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This book is intended for first-year graduate and advanced undergraduate courses in 
quantum chemistry. This text provides students with an in-depth treatment of quantum 
chemistry, and enables them to understand the basic principles. The limited mathematics 
background of many chemistry students is taken into account, and reviews of necessary 
mathematics (such as complex numbers, differential equations, operators, and vectors) are 
included. Derivations are presented in full, step-by-step detail so that students at all levels 
can easily follow and understand. A rich variety of homework problems (both quantitative 
and conceptual) is given for each chapter. 

New to this Edition
The following improvements were made to the seventh edition:

•	 Thorough updates reflect the latest quantum chemistry research and methods 
of computational chemistry, including many new literature references.

•	 New problems have been added to most chapters, including additional 
computational problems in Chapters 15 and 16.

•	E xplanations have been revised in areas where students had difficulty.
•	 Color has been added to figures to increase the visual appeal of the book.
•	 The computer programs in the Solutions Manual and the text were changed from 

BASIC to C++.
•	 The text is enlivened by references to modern research in quantum mechanics 

such as the Ozawa reformulation of the uncertainty principle and the observation 
of interference effects with very large molecules. 

New and expanded material in the seventh edition includes

•	 New theoretical and experimental work on the uncertainty principle (Section 5.1).
•	 The CM5 and Hirshfeld-I methods for atomic charges (Section 15.7).
•	 Static and dynamic correlation (Section 16.1).
•	E xpanded treatment of extrapolation to the complete-basis-set (CBS) limit 

(Sections 15.5, 16.1 and 16.4).
•	 Use of the two-electron reduced density matrix (Section 16.2). 
•	 The DFT-D3 method (Section 16.5).
•	 The VV10 correlation functional for dispersion (Section 16.5).
•	 The W1-F12 and W2-F12 methods (Section 16.6).
•	 Dispersion (stacking) interactions in DNA (Section 16.8).
•	 The MP2.5, MP2.X, SCS(MI)-CCSD, and SCS(MI)-MP2 methods (Section 16.8).
•	 An expanded discussion of calculation of NMR shielding constants and spin-spin 

coupling constants including linear scaling (Section 16.9).
•	 Fragmentation methods (Section 16.10).
•	 The PM6-D3H4 and PM7 methods (Section 17.4).

Resources: Optional Spartan Student Edition molecular modeling software provides 
access to a sophisticated molecular modeling package that combines an easy-to-use 
graphical interface with a targeted set of computational functions. A solutions manual for 
the end-of-chapter problems in the book is available at http://www.pearsonhighered.com/
advchemistry.
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The extraordinary expansion of quantum chemistry calculations into all areas of 
chemistry makes it highly desirable for all chemistry students to understand modern methods 
of electronic structure calculation, and this book has been written with this goal in mind.

I have tried to make explanations clear and complete, without glossing over difficult 
or subtle points. Derivations are given with enough detail to make them easy to follow, 
and wherever possible I avoid resorting to the frustrating phrase “it can be shown that.” 
The aim is to give students a solid understanding of the physical and mathematical aspects 
of quantum mechanics and molecular electronic structure. The book is designed to be 
useful to students in all branches of chemistry, not just future quantum chemists. However, 
the presentation is such that those who do go on in quantum chemistry will have a good 
foundation and will not be hampered by misconceptions.

An obstacle faced by many chemistry students in learning quantum mechanics is 
their unfamiliarity with much of the required mathematics. In this text I have included 
detailed treatments of the needed mathematics. Rather than putting all the mathematics 
in an introductory chapter or a series of appendices, I have integrated the mathematics 
with the physics and chemistry. Immediate application of the mathematics to solving a 
quantum-mechanical problem will make the mathematics more meaningful to students 
than would separate study of the mathematics. I have also kept in mind the limited physics 
background of many chemistry students by reviewing topics in physics.

Previous editions of this book have benefited from the reviews and suggestions of 
Leland Allen, N. Colin Baird, Steven Bernasek, James Bolton, W. David Chandler, Donald 
Chesnut, R. James Cross, Gary DeBoer, Douglas Doren, David Farrelly, Melvyn Feinberg, 
Gordon A. Gallup, Daniel Gerrity, David Goldberg, Robert Griffin, Tracy Hamilton, 
Sharon Hammes-Schiffer, James Harrison, John Head, Warren Hehre, Robert Hinde, 
Hans Jaffé, Miklos Kertesz, Neil Kestner, Harry King, Peter Kollman, Anna Krylov, Mel 
Levy, Errol Lewars, Joel Liebman, Tien-Sung Tom Lin, Ryan McLaughlin, Frank Meeks, 
Robert Metzger, Charles Millner, John H. Moore, Pedro Muiño, William Palke, Sharon 
Palmer, Kirk Peterson, Gary Pfeiffer, Russell Pitzer, Oleg Prezhdo, Frank Rioux, Kenneth 
Sando, Harrison Shull, James J. P. Stewart, Richard Stratt, Fu-Ming Tao, Ronald Terry, 
Alexander Van Hook, Arieh Warshel, Peter Weber, John S. Winn, and Michael Zerner.

Reviewers for the seventh edition were

John Asbury, Pennsylvania State University
Mu-Hyun Baik, Indiana University
Lynne Batchelder, Tufts University
Richard Dawes, Missouri University of Science and Technology
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Chapter 1

The Schrödinger Equation

1.1 Quantum Chemistry
In the late seventeenth century, Isaac Newton discovered classical mechanics, the laws of 
motion of macroscopic objects. In the early twentieth century, physicists found that classi-
cal mechanics does not correctly describe the behavior of very small particles such as the 
electrons and nuclei of atoms and molecules. The behavior of such particles is described 
by a set of laws called quantum mechanics.

Quantum chemistry applies quantum mechanics to problems in chemistry. The 
influence of quantum chemistry is evident in all branches of chemistry. Physical chem-
ists use quantum mechanics to calculate (with the aid of statistical mechanics) thermo-
dynamic properties (for example, entropy, heat capacity) of gases; to interpret molecular 
spectra, thereby allowing experimental determination of molecular properties (for exam-
ple, molecular geometries, dipole moments, barriers to internal rotation, energy differ-
ences between conformational isomers); to calculate molecular properties theoretically; to 
calculate properties of transition states in chemical reactions, thereby allowing estimation 
of rate constants; to understand intermolecular forces; and to deal with bonding in solids.

Organic chemists use quantum mechanics to estimate the relative stabilities of mol-
ecules, to calculate properties of reaction intermediates, to investigate the mechanisms of 
chemical reactions, and to analyze and predict nuclear-magnetic-resonance spectra.

Analytical chemists use spectroscopic methods extensively. The frequencies and in-
tensities of lines in a spectrum can be properly understood and interpreted only through 
the use of quantum mechanics.

Inorganic chemists use ligand field theory, an approximate quantum-mechanical 
method, to predict and explain the properties of transition-metal complex ions.

Although the large size of biologically important molecules makes quantum-
mechanical calculations on them extremely hard, biochemists are beginning to benefit 
from quantum-mechanical studies of conformations of biological molecules, enzyme–
substrate binding, and solvation of biological molecules.

Quantum mechanics determines the properties of nanomaterials (objects with at least 
one dimension in the range 1 to 100 nm), and calculational methods to deal with nano-
materials are being developed. When one or more dimensions of a material fall below  
100 nm (and especially below 20 nm), dramatic changes in the optical, electronic, chemi-
cal, and other properties from those of the bulk material can occur. A semiconductor or 
metal object with one dimension in the 1 to 100 nm range is called a quantum well; one 
with two dimensions in this range is a quantum wire; and one with all three dimensions 
in this range is a quantum dot. The word quantum in these names indicates the key role 
played by quantum mechanics in determining the properties of such materials. Many 
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people have speculated that nanoscience and nanotechnology will bring about the “next 
industrial revolution.”

The rapid increase in computer speed and the development of new methods (such 
as density functional theory—Section 16.4) of doing molecular calculations have made 
quantum chemistry a practical tool in all areas of chemistry. Nowadays, several compa-
nies sell quantum-chemistry software for doing molecular quantum-chemistry calcula-
tions. These programs are designed to be used by all kinds of chemists, not just quantum 
chemists. Because of the rapidly expanding role of quantum chemistry and related theo-
retical and computational methods, the American Chemical Society began publication of 
a new periodical, the Journal of Chemical Theory and Computation, in 2005.

“Quantum mechanics . . . underlies nearly all of modern science and technology. It 
governs the behavior of transistors and integrated circuits . . . and is . . . the basis of modern 
chemistry and biology” (Stephen Hawking, A Brief History of Time, 1988, Bantam, chap. 4).

1.2 Historical Background of Quantum Mechanics
The development of quantum mechanics began in 1900 with Planck’s study of the light 
emitted by heated solids, so we start by discussing the nature of light.

In 1803, Thomas Young gave convincing evidence for the wave nature of light by 
observing diffraction and interference when light went through two adjacent pinholes. 
(Diffraction is the bending of a wave around an obstacle. Interference is the combining of 
two waves of the same frequency to give a wave whose disturbance at each point in space 
is the algebraic or vector sum of the disturbances at that point resulting from each interfer-
ing wave. See any first-year physics text.)

In 1864, James Clerk Maxwell published four equations, known as Maxwell’s equa-
tions, which unified the laws of electricity and magnetism. Maxwell’s equations predicted 
that an accelerated electric charge would radiate energy in the form of electromagnetic 
waves consisting of oscillating electric and magnetic fields. The speed predicted by Max-
well’s equations for these waves turned out to be the same as the experimentally measured 
speed of light. Maxwell concluded that light is an electromagnetic wave.

In 1888, Heinrich Hertz detected radio waves produced by accelerated electric 
charges in a spark, as predicted by Maxwell’s equations. This convinced physicists that 
light is indeed an electromagnetic wave.

All electromagnetic waves travel at speed c = 2.998 * 108 m/s in vacuum. The 
frequency n and wavelength l of an electromagnetic wave are related by

	 ln = c	 (1.1)

(Equations that are enclosed in a box should be memorized. The Appendix gives the Greek 
alphabet.) Various conventional labels are applied to electromagnetic waves depending on 
their frequency. In order of increasing frequency are radio waves, microwaves, infrared 
radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. We shall use the 
term light to denote any kind of electromagnetic radiation. Wavelengths of visible and 
ultraviolet radiation were formerly given in angstroms (Å) and are now given in nano-
meters (nm):

	 1 nm = 10-9 m,   1 Å = 10-10 m = 0.1 nm	 (1.2)

In the 1890s, physicists measured the intensity of light at various frequencies 
emitted by a heated blackbody at a fixed temperature, and did these measurements at sev-
eral temperatures. A blackbody is an object that absorbs all light falling on it. A good 
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approximation to a blackbody is a cavity with a tiny hole. In 1896, the physicist Wien 
proposed the following equation for the dependence of blackbody radiation on light fre-
quency and blackbody temperature: I = an3>ebn>T, where a and b are empirical constants, 
and I dn is the energy with frequency in the range n to n + dn radiated per unit time 
and per unit surface area by a blackbody, with dn being an infinitesimal frequency range. 
Wien’s formula gave a good fit to the blackbody radiation data available in 1896, but his 
theoretical arguments for the formula were considered unsatisfactory.

In 1899–1900, measurements of blackbody radiation were extended to lower frequen-
cies than previously measured, and the low-frequency data showed significant deviations 
from Wien’s formula. These deviations led the physicist Max Planck to propose in October 
1900 the following formula: I = an3> 1ebn>T - 12, which was found to give an excellent 
fit to the data at all frequencies.

Having proposed this formula, Planck sought a theoretical justification for it. In  
December 1900, he presented a theoretical derivation of his equation to the German Physi-
cal Society. Planck assumed the radiation emitters and absorbers in the blackbody to be 
harmonically oscillating electric charges (“resonators”) in equilibrium with electromag-
netic radiation in a cavity. He assumed that the total energy of those resonators whose fre-
quency is n consisted of N indivisible “energy elements,” each of magnitude hn, where N 
is an integer and h (Planck’s constant) was a new constant in physics. Planck distributed 
these energy elements among the resonators. In effect, this restricted the energy of each 
resonator to be a whole-number multiple of hv (although Planck did not explicitly say 
this). Thus the energy of each resonator was quantized, meaning that only certain discrete 
values were allowed for a resonator energy. Planck’s theory showed that a = 2ph>c2 and 
b = h>k, where k is Boltzmann’s constant. By fitting the experimental blackbody curves, 
Planck found h = 6.6 * 10-34 J # s. 

Planck’s work is usually considered to mark the beginning of quantum mechanics. 
However, historians of physics have debated whether Planck in 1900 viewed energy quan-
tization as a description of physical reality or as merely a mathematical approximation 
that allowed him to obtain the correct blackbody radiation formula. [See O. Darrigol, Cen-
taurus, 43, 219 (2001); C. A. Gearhart, Phys. Perspect., 4, 170 (2002) (available online 
at employees.csbsju.edu/cgearhart/Planck/PQH.pdf; S. G. Brush, Am. J. Phys., 70, 119 
(2002) (www.punsterproductions.com/~sciencehistory/cautious.htm).] The physics histo-
rian Kragh noted that “If a revolution occurred in physics in December 1900, nobody 
seemed to notice it. Planck was no exception, and the importance ascribed to his work is 
largely a historical reconstruction” (H. Kragh, Physics World, Dec. 2000, p. 31).

The concept of energy quantization is in direct contradiction to all previous ideas 
of physics. According to Newtonian mechanics, the energy of a material body can vary 
continuously. However, only with the hypothesis of quantized energy does one obtain the 
correct blackbody-radiation curves.

The second application of energy quantization was to the photoelectric effect. In the pho-
toelectric effect, light shining on a metal causes emission of electrons. The energy of a wave 
is proportional to its intensity and is not related to its frequency, so the electromagnetic-wave 
picture of light leads one to expect that the kinetic energy of an emitted photoelectron would 
increase as the light intensity increases but would not change as the light frequency changes. 
Instead, one observes that the kinetic energy of an emitted electron is independent of the 
light’s intensity but increases as the light’s frequency increases.

In 1905, Einstein showed that these observations could be explained by regarding light 
as composed of particlelike entities (called photons), with each photon having an energy

	 Ephoton = hn	 (1.3)
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When an electron in the metal absorbs a photon, part of the absorbed photon energy is 
used to overcome the forces holding the electron in the metal; the remainder appears as 
kinetic energy of the electron after it has left the metal. Conservation of energy gives 
hn = � + T, where � is the minimum energy needed by an electron to escape the metal 
(the metal’s work function), and T is the maximum kinetic energy of an emitted electron. 
An increase in the light’s frequency n increases the photon energy and hence increases the 
kinetic energy of the emitted electron. An increase in light intensity at fixed frequency in-
creases the rate at which photons strike the metal and hence increases the rate of emission 
of electrons, but does not change the kinetic energy of each emitted electron. (According 
to Kragh, a strong “case can be made that it was Einstein who first recognized the essence 
of quantum theory”; Kragh, Physics World, Dec. 2000, p. 31.)

The photoelectric effect shows that light can exhibit particlelike behavior in addition 
to the wavelike behavior it shows in diffraction experiments.

In 1907, Einstein applied energy quantization to the vibrations of atoms in a solid ele-
ment, assuming that each atom’s vibrational energy in each direction 1x, y, z2 is restricted 
to be an integer times hnvib, where the vibrational frequency nvib is characteristic of the 
element. Using statistical mechanics, Einstein derived an expression for the constant- 
volume heat capacity CV of the solid. Einstein’s equation agreed fairly well with known 
CV -versus-temperature data for diamond.

Now let us consider the structure of matter.
In the late nineteenth century, investigations of electric discharge tubes and natu-

ral radioactivity showed that atoms and molecules are composed of charged particles. 
Electrons have a negative charge. The proton has a positive charge equal in magnitude 
but opposite in sign to the electron charge and is 1836 times as heavy as the electron. 
The third constituent of atoms, the neutron (discovered in 1932), is uncharged and slightly 
heavier than the proton.

Starting in 1909, Rutherford, Geiger, and Marsden repeatedly passed a beam of alpha 
particles through a thin metal foil and observed the deflections of the particles by allowing 
them to fall on a fluorescent screen. Alpha particles are positively charged helium nuclei 
obtained from natural radioactive decay. Most of the alpha particles passed through the 
foil essentially undeflected, but, surprisingly, a few underwent large deflections, some be-
ing deflected backward. To get large deflections, one needs a very close approach between 
the charges, so that the Coulombic repulsive force is great. If the positive charge were 
spread throughout the atom (as J. J. Thomson had proposed in 1904), once the high-energy 
alpha particle penetrated the atom, the repulsive force would fall off, becoming zero at the 
center of the atom, according to classical electrostatics. Hence Rutherford concluded that 
such large deflections could occur only if the positive charge were concentrated in a tiny, 
heavy nucleus.

An atom contains a tiny (10-13 to 10-12 cm radius), heavy nucleus consisting of neu-
trons and Z protons, where Z is the atomic number. Outside the nucleus there are Z elec-
trons. The charged particles interact according to Coulomb’s law. (The nucleons are held 
together in the nucleus by strong, short-range nuclear forces, which will not concern us.) 
The radius of an atom is about one angstrom, as shown, for example, by results from the 
kinetic theory of gases. Molecules have more than one nucleus.

The chemical properties of atoms and molecules are determined by their electronic 
structure, and so the question arises as to the nature of the motions and energies of the 
electrons. Since the nucleus is much more massive than the electron, we expect the motion 
of the nucleus to be slight compared with the electrons’ motions.

In 1911, Rutherford proposed his planetary model of the atom in which the elec-
trons revolved about the nucleus in various orbits, just as the planets revolve about the 
sun. However, there is a fundamental difficulty with this model. According to classical 
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electromagnetic theory, an accelerated charged particle radiates energy in the form of 
electromagnetic (light) waves. An electron circling the nucleus at constant speed is being 
accelerated, since the direction of its velocity vector is continually changing. Hence the 
electrons in the Rutherford model should continually lose energy by radiation and there-
fore would spiral toward the nucleus. Thus, according to classical (nineteenth-century) 
physics, the Rutherford atom is unstable and would collapse.

A possible way out of this difficulty was proposed by Niels Bohr in 1913, when he ap-
plied the concept of quantization of energy to the hydrogen atom. Bohr assumed that the 
energy of the electron in a hydrogen atom was quantized, with the electron constrained 
to move only on one of a number of allowed circles. When an electron makes a transition 
from one Bohr orbit to another, a photon of light whose frequency v satisfies

	 Eupper - Elower = hn	 (1.4)

is absorbed or emitted, where Eupper and Elower are the energies of the upper and lower 
states (conservation of energy). With the assumption that an electron making a transition 
from a free (ionized) state to one of the bound orbits emits a photon whose frequency 
is an integral multiple of one-half the classical frequency of revolution of the electron 
in the bound orbit, Bohr used classical mechanics to derive a formula for the hydrogen-
atom energy levels. Using (1.4), he got agreement with the observed hydrogen spectrum. 
However, attempts to fit the helium spectrum using the Bohr theory failed. Moreover, the 
theory could not account for chemical bonds in molecules.

The failure of the Bohr model arises from the use of classical mechanics to describe 
the electronic motions in atoms. The evidence of atomic spectra, which show discrete 
frequencies, indicates that only certain energies of motion are allowed; the electronic en-
ergy is quantized. However, classical mechanics allows a continuous range of energies. 
Quantization does occur in wave motion—for example, the fundamental and overtone fre-
quencies of a violin string. Hence Louis de Broglie suggested in 1923 that the motion of 
electrons might have a wave aspect; that an electron of mass m and speed v would have a 
wavelength

	 l =
h

mv

=
h
p

	 (1.5)

associated with it, where p is the linear momentum. De Broglie arrived at Eq. (1.5) by 
reasoning in analogy with photons. The energy of a photon can be expressed, according 
to Einstein’s special theory of relativity, as E = pc, where c is the speed of light and p is 
the photon’s momentum. Using Ephoton = hn, we get pc = hn = hc>l and l = h>p for 
a photon traveling at speed c. Equation (1.5) is the corresponding equation for an electron.

In 1927, Davisson and Germer experimentally confirmed de Broglie’s hypothesis by 
reflecting electrons from metals and observing diffraction effects. In 1932, Stern observed 
the same effects with helium atoms and hydrogen molecules, thus verifying that the wave 
effects are not peculiar to electrons, but result from some general law of motion for mi-
croscopic particles. Diffraction and interference have been observed with molecules as 
large as C48H26F24N8O8 passing through a diffraction grating [T. Juffmann et al., Nat. 
Nanotechnol., 7, 297 (2012).]. A movie of the buildup of an interference pattern involving 
C32H18N8 molecules can be seen at www.youtube.com/watch?v=vCiOMQIRU7I.

Thus electrons behave in some respects like particles and in other respects like waves. 
We are faced with the apparently contradictory “wave–particle duality” of matter (and of 
light). How can an electron be both a particle, which is a localized entity, and a wave, 
which is nonlocalized? The answer is that an electron is neither a wave nor a particle, but 
something else. An accurate pictorial description of an electron’s behavior is impossible 
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using the wave or particle concept of classical physics. The concepts of classical phys-
ics have been developed from experience in the macroscopic world and do not properly 
describe the microscopic world. Evolution has shaped the human brain to allow it to un-
derstand and deal effectively with macroscopic phenomena. The human nervous system 
was not developed to deal with phenomena at the atomic and molecular level, so it is not 
surprising if we cannot fully understand such phenomena.

Although both photons and electrons show an apparent duality, they are not the same 
kinds of entities. Photons travel at speed c in vacuum and have zero rest mass; electrons 
always have v 6 c and a nonzero rest mass. Photons must always be treated relativisti-
cally, but electrons whose speed is much less than c can be treated nonrelativistically.

1.3 The Uncertainty Principle
Let us consider what effect the wave–particle duality has on attempts to measure simulta-
neously the x coordinate and the x component of linear momentum of a microscopic par-
ticle. We start with a beam of particles with momentum p, traveling in the y direction, and 
we let the beam fall on a narrow slit. Behind this slit is a photographic plate. See Fig. 1.1.

Particles that pass through the slit of width w have an uncertainty w in their x coor-
dinate at the time of going through the slit. Calling this spread in x values �x, we have 
�x = w.

Since microscopic particles have wave properties, they are diffracted by the slit pro-
ducing (as would a light beam) a diffraction pattern on the plate. The height of the graph 
in Fig. 1.1 is a measure of the number of particles reaching a given point. The diffraction 
pattern shows that when the particles were diffracted by the slit, their direction of motion 
was changed so that part of their momentum was transferred to the x direction. The x 
component of momentum px equals the projection of the momentum vector p in the x di-
rection. A particle deflected upward by an angle a has px = p sin a. A particle deflected 
downward by a has px = -p sin a. Since most of the particles undergo deflections in the 
range -a to a, where a is the angle to the first minimum in the diffraction pattern, we 
shall take one-half the spread of momentum values in the central diffraction peak as a 
measure of the uncertainty �px in the x component of momentum: �px = p sin a.

Hence at the slit, where the measurement is made,

	 �x �px = pw sin a	 (1.6)
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Figure 1.1  Diffraction of 
electrons by a slit.
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The angle a at which the first diffraction minimum occurs is readily calculated. 
The condition for the first minimum is that the difference in the distances traveled by 
particles passing through the slit at its upper edge and particles passing through the cen-
ter of the slit should be equal to 1

2 l, where l is the wavelength of the associated wave. 
Waves originating from the top of the slit are then exactly out of phase with waves origi-
nating from the center of the slit, and they cancel each other. Waves originating from 
a point in the slit at a distance d below the slit midpoint cancel with waves originating 
at a distance d below the top of the slit. Drawing AC in Fig. 1.2 so that AD = CD, we 
have the difference in path length as BC. The distance from the slit to the screen is 
large compared with the slit width. Hence AD and BD are nearly parallel. This makes 
the angle ACB essentially a right angle, and so angle BAC = a. The path difference 
BC is then 1

2 w sin a. Setting BC equal to 1
2 l, we have w sin a = l, and Eq. (1.6) be-

comes �x �px = pl. The wavelength l is given by the de Broglie relation l = h>p, so 
�x �px = h. Since the uncertainties have not been precisely defined, the equality sign 
is not really justified. Instead we write

	 �x �px � h	 (1.7)

indicating that the product of the uncertainties in x and px is of the order of magnitude of 
Planck’s constant.

Although we have demonstrated (1.7) for only one experimental setup, its validity 
is general. No matter what attempts are made, the wave–particle duality of microscopic 
“particles” imposes a limit on our ability to measure simultaneously the position and mo-
mentum of such particles. The more precisely we determine the position, the less accurate 
is our determination of momentum. (In Fig. 1.1, sin a = l>w, so narrowing the slit in-
creases the spread of the diffraction pattern.) This limitation is the uncertainty principle, 
discovered in 1927 by Werner Heisenberg.

Because of the wave–particle duality, the act of measurement introduces an uncon-
trollable disturbance in the system being measured. We started with particles having a 
precise value of px (zero). By imposing the slit, we measured the x coordinate of the par-
ticles to an accuracy w, but this measurement introduced an uncertainty into the px values 
of the particles. The measurement changed the state of the system.

1.4 The Time-Dependent Schrödinger Equation
Classical mechanics applies only to macroscopic particles. For microscopic “particles” 
we require a new form of mechanics, called quantum mechanics. We now consider some 
of the contrasts between classical and quantum mechanics. For simplicity a one-particle, 
one-dimensional system will be discussed.

Figure 1.2  Calculation of 
first diffraction minimum.
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In classical mechanics the motion of a particle is governed by Newton’s second law:

	 F = ma = m 
d 2x

dt 2 	 (1.8)

where F is the force acting on the particle, m is its mass, and t is the time; a is the ac-
celeration, given by a = dv>dt = 1d>dt21dx>dt2 = d 2x>dt 2, where v is the velocity. 
Equation (1.8) contains the second derivative of the coordinate x with respect to time. To 
solve it, we must carry out two integrations. This introduces two arbitrary constants c1 and 
c2 into the solution, and
	 x = g1t, c1, c22	 (1.9)

where g is some function of time. We now ask: What information must we possess at a 
given time t0 to be able to predict the future motion of the particle? If we know that at t0 
the particle is at point x0, we have
	 x0 = g1t0, c1, c22	 (1.10)

Since we have two constants to determine, more information is needed. Differentiating 
(1.9), we have

dx

dt
= v =

d

dt
 g1t, c1, c22

If we also know that at time t0 the particle has velocity v0, then we have the additional 
relation

	 v0 =
d

dt
 g1t, c1, c22 `

t = t0

	 (1.11)

We may then use (1.10) and (1.11) to solve for c1 and c2 in terms of x0 and v0. Knowing c1 
and c2, we can use Eq. (1.9) to predict the exact future motion of the particle.

As an example of Eqs. (1.8) to (1.11), consider the vertical motion of a particle in 
the earth’s gravitational field. Let the x axis point upward. The force on the particle is 
downward and is F = -mg, where g is the gravitational acceleration constant. New-
ton’s second law (1.8) is -mg = m d 2x>dt 2, so d 2x>dt 2 = -g. A single integration gives 
dx>dt = -gt + c1. The arbitrary constant c1 can be found if we know that at time t0 the 
particle had velocity v0. Since v = dx>dt, we have v0 = -gt0 + c1 and c1 = v0 + gt0. 
Therefore, dx>dt = -gt + gt0 + v0. Integrating a second time, we introduce another ar-
bitrary constant c2, which can be evaluated if we know that at time t0 the particle had 
position x0. We find (Prob. 1.7) x = x0 -

1
2 g1t - t022 + v01t - t02. Knowing x0 and v0 

at time t0, we can predict the future position of the particle.
The classical-mechanical potential energy V of a particle moving in one dimension is 

defined to satisfy

	
0V1x, t2

0x
= -F1x, t2	 (1.12)

For example, for a particle moving in the earth’s gravitational field, 0V>0x = -F = mg 
and integration gives V = mgx + c, where c is an arbitrary constant. We are free to set 
the zero level of potential energy wherever we please. Choosing c = 0, we have V = mgx 
as the potential-energy function.

The word state in classical mechanics means a specification of the position and veloc-
ity of each particle of the system at some instant of time, plus specification of the forces 
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acting on the particles. According to Newton’s second law, given the state of a system at 
any time, its future state and future motions are exactly determined, as shown by Eqs. 
(1.9)–(1.11). The impressive success of Newton’s laws in explaining planetary motions led 
many philosophers to use Newton’s laws as an argument for philosophical determinism. 
The mathematician and astronomer Laplace (1749–1827) assumed that the universe con-
sisted of nothing but particles that obeyed Newton’s laws. Therefore, given the state of the 
universe at some instant, the future motion of everything in the universe was completely 
determined. A super-being able to know the state of the universe at any instant could, in 
principle, calculate all future motions.

Although classical mechanics is deterministic, many classical-mechanical systems 
(for example, a pendulum oscillating under the influence of gravity, friction, and a 
periodically varying driving force) show chaotic behavior for certain ranges of the 
systems’ parameters. In a chaotic system, the motion is extraordinarily sensitive to 
the initial values of the particles’ positions and velocities and to the forces acting, and 
two initial states that differ by an experimentally undetectable amount will eventually 
lead to very different future behavior of the system. Thus, because the accuracy with 
which one can measure the initial state is limited, prediction of the long-term behavior 
of a chaotic classical-mechanical system is, in practice, impossible, even though the 
system obeys deterministic equations. Computer calculations of solar-system plan-
etary orbits over tens of millions of years indicate that the motions of the planets are 
chaotic [I. Peterson, Newton’s Clock: Chaos in the Solar System, Freeman, 1993; 
J. J. Lissauer, Rev. Mod. Phys., 71, 835 (1999)].

Given exact knowledge of the present state of a classical-mechanical system, we can 
predict its future state. However, the Heisenberg uncertainty principle shows that we can-
not determine simultaneously the exact position and velocity of a microscopic particle, so 
the very knowledge required by classical mechanics for predicting the future motions of 
a system cannot be obtained. We must be content in quantum mechanics with something 
less than complete prediction of the exact future motion.

Our approach to quantum mechanics will be to postulate the basic principles and then 
use these postulates to deduce experimentally testable consequences such as the energy 
levels of atoms. To describe the state of a system in quantum mechanics, we postulate 
the existence of a function � of the particles’ coordinates called the state function or 
wave function (often written as wavefunction). Since the state will, in general, change 
with time, � is also a function of time. For a one-particle, one-dimensional system, we 
have � = �1x, t2. The wave function contains all possible information about a system, 
so instead of speaking of “the state described by the wave function �,” we simply say 
“the state �.” Newton’s second law tells us how to find the future state of a classical-
mechanical system from knowledge of its present state. To find the future state of a  
quantum-mechanical system from knowledge of its present state, we want an equation 
that tells us how the wave function changes with time. For a one-particle, one-dimensional 
system, this equation is postulated to be

	 -
U

i
 
0�1x, t2

0t
= -

U2

2m
 
02�1x, t2

0x2 + V1x, t2�1x, t2	 (1.13)

where the constant U (h-bar) is defined as

	 U K
h

2p
	 (1.14)
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The concept of the wave function and the equation governing its change with time 
were discovered in 1926 by the Austrian physicist Erwin Schrödinger (1887–1961). In 
this equation, known as the time-dependent Schrödinger equation (or the Schrödinger 
wave equation), i = 2-1, m is the mass of the particle, and V1x, t2 is the potential-
energy function of the system. (Many of the historically important papers in quantum 
mechanics are available at dieumsnh.qfb.umich.mx/archivoshistoricosmq.)

The time-dependent Schrödinger equation contains the first derivative of the wave 
function with respect to time and allows us to calculate the future wave function (state) at 
any time, if we know the wave function at time t0.

The wave function contains all the information we can possibly know about the sys-
tem it describes. What information does � give us about the result of a measurement of 
the x coordinate of the particle? We cannot expect � to involve the definite specification 
of position that the state of a classical-mechanical system does. The correct answer to this 
question was provided by Max Born shortly after Schrödinger discovered the Schrödinger 
equation. Born postulated that for a one-particle, one-dimensional system,

	 0  �1x, t2 0 2 dx	 (1.15)

gives the probability at time t of finding the particle in the region of the x axis ly-
ing between x and x + dx. In (1.15) the bars denote the absolute value and dx is an 
infinitesimal length on the x axis. The function 0  �1x, t2 0 2 is the probability density 
for finding the particle at various places on the x axis. (Probability is reviewed in 
Section 1.6.) For example, suppose that at some particular time t0 the particle is in a 
state characterized by the wave function ae-bx2

, where a and b are real constants. If 
we measure the particle’s position at time t0, we might get any value of x, because the 
probability density a2e-2bx2

 is nonzero everywhere. Values of x in the region around 
x = 0 are more likely to be found than other values, since 0� 0 2 is a maximum at the 
origin in this case.

To relate 0� 0 2 to experimental measurements, we would take many identical non-
interacting systems, each of which was in the same state �. Then the particle’s position 
in each system is measured. If we had n systems and made n measurements, and if dnx 
denotes the number of measurements for which we found the particle between x and 
x + dx, then dnx>n is the probability for finding the particle between x and x + dx. Thus

dnx

n
= 0� 0 2 dx

and a graph of 11>n2dnx>dx versus x gives the probability density 0� 0 2 as a function 
of x. It might be thought that we could find the probability-density function by taking 
one system that was in the state � and repeatedly measuring the particle’s position. This 
procedure is wrong because the process of measurement generally changes the state 
of a system. We saw an example of this in the discussion of the uncertainty principle 
(Section 1.3).

Quantum mechanics is statistical in nature. Knowing the state, we cannot predict the 
result of a position measurement with certainty; we can only predict the probabilities of 
various possible results. The Bohr theory of the hydrogen atom specified the precise path 
of the electron and is therefore not a correct quantum-mechanical picture.

Quantum mechanics does not say that an electron is distributed over a large region of 
space as a wave is distributed. Rather, it is the probability patterns (wave functions) used 
to describe the electron’s motion that behave like waves and satisfy a wave equation.
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How the wave function gives us information on other properties besides the position 
is discussed in later chapters.

The postulates of thermodynamics (the first, second, and third laws of thermodynam-
ics) are stated in terms of macroscopic experience and hence are fairly readily understood. 
The postulates of quantum mechanics are stated in terms of the microscopic world and 
appear quite abstract. You should not expect to fully understand the postulates of quantum 
mechanics at first reading. As we treat various examples, understanding of the postulates 
will increase.

It may bother the reader that we wrote down the Schrödinger equation without any 
attempt to prove its plausibility. By using analogies between geometrical optics and clas-
sical mechanics on the one hand, and wave optics and quantum mechanics on the other 
hand, one can show the plausibility of the Schrödinger equation. Geometrical optics is an 
approximation to wave optics, valid when the wavelength of the light is much less than the 
size of the apparatus. (Recall its use in treating lenses and mirrors.) Likewise, classical 
mechanics is an approximation to wave mechanics, valid when the particle’s wavelength is 
much less than the size of the apparatus. One can make a plausible guess as to how to get 
the proper equation for quantum mechanics from classical mechanics based on the known 
relation between the equations of geometrical and wave optics. Since many chemists are 
not particularly familiar with optics, these arguments have been omitted. In any case, 
such analogies can only make the Schrödinger equation seem plausible. They cannot be 
used to derive or prove this equation. The Schrödinger equation is a postulate of the the-
ory, to be tested by agreement of its predictions with experiment. (Details of the reasoning 
that led Schrödinger to his equation are given in Jammer, Section 5.3. A reference with 
the author’s name italicized is listed in the Bibliography.)

Quantum mechanics provides the law of motion for microscopic particles. Experimen-
tally, macroscopic objects obey classical mechanics. Hence for quantum mechanics to be a 
valid theory, it should reduce to classical mechanics as we make the transition from micro-
scopic to macroscopic particles. Quantum effects are associated with the de Broglie wave-
length l = h>mv. Since h is very small, the de Broglie wavelength of macroscopic objects 
is essentially zero. Thus, in the limit l S 0, we expect the time-dependent Schrödinger 
equation to reduce to Newton’s second law. We can prove this to be so (see Prob. 7.59).

A similar situation holds in the relation between special relativity and classical mechan-
ics. In the limit v>c S 0, where c is the speed of light, special relativity reduces to classical 
mechanics. The form of quantum mechanics that we will develop will be nonrelativistic. A 
complete integration of relativity with quantum mechanics has not been achieved.

Historically, quantum mechanics was first formulated in 1925 by Heisenberg, Born, 
and Jordan using matrices, several months before Schrödinger’s 1926 formulation using 
differential equations. Schrödinger proved that the Heisenberg formulation (called ma-
trix mechanics) is equivalent to the Schrödinger formulation (called wave mechanics). 
In 1926, Dirac and Jordan, working independently, formulated quantum mechanics in an 
abstract version called transformation theory that is a generalization of matrix mechanics 
and wave mechanics (see Dirac). In 1948, Feynman devised the path integral formulation 
of quantum mechanics [R. P. Feynman, Rev. Mod. Phys., 20, 367 (1948); R. P. Feynman 
and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, 1965].

1.5 The Time-Independent Schrödinger Equation
The time-dependent Schrödinger equation (1.13) is formidable looking. Fortunately, 
many applications of quantum mechanics to chemistry do not use this equation. In-
stead, the simpler time-independent Schrödinger equation is used. We now derive the 



12  Chapter 1  |  The Schrödinger Equation

time-independent from the time-dependent Schrödinger equation for the one-particle, 
one-dimensional case.

We begin by restricting ourselves to the special case where the potential energy V 
is not a function of time but depends only on x. This will be true if the system experi-
ences no time-dependent external forces. The time-dependent Schrödinger equation 
reads

	 -
U

i
 
0�1x, t2

0t
= -

U2

2m
 
02�1x, t2

0x2 + V1x2�1x, t2	 (1.16)

We now restrict ourselves to looking for those solutions of (1.16) that can be written as the 
product of a function of time and a function of x:

	 �1x, t2 = f1t2c1x2	 (1.17)

Capital psi is used for the time-dependent wave function and lowercase psi for the factor 
that depends only on the coordinate x. States corresponding to wave functions of the form 
(1.17) possess certain properties (to be discussed shortly) that make them of great interest. 
[Not all solutions of (1.16) have the form (1.17); see Prob. 3.51.] Taking partial deriva-
tives of (1.17), we have

0�1x, t2
0t

=
df1t2

dt
c1x2,  

02�1x, t2
0x2 = f1t2 d2c1x2

dx2

Substitution into (1.16) gives

-
U

i
 
df1t2

dt
 c1x2 = -

U2

2m
 f1t2 d2c1x2

dx2 + V1x2f1t2c1x2

	 -
U

i
 

1

f1t2 
df1t2

dt
= -

U2

2m
 

1

c1x2 
d2c1x2

dx2 + V1x2	 (1.18)

where we divided by fc. In general, we expect the quantity to which each side of (1.18) 
is equal to be a certain function of x and t. However, the right side of (1.18) does not 
depend on t, so the function to which each side of (1.18) is equal must be independent 
of t. The left side of (1.18) is independent of x, so this function must also be independent 
of x. Since the function is independent of both variables, x and t, it must be a constant. 
We call this constant E.

Equating the left side of (1.18) to E, we get

df1t2
f1t2 = -

iE

U
 dt

Integrating both sides of this equation with respect to t, we have

ln f1t2 = - iEt>U + C

where C is an arbitrary constant of integration. Hence

f1t2 = eCe-iEt>U = Ae-iEt>U

where the arbitrary constant A has replaced eC. Since A can be included as a factor in the 
function c1x2 that multiplies f1t2 in (1.17), A can be omitted from f1t2. Thus

f1t2 = e-iEt>U
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Equating the right side of (1.18) to E, we have

	 -
U2

2m
 
d2c1x2

dx2 + V1x2c1x2 = Ec1x2	 (1.19)

Equation (1.19) is the time-independent Schrödinger equation for a single particle of 
mass m moving in one dimension.

What is the significance of the constant E? Since E occurs as 3E - V1x)4  in (1.19), 
E has the same dimensions as V, so E has the dimensions of energy. In fact, we postulate 
that E is the energy of the system. (This is a special case of a more general postulate to be 
discussed in a later chapter.) Thus, for cases where the potential energy is a function of x 
only, there exist wave functions of the form

	 �1x, t2 = e-iEt>Uc1x2	 (1.20)

and these wave functions correspond to states of constant energy E. Much of our atten-
tion in the next few chapters will be devoted to finding the solutions of (1.19) for various 
systems.

The wave function in (1.20) is complex, but the quantity that is experimentally 
observable is the probability density 0�1x, t2 0 2. The square of the absolute value of a 
complex quantity is given by the product of the quantity with its complex conjugate, 
the complex conjugate being formed by replacing i with –i wherever it occurs. (See 
Section 1.7.) Thus

	 0� 0 2 = � * �	 (1.21)

where the star denotes the complex conjugate. For the wave function (1.20),

 0�1x, t2 0 2 = 3e-iEt>Uc1x)4*e-iEt>Uc1x2
 = eiEt>Uc*1x2e-iEt>Uc1x2
 = e0c*1x2c1x2 = c*1x2c1x2

	  0�1x, t2 0 2 = 0c1x2 0 2 	 (1.22)

In deriving (1.22), we assumed that E is a real number, so E = E*. This fact will be 
proved in Section 7.2.

Hence for states of the form (1.20), the probability density is given by 0�1x2 02 and 
does not change with time. Such states are called stationary states. Since the physically 
significant quantity is 0�1x, t2 0 2, and since for stationary states 0�1x, t2 0 2 = 0c1x2 0 2, the 
function c1x2 is often called the wave function, although the complete wave function of 
a stationary state is obtained by multiplying c1x2 by e-iEt>U. The term stationary state 
should not mislead the reader into thinking that a particle in a stationary state is at rest. 
What is stationary is the probability density 0� 0 2, not the particle itself.

We will be concerned mostly with states of constant energy (stationary states) and 
hence will usually deal with the time-independent Schrödinger equation (1.19). For 
simplicity we will refer to this equation as “the Schrödinger equation.” Note that the 
Schrödinger equation contains two unknowns: the allowed energies E and the allowed 
wave functions c. To solve for two unknowns, we need to impose additional conditions 
(called boundary conditions) on c besides requiring that it satisfy (1.19). The boundary 
conditions determine the allowed energies, since it turns out that only certain values of 
E allow c to satisfy the boundary conditions. This will become clearer when we discuss 
specific examples in later chapters.



14  Chapter 1  |  The Schrödinger Equation

1.6 Probability
Probability plays a fundamental role in quantum mechanics. This section reviews the 
mathematics of probability.

There has been much controversy about the proper definition of probability. One defi-
nition is the following: If an experiment has n equally probable outcomes, m of which are 
favorable to the occurrence of a certain event A, then the probability that A occurs is m>n. 
Note that this definition is circular, since it specifies equally probable outcomes when 
probability is what we are trying to define. It is simply assumed that we can recognize 
equally probable outcomes. An alternative definition is based on actually performing the 
experiment many times. Suppose that we perform the experiment N times and that in M of 
these trials the event A occurs. The probability of A occurring is then defined as

lim
NS �

M

N

Thus, if we toss a coin repeatedly, the fraction of heads will approach 1>2 as we increase 
the number of tosses.

For example, suppose we ask for the probability of drawing a heart when a card is 
picked at random from a standard 52-card deck containing 13 hearts. There are 52 cards 
and hence 52 equally probable outcomes. There are 13 hearts and hence 13 favorable out-
comes. Therefore, m>n = 13>52 = 1>4. The probability for drawing a heart is 1>4.

Sometimes we ask for the probability of two related events both occurring. For exam-
ple, we may ask for the probability of drawing two hearts from a 52-card deck, assuming 
we do not replace the first card after it is drawn. There are 52 possible outcomes of the first 
draw, and for each of these possibilities there are 51 possible second draws. We have 52 # 51 
possible outcomes. Since there are 13 hearts, there are 13 # 12 different ways to draw two 
hearts. The desired probability is 113 # 122>152 # 512 = 1>17. This calculation illustrates 
the theorem: The probability that two events A and B both occur is the probability that A 
occurs, multiplied by the conditional probability that B then occurs, calculated with the as-
sumption that A occurred. Thus, if A is the probability of drawing a heart on the first draw, 
the probability of A is 13>52. The probability of drawing a heart on the second draw, given 
that the first draw yielded a heart, is 12 >51 since there remain 12 hearts in the deck. The 
probability of drawing two hearts is then 113>522112>512 = 1>17, as found previously.

In quantum mechanics we must deal with probabilities involving a continuous vari-
able, for example, the x coordinate. It does not make much sense to talk about the prob-
ability of a particle being found at a particular point such as x = 0.5000c, since there 
are an infinite number of points on the x axis, and for any finite number of measurements 
we make, the probability of getting exactly 0.5000c is vanishingly small. Instead we 
talk of the probability of finding the particle in a tiny interval of the x axis lying between 
x and x + dx, dx being an infinitesimal element of length. This probability will naturally 
be proportional to the length of the interval, dx, and will vary for different regions of the 
x axis. Hence the probability that the particle will be found between x and x + dx is equal 
to g1x2 dx, where g1x2 is some function that tells how the probability varies over the x 
axis. The function g1x2 is called the probability density, since it is a probability per unit 
length. Since probabilities are real, nonnegative numbers, g1x2 must be a real function 
that is everywhere nonnegative. The wave function � can take on negative and complex 
values and is not a probability density. Quantum mechanics postulates that the probability 
density is 0� 0 2 [Eq. (1.15)].

What is the probability that the particle lies in some finite region of space a … x … b? 
To find this probability, we sum up the probabilities 0� 0 2 dx of finding the particle in all 
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the infinitesimal regions lying between a and b. This is just the definition of the definite 
integral

	 L
b

a
 0� 0 2 dx = Pr1a … x … b2	 (1.23)

where Pr denotes a probability. A probability of 1 represents certainty. Since it is certain 
that the particle is somewhere on the x axis, we have the requirement

	 L
�

- �

 0� 0 2 dx = 1	 (1.24)

When � satisfies (1.24), it is said to be normalized. For a stationary state, 0� 0 2 = 0c 0 2 
and 1 �

-�
0c 0 2 dx = 1.

E x a m p l e

A one-particle, one-dimensional system has � = a-1>2e- 0x 0 >a at t = 0, where 
a = 1.0000 nm. At t = 0, the particle’s position is measured. (a) Find the probability 
that the measured value lies between x = 1.5000 nm and x = 1.5001 nm. (b) Find the 
probability that the measured value is between x = 0 and x = 2 nm. (c) Verify that � 
is normalized.

(a)	 In this tiny interval, x changes by only 0.0001 nm, and � goes from 

e-1.5000 nm-1>2 = 0.22313 nm-1>2 to e-1.5001 nm-1>2 = 0.22311 nm-1>2, so � is 
nearly constant in this interval, and it is a very good approximation to consider this 
interval as infinitesimal. The desired probability is given by (1.15) as 

	  0� 0 2 dx = a-1e-2 0 x 0 >a dx = 11 nm2-1e-211.5 nm2>11 nm210.0001 nm2 

	  = 4.979 * 10-6

	 (See also Prob. 1.14.)

(b)	 Use of Eq. (1.23) and 0 x 0 = x for x Ú 0 gives

 Pr10 … x … 2 nm2 = L
2 nm

0
 0� 0 2 dx = a-1L

2 nm

0
e-2x>a dx

 = -
1
2 e-2x>a �2 nm

0 = -
1
2 1e-4 - 12 = 0.4908

(c)	 Use of 1 �

- �
f1x2 dx = 10

- � f1x2 dx + 1 �
0 f1x2 dx, 0 x 0 = -x for x … 0, and 0 x � = x 

for x Ú 0, gives

 L
�

-�

0� 02 dx = a-1L
0

- �

e2x>a dx + a-1L
�

0
e-2x>a dx

 = a-111
2 ae2x>a �0

- � 2 + a-11-  12 ae-2x>a � �
0 2 =

1
2 +

1
2 = 1

Exercise  For a system whose state function at the time of a position measurement is 
� = 132a3>p21>4xe-ax2

, where a = 1.0000 nm-2, find the probability that the particle 
is found between x = 1.2000 nm and 1.2001 nm. Treat the interval as infinitesimal. 
(Answer: 0.0000258.)
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1.7 Complex Numbers
We have seen that the wave function can be complex, so we now review some properties 
of complex numbers.

A complex number z is a number of the form

	 z = x + iy, where i K 2-1	 (1.25)

and where x and y are real numbers (numbers that do not involve the square root of 
a negative quantity). If y = 0 in (1.25), then z is a real number. If y � 0, then z is 
an imaginary number. If x = 0 and y � 0, then z is a pure imaginary number. 
For example, 6.83 is a real number, 5.4 - 3i is an imaginary number, and 0.60i is a 
pure imaginary number. Real and pure imaginary numbers are special cases of complex 
numbers. In (1.25), x and y are called the real and imaginary parts of z, respectively: 
x = Re(z); y = Im1z2.

The complex number z can be represented as a point in the complex plane (Fig. 1.3), 
where the real part of z is plotted on the horizontal axis and the imaginary part on the 
vertical axis. This diagram immediately suggests defining two quantities that charac-
terize the complex number z: the distance r of the point z from the origin is called the 
absolute value or modulus of z and is denoted by � z �; the angle u that the radius vector 
to the point z makes with the positive horizontal axis is called the phase or argument of 
z. We have

	 0 z 0 = r = 1x2 + y221>2,  tan u = y>x	 (1.26)

x = r cos u,  y = r sin  u

So we may write z = x + iy as

	 z = r cos u + ir sin u = reiu	 (1.27)

since (Prob. 4.3)

	 eiu = cos u + i sin u	 (1.28)

The angle u in these equations is in radians.
If z = x + iy, the complex conjugate z* of the complex number z is defined as

	 z* K x - iy = re-iu	 (1.29)

y r

x

(a) (b)

u

Figure 1.3  (a) Plot of a 
complex number z 5 x 1 iy. 
(b) Plot of the number  
22 1 i.
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If z is a real number, its imaginary part is zero. Thus z is real if and only if z = z*. Taking 
the complex conjugate twice, we get z back again, 1z*2* = z. Forming the product of z 
and its complex conjugate and using i2 = -1, we have

zz* = (x + iy)(x - iy) = x2 + iyx - iyx - i2y2

	 zz* = x2 + y2 = r2 = 0 z 0 2	 (1.30)

For the product and quotient of two complex numbers z1 = r1e
iu1 and z2 = r2e

iu2, we 
have

	 z1z2 = r1r2e
i1u1 +u22, 

z1

z2
=

r1

r2
 ei1u1 -u22	 (1.31)

It is easy to prove, either from the definition of complex conjugate or from (1.31), that

	 1z1z22* = z1
* z*2	 (1.32)

Likewise,

	 1z1>z22* = z1
*>z2

*,   1z1 + z22* = z*1 +  z2
*,   1z1 - z22* = z1

* - z2
*	 (1.33)

For the absolute values of products and quotients, it follows from (1.31) that

	 0 z1z2 0 = 0 z1 0 0 z2 0 ,  ` z1

z2
` =

0 z1 0
0 z2 0 	 (1.34)

Therefore, if c is a complex wave function, we have

	 0c2 0 = 0c 0 2 = c* c	 (1.35)

We now obtain a formula for the nth roots of the number 1. We may take the phase 
of the number 1 to be 0 or 2p or 4p, and so on. Hence 1 = ei2pk, where k is any integer, 
zero, negative, or positive. Now consider the number v, where v K ei2pk>n, n being a posi-
tive integer. Using (1.31) n times, we see that vn = ei2pk = 1. Thus v is an nth root of 
unity. There are n different complex nth roots of unity, and taking n successive values of 
the integer k gives us all of them:

	 v = ei2pk>n,  k = 0, 1, 2, c, n - 1	 (1.36)

Any other value of k besides those in (1.36) gives a number whose phase differs by an 
integral multiple of 2p from one of the numbers in (1.36) and hence is not a different root. 
For n = 2 in (1.36), we get the two square roots of 1; for n = 3, the three cube roots of 1; 
and so on.

1.8 Units
This book uses SI units. In the International System (SI), the units of length, mass, and 
time are the meter (m), kilogram (kg), and second (s). Force is measured in newtons 
(N) and energy in joules (J). Coulomb’s law for the magnitude of the force between two 
charges Q1 and Q2 separated by a distance r in vacuum is written in SI units as

	 F =
Q1Q2

4pe0r
2	 (1.37)



18  Chapter 1  |  The Schrödinger Equation

where the charges Q1 and Q2 are in coulombs (C) and e0 is a constant (called the 
permittivity of vacuum or the electric constant) whose value is 8.854 * 10-12 C2 N-1 m-2 
(see the Appendix for accurate values of physical constants).

1.9 Calculus
Calculus is heavily used in quantum chemistry, and the following formulas, in which c, n, 
and b are constants and f and g are functions of x, should be memorized.

dc

dx
= 0,  

d1cf2
dx

= c 
df

dx
,  

dxn

dx
= nxn - 1  

decx

dx
= cecx

d1sin cx2
dx

= c cos cx,  
d1cos cx2

dx
= -c sin cx,  

d  ln  cx

dx
=

1
x

d1f + g2
dx

=
df

dx
+

dg

dx
,  

d1fg2
dx

= f 
dg

dx
+ g 

df

dx

d1f>g2
dx

=
d1fg-12

dx
= - fg-2 

dg

dx
+ g-1 

df

dx

d

dx
 f1g1x22 =

df

dg
 
dg

dx

An example of the last formula is d3sin1cx224 >dx = 2cx cos1cx22. Here, g1x2 = cx2 
and f = sin.

Lcf1x) dx = cL f1x) dx,  L 3f1x2 + g1x)4  dx = L f1x) dx + Lg1x) dx

L  dx = x,  L  xn dx =
xn + 1

n + 1
 for n � - 1,  L  

1
x

 dx = ln x

L  ecx dx =
ecx

c
,  L  sin cx dx = -

cos cx
c

,  L  cos cx dx =
sin cx

c

L
c

b
f1x2 dx = g1c2 - g1b2  where 

dg

dx
= f1x2

Summary
The state of a quantum-mechanical system is described by a state function or wave function 
�, which is a function of the coordinates of the particles of the system and of the time. 
The state function changes with time according to the time-dependent Schrödinger equa-
tion, which for a one-particle, one-dimensional system is Eq. (1.13). For such a system, the 
quantity 0�1x, t2 0 2 dx gives the probability that a measurement of the particle’s position 
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at time t will find it between x and x + dx. The state function is normalized according to 

1 �

- �
0� 0 2 dx = 1. If the system’s potential-energy function does not depend on t, then the 

system can exist in one of a number of stationary states of fixed energy. For a stationary 
state of a one-particle, one-dimensional system, �1x, t2 = e-iEt>Uc1x2, where the time-
independent wave function c1x2 is a solution of the time-independent Schrödinger equa-
tion (1.19).

Problems
Answers to numerical problems are given at the end of the book.

Sec. 1.2 1.4 1.5 1.6 1.7 1.8 1.9 general

Probs. 1.1–1.6 1.7–1.8 1.9–1.11 1.12–1.19 1.20–1.29 1.30–1.31 1.32 1.33

	 1.1	 True or false? (a) All photons have the same energy. (b) As the frequency of light increases, 
its wavelength decreases. (c) If violet light with l = 400 nm does not cause the photoelectric 
effect in a certain metal, then it is certain that red light with l = 700 nm will not cause the 
photoelectric effect in that metal.

	 1.2	 (a) Calculate the energy of one photon of infrared radiation whose wavelength is 1064 nm. 
(b)  An Nd:YAG laser emits a pulse of 1064-nm radiation of average power 5 * 106 W 
and duration 2 * 10-8 s. Find the number of photons emitted in this pulse. (Recall that 
1 W = 1 J>s.)

	 1.3	 Calculate the energy of one mole of UV photons of wavelength 300 nm and compare it with 
a typical single-bond energy of 400 kJ/mol.

