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FOREWORD It is the combination of rigorous
symmetry arguments and quali­
tative or semi-quantitative 
physical theory that forms the 
basis of valence theory.

R. M. Hochstrasser

This booklet is devoted to one of the most important 
concepts of natural science, the concept of symmetry. 
The beneficial impact of the symmetry theory can be 
traced in the theory of elementary particles, crystal­
lography, solid state physics, space and time theory, 
molecular biology, quantum chemistry, the study of 
arts, the theory of music as well as many branches of 
mathematics.

Since many things are necessarily omitted even in 
a large monograph, this is all the more so in a small 
unpretentious booklet. Our narration does not cover 
transpositional symmetry, solid state theory and nu­
merous problems pertaining to application of symmetry 
theory to organic chemistry. This booklet deals pri­
marily with spatial symmetry of molecules.

The study of any theory is to a certain extent similar 
to the learning of a foreign language. While some peo­
ple learn it in order to write and speak fluently, others 
are satisfied with the understanding of foreign texts 
even if using a dictionary. The same is true in the case 
of a theory. While some people learn it very comprehen­
sively in order to work actively in the area, it is suf­
ficient for others to understand the language of theo­
rists and the substance of their conclusions. This book 
is intended for the latter group, who are much more 
numerous than the former. This booklet is intended
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just for them. We address it to experimental chemists, 
teachers, university students and even high school 
senior students.

The symmetry theory is usually applied to the 
specific problems of physics and chemistry when non- 
algebraic objects such as atoms, molecules, solids are 
studied with algebraic methods. Therefore some read­
ers will probably need to overcome certain barriers 
of mathematical reasoning.

The general logical plan of the booklet is as follows. 
The first chapter has a narrative nature and is dedicat­
ed to the description of the major types of molecular 
symmetry. The second chapter may be considered as 
a mathematical model of the first. The next two chap­
ters are devoted to problems of the interrelation be­
tween the composition, geometry and electronic struc­
ture of molecules (Chapter 3) and chemical reactions 
(Chapter 4). The final fifth chapter is of an historic and 
methodological character.
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Symmetries might give us a 
certain pleasure and perhaps 
amazement to contemplate, 
even though they would not 
furnish new information.

E. Wigner

Elements 
and Operations 
of Symmetry

Chapter One

SYMMETRY 
OF A NUCLEAR 
POLYHEDRON

Modern chemistry deals with a tremendous number 
of substances and creates a great variety of geometric 
forms. Each molecule differs not only in the kind and 
number of constituent atoms but also in the symmetry 
of its nuclear skeleton, that is the nuclear polyhedron. 
The symmetry of a molecule has to be taken into ac­
count when its electronic structure is considered.

How is symmetry defined? Everyone has an intuitive 
notion of symmetry. Symmetry, some people would

FIG. 2
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say, is when one part of a geometric body is exactly 
the same as another, but “reflected in the mirror” (see, 
for example, Fig. 1). Not necessarily, the others would 
argue, it could be that the rotation of a figure through 
some angle, say 60°, does not change its appearance. 
Both groups of people are right but only partially. 
Indeed, the symmetry of .a body is specified by the
TABLE 1

Symmetry elements Symmetry operations

Plane Reflection in a plane (a)
Centre of symmetry, or Inversion of all atoms through a

inversion centre centre (£)
rc-fold axis One or several rotations about an 

axis through an angle of 
2n!n (Cn)

rc-fold rotation-reflection Rotation through an angle of 2njn
axis followed by reflection in a plane 

perpendicular to the rotation 
axis (Sn)

combination of rotations and reflections that do not 
change its “appearance”, or, strictly speaking, match 
the body with itself.

It follows that the precondition of symmetry of a 
geometric body is the presence of axes and planes of 
symmetry (some axes and planes of symmetry in a 
cube are indicated in Fig. 2).

Such axes and planes are known as symmetry elements. 
Each symmetry element brings up the corresponding 
symmetry transformations, or symmetry operations. They 
are listed in Table 1.

Rotation about an axis. If a body rotating about an 
axis through an angle of 2jt (360c) coincides with itself

10



n times then the axis is referred to as the n-fold sym­
metry axis. It is denoted by Cn (the letter “C” is de­
rived from the Latin word “circulate”).

Obviously, the least angle of rotation which brings 
about coincidence is equal to 2jiIn (or 360°/n). The 
symmetry operation is denoted by the same letter as 
the axis, i.e. Cn. Occasionally somewhat different sym­
bols are used: Cn for the symmetry axis and Cn for 
the symmetry operation (transformation) about that 
axis.

If we perform several (for example, k) successive 
rotations of a body through an angle of 2jtIn, i.e. we 
actually rotate a body through an angle of 2nkln, 
the operation is denoted as C\ . Having been carried 
out n times the symmetry operation Cn brings a body 
(a polyhedron) back into the initial position. This 
is equivalent to the identity transformation E which 
is the same as not moving the polyhedron at all:

Cl = E
If a body has several symmetry axes, the one with 

the highest n is called the principal axis.

Reflection in a plane. Another symmetry element is 
a plane bisecting a body into two parts which are mir­
ror images of each other. A plane of this kind is the 
symmetry plane and the operation of reflection in it 
is designated by the symbol a. It is obvious that two 
successive reflections in the same plane are equivalent 
to the identity transformation:

a2 =  E
The symbol a is supplied by a subscript indicating 

the position of the symmetry plane relative to the prin­
cipal axis. So oh signifies reflection in the plane perpen­
dicular to the principal axis (h stands for “horizontal”);
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FIG. 3

the reflection in the plane containing the principal 
axis (v for “vertical”) and a d, reflection in the plane 
which contains the principal axis and bisects the angle 
between two C2 axes (d for “diagonal”) (see Fig. 3).
Rotation-reflection axes. A body can be matched with 
itself in another way, that is by rotation through an

4

FIG. 4

angle of 2jtIn followed by 
reflection in a plane perpen­
dicular to the rotation axis. 
Such a symmetry opera­
tion is called the mirror ro­
tation and denoted by the 
symbol Sn. The axis of ro­
tation is referred to as the 
rc-fold rotation-reflection 
axis (Fig. 4). Inasmuch as 
this operation combines 
both rotation and reflection 
it can be represented as 
the “multiplication” of ope-
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rations: /
/  Sn =  CnGh — GhCn

In general, the presentation of symmetry operations 
as the multiplication of one by another should be in­
terpreted this way^ one has to perform first the opera­
tion indicated in the right part of the “product”, and 
then the second one. In the case of the water molecule, 
for example, the product of symmetry operations 
C\ov means that the reflection in a plane must be 
performed first. As a result, hydrogen atoms switch 
positions

/ -
to

/ l \
Ha v \ y z )  Hb

Jyz) t0
/ | \

Hbaf>H a

Then the molecule is rotated about the C2 axis, and 
the atoms come back to their initial positions

1 i
/ i \  / i \

Hb Ha Ha Hb

Instead of performing these two operations it is 
sufficient just to reflect the molecule in the o{vxz) plane. 
Therefore we may write the following:

Frequently the order of performing symmetry trans­
formations becomes very important. Unlike the con­
ventional high school arithmetic the permutation of 
“cofactors” in the symmetry theory may occasionally 
alter the “product”. Let us consider, for example, the

13



FIG. 5

ammonia molecule. In Fig. 5 one can see that the final 
positions of the atoms Ha, Hb and H c depend on the 
sequence of operations performed.

Inversion operation. Note that a two-fold rotation- 
reflection axis is equivalent to the presence of a centre 
of symmetry in a body. The centre of symmetry is lo­
cated in the point of intersection of the S 2 axis and the 
ah plane. The inversion operation is usually denoted 
by the symbol i:

i = S2 — C2Oh

Order is needed. As a rule a nuclear polyhedron of a 
molecule possesses not one but many symmetry ele­
ments. The definite relation between them can be estab­
lished using one of the most important concepts of 
modern mathematics, i.e. the concept of a group.
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Concept 
of a Group
What is a group? Usually, when talking of groups one 
implies a set of objects, notions, men, etc. Mathemati­
cians define a group as a set of elements between which 
certain binary relations are specified, i.e. any two group 
elements are associated with a third element of the 
same group. For example, two integers, 4 and 5, may 
correspond to a third integer—9, i.e. their sum. The 
integer 9 belongs to the same set or group of nonnega­
tive integers as the summands do. Here is another 
example. In ancient times, when money did not exist 
and people exchanged commodities, two lambs could 
be procured for, say, a sack of grain. This is also one 
of the ways to specify rules of correspondence between 
elements of the set which in this case is the set of objects 
to be exchanged. As any other analogy this comparison 
is conditional. Bartering is not always a binary opera­
tion. Indeed, a sack of grain could be exchanged for 
several knives....

Thus the rule bringing two group elements into cor­
respondence with the third one may alter according to 
the substance of a problem. Mathematicians call such 
a rule for combining elements a group product. It 
should be remembered that (as we saw in the examples 
quoted earlier) this product is not always a convention­
al one.

Therefore, to convert a set of elements into a group 
the rule of correspondence should be specified. This 
could be written as

a*b =  c

Here a, b and c are elements of a group and the 
sign • indicates some rule or law bringing elements a 
and b in correspondence with the element c.
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For a set of elements to constitute a group the second 
condition must also be satisfied, which is the associa­
tive law of group multiplication:

(a-b) >c — a* (b • c)
This law states that if the element which is the “pro­

duct” of a and b is “multiplied” by c the resulting ele­
ment is the same as would be obtained by multiplying 
the element a by the “product” of b and c.

Besides, a group must have at least one element 
usually denoted by the letter E and called the identity 
element which makes the following relation valid for 
any element a of the group:

a-E = E -a = a
And the final condition: every element a of a group 

must have an inverse element a~l obeying the relation
a • a~x = a~x • a = E

Our collection of elements constitutes a group if 
these four conditions are met, i.e. the rule of group 
multiplication is defined so that the associative law 
is valid, an identity element is singled out and every 
element has its inverse which also belongs to this group.

Symmetry group. Now let us pass on from mathematical 
abstractions to a specific chemical example. Consider 
the water molecule which is known to have the follow­
ing geometrical structure:

0
/ \/  \

H 105° approx. H

Fig. 6 illustrates the symmetry elements of the water 
molecule: C2, crr , o'v.
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Let us “multiply” the symmetry elements of the water 
molecule one by one. The results of such multiplication
TABLE 2

r E c2 av-----

/ E 6 2 K
 ̂2 C2 E a;c---- Ov

I
E c2

°V °v <*v C, E

are listed in Table 2. Here we denoted the operation 
of reflection in the yz plane as GV1 in the xz plane as 
a'v (see Fig. 6) and the ope­
ration of rotation about the 
z axis as C2.

Table 2 shows that the 
product of any two symmet­
ry operations for the water 
molecule again results in a 
symmetry operation for the 
same molecule. The case dis­
cussed on page 113 may 
serve as an example:

C2ov = ofv
Whatever symmetry ele­

ments are “multiplied” we 
shall never obtain a sym­
metry element which the mo­
lecule does not possess. Ob­
viously, that is the evidence FIG. 6
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that the collection of symmetry elements of the water 
molecule constitutes a group. One need only check:

(a) which element serves as the identity element,
(b) whether there is an inverse element for every 

symmetry element,
(c) whether the associative law holds.
As to the first condition, the E element serves as the 

identity element (see Table 2):
C =  EC 2 =  C2 

OqE == E(jj)=  dp, etc*
It is now clear why we introduced the operation E 

into the set of symmetry operations, although it seemed 
“redundant” at first. Without it the collection of 
operations would not have had the properties of the 
group for there would have been no identity element.

From the group multiplication table it also becomes 
clear that every element has a corresponding inverse. 
Indeed, for the element which is the inverse of C2, f°r 
example, the following relations must hold:

C2 * ■ C 2 =  C2 ‘C^  — E
Let us have a look at Table 2 again and see which 

element becomes E when multiplied by C2 (regardless 
of the order of multiplication). Evidently such an 
element is C2, i.e. the C2 symmetry element (as well 
as the other elements of our set) does not differ from 
the inverse element.

Again using the group multiplication table one can 
easily discover that the product of symmetry elements 
obeys the associative law.

Thus we come to the following conclusion: the col­
lection of symmetry operations which are intrinsic to the 
given molecule constitutes its symmetry point group. 
(It is called the point group because whatever symmetry 
operations we perform on the given body at least one 
point remains stationary.)

18



Hierarchy 
of Point Groups

We shall begin the classification of symmetry point 
groups with the description of the simplest of them and 
I hen go on to those which possess a greater number of 
symmetry operations.

Minimum of symmetry. Let us start our description 
with symmetry groups in which the ra-fold axis is the 
only symmetry element. Such groups are denoted by 
the symbol Cn. These groups possess neither mirror 
planes, nor rotation-reflection axes, nor centres of 
inversion. The simplest group C1 has only the first- 
order symmetry axis. This means that a body will 
not change its appearance after the 360° rotation about 
any axis passing through that body. The formic acid 
molecule, for example, possesses such “degraded” 
symmetry (Fig. 7).

S 2n groups. These groups possess one rotation-reflec­
tion axis S 2n. The order of symmetry of a rotation- 
reflection axis may be only even. As an S 2 group is 
nothing else but the combination of operations E 
and i, it is often denoted as Ct. Molecules possessing

0

FIG. 7
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this kind of symmetry are very rare. Here is one of 
the few examples:

Cl
Bi

Br
Cl

And here is the molecule belonging to the S4 group:

Cnh groups. We have already seen how prosaic are 
the Cn groups. However, the addition of only one ele­
ment—the horizontal symmetry plane oh—carries a 
molecule over into the group (denoted by the symbol 
Cnh) that is more entertaining, so to say. Some chloro- 
derivatives of ethylene may serve as an example 
(Fig. 8). The molecules SOCl2 or m-C6H4ClBr

H3c

t

H

3

Cl
20



belong to the Clh group* which is the simplest of the 
Cnh groups. It is sometimes denoted by Cs.

nC2

H
H

FIG. 8

Cnv groups. The Cnv groups have the ra-fold symmetry 
axis and n symmetry planes containing this axis. 
Such well-known molecules as H20, H 2S, S02, N 02, 
C14H10, trans-C2H2C12, etc. belong to the C2V group 
while PC13, NH3, (C6H6)Cr(CO)3, etc. belong to the 
C3V group:

I

* The C& group is identical to the S ± group.
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As to the number of symmetry elements these groups 
are medium rich. Like Cnh groups they may be 
constructed from Cn groups but this time it is not a 
horizontal plane but n vertical ones that are added. 
Besides, only several of those belong to the ov type 
when n is even, all other planes being diagonal (od). 
For example, the C4P group includes the molecules 
having the shape of the tetragonal (Egyptian) pyramid 
([Cu(NH3)5]2+) as well as systems originating as a 
result of the asymmetric distortion of the octahedron 
whose two toms-positional apices cease to be equiva­
lent because of the presence of different atoms.

Dnh groups. In all foregoing cases molecules had 
only the vertical rc-fold symmetry axis and the reflection 
planes passing through it. However, there are many 
molecules possessing also horizontal symmetry planes 
which are perpendicular to the principal axis. Such 
groups are designated by the symbol Dnh. The benzene 
molecule belonging to the D6h group is an example 
(Fig. 9a). Almost all plane molecules of the AX3 com­
position constructed in the form of a regular triangle 
(BF3, CO2-, NO", etc.) belong to the D 3h group.

The Dih symmetry group is of particular significance 
for inorganic chemistry. Such symmetry is inherent in 
square complexes of the MX4 composition that are 
typical for M =  Pt(II), Pd(II), Ni(II), etc. and com­
pounds of the trans-MX4Y2 type, such as, for example, 
the intraspherical fragment of Jrarcs-dichlorotetram- 
mineplatinum chloride [Pt(NH3)4Cl2]Cl2. The D±h 
group is derived from the C4u group via an addition 
of a horizontal plane oh perpendicular to the four­
fold axis and of the products of ah by the rest of C4u 
group symmetry operations: i = ohC2, S 4 =  C^oh, 
etc.

22



The D5h point group was formerly thought to he <>l 
no importance to inorganic chemistry. It is now known, 
however, that such symmetry is typical for some bis- 
cyclopentadienyls of transitional metals, for example, 
Fc(C5H5)2, Ru(C5H5)2, uranyl ion (UO|+) compounds 
constructed in the form of a pentagonal pyramid with 
(he 0 —U—0 group along the five-fold axis (e.g. 
UOaF5).

23
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FIG. 10

D n groups. This is a fairly rare symmetry to be met in 
chemistry. If the nuclear polyhedron of a molecule has 
this type of symmetry, the molecule possesses n C2 
axes, in addition to the Cn axis, which are perpendicu­
lar to the Cn axis, but has no symmetry planes. The 
Co-eng ion (“en” stands for ethylene diamine 
NH2CH2CH2NH2) is an example (Fig. 9b). Due to 
the absence of symmetry planes such molecule exhibits 
an optical activity.
Dnd groups. If the system of Dn group axes is supple­
mented with n symmetry planes containing the Cn 
axis and bisecting the angle between the neighbouring 
two-fold axes, the resulting group is denoted by the 
symbol Dnd.

The allene molecule is an example of a molecule 
possessing the D2d group symmetry (Fig. 10).

Cubic groups (Plato’s bodies). Cubic groups possess the 
largest number of symmetry elements. They are so 
called because every group has the symmetry elements 
characteristic of a cube. Why they are called Pla­
to’s bodies, the reader will learn later, in Chapter 5. 
Here we should point out that only regular polyhedrons 
may be regarded as Plato’s bodies, and not any geo­
metric figure possessing the cubic point group symme­
try. The characteristic feature of cubic groups is the 
presence of several axes of the order higher than 2.
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FIG. 11

We shall dwell on three cubic groups: the tetrahedron 
group ( J d),^octahedron group (Oh) and icosahedron 
group (I h). Molecules belonging to these groups are 
highly symmetric.

The characteristic elements of the tetrahedron are: 
four C3 axes, three £4 axes and six od planes (Fig. 11a)*. 
The octahedron has four C3 axes, three C4 axes, three 
ah and six ad planes (Fig. 11 b). As distinct from the 
Td group the Oh group possesses the inversion centre i. 
Molecules belonging to the icosahedron symmetry 
group possess six C5 axes. For example, CII4, CC14 
and P4 molecules belong to the Td group. UF6 or SF6 
molecules as well as many complex ions (see Chapter 3) 
are the examples of the Oh symmetry molecules. Some 
boron compounds (B12Hi" , B12C1j~) provide examples of 
molecules belonging to the icosahedron symmetry.
Continuous symmetry point groups. In linear molecules 
the line along which nuclei are located is the symmetry 
axis of an infinite order since there are innumerable 
angles of rotation carrying the molecules into them­
selves. When the linear molecule also has a symmetry

* For the sake of simplicity Fig. 11a and b illustrates only 
one characteristic symmetry element of each kind.
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plane perpendicular to its axis, the molecule is said 
to belong to the D ooh symmetry point group (Fig. 12a). 
Such are, for example, all biatomic homonuclear mole­
cules (H2, N2, 0 2, F2, etc.), C2H2, C02 and other mole­
cules. When a molecule has no plane of that kind the 
symmetry group is denoted by the symbol C oov. Such 
are the molecules HC1, NO, HCN, etc. (Fig. 12b).

There is still another group to be mentioned, that is 
the 0(3) group. The symmetry transformations of this 
group represent combinations of rotations around any 
axis passing through the origin of coordinates and the 
inversion centre. The 0(3) group is the symmetry point 
group of an atom.

We have got to know the basic symmetry point 
groups of molecules. These groups are usually subdi­
vided into four types:

(1) isotropic groups: 0(3), I hJ Oh, Td\
(2) dihedral groups, containing n mutually perpen­

dicular symmetry axes: Dni Dnh, Dnd (where n = 2, 
3, • • •, °°)j

(3) axial groups, possessing only one 72-fold symmetry
axis. 0/i, 0ti/i» 0jid 1» 2, . . ., °°)>

(4) improper axial groups, or “alternating” groups: 
Sn (n = 1, 2, . . ., oo), S± being denoted by the sym­
bol Cs and S 2 by the symbol Ct.

(a) (b)

26



TABLE 3*

-------- >
1st step: determine whether or not the molecule belongs 

to the continuous point groups — Coo0, Dooh

2nd step: determine whether or not the molecule posses­
ses several axes of the order higher than 2. 
If such axes are present the molecule belongs 
to one of the cubic groups—T<i, 0 h, /&; if there 
are none whatever its symmetry group is C*, 
Ci or Cs

3rd step: determine whether or not the molecule has the 
single rotation-reflection axis S n (n is even); if 
such an axis is present the molecule belongs to 
the S n symmetry group

I
The molecule has the rc-fold Cn axis

I--------------
4th step: the molecule has no 

C2 axes perpendicular to the 
Cn axis

I

Gh plane n ov no sym- 
is present planes metry 

are pre- planes 
sent

5th step: the molecule has 
n C2 axes perpendicular to 
the Cn axis

I

i
n Gd 

planes 
are pres­

ent

I
Oh plane 

is
present

1
no sym­
metry 
planes

Cn/i
v 

C  nv C n Dnh Dnd
V

Dn

*  Only the basic point groups arc shown in the tabic.
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Now let us learn lo determine the symmetry of 
a molecule when its geometry is known. Table 3 
shows how to classify molecules into one or another 
group. Let us illustrate the method of determining the 
symmetry group by the example of the ferrocene 
molecules Fe(C5H5)2.

