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A Helmholtz energy J Btu
âi Activity of species i in Dimensionless Dimensionless

solution
B 2d virial coefficient, cm3/mol cm3/mol

density expansion
C 3d virial coefficient, cm6/mol2 cm6/mol2

density expansion
D 4th virial coefficient, cm9/mol3 cm9/mol3

density expansion
B′ 2d virial coefficient, kPa−1 kPa−1

pressure expansion
C′ 3d virial coefficient, kPa−2 kPa−2

pressure expansion
D′ 4th virial coefficient, kPa−3 kPa−3

pressure expansion
Bij Interaction 2d virial cm3/mol cm3/mol

coefficient
Cijk Interaction 3d virial cm6/mol2 cm6/mol2

coefficient
CP Heat capacity at constant J/(mol�K) Btu/(lb mol�R)

pressure
CV Heat capacity at constant J/(mol�K) Btu/(lb mol�R)

volume
EK Kinetic energy J Btu
EP Gravitational potential energy J Btu
fi Fugacity of pure species i kPa psi
f̂i Fugacity of species i in kPa psi

solution
G Molar or unit-mass Gibbs J/mol or J/kg Btu/lb mol

energy or Btu/lbm
g Acceleration of gravity m/s2 ft/s2

g �GE/RT
H Molar or unit-mass enthalpy J/mol or J/kg Btu/lb mol

or Btu/lbm
Ki Equilibrium K-value, yi/xi Dimensionless Dimensionless
Kj Equilibrium constant for Dimensionless Dimensionless

chemical reaction j
ki Henry’s constant kPa psi
M Molar or unit-mass value 

of any extensive thermo-
dynamic property of a 
solution

Mi Molar or unit-mass value of 
any extensive property of 
pure species i

M�i Partial molar property of 
species i in solution

∆M Property change of mixing
∆M°j Standard property change 

of reaction j
m Mass kg lbm
ṁ Mass flow rate kg/s lbm/s
n Number of moles
ni Number of moles of species i
P Absolute pressure kPa psi
Pc Critical pressure kPa psi
Pi

sat Saturation or vapor pressure kPa psi
of species i

pi Partial pressure of species kPa psi
i in gas mixture (�yiP)

Q Heat J Btu
Q̇ Rate of heat transfer J/s Btu/s
R Universal gas constant J/(mol�K) Btu/(lb mol�R)

S Molar or unit-mass entropy J/(mol�K) Btu/(lb mol�R)
or J/(kg�K) or Btu/(lb�R)

T Absolute temperature K R
Tc Critical temperature, K R
U Molar or unit-mass internal J/mol or J/kg Btu/lb mol

energy or Btu/lbm
u Velocity m/s ft/s
V Molar or unit-mass volume m3/mol ft3/lb mol

or m3/kg or ft3/lbm
W Work J Btu
Ws Shaft work for flow process J Btu
Ẇs Shaft power for flow process J/s Btu/s
xi Mole fraction in general Dimensionless Dimensionless

or liquid-phase mole 
fraction of species i in 
solution

yi Vapor-phase mole fraction Dimensionless Dimensionless
of species i in solution

Z Compressibility factor Dimensionless Dimensionless
z Elevation above a datum m ft

level

Superscripts

E Denotes excess thermodynamic property
id Denotes value for an ideal solution
ig Denotes value for an ideal gas
l Denotes liquid phase
lv Denotes phase transition from liquid to vapor
R Denotes residual thermodynamic property
t Denotes a total value of a thermodynamic property
v Denotes vapor phase
∞ Denotes a value at infinite dilution

Subscripts

C Denotes a value for a colder heat reservoir
c Denotes a value for the critical state
H Denotes a value for a hotter heat reservoir
r Denotes a reduced value
rev Denotes a reversible process

Greek letters

α,β As superscripts, identify
phases

βi Volume expansivity, species i K−1 R−1

εj Reaction coordinate for mol lb mol
reaction j

Γ i(T) Defined by Eq. (4-72) J/mol Btu/lb mol
γ Heat-capacity ratio, CP/CV Dimensionless Dimensionless
γi Activity coefficient of species i Dimensionless Dimensionless

in solution
µi Chemical potential of species i J/mol Btu/lb mol
νi, j Stoichiometric number of Dimensionless Dimensionless

species i in reaction j
ρ Molar density mols/m3 lb moles/ft3

σ As a subscript, denotes a heat
reservoir

Φi Defined by Eq. (4-283) Dimensionless Dimensionless
φi Fugacity coefficient of pure Dimensionless Dimensionless

species i
φ̂i Fugacity coefficient of Dimensionless Dimensionless

species i in solution
ω Acentric factor Dimensionless Dimensionless
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Nomenclature and Units
Symbols are omitted that are correlation- or application-specific.

U.S. customary U.S. customary
Symbol Definition SI units units Symbol Definition SI units units



Thermodynamics is the branch of science that embodies the princi-
ples of energy transformation in macroscopic systems. The general
restrictions which experience has shown to apply to all such transfor-
mations are known as the laws of thermodynamics. These laws are
primitive; they cannot be derived from anything more basic.

The first law of thermodynamics states that energy is conserved;
that, although it can be altered in form and transferred from one place
to another, the total quantity remains constant. Thus, the first law of
thermodynamics depends on the concept of energy; but, conversely,
energy is an essential thermodynamic function because it allows the
first law to be formulated. This coupling is characteristic of the primi-
tive concepts of thermodynamics.

The words system and surroundings are similarly coupled. A system
is taken to be any object, any quantity of matter, any region, and so on,
selected for study and set apart (mentally) from everything else, which
is called the surroundings. The imaginary envelope which encloses
the system and separates it from its surroundings is called the bound-
ary of the system.

Attributed to this boundary are special properties which may serve
either (1) to isolate the system from its surroundings, or (2) to provide
for interaction in specific ways between system and surroundings. An
isolated system exchanges neither matter nor energy with its sur-
roundings. If a system is not isolated, its boundaries may permit
exchange of matter or energy or both with its surroundings. If the
exchange of matter is allowed, the system is said to be open; if only
energy and not matter may be exchanged, the system is closed (but not
isolated), and its mass is constant.

When a system is isolated, it cannot be affected by its surroundings.
Nevertheless, changes may occur within the system that are
detectable with such measuring instruments as thermometers, pres-
sure gauges, and so on. However, such changes cannot continue indef-
initely, and the system must eventually reach a final static condition of
internal equilibrium.

For a closed system which interacts with its surroundings, a final
static condition may likewise be reached such that the system is not
only internally at equilibrium but also in external equilibrium with its
surroundings.

The concept of equilibrium is central in thermodynamics, for asso-
ciated with the condition of internal equilibrium is the concept of
state. A system has an identifiable, reproducible state when all its
properties, such as temperature T, pressure P, and molar volume V, are
fixed. The concepts of state and property are again coupled. One can
equally well say that the properties of a system are fixed by its state.
Although the properties T, P, and V may be detected with measuring
instruments, the existence of the primitive thermodynamic properties
(see Postulates 1 and 3 following) is recognized much more indirectly.
The number of properties for which values must be specified in order
to fix the state of a system depends on the nature of the system and is
ultimately determined from experience.

When a system is displaced from an equilibrium state, it undergoes
a process, a change of state, which continues until its properties attain
new equilibrium values. During such a process the system may be

caused to interact with its surroundings so as to interchange energy in
the forms of heat and work and so to produce in the system changes
considered desirable for one reason or another. A process that pro-
ceeds so that the system is never displaced more than differentially
from an equilibrium state is said to be reversible, because such a
process can be reversed at any point by an infinitesimal change in
external conditions, causing it to retrace the initial path in the opposite
direction.

Thermodynamics finds its origin in experience and experiment,
from which are formulated a few postulates that form the foundation
of the subject. The first two deal with energy:

POSTULATE 1

There exists a form of energy, known as internal energy, which for
systems at internal equilibrium is an intrinsic property of the system,
functionally related to its characteristic coordinates.

POSTULATE 2 
(FIRST LAW OF THERMODYNAMICS)

The total energy of any system and its surroundings is conserved.
Internal energy is quite distinct from such external forms as the

kinetic and potential energies of macroscopic bodies. Although a
macroscopic property characterized by the macroscopic coordinates T
and P, internal energy finds its origin in the kinetic and potential ener-
gies of molecules and submolecular particles. In applications of the
first law of thermodynamics, all forms of energy must be considered,
including the internal energy. It is therefore clear that Postulate 2
depends on Postulate 1. For an isolated system, the first law requires
that its energy be constant. For a closed (but not isolated) system, the
first law requires that energy changes of the system be exactly com-
pensated by energy changes in the surroundings. Energy is exchanged
between such a system and its surroundings in two forms: heat and
work.

Heat is energy crossing the system boundary under the influence of
a temperature difference or gradient. A quantity of heat Q represents
an amount of energy in transit between a system and its surroundings,
and is not a property of the system. The convention with respect to
sign makes numerical values of Q positive when heat is added to the
system and negative when heat leaves the system.

Work is again energy in transit between a system and its surround-
ings, but resulting from the displacement of an external force acting
on the system. Like heat, a quantity of work W represents an amount
of energy, and is not a property of the system. The sign convention,
analogous to that for heat, makes numerical values of W positive when
work is done on the system by the surroundings and negative when
work is done on the surroundings by the system.

When applied to closed (constant-mass) systems for which the only
form of energy that changes is the internal energy, the first law of ther-
modynamics is expressed mathematically as

dUt = dQ + dW (4-1)
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where Ut is the total internal energy of the system. Note that dQ and
dW, differential quantities representing energy exchanges between
the system and its surroundings, serve to account for the energy
change of the surroundings. On the other hand, dUt is directly the dif-
ferential change in internal energy of the system. Integration of Eq.
(4-1) gives for a finite process

∆Ut = Q + W (4-2)

where ∆Ut is the finite change given by the difference between the
final and initial values of Ut. The heat Q and work W are finite quan-
tities of heat and work; they are not properties of the system nor func-
tions of the thermodynamic coordinates that characterize the system.

POSTULATE 3

There exists a property called entropy, which for systems at internal
equilibrium is an intrinsic property of the system, functionally related
to the measurable coordinates which characterize the system. For
reversible processes, changes in this property may be calculated by
the equation:

dSt = dQrev /T (4-3)

where St is the total entropy of the system and T is the absolute tem-
perature of the system.

POSTULATE 4 (SECOND LAW OF THERMODYNAMICS)

The entropy change of any system and its surroundings, considered
together, resulting from any real process is positive, approaching
zero when the process approaches reversibility.

In the same way that the first law of thermodynamics cannot be for-
mulated without the prior recognition of internal energy as a property,
so also the second law can have no complete and quantitative expres-
sion without a prior assertion of the existence of entropy as a property.

The second law requires that the entropy of an isolated system
either increase or, in the limit, where the system has reached an equi-
librium state, remain constant. For a closed (but not isolated) system
it requires that any entropy decrease in either the system or its sur-
roundings be more than compensated by an entropy increase in the
other part or that in the limit, where the process is reversible, the total
entropy of the system plus its surroundings be constant.

The fundamental thermodynamic properties that arise in connec-
tion with the first and second laws of thermodynamics are internal
energy and entropy. These properties, together with the two laws for
which they are essential, apply to all types of systems. However, dif-
ferent types of systems are characterized by different sets of measur-
able coordinates or variables. The type of system most commonly

encountered in chemical technology is one for which the primary
characteristic variables are temperature T, pressure P, molar volume
V, and composition, not all of which are necessarily independent. Such
systems are usually made up of fluids (liquid or gas) and are called
PVT systems.

For closed systems of this kind, the work of a reversible process may
always be calculated from

dWrev = −P dVt (4-4)

where P is the absolute pressure and Vt is the total volume of the sys-
tem. This equation follows directly from the definition of mechanical
work.

POSTULATE 5

The macroscopic properties of homogeneous PVT systems at internal
equilibrium can be expressed as functions of temperature, pressure,
and composition only.

This postulate imposes an idealization, and is the basis for all subse-
quent property relations for PVT systems. The PVT system serves as a
satisfactory model in an enormous number of practical applications.
In accepting this model one assumes that the effects of fields (e.g.,
electric, magnetic, or gravitational) are negligible and that surface and
viscous-shear effects are unimportant.

Temperature, pressure, and composition are thermodynamic coor-
dinates representing conditions imposed upon or exhibited by the sys-
tem, and the functional dependence of the thermodynamic properties
on these conditions is determined by experiment. This is quite direct
for molar or specific volume V, which can be measured, and leads
immediately to the conclusion that there exists an equation of state
relating molar volume to temperature, pressure, and composition for
any particular homogeneous PVT system. The equation of state is a
primary tool in applications of thermodynamics.

Postulate 5 affirms that the other molar or specific thermodynamic
properties of PVT systems, such as internal energy U and entropy S,
are also functions of temperature, pressure, and composition. These
molar or unit-mass properties, represented by the plain symbols V, U,
and S, are independent of system size and are called intensive. Tem-
perature, pressure, and the composition variables, such as mole frac-
tion, are also intensive. Total-system properties (V t, U t, St ) do depend
on system size, and are extensive. For a system containing n moles of
fluid, Mt = nM, where M is a molar property.

Applications of the thermodynamic postulates necessarily involve
the abstract quantities internal energy and entropy. The solution of
any problem in applied thermodynamics is therefore found through
these quantities.

Consider a single-phase closed system in which there are no chemical
reactions. Under these restrictions the composition is fixed. If such a
system undergoes a differential, reversible process, then by Eq. (4-1)

dUt = dQrev + dWrev

Substitution for dQrev and dWrev by Eqs. (4-3) and (4-4) gives

dUt = T dSt − P dVt

Although derived for a reversible process, this equation relates prop-
erties only and is valid for any change between equilibrium states in a
closed system. It may equally well be written

d(nU) = T d(nS) − P d(nV) (4-5)

where n is the number of moles of fluid in the system and is constant
for the special case of a closed, nonreacting system. Note that

n � n1 + n2 + n3 + ⋅⋅⋅ = �
i

ni

where i is an index identifying the chemical species present. When U,
S, and V represent specific (unit-mass) properties, n is replaced by m.

Equation (4-5) shows that for the single-phase, nonreacting, closed
system specified,

nU = u(nS, nV)

Then d(nU) = � �
nV,n

d(nS) + � �
nS,n

d(nV)

where the subscript n indicates that all mole numbers ni (and hence n)
are held constant. Comparison with Eq. (4-5) shows that

� �
nV,n

= T (4-6)

� �
nS,n

= −P (4-7)
∂(nU)
�
∂(nV)

∂(nU)
�
∂(nS)

∂(nU)
�
∂(nV)

∂(nU)
�
∂(nS)
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Consider now an open system consisting of a single phase and
assume that

nU = �(nS, nV, n1, n2, n3, . . .)

Then

d(nU) = � �
nV,n

d(nS) + � �
nS,n

d(nV) +�
i
� �

nS,nV,nj

dni

where the summation is over all species present in the system and
subscript nj indicates that all mole numbers are held constant except
the ith. Let

µi � � �
nS,nV,nj

Together with Eqs. (4-6) and (4-7), this definition allows elimination
of all the partial differential coefficients from the preceding equation:

d(nU) = T d(nS) − P d(nV) + �
i

µi dni (4-8)

Equation (4-8) is the fundamental property relation for single-
phase PVT systems, from which all other equations connecting prop-
erties of such systems are derived. The quantity µi is called the
chemical potential of species i, and it plays a vital role in the thermo-
dynamics of phase and chemical equilibria.

Additional property relations follow directly from Eq. (4-8). Since
ni = xin, where xi is the mole fraction of species i, this equation may be
rewritten:

d(nU) − T d(nS) + P d(nV) − �
i

µi d(xin) = 0

Upon expansion of the differentials and collection of like terms, this
becomes

�dU − T dS + P dV − �
i

µi dxi� n + �U − TS + PV − �
i

xiµi� dn = 0

Since n and dn are independent and arbitrary, the terms in brackets
must separately be zero. Then

dU = T dS − P dV + �
i

µi dxi (4-9)

U = TS − PV + �
i

xiµi (4-10)

Equations (4-8) and (4-9) are similar, but there is an important dif-
ference. Equation (4-8) applies to a system of n moles where n may
vary; whereas Eq. (4-9) applies to a system in which n is unity and
invariant. Thus Eq. (4-9) is subject to the constraint that �i xi = 1 or
that �i dxi = 0. In this equation the xi are not independent variables,
whereas the ni in Eq. (4-8) are.

Equation (4-10) dictates the possible combinations of terms that
may be defined as additional primary functions. Those in common use
are:

Enthalpy H � U + PV (4-11)
Helmholtz energy A � U − TS (4-12)
Gibbs energy G � U + PV − TS = H − TS (4-13)

Additional thermodynamic properties are related to these and arise by
arbitrary definition. Multiplication of Eq. (4-11) by n and differentia-
tion yields the general expression:

d(nH) = d(nU) + P d(nV) + nV dP

Substitution for d(nU) by Eq. (4-8) reduces this result to:

d(nH) = T d(nS) + nV dP + �
i

µi dni (4-14)

The total differentials of nA and nG are obtained similarly:

d(nA) = −nS dT − P d(nV) + �
i

µi dni (4-15)

d(nG) = −nS dT + nV dP + �
i

µi dni (4-16)

Equations (4-8) and (4-14) through (4-16) are equivalent forms of the
fundamental property relation. Each expresses a property nU, nH,

∂(nU)
�

∂ni

∂(nU)
�

∂ni

∂(nU)
�
∂(nV)

∂(nU)
�
∂(nS)

and so on, as a function of a particular set of independent variables;
these are the canonical variables for the property. The choice of which
equation to use in a particular application is dictated by convenience.
However, the Gibbs energy G is special, because of its unique func-
tional relation to T, P, and the ni, which are the variables of primary
interest in chemical processing. A similar set of equations is developed
from Eq. (4-9). This set also follows from the preceding set when 
n = 1 and ni = xi. The two sets are related exactly as Eq. (4-8) is related
to Eq. (4-9). The equations written for n = 1 are, of course, less gen-
eral. Furthermore, the interdependence of the xi precludes those
mathematical operations which depend on independence of these
variables.

CONSTANT-COMPOSITION SYSTEMS

For 1 mole of a homogeneous fluid of constant composition Eqs. (4-8)
and (4-14) through (4-16) simplify to:

dU = T dS − P dV (4-17)
dH = T dS + V dP (4-18)
dA = −S dT − P dV (4-19)
dG = −S dT + V dP (4-20)

Implicit in these are the following:

T = � �V
= � �

P
(4-21)

−P = � �
S

= � �
T

(4-22)

V = � �
S

= � �
T

(4-23)

−S = � �
V

= � �
P

(4-24)

In addition, the common Maxwell equations result from application of
the reciprocity relation for exact differentials:

� �
S

= −� �
V

(4-25)

� �
S

= � �
P

(4-26)

� �
V

= � �
T

(4-27)

� �
P

= −� �
T

(4-28)

In all these equations the partial derivatives are taken with composi-
tion held constant.

Enthalpy and Entropy as Functions of T and P At constant
composition the molar thermodynamic properties are functions of
temperature and pressure (Postulate 5). Thus

dH = � �
P

dT + � �
T

dP (4-29)

dS = � �
P

dT + � �
T

dP (4-30)

The obvious next step is to eliminate the partial-differential coeffi-
cients in favor of measurable quantities.

The heat capacity at constant pressure is defined for this purpose:

CP � � �
P

(4-31)

It is a property of the material and a function of temperature, pres-
sure, and composition.

Equation (4-18) may first be divided by dT and restricted to con-
stant pressure, and then be divided by dP and restricted to constant
temperature, yielding the two equations:

∂H
�
∂T

∂S
�
∂P

∂S
�
∂T

∂H
�
∂P

∂H
�
∂T

∂S
�
∂P

∂V
�
∂T

∂S
�
∂V

∂P
�
∂T

∂V
�
∂S

∂T
�
∂P

∂P
�
∂S

∂T
�
∂V

∂G
�
∂T

∂A
�
∂T

∂G
�
∂P

∂H
�
∂P

∂A
�
∂V

∂U
�
∂V

∂H
�
∂S

∂U
�
∂S
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� �
P

= T � �
P

� �
T

= T � �
T

+ V

In view of Eq. (4-31), the first of these becomes

� �
P

= (4-32)

and in view of Eq. (4-28), the second becomes

� �
T

= V − T � �
P

(4-33)

Combination of Eqs. (4-29), (4-31), and (4-33) gives

dH = CP dT + �V − T � �
P
� dP (4-34)

and in combination Eqs. (4-30), (4-32), and (4-28) yield

dS = dT − � �
P

dP (4-35)

Equations (4-34) and (4-35) are general expressions for the enthalpy
and entropy of homogeneous fluids at constant composition as func-
tions of T and P. The coefficients of dT and dP are expressed in terms
of measurable quantities.

Internal Energy and Entropy as Functions of T and V
Because V is related to T and P through an equation of state, V rather
than P can serve as an independent variable. In this case the internal
energy and entropy are the properties of choice; whence

dU = � �
V

dT + � �
T

dV (4-36)

dS = � �
V

dT + � �
T

dV (4-37)

The procedure now is analogous to that of the preceding section.
Define the heat capacity at constant volume by

CV � � �
V

(4-38)

It is a property of the material and a function of temperature, pres-
sure, and composition.

Two relations follow immediately from Eq. (4-17):

� �
V

= T � �
V

� �
T

= T � �
T

− P

As a result of Eq. (4-38) the first of these becomes

� �
V

= (4-39)

and as a result of Eq. (4-27), the second becomes

� �
T

= T � �
V

− P (4-40)

Combination of Eqs. (4-36), (4-38), and (4-40) gives

dU = CV dT + �T � �
V

− P�dV (4-41)

and Eqs. (4-37), (4-39), and (4-27) together yield

dS = dT + � �
V

dV (4-42)

Equations (4-41) and (4-42) are general expressions for the internal
energy and entropy of homogeneous fluids at constant composition as
functions of temperature and molar volume. The coefficients of dT
and dV are expressed in terms of measurable quantities.

