and Saito, 
1975). 

D. Calculation of Rotatory Strengths 
of tris-Bidentate Cobalt(III) Complexes 

The rotational strengths of a complex ion can be calculated by means of Eq. (6.69): 

Rog = Im (O|P|a) - <a|M|0) (6.69) 

The wave function |a) is derived from a basis set |M;L;) of simple products of metal 
ion and ligand functions, where M and L represent metal and ligand respectively. The 
perturbation is taken to be static potential between charge distribution: 

v= > > “OV: 
PY S G45 /"is (6.70) 

The product function corrected to the first order of perturbation is 
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[Mg Lo) = Malo) + S (Eq — Ex, — E,)~* (Mx LjlV IMaLo)IMxLy) (6.71) 

The d—d transitions are magnetic-dipole allowed but electric dipole forbidden. 

Thus the magnetic dipole moment of the transition 0 > a has its zero-order value, 

(MgLoIMIMoLo) = (MgLoIMIMoLo) (6.72) 

The electric moment of the transition, however, is entirely borrowed with the follow- 

ing components expressed in the first order: 

(MoLo|PIM,Lo) = ace (—E,) 1 (MoLolV |M;.Lo) (Mx IPIMa) (6.73a) 

+ = (Ey — Ex) * (Mx Lo|V Malo) (Mo IPIMz) (6.73b) 

+ © (Ba — Bi" * MoLolV Mala) (LiPiLo) (6.736) 

+E Ea — Ei)! MoLilVIMaLo) (Lo PiLs) (6.734) 

where the ground state energy is taken to be zero. The first two terms, (6.73a) and 

(6.73b), on the right-hand side of the equation express the mixing of the electric- 

dipole forbidden and allowed transitions of the metal under the perturbations of 

the potential exerted by the ligands. These two terms form the basis of the ligand 

field one-electron model. It admits only static coupling between a chromophore 

electron localised on the metal atom and the static charge distribution located in 

the perturbing ligand in the ground state. The second two terms, (6.73c) and (6.73d) 

govern the dynamic coupling of the transition of the chromophore, My > M, with 

electric dipole transitions, Ly > L;, induced in the ligand by the transition charge 

distribution. 

In 1956, Moffitt first adopted the crystal field one-electron model and showed 

that the d—d transitions of metal complexes could become electric-dipole allowed 

under a static D3 perturbing field, by mixing some p character into the d wave func- 

tions (Moffitt, 1956). An error in sign of the electric angular momentum operator, 

however, led to incorrect conclusions and Sugano (1960) subsequently demon- 

strated that Moffitt’s model could not account for the net optical activity observed 

for the !A, > 'T, transitions in D3 complexes of Co(IID) in solution. In 1964 Piper 

and Karipides used a model in which d—d excitation obtained rotatory strength by 

borrowing intensity from charge-transfer bands (1964). In their treatment only the 

[CoN,] chromophore was considered. It was shown that the sign of rotational strength 

does not depend upon the absolute configuration of the chelate ring around the metal 

ion but is determined by the displacement of the ligating atoms from the apices of 

the regular octahedron. However, the atomic parameters determined by X-ray diffrac- 

tion had to be violated in order to make good predictions. In the same year, Liehr 

used a different molecular orbital model (1964), in which the ligating nitrogen atoms 
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were located on the regular octahedral axes. In this treatment the numerical values 

of rotational strength are determined by the absolute configuration of the complex 
ion and depend upon the magnitudes of the “angle of cant” between the axes of 
overlapping orbitals and Co—N axis, but are independent of the sign of this angle. 
When this model was proposed, it was very difficult to obtain information about the 
“angle of cant” of the overlapping orbitals. The model should, however, be recon- 
sidered, since the direction of the overlapping orbitals can now be determined in the 
final difference synthesis (Chapter V). 

Although these models could not fully account for the experimental results, the 
insight of these workers stimulated the work of a good many chemists. Other pro- 
posals were published based on the crystal field one-electron model without any 
marked advance (Hamer, 1962; Poulet, 1962; Biirer, 1963). Schaffer (1967, 1970) 
discussed the optical activity of D3 complexes of cobalt(III) and chromium(III) in 
terms of the angular overlap model of bonding in co-ordination compounds first pro- 
posed by Yamatera (1957, 1958). This approach seems to show some promise, 
however, a detailed account of its application has not yet been given. 