Symmetry of the sandwich with a Fe atom. Ferrocene 
is the compound which was synthesized in 1951 si­
multaneously by two research groups in Great Brit­
ain and the United States of America. Its structure 
resembles a double-decked sandwich with the Fe atom

FIG. 13

in the centre (Fig. 13). Substances with the structure 
of this kind are appropriately called the “sandwich” 
compounds. In the crystal state the ferrocene molecule 
has the so-called hindered conformation, i.e. carbon atoms 
(when observed along the S10 axis) are arranged in a 
chessboard order in contrast to the analogous ruthen­
ium compound in which atoms are arranged one under 
another.

28



Let us determine the point group of the ferrocene 
molecule in the hindered conformation following the 
procedure specified in Table 3.

The first two steps are easy to make. Since the ferro­
cene molecule is nonlinear it cannot belong to either 
a CooV or a D ooh group. It does not belong to cubic 
groups either for it possesses only one axis of the order 
higher than 2, that is the C5 axis.

The third step is to determine whether any Sn 
axes are present (where n is an even integer). There 
is such an axis in the ferrocene molecule (see Fig. 13). 
In addition to it, however, other symmetry elements 
are present in this molecule so that we should not clas­
sify it into the S10 group.

Next we look for two-fold axes perpendicular to the 
Cb axis (steps 4 and 5). Indeed, there are such axes in 
ferrocene. One of those is shown in Fig. 13. Thus the 
only thing that is left to be done is to define which of 
three groups—DnhJ Dnd or Dn—the molecule in ques­
tion belongs to. Inasmuch as a vertical plane od can 
be drawn between any two two-fold axes, the ferrocene 
molecule in hindered conformation belongs to the Dbd 
symmetry point group.

As you see the classification of a molecule into one 
of the symmetry groups does not amount to much of 
a trouble providing, of course, its geometry is known.



SYMMETRY
IN MATHEMATICAL
TERMS

Chapter Two The most recent authors in the 
fashion of the ancient ones try 
to subject the natural pheno­
mena to the laws of mathema­
tics.

I. Newton

In the Footsteps 
of Descartes

Statement of the problem. The French scientist 
R. Descartes is justly called “the father of analytical 
geometry”. While before him algebra and geometry 
were fairly separated he elaborated a method which 
brought them together into a single whole. According 
to Descartes any geometric result can be expressed in 
algebraic terms. Indeed, if points of geometric figures 
are put over the coordinate grid, the position of each 
of them is determined by a pair of numbers (x, y). 
The value of Descartes’ idea consists in the fact that 
one can change from the language of geometry to the 
language of algebra and back so that geometric pro­
perties of figures, including the properties of symmetry, 
acquire the quantitative or analytical expression. 
Besides, having related rotations, reflections and other 
operations of symmetry with a] coordinate system we 
get rid of superfluous use of words, for figures speak for 
themselves. But to take advantage of blessings of 
Descartes’ method one has to define the law governing 
the transformation of coordinates of points of geo­
metric figures in symmetry operations. Since in our 
case these points are the nuclei of atoms constituting 
a molecule we may put the question differently: what 
is the transformation law for the coordinates of nuclei 
in symmetry point group operations for a molecule?
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Rotations. We start with 
the specific example by con­
sidering the water mole­
cule again (C2V symmetry).
Suppose it is placed in the 
xy~plane of an arbitrary 
Cartesian system of coordi­
nates so that the oxygen 
atom coincides with the ori­
gin (Fig. 14). For the sake 
of lucidity the hydrogen 
atoms are labelled and the 
coordinates of atom are 
designated by (xx, yx) and 
those of H2 atom by (x2J y2).

Now let us rotate the mo­
lecule the way it is shown in 
Fig. 14, i.e. keeping it in the xy-plane. Of course, this 
is not a symmetry operation but it is of no importance 
to us as we consider now the more general case, which 
is the rotation of a molecule through an angle (p. After 
the rotation the coordinates of the molecule change. 
The new coordinates are denoted by a stroke: (x [, 
y[) and (x'2, y'2) for and H 2 atoms respectively.

Then we must solve a fairly simple geometric task, 
that is express the “new” coordinates in terms of the 
“old” ones (Fig. 14 will help you make it on your own). 
Finally we obtain:

?(*2,y2)

QFIG. 14

â  =  cos — sin (p*y 
i/ =  sin (p-x+cos q>*#

Class register from mathematical viewpoint. And now
we shall write these equations down in a somewhat 
different, “nonscholastic” manner. It is easy to see 
that these equations are alike. Indeed, in both equa-
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tions the variable x in the first addendum is multiplied 
by the trigonometric function—only in the first case 
it is cos cp and in the second sin cp—while in the second 
addendum the variable // is multiplied by —sin cp or 
cos cp. Thus, in order to find the relation between the 
“old” and the “new” coordinates one has, first, to cal­
culate sin cp and cos cp and, second, to determine what 
trigonometric functions are to be multiplied by the 
variables x and y.

If we write out the trigonometric functions in the 
same order as they appear in the equations we obtain 
the following table:

From this table we get, in fact, the law of the coor­
dinate transformation of hydrogen atoms for the rota­
tion of a molecule since the order of variables in the 
equations is the same: first x and then y . Such a table 
consisting of functions or numbers is called a matrix.

In mathematics a matrix is defined as a square or 
rectangular table of numbers or functions (real or 
complex):

where the first subscript denotes the row number (in 
the matrix A there are m rows) and the second one, the 
column number (n columns).

We deal with matrices more often than it seems. As 
an example we may take... a class register in which 
marks form a matrix. Empty squares may be inter­
preted as zero elements. Student names correspond to 
the rows and dates to the columns of such a matrix. 
The rows and columns are strictly ordered. Imagine

cos cp —sin cp 
sin cp cos cp )
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what would happen if a schoolmaster confused columns 
or still worse rows and put a mark into the wrong 
square I

When m = n a matrix is referred to as a square mat­
rix. The number of rows (or columns) in a square matrix 
is called a matrix dimension.

In some cases n =  1 and m >  1. Such an array is 
called a column matrix:

In our example this is the state of a class register 
after the First test work, i.e. one column of marks. An 
array with m = 1 and n >  1 is referred to as a row 
matrix:

This corresponds to the uncommon situation when 
only one student attends lessons.

Eulogy to matrix. Matrices possess a number of re­
markable properties. The addition, multiplication and 
many other operations may be performed on them. Mat­
rices turn out to be very useful not only in studies of 
rotations, reflections and other transformations of 
geometric bodies, they are also used for the description 
of deformations of bodies which makes them important 
in structural mechanics. We come across matrices in 
the theory of relativity, hydrodynamics and quantum 
mechanics as well.

Now we shall learn one of the methods of matrix 
multiplication. It should be pointed out that depending 
on the physical nature of the problem one may employ 
different methods.

(a1a2 . . . an)
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Matrix multiplication
Matrices are multiplied by the *4row-by-column,v 

rule. The matrix

C = ( cn  Cl2\
\  ^21 C22 '

is called the product of matrices

“12 \ a n d B = (^ll
V a 21 a 22 f  ' ^21 ®22 f

h-2
if its any element ctj = ^ a ikbk^  where the sum-

fc-i
mation symbol, and k is the number of columns of 
the matrix A or the number of rows of the matrix B . 
The multiplication rule is valid only in the case when 
both numbers are equal. Since in our case k =  1, 2, 
then

h =  2
cll — a ih b h i =  a n ^ i \  +  ai2&2i

h=:1
h = 2

C21 = “  a21̂11 “f~ fl22̂ 2l7 etC*
ft =  l

Thus, Jo calculate an element ctj the elements of the 
ith row of the matrix A are multiplied by the correspond­
ing elements of the jth column of the matrix B and the 
products obtained are summed up.

Example

HID -  HU)
C A R - ( °  M ( l 0 \ _ / 0 .1+ 1-0 o - o + i - ( - i ) \ _

\1 o / ' l o  —l j “ \ M  +  0-0 1 . 0 + 0 . ( - 1 ) / -

- (?  "I)
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Note that the matrix product as well as the product 
of group elements do not obey the commutative law, i.e

A'B =£ B-A
So

(I - ! ) ( _ ;  ;>-(! J )
But

(Ji)CoJHJ :,2) * C J)
Atoms in a mirror. Matrices can describe not only 
rotations but other symmetry operations as well. Let 
us consider, for example, how the reflection operation 
is expressed in a mathematical form.

If the water molecule is located in respect of coordi­
nate axes the way Fig. 15 shows, the xy-plane turns 
into the oxy symmetry plane of the molecule. The 
oxygen atom does not change its position when reflect­
ed in this plane while the hydrogen atom with 
references (xl7 z/x, zx) switches places with the hydrogen 
atom H2.

We shall denote the new references of the atom by 
x\, y\ and z\ as before and

x[ = xi, y[ = yi, zi = —h

FIG. 15
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The unabridged version of these equations is as 
follows:

It is easy to see that these equations resemble very 
much the initial ones (page 31), only the variables here 
are multiplied by numbers and not by trigonometric 
functions. Consequently we can readily draw up the 
matrix corresponding to the operation of reflection 
in the cr^-plane:

Similarly, for the operation of inversion through the 
origin of coordinates we have:

More complex case. Let us complicate our task. Sup­
pose we have several functions of coordinates 
^  (x, y , z), (x, y, z), (x , y, z), etc. If one of these
functions, say undergoes a symmetry transforma­
tion we obtain a new function:
(Symmetry transformation R) »>—> ^  (x , y, z) »>— (x' , y \  z')

The mechanism of conversion of one function into 
another is as follows in this case: by converting the 
coordinate system (for example, by rotation) we trans­
form the arguments (x , y, z) of the }¥1 function and con­
sequently change the function itself.

And what is 'FJ? bSo we have obtained a new function 
Is it somehow possible to express it through the “old”

y[ =  0 -x1 +  i * y 1-\~0-z1

4  = 0*a:i +  0^ i +  ( — fH i
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functions Yl7 Y2, Y3, etc.? It turns out to be possible. 
Often a new function can be expressed through the 
“old” ones quite simply—as their linear combination:

Vi = c1V1 + c2V2+ ... + cNVN
where cx, c2, etc. are numerical factors.

It is customary to write this expression in the ab­
breviated form:

i = N

Y,' =  2  [cm
i= 1

i  =  N

The symbol 2  means the summation with respect 
i  =  1

to the index i running from 1 to N.
Now let us take another function from our set, 

and perform the transformation in the same coordi­
nates which corresponds to the analogous symmetry 
operation. This way we obtain the similar result:

i = N
(Symmetry operation R) >»«—> Wk —> Wk =  2  cki^i

i = l

The coefficient cki has two subscripts: i is the sum­
mation index and k signifies the fact that the summation 
produces the function Y& which originated from the 
function Wk. Thus, if we write this sum in full we 
obtain the following expression:

V i  =  cfcl Y j  +  ck2V 2 +  . . .  +  ckNV N

The similar treatment of all N functions of the ori 
ginal set gives the following equations:

V'l = €!!*! + C12v 2+ ...+ClNVN 
YJ =  C21 Y x +  c22Y 2 +  . . .  +  c 2 N V n

Y 'N =  cNlWx +  cN2V 2 +  . . .  +  cNNVN
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In such cases mathematicians would declare: 
“In symmetry transformations the functions of the 
original set transform linearly one from another”.

Transformation7 matrix. One can arrange the square 
matrix from the cki coefficients

C11 c12 • * * C1N
C21 c22 * * * c2N

C N 1 cN 2  ■ • • CN N

which corresponds to the definite symmetry transfor­
mation. Such matrix is called the transformation matrix.

The corresponding matrix can be arranged the same 
way for any other^symmetry operation.

Group representation. Thus the following con­
clusion can be drawn: each symmetry operation of the 
given point group may be associated with a square matrix. 
For example, the C3v group consists of six symmetry 
elements: £ , C3, C\, o(v \  a{2) and a®3). Each of these 
elements has the corresponding square matrix:

E « > Ae

This fact in itself would not have been of particular 
importance had it not been for one circumstance. As 
a matter of fact one can compose a set of remarkable 
matrices that would copy or reproduce the table of 
group multiplication.
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If, for example,
a(i).r — «(2)
° V  L * —  ° v

the analogous relation is also valid for matrices: 
Aa^ ’Aca==Aa(^

V V

Although special methods of finding such matrices 
have been developed in group theory, we shall not 
dwell on them here and shall limit ourselves to one 
example taken from the monograph Valence Theory 
by J.N. Murrell, S. A. Kettle and G.M. Tedder (J. Wi­
ley and Sons, London, N.Y., Sidney, 1965).

The following set of square matrices may be brought 
into correspondence with the elements of the CSv 
group:

E C3 C\

I t is easy to make sure that:
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Any collection of matrices obeying the table of 
group multiplication is called the representation of a 
group. In other words, the representation of a group 
is the collection of matrices specifying how functions 
(or a set of functions) are transformed under opera­
tions of a group.

The above-mentioned property of matrices is of 
great importance for the symmetry theory. Each point 
group possesses the inherent set of symmetry elements 
and its own multiplication table. Differing from sym­
metry operations by their mathematical nature matri­
ces reproduce and imitate the most important prop­
erty of a point group which is the table of group 
multiplication, i.e. the rule relating group elements. 
It is a kind of a description of a group, only matrices 
do it in their own language, the language of matrix 
calculus. Now it becomes clear why mathematicians 
use the term “the representation of the given symmetry 
group” when talking of a set of square matrices repeat­
ing the basic properties of a group.*

Each group may have an infinite number of represen­
tations which may differ from one another by both 
the dimensions of their matrices and the type of matrix 
elements. Often a group is represented by a set of 
ordinary numbers each of which may be considered 
as the square single-dimensional matrix.

Irreducible representations. How is that?! some readers 
may exclaim. All was going so well, we have ascer­
tained that the definite set of square matrices may em­
body the group multiplication table and all of a sud­
den in the end it turns out that there is an infinite num­
ber of such sets... . Then how to use them and 
which set to prefer?

* This implies that the set of: matrices discussed consti­
tutes a group as well.
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Maybe one can choose some “privileged” sets? others 
would ask.

Yes, one can. Physicists and mathematicians do 
it in exactly this way. They call these “privileged” 
representations of one or another group irreducible. 
The meaning of this word is rather difficult to explicate 
in simple terms here. In general outlines the situa­
tion is this. There are certain rules (transformations) 
making it possible to convert one representation, i.e. 
one set of square matrices, into another. Sometimes 
one can find a representation leading to “simpler” 
matrices possessing a lesser dimension compared 
with the initial matrices. If we can simplify matrices 
of a given representation by choosing the relevant 
algebraic transformation, such a representation is 
referred to as a reducible one. If we find no transforma­
tion simplifying initial matrices the representation 
consisting of such matrices is called an irreducible one.

Often, as a result of a consecutive reduction of the 
representation whose matrices have the high dimension 
of 6 or 7, for example, we may come to three- or two- 
dimensional matrices, or even single-dimensional 
matrices (i.e. numbers) that are much easier to work 
with as compared to initial “Brobdingnagian” matri­
ces. But convenience is not the only point. The study 
of irreducible representations (IR, in abbreviated 
form) showed that they possessed some properties 
making them useful for applications in physics and 
chemistry. Besides, the number of IRs is finite for 
all symmetry groups with a finite number of elements.

One may approach the concept of irreducible repre­
sentation somewhat differently. We should recall 
that matrices constituting the representation of a 
group were defined with a set of functions. Suppose 
there were m such functions. What is more, we have 
ascertained (see p. 37) that under symmetry transfor-
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mations the functions of that set transform into one 
another linearly. It may so happen that symmetry 
transformations will break up m functions of the 
initial set into separate families (subsets) of m1? m2, ... 
functions each. Of course, the total number of func­
tions) will not change, i.e. m1 +  m2 +  • • . = m. 
The breaking up into families will be accomplished 
in such a way that all symmetry operations transform 
the functions within a subset into one another and 
do not affect the functions of neighbouring subsets. 
In this case it is customary to say that the representa­
tion in question is reducible. But if it is impossible to 
decrease the number of the initial functions transform­
ing into one another, i.e. if the initial set of functions 
cannot be disjoined or decomposed, the representa­
tion engendered by this initial set is called irreducible.

Symmetry 
and Molecular 
Orbitals

Having got familiar in a general way with certain 
concepts of symmetry theory we have to answer now 
the following question: what has all this to do with 
quantum chemistry?

Concept of orbital. In quantum mechanics electron 
states of one or another micro-object (an atom or a mole­
cule) are described by the wave function which depends 
on the coordinates of all electrons of the system

¥ (Xj, x2, . . ., XN)
where x t denotes the set of three spatial coordinates 
of the ith particle.* The wave function contains all

* The wave function may also depend on spin characteris­
tics of particles, but we do not take this into account here.
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the information about the state of a quantum mecha­
nical system that can be experimentally verified, and 
permits computing the probabilities of possible results 
of any measurements of the system. For example, the 
square of the absolute value of the wave function

I'Ffci, x2, . . . ,  xiV) |2

describes the probability of simultaneous location 
of the first particle at the point xly the second at the 
point x2, etc.

This distribution of probabilities is often depicted 
graphically as the electron cloud of one or another 
shape.

Strictly speaking, in the case of a system with many 
electrons the wave function can describe only the 
state of the system viewed as a whole (i.e. the state 
of the whole atom or the whole molecule), but not the 
states of individual electrons. The latter is impossible 
because electrons are “not indifferent” to each other 
and the Coulomb repulsion forces acting between them 
are considerable. When we write down the electronic 
formula of some atom, for example, nitrogen: ls22s22ps,
i.e.* describe each electron by its own wave function 
(and attribute to each electron its own set of quantum 
numbers), we diverge from the rigorous treatment. The 
approach we employ here is called the one-electron 
approximation.

The methods of description of atoms, molecules and 
solids in terms of the one-electron wave functions 
(such functions are called orbitals) have found a wide 
application in modern quantum chemistry, one of 
its most popular methods being the method of molecular 
orbitals (MO method). The principal idea of the method 
involves the assumption that the electrons in a mole­
cule are located at one-electron levels (molecular 
orbitals) just like electrons in atoms are located in
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atomic orbitals, i.e. in accordance with the Pauli 
principle, the filling of orbitals being effected in the 
order of the increase of MO’s energies.

Usually molecular orbitals are made up as the 
linear combination of atomic orbitals (LCAO) of atoms 
comprising the system.

It often happens that one value of energy is associa­
ted with several one-electron wave functions, that is 
several, for example, /, orbitals. In this case the state 
is said to be degenerate, the order of degeneracy being/. 
For example, all three p-states in an isolated atom have 
the same energy, or, in other words, are triply degene­
rate. The order of degeneracy of d-orbitals is five.

In terms of symmetry theory... In terms of symmetry 
theory the most important circumstance is that under 
transformations of the symmetry groups the wave functions 
corresponding to the same energy are expressed through 
one another. The matrices obtained in these transforma­
tions produce the irreducible representation of the given 
group, their dimension being equal to the order of dege­
neracy.

This may be depicted in a schematic form (oo sign 
means correspondence; R ly i?2» etc. are symbols for 
symmetry operations):

r

E l

r  matrix of dimension

cop?!, V2, ..., V/JodIR.
/ 00 Ri,
matrix of dimension

V .........  etc.
Molecular /  molecular

energy level orbitals
w ith the or­
der of dege­

neracy /.

This relation permits bringing every energy level E 
of a molecule into correspondence with a certain irreduc-
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ible representation of its symmetry group. (Incidentally 
it is not necessary to assume only one-electron levels 
of energy. A certain IR of symmetry group of the 
system may be brought into correspondence with 
each “true” atomic or molecular energy level.) This 
result is very important. Symmetry may be one and 
the same for quite different molecules both in terms 
of the composition and the nature of chemical bonds, 
and group theory, due to its abstract character, makes 
it possible to obtain some general but precise data 
on the structure and properties of diverse molecular 
systems.

Water again... As an example illustrating the afore­
said let us take the water molecule again. Its symmetry 
point group C2V has four IRs of single dimension. 
From this one can conclude that the water molecule 
has no degenerate levels. Note the beauty of the 
result obtained: we knew only the geometry of the 
molecule and even then' not all the details as we were 
not interested in either the length of the H—0 bond 
or the precise HOH angle, and still we could draw 
certain conclusions about the structure of energy 
levels. It should be pointed out that this result will 
be valid for any molecule possessing C2V symmetry 
(H2S, S02, etc.) regardless of the method of calcula­
tion.

In the next chapter we shall elaborate in more detail 
the results that could be derived on the basis of “sym­
metry considerations’’.