∂P
�
∂T

CV
�
T

∂P
�
∂T

∂P
�
∂T

∂U
�
∂V

CV
�
T

∂S
�
∂T

∂S
�
∂V

∂U
�
∂V

∂S
�
∂T

∂U
�
∂T

∂U
�
∂T

∂S
�
∂V

∂S
�
∂T

∂U
�
∂V

∂U
�
∂T

∂V
�
∂T

CP
�
T

∂V
�
∂T

∂V
�
∂T

∂H
�
∂P

CP
�
T

∂S
�
∂T

∂S
�
∂P

∂H
�
∂P

∂S
�
∂T

∂H
�
∂T

Heat-Capacity Relations In Eqs. (4-34) and (4-41) both dH and
dU are exact differentials, and application of the reciprocity relation
leads to

� �
T

= −T � �
P

(4-43)

� �
T

= T � �
V

(4-44)

Thus, the pressure or volume dependence of the heat capacities may
be determined from PVT data. The temperature dependence of the
heat capacities is, however, determined empirically and is often given
by equations such as

CP = α + βT + γT 2

Equations (4-35) and (4-42) both provide expressions for dS, which
must be equal for the same change of state. Equating them and solv-
ing for dT gives

dT = � �
P

dP + � �
V

dV

However, at constant composition T = T(P,V), and

dT = � �
V

dP + � �
P

dV

Equating coefficients of either dP or dV in these two expressions for
dT gives

CP − CV = T� �
P
� �

V
(4-45)

Thus the difference between the two heat capacities may be deter-
mined from PVT data.

Division of Eq. (4-32) by Eq. (4-39) yields the ratio of these heat
capacities:

= =

Replacement of each of the four partial derivatives through the appro-
priate Maxwell relation gives finally

γ � = � �
T
� �

S
(4-46)

where γ is the symbol conventionally used to represent the heat-
capacity ratio.

The Ideal Gas The simplest equation of state is the ideal gas
equation:

PV = RT

where R is a universal constant, values of which are given in Table 
1-9. The following partial derivatives are obtained from the ideal gas
equation:

� �
V

= = � �
V

= 0

� �
P

= = � �
P

= 0

� �
T

= − 

The general equations for constant-composition fluids derived in the
preceding subsections reduce to very simple forms when the relations
for an ideal gas are substituted into them:

� �
T

= � �
T

= 0

� �
T

= − � �
T

=

dU = CV dT

R
�
V

∂S
�
∂V

R
�
P

∂S
�
∂P

∂H
�
∂P

∂U
�
∂V

P
�
V

∂P
�
∂V

∂2V
�
∂T 2

V
�
T

R
�
P

∂V
�
∂T

∂2P
�
∂T 2

P
�
T

R
�
V

∂P
�
∂T

∂P
�
∂V

∂V
�
∂P

CP
�
CV

(∂S/∂V)P(∂V/∂T)P
��
(∂S/∂P)V(∂P/∂T)V

(∂S/∂T)P
�
(∂S/∂T)V

CP
�
CV

∂P
�
∂T

∂V
�
∂T

∂T
�
∂V

∂T
�
∂P

∂P
�
∂T

T
�
CP − CV

∂V
�
∂T

T
�
CP − CV

∂2P
�
∂T 2

∂CV
�
∂V

∂2V
�
∂T 2

∂CP
�
∂P
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dH = CP dT

dS = � �dT + � �dV

dS = � �dT − � �dP

� �
T

= � �
T

= 0

CP − CV = R γ � = −� �
S

These equations clearly show that for an ideal gas U, H, CP, and CV are
functions of temperature only and are independent of P and V. The
entropy of an ideal gas, however, is a function of both T and P or of
both T and V.

SYSTEMS OF VARIABLE COMPOSITION

The composition of a system may vary because the system is open or
because of chemical reactions even in a closed system. The equations
developed here apply regardless of the cause of composition changes.

Partial Molar Properties Consider a homogeneous fluid solu-
tion comprised of any number of chemical species. For such a PVT
system let the symbol M represent the molar (or unit-mass) value of
any extensive thermodynamic property of the solution, where M may
stand in turn for U, H, S, and so on. A total-system property is then
nM, where n = � ini and i is the index identifying chemical species.
One might expect the solution property M to be related solely to the
properties Mi of the pure chemical species which comprise the solu-
tion. However, no such generally valid relation is known, and the con-
nection must be established experimentally for every specific system.

Although the chemical species which make up a solution do not in
fact have separate properties of their own, a solution property may be
arbitrarily apportioned among the individual species. Once an appor-
tioning recipe is adopted, then the assigned property values are quite
logically treated as though they were indeed properties of the species
in solution, and reasoning on this basis leads to valid conclusions.

For a homogeneous PVT system, Postulate 5 requires that

nM = �(T, P, n1, n2, n3, . . .)

The total differential of nM is therefore

d(nM) = � �
P,n

dT + � �
T,n

dP + �
i
� �

T,P,nj

dni

where subscript n indicates that all mole numbers ni are held constant,
and subscript nj signifies that all mole numbers are held constant
except the ith. This equation may also be written

d(nM) = n� �
P,x

dT + n� �
T,x

dP + �
i
� �

T,P,nj

dni

where subscript x indicates that all mole fractions are held constant.
The derivatives in the summation are called partial molar properties
M�i; by definition,

M�i � � �
T,P,nj

(4-47)

The basis for calculation of partial properties from solution properties
is provided by this equation. Moreover, the preceding equation
becomes

d(nM) = n� �
P,x

dT + n� �
T,x

dP + �
i

M�i dni (4-48)

Important equations follow from this result through the relations:

d(nM) = n dM + M dn
dni = d(xin) = xi dn + n dxi

∂M
�
∂P

∂M
�
∂T

∂(nM)
�

∂ni

∂(nM)
�

∂ni

∂M
�
∂P

∂M
�
∂T

∂(nM)
�

∂ni

∂(nM)
�

∂P
∂(nM)
�

∂T

∂ ln P
�
∂ ln V

CP
�
CV

∂CP
�
∂P

∂CV
�
∂V

R
�
P

CP
�
T

R
�
V

CV
�
T
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Combining these expressions with Eq. (4-48) and collecting like terms
gives

�dM − � �
P,x

dT − � �
T,x

dP − �
i

M�i dxi�n + �M − �
i

M�i xi�dn = 0

Since n and dn are independent and arbitrary, the terms in brackets
must separately be zero; whence

dM = � �
P,x

dT + � �
T,x

dP + �
i

M�i dxi (4-49)

and M = �
i

xiM�i (4-50)

Equation (4-49) is merely a special case of Eq. (4-48); however, Eq.
(4-50) is a vital new relation. Known as the summability equation, it
provides for the calculation of solution properties from partial proper-
ties. Thus, a solution property apportioned according to the recipe of
Eq. (4-47) may be recovered simply by adding the properties attrib-
uted to the individual species, each weighted by its mole fraction in
solution. The equations for partial molar properties are also valid 
for partial specific properties, in which case m replaces n and the xi

are mass fractions. Equation (4-47) applied to the definitions of Eqs.
(4-11) through (4-13) yields the partial-property relations:

H�i = U�i + PV�i

A�i = U�i − TS�i

G�i = H�i − TS�i

Pertinent examples on partial molar properties are presented in
Smith, Van Ness, and Abbott (Introduction to Chemical Engineering
Thermodynamics, 5th ed., Sec. 10.3, McGraw-Hill, New York, 1996).

Gibbs/Duhem Equation Differentiation of Eq. (4-50) yields

dM = �
i

xi dM�i + �
i

M�i dxi

Since this equation and Eq. (4-49) are both valid in general, their
right-hand sides can be equated, yielding

� �
P,x

dT + � �
T,x

dP − �
i

xi dM�i = 0 (4-51)

This general result, the Gibbs/Duhem equation, imposes a constraint
on how the partial molar properties of any phase may vary with tem-
perature, pressure, and composition. For the special case where T and
P are constant:

�
i

xi dM�i = 0 (constant T, P) (4-52)

Symbol M may represent the molar value of any extensive thermo-
dynamic property; for example, V, U, H, S, or G. When M � H, the
derivatives (∂H/∂T)P and (∂H/∂P)T are given by Eqs. (4-31) and (4-33).
Equations (4-49), (4-50), and (4-51) then become

dH = CP dT + �V − T� �
P,x
� dP + �

i

H�i dxi (4-53)

H = �
i

xiH�i (4-54)

CP dT + �V − T� �
P,x
� dP − �

i

xi dH�i = 0 (4-55)

Similar equations are readily derived when M takes on other identi-
ties.

Equation (4-47), which defines a partial molar property, provides a
general means by which partial property values may be determined.
However, for a binary solution an alternative method is useful. Equa-
tion (4-50) for a binary solution is

M = x1 M�1 + x2 M�2 (4-56)

Moreover, the Gibbs/Duhem equation for a solution at given T and P,
Eq. (4-52), becomes

x1 dM�1 + x2 dM�2 = 0 (4-57)

∂V
�
∂T

∂V
�
∂T

∂M
�
∂P

∂M
�
∂T

∂M
�
∂P

∂M
�
∂T

∂M
�
∂P

∂M
�
∂T



The following equation is a mathematical identity:

d � � � d(nG) − dT

Substitution for d(nG) by Eq. (4-16) and for G by H − TS (Eq. [4-13])
gives, after algebraic reduction,

d � � = dP − dT + �
i

dni (4-66)

Equation (4-66) is a useful alternative to the fundamental property
relation given by Eq. (4-16). All terms in this equation have the units
of moles; moreover, the enthalpy rather than the entropy appears on
the right-hand side.

The Ideal Gas State and the Compressibility Factor The
simplest equation of state for a PVT system is the ideal gas equation:

PVig = RT

where Vig is the ideal-gas–state molar volume. Similarly, Hig, Sig, and
Gig are ideal gas–state values; that is, the molar enthalpy, entropy, and
Gibbs energy values that a PVT system would have were the ideal gas
equation the correct equation of state. These quantities provide refer-
ence values to which actual values may be compared. For example,
the compressibility factor Z compares the true molar volume to the
ideal gas molar volume as a ratio:

Z = = =

Generalized correlations for the compressibility factor are treated in
Sec. 2.

Residual Properties These quantities compare true and ideal
gas properties through differences:

MR � M − Mig (4-67)

where M is the molar value of an extensive thermodynamic property
of a fluid in its actual state and Mig is the corresponding value for the
ideal gas state of the fluid at the same T, P, and composition. Residual
properties depend on interactions between molecules and not on
characteristics of individual molecules. Since the ideal gas state pre-
sumes the absence of molecular interactions, residual properties
reflect deviations from ideality. Most commonly used of the residual
properties are:

Residual volume VR � V − Vig

Residual enthalpy HR � H − Hig

Residual entropy SR � S − Sig

Residual Gibbs energy GR � G − Gig

PV
�
RT

V
�
RT/P

V
�
Vig

µi
�
RT

nH
�
RT 2

nV
�
RT

nG
�
RT

nG
�
RT 2

1
�
RT

nG
�
RT

IDEAL GAS MIXTURES

An ideal gas is a model gas comprising imaginary molecules of zero
volume that do not interact. Each chemical species in an ideal gas mix-
ture therefore has its own private properties, uninfluenced by the
presence of other species. The partial pressure of species i in a gas
mixture is defined as

pi = xiP (i = 1, 2, . . . , N)

where xi is the mole fraction of species i. The sum of the partial pres-
sures clearly equals the total pressure. Gibbs’ theorem for a mixture of
ideal gases may be stated as follows:

The partial molar property, other than the volume, of a constituent species
in an ideal gas mixture is equal to the corresponding molar property of the
species as a pure ideal gas at the mixture temperature but at a pressure
equal to its partial pressure in the mixture.

This is expressed mathematically for generic partial property M�i
ig by

the equation

M�i
ig(T, P) = Mi

ig(T, pi) (M ≠ V) (4-68)

For those properties of an ideal gas that are independent of P, for
example, U, H, and CP, this becomes simply

M�i
ig = Mi

ig

where Mi
ig is evaluated at the mixture T and P. Thus, for the enthalpy,

H�i
ig = Hi

ig (4-69)

The entropy of an ideal gas does depend on pressure:

dSi
ig = −R d ln P (constant T)

Integration from pi to P gives

Si
ig(T, P) − Si

ig(T, pi) = −R ln = −R ln = R ln xi

Whence Si
ig(T, pi) = Si

ig(T, P) − R ln xi

P
�
xiP

P
�
pi
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These two equations can be combined to give

M�1 = M + x2 (4-58a)

M�2 = M − x1 (4-58b)

Thus for a binary solution, the partial properties are given directly as
functions of composition for given T and P. For multicomponent solu-
tions such calculations are complex, and direct use of Eq. (4-47) is
appropriate.

Partial Molar Gibbs Energy Implicit in Eq. (4-16) is the rela-
tion

µi = � �
T,P,nj

In view of Eq. (4-47), the chemical potential and the partial molar
Gibbs energy are therefore identical:

µi = G�i (4-59)

The reciprocity relation for an exact differential applied to Eq. (4-
16) produces not only the Maxwell relation, Eq. (4-28), but also two
other useful equations:

� �
T,n

= � �
T,P,nj

= V�i (4-60)

� �
P,n

= −� �
T,P,nj

= −S�i (4-61)

In a solution of constant composition, µi = µ(T,P); whence

dµi � dG�i = � �
P,n

dT + � �
T,n

dP

or dG�i = −S�i dT + V�i dP (4-62)

Comparison with Eq. (4-20) provides an example of the parallelism
that exists between the equations for a constant-composition solution
and those for the corresponding partial properties. This parallelism
exists whenever the solution properties in the parent equation are
related linearly (in the algebraic sense). Thus, in view of Eqs. (4-17),
(4-18), and (4-19):

dU�i = T dS�i − P dV�i (4-63)
dH�i = T dS�i + V�i dP (4-64)
dA�i = −S�i dT − P dV�i (4-65)

Note that these equations hold only for species in a constant-
composition solution.
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Substituting this result into Eq. (4-68) written for the entropy gives

S�l
ig = Si

ig − R ln xi (4-70)

where Si
ig is evaluated at the mixture T and P.

For the Gibbs energy of an ideal gas mixture, Gig = Hig − TSig; the
parallel relation for partial properties is

G�i
ig = H�i

ig − TS�i
ig

In combination with Eqs. (4-69) and (4-70), this becomes

G�i
ig = H�i

ig − TSi
ig + RT ln xi

or µi
ig � G�i

ig =Gi
ig + RT ln xi (4-71)

Elimination of Gi
ig from this equation is accomplished by Eq. (4-20),

written for pure species i as:

dGi
ig = Vi

ig dP = dP = RT d ln P (constant T)

Integration gives

Gi
ig = Γi(T) + RT ln P (4-72)

where Γ i(T), the integration constant for a given temperature, is a
function of temperature only. Equation (4-71) now becomes

µi
ig = Γi(T) + RT ln xiP (4-73)

FUGACITY AND FUGACITY COEFFICIENT

The chemical potential µi plays a vital role in both phase and chemical-
reaction equilibria. However, the chemical potential exhibits certain
unfortunate characteristics which discourage its use in the solution of
practical problems. The Gibbs energy, and hence µi, is defined in rela-
tion to the internal energy and entropy, both primitive quantities for
which absolute values are unknown. Moreover, µi approaches negative
infinity when either P or xi approaches zero. While these characteris-
tics do not preclude the use of chemical potentials, the application 
of equilibrium criteria is facilitated by introduction of the fugacity, a
quantity that takes the place of µi but which does not exhibit its less
desirable characteristics.

The origin of the fugacity concept resides in Eq. (4-72), an equation
valid only for pure species i in the ideal gas state. For a real fluid, an
analogous equation is written:

Gi � Γ i(T) + RT ln fi (4-74)

in which a new property fi replaces the pressure P. This equation
serves as a partial definition of the fugacity fi.

Subtraction of Eq. (4-72) from Eq. (4-74), both written for the
same temperature and pressure, gives

Gi − Gi
ig = RT ln 

According to the definition of Eq. (4-67), Gi − Gi
ig is the residual

Gibbs energy, Gi
R. The dimensionless ratio fi/P is another new prop-

erty called the fugacity coefficient φi. Thus,

Gi
R = RT ln φi (4-75)

where φi � (4-76)

The definition of fugacity is completed by setting the ideal-gas–state
fugacity of pure species i equal to its pressure:

fi
ig = P

Thus, for the special case of an ideal gas, Gi
R = 0, φi = 1, and Eq. (4-72)

is recovered from Eq. (4-74).
The definition of the fugacity of a species in solution is parallel to

the definition of the pure-species fugacity. An equation analogous to
the ideal gas expression, Eq. (4-73), is written for species i in a fluid
mixture:

µi � Γ i(T) + RT ln f̂i (4-77)

where the partial pressure xiP is replaced by f̂i, the fugacity of species

fi
�
P

fi
�
P

RT
�
P

i in solution. Since it is not a partial molar property, it is identified by
a circumflex rather than an overbar.

Subtracting Eq. (4-73) from Eq. (4-77), both written for the same
temperature, pressure, and composition, yields

µi − µi
ig = RT ln 

Analogous to the defining equation for the residual Gibbs energy of a
mixture, GR � G − Gig, is the definition of a partial molar residual
Gibbs energy:

G�i
R � G�i − G�i

ig = µi − µi
ig

Therefore G�i
R = RT ln φ̂i (4-78)

where by definition φ̂i � (4-79)

The dimensionless ratio φ̂i is called the fugacity coefficient of species i
in solution.

Eq. (4-78) is the analog of Eq. (4-75), which relates φi to Gi
R. For an

ideal gas, G�i
R is necessarily 0; therefore φ̂i

ig = 1, and

f̂i
ig = xiP

Thus, the fugacity of species i in an ideal gas mixture is equal to its par-
tial pressure.

Pertinent examples are given in Smith, Van Ness, and Abbott
(Introduction to Chemical Engineering Thermodynamics, 5th ed.,
Secs. 10.5–10.7, McGraw-Hill, New York, 1996).

FUNDAMENTAL RESIDUAL-PROPERTY RELATION

In view of Eq. (4-59), the fundamental property relation given by Eq.
(4-66) may be written

d � � = dP − dT + �
i

dni (4-80)

This equation is general, and may be written for the special case of an
ideal gas:

d � � = dP − dT + �
i

dni

Subtraction of this equation from Eq. (4-80) gives

d � � = dP − dT + �
i

dni (4-81)

where the definitions GR � G − Gig and G�i
R � G�i − G�i

ig have been
imposed. Equation (4-81) is the fundamental residual-property rela-
tion. An alternative form follows by introduction of the fugacity coef-
ficient as given by Eq. (4-78):

d � � = dP − dT + �
i

ln φ̂i dni (4-82)

These equations are of such generality that for practical application
they are used only in restricted forms. Division of Eq. (4-82) by dP
and restriction to constant T and composition leads to:

= � �
T,x

(4-83)

Similarly, division by dT and restriction to constant P and composition
gives

= −T � �
P,x

(4-84)

Also implicit in Eq. (4-82) is the relation

ln φ̂i = � �
T,P,nj

(4-85)

This equation demonstrates that ln φ̂i is a partial property with respect
to GR/RT. The partial-property analogs of Eqs. (4-83) and (4-84) are
therefore:

∂(nGR/RT)
��

∂ni

∂(GR/RT)
��

∂T
HR

�
RT

∂(GR/RT)
��

∂P
VR

�
RT

nHR

�
RT 2

nVR

�
RT

nGR

�
RT

G�i
R

�
RT

nHR

�
RT 2

nVR

�
RT

nGR

�
RT

G�i
ig

�
RT

nHig

�
RT 2

nVig

�
RT

nGig

�
RT

G�i
�
RT

nH
�
RT 2

nV
�
RT

nG
�
RT

f̂i
�
xiP

f̂i
�
xiP
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� �
T,x

= (4-86)

� �
P,x

= − (4-87)

The partial-property relationship of ln φ̂i to GR/RT also means that the
summability relation applies; thus

= �
i

xi ln φ̂i (4-88)

THE IDEAL SOLUTION

The ideal gas is a useful model of the behavior of gases and serves as a
standard to which real gas behavior can be compared. This is formal-
ized by the introduction of residual properties. Another useful model
is the ideal solution, which serves as a standard to which real solution
behavior can be compared. This is formalized by introduction of
excess properties.