In all the models described above, only the first order contribution to the rota- 
tional strength was considered. But it appeared to be unrealistic in the crystal-field 
model, and the second order contributions to the net rotational strength were taken 
into account (Shinada, 1964; Caldwell, 1967; Richardson, 1971a, 1971b, 1972a, 
1972b, 1971c). The theory could qualitatively account for the unequal magnitude 
and non-zero resultant rotational strength. Without a trigonal field splitting, hawever, 
the second order crystal-field contribution to the net rotational strength of aD; 
complex goes to zero. A trigonal field splitting in the complex ion, [Co(en),]?* is not 
detectable (Dingle, 1967). Strickland and Richardson (1973) refined the Piper and 
Karipides molecular orbital model by adding the ethylene portion of each ethylene- 
diamine ligand in the form of a perturbing Coulombic field. They showed that 
neither the Piper molecular orbital model nor the Liehr model provides an adequate 
representation of the source of d-electron optical activity of D3 complexes. Evans, 
Schreiner and Hauser (1974) adopted the static ligand field approach and calculated 
the optical activity of A-[Co(en)3]** on the basis of the molecular orbital model 
(1974). In the calculation, Co, C, N and H atoms were treated explicitly and 
allowed to interact whether they belonged to the same or different chelate rings 
and all the o and 7 metal-ligand and ligand to ligand interactions were allowed. 
The calculated rotational strengths are compared with the experimental values in 
Table 6.6. The model accounts for the signs of the trigonal components, E and A>, 
correctly and the magnitudes of the rotational strengths with considerable success, 

The second model, based on dynamic coupling terms, (6.73c) and (6.734), is 
basically identical with that developed by Tinoco (1962) and applied to organic 
systems by Hohn and Weigang (1968). It consists of independent metal ion and 
ligand groups. No overlapping is assumed between the electronic distributions of 
the individual groups. It is further assumed that the electronic properties of each 
group are approximately isolated from the rest of the system. Interaction between 
groups is then treated by perturbation theory. Obviously the crystal field one-elec- 
tron model is subsumed in this more general theory. This model was adopted by 
Mason (1971) and Richardson (1971b, 1972a). These authors showed that the pair- 
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wise dynamic couplings between electrons in the ligand and the chromophoric d 
electron can provide significant contributions to the total d—d rotatory strength of 

chiral metal complexes. Mason and Seal (1976) calculated the optical activity of D3 

complexes of cobalt(III) on the basis of the dynamic coupling model. In their cal- 

culation, a Coulombic correlation was considered between the components of the 

electric hexadecapole moment of the ‘A, > 1T, d-electron transition of the Co(II) 
in the [CoNg¢] chromophore and a transient dipole induced in each ligand. Calcula- 

tion of the rotatory strength based on this model accounted for the experimental 

result for [Co(en)3]** as shown in Table 6.6. 
The theoretical calculations of Evans, Hauser and Schreiner as well as Mason 

and Seal correctly predict all the signs of R(E) and R(A,). Moreover, theoretical 

values of R(T, ) for the complexes with five-membered chelate rings agree well in 

sign and magnitudes with those observed in solid-state. Theoretical values of R(E) 

and R(A,) for A-[Co(en)3]** agree satisfactorily with the observed values. For 

other five-membered chelate ring cases, R(E) and R(A, ) agree pretty well with the 

observation. For the six- and seven-membered ring cases the agreement is less satis- 

factory. No explanation can be offered at present. 

Recently the single-crystal cd measurement at 80 K of A-2[Co(en)3]Cl; - NaCl - 

6H,O was extended to longer wavelength regions (Mason and Peart, 1977). The 

results are included in Table 6.1. The optical activity associated with spin-forbidden 

transitions to the °T, and >T, octahedral states was shown to possess distinctive fea- 
tures which are accounted for satisfactorily by spin-orbit coupling between these states 
and principally the corresponding 'T, state. 