	 1.4	 The work function of very pure Na is 2.75 eV, where 1 eV = 1.602 * 10-19 J. (a) Calculate 
the maximum kinetic energy of photoelectrons emitted from Na exposed to 200 nm ultraviolet 
radiation. (b) Calculate the longest wavelength that will cause the photoelectric effect in pure 
Na. (c) The work function of sodium that has not been very carefully purified is substantially 
less than 2.75 eV, because of adsorbed sulfur and other substances derived from atmospheric 
gases. When impure Na is exposed to 200-nm radiation, will the maximum photoelectron 
kinetic energy be less than or greater than that for pure Na exposed to 200-nm radiation?

	 1.5	 (a) Verify that at high frequencies Wien’s law is a good approximation to Planck’s blackbody 
equation. (b) In June 1900 Rayleigh applied the equipartition theorem of classical statistical 
mechanics to derive an equation for blackbody radiation that showed the radiation intensity 
to be proportional to n2T. In 1905, Jeans pointed out an error in Rayleigh’s derivation of the 
proportionality constant and corrected the Rayleigh formula to I = 2pn2kT>c2. Show that 
at low frequencies, Planck’s blackbody formula can be approximated by the Rayleigh–Jeans 
formula. Hint: Look up the Taylor series expansion of ex in powers of x. (The classical-
mechanical Rayleigh–Jeans result is physically absurd, since it predicts the emitted energy to 
increase without limit as n increases.)

	 1.6	 Calculate the de Broglie wavelength of an electron moving at 1>137th the speed of light. (At 
this speed, the relativistic correction to the mass is negligible.)

	 1.7	 Integrate the equation dx>dt = -gt + gt0 + v0 in the paragraph after Eq. (1.11) to find x 
as a function of time. Use the condition that the particle was at x0 at time t0 to evaluate the 
integration constant and show that x = x0 -

1
2 g1t - t022 + v01t - t02.

	 1.8	 A certain one-particle, one-dimensional system has � = ae-ibte-bmx2>U, where a and b are 
constants and m is the particle’s mass. Find the potential-energy function V for this system. 
Hint: Use the time-dependent Schrödinger equation.

	 1.9	 True or false? (a) For all quantum-mechanical states, 0�1x, t2 0 2 = 0c1x2 0 2. (b) For all quan-
tum-mechanical states, �1x, t2 is the product of a function of x and a function of t.

	1.10	 A certain one-particle, one-dimensional system has the potential energy V = 2c2 U2x2>m 
and is in a stationary state with c1x2 = bxe-cx2

, where b is a constant, c = 2.00 nm-2, and 
m = 1.00 * 10-27 g. Find the particle’s energy.
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	1.11	 Which of the Schrödinger equations is applicable to all nonrelativistic quantum-mechanical 
systems? (a) Only the time-dependent equation. (b) Only the time-independent equation. 
(c) Both the time-dependent and the time-independent equations.

	1.12	 At a certain instant of time, a one-particle, one-dimensional system has � = 12>b321>2xe- 0x 0 >b, 
where b = 3.000 nm. If a measurement of x is made at this time in the system, find the prob-
ability that the result (a) lies between 0.9000 nm and 0.9001 nm (treat this interval as infini-
tesimal); (b) lies between 0 and 2 nm (use the table of integrals in the Appendix, if necessary). 
(c) For what value of x is the probability density a minimum? (There is no need to use calculus 
to answer this.) (d) Verify that � is normalized.

	1.13	 A one-particle, one-dimensional system has the state function

� = 1sin at212>pc221>4e-x2>c2
+ 1cos at2132>pc621>4xe-x2>c2

		  where a is a constant and c = 2.000 Å. If the particle’s position is measured at t = 0, estimate 
the probability that the result will lie between 2.000 Å and 2.001 Å.

	1.14	 Use Eq. (1.23) to find the answer to part (a) of the example at the end of Section 1.6 and 
compare it with the approximate answer found in the example.

	1.15	 Which of the following functions meet all the requirements of a probability-density function 
(a and b are positive constants)? (a) eiax; (b) xe-bx2

; (c) e-bx2
.

	1.16	 (a) Frank and Phyllis Eisenberg have two children; they have at least one female child. What 
is the probability that both their children are girls? (b) Bob and Barbara Shrodinger have two 
children. The older child is a girl. What is the probability the younger child is a girl? (Assume 
the odds of giving birth to a boy or girl are equal.)

	1.17	 If the peak in the mass spectrum of C2F6 at mass number 138 is 100 units high, calculate the 
heights of the peaks at mass numbers 139 and 140. Isotopic abundances: 12C, 98.89%; 13C,  
1.11%; 19F, 100%.

	1.18	 In bridge, each of the four players (A, B, C, D) receives 13 cards. Suppose A and C have 
11 of the 13 spades between them. What is the probability that the remaining two spades are 
distributed so that B and D have one spade apiece?

	1.19	 What important probability-density function occurs in (a) the kinetic theory of gases? (b) the 
analysis of random errors of measurement?

	1.20	 Classify each of the following as a real number or an imaginary number: (a) -17; (b) 2 + i; 
(c) 27; (d) 2-1; (e) 2-6; (f) 2>3; (g) p; (h) i2; (i) 1a + bi21a - bi2, where a and b are real 
numbers.

	1.21	 Plot these points in the complex plane: (a) 3; (b) - i; (c) -2 + 3i.

	1.22	 Show that 1>i = - i.

	1.23	 Simplify (a) i 2; (b) i 3; (c) i 4; (d) i*i; (e) 11 + 5i212 - 3i); (f) 11 - 3i2>14 + 2i2. Hint: In 
(f), multiply numerator and denominator by the complex conjugate of the denominator.

	1.24	 Find the complex conjugate of (a) -4; (b) -2i; (c) 6 + 3i; (d) 2e-ip>5.
	1.25	 Find the absolute value and the phase of (a) i; (b) 2eip>3; (c) -2eip>3; (d) 1 - 2i.

	1.26	 Where in the complex plane are all points whose absolute value is 5 located? Where are all 
points with phase p>4 located?

	1.27	 Write each of the following in the form reiu: (a) i; (b) -1; (c) 1 - 2i; (d) -1 - i.

	1.28	 (a) Find the cube roots of 1. (b) Explain why the n nth roots of 1 when plotted in the complex 
plane lie on a circle of radius 1 and are separated by an angle 2p>n from one another.

	1.29	 Verify that  sin u =
eiu - e-iu

2i
,  cos u =

eiu + e-iu

2
.

	1.30	 Express each of the following units in terms of fundamental SI units (m, kg, s): (a) newton; (b) joule.

	1.31	 Calculate the force on an alpha particle passing a gold atomic nucleus at a distance of 0.00300 Å.

	1.32	 Find (a) d32x2sin13x42 + 54 >dx; (b) 12
1 13x2 + 12 dx.

	1.33	 True or false? (a) A probability density can never be negative. (b) The state function � can 
never be negative. (c) The state function � must be a real function. (d) If z = z*, then z must be 
a real number. (e) 1 �

- �
� dx = 1 for a one-particle, one-dimensional system. (f) The product 

of a number and its complex conjugate is always a real number.
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Chapter 2

The Particle in a Box

The stationary-state wave functions and energy levels of a one-particle, one-dimensional 
system are found by solving the time-independent Schrödinger equation (1.19). In this 
chapter, we solve the time-independent Schrödinger equation for a very simple system, 
a particle in a one-dimensional box (Section 2.2). Because the Schrödinger equation is a 
differential equation, we first discuss differential equations.

2.1 Differential Equations
This section considers only ordinary differential equations, which are those with only 
one independent variable. [A partial differential equation has more than one independent 
variable. An example is the time-dependent Schrödinger equation (1.16), in which t and x 
are the independent variables.] An ordinary differential equation is a relation involving an 
independent variable x, a dependent variable y1x2, and the first, second, c , nth deriva-
tives of  y (y�, y�, c, y(n)). An example is

	 y� + 2x1y�22 + y2 sin x = 3ex	 (2.1)

The order of a differential equation is the order of the highest derivative in the equation. 
Thus, (2.1) is of third order.

A special kind of differential equation is the linear differential equation, which has 
the form

	 An1x2y1n2 + An -11x2y1n -12 + g +  A
 1  1x2y� + A

 01x2y = g1x2	 (2.2)

where the A’s and g (some of which may be zero) are functions of x only. In the nth-order 
linear differential equation (2.2), y and its derivatives appear to the first power. A differ-
ential equation that cannot be put in the form (2.2) is nonlinear. If g1x2 = 0 in (2.2), the 
linear differential equation is homogeneous; otherwise it is inhomogeneous. The one-
dimensional Schrödinger equation (1.19) is a linear homogeneous second-order differen-
tial equation.

By dividing by the coefficient of  y�, we can put every linear homogeneous second-
order differential equation into the form

	 y� + P1x2y� + Q1x2y = 0	 (2.3)

Suppose y1 and y2 are two independent functions, each of which satisfies (2.3). By inde-
pendent, we mean that y2 is not simply a multiple of y1. Then the general solution of the 
linear homogeneous differential equation (2.3) is

	 y = c1 y1 + c2 y2	 (2.4)
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where c1 and c2 are arbitrary constants. This is readily verified by substituting (2.4) into 
the left side of (2.3):

	 c1y�1 + c2y�2 + P1x2c1y�1 + P1x2c2y�2 + Q1x2c1y1 + Q1x2c2y2

	   = c13y�1 + P1x2y�1 + Q1x2y14 + c23y�2 + P1x2y�2 + Q1x2y24
	   = c1

# 0 + c2
# 0 = 0 	 (2.5)

where the fact that y1 and y2 satisfy (2.3) has been used.
The general solution of a differential equation of nth order usually has n arbitrary 

constants. To fix these constants, we may have boundary conditions, which are condi-
tions that specify the value of y or various of its derivatives at a point or points. For ex-
ample, if y is the displacement of a vibrating string held fixed at two points, we know y 
must be zero at these points.

An important special case is a linear homogeneous second-order differential equation 
with constant coefficients:

	 y� + py� + qy = 0	 (2.6)

where p and q are constants. To solve (2.6), let us tentatively assume a solution of the form 
y = esx. We are looking for a function whose derivatives when multiplied by constants 
will cancel the original function. The exponential function repeats itself when differenti-
ated and is thus the correct choice. Substitution in (2.6) gives

	 s2
 esx + psesx + qesx = 0

	 s2 + ps + q = 0	 (2.7)

Equation (2.7) is called the auxiliary equation. It is a quadratic equation with two roots 
s1 and s2 that, provided s1 and s2 are not equal, give two independent solutions to (2.6). 
Thus, the general solution of (2.6) is

	 y = c1 es1 x + c2 es2 x	 (2.8)

For example, for y� + 6y� - 7y = 0, the auxiliary equation is s2 + 6s - 7 = 0. The 
quadratic formula gives s1 = 1, s2 = -7, so the general solution is c1e

x + c2e
-7x.

2.2 Particle in a One-Dimensional Box
This section solves the time-independent Schrödinger equation for a particle in a one-
dimensional box. By this we mean a particle subjected to a potential-energy function that 
is infinite everywhere along the x axis except for a line segment of length l, where the 
potential energy is zero. Such a system may seem physically unreal, but this model can 
be applied with some success to certain conjugated molecules; see Prob. 2.17. We put the 
origin at the left end of the line segment (Fig. 2.1).

I

x 5 0 x 5 l

II III

to `to `

x

V (x)

Figure 2.1  Potential 
energy function V(x) 
for the particle in a  
one-dimensional box.
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We have three regions to consider. In regions I and III, the potential energy V equals 
infinity and the time-independent Schrödinger equation (1.19) is

-
U2

2m
 
d 2 c

dx 2
= 1E - �2c

Neglecting E in comparison with � , we have

d 2 c

dx 2
= �c,  c =

1
�

 
d 2 c

dx 2

and we conclude that c is zero outside the box:

	 cI = 0,  cIII = 0	 (2.9)

For region II, x between zero and l, the potential energy V is zero, and the Schrödinger 
equation (1.19) becomes

	
d 2cII

dx 2
+

2m

U2  EcII = 0	 (2.10)

where m is the mass of the particle and E is its energy. We recognize (2.10) as a linear 
homogeneous second-order differential equation with constant coefficients. The auxiliary 
equation (2.7) gives

	 s2 + 2mEU-2 = 0

	 s = { 1-2mE21>2
 U-1	 (2.11)

	 s = { i12mE21>2>U	 (2.12)

where i = 2-1. Using (2.8), we have

	 cII = c1 ei12mE21>2
 x>U + c2 e-i12mE21>2

 x>U	 (2.13)

Temporarily, let

 u K 12mE21>2
 x>U

 cII = c1 eiu + c2 e-iu

We have eiu = cos u + i sin u [Eq. (1.28)] and e-iu = cos1-u2 + i sin1-u2 =  cos u -  
i sin u, since

	 cos1-u2 = cos u and sin1-u2 = -sin u	 (2.14)

Therefore,

 cII = c1 cos u + ic1 sin u + c2 cos u - ic2 sin u

 = 1c1 + c22 cos u + 1ic1 - ic22 sin u

 = A cos u + B sin u

where A and B are new arbitrary constants. Hence,

	 cII = A cos3U-112mE21>2
 x4 + B sin3U-112mE21>2

 x4 	 (2.15)

Now we find A and B by applying boundary conditions. It seems reasonable to pos-
tulate that the wave function will be continuous; that is, it will make no sudden jumps in 
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value (see Fig. 3.4). If c is to be continuous at the point x = 0, then cI and cII must ap-
proach the same value at x = 0:

 lim
xS0 

cI = lim
xS0 

cII

 0 = lim
xS0

5A cos3U-112mE21/2
 x4 + B sin3U- 112mE21/2

 x4 6
 0 = A

since

	  sin 0 = 0 and cos 0 = 1	 (2.16)

With A = 0, Eq. (2.15) becomes

	 cII = B sin312p>h212mE21>2
 x4 	 (2.17)

Applying the continuity condition at x = l, we get

	 B sin312p>h212mE21>2
 l4 = 0	 (2.18)

B cannot be zero because this would make the wave function zero everywhere—we would 
have an empty box. Therefore,

sin312p>h212mE21>2
 l4 = 0

The zeros of the sine function occur at 0, {p, {2p, {3p, c = {np. Hence,

	 12p>h212mE21>2
 l = {np	 (2.19)

The value n = 0 is a special case. From (2.19), n = 0 corresponds to E = 0. For 
E = 0, the roots (2.12) of the auxiliary equation are equal and (2.13) is not the complete 
solution of the Schrödinger equation. To find the complete solution, we return to (2.10), 
which for E = 0 reads d 2 cII>dx 2 = 0. Integration gives dcII>dx = c and cII = cx + d, 
where c and d are constants. The boundary condition that cII = 0 at x = 0 gives d = 0, 
and the condition that cII = 0 at x = l then gives c = 0. Thus, cII = 0 for E = 0, and 
therefore E = 0 is not an allowed energy value. Hence, n = 0 is not allowed.

Solving (2.19) for E, we have

	 E =
n2

 h2

8ml2
  n = 1, 2, 3, c	 (2.20)

Only the energy values (2.20) allow c to satisfy the boundary condition of continuity 
at x = l. Application of a boundary condition has forced us to the conclusion that the val-
ues of the energy are quantized (Fig. 2.2). This is in striking contrast to the classical result 
that the particle in the box can have any nonnegative energy. Note that there is a minimum 
value, greater than zero, for the energy of the particle. The state of lowest energy is called 
the ground state. States with energies higher than the ground-state energy are excited 
states. (In classical mechanics, the lowest possible energy of a particle in a box is zero. 
The classical particle sits motionless inside the box with zero kinetic energy and zero po-
tential energy.)

E x a m p l e

A particle of mass 2.00 * 10-26 g is in a one-dimensional box of length 4.00 nm. Find 
the frequency and wavelength of the photon emitted when this particle goes from the 
n = 3 to the n = 2 level. 

E

n 5 4

n 5 3

n 5 2

n 5 1
0

Figure 2.2  Lowest four 
energy levels for the particle 
in a one-dimensional box.
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By conservation of energy, the energy hn of the emitted photon equals the energy 
difference between the two stationary states [Eq. (1.4); see also Section 9.9]:

hn = Eupper - Elower =
n2

u  h2

8ml2 -  
n2

l  h2

8ml2

n =
1n2

u - n2
l 2h

8ml2 =
132 - 22216.626 * 10-34 J s2

812.00 * 10-29 kg214.00 * 10-9 m22 = 1.29 * 1012 s-1

where u and l stand for upper and lower. Use of ln = c gives l = 2.32 * 10-4 m. (A 
common student error is to set hn equal to the energy of one of the states instead of the 
energy difference between states.)

Exercise  For an electron in a certain one-dimensional box, the longest-wavelength 
transition occurs at 400 nm. Find the length of the box. (Answer: 0.603 nm.)

Substitution of (2.19) into (2.17) gives for the wave function

	 cII = B sina npx

l
b ,  n = 1, 2, 3, c	 (2.21)

The use of the negative sign in front of np does not give us another independent solution. 
Since sin1-u2 = -sin u, we would simply get a constant, -1, times the solution with the 
plus sign.

The constant B in Eq. (2.21) is still arbitrary. To fix its value, we use the normaliza-
tion requirement, Eqs. (1.24) and (1.22):

L
�

- �

0� 0 2 dx = L
�

- �

0c 0 2 dx = 1

L
0

- �

0cI 0 2 dx + L
l

0

0cII 0 2 dx + L
�

l

0cIII 0 2 dx = 1

	 0B 0 2L
l

0
sin2a npx

l
bdx = 1 = 0B 0 2 l

2
	 (2.22)

where the integral was evaluated by using Eq. (A.2) in the Appendix. We have

0B 0 = 12>l21>2

Note that only the absolute value of B has been found. B could be - 12>l21>2 as well as 
12>l21>2. Moreover, B need not be a real number. We could use any complex number with 
absolute value 12>l21>2. All we can say is that B = 12>l21>2

 eia, where a is the phase of B 
and could be any value in the range 0 to 2p (Section 1.7). Choosing the phase to be zero, 
we write as the stationary-state wave functions for the particle in a box

	 cII = a 2

l
b

1>2
 sina npx

l
b ,  n = 1, 2, 3, c	 (2.23)

Graphs of the wave functions and the probability densities are shown in Figs. 2.3 
and 2.4.

The number n in the energies (2.20) and the wave functions (2.23) is called a quantum 
number. Each different value of the quantum number n gives a different wave function 
and a different state.
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The wave function is zero at certain points; these points are called nodes. For each 
increase of one in the value of the quantum number n, c has one more node. The existence 
of nodes in c and |c|2 may seem surprising. Thus, for n = 2, Fig. 2.4 says that there is zero 
probability of finding the particle in the center of the box at x = l>2. How can the particle 
get from one side of the box to the other without at any time being found in the center? This 
apparent paradox arises from trying to understand the motion of microscopic particles us-
ing our everyday experience of the motions of macroscopic particles. However, as noted 
in Chapter 1, electrons and other microscopic “particles” cannot be fully and correctly de-
scribed in terms of concepts of classical physics drawn from the macroscopic world.

Figure 2.4 shows that the probability of finding the particle at various places in the 
box is quite different from the classical result. Classically, a particle of fixed energy in a 
box bounces back and forth elastically between the two walls, moving at constant speed. 
Thus it is equally likely to be found at any point in the box. Quantum mechanically, we 
find a maximum in probability at the center of the box for the lowest energy level. As we 
go to higher energy levels with more nodes, the maxima and minima of probability come 
closer together, and the variations in probability along the length of the box ultimately 
become undetectable. For very high quantum numbers, we approach the classical result of 
uniform probability density.

This result, that in the limit of large quantum numbers quantum mechanics goes  
over into classical mechanics, is known as the Bohr correspondence principle. Since 
Newtonian mechanics holds for macroscopic bodies (moving at speeds much less than 
the speed of light), we expect nonrelativistic quantum mechanics to give the same answer 
as classical mechanics for macroscopic bodies. Because of the extremely small size of 
Planck’s constant, quantization of energy is unobservable for macroscopic bodies. Since 
the mass of the particle and the length of the box squared appear in the denominator of 
Eq. (2.20), a macroscopic object in a macroscopic box having a macroscopic energy of 
motion would have a huge value for n, and hence, according to the correspondence prin-
ciple, would show classical behavior.

We have a whole set of wave functions, each corresponding to a different energy and 
characterized by the quantum number n, which is a positive integer. Let the subscript i 
denote a particular wave function with the value ni for its quantum number:

ci = a 2

l
b

1>2
 sina ni px

l
b , 0 6 x 6 l

ci = 0 elsewhere

n 5 3n 5 2n 5 1

x

n 5 3n 5 2n 5 1

x

2

Figure 2.3  Graphs of c 
for the three lowest-energy 
particle-in-a-box states.

Figure 2.4  Graphs of |c|2 
for the lowest particle- 
in-a-box states.
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Since the wave function has been normalized, we have

	 L
�

- �

 c*i  cj dx = 1 if i = j	 (2.24)

We now ask for the value of this integral when we use wave functions corresponding to 
different energy levels:

L
�

- �

 c*i cj dx = L
l

0
a 2

l
b

1>2
 sina nipx

l
b a 2

l
b

1>2
 sina njpx

l
b  dx,  ni � nj

Use of Eq. (A.5) in the Appendix gives

	 L
�

- �

 c*i  cj dx =
2

l
 c sin3(ni - nj)p4

2(ni - nj)p>l
-

sin3(ni + nj)p4
2(ni + nj)p>l

d = 0	 (2.25)

since sin mp = 0 for m an integer. We thus have

	 L
�

- �

 c*i  cj dx = 0,  i � j	 (2.26)

When (2.26) holds, the functions ci and cj are said to be orthogonal to each other for 
i � j. We can combine (2.24) and (2.26) by writing

	 L
�

- �

 c*i  cj dx = dij	 (2.27)

The symbol dij is called the Kronecker delta (after a mathematician). It equals 1 when the 
two indexes i and j are equal, and it equals 0 when i and j are unequal:

	 dij K e0 for i � j

1 for i = j
	 (2.28)

The property (2.27) of the wave functions is called orthonormality. We proved orthonor-
mality only for the particle-in-a-box wave functions. We shall prove it more generally in 
Section 7.2.

You might be puzzled by Eq. (2.26) and wonder why we would want to multiply 
the wave function of one state by the wave function of a different state. We will later 
see (Section 7.3, for example) that it is often helpful to use equations that contain a sum 
involving all the wave functions of a system, and such equations can lead to integrals like 
that in (2.26).

A more rigorous way to look at the particle in a box with infinite walls is to first treat 
the particle in a box with a finite jump in potential energy at the walls and then take the 
limit as the jump in V becomes infinite. The results, when the limit is taken, will be the 
same as (2.20) and (2.23) (see Prob. 2.22).

We have considered only the stationary states of the particle in a one-dimensional 
box. For an example of a nonstationary state of this system, see the example near the end 
of Section 7.8.

Some online computer simulations of the particle in a box can be found at www 
.chem.uci.edu/undergraduate/applets/dwell/dwell.htm (shows the effects on the wave func-
tions and energy levels when a barrier of variable height and width is introduced into the 
middle of the box); web.williams.edu/wp-etc/chemistry/dbingemann/Chem153/particle 
.html (shows quantization by plotting the solution to the Schrödinger equation as the en-
ergy is varied and as the box length is varied); and falstad.com/qm1d/ (shows both time-
independent and time-dependent states; see Prob. 7.47).
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2.3 The Free Particle in One Dimension
By a free particle, we mean a particle subject to no forces whatever. For a free parti-
cle, integration of (1.12) shows that the potential energy remains constant no matter what 
the value of x is. Since the choice of the zero level of energy is arbitrary, we may set 
V1x2 = 0. The Schrödinger equation (1.19) becomes

	
d 2 c

dx 2
+

2m

U2  Ec = 0	 (2.29)

Equation (2.29) is the same as Eq. (2.10) (except for the boundary conditions). Therefore, 
the general solution of (2.29) is (2.13):

	 c = c1e
i12mE21>2x>U + c2e

-i12mE21>2x>U	 (2.30)

What boundary condition might we impose? It seems reasonable to postulate (since 
c*c dx represents a probability) that c will remain finite as x goes to { �. If the energy 
E is less than zero, then this boundary condition will be violated, since for E 6 0 we have

i12mE21>2 = i1-2m � E � 21>2 = i # i # 12m � E � 21>2 = - 12m � E � 21>2

and therefore the first term in (2.30) will become infinite as x approaches minus infinity. 
Similarly, if E is negative, the second term in (2.30) becomes infinite as x approaches plus 
infinity. Thus the boundary condition requires

	 E Ú 0	 (2.31)

for the free particle. The wave function is oscillatory and is a linear combination of a sine 
and a cosine term [Eq. (2.15)]. For the free particle, the energy is not quantized; all non-
negative energies are allowed. Since we set V = 0, the energy E is in this case all kinetic 
energy. If we try to evaluate the arbitrary constants c1 and c2 by normalization, we will 
find that the integral 1 �

- �
c*1x2c1x2 dx is infinite. In other words, the free-particle wave 

function is not normalizable in the usual sense. This is to be expected on physical grounds 
because there is no reason for the probability of finding the free particle to approach zero 
as x goes to { � .

The free-particle problem is an unreal situation because we could not actually have a 
particle that had no interaction with any other particle in the universe.

2.4 Particle in a Rectangular Well
Consider a particle in a one-dimensional box with walls of finite height (Fig. 2.5a). The 
potential-energy function is V = V0 for x 6 0, V = 0 for 0 … x … l, and V = V0 for 
x 7 l. There are two cases to examine, depending on whether the particle’s energy E is 
less than or greater than V0.

(a) (b) (c)

x 5 0 x 5 l

I II IIIV0

Figure 2.5  (a) Potential 
energy for a particle in a 
one-dimensional rectan-
gular well. (b) The ground-
state wave function for 
this potential. (c) The first 
excited-state wave function.
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We first consider E 6 V0. The Schrödinger equation (1.19) in regions I and III is 
d 2 c>dx 2 + 12m>U221E - V02c = 0. This is a linear homogeneous differential equation 
with constant coefficients, and the auxiliary equation (2.7) is s2 + 12m>U221E - V02 = 0 
with roots s = { 12m>U221>21V0 - E21>2. Therefore,

 cI = C exp312m>U221>21V0 - E21>2 x4 + D exp3- 12m>U221>21V0 - E21>2 x4
 cIII = F exp312m>U221>21V0 - E21>2x4 + G exp3- 12m>U221>21V0 - E21>2x4

where C, D, F, and G are constants.
As in Section 2.3, we must prevent cI from becoming infinite as x S - � . Since we 

are assuming E 6 V0, the quantity 1V0 - E21>2 is a real, positive number, and to keep cI 
finite as x S - � , we must have D = 0. Similarly, to keep cIII finite as x S + �, we must 
have F = 0. Therefore,

cI = C exp312m>U221>21V0 - E21>2x4 ,  cIII = G exp3- 12m>U221>21V0 - E21>2x4
In region II, V = 0, the Schrödinger equation is (2.10) and its solution is (2.15):

	 cII = A cos312m>U221>2 E1>2
 x4 + B sin312m>U221>2

 E1>2
 x4 	 (2.32)

To complete the problem, we must apply the boundary conditions. As with the particle 
in a box with infinite walls, we require the wave function to be continuous at x = 0 and at 
x = l; so cI102 = cII102 and cII1l2 = cIII1l2. The wave function has four arbitrary con-
stants, so more than these two boundary conditions are needed. As well as requiring c to be 
continuous, we shall require that its derivative dc>dx be continuous everywhere. To justify 
this requirement, we note that if dc>dx changed discontinuously at a point, then its derivative 
(its instantaneous rate of change) d2

 c>dx2 would become infinite at that point. However, for 
the particle in a rectangular well, the Schrödinger equation d2

 c>dx2 = 12m>U221V - E2c 
does not contain anything infinite on the right side, so d2

 c>dx2 cannot become infinite. 
[For a more rigorous argument, see D. Branson, Am. J. Phys., 47, 1000 (1979).] Therefore, 
dcI>dx = dcII>dx at x = 0 and dcII>dx = dcIII>dx at x = l. 

From cI102 = cII102, we get C = A. From c�I102 = c�II102, we get (Prob. 2.21a) 
B = 1V0 - E21>2A>E1>2. From cII1l2 = cIII1l2, we get a complicated equation that al-
lows G to be found in terms of A. The constant A is found by normalization.

Taking c�II1l2 = c�III1l2, dividing it by cII1l2 = cIII1l2, and expressing B in terms of 
A, we get the following equation for the energy levels (Prob. 2.21b):

	 12E - V02 sin312mE)1>2l>U4 = 21V0E - E221>2 cos312mE21>2l>U4 	 (2.33)

[Although E = 0 satisfies (2.33), it is not an allowed energy value, since it gives c = 0 
(Prob. 2.30).] Defining the dimensionless constants e and b as

	 e K E>V0 and b K 12mV021>2
 l>U	 (2.34)

we divide (2.33) by V0 to get

	 12e - 12 sin1be1>22 - 21e - e221>2 cos1be1>22 = 0	 (2.35)

Only the particular values of E that satisfy (2.33) give a wave function that is continu-
ous and has a continuous derivative, so the energy levels are quantized for E 6 V0. To 
find the allowed energy levels, we can plot the left side of (2.35) versus e for 0 6 e 6 1 
and find the points where the curve crosses the horizontal axis (see also Prob. 4.31c). A 
detailed study (Merzbacher, Section 6.8) shows that the number of allowed energy levels 
with E 6 V0 is N, where N satisfies

	 N - 1 6 b>p … N,  where b K 12mV021>2
 l>U	 (2.36)

For example, if V0 = h2>ml2, then b>p = 2121>22 = 2.83, and N = 3. 
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Figure 2.5 shows c for the lowest two energy levels. The wave function is oscillatory 
inside the box and dies off exponentially outside the box. It turns out that the number of 
nodes increases by one for each higher level.

So far we have considered only states with E 6 V0. For E 7 V0, the quantity 
1V0 - E21>2 is imaginary, and instead of dying off to zero as x goes to { � , cI and cIII 
oscillate (similar to the free-particle c). We no longer have any reason to set D in cI and F 
in cIII equal to zero, and with these additional constants available to satisfy the boundary 
conditions on c and c�, one finds that E need not be restricted to obtain properly behaved 
wave functions. Therefore, all energies above V0 are allowed.

A state in which c S 0 as x S �  and as x S - �  is called a bound state. For a 
bound state, significant probability for finding the particle exists in only a finite region 
of space. For an unbound state, c does not go to zero as x S { �  and is not normaliz-
able. For the particle in a rectangular well, states with E 6 V0 are bound and states with 
E 7 V0 are unbound. For the particle in a box with infinitely high walls, all states are 
bound. For the free particle, all states are unbound.

For an online simulation of the particle in a well, go to www.falstad.com/qm1d and 
choose Finite Well in the Setup box. You can vary the well width and depth and see the 
effect on the energy levels and wave functions.

2.5 Tunneling
For the particle in a rectangular well (Section 2.4), Fig. 2.5 and the equations for cI and 
cIII show that for the bound states there is a nonzero probability of finding the particle in 
regions I and III, where its total energy E is less than its potential energy V = V0. Classi-
cally, this behavior is not allowed. The classical equations E = T + V  and T Ú 0, where 
T is the kinetic energy, mean that E cannot be less than V in classical mechanics.

Consider a particle in a one-dimensional box with walls of finite height and finite 
thickness (Fig. 2.6). Classically, the particle cannot escape from the box unless its energy 
is greater than the potential-energy barrier V0. However, a quantum-mechanical treatment 
(which is omitted) shows that there is a finite probability for a particle of total energy less 
than V0 to be found outside the box.

The term tunneling denotes the penetration of a particle into a classically forbidden 
region (as in Fig. 2.5) or the passage of a particle through a potential-energy barrier whose 
height exceeds the particle’s energy. Since tunneling is a quantum effect, its probability of 
occurrence is greater the less classical is the behavior of the particle. Therefore, tunneling 
is most prevalent with particles of small mass. (Note that the greater the mass m, the more 
rapidly the functions cI and cIII of Section 2.4 die away to zero.) Electrons tunnel quite 
readily. Hydrogen atoms and ions tunnel more readily than heavier atoms.

The emission of alpha particles from a radioactive nucleus involves tunneling of the 
alpha particles through the potential-energy barrier produced by the short-range attrac-
tive nuclear forces and the Coulombic repulsive force between the daughter nucleus and 
the alpha particle. The NH3 molecule is pyramidal. There is a potential-energy barrier 
to inversion of the molecule, with the potential-energy maximum occurring at the pla-
nar configuration. The hydrogen atoms can tunnel through this barrier, thereby inverting 
the molecule. In CH3CH3 there is a barrier to internal rotation, with a potential-energy 

V0

x

Figure 2.6  Potential en-
ergy for a particle in a one-
dimensional box of finite  
height and thickness.
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maximum at the eclipsed position of the hydrogens. The hydrogens can tunnel through 
this barrier from one staggered position to the next. Tunneling of electrons is important in 
oxidation–reduction reactions and in electrode processes. Tunneling usually contributes 
significantly to the rate of chemical reactions that involve transfer of hydrogen atoms. See 
R. P. Bell, The Tunnel Effect in Chemistry, Chapman & Hall, 1980.

Tunneling of H atoms occurs in some enzyme-catalyzed reactions; see Quantum 
Tunnelling in Enzyme-Catalyzed Reactions, R. Allemann and N. Scrutton (eds.), RSC 
Publishing, 2009.

The scanning tunneling microscope, invented in 1981, uses the tunneling of electrons 
through the space between the extremely fine tip of a metal wire and the surface of an 
electrically conducting solid to produce images of individual atoms on the solid’s surface. 
A small voltage is applied between the solid and the wire, and as the tip is moved across 
the surface at a height of a few angstroms, the tip height is adjusted to keep the current 
flow constant. A plot of tip height versus position gives an image of the surface.

Summary
The general solution to the linear, homogeneous, second-order, constant-coefficients dif-
ferential equation y�1x2 + py�1x2 + qy1x2 = 0 is y = c1 es1 x + c2 es2 x, where s1 and s2 
are the solutions to the auxiliary equation s2 + ps + q = 0.

For a particle in a one-dimensional box (potential energy V = 0 for 0 … x … l 
and V = � elsewhere), the stationary-state wave functions and energies are c =  
12>l21>2 sin1npx>l2 for 0 … x … l, c = 0 elsewhere, and E =  n2

 h2>8ml2, where 
n = 1, 2, 3, c. The number of nodes (places where c = 0) increases by 1 for each 
increase of 1 in the quantum number n. The wave functions are orthonormal [Eq. (2.27)].

For a free particle (V = 0 everywhere), all nonnegative energies are allowed, and the 
wave function is not normalizable in the usual sense.

The particle in a rectangular one-dimensional well with walls of finite height has a 
finite number of bound states [Eq. (2.36)]. The bound-state wave functions are oscilla-
tory inside the well and die off exponentially to zero outside the well. The energies of the 
unbound states are not quantized.

Tunneling is the penetration of a particle into a classically forbidden region or the 
passage of a particle through a potential-energy barrier whose height is greater than the 
particle’s energy.

Problems

Sec. 2.1 2.2 2.3 2.4 general

Probs. 2.1–2.4 2.5–2.19 2.20 2.21–2.30 2.31–2.32

	 2.1	 (a) Solve y�1x2 + y�1x2 - 6y1x2 = 0. (b) Evaluate the arbitrary constants in the solution if 
the boundary conditions are y = 0 at x = 0 and y� = 1 at x = 0.

	 2.2	 If y = c1e
12 + i2x + c2e

12 - i2x, where c1 and c2 are constants, find the second-order, linear homo-
geneous differential equation with constant coefficients that y satisfies.

	 2.3	 (a) For the case of equal roots of the auxiliary equation, s1 = s2 = s, we have found only one 
independent solution of the linear homogeneous second-order differential equation: esx. Verify 
that xesx is the second solution in this case. (b) Solve y�1x2 - 2y�1x2 + y1x2 = 0.

	 2.4	 For each of these choices of F in Newton’s second law (1.8), classify (1.8) as a linear or nonlin-
ear differential equation (a, b, c, and k are constants). (a) F = c; (b) F = -kx; (c) F = -ax3; 
(d) F = b sin ax; (e) F = a - kx. [Classical-mechanical systems that show chaotic behavior 
(Section 1.4) obey nonlinear differential equations, but not all nonlinear differential equations 
give rise to chaotic behavior.]
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	 2.5	 True or false? (a) The ground-state energy of a particle in a box (PIB) is zero. (b) The PIB energy 
levels are equally spaced. (c) Increasing PIB stationary-state energy corresponds to increas-
ing number of nodes in the wave function. (d) Every solution of the PIB time-independent 
Schrödinger equation is an allowed stationary-state wave function. (e) The PIB transition that 
absorbs the photon of longest wavelength is from the n = 1 level to the n = 2 level.

	 2.6	 For a particle in a one-dimensional box of length l, consider an infinitesimal interval of length 
dl that lies within the box. For each of the following stationary states, state which location(s) 
of this interval gives a maximum probability and which gives a minimum probability to find 
the particle in the interval. (a) n = 1; (b) n = 2; (c) n = 3.

	 2.7	 Consider a particle with quantum number n moving in a one-dimensional box of length l. 
(a) Find the probability of finding the particle in the left quarter of the box. (b) For what 
value of n is this probability a maximum? (c) What is the limit of this probability for n S �? 
(d) What principle is illustrated in (c)?

	 2.8	 Consider an electron in a one-dimensional box of length 2.000 Å with the left end of the box 
at x = 0. (a) Suppose we have one million of these systems, each in the n = 1 state, and we 
measure the x coordinate of the electron in each system. About how many times will the elec-
tron be found between 0.600 Å and 0.601 Å? Consider the interval to be infinitesimal. Hint: 
Check whether your calculator is set to degrees or radians. (b) Suppose we have a large number 
of these systems, each in the n = 1 state, and we measure the x coordinate of the electron in 
each system and find the electron between 0.700 Å and 0.701 Å in 126 of the measurements. 
In about how many measurements will the electron be found between 1.000 Å and 1.001 Å?

	 2.9	 (a) Sketch rough graphs of c and of c2 for the n = 4 and n = 5 particle-in-a-box states. 
(b) Use calculus to find the slope of the c2 curve for n = 4 at x =

1
2 l and check that your 

curve was drawn with the correct slope.

	2.10	 An extremely crude picture of a valence electron in an atom or a molecule treats it as a particle 
in a one-dimensional box whose length is on the order of the size of atoms and molecules. (a) 
For an electron in a one-dimensional box of length 1.0 Å, calculate the separation between the 
two lowest energy levels. (b) Calculate the wavelength of a photon corresponding to a transition 
between these two levels. (c) In what portion of the electromagnetic spectrum is this wavelength?

	2.11	 For a macroscopic object of mass 1.0 g moving with speed 1.0 cm/s in a one-dimensional box 
of length 1.0 cm, find the quantum number n.

	2.12	 When a particle of mass 9.1 * 10-28 g in a certain one-dimensional box goes from the n = 5 
level to the n = 2 level, it emits a photon of frequency 6.0 * 1014 s-1. Find the length of 
the box.

	2.13	 When an electron in a certain excited energy level in a one-dimensional box of length 2.00 Å 
makes a transition to the ground state, a photon of wavelength 8.79 nm is emitted. Find the 
quantum number of the initial state.

	2.14	 The n = 1 to n = 2 absorption frequency for a certain particle in a certain one-dimensional 
box is 6.0 * 1012 s-1. Find the n = 2 to n = 3 absorption frequency for this system.

	2.15	 An electron in a stationary state of a one-dimensional box of length 0.300 nm emits a photon 
of frequency 5.05 * 1015 s-1. Find the initial and final quantum numbers for this transition.

	2.16	 We will see in Section 9.9 that when a charged particle in a one-dimensional box (PIB) 
absorbs or emits a photon, the quantum number n must change by an odd integer: �n = {1, 
{3, {5, c. Transitions with n changing by an even integer are not allowed for the PIB. 
Show that the allowed transition frequencies have the form n = k1h>8ml22, where k takes on 
certain whole-number values. Find the smallest value of k for which two different �n values 
give the same emission frequency. Hint: First examine the pattern of transition frequencies 
for which n changes by 1 and the lower-level n value is 1 or 2 or 3 or c; then consider n 
changing by 3 with the lower level being 1 or 2 or 3 or c.

	2.17	 A crude treatment of the p electrons of a conjugated molecule regards these electrons as moving 
in the particle-in-a-box potential of Fig. 2.1, where the box length is somewhat more than the 
length of the conjugated chain. The Pauli exclusion principle (Chapter 10) allows no more than 
two electrons to occupy each box level. (These two have opposite spins.) For 1,3-butadiene, 
CH2 “ CHCH “ CH2, take the box length as 7.0 Å and use this model to estimate the wavelength 
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of light absorbed when a p electron is excited from the highest-occupied to the lowest-vacant 
box level of the molecular electronic ground state. The experimental value is 217 nm.

	2.18	 For the particle in a one-dimensional box of length l, we could have put the coordinate origin 
at the center of the box. Find the wave functions and energy levels for this choice of origin.

	2.19	 The particle-in-a-box time-independent Schrödinger equation contains the constants h and m, 
and the boundary conditions involve the box length l. We therefore expect the stationary-state 
energies to be a function of h, m, and l; that is, E = f1h, m, l2. [We found E = 1n2>821h2>ml22.] 
Prove that the only values of a, b, and c that give the product ha

 mb
 lc the dimensions of energy 

are a = 2, b = -1, c = -2.

	2.20	 Write down the time-dependent wave function for a free particle with energy E.

	2.21	 (a) For the particle in a rectangular well (Section 2.4), verify that B = 1V0 - E21>2A>E1>2. 
(b) Verify Eq. (2.33).

	2.22	 For the particle in a rectangular well (Section 2.4), show that in the limit V0 S �  (a) Eq. (2.33) 
gives E = n2

 h2>8ml2 as in Eq. (2.20); (b) the wave function goes to Eqs. (2.9) and (2.21).

	2.23	 For an electron in a 15.0-eV-deep one-dimensional rectangular well of width 2.00 Å, calculate 
the number of bound states. Use (6.107).

	2.24	 Find the allowed bound-state energy levels for the system of Prob. 2.23 by using a programmable 
calculator or computer to calculate the left side of (2.35) for e going from 0 to 1 in small steps.

	2.25	 Sketch c for the next-lowest bound level in Fig. 2.5.

	2.26	 For a particle in a one-dimensional rectangular well, (a) must there be at least one bound state? 
(b) is c� continuous at x = 0?

	2.27	 For an electron in a certain rectangular well with a depth of 20.0 eV, the lowest energy 
level lies 3.00 eV above the bottom of the well. Find the width of this well. Hint: Use 
 tan u = sin u>cos u.

	2.28	 For an electron in a certain rectangular well with a depth of 2.00 aJ, there are three bound 
energy levels. Find the minimum and maximum possible widths of this well. One attojoule 
(aJ) equals 10-18 J.

	2.29	 For a particle in a rectangular well of depth V0 and width l, state whether the number of bound-
state energy levels increases, decreases, or remains the same (a) as V0 increases at fixed l; 
(b) as l increases at fixed V0.

	2.30	 For the case E = 0 of a particle in a rectangular well of depth V0, the solution to the Schrödinger 
equation inside the well is cII = ax + b [see the discussion after Eq. (2.19)]. (a) Use the 
boundary conditions to find four equations relating the constants a and b to C and G in the 
equation preceding (2.32). (b) Show that if C 7 0 (or if C 6 0), the equations in (a) lead to 
the contradiction that G is both less than and greater than zero. Hence, C = 0. (c) Show that 
C = 0 gives c = 0 everywhere. Hence, E = 0 is not allowed.

	2.31	 The energy of most stars results from the fusion of hydrogen nuclei to helium nuclei. The tem-
perature of the interior of the sun (a typical star) is 15 * 106 K. At this temperature, virtually 
no nuclei have enough kinetic energy to overcome the electrostatic repulsion between nuclei 
and approach each other closely enough to undergo fusion. Therefore, when Eddington pro-
posed in 1920 that nuclear fusion is the source of stellar energy, his idea was rejected. Explain 
why fusion does occur in stars, despite the above-mentioned apparent difficulty.

	2.32	 True or false? (a) The particle-in-a-box (PIB) ground state has quantum number n = 0. (b) The 
PIB stationary-state wave functions are discontinuous at certain points. (c) The first derivative 
of each PIB stationary-state wave function is discontinuous at certain points. (d) The maximum 
probability density for every PIB stationary state is at the center of the box. (e) For the PIB n = 2 
stationary state, the probability of finding the particle in the left quarter of the box equals the 
probability of finding it in the right quarter of the box. (Answer this and the next question without 
evaluating any integrals.) (f) For the n = 1 PIB stationary state, the probability of finding the 
particle in the left third of the box equals the probability of finding it in the middle third. (g) 
The wavelength of the PIB absorption transition from quantum number n to n + 1 decreases as 
the value of the quantum number n increases. (h) The probability density for the PIB stationary 
states is constant along the length of the box. (i) A quantum-mechanical PIB has a ground-state 
energy that is greater than the lowest possible energy of a classical-mechanical particle in a box.
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Chapter 3

Operators

3.1 Operators
We now develop the theory of quantum mechanics in a more general way than previously. 
We begin by writing the one-particle, one-dimensional, time-independent Schrödinger 
equation (1.19) in the form

	 c- U2

2m
 

d2

dx2 + V1x2 dc1x2 = Ec1x2	 (3.1)

The entity in brackets in (3.1) is an operator. Equation (3.1) suggests that we have an 
energy operator, which, operating on the wave function, gives us the wave function back 
again, but multiplied by an allowed value of the energy. We therefore discuss operators.

An operator is a rule that transforms a given function into another function. For 
example, let Dn  be the operator that differentiates a function with respect to x. We use a 
circumflex to denote an operator. Provided f1x2 is differentiable, the result of operat-
ing on f1x2 with Dn  is Dnf1x2 = f�1x2. For example, Dn 1x2 + 3e2x2 = 2x + 6e2x. If 3n  is 
the operator that multiplies a function by 3, then 3n1x2 + 3ex2 = 3x2 + 9ex. If tan is the 
operator that takes the tangent of a function, then application of tan to the function x2 + 1 
gives tan1x2 + 12. If the operator An  transforms the function f1x2 into the function g1x2, 
we write Anf1x2 = g1x2.

We define the sum and the difference of two operators An  and Bn  by

	 1An + Bn2f1x2 K Anf1x2 + Bnf1x2	 (3.2)

1An - Bn2f1x2 K Anf1x2 - Bnf1x2
For example, if Dn K d>dx, then

1Dn + 3n21x3 - 52 K Dn1x3 - 52 + 3n 1x3 - 52 = 3x2 + 13x3 - 152 = 3x3 + 3x2 - 15

An operator can involve more than one variable. For example, the operator 
02>0x2 + 02>0y2 has the following effect:

102>0x2 + 02>0y22g1x, y2 = 02g>0x2 + 02g>0y2

The product of two operators An  and Bn  is defined by

	 AnBnf1x2 K An  3Bnf1x24 	 (3.3)

In other words, we first operate on f1x2 with the operator on the right of the operator 
product, and then we take the resulting function and operate on it with the operator on the 
left of the operator product. For example, 3n Dnf1x2 = 3n3Dnf1x24 = 3nf �1x2 = 3f �1x2.
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The operators AnBn  and BnAn  may not have the same effect. Consider, for example, the 
operators d>dx and xn (where xn means multiplication by x):

	 Dnxnf1x2 =
d

dx
3xf1x24 = f1x2 + xf �1x2 = 11n + xnDn 2f1x2	 (3.4)

xnDnf1x2 = xn c d

dx
 f1x2 d = xf �1x2

Thus AnBn  and BnAn  are different operators in this case.
We can develop an operator algebra as follows. Two operators An  and Bn  are said to be 

equal if Anf = Bnf  for all functions f. Equal operators produce the same result when they 
operate on a given function. For example, (3.4) shows that

	 Dnxn = 1 + xnDn 	 (3.5)

The operator 1n  (multiplication by 1) is the unit operator. The operator 0n  (multiplication 
by 0) is the null operator. We usually omit the circumflex over operators that are simply 
multiplication by a constant. We can transfer operators from one side of an operator equa-
tion to the other (Prob. 3.7). Thus (3.5) is equivalent to Dnxn - xnDn - 1 = 0, where circum-
flexes over the null and unit operators were omitted.

Operators obey the associative law of multiplication:

	 An1BnCn2 = 1AnBn2Cn	 (3.6)

The proof of (3.6) is outlined in Prob. 3.10. As an example, let An = d>dx, Bn = xn, and 
Cn = 3. Using (3.5), we have

 1AnBn2 = Dnxn = 1 + xnDn ,  31AnBn2Cn4 f = 11 + xnDn 23f = 3f + 3xf �

 1BnCn2 = 3xn,	 3An1BnCn24 f = Dn13xf2 = 3f + 3xf �

A major difference between operator algebra and ordinary algebra is that numbers 
obey the commutative law of multiplication, but operators do not necessarily do so; 
ab = ba if a and b are numbers, but AnBn  and BnAn  are not necessarily equal operators. We 
define the commutator 3An, Bn4  of the operators An  and Bn  as the operator AnBn - BnAn:

	 3An, Bn4 K AnBn - BnAn 	 (3.7)

If AnBn = BnAn, then 3An, Bn4 = 0, and we say that An  and Bn  commute. If AnBn � BnAn, then 
An  and Bn  do not commute. Note that 3An, Bn4 f = AnBnf - BnAnf. Since the order in which we 
apply the operators 3 and d>dx makes no difference, we have

c 3n  , 
d

dx
d = 3n  

d

dx
-

d

dx
 3n = 0

From Eq. (3.5) we have

	 c d

dx
, xn d = Dnxn - xnDn = 1	 (3.8)

The operators d>dx and xn do not commute.

E x a m p l e

Find 3z3, d>dz4 .
To find 3z3, d>dz4 , we apply this operator to an arbitrary function g1z2. Using the 

commutator definition (3.7) and the definitions of the difference and product of two 
operators, we have



36  Chapter 3  |  Operators

 3z3, d>dz4g = 3z31d>dz2 - 1d>dz2z34  g = z31d>dz2g - 1d>dz21z3g2
 = z3

 g� - 3z2
 g - z3

 g� = -3z2
 g

Deleting the arbitrary function g, we get the operator equation 3z3, d>dz4 = -3z2.

Exercise  Find 3d>dx, 5x2 + 3x + 44 .  (Answer: 10x + 3.)

The square of an operator is defined as the product of the operator with itself: 
Bn 2 = BnBn. Let us find the square of the differentiation operator:

 Dn2
 f1x2 = Dn1Dnf2 = Dnf � = f �

 Dn 2 = d2>dx2

As another example, the square of the operator that takes the complex conjugate of a func-
tion is equal to the unit operator, since taking the complex conjugate twice gives the origi-
nal function. The operator Bn n 1n = 1, 2, 3, c2 is defined to mean applying the operator 
Bn  n times in succession.

It turns out that the operators occurring in quantum mechanics are linear. An  is a 
linear operator if and only if it has the following two properties:

	 An  3f1x2 + g1x24 = Anf1x2 + Ang1x2	 (3.9)

	 An  3cf1x24 = cAnf1x2	 (3.10)

where f and g are arbitrary functions and c is an arbitrary constant (not necessarily real). 
Examples of linear operators include xn 2, d>dx, and d2>dx2. Some nonlinear operators are 
cos and 1 22, where 1 22 squares the function it acts on.

E x a m p l e

Is d>dx a linear operator? Is 2   a linear operator?
We have

 1d>dx23f1x2 + g1x24 = df>dx + dg>dx = 1d>dx2f1x2 + 1d>dx2g1x2
   1d>dx23cf1x24 = c df1x2>dx

so d>dx obeys (3.9) and (3.10) and is a linear operator. However,2f1x2 + g1x2 � 2f1x2 + 2g1x2

so 2   does not obey (3.9) and is nonlinear.

Exercise  Is the operator x2 * (multiplication by x2) linear? (Answer: Yes.)

Useful identities in linear-operator manipulations are

	 1An + Bn2Cn = AnCn + BnCn	 (3.11)

	 An1Bn + Cn 2 = AnBn + AnCn 	 (3.12)
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E x a m p l e

Prove the distributive law (3.11) for linear operators.
A good way to begin a proof is to first write down what is given and what is to 

be proved. We are given that An, Bn, and Cn  are linear operators. We must prove that 
1An + Bn2Cn = AnCn + BnCn.

To prove that the operator 1An + Bn2Cn  is equal to the operator AnCn + BnCn , we 
must prove that these two operators give the same result when applied to an arbitrary 
function f. Thus we must prove that

31An + Bn2Cn4 f = 1AnCn + BnCn2f

We start with 31An + Bn2Cn4 f. This expression involves the product of the two 
operators An + Bn  and Cn . The operator-product definition (3.3) with An  replaced by 
An + Bn  and Bn  replaced by Cn  gives 31An + Bn2Cn4 f = 1An + Bn21Cnf2. The entity Cn f  is a 
function, and use of the definition (3.2) of the sum An + Bn  of the two operators An  and Bn  
gives 1An + Bn21Cn f2 = An1Cn f2 + Bn1Cn f2. Thus

31An + Bn2Cn4 f = 1An + Bn21Cnf2 = An1Cnf2 + Bn1Cnf2
Use of the operator-product definition (3.3) gives An1Cn f2 = AnCn f  and Bn1Cn f2 = BnCn f. Hence

	 31An + Bn2Cn4 f = AnCnf + BnCnf 	 (3.13)

Use of the operator-sum definition (3.2) with An  replaced by AnCn  and Bn  replaced by BnCn  
gives 1AnCn + BnCn 2f = AnCn f + BnCn f, so (3.13) becomes

31An + Bn2Cn4 f = 1AnCn + BnCn2f

which is what we wanted to prove. Hence 1An + Bn2Cn = AnCn + BnCn .
Note that we did not need to use the linearity of An, Bn, and Cn . Hence (3.11) holds for 

all operators. However, (3.12) holds only if An  is linear (see Prob. 3.17).

E x a m p l e

Find the square of the operator d>dx + xn.
To find the effect of 1d>dx + xn22, we apply this operator to an arbitrary function 

f1x2. Letting Dn K d>dx, we have

	  1Dn + xn22
 f1x2 = 1Dn + xn231Dn + x2f4 = 1Dn + xn21 f � + xf2

	  = f � + f + xf � + xf � + x2
 f = 1Dn2 + 2xnDn + xn2 + 12 f1x2

	 1Dn + xn22 = Dn 2 + 2xnDn + xn2 + 1

Let us repeat this calculation, using only operator equations:

 1Dn + xn22 = 1Dn + xn21Dn + xn2 = Dn 1Dn + xn2 + xn1Dn + xn2
	  = Dn 2 + Dn xn + xnDn + xn2 = Dn 2 + xnDn + 1 + xnDn + xn2

	  = Dn 2 + 2xDn + x2 + 1

where (3.11), (3.12), and (3.5) have been used and the circumflex over the operator 
“multiplication by x” has been omitted. Until you have become thoroughly experienced 
with operators, it is safest when doing operator manipulations always to let the operator 
operate on an arbitrary function f and then delete f at the end.

Exercise  Find 1d2>dx2 + x22. (Answer: d4>dx4 + 2x d2>dx2 + 2 d>dx + x2.)
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3.2 Eigenfunctions and Eigenvalues
Suppose that the effect of operating on some function f1x2 with the linear operator An  is 
simply to multiply f1x2 by a certain constant k. We then say that f1x2 is an eigenfunction 
of An with eigenvalue k. (Eigen is a German word meaning characteristic.) As part of the 
definition, we shall require that the eigenfunction f1x2 is not identically zero. By this 
we mean that, although f1x2 may vanish at various points, it is not everywhere zero. 
We have

	 Anf1x2 = kf1x2	 (3.14)

As an example of (3.14), e2x is an eigenfunction of the operator d>dx with eigenvalue 2:

1d>dx2e2x = 2e2x

However, sin 2x is not an eigenfunction of d>dx, since 1d>dx21sin 2x2 = 2 cos 2x, which 
is not a constant times sin 2x.