See the table. Well, i t ’s O.K., some readers might say, 
but to get even those general results one must know 
how many and what kind of IRs each symmetry 
group possesses.
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Quite true, one must know it. To the chemists4 
benefit mathematicians have already done this work a 
long time ago. They have worked out special tables— 
the “character tables”, as they are called—from which 
one can get a great deal of diverse information about 
the irreducible representations, for example, what 
IRs are there in the given group and how many. 
Forasmuch as we do not intend to teach the reader 
how to employ group theory in specific calculations, 
there is no need to reproduce these tables here in the 
form they are presented in scientific publications. 
We shall only show how many and what kind of IRs 
one or another symmetry group has. In Table 4 only
TABLE 4

Group Irreducible representations

c 2 A, B
C2v Ai, A2, Bi , B2

Osv Ai, A2, E
Cih Ag, Bg, Au, Bn
&2h Ag, B1g, B2g, B3g, Au, B1U, B2Ui B3U
D\h Aig, A2g, Bigy B2g, Eg, Alu, A2U, Bin, B2LL, Eu
Td Aj, A2, E, 7\ ,  T2

o h A\gi A2g, Eg, T1g, T2g, Alu, A2U, Eu, Tlu, T2U

the most frequent groups are listed. But let us first 
get acquainted with the IR notation. The most com­
mon is the notation proposed by R.S. Mulliken* 
in the early thirties.

* Robert Sanderson Mulliken, born 1896, American 
scientist, creator of the method of molecular orbitals. Nobel Prize 
winner. Also known for his work in the field of molecular 
spectroscopy.
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Mulliken*s notation. 1. All the single-dimensional re- 
presentations (/ =  1) are denoted by either the symbol 
A or B; the two-dimensional (/ =  2) by the symbol E, 
and the three-dimensional (/ =  3) by T.

2. If after rotation through an angle of 3607/2 about 
the principal axis Cn the function transforming accord­
ing to the single-dimensional representation does not 
change sign, the single-dimensional representation 
is denoted by the letter A , if the sign changes, i.e.

Operation Cn »>--> ¥  > — 'F

the IR is denoted by the letter B .
3. Besides, if a molecule possesses C2 axes perpen­

dicular to the principal axis or ov (and ad) planes, 
the function Y may either change sign after correspond­
ing rotations and reflections or not. If the function 
changes sign the letter A or B is supplemented with 
the subscript 1 {Ax or B2), if not, with the subscript 2 
(A 2 or B 2)»

Similar subscripts may be seen with the symbols E 
and T, but in that case the notation rules are more 
complicated. For our purpose it is sufficient to regard 
these subscripts as some labels making it possible 
to discern one IR from another.

4. The subscripts g and u by the IR symbol indicate 
how the function T* behaves in the inversion operation, 
whether it changes sign (subscript u for “ungerade”, 
German for “odd”) or not (g for “gerade”, German for 
“even”).

As an example we shall consider the tetrahedron 
group Td, especially as we are supposed to deal with 
the molecules belonging to this group many times in 
the future. This group has five IRs of which two are 
single-dimensional, one two-dimensional and two 
three-dimensional. Let us first examine the single­
dimensional IRs. The tetrahedron has eight C3 axes.
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all of which are principal. The wave function trans­
forming according to any of the single-dimensional 
IRs does not change at all when it undergoes the C3 
operation:

C3 »>_>

Therefore both single-dimensional IRs ought to be 
denoted by the letter A. The difference between them 
may be observed when the C3 operation is replaced 
by the ad operation. In this case some functions, those 
which are transformed according to the single-dimen­
sional IR, do not change sign:

ad >»—>

and some do:
ad »>_>¥-+ —T

The former functions are classified under the irredu­
cible representation A x and the latter under A 2.

5. As to the Cs group as well as the Dnh and Cnh 
groups with an odd h, their IRs of the same dimension 
are denoted by one or two strokes over the letter sym­
bol, depending on whether the T* function changes 
sign under the Gh operation or not.

For example, four IRs of the C3h group are denoted 
by the symbols A \  E r if the function does not change 
sign under the ah reflection, and A", E" if it does.

6. As a rule different notation is used for the con­
tinuous groups Dooh and CooV. Single-dimensional 
IRs are designated by the letter 2 , two-dimensional 
IRs by the letters 11, A, O, etc. Besides, the symbols 
are supplemented with a superscript +  or — which 
specifies the function behaviour in operations of re­
flection in 0  ̂ planes. The number of such planes in 
these groups is infinite. The IR designations of the 
Dooh group also have the parity subscripts g and u.
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In scientific publications the same designations are 
sometimes used both for these groups and for the 
finite groups. Strictly speaking, this notation is not 
good enough but we shall be using it all the same. The 
relationship between two notations—“strict” and 
“nonstrict”—is presented below for the D group:

00 K  0 9  Alu; Ug od Elg\ Ag od E2g 

0 °  A2g] 2 U OD A2u] n u 0D^lu; Att OD E2U1 etc.

Symmetry of atomic orbitals. In the one-electron appro­
ximation the motion of electrons is described by means 
of the concept of atomic orbitals (AOs), i.e. functions 
dependent on three spatial coordinates (x , y , z) of 
an electron or, in spherical coordinates, (r, 0, 9) 
(Fig. 16fe). We shall denote such a function by 
O (r, 0, cp). Assuming, as it is common practice to do, 
that the field of force in an atom is spherically symmetri­
cal, atomic orbitals can be represented as

®nlm(r, 0, cp) = Rnl (r) Y f  (0, cp)
where R ni(r) is the function dependent only on the 
distance between the electron and the nucleus and 
called the radial function, Yj71 (0, cp) is the so-called 
spherical function dependent only on the angles 0 
and q>. The angular momentum quantum number I 
(1=  0, 1, 2, . . .) determines the square of the one- 
electron angular momentum h2l (I +  1). The magnetic 
quantum number m (m = 0, ± 1, ± 2, . . ., ±1) de­
scribes the projection of the one-electron angular mo­
mentum on the quantization axis. And, finally, the 
principal quantum number n labels the orbital energy 
levels Eni, corresponding to the same Z, in the order 
of their increase, with positive integers starting from 
(Z +  1). The AOs are denoted by the letters s, p , d, 
/, g, . . .  corresponding to the values of the quantum
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dumber I = 0, 1, 2, 3, 4, . . .  . The value of n is 
written before the letter, the value of m being shown 
as the subscript, for example, 2p 0, 2p±i,etc. Depend­
ing on the absolute value of the quantum number m the 
orbitals may be of the type a (| m | =  0), jt (| m | =  1) 
and 6 (] m \ = 2).

The expression pnl (r) =  r2R 2i (r) characterizes the 
probability of electron localization at the distance r 
from the nucleus while r (0) =  | Y f  (0, cp) |2 is the 
probability distribution along the directions defined 
by the angles 0 and cp*. The “total” distribution of 
the orbital electron density in an atom is given by the 
function

9nlm(ri 0? <P) — I ^ n i m  ( r ,  0, <p) |2 

(see Fig. 16fc).
The AOs discussed earlier include the imaginary num­

ber i = Y  —1, i.e. they are complex. However, wider 
application has been gained by the real AOs which 
are linear combinations of the complex AOs (Fig. 16c).

The real AOs can be obtained from the com­
plex AOs On/m via the following expressions:

=  1/ 1 / 2  [0 >n,m +  ( - 1)» (Dnl. _m]

$nj. -u = 1/ 1 / 2  [<D„Im- ( - l ) m<D„z, -ml 
where p =  | m |.

The real AOs have no corresponding states with 
the definite quantum number m, and the symmetry of 
diagrams representing these AOs may be nonaxial.

We have already mentioned that the continuous 
0(3) group is the point group of symmetry of an 
atom. The group includes every possible rotation 
about the axis passing through the atom’s nucleus

* Note that the r (0) function does not depend on the angle 
cp so that the corresponding distribution of electron density 
possesses an axial symmetry (Fig. 166).
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regarded as a point and reflections in all innumerable 
planes containing the nucleus. Like any other group, 
0(3) has the irreducible representations, although in 
this case there are an infinite number of them. The 
IRs of the 0(3) group are usually denoted by the 
symbol DW where I is the angular momentum quan­
tum number. Thus, in terms of group theory the quan­
tum number I labels the IRs of the 0(3) group.

For every value of I there are (21 +  1) different va­
lues of the so-called magnetic quantum number m 
which defines the projection of the orbital angular 
momentum onto any z axis. The number of possible 
values of m, that is (21 -f- 1), is equal to the dimen­
sion of the IR.

Thus, for example, O (0) is the single-dimensional 
(2Z +  1 =  2-0 +  1 =  1) IR of the 0(3) group. All 
atomic s orbitals (Is, 2s, 3s, etc.) are transformed 
according to this IR. The irreducible representation 
D(1) is three-dimensional (21 -f- 1 =2*1 +  1 = 3 ) .  
Three p AOs (both complex and real) are transformed 
according to it, while five d orbitals are transformed 
according to the 0 (2) IR, etc.

Unsold’s theorem. What is the actual spatial distribu­
tion of electron density obtained in terms of the one- 
electron approximation? The answer was provided 
by Unsold* (1927) who demonstrated that since the 
population density of all AOs with the given n and I 
(but different m) is equally probable statistically, 
the probability density averaged over different

* Albrecht Otto Johannes Unsold, born 1905, German 
physicist and astrophysicist. Worked at Munich, Hamburg and 
Kiel (GFR). Known for his research in astrophysics, especially 
stellar atmospheres.
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m possesses the spherical symmetry (Fig. 16a):
m= + l

2  l ® n z m ( r ,  0 ,  < P ) I 2 =  —
m=-l

whereas the symmetry of an individual AO may differ 
(for example, may be depicted in the form of a “dumb­
bell”). Thus Unsold demarcated the notions of the 
AO symmetry and the symmetry of an atom or, more 
exactly, the symmetry of the electron density distri­
bution in an atom. J.H. Van Vleck called Unsold’s 
result “one of the first triumphs of quantum mechanics 
in chemistry”.



Chapter Three 

SYMMETRY
AND STEREOCHEMISTRY

The meticulous observation of 
reality indicates that its spa­
tial relationships—manifesta­
tions of symmetry—lend the 
basis for all physical and che­
mical phenomena that we study.

V.I. Vernadsky

Stereochemistry (from “arepeo”, Greek for “solid”) 
is the science about the spatial disposition of atoms 
in a molecule. From this definition it follows that 
stereochemistry relates directly to symmetry of a 
system. This is not, however, the mutual one-to-one 
relation since the stereochemical characteristics may 
be different for different molecules even if they possess 
the same symmetry. For example, such different geo­
metric configurations as the square pyramid (the IF5 
molecule—Fig. 17a) and the bipyramid (the SFBC1 
molecule—Fig. 17&) possess the same C40 symmetry.
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The principal problem of stereochemistry is the 
relationship between the composition (stoichiometry) 
of molecules and the spatial configuration of their 
nuclei. That is why we shall first consider the simple 
theoretical models that permit correlating these two 
aspects.

First Variation 
on the Theme 
of Coulomb Law

Bakerian lecture of 1940. The British Royal Society 
maintains the tradition of holding annually the so- 
called Bakerian lecture dedicated to the urgent scien­
tific problems. That was the last will made by the 
famous British naturalist Henry Baker (1698-1774). 
Two British scientists, N.V. Sidgwick* and H.M. Po­
well**, were invited to deliver the Bakerian lecture 
of 1940. Their lecture was dedicated to problems of 
inorganic stereochemistry. The authors had analysed 
an enormous amount of data. Suffice it to say that 
the lecture submitted for publication covered 17 pages 
in a journal and quoted 357 references to experimental 
investigations of molecular geometry. The authors 
proposed a simple model making it possible to corre-

* Nevil Vincent Sidgwick (1873-1952), prominent British 
chemist, chairman of the Faraday Society of long standing, a 
specialist in electronic theory of valency and chemical bond 
(the coordination bond in particular). Investigated nitrogen- 
containing organic compounds.
;  ̂ ** Herbert Marcus Powell, born 1906, British chemist and 
crystallographer, professor of Cambridge University; X-ray 
studies of crystal structure of various compounds, primarily 
complexes of transition metals. Originated a new class of mole­
cular compounds (clathrates) in which one atom or molecule is 
enclosed in a cavity (“cage”) formed by a crystal structure of 
some substance.!
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late the composition of a molecule and its geometry,
i.e. stoichiometry and stereochemistry. True, the 
model could not solve all stereochemical problems and 
was confined to the less pretentious task of determin­
ing the type of a nuclear polyhedron, i.e. the skeleton 
of a molecule.

LEP model. In accordance with the model of localized 
electron pairs (LEP, in abbreviated form) the arrange­
ment of chemical bonds around an atom depends on 
the number of its valence electron pairs. Due to the 
mutual repulsion of electrons the most advantageous 
arrangement of electron pairs corresponding to the 
minimum repulsion will be' their maximum separa­
tion.

Now let us recall how the force F acting between 
two point charges depends on the distance r between 
them. According to the Coulomb law it is inversely 
proportional to the square of the distance:

F oo l/r*

However, the valence electrons of an atom some­
times disobey this law. R.G. Gillespie* suggested that 
the interaction force changes in inverse proportion to 
the interelectronic distance with an exponent differing, 
in general, from 2:

F oo l / rn

Assuming the spherical symmetry of the atomic ker­
nel we have to expound the following problem.

Given: the number of electron pairs is equal to q.

* Ronald James Gillespie (born 1924), Canadian chemist, was 
born and educated in London, where he worked as a lecturer for 
some time. In 1960 left for Canada. Now professor of chemistry 
at the McMaster University, Hamilton, Ontario,
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Required: to distribute them over the sphere surface 
so that the distance between them is the greatest (and 
the repulsion, correspondingly, the least).

The solution of this problem proved that both laws, 
e.g. 1/r2 (exact Coulomb) and l /rn (n >  2), led to 
the same results with the exception of the case when 
the number of electron pairs is seven (and, probably, 
10)*.

This simple model may be supplemented with three 
amendments.

Gillespie and Nyholm amendments. Until now we have 
been discussing electron pairs without specifying 
what pairs in particular we imply: whether those 
participating in the chemical bond formation or 
lone electron pairs.

Gillespie and Nyholm** showed in 1957 that the 
LEP model gets essentially improved if the following 
amendments are made:

1. The effective dimensions of the space volume 
occupied by a pair of shared electrons are less than 
those of the space volume in which lone electron pairs 
move.

2. If the central atom is surrounded with the li­
gands*** capable of drawing off electron density to

* For q =  7 a pentagonal bipyramid is obtained for 
n =  2 (IF7, UF$", U 02Fg"), a trigonal prism with the seventh 
electron pair located opposite one of the rectangular faces for 
2 <  n <  6 (TaFf", NbF^-) and an irregular octahedron with 
the seventh electron pair located opposite the centre of one of 
the octahedron faces for n >  6 (the oxides of La, Ce, Pr, Nd).

** Ronald Sidney Nyholm (1917-1971), professor of London 
University. His basic works are dedicated to synthesis of complex 
compounds of transition metals as well as stereochemistry and 
spectral and magnetic properties.

*** Ligands are atoms or groups of atoms located around 
the central^atom.
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themselves, the shared electrons spend most of the 
time near the ligands and therefore the effective space 
volume occupied by these electrons in the vicinity 
of the central atom is diminished.

3. Two electron pairs responsible for the double 
bond (or three pairs of the triple bond) occupy more 
space around the central atom than one pair of the 
ordinary bond.

Model in action. Merits ... And now let us see how 
the LEP model works. Table 5 shows the anticipated 
TABLE 5

Number 
of LEP Configuration

2 Linear
3 Equilateral triangle
4 Tetrahedron
5 Trigonal bipyramid
6 Octahedron
7 Octahedron with an additional apex or pentago­

nal bipyramid (n — 2)
8 Square antiprism
9 Trigonal prism with three additional apices

10 Square antiprism with two additional apices
11 Icosahedron without one apex
12 Icosahedron

N o te .  For better understanding of the terms of Table 5 some geomet­
ric figures are pictured below (see also Fig. 19).

Icosahedron Square 
antiprism
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relationship between the total number of electron 
pairs and the geometry of a molecule.

We shall first examine molecules with all valence 
electron pairs shared, i.e. involved in the chemical 
bond formation.

Well, and what if there are some lone electron 
pairs as in the water molecule in which two out of 
the four pairs are lone? In this case the water molecule 
configuration may be con­
ceived as the tetrahedron 
with two “empty” apices 
(Fig. 18), i.e. the water mole­
cule is imagined as the “frag­
ment” of the tetrahedron.

Fig. 19 illustrates space FIG. 18 
configurations of the
AXnEm molecules (where A stands for the central 
atom, X for the univalent ligand, one shared electron 
pair, E for the lone electron pair) and some of them 
are reviewed in Table 6.

The LEP model enables the conclusions about the 
arrangement of nuclei in a molecule and consequently 
its symmetry to be made on the basis of simple con­
siderations. It becomes clear why the molecules of 
similar composition such as BF3 and NF3 belong to 
different point groups (D3h and C3u respectively). 
This is due to the fact that in the first case the mole­
cule belongs to the AX3 type while in the second it is 
a “fragment” of the tetrahedron AX3E. What is 
more, the first amendment by Gillespie and Nyholm 
predicts a decrease of the valence angle in the series 
CH4, NH3, H20 where the number of lone electron 
pairs grows from left to right:

CH4 
no lone 
electron 

pairs

:n h 3 h 2o :
one lone two lone
electron electron

pair pairs
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TABLE 6

Tyre of 
molecule Configuration Examples

a x 3 Regular triangle BX3 (X =  F, Cl, Br, CH3), 
A1C13, S03, Sb (CH3)|+

a x 2e V-shaped 0 3, PbX2, SnX2 (X =  C1, 
Br, I)

a x 4 Tetrahedron CH4, NHj, BH;, SiCl4, 
GaH4-, AlHj, InClj, Xe04

a x3e Triangular pyramid NH3, H30 +, SnCli, 
SnCl2 H20, PX3(X =  H, F, 
Cl, Br, I)

a x 2e 2 V-shaped H20, NHj, f 2o, h 2s, i c u ,
BrFJ, C1J

a x b Trigonal bipyramid PCI5, SiFj, SnClB, SOF4, 
I0 2F3 (?)

a x4e Bisphenoid SF4, (CH3)2TeCl2, I0 2F j, 
IFJ, Xe02F2

a x 3e 2 T-shaped C1F3, BrF3, C6H5IC12
a x 2e 3 Linear Ij, IC12, IBrCl-, IBr3
a x . Octahedron SFe, XeOJ", IO|-, IOF6, 

IFf, Te(OH)„ PFy, SbFf, 
Al(H2Oft

a x5e Square pyramid SbClg-, Bid*-, TeFB, IF5, 
BrF5, XeF+

a x 4e 2 Square IClr, I2C16, XeF4, 
Te[SC(NH2)2]2 Cl2

Each new electron pair that does not participate 
directly in the chemical bond formation forces the 
shared electron pairs to make room which results 
in a decrease of the valence angle:

CH4 n h 3 h 2o
Z  HCH zzt 109° Z  HNH 107° ^ H O H « 1 0 5 °
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The second amendment subscribes, for example, to 
the conclusion that the angle HCH in the ethylene 
molecule must be greater than the angle FCF in the 
1,1-difluorethylene molecule

H\  / H F\  / H117° approx. C=G^ 110° approx. C=C
H / \ H  F/  X H

And finally, the third amendment indicates that 
the configuration of molecules with double and triple 
bonds between central atoms and ligands can be 
predicted from the assumption that two or three 
electron pairs of the multiple bond together occupy 
the space destined for one electron pair of a univalent 
ligand.

... and drawbacks. One may quote many drawbacks and 
inadequacies of the LEP model but we shall point 
out only two of them. First, the LEP model does not 
allow for the peculiarities of ligands and the interac­
tion between them. As the ligand size grows the pre­
dicting capabilities of the model decline dramatically. 
Second, it does not take into account what particular 
atomic and molecular orbitals (AO and MO) are 
occupied by electrons. Consequently, the model can­
not explain why the BeF2 molecule (q = 2) is linear 
while the MgF2 molecule (q = 2) is not.

Electrostatic models rendered assistance to chemists 
more than once—recall, for example, the ionic model. 
But one should not expect too much from electrosta­
tics. Chemistry cannot be squeezed into the narrow 
frame of the Coulomb law.
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Second Variation 
on the Theme 
of Coulomb Law

Idea of Emanuele Paterno. By the seventies of the last 
century the idea of the carbon tetrahedron was already 
“floating in the air”. By that time chemists had ela­
borated the concept of equivalence of four valence 
units in the carbon atom. The historians of science 
are inclined to connect the emergence of the tetrahed­
ral model for the carbon atom having four identical 
bonds, directed toward the corners of a tetrahedron, 
in the centre of which the carbon atom is located, 
with the names of Van’t Hoff* and Le Bel** and date 
it back to 1874. For the sake of justice, though, it 
should be pointed out that the hydrocarbon tetra­
hedron model was proposed five years earlier by the 
Italian chemist Paterno***. Since that time the 
tetrahedron model for the methane molecule in which 
all four G—H bonds are equivalent and the angle 
between them is equal to 109°28' became classical.

Linus Pauling’s idea. One should note that more than 
once the methane molecule supplied the theoreticians 
with the motive for meditation. The relative lull in 
the “hydrocarbon” section of theoretical organic che-

* Jacobus Hendricus Van’t Hoff (1852-1911), Dutch che­
mist, one of the founders of modern physical chemistry and ste­
reochemistry. Worked in a number of European universities 
and laboratories. The first Nobel prize winner in chemistry.

** Joseph Achille Le Bel (1847-1930), French chemist, 
student of Cn. Wurtz, one of the founders of stereochemistry. 
Independently of J.H. Van’t Hoff advanced the theory of optical 
activity having related it to molecular asymmetry.