The partial molar Gibbs energy of species i in an ideal gas mixture
is given by Eq. (4-71). This equation takes on new meaning when Gi

ig,
the Gibbs energy of pure species i in the ideal gas state, is replaced by
Gi, the Gibbs energy of pure species i as it actually exists at the mix-
ture T and P and in the same physical state (real gas, liquid, or solid)
as the mixture. It then becomes applicable to species in real solutions;
indeed, to liquids and solids as well as to gases. The ideal solution is
therefore defined as one for which

G�i
id � Gi + RT ln xi (4-89)

where superscript id denotes an ideal-solution property.
This equation is the basis for development of expressions for all

other thermodynamic properties of an ideal solution. Equations (4-60)
and (4-61), applied to an ideal solution with µi replaced by G�i, can be
written

V�i
id = � �

T,x
and S�i

id = −� �
P,x

Appropriate differentiation of Eq. (4-89) in combination with these
relations and Eqs. (4-23) and (4-24) yields

V�i
id = Vi (4-90)

S�i
id = Si − R ln xi (4-91)

Since H�i
id = G�i

id + TS�i
id, substitutions by Eqs. (4-89) and (4-91) yield

H�i
id = Hi (4-92)

The summability relation, Eq. (4-50), written for the special case of
an ideal solution, may be applied to Eqs. (4-89) through (4-92):

Gid = �
i

xiGi + RT �
i

xi ln xi (4-93)

Vid = �
i

xiVi (4-94)

Sid = �
i

xiSi − R �
i

xi ln xi (4-95)

Hid = �
i

xiHi (4-96)

A simple equation for the fugacity of a species in an ideal solution
follows from Eq. (4-89). Written for the special case of species i in an
ideal solution, Eq. (4-77) becomes

µi
id � G�i

id = Γi(T) + RT ln f̂i
id

When this equation and Eq. (4-74) are combined with Eq. (4-89),
Γ i(T) is eliminated, and the resulting expression reduces to

f̂i
id = xi fi (4-97)

This equation, known as the Lewis/Randall rule, applies to each
species in an ideal solution at all conditions of T, P, and composition. It
shows that the fugacity of each species in an ideal solution is propor-
tional to its mole fraction; the proportionality constant is the fugacity
of pure species i in the same physical state as the solution and at the

∂G�i
id

�
∂T

∂G�i
id

�
∂P

GR

�
RT

H�i
R

�
RT 2

∂ ln φ̂i
�

∂T

V�i
R

�
RT

∂ ln φ̂i
�

∂P

same T and P. Division of both sides of Eq. (4-97) by xiP and substitu-
tion of φ̂i

id for f̂i
id/xiP (Eq. [4-79]) and of φi for fi /P (Eq. [4-76]) gives an

alternative form:
φ̂i

id = φi (4-98)

Thus, the fugacity coefficient of species i in an ideal solution is equal
to the fugacity coefficient of pure species i in the same physical state
as the solution and at the same T and P.

Ideal solution behavior is often approximated by solutions com-
prised of molecules not too different in size and of the same chemical
nature. Thus, a mixture of isomers conforms very closely to ideal solu-
tion behavior. So do mixtures of adjacent members of a homologous
series.

FUNDAMENTAL EXCESS-PROPERTY RELATION

The residual Gibbs energy and the fugacity coefficient are useful
where experimental PVT data can be adequately correlated by equa-
tions of state. Indeed, if convenient treatment of all fluids by means of
equations of state were possible, the thermodynamic-property rela-
tions already presented would suffice. However, liquid solutions are
often more easily dealt with through properties that measure their
deviations from ideal solution behavior, not from ideal gas behavior.
Thus, the mathematical formalism of excess properties is analogous to
that of the residual properties.

If M represents the molar (or unit-mass) value of any extensive
thermodynamic property (e.g., V, U, H, S, G, and so on), then an
excess property ME is defined as the difference between the actual
property value of a solution and the value it would have as an ideal
solution at the same temperature, pressure, and composition. Thus,

ME � M − Mid (4-99)

This definition is analogous to the definition of a residual property as
given by Eq. (4-67). However, excess properties have no meaning for
pure species, whereas residual properties exist for pure species as well
as for mixtures. In addition, analogous to Eq. (4-99) is the partial-
property relation,

M�i
E = M�i − M�i

id (4-100)

where M�i
E is a partial excess property. The fundamental excess-

property relation is derived in exactly the same way as the fundamen-
tal residual-property relation and leads to analogous results. Equation
(4-80), written for the special case of an ideal solution, is subtracted
from Eq. (4-80) itself, yielding:

d � � = dP − dT + �
i

dni (4-101)

This is the fundamental excess-property relation, analogous to Eq. 
(4-81), the fundamental residual-property relation.

The excess Gibbs energy is of particular interest. Equation (4-77)
may be written:

G�i = Γi(T) + RT ln f̂i

In accord with Eq. (4-97) for an ideal solution, this becomes

G�i
id = Γi(T) + RT ln xi fi

By difference

G�i − G�i
id = RT ln 

The left-hand side is the partial excess Gibbs energy G�i
E; the dimen-

sionless ratio ˆfi/xifi appearing on the right is called the activity coeffi-
cient of species i in solution, and is given the symbol γi. Thus, by
definition,

γi � (4-102)

and G�i
E = RT ln γi (4-103)

Comparison with Eq. (4-78) shows that Eq. (4-103) relates γi to G�i
E

exactly as Eq. (4-78) relates φ̂i to G�i
R. For an ideal solution,G�i

E =0, and
therefore γi = 1.

f̂i
�
xi fi

f̂i
�
xi fi

G�i
E

�
RT

nHE

�
RT 2

nVE

�
RT

nGE

�
RT
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An alternative form of Eq. (4-101) follows by introduction of the
activity coefficient through Eq. (4-103):

d � � = dP − dT + �
i

ln γi dni (4-104)

SUMMARY OF FUNDAMENTAL PROPERTY RELATIONS

For convenience, the three other fundamental property relations,
Eqs. (4-16), (4-80), and (4-82), expressing the Gibbs energy and
related properties as functions of T, P, and the ni, are collected here:

d(nG) = nV dP − nS dT + �
i

µi dni (4-16)

d � � = dP − dT + �
i

dni (4-80)

d � � = dP − dT + �
i

ln φ̂i dni (4-82)

These equations and Eq. (4-104) may also be written for the special
case of 1 mole of solution by setting n = 1 and ni = xi. The xi are then
subject to the constraint that �i xi = 1.

If written for 1 mole of a constant-composition solution, they
become:

dG = V dP − S dT (4-105)

d � � = dP − dT (4-106)

d � � = dP − dT (4-107)

d � � = dP − dT (4-108)

These equations are, of course, valid as a special case for a pure
species; in this event they are written with subscript i affixed to the
appropriate symbols.

The partial-property analogs of these equations are:

dG�i = dµi = V�i dP − S�i dT (4-109)

d � � = d � � = dP − dT (4-110)

d � � = d ln φ̂i = dP − dT (4-111)

d � � = d ln γi = dP − dT (4-112)

Finally, a Gibbs/Duhem equation is associated with each funda-
mental property relation:

V dP − S dT = �
i

xidµi (4-113)

dP − dT = �
i

xid � � (4-114)

dP − dT = �
i

xid ln φ̂i (4-115)

dP − dT = �
i

xid ln γi (4-116)

This depository of equations stores an enormous amount of infor-
mation. The equations themselves are so general that their direct
application is seldom appropriate. However, by inspection one can
write a vast array of relations valid for particular applications. For
example, Eqs. (4-83) and (4-84) come directly from Eq. (4-107); Eqs.
(4-86) and (4-87), from (4-111). Similarly, from Eq. (4-108),
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RT
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= � �
T,x

(4-117)

= −T � �
P,x

(4-118)

and from Eq. (4-104)

ln γi = � �
T,P,nj

(4-119)

The last relation demonstrates that ln γi is a partial property with
respect to GE/RT. The partial-property analogs of Eqs. (4-117) and 
(4-118) follow from Eq. (4-112):

� �
T,x

= (4-120)

� �
P,x

= − (4-121)

Finally, an especially useful form of the Gibbs/Duhem equation fol-
lows from Eq. (4-116):

�
i

xi d ln γi = 0 (constant T,P) (4-122)

Since ln γi is a partial property with respect to GE/RT, the following
form of the summability equation is valid:

= �
i

xi ln γi (4-123)

The analogy between equations derived from the fundamental
residual- and excess-property relations is apparent. Whereas the fun-
damental residual-property relation derives its usefulness from its
direct relation to equations of state, the excess-property formulation is
useful because VE, HE, and γi are all experimentally accessible. Activ-
ity coefficients are found from vapor/liquid equilibrium data, and VE

and HE values come from mixing experiments.

PROPERTY CHANGES OF MIXING

If M represents a molar thermodynamic property of a homogeneous
fluid solution, then by definition,

∆M � M − �
i

xiMi (4-124)

where ∆M is the property change of mixing, and Mi is the molar prop-
erty of pure species i at the T and P of the solution and in the same
physical state (gas or liquid). The summability relation, Eq. (4-50),
may be combined with Eq. (4-124) to give

∆M = �
i

xi ∆�M�i� (4-125)
where by definition

∆�M�i� � M�i − Mi (4-126)

All three quantities are for the same T, P, and physical state. Eq. (4-126)
defines a partial molar property change of mixing, and Eq. (4-125) is
the summability relation for these properties.

Each of Eqs. (4-93) through (4-96) is an expression for an ideal
solution property, and each may be combined with the defining equa-
tion for an excess property (Eq. [4-99]), yielding

GE = G − �
i

xiGi − RT �
i

xi ln xi (4-127)

VE = V − �
i

xiVi (4-128)

SE = S − �
i

xiSi + R �
i

xi ln xi (4-129)

HE = H − �
i

xiHi (4-130)

In view of Eq. (4-124), these may be written

GE = ∆G − RT �
i

xi ln xi (4-131)

GE

�
RT

H�i
E

�
RT2

∂ ln γi
�
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V�i
E

�
RT

∂ ln γi
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∂(nGE/RT)
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∂ni
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VE = ∆V (4-132)

SE = ∆S + R �
i

xi ln xi (4-133)

HE = ∆H (4-134)

where ∆G, ∆V, ∆S, and ∆H are the Gibbs energy change of mixing, the
volume change of mixing, the entropy change of mixing, and the
enthalpy change of mixing. For an ideal solution, each excess property
is zero, and for this special case

∆Gid = RT �
i

xi ln xi (4-135)

∆Vid = 0 (4-136)

∆Sid = −R �
i

xi ln xi (4-137)

∆Hid = 0 (4-138)
Property changes of mixing and excess properties are easily calculated
one from the other. The most commonly encountered property
changes of mixing are the volume change of mixing ∆V and the
enthalpy change of mixing ∆H, commonly called the heat of mixing.
These properties are directly measurable and are identical to the cor-
responding excess properties.

Pertinent examples are given in Smith, Van Ness, and Abbott
(Introduction to Chemical Engineering Thermodynamics, 5th ed.,
Sec. 11.4, McGraw-Hill, New York, 1996).

BEHAVIOR OF BINARY LIQUID SOLUTIONS

Property changes of mixing and excess properties find greatest appli-
cation in the description of liquid mixtures at low reduced tempera-

tures, that is, at temperatures well below the critical temperature of
each constituent species. The properties of interest to the chemical
engineer are V E (� ∆V), HE (� ∆H), SE, ∆S, GE, and ∆G. The activity
coefficient is also of special importance because of its application in
phase-equilibrium calculations.

The behavior of binary liquid solutions is clearly displayed by plots
of ME, ∆M, and ln γi vs. x1 at constant T and P. The volume change of
mixing (or excess volume) is the most easily measured of these quan-
tities and is normally small. However, as illustrated by Fig. 4-1, it is
subject to individualistic behavior, being sensitive to the effects of
molecular size and shape and to differences in the nature and magni-
tude of intermolecular forces.

The heat of mixing (excess enthalpy) and the excess Gibbs energy
are also experimentally accessible, the heat of mixing by direct mea-
surement and GE (or ln γi) indirectly as a product of the reduction of
vapor/liquid equilibrium data. Knowledge of HE and GE allows calcu-
lation of SE by Eq. (4-13) written for excess properties,

SE = (4-139)

with ∆S then given by Eq. (4-133).
Figure 4-2 displays plots of ∆H, ∆S, and ∆G as functions of 

composition for 6 binary solutions at 50°C. The corresponding
excess properties are shown in Fig. 4-3; the activity coefficients,
derived from Eq. (4-119), appear in Fig. 4-4. The properties shown
here are insensitive to pressure, and for practical purposes represent
solution properties at 50°C (122°F) and low pressure (P ≈ 1 bar 
[14.5 psi]).

HE − GE

�
T
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FIG. 4-1 Excess volumes at 25°C for liquid mixtures of cyclohexane(1) with
some other C6 hydrocarbons.
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FIG. 4-2 Property changes of mixing at 50°C for 6 binary liquid systems: (a) chloroform(1)/n-heptane(2); (b) acetone(1)/
methanol(2); (c) acetone(1)/chloroform(2); (d) ethanol(1)/n-heptane(2); (e) ethanol(1)/chloroform(2); ( f) ethanol(1)/water(2).

FIG. 4-3 Excess properties at 50°C for 6 binary liquid systems: (a) chloroform(1)/n-heptane(2); (b) acetone(1)/methanol(2); 
(c) acetone(1)/chloroform(2); (d) ethanol(1)/n-heptane(2); (e) ethanol(1)/chloroform(2); ( f) ethanol(1)/water(2).

(a) (b) (c)

(a) (b) (c)

(d ) (e) (f)

(d ) (e) (f)



RESIDUAL-PROPERTY FORMULATIONS

The most satisfactory calculational procedure for thermodynamic
properties of gases and vapors requires PVT data and ideal gas heat
capacities. The primary equations are based on the concept of the
ideal gas state and the definitions of residual enthalpy and residual
entropy:

H = Hig + HR and S = Sig + SR

The enthalpy and entropy are simple sums of the ideal gas and resid-
ual properties, which are evaluated separately.

For the ideal gas state at constant composition,

dHig = CP
ig  dT

dSig = CP
ig − R

Integration from an initial ideal gas reference state at conditions T0

and P0 to the ideal gas state at T and P gives:

Hig = H0
ig + �T

T0

CP
ig dT

Sig = S0
ig + �T

T0

CP
ig − R ln 

Substitution into the equations for H and S yields

H = H0
ig + �T

T0

CP
ig dT + HR (4-140)

P
�
P0

dT
�
T

dP
�
P

dT
�
T

S = S0
ig + �T

T0

CP
ig − R ln + SR (4-141)

The reference state at T0 and P0 is arbitrarily selected, and the values
assigned to H0

ig and S0
ig are also arbitrary. In practice, only changes in H

and S are of interest, and the reference-state values ultimately cancel
in their calculation.

The ideal-gas–state heat capacity CP
ig is a function of T but not of P.

For a mixture, the heat capacity is simply the molar average �i xi CP
ig.

Empirical equations giving the temperature dependence of CP
ig are

available for many pure gases, often taking the form

CP
ig = A + BT + CT 2 + DT−2 (4-142)

where A, B, C, and D are constants characteristic of the particular gas,
and either C or D is 0. Evaluation of the integrals ∫ CP

ig dT and
∫ (CP

ig/T)dT is accomplished by substitution for CP
ig, followed by formal

integration. For temperature limits of T0 and T the results are conve-
niently expressed as follows:

�T

T0

CP
ig dT = AT0(τ − 1) + T0

2(τ2 − 1) + T0
3(τ3 − 1) + � �

(4-143)

and �T

T0

dT = A ln τ + �BT0 + �CT0
2 + � � �� (τ − 1)

(4-144)

where τ �
T
�
T0

τ + 1
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2
D
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τ 2T0
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FIG. 4-4 Activity coefficients at 50°C for 6 binary liquid systems: (a) chloroform(1)/n-heptane(2); (b) acetone(1)/
methanol(2); (c) acetone(1)/chloroform(2); (d) ethanol(1)/n-heptane(2); (e) ethanol(1)/chloroform(2); ( f) ethanol(1)/
water(2).

EVALUATION OF PROPERTIES

(a) (b) (c)

(d ) (e) (f)



Equations (4-140) and (4-141) may sometimes be advantageously
expressed in alternative form through use of mean heat capacities:

H = H0
ig + 〈CP

ig〉H(T − T0) + HR (4-145)

S = S0
ig + 〈CP

ig〉S ln − R ln + SR (4-146)

where 〈CP
ig〉H and 〈CP

ig〉S are mean heat capacities specific respectively
to enthalpy and entropy calculations. They are given by the following
equations:

〈CP
ig〉H = A + T0 (τ + 1) + T 2

0(τ 2 + τ + 1) + (4-147)

〈CP
ig〉S = A + �BT0 + �CT 2

0 + � � �� � � (4-148)

LIQUID/VAPOR PHASE TRANSITION

When a differential amount of a pure liquid in equilibrium with its
vapor in a piston-and-cylinder arrangement evaporates at constant
temperature T and vapor pressure Pi

sat, Eq. (4-16) applied to the
process reduces to d(niGi) = 0, whence

ni dGi + Gi dni = 0

Since the system is closed, dni = 0 and, therefore, dGi = 0; this requires
the molar (or specific) Gibbs energy of the vapor to be identical with
that of the liquid:

Gi
l = Gi

v (4-149)

where Gi
l and Gi

v are the molar Gibbs energies of the individual
phases.

If the temperature of a two-phase system is changed and if the two
phases continue to coexist in equilibrium, then the vapor pressure
must also change in accord with its temperature dependence. Since
Eq. (4-149) holds throughout this change,

dGi
l = dGi

v

Substituting the expressions for dGi
l and dGi

v given by Eq. (4-16)
yields

Vi
l dPi

sat − Si
l dT = Vi

v dPi
sat − Si

v dT

which upon rearrangement becomes

= =

The entropy change ∆Si
lv and the volume change ∆Vi

lv are the changes
which occur when a unit amount of a pure chemical species is trans-
ferred from phase l to phase v at constant temperature and pressure.
Integration of Eq. (4-18) for this change yields the latent heat of phase
transition:

∆Hi
lv = T∆Si

lv

Thus, ∆Si
lv = ∆Hi

lv/T, and substitution in the preceding equation gives

= (4-150)

Known as the Clapeyron equation, this is an exact thermodynamic
relation, providing a vital connection between the properties of the
liquid and vapor phases. Its use presupposes knowledge of a suitable
vapor pressure vs. temperature relation. Empirical in nature, such
relations are approximated by the equation

ln Psat = A − (4-151)

where A and B are constants for a given species. This equation gives a
rough approximation of the vapor-pressure relation for its entire tem-
perature range. Moreover, it is an excellent basis for interpolation
between values that are reasonably spaced.

The Antoine equation, which is more satisfactory for general use,
has the form

B
�
T

∆Hi
lv

�
T∆Vi

lv

dPi
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�
dT

∆Si
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∆Vi

lv

Si
v − Si

l
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v − Vi
l

dPi
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dT

τ − 1
�
ln τ
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2
D

�
τ 2T 2

0

D
�
τ T 2

0

C
�
3

B
�
2

P
�
P0

T
�
T0

ln Psat = A − (4-152)

A principal advantage of this equation is that values of the constants A,
B, and C are readily available for a large number of species.

The accurate representation of vapor-pressure data over a wide
temperature range requires an equation of greater complexity. The
Wagner equation, one of the best, expresses the reduced vapor pres-
sure as a function of reduced temperature:

ln Pr
sat = (4-153)

where here τ � 1 − Tr

and A, B, C, and D are constants. Values of the constants either for this
equation or the Antoine equation are given for many species by Reid,
Prausnitz, and Poling (The Properties of Gases and Liquids, 4th ed.,
App. A, McGraw-Hill, New York, 1987).

LIQUID-PHASE PROPERTIES

Given saturated-liquid enthalpies and entropies, the calculation of
these properties for pure compressed liquids is accomplished by inte-
gration at constant temperature of Eqs. (4-34) and (4-35):

Hi = Hi
sat + �P

Pi
sat

Vi(1 − βiT)dP (4-154)

Si = Si
sat − �P

Pi
sat

βiVi dP (4-155)

where the volume expansivity of species i at temperature T is

βi � � �
P

(4-156)

Since βi and Vi are weak functions of pressure for liquids, they are usu-
ally assumed constant at the values for the saturated liquid at temper-
ature T.

PROPERTIES FROM PVT CORRELATIONS

The empirical representation of the PVT surface for pure materials is
treated later in this section. We first present general equations for
evaluation of reduced properties from such representations.

Equation (4-83), applied to a pure material, may be written

d � � = dP (constant T)

Integration from zero pressure to arbitrary pressure P gives

= �P

0
dP (constant T)

where at the lower limit GR/RT is set equal to zero on the basis that the
zero-pressure state is an ideal gas state. The residual volume is related
directly to the compressibility factor:

VR � V − Vig = − = (Z − 1) 

whence = (4-157)

Therefore = �P

0
(Z − 1) (constant T) (4-158)

Differentiation of Eq. (4-158) with respect to temperature in accord
with Eq. (4-84), gives

= −T �P

0
� �

P
(constant T) (4-159)

Equation (4-13) written for residual properties becomes

= − (4-160)
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In view of Eq. (4-75), Eqs. (4-158) and (4-160) may be expressed
alternatively as

ln φ =�P

0
(Z − 1) (constant T) (4-161)

and = − ln φ (4-162)

Values of Z and of (∂Z/∂T)P come from experimental PVT data, and
the integrals in Eqs. (4-158), (4-159), and (4-161) may be evaluated by
numerical or graphical methods. Alternatively, the integrals are ex-
pressed analytically when Z is given by an equation of state. Residual
properties are therefore evaluated from PVT data or from an appro-
priate equation of state.

Pitzer’s Corresponding-States Correlation A three-parameter
corresponding-states correlation of the type developed by Pitzer, K.S.
(Thermodynamics, 3d ed., App. 3, McGraw-Hill, New York, 1995) is
described in Sec. 2. It has as its basis an equation for the compress-
ibility factor:

Z = Z0 + ωZ1 (4-163)

where Z0 and Z1 are each functions of reduced temperature Tr and
reduced pressure Pr. The acentric factor ω is defined by Eq. (2-23).
The Tr and Pr dependencies of functions Z0 and Z1 are shown by Figs.
2-1 and 2-2. Generalized correlations are developed here for the
residual enthalpy, residual entropy, and the fugacity coefficient.

Equations (4-161) and (4-159) are put into generalized form by
substitution of the relationships

P = PcPr T = TcTr

dP = Pc dPr dT = Tc dTr

The resulting equations are:

ln φ =�Pr

0
(Z − 1) (4-164)

and = −T 2
r�

Pr

0
� �

Pr

(4-165)

The terms on the right-hand sides of these equations depend only
on the upper limit Pr of the integrals and on the reduced temperature
at which they are evaluated. Thus, values of ln φ and HR/RTc may be
determined once and for all at any reduced temperature and pressure
from generalized compressibility factor data.