E x a m p l e

If f1x2 is an eigenfunction of the linear operator An  and c is any constant, prove that 
cf1x2 is an eigenfunction of An  with the same eigenvalue as f1x2.

A good way to see how to do a proof is to carry out the following steps:

1.	 Write down the given information and translate this information from words into 
equations.

2.	 Write down what is to be proved in the form of an equation or equations.
3.	 (a) Manipulate the given equations of step 1 so as to transform them to the desired 

equations of step 2. (b) Alternatively, start with one side of the equation that we want 
to prove and use the given equations of step 1 to manipulate this side until it is trans-
formed into the other side of the equation to be proved.

We are given three pieces of information: f is an eigenfunction of An; An  is a linear 
operator; c is a constant. Translating these statements into equations, we have [see 
Eqs. (3.14), (3.9), and (3.10)]

	 Anf = kf 	 (3.15)

	 An1 f + g2 = Anf + Ang and An1bf2 = bAnf 	 (3.16)

c = a constant

where k and b are constants and f and g are functions.
We want to prove that cf is an eigenfunction of An  with the same eigenvalue as f, 

which, written as an equation, is

An1cf2 = k1cf2
Using the strategy of step 3(b), we start with the left side An1cf2 of this last equation 

and try to show that it equals k1cf2. Using the second equation in the linearity 
definition (3.16), we have An1cf2 = cAnf. Using the eigenvalue equation (3.15), we have 
cAnf = ckf. Hence

An1cf2 = cAnf = ckf = k1cf2
which completes the proof.
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E x a m p l e

(a) Find the eigenfunctions and eigenvalues of the operator d>dx. (b) If we impose 
the boundary condition that the eigenfunctions remain finite as x S {�, find the 
eigenvalues.

(a)	 Equation (3.14) with An = d>dx becomes

	
df1x2

dx
= kf1x2	 (3.17)

	
1

f
  df = k dx

Integration gives

 ln f = kx + constant

	  f = econstant
 ekx

	 f = cekx	 (3.18)

The eigenfunctions of d>dx are given by (3.18). The eigenvalues are k, which 
can be any number whatever and (3.17) will still be satisfied. The eigenfunctions 
contain an arbitrary multiplicative constant c. This is true for the eigenfunctions of 
every linear operator, as was proved in the previous example. Each different value 
of k in (3.18) gives a different eigenfunction. However, eigenfunctions with the 
same value of k but different values of c are not independent of each other.

(b)	� Since k can be complex, we write it as k = a + ib, where a and b are real num-
bers. We then have f1x2 = ceaxeibx. If a 7 0, the factor eax goes to infinity as x 
goes to infinity. If a 6 0, then eax S � in the limit x S - �. Thus the boundary 
conditions require that a = 0, and the eigenvalues are k = ib, where b is real.

In the first example in Section 3.1, we found that 3z3, d>dz4g1z2 = -3z2
 g1z2 for 

every function g, and we concluded that 3z3, d>dz4 = -3z2. In contrast, the eigenvalue 
equation Anf1x2 = kf1x2 [Eq. (3.14)] does not hold for every function f1x2, and we cannot 
conclude from this equation that An = k. Thus the fact that 1d>dx2e2x = 2e2x does not 
mean that the operator d>dx equals multiplication by 2.

3.3 Operators and Quantum Mechanics
We now examine the relationship between operators and quantum mechanics. Comparing 
Eq. (3.1) with (3.14), we see that the Schrödinger equation is an eigenvalue problem. The 
values of the energy E are the eigenvalues. The eigenfunctions are the time-independent 
wave functions c. The operator whose eigenfunctions and eigenvalues are desired is 
- 1U2>2m2 d2>dx2 + V1x2. This operator is called the Hamiltonian operator for the 
system.

Sir William Rowan Hamilton (1805–1865) devised an alternative form of Newton’s  
equations of motion involving a function H, the Hamiltonian function for the system. 
For a system where the potential energy is a function of the coordinates only, the total 
energy remains constant with time; that is, E is conserved. We shall restrict ourselves 
to such conservative systems. For conservative systems, the classical-mechanical 
Hamiltonian function turns out to be simply the total energy expressed in terms of 
coordinates and conjugate momenta. For Cartesian coordinates x, y, z, the conjugate 
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momenta are the components of linear momentum in the x, y, and z directions: px, py, 
and pz:

	 px K mvx , py K mvy , pz K mvz	 (3.19)

where vx, vy, and vz are the components of the particle’s velocity in the x, y, and z 
directions.

Let us find the classical-mechanical Hamiltonian function for a particle of mass m mov-
ing in one dimension and subject to a potential energy V1x2. The Hamiltonian function is 
equal to the energy, which is composed of kinetic and potential energies. The familiar form 
of the kinetic energy, 12 mv

2
x, will not do, however, since we must express the Hamiltonian 

as a function of coordinates and momenta, not velocities. Since vx = px>m, the form of the 
kinetic energy we want is p2

x >2m. The Hamiltonian function is

	 H =
p2

x

2m
+ V1x2	 (3.20)

The time-independent Schrödinger equation (3.1) indicates that, corresponding to the 
Hamiltonian function (3.20), we have a quantum-mechanical operator

-  
U2

2m
  

d2

dx2 + V1x2

whose eigenvalues are the possible values of the system’s energy. This correspondence 
between physical quantities in classical mechanics and operators in quantum mechanics is 
general. It is a fundamental postulate of quantum mechanics that every physical property 
(for example, the energy, the x coordinate, the momentum) has a corresponding quantum-
mechanical operator. We further postulate that the operator corresponding to the property 
B is found by writing the classical-mechanical expression for B as a function of Cartesian 
coordinates and corresponding momenta and then making the following replacements. 
Each Cartesian coordinate q is replaced by the operator multiplication by that coordinate:

qn = q *

Each Cartesian component of linear momentum pq is replaced by the operator

pnq =
U

i
 
0

0q
= - iU

0

0q

where i = 2-1 and 0 >0q is the operator for the partial derivative with respect to the 
coordinate q. Note that 1>i = i>i2 = i> 1-12 = - i.

Consider some examples. The operator corresponding to the x coordinate is multipli-
cation by x:

	 xn = x * 	 (3.21)

Also,

	 yn = y *   and  zn = z * 	 (3.22)

The operators for the components of linear momentum are

	 pnx =
U

i
 
0

0x
, pny =

U

i
 
0

0y
, pnz =

U

i
 
0

0z
	 (3.23)
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The operator corresponding to p2
x is

	 pn 2
x = a U

i
 
0

0x
b

2

=
U

i
 
0

0x
 
U

i
 
0

0x
= -U2 02

0x2	 (3.24)

with similar expressions for pn 2
y and pn 2

z .
What are the potential-energy and kinetic-energy operators in one dimension? 

Suppose a system has the potential-energy function V1x2 = ax2, where a is a constant. 
Replacing x with x * , we see that the potential-energy operator is simply multipli-
cation by ax2; that is, Vn1x2 = ax2 * . In general, we have for any potential-energy 
function

	 Vn1x2 = V1x2 * 	 (3.25)

The classical-mechanical expression for the kinetic energy T in (3.20) is

	 T = p2
x >2m	 (3.26)

Replacing px by the corresponding operator (3.23), we have

	 Tn = -
U2

2m
 

02

0x2 = -
U2

2m
 

d2

dx2	 (3.27)

where (3.24) has been used, and the partial derivative becomes an ordinary derivative in 
one dimension. The classical-mechanical Hamiltonian (3.20) is

	 H = T + V = p2
x >2m + V1x2	 (3.28)

The corresponding quantum-mechanical Hamiltonian (or energy) operator is

	 Hn = Tn + Vn = -
U2

2m
 

d2

dx2 + V1x2	 (3.29)

which agrees with the operator in the Schrödinger equation (3.1). Note that all these 
operators are linear.

How are the quantum-mechanical operators related to the corresponding proper-
ties of a system? Each such operator has its own set of eigenfunctions and eigenvalues. 
Let Bn  be the quantum-mechanical operator that corresponds to the physical prop-
erty B. Letting fi and bi symbolize the eigenfunctions and eigenvalues of Bn, we have 
[Eq. (3.14)]

	 Bnfi = bi fi, i = 1, 2, 3, g 	 (3.30)

The operator Bn  has many eigenfunctions and eigenvalues, and the subscript i is used to 
indicate this. Bn  is usually a differential operator, and (3.30) is a differential equation whose 
solutions give the eigenfunctions and eigenvalues. Quantum mechanics postulates that (no 
matter what the state function of the system happens to be) a measurement of the property 
B must yield one of the eigenvalues bi of the operator Bn. For example, the only values that 
can be found for the energy of a system are the eigenvalues of the energy (Hamiltonian) 
operator Hn . Using ci to symbolize the eigenfunctions of Hn , we have as the eigenvalue 
equation (3.30)

	 Hnci = Ei ci	 (3.31)
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Using the Hamiltonian (3.29) in (3.31), we obtain for a one-dimensional, one-particle system

	 c- U2

2m
 
d2

dx2 + V1x2 d  ci = Ei ci	 (3.32)

which is the time-independent Schrödinger equation (3.1). Thus our postulates about 
operators are consistent with our previous work. We shall later further justify the choice 
(3.23) for the momentum operator by showing that in the limiting transition to classical 
mechanics this choice yields px = m1dx>dt2, as it should. (See Prob. 7.59.)

In Chapter 1 we postulated that the state of a quantum-mechanical system is speci-
fied by a state function �1x, t2, which contains all the information we can know about 
the system. How does � give us information about the property B? We postulate that if �  
is an eigenfunction of Bn   with eigenvalue bk, then a measurement of B is certain to yield 
the value bk. Consider, for example, the energy. The eigenfunctions of the energy operator 
are the solutions c1x2 of the time-independent Schrödinger equation (3.32). Suppose the 
system is in a stationary state with state function [Eq. (1.20)]

	 �1x, t2 = e-iEt>Uc1x2	 (3.33)

Is �1x, t2 an eigenfunction of the energy operator Hn ? We have

Hn �1x, t2 = Hn e-iEt>U
 c1x2

Hn  contains no derivatives with respect to time and therefore does not affect the exponential 
factor e-iEt>U. We have

Hn �1x, t2 = e-iEt>UHnc1x2 = Ee-iEt>U
 c1x2 = E�1x, t2

	 Hn � = E�	 (3.34)

where (3.31) was used. Hence, for a stationary state, �1x, t2 is an eigenfunction of Hn , and 
we are certain to obtain the value E when we measure the energy.

As an example of another property, consider momentum. The eigenfunctions g of pnx 
are found by solving

pnx  g = kg

	
U

i
 
dg

dx
= kg	 (3.35)

We find (Prob. 3.29)

	 g = Aeikx>U	 (3.36)

where A is an arbitrary constant. To keep g finite for large � x � , the eigenvalues k must be 
real. Thus the eigenvalues of pnx are all the real numbers

	 - � 6 k 6 �	 (3.37)

which is reasonable. Any measurement of px must yield one of the eigenvalues (3.37) 
of pnx. Each different value of k in (3.36) gives a different eigenfunction g. It might seem 
surprising that the operator for the physical property momentum involves the imaginary 
number i. Actually, the presence of i in pnx ensures that the eigenvalues k are real. Recall 
that the eigenvalues of d>dx are imaginary (Section 3.2).

Comparing the free-particle wave function (2.30) with the eigenfunctions (3.36) of 
pnx, we note the following physical interpretation: The first term in (2.30) corresponds to 
positive momentum and represents motion in the +x direction; the second term in (2.30) 
corresponds to negative momentum and represents motion in the -x direction.
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Now consider the momentum of a particle in a box. The state function for a particle in 
a stationary state in a one-dimensional box is [Eqs. (3.33), (2.20), and (2.23)]

	 �1x, t2 = e-iEt>Ua 2

l
b

1>2
 sina npx

l
b 	 (3.38)

where E = n2
 h2>8ml2. Does the particle have a definite value of px? That is, is �1x, t2 

an eigenfunction of pnx? Looking at the eigenfunctions (3.36) of pnx, we see that there is no 
numerical value of the real constant k that will make the exponential function in (3.36) 
become a sine function, as in (3.38). Hence � is not an eigenfunction of pnx. We can verify 
this directly; we have

pnx  � =
U

i
 
0

0x
e-iEt>Ua 2

l
b

1>2
 sina npx

l
b =

npU

il
e-iEt/Ua 2

l
b

1/2

 cosa npx

l
b

Since pnx � � constant . �, the state function � is not an eigenfunction of pnx.
Note that the system’s state function � need not be an eigenfunction fi of the operator 

Bn  in (3.30) that corresponds to the physical property B of the system. Thus, the particle-
in-a-box stationary-state wave functions are not eigenfunctions of pnx. Despite this, we still 
must get one of the eigenvalues (3.37) of pnx when we measure px for a particle-in-a-box 
stationary state.

Are the particle-in-a-box stationary-state wave functions eigenfunctions of pn 2
x  ? We 

have [Eq. (3.24)]

pn2
x  � = -U2 02

0x2e-iEt>Ua 2

l
b

1>2
 sina npx

l
b =

n2 p2 U2

l2
e-iEt>Ua 2

l
b

1>2
 sina npx

l
b

	 pn 2
x  � =

n2
 h2

4l2  �	 (3.39)

Hence a measurement of p2
x will always give the result n2

 h2>4l2 when the particle is in the 
stationary state with quantum number n. This should come as no surprise: The potential 
energy in the box is zero, and the Hamiltonian operator is

Hn = Tn + Vn = Tn = pn 2
x >2m

We then have [Eq. (3.34)]

Hn � = E� =
pn 2

x

2m
 �

	 pn 2
x  � = 2mE� = 2m

n2
 h2

8ml2 � =
n2

 h2

4l2  �	 (3.40)

in agreement with (3.39). The only possible value for p2
x is

	 p2
x = n2

 h2>4l2	 (3.41)

Equation (3.41) suggests that a measurement of px would necessarily yield one of the two 
values {1

2nh> l, corresponding to the particle moving to the right or to the left in the box. 
This plausible suggestion is not accurate. An analysis using the methods of Chapter 7 
shows that there is a high probability that the measured value will be close to one of the 
two values {1

2nh> l, but that any value consistent with (3.37) can result from a measure-
ment of px for the particle in a box; see Prob. 7.41.

We postulated that a measurement of the property B must give a result that is one of 
the eigenvalues of the operator Bn . If the state function � happens to be an eigenfunction 
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of Bn  with eigenvalue b, we are certain to get b when we measure B. Suppose, however, that 
� is not one of the eigenfunctions of Bn . What then? We still assert that we will get one 
of the eigenvalues of Bn when we measure B, but we cannot predict which eigenvalue will 
be obtained. We shall see in Chapter 7 that the probabilities for obtaining the various 
eigenvalues of Bn  can be predicted.

E x a m p l e

The energy of a particle of mass m in a one-dimensional box of length l is measured. 
What are the possible values that can result from the measurement if at the time the 
measurement begins, the particle’s state function is (a) � = 130>l521>2x1l - x2 for 
0 … x … l; (b) � = 12>l21>2 sin13px>l2 for 0 … x … l?

(a)		� The possible outcomes of a measurement of the property E are the eigenvalues 
of the system’s energy (Hamiltonian) operator Hn . Therefore, the measured value 
must be one of the numbers n2

 h2>8ml2, where n = 1, 2, 3, c.  Since � is 
not one of the eigenfunctions 12>l21>2 sin1npx>l2 [Eq. (2.23)] of Hn , we cannot 
predict which one of these eigenvalues will be obtained for this nonstationary 
state. (The probabilities for obtaining these eigenvalues are found in the last 
example in Section 7.6.)

(b)	� Since � is an eigenfunction of Hn  with eigenvalue 32
 h2>8ml2 [Eq. (2.20)], the 

measurement must give 9h2>8ml2.

3.4 �The Three-Dimensional, Many-Particle 
Schrödinger Equation

Up to now we have restricted ourselves to one-dimensional, one-particle systems. The 
operator formalism developed in the last section allows us to extend our work to three-
dimensional, many-particle systems. The time-dependent Schrödinger equation for the 
time development of the state function is postulated to have the form of Eq. (1.13):

	 iU
0�

0t
= Hn�	 (3.42)

The time-independent Schrödinger equation for the energy eigenfunctions and eigenval-
ues is

	 Hnc = Ec	 (3.43)

which is obtained from (3.42) by taking the potential energy as independent of time and 
applying the separation-of-variables procedure used to obtain (1.19) from (1.13).

For a one-particle, three-dimensional system, the classical-mechanical Hamiltonian is

	 H = T + V =
1

2m
1p2

x + p2
y + p2

z2 + V1x, y, z2	 (3.44)

Introducing the quantum-mechanical operators [Eq. (3.24)], we have for the Hamiltonian 
operator

	 Hn = -
U2

2m
a 02

0x2 +
02

0y2 +
02

0z2 b + V1x, y, z2	 (3.45)
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The operator in parentheses in (3.45) is called the Laplacian operator �2 (read as 
“del squared”):

	 �2 K
02

0x2 +
02

0y2 +
02

0z2	 (3.46)

The one-particle, three-dimensional, time-independent Schrödinger equation is then

	 -
U2

2m
�2

 c + Vc = Ec	 (3.47)

Now consider a three-dimensional system with n particles. Let particle i have mass mi 
and coordinates 1xi, yi, zi2, where i = 1, 2, 3, c, n. The kinetic energy is the sum of the 
kinetic energies of the individual particles:

T =
1

2m1
1p2

x1
+ p2

y1
+ p2

z1
2 +

1

2m2
1p2

x2
+ p2

y2
+ p2

z2
2 +  g+

1

2mn
1p2

xn
+ p2

yn
+ p2

zn
2

where pxi
 is the x component of the linear momentum of particle i, and so on. The kinetic-

energy operator is

Tn = -
U2

2m1
a 02

0x2
1

+
02

0y2
1

+
02

0z2
1
b  -  g-  

U2

2mn
a 02

0x2
n

+
02

0y2
n

+
02

0z2
n
b

	 Tn = - a
n

i = 1

U2

2mi
 �2

i 	 (3.48)

	 �2
i K

02

0x2
i

+
02

0y2
i

+
02

0z2
i
	 (3.49)

We shall usually restrict ourselves to cases where the potential energy depends only on the 
3n coordinates:

V = V1x1, y1, z1, c, xn, yn, zn2
The Hamiltonian operator for an n-particle, three-dimensional system is then

	 Hn = - a
n

i = 1

U2

2mi
 �2

i + V1x1, c, zn2	 (3.50)

and the time-independent Schrödinger equation is

	 c- a
n

i = 1

U2

2mi
�2

i + V1x1, c, zn2 dc = Ec	 (3.51)

where the time-independent wave function is a function of the 3n coordinates of the n 
particles:

	 c = c1x1, y1, z1, c, xn, yn, zn2	 (3.52)

The Schrödinger equation (3.51) is a linear partial differential equation.
As an example, consider a system of two particles interacting so that the potential 

energy is inversely proportional to the distance between them, with c being the propor-
tionality constant. The Schrödinger equation (3.51) becomes
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c- U2

2m1
 a 02

0x2
1

+
02

0y2
1

+
02

0z2
1
b -

U2

2m2
 a 02

0x2
2

+
02

0y2
2

+
02

0z2
2
b

	 +
c

31x1 - x222 + 1y1 - y222 + 1z1 - z22241>2 d  c = Ec	 (3.53)

c = c1x1, y1, z1, x2, y2, z22
Although (3.53) looks formidable, we shall solve it in Chapter 6.

For a one-particle, one-dimensional system, the Born postulate [Eq. (1.15)] states 
that � �1x�, t2 �2 dx  is the probability of observing the particle between x� and x� + dx 
at time t, where x� is a particular value of x. We extend this postulate as follows. For a 
three-dimensional, one-particle system, the quantity

	 ��1x�, y�, z�, t2�2 dx dy dz	 (3.54)

is the probability of finding the particle in the infinitesimal region of space with its x coor-
dinate lying between x� and x� + dx, its y coordinate lying between y� and y� + dy, and 
its z coordinate between z� and z� + dz (Fig. 3.1). Since the total probability of finding the 
particle is 1, the normalization condition is

	 L
�

-� L
�

-� L
�

-�

 � �1x, y, z, t2 �2 dx dy dz = 1	 (3.55)

For a three-dimensional, n-particle system, we postulate that

� �1x�1, y�1, z�1, x�2, y�2, z�2, c, x�n, y�n, z�n, t2 � 2 dx1 dy1 dz1 dx2 dy2 dz2 cdxn dyn dzn

	 (3.56)

is the probability at time t of simultaneously finding particle 1 in the infinitesi-
mal rectangular box-shaped region at 1x�1, y�1, z�12 with edges dx1, dy1, dz1, particle 
2 in the infinitesimal box-shaped region at 1x�2, y�2, z�22 with edges dx2, dy2, dz2, c, 
and particle n in the infinitesimal box-shaped region at 1x�n, y�n, z�n2 with edges 
dxn, dyn, dzn. The total probability of finding all the particles is 1, and the normaliza-
tion condition is

	 L
�

-� L
�

-� L
�

-�
 g L

�

-� L
�

-� L
�

-�

 � � �2 dx1 dy1 dz1 
cdxn dyn dzn = 1	 (3.57)

z

z9

x9

y9
y

x

dx

dz

dy
Figure 3.1  An infinitesi-
mal box-shaped region  
located at x9, y9, z9.
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It is customary in quantum mechanics to denote integration over the full range of all 
the coordinates of a system by 1dt. A shorthand way of writing (3.55) or (3.57) is

	 1 � � �2 dt = 1	 (3.58)

Although (3.58) may look like an indefinite integral, it is understood to be a definite inte-
gral. The integration variables and their ranges are understood from the context.

For a stationary state, � � �2 = �c �2, and

	 1 �c �2 dt = 1	 (3.59)

3.5 The Particle in a Three-Dimensional Box
For the present, we confine ourselves to one-particle problems. In this section we consider 
the three-dimensional case of the problem solved in Section 2.2, the particle in a box.

There are many possible shapes for a three-dimensional box. The box we consider is 
a rectangular parallelepiped with edges of length a, b, and c. We choose our coordinate 
system so that one corner of the box lies at the origin and the box lies in the first octant of 
space (Fig. 3.2). Within the box, the potential energy is zero. Outside the box, it is infinite:

	 V1x, y, z2 = 0 in the region •
0 6 x 6 a

0 6 y 6 b

0 6 z 6 c

	 (3.60)

	 V = � elsewhere

Since the probability for the particle to have infinite energy is zero, the wave function 
must be zero outside the box. Within the box, the potential-energy operator is zero and the 
Schrödinger equation (3.47) is

	 -
U2

2m
a 02

 c

0x2 +
02

 c

0y2 +
02

 c

0z2 b = Ec	 (3.61)

To solve (3.61), we assume that the solution can be written as the product of a function of x 
alone times a function of y alone times a function of z alone:

	 c1x, y, z2 = f1x2g1y2h1z2	 (3.62)

It might be thought that this assumption throws away solutions that are not of the form 
(3.62). However, it can be shown that, if we can find solutions of the form (3.62) that 
satisfy the boundary conditions, then there are no other solutions of the Schrödinger 
equation that will satisfy the boundary conditions. (For a proof, see G. F. D. Duff and  

z

c

y

a

b
x

Figure 3.2  Inside the 
box-shaped region, V = 0.
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D. Naylor, Differential Equations of Applied Mathematics, Wiley, 1966, pp. 257–258.) 
The method we are using to solve (3.62) is called separation of variables.

From (3.62), we find

	
02

 c

0x2 = f �1x2g1y2h1z2, 
02

 c

0y2 = f1x2g�1y2h1z2, 
02

 c

0z2 = f1x2g1y2h�1z2	 (3.63)

Substitution of (3.62) and (3.63) into (3.61) gives

	 - 1U2>2m2f � gh - 1U2>2m2fg� h - 1U2>2m2fgh� -  Efgh = 0	 (3.64)

Division of this equation by fgh gives

	 -
U2f �

2mf
-

U2g�

2mg
-

U2h�

2mh
- E = 0	 (3.65)

	 -
U2f �1x2
2mf1x2 =

U2g�1y2
2mg1y2 +

U2h�1z2
2mh1z2 + E	 (3.66)

Let us define Ex as equal to the left side of (3.66):

	 Ex K -  U2f �1x2>2mf1x2	 (3.67)

The definition (3.67) shows that Ex is independent of y and z. Equation (3.66) shows that 
Ex equals U2g�1y2>2mg1y2 + U2h�1z2>2mh1z2 + E; therefore, Ex must be independent 
of x. Being independent of x, y, and z, the quantity Ex must be a constant.

Similar to (3.67), we define Ey and Ez by

	 Ey K - U2g�1y2>2mg1y2,  Ez K -U2h�1z2>2mh1z2	 (3.68)

Since x, y, and z occur symmetrically in (3.65), the same reasoning that showed Ex to be 
a constant shows that Ey and Ez are constants. Substitution of the definitions (3.67) and 
(3.68) into (3.65) gives

	 Ex + Ey + Ez = E	 (3.69)

Equations (3.67) and (3.68) are

	
d2f1x2

dx2 +
2m

U2  Ex  f1x2 = 0	 (3.70)

	
d2g1y2

dy2 +
2m

U2  Ey g1y2 = 0,  
d2h1z2

dz2 +
2m

U2  Ez h1z2 = 0	 (3.71)

We have converted the partial differential equation in three variables into three ordinary differ-
ential equations. What are the boundary conditions on (3.70)? Since the wave function vanishes 
outside the box, continuity of c requires that it vanish on the walls of the box. In particular, c 
must be zero on the wall of the box lying in the yz plane, where x = 0, and it must be zero on 
the parallel wall of the box, where x = a. Therefore, f102 = 0 and f1a2 = 0.

Now compare Eq. (3.70) with the Schrödinger equation [Eq. (2.10)] for a particle in a 
one-dimensional box. The equations are the same in form, with Ex in (3.70) corresponding 
to E in (2.10). Are the boundary conditions the same? Yes, except that we have x = a in-
stead of x = l as the second point where the independent variable vanishes. Thus we can 
use the work in Section 2.2 to write as the solution [see Eqs. (2.23) and (2.20)]

 f1x2 = a 2
a
b

1>2
 sina nx  px

a
b

 Ex =
n2

x  h2

8ma2, nx = 1, 2, 3 c



3.5 The Particle in a Three-Dimensional Box  |  49

The same reasoning applied to the y and z equations gives

g1y2 = a 2

b
b

1>2
 sina ny  py

b
b ,  h1z2 = a 2

c
b

1>2
 sina nz  pz

c
b

Ey =
n2

y  h2

8mb2, ny = 1, 2, 3 c and Ez =
n2

z  h2

8mc2, nz = 1, 2, 3 c

From (3.69), the energy is

	 E =
h2

8m
 a n2

x

a2 +
n2

y

b2 +
n2

z

c2 b 	 (3.72)

As with the particle in a one-dimensional box, the ground-state energy is greater than the 
classical-mechanical, lowest-energy value of zero.

From (3.62), the wave function inside the box is

	 c1x, y, z2 = a 8

abc
b

1>2
 sina nx  px

a
b  sina ny  py

b
b  sina nz  pz

c
b 	 (3.73)

The wave function has three quantum numbers, nx, ny, nz. We can attribute this to the 
three-dimensional nature of the problem. The three quantum numbers vary independently 
of one another.

In a one-particle, one-dimensional problem such as the particle in a one-dimensional 
box, the nodes are where c1x2 = 0, and solving this equation for x, we get points where 
c = 0. In a one-particle, three-dimensional problem, the nodes are where c1x, y, z2 = 0, 
and solving this equation for z, we get solutions of the form z = f1x, y2. Each such solu-
tion is the equation of a nodal surface in three-dimensional space. For example, for the 
stationary state with nx = 1, ny = 1, nz = 2, the wave function c in (3.73) is zero on the 
surface where z = c>2; this is the equation of a plane that lies parallel to the top and bot-
tom faces of the box and is midway between these faces. Similarly, for the state nx = 2, 
ny = 1, nz = 1 the plane x = a>2 is a nodal surface.

Since the x, y, and z factors in the wave function are each independently normalized, 
the wave function is normalized:

L
�

-� L
�

-� L
�

-�

 �c � 2 dx dy dz = L
a

0
 � f1x2 � 2 dx L

b

0
 � g1y2 � 2 dy L

c

0
 � h1z2 �2 dz = 1

where we used (Prob. 3.40)

	 LLL  F1x2G1y2H1z2 dx dy dz = L  F1x2 dx L  G1y2 dy L  H1z2 dz	 (3.74)

What are the dimensions of c1x, y, z2 in (3.73)? For a one-particle, three-dimensional 
system, 0c 0 2 dx dy dz is a probability, and probabilities are dimensionless. Since the di-
mensions of dx dy dz are length3, c1x, y, z2 must have dimensions of length-3>2 to make 
0c 0 2 dx dy dz dimensionless.

Suppose that a = b = c. We then have a cube. The energy levels are then

	 E = 1h2>8ma221n2
x + n2

y + n2
z2	 (3.75)

Let us tabulate some of the allowed energies of a particle confined to a cube with infinitely 
strong walls:

nxnynz 111 211 121 112 122 212 221 113 131 311 222

E18ma2>h22 3 6 6 6 9 9 9 11 11 11 12



50  Chapter 3  |  Operators

Note that states with different quantum numbers may have the same energy (Fig. 3.3). 
For example, the states c211, c121, and c112 (where the subscripts give the quantum 
numbers) all have the same energy. However, Eq. (3.73) shows that these three sets of 
quantum numbers give three different, independent wave functions and therefore do 
represent different states of the system. When two or more independent wave func-
tions correspond to states with the same energy eigenvalue, the eigenvalue is said to be 
degenerate. The degree of degeneracy (or, simply, the degeneracy) of an energy level 
is the number of states that have that energy. Thus the second-lowest energy level of 
the particle in a cube is threefold degenerate. We got the degeneracy when we made the 
edges of the box equal. Degeneracy is usually related to the symmetry of the system. 
Note that the wave functions c211, c121, and c112 can be transformed into one another 
by rotating the cubic box. Usually, the bound-state energy levels in one-dimensional 
problems are nondegenerate.

In the statistical-mechanical evaluation of the molecular partition function of an ideal 
gas, the translational energy levels of each gas molecule are taken to be the levels of a par-
ticle in a three-dimensional rectangular box (the box is the container holding the gas); see 
Levine, Physical Chemistry, Sections 21.6 and 21.7.

In the free-electron theory of metals, the valence electrons of a nontransition metal are 
treated as noninteracting particles in a box, the sides of the box being the surfaces of the metal. 
This approximation, though crude, gives fairly good results for some properties of metals.

3.6 Degeneracy
For an n-fold degenerate energy level, there are n independent wave functions 
c1, c2, c, cn, each having the same energy eigenvalue w:

	 Hnc1 = wc1, Hnc2 = wc2, c, Hncn = wcn	 (3.76)

We wish to prove the following important theorem: Every linear combination

	 f K c1 c1 + c2 c2 + g + cn  cn	 (3.77)

of the wave functions of a degenerate level with energy eigenvalue w is an eigenfunction 
of the Hamiltonian operator with eigenvalue w. [A linear combination of the functions 
c1, c2, c, cn is defined as a function of the form (3.77) where the c’s are constants, 
some of which might be zero.] To prove this theorem, we must show that Hnf = wf or

	 Hn1c1 c1 + c2 c2 +  g+ cn  cn2 = w1c1 c1 + c2 c2 +  g+  cn  cn2	 (3.78)

Since Hn  is a linear operator, we can apply Eq. (3.9) n - 1 times to the left side of (3.78) 
to get

Hn1c1 c1 + c2 c2 + g+ cn  cn2 = Hn1c1 c12 + Hn1c2 c22 + g+ Hn1cn  cn2

Figure 3.3  Energies of 
the lowest few states of a 
particle in a cubic box.

Energy

122 212 221

211 121

111

112
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Use of Eqs. (3.10) and (3.76) gives

 Hn1c1 c1 + c2 c2 +  g+ cn  cn2 = c1Hnc1 + c2Hnc2 +  g+ cnHncn

 = c1wc1 + c2wc2 +  g+ cnwcn

 Hn1c1c1 + c2c2 +  g+ cncn2 = w1c1c1 + c2c2 +  g+ cncn2
which completes the proof.

For example, the stationary-state wave functions c211, c121, and c112 for the particle 
in a cubic box are degenerate, and the linear combination c1c211 + c2c121 + c3c112 is an 
eigenfunction of the particle-in-a-cubic-box Hamiltonian with eigenvalue 6h2>8ma2, the 
same eigenvalue as for each of c211, c121, and c112.

Note that the linear combination c1c1 + c2c2 is not an eigenfunction of Hn  if c1 
and c2 correspond to different energy eigenvalues 1Hnc1 = E1c1 and Hnc2 = E2c2 with 
E1 � E22.

Since any linear combination of the wave functions corresponding to a degenerate 
energy level is an eigenfunction of Hn  with the same eigenvalue, we can construct an 
infinite number of different wave functions for any degenerate energy level. Actually, 
we are only interested in eigenfunctions that are linearly independent. The n functions 
f1, c,  fn are said to be linearly independent if the equation c1  f1 + g +  cn  fn = 0 
can only be satisfied with all the constants c1, c, cn equal to zero. This means that no 
member of a set of linearly independent functions can be expressed as a linear combi-
nation of the remaining members. For example, the functions f1 = 3x, f2 = 5x2 - x, 
f3 = x2 are not linearly independent, since f2 = 5f3 -

1
3 f1. The functions g1 = 1, 

g2 = x, g3 = x2 are linearly independent, since none of them can be written as a linear 
combination of the other two.

The degree of degeneracy of an energy level is equal to the number of linearly inde-
pendent wave functions corresponding to that value of the energy. The one-dimensional 
free-particle wave functions (2.30) are linear combinations of two linearly independent 
functions that are each an eigenfunction with the same energy eigenvalue E. Thus each 
such energy eigenvalue (except E = 0) is doubly degenerate (meaning that the degree of 
degeneracy is two).

3.7 Average Values
It was pointed out in Section 3.3 that, when the state function � is not an eigenfunc-
tion of the operator Bn, a measurement of B will give one of a number of possible values 
(the eigenvalues of Bn). We now consider the average value of the property B for a system 
whose state is �.

To find the average value of B experimentally, we take many identical, noninteracting 
systems each in the same state � and we measure B in each system. The average value 
of B, symbolized by 8B9 , is defined as the arithmetic mean of the observed values b1, 
b2, c, bN :

	 8B9 =
a N

j = 1bj

N
	 (3.79)

where N, the number of systems, is extremely large.
Instead of summing over the observed values of B, we can sum over all the possible 

values of B, multiplying each possible value by the number of times it is observed, to get 
the equivalent expression

	 8B9 =
a b  nb  b

N
	 (3.80)
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where nb is the number of times the value b is observed. An example will make this clear. 
Suppose a class of nine students takes a quiz that has five questions and the students 
receive these grades: 0, 20, 20, 60, 60, 80, 80, 80, 100. Calculating the average grade 
according to (3.79), we have

1

N
 a

N

j = 1
 bj =

0 + 20 + 20 + 60 + 60 + 80 + 80 + 80 + 100

9
= 56

To calculate the average grade according to (3.80), we sum over the possible grades: 0, 20, 
40, 60, 80, 100. We have

1

N a
b

nbb =
1102 + 21202 + 01402 + 21602 + 31802 + 111002

9
= 56

Equation (3.80) can be written as

8B9 = a
b
a nb

N
bb

Since N is very large, nb>N is the probability Pb of observing the value b, and

	 8B9 = a
b

Pb  b	 (3.81)

Now consider the average value of the x coordinate for a one-particle, one-dimensional 
system in the state �1x, t2. The x coordinate takes on a continuous range of values, and 
the probability of observing the particle between x and x + dx is � � �2 dx. The summa-
tion over the infinitesimal probabilities is equivalent to an integration over the full range 
of x, and (3.81) becomes

	 8x9 = L
�

-�

x � �1x, t2 �2 dx	 (3.82)

For the one-particle, three-dimensional case, the probability of finding the particle in the 
volume element at point 1x, y, z2 with edges dx, dy, dz is

	 � �1x, y, z, t2 �2 dx dy dz	 (3.83)

If we want the probability that the particle is between x and x + dx, we must integrate 
(3.83) over all possible values of y and z, since the particle can have any values for its y 
and z coordinates while its x coordinate lies between x and x + dx. Hence, in the three-
dimensional case (3.82) becomes

8x9 = L
�

-�

c L
�

-� L
�

-�

� �1x, y, z, t2 �2 dy dz d x dx

	 8x9 = L
�

-� L
�

-� L
�

-�

� �1x, y, z, t2 �2 x dx dy dz	 (3.84)

Now consider the average value of some physical property B1x, y, z2 that is a func-
tion of the particle’s coordinates. An example is the potential energy V1x, y, z2. The same 
reasoning that gave Eq. (3.84) yields

	 8B1x, y, z29 = L
�

-� L
�

-� L
�

-�

 � �1x, y, z, t2 �2B1x, y, z2 dx dy dz	 (3.85)

	 8B1x, y, z29 = L
�

-� L
�

-� L
�

-�

�*B� dx dy dz	 (3.86)
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The form (3.86) might seem like a bit of whimsy, since it is no different from (3.85). In a 
moment we shall see its significance.

In general, the property B depends on both coordinates and momenta:

B = B1x, y, z, px, py, pz2
for the one-particle, three-dimensional case. How do we find the average value of B? We 
postulate that 8B9  for a system in state � is

8B9 = L
�

-� L
�

-� L
�

-�

�*Bax, y, z, 
U

i
 
0

0x
, 

U

i
 
0

0y
, 

U

i
 
0

0z
b� dx dy dz

	 8B9 = L
�

-� L
�

-� L
�

-�

�*Bn� dx dy dz	 (3.87)

where Bn  is the quantum-mechanical operator for the property B. [Later we shall pro-
vide some justification for this postulate by using (3.87) to show that the time-dependent 
Schrödinger equation reduces to Newton’s second law in the transition from quantum to 
classical mechanics; see Prob. 7.59.] For the n-particle case, we postulate that

	 8B9 = L  �*Bn� dt	 (3.88)

where 1dt denotes a definite integral over the full range of the 3n coordinates. The 
state function in (3.88) must be normalized, since we took �*� as the probability den-
sity. It is important to have the operator properly sandwiched between �* and �. The 
quantities Bn�* � and �* �Bn  are not the same as �*Bn�, unless B is a function of coor-
dinates only. In 1�*Bn� dt, one first operates on � with Bn  to produce a new function 
Bn�, which is then multiplied by �*; one then integrates over all space to produce a 
number, which is 8B9 .

For a stationary state, we have [Eq. (1.20)]

�*Bn� = eiEt>Uc*Bne-iEt>Uc = e0
 c*Bnc = c*Bnc

since Bn  contains no time derivatives and does not affect the time factor in �. Hence, for a 
stationary state,

	 8B9 = L  c*Bnc dt	 (3.89)

Thus, if Bn  is time-independent, then 8B9  is time-independent in a stationary state.
Consider the special case where � is an eigenfunction of Bn. When Bn� = k�, 

Eq. (3.88) becomes

8B9 = L  �*Bn� dt = L  �*k� dt = kL  �*� dt = k

since � is normalized. This result is reasonable, since when Bn� = k�, k is the only pos-
sible value we can find for B when we make a measurement (Section 3.3).

The following properties of average values are easily proved from Eq. (3.88) (see 
Prob. 3.49):

	 8A + B9 = 8A9 + 8B9     8cB9 = c8B9 	 (3.90)

where A and B are any two properties and c is a constant. However, the average value of a 
product need not equal the product of the average values: 8AB9 � 8A98B9 .
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The term expectation value is often used instead of average value. The expectation 
value is not necessarily one of the possible values we might observe.

E x a m p l e

Find 8x9  and 8px9  for the ground stationary state of a particle in a three-dimensional box.
Substitution of the stationary-state wave function c = f1x2g1y2h1z2 [Eq. (3.62)] 

into the average-value postulate (3.89) gives

8x9 = L  c*xn  c dt = L
c

0 L
b

0 L
a

0
f*g*h* x fgh dx dy dz

since c = 0 outside the box. Use of (3.74) gives

8x9 = L
a

0
x � f1x2 �2 dx L

b

0
� g1y2 �2 dy L

c

0
� h1z2 �2 dz = L

a

0
x � f1x2 �2 dx

since g1y2 and h1z2 are each normalized. For the ground state, nx = 1 and 
f1x2 = 12>a21>2 sin1px>a2. So

	 8x9 =
2
a L

a

0
x sin2apx

a
b  dx =

a

2
	 (3.91)

where the Appendix integral (A.3) was used. A glance at Fig. 2.4 shows that this result 
is reasonable.

Also,

 8px9 = L  c*pnx c dt = L
c

0 L
b

0 L
a

0
f*g*h*

U

i
 
0

0x
3 f1x2g1y2h1z24dx  dy  dz

 8px9 =
U

i L
a

0
f*1x2f�1x2 dx L

b

0
 � g1y2 �2 dy L

c

0
 � h1z2 �2 dz

	  8px9 =
U

i L
a

0
f1x2f�1x2dx =

U

2i
 f 21x2�a

0 = 0 	 (3.92)

where the boundary conditions f102 = 0 and f1a2 = 0 were used. The result 
(3.92) is reasonable since the particle is equally likely to be headed in the +x or 
-x direction.

Exercise  Find 8p2
x 9  for the ground state of a particle in a three-dimensional box. 

(Answer: h2>4l2.)

3.8 Requirements for an Acceptable Wave Function
In solving the particle in a box, we required c to be continuous. We now discuss other 
requirements the wave function must satisfy.

Since �c �2 dt is a probability, we want to be able to normalize the wave function by 
choosing a suitable normalization constant N as a multiplier of the wave function. If c is 
unnormalized and Nc is normalized, the normalization condition (3.59) gives

 1 = L  � Nc �2 dt = � N �2 L  �c �2 dt

	  � N � = aL  �c �2 dtb
-1>2

	 (3.93)
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The definite integral 1  �c �2 dt will equal zero only if the function c is zero everywhere. 
However, c cannot be zero everywhere (this would mean no particles were present), so 
this integral is never zero. If 1  �c �2 dt is infinite, then the magnitude � N �  of the normal-
ization constant is zero and c cannot be normalized. We can normalize c if and only if 

1  �c �2 dt has a finite, rather than infinite, value. If the integral over all space 1  �c �2 dt 
is finite, c is said to be quadratically integrable. Thus we generally demand that c be 
quadratically integrable. The important exception is a particle that is not bound. Thus the 
wave functions for the unbound states of the particle in a well (Section 2.4) and for a free 
particle are not quadratically integrable.

Since c* c is the probability density, it must be single-valued. It would be embarrass-
ing if our theory gave two different values for the probability of finding a particle at a cer-
tain point. If we demand that c be single-valued, then surely c* c will be single-valued. 
It is possible to have c multivalued [for example, c1q2 = -1, +1, i] and still have c* c 
single-valued. We will, however, demand single-valuedness for c.

In addition to demanding that c be continuous, we usually also require that all the 
partial derivatives 0c>0x, 0c>0y, and so on, be continuous. (See Fig. 3.4.) Referring 
back to Section 2.2, however, we note that for the particle in a box, dc>dx is discontinu-
ous at the walls of the box; c and dc>dx are zero everywhere outside the box; but from 
Eq. (2.23) we see that dc>dx does not become zero at the walls. The discontinuity in c� is 
due to the infinite jump in potential energy at the walls of the box. For a box with walls of 
finite height, c� is continuous at the walls (Section 2.4).

In line with the requirement of quadratic integrability, it is sometimes stated that 
the wave function must be finite everywhere, including infinity. However, this is usually 
a much stronger requirement than quadratic integrability. In fact, it turns out that some 
of the relativistic wave functions for the hydrogen atom are infinite at the origin but are 
quadratically integrable. Occasionally, one encounters nonrelativistic wave functions that 
are infinite at the origin [L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed. 
(1977), Section 35]. Thus the fundamental requirement is quadratic integrability, rather 
than finiteness.

We require that the eigenfunctions of any operator representing a physical quan-
tity meet the above requirements. A function meeting these requirements is said to be 
well-behaved.

Summary
An operator is a rule that transforms one function into another function. The sum and prod-
uct of operators are defined by 1An + Bn2f1x2 K Anf1x2 + Bnf1x2 and AnBnf1x2 K An 3Bnf1x24 . 
The commutator of two operators is 3An, Bn4 K AnBn - BnAn. The operators in quantum 
mechanics are linear, meaning that they satisfy An  3f1x2 + g1x24 = Anf1x2 + Ang1x2 and 

Figure 3.4  Function (a) 
is continuous, and its first 
derivative is continuous. 
Function (b) is continuous, 
but its first derivative has a 
discontinuity. Function (c) is 
discontinuous.

(a) (b) (c)
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An  3cf1x24 = cAnf1x2. The eigenfunctions Fi and eigenvalues bi of the operator Bn  obey 
BnFi = bi Fi.

So far, the following quantum-mechanical postulates have been introduced:

(a)	 The state of a system is described by a function � (the state function or wave function) 
of the particles’ coordinates and the time. � is single-valued, continuous, and (except 
for unbound states) quadratically integrable.

(b)	 To each physical property B of a system, there corresponds an operator Bn. This opera-
tor is found by taking the classical-mechanical expression for the property in terms of 
Cartesian coordinates and momenta and replacing each coordinate x by x *  and each 
momentum component px by (U>i) 0 >0x.

(c)	 The only possible values that can result from measurements of the property B are the 
eigenvalues bi of the equation Bngi = bi gi where the eigenfunctions gi are required to 
be well-behaved.

(d)	 The average value of the property B is given by 8B9 = 1  �*Bn� dt, where � is the 
system’s state function.

(e)	 The state function of an undisturbed system changes with time according to 
- 1U>i210�>0t2 = Hn �, where Hn  is the Hamiltonian operator (the energy operator) of 
the system.

(f)	 For a three-dimensional n-particle system, the quantity (3.56) is the probability of find-
ing the system’s particles in the infinitesimal regions of space listed after (3.56).

The Hamiltonian operator for an n-particle, three-dimensional system is Hn =

- a n

i = 1
1U2>2mi2�2

i + V, where �2
i K 02>0x2

i + 02>0y2
i + 02>0z2

i . The time-independent 
Schrödinger equation is Hnci = Ei ci, where the index i labels the different stationary states.

The stationary-state wave functions and energy levels of a particle in a three-
dimensional rectangular box were found by the use of separation of variables. These wave 
functions are characterized by three quantum numbers, one for each coordinate.

The degree of degeneracy of an energy level is the number of linearly independent 
wave functions that correspond to that energy value. Any linear combination of wave 
functions of a degenerate level with energy w is an eigenfunction of Hn  with eigenvalue w.

Problems

Sec. 3.1 3.2 3.3 3.4 3.5

Probs. 3.1–3.22 3.23–3.27 3.28–3.29 3.30–3.34 3.35–3.42

Sec. 3.6 3.7 general

Probs. 3.43–3.47 3.48–3.49 3.50–3.53

	 3.1	 If g = Anf, find g for each of these choices of An and f. (a) An = d>dx and f = cos1x2 + 12; 
(b) An = 5n and f = sin x; (c) An = 1 22 and f = sin x; (d) An = exp and f = ln x; 
(e) An = d2>dx2 and f = ln13x2; (f) An = d2>dx2 + 3x  d>dx and f = 4x3; (g) An = 0 >0y and 
f = sin1xy22.

	 3.2	 State whether each of the following entities is an operator or a function: (a) AnBn; (b) Anf1x2; 
(c) BnAnf1x2; (d) 3Bn , An4 ; (e) f1x2An; (f) f1x2AnBng1x2.

	 3.3	 If Anf1x2 = 3x2f1x2 + 2x df>dx, where f is an arbitrary function, give an expression for An .

	 3.4	 Give three different operators An  that satisfy Anex = ex.

	 3.5	 For each of the following pairs of functions f and g, give two possible forms for An  that will 
allow the relation g1x2 = Anf1x2 to be satisfied. (a) f = 2x4, g = 8x3; (b) f = 2x, g = x2; 
(c) f = x4, g = x2.
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	 3.6	 Prove that An + Bn = Bn + An .

	 3.7	 Prove that if An + Bn = Cn , then An = Cn - Bn .

	 3.8	 If An = d2>dx2 and Bn = x2 * , find (a) AnBnx3; (b) BnAnx3; (c) AnBnf1x2; (d) BnAnf1x2.

	 3.9	 Let An = x3 and Bn = d>dx. Find AnBn  and BnAn .

	3.10	 By repeated application of the definition of the product of two operators, show that

 31AnBn2Cn4 f = An 3Bn1Cn f24
 3An1BnCn 24 f = An 3Bn1Cn f24

	3.11	 (a) Show that 1An + Bn22 = 1Bn + An22 for any two operators (linear or nonlinear). (b) Under 
what conditions is 1An + Bn22 equal to An2 + 2AnBn + Bn 2?

	3.12	 Verify the commutator identity 3An , Bn4 = - 3Bn , An4 .

	3.13	 Evaluate (a) 3sin z, d>dz4 ; (b) 3d2>dx2, ax2 + bx + c4 , where a, b, and c are constants; 
(c) 3d>dx, d2>dx24 .

	3.14	 Classify each of these operators as linear or nonlinear: (a) 3x2
 d2>dx2; (b) 1 22; (c) 1dx; 

(d) exp; (e) 0 >0x + 0 >0y  ; (f) gn
x = 1.

	3.15	 Write the linear differential equation (2.2) in the form Bny1x2 = g1x2, where Bn  is a certain 
linear operator.

	3.16	 Prove that the product of two linear operators is a linear operator.

	3.17	 Prove that An1Bn + Cn 2 = AnBn + AnCn  for linear operators.

	3.18	 (a) If An  is linear, show that

	 An1bf + cg2 = bAnf + cAng	 (3.94)

		  where b and c are arbitrary constants and f and g are arbitrary functions. (b) If (3.94) is true, 
show that An  is linear.

	3.19	 (a) Give an example of an operator that satisfies Eq. (3.9) but does not satisfy (3.10). (b) Give 
an example of an operator that satisfies (3.10) but not (3.9).

	3.20	 Which of the following equations are true for all operators An  and Bn  and all functions f and 
g? (a) 1An + Bn2f = Anf + Bnf; (b) An1f + g2 = Anf + Ang  ; (c) 1Anf2> f = An , provided f � 0; 

		  (d) AnBnf = BnAnf ; (e) Anf = fAn   ; (f) 1Bnf2g = Bn1fg2 ; (g) Bn1fg2 = Bn1gf2 ; (h) 1Bng2f = f1Bng2.

	3.21	 We define the translation operator Tnh by Tnh f1x2 = f1x + h2. (a) Is Tnh a linear operator? 
		  (b) Evaluate 1Tn 2

1 - 3Tn1 + 22x2.

	3.22	 The operator e
An

 is defined by the equation

e
An

= 1n + An +
An2

2!
+

An3

3!
+ g = a

�

k = 0

Ank

k!

		  Show that e
Dn

= Tn1, where Dn = d>dx and Tn1 is defined in Prob. 3.21.

	3.23	 Which of the following functions are eigenfunctions of d2>dx2? (a) ex; (b) x2; (c) sin x; 
(d) 3 cos x; (e) sin x +  cos x. Give the eigenvalue for each eigenfunction.

	3.24	 Which of the following functions are eigenfunctions of 02>0x2 + 02>0y2? (a) e2xe3y; (b) x3y3; 
(c) sin 2x cos 4y  ; (d) sin 2x + cos 3y. For each eigenfunction, give the eigenvalue.

	3.25	 Find the eigenfunctions of - 1U2>2m2 d2>dx2. If the eigenfunctions are to remain finite for 
x S { �, what are the allowed eigenvalues?

	3.26	 Find the eigenfunctions and eigenvalues of 1  dx.

	3.27	 Find the eigenfunctions and eigenvalues of d2>dx2 + 2 d>dx.

	3.28	 Give the quantum-mechanical operators for the following physical quantities: (a) p3
y; 

(b) xpy - ypx; (c) 1xpy22.

	3.29	 Fill in the details leading to (3.36) and (3.37) as the eigenfunctions and eigenvalues of pnx.

	3.30	 Evaluate the commutators (a) 3xn, pnx4 ; (b) 3xn, pn 2
x4 ; (c) 3xn, pny4 ; (d) 3xn, Vn1x, y, z24 ; (e) 3xn, Hn4 , 

where the Hamiltonian operator is given by Eq. (3.45); (f) 3xnynzn, pn 2
x4 .
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	3.31	 Write the kinetic-energy operator Tn for a two-particle, three-dimensional system.

	3.32	 Write the Hamiltonian operator for a one-particle, three-dimensional system where the particle 
experiences a potential energy that is proportional to the square of its distance from the origin, 
with the proportionality constant being called c. See Eq. (5.52).

	3.33	 Write the expression for the probability of finding particle number 1 with its x coordinate 
between 0 and 2 for (a) a one-particle, one-dimensional system; (b) a one-particle, three-
dimensional system; (c) a two-particle, three-dimensional system.

	3.34	 If c is a normalized wave function, what are its SI units for (a) the one-particle, one-dimensional 
case; (b) the one-particle, three-dimensional case; (c) the n-particle, three-dimensional case?

	3.35	 An electron in a three-dimensional rectangular box with dimensions of 5.00 Å, 3.00 Å, and 
6.00 Å makes a radiative transition from the lowest-lying excited state to the ground state. 
Calculate the frequency of the photon emitted.

	3.36	 An electron is in the ground state in a three-dimensional box, with V given by (3.60), with 
a = 1.00 nm, b = 2.00 nm, and c = 5.00 nm. Find the probability that a measurement of the 
electron’s position will find it in the region (a) 0 … x … 0.40 nm,  1.50 nm … y … 2.00 nm, 
 2.00 nm … z … 3.00 nm;  (b) 0 … x … 0.40 nm, 0 … y … 2.00 nm, 0 … z … 5.00 nm. 
(c) What is the probability that a measurement of this electron’s position will find it with its  
x coordinate between 0 and 0.40 nm?

	3.37	 The stationary-state wave functions of a particle in a three-dimensional rectangular box are 
eigenfunctions of which of these operators? (a) pnx; (b) pn 2

x; (c) pn 2
z; (d) xn. For each of these 

operators for which c is an eigenfunction, state in terms of nx, ny, and nz what value will be 
observed when the corresponding property is measured.

	3.38	 Describe the shape and location of the nodal surfaces for the stationary state nx = 1, ny = 2, 
nz = 3 of a particle in a box with edges a, b, c.

	3.39	 For each of the following states of a particle in a box with edges a, b, c, state at which point or points 
the probability density is a maximum: (a) nx = 1, ny = 1, nz = 1 ; (b) nx = 2, ny = 1, nz = 1.

	3.40	 Prove the multiple-integral identity (3.74).

	3.41	 Explain how degeneracy can occur for a particle in a rectangular box with a � b � c.

	3.42	 Solve the one-particle, three-dimensional, time-independent Schrödinger equation for the free 
particle.

	3.43	 Which of these combinations of particle-in-a-cubic-box stationary-state wave functions are 
eigenfunctions of the particle-in-a-cubic-box Hamiltonian operator? (a) 2-1>21c138 - c3812; 
(b) 2-1>21c212 + c1312; (c) 1

2 c151 -
1
2 c333 + 2-1>2

 c511.

	3.44	 The terms state and energy level are not synonymous in quantum mechanics. For the particle 
in a cubic box, consider the energy range E 6 15h2>8ma2. (a) How many states lie in this 
range? (b) How many energy levels lie in this range?

	3.45	 For the particle in a cubic box, what is the degree of degeneracy of the energy levels with the 
following values of 8ma2E>h2? (a) 12; (b) 14; (c) 27.