*** Emanuele Paterno (1847-1936), Italian chemist, pro­
fessor of universities in Palermo and Rome; known for his works 
in physical, inorganic and organic chemistry.

63



mistry lasted till the mid-twenties of this century. 
The trouble began as soon as the electronic structure 
of the carbon atom was elucidated.

The carbon atom is known to have the following 
configuration in the ground state:

Is2 2 s 2 2p2

Thus the carbon atom has only two unshared elec­
trons (2p2) in the ground state and in order to form 
four bonds the atom needs to be excited:

Is2
ED ED It l t i  i 418k J/g-atom, app. I s 2 2 s 1 2p3

ED □  EE0

Butvit^was still inexplicable why all four bonds in 
the methane molecule are equivalent and form the 
space tetrahedron. After all, the 2s and 2p electrons 
differ quite essentially (recall, for instance, the diffe­
rence in the shapes of electron clouds), besides, the 2p 
electron “dumb-bells” are located at an angle of 90° 
to each other while the HGH angle is equal to 109°28'. 
To overcome the difficulty L. Pauling*, J. Slater**

* Linus Carl Pauling, born 1901, famous American physi­
cist and chemist. Such achievements of quantum chemistry as 
the hybridization theory, concept of resonance, electro­
negativity, etc. are related to Pauling’s name. Made enormous 
contribution to molecular biology (research in structure of pro­
tein, etc.). Nobel prize in chemistry (1954) and Nobel Peace 
prize (1962).

** John Clarke Slater, born 1900, prominent American 
physicist and chemist, one of the founders of quantum chemistry, 
distinguished for his work in solid state physics and electronics.
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and, independently, R.
Mulliken and F. Hund* 
advanced in 1931 the con­
ception of electron cloud 
hybridization. In accord­
ance with their model the 
four electrons of the car­
bon atom find themselves 
not in the different (2s and 
2p) states but in the identi­
cal states which kind of 
sum up from the 2s and 2p 
states. As a result, four 
equivalent tetrahedrally 
directed hybridized electron 
clouds are formed (Fig. 20). 3

The elongated shape of fig. 20 
the hybridized electron
clouds ensures their adequate overlapping, i.e. fosters 
“condensation” of the negative charge which attracts 
the nuclei and makes the chemical bonding stronger.

Every hybridized electron cloud is described by 
the wave function which is the linear combination 
of the 2s and 2p functions:

^ h y b r  =  ^  2 S ^  2S~\~ ^  2 p  ̂  2 p  x ~\~ ^  2 p  2 p  y ~\~ ^  2 p  ̂  2 P  z

The coefficients C2sy C2P , C2P , C2p define the
x  y  r  z

contribution that one or another atomic orbital sub­
mits to the hybrid formed. The hybridization concep­
tion has been widely adopted in chemistry and espe­
cially in organic chemistry. However, in spite of all

* Friedrich Hund, born 1896, German physicist, one of 
the founders of the method of molecular orbitals. Basic research 
in quantum theory of atoms and molecules, Mendeleev’s Peri­
odic Table of elements and spectroscopy.
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the merits of the model one should not forget that 
from the very beginning it ran into...

... some difficulties. Unfortunately the choice of hybri­
dization type is not unique for molecules of the same 
symmetry. So besides the sp3 hybridization (when 
one s and three p functions participate in the linear 
combination) the sd? hybridization (one s AO and 
three d AOs) is also possible for methane, both describ­
ing the same Td symmetry. In order to choose some 
definite type of hybridization one has to calculate 
the coefficients. In the carbon atom, for instance, the 
3d electron energy is much higher than that of 25 
and 2p electrons and the coefficients corresponding 
to the d AO are expected to be very small. This is the 
evidence that the formation of chemical bonding in 
the methane molecule does not involve any 3d elec­
trons. It is due to this fact that the CH4 molecule is 
described by means of the sp3 hybridization.

Pauling’s criterion. Pauling suggested the following 
hybridization criterion: the chemical bond energy is 
proportional to the degree of overlapping of atomic 
wave functions (electron clouds) which may be either 
hybridized or ordinary AOs.

A bit of history. In Copenhagen at the N. Bohr Archives 
a notebook is kept in which L. Pauling was making 
his draft records in 1927-28. Having analysed that 
document we realized that the impetus that led Paul­
ing to the creation of the hybridization concept was 
given by his acquaintance with E. Schrodinger’s 
paper devoted to the Stark effect in a hydrogen atom. 
The Stark effect is the alteration of energy levels 
in atoms, molecules and solids in the presence of 
electric field. This alteration is detected as shifting
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and splitting of spectral lines. The wave functions W 
describing the state of a hydrogen atom in the axial 
electric field are the linear combinations of the wave 
functions of an isolated atom, for example:

= (̂ 200 +  2 
* 2=('Ir2oo-’l'2io)/l/ 2, etc.

(The subscripts correspond to the values of the quantum 
numbers n, I and m respectively.) The functions 
and T"2 represent the hybrid orbitals (sp0 hybridiza­
tion) while T*2i, ± l AOs stay nonhybridized in the 
case considered. Note that in a free hydrogen atom 
the electron energy depends only on n. For other 
atoms energy levels depend on both n and Z. But 
even in this case one may expect the AOs from the 
same shell (i.e. having the same n but different Z) 
to get mixed, provided the energy difference between 
the levels Enl and En\ is small compared to the energy 
of the external field. From Pauling’s viewpoint such 
a situation has to develop in molecules in which 
atoms are located in the electric field of nuclei and 
electrons. Due to the anisotropy of this field the electron 
angular momentum is not maintained and the quantum 
number Z loses its meaning. Consequently, it turns 
out to be possible for the AOs possessing both equal 
and different Z’s to get mixed. This gives rise to hybrid 
AOs (HAOs). Frequently HAOs are called equivalent 
because under transformations of the molecular sym­
metry point group they are converted into one another, 
i.e. are transformed according to the reducible repre­
sentation of the molecular symmetry group. In the case 
of methane, for example, such representation is four­
dimensional.

Such is the chemical aspect of the problem. But 
there is also the physical approach to it.
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Symmetry without hybridization. As we have already 
seen the hybridization type is closely related to the 
symmetry point group to which the molecule belongs. 
Let us consider this fact at greater length. In contrast 
to the foregoing summary we shall proceed from the 
method of molecular orbitals introducing them as 
the LCAO. However, we must include in the linear 
combination only those AOs which are transformed 
according to the irreducible representations of the 
symmetry group of the molecule. The Td group to 
which the methane molecule belongs has five IRs: 
A1? A 2, E, T2. The detailed analysis reveals that
the 2s AO of the carbon atom and the sum of the 
15 AOs of the hydrogen atom are transformed according 
to the A ± IR. Table 7 also shows the linear combina-
TABLE 7

IR Carbon AO LCAO of hydrogen

■^1 2s °1 +  a 2 +  a 3 +  a 4
2 Px 01 +  <*2 — — 04
2Py 01 — 02 +  03 — 04
2Pz 01 02 03 +  04

N o t e .  The hydrogen Is AOs are denoted by a-. The numeration ot 
hydrogen atoms is shown in Fig. 20.

tions of the hydrogen AOs which are transformed accord­
ing to the T 2 IR. The other IRs have no correspond­
ing combinations of the hydrogen AOs or the carbon 
AOs involved in the chemical bonding.*

* The carbon Is AOs are transformed according to the 
IR and 3d AOs according to the E and T2 IRs, but neither 

the former nor the latter participate effectively in the bond for­
mation.
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According to the data of Table 7 the MOs must have 
the following form:

= «*,„+& (a, +  o2 +  a3+ a4)
=  eVtPx + d ( a 1 +  a2- a a-  ot )

Y(3t *> = eVtPv + d(o1-  a2 +  a3 -  a4)

= cY2Pz+d((y1 — a2 — a3 + ai)

where a, b, c and d are the numerical coefficients. So 
the carbon AOs in CH4 turn out to be nonhybridized 
in this case.

Meditation over results. First of all it should be 
emphasized that the MOs obtained are not localized 
between the atoms but “surround” the whole molecule. 
Besides, the calculations show that the energy corres­
ponding to the MO differs from that of the
triply degenerate level described by the xP%r*\ 1F£r*) 
and orbitals. This implies that we are bound
to get two different values for the ionization potential. 
Indeed, the experiment yields two values of energy 
for the process CH4 ->CH4 +  e": 13.2 and 22.1 eV.

This result is worth thinking over. It cannot be 
predicted if the electron structure of the CH4 molecule 
is treated as eight equivalent electrons stationed in 
four absolutely identical localized orbitals.

At first sight it seems that when we use the MO 
method according to which electrons in their motion 
surround the whole molecule, and then the method of 
valence bonds or the version of the MO method accord­
ing to which the MOs are localized between two atoms 
(the method of localized orbitals, LMO, in short), 
differing results are gained; in the latter case all 
the bonds in the methane molecule turn out to be
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equivalent and all eight electrons have the same 
energy. But this contradiction is only seeming.

Theory allows us to use both the localized MOs cor­
responding to the motion of electrons in some limited 
molecular space (between two nuclei, for example) 
and the delocalized orbitals corresponding to electrons 
that in their motion envelop all nuclei of the mole­
cule. But in terms of physics these methods differ 
from each other by their “informative’’ abilities. One 
cannot attribute the definite energy to each LMO but 
only some “average value”, so that “on the average” 
all methane LMOs are indeed the same. We have just 
seen that when the delocalized MOs are used each 
orbital has a definite energy value but the obvious 
picture of the “equalizing” distribution of electron 
density over the molecular bonds vanishes.

Besides, it should be noted that delocalized MOs 
are transformed according to the IRs of the molecular 
symmetry group while the LMOs turn one into another 
under the symmetry transformations, i.e. are trans­
formed according to the reducible representations 
of high dimension.

Thus we have discussed two comparatively simple 
models making it possible to correlate the chemical 
formula of the compound with the spatial configura­
tion of its nuclei and consequently with the symmetry 
of the nuclear polyhedron. Now we shall turn to an­
other aspect, the correlation between the spatial con­
figuration of a molecule and its electron structure. 
We shall consider the area in which the ideas of sym­
metry theory are most widely used, that is the inves­
tigation of molecular structure of complex compounds 
of transitional metals. And we start with the simplest, 
and historically first, theory of crystalline field.
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Theory 
of Crystalline 
Field (TCF)

TCF idea. In 1929 the German physicist H. Bethe 
published a paper in which the basic aspects of the 
quantum mechanical theory of the structure of com­
plex compounds were presented. Bethe’s idea con­
sisted in the following. Five d orbitals of an isolated 
atom are known to have the same energy, i.e. the 
order of degeneracy is five. But it is one thing when 
an atom is isolated and quite different when it gets 
surrounded by a few ligands. The symmetry of sur­
rounding ligands gets lower than the spherical one 
and is determined by the way the ligands are arranged 
around the central atom. For example, in the complex 
compounds [Ti(H20 )6]3+, [MnF6]4~, [Fe(CN)6]4” the
ligands are located in the apices of the octahedron 
while such compounds as TiCl4, [FeOJ2-, [VC14]~, 
[Mn04]“ have the tetrahedral configuration.

But when the symmetry of the surrounding ligands 
gets lower the degenerate energy levels split. This is 
the general law of quantum mechanics. However, one 
should not presume that the lowering of symmetry 
necessarily splits all degenerate levels. Some levels 
may stay degenerate.

Let us consider a comparatively simple example of 
the hexaquacomplex Ti(III)—[Ti(H20 )6]3+. The Ti3+ 
ion possesses one d electron extra compared with the 
argon shell [ArlSd1. The ground state of the com­
plex is 2D (L =  2, S = 1/2). This complex has the 
octahedral shape and the titanium dxy, dxz and dyz 
orbitals with the lobes located between the coordinate 
axes (Fig. 21) are absolutely symmetrical relative 
to all six ligands. Having the same energy the orbi­
tals give origin to the triply degenerate energy level.
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In the states dX2 - y 2 and dZ2 , however, the electron 
experiences stronger repulsion from the ligands as 
their electron clouds are extended along the coordinate 
axes x, y and z, i.e. directed toward the ligands. Occu­
pying these states the electron has higher energy com­
pared with the case when it occupies the dxy, dxz and 
dyz orbitals which avoid the “frontal” interaction 
with the water molecule due to the symmetry of the 
complex compound.

Thus, the five d states of the atom (ion) which were 
degenerate initially separate into two groups when 
located in the octahedral field of ligands. The orbitals 
of one group (dz 2  and dx2_^2) possess higher energy 
than the initial atom (ion) had and are twice degene­
rate while the orbitals of the other group (dxy, dxz 
and dy7) possess lower energy and are characterized by 
the triple degeneracy. The former are denoted by the 
symbol E g and the latter by T2g. Such a notation 
indicates the symmetry of orbitals, i.e. the irreducible 
representation of the Oh group according to which the 
respective wave functions (orbitals) are transformed. 
In Fig. 22 the 2D(5) term is identified with the free 
atom (ion) and 2D'(5) with the free atom or positive 
ion in the field of ligands (due to repulsion of outer
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FIG. 22

electrons the energy of all states of the term increases 
by the value E 0). E g (2) and T2g (3) are the terms which 
emerged after the splitting of the 2D' (5) term of the 
free ion in the ligand octahedral field: 2Z)'(5) —

(3) +  Eg (2). The numbers in brackets indi­
cate the order of degeneracy.

Other symmetries. Depending on the symmetry of the 
ligand arrangement around the central ion the split­
ting pattern will be different. Fig. 23 shows the split­
ting of the d orbitals of the central ion in the fields 
of different symmetry.

It is seen from the diagram that for the tetrahedral 
surrounding, as well as for the cubic one, the splitting 
of the d orbitals occurs in the fashion which is reverse 
to that characteristic for the octahedron. Besides, the 
order of degeneracy of energy levels diminishes as the
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symmetry of the complex gets lower. So passing from 
the Oh symmetry to the C4p symmetry we observe 
the splitting of the levels E g and T2g which were ini­
tially degenerate. The higher is the symmetry, the 
greater is the number of degenerate levels.

Splitting parameter. Until now we were discussing the 
splitting in the ligand field qualitatively. Now we 
shall dwell on the quantitative aspects of the pheno­
menon. Let us turn again to the octahedral complex 
[Ti(H2O)0]3+ as an example. The energy difference 
between the levels E g and T2g is usually denoted 
either by the symbol A or by 10 Dq (see Fig. 22). 
The A quantity is called the splitting parameter; 
it depends both on the nature of the central atom 
(ion) and on the nature of the ligand. Besides, A 
changes with the symmetry of the complex. For exam- 
pie, the level splitting in tetrahedral complexes is 
less than that in octahedral ones so that in most cases 
the following relation holds:

9
I A0cf | ~  I Atetr |

Note that for complexes of the Oh symmetry the 
energy of each of the two Eg orbitals is greater than
the energy E 0 by ^ A  (6Dq), i.e. the total energy

6 12increment is equal to 2 ^  A = "1qA (12Dq), The
energy of each of the three T 2g orbitals lies below the 
initial level by ^A  (4Dq) and the total lowering is

also equal to 3 ^  A =  A (12Dq).
The A parameter is the basic quantitative characte­

ristic of splitting in the case of cubic symmetry comp­
lexes (cube, octahedron, tetrahedron).
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Electronic
Transitions

Symmetry and colour. We shall get back to our hexa- 
quacomplex of Ti(III): [Ti(H20 )6]3+ possessing only 
one d electron at the T 2g level in the principal state. 
The interaction of this complex with an energy quan­
tum E =  hv =  A (v is the quantum frequency) results 
in the absorption of the quantum by the molecule 
and the promotion of the electron from the T 2g level 
to the E g level. Commonly when the transition is 
being characterized the symmetry of the initial and 
the final orbital is specified in addition to the tran­
sition energy. For instance, T 2g->Eg. Generally speak­
ing, the total spin 5 of the system may change in elec­
tronic transitions and consequently the spin multi­
plicity of the electronic term, i.e. the 25 +  1 quan­
tity, may also change. Accordingly, the value of 
25 +  1 is written as an upper index to the left of 
the symmetry symbol. True, in the previous example 
the T2g -> Eg transition is not accompanied with 
a change of the 25 +  1 value as there is only one 
electron in the T2g orbital. Thus the total spin in this 
case is equal to 1/2 and 25 +  1 =  2*1/2 +  1 = 2 .  
Therefore we may designate the electronic transition 
by the symbol 2T2g 2E g.

The experimental data show that this transition 
in the [Ti(H20 )6]3+ ion is characterized by the wave­
length of approximately 50 000 nm that corresponds 
to the absorption of the green component of the visible 
light. But the colouring of a compound is known to 
be complementary to the absorbed colour. Since the 
mixing of the red, green and blue produces the white, 
the red and blue are the colours which are comple­
mentary to the green and this particular solution has 
the violet colouring.
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Orgel’s* diagrams. It has already been established 
(see p. 75) that the value A may change from one 
ligand to another. Fig. 24 shows the relationship 
between the octahedral and tetrahedral splittings 
for the case of one d electron. The diagrams of the 
type shown in Fig. 24 are referred to as OrgeVs dia­
grams.

The right part of Orgel’s diagram shows the split­
ting of the initial atomic term vs the A value for the 
Oh symmetry complexes with the d1 and d6 electron 
configurations of the central atom (ion) as well as 
for the tetrahedral (Td) coordination with the d4 and 
d9 configurations. The left part of the diagram refers 
to the octahedron with the d4 and d9 and the tetrahed­
ron with the d1 and d6 electron configurations of the 
central atom (ion).

In other cases Orgel’s diagrams are more compli­
cated and we shall not consider them here.

FIG. 24

* Leslie Orgel, born 1927, worked in Oxford and Cambridge 
Universities, professor of University of California since 
1964. Studied tbe stucture of complex compounds of 
transition elements; known for his research devoted to the origin 
of life and molecular evolution.
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Laporte*s* rule. In a free atom or ion not all electron­
ic transitions are permitted. There are special rules, 
called selection rules, which forbid certain transitions.

In the complex compounds formed by transitional 
elements the electronic transition induced by the 
visible or ultraviolet light quantum will be observed 
between two d orbitals of different energies as it 
follows from the model of a complex adopted in the 
theory of crystalline field. But still there are some 
transitions in a free atom (ion) that are forbidden. 
Such are the transitions for which:

(a) the number of unpaired electrons changes (these 
transitions are said to be forbidden in terms of spin);

(b) the parity does not change.
In other words, permitted are only the transitions 

between the states of different parity: g u (the 
Laporte rule)**.

Since the atomic states with the same quantum num­
ber I have the same parity (see p. 49) the electronic 
transitions between them are forbidden according 
to the Laporte rule; in particular, d-d transitions 
are forbidden.

But when an atom or ion is involved in a complex 
compound as a central atom both kinds of forbidden­
ness may be revoked. Whether the forbiddenness is 
really revoked depends on many factors including 
symmetries of complexes.

Theory predicts that in octahedral complexes pos­
sessing the centre of inversion all d-d transitions have 
to be weak and some of those which are forbidden in 
terms of spin must be still weaker than the rest; in

* Otto Laporte (1902-1971), German, and since 1924 Ame­
rican, physicist. His basic studies are devoted to atomic and 
molecular spectra.

** Note that the Laporte rule is also valid for the molecular 
systems possessing the centre of inversion.
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tetrahedral complexes which do not possess symmetry 
centres d-d transition intensities must be much greater.

The Co(II) compound may be taken as an example. 
The [Co(H20 )6]2+ ion weakly absorbs light in the 
violet part of the spectrum and so it has the pale 
pink colouring. As to the tetrahedral [CoClJ2- complex it 
absorbs light in the visible region in a greater degree. 
Inasmuch as the absorption occurs in the red region 
the compound is coloured dark blue. The same can 
be said about many other tetrahedral Co(II) complexes.

The other examples are the Co(III) compounds such 
as the cis- and ^raras-isomers of [Co(NH3)4C12]+:

Cl Cl
H.N^J/Cl h 3n x / NH;

Co Co
h sn / N m

n h 3 c;i
cis-isomer trans-isomer

C 20  symmetry Dk h  symmetry
violet colouring green colouring

The ds-isomer in contrast to the Zraras-isomer has no 
symmetry centre so that the greater absorption is 
to be expected of m-[Co(NH3)4Cl2]+.

It is seen from the examples quoted that the selec­
tion rules may be violated. So, for instance, accord­
ing to the Laporte rule the [Ti(H20 )6]3+ ion must be 
colourless while in fact it is coloured. This is because 
a complex ion does not always possess the ideal Oh 
symmetry; it may be so distorted (for example, due to 
atomic vibrations) that the symmetry centre vanishes.

A few words about selection rules. Selection rules are 
always closely associated with the symmetry of a 
system. However, they are not absolute and the term 
“forbiddenness” should not be understood literally.
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Usually the transitions forbidden by theory are obser­
ved in reality, though their intensity is several orders 
of magnitude less than that of allowed transitions. 
Selection rules play an important role in theoretical 
and experimental chemistry. Using them one can 
determine, for example, what kind of a spectrum a 
molecule has. Thus selection rules forbid the chlorine 
molecule to have the vibration spectrum in the infrared 
region.