Substitution for Z in Eq. (4-164) by Eq. (4-163) yields

ln φ =�Pr

0
(Z0 − 1) + ω�Pr

0
Z1

This equation may be written in alternative form as

ln φ = ln φ0 + ω ln φ1 (4-166)

where ln φ0 � �Pr

0
(Z0 − 1) 

ln φ1 � �Pr

0
Z1

Since Eq. (4-166) may also be written

φ =(φ0)(φ1)ω (4-167)

correlations may be presented for φ0 and φ1 as well as for their loga-
rithms.

Differentiation of Eq. (4-163) yields
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Pr

Substitution for (∂Z/∂Tr)Pr in Eq. (4-165) gives:
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Again, in alternative form,

= + ω (4-168)

where = −T 2
r �

Pr

0
� �

Pr

= −T 2
r �

Pr

0
� �

Pr

The residual entropy is given by Eq. (4-162), here written

= � � − ln φ (4-169)

Pitzer’s original correlations for Z and the derived quantities were
determined graphically and presented in tabular form. Since then,
analytical refinements to the tables have been developed, with ex-
tended range and accuracy. The most popular Pitzer-type correlation
is that of Lee and Kesler (AIChE J., 21, pp. 510–527 [1975]). These
tables cover both the liquid and gas phases, and span the ranges 0.3 ≤
Tr ≤ 4.0 and 0.01 ≤ Pr ≤ 10.0. Shown by Figs. 4-5 and 4-6 are isobars of
−(HR)0/RTc and −(HR)1/RTc with Tr as independent variable drawn
from these tables. Figures 4-7 and 4-8 are the corresponding plots for
−ln φ0 and −ln φ1. Figures 4-9 and 4-10 are isotherms of φ0 and φ1 with
Pr as independent variable.

Although the Pitzer correlations are based on data for pure materi-
als, they may also be used for the calculation of mixture properties. A
set of recipes is required relating the parameters Tc, Pc, and ω for a
mixture to the pure-species values and to composition. One such set is
given by Eqs. (2-80) through (2-82) in Sec. 2, which define pseudopa-
rameters, so called because the defined values of Tc, Pc, and ω have no
physical significance for the mixture.

Alternative Property Formulations Direct application of Eqs.
(4-159) and (4-161) can be made only to equations of state that are
solvable for volume, that is, that are volume explicit. Most equations 
of state are in fact pressure explicit, and alternative equations are
required.
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FIG. 4-5 Correlation of −(HR)0/RTc, drawn from the tables of Lee and Kesler
(AIChE J., 21, pp. 510–527 [1975]).



Equation (4-158) is converted through application of the general
relation PV = ZRT. Differentiation at constant T gives

P dV + V dP = RT dZ (constant T)

which is readily transformed to

= − (constant T)
dV
�
V

dZ
�
Z

dP
�
P

Substitution into Eq. (4-158) leads to

= Z − 1 − ln Z − �V

∞
(Z − 1) (4-170)

The molar volume may be eliminated in favor of the molar density, 
ρ = V−1, to give

= Z − 1 − ln Z + �ρ

0
(Z − 1) (4-171)

For a pure material, Eq. (4-75) shows that GR/RT = ln φ, in which case
Eqs. (4-170) and (4-171) directly yield values of ln φ:

ln φ =Z − 1 − ln Z − �V

∞
(Z − 1) (4-172)

ln φ =Z − 1 − ln Z + �ρ

0
(Z − 1) (4-173)

where subscript i is omitted for simplicity.
The corresponding equations for HR are most readily found from

Eq. (4-107) applied to a pure material. In view of Eqs. (4-75) and 
(4-157), this equation may be written

d ln φ =(Z − 1) − dT

Division by dT and restriction to constant V gives, upon rearrange-
ment,

= � �
V

− � �
V

Differentiation of P = ZRT/V provides the first derivative on the right
and differentiation of Eq. (4-172) provides the second. Substitution
then leads to

= Z − 1 + T �V

∞ � �
V

(4-174)
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FIG. 4-6 Correlation of −(HR)1/RTc, drawn from the tables of Lee and Kesler
(AIChE J., 21, pp. 510–527 [1975]).

FIG. 4-7 Correlation of [−ln φ0] vs. Tr, drawn from the tables of Lee and Kesler
(AIChE J., 21, pp. 510–527 [1975]).

FIG. 4-8 Correlation of [−ln φ1] vs. Tr, drawn from the tables of Lee and Kesler
(AIChE J., 21, pp. 510–527 [1975]).



Alternatively, = Z − 1 − T �ρ

0
� �ρ

(4-175)

As before, the residual entropy is found by Eq. (4-162).
In applications to equilibrium calculations, the fugacity coefficients

of species in a mixture φ̂i are required. Given an expression for GR/RT
as determined from Eq. (4-158) for a constant-composition mixture,
the corresponding recipe for ln φ̂i is found through the partial-
property relation

ln φ̂i = � �
T,P,nj

(4-85)

There are two ways to proceed: operate on the result of the integra-
tion of Eq. (4-158) in accord with Eq. (4-85) or apply Eq. (4-85)
directly to Eq. (4-158), obtaining

ln φ̂i = �P

0
(Z�i − 1) (4-176)

where Z�i is the partial compressibility factor, defined as

Z�i � � �
T,P,nj

(4-177)
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�
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HR
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RT

Direct application of these results is possible only to equations of
state explicit in volume. For pressure-explicit equations of state, alter-
native recipes are required. The basis is Eq. (4-82), which in view of
Eq. (4-157) may be written

d � � = dP − dT + �
i

ln φ̂i dni

Division by dni and restriction to constant T, nV, and nj ( j ≠ i) leads to

ln φ̂i = � �
T,nV,nj

− � �
T,nV,nj

But P = (nZ)RT/nV, and therefore

� �
T,nV,nj

= � �
T,nV,nj

Combination of the last two equations gives

ln φ̂i = � �
T,nV,nj
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T,nV,nj

(4-178)

Alternatively,

ln φ̂i = � �
T,ρ/n,nj
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T,ρ/n,nj

(4-179)

These equations may either be applied to the results of integrations 
of Eqs. (4-170) and (4-171) or directly to Eqs. (4-170) and (4-171) 
as written for a mixture. In the latter case the following analogs of Eq.
(4-176) are obtained:

ln φ̂i = − �V

∞ 	� �
T,nV,nj

− 1
 − ln Z (4-180)

ln φ̂i = − �ρ

0
	� �

T,ρ/n,nj

− 1
 − ln Z (4-181)
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FIG. 4-9 Correlation of φ0 vs. Pr, drawn from the tables of Lee and Kesler
(AIChE J., 21, pp. 510–527 [1975]).

FIG. 4-10 Correlation of φ1 vs. Pr, drawn from the tables of Lee and Kesler
(AIChE J., 21, pp. 510–527 [1975]).



Virial Equations of State The virial equation in density is an
infinite-series representation of the compressibility factor Z in powers
of molar density ρ (or reciprocal molar volume V−1) about the real-gas
state at zero density (zero pressure):

Z = 1 + Bρ + Cρ2 + Dρ3 + ⋅ ⋅ ⋅ (4-182)

The density-series virial coefficients B, C, D, . . . , depend on temper-
ature and composition only. The composition dependencies are given
by the exact recipes

B = �
i

�
j

yiyjBij (4-183)

C = �
i

�
j

�
k

yiyjykCijk (4-184)

and so on

where yi, yj, and yk are mole fractions for a gas mixture, with indices i,
j, and k identifying species.

The coefficient Bij characterizes a bimolecular interaction between
molecules i and j, and therefore Bij = Bji. Two kinds of second virial
coefficient arise: Bii and Bjj, wherein the subscripts are the same (i = j);
and Bij, wherein they are different (i ≠ j). The first is a virial coefficient
for a pure species; the second is a mixture property, called a cross coef-
ficient. Similarly for the third virial coefficients: Ciii, Cjjj, and Ckkk are
for the pure species; and Ciij = Ciji = Cjii, and so on, are cross coeffi-
cients.

Although the virial equation itself is easily rationalized on empirical
grounds, the “mixing rules” of Eqs. (4-183) and (4-184) follow rigor-
ously from the methods of statistical mechanics. The temperature
derivatives of B and C are given exactly by

= �
i

�
j

yiyj (4-185)

= �
i

�
j

�
k

yiyjyk (4-186)

An alternative form of the virial equation expresses Z as an expan-
sion in powers of pressure about the real-gas state at zero pressure
(zero density):

Z = 1 + B′P + C′P 2 + D′P3 + ⋅ ⋅ ⋅ (4-187)

Equation (4-187) is the virial equation in pressure, and B′, C′, D′, . . . ,
are the pressure-series virial coefficients. Like the density-series coef-
ficients, they depend on temperature and composition only. More-
over, the two sets of coefficients are related:

B′ = (4-188)

C′ = (4-189)

and so on

Application of an infinite series to practical calculations is, of
course, impossible, and truncations of the virial equations are in fact
employed. The degree of truncation is conditioned not only by the
temperature and pressure but also by the availability of correlations or
data for the virial coefficients. Values can usually be found for B (see
Sec. 2), and often for C (see, e.g., De Santis and Grande, AIChE J.,
25, pp. 931–938 [1979]), but rarely for higher-order coefficients.
Application of the virial equations is therefore usually restricted to
two- or three-term truncations. For pressures up to several bars, the
two-term expansion in pressure, with B′ given by Eq. (4-188), is usu-
ally preferred:

Z = 1 + (4-190)

For supercritical temperatures, it is satisfactory to ever-higher pres-
sures as the temperature increases. For pressures above the range
where Eq. (4-190) is useful, but below the critical pressure, the virial
expansion in density truncated to three terms is usually suitable:
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dC
�
dT

dBij
�
dT

dB
�
dT

Z = 1 + Bρ + Cρ2 (4-191)

Equations for derived properties may be developed from each of
these expressions. Consider first Eq. (4-190), which is explicit in vol-
ume. Equations (4-159), (4-161), and (4-176) are therefore applicable.
Direct substitution for Z in Eq. (4-161) gives

ln φ = (4-192)

Differentiation of Eq. (4-190) yields

� �
P

= � − �
Whence, by Eq. (4-159)

= � − � (4-193)

and by Eq. (4-162),

= − (4-194)

Multiplication of Eq. (4-190) by n gives

nZ = n + (nB) 

Differentiation in accord with Eq. (4-177) yields

Z�i = 1 + � �
T,nj

Whence, by Eq. (4-176),

ln φ̂i = � �
T,nj

Equation (4-183) can be written

nB = �
k

�
l

nknlBkl

from which, by differentiation,

� �
T,nj

= 2 �
k

ykBki − B (4-195)

Whence ln φ̂i = �2 �
k

ykBki − B� (4-196)

Equation (4-191) is explicit in pressure, and Eqs. (4-173), (4-175),
and (4-181) are therefore applicable. Direct substitution of Eq. 
(4-191) into Eq. (4-173) yields

ln φ =2Bρ + Cρ2 − ln Z (4-197)

Moreover, � �ρ
= ρ + ρ2

whence = �B − T � ρ + �C − � ρ2 (4-198)

The residual entropy is given by Eq. (4-162).
Application of Eq. (4-181) provides an expression for ln φ̂i. First,

from Eq. (4-191),

� �
T,ρ/n,nj

= 1 + 	B + � �
T,nj

 ρ + 	2C + � �

T,nj

 ρ2

Substitution into Eq. (4-181) gives, on integration,

ln φ̂i = 	B + � �
T,nj

 ρ + 	2C + � �

T,nj

 ρ2 − ln Z

The mole-number derivative of nB is given by Eq. (4-195); the corre-
sponding derivative of nC, similarly found from Eq. (4-184), is

� �
T,nj

= 3 �
k

�
l

ykylCkli − 2C (4-199)
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Finally,

ln φ̂i = 2ρ �
k

ykBki + ρ2 �
k

�
l

ykylCkli − ln Z (4-200)

In a process calculation, T and P, rather than T and ρ (or T and V),
are usually the favored independent variables. Application of Eqs. 
(4-197), (4-198), and (4-200) therefore requires prior solution of Eq.
(4-191) for Z or ρ. Since Z = P/ρRT, Eq. (4-191) may be written in two
equivalent forms:

Z3 − Z2 − � � Z − = 0 (4-201)

or ρ3 + � � ρ2 + � � ρ − = 0 (4-202)

In the event that three real roots obtain for these equations, only the
largest Z (smallest ρ) appropriate for the vapor phase has physical sig-
nificance, because the virial equations are suitable only for vapors and
gases.

Generalized Correlation for the Second Virial Coefficient
Perhaps the most useful of all Pitzer-type correlations is the one for
the second virial coeffieient. The basic equation (see Eq. [2-68]) is

= B0 + ωB1 (4-203)

where for a pure material B0 and B1 are functions of reduced temper-
ture only. Substitution for B by this expression in Eq. (4-190) yields

Z = 1 + (B0 + ωB1) (4-204)

By differentiation,

� �
Pr

= Pr � − � + ωPr � − �
Substitution of these equations into Eqs. (4-164) and (4-165) and inte-
gration gives

ln φ =(B0 + ωB1) (4-205)

and = Pr �B0 − Tr + ω�B1 − Tr �� (4-206)

The residual entropy follows from Eq. (4-162):

= −Pr � + ω � (4-207)

In these equations, B0 and B1 and their derivatives are well repre-
sented by

B0 = 0.083 − (4-208)

B1 = 0.139 − (4-209)

= (4-210)

= (4-211)

Though limited to pressures where the two-term virial equation in
pressure has approximate validity, this correlation is applicable to
most chemical-processing conditions. As with all generalized correla-
tions, it is least accurate for polar and associating molecules.

Although developed for pure materials, this correlation can be
extended to gas or vapor mixtures. Basic to this extension is the mixing
rule for second virial coefficients and its temperature derivative:

B = �
i

�
j

yiyjBij (4-183)

= �
i

�
j

yiyj (4-185)
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Values for the cross coefficients and their derivatives in these equa-
tions are provided by writing Eq. (4-203) in extended form:

Bij = (B0 + ωijB1) (4-212)

where B0, B1, dB0/dTr, and dB1/dTr are the same functions of Tr as
given by Eqs. (4-208) through (4-211). Differentiation produces

= � + ωij �
or = � + ωij � (4-213)

where Trij = T/Tcij. The following are combining rules for calculation of
ωij, Tcij, and Pcij as given by Prausnitz, Lichtenthaler, and de Azevedo
(Molecular Thermodynamics of Fluid-Phase Equilibria, 2d ed., pp.
132 and 162, Prentice-Hall, Englewood Cliffs, N.J., 1986):

ωij = (4-214)

Tcij = (TciTcj)1/2(1 − kij) (4-215)

Pcij = (4-216)

with Zcij = (4-217)

Vcij = � �
3

(4-218)

In Eq. (4-215), kij is an empirical interaction parameter specific to
an i-j molecular pair. When i = j and for chemically similar species, 
kij = 0. Otherwise, it is a small (usually) positive number evaluated
from minimal PVT data or in the absence of data set equal to zero.

When i = j, all equations reduce to the appropriate values for a pure
species. When i ≠ j, these equations define a set of interaction para-
meters having no physical significance. For a mixture, values of Bij and
dBij /dT from Eqs. (4-212) and (4-213) are substituted into Eqs. (4-
183) and (4-185) to provide values of the mixture second virial coeffi-
cient B and its temperature derivative. Values of HR and SR for the
mixture are then given by Eqs. (4-193) and (4-194), and values of ln φ̂i

for the component fugacity coefficients are given by Eq. (4-196).
Cubic Equations of State The simplest expressions that can (in

principle) represent both the vapor- and liquid-phase volumetric
behavior of pure fluids are equations cubic in molar volume. All such
expressions are encompassed by the generic equation

P = − (4-219)

where parameters b, θ, δ, ε, and η can each depend on temperature
and composition. Special cases are obtained by specification of values
or expressions for the various parameters.

The modern development of cubic equations of state started in
1949 with publication of the Redlich/Kwong equation (Redlich and
Kwong, Chem. Rev., 44, pp. 233–244 [1949]):

P = − (4-220)

where a(T) =

and a and b are functions of composition only. This equation, like
other cubic equations of state, has three volume roots, of which two
may be complex. Physically meaningful values of V are always real,
positive, and greater than the constant b. When T > Tc, solution for V
at any positive value of P yields only one real positive root. When T =
Tc, this is also true, except at the critical pressure, where there are
three roots, all equal to Vc. For T < Tc, only one real positive root exists
at high pressures, but for a range of lower pressures there are three
real positive roots. Here, the middle root is of no significance; the
smallest root is a liquid or liquidlike volume, and the largest root is a
vapor or vaporlike volume. The volumes of saturated liquid and satu-
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rated vapor are given by the smallest and largest roots when P is the
saturation vapor pressure Psat.

The application of cubic equations of state to mixtures requires
expression of the equation-of-state parameters as functions of compo-
sition. No exact theory like that for the virial coefficients prescribes
this composition dependence, and empirical mixing rules provide
approximate relationships. The mixing rules that have found general
favor for the Redlich/Kwong equation are:

a = �
i

�
j

yiyjaij (4-221)

with aij = aji, and
b = �

i

yibi (4-222)

The aij are of two types: pure-species parameters (like subscripts) and
interaction parameters (unlike subscripts). The bi are parameters for
the pure species.

Parameter evaluation may be accomplished with the equations

aij = (4-223)

bi = (4-224)

where Eqs. (4-215) through (4-218) provide for the calculation of the
Tcij and Pcij.

Multiplication of the Redlich/Kwong equation (Eq. [4-220]) by
V/RT leads to its expression in alternative form:

Z = − � � (4-225)

Whence Z − 1 = − � � (4-226)

where h = (4-227)

Equations (4-170) and (4-174) in combination with Eq. (4-226) give

= Z − 1 − ln (1 − h)Z − � � ln (1 + h) (4-228)

and = Z − 1 − � � ln (1 + h) (4-229)

Once a and b are determined by Eqs. (4-221) through (4-224), then
for given T and P values of Z, GR/RT, and HR/RT are found by Eqs. 
(4-225), (4-228), and (4-229) and SR/R by Eq. (4-160). The procedure
requires initial solution of Eqs. (4-225) and (4-227) for Z and h.

The original Redlich/Kwong equation is rarely satisfactory for
vapor/liquid equilibrium calculations, and equations have been devel-
oped specific to this purpose. The two most popular are the Soave/
Redlich/Kwong (SRK) equation, a modification of the Redlich/Kwong
equation (Soave, Chem. Eng. Sci., 27, pp. 1197–1203 [1972]), and the
Peng/Robinson (PR) equation (Peng and Robinson, Ind. Eng. Chem.
Fundam., 15, pp. 59–64 [1976]). Both equations are designed specif-
ically to yield reasonable vapor pressures for pure fluids. Thus, there
is no assurance that molar volumes calculated by these equations are
more accurate than values given by the original Redlich/Kwong equa-
tion. Written for pure species i the SRK and PR equations are special
cases of the following:

P = − (4-230)

where ai(T) =

bi =

and ε σ, Ωa, and Ωb are equation-specific constants. For the Soave/
Redlich/Kwong equation:

α(Tri; ωi) = [1 + (0.480 + 1.574ωi − 0.176ωi
2) (1 − Tri

1/2)]2

ΩbRTci
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Pci
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For the Peng/Robinson equation:

α(Tri; ωi) = [1 + (0.37464 + 1.54226ωi − 0.26992ωi
2) (1 − Tri

1/2)]2

Written for a mixture, Eq. (4-230) becomes

P = − (4-231)

where a and b are mixture values, related to the ai and bi by mixing
rules. Equation (4-170) applied to Eq. (4-231) leads to

ln φ̂i = (Z − 1) −ln + �1+ − � ln 

(4-232)

where ai and bi are partial parameters for species i, defined by

ai =� �
T,nj

(4-233)

and bi =� �
T,nj

(4-234)

These are general equations that do not depend on the particular mix-
ing rules adopted for the composition dependence of a and b. The mix-
ing rules given by Eqs. (4-221) and (4-222) can certainly be employed
with these equations. However, for purposes of vapor/liquid equilib-
rium calculations, a special pair of mixing rules is far more appropriate,
and will be introduced when these calculations are treated. Solution of
Eq. (4-232) for fugacity coefficient φ̂i at given T and P requires prior
solution of Eq. (4-231) for V, from which is found Z = PV/RT.

Benedict/Webb/Rubin Equation of State The BWR equation
of state with Z as the dependent variable is written

Z = 1 + �B0 − − � ρ + �b − � ρ2

+ ρ5 + ρ2 (1 + γρ2) exp (−γρ2) (4-235)

All eight parameters depend on composition; moreover, parameters
C0, b, and γ are for some applications treated as functions of T. By Eq.
(4-171), the residual Gibbs energy is

= 2 �B0 − − � ρ + �b − � ρ2 + ρ5

+ �(2γ2ρ4 + γρ2 − 2) exp (−γρ2) + 2� − ln Z (4-236)

With allowance for T dependence of C0, b, and γ, Eq. (4-175) yields

= �B0 − − + � ρ

− �T − 2b + � ρ2 + ρ5

+ �(2γ2ρ4 − γρ2 − 6) exp (−γρ2) + 6�
− �(γ2ρ4 + 2γρ2 + 2) exp (−γρ2) − 2� (4-237)

The residual entropy is given by Eq. (4-160).
Computation of ln φ̂i is done via Eq. (4-181). The result is

ln φ̂i = �B0 + B�0i − − � ρ

+ �2b + b�i − � ρ2 + � � ρ5

+ 	��1 + � γ2ρ4 + � − � ρ2

− 2 �1 + − �� exp (−γρ2) + 2 �1 + − �
 − ln Z (4-238)
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Here the quantities with overbars are partial parameters for species i,
defined for arbitrary parameter πby

π�i � � �
T,nj

(4-239)

Application of these equations requires specific mixing rules. For
example, if

π =��
k

ykπk
1/r�

r

(4-240)

where r is a small integer, the recipe for π�i is

π�i = π�r � �
1/r

− (r − 1)� (4-241)

Specifically, if r = 3 for π� c; then

c�i = c �3 � �
1/3

− 2�
where ci is the parameter for pure i and c is the parameter for the mix-
ture, given by

c = ��
k

ykck
1/3�

3

Equation-of-state examples are given in Smith, Van Ness, and
Abbott (Introduction to Chemical Engineering Thermodynamics, 5th
ed., Secs. 3.4–3.7 and 6.2–6.6, McGraw-Hill, New York, 1996).