	3.46	 Which of the following are sets of linearly independent functions? (a) x, x2, x6; (b) 8, x, 
x2, 3x2 - 1; (c) sin x, cos x; (d) sin z, cos z, tan z; (e) sin x, cos x, eix; (f) sin2 x, cos2 x, 1; 
(g) sin2 x, cos2 y, 1.

	3.47	 Without consulting this chapter, prove that every linear combination of two eigenfunctions of 
a degenerate energy level is an eigenfunction of Hn .

	3.48	 For the particle confined to a box with dimensions a, b, and c, find the following values for the 
state with quantum numbers nx, ny, nz. (a) 8x9 ; (b) 8y9 , 8z9 . Use symmetry considerations 
and the answer to part (a). (c) 8px9 ; (d) 8x29 . Is 8x29 = 8x92? Is 8xy9 = 8x9 8y9?

	3.49	 Derive the average-value relations in (3.90) from (3.88).

	3.50	 Which of the following functions, when multiplied by a normalization constant, would be 
acceptable one-dimensional wave functions for a bound particle? (a and b are positive con-
stants, and x goes from - � to �.) (a) e-ax; (b) e-bx2

; (c) xe-bx2
; (d) ie-bx2

; (e) f1x2 = e-bx2
 

for x 6 0, f1x2 = 2e-bx2
 for x Ú 0.
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	3.51	 Show that, if �1 and �2 satisfy the time-dependent Schrödinger equation, then c1�1 + c2�2 
satisfies this equation, where c1 and c2 are constants.

	3.52	 (a) Write a computer program that will find all sets of positive integers nx, ny, nz for which 
n2

x + n2
y + n2

z … 60, will print the sets in order of increasing n2
x + n2

y + n2
z , and will print 

the n2
x + n2

y + n2
z  values. (b) What is the degeneracy of the particle-in-a-cubic-box level with 

n2
x + n2

y + n2
z = 54?

	3.53	 True or false? (a) If g is an eigenfunction of the linear operator Bn , then cg is an eigenfunction 
of Bn , where c is an arbitrary constant. (b) If we measure the property B when the system’s 
state function is not an eigenfunction of Bn , then we can get a result that is not an eigenvalue 
of Bn . (c) If f1 and f2 are eigenfunctions of Bn , then c1  f1 + c2 f2 must be an eigenfunction of 
Bn , where c1 and c2 are constants. (d) The state function � must be an eigenfunction of each 
operator Bn  that represents a physical property of the system. (e) A linear combination of two 
solutions to the time-independent Schrödinger equation must be a solution of this equation.  
(f) The system’s state function � must be an eigenfunction of Hn . (g) 5x is an eigenvalue of the 
position operator xn. (h) 5x is an eigenfunction of xn. (i) For a stationary state, � is an eigen-
function of Hn . (j) For a stationary state, � equals a function of time multiplied by a function 
of the particles’ coordinates. (k) For a stationary state, the probability density is independent 
of time. (l) In the equation 8B9 = 1 �*Bn� dt, the integral is an indefinite integral. (m) If f 
is an eigenfunction of the linear operator An  with eigenvalue a, then f is an eigenfunction of 
An2 with eigenvalue a2. (n) 8B9 = 1 Bn � � �2 dt. (o) Every function of x, y, and z has the form 
f1x2g1y2h1z2.
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Chapter 4

The Harmonic Oscillator

We shall see in Section 13.2 that the energy of a gas-phase molecule can be approxi-
mated as the sum of translational, rotational, vibrational, and electronic energies. Calcu-
lation of electronic energies is considered in Chapters 13 to 17. The translational energy 
is the kinetic energy of motion of the molecule as a whole in the space of the container 
holding the substance. The translational energy levels can be taken as those of a particle 
in a three-dimensional box (Section 3.5). The rotational energy levels of a diatomic (two-
atom) molecule can be approximated by those of a rigid, two-particle rotor, which is dis-
cussed in Section 6.4. The lowest few vibrational energy levels of a diatomic molecule 
can be approximated by the levels of a harmonic oscillator (Section 4.3), and the vibra-
tional energy of a polyatomic molecule can be approximated by the sum of normal-mode 
harmonic-oscillator vibrational energies (Section 15.12). The Schrödinger equation for the 
harmonic oscillator is solved in this chapter in Section 4.2. As a preliminary, Section 4.1 
discusses the power-series method of solving differential equations, which is used to solve 
the Schrödinger equation for the harmonic oscillator. Section 4.3 discusses molecular 
vibration. Section 4.4 presents a numerical method that finds eigenvalues and eigenfunc-
tions for the one-dimensional Schrödinger equation.

4.1 Power-Series Solution of Differential Equations
So far we have considered only cases where the potential energy V1x2 is a constant. This 
makes the Schrödinger equation a second-order linear homogeneous differential equation 
with constant coefficients, which we know how to solve. For cases in which V varies with 
x, a useful approach is to try a power-series solution of the Schrödinger equation.

To illustrate the method, consider the differential equation

	 y�1x2 + c2y1x2 = 0	 (4.1)

where c2 7 0. Of course, this differential equation has constant coefficients, but we can 
solve it with the power-series method if we want. Let us first find the solution by using 
the auxiliary equation, which is s2 + c2 = 0. We find s = { ic. Recalling the work in 
Section 2.2 [Eqs. (2.10) and (4.1) are the same], we get trigonometric solutions when the 
roots of the auxiliary equation are pure imaginary:

	 y = A cos cx + B sin cx	 (4.2)

where A and B are the constants of integration. A different form of (4.2) is

	 y = D sin1cx + e2	 (4.3)

where D and e are arbitrary constants. Using the formula for the sine of the sum of two 
angles, we can show that (4.3) is equivalent to (4.2).
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Now let us solve (4.1) using the power-series method. We start by assuming that the solu-
tion can be expanded in a Taylor series (see Prob. 4.1) about x = 0; that is, we assume that

	 y1x2 = a
�

n = 0
anxn = a0 + a1x + a2x

2 + a3x
3 + g	 (4.4)

where the a’s are constant coefficients to be determined so as to satisfy (4.1). Differentiat-
ing (4.4), we have

	 y�1x2 = a1 + 2a2x + 3a3x2 + g = a
�

n = 1
nanxn - 1	 (4.5)

where we assumed that term-by-term differentiation is valid for the series. (This is not 
always true for infinite series.) For y�, we have

	 y�1x2 = 2a2 + 3122a3x + g = a
�

n = 2
n1n - 12anxn - 2	 (4.6)

Substituting (4.4) and (4.6) into (4.1), we get

	 a
�

n = 2
n1n - 12anxn - 2 + a

�

n = 0
c2anxn = 0	 (4.7)

We want to combine the two sums in (4.7). Provided certain conditions are met, we can 
add two infinite series term by term to get their sum:

	 a
�

j = 0
bjx

j + a
�

j = 0
cjx

j = a
�

j = 0
1bj + cj2x j	 (4.8)

To apply (4.8) to the two sums in (4.7), we want the limits in each sum to be the same and 
the powers of x to be the same. We therefore change the summation index in the first sum 
in (4.7), defining k as k K n - 2. The limits n = 2 to � correspond to k = 0 to � and 
use of n = k + 2 gives

a
�

n = 2
n1n - 12anxn - 2 = a

�

k = 0
1k + 221k + 12ak + 2xk = a

�

n = 0
1n + 221n + 12an + 2xn	 (4.9)

The last equality in (4.9) is valid because the summation index is a dummy variable; it 
makes no difference what letter we use to denote this variable. For example, the sums g3

i= 1 cix
i
 and g3

m = 1 cm x m
 are equal because only the dummy variables in the two sums 

differ. This equality is easy to see if we write out the sums:

a
3

i = 1
cix

i = c1x + c2x2 + c3x3 and a
3

m = 1
cmxm = c1x + c2x2 + c3x3

In the last equality in (4.9), we simply changed the symbol denoting the summation index 
from k to n.

The integration variable in a definite integral is also a dummy variable, since the value 
of a definite integral is unaffected by what letter we use for this variable:

	 L
b

a
f1x2 dx = L

b

a
f1t2 dt	 (4.10)

Using (4.9) in (4.7), we find, after applying (4.8), that

	 a
�

n = 0
31n + 221n + 12an + 2 + c2an4  xn = 0	 (4.11)
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If (4.11) is to be true for all values of x, then the coefficient of each power of x must van-
ish. To see this, consider the equation

	 a
�

j = 0
bjx

j = 0	 (4.12)

Putting x = 0 in (4.12) shows that b0 = 0. Taking the first derivative of (4.12) with respect 
to x and then putting x = 0 shows that b1 = 0. Taking the nth derivative and putting x = 0 
gives bn = 0. Thus, from (4.11), we have

	 1n + 221n + 12an + 2 + c2an = 0	 (4.13)

	 an + 2 = -  
c2

1n + 121n + 22an	 (4.14)

Equation (4.14) is a recursion relation. If we know the value of a0, we can use (4.14) to 
find a2, a4, a6,c. If we know a1, we can find a3, a5, a7, c. Since there is no restriction 
on the values of a0 and a1, they are arbitrary constants, which we denote by A and Bc:

	 a0 = A, a1 = Bc	 (4.15)

Using (4.14), we find for the coefficients

	  a0 = A, a2 = -
c2A

1 # 2
, a4 =

c4A

4 # 3 # 2 # 1
, a6 = -

c6A

6!
, c

	  a2k = 1-12k 
c2kA

12k2!
, k = 0, 1, 2, 3, c 	(4.16)

	  a1 = Bc, a3 = -
c3B

2 # 3
, a5 =

c5B

5 # 4 # 3 # 2
, a7 = -

c7B

7!
, c

	  a2k + 1 = 1-12k 
c2k + 1B

12k + 12!
, k = 0, 1, 2, c	 (4.17)

From (4.4), (4.16), and (4.17), we have

	 y = a
�

n = 0
anxn = a

�

n = 0, 2, 4, p
anxn + a

�

n = 1, 3, 5, p
anx

n	 (4.18)

	 y = Aa
�

k = 0
1-12k c2kx2k

12k2!
+ Ba

�

k = 0
1-12k c2k + 1x2k + 1

12k + 12!
	 (4.19)

The two series in (4.19) are the Taylor series for cos cx and sin cx (Prob. 4.2). Hence, in 
agreement with (4.2), we have y = A cos cx + B sin cx.

4.2 The One-Dimensional Harmonic Oscillator
In this section we will increase our quantum-mechanical repertoire by solving the 
Schrödinger equation for the one-dimensional harmonic oscillator. This system is impor-
tant as a model for molecular vibrations.

Classical-Mechanical Treatment 
Before looking at the wave mechanics of the harmonic oscillator, we review the classi-
cal treatment. We have a single particle of mass m attracted toward the origin by a force 
proportional to the particle’s displacement from the origin:

	 Fx = -kx	 (4.20)
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The proportionality constant k is called the force constant. Fx is the x component of 
the force on the particle. This is also the total force in this one-dimensional problem. Equa-
tion (4.20) is obeyed by a particle attached to a spring, provided the spring is not stretched 
greatly from its equilibrium position.

Newton’s second law, F = ma, gives

	 -kx = m
d2x

dt2 	 (4.21)

where t is the time. Equation (4.21) is the same as Eq. (4.1) with c2 = k>m; hence the 
solution is [Eq. (4.3) with c = 1k>m21>24
	 x = A sin12pnt + b2	 (4.22)

where A (the amplitude of the vibration) and b are the integration constants, and the 
vibration frequency n is

	 n =
1

2p
a k

m
b

1>2
	 (4.23)

Since the sine function has maximum and minimum values of 1 and -1, respec-
tively, x in (4.22) oscillates between A and -A. The sine function repeats itself every 
2p  radians, and the time needed for one complete oscillation (called the period) is 
the time it takes for the argument of the sine function to increase by 2p. At time 
t + 1>n, the argument of the sine function is 2pn1t + 1>n2 + b = 2pnt + 2p + b, 
which is 2p greater than the argument at time t, so the period is 1>n. The reciprocal 
of the period is the number of vibrations per unit time (the vibrational frequency), 
and so the frequency is n.

Now consider the energy. The potential energy V is related to the components of force 
in the three-dimensional case by

	 Fx = -
0V

0x
, Fy = -

0V

0y
, Fz = -

0V

0z
	 (4.24)

Equation (4.24) is the definition of potential energy. Since this is a one-dimensional problem, 
we have [Eq. (1.12)]

	 Fx = -
dV

dx
= -kx	 (4.25)

Integration of (4.25) gives V = 1  kx dx =
1
2 kx2 + C, where C is a constant. The potential 

energy always has an arbitrary additive constant. Choosing C = 0, we have [Eq. (4.23)]

	 V =
1
2 kx2	 (4.26)

	 V = 2p2n2mx2	 (4.27)

The graph of V1x2 is a parabola (Fig. 4.5). The kinetic energy T is

	 T =
1
2 m1dx>dt22	 (4.28)

and can be found by differentiating (4.22) with respect to t. Adding T and V, one finds for 
the total energy (Prob. 4.4)

	 E = T + V =
1
2 kA2 = 2p2n2mA2	 (4.29)

where the identity sin2 u + cos2 u = 1 was used.
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According to (4.22), the classical harmonic oscillator vibrates back and forth between 
x = A and x = -A. These two points are the turning points for the motion. The particle 
has zero speed at these points, and the speed increases to a maximum at x = 0, where the 
potential energy is zero and the energy is all kinetic energy. The classical harmonic oscil-
lator spends more time in each of the regions near x = A and x = -A (where it is moving 
the slowest) than it does in the region near x = 0. Problem 4.18 works out the probability 
density for finding the classical harmonic oscillator at various locations. (Interestingly, this 
probability density becomes infinite at the turning points.)

Quantum-Mechanical Treatment 
The harmonic-oscillator Hamiltonian operator is [Eqs. (3.27) and (4.27)]

	 Hn = Tn + Vn = -
U2

2m
 
d2

dx2 + 2p2n2mx2 = -
U2

2m
a d2

dx2 - a2x2b 	 (4.30)

where, to save time in writing, a was defined as

	 a K 2pnm>U	 (4.31)

The Schrödinger equation Hnc = Ec reads, after multiplication by 2m>U2,

	
d2c

dx2 + 12mEU-2 - a2x22c = 0	 (4.32)

We might now attempt a power-series solution of (4.32). If we do now try a power 
series for c of the form (4.4), we will find that it leads to a three-term recursion rela-
tion, which is harder to deal with than a two-term recursion relation like Eq. (4.14). We 
therefore modify the form of (4.32) so as to get a two-term recursion relation when we 
try a series solution. A substitution that will achieve this purpose is (see Prob. 4.22) 
f1x2 K eax2>2c1x2. Thus

	 c = e-ax2>2 f1x2	 (4.33)

This equation is simply the definition of a new function f1x2 that replaces c1x2 as the 
unknown function to be solved for. (We can make any substitution we please in a differ-
ential equation.) Differentiating (4.33) twice, we have

	 c� = e-ax2>21 f � - 2axf� - af + a2x2f2	 (4.34)

Substituting (4.33) and (4.34) into (4.32), we find

	 f �1x2 - 2axf�1x2 + 12mEU-2 - a2f1x2 = 0	 (4.35)

Now we try a series solution for f1x2:

	 f1x2 = a
�

n = 0
cn xn	 (4.36)

Assuming the validity of term-by-term differentiation of (4.36), we get

	 f�1x2 = a
�

n = 1
ncnxn - 1 = a

�

n = 0
ncnxn - 1	 (4.37)

[The first term in the second sum in (4.37) is zero.] Also,

f �1x2 = a
�

n = 2
n1n - 12cnxn - 2 = a

�

j = 0
1 j + 221 j + 12cj+ 2x j = a

�

n = 0
1n + 221n + 12cn + 2xn
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where we made the substitution j = n - 2 and then changed the summation index from 
j to n. [See Eq. (4.9).] Substitution into (4.35) gives

	 a
�

n = 0
1n + 221n + 12cn + 2xn - 2a a

�

n = 0
ncnxn + 12mEU-2 - a2 a

�

n = 0
cnxn = 0

	 a
�

n = 0
31n + 221n + 12cn + 2 - 2ancn + 12mEU-2 - a2cn4xn = 0	 (4.38)

Setting the coefficient of xn equal to zero [for the same reason as in Eq. (4.11)], we have

	 cn + 2 =
a + 2an - 2mEU-2

1n + 121n + 22 cn	 (4.39)

which is the desired two-term recursion relation. Equation (4.39) has the same form as 
(4.14), in that knowing cn we can calculate cn + 2. We thus have two arbitrary constants: c0 
and c1. If we set c1 equal to zero, then we will have as a solution a power series containing 
only even powers of x, multiplied by the exponential factor:

	 c = e-ax2>2 f1x2 = e-ax2>2 a
�

n = 0,2,4, p  
cnxn = e-ax2>2a

�

l = 0
c2l x

2l	 (4.40)

If we set c0 equal to zero, we get another independent solution:

	 c = e-ax2>2 a
�

n = 1,3, p

cn x n = e-ax2>2 a
�

l = 0
c2l+ 1x

2l+ 1	 (4.41)

The general solution of the Schrödinger equation is a linear combination of these two 
independent solutions [recall Eq. (2.4)]:

	 c = Ae-ax2>2 a
�

l = 0
c2l+ 1x 2l+ 1 + Be-ax2>2 a

�

l = 0
c2l x

2l	 (4.42)

where A and B are arbitrary constants.
We now must see if the boundary conditions on the wave function lead to any restric-

tions on the solution. To see how the two infinite series behave for large x, we examine 
the ratio of successive coefficients in each series. The ratio of the coefficient of x 2l+ 2 to 
that of x2l in the second series is [set n = 2l in (4.39)]

c2l+ 2

c2l
=

a + 4al - 2mEU-2

12l + 1212l + 22
Assuming that for large values of x the later terms in the series are the dominant ones, we 
look at this ratio for large values of l:

	
c2l+ 2

c2l
 � 

4al

12l212l2 =
a

l
 for l large	 (4.43)

Setting n = 2l + 1 in (4.39), we find that for large l the ratio of successive coefficients 
in the first series is also a>l. Now consider the power-series expansion for the function 
eax2

. Using (Prob. 4.3)

	 ez = a
�

n = 0

zn

n!
= 1 + z +

z2

2!
+ g	 (4.44)



66  Chapter 4  |  The Harmonic Oscillator

we get

eax2
= 1 + ax2 + g +

alx2l

l!
+

al+ 1x2l+ 2

1l + 12!
+ g

The ratio of the coefficients of x2l+ 2 and x2l in this series is

al+ 1

1l + 12!
,

al

l!
=

a

l + 1
 � 

a

l
 for large l

Thus the ratio of successive coefficients in each of the infinite series in the solution (4.42) 
is the same as in the series for eax2

 for large l. We conclude that, for large x, each series 
behaves as eax2

. [This is not a rigorous proof. A proper mathematical derivation is given 
in H. A. Buchdahl, Am. J. Phys., 42, 47 (1974); see also M. Bowen and J. Coster, Am. J. 
Phys., 48, 307 (1980).]

If each series behaves as eax2
, then (4.42) shows that c will behave as eax2>2 for large x. 

The wave function will become infinite as x goes to infinity and will not be quadratically 
integrable. If we could somehow break off the series after a finite number of terms, then 
the factor e-ax2>2 would ensure that c went to zero as x became infinite. (Using l’Hôpital’s 
rule, it is easy to show that x pe-ax2>2 goes to zero as x S �, where p is any finite power.) 
To have one of the series break off after a finite number of terms, the coefficient of cn in 
the recursion relation (4.39) must become zero for some value of n, say for n = v. This 
makes c

v+2, cv+4, c all equal to zero, and one of the series in (4.42) will have a finite 
number of terms. In the recursion relation (4.39), there is one quantity whose value is not 
yet fixed, but can be adjusted to make the coefficient of c

v
 vanish. This quantity is the 

energy E. Setting the coefficient of c
v
 equal to zero in (4.39) and using (4.31) for a, we get

a + 2av - 2mEU-2 = 0

2mEU-2 = 12v + 122pnmU-1

	 E = 1v +
1
22hn, v = 0, 1, 2, c 	 (4.45)

The harmonic-oscillator stationary-state energy levels (4.45) are equally spaced (Fig. 4.1). 
Do not confuse the quantum number v (vee) with the vibrational frequency n (nu).

Substitution of (4.45) into the recursion relation (4.39) gives

	 cn + 2 =
2a1n - v2

1n + 121n + 22cn	 (4.46)

By quantizing the energy according to (4.45), we have made one of the series break off 
after a finite number of terms. To get rid of the other infinite series in (4.42), we must set the 
arbitrary constant that multiplies it equal to zero. This leaves us with a wave function that is 
e-ax2>2 times a finite power series containing only even or only odd powers of x, depending 
on whether v is even or odd, respectively. The highest power of x in this power series is 
xv, since we chose E to make c

v+2, cv+4, c all vanish. The wave functions (4.42) are thus

	 c
v

= e e-ax2>21c0 + c2 x2 +  g+c
v

xv2 for v even

e-ax2/2(c1x + c3 x3 +  g+c
v

xv) for v odd
	 (4.47)

where the arbitrary constants A and B in (4.42) can be absorbed into c1 and c0, respectively, 
and can therefore be omitted. The coefficients after c0 and c1 are found from the recursion 
relation (4.46). Since the quantum number v occurs in the recursion relation, we get a dif-
ferent set of coefficients ci for each different v. For example, c2 in c4 differs from c2 in c2.

Figure 4.1  Lowest five 
energy levels for the 
one-dimensional harmonic 
oscillator.
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As in the particle in a box, the requirement that the wave functions be well-behaved 
forces us to quantize the energy. For values of E that differ from (4.45), c is not quadratically 
integrable. For example, Fig. 4.2 plots c of Eq. (4.40) for the values E>hn = 0.499, 0.500, 
and 0.501, where the recursion relation (4.39) is used to calculate the coefficients cn (see 
also Prob. 4.23). Figure 4.3 gives an enlarged view of these curves in the region near 
a1>2x = 3.

The harmonic-oscillator ground-state energy is nonzero. This energy, 1
2 hn, is called 

the zero-point energy. This would be the vibrational energy of a harmonic oscillator in a 
collection of harmonic oscillators at a temperature of absolute zero. The zero-point energy 
can be understood from the uncertainty principle. If the lowest state had an energy of zero, 
both its potential and kinetic energies (which are nonnegative) would have to be zero. Zero 
kinetic energy would mean that the momentum was exactly zero, and �px would be zero. 
Zero potential energy would mean that the particle was always located at the origin, and 
�x would be zero. But we cannot have both �x and �px  equal to zero. Hence the need for 
a nonzero ground-state energy. Similar ideas apply for the particle in a box. The definition 
of the zero-point energy (ZPE) is EZPE = Egs - Vmin, where Egs and Vmin are the ground-
state energy and the minimum value of the potential-energy function.

2

E/hn 5 
0.500

E / hn 5 0.499

E / hn 5 0.501

c / c0

to `

to 2`

2 4
a1/2x

21
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Figure 4.2  Plots of 
the harmonic-oscillator 
Schrödinger-equation 
solution containing only 
even powers of x for 
E = 0.499hn, E = 0.500hn, 
and E = 0.501hn. In the 
region around x = 0 the 
three curves nearly coin-
cide. For |a1/2x| . 3 the 
E = 0.500hn curve nearly 
coincides with the x axis. 
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Even and Odd Functions 
Before considering the wave functions in detail, we define even and odd functions. If f1x2 
satisfies

	 f1-x2 = f1x2	 (4.48)

then f is an even function of x. Thus x2 and e-bx2
 are both even functions of x since 

1-x22 = x2 and e-b1- x22
= e-bx2

. The graph of an even function is symmetric about the y 
axis (for example, see Fig. 4.4a). Therefore

	  L
+a

-a
f1x2 dx = 2 L

a

0
f1x2 dx for  f1x2 even	 (4.49)

If g1x2 satisfies

	  g1-x2 = -g1x2	 (4.50)

then g is an odd function of x. Examples are x, 1>x, and x3ex2
. Setting x = 0 in (4.50), 

we see that an odd function must be zero at x = 0, provided g102 is defined and single-
valued. The graph of an odd function has the general appearance of Fig. 4.4b. Because 
positive contributions on one side of the y axis are canceled by corresponding negative 
contributions on the other side, we have

	  L
+a

-a
g1x2 dx = 0 for g1x2 odd	 (4.51)

It is easy to show that the product of two even functions or of two odd functions is an even 
function, while the product of an even and an odd function is an odd function.

The Harmonic-Oscillator Wave Functions 
The exponential factor e-ax2>2 in (4.47) is an even function of x. If v is an even number, the 
polynomial factor contains only even powers of x, which makes c

v
 an even function. If 

v is odd, the polynomial factor contains only odd powers of x, and c
v
, being the product 

of an even function and an odd function, is an odd function. Each harmonic-oscillator 
stationary state c is either an even or odd function according to whether the quantum 
number v is even or odd. In Section 7.5, we shall see that, when the potential energy V 
is an even function, the wave functions of nondegenerate levels must be either even or 
odd functions.

We now find the explicit forms of the wave functions of the lowest three levels. For 
the v = 0 ground state, Eq. (4.47) gives

	 c0 = c0e
-ax2>2	 (4.52)

where the subscript on c gives the value of v. We fix c0 by normalization:

1 = L
�

- �

� c0 �2e-ax2
 dx = 2 � c0 �2L

�

0
e-ax2

 dx

where Eq. (4.49) has been used. Using the integral (A.9) in the Appendix, we find 
� c0 � = 1a>p21>4. Therefore,

	 c0 = 1a>p21>4e-ax2>2	 (4.53)
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if we choose the phase of the normalization constant to be zero. The wave function (4.53) 
is a Gaussian function (Fig. 4.4a).

For the v = 1 state, Eq. (4.47) gives

	 c1 = c1xe-ax2>2	 (4.54)

After normalization using the integral in Eq. (A.10), we have

	 c1 = 14a3>p21>4xe-ax2>2	 (4.55)

Figure 4.4b shows c1.
For v = 2, Eq. (4.47) gives

c2 = 1c0 + c2x22e-ax2>2

The recursion relation (4.46) with v = 2, gives

c2 =
2a1-22

1·2
c0 = -2ac0

Therefore

	 c2 = c011 - 2ax22e-ax2>2	 (4.56)

Evaluating c0 by normalization, we find (Prob. 4.10)

	 c2 = 1a>4p21>412ax2 - 12e-ax2>2	 (4.57)

Note that c0 in c2 is not the same as c0 in c0.
The number of nodes in the wave function equals the quantum number v. It can 

be proved (see Messiah, pages 109–110) that for the bound stationary states of a one-
dimensional problem, the number of nodes interior to the boundary points is zero for 
the ground-state c and increases by one for each successive excited state. The boundary 
points for the harmonic oscillator are {�. Moreover, one can show that a one-dimensional 
wave function must change sign as it goes through a node (see Prob. 4.45).
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c c 
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x

x

(d)     5 3

(b)     5 1(a)     5 0

(c)     5 2

Figure 4.4  Harmonic-
oscillator wave functions. 
The same scale is used  
for all graphs. The points 
marked on the x axes are for 
a1/2x 5 62.
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The polynomial factors in the harmonic-oscillator wave functions are well known 
in mathematics and are called Hermite polynomials, after a French mathematician. (See 
Prob. 4.21.)

According to the quantum-mechanical solution, there is some probability of finding 
the particle at any point on the x axis (except at the nodes). Classically, E = T + V  and the 
kinetic energy T cannot be negative: T Ú 0. Therefore, E - V = T Ú 0 and V … E. The 
potential energy V is a function of position, and a classical particle is confined to the region 
of space where V … E; that is, where the potential energy does not exceed the total energy. 
In Fig. 4.5, the horizontal line labeled E gives the energy of a harmonic oscillator, and the 
parabolic curve gives the potential energy 1

2 kx2. For the regions x 6 -a and x 7 a, we 
have V 7 E, and these regions are classically forbidden. The classically allowed region 
-a … x … a in Fig. 4.5 is where V … E.

In quantum mechanics, the stationary-state wave functions are not eigenfunctions 
of Tn or Vn, and we cannot assign definite values to T or V for a stationary state. Instead 
of the classical equations E = T + V  and T Ú 0, we have in quantum mechanics that 
E = 8T9+ 8V9  (Prob. 6.35) and 8T9 Ú 0 (Prob. 7.7), so 8V9 … E in quantum mechan-
ics, but we cannot write V … E, and a particle has some probability to be found in classi-
cally forbidden regions where V 7 E.

It might seem that, by saying the particle can be found outside the classically allowed 
region, we are allowing it to have negative kinetic energy. Actually, there is no paradox 
in the quantum-mechanical view. To verify that the particle is in the classically forbidden 
region, we must measure its position. This measurement changes the state of the sys-
tem (Sections 1.3 and 1.4). The interaction of the oscillator with the measuring apparatus 
transfers enough energy to the oscillator for it to be in the classically forbidden region. An 
accurate measurement of x introduces a large uncertainty in the momentum and hence in 
the kinetic energy. Penetration of classically forbidden regions was previously discussed 
in Sections 2.4 and 2.5.

A harmonic-oscillator stationary state has E = 1v +
1
22hn and V =

1
2 kx2 = 2p2n2mx2, 

so the classically allowed region where V … E is where 2p2n2mx2 … 1v +
1
22hn, which 

gives x2 … 1v +
1
22h>2p2nm = 12v + 12>a, where a K 2pnm>U [Eq. (4.31)]. There-

fore, the classically allowed region for the harmonic oscillator is where - 12v + 121/2 …

a1>2x … 12v + 121>2.
Note from Fig. 4.4 that c oscillates in the classically allowed region and decreases 

exponentially to zero in the classically forbidden region. We previously saw this behavior 
for the particle in a rectangular well (Section 2.4).

Figure 4.4 shows that, as we go to higher-energy states of the harmonic oscil-
lator, c and �c �2 tend to have maxima farther and farther from the origin. Since 
V =  12 kx2 increases as we go farther from the origin, the average potential energy 
8V9 = 1 �

- �
 �c �2V dx  increases as the quantum number increases. The average kinetic 

V

E

xa2a

Figure 4.5  The classically 
allowed 1-a … x … a2 and 
forbidden 1x 6 -a and 
x 7 a2 regions for the 
harmonic oscillator.
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energy is given by 8T9 = - 1U2>2m21 �

-�
 c*c� dx. Integration by parts gives (Prob. 7.7b) 

8T9 = 1U2>2m21 �

- �
 � dc>dx �2 dx. The higher number of nodes in states with a higher 

quantum number produces a faster rate of change of c, so 8T9  increases as the quantum 
number increases.

A classical harmonic oscillator is most likely to be found in the regions near the 
turning points of the motion, where the oscillator is moving the slowest and V is large. In 
contrast, for the ground state of a quantum harmonic oscillator, the most probable region 
is the region around the origin. For high oscillator quantum numbers, one finds that the 
outer peaks of �c �2 are larger than the peaks near the origin, and the most probable regions 
become the regions near the classical turning points, where V is large (see Prob. 4.18). This 
is an example of the correspondence principle (Section 2.2).

Some online simulations of the quantum harmonic oscillator are available at www.phy. 
davidson.edu/StuHome/cabell_f/energy.html (shows energy levels and wave functions and 
shows how the wave function diverges when the energy is changed from an allowed value); 
www.falstad.com/qm1d/ (choose harmonic oscillator from the drop-down menu at the top; 
double click on one of the small circles at the bottom to show a stationary state; shows 
energies, wave functions, probability densities; m and k can be varied); demonstrations.
wolfram.com/HarmonicOscillatorEigenfunctions (shows �c

v
� 2).

4.3 Vibration of Diatomic Molecules
We shall see in Section 13.1 that to an excellent approximation one can treat separately the 
motions of the electrons and the motions of the nuclei of a molecule. (This is due to the 
much heavier mass of the nuclei.) One first imagines the nuclei to be held stationary and 
solves a Schrödinger equation for the electronic energy U. (U also includes the energy of 
nuclear repulsion.) For a diatomic (two-atom) molecule, the electronic energy U depends 
on the distance R between the nuclei, U = U1R2, and the U versus R curve has the typical 
appearance of Fig. 13.1.

After finding U1R2, one solves a Schrödinger equation for nuclear motion, using 
U1R2 as the potential energy for nuclear motion. For a diatomic molecule, the nuclear 
Schrödinger equation is a two-particle equation. We shall see in Section 6.3 that, when 
the potential energy of a two-particle system depends only on the distance between the 
particles, the energy of the system is the sum of (a) the kinetic energy of translational 
motion of the entire system through space and (b) the energy of internal motion of the 
particles relative to each other. The classical expression for the two-particle internal-
motion energy turns out to be the sum of the potential energy of interaction between the 
particles and the kinetic energy of a hypothetical particle whose mass is m1m2> 1m1 + m22 
(where m1 and m2 are the masses of the two particles) and whose coordinates are the 
coordinates of one particle relative to the other. The quantity m1m2> 1m1 + m22 is called 
the reduced mass m.

The internal motion of a diatomic molecule consists of vibration, corresponding to a 
change in the distance R between the two nuclei, and rotation, corresponding to a change 
in the spatial orientation of the line joining the nuclei. To a good approximation, one can 
usually treat the vibrational and rotational motions separately. The rotational energy levels 
are found in Section 6.4. Here we consider the vibrational levels.

The Schrödinger equation for the vibration of a diatomic molecule has a kinetic-
energy operator for the hypothetical particle of mass m = m1m2> 1m1 + m22  and a 
potential-energy term given by U1R2. If we place the origin to coincide with the mini-
mum point of the U curve in Fig. 13.1 and take the zero of potential energy at the energy 
of this minimum point, then the lower portion of the U1R2 curve will nearly coincide with 
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the potential-energy curve of a harmonic oscillator with the appropriate force constant k 
(see Fig. 4.6 and Prob. 4.28). The minimum in the U(R) curve occurs at the equilibrium 
distance Re between the nuclei. In Fig. 4.6, x is the deviation of the internuclear distance 
from its equilibrium value: x K R - Re.

The harmonic-oscillator force constant k in Eq. (4.26) is obtained as k = d2V>dx2, 
and the harmonic-oscillator curve essentially coincides with the U(R) curve at R = Re, 
so the molecular force constant is k = d2U>dR2 � R = Re

 (see also Prob. 4.28). Differences 
in nuclear mass have virtually no effect on the electronic-energy curve U(R), so different 
isotopic species of the same molecule have essentially the same force constant k.

We expect, therefore, that a reasonable approximation to the vibrational energy levels 
Evib of a diatomic molecule would be the harmonic-oscillator vibrational energy levels; 
Eqs. (4.45) and (4.23) give

	 Evib � 1v +
1
22hne, v = 0, 1, 2, c	 (4.58)

	  ne =
1

2p
a k
m
b

1>2
, m =

m1m2

m1 + m2
, k =

d2U

dR2 `
R = Re

	 (4.59)

ne is called the equilibrium (or harmonic) vibrational frequency. This approximation is 
best for the lower vibrational levels. As v increases, the nuclei spend more time in regions 
far from their equilibrium separation. For such regions the potential energy deviates sub-
stantially from that of a harmonic oscillator and the harmonic-oscillator approximation is 
poor. Instead of being equally spaced, one finds that the vibrational levels of a diatomic 
molecule come closer and closer together as v increases (Fig. 4.6). Eventually, the vibra-
tional energy is large enough to dissociate the diatomic molecule into atoms that are not 
bound to each other. Unlike the harmonic oscillator, a diatomic molecule has only a finite 
number of bound-state vibrational levels. A more accurate expression for the molecular 
vibrational energy that allows for the anharmonicity of the vibration is

	 Evib = 1v +
1
22hne - 1v +

1
222hnexe	 (4.60)

where the anharmonicity constant nexe is positive in nearly all cases.

V

x

Figure 4.6  Potential 
energy for vibration of a 
diatomic molecule (solid 
curve) and for a harmonic 
oscillator (dashed curve). 
Also shown are the bound-
state vibrational energy 
levels for the diatomic 
molecule. In contrast to 
the harmonic oscillator, a 
diatomic molecule has only 
a finite number of bound 
vibrational levels.
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Using the time-dependent Schrödinger equation, one finds (Section 9.9) that the most 
probable vibrational transitions when a diatomic molecule is exposed to electromagnetic 
radiation are those where v changes by {1. Furthermore, for absorption or emission 
of electromagnetic radiation to occur, the vibration must change the molecule’s dipole 
moment. Hence homonuclear diatomics (such as H2 or N2) cannot undergo transitions 
between vibrational levels by absorption or emission of radiation. (Such transitions can 
occur during intermolecular collisions.) The relation Eupper - Elower = hn,  the approxi-
mate equation (4.58), and the selection rule �v = 1 for absorption of radiation show that 
a heteronuclear diatomic molecule whose vibrational frequency is ne will most strongly 
absorb light of frequency nlight given approximately by

nlight = 1E2 - E12>h � 31v2 +
1
22hne - 1v1 +

1
22hne4 >h = 1v2 - v12ne = ne	 (4.61)

The values of k and m in (4.59) for diatomic molecules are such that nlight usually falls in 
the infrared region of the spectrum. Transitions with �v = 2, 3, c  also occur, but these 
(called overtones) are much weaker than the �v = 1 absorption.

Use of the more accurate equation (4.60) gives (Prob. 4.27)

	 nlight = ne - 2nexe1v1 + 12	 (4.62)

where v1 is the quantum number of the lower level and �v = 1.
The relative population of two molecular energy levels in a system in thermal equi-

librium is given by the Boltzmann distribution law (see any physical chemistry text) as

	
Ni

Nj
=

gi

gj
e-1Ei - Ej2>kT	 (4.63)

where energy levels i and j have energies Ei and Ej and degeneracies gi and gj and are 
populated by Ni and Nj molecules, and where k is Boltzmann’s constant and T the absolute 
temperature. For a nondegenerate level, gi = 1.

The magnitude of n = 11>2p21k>m21>2 is such that for light diatomics (for example, 
H2, HCl, CO) only the v = 0 vibrational level is significantly populated at room tempera-
ture. For heavy diatomics (for example, I2,) there is significant room-temperature popula-
tion of one or more excited vibrational levels.

The vibrational absorption spectrum of a polar diatomic molecule consists of a 
v = 0 S 1 band, much weaker overtone bands 1v = 0 S 2, 0 S 3, . . . 2, and, if v 7 0 
levels are significantly populated, hot bands such as v = 1 S 2, 2 S 3. Each band 
corresponding to a particular vibrational transition consists of several closely spaced 
lines. Each such line corresponds to a different change in rotational state simultane-
ous with the change in vibrational state. Each line is the result of a vibration–rotation 
transition.

The SI unit for spectroscopic frequencies is the hertz (Hz), defined by 1 Hz K 1 s-1. 
Multiples such as the megahertz (MHz) equal to 106 Hz and the gigahertz (GHz) equal to 
109 Hz are often used. Infrared (IR) absorption lines are usually specified by giving their 
wavenumber n� defined as

	  n� K 1>l = n>c	 (4.64)

where l is the wavelength in vacuum.
In the harmonic-oscillator approximation, the quantum-mechanical energy levels of a 

polyatomic molecule turn out to be Evib = g i1vi +
1
22hni, where the ni>s are the frequen-

cies of the normal modes of vibration of the molecule and vi is the vibrational quantum 
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number of the ith normal mode. Each vi takes on the values 0, 1, 2, c independently of 
the values of the other vibrational quantum numbers. A linear molecule with n atoms has 
3n - 5 normal modes; a nonlinear molecule has 3n - 6 normal modes.

To calculate the reduced mass m in (4.59), one needs the masses of isotopic species. 
Some relative isotopic masses are listed in Table A.3 in the Appendix.

E x a m p l e

The strongest infrared band of 12C16O occurs at n� = 2143 cm-1. Find the force 
constant of 12C16O. State any approximation made.

The strongest infrared band corresponds to the v = 0 S 1 transition. We approximate 
the molecular vibration as that of a harmonic oscillator. From (4.61), the equilibrium 
molecular vibrational frequency is approximately

ne � nlight = n�c = 12143 cm-1212.9979 * 1010 cm>s2 = 6.424 * 1013 s-1

To relate k to ne in (4.59), we need the reduced mass m = m1m2>1m1 + m22. One mole 
of 12C has a mass of 12 g and contains Avogadro’s number of atoms. Hence the mass of 
one atom of 12C is 112 g2>16.02214 * 10232. The reduced mass and force constant are

m =
12115.99492 g

27.9949
 

1

6.02214 * 1023 = 1.1385 * 10-23 g

k = 4p2n2
e m = 4p216.424 * 1013 s-122 11.1385 * 10-26 kg2 = 1855 N>m

Exercise  (a) Find the approximate zero-point energy of 12C16O. 
(Answer: 2.1 * 10-20 J.) (b) Estimate ne of 13C16O. (Answer: 6.28 * 1013 s-1.)

4.4 �Numerical Solution of the One-Dimensional 
Time-Independent Schrödinger Equation

The Numerov Method 
We solved the Schrödinger equation exactly for the particle in a box and the harmonic 
oscillator. For many potential-energy functions V1x2, the one-particle, one-dimensional 
Schrödinger equation cannot be solved exactly. This section presents a numerical method 
(the Numerov method) for computer solution of the one-particle, one-dimensional 
Schrödinger equation that allows one to get accurate bound-state eigenvalues and eigen-
functions for an arbitrary V1x2.

To solve the Schrödinger equation numerically, we deal with a portion of the x axis 
that includes the classically allowed region and that extends somewhat into the classically 
forbidden region at each end of the classically allowed region. We divide this portion of 
the x axis into small intervals, each of length s (Fig. 4.7). The points x0 and xmax are the 
endpoints of this portion, and xn is the endpoint of the nth interval. Let cn - 1, cn, and cn + 1 
denote the values of c at the points xn - s, xn, and xn + s, respectively (these are the 
endpoints of adjacent intervals)

	 cn - 1 K c1xn - s2, cn K c1xn2, cn + 1 K c1xn + s2	 (4.65)

Don’t be confused by the notation. The subscripts n - 1, n, and n + 1 do not label different 
states but rather indicate values of one particular wave function c at points on the x axis 
separated by the interval s. The n subscript means c is evaluated at the point xn. We write 
the Schrödinger equation - 1U2>2m2c� + Vc = Ec as

	 c� = Gc, where G K mU-232V1x2 - 2E4 	 (4.66)
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By expanding c1xn + s2 and c1xn - s2 in Taylor series involving powers of s, add-
ing these two expansions to eliminate odd powers of s, using the Schrödinger equation to 
express c� and c1iv2 in terms of c, and neglecting terms in s6 and higher powers of s (an 
approximation that will be accurate if s is small), one finds that (Prob. 4.43)

	 cn + 1 �
2cn - cn - 1 + 5Gncns

2>6 + Gn - 1cn - 1s
2>12

1 - Gn + 1s
2>12

	 (4.67)

where Gn K G1xn2 K mU-232V1xn2 - 2E4  [Eqs. (4.66) and (4.65)]. Equation (4.67) 
allows us to calculate cn + 1, the value of c at point xn + s, if we know cn and cn - 1, the 
values of c at the preceding two points xn and xn - s.

How do we use (4.67) to solve the Schrödinger equation? We first guess a value Eguess 
for an energy eigenvalue. We start at a point x0 well into the left-hand classically forbidden 
region (Fig. 4.7), where c will be very small, and we approximate c as zero at this point: 
c0 K c1x02 = 0. Also, we pick a point xmax well into the right-hand classically forbidden 
region, where c will be very small and we shall demand that c1x max2 = 0. We pick a 
small value for the interval s between successive points, and we take c at x0 + s as some 
small number, say, 0.0001: c1 K c1x12 K c1x0 + s2 = 0.0001. The value of c1 will not 
make any difference in the eigenvalues found. If 0.001 were used instead of 0.0001 for c1, 
Eq. (4.67) shows that this would simply multiply all values of c at subsequent points by 10 
(Prob. 4.41). This would not affect the eigenvalues [see the example after Eq. (3.14)]. The 
wave function can be normalized after each eigenvalue is found.

Having chosen values for c0 and c1, we then use (4.67) with n = 1 to calculate 
c2 K c1x22 K c1x1 + s2, where the G values are calculated using Eguess. Next, (4.67) 
with n = 2 gives c3; and so on. We continue until we reach xmax. If Eguess is not equal to 
or very close to an eigenvalue, c will not be quadratically integrable and 0c1xmax2 0  will 
be very large. If c1xmax2 is not found to be close to zero, we start again at x0 and repeat 
the process using a new Eguess. The process is repeated until we find an Eguess that makes 
c1xmax2 very close to zero. Eguess is then essentially equal to an eigenvalue. The systematic 
way to locate the eigenvalues is to count the nodes in the c produced by Eguess. Recall 
(Section 4.2) that in a one-dimensional problem, the number of interior nodes is 0 for the 
ground state, 1 for the first excited state, and so on. Let E1, E2, E3, c denote the energies 
of the ground state, the first excited state, the second excited state, and so on, respectively. 
If cguess contains no nodes between x0 and xmax, then Eguess is less than or equal to E1; if 
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Figure 4.7  V versus x 
for a one-particle, one-
dimensional system.
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cguess contains one interior node, then Eguess is between E1 and E2 (Fig. 4.8). Examples 
are given later.

Dimensionless Variables 
The Numerov method requires that we guess values of E. What should be the order of 
magnitude of our guesses: 10-20 J, 10-15 J, c? To answer this question, we reformulate 
the Schrödinger equation using dimensionless variables, taking the harmonic oscillator 
as the example.

The harmonic oscillator has V =
1
2 kx2, and the harmonic-oscillator Schrödinger equa-

tion contains the three constants k, m, and U. We seek to find a dimensionless reduced 
energy Er and a dimensionless reduced x coordinate xr that are defined by

	 Er K E>A, xr K x>B	 (4.68)

where the constant A is a combination of k, m, and U that has dimensions of energy, 
and B is a combination with dimensions of length. The dimensions of energy are 
mass * length2 * time-2, which we write as

	 3E4 = ML2T-2	 (4.69)

where the brackets around E denote its dimensions, and M, L, and T stand for the dimen-
sions mass, length, and time, respectively. The equation V =

1
2 kx2 shows that k has 

dimensions of energy * length-2, and (4.69) gives 3k4 = MT-2. The dimensions of U 
are energy *  time. Thus

	 3m4 = M, 3k4 = MT-2, 3U4 = ML2T-1	 (4.70)

The dimensions of A and B in (4.68) are energy and length, respectively, so

	 3A4 = ML2T-2, 3B4 = L	 (4.71)

Let A = makbUc, where a, b, and c are powers that are determined by the requirement 
that the dimensions of A must be ML2T -2. We have

	 3A4 = 3makbUc4 = Ma1MT-22b1ML2T-12c = Ma + b + cL2cT-2b - c	 (4.72)

Equating the exponents of each of M, L, and T in (4.71) and (4.72), we have

a + b + c = 1, 2c = 2, -2b - c = -2

Solving these equations, we get c = 1, b =
1
2, a = -

1
2. Therefore,

	 A = m-1>2k1>2U	 (4.73)

Let B = mdkeU f. The same dimensional-analysis procedure that gave (4.73) gives 
(Prob. 4.44)

	 B = m-1>4k-1>4U1>2	 (4.74)

From (4.68), (4.73), and (4.74), the reduced variables for the harmonic oscillator are

	 Er = E>m-1>2k1>2U, xr = x>m-1>4k-1>4U1>2	 (4.75)

0 1 2 3 4

E4

Eguess

number of
interior nodes

E3E2E1

Figure 4.8  The number of 
nodes in a Numerov-method 
solution as a function of the 
energy Eguess.
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Using k1>2 = 2pnm1>2 [Eq. (4.23)] to eliminate k from (4.75) and recalling the definition 
a K 2pnm>U [Eq. (4.31)], we have the alternative expressions

	 Er = E>hn, xr = a1>2x	 (4.76)

Similar to the equation Er K E>A [Eq. (4.68)], we define the reduced potential energy 
function Vr as

	 Vr K V>A	 (4.77)

Since �c1x2 �2 dx is a probability, and probabilities are dimensionless, the normalized 
c1x2 must have the dimensions of length-1>2. We therefore define a reduced normalized 
wave function cr that is dimensionless. From (4.71), B has dimensions of length, so B-1>2 
has units of length-1>2. Therefore,

	 cr = c>B-1>2	 (4.78)

cr satisfies 1 �

- �
 �cr �2 dxr = 1; this follows from (4.68), (4.78), and 1 �

- �
 �c �2 dx = 1.

We now rewrite the Schrödinger equation in terms of the reduced variables xr, cr, Vr, 
and Er. We have

	
d2c

dx2 =
d2

dx2 B-1>2cr = B-1>2 d

dx

dcr

dx
= B-1>2 d

dx

dcr

dxr

dxr

dx
= B-1>2 d1dcr>dxr2

dxr

dxr

dx

dxr

dx

	
d2c

dx2 = B-5>2 d2cr

dx2
r

	 (4.79)

since dxr>dx = B-1 [Eq. (4.68)]. Substitution of (4.68), (4.77), and (4.79) into the 
Schrödinger equation - 1U2>2m21d2c>dx22 + Vc = Ec gives

-
U2

2m
B-5>2 d2cr

dx2
r

+ AVrB-1>2cr = AErB-1>2cr

	 -
U2

2m
 

1

AB2

d2cr

dx2
r

+ Vrcr = Ercr	 (4.80)

From (4.73) and (4.74), we get AB2 = U2>m, so U2>mAB2 = 1 for the harmonic 
oscillator.

More generally, let V contain a single parameter c that is not dimensionless. For exam-
ple, we might have V = cx4 or V = cx211 + 0.05m1>2c1>2 U-1x22. (Note that m1>2c1>2 U-1x2 
is dimensionless, as it must be, since 1 is dimensionless.) The quantity AB2 in (4.80) must 
have the form AB2 = Urmsct, where r, s, and t are certain powers. Since the term Vrcr in 
(4.80) is dimensionless, the first term is dimensionless. Therefore, U2>mAB2 is dimen-
sionless and AB2 has the same dimensions as U2>m; so r = 2, s = -1, and t = 0. With 
AB2 = U2>m, Eq. (4.80) gives as the dimensionless Schrödinger equation

	
d2cr

dx2
r

= 12Vr - 2Er2cr	 (4.81)

	 c�r = Grcr ,  where Gr K 2Vr - 2Er	 (4.82)

For the harmonic oscillator, Vr K V>A =
1
2 kx2>m-1>2k1>2U =

1
2 x2

r  [Eqs. (4.73) and (4.75)]:

	 Vr =
1
2 x2

r 	 (4.83)

Having reduced the harmonic-oscillator Schrödinger equation to the form (4.81) 
involving only dimensionless quantities, we can expect that the lowest energy eigenvalues 
will be of the order of magnitude 1.
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The reduced harmonic-oscillator Schrödinger equation (4.82) has the same form as 
(4.66), so we can use the Numerov formula (4.67) with c, G, and s replaced by cr, Gr, and 
sr, respectively, where, similar to (4.68), sr K s>B.

Once numerical values of the reduced energy Er have been found, the energies E are 
found from (4.75) or (4.76).

Choice of xr, 0, xr, max, and sr

We now need to choose initial and final values of xr and the value of the interval sr between 
adjacent points. Suppose we want to find all the harmonic-oscillator eigenvalues and eigen-
functions with Er … 5. We start the solution in the left-hand classically forbidden region, 
so we first locate the classically forbidden regions for Er = 5. The boundaries between 
the classically allowed and forbidden regions are where Er = Vr. From (4.83), Vr =

1
2 x2

r . 
Thus Er = Vr becomes 5 =

1
2 x2

r  and the classically allowed region for Er = 5 is from 
xr = - 11021>2 = -3.16 to +3.16. For Er 6 5, the classically allowed region is smaller. We 
want to start the solution at a point well into the left-hand classically forbidden region, where 
c is very small, and we want to end the solution well into the right-hand classically forbid-
den region. The left-hand classically forbidden region ends at xr = -3.16 for Er = 5, and a 
reasonable choice is to start at xr = -5. [Starting too far into the classically forbidden region 
can sometimes lead to trouble (see the following), so some trial-and-error might be needed 
in picking the starting point.] Since V is symmetrical, we shall end the solution at xr = 5.

For reasonable accuracy, one usually needs a minimum of 100 points, so we shall take 
sr = 0.1 to give us 100 points. As is evident from the derivation of the Numerov method, 
sr must be small. A reasonable rule might be to have sr no greater than 0.1.

If, as is often true, V S � as x S { �, then starting too far into the classically 
forbidden region can make the denominator 1 - Gn + 1s

2>12 in the Numerov formula 
(4.67) negative. We have Gr = 2Vr - 2Er, and if we start at a point x0 where Vr is 
extremely large, Gr at that point might be large enough to make the Numerov denomi-
nator negative. The method will then fail to work. We are taking c0 as zero and c1 
as a positive number. The Numerov formula (4.67) shows that if the denominator is 
negative, then c2 will be negative, and we will have produced a spurious node in c 
between x1 and x2. To avoid this problem, we can decrease either the step size sr or 
xr, max - xr, 0 (see Prob. 4.46).

Computer Program for the Numerov Method 
Table 4.1 contains a C11 computer program that applies the Numerov method to the 
harmonic-oscillator Schrödinger equation. The fifth and sixth lines declare variables as 
either integers or double precision. m is the number of intervals between xr, 0 and xr, max and 
equals 1xr, max - xr, 02>s. cout and cin provide for output to the computer screen and input 
to the variables of the program. Note the colon at the end of line 13 and the semicolons 
after most other lines. The three lines beginning with g[0]=, g[1]=, and g[i + 1] = contain 
two times the potential-energy function. These lines must be modified if the problem is 
not the harmonic oscillator. If there is a node between two successive values of xr, then the 
cr values at these two points will have opposite signs (see Prob. 4.45) and the statement 
nn5nn11 will increase the nodes counter nn by 1.

You can download a free C11 compiler and integrated development environment—
see the Wikipedia article, List of Compilers. Even simpler, you can enter and run C11 
programs online without downloading anything. The website ideone.com provides this 
service (after you register) for C11 and other languages. However, at this site, you must 
enter your complete input into the input area before running the program, since the website 
does not accept input once the program begins; each input number is separated from its 
neighbors by a space.
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For example, suppose we want the harmonic-oscillator ground-state energy. The pro-
gram of Table 4.1, with sr = 0.1, xr, 0 = -5, and m = 100 gives the following results. The 
guess Er = 0 gives a wave function with zero nodes, nn = 0, telling us (Fig. 4.8) that the 
ground-state energy Er, 1 is above 0. (Also, the wave function at the rightmost point is found 
to be 9.94 * 106, very far from 0.) If we now guess 0.9 for Er, we get a function with one 

#include <iostream>
#include <math.h>
using namespace std;
int main() {

int m, i, nn;
double x[1000], g[1000], p[1000], E, s, ss;
cout << "Enter initial xr ";
cin>>x[0];
cout << "Enter the increment sr ";
cin>>s;
cout << "Enter the number of intervals m ";
cin>>m;
label1:
cout << "Enter the reduced energy Er (enter 1e10 to quit) ";
cin>>E;
if (E > 1e9) {

cout << "Quitting";
return 0;

}
nn=0; p[0]=0;
p[1]=0.0001;
x[1]=x[0]+s;
g[0]=x[0]*x[0]-2*E;
g[1]=x[1]*x[1]-2*E;
ss=s*s/12;
for (i=1; i<=m-1; i=i+1) {

x[i+1]=x[i]+s;
g[i+1]=x[i+1]*x[i+1]-2*E;
p[i+1]=(-p[i-1]+2*p[i]+10*g[i]*p[i]*ss+g[i-1]*p[i-1]*ss)/(1-g[i+1]*ss);
if(p[i+1]*p[i]<0)

nn=nn+1;
}
cout << " Er = " << E << " Nodes = " << nn << " Psir(xm) = " << p[m] << endl;
goto label1;

}

Table 4.1  �C11 Program for Numerov Solution of the One-Dimensional 
Schrödinger Equation
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node, so (Fig. 4.8) 0.9 is between Er, 1 and Er, 2. Hence the ground state Er is between 0 and 
0.9. Averaging these, we try 0.45. This value gives a function with no nodes, and so 0.45 
is below Er, 1. Averaging 0.45 and 0.9, we get 0.675, which is found to give one node and 
so is too high. Averaging 0.675 and 0.45, we try 0.5625, which gives one node and is too 
high. We next try 0.50625, and so on. The program’s results show that as we get closer to 
the true Er,1, cr152 comes closer to zero.