8 Circular Dichroism Spectra of cis-bis-Bidentate Complexes 

The circular dichroism spectra of cis-bis-bidentate complexes of the general formulae, 

[Co(a)>(en)2]"* or [Co(a)(b)(en)2]"", have also been extensively studied (McCaffery, 

Mason and Norman, 1965b). Generally they can be interpreted in relation to the par- 

ent complex, [Co(en)3]>*. On replacing one chelate ligand in the tris-diamine complex 

by a, the symmetry descends from D3 to C,. The first absorption band then gives rise 

to two transitions B, and B and one Ay, of which A, and By, have trigonal E par- 

entage. The splitting results in the shifting and splitting of absorption bands. The 

shift direction and mode of splitting depends upon the relative positions of the ligat- 

ing atoms of a and N in the spectrochemical sereis. Table 6.7 lists the circular 

dichroism spectra of cis-bis-bidentate complexes of known absolute configuration 
determined by the X-ray method. The circular dichroism spectra show two peaks 
and the prominent peak can be interpreted as unresolved A, + By of E trigonal 

parentage and its sign is diagnostic of the absolute configuration. This situation can 

be made clearer as follows: In Fig. 6.13 the wave numbers of circular dichroism 

peaks of three complexes are plotted of the type, A-cis-[Co(a)2 (en), ]* against 5!(a), 

where 5!(a) is the difference between the wave numbers at the absorption band 

maxima of the two complexes [Co(a),] and [Co(NH3)¢]°**. The two thick lines indi- 
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Table 6.7. Circular dichroism spectra of cis-bis-bidentate cobalt(III) complexes 
i a ee se 

Complex Absolute CD 

configu- 

ration pb Ae Refs. 

x 103cm—! 
eee eee 

(+)5g9[CoCl(en)2]* A 16.3 =06 a c#* 
18.6 +0.7 

(+)58 9[Co(NO) 2(en) 2]* A MRSS F +1.4 a d 
25.0 —0.65 

(+)5g 9[Co(CN) (en) 2]* A 22.7 +0.30 a e 
27.3 +0.17 

(+)5g 9fCo(NO>)(R-pn) 9)" A 21.7 erie feet 
24.5 +0.6 

eee 

* Taken from figure. 
** References c ~ f concern the absolute configuration. 
a McCaffery, Mason and Norman, 1965b. 
b_ Barclay, Goldschmied, Stephenson and Sargeson, 1966. 
c Matsumoto, Ooi and Kuroya, 1970. 

d Matsumoto and Kuroya, 1972. 

e¢ Matsumoto, Ooi and Kuroya, 1972. 
f Barclay, Goldschmied and Stephenson, 1970. 

cate the expected positions for the two splitted components for A, + B2(E) and 
B, (Az) (Yamatera, 1958). As can be seen from Fig. 6.13, all the prominent compo- 
nents lie on the line indicated as (1/4)5'(a) and the weaker ones are on the line indi- 
cated as (1/2)54(a). Thus the relative peak positions of the A, + By band and the B, 
band are inverted according to whether the ligand a comes prior to or behind en in 
the spectrochemical series. Accordingly the same empirical rule may be applied to 
these complexes as that which relates the absolute configuration of [Co(en)3]** to 
its circular dichroism spectrum: those complexes which show prominent positive 
circular dichroism in the first absorption region has the A absolute configuration. 

For complexes of the type, cis-[Co(a)(b)(en),]"*, the mode of splitting of the 
absorption band is similar and the assignment of the absolute configuration on the 
basis of circular dichroism spectra can be made in a similar way. 

10°* 9(a)/om™ 
30 =a10 0 +10 

“ OT F a'(a) 
E 25 aaa 
~ eo. (a) & Pech att 
o ae rr a Fig. 6.13. Splitting of the circular 

= dichroism spectra for A-cis-[Co(a)> 
15 

(en) 7" in the first absorption re- 
Cis NH3 = NO2 CN- gion 
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9 Sector Rules and the Circular Dichroism Spectra 
of Multidentate Complexes 

A. Sector Rules 

Various regional rules relating the stereochemistry to the optical activity of the 

transition-metal complexes have been proposed. Some of them are purely empirical 

and others possess a theoretical background. Notably two rules are known: one is 

Hawkins and Larsen’s octant sign rule (1969) and the other is the “ring pairing 

method” of Legg and Douglas (1966). Both methods are essentially empirical and 

equivalent. The octant sign of a complex with chelate rings is derived by positioning 

the complex in a right-handed co-ordinate system so that the central metal atom is 

at the origin of co-ordinates and the donor atoms of a chelate ring lie in the xy plane 

and have the co-ordinates, (+x, ty) and (—x, ty). If the chelate ring in question is in 

an octant defined by —x, —y, +z, then the octant sign of this particular chelate ring 

is + (chelate ring 1). In the same way the chelate ring 2 can be assigned as +, i.e. 