EXPRESSIONS FOR THE EXCESS GIBBS ENERGY

In principle, equation-of-state procedures can be used for the calcula-
tion of liquid-phase as well as gas-phase properties, and much has
been accomplished in the development of PVT equations of state suit-
able for both phases. However, a widely used alternative for the liquid
phase is application of excess properties.

The excess property of primary importance for engineering calcula-
tions is the excess Gibbs energy GE, because its canonical variables are
T, P, and composition, the variables usually specified or sought in a
design calculation. Knowing GE as a function of T, P, and composition,
one can in principle compute from it all other excess properties (see,
for example, Eqs. [4-117] through [4-119]). As noted with respect to
Fig. 4-1, the excess volume for liquid mixtures is usually small; the
pressure dependence of GE may then be safely ignored. Thus, the
engineering efforts at describing GE center on representing its com-
position and temperature dependence.

For binary systems at constant T, GE is a function of just x1, and the
quantity most conveniently represented by an equation is GE/x1x2RT.
The simplest procedure is to express this quantity as a power series in
x1:

= a + bx1 + cx1
2 + ⋅ ⋅ ⋅ (constant T)

An equivalent power series with certain advantages is known as the
Redlich/Kister expansion (Redlich, Kister, and Turnquist, Chem. Eng.
Progr. Symp. Ser. No. 2, 48, pp. 49–61 [1952]):

= B + C(x1 − x2) + D(x1 − x2)2 + ⋅ ⋅ ⋅

In application, different truncations of this series are appropriate.
For each particular expression representing GE/x1x2RT, specific
expressions for ln γ1 and ln γ2 result from application of Eq. (4-119).
When all parameters are zero, GE/RT = 0, and the solution is ideal. If
C = D = ⋅ ⋅ ⋅ = 0, then

= B

where B is a constant for a given temperature. The corresponding
equations for ln γ1 and ln γ2 are

ln γ1 = Bx2
2 (4-242)

ln γ2 = Bx1
2 (4-243)

GE

�
x1x2 RT

GE

�
x1x2 RT
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�
x1 x2 RT

ci
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πi
�
π

∂(nπ)
�

∂ni

The symmetrical nature of these relations is evident. The infinite-
dilution values of the activity coefficients are ln γ1

∞ = ln γ2
∞ = B.

If D = ⋅ ⋅ ⋅ = 0, then

= B + C(x1 − x2) = B + C(2x1 − 1)

and in this case GE/x1x2 RT is linear in x1. The substitutions, B + C = A21

and B − C = A12 transform this expression into the Margules equation:

GE/x1 x2 RT = A21 x1 + A12 x2 (4-244)

Application of Eq. (4-119) yields

ln γ1 = x2
2 [A12 + 2(A21 − A12)x1] (4-245)

ln γ2 = x1
2 [A21 + 2(A12 − A21)x2] (4-246)

An alternative equation is obtained when the reciprocal quantity
x1x2RT/GE is expressed as a linear function of x1:

= B′ + C′ (x1 − x2) = B′ + C′ (2x1 − 1)

This may also be written:

= B′ (x1 + x2) + C′ (x1 − x2) = (B′ + C′)x1 + (B′ − C′)x2

The substitutions B′ + C′ = 1/A′21 and B′ − C′ = 1/A′12 produce

= + =

or = (4-247)

The activity coefficients implied by this equation are given by

ln γ1 = A′12 �1 + �
−2

(4-248)

ln γ2 = A′21 �1 + �
−2

(4-249)

These are known as the van Laar equations. When x1 = 0, ln γ1
∞ = A′12;

when x2 = 0, ln γ2
∞ = A′21.

The Redlich/Kister expansion, the Margules equations, and the van
Laar equations are all special cases of a very general treatment based
on rational functions, that is, on equations for GE given by ratios of
polynomials (Van Ness and Abbott, Classical Thermodynamics of
Nonelectrolyte Solutions: With Applications to Phase Equilibria, Sec.
5-7, McGraw-Hill, New York, 1982). Although providing great flexi-
bility in the fitting of VLE data for binary systems, they are without
theoretical foundation, with no rational basis for their extension to
multicomponent systems. Nor do they incorporate an explicit temper-
ature dependence for the parameters.

Modern theoretical developments in the molecular thermodynam-
ics of liquid-solution behavior are often based on the concept of local
compositon, presumed to account for the short-range order and non-
random molecular orientations that result from differences in molec-
ular size and intermolecular forces. Introduced with the publication
of a model of GE behavior known as the Wilson equation ( J. Am.
Chem. Soc., 86, pp. 127–130 [1964]), it prompted the development
of alternative local-composition models, most notably the NRTL
(Non-Random-Two-Liquid) equation of Renon and Prausnitz
(AIChE J., 14, pp. 135–144 [1968]) and the UNIQUAC (UNIversal
QUAsi-Chemical) equation of Abrams and Prausnitz (AIChE J., 21,
pp. 116–128 [1975]). A further significant development, based on
the UNIQUAC equation, is the UNIFAC method (UNIQUAC
Functional-group Activity Coefficients). Proposed by Fredenslund,
Jones, and Prausnitz (AIChE J., 21, pp. 1086–1099 [1975]) and given
detailed treatment by Fredenslund, Gmehling, and Rasmussen
(Vapor-Liquid Equilibrium Using UNIFAC, Elsevier, Amsterdam,
1977), it provides for the calculation of activity coefficients from
contributions of the various groups making up the molecules of a
solution.
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The Wilson equation, like the Margules and van Laar equations,
contains just two parameters for a binary system (Λ12 and Λ21), and is
written:

= −x1 ln (x1 + x2Λ12) − x2 ln (x2 + x1Λ21) (4-250)

ln γ1 = −ln (x1 + x2Λ12) + x2 � − � (4-251)

ln γ2 = −ln (x2 + x1Λ21) − x1 � − � (4-252)

whence ln γ1
∞ = −ln Λ12 + 1 − Λ21

ln γ2
∞ = −ln Λ21 + 1 − Λ12

Both Λ12 and Λ21 must be positive numbers.
The NRTL equation contains three parameters for a binary system

and is written:

= + (4-253)

ln γ1 = x2
2 �τ21 � �

2

+ � (4-254)

ln γ2 = x1
2 �τ12 � �

2

+ � (4-255)

Here G12 = exp (−ατ12) G21 = exp (−ατ21)

and τ12 = τ21 =

where α, b12, and b21, parameters specific to a particular pair of
species, are independent of composition and temperature. The infi-
nite-dilution values of the activity coefficients are given by the equa-
tions:

ln γ1
∞ = τ21 + τ12 exp (−ατ12)

ln γ2
∞ = τ12 + τ21 exp (−ατ 21)

The local-composition models have limited flexibility in the fitting
of data, but they are adequate for most engineering purposes. More-
over, they are implicitly generalizable to multicomponent systems
without the introduction of any parameters beyond those required to
describe the constituent binary systems. For example, the Wilson
equation for multicomponent systems is written:

= −�
i

xi ln �
j

xj Λij (4-256)

and ln γi = 1 − ln �
j

xj Λij − �
k

(4-257)

where Λij = 1 for i = j, and so on. All indices in these equations refer to
the same species, and all summations are over all species. For each ij
pair there are two parameters, because Λij ≠ Λji. For example, in a
ternary system the three possible ij pairs are associated with the para-
meters Λ12, Λ21; Λ13, Λ31; and Λ23, Λ32.

The temperature dependence of the parameters is given by:

Λij = exp (i ≠ j) (4-258)

where Vj and Vi are the molar volumes at temperature T of pure liq-
uids j and i, and aij is a constant independent of composition and tem-
perature. Thus the Wilson equation, like all other local-composition
models, has built into it an approximate temperature dependence for
the parameters. Moreover, all parameters are found from data for
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binary (in contrast to multicomponent) systems. This makes parame-
ter determination for the local-composition models a task of manage-
able proportions.

The UNIQUAC equation treats g � GE/RT as comprised of two
additive parts, a combinatorial term gC, accounting for molecular size
and shape differences, and a residual term gR (not a residual prop-
erty), accounting for molecular interactions:

g = gC + gR (4-259)

Function gC contains pure-species parameters only, whereas function
gR incorporates two binary parameters for each pair of molecules. For
a multicomponent system,

gC = �
i

xi ln + 5 �
i

qixi ln (4-260)

gR = −�
i

qixi ln ��
j

θjτji� (4-261)

where Φi � (4-262)

and θi � (4-263)

Subscript i identifies species, and j is a dummy index; all summations
are over all species. Note that τji ≠ τij; however, when i = j, then τii =
τjj = 1. In these equations ri (a relative molecular volume) and qi (a rel-
ative molecular surface area) are pure-species parameters. The influ-
ence of temperature on g enters through the interaction parameters τji

of Eq. (4-261), which are temperature dependent:

τji = exp (4-264)

Parameters for the UNIQUAC equation are therefore values of 
(uji − uii).

An expression for ln γi is found by application of Eq. (4-119) to the
UNIQUAC equation for g (Eqs. [4-259] through [4-261]). The result
is given by the following equations:

ln γi = ln γi
C + ln γi

R (4-265)

ln γi
C = 1 − Ji + ln Ji − 5qi �1 − + ln � (4-266)

ln γi
R = qi �1 − ln si − �

j

θj � (4-267)

where in addition to Eqs. (4-263) and (4-264)

Ji = (4-268)

Li = (4-269)

si = �
l

θlτ l i (4-270)

Again subscript i identifies species, and j and l are dummy indicies.
Values for the parameters ri, qi, and (uij − ujj) are given by Gmehling,
Onken, and Arlt (Vapor-Liquid Equilibrium Data Collection, Chem-
istry Data Series, vol. I, parts 1–8, DECHEMA, Frankfurt/Main,
1974–1990).

The Wilson parameters Λij, NRTL parameters Gij, and UNIQUAC
parameters τij all inherit a Boltzmann-type T dependence from the
origins of the expressions for GE, but it is only approximate. Computa-
tions of properties sensitive to this dependence (e.g., heats of mixing
and liquid/liquid solubility) are in general only qualitatively correct.
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CRITERIA

The equations developed in preceding sections are for PVT systems in
states of internal equilibrium. The criteria for internal thermal and
mechanical equilibrium are well known, and need not be discussed in
detail. They simply require uniformity of temperature and pressure
throughout the system. The criteria for phase and chemical-reaction
equilibria are less obvious.

Consider a closed PVT system, either homogeneous or heteroge-
neous, of uniform T and P, which is in thermal and mechanical equi-
librium with its surroundings, but which is not initially at internal
equilibrium with respect to mass transfer or with respect to chemical
reaction. Changes occurring in the system are then irreversible, and
must necessarily bring the system closer to an equilibrium state. The
first and second laws written for the entire system are

dUt = dQ + dW

dSt ≥

Combination gives
dUt − dW − T dSt ≤ 0

Since mechanical equilibrium is assumed,

dW = −P dVt

Whence dUt + P dVt − T dSt ≤ 0

The inequality applies to all incremental changes toward the equilib-
rium state, whereas the equality holds at the equilibrium state where
any change is reversible.

Various constraints may be put on this expression to produce alter-
native criteria for the directions of irreversible processes and for the
condition of equilibrium. For example, it follows immediately that

dUt
St,Vt ≤ 0

Alternatively, other pairs of properties may be held constant. The
most useful result comes from fixing T and P, in which case

d(Ut + PVt − TSt)T,P ≤ 0

or dGt
T,P ≤ 0

This expression shows that all irreversible processes occurring at
constant T and P proceed in a direction such that the total Gibbs
energy of the system decreases. Thus the equilibrium state of a closed
system is the state with the minimum total Gibbs energy attainable at
the given T and P. At the equilibrium state, differential variations may
occur in the system at constant T and P without producing a change in
Gt. This is the meaning of the equilibrium criterion

dGt
T,P = 0 (4-271)

This equation may be applied to a closed, nonreactive, two-phase
system. Each phase taken separately is an open system, capable of
exchanging mass with the other, and Eq. (4-16) may be written for
each phase:

d(nG)′ = −(nS)′ dT + (nV)′ dP + �
i

µ′i dn′i

d(nG)″ = −(nS)″ dT + (nV)″ dP + �
i

µ″i dn″i

where the primes and double primes denote the two phases and the
presumption is that T and P are uniform throughout the two phases.
The change in the Gibbs energy of the two-phase system is the sum of
these equations. When each total-system property is expressed by an
equation of the form

nM = (nM)′ + (nM)″
this sum is given by

d(nG) = (nV) dP − (nS) dT + �
i

µ′i dn′i + �
i

µ″i dn″i

dQ
�
T

If the two-phase system is at equilibrium, then application of Eq. 
(4-271) yields

dGt
T,P � d(nG)T,P = �

i

µ′i dn′i + �
i

µ″i dn″i = 0

Since the system is closed and without chemical reaction, material
balances require that

dn″i = −dn′i

Therefore �
i

(µ′i − µ″i) dn′i = 0

Since the dn′ i are independent and arbitrary, it follows that

µ′i = µ″i
This is the criterion of two-phase equilibrium. It is readily generalized
to multiple phases by successive application to pairs of phases. The
general result is

µ′i = µ″i = µi′′′ = ⋅ ⋅ ⋅ (4-272)

Substitution for each µi by Eq. (4-77) produces the equivalent result

f̂ i′ = f̂ i″ = f̂ i′′′ = ⋅ ⋅ ⋅ (4-273)

These are the criteria of phase equilibrium applied in the solution of
practical problems.

For the case of equilibrium with respect to chemical reaction within
a single-phase closed system, combination of Eqs. (4-16) and (4-271)
leads immediately to

�
i

µi dni = 0 (4-274)

For a system in which both phase and chemical-reaction equilibrium
prevail, the criteria of Eqs. (4-272) and (4-274) are superimposed.

THE PHASE RULE

The intensive state of a PVT system is established when its tempera-
ture and pressure and the compositions of all phases are fixed. How-
ever, for equilibrium states these variables are not all independent,
and fixing a limited number of them automatically establishes the
others. This number of independent variables is given by the phase
rule, and is called the number of degrees of freedom of the system. It
is the number of variables which may be arbitrarily specified and
which must be so specified in order to fix the intensive state of a sys-
tem at equilibrium. This number is the difference between the num-
ber of variables needed to characterize the system and the number of
equations that may be written connecting these variables.

For a system containing N chemical species distributed at equilib-
rium among π phases, the phase-rule variables are temperature and
pressure, presumed uniform throughout the system, and N − 1 mole
fractions in each phase. The number of these variables is 2 + (N − 1)π.
The masses of the phases are not phase-rule variables, because they
have nothing to do with the intensive state of the system.

The equations that may be written connecting the phase-rule vari-
ables are:

1. Equation (4-272) for each species, giving (π − 1)N phase-
equilibrium equations.

2. Equation (4-274) for each independent chemical reaction, giv-
ing r equations.

The total number of independent equations is therefore (π −1)N +
r. In their fundamental forms these equations relate chemical poten-
tials, which are functions of temperature, pressure, and composition,
the phase-rule variables. Since the degrees of freedom of the system F
is the difference between the number of variables and the number of
equations,

F = 2 + (N − 1)π −(π −1)N − r

or F = 2 − π +N − r (4-275)
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The number of independent chemical reactions r can be determined
as follows:

1. Write formation reactions from the elements for each chemical
compound present in the system.

2. Combine these reaction equations so as to eliminate from the
set all elements not present as elements in the system. A systematic
procedure is to select one equation and combine it with each of the
other equations of the set so as to eliminate a particular element. This
usually reduces the set by one equation for each element eliminated,
though two or more elements may be simultaneously eliminated.

The resulting set of r equations is a complete set of independent
reactions. More than one such set is often possible, but all sets num-
ber r and are equivalent.

Example 1: Application of the Phase Rule
a. For a system of two miscible nonreacting species in vapor/liquid equilib-

rium,

F = 2 − π +N − r = 2 − 2 + 2 − 0 = 2

The two degrees of freedom for this system may be satisfied by setting T and P,
or T and y1, or P and x1, or x1 and y1, and so on, at fixed values. Thus, for equi-
librium at a particular T and P, this state (if possible at all) exists only at one liq-
uid and one vapor composition. Once the two degrees of freedom are used up,
no further specification is possible that would restrict the phase-rule variables.
For example, one cannot in addition require that the system form an azeotrope
(assuming this possible), for this requires x1 = y1, an equation not taken into
account in the derivation of the phase rule. Thus, the requirement that the sys-
tem form an azeotrope imposes a special constraint and reduces the number of
degrees of freedom to one.

b. For a gaseous system consisting of CO, CO2, H2, H2O, and CH4 in chemi-
cal-reaction equilibrium,

F = 2 − π +N − r = 2 − 1 + 5 − 2 = 4

The value of r = 2 is found from the formation reactions:

C + a O2 → CO
C + O2 → CO2

H2 + a O2 → H2O
C + 2H2 → CH4

Systematic elimination of C and O2 from this set of chemical equations reduces
the set to two. Three possible pairs of equations may result, depending on how
the combination of equations is effected. Any pair of the following three equa-
tions represents a complete set of independent reactions, and all pairs are equiv-
alent.

CH4 + H2O → CO + 3H2

CO + H2O → CO2 + H2

CH4 + 2H2O → CO2 + 4H2

The result, F = 4, means that one is free to specify, for example, T, P, and two
mole fractions in an equilibrium mixture of these five chemical species, pro-
vided nothing else is arbitrarily set. Thus, it cannot simultaneously be required
that the system be prepared from specified amounts of particular constituent
species.

Since the phase rule treats only the intensive state of a system, it
applies to both closed and open systems. Duhem’s theorem, on the
other hand, is a rule relating to closed systems only: For any closed
system formed initially from given masses of prescribed chemical
species, the equilibrium state is completely determined by any two
properties of the system, provided only that the two properties are
independently variable at the equilibrium state. The meaning of com-
pletely determined is that both the intensive and extensive states of the
system are fixed; not only are T, P, and the phase compositions estab-
lished, but so also are the masses of the phases.

VAPOR/LIQUID EQUILIBRIUM

Vapor/liquid equilibrium (VLE) relationships (as well as other inter-
phase equilibrium relationships) are needed in the solution of many
engineering problems. The required data can be found by experiment,
but such measurements are seldom easy, even for binary systems, and
they become rapidly more difficult as the number of constituent
species increases. This is the incentive for application of thermody-
namics to the calculation of phase-equilibrium relationships.

The general VLE problem involves a multicomponent system of N
constituent species for which the independent variables are T, P, N − 1
liquid-phase mole fractions, and N − 1 vapor-phase mole fractions.
(Note that �i xi = 1 and �i yi = 1, where xi and yi represent liquid and
vapor mole fractions respectively.) Thus there are 2N independent
variables, and application of the phase rule shows that exactly N of
these variables must be fixed to establish the intensive state of the sys-
tem. This means that once N variables have been specified, the
remaining N variables can be determined by simultaneous solution of
the N equilibrium relations:

f̂ i
l = f̂ i

v (i = 1, 2, . . . , N) (4-276)

where superscripts l and v denote the liquid and vapor phases, respec-
tively.

In practice, either T or P and either the liquid-phase or vapor-phase
composition are specified, thus fixing 1 + (N − 1) = N independent
variables. The remaining N variables are then subject to calculation,
provided that sufficient information is available to allow determina-
tion of all necessary thermodynamic properties.

Gamma/Phi Approach For many VLE systems of interest the
pressure is low enough that a relatively simple equation of state, such
as the two-term virial equation, is satisfactory for the vapor phase. 
Liquid-phase behavior, on the other hand, may be conveniently
described by an equation for the excess Gibbs energy, from which
activity coefficients are derived. The fugacity of species i in the liquid
phase is then given by Eq. (4-102), written

f̂ i
l = γi xi fi

while the vapor-phase fugacity is given by Eq. (4-79), written

f̂ i
v = φ̂i

vyiP

Equation (4-276) is now expressed as

γixi fi = φ̂iyiP (i = 1, 2, . . . , N) (4-277)

The identifying superscripts l and v are omitted here with the under-
standing that γi and fi are liquid-phase properties, whereas φ̂i is a
vapor-phase property. Applications of Eq. (4-277) represent what is
known as the gamma/phi approach to VLE calculations.

Evaluation of φ̂i is usually by Eq. (4-196), based on the two-term vir-
ial equation of state, but other equations, such as Eq. (4-200), are also
applicable. The activity coefficient γi is evaluated by Eq. (4-119), which
relates ln γi to GE/RT as a partial property. Thus, what is required for
the liquid phase is a relation between GE/RT and composition. Equa-
tions in common use for this purpose have already been described.