Use of a Spreadsheet to Solve the One-Dimensional Schrödinger Equation 
An alternative to a Numerov-method computer program is a spreadsheet.

The following directions for the Excel 2010 spreadsheet apply the Numerov method to 
solve the harmonic-oscillator Schrödinger equation. (Other versions of Excel can be used 
with modified directions.)

The columns in the spreadsheet are labeled A, B, C, c and the rows are labeled 1, 
2, 3, c (see Fig. 4.9 later in this section). A cell’s location is specified by its row and 
column. For example, the cell at the upper left is cell A1. To enter something into a cell, 
you first select that cell, either by moving the mouse pointer over the desired cell and then 
clicking the (left) mouse button, or by using the arrow keys to move from the currently 
selected cell (which has a heavy outline) to the desired cell. After a cell has been selected, 
type the entry for that cell and press Enter or one of the four arrow keys.

To begin, enter a title in cell A1. Then enter Er 5 in cell A3. We shall enter our guesses 
for Er in cell B3. We shall look first for the ground-state (lowest) eigenvalue, pretending 
that we don’t know the answer. The minimum value of V(x) for the harmonic oscillator is 
zero, so Er cannot be negative. We shall take zero as our initial guess for Er, so enter 0 in 
cell B3. Enter sr5 in cell C3.

Enter 0.1 (the sr value chosen earlier) in cell D3. Enter xr in cell A5, Gr in cell B5, 
and psir in C5. (These entries are labels for the data columns that we shall construct.) 
Enter 25 (the starting value for xr) in cell A7. Enter 5A71$D$3 in cell A8. The equal 
sign at the beginning of the entry tells the spreadsheet that a formula is being entered. 
This formula tells the spreadsheet to add the numbers in cells A7 and D3. The reason 
for the $ signs in D3 will be explained shortly. When you type a formula, you will see 
it displayed in the formula bar above the spreadsheet. When you press Enter, the value 
-4.9 is displayed in cell A8. This is the sum of cells A7 and D3. (If you see a different 
value in A8 or get an error message, you probably mistyped the formula. To correct the 
formula, select cell A8 and click in the formula displayed in the formula bar to make 
the correction.)

Select cell A8 and then click the Home tab and in the Clipboard group click the 
Copy icon. This copies the contents of cell A8 to a storage area called the Clipboard. 
Then in the Editing group click the Find & Select icon and choose Go To. In the  
Go To box, enter A9:A107 under Reference: and click OK. This selects cells A9 through 
A107. Then in the Clipboard group click the Paste icon. This pastes the cell A8 formula 
(which was stored on the Clipboard) into each of cells A9 through A107. To see how 
this works, click on cell A9. You will see the formula =A81$D$3 in the formula bar. 
Note that when the cell A8 formula =A71$D$3 was copied one cell down to cell A9, 
the A7 in the formula was changed to A8. However, the $ signs prevented cell D3 in the 
formula from being changed when it was copied. In a spreadsheet formula, a cell address 
without $ signs is called a relative reference, whereas a cell address with $ signs is called 
an absolute reference. When a relative reference is copied to the next row in a column, 
the row number is increased by one; when it is copied two rows below the original 
row, the row number is increased by two; and so on. Click in some of the other cells in 
column A to see their formulas. The net result of this copy-and-paste procedure is to fill  
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the column-A cells with numbers from -5 to 5 in increments of 0.1. (Spreadsheets have 
faster ways to accomplish this than using Copy and Paste.)

We next fill in the Gr column. From Eqs. (4.82) and (4.83), Gr = x2
r - 2Er for the 

harmonic oscillator. We therefore enter =A7^222*$B$3 in cell B7 (which will contain the 
value of Gr at xr = -5). Cell A7 contains the xr = -5 value, and the ^ symbol denotes 
exponentiation. The * denotes multiplication. Cell B3 contains the Er value. Next, the rest 
of the Gr values are calculated. Select cell B7. Then click Copy in the Clipboard group. 
Now select cells B8 through B107 by using Find & Select as before. Then click Paste in 
the Clipboard group. This fills the cells with the appropriate Gr values. (Click on cell B8 
or B9 and see how its formula compares with that of B7.)

We now go to the cr values. Enter 0 in cell C7. Cell C7 contains the value of cr at 
xr = -5. Since this point is well into the classically forbidden region, cr will be very small 
here, and we can approximate it as zero. Cell C8 contains the value of cr at xr = -4.9. 
This value will be very small, and we can enter any small number in C8 without affecting 
the eigenvalues. Enter 1E-4 in cell C8 (where E denotes the power of 10). Now that we 
have values in cells C7 and C8 for cr at the first two points -5.0 and -4.9 [points xn - 1 
and xn in (4.67)], we use (4.67) to calculate cr at xr = -4.8 (point xn + 1). Therefore, enter 
the Eq. (4.67) formula

=(2*C8-C7+5*B8*C8*$D$3^2/6+B7*C7*$D$3^2/12)/(1-B9*$D$3^2/12)

in cell C9. After the Enter key is pressed, the value 0.000224 for cr at xr = -4.8 appears 
in cell C9. Select cell C9. Click Copy. Select C10 through C107. Click Paste. Cells C10 
through C107 will now be filled with their appropriate cr values. As a further check that 
you entered the C9 formula correctly, verify that cell C10 contains 0.000401.

Since the number of nodes tells us which eigenvalues our energy guess is between  
(Fig. 4.8), we want to count and display the number of nodes in cr. To do this, enter into 
cell D9 the formula = IF(C9*C8<0,1,0). This formula enters the number 1 into D9 if C9 
times C8 is negative and enters 0 into D9 if C9 times C8 is not negative. If there is a node 
between the xr values in A8 and A9, then the cr values in C8 and C9 will have opposite 
signs, and the value 1 will be entered into D9. Use Copy and Paste to copy the cell D9 
formula into cells D10 through D107. Enter nodes =  into cell E2. Enter =SUM(D9:D107) 
into F2. This formula gives the sum of the values in D9 through D107 and thus gives the 
number of interior nodes in cr.

Next, we graph cr versus xr. Select cells A7 through A107 and C7 through C107 by 
clicking Find & Select, clicking Go To, typing A7:A107,C7:C107 in the Reference box, and 
clicking OK. Then click the Insert tab and in the Chart group click the Scatter icon and  
then click the chart showing smoothed lines with markers (Scatter with Smooth Lines 
and Markers). On the chart that appears, right-click Series1 and choose Delete. Right-click 
the horizontal grid line at 4 * 106 and choose Delete. The spreadsheet will look like Fig. 4.9.

Since xr = 5 is well into the right-hand classically forbidden region, cr should be 
very close to zero at this point. However, the graph shows that for our choice Er = 0, the 
wave function cr is very large at xr = 5. Therefore, Er = 0 does not give a well-behaved 
cr, and we must try a different Er. Cell F2 has a zero, so this cr has no nodes. Therefore 
(Fig. 4.8), the guess Er = 0 is less than the true ground-state energy. Let us try Er = 2. 
Select cell B3 and enter 2 into it. After you press Enter, the spreadsheet will recalculate 
every column B and column C cell whose value depends on Er (all column B and C cells 
except C7 and C8 change) and will then replot the graph. The graph for Er = 2 goes to a 
very large positive cr value at xr = 5. Also, cell F2 tells us that cr for Er = 2 contains 
two nodes. These are not readily visible on the graph, but the column-C data show that 
cr changes sign between the xr values -0.4 and -0.3 and between 1.2 and 1.3. We are 
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looking for the ground-state eigenfunction, which does not contain a node, or rather, in 
our approximation, will contain nodes at -5 and 5. The presence of the two interior nodes 
shows (Fig. 4.8) that the value 2 for Er is not only too high for the ground state, but is 
higher than Er for the first excited state (whose wave function contains one interior node). 
We therefore need to try a lower value of Er.

Before doing so, let us change the graph scale so as to make the nodes more visible. 
Double click on the y axis of the graph. In the Format Axis dialog box that appears, click 
Axis Options at the left and click Fixed next to Minimum and Maximum. Replace the 
original numbers in the Minimum and Maximum boxes with -10 and 10, respectively. 
Then click Close. The graph will be redrawn with -10 and 10 as the minimum and maxi-
mum y-axis values, making the two nodes easily visible.

We now change Er to a smaller value, say 1.2. Enter 1.2 in cell B3. We get a cr that 
goes to a large negative value on the right and that has only one node. The presence of 
one node tells us that we are now below the energy of the second-lowest state and above 
the ground-state energy (see Fig. 4.8). We have bracketed the ground-state energy to lie 
between 0 and 1.2. Let us average these two numbers and try 0.6 as the energy. When we 
enter 0.6 into cell B3, we get a function with one node, so we are still above the ground-
state energy. Since the maximum on the graph is now off scale, it’s a good idea to change 
the graph scale and reset the y maximum and minimum values to 25 and -25.

We have found the lowest eigenvalue to be between 0 and 0.6. Averaging these values, 
we enter 0.3 into B3. This gives a function that has no nodes, so 0.3 is below the ground-
state reduced energy, and Er is between 0.3 and 0.6. Averaging these, we enter 0.45 into B3. 
We get a function that has no nodes, so we are still below the correct eigenvalue. However, 
if we rescale the y axis suitably (taking, for example, -15 and 30 as the minimum and 
maximum values), we see a function that for values of xr less than 0.2 resembles closely 
what we expect for the ground state, so we are getting warm. The eigenvalue is now known 
to be between 0.45 and 0.60. Averaging these, we enter 0.525 into B3. We get a function 
with one node, so we are too high. Averaging 0.45 and 0.525, we try 0.4875, which we 
find to be too low.

Continuing in this manner, we get the successive values 0.50625 (too high), 0.496875 
(too low), c, 0.4999995943548 (low), 0.4999996301176 (high). Thus we have found 

Figure 4.9  Spreadsheet for Numerov-method solution of the harmonic oscillator.
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0.4999996 as the lowest eigenvalue. Since Er = E>hn, we should have gotten 0.5. The 
slight error is due to the approximations of the Numerov method.

Suppose we want the second-lowest eigenvalue. We previously found this eigenvalue 
to be below 2.0, so it lies between 0.5 and 2.0. Averaging these numbers, we enter 1.25 
into B3. We get a function that has the desired one node but that goes to a large negative 
value at the right, rather than returning to the x axis at the right. Therefore, 1.25 is too low 
(Fig. 4.8). Averaging 1.25 and 2.0, we next try 1.625. This gives a function with two nodes, 
so we are too high. Continuing, we get the successive values 1.4375 (low), 1.53125 (high), 
1.484375 (low), 1.5078125 (high), and so on.

To test the accuracy of the eigenvalues found, we can repeat the calculation with sr 
half as large and see if the new eigenvalues differ significantly from those found with the 
larger sr. Also, we can start further into the classically forbidden region.

Finding eigenvalues as we have done by trial and error is instructive and fun the first 
few times, but if you have a lot of eigenvalues to find, you can use a faster method. Most 
spreadsheets have a built-in program that can adjust the value in one cell so as to yield 
a desired value in a second cell. This tool is called the Solver in Excel. Click the Data 
tab. In the Analysis group (at the right), see if there is an icon for Solver. (If the Solver 
icon is missing, click the File tab and click Options at the left. In the Excel Options box, 
click Add-Ins at the left. In the Manage box select Excel Add-Ins at the bottom and click 
the Go button. In the Add-Ins box check Solver Add-In and click OK. After a while, the 
Solver icon will appear in the Analysis group.) To see how the Solver works, enter 0 into 
cell B3. Click the Solver icon. The Solver Parameters box opens. The cr value at xr = 5 
is in cell C107, and we want to make this value zero. Therefore, in the Set Objective box 
of the Solver, enter $C$107. Next to To: click on Value of and enter 0. We want to adjust 
the energy so as to satisfy the boundary condition at xr = 5, so click in the By Changing 
Variable Cells box and enter $B$3. Select the Solver Method as GRG Nonlinear. Then 
click on Solve. When Solver declares it has found a solution, select Accept Solver solution 
to close the Solver box. The solution found by Excel has 0.500002 in cell B3 (the formula 
bar will show the full value if you select cell B3). Cell C107 will have the value -6.38. 
Since this value is not close to the desired value of 0, click the Solver icon and then click 
Solve, thereby re-running Solver starting from the 0.500002 value. This time Solver gives 
0.4999996089, similar to the value found by hand, and C107 has the value -3.66 * 10- 9. 
(The Solver uses either the quasi-Newton or the conjugate-gradient method, both of which 
are discussed in Section 15.10.)

To find higher eigenvalues using the Solver, start with a value in B3 that is well above 
the previously found eigenvalue. If the program converges to the previous eigenvalue, 
start with a still-higher value in B3. You can check which eigenvalue you have found by 
counting the nodes in the wave function. If the Solver fails to find the desired eigenvalue, 
use trial and error to find an approximate value and then use the Solver starting from the 
approximate eigenvalue.

The wave function we have found is unnormalized. The normalization constant is given 
by Eq. (3.93) as N = 31 �

- �
�cr �2 dxr4-1>2. We have 1 �

- �
�cr �2 dxr � 15

-5c
2
r dxr� g100

i = 1 c2
r,i sr, 

where the cr, i values are in column B. Enter npsir in E5. In cell D109, enter the formula 
= SUMSQ(C8:C107)*$D$3. The SUMSQ function adds the squares of a series of numbers. 
Enter = C7/$D$109^0.5 in E7. Copy and paste E7 into E8 through E107. Column E will 
contain the normalized cr values if Eguess is equal to an eigenvalue.

Excel is widely used to do statistical and scientific calculations, but studies of Excel 
2007 and its predecessors found many significant errors [B. D. McCullough and D. A. 
Heiser, Comput. Statist. Data Anal., 52, 4570 (2008)]. For example, McCullough and 
Heiser state: “It has been noted that Excel Solver has a marked tendency to stop at a 
point that is not a solution and declare that it has found a solution.” Therefore one should 
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always verify the correctness of the Solver’s solution. A study of Excel 2010 found that 
many of the errors present in earlier versions of Excel were fixed, but some problems 
remain [G. Mélard, “On the Accuracy of Statistical Procedures in Excel 2010,” available 
at homepages.ulb.ac.be/~gmelard/rech/gmelard_csda24.pdf]. Mélard noted that “The con-
clusion is that Microsoft did not make an attempt to fix all the errors in Excel, and this 
point needs to be made strongly.” Mélard found that the Solver yielded results with zero 
significant-figure accuracy in a substantial fraction of test cases.

Use of Mathcad to Solve the One-Dimensional Schrödinger Equation 
Several programs classified as computer algebra systems do a wide variety of mathemati-
cal procedures, including symbolic integration and differentiation, numerical integration, 
algebraic manipulations, solving systems of equations, graphing, and matrix computations. 
Examples of such computer algebra systems are Maple, Mathematica, MATLAB, Mathcad, 
and LiveMath Maker. The Numerov procedure can be performed using these programs. One 
nice feature of Mathcad is its ability to produce animations (“movies”). With Mathcad one 
can create a movie showing how cr changes as Er goes through an eigenvalue.

Summary of Numerov-Method Steps 
Problems 4.30–4.38 apply the Numerov method to several other one-dimensional prob-
lems. In solving these problems, you need to (a) find combinations of the constants 
in the problem that will give a dimensionless reduced energy and length [Eq. (4.68)];  
(b) convert the Schrödinger equation to dimensionless form and find what Gr1xr2 in (4.82) is; 
(c) decide on a maximum Er value, below which you will find all eigenvalues; (d) locate 
the boundaries between the classically allowed and forbidden regions for this maximum Er 
value and choose xr, 0 and xr, max values in the classically forbidden regions (for the particle 
in a box with infinitely high walls, use x0 = 0 and xmax = l); and (e) decide on a value 
for the interval sr.

Summary
The one-dimensional harmonic oscillator has V =

1
2 kx2. Its stationary-state energies are 

E = 1v +  122hn, where the vibrational frequency is n = 11>2p21k>m21>2 and the quan-
tum number v is v = 0,  1,  2, c. The eigenfunctions are even or odd functions and 
are given by (4.47). An even function satisfies f1-x2 = f1x2. An odd function satis-
fies f1-x2 = - f1x2. If f is even, then 1a

-a f1x2 dx = 21a
0  f1x2 dx. If f is odd, then 

1a
-a f1x2 dx = 0. The vibrational energy of a diatomic molecule can be roughly approxi-

mated by the harmonic-oscillator energies with n = 11>2p21k>m21>2, where the reduced 
mass is m = m1m2> 1m1 + m22.

The Numerov method is a numerical method that allows one to find bound-state ener-
gies and wave functions for the one-particle, one-dimensional Schrödinger equation.

Problems

Sec. 4.1 4.2 4.3 4.4 general

Probs. 4.1–4.3 4.4–4.23 4.24–4.29 4.30–4.48 4.49–4.53

	 4.1	 Provided certain conditions are met, we can expand the function f1x2 in an infinite power 
series about the point x = a:

	 f1x2 = a
�

n = 0
cn1x - a2n	 (4.84)



Problems   |  85

		  Differentiate (4.84) m times, and then set x = a to show that cn = f 1n21a2>n!, thus giving 
the familiar Taylor series:

	  f1x2 = a
�

n = 0

f 1n21a2
n!

 1x - a2n	 (4.85)

	 4.2	 (a) Use (4.85) to derive the first few terms in the Taylor-series expansion about x = 0 for the 
function sin x and infer the general formula. (b) Differentiate the Taylor series in (a) to obtain 
the Taylor series for cos x.

	 4.3	 (a) Find the Taylor-series expansion about x = 0 for ex. (b) Use the Taylor series (about 
x = 0) of sin x, cos x, and ex to verify that eiu =  cos u + i sin u [Eq. (1.28)].

	 4.4	 Derive (4.29) for E of a classical oscillator.

	 4.5	 (a) Find the recursion relation for the coefficients cn in the power-series solution of 
11 - x22y�1x2 - 2xy�1x2 + 3y1x2 = 0. (b) Express c4 in terms of c0 and c5 in terms of c1.

	 4.6	 Which of the following are even functions? odd functions? (a) sin x; (b) cos x; (c) tan x; (d) ex; 
(e) 13; (f) x cos x; (g) 2 - 2x; (h) (3 + x213 - x2.

	 4.7	 Prove the statements made after Eq. (4.51) about products of even and odd functions.

	 4.8	 (a) If f1x2 is an even function that is everywhere differentiable, prove that f �1x2 is an odd 
function. Do not assume that f1x2 can be expanded in a Taylor series. (b) Prove that the 
derivative of an everywhere-differentiable odd function is an even function. (c) If f1x2 is an 
even function that is differentiable at the origin, find f�(0).

	 4.9	 For the ground state of the one-dimensional harmonic oscillator, find the average value of the 
kinetic energy and of the potential energy; verify that 8T9 = 8V9  in this case.

	4.10	 Verify the normalization factors for the v = 1 and v = 2 harmonic-oscillator wave functions.

	4.11	 Use the recursion relation (4.46) to find the v = 3 normalized harmonic-oscillator wave 
function.

	4.12	 Find c>c0 for the v = 4 harmonic-oscillator wave function.

	4.13	 For the v = 1 harmonic-oscillator state, find the most likely position(s) of the particle.

	4.14	 Draw rough graphs of c and of c2 for the v = 5 state of the one-dimensional harmonic oscil-
lator without finding the explicit formula for c.

	4.15	 Find 8x9  for the harmonic-oscillator state with quantum number v.

	4.16	 True or false? (a) All harmonic-oscillator wave functions with v an odd integer must have 
a node at the origin. (b) The v = 10 harmonic-oscillator wave function has 10 interior 
nodes. (c) The v = 1 harmonic-oscillator wave function must be negative for x 6 0. (d) 
The harmonic-oscillator energy levels are equally spaced. (e) The one-dimensional harmonic-
oscillator energy levels are nondegenerate.

	4.17	 Point out the similarities and differences between the one-dimensional particle-in-a-box and 
the harmonic-oscillator wave functions and energies.

	4.18	 (a) Solve the classical harmonic-oscillator equation (4.22) to find t as a function of x. Then 
differentiate this equation to find dt>dx as a function of x. (You will probably have to look up 
the formula for the derivative.) Then write your result in the form dt = f1x2  dx, where f1x2 is 
a certain function of x. This formula gives the infinitesimal amount of time that the oscillator 
spends in the infinitesimal region of width dx and located at x. The time the oscillator takes to 
go from x = -A to x = A is one-half the period, and if we divide dt by one-half the period 
we will get the probability that the oscillator is found in the region from x to x + dx. Show 
that this probability is

1

pA31 - 1x>A2241>2 dx

		  (b) What is the value of the classical probability density p-11A2 - x22-1>2 at the turning points 
x = {A? (c) Plot A times the classical probability density versus x>A. Use the second or third 
online reference in the last paragraph of Section 4.2 to view graphs of �c � 2 versus x for high 
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quantum numbers such as v = 14, and compare your plot of the classical probability density 
with these plots.

	4.19	 Find the eigenvalues and eigenfunctions of Hn  for a one-dimensional system with V1x2 = � 
for x 6 0, V1x2 =

1
2 kx2 for x Ú 0.

	4.20	 (a) The three-dimensional harmonic oscillator has the potential-energy function

V =
1
2 kx x2 +

1
2 ky y2 +

1
2 kz z2

		  where the k’s are three force constants. Find the energy eigenvalues by solving the Schrödinger 
equation. (b) If kx = ky = kz, find the degree of degeneracy of each of the four lowest energy 
levels.

	4.21	 The Hermite polynomials are defined by

Hn1z2 = 1-12nez2 dne-z2

dzn

		  (a) Verify that

H0 = 1, H1 = 2z, H2 = 4z2 - 2, H3 = 8z3 - 12z

		  (b) The Hermite polynomials obey the relation (Pauling and Wilson, pages 77–79)

zHn1z2 = nHn - 11z2 +
1
2 Hn + 11z2

	 Verify this identity for n = 0, 1, and 2. (c) The normalized harmonic-oscillator wave functions 
can be written as (Pauling and Wilson, pages 79–80)

	 c
v
1x2 = 12v

v!2-1>21a>p21>4e-ax2>2H
v
1a1>2x2	 (4.86)

	 Verify (4.86) for the three lowest states.

	4.22	 When a second-order linear homogeneous differential equation is written in the form (2.3), 
any point at which P1x2 or Q1x2 becomes infinite is called a singular point or singularity. 
In solving a differential equation by the power-series method, one can often find the proper 
substitution to give a two-term recursion relation by examining the differential equation near 
its singularities. For the harmonic-oscillator Schrödinger equation (4.32), the singularities 
are at x = { �. To check whether x = � is a singular point, one substitutes z = 1>x and 
examines the coefficients at z = 0. Verify that exp1-ax2>22 is an approximate solution of 
(4.32) for very large � x � .

	4.23	 (a) Write a computer program that uses the recursion relation (4.39) to calculate c>c0 of 
(4.40) versus a1>2x for a1>2x values from 0 to 6 in increments of 0.5 for specified values of 
mEU-2>a = E>hn. Include a test to stop adding terms in the infinite series when the last cal-
culated term is small enough. (b) Run the program for E>hn = 0.499, 0.5, and 0.501 to verify 
Fig. 4.2.

	4.24	 (a) The infrared absorption spectrum of 1H35Cl has its strongest band at 8.65 * 1013 Hz. 
Calculate the force constant of the bond in this molecule. (b) Find the approximate zero-point 
vibrational energy of 1H35Cl. (c) Predict the frequency of the strongest infrared band of 2H35Cl.

	4.25	 The v = 0 S 1 and v = 0 S 2 bands of 1H35Cl occur at 2885.98 cm-1 and 5667.98 cm-1. 
(a) Calculate ne>c and ne xe>c for this molecule. (b) Predict the wavenumber of the v = 0 S 3 
band of 1H35Cl.

	4.26	 (a) The v = 0 S 1 band of LiH occurs at 1359 cm-1. Calculate the ratio of the v = 1 to v = 0 
populations at 25�C and at 200�C. (b) Do the same as in (a) for ICl, whose strongest infrared 
band occurs at 381 cm-1.

	4.27	 (a) Verify (4.62). (b) Find the corresponding equation for the v = 0 S v2 transition.

	4.28	 Show that if one expands U(R) in Fig. 4.6 in a Taylor series about R = Re and neglects terms 
containing 1R - Re23 and higher powers (these terms are small for R near Re), then one 
obtains a harmonic-oscillator potential with k = d 2U>dR2 � R = Re

.

	4.29	 The Morse function U1R2 = De31 - e-a1R - Re242 is often used to approximate the U(R) 
curve of a diatomic molecule, where the molecule’s equilibrium dissociation energy De is 
De K U1�2 - U1Re2. (a) Verify that this equation for De is satisfied by the Morse function. 
(b) Show that a = 1ke>2De21>2.



For Probs. 4.30–4.38, use either a program similar to that in Table 4.1, a spreadsheet, or a 
computer-algebra system such as Mathcad. If negative eigenvalues are being sought using  
Excel 2010, you must uncheck the Make Unconstrained Variables Non-Negative box in the 
Solver Parameters box.

	4.30	 Use the Numerov method to find the lowest three stationary-state energies for a particle in a 
one-dimensional box of length l with walls of infinite height.

	4.31	 (a) Use the Numerov method to find all the bound-state eigenvalues for a particle in a rect-
angular well (Section 2.4) of length l with V0 = 20U2>ml 2. Note that V is different in dif-
ferent regions and c � 0 at the walls. (b) Repeat (a) for V0 = 50U2>ml 2. (c) Check your 
results using the automatic solver in your spreadsheet program or Mathcad to find the roots 
of Eq. (2.35). (Before doing this, find approximate values from a spreadsheet graph.)

	4.32	 Use the Numerov method to find the lowest three energy eigenvalues for a one-particle system 
with V = cx4, where c is a constant.

	4.33	 Use the Numerov method to find the lowest three energy eigenvalues for a one-particle system 
with V = ax8, where a is a constant.

	4.34	 Use the Numerov method to find the lowest four energy eigenvalues for a one-particle system 
with V = � for x … 0 and V = bx for x 7 0, where b is a positive constant. (For b = mg, 
this is a particle in a gravitational field.)

	4.35	 Consider a one-particle system with V = -31.51U2>ma22>1ex>a + e-x>a22, where a is a positive 
constant. (a) Find Vr. (b) Use a spreadsheet, graphing calculator, or Mathcad to graph Vr versus 
xr. (See Prob. 4.39.) (c) Use the Numerov method to find all bound-state eigenvalues less than 
-0.1. [The exponential function is written EXP(A7) in Excel.] See the note preceding Prob. 4.30.

	4.36	 Consider a one-particle system with V =
1
4 b2>c - bx2 + cx4, where b and c are positive 

constants. If we use U, m, and b to find A and B in Er = E>A and xr = x>B, we will get the 
same results as for the harmonic oscillator, except that k is replaced by b. Thus, Eq. (4.74) 
gives B = m-1>4b-1>4U1>2. The equation for V in this problem shows that 3bx24 = 3cx44 , so 
3c4 = 3b4 >L2 and we write c = ab>B2 = ab>m-1>2b-1>2U, where a is a dimensionless con-
stant. (a) Verify that Vr = 1> 14a2 - x2

r + ax4
r . (b) Use a spreadsheet or graphing calculator 

to plot Vr versus xr for a = 0.05. (The form of Vr roughly resembles the potential energy for 
the inversion of the NH3 molecule.) (c) For a = 0.05, use the Numerov method to find all 
eigenvalues with Er 6 10. Hint: Some of the eigenvalues lie very close together. (See also 
Prob. 4.37.)

	4.37	 A one-dimensional double-well potential has V = � for x 6 -
1
2 l, V = 0 for -1

2 l … x …

-
1
4 l, V = V0 for -

1
4 l 6 x 6

1
4 l, V = 0 for 1

4 l … x …
1
2 l, and V = � for x 7

1
2 l, where l 

and V0 are positive constants. Sketch V. Use the Numerov method to find the lowest four 
eigenvalues and the corresponding unnormalized eigenfunctions for the following values of 
V0> 1U2>ml22: (a) 1; (b) 100; (c) 1000. Compare the wave functions and energies for (a) with 
those of a particle in a box of length l, and those for (c) with those of a particle in a box of 
length 1

4 l. Hints: In (b) and (c), some of the eigenvalues lie very close together. In (c), the 
eigenvalues need to be located to many decimal places to get decent-looking eigenfunctions. 
The eigenfunctions must be either even or odd functions.

	4.38	 (a) For the harmonic-oscillator Numerov example, we went from -5 to 5 in steps of 0.1 and 
found 0.4999996 as the lowest eigenvalue. For this choice of xr, 0 and sr, find all eigenvalues 
with Er 6 6; then find the eigenvalue that lies between 11 and 12 and explain why the result is 
not accurate. Then change xr, 0 or sr or both to get an accurate value for this eigenvalue. (b) Find 
the harmonic-oscillator eigenvalues with Er 6 6 if we go from -5 to 5 in steps of 0.5. (c) Find 
the harmonic-oscillator eigenvalues with Er 6 6 if we go from -3 to 3 in steps of 0.1.

	4.39	 Spreadsheets contain pitfalls for the unwary. (a) If cell A1 contains the value 5, what would you 
expect the formula = −A1^2+A1^2 to give? (Note the minus sign.) (b) Using Excel, enter 5 
in cell A1, enter = −A1^2+A1^2 in cell A2, and enter = +A1^2−A1^2 in A3. What results 
do you get?

	4.40	 Spreadsheet formulas can be written more elegantly if cells containing parameters are given 
names. Find out how to name cells in the spreadsheet program you are using. (a) In the 
harmonic-oscillator example, name cells B3 and D3 as Er and sr, respectively. Then replace 

Problems   |  87
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$B$3 and $D$3 by Er and sr in all the formulas in the spreadsheet. (b) Why is x2 not allowed 
as the name for a spreadsheet cell?

	4.41	 Use (4.67) to show that if one multiplies c1 in the Numerov method by a constant c, then 
c2, c3, c are all multiplied by c, so the entire wave function is multiplied by c, which does 
not affect the eigenvalues we find.

	4.42	 Use the normalized Numerov-method harmonic-oscillator wave functions found by going 
from -5 to 5 in steps of 0.1 to estimate the probability of being in the classically forbidden 
region for the v = 0 and v = 1 states.

	4.43	 In the Taylor series (4.85) of Prob. 4.1, let the point x = a be called xn (that is, xn K a) and let 
s K x - a = x - xn, so x = xn + s. (a) Use this notation to write (4.85) as f1xn + s2 equal 
to a power series in s and evaluate all terms through s5. (b) In the result of part (a), change s 
to 2s to find a series for f1xn - s2. Then add the two series and neglect terms in s6 and higher 
powers of s to show that

	 f1xn + s2 + f1xn - s2 � 2 f1xn2 + f �1xn2s2 +
1
12 f 1iv21xn2s4

	 fn + 1 � - fn - 1 + 2 fn + f �n s2 +
1
12 f 1iv2

n s4	 (4.87)

	 cn + 1 � -cn - 1 + 2cn + c�n s2 +
1
12c

1iv2
n s4	 (4.88)

		  where the notation of (4.65) with c replaced by f was used and then f was replaced by c. (c) 
Replace f in (4.87) by c�, multiply the resulting equation by s2, neglect the s6 term, solve for 
c1iv2

n s4, and use c� = Gc [Eq. (4.66)] to show that

	 c1iv2
n s4 � Gn + 1cn + 1s

2 + Gn - 1cn - 1s
2 - 2Gncns

2	 (4.89)

		  Substitute (4.89) and c�n = Gncn into (4.88) and solve for cn + 1 to show that Eq. (4.67) holds.

	4.44	 Use dimensional analysis to verify (4.74) for B.

	4.45	 In applying the Numerov method to count the nodes in cr, we assumed that c changes sign as it 
goes through a node. However, there are functions that do not have opposite signs on each side 
of a node. For example, the functions y = x 2 and y = x 4 are positive on both sides of the node 
at x = 0. For a function y that is positive at points just to the left of x = a, is zero at x = a, 
and is positive just to the right of x = a, the definition y� = lim�xS0 �y>�x shows that the 
derivative y� is negative just to the left of x = a and is positive just to the right of x = a. 
Therefore (assuming y� is a continuous function), y� is zero at x = a. (An exception is a func-
tion such as the V-shaped function y = � x � , whose derivative is discontinuous at x = a. But 
such a function is ruled out by the requirement that c� be continuous.) (a) Use the Schrödinger 
equation to show that if c1x2 = 0 at x = a, then c� = 0 at x = a (provided V1a2 � �). 
(b) Differentiate the Schrödinger equation to show that if both c and c� are zero at x = a, 
then c� 1a2 = 0 [provided V�1a2 � �]. Then show that all higher derivatives of c are zero 
at x = a if both c and c� are zero at x = a (and no derivatives of V are infinite at x = a). If 
c and all its derivatives are zero at x = a, the Taylor series (4.85) shows that c is zero every-
where. But a zero function is not allowed as a wave function. Therefore, c and c� cannot both 
be zero at a point, and the wave function must have opposite signs on the two sides of a node.

	4.46	 Suppose V = cx 8, where c is a positive constant, and we want all eigenvalues with Er 6 10. 
(a) Show that Vr = x8

r  and that for Er = 10 the boundaries of the classically allowed region are 
at xr = {1.33. (b) Set up a spreadsheet and verify that if we take xr, 0 = -3, xr, max = 3, and 
sr = 0.05, c undergoes spurious oscillations for � xr � 7 2.65. (c) Verify that 1 - Grs

2
r >12 � 0 

for � xr � = 2.65, so 1 - Grs
2
r >12 is negative for � xr � 7 2.65. (d) Use your spreadsheet to 

verify that the spurious oscillations are eliminated if we take either xr, 0 = -2.5, xr, max = 2.5, 
and sr = 0.05; or xr, 0 = -3, xr, max = 3, and sr = 0.02.

	4.47	 Modify the program of Table 4.1 to find the normalized wave function.

	4.48	 Rewrite the program of Table 4.1 to eliminate all array variables.

	4.49	 Spreadsheets and computer-algebra systems can easily be used to solve equations of the 
form f1x2 = 0. For example, suppose we want to solve ex = 2 - x2. A computer-made 



graph shows that the function ex - 2 + x2 equals zero at only two points, one positive and 
one negative. In Excel, enter an initial guess of 0 for x in cell A1 and = exp(A1)-2+A1^2 
in cell A3. Then click the Data tab and in the Analysis group, choose Solver. In the Solver 
Parameters box, enter A3 next to Set Objective. After To click on Value of and enter 0. Enter 
A1 after By Changing Cells; then click Options and change Precision to 1E-14. Click on 
OK and then click on Solve. Excel gives us the result 0.537274449173857, with 2 * 10-15 
in cell A3. To find the negative root, start with -1 in cell A1 and use the Solver. (a) Use 
a spreadsheet or Mathcad to solve Prob. 2.24 for the bound-state energies of a particle in a 
well. (b) For the double-well potential of Prob. 4.37, application of the procedures used in 
Section 2.4 shows that the allowed bound-state energy levels satisfy

	 31V0r - Er2>Er41>2 tan 31Er>821>24 =  - 1tanh 5 3(V 0r - Er2>841>26 2p	 (4.90)

		  where V0r K V0> 1U2>ml 22, Er K E> 1U2>ml 22, and p = -1 for the even wave func-
tions and p = 1 for the odd wave functions. The hyperbolic tangent function, defined by 
tanh z K 1e z - e-z2>1e z + e-z2, can be produced by typing TANH in Excel. Use (4.90) 
and a spreadsheet or Mathcad to find the lowest four double-well energies for each of the V0r 
values of Prob. 4.37.

	4.50	 (a) Show that if ki and fi are eigenvalues and eigenfunctions of the linear operator An, then cki 
and fi are eigenvalues and eigenfunctions of cAn. (b) Give an operator whose eigenvalues are 
1
2, 32, 52, c . (c) Give an operator whose eigenvalues are 1, 2, 3, c .

	4.51	 (a) A certain system in a certain stationary state has c = Ne-ax4
 (N is the normalization con-

stant.) Find the system’s potential-energy function V(x) and its energy E. Hint: The zero level 
of energy is arbitrary, so choose V102 = 0. (b) Sketch V(x). (c) Is this the ground-state c? 
Explain.

	4.52	 Show that adding a constant C to the potential energy leaves the stationary-state wave func-
tions unchanged and simply adds C to the energy eigenvalues.

	4.53	 True or false? (a) In the classically forbidden region, E 7 V for a stationary state. (b) If 
the harmonic-oscillator wave function c

v
 is an even function, then c

v+1 is an odd function. 
(c)  For harmonic-oscillator wave functions, 1 �

- �
c*

v
1x2c

v+11x2 dx = 0. (d) At a node in a 
bound stationary-state wave function, c� must be zero provided V is not infinite at the node. 
(e) The spacing between adjacent vibrational levels of a diatomic molecule remains constant 
as the vibrational energy increases. (f) For the v = 25 harmonic-oscillator wave function, the 
sign of c in the right-hand classically forbidden region is opposite the sign in the left-hand 
classically forbidden region. (g) The number of peaks in the graph of the harmonic-oscillator 
�c

v
� 2 equals v + 1, where v is the quantum number.
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Chapter 5

Angular Momentum

5.1 Simultaneous Specification of Several Properties
In this chapter we discuss angular momentum, and in the next chapter we show that 
for the stationary states of the hydrogen atom the magnitude of the electron’s angular 
momentum is constant. As a preliminary, we consider what criterion we can use to 
decide which properties of a system can be simultaneously assigned definite values.

In Section 3.3 we postulated that if the state function � is an eigenfunction of the 
operator An with eigenvalue s, then a measurement of the physical property A is certain 
to give the result s. If � is simultaneously an eigenfunction of the two operators An  and 
Bn, that is, if An� = s� and Bn� = t �, then we can simultaneously assign definite 
values to the physical quantities A and B. When will it be possible for � to be simulta-
neously an eigenfunction of two different operators? In Chapter 7, we shall prove the 
following two theorems. First, a necessary condition for the existence of a complete 
set of simultaneous eigenfunctions of two operators is that the operators commute 
with each other. (The word complete is used here in a certain technical sense, which 
we won’t worry about until Chapter 7.) Conversely, if An and Bn are two commuting 
operators that correspond to physical quantities, then there exists a complete set of 
functions that are eigenfunctions of both An and Bn. Thus, if 3An, Bn 4 = 0, then � can be 
an eigenfunction of both An and Bn. 

Recall that the commutator of An and Bn is 3An, Bn 4 K AnBn - BnAn [Eq. (3.7)]. The 
following identities are helpful in evaluating commutators. These identities are proved by 
writing out the commutators in detail (Prob. 5.2):

	 3An, Bn4 = - 3Bn, An4 	 (5.1)

	 3An, Ann4 = 0,  n = 1, 2, 3, c � (5.2)

	 3kAn, Bn4 = 3An, kBn4 = k3An, Bn4 	 (5.3)

	  3An, Bn + Cn4 = 3An, Bn4 + 3An, Cn4      3An + Bn, Cn4 = 3An, Cn4 + 3Bn, Cn4 	 (5.4)

	 3An, BnCn4 = 3An, Bn4Cn + Bn3An, Cn4    3AnBn, Cn4 = 3An, Cn4Bn + An3Bn, Cn4 	 (5.5)

where k is a constant and the operators are assumed to be linear.
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E x a m p l e

Starting from 30>0x, x4 = 1  [Eq. (3.8)], use the commutator identities (5.1)–(5.5) to 
find (a) 3xn, pnx4;  (b) 3xn, pn 2

x4;  and (c) 3xn, Hn4  for a one-particle, three-dimensional system.

(a)	 Use of (5.3), (5.1), and 30 >0x, x4 = 1  gives

 3xn, pnx4 = c x, 
U

i
 
0

0x
d =

U

i
c x, 

0

0x
d = -

U

i
c 0

0x
, x d = -

U

i

	  3xn, pnx4 = iU 	 (5.6)

(b)	 Use of (5.5) and (5.6) gives

 3xn, pn2
x4 = 3xn, pnx4pnx + pnx3xn, pnx4 = iU . 

U

i
 

0

0x
+

U

i
 

0

0x
 . iU

	  3xn, pn 2
x4 = 2U2 0

0x
	 (5.7)

(c)		 Use of (5.4), (5.3), and (5.7) gives

 3xn, Hn4 = 3xn, Tn + Vn4 = 3xn, Tn4 + 3xn, Vn1x, y, z24 = 3xn, Tn4
 = 3xn, 11>2m21pn2

x + pn2
y + pn2

z24
 = 11>2m23xn, pn 2

x4 + 11>2m23xn, pn 2
y4 + 11>2m23xn, pn 2

z4

 =
1

2m
2U2 0

0x
+ 0 + 0

	  3xn, Hn4 =
U2

m
 

0

0x
=

iU
m

 pnx	 (5.8)

Exercise  Show that for a one-particle, three-dimensional system,

	 3pnx, Hn4 = - iU 0V1x, y, z2>0x	 (5.9)

These commutators have important physical consequences. Since 3xn, pnx4 � 0,  we 
cannot expect the state function to be simultaneously an eigenfunction of xn and of pnx. 
Hence we cannot simultaneously assign definite values to x and px, in agreement with the 
uncertainty principle. Since xn and Hn  do not commute, we cannot expect to assign definite 
values to the energy and the x coordinate at the same time. A stationary state (which has 
a definite energy) shows a spread of possible values for x, the probabilities for observing 
various values of x being given by the Born postulate.

For a state function � that is not an eigenfunction of An, we get various possible out-
comes when we measure A in identical systems. We want some measure of the spread or 
dispersion in the set of observed values A

 i. If 8A9  is the average of these values, then the 
deviation of each measurement from the average is A

 i - 8A9 . If we averaged all the de-
viations, we would get zero, since positive and negative deviations would cancel. Hence to 
make all deviations positive, we square them. The average of the squares of the deviations 
is called the variance of A, symbolized in statistics by s21A2 and in quantum mechanics 
by 1�A22:

	 1�A22 K s21A2 K 81A - 8A9229 = L  �*1An - 8A922� dt	 (5.10)
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where the average-value expression (3.88) was used. The definition (5.10) is equivalent to 
(Prob. 5.7)

	 1�A22 = 8A29 - 8A92	 (5.11)

The positive square root of the variance is called the standard deviation, s1A2 or 
�A. The standard deviation is the most commonly used measure of spread, and we shall 
take it as the measure of the “uncertainty” in the property A.

Robertson in 1929 proved that the product of the standard deviations of two prop-
erties of a quantum-mechanical system whose state function is � must satisfy the 
inequality

	 s1A2s1B2 K �A �B Ú
1

2
`L  �*3An, Bn4� dt ` 	 (5.12)

The proof of (5.12), which follows from the postulates of quantum mechanics, is outlined 
in Prob. 7.60. If An and Bn commute, then the integral in (5.12) is zero, and �A and �B may 
both be zero, in agreement with the previous discussion.

As an example of (5.12), we find, using (5.6), � z1 z2 � = � z1 � � z2 �  [Eq. (1.34)], and 
normalization:

�x �px Ú
1

2
`L  �*3xn, pnx4� dt ` =

1

2
`L  �*iU� dt ` =

1

2
U � i � `L  �*� dt `

	 s1x2s1px2 K �x �px Ú
1
2U	 (5.13)

Equation (5.13) is usually considered to be the quantitative statement of the 
Heisenberg uncertainty principle (Section 1.3). However, the meaning of the standard 
deviations in Eqs. (5.12) and (5.13) is rather different than the meaning of the uncer-
tainties in Section 1.3. To find �x in (5.13) we take a very large number of systems, 
each of which has the same state function �, and we perform one measurement of x in 
each system. From these measured values, symbolized by x

 i, we calculate 8x9  and the 
squares of the deviations 1xi - 8x922. We average the squares of the deviations to get 
the variance and take the square root to get the standard deviation s1x2 K �x. Then we 
take many systems, each of which is in the same state � as used to get �x, and we do 
a single measurement of px in each system, calculating �px from these measurements. 
Thus, the statistical quantities �x and �px in (5.13) are not errors of individual measure-
ments and are not found from simultaneous measurements of x and px (see Ballentine, 
pp. 225–226).

Let e1x2 be the typical error in a single measurement of x and let h1px2 be the 
typical disturbance in px caused by the measurement of x. In 1927, Heisenberg ana-
lyzed specific thought experiments that perform position measurements and concluded 
that the product e1x2h1px2 was of the order of magnitude of h or larger. Heisenberg 
did not give a precise definition of these quantities. Ozawa rewrote Heisenberg’s  
relation as 

e1x2h1px2 Ú
1
2 U

where e1x2 is defined as the root-mean-square deviation of measured x values from the 
theoretical value and h1px2 is defined as the root-mean-square deviation of the change 
in px produced by the measurement of x. More generally, for any two properties, Ozawa 
wrote the Heisenberg uncertainty principle as

	 e1A2h1B2 Ú
1

2
`L  �*3An, Bn4� dt ` 	 (5.14)
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Ozawa presented arguments that, in certain circumstances, the Heisenberg inequal-
ity (5.14) can be violated. Ozawa derived the following relation to replace (5.14) [M. 
Ozawa, Phys. Rev. A, 67, 042105 (2003); available at arxiv.org/abs/quant-ph/0207121]:

e1A2h1B2 + e1A2s1B2 + s1A2h1B2 Ú
1

2
`L  �*3An, Bn4� dt `

where s1A2 and s1B2 are found from (5.10). In 2012, an experiment that measured compo-
nents of neutron spin found that the Heisenberg error–disturbance inequality (5.14) was not 
obeyed for the spin components but that the Ozawa inequality was obeyed [J. Erhart et al., 
Nature Physics, 8, 185 (2012); arxiv.org/abs/1201.1833].

Another inequality is the Heisenberg uncertainty relation for simultaneous measure-
ment of two properties A and B by an apparatus that measures both A and B:

e1A2e1B2 Ú
1

2
` L  �*3An, Bn4� dt `

where e1A2 and e1B2 are the experimental errors in the measured A and B values. This 
relation has been proven to hold, provided a certain plausible assumption (believed to hold 
for all currently available measuring devices) is valid (see references 6–12 in the above-
cited Ozawa paper).

E x a m p l e

Equations (3.91), (3.92), (3.39), the equation following (3.89), and Prob. 3.48 give for 
the ground state of the particle in a three-dimensional box

8x9 =
a

2
,  8x29 = a 1

3
-

1

2p2 ba2,  8px9 = 0,  8p2
x 9 =

h2

4a2

Use these results to check that the uncertainty principle (5.13) is obeyed.
We have

 1�x22 = 8x29 - 8x92 = a 1

3
-

1

2p2 ba2 -
a2

4
=

p2 - 6

12p2 a2

 �x = ap
2 - 6

12
b

1>2 a
p

 1�px22 = 8p2
x 9 - 8px92 =

h2

4a2,  �px =
h

2a

 �x �px = ap
2 - 6

12
b

1>2 h

2p
= 0.568U 7

1
2 U

There is also an uncertainty relation involving energy and time:

	 �E �t Ú
1
2 U	 (5.15)

Some texts state that (5.15) is derived from (5.12) by taking iU 0 >0t as the energy 
operator and multiplication by t as the time operator. However, the energy opera-
tor is the Hamiltonian Hn  and not iU 0 >0t. Moreover, time is not an observable but is a 
parameter in quantum mechanics. Hence there is no quantum-mechanical time operator. 
(The noun observable in quantum mechanics means a physically measurable property 
of a system.) Equation (5.15) must be derived by a special treatment, which we omit. 
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(See Ballentine, Section 12.3.) The derivation of (5.15) shows that �t is to be interpreted 
as the lifetime of the state whose energy is uncertain by �E. It is often stated that �t 
in (5.15) is the duration of the energy measurement. However, Aharonov and Bohm  
have shown that “energy can be measured reproducibly in an arbitrarily short time”  
[Y. Aharonov and D. Bohm, Phys. Rev., 122, 1649 (1961); 134, B1417 (1964); see also 
S. Massar and S. Popescu, Phys. Rev. A, 71, 042106 (2005); P. Busch, The Time–Energy 
Uncertainty Relation, arxiv.org/abs/quant-ph/0105049].

Now consider the possibility of simultaneously assigning definite values to three 
physical quantities: A, B, and C. Suppose

	 3An, Bn4 = 0 and 3An, Cn4 = 0	 (5.16)

Is this enough to ensure that there exist simultaneous eigenfunctions of all three operators? 
Since 3An, Bn4 = 0, we can construct a common set of eigenfunctions for An and Bn. Since 
3An, Cn4 = 0, we can construct a common set of eigenfunctions for An and Cn. If these two 
sets of eigenfunctions are the same, then we will have a common set of eigenfunctions for all 
three operators. Hence we ask: Is the set of eigenfunctions of the linear operator An uniquely 
determined (apart from arbitrary multiplicative constants)? The answer is, in general, no. If 
there is more than one independent eigenfunction corresponding to an eigenvalue of An (that 
is, degeneracy), then any linear combination of the eigenfunctions of the degenerate eigen-
value is an eigenfunction of An (Section 3.6). It might well be that the proper linear combina-
tions needed to give eigenfunctions of Bn would differ from the linear combinations that give 
eigenfunctions of Cn. It turns out that, to have a common complete set of eigenfunctions of 
all three operators, we require that 3Bn, Cn4 = 0 in addition to (5.16). To have a complete set 
of functions that are simultaneous eigenfunctions of several operators, each operator must 
commute with every other operator.

5.2 Vectors
In the next section we shall solve the eigenvalue problem for angular momentum, which is 
a vector property. We therefore first review vectors.

Physical properties (for example, mass, length, energy) that are completely specified 
by their magnitude are called scalars. Physical properties (for example, force, velocity, 
momentum) that require specification of both magnitude and direction are called vectors. 
A vector is represented by a directed line segment whose length and direction give the 
magnitude and direction of the property.

The sum of two vectors A and B is defined by the following procedure: Slide the first 
vector so that its tail touches the head of the second vector, keeping the direction of the 
first vector fixed. Then draw a new vector from the tail of the second vector to the head of 
the first vector. See Fig. 5.1. The product of a vector and a scalar, cA, is defined as a vec-
tor of length 0 c 0  times the length of A with the same direction as A if c is positive, or the 
opposite direction to A if c is negative.

C

AA

B

B

(b) C 5 A 1 B 5 B 1 A(a)

Figure 5.1  Addition of 
two vectors.
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To obtain an algebraic (as well as geometric) way of representing vectors, we set up 
Cartesian coordinates in space. We draw a vector of unit length directed along the positive 
x axis and call it i. (No connection with i = 2-1.) Unit vectors in the positive y and z 
directions are called j and k (Fig. 5.2). To represent any vector A in terms of the three unit 
vectors, we first slide A so that its tail is at the origin, preserving its direction during this 
process. We then find the projections of A on the x, y, and z axes: Ax, Ay, and Az. From the 
definition of vector addition, it follows that (Fig. 5.2)

	 A = Axi + Ayj + Azk	 (5.17)

We can specify A by specifying its three components: 1Ax, Ay, Az2. A vector in three-
dimensional space can therefore be defined as an ordered set of three numbers.

Two vectors A and B are equal if and only if all their corresponding components are 
equal: Ax = Bx, Ay = By, Az = Bz. Therefore a vector equation is equivalent to three 
scalar equations.

To add two vectors, we add corresponding components:

 A + B = Axi + Ayj + Azk + Bxi + Byj + Bzk

	  A + B = 1Ax + Bx2i + 1Ay + By2j + 1Az + Bz2k	 (5.18)

Also, if c is a scalar, then

	 cA = cAxi + cAyj + cAzk	 (5.19)

The magnitude of a vector A is its length and is denoted by A or 0A 0 . The magnitude 
A is a scalar.

The dot product or scalar product A � B of two vectors is defined by

	 A � B = 0A 0 0B 0  cos u = B � A	 (5.20)

where u is the angle between the vectors. The dot product, being the product of three 
scalars, is a scalar. Note that 0A 0  cos u is the projection of A on B. From the definition of 
vector addition, it follows that the projection of the vector A + B on some vector C is the 
sum of the projections of A and of B on C. Therefore

	 1A + B2 � C = A � C + B � C	 (5.21)

Figure 5.2  Unit vectors i, j, 
k, and components of A.

A

k

i j

Az

Ax

Ay y

x

z
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Since the three unit vectors i, j, and k are each of unit length and are mutually perpendicular, 
we have

	 i � i = j � j = k � k = cos 0 = 1,  i � j = j � k = k � i = cos1p>22 = 0	 (5.22)

Using (5.22) and the distributive law (5.21), we have

A � B = 1Ax i + Ay j + Azk2 � 1Bx i + By j + Bzk2

	 A � B = AxBx + AyBy + AzBz	 (5.23)

where six of the nine terms in the dot product are zero.
Equation (5.20) gives

	 A � A = 0A 0 2	 (5.24)

Using (5.23), we therefore have

	 0  A 0 = 1A2
x + A2

y + A2
z21>2	 (5.25)

For three-dimensional vectors, there is another type of product. The cross product or 
vector product A : B is a vector whose magnitude is

	 0A : B 0 = 0A 0  0B 0 sin u	 (5.26)

whose line segment is perpendicular to the plane defined by A and B, and whose direction 
is such that A, B, and A : B form a right-handed system (just as the x, y, and z axes form 
a right-handed system). See Fig. 5.3. From the definition it follows that

B : A = - A : B

Also, it can be shown that (Taylor and Mann, Section 10.2)

	 A : 1B + C2 = A : B + A : C	 (5.27)

For the three unit vectors, we have

i : i = j : j = k : k = sin 0 = 0

i : j = k, j : i = -k, j : k = i, k : j = - i, k : i = j, i : k = -j

Using these equations and the distributive property (5.27), we find

 A : B = 1Axi + Ayj + Azk2 : 1Bxi + By j + Bzk2
 A : B = 1AyBz - AzBy2i + 1AzBx - AxBz2j + 1AxBy - AyBx2k

Figure 5.3  Cross product 
of two vectors. A 3 B

B

A
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As a memory aid, we can express the cross product as a determinant (see Section 8.3):

	 A : B = †
i j k

Ax Ay Az

Bx By Bz

† = i ` Ay Az

By Bz
` - j ` Ax Az

Bx Bz
` + k ` Ax Ay

Bx By
` 	 (5.28)

We define the vector operator del as

	 � K i 
0

0x
+ j 

0

0y
+ k 

0

0z
	 (5.29)

From Eq. (3.23), the operator for the linear-momentum vector is pn = - iU�.
The gradient of a function g1x, y, z2 is defined as the result of operating on g 

with del:

	 grad g1x, y, z2 K �g1x, y, z2 K i
0g

0x
+ j 

0g

0y
+ k 

0g

0z
	 (5.30)

The gradient of a scalar function is a vector function. The vector �g1x, y, z2 represents the 
spatial rate of change of the function g: The x component of �g is the rate of change of g 
with respect to x, and so on. It can be shown that the vector �g points in the direction in 
which the rate of change of g is greatest. From Eq. (4.24), the relation between force and 
potential energy is

	 F = - �V1x, y, z2 = - i 
0V

0x
- j 

0V

0y
- k 

0V

0z
	 (5.31)

Suppose that the components of the vector A are each functions of some parameter t; 
Ax = Ax1t2, Ay = Ay1t2, Az = Az1t2. The derivative of A with respect to t is defined as

	
dA
dt

= i 
dAx

dt
+ j 

dAy

dt
+ k 

dAz

dt
	 (5.32)

Vector notation is a convenient way to represent the variables of a function. The wave 
function of a two-particle system can be written as c1x1, y1, z1, x2, y2, z22. If r

 1 is the vec-
tor from the origin to particle 1, then r

 1 has components x1, y1, z1 and specification of 
r

 1 is equivalent to specification of the three coordinates x1, y1, z1. The same is true for 
the vector r2 from the origin to particle 2. Therefore, we can write the wave function 
as c1r

 1, r 22. Vector notation can be used in integrals. For example, the integral over all 
space in Eq. (3.57) is often written as 1 g1 0�1r1, c, rn, t2 0 2 dr1 gdrn.