In order to determine the selection rules theoreti­
cally it is necessary to consider the integral containing- 
two wave functions and describing the states 
between which the transition occurs. The precise 
wave functions, i.e. the precise solutions of the Schro- 
dinger equation for molecular systems, are not known. 
And that is where the symmetry theory holds out 
a helping hand. It enables us to determine whether 
the integral in question is equal to zero or not without 
knowing the analytical or tabulated form of the func­
tions and It is sufficient to know only to what 
IR of the symmetry group of the system these functions 
(and other quantities involved in the integral consi­
dered) belong. Inasmuch as the corresponding tran­
sition probability depends on this integral we can 
determine the selection rules having defined the con­
ditions under which the above-mentioned integral 
turns to zero.

In quantum mechanics there is a very general theorem 
specifying the necessary conditions under which the 
integral mentioned is not equal to zero. With the aid 
of this theorem one can obtain the selection rules 
for each specific case.

Let well alone. We have already noted that the theory 
of crystalline field does not take into account the 
electron structure of ligands and consequently all
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properties conditioned by the nature of the chemica) 
bonding between a central atom and a ligand. Quali­
tative conclusions drawn in the framework of the 
theory of crystalline field are based on the general 
symmetry properties of a complex and, accordingly, 
are more reliable than quantitative evaluations. 
The more complete theory is related to the applica­
tion of the method of molecular orbitals.

Method of Molecular 
Orbitals and Structure 
of Complex Compounds

Complex as a single whole. The method of molecular 
orbitals makes use of the most valuable part of the 
theory of crystalline field. It takes symmetry into 
account and gives a more general picture of the electron 
structure of complex compounds.

According to TCF individual atoms and atomic 
groups of a complex or, more precisely, atomic orbi­
tals retain their specificity undergoing only slight 
alterations due to the interaction with ligands. In the 
MO method a complex is considered as a single whole 
and specific features of atoms and atomic groups dis­
solve in the sea of electron-nuclear, interelectronic 
and other interactions. For example, the [Ti(H20 )6]3+ 
complex is treated in the MO method as the carcass 
consisting of 6 oxygen nuclei, 12 hydrogen nuclei 
and one titanium nucleus together with 79 electrons 
moving in the field of nuclei.

In order to compute the requisite properties of a 
complex in quantum mechanical terms one has to 
find the molecular orbitals which are in their turn 
represented ordinarily as a linear combination of 
atomic orbitals, i.e. in the MO LCAO approxima­
tion (see p. 44).
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The symmetry theory makes it possible to simplify 
radically the procedure of MO determination and 
these simplifications compare favourably with other 
methods of making the problem easier.

Michelangelo used to say that a piece of sculpture 
is already contained in a stone block and the task 
of a master is only to chisel off what is redundant. 
The symmetry theory has an analogous objective, it 
chisels off what is redundant without debasing the 
description. In this particular case it “chisels off* 
those linear combinations of atomic orbitals that do 
not correspond to any IR of the symmetry point 
group of the complex.

Let us examine this in more detail. We shall not, 
however, enter into particulars of the mathematical 
procedure of MO determination, we shall confine our­
selves to its general features and results obtained.

The symmetry theory permits one to determine 
the IRs of the symmetry point group of the complex 
according to which the atomic orbitals of the central 
atom are transformed.

The classification of AOs in terms of symmetry for 
octahedral, tetrahedral and square complexes is pre­
sented in Table 8.

Ligand orbitals. In a similar manner we should also 
classify ligand orbitals now. Let us assume for the 
beginning that only a bonds are formed between the 
central atom and the ligands. Having necessary 
linear combinations of ligand AOs worked out and 
classified according to the IRs of the symmetry group 
of the complex, we may get busy with the n bonding 
as well.

Let us consider an octahedral complex in which 
the central atom is surrounded with six univalent 
ligands. These six ligands form six chemical bonds of
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the a type: <rlt <r2, 03, 04, cr5 and or6. In other words, 
each ligand is represented by its own orbital which 
we shall denote by the letter cr with a subscript indicat­
ing the number of the ligand. It can be demonstrated 
that the sum of ligand orbitals (0X -)- cr2 +  0's H- 
+  o4 +  05 +  a 6) is transformed under symmetry
TABLE 8

S y m m e tr y  g ro u p s

a to m
° h Td D 4 h

s A ]g ^ 1 Alg
Px ) ) E u
Py >  T 1U r 72 E u
Pz J J ^ 2  U

2

d X* -  V2
}  E g

}  *

Alg 
E i  g

d X y ) E28
d y Z CM

r  T 2
E g

d x z J E g

operations of the Oh group according to the IR A lg 
of this group, i.e. according to the same IR as the 
s-AO of the central atom is transformed.

One may work out other linear combinations of 
cr functions transformable according to other IRs 
of the Oh group. The group theory allows one not only 
to find out the IR according to which every linear 
combination is transformed but, what is more impor­
tant, to obtain the combinations themselves.

The linear combinations of ligand orbitals, which 
are transformed according to the Oh group IRs, are 
listed in Table 9 (such combinations are called ligand 
group orbitals). Fig. 25 shows how the ligands are 
enumerated (the letters c.a. stand for “central atom”).
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If besides a bonds there are ji bonds between the 
central atom and ligands, the symmetry theory admits 
of working out such linear combinations of jt type
TABLE 9

Oh  group IRs a  type group orbitals

Aig 1 / +  a 3 +  "t" a 6 +  a e)
1/1^2(02 — ffj)

Tiu 1 / / 2  (a3- a e)

1 / / 2 ( a 2 +  ctb — a 3 — a 6)

E g 1/ y r l 2 ( 2 a 1 +  2 a 4 — a 2 — a 5 — a 3 — a„)

orbitals that are transformed according to one of the 
group IRs under symmetry operations.

Table 10 rounds up ligand group orbitals for the 
case of the octahedral complex and Fig. 26 shows six a 
orbitals of a metal ion with ligand orbitals of cor­
responding symmetry. It can be seen from the table

that in the case of the oc­
tahedral complex 5-A Os of 
a metal are involved only in 
the formation of a bonds, 
while p-AOs of a metal are 
involved in both a and Jt 
bonds (MOs possess the Tlu 
symmetry) and their cor­
responding energy level 
is triply degenerate, i.e. 
p-AOs can form complicat­
ed MOs of the “combined”
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TABLE 10

O h pro up 
IRs

Central 
atom AO a type jt type

A l g s 1/ ] /  6(aj
+  a 3 +  a 4 +  a 5 +  

+  a e)

P x 1/ V 2(^2 ^5 ) 1 / 2 K  — n 4 +  n 3 — n 6)

T x u P y 1 / V  2(o3 — ct6) 1/2(11! — n 4 +  n 2 — n 5)
Pz 1 / / 2 ( 0 i - 0 4) l / 2 (n 2 — JI5 +  JI3 — ji„)

d X2 -  1/2
l / 2 (a 2 +  a 6 — a 3 —

— a 6)
—

E g d z2 1 / ] A  1 2 (2 0 ! +  2 a 4 -
cr2 — a 5 a 6 

— ° 3)

d x y 1 / 2 (ji2 + J i 5 + 1X3 +  Ji6)
T 2g

d x z — l / 2 (Jti 4 - JI4  -f- JI2 +  %)
d y Z — l / 2 (Jii + J I 4  + +

l / 2 ( n 1 -|- xt4 JI3 Jtg)
T ' g — — 1 / 2 (ji2 +  jt5 — Jti — ji4)

— — i / 2 ( n 3 - \ - n 6 — ji2 — ji6)

_ l / 2 (jti — jx4 — n 2 n 5)
T r U ~ — l / 2 (jt3 — n„ — jii +  jt4)

— — l / 2 ( n 2 — n 5 — Ji3 +  ji6)
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a-n type. This fact indicates the conditionality 
of the adopted subdivision of chemical bonds into 
g and n types*. As to d-AOs, some of those are in­
volved in the cr-MOs ( E g) of double degeneracy.

If a complex has no n bonds, dxy, dxz and dyz AOs 
of a metal are not involved in bonding at all since 
such a complex has no partners that would be suitable 
for them in terms of symmetry and consequently the 
T2g level remains atomic.

The combinations of the ligand Jt orbitals of the 
Tlg and T2u symmetries are not involved in the bond­
ing with the central atom providing its /-AOs do 
not participate in bond formation.

What symmetry cannot do. Considering a complex 
compound we come to the following conclusions:

A complex possesses a certain symmetry, that is, 
belongs to a certain symmetry point group (in our 
example, 0^).

This symmetry group possesses a definite number 
of IRs of different dimensions (in our example, A lg, 
■̂2gi ^ iu i  A 2ui Eg) E u , Tlg, T2g, Tlu, T2u).

Each molecular orbital of the complex (Tmo) 
is put down as a linear combination of atomic orbitals

* The concepts of a-, jt- and 6-orbitals as well as of a-, 
jt- and 6-bonds are associated with the D coh and C ooV point 
groups. These concepts possess the clear physical sense for linear 
molecules of the D ooh and C <x>v symmetries and for separate linear 
fragments: they pertain to the orbitals transforming according 
to the IRs of the 2 , II and A types of the above-mentioned groups 
(the corresponding orbitals are denoted by small Greek letters). 
For other symmetries the orbitals with such transformation pro­
perties can be selected only in a few exceptional cases (e.g. for 
the Crw and Dru1 symmetries). However, it is often agreed to re­
gard the />orbital oriented along the line connecting a ligand and 
a central atom as the a orbital, while other orbitals which are 
perpendicular to that line are referred to as the n orbitals.
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of a central atom (*Pca) and a molecular orbital of a li­
gand system for both a type and ji type:

^ M O  == accL^ca~\~ b l ig ^ l ig

where aca and biig are some numbers.
A molecular orbital (t>iig describing ligands may 

also be identified as an IR of a symmetry group of 
a complex.

Only those F̂ca and <Diig orbitals may be combined 
in the sum as shown above that have the same symmet­
ry, i.e. are transformed according to one and the 
same IR.

Thus, the symmetry theory copes with MO sorting 
very well, forbidding those of them which do not meet 
the symmetry requirements. However, chemists take 
an interest not only in MOs themselves and their 
degeneracy degree but also in the energies corres­
ponding to them. And here is where the weak point 
of the symmetry theory comes through: it cannot pre­
dict even the relative positions of MOs on the energy 
scale. One has to make use of the computer technique 
to calculate those. Fig. 27 shows the most probable MO 
arrangements for the Oh and Td symmetry complexes.

Chemical bonding in inert gas compounds. In combina­
tion with the MO theory the symmetry theory helps 
to decipher the electronic structure of inert gas com­
pounds. We shall look at the XeF2 molecule as an 
example. It can be shown that in inert gas fluorides 
and related fluorohalides the central atom-ligand 
interaction is of the pure p-type nature: each partner 
submits a single p a orbital. In XeF2, for example, the 
bonding is realized due to 5pz AO of Xe and 2p z AO of 
two fluorine atoms. With the molecular symmetry 
being D ooh §Pz AO of Xe is transformed according 
to the IR and two linear combinations (two group
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orbitals) are formed from the 2p z AO of two fluorine 
atoms:

2$: l’P2p2 (F1) +  'F2P2(F2)]/V/2‘

[^2P2 (Fi) — ^2p2 (F ,)]V 2  
Thus three MOs may be worked out: 

bonding la*: (Xe) +  W2I>z (¥,) -  (Fs);
nonbonding oj: ~ 1F2Pz(F1) +  ^ 2pz (f 2); 
antibonding 2a*: ~ V iPz (Xe) -  (FJ -  Fa)).

The arrangement of these MOs is shown in Fig. 28. 
We have obtained three three-centre MOs from which 
only 1 Ou and Og are electron-populated. The electron 
pair which was originally localized at the Xe atom, 
in the XeF2 molecule is delocalized over all three 
atoms, i.e. the filling up of the lcr£ and Og orbitals 
is accompanied with the transfer of electronic density
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from the Xe atom (donor) to electronegative ligands 
(acceptors).

In inert gas fluorides of the AF2ft type (k =  1, 2, 3) 
all A—F bonds arise as a result of the four-electron 
three-centre interactions in the linear F—A—F frag­
ments described above.

Jahn-Teller Effect

“Skewed” complexes. Very often the geometric con­
figuration of a complex differs from that of a regular 
polyhedron.

Let us examine, for instance, the complex compounds 
in which the central ion is Cu2+ with the electronic 
configuration 1 s22s22p63s23p63d9. When this ion is 
surrounded with octahedral ligands, nine 3d electrons 
will occupy the T2g and E g levels with the E g level 
having one free site, a “hole”. Its position can be 
different. When it is based at the dz2 orbital the attrac­
tion between the Lx and L 2 ligands lying along the 
z-axis (Fig. 29) and the Cu2+ ion would be greater 
compared to that between the central ion and other 
ligands. This is due to the fact that theL 3, L4, Lb

and L6 ligands are screened 
from the Cu2+ ion to 
a greater degree compared 
to the Lx and L 2 ligands 
since the dx2 - yz orbital in­
volves more electrons than 
the dz2 one. This being the 
case, the Lx and L 2 ligands 
will come nearer to the 
central ion than the others; 
consequently, the complex 
will be distorted due to 
the compression along the 
z-axis.
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Filling of orbitals 
with holes

FIG. 30

In another case, when Ihe hole occupies the dx2 ~y 
orbital, the “equatorial” ligands (L3, Z4, Lh and L 6 
get nearer to the centre and the complex stretches 
out, as it were, along the z-axis.

Both types of distortion cause the symmetry reduc­
tion of the complex—from Oh to DAh—and the removal 
of degeneracy (Fig. 30). This type of the octahedral 
distortion (compression or stretching along the four­
fold axis) is called tetragonal.

Jahn-Teller theorem. The tetragonal distortion of the 
octahedral copper complexes is a particular case of 
the Jahn*-Teller** theorem (sometimes it is referred

* Herman Arthur Jahn, born 1907, British physicist and 
mathematician. His basic work is dedicated to application of 
group theory to quantum mechanics and nuclear physics, as well 
as to various problems of applied mathematics.

** Edward Teller, born 1908, well-known German physicist; 
after the nazist take-over emigrated to the USA. Basic contri­
butions in quantum mechanics, quantum chemistry and theory 
of thermonuclear reactions. One of creators of the hydrogen 
bomb.
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to as the Jahn-Teller effect), which was named after 
the scientists who formulated it in 1937. The essence 
of the theorem is as follows: if for the given symmetry 
the ground state of a nonlinear molecule must be 
degenerate for certain reasons, the disposition of the 
nuclei changes in such a way that the symmetry of 
a particle gets reduced whereupon the degeneracy 
of the principal term is removed. The additional 
splitting arising therefrom leads to new spectral 
transitions and may considerably affect the magnetic 
properties.

Examples again. In the CuCl2 crystal ieach copper atom 
is surrounded with six chlorine atoms positioned at 
the apices of the irregular octahedron: the length of 
the bond between the copper atom and the chlorine 
atom located at the 2-axis is equal to 29.5 nm whereas 
the equatorial chlorine atoms are located 23 nm away 
from the centre. A similar arrangement is also ob­
served in CuBr2, CuF2, etc.

The Jahn-Teller distortions are also evident in 
Mn(III) compounds. Indeed, the Mn3+ ion in MnF3 
is surrounded with the “octahedron” of F" anions, the 
two Mn—F bond lengths being 17.9 nm, two others 
19.1 nm and the rest 20.9 nm. It is not accidental 
that we put the quotation marks over the word “octa­
hedron” since the existence of three different bond 
lengths points to the substantial distortion of the 
regular octahedral symmetry of the complex and the 
significant splitting of the energy levels.

Perfidious theorem. However attractive the Jahn- 
Teller theorem is, one must be very careful in using 
it. First of all, the theorem has nothing to say about 
the type and degree of distortion. Indeed, the octa­
hedron can be distorted differently, it can stretch

94



or contract along the z-axis (tetragonal deformation), 
the square formed by four octahedral apices can be 
transformed into a rhombus (rhombic deformation), 
etc.

The manifestation of the Jahn-Teller effect is known 
to be largely determined by the highest occupied MO 
(HOMO), to wit, its electron population density and 
symmetry.

First, we shall deal with the population density. 
If the number of electrons at the highest occupied 
level is equal to the degeneracy multiplicity or the 
double value of that (there cannot be more, in accor­
dance with the Pauli principle), i.e. when the electrons 
are arranged either this way:

(the number of electrons is equal to the 
degeneracy multiplicity)

or this way:

(the number of electrons is equal to the 
doubled degeneracy multiplicity)

the Jahn-Teller effect does not manifest itself and 
no conclusions as to the symmetry of such molecules 
can be drawn on the basis of the Jahn-Teller theorem.

As regards the symmetry pf the highest occupied 
orbital, in octahedral complexes, for example, the 
Jahn-Teller effect manifests itself better when the 
1IOMO possesses the Eg symmetry and to a lesser 
degree in case of the T2g symmetry.

Besides, the splitting can largely depend on the 
spin-orbit coupling. Owing to this many modern 
textbooks on inorganic chemistry state that a particu-
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lar fact “can be due to the Jahn-Teller effect, but 
another explanation is also possible

The interpretation of the Jahn-Teller theorem by 
itself causes a considerable difficulty. Usually it 
reduces to the simple statement that a nonlinear poly­
atomic molecule with electronic degeneracy possesses 
an unstable nuclear configuration. However, as I.B. 
Bersuker pointed out, such a treatment of the theorem 
should be reviewed. The fact of the existence of the 
electronic degeneracy in a molecule alone does not 
entail the spontaneous change of its geometry. Later 
on it will be seen that in the theoretical investigation 
of a molecule use is made of the quantum-mechanical 
equations describing the motion of electrons, rather 
than that of nuclei. That is why in order to answer 
the question of whether the nuclear configuration will 
be spontaneously distorted in case of degeneracy, one 
has to solve the equations describing the motion of 
nuclei in a molecule.

Pearson's Rule

In recent years the quantum chemistry experts have 
paid attention to the symmetry rule formulated by 
Ralph Pearson which allows the shape of a molecule 
in some cases to be determined. But first we should 
become familiar with certain important notions which 
at first glance are not related.

Choice of MO. Peripheral or valence electrons are 
known to play an important part in atoms. Their 
coupling with a nucleus is less rigid and they pass 
readily from one atom to another during chemical 
reactions. A similar conclusion can be drawn concern­
ing molecular orbitals. In many cases one may consider 
only the “frontier” orbitals, i.e. the highest (in terms
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of energy) MO still containing electrons, and the next 
one which is the lowest MO containing no electrons. 
They are customarily abbreviated as HOMO (highest 
occupied MO) and LUMO (lowest unoccupied MO).

Symmetry of normal vibrations. Atoms in molecules 
are not at rest in the fixed points, they oscillate about 
the equilibrium positions. There are various kinds 
of vibrational motion. In a diatomic molecule the 
vibrational motion takes place only along the bond. 
In more complicated molecules the number of possible 
vibrations increases.

The vibrations are referred to as the valence vibra­
tions if the bond lengths vary as a result of them while 
the bond angles remain constant:

0
/  \

H H
/  \

/  \

On the other hand, the vibrations associated with 
the change of the bond angles and with practically 
constant bond lengths are called the deformation 
vibrations:

\  0 ^
\  /  \  /

H H

In most cases the complex molecular vibration can 
be expanded into a comparatively small number of 
the so-called normal vibrations, each of which has 
its own frequency. To some extent this technique is 
similar to the vector expansion into components. 
It is known that a vector can be expanded in many
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different ways. Each concrete task specifies the most 
convenient and natural expansion. For example, the 
particle velocity vector is conveniently expanded 
into the “vertical” and “horizontal” components— 
just remember the school problem on the motion of 
a stone cast at an angle to the horizontal! The complex 
vibration can also be represented in various ways. 
The expansion into normal vibrations is very conve­
nient because in this case the expression for the energy 
of the complex vibration acquires an especially 
simple form.

The vibration energy E vib of a molecule is given 
in this case by the following expression:

2  2  f a + y  2 X  2  %
i a a i

Here Qai are normal coordinates which are selected 
in a special manner and determine particle displace­
ments from an equilibrium position; indices i enumerate 
coordinates corresponding to one and the same fre­
quency; a is an index defining the frequency number; 
wa are normal vibration frequencies; the point over 
Qai denotes the time derivative.

Sometimes several normal vibrations have one and 
the same frequency. This frequency is then called 
multiple or degenerate.

Generally speaking, the number of independent 
normal vibrations is determined by the number of 
atoms in a molecule and its symmetry. The normal 
vibration energies (and the corresponding frequencies) 
can be classified according lo the IRs of the molecular 
symmetry point group. In this case the frequency 
multiplicity defines the IR dimension. For example, 
a molecule which has the shape of a regular octahedron 
and consists of 7 atoms (a central atom and six li-
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gands) may have 3*7 — 6 =  15 normal vibrations*. 
In accordance with the symmetry theory they can be 
combined into groups corresponding to the definite 
symmetry types, i.e. the definite IRs.

Hence we obtain the following result: the molecule 
has one normal vibration of the A lg type, two of the 
Eg type, and three of each of the following types: 
^2gt T iu> T2u, 1 lu.