The fugacity fi of pure compressed liquid i must be evaluated at the
T and P of the equilibrium mixture. This is done in two steps. First,
one calculates the fugacity coefficient of saturated vapor φi

v = φi
sat by an

integrated form of Eq. (4-161), written for pure species i and evalu-
ated at temperature T and the corresponding vapor pressure P = Pi

sat.
Equation (4-276) written for pure species i becomes

fi
v = fi

l = fi
sat (4-278)

where fi
sat indicates the value both for saturated liquid and for satu-

rated vapor. The corresponding fugacity coefficient is

φi
sat = (4-279)

This fugacity coefficient applies equally to saturated vapor and to sat-
urated liquid at given temperature T. Equation (4-278) can therefore
equally well be written

φi
v = φi

l (4-280)

The second step is the evaluation of the change in fugacity of the
liquid with a change in pressure to a value above or below Pi

sat. For this
isothermal change of state from saturated liquid at Pi

sat to liquid at
pressure P, Eq. (4-105) is integrated to give

Gi − Gi
sat = �P

Pi
sat

Vi dP

Equation (4-74) is then written twice: for Gi and for Gi
sat. Subtraction

provides another expression for Gi − Gi
sat:

fi
sat

�
Pi

sat
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Gi − Gi
sat = RT ln 

Equating the two expressions for Gi − Gi
sat yields

ln = �P

Pi
sat

Vi dP

Since Vi, the liquid-phase molar volume, is a very weak function of P at
temperatures well below Tc, an excellent approximation is often
obtained when evaluation of the integral is based on the assumption
that Vi is constant at the value for saturated liquid, Vi

l:

ln =

Substituting fi
sat = φi

satPi
sat (Eq. [4-279]), and solving for fi gives

fi = φi
sat Pi

sat exp (4-281)

The exponential is known as the Poynting factor.
Equation (4-277) may now be written

yiPΦi = xiγiPi
sat (i = 1, 2, . . . , N) (4-282)

where Φi = � � exp (4-283)

If evaluation of φi
sat and φ̂i is by Eqs. (4-192) and (4-196), this reduces

to

Φi = exp � � (4-284)

where B�i is given by Eq. (4-195):

B�i � � �
T,nj

= 2 �
k

ykBki − B (4-285)

with B evaluated by Eq. (4-183).
The N equations represented by Eq. (4-282) in conjunction with

Eq. (4-284) may be used to solve for N unspecified phase-equilibrium
variables. For a multicomponent system the calculation is formidable,
but well suited to computer solution. The types of problems encoun-
tered for nonelectrolyte systems at low to moderate pressures (well
below the critical pressure) are discussed by Smith, Van Ness, and
Abbott (Introduction to Chemical Engineering Thermodynamics, 5th
ed., McGraw-Hill, New York, 1996).

When Eq. (4-282) is applied to VLE for which the vapor phase is an
ideal gas and the liquid phase is an ideal solution, it reduces to a very
simple expression. For ideal gases, fugacity coefficients φ̂i and φi

sat are
unity, and the right-hand side of Eq. (4-283) reduces to the Poynting
factor. For the systems of interest here this factor is always very close
to unity, and for practical purposes Φi = 1. For ideal solutions, the
activity coefficients γi are also unity. Equation (4-282) therefore
reduces to

yiP = xiPi
sat (i = 1, 2, . . . , N)

an equation which expresses Raoult’s law. It is the simplest possible
equation for VLE, and as such fails to provide a realistic representa-
tion of real behavior for most systems. Nevertheless, it is useful as a
standard of comparison.

When an appropriate correlating equation for GE is not available,
reliable estimates of activity coefficients may often be obtained from a
group-contribution correlation. The Analytical Solution of Groups
(ASOG) method (Kojima and Tochigi, Prediction of Vapor-Liquid
Equilibrium by the ASOG Method, Elsevier, Amsterdam, 1979) and
the UNIFAC method are both well developed. Additional references
of interest include Hansen et al. (Ind. Eng. Chem. Res., 30, pp. 2352–
2355 [1991]), Gmehling and Schiller (Ibid., 32, pp. 178–193 [1993]);
Larsen et al. (Ibid., 26, pp. 2274–2286 [1987]); and Tochigi et al. 
( J. Chem. Eng. Japan, 23, pp. 453–463 [1990]).

Data Reduction Correlations for GE and the activity coefficients
are based on VLE data taken at low to moderate pressures. The
ASOG and UNIFAC group-contribution methods depend for validity
on parameters evaluated from a large base of such data. The process

∂(nB)
�

∂ni

PB�i − Pi
satBii − Vi

l(P − Pi
sat)

���
RT

−Vi
l(P − Pi

sat)
��

RT
φ̂i

�
φi

sat

Vi
l(P − Pi

sat)
��

RT

Vi
l(P − Pi

sat)
��

RT
fi

�
fi

sat

1
�
RT

fi
�
fi

sat

fi
�
fi

sat

of finding a suitable analytic relation for g (�GE/RT) as a function of
its independent variables T and x1, thus producing a correlation of
VLE data, is known as data reduction. Although g is in principle also a
function of P, the dependence is so weak as to be universally and prop-
erly neglected. Given here is a brief description of the treatment of
data taken for binary systems under isothermal conditions. A more
comprehensive development is given by Van Ness ( J. Chem. Thermo-
dyn., 27, pp. 113–134 [1995]; Pure & Appl. Chem., 67, pp. 859–872
[1995]).

Presumed in all that follows is the existence of an equation inher-
ently capable of representing correct values of GE for the liquid phase
as a function of x1:

g � GE/RT = � (x1; α, β, . . .) (4-286)

where α, β, and so on, represent adjustable parameters.
The measured variables of binary VLE are x1, y1, T, and P. Experi-

mental values of the activity coefficient of species i in the liquid are
related to these variables by Eq. (4-282), written:

γ*i = Φi (i = 1, 2) (4-287)

where Φi is given by Eq. (4-283), and the asterisks denote experimen-
tal values. A simple summability relation analogous to Eq. (4-123)
defines an experimental value of g*:

g* � x1 ln γ1* + x2 ln γ2* (4-288)

Moreover, Eq. (4-122), the Gibbs/Duhem equation, may be written
for experimental values in a binary system as

x1 + x2 = 0 (4-289)

Because experimental measurements are subject to systematic error,
sets of values of ln γ1* and ln γ2* determined by experiment may not
satisfy, that is, may not be consistent with, the Gibbs/Duhem equation.
Thus, Eq. (4-289) applied to sets of experimental values becomes a
test of the thermodynamic consistency of the data, rather than a valid
general relationship.

Values of g given by the correlating equation, Eq. (4-286), are called
derived values, and associated derived values of the activity coeffi-
cients are given by specialization of Eqs. (4-58):

γ1 = exp �g + x2 � (4-290)

γ2 = exp �g − x1 � (4-291)

These two equations may be combined to yield

= ln (4-292)

This equation applies to derived property values. The corresponding
experimental values are given by differentiation of Eq. (4-288):

= x1 + ln γ1* + x2 − ln γ2*

or = ln + x1 + x2 (4-293)

Subtraction of Eq. (4-293) from Eq. (4-292) gives

− = ln − ln − �x1 + x2 �
The differences between like terms represent residuals between
derived and experimental values. Defining these residuals as

δg � g − g* and δ ln � ln − ln 

puts this equation into the form

= δ ln − �x1 + x2 �d ln γ2*
�

dx1

d ln γ1*
�

dx1

γ1
�
γ2

dδg
�
dx1

γ1*
�
γ2*

γ1
�
γ2

γ1
�
γ2

d ln γ2*
�

dx1

d ln γ1*
�

dx1

γ1*
�
γ2*

γ1
�
γ2

dg*
�
dx1

dg
�
dx1

d ln γ2*
�

dx1

d ln γ1*
�

dx1

γ1*
�
γ2*

dg*
�
dx1

d ln γ2*
�

dx1

d ln γ1*
�

dx1

dg*
�
dx1

γ1
�
γ2

dg
�
dx1
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�
dx1

dg
�
dx1

d ln γ2*
�

dx1

d ln γ1*
�

dx1

y*i P*
�
xiPi
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If a data set is reduced so as to make the δg residuals scatter about
zero, then the derivative on the left is effectively zero, and the pre-
ceding equation becomes

δ ln = x1 + x2 (4-294)

The right-hand side of this equation is exactly the quantity that Eq. 
(4-289), the Gibbs/Duhem equation, requires to be zero for consistent
data. The residual on the left is therefore a direct measure of devia-
tions from the Gibbs/Duhem equation. The extent to which values of
this residual fail to scatter about zero measures the departure of the
data from consistency with respect to this equation.

The data-reduction procedure just described provides parameters
in the correlating equation for g that make the δg residuals scatter
about zero. This is usually accomplished by finding the parameters
that minimize the sum of squares of the residuals. Once these para-
meters are found, they can be used for the calculation of derived val-
ues of both the pressure P and the vapor composition y1. Equation
(4-282) is solved for yiP and written for species 1 and for species 2.
Adding the two equations gives

P = + (4-295)

whence by Eq. (4-282),

y1 = (4-296)

These equations allow calculation of the primary residuals:

δP � P − P* and δy1 � y1 − y1*

If the experimental values P* and y1* are closely reproduced by the
correlating equation for g, then these residuals, evaluated at the
experimental values of x1, scatter about zero. This is the result
obtained when the data are thermodynamically consistent. When they
are not, these residuals do not scatter about zero, and the correlation
for g does not properly reproduce the experimental values P* and y1*.
Such a correlation is, in fact, unnecessarily divergent. An alternative is
to process just the P-x1 data; this is possible because the P-x1-y1 data
set includes more information than necessary. Assuming that the cor-
relating equation is appropriate to the data, one merely searches for
values of the parameters α, β, and so on, that yield pressures by Eq. 
(4-295) that are as close as possible to the measured values. The usual
procedure is to minimize the sum of squares of the residuals δP.
Known as Barker’s method (Austral. J. Chem., 6, pp. 207–210 [1953]),
it provides the best possible fit of the experimental pressures. When
the experimental data do not satisfy the Gibbs/Duhem equation, it
cannot precisely represent the experimental y1 values; however, it pro-
vides a better fit than does the procedure that minimizes the sum of
the squares of the δg residuals.

Worth noting is the fact that Barker’s method does not require
experimental y1* values. Thus the correlating parameters α, β, and so
on, can be evaluated from a P-x1 data subset. Common practice now
is, in fact, to measure just such data. They are, of course, not subject
to a test for consistency by the Gibbs/Duhem equation. The world’s
store of VLE data has been compiled by Gmehling et al. (Vapor-
Liquid Equilibrium Data Collection, Chemistry Data Series, vol. I,
parts 1–8, DECHEMA, Frankfurt am Main, 1979–1990).

Solute/Solvent Systems The gamma/phi approach to VLE cal-
culations presumes knowledge of the vapor pressure of each species at
the temperature of interest. For certain binary systems species 1, des-
ignated the solute, is either unstable at the system temperature or is
supercritical (T > Tc). Its vapor pressure cannot be measured, and its
fugacity as a pure liquid at the system temperature f1 cannot be calcu-
lated by Eq. (4-281).

Equations (4-282) and (4-283) are applicable to species 2, desig-
nated the solvent, but not to the solute, for which an alternative
approach is required. Figure 4-11 shows a typical plot of the liquid-
phase fugacity of the solute f̂1 vs. its mole fraction x1 at constant tem-
perature. Since the curve representing f̂1 does not extend all the way
to x1 = 1, the location of f1, the liquid-phase fugacity of pure species 1,
is not established. The tangent line at the origin, representing Henry’s

x1γ1P1
sat

�
Φ1P

x2γ2P2
sat

�
Φ2

x1γ1P1
sat

�
Φ1

d ln γ2*
�

dx1

d ln γ1*
�

dx1

γ1
�
γ2

law, provides alternative information. The slope of the tangent line is
Henry’s constant, defined as

k1 � lim
x1→0

(4-297)

This is the definition of k1 for temperature T and for a pressure equal
to the vapor pressure of the pure solvent P2

sat.
The activity coefficient of the solute at infinite dilution is

lim
x1→0

γ1 = lim
x1→0

= lim
x1→0

In view of Eq. (4-297), this becomes γ1
∞ = k1/f1, or

f1 = (4-298)

where γ1
∞ represents the infinite-dilution value of the activity coeffi-

cient of the solute. Since both k1 and γ1
∞ are evaluated at P2

sat, this pres-
sure also applies to f1. However, the effect of P on a liquid-phase
fugacity, given by a Poynting factor, is very small, and for practical pur-
poses may usually be neglected. The activity coefficient of the solute,
given by

γ1 � =

then becomes

γ1 =

For the solute, this equation takes the place of Eqs. (4-282) and 
(4-283). Solution for y1 gives

y1 = (4-299)

For the solvent, species 2, the analog of Eq. (4-296) is

y2 = (4-300)

Since y1 + y2 = 1,

P = + (4-301)

Note that the same correlation that provides for the evaluation of γ1

also allows evaluation of γ1
∞.

There remains the problem of finding Henry’s constant from the
available VLE data. For equilibrium

f̂1 � f̂1
l = f̂1

v = y1Pφ̂1

Division by x1 gives

= Pφ̂1
y1
�
x1

f̂1
�
x1

x2γ2P2
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Henry’s constant is defined as the limit as x1 → 0 of the ratio on the
left; therefore

k1 = P2
sat φ̂1

∞ lim
x1→0

The limiting value of y1/x1 can be found by plotting y1/x1 vs. x1 and
extrapolating to zero.

K-Values A measure of how a given chemical species distributes
itself between liquid and vapor phases is the equilibrium ratio:

Ki � (4-302)

Usually called simply a K-value, it adds nothing to thermodynamic
knowledge of VLE. However, its use may make for computational
convenience, allowing formal elimination of one set of mole fractions
{yi} or {xi} in favor of the other. Moreover, it characterizes lightness of
a constituent species. For a light species, tending to concentrate in the
vapor phase, K > 1; for a heavy species, tending to concentrate in the
liquid phase, K < 1.

Empirical correlations for K-values found in the older literature
have little relation to thermodynamics. Their proper evaluation comes
directly from Eq. (4-277):

Ki � = (4-303)

When Raoult’s law applies, this becomes Ki = Pi
sat/P. In general, K-

values are functions of T, P, liquid composition, and vapor composi-
tion, making their direct and accurate correlation impossible. Those
correlations that do exist are approximate and severely limited in
application. The DePriester correlation, for example, gives K-values
for light hydrocarbons (Chem. Eng. Prog. Symp. Ser. No. 7, 49, pp.
1–43 [1953]).

Equation-of-State Approach Although the gamma/phi approach
to VLE is in principle generally applicable to systems comprised of
subcritical species, in practice it has found use primarily where pres-
sures are no more than a few bars. Moreover, it is most satisfactory for
correlation of constant-temperature data. A temperature dependence
for the parameters in expressions for GE is included only for the local-
composition equations, and it is at best only approximate.

A generally applicable alternative to the gamma/phi approach
results when both the liquid and vapor phases are described by the
same equation of state. The defining equation for the fugacity coeffi-
cient, Eq. (4-79), may be applied to each phase:

Liquid: f̂i
l = φ̂i

l xiP

Vapor: f̂i
v = φ̂i

vyiP

Equation (4-276) now becomes

xi φ̂i
l = yi φ̂i

v (i = 1, 2, . . . , N) (4-304)

This introduces the compositions xi and yi into the equilibrium equa-
tions, but neither is explicit, because the φ̂i are functions, not only of 
T and P, but of composition. Thus Eq. (4-304) represents N complex
relationships connecting T, P, the xi, and the yi, suitable for computer
solution. Given an appropriate equation of state, one or another of
Eqs. (4-178) through (4-181) provides for expression of the φ̂i as func-
tions of T, P, and composition.

Because of inadequacies in empirical mixing rules, such as those
given by Eqs. (4-221) and (4-222), the equation-of-state approach was
long limited to systems exhibiting modest and well-behaved devia-
tions from ideal solution behavior in the liquid phase; for example, to
systems containing hydrocarbons and cryogenic fluids. However, the
introduction by Wong and Sandler (AIChE J., 38, pp. 671–680
[1992]) of a new class of mixing rules for cubic equations of state has
greatly expanded their useful application to VLE.

The Soave/Redlich/Kwong (SRK) and the Peng/Robinson (PR)
equations of state, both expressed by Eqs. (4-230) and (4-231), were
developed specifically for VLE calculations. The fugacity coefficients
implicit in these equations are given by Eq. (4-232). When combined

γifi
�
φ̂iP

yi
�
xi

yi
�
xi

y1
�
x1

with the theoretically based Wong/Sandler mixing rules for parame-
ters a and b these equations provide the means for accurate correla-
tion and prediction of VLE data.

The first of the Wong/Sandler mixing rules relates the difference in
mixture quantities b and a/RT to the corresponding differences (iden-
tified by subscripts) for the pure species:

b − = �
p

�
q

xp xq Epq (4-305)

where Epq � �bp − + bq − � (1 − kpq) (4-306)

Binary interaction parameters kpq are determined for each pq pair 
(p ≠ q) from experimental data. Note that kpq = kqp and kpp = kqq = 0.
Since the quantity on the left-hand side of Eq. (4-305) represents the
second virial coefficient as predicted by Eq. (4-231), the basis for Eq.
(4-305) lies in Eq. (4-183), which expresses the quadratic dependence
of the mixture second virial coefficient on mole fraction.

The second Wong/Sandler mixing rule relates ratios of a/RT to b:

= 1 − D (4-307)

where D � 1 + − �
p

xp (4-308)

The quantity GE/RT is given by an appropriate correlation for the
excess Gibbs energy of the liquid phase, and is evaluated at the mix-
ture composition, regardless of whether the mixture is liquid or vapor.
The constant c is specific to the equation of state. The theoretical basis
for these equations can be found in the literature (Wong and Sandler,
op. cit.; Ind. Eng. Chem. Res., 31, pp. 2033–2039 [1992]; Eubank, et
al., Ind. Eng. Chem. Res., 34, pp. 314–323 [1995]).

Elimination of a from Eq. (4-305) by Eq. (4-307) provides an
expression for b:

b = �
p

�
q

xp xq Epq (4-309)

Mixture parameter a then follows from Eq. (4-307):

a = bRT(1 − D) (4-310)

Equations (4-233) and (4-234) may now be applied for the evaluation
of partial parameters a�i and b�i:

b�i = �2�
j

xj Eij − b �1 + − �� (4-311)

and a�i = bRT � − � + a � − 1� (4-312)

For pure species i, Eq. (4-232) reduces to

ln φi = Zi − 1 − ln + ln (4-313)

This equation may be applied separately to the liquid phase and to 
the vapor phase to yield the pure-species values φi

l and φi
v. For vapor/

liquid equilibrium (Eq. [4-280]), these two quantities are equal. Given
parameters ai and bi, the pressure P in Eq. (4-230) that makes these
two values equal is Pi

sat, the equilibrium vapor pressure of pure species
i as predicted by the equation of state.

The correlations for α(Tri; ωi) that follow Eq. (4-230) are designed
to provide values of ai that yield pure-species vapor pressures which,
on average, are in reasonable agreement with experiment. However,
reliable correlations for Pi

sat as a function of temperature are available
for many pure species. Thus when Pi

sat is known for a particular tem-
perature, ai should be evaluated so that the equation of state correctly
predicts this known value. The procedure is to write Eq. (4-313) for
each of the phases, combining the two equations in accord with Eq.
(4-280), written

ln φi
l = ln φi

v

Vi + σbi
�
Vi + εbi

ai /biRT
�
ε − σ

(Vi − bi)Zi
��

Vi

b�i
�
b

ln γi
�

c
ai

�
biRT

ai
�
biRT

ln γi
�

c
1

�
D

1
�
D

ap
�
bpRT

GE

�
cRT

a
�
bRT

aq
�
RT

ap
�
RT

1
�
2

a
�
RT
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The resulting expression may be solved for ai:

ai =
biRT(ε − σ) �ln �

V
V

i

i

v

l −
−

b
b

i

i

� + Zi
v − Zi

l�
ln 

(4-314)

where Zi
v = Pi

satVi
v/RT and Zi

l = Pi
satVi

l/RT. Values of Vi
v and Vi

l come
from solution of Eq. (4-230) for each phase with P = Pi

sat at tempera-
ture T. Since a value of ai is required for these calculations, an iterative
procedure is implemented with an initial value for ai from the appro-
priate correlation for α(Tri; ωi).

The binary interaction parameters kpq are evaluated from liquid-
phase GE correlations for binary systems. The most satisfactory proce-
dure is to apply at infinite dilution the relation between a liquid-phase
activity coefficient and its underlying fugacity coefficients, γi

∞ = φ̂i
∞/φi.

Rearrangement of the logarithmic form yields

ln φ̂i
∞ = ln γi

∞ + ln φi (4-315)

where ln γi
∞ comes from the GE correlation and ln φi is given by Eq. 

(4-313) written for the liquid phase. Equation (4-315) supplies a value
for ln φ̂i

∞ which, when used with Eq. (4-232), ultimately (see follow-
ing) leads to values for kpq.

For a binary system comprised of species p and q, Eqs. (4-232), 
(4-312), and (4-315) may be written for species p at infinite dilution.
The three resulting equations are then combined to yield

= (4-316)

where

Mp � −ln + � − � ln (4-317)

By Eq. (4-311) written for species p at infinite dilution in a pq binary,

= (4-318)

Equations (4-316) and (4-318) are set equal, Epq is eliminated by Eq.
(4-306), and kpq is replaced by kp, its infinite-dilution value at xp → 0.
Solution for kp then yields

kp = 1 −

(4-319)

where ln φp comes from Eq. (4-313). All values in Eq. (4-319) are for
the liquid phase at P = Pq

sat. The analogous equation for kq, the infinite-
dilution value of k pq at xq → 0 is written

kq = 1 −

(4-320)

where Mq is given by an equation analogous to Eq. (4-317) but with
subscripts reversed. All values in Eq. (4-320) are for the liquid phase
at P = Pp

sat.
One advantage of this procedure is that kp and kq are found directly

from the pure-species parameters ap, aq, bp, and bq. In addition, the
required values of ln γp

∞ and ln γq
∞ can be found from experimental

data for the pq binary system, independent of the correlating expres-
sion used for GE.
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A second advantage is that the procedure, applied for infinite dilu-
tion of each species, yields two values of kpq from which a composi-
tion-dependent function can be generated, a simple linear relation
proving fully satisfactory:

kpq = kp xq + kq xp (4-321)

The two values kp and kq are usually not very different, and kpq is not
strongly composition dependent. Nevertheless, the quadratic depen-
dence of b − (a/RT) on composition indicated by Eq. (4-305) is not
exactly preserved. Since this quantity is not a true second virial coeffi-
cient, only a value predicted by a cubic equation of state, a strict 
quadratic dependence is not required. Moreover, the composition-
dependent kpq leads to better results than does use of a constant value.