Vectors in n-Dimensional Space 
The definition of a vector can be generalized to more than three dimensions. A vector A in 
three-dimensional space can be defined by its magnitude 0A 0 and its direction, or it can be 
defined by its three components 1Ax, Ay, Az2 in a Cartesian coordinate system. Therefore, 
we can define a three-dimensional vector as a set of three real numbers 1Ax, Ay, Az2 in a 
particular order. A vector B in an n-dimensional real vector “space” (sometimes called 
a hyperspace) is defined as an ordered set of n real numbers 1B1, B2, c, Bn2, where 
B1, B2, c, Bn are the components of B. Don’t be concerned that you can’t visualize vec-
tors in an n-dimensional space.

The variables of a function are often denoted using n-dimensional vector notation. 
For example, instead of writing the wave function of a two-particle system as c1r1, r22, 
we can define a six-dimensional vector q whose components are q1 = x1, q2 = y1, 
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q3 = z1, q4 = x2, q5 = y2, q6 = z2 and write the wave function as c1q2. For an 
n-particle system, we can define q to have 3n components and write the wave function 
as c1q2 and the normalization integral over all space as 1 0  c1q2 0 2 dq.

The theory of searching for the equilibrium geometry of a molecule uses n-dimensional 
vectors (Section 15.10). The rest of Section 5.2 is relevant to Section 15.10 and need not be 
read until you study Section 15.10.

Two n-dimensional vectors are equal if all their corresponding components are equal; 
B = C if and only if B1 = C1, B2 = C2, c, Bn = Cn. Therefore, in n-dimensional 
space, a vector equation is equivalent to n scalar equations. The sum of two n-dimensional 
vectors B and D is defined as the vector 1B1 + D1, B2 + D2, c, Bn + Dn2. The dif-
ference is defined similarly. The vector kB is defined as the vector 1kB1, kB2, c, kBn2, 
where k is a scalar. In three-dimensional space, the vectors kA, where k 7 0, all lie in 
the same direction. In n-dimensional space the vectors kB all lie in the same direction. 
Just as the numbers 1Ax, Ay, Az2 define a point in three-dimensional space, the numbers 
1B1, B2, c, Bn2 define a point in n-dimensional space.

The length (or magnitude or Euclidean norm) 0B 0  (sometimes denoted 7B 7 ) of an 
n-dimensional real vector is defined as

0B 0 K 1B � B21>2 = 1B2
1 + B2

2  + g+  B2
n21>2

A vector whose length is 1 is said to be normalized.
The inner product (or scalar product) B � G of two real n-dimensional vectors B 

and G is defined as the scalar

B � G K B1G1 + B2G2  + g+  BnGn

If B � G = 0, the vectors B and G are said to be orthogonal. The cosine of the 
angle u between two n-dimensional vectors B and C is defined by analogy to (5.20) 
as cos u K B � C> 0 B 0   0 C 0 . One can show that this definition makes  cos u lie in the 
range -1 to 1.

In three-dimensional space, the unit vectors i = 11, 0, 02, j = 10, 1, 02, k = 10, 0, 12 
are mutually perpendicular. Also, any vector can be written as a linear combination of 
these three vectors [Eq. (5.17)]. In an n-dimensional real vector space, the unit vectors 
e1 K 11, 0, 0, c, 02, e2 K 10, 1, 0, c, 02, c, en K 10, 0, 0, c, 12 are mutually 
orthogonal. Since the n-dimensional vector B equals B1e1 + B2e2  + g+  Bnen, any 
n-dimensional real vector can be written as a linear combination of the n unit vectors 
e1, e2, c, en. This set of n vectors is therefore said to be a basis for the n-dimensional 
real vector space. Since the vectors e1, e2, c, en are orthogonal and normalized, they 
are an orthonormal basis for the real vector space. The scalar product B � ei gives the 
component of B in the direction of the basis vector ei. A vector space has many pos-
sible basis sets. Any set of n linearly independent real vectors can serve as a basis for the 
n-dimensional real vector space.

A three-dimensional vector can be specified by its three components or by its length 
and its direction. The direction can be specified by giving the three angles that the vec-
tor makes with the positive halves of the x, y, and z axes. These angles are the direction 
angles of the vector and lie in the range 0 to 180°. However, the direction angle with the 
z axis is fixed once the other two direction angles have been given, so only two direction 
angles are independent. Thus a three-dimensional vector can be specified by its length 
and two direction angles. Similarly, in n-dimensional space, the direction angles between 
a vector and each unit vector e1, e2, c, en can be found from the above formula for the 
cosine of the angle between two vectors. An n-dimensional vector can thus be specified 
by its length and n - 1 direction angles.
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The gradient of a function of three variables is defined by (5.30). The gradient �f  of 
a function f1q1, q2, c, qn2 of n variables is defined as the n-dimensional vector whose 
components are the first partial derivatives of f:

�f K 10f>0q12e1 + 10f>0q22e2 + g+ 10f>0qn2en

We have considered real, n-dimensional vector spaces. Dirac’s formulation of quan-
tum mechanics uses a complex, infinite-dimensional vector space, discussion of which is 
omitted.

5.3 Angular Momentum of a One-Particle System
In Section 3.3 we found the eigenfunctions and eigenvalues for the linear-momen-
tum operator pnx. In this section we consider the same problem for the angular mo-
mentum of a particle. Angular momentum plays a key role in the quantum mechanics 
of atomic structure. We begin by reviewing the classical mechanics of angular 
momentum.

Classical Mechanics of One-Particle Angular Momentum 
Consider a moving particle of mass m. We set up a Cartesian coordinate system that is 
fixed in space. Let r be the vector from the origin to the instantaneous position of the 
particle. We have

	 r = i x + j y + k z	 (5.33)

where x, y, and z are the particle’s coordinates at a given instant. These coordinates are 
functions of time. Defining the velocity vector v as the time derivative of the position 
vector, we have [Eq. (5.32)]

	 v K
dr
dt

= i 
dx

dt
+ j 

dy

dt
+ k 

dz

dt
	 (5.34)

vx = dx>dt, vy = dy>dt, vz = dz>dt

We define the particle’s linear momentum vector p by

	 p K mv	 (5.35)

	 px = mvx, py = mvy, pz = mvz	 (5.36)

The particle’s angular momentum L with respect to the coordinate origin is defined 
in classical mechanics as

	 L K r : p	 (5.37)

	 L = †
i j k
x y z

px py pz

† 	 (5.38)

	 Lx = ypz - zpy, Ly = zpx - xpz, Lz = xpy - ypx	 (5.39)

where (5.28) was used. Lx, Ly, and Lz are the components of L along the x, y, and z axes. 
The angular-momentum vector L is perpendicular to the plane defined by the particle’s 
position vector r and its velocity v (Fig. 5.4).
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The torque t acting on a particle is defined as the cross product of r and the force F 
acting on the particle: t K r : F. One can show that t = dL>dt. When no torque acts 
on a particle, the rate of change of its angular momentum is zero; that is, its angular mo-
mentum is constant (or conserved). For a planet orbiting the sun, the gravitational force is 
radially directed. Since the cross product of two parallel vectors is zero, there is no torque 
on the planet and its angular momentum is conserved.

One-Particle Orbital-Angular-Momentum Operators 
Now let us turn to the quantum-mechanical treatment. In quantum mechanics, there are 
two kinds of angular momenta. Orbital angular momentum results from the motion 
of a particle through space, and is the analog of the classical-mechanical quantity L. 
Spin angular momentum (Chapter 10) is an intrinsic property of many microscopic 
particles and has no classical-mechanical analog. We are now considering only orbital 
angular momentum. We get the quantum-mechanical operators for the components of 
orbital angular momentum of a particle by replacing the coordinates and momenta in 
the classical equations (5.39) by their corresponding operators [Eqs. (3.21)–(3.23)]. 
We find

	 Ln x = - iUay
0

0z
- z 

0

0y
b 	 (5.40)

	 Ln y = - iUaz
0

0x
- x

0

0z
b 	 (5.41)

	 Ln z = - iUax
0

0y
- y

0

0x
b 	 (5.42)

(Since ynpnz = pnzyn, and so on, we do not run into any problems of noncommutativity in 
constructing these operators.) Using

	 Ln2 = � Ln �2 = Ln  � Ln = Ln 2
x + Ln 2

y + Ln 2
z 	 (5.43)

we can construct the operator for the square of the angular-momentum magnitude from 
the operators in (5.40)–(5.42).

Since the commutation relations determine which physical quantities can be simul-
taneously assigned definite values, we investigate these relations for angular momentum. 
Operating on some function f1x, y, z2 with Ln y, we have

Ln y f = - iUaz
0f

0x
- x

0f

0z
b

Figure 5.4  L K r : p.

r

L

p 5 mv
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Operating on this last equation with Ln x, we get

	 Ln xLn y f = -U2ay
0f

0x
+ yz

02f

0z 0x
- yx

02f

0z2 - z2 02f

0y 0x
+ zx

02f

0y 0z
b 	 (5.44)

Similarly,

 Ln x f = - iUay
0f

0z
- z

0f

0y
b

	  Ln yLn x f = -U2azy
02f

0x 0z
- z2 02f

0x 0y
- xy

02f

0z2 + x
0f

0y
+ xz

02f

0z 0y
b 	 (5.45)

Subtracting (5.45) from (5.44), we have

 Ln xLn y f - Ln yLn x f = -U2ay
0f

0x
- x

0f

0y
b

	  3Ln x, Ln y4 = iULn z 	 (5.46)

where we used relations such as

	
02f

0z 0x
=

02f

0x 0z
	 (5.47)

which are true for well-behaved functions. We could use the same procedure to find 
3Ln y, Ln z4  and 3Ln z, Ln x4 , but we can save time by noting a certain kind of symmetry in 
(5.40)–(5.42). By a cyclic permutation of x, y, and z, we mean replacing x by y, replacing 
y by z, and replacing z by x. If we carry out a cyclic permutation in Ln x, we get Ln y; a cyclic 
permutation in Ln y gives Ln z; and Ln z is transformed into Ln x by a cyclic permutation. Hence, 
by carrying out two successive cyclic permutations on (5.46), we get

	 3Ln y, Ln z4 = iULn x,  3Ln z, Ln x4 = iULn y	 (5.48)

We next evaluate the commutators of Ln 2 with each of its components, using commuta-
tor identities of Section 5.1.

 3Ln 2, Ln  x4 = 3Ln 2
x + Ln 2

y + Ln 2
z , Ln  x4

 = 3Ln 2
x, Ln x4 + 3Ln 2

y, Ln x4 + 3Ln 2
z , Ln x4

 = 3Ln 2
y, Ln  x4 + 3Ln 2

z , Ln  x4
 = 3Ln y, Ln x4Ln y + Ln y3Ln y, Ln x4 + 3Ln z, Ln x4Ln z + Ln z3Ln z, Ln x4
 = - iULn  zLn y - iULn yLn z + iULn yLn z + iULn  zLn y

	 3Ln 2, Ln x4 = 0	 (5.49)

Since a cyclic permutation of x, y, and z leaves Ln 2 = Ln 2
x + Ln 2

y + Ln 2
z  unchanged, if we 

carry out two such permutations on (5.49), we get

	 3Ln 2, Ln y4 = 0, 3Ln 2, Ln z4 = 0	 (5.50)

To which of the quantities L2, Lx, Ly, Lz can we assign definite values simultaneously? 
Because Ln 2 commutes with each of its components, we can specify an exact value for L2 
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and any one component. However, no two components of Ln  commute with each other, so 
we cannot specify more than one component simultaneously. (There is one exception to 
this statement, which will be discussed shortly.) It is traditional to take Lz as the compo-
nent of angular momentum that will be specified along with L2. Note that in specifying 
L2 = 0L 0 2 we are not specifying the vector L, only its magnitude. A complete specifica-
tion of L requires simultaneous specification of each of its three components, which we 
usually cannot do. In classical mechanics when angular momentum is conserved, each of 
its three components has a definite value. In quantum mechanics when angular momen-
tum is conserved, only its magnitude and one of its components are specifiable.

We could now try to find the eigenvalues and common eigenfunctions of Ln 2 and Ln  z by 
using the forms for these operators in Cartesian coordinates. However, we would find that 
the partial differential equations obtained would not be separable. Therefore we transform 
these operators to spherical coordinates (Fig. 5.5). The coordinate r is the distance from 
the origin to the point (x, y, z). The angle u is the angle the vector r makes with the posi-
tive z axis. The angle that the projection of r in the xy plane makes with the positive x axis 
is f. (Mathematics texts often interchange u and f.) A little trigonometry gives

	 x = r sin u cos f,  y = r sin u sin f,  z = r cos u	 (5.51)

	 r 2 = x2 + y2 + z2,   cos u =
z

1x2 + y2 + z221>2,   tan f =
y

x
	 (5.52)

To transform the angular-momentum operators to spherical coordinates, we must 
transform 0 >0x, 0 >0y, and 0 >0z into these coordinates. [This transformation may be 
skimmed if desired. Begin reading again after Eq. (5.64).]

�To perform this transformation, we use the chain rule. Suppose we have a function of r, u, and 
f: f1r, u, f2. If we change the independent variables by substituting

r = r1x, y, z2, u = u1x, y, z2, f = f1x, y, z2
into f, we transform it into a function of x, y, and z:

f 3r1x, y, z2, u1x, y, z2, f1x, y, z24 = g1x, y, z2
�For example, suppose that f1r, u, f2 = 3r cos u + 2 tan 2f.  Using (5.52), we have 
g1x, y, z2 = 3z + 2y2x- 2.

The chain rule tells us how the partial derivatives of g1x, y, z2 are related to those of 
f1r, u, f2. In fact,

	 a 0g

0x
b

y,z
= a 0f

0r
b
u,f

a 0r

0x
b

y,z
+ a 0f

0u
b

r,f
a 0u

0x
b

y,z
+ a 0f

0f
b

r,u
a 0f

0x
b

y,z
	 (5.53)

	 a 0g

0y
b

x,z
= a 0f

0r
b
u,f

a 0r

0y
b

x,z
+ a 0f

0u
b

r,f
a 0u

0y
b

x,z
+ a 0f

0f
b

r,u
a 0f

0y
b

x,z
	 (5.54)

z

r

y

x

Figure 5.5  Spherical 
coordinates.
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	 a 0g

0z
b

x, y
= a 0f

0r
b
u,f

a 0r

0z
b

x, y
+ a 0f

0u
b

r,f
a 0u

0z
b

x,y
+ a 0f

0f
b

r,u
a 0f

0z
b

x,y
	 (5.55)

To convert these equations to operator equations, we delete f and g to give

	
0

0x
= a 0r

0x
b

y, z

0

0r
+ a 0u

0x
b

y, z

0

0u
+ a 0f

0x
b

y,z

0

0f
	 (5.56)

with similar equations for 0 >0y and 0 >0z. The task now is to evaluate the partial derivatives 
such as 10r>0x2y,z. Taking the partial derivative of the first equation in (5.52) with respect to x 
at constant y and z, we have

 2ra 0r

0x
b

y,z
= 2x = 2r sin u cos f

	  a 0r

0x
b

y,z
=  sin u cos f 	 (5.57)

Differentiating r2 = x2 + y2 + z2 with respect to y and with respect to z, we find

	 a 0r

0y
b

x,z
= sin u sin f,  a 0r

0z
b

x,y
= cos u	 (5.58)

From the second equation in (5.52), we find

 -sin ua 0u

0x
b

y,z
= -

xz

r3

	  a 0u

0x
b

y,z
=

  cos u cos f

 r
	 (5.59)

Also,

	 a 0u

0y
b

x,z
=

 cos u sin f

 r
,  a 0u

0z
b

x,y
= -

 sin u
 r

	 (5.60)

From  tan f = y>x, we find

	 a 0f

0x
b

y,z
= -

 sin f

r sin u
,  a 0f

0y
b

x,z
=

  cos f

r sin u
,  a 0f

0z
b

x,y
= 0	 (5.61)

Substituting (5.57), (5.59), and (5.61) into (5.56), we find

	
0

0x
=  sin u cos f 

0

0r
+

 cos u cos f

r
  

0

0u
-

 sin f

r sin u 
  

0

0f
	 (5.62)

Similarly,

	
0

0y
=  sin u sin f

0

0r
+

 cos u sin f

r
 

0

0u
+

 cos f

r sin u 
 

0

0f
	 (5.63)

	
0

0z
= cos u

0

0r
-

 sin u
r

 
0

0u
	 (5.64)

At last, we are ready to express the angular-momentum components in spherical 
coordinates. Substituting (5.51), (5.63), and (5.64) into (5.40), we have



104  Chapter 5  |  Angular Momentum

Ln x = - iU c r sin u sin facos u
0

0r
-

 sin u
r

 
0

0u
b

	 -r cos ua  sin u sin f 
0

0r
+

 cos u sin f
r

 
0

0u
+

 cos f

r sin u

0

0f
bd

	 Ln x = iUasin f
0

0u
+ cot u cos f

0

0f
b 	 (5.65)

Also, we find

	 Ln y = - iUacos f
0

0u
- cot u sin f

0

0f
b 	 (5.66)

	 Ln z = - iU
0

0f
	 (5.67)

By squaring each of Ln x, Ln y, and Ln z and then adding their squares, we can construct 
Ln 2 = Ln 2

x + Ln 2
y + Ln 2

z  [Eq. (5.43)]. The result is (Prob. 5.17)

	 Ln 2 = -U2a 02

0u2 + cot u
0

0u
+

1

 sin2u
 

02

0f2 b 	 (5.68)

Although the angular-momentum operators depend on all three Cartesian coordi-
nates, x, y, and z, they involve only the two spherical coordinates u and f.

One-Particle Orbital-Angular-Momentum Eigenfunctions and Eigenvalues
We now find the common eigenfunctions of Ln 2 and Ln z, which we denote by Y. Since these 
operators involve only u and f, Y is a function of these two coordinates: Y = Y1u, f2. (Of 
course, since the operators are linear, we can multiply Y by an arbitrary function of r and 
still have an eigenfunction of Ln 2 and Ln z.) We must solve

	 Ln z Y1u, f2 = bY1u, f2	 (5.69)

	 Ln 2
 Y1u, f2 = cY1u, f2	 (5.70)

where b and c are the eigenvalues of Ln z and Ln 2.
Using the Ln z operator, we have

	 - iU
0

0f
Y1u, f2 = bY1u, f2	 (5.71)

Since the operator in (5.71) does not involve u, we try a separation of variables, writing

	 Y1u, f2 = S1u2T1f2	 (5.72)

Equation (5.71) becomes

	  - iU
0

0f
3S1u2T1f24 = bS1u2T1f2

	  - iUS1u2dT1f2
df

= bS1u2T1f2

	  
dT1f2
T1f2 =

ib

U
df

	  T1f2 = Aeibf>U 	 (5.73)

where A is an arbitrary constant.
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Is T suitable as an eigenfunction? The answer is no, since it is not, in general, a single-
valued function. If we add 2p to f, we will still be at the same point in space, and hence 
we want no change in T when this is done. For T to be single-valued, we have the restriction

	  T1f + 2p2 = T1f2

	  Aeibf>Ueib2p>U = Aeibf>U

	  eib2p>U = 1 	 (5.74)

To satisfy eia =  cos a + i sin a = 1, we must have a = 2pm, where

m = 0, {1, {2,  {g

Therefore, (5.74) gives

	 2pb>U = 2pm

	 b = mU,  m = c - 2, -1, 0, 1, 2, c 	 (5.75)

and (5.73) becomes

	 T1f2 = Aeimf, m = 0, {1, {2, c 	 (5.76)

The eigenvalues for the z component of angular momentum are quantized.
We fix A by normalizing T. First let us consider normalizing some function F of r, u, 

and f. The ranges of the independent variables are (see Fig. 5.5)

	 0 … r … �,  0 … u … p,  0 … f … 2p	 (5.77)

The infinitesimal volume element in spherical coordinates is (Taylor and Mann, Section 13.9)

	 dt = r 2 sin u dr du df	 (5.78)

The quantity (5.78) is the volume of an infinitesimal region of space for which the spheri-
cal coordinates lie in the ranges r to r + dr, u to u + du, and f to f + df. The normal-
ization condition for F in spherical coordinates is therefore

	 L
�

0
c L

p

0
c L

2p

0
�  F1r, u, f2 � 2 df d  sin u du d r 2 dr = 1	 (5.79)

If F happens to have the form

	 F1r, u, f2 = R1r2S1u2T1f2
then use of the integral identity (3.74) gives for (5.79)

L
�

0
� R1r2 � 2

 r 2 dr L
p

0
� S1u2 � 2 sin u du L

2p

0
� T1f2 � 2 df = 1

and it is convenient to normalize each factor of F separately:

	 L
�

0
� R � 2

 r2 dr = 1, L
p

0
� S � 2 sin u du = 1, L

2p

0
� T �2 

df = 1	 (5.80)

Therefore,

L
2p

0
1Aeimf2*Aeimf df = 1 = � A � 2 L

2p

0
df

� A � = 12p2-1>2
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	 T1f2 =
122p

eimf,  m = 0, {1, {2, c 	 (5.81)

We now solve Ln2Y = cY  [Eq. (5.70)] for the eigenvalues c of Ln 2. Using (5.68) for Ln 2, 
(5.72) for Y, and (5.81), we have

	 -U2a 02

0u2 +  cot u 
0

0u
+

1

 sin 2u
 

02

0f2 b aS1u2 
122p

 eimfb = cS1u2 122p
 eimf

	
d2S

du2 + cot u
dS

du
-

m2

 sin2u
S = -

c

U2 S	 (5.82)

To solve (5.82), we carry out some tedious manipulations, which may be skimmed if desired. 
Begin reading again at Eq. (5.91). First, for convenience, we change the independent variable 
by making the substitution

	 w = cos u	 (5.83)

This transforms S into some new function of w:

	 S1u2 = G1w2	 (5.84)

The chain rule gives

	
dS

du
=

dG

dw
 
dw

du
= -sin u 

dG

dw
= - 11 - w221>2 

dG

dw
	 (5.85)

Similarly, we find (Prob. 5.25)

	
d2S

du2 = 11 - w22d2G

dw2 - w
dG

dw
	 (5.86)

Using (5.86), (5.85), and  cot u = cos u>sin u = w> 11 - w221>2, we find that (5.82) becomes

	 11 - w22d2G

dw2 - 2w
dG

dw
+ c c

U2 -
m2

1 - w2 dG1w2 = 0	 (5.87)

The range of w is -1 … w … 1.
To get a two-term recursion relation when we try a power-series solution, we make the 

following change of dependent variable:

	 G1w2 = 11 - w22�m�>2H1w2	 (5.88)

Differentiating (5.88), we evaluate G� and G�, and (5.87) becomes, after we divide by 
11 - w22�m�>2,

	 11 - w22H � - 21 � m � + 12wH� + 3cU- 2 - � m � 1 � m � + 124H = 0	 (5.89)

We now try a power series for H:

	 H1w2 = a
�

j = 0
ajw

j	 (5.90)

Differentiating [compare Eqs. (4.36)–(4.38)], we have

 H�1w2 = a
�

j = 0
jajw

j- 1

 H�1w2 = a
�

j = 0
j1 j - 12ajw

j- 2 = a
�

j = 0
1 j + 221 j + 12aj+ 2w

j
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Substitution of these power series into (5.89) yields, after combining sums,

a
�

j = 0
c 1 j + 221 j + 12aj+ 2 + a- j2 - j - 2 � m � j +

c

U2 - � m � 2 - � m � baj dw j = 0

Setting the coefficient of w j equal to zero, we get the recursion relation

	 aj+ 2 =
1 j + � m � 21 j + � m � + 12 - c>U2

1 j + 121 j + 22   aj	 (5.91)

Just as in the harmonic-oscillator case, the general solution of (5.89) is an arbitrary 
linear combination of a series of even powers (whose coefficients are determined by a0) 
and a series of odd powers (whose coefficients are determined by a1). It can be shown 
that the infinite series defined by the recursion relation (5.91) does not give well-behaved 
eigenfunctions. [Many texts point out that the infinite series diverges at w = {1. How-
ever, this is not sufficient cause to reject the infinite series, since the eigenfunctions might 
be quadratically integrable, even though infinite at two points. For a careful discussion, 
see M. Whippman, Am. J. Phys., 34, 656 (1966).] Hence, as in the harmonic-oscillator 
case, we must cause one of the series to break off, its last term being akw

k. We eliminate 
the other series by setting a0 or a

 1 equal to zero, depending on whether k is odd or even.
Setting the coefficient of ak in (5.91) equal to zero, we have

	 c = U21k + � m �21k + � m � + 12,  k = 0, 1, 2, c 	 (5.92)

Since � m �  takes on the values 0, 1, 2, c, the quantity k + � m �  takes on the values 
0, 1, 2, c. We therefore define the quantum number l as

	 l K k + � m � 	 (5.93)

and the eigenvalues for the square of the magnitude of angular momentum are

	 c = l1l + 12U2,  l = 0, 1, 2, c 	 (5.94)

The magnitude of the orbital angular momentum of a particle is

	 � L � = 3l1l + 1241>2 U	 (5.95)

From (5.93), it follows that � m � … l. The possible values for m are thus

	 m = - l, - l + 1, - l + 2, c, -1, 0, 1, c, l - 2, l - 1, l	 (5.96)

Let us examine the angular-momentum eigenfunctions. From (5.83), (5.84), (5.88), 
(5.90), and (5.93), the theta factor in the eigenfunctions is

	 Sl,m1u2 = sin 0m 0
 

 u a
l- 0m 0

j = 1,3, . . . 
or j = 0,2, . . .

aj cos j u	 (5.97)

where the sum is over even or odd values of j, depending on whether l - � m �  is even or 
odd. The coefficients aj satisfy the recursion relation (5.91), which, using (5.94), becomes

	 aj+ 2 =
1 j + � m � 21 j + � m � + 12 - l1l + 12

1 j + 121 j + 22 aj	 (5.98)

The Ln2 and Ln z eigenfunctions are given by Eqs. (5.72) and (5.81) as

	 Ym
l 1u, f2 = Sl,m1u2T1f2 =

122p
Sl,m1u2eimf 	 (5.99)

The m in Y m
l  is a label, and not an exponent.
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E x a m p l e

Find Y m
l 1u, f2 and the Ln2 and Ln z eigenvalues for (a) l = 0; (b) l = 1.

(a)  For l = 0, Eq. (5.96) gives m = 0, and (5.97) becomes

	 S0,01u2 = a0	 (5.100)

The normalization condition (5.80) gives

	  L
p

0
� a0 � 2  sin u  du = 1 = 2 � a0 � 2

	  � a0� = 2-1>2

Equation (5.99) gives

	 Y 0
01u, f2 =

124p
	 (5.101)

[Obviously, (5.101) is an eigenfunction of Ln2, Ln x, Ln y, and Ln z, Eqs. (5.65)–(5.68).] 
For l = 0, there is no angular dependence in the eigenfunction; we say that the 
eigenfunctions are spherically symmetric for l = 0.

For l = 0 and m = 0, Eqs. (5.69), (5.70), (5.75), and (5.94) give the Ln2 
eigenvalue as c = 0 and the Ln z eigenvalue as b = 0.

(b) � For l = 1, the possible values for m in (5.96) are -1, 0, and 1. For � m � = l, (5.97) 
gives

	 S1,{1(u) = a0 sin u	 (5.102)

a0 in (5.102) is not necessarily the same as a0 in (5.100). Normalization gives

	 1 =  � a2
0 � L

p

0
sin2 u  sin u du =  � a2

0 � L
1

-1
11 - w22 dw

	 � a0 � = 23>2

where the substitution w = cos u was made. Thus S1,{1 = 131>2>22sin u and 
(5.99) gives

	 Y 1
1 = 13>8p21>2 sin u  eif,  Y -1

1 = 13>8p21>2 sin u  e - if	 (5.103)

For l = 1 and m = 0, we find (see the following exercise) S1,0 = 13>221>2 cos u 
and Y 0

1 = 13>4p21>2 cos u.
For l = 1, (5.94) gives the Ln 2 eigenvalue as 2U2; for m = -1, 0, and 1, (5.75) 

gives the Ln z eigenvalues as -U, 0, and U, respectively.

Exercise  Verify the expressions for S1,0 and Y 0
1.

The functions Sl,m1u2 are well known in mathematics and are associated Legendre 
functions multiplied by a normalization constant. The associated Legendre functions are 
defined in Prob. 5.34. Table 5.1 gives the Sl,m1u2 functions for l … 3.

The angular-momentum eigenfunctions Y m
l  in (5.99) are called spherical harmonics 

(or surface harmonics).
In summary, the one-particle orbital angular-momentum eigenfunctions and 

eigenvalues are [Eqs. (5.69), (5.70), (5.75), and (5.94)]
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Table 5.1  Sl,m(U)

l = 0: S0,0 =
1
222

l = 1: S1,0 =
1
226 cos u

S1,{1 =
1
223 sin u

l = 2: S2,0 =
1
421013 cos2 u - 12

S2,{1 =
1
2215 sin u cos u

S2,{2 =
1
4215 sin2 u

l = 3: S3,0 =
3
421415

3 cos3 u - cos u2
S3,{1 =

1
8242 sin u15 cos2 u - 12

S3,{2 =
1
42105 sin2 u cos u

S3,{3 =
1
8270 sin3 u

	 Ln2Y m
l 1u, f2 = l1l + 12U2Y m

l 1u, f2, l = 0, 1, 2, c 	 (5.104)

	 Ln z Y m
l 1u, f2 = mUY m

l 1u, f2, m = - l, - l + 1, c, l - 1, l	 (5.105)

where the eigenfunctions are given by (5.99). Often the symbol ml is used instead of m for 
the Lz quantum number. We shall later see that the spherical harmonics are orthogonal 
functions [Eq. (7.27)].

Since l Ú � m �, the magnitude 3l1l + 1241>2U  of the orbital angular momentum L 
is greater than the magnitude � m � U of its z component Lz, except for l = 0. If it were 
possible to have the angular-momentum magnitude equal to its z component, this would 
mean that the x and y components were zero, and we would have specified all three 
components of L. However, since the components of angular momentum do not com-
mute with each other, we cannot do this. The one exception is when l is zero. In this 
case, � L � 2 = L2

x + L2
y + L2

z  has zero for its eigenvalue, and it must be true that all three 
components Lx, Ly, and Lz have zero eigenvalues. From Eq. (5.12), the uncertainties in 
angular-momentum components satisfy

	 �Lx �Ly Ú
1

2
`L  �*3Ln x, Ln y4� dt ` =

U

2
`L  �*Ln z� dt ` 	 (5.106)

and two similar equations obtained by cyclic permutation. When the eigenvalues of 
Ln z, Ln x, and Ln y are zero, Ln x� = 0, Ln y� = 0, Ln z� = 0, the right-hand sides of (5.106) 
and the two similar equations are zero, and having �Lx = �Ly = �Lz = 0 is permit-
ted. But what about the statement in Section 5.1 that to have simultaneous eigenfunc-
tions of two operators the operators must commute? The answer is that this theorem 
refers to the possibility of having a complete set of eigenfunctions of one operator be 
eigenfunctions of the other operator. Thus, even though Ln x and Ln z do not commute, 
it is possible to have some of the eigenfunctions of Ln z (those with l = 0 = m) be 
eigenfunctions of Ln x. However, it is impossible to have all the Ln  z eigenfunctions also 
be eigenfunctions of Ln x.
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Since we cannot specify Lx and Ly, the vector L can lie anywhere on the surface of a 
cone whose axis is the z axis, whose altitude is mU, and whose slant height is 2l1l + 12 U 
(Fig. 5.6). The possible orientations of L with respect to the z axis for the case l = 1 are 
shown in Fig. 5.7. For each eigenvalue of Ln 2, there are 2l + 1 different eigenfunctions Y m

l , 
corresponding to the 2l + 1 values of m. We say that the Ln 2 eigenvalues are 12l + 12-fold 
degenerate. The term degeneracy is applicable to the eigenvalues of any operator, not just 
the Hamiltonian.

Of course, there is nothing special about the z axis. All directions of space are equiv-
alent. If we had chosen to specify L2 and Lx (rather than Lz), we would have gotten the 
same eigenvalues for Lx as we found for Lz. However, it is easier to solve the Ln  z eigenvalue 
equation because Ln  z has a simple form in spherical coordinates, which involve the angle of 
rotation f about the z axis.

5.4 �The Ladder-Operator Method for 
Angular Momentum

We found the eigenvalues of Ln 2 and Ln z by expressing these orbital angular-momentum 
operators as differential operators and solving the resulting differential equations. We now 
show that these eigenvalues can be found using only the operator commutation relations. 
The work in this section applies to any operators that satisfy the angular-momentum com-
mutation relations. In particular, it applies to spin angular momentum (Chapter 10) as well 
as orbital angular momentum.

We used the letter L for orbital angular momentum. Here we will use the letter M to 
indicate that we are dealing with any kind of angular momentum. We have three linear 

z

L
œl(l 1 1) 

Figure 5.6  Orientation of L.

z z
z

h

2h

l 5 1 m 5 1 l 5 1 m 5 0 l 5 1 m 5 21

œ2h œ2h

œ2h

Figure 5.7  Orientations of L with respect to the z axis for l = 1.
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operators Mn x, Mn y, and Mn z, and all we know about them is that they obey the commutation 
relations [similar to (5.46) and (5.48)]

	 3Mn x, Mn y4 = iUMn z,  3Mn y, Mn z4 = iUMn x,  3Mn z, Mn x4 = iUMn y 	 (5.107)

We define the operator Mn 2 as

	 Mn 2 = Mn 2
x + Mn 2

y + Mn 2
z 	 (5.108)

Our problem is to find the eigenvalues of Mn 2 and Mn z.
We begin by evaluating the commutators of Mn 2 with its components, using Eqs. 

(5.107) and (5.108). The work is identical with that used to derive Eqs. (5.49) and (5.50), 
and we have

	 3Mn 2, Mn x4 = 3Mn 2, Mn y4 = 3Mn 2, Mn z4 = 0 	 (5.109)

Hence we can have simultaneous eigenfunctions of Mn 2 and Mn z.
Next we define two new operators, the raising operator Mn +  and the lowering 

operator Mn - :

	 Mn + K Mn x + iMn y	 (5.110)

	 Mn - K Mn x - iMn y	 (5.111)

These are examples of ladder operators. The reason for the terminology will become 
clear shortly. We have

	  Mn +Mn - = 1Mn x + iMn y21Mn x - iMn y2 = Mn x1Mn x - iMn y2 + iMn y1Mn x - iMn y2

	  = Mn 2
x - iMn x  Mn y + iMn y  Mn x + Mn 2

y = Mn 2 - Mn 2
z + i3Mn y , Mn x4

	  Mn +  Mn - = Mn 2 - Mn 2
z + UMn z	 (5.112)

Similarly, we find

	 Mn -  Mn + =  Mn 2 - Mn 2
z - UMn z	 (5.113)

For the commutators of these operators with Mn z, we have

 3Mn + , Mn z4 = 3Mn x + iMn y, Mn z4 = 3Mn x, Mn z4 + i3Mn y, Mn z4 = - iUMn y - UMn x

 3Mn + , Mn z4 = -UMn +

	  Mn +  Mn z = Mn z  Mn + - UMn + 	 (5.114)

where (5.107) was used. Similarly, we find

	 Mn -  Mn z = Mn z Mn - + UMn - 	 (5.115)

Using Y for the common eigenfunctions of Mn 2 and Mn z, we have

	 Mn 2Y = cY 	 (5.116)

	 Mn zY = bY 	 (5.117)

where c and b are the eigenvalues. Operating on Eq. (5.117) with Mn + , we get

Mn +  Mn z Y = Mn +  bY

Using Eq. (5.114) and the fact that Mn +  is linear, we have

	 1Mn z Mn + - UMn + 2Y = bMn +Y

	 Mn z1Mn +Y2 = 1b + U21Mn +Y2	 (5.118)
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This last equation says that the function Mn +Y  is an eigenfunction of Mn z with eigenvalue 
b + U. In other words, operating on the eigenfunction Y with the raising operator Mn +  
converts Y into another eigenfunction of Mn z with eigenvalue U higher than the eigen-
value of Y. If we now apply the raising operator to (5.118) and use (5.114) again, we 
find similarly

	 Mn z1Mn 2
+  Y2 = 1b + 2U21Mn 2

+Y2
Repeated application of the raising operator gives

	 Mn z1Mn k
+Y2 = 1b + kU21Mn k

+Y2, k = 0, 1, 2, c 	 (5.119)

If we operate on (5.117) with the lowering operator and apply (5.115), we find in the 
same manner

	 Mn z1Mn -Y2 = 1b - U21Mn -Y2	 (5.120)

	 Mn z1Mn k
-Y2 = 1b - kU21Mn k

-Y2	 (5.121)

Thus by using the raising and lowering operators on the eigenfunction with the 
eigenvalue b, we generate a ladder of eigenvalues, the difference from step to step 
being U:

c b - 2U, b - U, b, b + U, b + 2U, c

The functions Mn k
{  Y  are eigenfunctions of Mn z with eigenvalues b { kU [Eqs. (5.119) 

and (5.121)]. We now show that these functions are also eigenfunctions of Mn 2, all with the 
same eigenvalue c:

	 Mn zMn
k
{Y = 1b { kU2Mn k

{Y 	 (5.122)

	 Mn 2Mn k
{  Y = cMn k

{  Y,  k = 0, 1, 2, c 	 (5.123)

To prove (5.123), we first show that Mn 2 commutes with Mn + and Mn -  :

	 3Mn 2, Mn{4 = 3Mn 2, Mn x { iMn y4 = 3Mn 2, Mn x4 { i 3Mn 2, Mn y4 = 0 { 0 = 0

We also have

	 3Mn 2, Mn 2
{ 4 = 3Mn 2, Mn{4Mn{ + Mn{ 3Mn 2, Mn{4 = 0 + 0 = 0

and it follows by induction that

	 3Mn 2, Mn k
{ 4 = 0 or Mn 2Mn k

{ = Mn k
{  Mn

2,  k = 0, 1, 2, c 	 (5.124)

If we operate on (5.116) with Mn k
{  and use (5.124), we get

	 Mn k
{  Mn

2Y = Mn k
{  cY

	 Mn 21Mn k
{  Y2 = c 1Mn k

{Y2	 (5.125)

which is what we wanted to prove.
Next we show that the set of eigenvalues of Mn z generated using the ladder 

operators must be bounded. For the particular eigenfunction Y with Mn z eigenvalue b, 
we have

	 Mn z Y = bY

and for the set of eigenfunctions and eigenvalues generated by the ladder operators,  
we have

	 Mn z Yk = bk Yk	 (5.126)
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where

	  Yk = Mn k
{  Y 	 (5.127)

	  bk = b { kU	 (5.128)

(Application of Mn +  or Mn -  destroys the normalization of Y, so Yk is not normalized. For the 
normalization constant, see Prob. 10.27.)

Operating on (5.126) with Mn z, we have

	  Mn 2
z  Yk = bkMn zYk

	  Mn 2
z  Yk = b2

k  Yk 	 (5.129)

Now subtract (5.129) from (5.123), and use (5.127) and (5.108):

	 Mn 2Yk - Mn 2
z  Yk = cYk - b2

k  Yk

	 1Mn 2
x + Mn 2

y2Yk = 1c - b2
k2Yk	 (5.130)

The operator Mn 2
x + Mn 2

y corresponds to a nonnegative physical quantity and hence has 
nonnegative eigenvalues. (This is proved in Prob. 7.11.) Therefore, (5.130) implies that 
c - b2

k Ú 0 and c1>2 Ú  �  bk � . Thus

	 c1>2 Ú bk Ú -c1>2,  k = 0, {1, {2, c 	 (5.131)

Since c remains constant as k varies, (5.131) shows that the set of eigenvalues bk is 
bounded above and below. Let bmax and bmin denote the maximum and minimum values of 
bk. Ymax and Ymin are the corresponding eigenfunctions:

	 Mn zYmax = bmaxYmax	 (5.132)

	 Mn zYmin = bminYmin	 (5.133)

Now operate on (5.132) with the raising operator and use (5.114):

	 Mn +Mn zYmax = bmaxMn +Ymax

	 Mn z1Mn +Ymax2 = 1bmax + U21Mn +Ymax2	 (5.134)

This last equation seems to contradict the statement that bmax is the largest eigenvalue of 
Mn z, since it says that Mn  +Ymax is an eigenfunction of Mn z with eigenvalue bmax + U. The 
only way out of this contradiction is to have Mn +Ymax vanish. (We always reject zero as an 
eigenfunction on physical grounds.) Thus

	 Mn +Ymax = 0	 (5.135)

Operating on (5.135) with the lowering operator and using (5.113), (5.132), and (5.116), 
we have

	 0 = Mn -  Mn +Ymax = 1Mn 2 - Mn 2
z - UMn z2Ymax = 1c - b2

max - Ubmax2Ymax

	 c - b2
max - Ubmax = 0

	 c = b2
max + Ubmax	 (5.136)

A similar argument shows that

	 Mn -Ymin = 0	 (5.137)

and by applying the raising operator to this equation and using (5.112), we find

	 c = b2
min - Ubmin
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Subtracting this last equation from (5.136), we have

	 b2
max + Ubmax + 1Ubmin - b2

min2 = 0

This is a quadratic equation in the unknown bmax, and using the usual formula (it still 
works in quantum mechanics), we find

	 bmax = -bmin,  bmax = bmin - U

The second root is rejected, since it says that bmax is less than bmin. So

	 bmin = -bmax	 (5.138)

Moreover, (5.128) says that bmax and bmin differ by an integral multiple of U:

	 bmax - bmin = nU,  n = 0, 1, 2, c 	 (5.139)

Substituting (5.138) in (5.139), we have for the Mn z eigenvalues

	  bmax =
1
2nU

	  bmax = jU,  j = 0, 12, 1, 32, 2, c 	 (5.140)

	  bmin = - jU

	 b = - jU, 1- j + 12U, 1- j + 22U, c, 1 j - 22U, 1 j - 12U, jU	 (5.141)

and from (5.136) we find as the Mn 2 eigenvalues

	 c = j1 j + 12U2, j = 0, 12, 1, 32, c 	 (5.142)

Thus

	 Mn 2Y = j1 j + 12U2Y, j = 0, 12, 1, 32, 2, c 	 (5.143)

	 Mn z Y = mj UY, mj = - j, - j + 1, c, j - 1, j	 (5.144)

We have found the eigenvalues of Mn 2 and Mn z using just the commutation relations. 
However, comparison of (5.143) and (5.144) with (5.104) and (5.105) shows that in ad-
dition to integral values for the angular-momentum quantum number 1l = 0, 1, 2, c2 
we now also have the possibility for half-integral values 1 j = 0, 12, 1, 32, c2. This per-
haps suggests that there might be another kind of angular momentum besides orbital 
angular momentum. In Chapter 10 we shall see that spin angular momentum can have 
half-integral, as well as integral, quantum numbers. For orbital angular momentum, the 
boundary condition of single-valuedness of the T1f2 eigenfunctions [see the equation 
following (5.73)] eliminates the half-integral values of the angular-momentum quantum 
numbers. [Not everyone accepts single-valuedness as a valid boundary condition on wave 
functions, and many other reasons have been given for rejecting half-integral orbital-
angular-momentum quantum numbers; see C. G. Gray, Am. J. Phys., 37, 559 (1969); M. L. 
Whippman, Am. J. Phys., 34, 656 (1966).]

The ladder-operator method can be used to solve other eigenvalue problems; see 
Prob. 5.36.

Summary
For a complete set of eigenfunctions to be simultaneously eigenfunctions of several opera-
tors, each operator must commute with every other operator.

The standard deviation �A measures the uncertainty in a quantum-mechanical property 
A, where 1�A22 = 8A29 - 8A92. For the properties x and px, we have �x �px Ú

1
2 U. The 

product of the standard deviations for any two properties obeys the Robertson inequality (5.12).
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The vector B can be written as B = Bx i + By j + Bz k, where i, j, and k are unit vec-
tors along the x, y, and z axes, and Bx, By, and Bz are the components of B. The magnitude 
of B is � B � = 1B2

x + B2
y + B2

z21>2. The dot product of two vectors that make an angle 
u with each other is B � A = BxAx + ByAy + BzAz = � B 0 � A �  cos u. The cross product 
is given by (5.28).

The classical-mechanical definition of orbital angular momentum is L K r : p. The 
operator Ln 2 commutes with Ln x, Ln y, and Ln  z but Ln x, Ln y, and Ln  z do not commute with one 
another. When expressed in spherical coordinates, the operators Ln 2, Ln x, Ln y, and Lnz depend 
only on the angles u (the angle between the z axis and r) and f (the angle between the 
projection of r in the xy plane and the x axis) and not on the radial coordinate r.

The ranges of the spherical coordinates are 0 … r … �, 0 … u … p, 0 … f … 2p. 
The infinitesimal volume element in spherical coordinates is dt = r 2 sin u dr du df.

The common eigenfunctions and eigenvalues of Ln  z and Ln 2 are given by 
Ln z Y m

l = mUY m
l  and Ln 2Y m

l = l1l + 12U2Y m
l , where the functions Y m

l 1u, f2 are spheri-
cal harmonics and the angular-momentum quantum numbers are l = 0, 1, 2, c and 
m = - l, - l + 1, c, l - 1, l.

For operators Mn x, Mn y, Mn z and Mn 2 = Mn 2
x + Mn 2

y + Mn 2
z  that obey the angular-momentum 

commutation relations, use of the ladder operators Mn + = Mn x + iMn y and Mn - = Mn x - iMn y 
gives the possible Mn 2 eigenvalues as j1 j + 12U2, where j can be integral or half-integral, 
and gives the Mn z eigenvalues as mj U, where mj ranges from –j to j in integral steps.

Problems

Sec. 5.1 5.2 5.3 5.4 general

Probs. 5.1–5.8 5.9–5.15 5.16–5.34 5.35–5.36 5.37

	 5.1	 State whether the two operators in each of the following pairs commute with each other. (a) xn 2 
and 0 >0x; (b) yn 2 and 0 >0z; (c) xn 2 and zn2; (d) 0 >0x and 02>0x2; (e) 0 >0x and 0 >0y.

	 5.2	 Verify the commutator identities (5.1)–(5.5).

	 5.3	 Find 3xn, pn 3
x4  starting from (5.7) for 3xn, pn 2

x4 .

	 5.4	 For the ground state of the one-dimensional harmonic oscillator, compute the standard 
deviations �x and �px and check that the uncertainty principle is obeyed. Use the results 
of Prob. 4.9 to save time.

	 5.5	 At a certain instant of time, a particle in a one-dimensional box of length l (Fig. 2.1) is in a 
nonstationary state with � = 1105> l721>2x21l - x2 inside the box. For this state, find �x 
and �px and verify that the uncertainty principle �x �px Ú

1
2U is obeyed.

	 5.6	 Show that the standard deviation �A is 0 when � is an eigenfunction of An.

	 5.7	 Derive 1�A22 = 8A29 - 8A92  [Eq. (5.11)].

	 5.8	 Let w be the variable defined as the number of heads that show when two coins are tossed 
simultaneously. Find 8w9  and sw. [Hint: Use (5.11).]

	 5.9	 Classify each of these as a scalar or vector. (a) 3B; (b) C : B ; (c) C � B; (d) � B � ; (e) velocity; 
(f) potential energy.

	5.10	 Let A have the components 13, -2, 62;  let B have the components 1-1, 4, 42.  Find 
0A � , � B � , A + B, A - B, A � B, A : B. Find the angle between A and B.

	5.11	 Use the vector dot product to find the obtuse angle between two diagonals of a cube. What is 
the chemical significance of this angle?

	5.12	 (a) Use the vector dot product to show that in HCBr3,  cos1�BrCBr2 =  1 - 1.5 sin21�HCBr2. 
(b) In HCBr3, �HCBr = 107.2�. Find � BrCBr in HCBr3.

	5.13	 Let f = 2x2 - 5xyz + z2 - 1. Find grad f. Find �2f.
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	5.14	 The divergence of a vector function A is a scalar function defined by

		  div A K � � A =  a i 
0

0x
+ j 

0

0y
+ k 

0

0z
b � 1Ax  i + Ay  j + Az k2

		  div A K
0Ax

0x
+

0Ay

0y
+

0Az

0z
		  (a) Verify that div 3grad g1x, y, z24 K � � �g = 02g>0x2 + 02g>0y2 + 02g>0z2. This is 

the origin of the notation �2 for 02>0x2 + 02>0y2 + 02>0z2. (b) Find � � r, where r =

ix + jy + kz.

	5.15	 For the vector 13, -2, 0, 12  in four-dimensional space, find (a) the length; (b) the direction 
angles.

	5.16	 State whether the two operators in each of the following pairs commute with each other. (a) Ln  x 
and Ln z; (b) Ln  z and Ln 2; (c) Ln  x and Ln 2; (d) Ln 2

x and Ln 2.

	5.17	 Derive Eq. (5.68) for Ln 2 from Eqs. (5.65)–(5.67).

	5.18	 Find 3Ln 2
x, Ln y4 .

	5.19	 Find the spherical coordinates for points with the following 1x, y, z2 coordinates: (a) 11, 2, 02; 
(b) 1-1, 0, 32; (c) 13, 1, -22; (d) 1-1, -1, -12.

	5.20	 Find the 1x, y, z2 coordinates of the points with the following spherical coordinates: 
(a) r = 1, u = p>2, f = p ; (b) r = 2, u = p>4, f = 0.

	5.21	 Give the shape of a surface on which (a) r is constant; (b) u is constant; (c) f is constant.

	5.22	 By integrating the spherical-coordinates differential volume element dt over appropriate lim-
its, verify the formula 4

3 pR3 for the volume of a sphere of radius R.

	5.23	 Calculate the possible angles between L and the z axis for l = 2.

	5.24	 (a) Show that for the orbital-angular-momentum eigenfunctions, the smallest possible value for 
the angle between L and the z axis obeys the relation  cos2 u = l> 1l + 12. (b) As l increases, 
does this smallest-possible angle increase or decrease?

	5.25	 Substitute d>du = - 11 - w221>21d>dw2 [which follows from (5.85)] and Eq. (5.85) into 
d2S>du2 = 1d>du21dS>du2 to verify Eq. (5.86).

	5.26	 Derive the formula for S2,0 (Table 5.1) in two ways: (a) by using (5.146) in Prob. 5.34; (b) by 
using the recursion relation and normalization.

	5.27	 Use the recursion relation (5.98) and normalization to find (a) Y 0
3; (b) Y 1

3.

	5.28	 Apply the Ln 2 operator (5.68) to Y 0
2 and verify that the eigenvalue equation (5.104) is obeyed.

	5.29	 Complete this equation: Ln 3
z  Y m

l = ?

	5.30	 Show that the spherical harmonics are eigenfunctions of the operator Ln 2
x + Ln 2

y. (The proof is 
short.) What are the eigenvalues?

	5.31	 (a) If we measure Lz of a particle that has angular-momentum quantum number l = 2, what 
are the possible outcomes of the measurement? (b) If we measure Lz of a particle whose state 
function is an eigenfunction of Ln 2 with eigenvalue 12U2, what are the possible outcomes of 
the measurement?

	5.32	 If we measure Ly of a particle that has angular-momentum quantum number l = 1, what are 
the possible outcomes of the measurement?

	5.33	 At a certain instant of time t�, a particle has the state function � = Ne - ar2
Y 1

21u, f2, where 
N and a are constants. (a) If L2 of this particle were to be measured at time t�, what would be 
the outcome? Give a numerical answer. (b) If Lz of this particle were to be measured at t�, 
what would be the outcome? Give a numerical answer.

	5.34	 The associated Legendre functions P �m�
 l 1w2 are defined by

	 P�m�
 l 1w2 K

1

2ll !
11 - w22�m�>2 dl+ �m�

dwl+ �m�
1w2 - 12l,  l = 0, 1, 2, c 	 (5.145)
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Verify that P  0
  01w2 = 1, P 0

 11w2 = w, P 1
 11w2 = 11 - w221>2 and find P 0

 21w2, P 1
 21w2, and 

P 2
 21w2. It can be shown that (Pauling and Wilson, page 129)

	 Sl, m1u2 = c 2l + 1

2
 
1l - � m �2!

1l + � m 02!
d

1>2
P�m�

l 1cos u2	 (5.146)

Equations (5.146) and (5.145) give the explicit formula for the normalized theta factor in the 
angular-momentum eigenfunctions. The normalized eigenfunctions of Ln 2 and Ln  z (the spherical 
harmonics) are given by Eqs. (5.146) and (5.99) as

	 Ym
 l 1u, f2 = c 2l + 1

4p
 
1l - � m �2!

1l + � m �2!
d

1>2
P�m�

 l 1cos u2eimf	 (5.147)

The phase of the normalization constant of the spherical harmonics is arbitrary (see Section 1.7). 
Many texts use a different phase convention than in (5.147). Thus Y m

 l  differs from text to text 
by a minus sign.

	5.35	 Apply the lowering operator Ln  -  three times in succession to Y1
11u, f2 and verify that we obtain 

functions that are proportional to Y 0
1, Y

- 1
1 , and zero.

	5.36	 The one-dimensional harmonic-oscillator Hamiltonian is

	 Hn =
pn 2

x

2m
+ 2p2v2mxn 2

The raising and lowering operators for this problem are defined as

	 An  + K 12m2- 1>21pnx + 2pinmxn2, An  - K 12m2- 1>21pnx - 2pinmxn2
Show that

	 An  +  An  - = Hn -
1
2hn, An  -  An  + = Hn +

1
2hn, 3An  + , An  -4 = -hn

3Hn , An +4 = hnAn + ,  3Hn , An  -4 = -hnAn  -

Show that An  +  and An  -  are indeed ladder operators and that the eigenvalues are spaced at inter-
vals of hn. Since both the kinetic energy and the potential energy are nonnegative, we expect 
the energy eigenvalues to be nonnegative. Hence there must be a state of minimum energy. 
Operate on the wave function for this state first with An  -  and then with An  +  and show that the 
lowest-energy eigenvalue is 1

2hn. Finally, conclude that

	 E = 1n +
1
22hn, n = 0, 1, 2, c

(See also Prob. 7.62.)

	5.37	 True or false? (a) The Ln 2 eigenvalues are degenerate except for l = 0. (b) Since 
Ln 2Y m

l = l1l + 12U2Y m
l , it follows that Ln 2 = l1l + 12U2. (c) Ln2 commutes with Ln x. (d) Y 0

0 is a 
constant. (e) Y 0

0 is an eigenfunction of Ln 2, Ln x, Ln y, and Ln z. (f) If An and Bn do not commute, it is 
impossible for an eigenfunction of An to be also an eigenfunction of Bn.
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Chapter 6

The Hydrogen Atom

6.1 The One-Particle Central-Force Problem
Before studying the hydrogen atom, we shall consider the more general problem of a 
single particle moving under a central force. The results of this section will apply to any 
central-force problem. Examples are the hydrogen atom (Section 6.5) and the isotropic 
three-dimensional harmonic oscillator (Prob. 6.3).