(+x, —y, —z). Thus the two rings that do not lie in the xy plane are completely 

contained in positive octants and the octant sign is positive. Each chelate ring has to 

be placed on the xy plane individually and the octant sign for each chelate ring is 

computed. Finally by adding up the signs the octant sign of the whole complex can 
be obtained. The octant sign tells us that if it is positive the circular dichroism spectra 

show a positive peak at the longer wavelength side in the first absorption region of 

Co(II) complexes with the chromophore [CoNg]. The ring pairing method suggested 

by Legg and Douglas is as follows: For a given complex all possible combinations of 

two chelate rings are written down and the chirality (A or A) according to IUPAC 

convention (p. 9) of each set is determined. The net (or dominant) chirality should 

be governed by the chirality which occurs the greatest number of times. Figure 6.15 il- 

lustrates the application of this rule to (+)s g9[Co(penten)]>*. If the net chirality is 

A, the sign of the circular dichroism peak at the longer wavelength side in the first 

absorption region is positive and vice versa. In Legg and Douglas’ original paper the 

use of A and A is opposite to that of the IUPAC nomenclature adopted here. 

In addition to Co(III) and Cr(III) complexes, extensive studies have been made 

on Cu(II) and Ni(II) complexes with amino acids and polypeptides (Wellman, Mungall, 

Mecca and Hare, 1969; Wellman, Mecca, Mungall and Hare, 1968; Martin, Tsangaris 

Fig. 6.14. Assignment of an octant sign for A-[Co(en)313* 
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Fig. 6.15. Illustration of the procedure to obtain the net chirality of (+)5g89[Co(penten) ]3* 

and Chang, 1968; Wellman, Bogdansky, Piontek, Hare and Mathieson, 1969; Chang 
and Martin, 1969; Wilson and Martin, 1970; Tsangaris and Martin, 1970; Morris and 
Martin, 1971). : 

A theoretical analysis of these empirical rules can be accomplished by deter- 
mining the symmetry-controlled aspects of the problem without performing the cal- 
culation of rotatory strength. In fact, a number of workers have succeeded in devel- 
oping various sector rules. These rules are founded on the one electron theory of 
optical activity in dissymmetrically perturbed symmetric chromophores developed 
by Schellman (1966, 1968). The theory indicates that the induced rotatory power 
may be related to the substitution pattern by means of the symmetry properties of 
the unperturbed chromophore, independently of the detailed physical mechanism of 
the connection. In the case of centrosymmetric chromophores, the zero-order rotational 
strength may be non-zero and given by Eqs. (6.73a) and (6.73b). Schellman has shown 
that the potential V which mixes the transitions of the chromophore, transforms, or 
contains a component which transforms under the pseudoscalar representation of the 
point group to which the symmetrical chromophore belongs. If the rotatory strength 
(6.44) is non-zero, the matrix elements like (M;LolVIM,Lo) are totally symmetric, in 
other words, V is required to transform a product such as MxM, or (MoLo|PIM;L,) - 
(MzLo|M|MoLo). This means that the function changes sign under all improper 
rotations but is invariant under all proper rotations of the point group. Since the 
potential function arises from outside the chromophore, it will not usually have the 
transformation properties of any representation of the symmetry groups of the 
chromophore. However, it is possible to express the potential function as a sum 
of such functions that have the transformation properties of the symmetry group 
of the chromophore (Wigner, 1959). There is an infinite number of those potential 
functions which transform as pseudoscalar under the symmetry operations of the 
point group. Among them only simpler potential functions may be useful for the 
sector rules. The functional forms of the simplest pseudoscalar potential are listed 
for most of the common point groups (Schellman, 1966, 1968). 