The normal vibrations from the same group, i.e. 
corresponding to the same IR, have the same fre­
quencies and, consequently, energies. Thus, the vibra­
tion of the octahedral molecule can be represented as 
the combination of 15 normal vibrations generating 
six different frequencies which can be experimentally 
observed. It is often possible to select two (at least 
twol) geometric configurations of a molecule, such 
that one can be converted into another through the 
simple continuation of some type of normal vibra­
tions. For example, the angular structure of the water 
molecule can be converted into the linear one through 
the simple continuation of one of the deformation 
vibrations:

* A \
XH EK

A few words about Pearson’s rule. The Pearson** sym­
metry rule relates possible types of normal vibrations 
to the symmetry of the electronic transition between

* The number of normal vibrations and corresponding fre­
quencies is equal to 3iV — 6 , where N  is the number of atoms in 
a molecule. In case of a linear molecule the number of normal 
vibrations increases up to 3N — 5.

** Ralph Gottfrid Pearson, born 1919, American chemist, 
investigated structure of complex compounds and mechanisms 
of inorganic reactions. Developed theory of strong and weak 
acids and bases.
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the HOMO and LUMO. The stability of one or another 
geometric configuration of a molecule depends first 
of all on the energy of the electronic transition between 
the occupied and unoccupied levels and their sym­
metries. Many theorists claim that if the energy diffe­
rence of the HOMO and LUMO (A£) exceeds 4 eV, the 
given nuclear configuration is stable. Well, and what 
if AE ^  4 eV? In that case one has to clarify whether 
one or another nuclear configuration is stable, and 
if not, how it should be altered to become such. This 
is just where the Pearson symmetry rule helps, which 
specifies a definite procedure of checking the configura­
tional stability:

1st step—the symmetry (the irreducible representa­
tion) of the HOMO and LUMO is determined;

2nd step—the symmetries of normal vibrations 
varying the molecular symmetry point group (for 
example, converting a square molecule into a tetra­
hedral one) are determined;

3rd step—providing the characteristics indicated 
conform one can claim the given nuclear configuration 
unstable.

In other words, with the given symmetry of a mole­
cule and the given energy and population density 
of its MO, there may exist such vibrations that are 
capable of either distorting or breaking up the mole­
cule. In the presence of such vibrations it is easy 
to ascertain the possible type of the molecular defor­
mation or its break-up pattern. This is a very impor­
tant circumstance since we can assess not only the 
stability of the particular nuclear polyhedron but 
also the way it will change when unstable.

A few examples. At first glance the practical applica­
tion of the Pearson symmetry rule meets no difficul­
ties. But in reality this is not the case since the first
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step of the procedure for checking the molecular 
configurational stability, described above, does not 
reduce only to the determination of the HOMO and 
LUMO symmetry but in the more precise formulation 
also requires some mathematical operations. There­
fore the statement of Pearson’s rule needs refine­
ment.

We shall comment briefly on this point. Let us 
suppose that one molecular orbital (¥*) is transformed 
according to some 1R of the molecular symmetry 
group whereas another MO (Wk) corresponding to 
another energy level is transformed according to some 
other IR. Theorists have often to decide according to 
what IR (or IRs) will the conventional product 

be transformed. This problem is studied quite 
comprehensively in quantum mechanics, but its pre­
sentation goes beyond the scope of this booklet. We 
shall look at some specific examples and comment 
on the results.

Suppose we are interested in a D^h, molecule. Recall 
that to the D type belong the molecules with the 
symmetry plane which is perpendicular to the principal 
axis (N2, C02, etc.). Suppose also that one MO is 
transformed according to a single-dimensional IR of 
the A lu type and another MO according to a two-dimen­
sional IR of the Eu type (as we shall see later on, 
this is a quite practicable case). Well, now Pearson’s 
rule prescribes first of all to find the IR according to 
which the MO product T“f (lu) .yp^u) [s transformed. 
In order to find this IR one has to multiply the origi­
nal IRs, i.e. to multiply A lu by Eu. We shall put 
aside the question of how it is done*.

* The detailed information (of mathematical nature, basi­
cally) can be found in the book Symmetry in Chemistry by H.H. 
Jaffe & M. Orchin, John Wiley & Sons, Inc., 1965.
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For our purpose it is sufficient to just remember the 
result of the symbol multiplication. For the irredu­
cible representations mentioned above we have

(Eu)= Eg
Thus, we have defined more accurately the first 

step in the determination of the molecular configu­
rational stability. It reduces to the definition of the 
symmetry (i.e. the IR type) of the HOMO and LUMO 
and the multiplication of these IRs.

Now we can get back to our example. According to 
the calculations the MO arrangement on the energy 
scale for the dihydrides of the second period elements 
(BeH2, BH£, NH2, CH2, H20 and others) possessing 
the Dooh symmetry is as follows (only those MOs are 
shown that contain outer valence electrons of mole­
cule’s atoms):

( = K
--------

The symmetry of normal vibrations converting a li­
near molecule into an angular one is Eu:

Linear 
molecule (D^,,)

Angular 
molecule (C2}r)
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Now let us consider the beryllium dihydride mole­
cule (BeH2). Its four valence electrons (two from the 
Be atom and one from each of the hydrogen atoms) 
occupy the MOs of the A lg and A lu symmetries. Thus, 
the HOMO possesses the A lu symmetry and the LUMO 
the Eu symmetry. In accordance with Pearson’s 
rule we can define the (Alu) (Eu) product. As we 
know it is equal to Eg which differs from the Eu sym­
metry of normal vibrations bending the molecule. 
Consequently the BeH2 molecule must keep the Dock 
symmetry in the ground state.

Let us examine a water molecule as another exam­
ple. If it were linear its eight valence electrons 
would be arranged at the energy levels as follows:

E

-N—  a ,u

-44------ A lg

The highest occupied MO turns out to possess the 
Eu symmetry whereas the lowest unoccupied MO has the 
A 2g symmetry. In this case (Eu) (A2g) = Eu which 
corresponds to the symmetry of the normal vibration 
transferring a water molecule from the Dooh into 
C2V group.

Thus Pearson’s rule elucidates why a water mole­
cule has an angular shape.

Many other examples could be quoted but one fact 
should be noted here: in order to employ the symmetry 
rule one has to know the energies of molecular orbitals.
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Unfortunately, the theoretical calculations are not 
always reliable enough so that the chances of a success­
ful application of Pearson’s rule are small in such cases.

The symmetry theory not only enables one to cut 
down the computations but leads to significant quali­
tative conclusions possessing a high degree of genera­
lity and beauty which are distinctive for the most 
fundamental laws of nature.

Symmetry Appears 
and Disappears

Adiabatic potential. We have already mentioned that 
the quantum-mechanical treatment of multi-electronic 
systems comes across some serious mathematical dif­
ficulties making researchers resort to approximation 
methods. Apart from the electron abundance additional 
difficulties emerge in case of a molecule due to the 
presence of two kinds of particles, that is, electrons 
and nuclei. The method to overcome these difficulties 
was proposed by Max Born* and Robert Oppenheimer** 
(1927) who elaborated the so-called adiabatic approxi­
mation (called sometimes the Born-Oppenheimer ap­
proximation). What assumptions does it involve?

* Max Born (1882-1970), outstanding German physicist, 
one of creators of quantum mechanics. Worked in German. 
British and American universities. Nobel p ize winner of 1954. 
Born’s research influenced considerably the development of 
chemical bond theory and crystal lattice theory (Haber-Born 
cycle). Active proponent of the world’s peace.

** Robert Oppenheimer (1904-1967), American physicist; 
basic research in quantum mechanics and theory of atomic nuc­
leus. During World War II he was one of the leaders of the pro­
ject directed to creation of the atomic bomb. In 1953 Oppenheimer 
was removed from all posts and charged with “disloyalty” for 
his statements against production of hydrogen bombs and for 
his demands to use atomic energy only for peaceful purposes.
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It is known from spectroscopy that the intrinsic 
frequencies of the electron motion in molecules (visible 
and UV regions) are about 100 times higher than those 
of nuclear vibrations (infrared region). Therefore one 
may assume that electrons manage to follow the com­
paratively slow displacements of nuclei. Hence the 
energy of electrons depends on the spatial arrangement 
of nuclei, i.e. on the molecular symmetry point group. 
The potential energy of nuclei is usually denoted by

—V —V —► “> —►
F(i?!, R it . . R m) where Rx, R 2, . . . are coordinates
of nuclei. What is the physical meaning of the quan-

—>■ —► —►

tity just introduced? The V (R^ R 2, • • R M)^xmc~ 
tion describes both the potential energy of interaction 
between nuclei and the average energy of electrons 
with the fixed nuclear positions. This function is 
customarily referred to as the adiabatic potential.

But however good is the Born-Oppenheimer appro­
ximation it is still an approximation. This fact should 
be borne in mind, especially when the nuclear vibra­
tion energy (the vibration quantum energy hvvib) 
is comparable with the energy difference Ek — E t 
between the electron levels of a molecule. In this case 
the nuclei cannot be regarded as moving many times 
slower than the electrons and the adiabatic approxi­
mation is not valid. Thus we can put down its validity 
condition as

hVvib <C Eh Ei

The less is the difference of energy levels Eh and E t, 
the less satisfying becomes the adiabatic approximation. 
And if a molecule has degenerate energy levels (Ek = 
Ei) the Born-Oppenheimer approximation may prove 
to be inapplicable. In this case the adiabatic 
potential turns into a formal quantity. It does not 
imply the potential energy of nuclei in the field of
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electrons and movements of nuclei and electrons can­
not be regarded independent.

“Mysticism” of experiment. If a molecule has no dege­
nerate energy levels and the validity condition of the 
adiabatic approximation is met, the adiabatic poten­
tial has as a rule a single minimum which corresponds 
to a definite stable spatial configuration of nuclei. In­
deed, a molecule in this case can be represented as a 
geometric figure possessing a definite symmetry. Every­
thing is right in this case.

And what if there is an electronic degeneracy? It 
is not even necessary for the actual degeneracy to 
occur. A molecule may have two very close energy 
levels, a pseudodegeneracy. What then?

In that case the adiabatic potential can have several 
equivalent minima, each corresponding to a definite 
distortion of the nuclear configuration. Therefore we 
cannot characterize the molecule with some perma­
nent spatial arrangement of nuclei. The molecule 
seems to get alive. The regular stationary geometric 
shape of the nuclear polyhedron is not characteristic 
for this molecule any more. The intricate dynamics 
of the nuclear motion and the low potential barriers 
between the minima of the adiabatic potential make 
the coordinates of nuclei uncertain. Now the nuclei 
cannot be described as making small oscillations 
around definite equilibrium positions. Such notions 
as the “equilibrium structure” and the “point sym­
metry of the nuclear polyhedron” lose their meaning.

Suppose that in order to pass from one distorted 
configuration to another a molecule has to overcome 
a high energy barrier. Therefore it may be assumed 
that a molecule resides in each configuration for the 
time interval r  before passing into a new one. If dur­
ing this time we manage to define experimentally the
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molecular symmetry, a distorted configuration is 
obtained. If the interval r is small and the molecule 
passes several times from one distorted configuration 
into another during the time of experiment, we shall 
obtain some time-mean picture. The molecule might 
seem fairly symmetric because one distortion can­
cels out another, as it were. A similar picture is ob­
tained if the energy barrier between the minima of the 
adiabatic potential is low and the system “slips” 
through all possible configurational distortions.

Therefore, the symmetry of a molecule is a fairly 
complex concept. The answer to the question concern­
ing the symmetry of a molecule depends on the method 
and conditions in which the experiment is carried out. 
Note that a situation of this kind is typical of quan­
tum-mechanical problems in general. Being a quan­
tum-mechanical system, a molecule “cannot stand 
impartially” any experiment performed on it includ­
ing the one determining its symmetry. This should 
always be remembered whenever the geometric no­
tions of the structure theory are discussed.



Chapter Four

SYMMETRY 
AND CHEMICAL 
REACTION

All generalizations are hazard­
ous including even this one.

A. Dumas fils

Until now we talked only of the molecules them­
selves putting aside the question concerning the role 
of the symmetry theory in the studies of chemical 
reactions. This is only natural because one has to 
begin with the object of research and then proceed 
to the study of processes in which this object is invol­
ved. Indeed, the group theory methods began infiltrat­
ing into molecular quantum chemistry from its very 
origin in the late twenties, whereas their wide applica­
tion in chemical kinetics started only 10 to 15 years 
ago. In this chapter we shall briefly discuss some 
interesting results obtained in this area. But first...

A Few W ords 
about Chemical Process

Reaction energy profile. The chemical reaction between 
molecules may occur only if they come in contact, 
i.e. collide. However, if every collision had resulted 
in a chemical transformation the process rates would 
have been incredibly high and all reactions would have 
come about practicallyfinstantaneously. This would 
have altered our world as well as ourselves beyond 
any recognition. What then protects molecules from 
infinitely fast transformations? There are many rea­
sons. The most important factor is the activation
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energy. The collision is suc­
cessful, i.e. the molecules 
are forced to react, if they 
possess the energy sufficient 
to break up certain chemi- 5k 
cal bonds. In other words, 
the colliding molecules 5 
must possess the energy sur­
plus as compared to their 
mean energy. This implies 
that a certain energy bar­
rier needs to be overcome 
in order to bring about a f 
reaction (Fig. 31). The Ea 
energy equal to the barrier height, i.e. the energy 
surplus mentioned, is called the activation energy.

The abscissa axis which is indicated in Fig. 31 as 
the “reaction coordinate’' shows how reacting particles 
are located relative to one another, i.e. characterizes 
the change of internuclear distances in a reaction 
process.

The activation energy concept was introduced in 
chemistry in 1889 by S. Arrhenius*. In accordance 
with his theory Ea is the difference between the ener­
gies of active and inactive molecules. Following the 
advent of quantum mechanics the German scientist 
Fritz London** disclosed the nature and the origin 
of the activation energy. The details of chemical pro-

* Svante August Arrhenius (1859-1927), outstanding Swe­
dish physicist and chemist, creator of the theory of electrolytic 
dissociation. Research in chemical kinetics, astronomy, astro­
physics, biochemistry. Nobel prize winner of 1903.

** Fritz London (1900-1954), German physicist, one of crea­
tors of contemporary theory of chemical bond, author of spin-va­
lency concept. Fundamental research on theory of molecular 
interaction and superconductivity. Worked in universities and 
research institutes of Germany, France, USSR and USA.

31
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cesses were elucidated due to the quantum-mechanical 
“interference” into chemical kinetics, which was 
initiated by F. London and continued by other inves­
tigators.

Barrier is cleared. In classical chemistry the following 
mechanism of the molecular reaction is adopted: first, 
the initial molecules disintegrate completely into the 
constituent atoms (or ions) due to the break-up of all 
chemical bonds, whereupon from the particles formed 
the new molecules are created. For instance:

AB +  CD->A* f  B .+ C .+ D . -^AC +  BD
One of the most important contributions of quantum- 

mechanical kinetics is the introduction of the transi­
tion state concept (or, as they sometimes say, the activ­
ated complex). This concept describes the state of 
reacting molecules at the top of the energy barrier when 
the transition state possesses the maximum energy. 
The activation energy as such is needed for weakening 
the AB and CD bonds (AB ->■ A . . . B; CD C . . . 
. . .  D) as much as it is necessary for the formation 
of at least the very weak AC and BD bonds. Hence the 
transition state resembles to a certain extent a mole­
cule in which all initial atoms (A, B, C and D) are 
chemically bonded; but inasmuch as this system cor­
responds to the barrier top and not to the bottom of the 
energy well, it turns out to be an unstable transient 
formation with a lifetime varying from 10~13 to 10"1 
of a second. The energy barrier is thus clerared not by 
separate molecules but by a single system of interact­
ing atoms. Later, on the very top of a barrier, the final 
redistribution of chemical bonds occurs.

Below we shall discuss several specific examples 
paying attention primarily to the employment of 
symmetry considerations in studies of chemical reac­
tions.
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Permitting Symmetry 
and Forbidding Symmetry

General considerations. Thus, chemical reactions are 
accompanied with the break-up of old chemical bonds 
and the formation of new ones, i.e. the electrons pass 
from one kind of atoms or molecules to another, from 
some atomic or molecular orbitals to others. The most 
significant part here is played by the energies of the 
highest occupied MOs (HOMOs) of a molecule which 
gives electrons away (a donor molecule) and the lower 
unoccupied MOs (LUMOs) of amolecule receiving elec­
trons (an acceptor molecule). The donor HOMO energy 
must exceed that of the acceptor LUMO. Consequently, 
first of all we have to determine wherefrom and whereto 
electrons will pass.

But the energy is not the only factor. Symmetry 
also plays a considerable part. For instance, when di­
atomic molecules interact the transition state may have 
different geometries. The reaction may proceed either 
through the formation of a linear structure (AB . . .
. . . CD) or through the parallel attachment of mole­
cules*:

Of course, the MO overlapping in these two cases 
occurs differently. Table 11 lists the possible cases of 
the MO overlapping both for the parallel and linear 
molecular orientations. The “+ ” sign shows that the 
MO overlapping and the corresponding chemical reac­
tion are permitted in terms of symmetry. The large

* For the sake of simplicity we have mentioned only two 
extreme cases of the mutual orientation of molecules in the 
transition state.
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TABLE 11

MO
Parallel orientation Linear orientation

ae °u °u nu

°g + _ + _ + + _ _
Ou — + — + + + — —

u + — + — — — + +
+ — + + +

“+ ” signs are used to draw the reader’s attention to the 
absence of any forbiddenness (in terms of symmetry) 
whenever the MOs of the same symmetry are over­
lapped.

Now we shall illustrate these general considerations 
with concrete examples.

H2 +  I2-*- (?) -> 2HI. For a long time the reaction 
between the I2 and H2 molecules was believed to pro­
ceed through the formation of the square activated com­
plex:

r H
H—H +  I—I -► I :

H “

I
2HI

Is it really the case? In order to make out the mecha­
nism of this reaction one has to identify first what mo­
lecule is a donor and what an acceptor. Since the elec­
tron affinity of an iodine molecule is greater than that 
of a hydrogen molecule (Aj2 = 2.4 eV; 4̂h2 =  
=  — 0.72 eV), the electrons will pass from the hydro­
gen molecule to the iodine molecule during the reac­
tion. Thus, the former molecule is the donor and the 
latter is the acceptor of electrons.

112



The HOMO of the II2 molecule possesses the ag 
symmetry:

a.___ 6!
H Is -f—< > -4 - f s H

A O  M O  A O

The LUMO of an iodine molecule, as of all halogen 
molecules, possesses the crj symmetry.

Let us have a look at Table 11 and see whether the 
overlapping of the ag and au orbitals is possible. In 
case of a parallel arrangement of molecules (a square 
complex) the reaction turns out to be forbidden in terms 
of symmetry while in case of a linear arrangement 
(H—H . . . I — I) the reaction is feasible. This does 
not mean though that the reaction will necessarily 
proceed through the formation of such a transition 
state. The experimental studies have shown that the 
reaction involves either the H2 molecule and the I 
atom (at elevated temperatures) or the H2 molecule 
and the two I atoms (at room temperatures) with the 
formation of the linear activated complex LI ... 
II ... I. For example, the flowsheet may look 
like this:

I2-*2I

i + i-i2- * h i  +  h

II +  I - +H I

As a detailed analysis shows the reaction 
I +  H2->- HI +  H proves to be allowed in terms of 
symmetry.
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Orbital Symmetry 
Conservation in Some 
Organic Reactions

The American chemists R. Woodward* and R. Hoff­
man** proposed in 1965 the symmetry rules which 
make it possible to analyse various reactions in more 
detail. The application of the Woodward-lJoffman rule 
will be illustrated by the analysis of the reaction which 
is familiar to everybody who studied organic chem­
istry:

2H2C^CH o- vH ,C -C H 2
! I

h 2 c - c h 2

Ethylene molecular orbitals. The electronic structure 
of ethylene can be represented by four a C—11 bonds, 
one a- and one n C—C bonds (Fig. 32).

FIG. 32

* Robert Burns Woodward, born 1917, outstanding Ame­
rican chemist, Nobel prize winner of 19G5. For the first time 
synthesized a number of important compounds: quinine, chlo­
rophyll, tetracyclin, etc. In Woodward’s laboratory at Harvard 
University the structure of ferrocene, penicillin, strichnin, etc. 
was determined.

** Roald Hoffman, born 1937, American chemist, professor 
of Cornell University; worked in the held of quantum chemistry. 
Developed the method of calculation of electronic structure of 
molecules, named after him.
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A peculiar feature of the cr-bonding is its cylindrical 
symmetry relative to the line which connects the nuc­
lei. Each o-bond has the corresponding energy levels 
a and a*, that is, one bonding and one antibonding 
MO of the cr-type. The electrons are located only at the 
bonding o-MO. Inasmuch as each cr-bond involves two 
electrons, the total number of the electron pairs locat­
ed at the o-MOs is equal to 5. The Jt-bonding in the 
ethylene molecule is formed due to the overlapping of 
two 2p z clouds (Fig. 33), i.e. the p-AOs combine and 
form the MOs of jt-type.

The bonding j t - M O  differs from the antibonding one 
by the way in which electron clouds overlap. If the 
overlapping occurs “in phase”, i.e. the overlapped seg­
ments of the “dumb-bells” have the same sign of the 
wave function (as in Fig. 33), the bonding j t - M O  is 
formed. If the clouds are overlapped “in antiphase” 
the antibonding j t * - M O  is formed. In the former case 
the electronic cloud density between the carbon atoms 
increases whereas in the latter case the electron waves 
as if cancel out each other so that a plane with the zero 
electron density in all its points (the nodal plane) can 
be drawn between the nuclei.