A central force is one derived from a potential-energy function that is spherically 
symmetric, which means that it is a function only of the distance of the particle from the 
origin: V = V1r2. The relation between force and potential energy is given by (5.31) as

	 F = - �V1x, y, z2 = - i10V>0x2 - j10V>0y2 - k10V>0z2	 (6.1)

The partial derivatives in (6.1) can be found by the chain rule [Eqs. (5.53)–(5.55)]. Since 
V in this case is a function of r only, we have 10V>0u2r,f = 0  and 10V>0f2r,u = 0.
Therefore,

	 a 0V

0x
b

y,z
=

dV

dr
a 0r

0x
b

y,z
=

x
r

 
dV

dr
	 (6.2)

	 a 0V

0y
b

x,z
=

y

r
 
dV

dr
, a 0V

0z
b

x,y
=

z
r
 
dV

dr
	 (6.3)

where Eqs. (5.57) and (5.58) have been used. Equation (6.1) becomes

	 F = -
1
r

 
dV

dr
1xi + yj + zk2 = -

dV1r2
dr

 
r
r
	 (6.4)

where (5.33) for r was used. The quantity r>r in (6.4) is a unit vector in the radial direc-
tion. A central force is radially directed.

Now we consider the quantum mechanics of a single particle subject to a central 
force. The Hamiltonian operator is

	 Hn = Tn + Vn = - 1U2>2m2�2 + V1r2	 (6.5)

where �2 K 02>0x2 + 02>0y2 + 02>0z2 [Eq. (3.46)]. Since V is spherically symmetric, 
we shall work in spherical coordinates. Hence we want to transform the Laplacian opera-
tor to these coordinates. We already have the forms of the operators 0 >0x, 0 >0y, and 0 >0z 
in these coordinates [Eqs. (5.62)–(5.64)], and by squaring each of these operators and 
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then adding their squares, we get the Laplacian. This calculation is left as an exercise. The  
result is (Prob. 6.4)

	 �2 =
02

0r2 +
2
r

 
0

0r
+

1

r2

02

0u2 +
1

r2 cot u
0

0u
+

1

r2  sin2 u
 

02

0f2	 (6.6)

Looking back to (5.68), which gives the operator Ln2 for the square of the magnitude of 
the orbital angular momentum of a single particle, we see that

	 �2 =
02

0r2 +
2
r

 
0

0r
-

1

r2U2 Ln2	 (6.7)

The Hamiltonian (6.5) becomes

	 Hn = -
U2

2m
a 02

0r2 +
2
r

 
0

0r
b +

1

2mr2 Ln2 + V1r2	 (6.8)

In classical mechanics a particle subject to a central force has its angular momentum 
conserved (Section 5.3). In quantum mechanics we might ask whether we can have states 
with definite values for both the energy and the angular momentum. To have the set of 
eigenfunctions of Hn  also be eigenfunctions of Ln2, the commutator 3Hn , Ln24  must vanish. 
We have

	 3Hn , Ln 24 = 3Tn, Ln 24 + 3Vn, Ln 24

	 3Tn, Ln 24 = c- U2

2m
a 02

0r2 +
2
r

 
0

0r
b +

1

2mr2 Ln 2, Ln2 d

	 3Tn, Ln 24 = -
U2

2m
c 02

0r2 +
2
r
 
0

0r
, Ln 2 d +

1

2m
c 1

r2Ln 2, Ln 2 d 	 (6.9)

Recall that Ln2 involves only u and f and not r [Eq. (5.68)]. Hence it commutes with every 
operator that involves only r. [To reach this conclusion, we must use relations like (5.47) 
with x and z replaced by r and u.] Thus the first commutator in (6.9) is zero. Moreover, 
since any operator commutes with itself, the second commutator in (6.9) is zero. There-
fore, 3Tn, Ln24 = 0.  Also, since Ln 2 does not involve r, and V is a function of r only, we have 
3Vn, Ln 24 = 0.  Therefore,

	 3Hn , Ln 24 = 0  if V = V1r2	 (6.10)

Hn  commutes with Ln 2 when the potential-energy function is independent of u and f.
Now consider the operator Ln z = - iU 0 >0f [Eq. (5.67)]. Since Ln z does not involve r and 

since it commutes with Ln 2 [Eq. (5.50)], it follows that Ln z commutes with the Hamiltonian (6.8):

	 3Hn , Lnz4 = 0  if V = V1r2	 (6.11)

We can therefore have a set of simultaneous eigenfunctions of Hn , Ln 2, and Ln z for the 
central-force problem. Let c denote these common eigenfunctions:

	 Hnc = Ec	 (6.12)

	 Ln2c = l1l + 12U2c, l = 0, 1, 2, c 	 (6.13)

	 Lnzc = mUc, m = - l, - l + 1, c, l	 (6.14)

where Eqs. (5.104) and (5.105) were used.
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Using (6.8) and (6.13), we have for the Schrödinger equation (6.12)

	 -
U2

2m
a 02c

0r2 +
2
r

 
0c

0r
b +

1

2mr2 Ln2c + V1r2c = Ec

	 -
U2

2m
a 02c

0r2 +
2
r

 
0c

0r
b +

l1l + 12U2

2mr2 c + V1r2c = Ec	 (6.15)

The eigenfunctions of Ln 2 are the spherical harmonics Y m
l 1u, f2, and since Ln 2 does 

not involve r, we can multiply Y m
l  by an arbitrary function of r and still have eigenfunc-

tions of Ln 2 and Ln z. Therefore,

	 c = R1r2Y m
l   1u, f2	 (6.16)

Using (6.16) in (6.15), we then divide both sides by Y m
l  to get an ordinary differential 

equation for the unknown function R1r2:

	 -
U2

2m
aR� +

2
r

R�b +
l1l + 12U2

2mr2 R + V1r2R = ER1r2	 (6.17)

We have shown that, for any one-particle problem with a spherically symmetric 
potential-energy function V1r2, the stationary-state wave functions are c = R1r2Y m

l 1u, f2, 
where the radial factor R1r2 satisfies (6.17). By using a specific form for V1r2 in (6.17), we 
can solve it for a particular problem.

6.2 Noninteracting Particles and Separation of Variables
Up to this point, we have solved only one-particle quantum-mechanical problems. The 
hydrogen atom is a two-particle system, and as a preliminary to dealing with the H atom, 
we first consider a simpler case, that of two noninteracting particles.

Suppose that a system is composed of the noninteracting particles 1 and 2. Let q1 and 
q2 symbolize the coordinates 1x1, y1, z12 and 1x2, y2, z22 of particles 1 and 2. Because the 
particles exert no forces on each other, the classical-mechanical energy of the system is 
the sum of the energies of the two particles: E = E1 + E2 = T1 + V1 + T2 + V2, and 
the classical Hamiltonian is the sum of Hamiltonians for each particle: H = H1 + H2. 
Therefore, the Hamiltonian operator is

Hn = Hn1 + Hn2

where Hn1 involves only the coordinates q1 and the momentum operators pn1 that corre-
spond to q1. The Schrödinger equation for the system is

	 1Hn1 + Hn22c1q1, q22 = Ec1q1, q22	 (6.18)

We try a solution of (6.18) by separation of variables, setting

	 c1q1, q22 = G11q12G21q22	 (6.19)

We have

	 Hn1G11q12G21q22 + Hn2G11q12G21q22 = EG11q12G21q22	 (6.20)

Since Hn1 involves only the coordinate and momentum operators of particle 1, we have 
Hn13G11q12G21q224 = G21q22Hn1G11q12, since, as far as Hn1 is concerned, G2 is a con-
stant. Using this equation and a similar equation for Hn2, we find that (6.20) becomes

	 G21q22Hn1G11q12 + G11q12Hn2G21q22 = EG11q12G21q22	 (6.21)
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Hn1G11q12

G11q12 +
Hn2G21q22

G21q22 = E	 (6.22)

Now, by the same arguments used in connection with Eq. (3.65), we conclude that each 
term on the left in (6.22) must be a constant. Using E1 and E2 to denote these constants, 
we have

	
Hn1G11q12

G11q12 = E1,  
Hn2G21q22

G21q22 = E2

	 E = E1 + E2	 (6.23)

Thus, when the system is composed of two noninteracting particles, we can reduce the 
two-particle problem to two separate one-particle problems by solving

	 Hn1G11q12 = E1G11q12,  Hn2G21q22 = E2G21q22	 (6.24)

which are separate Schrödinger equations for each particle.
Generalizing this result to n noninteracting particles, we have

Hn = Hn1 + Hn2 + g+  Hnn

	 c1q1, q2, c, qn2 = G11q12G21q22gGn1qn2	 (6.25)

	 E = E1 + E2 + g+  En	 (6.26)

	 Hn iGi = EiGi, i = 1, 2, c, n	 (6.27)

For a system of noninteracting particles, the energy is the sum of the individual energies 
of each particle and the wave function is the product of wave functions for each particle. 
The wave function Gi of particle i is found by solving a Schrödinger equation for particle 
i using the Hamiltonian Hn i.

These results also apply to a single particle whose Hamiltonian is the sum of separate 
terms for each coordinate:

Hn = Hnx1xn, pnx2 + Hny1yn, pny2 + Hnz1zn, pnz2
In this case, we conclude that the wave functions and energies are

c1x, y, z2 = F1x2G1y2K1z2, E = Ex + Ey + Ez

HnxF1x2 = ExF1x2, HnyG1y2 = EyG1y2, HnzK1z2 = EzK1z2
Examples include the particle in a three-dimensional box (Section 3.5), the three-dimensional 
free particle (Prob. 3.42), and the three-dimensional harmonic oscillator (Prob. 4.20).

6.3 �Reduction of the Two-Particle Problem 
to Two One-Particle Problems

The hydrogen atom contains two particles, the proton and the electron. For a system of 
two particles 1 and 2 with coordinates 1x1, y1, z12  and 1x2, y2, z22,  the potential energy 
of interaction between the particles is usually a function of only the relative coordinates 
x2 - x1, y2 - y1, and z2 - z1 of the particles. In this case the two-particle problem can be 
simplified to two separate one-particle problems, as we now prove.

Consider the classical-mechanical treatment of two interacting particles of masses m1 
and m2. We specify their positions by the radius vectors r1 and r2 drawn from the origin 
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of a Cartesian coordinate system (Fig. 6.1). Particles 1 and 2 have coordinates 1x1, y1, z12  
and 1x2, y2, z22.  We draw the vector r = r2 - r1 from particle 1 to 2 and denote the com-
ponents of r by x, y, and z:

	 x = x2 - x1, y = y2 - y1, z = z2 - z1	 (6.28)

The coordinates x, y, and z are called the relative or internal coordinates.
We now draw the vector R from the origin to the system’s center of mass, point C, 

and denote the coordinates of C by X, Y, and Z:

	 R = iX + jY + kZ	 (6.29)

The definition of the center of mass of this two-particle system gives

	 X =
m1x1 + m2x2

m1 + m2
, Y =

m1y1 + m2y2

m1 + m2
, Z =

m1z1 + m2z2

m1 + m2
	 (6.30)

These three equations are equivalent to the vector equation

	 R =
m1r1 + m2r2

m1 + m2
	 (6.31)

We also have

	 r = r2 - r1	 (6.32)

We regard (6.31) and (6.32) as simultaneous equations in the two unknowns r1 and r2 
and solve for them to get

	 r1 = R -
m2

m1 + m2
 r,  r2 = R +

m1

m1 + m2
 r	 (6.33)

Equations (6.31) and (6.32) represent a transformation of coordinates from 
x1, y1, z1, x2, y2, z2 to X, Y, Z, x, y, z. Consider what happens to the Hamiltonian under this 
transformation. Let an overhead dot indicate differentiation with respect to time. The ve-
locity of particle 1 is [Eq. (5.34)] v1 = dr1>dt = r

#
1. The kinetic energy is the sum of the 

kinetic energies of the two particles:

	 T =
1
2m1 � r#1 � 2 +

1
2m2 � r#2 � 2	 (6.34)

Introducing the time derivatives of Eqs. (6.33) into (6.34), we have

T =
1

2
m1aR

#
-

m2

m1 + m2
 r
# b �aR

#
-

m2

m1 + m2
 r
# b

+
1

2
m2aR

#
+

m1

m1 + m2
 r

# b �aR
#

+
m1

m1 + m2
 r

# b

z

x

y

m2

m1 C

R
r1

r2

r

Figure 6.1  A two-particle 
system with center of  
mass at C.
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where � A � 2 = A � A [Eq. (5.24)] has been used. Using the distributive law for the dot 
products, we find, after simplifying,

	 T =
1

2
1m1 + m22 � R

#
� 2 +

1

2
 

m1m2

m1 + m2
� r

#
� 2	 (6.35)

Let M be the total mass of the system:

	 M K m1 + m2	 (6.36)

We define the reduced mass m of the two-particle system as

	 m K
m1m2

m1 + m2
	 (6.37)

Then

	 T =
1
2 M � R

#
� 2 +

1
2m � r# � 2	 (6.38)

The first term in (6.38) is the kinetic energy due to translational motion of 
the whole system of mass M. Translational motion is motion in which each par-
ticle undergoes the same displacement. The quantity 1

2 M � R
#

� 2 would be the kinetic 
energy of a hypothetical particle of mass M located at the center of mass. The second 
term in (6.38) is the kinetic energy of internal (relative) motion of the two particles. 
This internal motion is of two types. The distance r between the two particles can 
change (vibration), and the direction of the r vector can change (rotation). Note that 
� r

#
� = � dr>dt � � d � r � >dt.

Corresponding to the original coordinates x1, y1, z1, x2, y2, z2, we have six linear 
momenta:

	 px1
= m1x

#
1,  c,    pz2

= m2z
#
2	 (6.39)

Comparing Eqs. (6.34) and (6.38), we define the six linear momenta for the new 
coordinates X, Y, Z, x, y, z as

	  pX K MX
#
,  pY K MY

#
,  pZ K MZ

#

	  px K mx
#
,    py K my

#
,  pz K mz

#

We define two new momentum vectors as

pM K iMX
#

+ jMY
#

+ kMZ
#
 and pm K imx

#
+ jmy

#
+ kmz

#

Introducing these momenta into (6.38), we have

	 T =
� pM �2

2M
+

� pm �2

2m
	 (6.40)

Now consider the potential energy. We make the restriction that V is a function only 
of the relative coordinates x, y, and z of the two particles:

	 V = V1x, y, z2	 (6.41)

An example of (6.41) is two charged particles interacting according to Coulomb’s law 
[see Eq. (3.53)]. With this restriction on V, the Hamiltonian function is

	 H =
p2

M

2M
+ c p2

m

2m
+ V1x, y, z2 d 	 (6.42)
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Now suppose we had a system composed of a particle of mass M subject to no forces 
and a particle of mass m subject to the potential-energy function V1x, y, z2. Further sup-
pose that there was no interaction between these particles. If (X, Y, Z) are the coordinates 
of the particle of mass M, and 1x, y, z2 are the coordinates of the particle of mass m, what 
is the Hamiltonian of this hypothetical system? Clearly, it is identical with (6.42).

The Hamiltonian (6.42) can be viewed as the sum of the Hamiltonians p2
M>2M 

and p2
m>2m + V1x, y, z2 of two hypothetical noninteracting particles with masses 

M and m. Therefore, the results of Section 6.2 show that the system’s quantum-
mechanical energy is the sum of energies of the two hypothetical particles [Eq. (6.23)]: 
E = EM + Em. From Eqs. (6.24) and (6.42), the translational energy EM is found by 
solving the Schrödinger equation 1pn 2

M>2M2cM = EMcM. This is the Schrödinger equa-
tion for a free particle of mass M, so its possible eigenvalues are all nonnegative num-
bers: EM Ú 0 [Eq. (2.31)]. From (6.24) and (6.42), the energy Em is found by solving the 
Schrödinger equation

	 c pn 2
m

2m
+ V1x, y, z2 dcm1x, y, z2 = Emcm1x, y, z2	 (6.43)

We have thus separated the problem of two particles interacting according to a 
potential-energy function V1x, y, z2 that depends on only the relative coordinates x, y, z 
into two separate one-particle problems: (1) the translational motion of the entire system 
of mass M, which simply adds a nonnegative constant energy EM to the system’s energy, 
and (2) the relative or internal motion, which is dealt with by solving the Schrödinger 
equation (6.43) for a hypothetical particle of mass m whose coordinates are the relative 
coordinates x, y, z and that moves subject to the potential energy V1x, y, z2.

For example, for the hydrogen atom, which is composed of an electron (e) and a pro-
ton (p), the atom’s total energy is E = EM + Em, where EM is the translational energy of 
motion through space of the entire atom of mass M = me + mp, and where Em is found 
by solving (6.43) with m = memp> 1me + mp2 and V being the Coulomb’s law potential 
energy of interaction of the electron and proton; see Section 6.5.

6.4 The Two-Particle Rigid Rotor
Before solving the Schrödinger equation for the hydrogen atom, we will first deal with 
the two-particle rigid rotor. This is a two-particle system with the particles held at a fixed 
distance from each other by a rigid massless rod of length d. For this problem, the vector 
r in Fig. 6.1 has the constant magnitude 0 r � = d. Therefore (see Section 6.3), the kinetic 
energy of internal motion is wholly rotational energy. The energy of the rotor is entirely 
kinetic, and
	 V = 0	 (6.44)

Equation (6.44) is a special case of Eq. (6.41), and we may therefore use the results of the 
last section to separate off the translational motion of the system as a whole. We will con-
cern ourselves only with the rotational energy. The Hamiltonian operator for the rotation 
is given by the terms in brackets in (6.43) as

	 Hn =
pn2
m

2m
= -

U2

2m
�2,  m =

m1m2

m1 + m2
	 (6.45)

where m1 and m2 are the masses of the two particles. The coordinates of the fictitious 
particle of mass m are the relative coordinates of m1 and m2 [Eq. (6.28)].

Instead of the relative Cartesian coordinates x, y, z, it will prove more fruitful to use 
the relative spherical coordinates r, u, f. The r coordinate is equal to the magnitude of 
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the r vector in Fig. 6.1, and since m1 and m2 are constrained to remain a fixed distance 
apart, we have r = d. Thus the problem is equivalent to a particle of mass m constrained 
to move on the surface of a sphere of radius d. Because the radial coordinate is constant, 
the wave function will be a function of u and f only. Therefore the first two terms of the 
Laplacian operator in (6.8) will give zero when operating on the wave function and may 
be omitted. Looking at things in a slightly different way, we note that the operators in 
(6.8) that involve r derivatives correspond to the kinetic energy of radial motion, and since 
there is no radial motion, the r derivatives are omitted from Hn .

Since V = 0 is a special case of V = V1r2, the results of Section 6.1 tell us that the 
eigenfunctions are given by (6.16) with the r factor omitted:

	 c = Y m
J 1u, f2	 (6.46)

where J rather than l is used for the rotational angular-momentum quantum number.
The Hamiltonian operator is given by Eq. (6.8) with the r derivatives omitted and 

V1r2 = 0. Thus

Hn = 12md22-1Ln2

Use of (6.13) gives

	  Hn c = Ec

 12md22-1Ln2Y m
J  1u, f2 = EY m

J  1u, f2
 12md22-1J1J + 12U2Y m

J  1u, f2 = EY m
J  1u, f2

	 E =
J1J + 12U2

2md2 ,  J = 0, 1, 2 g 	 (6.47)

The moment of inertia I of a system of n particles about some particular axis in 
space as defined as

	 I K a
n

i = 1
mir

2
i 	 (6.48)

where mi is the mass of the ith particle and ri is the perpendicular distance from this 
particle to the axis. The value of I depends on the choice of axis. For the two-particle rigid 
rotor, we choose our axis to be a line that passes through the center of mass and is perpen-
dicular to the line joining m1 and m2 (Fig. 6.2). If we place the rotor so that the center of 
mass, point C, lies at the origin of a Cartesian coordinate system and the line joining m1 
and m2 lies on the x axis, then C will have the coordinates (0, 0, 0), m1 will have the coor-
dinates 1-r1, 0, 02, and m2 will have the coordinates 1r2, 0, 02. Using these coordinates 
in (6.30), we find

	 m1r1 = m2r2	 (6.49)

m1 m21 2C

d

Figure 6.2  Axis (dashed 
line) for calculating the 
moment of inertia of a  
two-particle rigid rotor.  
C is the center of mass.
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The moment of inertia of the rotor about the axis we have chosen is

	 I = m1r
2
1 + m2r

2
2	 (6.50)

Using (6.49), we transform Eq. (6.50) to (see Prob. 6.14)

	 I = md2	 (6.51)

where m K m1m2>1m1 + m22 is the reduced mass of the system and d K r1 + r2 is the dis-
tance between m1 and m2. The allowed energy levels (6.47) of the two-particle rigid rotor are

	 E =
J1J + 12U2

2I
, J = 0, 1, 2, c 	 (6.52)

The lowest level is E = 0, so there is no zero-point rotational energy. Having zero 
rotational energy and therefore zero angular momentum for the rotor does not violate the 
uncertainty principle; recall the discussion following Eq. (5.105). Note that E increases as 
J2 + J, so the spacing between adjacent rotational levels increases as J increases.

Are the rotor energy levels (6.52) degenerate? The energy depends on J only, but the 
wave function (6.46) depends on J and m, where mU is the z component of the rotor’s 
angular momentum. For each value of J, there are 2J + 1 values of m, ranging from -J to 
J. Hence the levels are 12J + 12-fold degenerate. The states of a degenerate level have dif-
ferent orientations of the angular-momentum vector of the rotor about a space-fixed axis.

The angles u and f in the wave function (6.46) are relative coordinates of the two 
point masses. If we set up a Cartesian coordinate system with the origin at the rotor’s cen-
ter of mass, u and f will be as shown in Fig. 6.3. This coordinate system undergoes the 
same translational motion as the rotor’s center of mass but does not rotate in space.

The rotational angular momentum 3J1J + 12U241>2  is the angular momentum of the 
two particles with respect to an origin at the system’s center of mass C.

The rotational levels of a diatomic molecule can be well approximated by the 
two-particle rigid-rotor energies (6.52). It is found (Levine, Molecular Spectroscopy, 
Section 4.4) that when a diatomic molecule absorbs or emits radiation, the allowed 
pure-rotational transitions are given by the selection rule

	 �J = {1	 (6.53)

In addition, a molecule must have a nonzero dipole moment in order to show a 
pure-rotational spectrum. A pure-rotational transition is one where only the rotational 

z

x

y

m1

m2

Figure 6.3  Coordinate 
system for the two-particle 
rigid rotor.
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quantum number changes. [Vibration–rotation transitions (Section 4.3) involve changes 
in both vibrational and rotational quantum numbers.] The spacing between adjacent 
low-lying rotational levels is significantly less than that between adjacent vibrational 
levels, and the pure-rotational spectrum falls in the microwave (or the far-infrared) 
region. The frequencies of the pure-rotational spectral lines of a diatomic molecule are 
then (approximately)

	 n =
EJ + 1 - EJ

h
=

31J + 121J + 22 - J1J + 124h

8p2I
= 21J + 12B	 (6.54)

	 B K h>8p2I,  J = 0, 1, 2, c 	 (6.55)

B is called the rotational constant of the molecule.
The spacings between the diatomic rotational levels (6.52) for low and moderate 

values of J are generally less than or of the same order of magnitude as kT at room tem-
perature, so the Boltzmann distribution law (4.63) shows that many rotational levels are 
significantly populated at room temperature. Absorption of radiation by diatomic mol-
ecules having J = 0 (the J = 0 S 1 transition) gives a line at the frequency 2B; absorp-
tion by molecules having J = 1 (the J = 1 S 2 transition) gives a line at 4B; absorption 
by J = 2 molecules gives a line at 6B; and so on. See Fig. 6.4.

Measurement of the rotational absorption frequencies allows B to be found. From 
B, we get the molecule’s moment of inertia I, and from I we get the bond distance d. The 
value of d found is an average over the v = 0 vibrational motion. Because of the asym-
metry of the potential-energy curve in Figs. 4.6 and 13.1, d is very slightly longer than the 
equilibrium bond length Re in Fig. 13.1.

As noted in Section 4.3, isotopic species such as 1H35Cl and 1H37Cl have virtually 
the same electronic energy curve U1R2 and so have virtually the same equilibrium bond 
distance. However, the different isotopic masses produce different moments of inertia and 
hence different rotational absorption frequencies.

Because molecules are not rigid, the rotational energy levels for diatomic molecules 
differ slightly from rigid-rotor levels. From (6.52) and (6.55), the two-particle rigid-rotor 
levels are Erot = BhJ1J + 12. Because of the anharmonicity of molecular vibration (Fig. 
4.6), the average internuclear distance increases with increasing vibrational quantum 
number v, so as v increases, the moment of inertia I increases and the rotational con-
stant B decreases. To allow for the dependence of B on v, one replaces B in Erot by B

v
. 

The mean rotational constant B
v
 for vibrational level v is B

v
= Be - ae1v + 1>22, 

where Be is calculated using the equilibrium internuclear separation Re at the bottom 

J 5 3

J 5 2

J 5 1

J 5 0

2B 4B 6B
v

Figure 6.4  Two-particle 
rigid-rotor absorption 
transitions.
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of the potential-energy curve in Fig. 4.6, and the vibration–rotation coupling con-
stant ae is a positive constant (different for different molecules) that is much smaller 
than Be. Also, as the rotational energy increases, there is a very slight increase in av-
erage internuclear distance (a phenomenon called centrifugal distortion). This adds the 
term -hDJ21J + 122 to Erot, where the centrifugal-distortion constant D is an extremely 
small positive constant, different for different molecules. For example, for 12C16O, 
B0 = 57636 MHz, ae = 540 MHz, and D = 0.18 MHz. As noted in Section 4.3, for 
lighter diatomic molecules, nearly all the molecules are in the ground v = 0 vibrational 
level at room temperature, and the observed rotational constant is B0.

For more discussion of nuclear motion in diatomic molecules, see Section 13.2. 
For the rotational energies of polyatomic molecules, see Townes and Schawlow, 
chaps. 2–4.

E x a m p l e

The lowest-frequency pure-rotational absorption line of 12C32S occurs at 48991.0 MHz. 
Find the bond distance in 12C32S.

The lowest-frequency rotational absorption is the J = 0 S 1 line. Equations (1.4), 
(6.52), and (6.51) give

hn = Eupper - Elower =
1122U2

2md2 -
0112U2

2md2

which gives d = 1h>4p2nm21>2. Table A.3 in the Appendix gives

m =
m1m2

m1 + m2
=

12131.972072
112 + 31.972072  

1

6.02214 * 1023 g = 1.44885 * 10-23 g

The SI unit of mass is the kilogram, and

 d =
1

2p
a h
n0S1m

b
1>2

=
1

2p
c 6.62607 * 10- 34 J s

148991.0 * 106 s- 1211.44885 * 10- 26 kg2 d
1>2

 = 1.5377 * 10-10 m = 1.5377 Å

Exercise  The J = 1 to J = 2 pure-rotational transition of 12C16O occurs at 
230.538 GHz. 11 GHz = 109 Hz.2 Find the bond distance in this molecule. 
(Answer: 1.1309 * 10- 10 m.2

6.5 The Hydrogen Atom
The hydrogen atom consists of a proton and an electron. If e symbolizes the charge on the 
proton 1e = +1.6 * 10-19 C2,  then the electron’s charge is -e.

A few scientists have speculated that the proton and electron charges might not be 
exactly equal in magnitude. Experiments show that the magnitudes of the electron and 
proton charges are equal to within one part in 1021. See G. Bressi et al., Phys. Rev. A, 
83, 052101 (2011) (available online at arxiv.org/abs/1102.2766).

We shall assume the electron and proton to be point masses whose interaction is given 
by Coulomb’s law. In discussing atoms and molecules, we shall usually be considering 
isolated systems, ignoring interatomic and intermolecular interactions.
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Instead of treating just the hydrogen atom, we consider a slightly more general prob-
lem: the hydrogenlike atom, which consists of one electron and a nucleus of charge Ze. 
For Z = 1, we have the hydrogen atom; for Z = 2, the He+  ion; for Z = 3, the Li2 +  ion; 
and so on. The hydrogenlike atom is the most important system in quantum chemistry. An 
exact solution of the Schrödinger equation for atoms with more than one electron cannot 
be obtained because of the interelectronic repulsions. If, as a crude first approximation, we 
ignore these repulsions, then the electrons can be treated independently. (See Section 6.2.) 
The atomic wave function will be approximated by a product of one-electron functions, 
which will be hydrogenlike wave functions. A one-electron wave function (whether or 
not it is hydrogenlike) is called an orbital. (More precisely, an orbital is a one-electron 
spatial wave function, where the word spatial means that the wave function depends on 
the electron’s three spatial coordinates x, y, and z or r, u, and f. We shall see in Chapter 
10 that the existence of electron spin adds a fourth coordinate to a one-electron wave func-
tion, giving what is called a spin-orbital.) An orbital for an electron in an atom is called an 
atomic orbital. We shall use atomic orbitals to construct approximate wave functions for 
atoms with many electrons (Chapter 11). Orbitals are also used to construct approximate 
wave functions for molecules.

For the hydrogenlike atom, let (x, y, z) be the coordinates of the electron relative to the 
nucleus, and let r = ix + jy + kz. The Coulomb’s law force on the electron in the hydro-
genlike atom is [see Eq. (1.37)]

	 F = -
Ze2

4pe0r
2 

r
r
	 (6.56)

where r>r is a unit vector in the r direction. The minus sign indicates an attractive force.

The possibility of small deviations from Coulomb’s law has been considered. Exper-
iments have shown that if the Coulomb’s-law force is written as being proportional 
to r- 2 + s, then � s 0 6 10-16. A deviation from Coulomb’s law can be shown to imply 
a nonzero photon rest mass. No evidence exists for a nonzero photon rest mass, and 
data indicate that any such mass must be less than 10- 51 g; A. S. Goldhaber and M. 
M. Nieto, Rev. Mod. Phys., 82, 939 (2010) (arxiv.org/abs/0809.1003); G. Spavieri 
et al., Eur. Phys. J. D, 61, 531 (2011) (link.springer.com/content/pdf/10.1140/epjd/
e2011-10508-7).

The force in (6.56) is central, and comparison with Eq. (6.4) gives dV1r2>dr =

Ze2>4pe0r
2. Integration gives

	 V =
Ze2

4pe0 L  
1

r2 dr = -
Ze2

4pe0r
	 (6.57)

where the integration constant has been taken as 0 to make V = 0 at infinite separation 
between the charges. For any two charges Q1 and Q2 separated by distance r12, Eq. (6.57) 
becomes

	 V =
Q1Q2

4pe0r12
	 (6.58)

Since the potential energy of this two-particle system depends only on the relative 
coordinates of the particles, we can apply the results of Section 6.3 to reduce the prob-
lem to two one-particle problems. The translational motion of the atom as a whole 
simply adds some constant to the total energy, and we shall not concern ourselves 
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with it. To deal with the internal motion of the system, we introduce a fictitious par-
ticle of mass

	 m =
memN

me + mN
	 (6.59)

where me and mN are the electronic and nuclear masses. The particle of reduced mass m 
moves subject to the potential-energy function (6.57), and its coordinates 1r, u, f2 are the 
spherical coordinates of one particle relative to the other (Fig. 6.5).

The Hamiltonian for the internal motion is [Eq. (6.43)]

	 Hn = -
U2

2m
�2 -

Ze2

4pe0r
	 (6.60)

Since V is a function of the r coordinate only, we have a one-particle central-force prob-
lem, and we may apply the results of Section 6.1. Using Eqs. (6.16) and (6.17), we have 
for the wave function

	 c1r, u, f2 = R1r2Ym
l 1u, f2, l = 0, 1, 2, c ,  � m � … l	 (6.61)

where Ym
l  is a spherical harmonic, and the radial function R1r2 satisfies

	 -
U2

2m
aR� +

2
r

R�b +
l1l + 12U2

2mr2 R -
Ze2

4pe0r
R = ER1r2	 (6.62)

To save time in writing, we define the constant a as

	 a K
4pe0U2

me2 	 (6.63)

and (6.62) becomes

	 R� +
2
r

R� + c 8pe0E

ae2 +
2Z
ar

-
l1l + 12

r2 dR = 0	 (6.64)

Solution of the Radial Equation
We could now try a power-series solution of (6.64), but we would get a three-term rather 
than a two-term recursion relation. We therefore seek a substitution that will lead to a two-
term recursion relation. It turns out that the proper substitution can be found by examining 
the behavior of the solution for large values of r. For large r, (6.64) becomes

	 R� +
8pe0E

ae2 R = 0,  r large	 (6.65)

me

mN

z

x

y

r

Figure 6.5  Relative 
spherical coordinates.
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which may be solved using the auxiliary equation (2.7). The solutions are

	 exp3{1-8pe0E>ae221>2r4 	 (6.66)

Suppose that E is positive. The quantity under the square-root sign in (6.66) is nega-
tive, and the factor multiplying r is imaginary:

	 R1r2 � e{i22mEr>U,  E Ú 0	 (6.67)

where (6.63) was used. The symbol � in (6.67) indicates that we are giving the 
behavior of R1r2 for large values of r; this is called the asymptotic behavior of the 
function. Note the resemblance of (6.67) to Eq. (2.30), the free-particle wave function. 
Equation (6.67) does not give the complete radial factor in the wave function for posi-
tive energies. Further study (Bethe and Salpeter, pages 21–24) shows that the radial 
function for E Ú 0 remains finite for all values of r, no matter what the value of E. 
Thus, just as for the free particle, all nonnegative energies of the hydrogen atom are 
allowed. Physically, these eigenfunctions correspond to states in which the electron 
is not bound to the nucleus; that is, the atom is ionized. (A classical-mechanical anal-
ogy is a comet moving in a hyperbolic orbit about the sun. The comet is not bound and 
makes but one visit to the solar system.) Since we get continuous rather than discrete 
allowed values for E Ú 0, the positive-energy eigenfunctions are called continuum ei-
genfunctions. The angular part of a continuum wave function is a spherical harmonic. 
Like the free-particle wave functions, the continuum eigenfunctions are not normaliz-
able in the usual sense.

We now consider the bound states of the hydrogen atom, with E 6 0. (For a bound 
state, c S 0 as x S {�.) In this case, the quantity in parentheses in (6.66) is positive. 
Since we want the wave functions to remain finite as r goes to infinity, we prefer the minus 
sign in (6.66), and in order to get a two-term recursion relation, we make the substitution

	 R1r2 = e -CrK1r2	 (6.68)

	 C K a-
8pe0E

ae2 b
1>2

	 (6.69)

where e in (6.68) stands for the base of natural logarithms, and not the proton charge. Use 
of the substitution (6.68) will guarantee nothing about the behavior of the wave function 
for large r. The differential equation we obtain from this substitution will still have two 
linearly independent solutions. We can make any substitution we please in a differential 
equation; in fact, we could make the substitution R1r2 = e +CrJ1r2 and still wind up with 
the correct eigenfunctions and eigenvalues. The relation between J and K would naturally 
be J1r2 = e -2CrK1r2.

Proceeding with (6.68), we evaluate R� and R�, substitute into (6.64), multiply by 
r 2eCr, and use (6.69) to get the following differential equation for K1r2:

	 r2K� + 12r - 2Cr22K� + 312Za-1 - 2C2r - l1l + 124K = 0	 (6.70)

We could now substitute a power series of the form

	 K = a
�

k = 0
ckr

k	 (6.71)

for K. If we did we would find that, in general, the first few coefficients in (6.71) are zero. 
If cs is the first nonzero coefficient, (6.71) can be written as

	 K = a
�

k = s
ckr

k,  cs � 0	 (6.72)
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Letting j K k - s, and then defining bj as bj K cj+ s, we have

	 K = a
�

j = 0
cj+ sr

j+ s = r sa
�

j = 0
bjr

j,  b0 � 0	 (6.73)

(Although the various substitutions we are making might seem arbitrary, they are standard 
procedure in solving differential equations by power series.) The integer s is evaluated by 
substitution into the differential equation. Equation (6.73) is

	 K1r2 = r sM1r2	 (6.74)

	 M1r2 = a
�

j = 0
bjr

j,  b0 � 0	 (6.75)

Evaluating K� and K� from (6.74) and substituting into (6.70), we get

	 r 2M� + 312s + 22r - 2Cr 24M� + 3s2 + s + 12Za-1 - 2C - 2Cs2r - l1l + 124M = 0	
� (6.76)

To find s, we look at (6.76) for r = 0. From (6.75), we have

	 M102 = b0,  M�102 = b1,  M�102 = 2b2	 (6.77)

Using (6.77) in (6.76), we find for r = 0

	 b01s2 + s - l2 - l2 = 0	 (6.78)

Since b0 is not zero, the terms in parentheses must vanish: s2 + s - l2 - l = 0. This is a 
quadratic equation in the unknown s, with the roots

	 s = l,  s = - l - 1	 (6.79)

These roots correspond to the two linearly independent solutions of the differential equa-
tion. Let us examine them from the standpoint of proper behavior of the wave function. 
From Eqs. (6.68), (6.74), and (6.75), we have

	 R1r2 = e-Crrsa
�

j = 0
bjr

j	 (6.80)

Since e- Cr = 1 - Cr + c, the function R1r2 behaves for small r as b0r
s. For the 

root s = l, R1r2 behaves properly at the origin. However, for s = - l - 1, R1r2 is 
proportional to

	
1

r l+1	 (6.81)

for small r. Since l = 0, 1, 2, c, the root s = - l - 1 makes the radial factor in the wave 
function infinite at the origin. Many texts take this as sufficient reason for rejecting this root. 
However, this is not a good argument, since for the relativistic hydrogen atom, the l = 0 eigen-
functions are infinite at r = 0. Let us therefore look at (6.81) from the standpoint of quadratic 
integrability, since we certainly require the bound-state eigenfunctions to be normalizable.

The normalization integral [Eq. (5.80)] for the radial functions that behave like (6.81) 
looks like

	 L0
� R � 2r2 dr � L0

1

r2l dr	 (6.82)

for small r. The behavior of the integral at the lower limit of integration is

	
1

r2l- 1 `
r = 0

	 (6.83)
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For l = 1, 2, 3, c, (6.83) is infinite, and the normalization integral is infinite. Hence we 
must reject the root s = - l - 1 for l Ú 1. However, for l = 0, (6.83) is finite, and there 
is no trouble with quadratic integrability. Thus there is a quadratically integrable solution 
to the radial equation that behaves as r -1 for small r.

Further study of this solution shows that it corresponds to an energy value that the 
experimental hydrogen-atom spectrum shows does not exist. Thus the r -1 solution must 
be rejected, but there is some dispute over the reason for doing so. One view is that the 1>r 
solution satisfies the Schrödinger equation everywhere in space except at the origin and 
hence must be rejected [Dirac, page 156; B. H. Armstrong and E. A. Power, Am. J. Phys., 
31, 262 (1963)]. A second view is that the 1>r solution must be rejected because the 
Hamiltonian operator is not Hermitian with respect to it (Merzbacher, Section 10.5). 
(In Chapter 7 we shall define Hermitian operators and show that quantum-mechanical 
operators are required to be Hermitian.) Further discussion is given in A. A. Khelashvili 
and T. P. Nadareishvili, Am. J.Phys., 79, 668 (2011) (see arxiv.org/abs/1102.1185) and in 
Y. C. Cantelaube, arxiv.org/abs/1203.0551.

Taking the first root in (6.79), we have for the radial factor (6.80)

	 R1r2 = e- CrrlM1r2	 (6.84)

With s = l, Eq. (6.76) becomes

	 rM� + 12l + 2 - 2Cr2M� + 12Za -1 - 2C - 2Cl2M = 0	 (6.85)

From (6.75), we have

	 M1r2 = a
�

j = 0
bjr

j	 (6.86)

	 M� = a
�

j = 0
jbjr

j- 1 = a
�

j = 1
jbjr

j- 1 = a
�

k = 0
1k + 12bk + 1r

k = a
�

j = 0
1 j + 12bj+ 1r

j

	 M� = a
�

j = 0
j1j - 12bjr

j- 2 = a
�

j = 1
j1j - 12bjr

j- 2 = a
�

k = 0
1k + 12kbk + 1r

k - 1

	 M� = a
�

j = 0
1j + 12jbj+ 1r

j- 1	 (6.87)

Substituting these expressions in (6.85) and combining sums, we get

a
�

j = 0
c j1 j + 12bj+ 1 + 21l + 121 j + 12bj+ 1 + a 2Z

a
- 2C - 2Cl - 2Cjbbj d r j = 0

Setting the coefficient of r j equal to zero, we get the recursion relation

	 bj+ 1 =
2C + 2Cl + 2Cj - 2Za-1

j1 j + 12 + 21l + 121 j + 12bj	 (6.88)

We now must examine the behavior of the infinite series (6.86) for large r. The result 
of the same procedure used to examine the harmonic-oscillator power series in (4.42) 
suggests that for large r the infinite series (6.86) behaves like e2Cr. (See Prob. 6.20.) For 
large r, the radial function (6.84) behaves like

	 R1r2 � e- Crr le2Cr = r leCr	 (6.89)

Therefore, R1r2 will become infinite as r goes to infinity and will not be quadrati-
cally integrable. The only way to avoid this “infinity catastrophe” (as in the harmonic-
oscillator case) is to have the series terminate after a finite number of terms, in which case 
the e -Cr factor will ensure that the wave function goes to zero as r goes to infinity. Let the 
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last term in the series be bkr
k. Then, to have bk+1, bk+2, c all vanish, the fraction multi-

plying bj in the recursion relation (6.88) must vanish when j = k. We have

	 2C1k + l + 12 = 2Za- 1,  k = 0, 1, 2, c 	 (6.90)

k and l are integers, and we now define a new integer n by

	 n K k + l + 1,  n = 1, 2, 3, c 	 (6.91)

From (6.91) the quantum number l must satisfy

	 l … n - 1	 (6.92)

Hence l ranges from 0 to n - 1.

Energy Levels
Use of (6.91) in (6.90) gives

	 Cn = Za-1	 (6.93)

Substituting C K 1-8pe0E>ae221>2 [Eq. (6.69)] into (6.93) and solving for E, we get

	 E = -
Z2

n2

e2

8pe0a
= -

Z2me4

8e2
0n

2h2	 (6.94)

where a K 4pe0U2>me2 [Eq. (6.63)]. These are the bound-state energy levels of 
the hydrogenlike atom, and they are discrete. Figure 6.6 shows the potential-energy curve 
[Eq. (6.57)] and some of the allowed energy levels for the hydrogen atom 1Z = 12. The 
crosshatching indicates that all positive energies are allowed.

It turns out that all changes in n are allowed in light absorption and emission. The 
wavenumbers [Eq. (4.64)] of H-atom spectral lines are then

	 n� K
1

l
=

v
c

=
E2 - E1

hc
=

e2

8pe0ahc
a 1

n2
1

-
1

n2
2
b K RHa 1

n2
1

-
1

n2
2
b 	 (6.95)

where RH = 109677.6 cm-1 is the Rydberg constant for hydrogen.

Degeneracy
Are the hydrogen-atom energy levels degenerate? For the bound states, the energy (6.94) 
depends only on n. However, the wave function (6.61) depends on all three quantum numbers 
n, l, and m, whose allowed values are [Eqs. (6.91), (6.92), (5.104), and (5.105)]

E

V

n 5 1

n 5 2

r
n 5 3

n 5 4

Figure 6.6  Energy levels 
of the hydrogen atom.
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	 n = 1, 2, 3, c 	 (6.96)

	 l = 0, 1, 2, c , n - 1	 (6.97)

	 m = - l, - l + 1, c, 0, c, l - 1, l	 (6.98)

Hydrogen-atom states with different values of l or m, but the same value of n, have the 
same energy. The energy levels are degenerate, except for n = 1, where l and m must 
both be 0. For a given value of n, we can have n different values of l. For each of these 
values of l, we can have 2l + 1 values of m. The degree of degeneracy of an H-atom 
bound-state level is found to equal n2 (spin considerations being omitted); see Prob. 6.16. 
For the continuum levels, it turns out that for a given energy there is no restriction on the 
maximum value of l; hence these levels are infinity-fold degenerate.

The radial equation for the hydrogen atom can also be solved by the use of ladder 
operators (also known as factorization); see Z. W. Salsburg, Am. J. Phys., 33, 36 (1965).

6.6 The Bound-State Hydrogen-Atom Wave Functions
The Radial Factor
Using (6.93), we have for the recursion relation (6.88)

	 bj+ 1 =
2Z
na

j + l + 1 - n

1 j + 1)1j + 2l + 22 bj	 (6.99)

The discussion preceding Eq. (6.91) shows that the highest power of r in the polynomial 
M1r2 = �j bjr

j [Eq. (6.86)] is k = n - l - 1. Hence use of C = Z>na [Eq. (6.93)] in 
R1r2 = e -Crr lM1r2 [Eq. (6.84)] gives the radial factor in the hydrogen-atom c as

	 Rnl1r2 = r le -Zr>na a
n - l-1

j = 0
bjr

j	 (6.100)

where a K 4pe0U2>me2 [Eq. (6.63)]. The complete hydrogenlike bound-state wave func-
tions are [Eq. (6.61)]

	 cnlm = Rnl1r2Ym
l 1u, f2 = Rnl1r2Slm1u2 122p

eimf	 (6.101)

where the first few theta functions are given in Table 5.1.
How many nodes does R1r2 have? The radial function is zero at r = �,  at r = 0 

for l � 0, and at values of r that make M1r2 vanish. M1r2 is a polynomial of degree 
n - l - 1, and it can be shown that the roots of M1r2 = 0 are all real and positive. Thus, 
aside from the origin and infinity, there are n - l - 1 nodes in R1r2. The nodes of the 
spherical harmonics are discussed in Prob. 6.41.

Ground-State Wave Function and Energy
For the ground state of the hydrogenlike atom, we have n = 1, l = 0, and m = 0. The 
radial factor (6.100) is

	 R101r2 = b0e
-Zr>a	 (6.102)

The constant b0 is determined by normalization [Eq. (5.80)]:

� b0 � 2L
�

0
e -2Zr>ar 2 dr = 1
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Using the Appendix integral (A.8), we find

	 R101r2 = 2aZ
a
b

3>2
e -Zr>a	 (6.103)

Multiplying by Y 0
0 = 1> 14p21>2, we have as the ground-state wave function

	 c100 =
1

p1>2 aZ
a
b

3>2
e- Zr>a	 (6.104)

The hydrogen-atom energies and wave functions involve the reduced mass, given by 
(6.59) as

	 mH =
memp

me + mp
=

me

1 + me>mp
=

me

1 + 0.000544617
= 0.9994557me	 (6.105)

where mp is the proton mass and me>mp was found from Table A.1. The reduced mass is 
very close to the electron mass. Because of this, some texts use the electron mass instead 
of the reduced mass in the H atom Schrödinger equation. This corresponds to assuming 
that the proton mass is infinite compared with the electron mass in (6.105) and that all the 
internal motion is motion of the electron. The error introduced by using the electron mass 
for the reduced mass is about 1 part in 2000 for the hydrogen atom. For heavier atoms, the 
error introduced by assuming an infinitely heavy nucleus is even less than this. Also, for 
many-electron atoms, the form of the correction for nuclear motion is quite complicated. 
For these reasons we shall assume in the future an infinitely heavy nucleus and simply use 
the electron mass in writing the Schrödinger equation for atoms.

If we replace the reduced mass of the hydrogen atom by the electron mass, the quan-
tity a defined by (6.63) becomes

	 a0 =
4pe0U2

mee
2 = 0.529177 Å 	 (6.106)

where the subscript zero indicates use of the electron mass instead of the reduced mass. a0 is 
called the Bohr radius, since it was the radius of the circle in which the electron moved in the 
ground state of the hydrogen atom in the Bohr theory. Of course, since the ground-state wave 
function (6.104) is nonzero for all finite values of r, there is some probability of finding the 
electron at any distance from the nucleus. The electron is certainly not confined to a circle.

A convenient unit for electronic energies is the electronvolt (eV), defined as the kinetic 
energy acquired by an electron accelerated through a potential difference of 1 volt (V). Po-
tential difference is defined as energy per unit charge. Since e = 1.6021766 * 10-19 C 
and 1 V C = 1 J, we have

	 1 eV = 1.6021766 * 10-19 J	 (6.107)

E x a m p l e

Calculate the ground-state energy of the hydrogen atom using SI units and convert the 
result to electronvolts.

The H atom ground-state energy is given by (6.94) with n = 1 and Z = 1 as 
E = -me4>8h2e2

0. Use of (6.105) for m gives

	 E = -
0.999455719.109383 * 10- 31 kg211.6021766 * 10- 19 C24

816.626070 * 10- 34 J s2218.8541878 * 10- 12 C2>N@m222  
Z2

n2

	 E = - 12.178686 * 10-18 J21Z2>n2)311 eV2>11.6021766 * 10-19 J24
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	 E = -113.598 eV21Z2>n22 = -13.598 eV	 (6.108)

a number worth remembering. The minimum energy needed to ionize a ground-state 
hydrogen atom is 13.598 eV.

Exercise  Find the n = 2 energy of Li2 +  in eV; do the minimum amount of calcula-
tion needed. (Answer: -30.60 eV.)

E x a m p l e

Find 8T9  for the hydrogen-atom ground state.
Equations (3.89) for 8T9  and (6.7) for �2c give

 8T9 = L  c*Tnc dt = -
U2

2mL  c*�2c dt

 �2c =
02c

0r2 +
2
r

 
0c

0r
-

1

r2U2Ln2c =
02c

0r2 +
2
r

 
0c

0r

since Ln2c = l1l + 12U2c and l = 0 for an s state. From (6.104) with Z = 1, we have 
c = p-1>2a -3>2e - r>a, so 0c>0r = -p-1>2a -5>2e - r>a and 02c>0r 2 = p-1>2a -7>2e - r>a. 
Using dt = r 2 sin u dr du df [Eq. (5.78)], we have

 8T9 = -
U2

2m
 

1

pa4 L
2p

0 L
p

0 L
�

0
a 1

a
e-2r>a -

2
r
e-2r>abr2 sin u dr du df

 = -
U2

2mpa4 L
2p

0
dfL

p

0
sin u duL

�

0
ar2

a
e- 2r>a - 2re- 2r>ab  dr =

U2

2ma2 =
e2

8pe0a

where Appendix integral A.8 and a = 4pe0U2>me2 were used. From (6.94), e2>8pe0a 
is minus the ground-state H-atom energy, and (6.108) gives 8T9 = 13.598 eV. (See 
also Sec. 14.4.)

Exercise  Find 8T9  for the hydrogen-atom 2p0 state using (6.113). 
(Answer: e2>32pe0a = 113.598 eV)>4 = 3.40 eV.2

Let us examine a significant property of the ground-state wave function (6.104). We 
have r = 1x2 + y2 + z221>2. For points on the x axis, where y = 0 and z = 0, we have 
r = 1x221>2 = � x �, and

	 c1001x, 0, 02 = p- 1>21Z>a23>2e-Z�x�>a	 (6.109)

Figure 6.7 shows how (6.109) varies along the x axis. Although c100 is continuous at the 
origin, the slope of the tangent to the curve is positive at the left of the origin but negative 

100(x, 0, 0)

x

Figure 6.7  Cusp in the 
hydrogen-atom ground-
state wave function.
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at its right. Thus 0c>0x is discontinuous at the origin. We say that the wave function has 
a cusp at the origin. The cusp is present because the potential energy V = -Ze2>4pe0r 
becomes infinite at the origin. Recall the discontinuous slope of the particle-in-a-box wave 
functions at the walls of the box.

We denoted the hydrogen-atom bound-state wave functions by three subscripts that 
give the values of n, l, and m. In an alternative notation, the value of l is indicated by a 
letter:

	

Letter s p d f g h i k c
l 0 1 2 3 4 5 6 7 c 	

(6.110)

The letters s, p, d, f are of spectroscopic origin, standing for sharp, principal, diffuse, and 
fundamental. After these we go alphabetically, except that j is omitted. Preceding the code 
letter for l, we write the value of n. Thus the ground-state wave function c100 is called c1s 
or, more simply, 1s.

Wave Functions for n 5 2
For n = 2, we have the states c200, c21 -1, c210, and c211. We denote c200 as c2s or simply 
as 2s. To distinguish the three 2p functions, we use a subscript giving the m value and 
denote them as 2p1, 2p0, and 2p-1. The radial factor in the wave function depends on n 
and l, but not on m, as can be seen from (6.100). Each of the three 2p wave functions thus 
has the same radial factor. The 2s and 2p radial factors may be found in the usual way 
from (6.100) and (6.99), followed by normalization. The results are given in Table 6.1. 
Note that the exponential factor in the n = 2 radial functions is not the same as in the R1s 
function. The complete wave function is found by multiplying the radial factor by the ap-
propriate spherical harmonic. Using (6.101), Table 6.1, and Table 5.1, we have

	  2s =
1

p1>2 a
Z

2a
b

3>2
a1 -

Zr

2a
be- Zr>2a	 (6.111)

	  2p- 1 =
1

8p1>2 aZ
a
b

5>2
re- Zr>2a sin u e- if	 (6.112)

Table 6.1 � Radial Factors in the Hydrogenlike-Atom 
Wave Functions

R1s = 2aZ

a
b

3>2
 e-Zr>a

R2s =
122

aZ

a
b

3>2
a1 -

Zr

2a
be-Zr>2a

R2p =
1

226
aZ

a
b

5>2
 

 re-Zr>2a

R3s =
2

323
aZ

a
b

3>2
a1 -

2Zr

3a
+

2Z 2r2

27a2 be-Zr>3a

R3p =
8

2726
aZ

a
b

3>2
aZr

a
-

Z2r2

6a2 be-Zr>3a

R3d =
4

81230
aZ

a
b

7>2
 

 r2e-Zr>3a
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	  2p0 =
1

p1>2 a
Z

2a
b

5>2
re- Zr>2a cos u	 (6.113)

	  2p1 =
1

8p1>2 aZ
a
b

5>2
re- Zr>2a sin u eif	 (6.114)

Table 6.1 lists some of the normalized radial factors in the hydrogenlike wave func-
tions. Figure 6.8 graphs some of the radial functions. The r l factor makes the radial func-
tions zero at r = 0, except for s states.

The Radial Distribution Function
The probability of finding the electron in the region of space where its coordinates lie in 
the ranges r to r + dr, u to u + du, and f to f + df is [Eq. (5.78)]

	 �c � 2 dt = 3Rnl1r242 � Ym
l 1u, f) � 2

 r2 sin u dr du df	 (6.115)

We now ask: What is the probability of the electron having its radial coordinate between r 
and r + dr with no restriction on the values of u and f? We are asking for the probability 
of finding the electron in a thin spherical shell centered at the origin, of inner radius r and 
outer radius r + dr. We must thus add up the infinitesimal probabilities (6.115) for all 
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Figure 6.8  Graphs of the 
radial factor Rnl1r2 in the 
hydrogen-atom 1Z = 12 
wave functions. The same 
scale is used in all graphs.  
(In some texts, these func-
tions are not properly drawn 
to scale.)
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possible values of u and f, keeping r fixed. This amounts to integrating (6.115) over u and 
f. Hence the probability of finding the electron between r and r + dr is

	 3Rnl1r242r2 dr L
2p

0 L
p

0
� Ym

l 1u, f2 � 2 sin u du df = 3Rnl1r242r2 dr	 (6.116)

since the spherical harmonics are normalized:

	 L
2p

0 L
p

0
� Y m

l 1u, f2 � 2 sin u du df = 1	 (6.117)

as can be seen from (5.72) and (5.80). The function R21r2r 2, which determines the probabil-
ity of finding the electron at a distance r from the nucleus, is called the radial distribution 
function; see Fig. 6.9.