- Octant sign can be obtained by employing the co-ordinate function 2007 —y*) 
for each ligand atom(or substituent). The co-ordinate axes are right-handed and they 
are directed along the metal-ligand bonds. Along the scheme outlined above, Mason 
devised sector rules correlating the position of a substituent in the chromophores, © 
[CoAs B], trans-[CoA,By] and [CoAg] (1970, 1971). Bosnich and Harrowfield (1972) 
presented a sector rule for the conformational isomers of octahedral complexes. The 
tule is based on a more intuitive argument utilizing experimental facts. Richardson 
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(1972b) derived the expression for rotational strength in which perturbation treat- 

ment was carried out to second order in both the wave functions and rotational 
strength. The second-order sector rules based on these expressions proved to be use- 
ful in relating the circular dichroism and absolute stereochemistry. These regional ru- 

les except the first two, octant sign rule and ring-pairing method, need, however, a 

more detailed geometry of the complex and hence are less practicable to predict the 

absolute configuration on the basis of circular dichroism spectra. 

B. Circular Dichroism of Multidentate Complexes 

Correlation of absolute configuration of multidentate complexes with their circular 
dichroism can be achieved by applying the octant rule or “ring-pairing method”’. 

Table 6.8 lists the circular dichroism spectra of the complexes containing multiden- 

tate ligands in the first absorption region. As shown in the Table, the two methods 

cover the main types of the chromophore and the sign of the Cotton effect due to a 

particular component descended from the octahedral T,, transition in [CoNg], 

cis-[CoN4 0, ] or cis-[CoN, 0,4] chromophores can be correlated with the net chira- 

lity(or the octant sign). The relative magnitudes of the two circular dichroism peaks 

are affected by the ligands. For the complex ion, (—)s4¢-cis-6-[Co(ox)(R,R,R,R-3", 
2,3”-tet)]* , the prominent negative circular dichroism band appears to be shifted 
towards the shorter wavelength side in the first absorption region. It is to be noted 

here that the assignment of net chirality is impossible for those complexes in which 

three chelate rings join outside a face of an octahedron at non-coordinating atoms. 

In this case, the rings do not define the edges of an octahedron. Even if the number 

of skew chelate pairs could be counted, it is not possible to obtain net chirality. 
Thus the empirical rule mentioned above cannot be applied. Examples are the 
isomers of [Co(S-asp)2]~ (Oonishi, Sato and Saito, 1975). 

10 Conclusion 

Both experimental and theoretical studies of transition-metal complexes of trigonal 

dihedral (D3) symmetry have now enabled us to understand the origin of the optical 

activity of these complexes in reasonable detail. The theoretical models correctly ac- 

count for the signs of the trigonal components, E and Aj, of the circular dichroism 

spectra of [Co(en)3]>* and the magnitudes of the rotational strengths with consider- 

able success. There, remains, however, much to be done before quantitative agreement 

can be obtained between theory and experiment for other complexes. On the other 

hand, the determination of the absolute configuration of a number of transition- 

metal complexes has established the empirical rules relating the absolute configura- 

tion and the circular dichroism spectra. We are now in a position to assign the ab- 

solute configuration of unknown complexes based on the circular dichroism spectra 

with reasonable certainty. In making asignments, reference complexes are needed 
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for which both crystal and molecular structure and the circular dichroism spectra 
are known in detail. Preferably these should have high conformational and confi- 
gurational stability to minimize the possibility of structural change during phase 
changes from solid to solution. 

The origin of the optical activity of dissymmetric transition metal complexes 
treated in this Chapter concerns the symmetric chromophore placed in a dissym- 
metric molecular field. There exists, however, another source of optical activity: 
an optically active complex is regarded as a dissymmetric ensemble of symmetric 
chromophores formed by co-ordination to a central metal atom. For instance, a 
tris-bidentate complex containing unsaturated ligands gives rise to optical activity 
by Coulombic coupling of the allowed m > r* transition in the individual ligands. 
Owing to limited space, this topic has been completely excluded. 

~ 



Appendix VI-1 

Evaluation of the definite integral in Eq. (6.54). 
Let I, be the definite integral in question 

I th p*/[(v2 — v?)? + Tar? dp 

Putting v? =t 

co 

I, =3 J Vit —202t+ D2,4+v2)dt 

is 
2 

iz 

Jt | [+2 (Fe — 12) r+ v3] at 
ONN8 

By using the formula: 

( 
0 ax? +2bx+c W2a(Jact+b) 

cf. The Universal Encyclopedia of Mathematics, George Allen and Unwin Ltd. (1964), 

we obtain the desired result 

r= m/(2 Toa) 
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