FIG. 33 Fl<* 34
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The ethylene molecule possesses two symmetry ele­
ments of this type which help us to classify the orbi­
tals: the symmetry plane a and the C2-axis (Fig. 34). 
It is easy to note that the :rt-MO is symmetric relative 
to the reflection in the symmetry plane a (the S ope­
ration) and changes sign with the rotation about the 
C2-axis or, as it is customary to say, it is antisymmetric
TABLE 12

MO type
Symmetry relative to operations

a C2

j i * A S
Ji S A

relative to the rotation about the CVaxis (the A ope­
ration). Since the overlapping of the two 2p-orbitals 
is substantially less than that associated with the o- 
bond formation, the Jt-bond is weaker than the a-bond. 
The energy levels corresponding to the jt- and ji*-MO 
are located between the levels of the a- and o*-MOs.

Table 12 shows the symmetry classification of ji 
and ft* orbitals in ethylene.

Cycle formation. Let us consider now the cycle addi­
tion reaction:

H2C=CH2 +  H2C=CH2 H2C—c h 2
I I

h 2c - c h 2
cyclobutane

During this reaction the jx-orbitals of ethylene (there 
are four of them, two from each molecule) are transfor­
med into the o-orbitals of cyclobutane. We do not exa­
mine cr-bonds of ethylene since their symmetry does 
not change in this reaction. As to the o-MOs of
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-------------

—  6*

JC —  

Ethylene

--- 6

Cyclobutane

FIG. 35

cyclobutane, they are separated by the greater distances 
(in terms of energy) compared to the jt-MOs of ethylene 
(Fig. 35).

Considering the reaction of cyclobutane formation 
we assume that the ethylene molecules are getting 
arranged in parallel as they draw together. The con­
vergence of molecules may be accomplished by several 
methods.

Suppose that the ethylene molecules draw together 
in the way it is shown in Fig. 36a. Such a combination 
of jx-orbitals is symmetric relative to the reflection 
both in the S1 and S 2 planes. This is denoted by the 
SS  symbol.

The case illustrated in Fig. 36& is opposite to the 
previous one. It should be denoted, as one can easily 
guess, as SA (the symmetry relative to the reflection 
in the SL plane and the antisymmetry relative to the 
reflection in the S 2 plane).

When the distance between the ethylene molecules 
is great the SS  and SA cases are not distinguished in 
terms of energy, but as the molecules draw together the 
more symmetric overlapping (SS) becomes slightly
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more profitable, i.e. the SS  symmetry MO lies below 
that of the SA symmetry on the energy scale*.

FIG. 36
* Note that in this case we classify the MO not according to 

the molecular symmetry group IR. Here the orbital classifica­
tion criterion is the behaviour in case of the reflection in certain 
symmetry planes of a molecule or a transition state.
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The cases discussed above pertain to tne overlapping 
of the bonding Jt-MOs of two molecules H2C=CH2. 
In much the same way one can examine various pos­
sibilities emerging as a result of the overlapping of 
antibonding orbitals. They are illustrated in Fig. 36c 
and d and apparently do not require any special ex­
planation.

Now let us direct our attention back to the cyclobu- 
tane molecule. The bonding between the carbon atoms 
is brought about by the overlapping of the hybrid
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orbitals. These orbitals have the shape of the asymme­
tric figure “eight” with the opposite signs of the wave 
function (indicated in the loops). The overlapping of 
these clouds can be accomplished through the overlap­
ping of either the bonding orbitals (Fig. 37a and b) 
or the antibonding orbitals (Fig. 37c and d).

Let us compare now the energies of all MOs. The 
SS  level corresponding to the system of two ethylene 
molecules located at a close range is the lowest compar­
ed to the S A y AS  and A A levels (see the right part of 
Fig. 38). In the cyclobutane molecule the lowest level 
is also the one corresponding to the SS  symmetry (the 
left part of Fig. 38).

It is also seen from Fig. 38 that as the ethylene mole­
cules draw closer together, the *Ŝ4 level rises higher 
and higher up the energy scale transforming gradually 
into the antibonding level whereas the AS  level on the 
contrary falls down and turns into the bonding level.

E n
AA
SA

------------ -----------

^AS,

6*
6*

SS

FIG. 38
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Fig. 38 depicts the so-called correlation chart. The 
method proposed by Woodward and Hoffman is based 
on the correlation charts of energy levels for reaction 
products and original reagents and their analysis in 
terms of symmetry. If the highest occupied orbitals 
of reaction products in the ground state possess the 
symmetry correlating with that of original compounds 
in the ground state too, such a reaction is thermally 
permitted, i.e. it can proceed in the conventional con­
ditions (a thermal reaction). If the ground state of 
reaction products correlates with the excited state of 
original compounds, the reaction is thermally forbid­
den, but can be accomplished photochemically, i.e. 
when reagents are irradiated by light.

Now we come back to our example. The correlation 
chart depicted in Fig. 38 shows that the highest occu­
pied orbital of the cyclobutane molecule possessing 
the AS  symmetry correlates with the antibonding 
ji^iS-orbital of the system ethylene +  ethylene. To 
keep the orbital symmetry constant the jr*^45,-orbital 
ought to be populated with electrons. This can be done 
by exciting the ethylene molecules activating the elec­
tronic transition nSA  +  483 kJ/mol -> Dur­
ing this reaction electrons will pass between the orbi­
tals of the same symmetry (AS).

Thus, we come to the following conclusion: accord­
ing to the orbital symmetry conservation law the reac­
tion

2H2C=CH2 H2C -C H 2
I I

h 2c - c h 2

can be realized only as a photochemical one.
The general rule can be formulated as follows:
(a) a reaction is thermally permitted if m +  n = 

= Aq +  2, where m and n are the numbers of Jt-elec- 
trons in reagents, q =  1, 2, . .
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(b) a reaction is thermally forbidden ii m +  n =
=

(c) a reaction is photochemically permitted if m +  
+ n = 4q;

(d) a reaction is photochemically forbidden if m +
ft — 4q -f- 2.

In the example that we studied above m = n =  2, 
m +  n =  4, so that according to the items (b) and 
(c) the reaction is forbidden thermally and permitted 
photochemically.

Catalysis comes to assistance. Many reactions which 
are forbidden in terms of symmetry are easily realized 
in the presence of catalyzers, for example complex 
compounds of transition metals. What is their action 
based upon? Recently a proposal has been made that 
the catalyzer changes the HOMO symmetry of react­
ing molecules.

We shall illustrate this with the example of the for­
mation of a cyclobutanc molecule from two ethylene 
molecules. To make the reaction thermally permitted

in terms of symmetry it is 
necessary to populate 
somehow the antibonding 
n*A 5-orbital of the ethylene 
system with electrons. We 
have already mentioned one 
method—the irradiation of 
reagents by light. But there 
is another way to populate 
the tt*^45-orbitals which is 
associated with the appli­
cation of transition metal 
complexes as catalyzers. 
The function of the metal 

FIG. 39 consists in the removal of
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electrons from the nSA -orbital in order to populate 
the n*^4iS-orbital. In this case, during the reaction pro­
cess, the transition complex “metal-two ethylene mole­
cules” is formed in which the electron pair can pass 
from the HOMO of ethylene, that is from the nSA- 
orbital, to the d-AO of the metal of the corresponding 
symmetry. In the coordinate system chosen (Fig. 39) 
there is the following symmetry correspondence be­
tween the orbitals:

Symmetry of MO of two Symmetry of d-AO of metal
ethylene molecules

Hence, the electrons from the nSA -orbital will pass 
to the dxy-AO of the metal.

Moreover, besides the unoccupied dxy-AO the metal 
must also have the occupied dyz-AO. Then due to the

s s
'SA
AS
AA

\

Two ethylene Catalyzer
molecules

Cyclobutane
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interaction of the ji*^4£ and dyz orbitals, the electrons 
of the metal (from its dyz-AO) will get “pumped over” 
to the of the ethylene system (Fig. 40).

Needless to say that the examples discussed above 
do not exhaust all multiform applications of the sym­
metry theory in chemical kinetics. The controversy 
over the Woodward-Hoffman rules has not come to an 
end yet. The employment of the symmetry theory in 
chemical kinetics makes it possible to obtain new in­
formation about the chemical reaction mechanisms and 
also permits of looking at the well-known phenomena 
and processes from the more fundamental viewpoint.



Chapter Five

FORWARD INTO 
HISTORY!

Symmetry, as wide or as narrow 
as you may define its meaning, 
is one idea by which man 
through the ages has tried to 
comprehend and create order, 
beauty and perfection.

SijLijLieTpta— H. Weyl
Apocryphal Times

The famous Soviet scientist Academician V.I. Ver­
nadsky wrote that the concept of symmetry arose from 
the studies of living organisms and living matter. 
Long time ago the great Greek sculptors and architects 
were associating the very term “symmetry” with the 
idea of beauty and harmony. One can find numerous 
examples and references to symmetry in antique art, 
philosophy and science. By the time of Pythagoras 
(born about 530 B.C.) this concept had become habit­
ual. The Greeks recognized symmetry not only as a 
geometric property but also as something proportion­
al, commensurate and harmonic in an object, as a 
method of coordination of components and a law of 
their integration into a single whole. For example, the 
Pythagoreans distinguished ten pairs of counterparts: 
even-odd, straight-curved, true-false, etc. Among them 
there were distinctions between “right” and “left”, 
between an object and its mirror image. The investi­
gation of the latter distinction repeatedly attracted 
the attention of scientists. Even now this is one of the 
central problems in modern physics of elementary 
particles.

Another philosopher of the ancient Greece, Plato 
(born about 430 B.C.), believed that the surrounding 
world consists of four elements: the earth, the water, 
the fire and the air. These elements, having combined 
in definite proportions, form the whole surrounding
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world. Plato assumed each of the four initial elements 
to possess a definite geometric shape: the earth is a 
cube, the fire, a tetrahedron, the water, an icosahedron 
and the air, an octahedron. The expression “Plato’s 
bodies” originated owing to this assumption.

The atomists of the ancient Greece Leucippos (5th 
century B.C.) and Democritus (born about 470 B.C.) 
attributed to atoms not only size, weight and other 
properties, but also a geometric form. But in contrast 
to Plato, they believed that their “bricks of the uni­
verse” possess the innumerable shapes of various sym­
metries—spherical, pyramidal, etc.—or may have an 
irregular shape.

The ancient mathematicians (especially those from 
Greece) were successful in studies of various polygons 
and polyhedrons and, in particular, five regular Pla­
to’s bodies.

Thus since the ancient times the teaching of symme­
try was developing in three areas of knowledge: philo­
sophy, natural science and mathematics. We shall dis­
cuss only two latter areas.

Testament 
of Evariste Galois

The chosen one. For over 100 years the idea of a group 
was forcing its way in the mathematical communica­
tions, from J.L. Lagrange who used it spontaneously 
to solve algebraic equations (1771), through the works 
of P. Ruffini (1799) and N.H. Abel (1824), to the inve­
stigations of the great French mathematician Evariste 
Galois (1830) who used the idea of a group deliberately 
enough and was the first to introduce the term in practice.

Full of hardships and deprivations the life of Eva­
riste Galois (1811-1832) came tragically to an end in 
a duel when he was only 21 years old. On the eve of
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the duel Galois wrote about his discoveries to one of 
his friends. The final words of the letter were: “You 
should publicly ask Jacobi or Gauss to draw the infer­
ence not about the validity but about the significance 
of these theorems. Afterwards, I hope, some people 
would regard it necessary to decipher all this rigmarole.”

That “rigmarole” contained the groundwork of mod­
ern algebra. But Galois’ letter had apparently 
reached neither Gauss nor Jacobi. Many years later the 
French mathematician C. Jordan identified Galois’ 
letter while sorting out the archives of another out­
standing mathematician of the last century 0. Cauchy. 
Jordan at once recognized the significance of the docu­
ment which he had found.

Another contribution to the group theory was made 
by Arthur Cayley (1821-1895) who defined the general 
abstract group (1854) as we now know it and who at 
the same time developed the matrix theory. The theo­
ry of representations, which from the viewpoint of 
chemists is the most important domain of the group 
theory, was developed almost single-handedly at the 
turn of the century by the German algebraist 
G.F. Frobenius (1849-1917).

Erlangen programme. A few words are due here about 
the state of mathematics in the seventies of the last 
century. Although by 1870 mathematics had grown into 
a huge edifice, its various parts were still isolated, 
they were not linked up by any common ideas, so that 
only few mathematicians could work simultaneously 
in several areas of their science. As you see the prob­
lem of a narrow specialization is not only the 20th 
century phenomenon. But any science, especially a 
theoretical one, cannot be in such a “disintegrated” 
state for a long time. The separateness breeds the ten­
dency to find certain principles and theories capable
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of combining various scientific divisions into a single 
whole. The group theory proved to be one of such “unit­
ing” theories. Its development during the last three 
decades of the 19th century was primarily due to the 
efforts of the prominent German mathematician 
F. Klein and the Norwegian mathematician M.S. Lie. 
In 1870 they both met Jordan who called their atten­
tion toThe Galois research. Since that time the group 
theory had become the main subject of their work: 
Klein concentrated his efforts on discrete groups while 
Lie on continuous ones.

In 1872 Klein became university professor in the 
small German town Erlangen. In his introductory 
lecture he explained why the concept of a group is so 
important for mathematics and, in particular, geometry.

Usually the symmetry group of a geometric figure 
was interpreted as the set of all its self-matchings. 
Klein used the symmetry considerations not for the 
sorting of geometric objects but as the criterion for 
classification of “geometries” themselves which in the 
last century came to replace the single (and, it seemed, 
unique) antique Euclidean geometry. That lecture 
delivered by Klein and known in the history of science 
as the “Erlangen programme” influenced to a very 
high degree the development of both mathematics and 
theoretical physics for the decades to come.

Here we shall break the chronological order of our 
narration in order to come back to problems which are 
somewhat closer to chemistry.

Non-Euclidean Geometries 
and Chemistry

Extraordinary symmetry of hydrogen atom. The out­
standing Soviet physicist Academician A.A. Migdal 
once expressed the remarkable thought that “the beauty
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of science consists not only, and not so much, in the 
logical harmony but also in the wealth of relationships”. 
The symmetry theory is the spectacular confirmation 
of this statement. At first glance such different things 
as non-Euclidean geometry and chemistry have noth­
ing in common. However, on more careful scrutiny 
the section heading does not seem surprising.

In this booklet (as in the overwhelming majority of 
comprehensive monographs dealing with the group 
theory application in quantum chemistry) a symmetry 
transformation is considered as one of the specific 
cases of geometric transformations in the ordinary 
three-dimensional space. However, there are such 
systems whose properties cannot be explained only in 
terms of geometric transformations (rotations, reflec­
tions, etc.). A hydrogen atom may serve as an example. 
It is well known that the state of an electron in the 
hydrogen atom is defined by four quantum numbers: 
the principal one n, the orbital Z, the magnetic m and 
the spin number ms. But the energy of an electron de­
pends only on one of those, on n:

E n =  —  13-6/rc2 eV

Hence we have the degeneracy with respect to the 
rest of quantum numbers. What is it associated with? 
We mentioned in Chapter 2 that the degeneracy mul­
tiplicity of energy levels depends on the symmetry of 
a system. The hydrogen atom belongs to the continuous 
symmetry group 0(3), i.e. the Schrodinger equation 
and the structure of energy levels defined by it remain 
invariable—or, as we sometimes say, invariant—rela­
tive to any rotations in the ordinary three-dimensional 
space. In other words, the symmetry group of the hyd­
rogen atom coincides with that of a sphere—whatever 
its orientation the sphere is always matched with it­
self. It is just due to this sphericity of the hydrogen
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atom that the energy does not depend on the magnetic 
quantum number m. This fact was established soon 
after the inception of quantum mechanics (1925- 
26).

The fact that energy is independent of I remained 
inexplicable till 1935 nevertheless. From the general 
symmetry considerations one could assume that the 
electron energy does not depend on I due to the pres­
ence of a certain symmetry transformation group. But 
what group in particular? That was the question. The 
answer was found by the Soviet Academician V.A. Fok 
who showed that the complete symmetry group of the 
hydrogen atom which describes all of its properties, 
including the Z-degeneracy, coincides with the rota­
tion group for the four-dimensional sphere, i.e. together 
with ordinary geometric transformations it contains 
the symmetry transformations of the more general and 
more abstract (and consequently less obvious) type. 
The symmetry group for the four-dimensional sphere 
is customarily denoted by the symbol 0(4).

Fok space. In order to link the hydrogen atom theory 
with the symmetry of the four-dimensional sphere Fok 
wrote down the Schrodinger equation not in the rout­
ine space coordinates x , y, z, but in the special coor­
dinates depending on the electron momentum compo­
nents p x, py and p z. Fok entitled his paper “The Hydro­
gen Atom and the Non-Euclidean Geometry”. When 
the electron is bound to the nucleus and its energy may 
assume only discrete values, i.e. is quantized, the ab­
stract “momentum space” proposed by Fok turns out 
to obey the Riemann geometry, whereas when the 
electron is detached from the nucleus so that its energy 
may assume any value, the momentum space obeys 
the laws of the Lobachevsky geometry. Both geometries 
differ from the common Euclidean one.

130



Symmetry of the periodic system. It is clear from what 
was said above that the hydrogen atom possesses the 
“hidden” symmetry of the four-dimensional sphere. 
Consequently, the wave functions describing the state 
of an electron in the hydrogen atom have to be trans­
formed according to the irreducible representations of 
the 0(4) group.

In recent years the group theory methods have been 
used by some scientists, including the Soviet ones, for 
the study of the Mendeleev periodic table of elements.

The groups which help to reveal the “hidden” sym­
metry of the system have a very complicated mathe­
matical character. The elements of such groups are not 
the conventional symmetry operations described in 
Chapters 1 and 2, but the linear transformations (“ro­
tations”) in the abstract ^-dimensional space. We shall 
not go into mathematical details but shall only men­
tion a few results.

The atoms of chemical elements can be considered 
as different “states” of a certain imaginary atomic 
system just as statistics considers not an individual 
man but “a head of the population”, “a man in general”.

The group theory admits of combining chemical 
elements in definite sets (multiplets). The elements 
which have got into one and the same multiplet pos­
sess some similar properties.Each multiplet corresponds 
to a definite IR. This resembles the familiar classi­
fication of energy levels in accordance with the IR 
of the molecular symmetry point group: the set of ele­
ments with similar /s is analogous to the /-fold degene­
rate energy level. Here the elements can be subdivided 
into the customary “Mendeleev” groups and periods. 
On the other hand, the elements can be divided into 
those having the even sum (n +  I) and those for which 
this sum is odd (n and I are the principal and the orbit­
al quantum numbers of valence electrons).
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It is interesting to note that the continuous groups 
which M.S. Lie studied in his time are widely used in 
modern physics and in particular for the classification 
of elementary particles. The elementary particle taxo­
nomy is one of the most complicated problems, and 
the success achieved in this area is associated prima­
rily with the employment of the continuous Lie groups. 
According to the present-day consensus both the clas­
sification of elementary particles and the periodic 
system of elements rest on one and the same mathemati­
cal basis. In fact, any scientific classification is 
based eventually on the establishment of symmetry 
properties of the objects classified. Even when a re­
searcher does not use (as, for example, Mendeleev did 
not) conscientiously and explicitly the group theory 
methods, the group basis of a classification will be 
eventually revealed because a classification assumes the 
grouping of objects according to the generality of 
their properties and structure, as well as the invariance 
of this generality during various changes—either geo­
metric transformations or transitions from one chemic­
al element to another, for example, from Li to Na and 
then to K, Rb, Cs and Fr.

Look into the future. To conclude our discussion of 
“hidden” symmetries and their detection we have to 
note that in 1966 the Soviet physicists S.P. Alliluev 
and A.V. Matveenko demonstrated that the molecular 
hydrogen ion H£ also possesses the higher symmetry 
than the geometric D«>/,.

We have seen that the molecular structure theory 
was the area in which the group theory methods were 
extensively used (energy level classification and split­
ting, selection rules, etc.). However, in most cases only 
comparatively simple point groups were employed 
forasmuch as they were determined by the shape of
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a nuclear polyhedron. Who knows, maybe in the near 
future the employment of higher symmetries will 
yield new information about the structure and proper­
ties of molecules.

Symmetry Concept 
in Natural Sciences

Apparently the first symmetric objects of nature 
which attracted the attention of researchers were crys­
tals which, as the great Russian crystallographcr 
E.S. Fyodorov said, “glitter with their symmetry”. 
It was the investigation of crystals that evolved the 
concepts of symmetry axes and planes and led to the 
understanding of what symmetries are at all possible 
in the surrounding inorganic nature. Although the 
description of crystal bodies lies outside the scope of 
this booklet, we shall comment—very briefly—on the 
main events and dates in the history of crystallography.

Christmas gift from Johann Kepler. In 1611 in Germany 
the famous German astronomer Johann Kepler pub­
lished a book entitled The Christmas Gift, or on the Hexa­
gonal Snow. That was perhaps the first treatise on crys­
tallography. Written in a peculiar semi-jocular style 
(Kepler tells about his meditations on the way to a 
king’s counselor whom he was about to present with 
a Christmas gift), the book contains a lot of brilliant 
conjectures on the structure of crystals. First of all 
Kepler wanted to know why pentagonal and heptago- 
nal snow flakes would never fall out and only hexago­
nal ones would. Translated into the modern scientific 
language, Kepler’s question sounds as follows: why 
are there no five-fold or seven-fold symmetry axes in 
inorganic nature? The problem was solved in a gene-
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ral form only over 200 years later by the outstanding 
French crystallographer A. Bravais.