The equation-specific constants for the SRK and PR equations are
given by the following table:

SRK equation PR equation

ε 0 −0.414214
σ 1 2.414214
Ωa 0.42748 0.457235
Ωb 0.08664 0.077796
c 0.69315 0.62323

Outlined below are the steps required for of a VLE calculation of
vapor-phase composition and pressure, given the liquid-phase compo-
sition and temperature. A choice must be made of an equation of
state. Only the Soave/Redlich/Kwong and Peng/Robinson equations,
as represented by Eqs. (4-230) and (4-231), are considered here.
These two equations usually give comparable results. A choice must
also be made of a two-parameter correlating expression to represent
the liquid-phase composition dependence of GE for each pq binary.
The Wilson, NRTL (with α fixed), and UNIQUAC equations are of
general applicability; for binary systems, the Margules and van Laar
equations may also be used. The equation selected depends on evi-
dence of its suitability to the particular system treated. Reasonable
estimates of the parameters in the equation must also be known at the
temperature of interest. These parameters are directly related to infi-
nite-dilution values of the activity coefficients for each pq binary.

Input information includes the known values of T and {xi}, as well as
the equation-of-state and GE-expression parameters. Estimates are
also needed of P and {yi}, the quantities to be evaluated, and these
require some preliminary calculations:

1. For the chosen equation of state (with appropriate values of ε,
σ, and c), find values of bi and preliminary values of ai for each species
from the information following Eq. (4-230).

2. If the vapor pressure Pi
sat for species i at temperature T is

known, determine a new value for ai by Eqs. (4-314) and (4-230).
3. Evaluate kp and kq by Eqs. (4-319) and (4-320) for each pq

binary.
4. Although pressure P is to be determined, an estimate is re-

quired to permit any VLE calculations at all. A reasonable initial value
is the sum of the pure-species vapor pressures, each weighted by its
known liquid-phase mole fraction.

5. The vapor-phase composition is also to be determined, and it,
too, is required to initiate calculations. Assuming both the liquid and
vapor phases to be ideal solutions, Eqs. (4-98) and (4-304) combine to
give

yi = xi

Evaluation of the pure-species values φi
l and φi

v by Eq. (4-313) then
provides values for yi. Since these are not constrained to sum to unity,
they should be normalized to yield an initial vapor-phase composition.

Given estimates for P and {yi} an iterative procedure can be initi-
ated:

1. At the known liquid-phase composition, evaluate D by Eq. 
(4-308), b and a by Eqs. (4-309) and (4-310), and {b�i} and {a�i} by Eqs.
(4-311) and (4-312).

φi
l

�
φi

v
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2. Evaluate {φ̂i
l}. The mixture volume V is determined from the

equation of state, Eq. (4-231), applied to the liquid phase at the given
composition, T, and P.

3. Repeat the two preceding items for the vapor-phase composi-
tion, thus evaluating {φ̂i

v}.
4. Eq. (4-304) is now written

yi = xi  

The values of yi so calculated are normalized by division by �i yi.
5. Recalculate the ̂φi

v, and continue this iterative procedure until it
converges to a fixed value for �i yi. This sum is appropriate to the
pressure P for which the calculations have been made. Unless the sum
is unity, the pressure is adjusted and the iteration process is repeated.
Systematic adjustment of pressure P continues until �i yi = 1. The
pressure and vapor compositions so found are the equilibrium values
for the given temperature and liquid-phase composition as predicted
by the equation of state.

A vast store of liquid-phase excess-property data for binary systems
at temperatures near 30°C and somewhat higher is available in the lit-
erature. Effective use of these data to extend GE correlations to higher
temperatures is critical to the procedure considered here. The key
relations are Eq. (4-118),

d � � = − dT (constant P,x)

and the excess-property analog of Eq. (4-31),

dHE = CP
E dT (constant P,x)

Integration of the first of these equations from T0 to T gives

= � �
T0

− �T

T0

dT (4-322)

Similarly, the second equation may be integrated from T1 to T:

HE = H1
E + �T

T1

CP
E dT (4-323)

In addition, we may write

dCP
E = � �

P,x
dT

Integration from T2 to T yields

CP
E = CE

P2 + �T

T2
� �

P,x
dT

Combining this equation with Eqs. (4-322) and (4-323) leads to

= � �
T0

− � �
T1
� − 1�

− �ln − � − 1� � − I (4-324)

where I � �T

T0

�T

T1

�T

T2
� �

P,x
dT dT dT

This general equation makes use of excess Gibbs-energy data at
temperature T0, excess enthalpy (heat-of-mixing) data at T1, and excess
heat-capacity data at T2. Evaluation of the integral I requires informa-
tion with respect to the temperature dependence of CP

E. Because of
the relative paucity of excess heat-capacity data, the most reasonable
assumption is that this quantity is constant, independent of T. In this
event, the integral is zero, and the closer T0 and T1 are to T, the less the
influence of this assumption. When no information is available with
respect to CP

E, and excess enthalpy data are available at only a single
temperature, the excess heat capacity must be assumed zero. In this
case only the first two terms on the right-hand side of Eq. (4-324) are
retained, and it more rapidly becomes imprecise as T increases.

Our primary interest in Eq. (4-324) is its application to binary sys-
tems at infinite dilution of one of the constituent species. For this pur-
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�
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v

pose, we divide Eq. (4-324) by the product x1x2. For CP
E independent

of T (and thus with I = 0), it then becomes

= � �
T0

− � �
T1
� − 1�
− �ln − � − 1� �

As shown by Smith, Van Ness and Abbott (Introduction to Chemical
Engineering Thermodynamics, 5th ed., Chap. 11, McGraw-Hill, New
York, 1996),

� �
xi = 0

� ln γi
∞

The preceding equation may therefore be written

ln γi
∞ = (ln γi

∞)T0 − � �
T1,xi = 0

� − 1�
− � �

xi = 0
�ln − � − 1� � (4-325)

The methanol(1)/acetone(2) system serves as a specific example in
conjunction with the Peng/Robinson equation of state. At a base tem-
perature T0 of 323.15 K (50°C), both VLE data (Van Ness and Abbott,
Int. DATA Ser., Ser. A, Sel. Data Mixtures, 1978, p. 67 [1978]) and
excess enthalpy data (Morris, et al., J. Chem. Eng. Data, 20, pp. 403–
405 [1975]) are available. From the former,

(ln γ1
∞)T0 = 0.6281 and (ln γ2

∞)T0 = 0.6557

and from the latter

� �
T0,x1 = 0

= 1.3636 and � �
T0,x2 = 0

= 1.0362

The Margules equations (Eqs. [4-244], [4-245], and [4-246]) are well
suited to this system, and the parameters for this equation are given as

A12 = ln γ1
∞ and A21 = ln γ2

∞

This information allows prediction of VLE at 323.15 K and at the
higher temperatures, 372.8, 397.7, and 422.6 K, for which measured
VLE values are given by Wilsak, et al. (Fluid Phase Equilibria, 28, pp.
13–37 [1986]). Values of ln γi

∞ and hence of the Margules parameters
at the higher temperatures are given by Eq. (4-325) with CP

E = 0. The
pure-species vapor pressures in all cases are the measured values
reported with the data sets. Results of these calculations are displayed
in Table 4-1, where the parentheses enclose values from the gamma/
phi approach as reported in the papers cited.

The results at 323.15 K (581.67 R) show both the suitability of the
Margules equation for correlation of data for this system and the capa-
bility of the equation-of-state method to reproduce the data. Results
for the three higher temperatures indicate the quality of predictions
based only on vapor-pressure data for the pure species and on mixture
data at 323.15 K (581.67 R). Extrapolations based on the same data to
still higher temperatures can be expected to become progressively less
accurate. When Eq. (4-325) can no longer be expected to produce
reasonable values, better results are obtained for higher temperatures
by assuming that the parameters, A12, A21, k1, and k2, do not change
further at still-higher temperatures. This is also the course to be fol-
lowed for extrapolation to supercritical temperatures.

Only the Wilson, NRTL, and UNIQUAC equations are suited to the
treatment of multicomponent systems. For such systems, the parame-
ters are determined for pairs of species exactly as for binary systems.

Examples treating the calculation of VLE are given in Smith, Van
Ness, and Abbott (Introduction to Chemical Engineering Thermody-
namics, 5th ed., Chap. 12, McGraw-Hill, New York, 1996).

LIQUID/LIQUID AND VAPOR/LIQUID/LIQUID
EQUILIBRIA

Equation (4-273) is the basis for both liquid/liquid equilibria (LLE)
and vapor/liquid/liquid equilibria (VLLE). Thus, for LLE with super-
scripts α and β denoting the two phases, Eq. (4-273) is written
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f̂i
α = f̂i

β (i = 1, 2, . . . , N) (4-326)

Eliminating fugacities in favor of activity coefficients gives

x i
α γi

α = xi
β γi

β (i = 1, 2, . . . , N) (4-327)

For most LLE applications, the effect of pressure on the γi can be
ignored, and thus Eq. (4-327) constitutes a set of N equations relating
equilibrium compositions to each other and to temperature. For a
given temperature, solution of these equations requires a single
expression for the composition dependence of GE suitable for both
liquid phases. Not all expressions for GE suffice, even in principle,
because some cannot represent liquid/liquid phase splitting. The
UNIQUAC equation is suitable, and therefore prediction is possible
by the UNIFAC method. A special table of parameters for LLE cal-
culations is given by Magnussen, et al. (Ind. Eng. Chem. Process Des.
Dev., 20, pp. 331–339 [1981]).

A comprehensive treatment of LLE is given by Sorensen, et al.
(Fluid Phase Equilibria, 2, pp. 297–309 [1979]; 3, pp. 47–82 [1979];
4, pp. 151–163 [1980]). Data for LLE are collected in a three-part set
compiled by Sorensen and Arlt (Liquid-Liquid Equilibrium Data Col-
lection, Chemistry Data Series, vol. V, parts 1–3, DECHEMA, Frank-
furt am Main, 1979–1980).

For vapor/liquid/liquid equilibria, Eq. (4-273) gives

f̂ i
α = f̂ i

β = f̂ i
v (i = 1, 2, . . . , N) (4-328)

where α and β designate the two liquid phases. With activity coeffi-
cients applied to the liquid phases and fugacity coefficients to the
vapor phase, the 2N equilibrium equations for subcritical VLLE are

xi
α γi

α fi
α = yi φ̂iP 
 (all i) (4-329)

xi
βγi

βfi
β = yi φ̂iP

As for LLE, an expression for GE capable of representing liquid/liquid
phase splitting is required; as for VLE, a vapor-phase equation of state
for computing the φ̂i is also needed.

CHEMICAL-REACTION STOICHIOMETRY

Consider a phase in which a chemical reaction occurs according to the
equation

|ν1|A1 + |ν2|A2 + ⋅ ⋅ ⋅ → |ν3|A3 + |ν4|A4 + ⋅ ⋅ ⋅
where the |νi| are stoichiometric coefficients and the Ai stand for
chemical formulas. The νi themselves are called stoichiometric num-
bers, and associated with them is a sign convention such that the value
is positive for a product and negative for a reactant. More generally,
for a system containing N chemical species, any or all of which can
participate in r chemical reactions, the reactions can be represented
by the equations:

0 = �
i

νi, j Ai ( j = I, II, . . . , r) (4-330)

where sign (νi,j) = 	
If species i does not participate in reaction j, then νi,j = 0.

The stoichiometric numbers provide relations among the changes
in mole numbers of chemical species which occur as the result of
chemical reaction. Thus, for reaction j:

− for a reactant species
+ for a product species

= = ⋅ ⋅ ⋅ = (4-331)

Since all of these terms are equal, they can be equated to the change
in a single quantity εj, called the reaction coordinate for reaction j,
thereby giving

∆ni, j = νi, j∆εj 	 (4-332)

Since the total change in mole number ∆ni is just the sum of the
changes ∆ni,j resulting from the various reactions,

∆ni = �
j

∆ni, j = �
j

νi, j ∆εj (i = 1, 2, . . . , N) (4-333)

If the initial number of moles of species i is ni0 and if the convention is
adopted that εj = 0 for each reaction in this initial state, then

ni = ni0 + �
j

νi, j εj (i = 1, 2, . . . , N) (4-334)

Equation (4-334) is the basic expression of material balance for a
closed system in which r chemical reactions occur. It shows for a
reacting system that at most r mole number–related quantities εj are
capable of independent variation. Note the absence of implied restric-
tions with respect to chemical-reaction equilibria; the reaction-
coordinate formalism is merely an accounting scheme, valid for
tracking the progress of each reaction to any arbitrary level of conver-
sion. The reaction coordinate has units of moles. A change in εj of 1
mole signifies a mole of reaction, meaning that reaction j has pro-
ceeded to such an extent that the change in mole number of each
reactant and product is equal to its stoichiometric number.

CHEMICAL-REACTION EQUILIBRIA

The general criterion of chemical-reaction equilibria is given by Eq.
(4-274). For a system in which just a single reaction occurs, Eq. (4-334)
becomes

ni = ni0 + νiε
whence dni = νi dε
Substitution for dni in Eq. (4-274) leads to

�
i

νiµi = 0 (4-335)

Generalization of this result to multiple reactions produces

�
i

νi, j µi = 0 ( j = I, II, . . . , r) (4-336)

Standard Property Changes of Reaction A standard property
change for the reaction

aA + bB → lL + mM

is defined as the property change that occurs when a moles of A and b
moles of B in their standard states at temperature T react to form l
moles of L and m moles of M in their standard states also at tempera-
ture T. A standard state of species i is its real or hypothetical state as a
pure species at temperature T and at a standard-state pressure P°. The
standard property change of reaction j is given the symbol ∆Mj°, and
its general mathematical definition is

∆Mj° � �
i

νi, j Mi° (4-337)

i = 1, 2, . . . , N
j = I, II, . . . , r

∆nN, j
�
νN, j

∆n2, j
�
ν2, j

∆n1, j
�
ν1, j
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TABLE 4-1 VLE Results for Methanol(1)/Acetone(2)

T, K ln γ1
∞ ln γ2

∞ k1 k2 RMS δP, kPa RMS % δP RMS δy1

323.15 0.6281 0.6557 0.1395 0.0955 0.08 0.12
(0.6281) (0.6557) (0.06)

372.8 0.4465 0.5177 0.1432 0.1056 0.85 0.22 0.004
(0.4607) (0.5271) (0.83) (0.006)

397.7 0.3725 0.4615 0.1454 0.1118 2.46 0.32 0.014
(0.3764) (0.4640) (1.39) (0.013)

422.6 0.3072 0.4119 0.1480 0.1192 7.51 0.55 0.009
(0.3079) (0.3966) (2.38) (0.006)



For species present as gases in the actual reactive system, the standard
state is the pure ideal gas at pressure P°. For liquids and solids, it is
usually the state of pure real liquid or solid at P°. The standard-state
pressure P° is fixed at 100 kPa. Note that the standard states may rep-
resent different physical states for different species; any or all of the
species may be gases, liquids, or solids.

The most commonly used standard property changes of reaction
are

∆Gj° � �
i

νi, jGi° = �
i

νi, j µi° (4-338)

∆Hj° � �
i

νi, j Hi° (4-339)

∆C°Pi
� �

i

νi, j C°Pi
(4-340)

The standard Gibbs-energy change of reaction ∆Gj° is used in the cal-
culation of equilibrium compositions. The standard heat of reaction
∆Hj° is used in the calculation of the heat effects of chemical reaction,
and the standard heat-capacity change of reaction is used for extra-
polating ∆Hj° and ∆Gj° with T. Numerical values for ∆Hj° and ∆Gj° are
computed from tabulated formation data, and ∆C°Pi

is determined
from empirical expressions for the T dependence of the C°Pi

(see, e.g.,
Eq. [4-142]).

Equilibrium Constants For practical application, Eq. (4-336)
must be reformulated. The initial step is elimination of the µi in favor
of fugacities. Equation (4-74) for species i in its standard state is sub-
tracted from Eq. (4-77) for species i in the equilibrium mixture, giving

µi = Gi° + RT ln âi (4-341)

where, by definition, âi � f̂i /fi° and is called an activity. Substitution of
this equation into Eq. (4-341) yields, upon rearrangement,

�
i

[νi, j(Gi° + RT ln âi)] = 0

or �
i

(νi, jGi°) + RT �
i

ln âi
νi,j = 0

or ln �
i

âi
νi, j =

The right-hand side of this equation is a function of temperature only
for given reactions and given standard states. Convenience suggests
setting it equal to ln Kj; whence

�
i

âi
νi, j = Kj (all j) (4-342)

where Kj � exp� � (4-343)

Quantity Kj is the chemical-reaction equilibrium constant for reaction
j, and ∆Gj° is the corresponding standard Gibbs-energy change of
reaction (see Eq. [4-338]). Although called a “constant,” Kj is a func-
tion of T, but only of T.

The activities in Eq. (4-342) provide the connection between the
equilibrium states of interest and the standard states of the con-
stituent species, for which data are presumed available. The standard
states are always at the equilibrium temperature. Although the stan-
dard state need not be the same for all species, for a particular species
it must be the state represented by both Gi° and the fi° upon which the
activity âi is based.

The application of Eq. (4-342) requires explicit introduction of
composition variables. For gas-phase reactions this is accomplished
through the fugacity coefficient:

âi � f̂i/fi° = yi φ̂iP/fi°

However, the standard state for gases is the ideal gas state at the stan-
dard-state pressure, for which fi° = P°. Therefore

âi = yi φ̂iP
�

P°

−∆Gj°
�

RT

− �
i

(νi,jGi°)

��
RT

and Eq. (4-342) becomes

�
i

(yi φ̂i)νi, j � �
νj

= Kj (all j) (4-344)

where νj � �i νi,j and P° is the standard-state pressure of 100 kPa,
expressed in the same units used for P. The yi may be eliminated in
favor of equilibrium values of the reaction coordinates εj. Then, for
fixed temperature Eqs. (4-344) relate the εj to P. In principle, specifi-
cation of the pressure allows solution for the εj. However, the problem
may be complicated by the dependence of the φ̂i on composition, that
is, on the εj. If the equilibrium mixture is assumed an ideal solution,
then each φ̂i becomes φi, the fugacity coefficient of pure species i at
the mixture T and P. This quantity does not depend on composition
and may be determined from experimental data, from a generalized
correlation, or from an equation of state.

An important special case of Eq. (4-344) is obtained for gas-phase
reactions when the phase can be assumed an ideal gas. In this event
φ̂i = 1, and

�
i

(yi)νi, j � �
νj

= Kj (all j) (4-345)

In the general case the evaluation of the φ̂i requires an iterative
process. An initial step is to set the φ̂i equal to unity and to solve 
the problem by Eq. (4-345). This provides a set of yi values, allowing
evaluation of the φ̂i by, for example, Eq. (4-196), (4-200), or (4-231).
Equation (4-344) can then be solved for a new set of yi values, and the
process continues to convergence.

For liquid-phase reactions, Eq. (4-342) is modified by introduction
of the activity coefficient, γi = f̂i /xi fi, where xi is the liquid-phase mole
fraction. The activity is then

âi � = γi xi

Both fi and fi° represent fugacity of pure liquid i at temperature T, but
at pressures P and P°, respectively. Except in the critical region, pres-
sure has little effect on the properties of liquids, and the ratio fi/fi° is
often taken as unity. When this is not acceptable, this ratio is evaluated
by the equation

ln = �P

P°
Vi dP �

When the ratio fi/fi° is taken as unity, âi = γi xi, and Eq. (4-342)
becomes

�
i

(γi xi)νi,j = Kj (all j) (4-346)

Here the difficulty is to determine the γi, which depend on the xi. This
problem has not been solved for the general case. Two courses are
open: the first is experiment; the second, assumption of solution ide-
ality. In the latter case, γi = 1, and Eq. (4-346) reduces to

�
i

(xi)νi,j = Kj (all j) (4-347)

the law of mass action. The significant feature of Eqs. (4-345) and 
(4-347), the simplest expressions for gas- and liquid-phase reaction
equilibrium, is that the temperature-, pressure-, and composition-
dependent terms are distinct and separate.

Example 2: Single-Reaction Equilibrium Consider the equilib-
rium state at 1,000 K and atmospheric pressure for the reaction

CO + H2O → CO2 + H2

Let the feed stream contain 3 mol CO, 1 mol H2O, and 2 mol CO2 for every
mole of H2 present. This initial constitution forms the basis for calculation, and
for this single reaction, Eq. (4-334) becomes ni = ni0 + νiε. Whence

nCO = 3 − ε
nH2O = 1 − ε
nCO2 = 2 + ε
nH2 = 1 + ε

�
i

ni = 7

Each mole fraction is therefore given by yi = ni/7.