Furthermore, in a short treatise Kepler expressed 
his ideas about various modes of the dense packing of 
particles constituting a crystal. The scientist also 
noted the constancy of the angle of 60° between the 
adjacent rays of snowflakes.

Crystallography becomes science. Later in 1669 the 
Danish scientist N. Steensen (he is often called in the 
Latin manner Steno or Stenon) established the law of 
constancy of facet angles in crystals. True, the valid­
ity of his discovery Steensen demonstrated by the 
only example of a rock crystal. Besides, the law was 
formulated not in the main text of the paper but in the 
form of the figure captions included in the appendix. 
Because of that the contemporaries did not pay due 
attention to the Steensen law and other researchers 
discovered it later over and over again. The final pre­
cise and clear statement of the law of the facet angle 
constancy was given in 1783 by the French crystallo­
grapher Jean Baptiste Rome Delisle (1736-1790).

The next remarkable regularity is associated with 
another French scientist, R.J. Haiiy (1743-1822) who 
discovered the law of whole numbers. According to 
this law the spatial position of any crystal facet can 
be expressed by means of three whole numbers.

Obviously the discovery of that law greatly influenced 
the work of the famous British scientist, the founder 
of atomic theory John Dalton (1788-1844) who discov­
ered in 1802-08 the law of multiple proportions in 
chemistry. Dalton had been to Paris and attended 
Haiiy’s lectures.

Dalton believed that atoms in a chemical compound 
had to be arranged in a symmetric pattern. It should 
be pointed out that as the atomistic concepts penetrat-
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ed chemistry many scientists felt that identical (in 
their properties) parts of chemical molecules had the 
identical symmetric arrangement. That idea was later 
reflected even in the notation of chemical compounds, 
organic ones in particular. For instance, in the formula 
of acetic acid CH3COOH the difference between the two 
carbon atoms is emphasized by the symbol C written 
twice. The same may be said about the oxygen atom. 
As to the four hydrogen atoms, they are sorted out 
otherwise: the three atoms which are similar in their 
functions are shown by one symbol while the hydrogen 
atom responsible for the acidic properties of a molecule 
is written separately.

For a long time there was an opinion, or at least an 
intuitive hypothesis, among chemists, and not only 
chemists, that a law of maximum symmetry existed 
in nature. Frequently that claim led to the correct 
guess about the geometric shape of molecules although 
there is no such law in nature.

The beauty and power of the symmetry theory is 
not in the existence of a certain law of maximum sym­
metry but in the fact that there are laws relating 
the symmetry of a compound with its electronic struc­
ture and properties, as well as in the fact that the char­
acterization of each phenomenon involves symmetry 
elements. But of course, at the beginning of the last 
century this could not be understood yet. Even the 
conventional geometric symmetry was associated on­
ly with symmetry planes. Symmetry axes were sug­
gested in 1809 by the German scientist H.S. Weiss 
(1780-1856).

Weiss appreciated from the very beginning of his 
scientific activity the advantage of the precise mathe­
matical approach to crystallography proposed by Haiiy 
over the verbal description of crystals practised by 
other researchers. The cornerstone of Weiss’ theory was
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the concept of a symmetry axis. However, speaking 
strictly, the axes about which Weiss wrote were not 
the symmetry axes in the modern sense and even the 
idea of different symmetry classes was only originating 
at the time.

In 1815 Weiss introduced the concept of crystal 
syngonies. That was the first step on the way to the 
classification of crystal bodies in terms of symmetry.

Magic number of crystallography. In 1820 a German 
Physical Handbook published an article by Hessel 
(1796-1872) under the brief (suitable for a handbook) 
title Crystal. That was a remarkably profound study in 
which for the first time the classification of geometric 
figures was made in accordance with their affiliation 
with one or another symmetry point group. Hessel 
classified not only crystals, he was interested in polyhe­
drons in general, so that his work is also important for 
general geometry. He showed that 32 symmetry classes 
are possible for crystalline polyhedrons, that is all the 
wealth of the kingdom of crystals can be distributed 
over 32 symmetry point groups. Unfortunately Hessel 
was unlucky: his work was not recognized and appre­
ciated by his contemporaries. He was recalled only 
many years after his death.

In 1869 the 32 symmetry classes were established 
anew by the Russian scientist A.V. Gadolin who was 
honoured for this achievement with the Lomonosov 
prize of the Academy of Sciences.

The genuine triumph of geometric crystallography 
was the discovery in 1890-91 of 230 spatial symmetry 
groups. This was done almost simultaneously and in­
dependently by the Russian crystallographer E.S. Fyo­
dorov (by geometric approach) and the German mathe­
matician A. Schonfliess (by group theory methods).
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Thus, the teaching of symmetry was firmly incorpo­
rated in the science of crystals in the second half of 
the last century. As Academician V.I. Vernadsky noted, 
(he last century witnessed the development of “only 
those symmetry phenomena that pertained to crystallo­
graphy and that later spread over to stereochemistry”. 
In other words, having covered the world of crystals 
I lie symmetry theory started infiltrating into the world 
of molecules. The first to become aware of the need of 
using symmetry to explain molecular properties was 
the great French scientist Louis Pasteur (1822-1895).
Cream of tartar puzzle. The first paper by Pasteur 
dedicated to optical properties of organic substances 
appeared in 1848. The optical activity phenomenon was 
discovered much earlier, in 1815-17, by the French 
scientist Biot. The essence of the discovered phenome­
non consisted in the fact that light passing through 
some substances may, speaking in modern language, 
change the polarization direction, i.e. the direction of 
the electric field vector in the light wave. For example, 
according to the data of the German chemist E. Mit- 
scherlich, sodium-ammonium bitartrates rotate the 
polarization plane of light wave clockwise whereas the 
analogous salts of racemic acid do not. Checking Mit- 
scherlich’s results Pasteur discovered that racemate 
crystals exist in two mirror configurations. The solu­
tion of one salt rotates the polarization plane clockwise 
(like a tartaric acid) while that of another salt counter­
clockwise. Mitscherlich dealt with the mixture of 
clockwise and counterclockwise configurations and 
therefore regarded racemates optically inactive.

Like any other scientific discovery Pasteur’s work 
raised more questions than furnished answers. The 
principal question was: why are some molecules opti­
cally active while others are not?
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Asymmetry produces a phenomenon. Pasteur spent 
about 10 years to find an answer. He came to the con­
clusion that the optical activity of a substance is as­
sociated with the asymmetrical molecular structure: 
a molecule is optically active only when its structure 
cannot be matched with its mirror image. The asymme­
try can arise either when a molecule has a spiral struc­
ture (according to Pasteur atoms can be grouped “fol­
lowing the turns of the right ear concha”) or when 
atoms are positioned in the apices of an irregular 
tetrahedron.

This Pasteur alternative gave rise to two trends in 
the theory of optical activity. The former possibility 
formed the basis of the physical theory developed by 
the German physicist P. Drude. The latter one promot­
ed the creation of stereochemistry which originated 
owing to the investigations of the French chemist 
J.A. Le Bel and the Dutch scientist J.H. Van’t Hoff. 
Pasteur wrote the following: “The Universe is an asym­
metric ensemble. I believe that life in the form that is 
known to us has to be the function of the world’s asym­
metry or of its consequencies”.

Asymmetric atoms. The principal aspects of the stereo­
chemical theory of Van’t Hoff and Le Bel are as fol­
lows:

(1) the carbon atom is tetravalent and its four va­
lencies are directed toward the apices of the tetrahedron 
containing the carbon atom in its centre;

(2) when all four valencies of the carbon atom are 
saturated by four different univalent groups 
(CRxRsjRaR^, one can obtain either of two different 
tetrahedrons which are the mirror images of each other 
and cannot be matched;
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(3) any organic compound whose solution deflects 
the polarization plane, possesses the asymmetric carbon 
atom*;

(4) the derivatives of optically active compounds 
lose their rotative power as soon as the asymmetry of 
all carbon atoms disappears.

It is evident that Van’t Hoff and Le Bel related all 
assumptions of the stereochemical theory only to car­
bon compounds. But already in 1875, i.e. one year 
after the origination of stereochemistry, one of the 
physics professors of the Uhtrecht University addressed 
Van’t Hoff with the “Open letter” in which he suggested 
that the theory should necessarily be extended to the 
compounds of other elements and primarily to the 
nitrogen compounds. Similar ideas were also expressed 
by other scientists.

The first stereochemical models of nitrogen com­
pounds, in particular NH4C1, were proposed by Van’t 
Hoff himself. Nevertheless they did not pay for them­
selves in the future.

In 1890 A.R.Hantzsch**and A. Werner*** published 
the results of the investigation of the spatial arrange­
ment of atoms in nitrogen-containing molecules. 
According to the principal assumption of their inves­
tigation three valencies of the nitrogen atom are di­
rected in some compounds toward the corners of the 
tetrahedron (in the general case, an irregular one), 
the fourth corner being occupied by the nitrogen atom 
itself.

* Van’t Hoff called the carbon atom “asymmetric” if it was 
bonded to four different substituents.

** Arthur Rudolf Hantzsch (1857-1935), German chemist 
known for his studies in chemistry of nitrogen-containing com­
pounds.

*** Alfred Werner (1866-1919), prominent Swiss chemist, 
founder of coordination theory and stereochemistry of nitrogen 
compounds. Nobel prize winner in chemistry of 1913.
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As to the optical activity, the conclusion about its 
presence is not difficult to draw now: the NRiRgRg 
compounds, that is the compounds with the asymme­
tric nitrogen atom, have to be optically active.

According to Werner, ammonium salts have the fol­
lowing structure:

~ R x /  
N

R ’
X

_  R /  XR _

This signifies that the NH4C1 molecule can be de­
picted as follows:

It is implied that the radical also has a tetrahedral 
configuration.

Stereochemistry, together with the theory of optical 
activity, was applied in studies of sulphur, selenium, 
tin, silicon and phosphorus compounds already at the 
end of the last century and the beginning of the pres­
ent century. Werner wrote in 1893: “Now stereoche­
mistry of cobalt and platinum compounds goes next 
to stereochemistry of carbon and nitrogen compounds.” 
That was the origination of the coordination theory 
and A. Werner was its founder. He applied the stereo­
chemical concepts to explain the properties of complex 
compounds. In the process the number of symmetry 
types to be studied was increased to include the octahe­
dral, for example [Co(NH3)6]C13, and the square, 
Pt(II), complexes. The most important result of the 
Werner theory was the correct forecast of the optical 
isomerism of complex compounds.
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Refinements of Woldemar Voigt. In 1905 the German 
physicist Woldemar Voigt substantially extended and 
refined the theory of optical activity. He formulated 
three conditions for the optical activity: a molecule 
should not possess (a) a symmetry centre, (b) a sym­
metry plane, and (c) a rotation-reflection axis.

In Chapter 1 we mentioned that the presence of the 
two-fold rotation-reflection axis in a molecule is equi­
valent to the presence of the inversion centre:

i = S2
It may be added that S ± is equivalent to the presence 

of a symmetry plane, i.e. =  a.
Indeed, Sn =  Cnah. i.e. if n =  1, S± = CxGh. But 

C3 =  E, so that S-l = Eon = oh.
That is why all the three conditions cited above can 

be replaced, from the mathematical viewpoint, by 
only one condition, the third one.

Sometimes chemists, especially those majoring in 
organic chemistry, use the simpler Van’t Hoff crite­
rion: if a molecule has an asymmetric atom it can exist 
in the form of mirror or, as it is more often said, optic­
al isomers. But speaking strictly this condition is 
neither necessary nor sufficient. For example, it is 
possible to obtain seven different spatial models of 
hexachloran (C6H6C16) among which there will be some 
optical isomers, despite the fact that the molecule has 
no asymmetric carbon atoms.

Nature takes its choice. Nature is ; abundant in 
optical isomers. Some of them exist as “left” forms 
while others as “right” ones. For instance, two forms 
of asparagine are known: the levorotatory form (it is 
tasteless) and the dextrorotatory one (sweet taste); 
there are two nicotines (one of them is more poi­
sonous), two adrenalines (differing in the intensity of
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their influence on the nervous system), etc. Everybody 
knows very well of the colossal biochemical role of 
amino acids serving as the structural material in the 
protein synthesis. The majority of natural amino acids 
turn out to be “levorotatory”.

The reasons of such a “one-sided” choice of nature 
are not yet known. The mirror asymmetry in organic 
nature is assumed to be caused by historic reasons 
(for example, due to the Earth’s rotation or to the ac­
cidental accumulation of the “left structural material” 
in the part of the planet where life initially originated, 
etc.), but the detailed and well-founded answer is yet 
to be given.

Group Theory 
in Quantum Chemistry

“Group plague”. The group theory began to be 
employed actively in quantum mechanics (and later 
on in quantum chemistry) in the late twenties. Among 
the first who started working in this area were such 
prominent scientists as the physicist E. Wigner, the 
mathematicians H. Weyl* and B.L. Van der Waer- 
den**. Wigner, who was awarded in 1963 the Nobel 
prize for the studies of the group theory application in

* Hermann Weyl (1885-1955), most distinguished mathe­
matician of our century; his research is dedicated to theory of 
numbers, algebra, geometry, foundations of mathematics. His 
scientific activity is distinctive with profound interest in prob­
lems of theoretical physics and chemistry. Some of his publi­
cations are devoted to development of chemical bond theory in 
terms of group theory.

** Bartel Leendert Van der Waerden, born 1903, Dutch 
mathematician and historian of science; worked at the univer­
sities of Leipzig, Amsterdam and Zurich; principal research in 
algebra, algebraic geometry and group theory. His investiga­
tions accomplished the development stage of modern algebra.
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quantum mechanics, developed back in 1927-30 cer­
tain classification rules for atomic energy levels. How­
ever, initially Wigner did not take into account the 
electron spin. A few years later together with the out­
standing mathematician von Neuman* he managed 
to work out the complete classification of the whole 
system of atomic terms (with the spin taken into 
account).

The group theory was also used by many scientists 
for the development of the two fundamental methods 
of quantum chemistry, e.g. the valence bond method 
and the molecular orbital method. The employment of 
symmetry concepts in theoretical chemistry is due to 
the German physicists H.Bethe, F.Hund, W.Heitler**, 
the Soviet physicist Yu.B. Rumer and the American 
scientists P. Mulliken and J. Van Vleck. However, the 
need to study the group theory did not particularly 
appeal to many researchers. The scientific literature 
of the thirties even coined the term “group plague”. 
It should be noted that the negative attitude to the 
group theory is associated with the fact that many 
results could be obtained by conventional computing 
methods.

* John von Neuman (1903-1957), distinguished mathema­
tician, was born and studied in Hungary, lectured in Berlin, 
since 1930 worked in the USA. One of the creators of function 
analysis and some branches of modern mathematics (computer 
theory, game theory and theory of automats), participated in 
creation of first computers, contributed to mathematical founda­
tions of quantum mechanics.

** Walter Heitler, born in 1904, German physicist, one of 
the founders of modern chemical bond theory. Was among the 
first to apply group theory in quantum chemistry; formulated 
basic principles of theory of electronic structure of molecules. 
Some publications are dedicated to quantum theory of radiation 
and cosmic rays. Worked in universities of Germany and Great 
Britain.
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Left in shadow. Possibly due to this prejudiced attitude 
to the group theory most scientists did not pay atten­
tion to the paper of the German theorist H. Bethe 
(1929) in which the theory of crystalline field (TCF) 
was developed.

The general idea of TCF according to which^the met­
al ion in a complex is subjected to the ligand electric 
field and as a result has its energy levels split, belongs 
to the French chemist and spectroscopist Jean Bec- 
querel, the son of the discoverer of radioactivity 
FI. Becquerel. However, J. Becquerel only voiced the 
idea whereas Bethe developed the rigid theory based 
on the mathematical group theory. And here is what 
one of the founders of modern quantum chemistry 
John Van Vleck recollects: “I remember especially 
my stroll with H. Cramers* along sand-dunes in Hol­
land. He told me about the remarkable group theory 
paper by Bethe.... I felt that I had learned more dur­
ing the single stroll than during the rest of my staying 
in Europe.”

Using TCF Van Vleck elucidated most of the magnet­
ic properties of complex compounds in 1932. In the 
same year the American physicist C. Horter discovered 
that the electrostatic field generated by the ligands 
which are arranged tetrahedrally around the central 
ion, gives rise to the same energy levels as the octahed­
ral symmetry field does, but with the inverse order of 
levels.

In the works of Van Vleck and Mulliken the LCAO 
MO method was used for the first time for the investi­
gation of transition metal complexes and other com­
pounds. The symmetry theory was employed there for 
the classification of molecular orbitals.

* Hendrick Cramers (1894-1952), Dutch physicist, known 
for his works in the field of quantum mechanics and theory of 
atomic spectra.
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In modern quantum chemistry the symmetry theory 
provides a reliable basis for the description, classifi­
cation and interpretation of the large amount of ex­
perimental data. The language and methods of the 
symmetry theory gain still more and more recognition 
among the contemporary chemists.

Conclusion

And now our story has come to an end. We have seen 
that the study of the molecular electronic structure is 
based to a considerable degree on the investigation of 
symmetry properties of molecules. On p. 146 we present 
a diagram showing (incompletely, of course) the major 
divisions of theoretical chemistry in which the sym­
metry theory is used, and which in some measure sums 
up our brief trip into the world of molecules.





INDEX
VOCABULARY

A group is a set of elements which satisfy the follow­
ing conditions: (1) every ordered pair of elements a 
and b of this set is associated with a certain element c 
from the same set (group multiplication rule), (2) 
the group multiplication is associative, (3) there is 
an identity element, and (4) every element of the group 
has the corresponding reciprocal element (p. 15). 
Group orbitals are such orbitals that are transformed 
according to one of the irreducible representations of 
the symmetry group (p. 83).
A matrix is the collection of numbers (real or complex) 
written down in the form of a table (p. 32).
An irreducible representation is such a representation 
of a group for which there is no algebraic transforma­
tion capable of converting it into a new group repre­
sentation with matrices of smaller dimensions (p. 40). 
A symmetry operation is an operation which, when 
applied to an object, carries it into a new spatial orien­
tation indistinguishable from the initial one and coin­
ciding with it (pp. 10-11).
A representation of a group is any collection of square 
matrices brought into correspondence with group ele­
ments and obeying the group multiplication table 
(p. 38).
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A reducible representation is such a representation of 
a group from which new representations with matrices 
of smaller dimensions can be obtained as a result of 
an algebraic transformation (p. 41).
A symmetry point group is a set of all symmetry opera­
tions carrying a figure into a new position indistinguish­
able from the initial one, with at least one point of 
the figure remaining stationary in space (p. 19).
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Golovin, I.

ACADEMICIAN IGOR KURCHATOV

This is a short biography and survey of the scientific work of 
the outstanding physicist Igor Kurchatov who was head of 
the atomic energy programme of the USSR. The book covers 
briefly his work on the uranium chain reaction, the building 
of an atomic industry in the Soviet Union, the construction 
of the world’s first nuclear power station, and the problem 
of thermonuclear energy. The author of the book, Igor Golovin, 
D. Sc. (Phys. and Math.), was one of Kurchatov’s close asso­
ciates. He gives an exciting picture of the intensive, self-sac­
rificing work of Soviet physicists to harness the energy of the 
atomic nucleus, tells about the team of scientists who worked 
together with Kurchatov and the great difficulties they had to 
overcome when the USSR, just through the trying times of 
World War II, undertook the building of an atomic industry. 
I. Golovin’s book is well documentated with photographs, and 
will be of interest both to nuclear physicists and the general 
reader.



Kondratov, 1.

SOUNDS AND SIGNS
From time immemorial man has been concerned with the nature 
of his speech, the diversity of languages, the differences be­
tween the sound signals of beasts and human speech. Sounds 
and Signs describes the methods of investigating languages: 
mathematical statistics and information theory, the theory of 
probability and mathematical logic, cybernetics, and the 
theory of signs. It also considers machine languages, various 
projects for “universal” languages to facilitate communica­
tion between nations, and, finally, the development of “Lincos” 
a language designed for communicating with the inhabitants 
of other worlds.
Soviet linguist and popular-science writer Alexander Kondratov 
has produced an exciting book of appeal to all who are interested 
in language.



Anfilov, G.

PHYSICS AND MUSIC

What is it that gives the violin its enchanting voice? Is it the 
wood or its noble, exquisite shape? Can a square violin be 
made? Yes, it can. In fact, it was made at one time, and its 
sound was as beautiful. Yet, violinists rejected it.
The story of the square violin is but one of the many intriguing 
stories told by Gleb Anfilov in his Physics and Music. The 
key-note of the book is man’s desire to penetrate the world of 
the beautiful with the exact sciences—physics, mathematics, 
and electronics—so as to place it within the reach of the man in 
the street. The reader will find many an interesting page about 
the history of music, about the development of notation in 
music, he will learn the secret of famous voices, get acquainted 
with electronic music and the “painted sound”, music ac­
companied by a play of colours, and many other things. The ad­
vantage of the book is that it will be interesting not only for 
musicians, but for every inquisitive man.
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