Vi(P − P°)
��

RT
1

�
RT

fi
�
fi°

fi
�
fi°

f̂i
�
fi°

P
�
P°

P
�
P°
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At 1,000 K, ∆G° = −2680 J per mole of reaction; whence by Eq. (4-343)

K = exp = 1.38

For the given conditions, the assumption of ideal gases is appropriate; Eq. 
(4-345) written for a single reaction (subscript j omitted) with ν = 0 becomes

�
i

yi
νi = = K = 1.38

or = 1.38

whence ε = 0.258

Thus, for the equilibrium mixture,

nCO = 2.74 mol yCO = 0.391
nH2O = 0.74 mol yH2O = 0.106
nCO2 = 2.26 mol yCO2 = 0.323
nH2 = 1.26 mol yH2 = 0.180

� i ni = 7.00 mol � i yi = 1.000

The effect of temperature on the equilibrium constant follows from
Eq. (4-106):

= (4-348)

The total derivative is appropriate here because property changes of
reaction are functions of temperature only. In combination with Eq.
(4-343) this gives

= (4-349)

For an endothermic reaction ∆Hj° is positive; for an exothermic reac-
tion it is negative. The temperature dependence of ∆Hj° is given by

= ∆C°Pj (4-350)

Integration of Eq. (4-350) from reference temperature T0 (usually
298.15 K) to temperature T gives

∆H° = ∆H0° + R �T

T0

dT (4-351)

where for simplicity subscript j has been suppressed. A convenient
integrated form of Eq. (4-349) is

ln K = = − + �T

T0

dT (4-352)

where ∆H°/RT is given by Eq. (4-351).
In the more extensive compilations of data, values of ∆G° and ∆H°

for formation reactions are given for a wide range of temperatures,
rather than just at the reference temperature of 298.15 K. (See in par-
ticular TRC Thermodynamic Tables—Hydrocarbons and TRC Ther-
modynamic Tables—Non-hydrocarbons, serial publications of the
Thermodynamics Research Center, Texas A & M University System,
College Station, Tex.; “The NBS Tables of Chemical Thermodynamic
Properties,” J. Physical and Chemical Reference Data, 11, supp. 2
[1982]. Where data are lacking, methods of estimation are available;
these are reviewed by Reid, Prausnitz, and Poling, The Properties of
Gases and Liquids, 4th ed., Chap. 6, McGraw-Hill, New York, 1987.
For an estimation procedure based on molecular structure, see Con-
stantinou and Gani, Fluid Phase Equilibria, 103, pp. 11–22 [1995].
(See also Sec. 2.)

Complex Chemical-Reaction Equilibria When the composi-
tion of an equilibrium mixture is determined by a number of simulta-
neous reactions, calculations based on equilibrium constants become
complex and tedious. A more direct procedure (and one suitable for
general computer solution) is based on minimization of the total
Gibbs energy Gt in accord with Eq. (4-271). The treatment here is

CP°
�

R
1
�
T

∆H°
�
RT

∆H0° − ∆G0°
��

RT
−∆G°
�

RT

∆CP°
�

R

d∆Hj°
�

dT

∆Hj°
�
RT 2

d ln Kj
�

dT

−∆Hj°
�

RT 2

d(∆Gj°/RT)
��

dT

(2 + ε)(1 + ε)
��
(3 − ε)(1 − ε)

��2 7
+ ε
�� ��1 7

+ ε
��

��

��3 7
− ε
�� ��1 7

− ε
��

2680
��
(8.314)(1000)

limited to gas-phase reactions for which the problem is to find the
equilibrium composition for given T and P and for a given initial feed.

1. Formulate the constraining material-balance equations, based
on conservation of the total number of atoms of each element in a sys-
tem comprised of w elements. Let subscript k identify a particular
atom, and define Ak as the total number of atomic masses of the kth
element in the feed. Further, let aik be the number of atoms of the kth
element present in each molecule of chemical species i. The material
balance for element k is then

�
i

niaik = Ak (k = 1, 2, . . . , w) (4-353)

or �
i

niaik − Ak = 0 (k = 1, 2, . . . , w)

2. Multiply each element balance by λk, a Lagrange multiplier:

λk ��
i

niaik − Ak� = 0 (k = 1, 2, . . . , w)

Summed over k, these equations give

�
k

λk ��
i

niaik − Ak� = 0

3. Form a function F by addition of this sum to Gt:

F = Gt + �
k

λk ��
i

niaik − Ak�
Function F is identical with Gt, because the summation term is zero.
However, the partial derivatives of F and Gt with respect to ni are dif-
ferent, because function F incorporates the constraints of the material
balances.

4. The minimum value of both F and Gt is found when the partial
derivatives of F with respect to ni are set equal to zero:

� �
T,P,nj

= � �
T,P,nj

+ �
k

λkaik = 0

The first term on the right is the definition of the chemical potential;
whence

µi + �
k

λkaik = 0 (i = 1, 2, . . . , N) (4-354)

However, the chemical potential is given by Eq. (4-341); for gas-phase
reactions and standard states as the pure ideal gases at P°, this equa-
tion becomes

µi = Gi° + RT ln 

If Gi° is arbitrarily set equal to zero for all elements in their standard
states, then for compounds Gi° = ∆Gfi

°, the standard Gibbs-energy
change of formation for species i. In addition, the fugacity is elimi-
nated in favor of the fugacity coefficient by Eq. (4-79), f̂i = yi φ̂iP. With
these substitutions, the equation for µi becomes

µi = ∆Gfi
° + RT ln 

Combination with Eq. (4-354) gives

∆Gfi
° + RT ln + �

k

λkaik = 0 (i = 1, 2, . . . , N) (4-355)

If species i is an element, ∆Gfi
° is zero. There are N equilibrium equa-

tions (Eqs. [4-355]), one for each chemical species, and there are w
material-balance equations (Eqs. [4-353]), one for each element—a
total of N + w equations. The unknowns in these equations are the ni

(note that yi = ni /�i ni), of which there are N, and the λk, of which
there are w—a total of N + w unknowns. Thus, the number of equa-
tions is sufficient for the determination of all unknowns.

Equation (4-355) is derived on the presumption that the φ̂i are
known. If the phase is an ideal gas, then each φ̂i is unity. If the phase is
an ideal solution, each φ̂i becomes φi, and can at least be estimated. For
real gases, each φ̂i is a function of the yi, the quantities being calcu-
lated. Thus an iterative procedure is indicated, initiated with each φ̂i

yi φ̂iP
�

P°

yi φ̂iP
�

P°

f̂i
�
P°

∂Gt

�
∂ni

∂F
�
∂ni
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set equal to unity. Solution of the equations then provides a preliminary
set of yi. For low pressures or high temperatures this result is usually
adequate. Where it is not satisfactory, an equation of state with the pre-
liminary yi gives a new and more nearly correct set of φ̂i for use in Eq.
(4-355). Then a new set of yi is determined. The process is repeated to
convergence. All calculations are well suited to computer solution.

In this procedure, the question of what chemical reactions are
involved never enters directly into any of the equations. However, the
choice of a set of species is entirely equivalent to the choice of a set of
independent reactions among the species. In any event, a set of
species or an equivalent set of independent reactions must always be
assumed, and different assumptions produce different results.

Example 3: Minimization of Gibbs Energy Calculate the equilib-
rium compositions at 1,000 K and 1 bar of a gas-phase system containing the
species CH4, H2O, CO, CO2, and H2. In the initial unreacted state there are
present 2 mol of CH4 and 3 mol of H2O. Values of ∆Gf° at 1,000 K are

∆G°fCH4
= 19,720 J/mol

∆G°fH2O = −192,420 J/mol

∆G°fCO = −200,240 J/mol

∆G°fCO2
= −395,790 J/mol

The required values of Ak are determined from the initial numbers of
moles, and the values of aik come directly from the chemical formulas
of the species. These are shown in the accompanying table.

Element k

Carbon Oxygen Hydrogen

Ak = no. of atomic masses of k in the system

AC = 2 AO = 3 AH = 14

Species i aik = no. of atoms of k per molecule of i

CH4 aCH4,C = 1 aCH4,O = 0 aCH4,H = 4
H2O aH2O,C = 0 aH2O,O = 1 aH2O,H = 2
CO aCO,C = 1 aCO,O = 1 aCO,H = 0
CO2 aCO2,C = 1 aCO2,O = 2 aCO2,H = 0
H2 aH2,C = 0 aH2,O = 0 aH2,H = 2

At 1 bar and 1,000 K the assumption of ideal gases is justified, and the
φ̂i are all unity. Since P = 1 bar, Eq. (4-355) is written:

+ ln + �
k

aik = 0
λk
�
RT

ni
�
Σi ni

∆Gfi°�
RT

The five equations for the five species then become:

CH4: + ln + + = 0

H2O: + ln + + = 0

CO: + ln + + = 0

CO2: + ln + + = 0

H2: ln + = 0

The three material-balance equations (Eq. [4-353]) are:

C: nCH4 + nCO + nCO2 = 2

H: 4nCH4 + 2nH2O + 2nH2 = 14

O: nH2O + nCO + 2nCO2 = 3

Simultaneous computer solution of these eight equations, with RT =
8,314 J/mol and

�
i

ni = nCH4 + nH2O + nCO + nCO2 + nH2

produces the following results (yi = ni/�i ni):

yCH4 = 0.0196 = 0.7635

yH2O = 0.0980

yCO = 0.1743 = 25.068

yCO2 = 0.0371

yH2 = 0.6711 = 0.1994

�
i

yi = 1.000

The values of λk/RT are of no significance, but are included to make
the results complete.

λH
�
RT

λO
�
RT

λC
�
RT

2λH
�
RT

nH2��i ni

2λO
�
RT

λC
�
RT

nCO2��i ni

−395,790
��

RT

λO
�
RT

λC
�
RT

nCO
��i ni

−200,240
��

RT

λO
�
RT

2λH
�
RT

nH2O
��i ni

−192,420
��

RT

4λH
�
RT

λC
�
RT

nCH4��i ni

19,720
�

RT

Real irreversible processes can be subjected to thermodynamic analy-
sis. The goal is to calculate the efficiency of energy use or production
and to show how energy loss is apportioned among the steps of a
process. The treatment here is limited to steady-state, steady-flow
processes, because of their predominance in chemical technology.

CALCULATION OF IDEAL WORK

In any steady-state, steady-flow process requiring work, a minimum
amount must be expended to bring about a specific change of state in
the flowing fluid. In a process producing work, a maximum amount is
attainable for a specific change of state in the flowing fluid. In either
case, the limiting value obtains when the specific change of state is
accomplished completely reversibly. The implications of this require-
ment are:

1. The process is internally reversible within the control volume.
2. Heat transfer external to the control volume is reversible.
The second item means that heat exchange between system and sur-

roundings must occur at the temperature of the surroundings, presumed
to constitute a heat reservoir at a constant and uniform temperature 

Tσ. This may require Carnot engines or heat pumps internal to the sys-
tem that provide for the reversible transfer of heat from the temperature
of the flowing fluid to that of the surroundings. Since Carnot engines 
and heat pumps are cyclic, they undergo no net change of state.

The entropy change of the surroundings, found by integration of
Eq. (4-3), is ∆Sσ = Qσ/Tσ; whence

Qσ = Tσ ∆Sσ (4-356)

Since heat transfer with respect to the surroundings and with respect
to the system are equal but of opposite sign, Qσ = −Q. Moreover, the
second law requires for a reversible process that the entropy changes
of system and surroundings be equal but of opposite sign: ∆Sσ = −∆St.
Equation (4-356) can therefore be written Q = Tσ∆St. In terms of rates
this becomes

Q̇ = Tσ ∆(Sṁ)fs (4-357)

where Q̇ = rate of heat transfer with respect to the system
ṁ = mass rate of flow of fluid

In addition, ∆ denotes the difference between exit and entrance
streams, and fs indicates that the term applies to all flowing streams.
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The energy balance for a steady-state steady-flow process resulting
from the first law of thermodynamics is

∆ ��H + u2 + zg�ṁ�
fs

= Q̇ + Ẇs (4-358)

where H = specific enthalpy of flowing fluid
u = velocity of flowing fluid
z = elevation of flowing fluid above datum level
g = local acceleration of gravity

Ws = shaft work

Eliminating Q̇ in Eq. (4-358) by Eq. (4-357) gives

∆��H + u2 + zg�ṁ�
fs

= Tσ∆(Sṁ)fs + Ẇs(rev)

where  Ẇs(rev) indicates that the shaft work is for a completely
reversible process. This work is called the ideal work Ẇideal. Thus

Ẇideal = ∆��H + u2 + zg�ṁ�
fs

− Tσ∆(Sṁ)fs (4-359)

In most applications to chemical processes, the kinetic- and poten-
tial-energy terms are negligible compared with the others; in this
event Eq. (4-359) is written

Ẇideal = ∆(Hṁ)fs − Tσ∆(Sṁ)fs (4-360)
For the special case of a single stream flowing through the system, Eq.
(4-360) becomes

Ẇideal = ṁ(∆H − Tσ∆S) (4-361)
Division by ṁ puts this equation on a unit-mass basis

Wideal = ∆H − Tσ∆S (4-362)
A completely reversible processes is hypothetical, devised solely to

find the ideal work associated with a given change of state. Its only con-
nection with an actual process is that it brings about the same change
of state as the actual process, allowing comparison of the actual work of
a process with the work of the hypothetical reversible process.

Equations (4-359) through (4-362) give the work of a completely
reversible process associated with given property changes in the flow-
ing streams. When the same property changes occur in an actual
process, the actual work  Ẇs (or Ws) is given by an energy balance, and
comparison can be made of the actual work with the ideal work. When
Ẇideal (or Wideal) is positive, it is the minimum work required to bring
about a given change in the properties of the flowing streams, and is
smaller than  Ẇs. In this case a thermodynamic efficiency ηt is defined
as the ratio of the ideal work to the actual work:

ηt (work required) = (4-363)

When  Ẇideal (or Wideal) is negative, | Ẇideal| is the maximum work
obtainable from a given change in the properties of the flowing
streams, and is larger than | Ẇs|. In this case, the thermodynamic effi-
ciency is defined as the ratio of the actual work to the ideal work:

ηt(work produced) = (4-364)

LOST WORK

Work that is wasted as the result of irreversibilities in a process is
called lost work Ẇlost, and is defined as the difference between the
actual work of a process and the ideal work for the process. Thus, by
definition,

Wlost � Ws − Wideal (4-365)
In terms of rates this is written

Ẇlost � Ẇs − Ẇideal (4-366)
The actual work rate comes from Eq. (4-358)

Ẇs = ∆��H + u2 + zg�ṁ�
fs

− Q̇

Subtracting the ideal work rate as given by Eq. (4-359) yields
Ẇlost = Tσ∆(Sṁ)fs − Q̇ (4-367)

1
�
2

Ẇs
�
Ẇideal

Ẇideal
�
Ẇs

1
�
2

1
�
2

1
�
2

For the special case of a single stream flowing through the control vol-
ume,

Ẇlost = ṁTσ∆S − Q̇ (4-368)

Division of this equation by ṁ gives

Wlost = Tσ∆S − Q (4-369)

where the basis is now a unit amount of fluid flowing through the con-
trol volume.

The total rate of entropy increase (in both system and surround-
ings) as a result of a process is

Ṡtotal = ∆(Sṁ)fs − (4-370)

For a single stream, division by ṁ provides an equation based on a unit
amount of fluid flowing through the control volume:

Stotal = ∆S − (4-371)

Multiplication of Eq. (4-370) by Tσ gives

TσṠtotal = Tσ∆(Sṁ)fs − Q̇

Since the right-hand sides of this equation and of Eq. (4-367) are
identical, it follows that

Ẇlost = TσṠtotal (4-372)

For flow of a single stream on the basis of a unit amount of fluid, this
becomes

Wlost = TσStotal (4-373)

Since the second law of thermodynamics requires that

Ṡtotal ≥ 0 and Stotal ≥ 0

it follows that

Ẇlost ≥ 0 and Wlost ≥ 0

When a process is completely reversible, the equality holds, and the
lost work is zero. For irreversible processes the inequality holds, and
the lost work, that is, the energy that becomes unavailable for work, is
positive. The engineering significance of this result is clear: The
greater the irreversibility of a process, the greater the rate of entropy
production and the greater the amount of energy that becomes
unavailable for work. Thus, every irreversibility carries with it a price.

ANALYSIS OF STEADY-STATE, STEADY-FLOW
PROCESSES

Many processes consist of a number of steps, and lost-work calcula-
tions are then made for each step separately. Writing Eq. (4-372) for
each step of the process and summing gives

� Ẇlost = Tσ � Ṡtotal

Dividing Eq. (4-372) by this result yields

=

Thus, an analysis of the lost work, made by calculation of the fraction
that each individual lost-work term represents of the total lost work, is
the same as an analysis of the rate of entropy generation, made by
expressing each individual entropy-generation term as a fraction of
the sum of all entropy-generation terms.

An alternative to the lost-work or entropy-generation analysis is a
work analysis. This is based on Eq. (4-366), written

� Ẇlost = Ẇs − Ẇideal (4-374)

For a work-requiring process, all of these work quantities are positive
and  Ẇs > Ẇideal. The preceding equation is then expresed as

Ẇs = Ẇideal + � Ẇlost (4-375)

A work analysis gives each of the individual work terms on the right as
a fraction of  Ẇs.

Ṡtotal
�
� Ṡtotal

Ẇlost
�
�Ẇlost

Q
�
Tσ

Q̇
�
Tσ
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For a work-producing process,  Ẇs and  Ẇideal are negative, and 
|Ẇideal| > |Ẇs|. Equation (4-374) in this case is best written:

| Ẇideal| = | Ẇs| + � Ẇlost (4-376)

A work analysis here expresses each of the individual work terms on
the right as a fraction of | Ẇideal|. A work analysis cannot be carried out
in the case where a process is so inefficient that  Ẇideal is negative, indi-
cating that the process should produce work, but  Ẇs is positive, indi-
cating that the process in fact requires work. A lost-work or
entropy-generation analysis is always possible.

Example 4: Lost-Work Analysis Make a work analysis of a simple
Linde system for the separation of air into gaseous oxygen and nitrogen, as
depicted in Fig. 4-12. Table 4-2 lists a set of operating conditions for the num-
bered points of the diagram. Heat leaks into the column of 147 J/mol of enter-
ing air and into the exchanger of 70 J/mol of entering air have been assumed.
Take Tσ = 300 K.

The basis for analysis is 1 mol of entering air, assumed to contain 79
mol % N2 and 21 mol % O2. By a material balance on the nitrogen,
0.79 = 0.9148 x; whence

x = 0.8636 mol of nitrogen product
1 − x = 0.1364 mol of oxygen product

Calculation of Ideal Work If changes in kinetic and potential
energies are neglected, Eq. (4-360) is applicable. From the tabulated
data,

∆(Hṁ)fs = (13,460)(0.1364) + (12,074)(0.8636) − (12,407)(1) = −144 J
∆(Sṁ)fs = (118.48)(0.1364) + (114.34)(0.8636) − (117.35)(1) = −2.4453 J/K

Thus, by Eq. (4-360),

Ẇideal = −144 − (300)(−2.4453) = 589.6 J

Calculation of Actual Work of Compression For simplicity,
the work of compression is calculated by the equation for an ideal gas
in a three-stage reciprocating machine with complete intercooling and
with isentropic compression in each stage. The work so calculated is
assumed to represent 80 percent of the actual work. The following
equation may be found in any number of textbooks on thermodynam-
ics:

Ẇs = �� �
(γ −1)/nγ

− 1�
where n = number of stages, here taken as 3

γ = ratio of heat capacities, here taken as 1.4
T1 = initial absolute temperature, 300 K

P2 /P1 = overall pressure ratio, 54.5
R = universal gas constant, 8.314 J/(mol⋅K)

The efficiency factor of 0.8 is already included in the equation. Sub-
stitution of the remaining values gives

Ẇs = �(54.5)0.4/(3)(1.4) − 1� = 15,171 J

The heat transferred to the surroundings during compression as a
result of intercooling and aftercooling to 300 K is found from the first
law:

(3)(1.4)(8.314)(300)
���

(0.8)(0.4)

P2
�
P1

nγRT1
��
(0.8)(γ −1)

Q̇ = ṁ(∆H) − Ẇs = (12,046 − 12,407) − 15,171 = −15,532 J

Calculation of Lost Work Equation (4-367) may be applied to
each of the major units of the process. For the compressor/cooler,

Ẇlost = (300)[(82.98)(1) − (117.35)(1)] − (−15,532)

= 5,221.0 J

For the exchanger,

Ẇlost = (300)[(118.48)(0.1364) + (114.34)(0.8636) + (52.08)(1)

− (75.82)(0.8636) − (83.69)(0.1364) − (82.98)(1)] − 70

= 2,063.4 J

Finally, for the rectifier,

Ẇlost = (300)[(75.82)(0.8636) + (83.69)(0.1364) − (52.08)(1)] − 147

= 7,297.0 J

Work Analysis Since the process requires work, Eq. (4-375) is
appropriate for a work analysis. The various terms of this equation
appear as entries in the following table, and are on the basis of 1 mol
of entering air.

% of  Ẇs

Ẇideal 589.6 J 3.9
Ẇlost: Compressor/cooler 5,221.0 J 34.4
Ẇlost: Exchanger 2,063.4 J 13.6
Ẇlost: Rectifier 7,297.0 J 48.1

Ẇs 15,171.0 J 100.0

The thermodynamic efficiency of this process as given by Eq. (4-363)
is only 3.9 percent. Significant inefficiencies reside with each of the
primary units of the process.
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FIG. 4-12 Diagram of simple Linde system for air separation.

TABLE 4-2 States and Values of Properties for the Process of Fig. 4-12*

Point P, bar T, K Composition State H, J/mol S, J/(mol ⋅ K)

1 55.22 300 Air Superheated 12,046 82.98
2 1.01 295 Pure O2 Superheated 13,460 118.48
3 1.01 295 91.48% N2 Superheated 12,074 114.34
4 55.22 147.2 Air Superheated 5,850 52.08
5 1.01 79.4 91.48% N2 Saturated vapor 5,773 75.82
6 1.01 90 pure O2 Saturated vapor 7,485 83.69
7 1.01 300 Air Superheated 12,407 117.35

*Properties on the basis of Miller and Sullivan, U.S. Bur. Mines Tech. Pap. 424 (1928).
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