For the 1s ground state of H, the probability density �c � 2 is from Eq. (6.104) equal 
to e -2r>a times a constant, and so �c1s � 2 is a maximum at r = 0 (see Fig. 6.14). However, 
the radial distribution function 3R1s1r242r 2 is zero at the origin and is a maximum at 
r = a (Fig. 6.9). These two facts are not contradictory. The probability density �c � 2 is 
proportional to the probability of finding the electron in an infinitesimal box of volume 
dx dy dz, and this probability is a maximum at the nucleus. The radial distribution func-
tion is proportional to the probability of finding the electron in a thin spherical shell of 
inner and outer radii r and r + dr, and this probability is a maximum at r = a. Since c1s 
depends only on r, the 1s probability density is essentially constant in the thin spherical 
shell. If we imagine the thin shell divided up into a huge number of infinitesimal boxes 
each of volume dx dy dz, we can sum up the probabilities �c1s � 2 dx dy dz of being in 
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Figure 6.9  Plots of the 
radial distribution function 
3Rnl1r242r2  for the hydrogen 
atom.
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each tiny box in the thin shell to get the probability of finding the electron in the thin shell 
as being �c1s � 2Vshell. The volume Vshell of the thin shell is

4
3p1r + dr23 -

4
3pr 3 = 4pr 2 dr

where terms in 1dr22 and 1dr23 are negligible compared with the dr term. Therefore the 
probability of being in the thin shell is

�c1s � 2Vshell = R2
1s1Y 0

022 4pr2 dr = R2
1s314p2- 1>2424pr2 dr = R2

1sr
2 dr

in agreement with (6.116). The 1s radial distribution function is zero at r = 0 because the 
volume 4pr 2 dr of the thin spherical shell becomes zero as r goes to zero. As r increases 
from zero, the probability density �c1s � 2 decreases and the volume 4pr 2 dr of the thin 
shell increases. Their product �c1s � 24pr 2 dr is a maximum at r = a.

E x a m p l e

Find the probability that the electron in the ground-state H atom is less than a distance 
a from the nucleus.

We want the probability that the radial coordinate lies between 0 and a. This is 
found by taking the infinitesimal probability (6.116) of being between r and r + dr 
and summing it over the range from 0 to a. This sum of infinitesimal quantities is the 
definite integral

 L
a

0
R2

nlr
2 dr =

4

a3 L
a

0
e-2r>ar2 dr =

4

a3e-2r>aa-
r2a

2
-

2ra2

4
-

2a3

8
b `

a

0

 = 43e-21-5>42 - 1-1>424 = 0.323

where R10 was taken from Table 6.1 and the Appendix integral A.7 was used.

Exercise  Find the probability that the electron in a 2p1 H atom is less than a distance 
a from the nucleus. Use a table of integrals or the website integrals.wolfram.com. 
(Answer: 0.00366.)

Real Hydrogenlike Functions
The factor eimf makes the spherical harmonics complex, except when m = 0. Instead of 
working with complex wave functions such as (6.112) and (6.114), chemists often use real 
hydrogenlike wave functions formed by taking linear combinations of the complex func-
tions. The justification for this procedure is given by the theorem of Section 3.6: Any lin-
ear combination of eigenfunctions of a degenerate energy level is an eigenfunction of the 
Hamiltonian with the same eigenvalue. Since the energy of the hydrogen atom does not 
depend on m, the 2p1 and 2p -1 states belong to a degenerate energy level. Any linear com-
bination of them is an eigenfunction of the Hamiltonian with the same energy eigenvalue.

One way to combine these two functions to obtain a real function is

	 2px K
122

12p- 1 + 2p12 =
1

422p
aZ

a
b

5>2
 re- Zr>2a sin u cos f	 (6.118)

where we used (6.112), (6.114), and e { if = cos f { i sin f. The 1>22 factor normal-
izes 2px:

L � 2px � 2 dt =
1

2
¢L� 2p-1 � 2 dt + L � 2p1 � 2 dt +L12p-12*2p1 dt +L 12p12*2p-1 dt≤

	 =
1
211 + 1 + 0 + 02 = 1
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Here we used the fact that 2p1 and 2p-1 are normalized and are orthogonal to each other, 
since

L
2p

0
1e - if2*eif df = L

2p

0
e2if df = 0

The designation 2px for (6.118) becomes clearer if we note that (5.51) gives

	 2px =
1

422p
aZ

a
b

5>2
xe -Zr>2a	 (6.119)

A second way of combining the functions is

	 2py K
1

i22
12p1 - 2p- 12 =

1

422p
aZ

a
b

5>2
 r sin u sin f e- Zr>2a	 (6.120)

	 2py =
1

422p
aZ

a
b

5>2
ye -Zr>2a	 (6.121)

The function 2p0 is real and is often denoted by

	 2p0 = 2pz =
12p

a Z

2a
b

5>2
ze -Zr>2a	 (6.122)

where capital Z stands for the number of protons in the nucleus, and small z is the 
z coordinate of the electron. The functions 2px, 2py, and 2pz are mutually orthogo-
nal (Prob. 6.42). Note that 2pz is zero in the xy plane, positive above this plane, and 
negative below it.

The functions 2p -1 and 2p1 are eigenfunctions of Ln2 with the same eigenvalue: 2U2. 
The reasoning of Section 3.6 shows that the linear combinations (6.118) and (6.120) are 
also eigenfunctions of Ln2 with eigenvalue 2U2. However, 2p -1 and 2p1 are eigenfunctions 
of Lnz with different eigenvalues: - U and + U. Therefore, 2px and 2py are not eigenfunc-
tions of Lnz.

We can extend this procedure to construct real wave functions for higher states. Since 
m ranges from - l to + l, for each complex function containing the factor e - i�m�f there 
is a function with the same value of n and l but having the factor e + i�m�f. Addition and 
subtraction of these functions gives two real functions, one with the factor  cos 1 � m �f2, 
the other with the factor  sin  1 � m �f2. Table 6.2 lists these real wave functions for the 
hydrogenlike atom. The subscripts on these functions come from similar considerations 
as for the 2px, 2py, and 2pz functions. For example, the 3dxy function is proportional to xy 
(Prob. 6.37).

The real hydrogenlike functions are derived from the complex functions by replacing 
eimf> 12p21>2 with p-1>2 sin 1 � m �f2 or p-1>2 cos 1 � m �f2 for m � 0; for m = 0 the 
f factor is 1> 12p21>2 for both real and complex functions.

In dealing with molecules, the real hydrogenlike orbitals are more useful than 
the complex ones. For example, we shall see in Section 15.5 that the real atomic or-
bitals 2px, 2py, and 2pz of the oxygen atom have the proper symmetry to be used in 
constructing a wave function for the H2O molecule, whereas the complex 2p orbitals 
do not.
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6.7 Hydrogenlike Orbitals
The hydrogenlike wave functions are one-electron spatial wave functions and so are hy-
drogenlike orbitals (Section 6.5). These functions have been derived for a one-electron 
atom, and we cannot expect to use them to get a truly accurate representation of the wave 
function of a many-electron atom. The use of the orbital concept to approximate many-
electron atomic wave functions is discussed in Chapter 11. For now we restrict ourselves 
to one-electron atoms.

There are two fundamentally different ways of depicting orbitals. One way is to draw 
graphs of the functions; a second way is to draw contour surfaces of constant probability density.

First consider drawing graphs. To graph the variation of c as a function of the three 
independent variables r, u, and f, we need four dimensions. The three-dimensional na-
ture of our world prevents us from drawing such a graph. Instead, we draw graphs of the 

Table 6.2  Real Hydrogenlike Wave Functions

1s =
1

p1>2 a
Z

a
b

3>2
e- Zr>a

2s =
1

412p21>2 a
Z

a
b

3>2
a2 -

Zr

a
be- Zr>2a

2pz =
1

412p21>2 a
Z

a
b

5>2
re- Zr>2a cos u

2px =
1

412p21>2 a
Z

a
b

5>2
 re- Zr>2a sin u cos f

2py =
1

412p21>2 a
Z

a
b

5>2
re- Zr>2a sin u sin f

3s =
1

8113p21>2 a
Z

a
b

3>2
a27 - 18

Zr

a
+ 2

Z2r2

a2 be- Zr>3a

3pz =
21>2

81p1>2 a
Z

a
b

5>2
a6 -

Zr

a
bre- Zr>3a cos u

3px =
21>2

81p1>2 a
Z

a
b

5>2
a6 -

Zr

a
bre- Zr>3a sin u cos f

3py =
21>2

81p1>2 a
Z

a
b

5>2
a6 -

Zr

a
bre- Zr>3a sin u sin f

3dz2 =
1

8116p21>2 a
Z

a
b

7>2
r2e- Zr>3a13 cos2 u - 12

3dxz =
21>2

81p1>2 a
Z

a
b

7>2
 r2e- Zr>3a sin u cos u cos f

3dyz =
21>2

81p1>2 a
Z

a
b

7>2
 r2e- Zr>3a sin u cos u sin f

3dx2 - y2 =
1

8112p21>2 a
Z

a
b

7>2
 r2e- Zr>3a sin2 u cos 2f

3dxy =
1

8112p21>2 a
Z

a
b

7>2
 r2e- Zr>3a sin2 u sin 2f
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factors in c. Graphing R1r2 versus r, we get the curves of Fig. 6.8, which contain no infor-
mation on the angular variation of c.

Now consider graphs of S1u2. We have (Table 5.1)

S0,0 = 1>22, S1,0 =
1
226 cos u

We can graph these functions using two-dimensional Cartesian coordinates, plotting S on 
the vertical axis and u on the horizontal axis. S0,0 gives a horizontal straight line, and S1,0 
gives a cosine curve. More commonly, S is graphed using plane polar coordinates. The 
variable u is the angle with the positive z axis, and S1u2 is the distance from the origin 
to the point on the graph. For S0,0, we get a circle; for S1,0 we obtain two tangent circles 
(Fig. 6.10). The negative sign on the lower circle of the graph of S1,0 indicates that S1,0 
is negative for 1

2p 6 u … p. Strictly speaking, in graphing cos u we only get the upper 
circle, which is traced out twice; to get two tangent circles, we must graph � cos u � .

Instead of graphing the angular factors separately, we can draw a single graph that plots 
� S1u2T1f2 �  as a function of u and f. We will use spherical coordinates, and the distance 
from the origin to a point on the graph will be � S1u2T1f2 � . For an s state, ST is indepen-
dent of the angles, and we get a sphere of radius 1> 14p21>2 as the graph. For a pz state, 
ST =

1
213>p21>2 cos u, and the graph of � ST �  consists of two spheres with centers on the 

z axis and tangent at the origin (Fig. 6.11). No doubt Fig. 6.11 is familiar. Some texts say this 
gives the shape of a pz orbital, which is wrong. Figure 6.11 is simply a graph of the angular 
factor in a pz wave function. Graphs of the px and py angular factors give tangent spheres lying 

on the x and y axes, respectively. If we graph S2T 2 in spherical coordinates, we get surfaces 
with the familiar figure-eight cross sections; to repeat, these are graphs, not orbital shapes.

Figure 6.10  Polar graphs 
of the u factors in the s and 
pz hydrogen-atom wave 
functions.
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Now consider drawing contour surfaces of constant probability density. We shall draw 
surfaces in space, on each of which the value of �c � 2, the probability density, is constant. 
Naturally, if �c � 2 is constant on a given surface, �c �  is also constant on that surface. The 
contour surfaces for �c � 2 and for �c �  are identical.

For an s orbital, c depends only on r, and a contour surface is a surface of constant r, 
that is, a sphere centered at the origin. To pin down the size of an orbital, we take a contour 
surface within which the probability of finding the electron is, say, 95%; thus we want 

1V
�c � 2 dt = 0.95, where V is the volume enclosed by the orbital contour surface.

Let us obtain the cross section of the 2py hydrogenlike orbital in the yz plane. In this 
plane, f = p>2 (Fig. 6.5), and  sin f = 1; hence Table 6.2 gives for this orbital in the yz 
plane

	 � 2py � = k5>2p- 1>2re- kr � sin u � 	 (6.123)

where k = Z>2a. To find the orbital cross section, we use plane polar coordinates to 
plot (6.123) for a fixed value of c; r is the distance from the origin, and u is the angle 
with the z axis. The result for a typical contour (Prob. 6.44) is shown in Fig. 6.12. Since 
ye- kr = y exp 3- k1x2 + y2 + z221>24 , we see that the 2py orbital is a function of y and 
1x2 + z22. Hence, on a circle centered on the y axis and parallel to the xz plane, 2py 
is constant. Thus a three-dimensional contour surface may be developed by rotating the 
cross section in Fig. 6.12 about the y axis, giving a pair of distorted ellipsoids. The shape 
of a real 2p orbital is two separated, distorted ellipsoids, and not two tangent spheres.

Now consider the shape of the two complex orbitals 2p{1. We have

	 2p{1 = k5>2p- 1>2re- kr sin u e{ if

	 � 2p{1 � = k5>2p- 1>2e- krr � sin u � 	 (6.124)

and these two orbitals have the same shape. Since the right sides of (6.124) and (6.123) are 
identical, we conclude that Fig. 6.12 also gives the cross section of the 2p{1 orbitals in the 
yz plane. Since [Eq. (5.51)]

e- krr � sin u � = exp3- k1x2 + y2 + z221>24 1x2 + y221>2

we see that 2p{1 is a function of z and x2 + y2; so we get the three-dimensional orbital 
shape by rotating Fig. 6.12 about the z axis. This gives a doughnut-shaped surface.

Some hydrogenlike orbital surfaces are shown in Fig. 6.13. The 2s orbital has a 
spherical node, which is not visible; the 3s orbital has two such nodes. The 3pz orbital 
has a spherical node (indicated by a dashed line) and a nodal plane (the xy plane). 

Figure 6.12  Contour of a 
2py orbital.
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The 3dz2 orbital has two nodal cones. The 3dx2 -y2 orbital has two nodal planes. Note that 
the view shown is not the same for the various orbitals. The relative signs of the wave 
functions are indicated. The other three real 3d orbitals in Table 6.2 have the same shape 
as the 3dx2 -y2 orbital but have different orientations. The 3dxy orbital has its lobes lying 
between the x and y axes and is obtained by rotating the 3dx2 -y2 orbital by 45� about the 
z axis. The 3dyz and 3dxz orbitals have their lobes between the y and z axes and between 
the x and z axes, respectively. (Online three-dimensional views of the real hydrogenlike 
orbitals are at www.falstad.com/qmatom; these can be rotated using a mouse.)

Figure 6.13  Shapes 
of some hydrogen-atom 
orbitals.
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Figure 6.14 represents the probability density in the yz plane for various orbitals. 
The number of dots in a given region is proportional to the value of �c � 2 in that region. 
Rotation of these diagrams about the vertical (z) axis gives the three-dimensional prob-
ability density. The 2s orbital has a constant for its angular factor and hence has no angu-
lar nodes; for this orbital, n - l - 1 = 1, indicating one radial node. The sphere on which 
c2s = 0 is evident in Fig. 6.14.

Schrödinger’s original interpretation of �c � 2 was that the electron is “smeared out” 
into a charge cloud. If we consider an electron passing from one medium to another, we 
find that �c � 2 is nonzero in both mediums. According to the charge-cloud interpretation, 
this would mean that part of the electron was reflected and part transmitted. However, 
experimentally one never detects a fraction of an electron; electrons behave as indivis-
ible entities. This difficulty is removed by the Born interpretation, according to which the 
values of �c � 2 in the two mediums give the probabilities for reflection and transmission. 
The orbital shapes we have drawn give the regions of space in which the total probability 
of finding the electron is 95%.

6.8 The Zeeman Effect
In 1896, Zeeman observed that application of an external magnetic field caused a splitting 
of atomic spectral lines. We shall consider this Zeeman effect for the hydrogen atom. We 
begin by reviewing magnetism.

Magnetic fields arise from moving electric charges. A charge Q with velocity v gives 
rise to a magnetic field B at point P in space, such that

	 B =
m0

4p
 
Qv : r

r3 	 (6.125)

where r is the vector from Q to point P and where m0 (called the permeability of vacuum 
or the magnetic constant) is defined as 4p * 10-7 N C -2 s2. [Equation (6.125) is valid 
only for a nonaccelerated charge moving with a speed much less than the speed of light.] 
The vector B is called the magnetic induction or magnetic flux density. (It was for-
merly believed that the vector H was the fundamental magnetic field vector, so H was 
called the magnetic field strength. It is now known that B is the fundamental magnetic 
vector.) Equation (6.125) is in SI units with Q in coulombs and B in teslas (T), where 
1 T = 1 N C -1 m-1 s.

Two electric charges + Q and - Q separated by a small distance b constitute an elec-
tric dipole. The electric dipole moment is defined as a vector from - Q to + Q with 
magnitude Qb. For a small planar loop of electric current, it turns out that the magnetic 
field generated by the moving charges of the current is given by the same mathematical 

Figure 6.14  Probability 
densities for some hydrogen- 
atom states. [For accurate 
stereo plots, see D. T. Cromer,  
J. Chem. Educ., 45, 626 (1968).]
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expression as that giving the electric field due to an electric dipole, except that the electric 
dipole moment is replaced by the magnetic dipole moment m; m is a vector of magnitude 
IA, where I is the current flowing in a loop of area A. The direction of m is perpendicular 
to the plane of the current loop.

Consider the magnetic (dipole) moment associated with a charge Q moving in a circle 
of radius r with speed v. The current is the charge flow per unit time. The circumference 
of the circle is 2pr, and the time for one revolution is 2pr>v. Hence I = Qv>2pr. The 
magnitude of m is

	 � m � = IA = 1Qv>2pr2pr2 = Qvr>2 = Qrp>2m	 (6.126)

where m is the mass of the charged particle and p is its linear momentum. Since the radius 
vector r is perpendicular to p, we have

	 mL =
Qr : p

2m
=

Q

2m
L	 (6.127)

where the definition of orbital angular momentum L was used and the subscript on m indi-
cates that it arises from the orbital motion of the particle. Although we derived (6.127) for 
the special case of circular motion, its validity is general. For an electron, Q = -e, and 
the magnetic moment due to its orbital motion is

	 mL = -
e

2me
L	 (6.128)

The magnitude of L is given by (5.95), and the magnitude of the orbital magnetic moment 
of an electron with orbital-angular-momentum quantum number l is

	 � mL � =
eU

2me
3l1l + 1241>2 = mB3l1l + 1241>2	 (6.129)

The constant eU>2me is called the Bohr magneton mB:

	 mB K eU>2me = 9.2740 * 10-24 J>T	 (6.130)

Now consider applying an external magnetic field to the hydrogen atom. The en-
ergy of interaction between a magnetic dipole m and an external magnetic field B can be 
shown to be

	 EB = -m � B	 (6.131)

Using Eq. (6.128), we have

	 EB =
e

2me
 L � B	 (6.132)

We take the z axis along the direction of the applied field: B = Bk, where k is a unit vec-
tor in the z direction. We have

EB =
e

2me
B1Lxi + Ly j + Lzk2 � k =

e

2me
BLz =

mB

U
BLz

where Lz is the z component of orbital angular momentum. We now replace Lz by the op-
erator Ln z to give the following additional term in the Hamiltonian operator, resulting from 
the external magnetic field:

	 HnB = mBBU- 1Ln z	 (6.133)
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The Schrödinger equation for the hydrogen atom in a magnetic field is

	 1Hn + HnB2c = Ec	 (6.134)

where Hn  is the hydrogen-atom Hamiltonian in the absence of an external field. We readily 
verify that the solutions of Eq. (6.134) are the complex hydrogenlike wave functions (6.61):

	 1Hn + HnB2R1r2Y m
l 1u, f2 = HnRY m

l + mBU- 1BLn zRY m
l = a-

Z2

n2 
e2

8pe0a
+ mBBmbRY m

l 	

(6.135)

where Eqs. (6.94) and (5.105) were used. Thus there is an additional term mBBm in the 
energy, and the external magnetic field removes the m degeneracy. For obvious reasons, 
m is often called the magnetic quantum number. Actually, the observed energy shifts do 
not match the predictions of Eq. (6.135) because of the existence of electron spin magnetic 
moment (Chapter 10 and Section 11.7).

In Chapter 5 we found that in quantum mechanics L lies on the surface of a cone. 
A classical-mechanical treatment of the motion of L in an applied magnetic field shows 
that the field exerts a torque on mL, causing L to revolve about the direction of B at a con-
stant frequency given by � mL � B>2p � L � , while maintaining a constant angle with B. This 
gyroscopic motion is called precession. In quantum mechanics, a complete specification 
of L is impossible. However, one finds that 8L9  precesses about the field direction (Dicke 
and Wittke, Section 12-3).

6.9 �Numerical Solution of the Radial 
Schrödinger Equation

For a one-particle central-force problem, the wave function is given by (6.16) as 
c = R1r2Y m

l 1u, f2 and the radial factor R1r2 is found by solving the radial equation 
(6.17). The Numerov method of Section 4.4 applies to differential equations of the form 
c� = G1x2c1x2 [Eq. (4.66)], so we need to eliminate the first derivative R� in (6.17). Let 
us define F1r2 by F1r2 K rR1r2, so

	 R1r2 = r -1F1r2	 (6.136)

Then R� = -r -2F + r -1F� and R� = 2r- 3F - 2r- 2F� + r- 1F �. Substitution in (6.17) 
transforms the radial equation to

	 -
U2

2m
F �1r2 + cV1r2 +

l1l + 12U2

2mr2 dF1r2 = EF1r2	 (6.137)

	 F�1r2 = G1r2F1r2, where G1r2 K
m

U212V - 2E2 +
l1l + 12

r2 	 (6.138)

which has the form needed for the Numerov method. In solving (6.137) numerically, one 
deals separately with each value of l. Equation (6.137) resembles the one-dimensional 
Schrödinger equation - 1U2>2m2c�1x2 + V1x2c1x2 = Ec1x2, except that r (whose 
range is 0 to �) replaces x (whose range is - � to �), F1r2 K rR1r2 replaces c, and 
V1r2 + l1l + 12U2>2mr 2 replaces V1x2. We can expect that for each value of l, the 
lowest-energy solution will have 0 interior nodes (that is, nodes with 0 6 r 6 �), the 
next lowest will have 1 interior node, and so on.

Recall from the discussion after (6.81) that if R1r2 behaves as 1>r b near the origin, 
then if b 7 1, R1r2 is not quadratically integrable; also, the value b = 1 is not allowed, as 
noted after (6.83). Hence F1r2 K rR1r2 must be zero at r = 0.
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For l � 0, G1r2 in (6.138) is infinite at r = 0, which upsets most computers. To 
avoid this problem, one starts the solution at an extremely small value of r (for example, 
10- 15 for the dimensionless rr) and approximates F1r2 as zero at this point.

As an example, we shall use the Numerov method to solve for the lowest bound-
state H-atom energies. Here, V = -e2>4pe0r = -e�2>r, where e� K e> 14pe021>2. The 
radial equation (6.62) contains the three constants e�, m, and U, where e� K e> 14pe021>2 
has SI units of m N1>2 (see Table A.1 of the Appendix) and hence has the dimensions 
3e�4 = L3>2M1>2T -1. Following the procedure used to derive Eq. (4.73), we find the 
H-atom reduced energy and reduced radial coordinate to be (Prob. 6.47)

	 Er = E>me�4 U- 2,  rr = r>B = r>U2m- 1e�-2	 (6.139)

Use of (6.139) and (4.76) and (4.77) with c replaced by F and B = U2m- 1 e�-2 transforms 
(6.137) for the H atom to (Prob. 6.47)

	 F�r = GrFr,  where Gr = l1l + 12>r2
r - 2>rr - 2Er	 (6.140)

and where Fr = F>B -1>2.
The bound-state H-atom energies are all less than zero. Suppose we want to find the 

H-atom bound-state eigenvalues with Er … - 0.04. Equating this energy to Vr , we have 
(Prob. 6.47) -0.04 = -1>rr and the classically allowed region for this energy value ex-
tends from rr = 0 to rr = 25. Going two units into the classically forbidden region, we 
take rr, max = 27 and require that Fr1272 = 0. We shall take sr = 0.1, giving 270 points 
from 0 to 27 (more precisely, from 10-15 to 27 + 10-15).

Gr in (6.140) contains the parameter l, so the program of Table 4.1 has to be modified to 
input the value of l. When setting up a spreadsheet, enter the l value in some cell and refer to 
this cell when you type the formula for cell B7 (Fig. 4.9) that defines Gr. Start column A at 
rr = 1 * 10-15. Column C of the spreadsheet will contain Fr values instead of cr values, and 
Fr will differ negligibly from zero at rr = 1 * 10-15, and will be taken as zero at this point.

With these choices, we find (Prob. 6.48a) the lowest three H-atom eigenvalues for 
l = 0 to be Er = -0.4970, - 0.1246, and - 0.05499; the lowest two l = 1 eigenval-
ues found are - 0.1250 and - 0.05526. The true values [Eqs. (6.94) and (6.139)] are 
- 0.5000, -0.1250, and - 0.05555. The mediocre accuracy can be attributed mainly to 
the rapid variation of G1r2 near r = 0. If sr is taken as 0.025 instead of 0.1 (giving 1080 
points), the l = 0 eigenvalues are improved to - 0.4998, - 0.12497, and -0.05510. See 
also Prob. 6.48b.

Summary
For a one-particle system with potential energy a function of r only [V = V1r2, a central-
force problem], the stationary-state wave functions have the form c = R1r2Y m

l 1u, f2, 
where R1r2 satisfies the radial equation (6.17) and Y m

l  are the spherical harmonics.
For a system of two noninteracting particles 1 and 2, the Hamiltonian opera-

tor is Hn = Hn1 + Hn2, and the stationary-state wave functions and energies satisfy 
c = c11q12c21q22, E = E1 + E2, where Hn1c1 = E1c1 and Hn2c2 = E2c2; q1 and q2 
stand for the coordinates of particles 1 and 2.

For a system of two interacting particles 1 and 2 with Hamiltonian Hn = Tn1 + Tn2 + Vn, 
where V is a function of only the relative coordinates x, y, z of the particles, the energy is the 
sum of the energies of two hypothetical particles: E = EM + Em. One hypothetical particle 
has mass M K m1 + m2; its coordinates are the coordinates of the center of mass, and its 
energy EM is that of a free particle. The second particle has mass m K m1m2> 1m1 + m2); 
its coordinates are the relative coordinates x, y, z, and its energy Em is found by solving the 
Schrödinger equation for internal motion: 31- U2>2m2�2 + V4  c1x, y, z2 = Emc1x, y, z2.
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The two-particle rigid rotor consists of particles of masses m1 and m2 separated by a 
fixed distance d. Its energy is the sum of the energy EM of translation and the energy Em of 
rotation. Its stationary-state rotational wave functions are c = Y m

J 1u, f2, where u and f give 
the orientation of the rotor axis with respect to an origin at the rotor’s center of mass, and the 
quantum numbers are J = 0, 1, 2, c, and m = -J, - J + 1, c, J - 1, J. The rotational 
energy levels are Em = J1J + 12U2>2I, where I = md2, with m = m1m2> 1m1 + m22. 
The selection rule for spectroscopic transitions is �J = {1.

The hydrogenlike atom has V = -Ze2>4pe0r. With the translational energy sepa-
rated off, the internal motion is a central-force problem and c = R1r2Y m

l 1u, f2. The 
continuum states have E Ú 0 and correspond to an ionized atom. The bound states 
have the allowed energies E = - 1Z2>n2) ( e2>8pe0a2, where a K 4pe0U2>me2. The 
bound-state radial wave function is (6.101). The bound-state quantum numbers are 
n = 1, 2, 3, c; l = 0, 1, 2, c, n - 1; m = - l, - l + 1, c, l -1, l.

A one-electron spatial wave function is called an orbital. The shape of an orbital 
is defined by a contour surface of constant �c �  that encloses a specified amount of 
probability.

The Numerov method can be used to numerically solve the radial Schrödinger equation 
for a one-particle system with a spherically symmetric potential energy.

Problems

Sec. 6.1 6.2 6.3 6.4 6.5 6.6

Probs. 6.1–6.4 6.5–6.6 6.7 6.8–6.14 6.15–6.21 6.22–6.42

Sec. 6.7 6.8 6.9 general

Probs. 6.43–6.45 6.46 6.47–6.51 6.52–6.56

	 6.1	 True or false? (a) For a one-particle problem with V = br 3, where b is a positive constant, 
the stationary-state wave functions have the form c = f1r2Y m

l 1u, f2. (b) Every one-particle 
Hamiltonian operator commutes with Ln 2 and with Ln z.

	 6.2	 The particle in a spherical box has V = 0 for r … b and V = �  for r 7 b. For this system: 
(a) Explain why c = R1r2f1u, f2, where R1r2 satisfies (6.17). What is the function f1u, f)? 
(b) Solve (6.17) for R1r2 for the l = 0 states. Hints: The substitution R1r2 = g1r2>r reduces 
(6.17) to an easily solved equation. Use the boundary condition that c is finite at r = 0 [see 
the discussion after Eq. (6.83)] and use a second boundary condition. Show that for the l = 0 
states, c = N3sin1npr>b24 >r and E = n2h2>8mb2 with n = 1, 2, 3, c. (For l � 0, the 
energy-level formula is more complicated.)

	 6.3	 If the three force constants in Prob. 4.20 are all equal, we have a three-dimensional isotropic har-
monic oscillator. (a) State why the wave functions for this case can be written as c = f1r2G1u, f2. 
(b) What is the function G? (c) Write a differential equation satisfied by f1r2. (d) Use the results 
found in Prob. 4.20 to show that the ground-state wave function does have the form f1r2G1u, f2 
and verify that the ground-state f1r2 satisfies the differential equation in (c).

	 6.4	 Verify Eq. (6.6) for the Laplacian in spherical coordinates. (This is a long, tedious problem, 
and you probably have better things to spend your time on.)

	 6.5	 True or false? (a) For a system of n noninteracting particles, each stationary-state wave func-
tion has the form c = c11q12 + c21q22 + g+ cn1qn2. (b) The energy of a system of 
noninteracting particles is the sum of the energies of the individual particles, where the energy 
of each particle is found by solving a one-particle Schrödinger equation.

	 6.6	 For a system of two noninteracting particles of mass 9.0 * 10- 26 g and 5.0 * 10- 26 g in 
a one-dimensional box of length 1.00 * 10- 8 cm, calculate the energies of the six lowest 
stationary states.
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	 6.7	 True or false? (a) The reduced mass of a two-particle system is always less than m1 and less 
than m2. (b) When we solve a two-particle system (whose potential-energy V is a function of 
only the relative coordinates of the two particles) by dealing with two separate one-particle 
systems, V is part of the Hamiltonian operator of the fictitious particle with mass equal to the 
reduced mass.

	 6.8	 True or false? (a) The degeneracy of the J = 4 two-particle rigid-rotor energy level is 9. 
(b) The spacings between successive two-particle-rigid-rotor energy levels remain constant 
as J increases. (c) The spacings between successive two-particle-rigid-rotor absorption fre-
quencies remain constant as the J of the lower level increases. (d) The molecules 1H35Cl and 
1H37Cl have essentially the same equilibrium bond length. (e) The H2 molecule does not have 
a pure-rotational absorption spectrum.

	 6.9	 The lowest observed microwave absorption frequency of 12C16O is 115271 MHz. (a) Compute 
the bond distance in 12C16O. (b) Predict the next two lowest microwave absorption frequencies 
of 12C16O. (c) Predict the lowest microwave absorption frequency of 13C16O. (d) For 12C16O 
at 25�C, calculate the ratio of the J = 1 population to the J = 0 population. Repeat for the 
J = 2 to J = 0 ratio. Don’t forget degeneracy.

	6.10	 The J = 2 to 3 rotational transition in a certain diatomic molecule occurs at 126.4 GHz, where 
1 GHz K 109 Hz. Find the frequency of the J = 5 to 6 absorption in this molecule.

	6.11	 The J = 7 to 8 rotational transition in gas-phase 23Na35Cl occurs at 104189.7 MHz. The rela-
tive atomic mass of 23Na is 22.989770. Find the bond distance in 23Na35Cl.

	6.12	 For a certain diatomic molecule, two of the pure-rotational absorption lines are at 806.65 GHz 
and 921.84 GHz, where 1 GHz K  109 Hz, and there are no pure-rotational lines between 
these two lines. Find the initial J value for each of these transitions and find the molecular 
rotational constant B.

	6.13	 (a) For 12C16O in the v = 0 vibrational level, the J = 0  to 1 absorption frequency is 115271.20 
MHz and the J = 4 to 5 absorption frequency is 576267.92 MHz. Calculate the centrifugal 
distortion constant D for this molecule. (b) For 12C16O in the v = 1 level, the J = 0 to 1 
absorption is at 114221.74 MHz. Find the constant ae for this molecule.

	6.14	 Verify Eq. (6.51) for I of a two-particle rotor. Begin by multiplying and dividing the right side 
of (6.50) by m1m2> 1m1 + m22. Then use (6.49).

	6.15	 Calculate the ratio of the electrical and gravitational forces between a proton and an electron. 
Is neglect of the gravitational force justified?

	6.16	 (a) Explain why the degree of degeneracy of an H-atom energy level is given by gn - 1

l = 0
12l + 12.

		  (b) Break this sum into two sums. Evaluate the first sum using the fact that g k
j = 1 j =

1
2 k1k + 12. 

Show that the degree of degeneracy of the H-atom levels is n2 (spin omitted). (c) Prove 
that g k

j = 1 j =
1
2k1k + 12 by adding corresponding terms of the two series 1, 2, 3, c, k and 

k, k - 1, k - 2, c, 1.

	6.17	 (a) Calculate the wavelength and frequency for the spectral line that arises from an n = 6 to 
n = 3 transition in the hydrogen atom. (b) Repeat the calculations for He + ; neglect the change 
in reduced mass from H to He + .

	6.18	 Assign each of the following observed vacuum wavelengths to a transition between two 
hydrogen-atom levels:

	 656.47 nm,    486.27 nm, 434.17 nm, 410.29 nm 1Balmer series2
Predict the wavelengths of the next two lines in this series and the wavelength of the series 
limit. (Balmer was a Swiss mathematician who, in 1885, came up with an empirical formula 
that fitted lines of the hydrogen spectrum.)

	6.19	 Each hydrogen-atom line of Prob. 6.18 shows a very weak nearby satellite line. Two of the 
satellites occur at the vacuum wavelength 656.29 nm and 486.14 nm. (a) Explain their origin. 
(The person who first answered this question got a Nobel Prize.) (b) Calculate the other two 
satellite wavelengths.
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	6.20	 Verify that for large values of j, the ratio bj+ 1>bj in (6.88) is the same as the ratio of the coef-
ficient of r j+ 1 to that of r j in the power series for e2Cr.

	6.21	 For the particle in a box with infinitely high walls and for the harmonic oscillator, there are no 
continuum eigenfunctions, whereas for the hydrogen atom we do have continuum functions. 
Explain this in terms of the nature of the potential-energy function for each problem.

	6.22	 The positron has charge + e and mass equal to the electron mass. Calculate in electronvolts 
the ground-state energy of positronium—an “atom” that consists of a positron and an electron.

	6.23	 For the ground state of the hydrogenlike atom, show that 8r9 = 3a>2Z.

	6.24	 Find 8r9  for the 2p0 state of the hydrogenlike atom.

	6.25	 Find 8r 29  for the 2p1 state of the hydrogenlike atom.

	6.26	 For a hydrogenlike atom in a stationary state with quantum numbers n, l, and m, prove that 
		  8r9 = 1�

0
r3 � Rnl � 2 dr.

	6.27	 Derive the 2s and 2p radial hydrogenlike functions.

	6.28	 For which hydrogen-atom states is c nonzero at the nucleus?

	6.29	 What is the value of the angular-momentum quantum number l for a t orbital?

	6.30	 If we were to ignore the interelectronic repulsion in helium, what would be its ground-state 
energy and wave function? (See Section 6.2.) Compute the percent error in the energy; the 
experimental He ground-state energy is - 79.0 eV.

	6.31	 For the ground state of the hydrogenlike atom, find the most probable value of r.

	6.32	 Where is the probability density a maximum for the hydrogen-atom ground state?

	6.33	 (a) For the hydrogen-atom ground state, find the probability of finding the electron farther 
than 2a from the nucleus. (b) For the H-atom ground state, find the probability of finding the 
electron in the classically forbidden region.

	6.34	 A stationary-state wave function is an eigenfunction of the Hamiltonian operator Hn = Tn + Vn. 
Students sometimes erroneously believe that c is an eigenfunction of Tn and of Vn. For the 
ground state of the hydrogen atom, verify directly that c is not an eigenfunction of Tn or of 
Vn, but is an eigenfunction of Tn + Vn. Can you think of a problem we solved where c is an 
eigenfunction of Tn and of Vn?

	6.35	 Show that 8T9 + 8V9 = E for a stationary state.

	6.36	 For the hydrogen-atom ground state, (a) find 8V9 ; (b) use the results of (a) and 6.35 to find 
8T9 ; then find 8T9 > 8V9 ; (c) use 8T9  to calculate the root-mean-square speed 8v

291>2 of 
the electron; then find the numerical value of 8v

291>2>c, where c is the speed of light.

	6.37	 (a) The 3dxy function is defined as 3dxy K 13d2 - 3d - 22>21>2i. Use Tables 6.1 and 5.1, 
Eq. (6.101), and an identity for  sin 2f to show that 3dxy is proportional to xy. (b) Express 
the other real 3d functions of Table 6.2 as linear combinations of the complex functions 
3d2, 3d1, c, 3d- 2. (c) Use a trigonometric identity to show that 3dx2 - y2 contains the factor 
x2 - y2.

	6.38	 The hydrogenlike wave functions 2p1, 2p0, and 2p - 1 can be characterized as those 2p functions 
that are eigenfunctions of Ln z. What operators can we use to characterize the functions 2px, 2py, 
and 2pz, and what are the corresponding eigenvalues?

	6.39	 Given that An f = af  and Ang = bg, where f and g are functions and a and b are constants, under 
what condition(s) is the linear combination c1f + c2g an eigenfunction of the linear operator An?

	6.40	 State which of the three operators Ln 2, Ln z, and the H-atom Hn  each of the following functions is 
an eigenfunction of: (a) 2pz; (b) 2px; (c) 2p1.

	6.41	 For the real hydrogenlike functions: (a) What is the shape of the n - l - 1 nodal surfaces for 
which the radial factor is zero? (b) The nodal surfaces for which the f factor vanishes are of 
the form f =  constant. Thus they are planes perpendicular to the xy plane. How many such 
planes are there? (Values of f that differ by p are considered to be part of the same plane.) 
(c) It can be shown that there are l - m surfaces on which the u factor vanishes. What is the 
shape of these surfaces? (d) How many nodal surfaces are there for the real hydrogenlike wave 
functions?
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	6.42	 Verify the orthogonality of the 2px, 2py, and 2pz functions.

	6.43	 Find the radius of the sphere defining the 1s hydrogen orbital using the 95% probability 
definition.

	6.44	 Show that the maximum value for 2py [Eq. (6.123)] is k3>2p- 1>2e - 1. Use Eq. (6.123) to plot 
the 2py contour for which c = 0.316c max .

	6.45	 Sketch rough contours of constant �c �  for each of the following states of a particle in a two-
dimensional square box: nxny = 11; 12; 21; 22. What are you reminded of?

	6.46	 (Answer this question based on Section 6.8, which omits the effects of electron spin.) How 
many energy levels is the n = 2 H-atom energy level split into when an external magnetic 
field is applied? Give the degeneracy of each of these levels.

	6.47	 (a) Verify the equations (6.139) for the H-atom dimensionless Er and rr. (b) Verify (6.140) 
for Fr. (c) Verify that Vr = -1>rr for the H atom.

		  For Probs. 6.48–6.51, use a modified version of the program in Table 4.1 or a spreadsheet or 
a computer algebra system.

	6.48	 (a) Verify the l = 0 and l = 1 Numerov-method H-atom energies given in Section 6.9 for 
270 points and for 1080 points, with rr going from 10- 15 to 27. You must uncheck the Make 
Unconstrained Variables Non-Negative box in the Solver Parameters box in Excel 2010. 
(b) For 1080 points and rr going to 27, the n = 3, l = 0 Numerov Er of -0.05510 is still 
substantially in error. Use the Numerov method to improve this energy significantly without 
decreasing sr.

	6.49	 Use the Numerov method to calculate the lowest four l = 0 energy eigenvalues and the low-
est four l = 1 eigenvalues of the three-dimensional isotropic harmonic oscillator, which has 
V =

1
2 kr 2. Compare with the exact results (Prob. 4.20).

	6.50	 Use the Numerov method to calculate and plot the reduced radial function Rr1rr2 for the lowest 
l = 0 H-atom state. (See Prob. 6.48.) Explain why the value of Rr at rr = 10- 15 calculated 
from Rr = Fr>rr [the equation corresponding to (6.136)] is wrong for this state.

	6.51	 For the particle in a spherical box (Prob. 6.2), use the Numerov method to find the lowest 
three l = 0 energy eigenvalues and the lowest three l = 1 eigenvalues. Compare your l = 0 
results with the exact results of Prob. 6.2.

	6.52	 For each of the following systems, give the expression for dt and give the limits of each variable 
in the equation 1  �c � 2 dt = 1. (a) The particle in a one-dimensional box of length l. (b) The 
one-dimensional harmonic oscillator. (c) A one-particle, three-dimensional system where 
Cartesian coordinates are used. (d) Internal motion in the hydrogen atom, using spherical 
coordinates.

	6.53	 Find the n = 2 to n = 1 energy-level population ratio for a gas of hydrogen atoms at (a) 25�C; 
(b) 1000 K; (c) 10000 K.

	6.54	 Name a quantum-mechanical system for which the spacing between adjacent bound-state 
energy levels (a) remains constant as E increases; (b) increases as E increases; (c) decreases 
as E increases.

	6.55	 (a) Name two quantum-mechanical systems that have an infinite number of bound-state energy 
levels. (b) Name a quantum-mechanical system that has a finite number of bound-state energy 
levels. (c) Name a quantum-mechanical system that has no zero-point energy.

	6.56	 True or false? (a) The value zero is never allowed for an eigenvalue. (b) The function f = 0 
is never allowed as an eigenfunction. (c) The symbol e stands for the charge on an electron. 
d) In the equation 8B9 = 1c*Bnc dt, where dt = r 2 sin u dr du df, Bn operates on c only 
and does not operate on r 2 sin u. (e) In the n = 1 state of an H atom, the electron moves on a 
circular orbit whose radius is the Bohr radius. (f) The electron probability density at the nucleus 
is zero for all H-atom states. (g) In the ground-state of an H atom, the electron is restricted 
to move on the surface of a sphere. (h) For the ground-state H atom, the electron probability 
density is greater than zero at all locations in the atom. (i) All the spherical harmonics Y m

l  are 
constant on the surface of a sphere centered at the origin.
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Chapter 7	

Theorems of  
Quantum Mechanics

7.1 Notation
The Schrödinger equation for the one-electron atom (Chapter 6) is exactly solvable. How-
ever, because of the interelectronic-repulsion terms in the Hamiltonian, the Schrödinger 
equation for many-electron atoms and molecules cannot be solved exactly. Hence we must 
seek approximate methods of solution. The two main approximation methods, the varia-
tion method and perturbation theory, will be presented in Chapters 8 and 9. To derive 
these methods, we must develop further the theory of quantum mechanics, which is what 
is done in this chapter.

Before starting, we introduce some notation. The definite integral over all space of  
an operator sandwiched between two functions occurs often, and various abbreviations  
are used:

	 L f*m An fn dt K 8 fm 0An 0 fn9 K 8m 0An 0 n9 	 (7.1)

where fm and fn are two functions. If it is clear what functions are meant, we can use 
just the indexes, as indicated in (7.1). The above notation, introduced by Dirac, is called 
bracket notation. Another notation is

	 L f *m An fn dt K Amn	 (7.2)

The notations Amn and 8m 0An 0 n9  imply that we use the complex conjugate of the function 
whose letter appears first. The definite integral 8m 0An 0 n9  is called a matrix element of the 
operator An. Matrices are rectangular arrays of numbers and obey certain rules of combina-
tion (see Section 7.10).

For the definite integral over all space between two functions, we write

	 L f*m fn dt K 8 fm 0 fn9 K 1 fm, fn2 K 8m 0 n9 	 (7.3)
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Note that

8 f 0Bn 0 g9 = 8 f 0Bng9
where f and g are functions. Since 11 fm* fn dt2* = 1 f n* fm dt, we have the identity

	 8m 0 n9* = 8n 0m9 	 (7.4)

Since the complex conjugate of fm in (7.1) is taken, it follows that

	 8cf 0Bn 0 g9 = c*8 f 0Bn 0 g9 and 8 f 0Bn 0 cg9 = c8 f 0Bn 0 g9 	 (7.5)

where Bn is a linear operator and c is a constant.

7.2 Hermitian Operators
The quantum-mechanical operators that represent physical quantities are linear 
(Section 3.1). These operators must meet an additional requirement, which we now 
discuss.

Definition of Hermitian Operators
Let An be the linear operator representing the physical property A. The average value of A 
is [Eq. (3.88)]

8A9 = L*An dt

where  is the state function of the system. Since the average value of a physical quantity 
must be a real number, we demand that

8A9 = 8A9*

L*An dt = cL*An dtd* = L1*2*1An2* dt

	 L*An dt = L1An2* dt	 (7.6)

Equation (7.6) must hold for every function  that can represent a possible state of the 
system; that is, it must hold for all well-behaved functions . A linear operator that satis-
fies (7.6) for all well-behaved functions is called a Hermitian operator (after the math-
ematician Charles Hermite).

Many texts define a Hermitian operator as a linear operator that satisfies

	 L f*Ang dt = Lg1An f2* dt	 (7.7)

for all well-behaved functions f and g. Note especially that on the left side of (7.7) An oper-
ates on g, but on the right side An operates on f. For the special case f = g, (7.7) reduces 
to (7.6). Equation (7.7) is apparently a more stringent requirement than (7.6), but we shall 
prove that (7.7) is a consequence of (7.6). Therefore the two definitions of a Hermitian 
operator are equivalent.
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We begin the proof by setting  = f + cg in (7.6), where c is an arbitrary constant. 
This gives

L1 f + cg2*An1 f + cg2 dt =L 1 f + cg23An1 f + cg24* dt

L 1 f * + c*g*2An f dt + L 1 f* + c*g*2Ancg dt

= L 1 f + cg21An f 2*dt + L 1 f + cg21Ancg2*dt

L  f*An f dt + c*Lg*An f dt + cL  f *Ang dt + c*cLg*Ang dt

= L  f 1An f 2* dt + cLg1An f 2* dt + c*L  f 1Ang2* dt + cc*Lg1Ang2* dt

By virtue of (7.6), the first terms on each side of this last equation are equal to each other; 
likewise, the last terms on each side are equal. Therefore

	 c*Lg*An f dt + cL  f *Ang dt = cLg1An f 2* dt + c*L  f 1Ang2* dt	 (7.8)

Setting c = 1 in (7.8), we have

	 Lg*An f dt + L  f*Ang dt = Lg1An f2* dt + L  f1Ang2* dt	 (7.9)

Setting c = i in (7.8), we have, after dividing by i,

	 -Lg*An f dt + L  f *Ang dt = Lg1An f2* dt - L  f1Ang2* dt	 (7.10)

We now add (7.9) and (7.10) to get (7.7). This completes the proof.
Therefore, a Hermitian operator An is a linear operator that satisfies

	 L  f*m An fn dt = L  fn1An fm2* dt	 (7.11)

where fm and fn are arbitrary well-behaved functions and the integrals are definite inte-
grals over all space. Using the bracket and matrix-element notations, we write

	 8 fm 0An 0 fn9 = 8 fn 0An 0 fm9*	 (7.12)

	 8m 0An 0 n9 = 8n 0An 0m9*	 (7.13)

	 Amn = 1Anm2*	 (7.14)

The two sides of (7.12) differ by having the functions interchanged and the complex con-
jugate taken.

Examples of Hermitian Operators
Let us show that some of the operators we have been using are indeed Hermitian. For 
simplicity, we shall work in one dimension. To prove that an operator is Hermitian, it suf-
fices to show that it satisfies (7.6) for all well-behaved functions. However, we shall make 
things a bit harder by proving that (7.11) is satisfied.

First consider the one-particle, one-dimensional potential-energy operator. The right 
side of (7.11) is

	 L


-
    fn1x23V1x2 fm1x24* dx 	 (7.15)
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We have V* = V, since the potential energy is a real function. Moreover, the order of the 
factors in (7.15) does not matter. Therefore,

L


-

fn1Vfm2* dx = L


-

fnV*f *m dx = L


-

f *mVfn dx

which proves that V is Hermitian.
The operator for the x component of linear momentum is pnx = - iU d>dx [Eq. (3.23)]. 

For this operator, the left side of (7.11) is

- iUL


-

f*m1x2dfn1x2
dx

 dx

Now we use the formula for integration by parts:

	 L
b

a
u1x2dv1x2

dx
 dx = u1x2v1x2 `

b

a
- L

b

a
v1x2 du1x2

dx
 dx	 (7.16)

Let

u1x2 K - iU f*m1x2,  v1x2 K fn1x2
Then

	 - iUL


-

f*m
dfn
dx

 dx = - iU f*m fn `


-

+ iUL


-

fn1x2 df*m1x2
dx

 dx	 (7.17)

Because fm and fn are well-behaved functions, they vanish at x = {. (If they didn’t vanish 
at infinity, they wouldn’t be quadratically integrable.) Therefore, (7.17) becomes

L


-

f*ma- iU
dfn
dx

b  dx = L


-

fna- iU
dfm
dx

b* dx

which is the same as (7.11) and proves that pnx is Hermitian. The proof that the kinetic-
energy operator is Hermitian is left to the reader. The sum of two Hermitian opera-
tors can be shown to be Hermitian. Hence the Hamiltonian operator Hn = Tn + Vn is 
Hermitian.

Theorems about Hermitian Operators
We now prove some important theorems about the eigenvalues and eigenfunctions of 
Hermitian operators.

Since the eigenvalues of the operator An corresponding to the physical quantity A 
are the possible results of a measurement of A (Section 3.3), these eigenvalues should 
all be real numbers. We now prove that the eigenvalues of a Hermitian operator are real 
numbers.

We are given that An is Hermitian. Translating these words into an equation, we have 
[Eq. (7.11)]

	 L  f*m An fn dt = L  fn1An fm2* dt	 (7.18)

for all well-behaved functions fm and fn. We want to prove that every eigenvalue of An is 
a real number. Translating this into equations, we want to show that ai = a*i, where the 
eigenvalues ai satisfy Angi = aigi; the functions gi are the eigenfunctions.
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To introduce the eigenvalues ai into (7.18), we write (7.18) for the special case where 
fm = gi and fn = gi:

Lg*i Angi dt = Lgi1Angi2* dt

Use of Angi = aigi gives

aiLg*i gi dt = Lgi1aigi2* dt =  a*iLgig*i dt

	 1ai - a*i2L 0 gi 0 2 dt = 0	 (7.19)

Since the integrand 0 gi 0 2 is never negative, the only way the integral in (7.19) could be 
zero would be if gi were zero for all values of the coordinates. However, we always reject 
gi = 0 as an eigenfunction on physical grounds. Hence the integral in (7.19) cannot be 
zero. Therefore, 1ai - a*i2 = 0, and ai = a*i. We have proved:

Theorem 1.  The eigenvalues of a Hermitian operator are real numbers.

To help become familiar with bracket notation, we shall repeat the proof of The-
orem 1 using bracket notation. We begin by setting m = i and n = i in (7.13) to get 
8i 0An 0 i9 = 8i 0An 0 i9*. Choosing the function with index i to be an eigenfunction of An 
and using the eigenvalue equation Angi = aigi, we have 8i 0 ai 0 i9 = 8i 0 ai 0 i9*. Therefore 
ai8i 0 i9 = a*i8i 0 i9* = a*i8i 0 i9  and 1ai - a*i28i 0 i9 = 0. So ai = a*i, where (7.4) with m = n 
was used.

We showed that two different particle-in-a-box energy eigenfunctions ci and cj are 
orthogonal, meaning that 1

-
c*i cj dx = 0 for i � j [Eq. (2.26)]. Two functions f1 and f2 

of the same set of coordinates are said to be orthogonal if

	 L  f*1 f2 dt = 0	 (7.20)

where the integral is a definite integral over the full range of the coordinates. We now 
prove the general theorem that the eigenfunctions of a Hermitian operator are, or can be 
chosen to be, mutually orthogonal. Given that

	 BnF = sF, BnG = tG	 (7.21)

where F and G are two linearly independent eigenfunctions of the Hermitian operator Bn, 
we want to prove that

LF*G dt K 8F 0G9 = 0

We begin with Eq. (7.12), which expresses the Hermitian nature of Bn :

8F 0Bn 0G9 = 8G 0Bn 0F9*
Using (7.21), we have

 8F 0 t 0G9 = 8G 0 s 0F9*
 t8F 0G9 = s*8G 0F9*
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Since eigenvalues of Hermitian operators are real (Theorem 1), we have s* = s. Use of 
8G 0F9* = 8F 0G9  [Eq. (7.4)] gives

t8F 0G9 = s8F 0G9
1t - s28F 0G9 = 0

If s � t, then

	 8F 0G9 = 0	 (7.22)

We have proved that two eigenfunctions of a Hermitian operator that correspond to 
different eigenvalues are orthogonal. The question now is: Can we have two independent 
eigenfunctions that have the same eigenvalue? The answer is yes. In the case of degen-
eracy, we have the same eigenvalue for more than one independent eigenfunction. There-
fore, we can only be certain that two independent eigenfunctions of a Hermitian operator 
are orthogonal to each other if they do not correspond to a degenerate eigenvalue. We 
now show that in the case of degeneracy we may construct eigenfunctions that will be 
orthogonal to one another. We shall use the theorem proved in Section 3.6, that any linear 
combination of eigenfunctions corresponding to a degenerate eigenvalue is an eigenfunc-
tion with the same eigenvalue. Let us therefore suppose that F and G are independent 
eigenfunctions that have the same eigenvalue:

BnF = sF,  BnG = sG

We take linear combinations of F and G to form two new eigenfunctions g1 and g2 that 
will be orthogonal to each other. We choose

g1 K F,  g2 K G + cF

where the constant c will be chosen to ensure orthogonality. We want

Lg*1g2 dt = 0 

LF*1G + cF2 dt =LF*G dt + cLF*F dt = 0

Hence choosing

	 c = -LF*G dtnLF*F dt	 (7.23)

we have two orthogonal eigenfunctions g1 and g2 corresponding to the degenerate 
eigenvalue. This procedure (called Schmidt or Gram–Schmidt orthogonalization) can be 
extended to the case of n-fold degeneracy to give n linearly independent orthogonal eigen-
functions corresponding to the degenerate eigenvalue.

Thus, although there is no guarantee that the eigenfunctions of a degenerate eigen-
value are orthogonal, we can always choose them to be orthogonal, if we desire, by using 
the Schmidt (or some other) orthogonalization method. In fact, unless stated otherwise, 
we shall always assume that we have chosen the eigenfunctions to be orthogonal:

	 Lg*i gk dt = 0,  i � k	 (7.24)

where gi and gk are independent eigenfunctions of a Hermitian operator. We have proved:

Theorem 2.  Two eigenfunctions of a Hermitian operator Bn that correspond to 
different eigenvalues are orthogonal. Eigenfunctions of Bn that belong to a degen-
erate eigenvalue can always be chosen to be orthogonal.
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An eigenfunction can usually be multiplied by a constant to normalize it, and we 
shall assume, unless stated otherwise, that all eigenfunctions are normalized:

	 Lg*i gi dt = 1	 (7.25)

The exception is where the eigenvalues form a continuum, rather than a discrete set of 
values. In this case, the eigenfunctions are not quadratically integrable. Examples are the 
linear-momentum eigenfunctions, the free-particle energy eigenfunctions, and the hydrogen-
atom continuum energy eigenfunctions.

Using the Kronecker delta, defined by dik K 1 if i = k  and dik K 0 if i � k 
[Eq. (2.28)], we can combine (7.24) and (7.25) into one equation:

	 Lg*i gk dt = 8i 0 k9 = dik	 (7.26)

where gi and gk are eigenfunctions of some Hermitian operator.
As an example, consider the spherical harmonics. We shall prove that

	 L
2p

0 L
p

0

3Ym
l 1u, f24*Y m

l  1u, f2 sin u du df = dl,ldm,m	 (7.27)

where the sin u factor comes from the volume element in spherical coordinates, (5.78). 
The spherical harmonics are eigenfunctions of the Hermitian operator Ln2 [Eq. (5.104)]. 
Since eigenfunctions of a Hermitian operator belonging to different eigenvalues are 
orthogonal, we conclude that the integral in (7.27) is zero unless l = l. Similarly, since 
the Ym

l  functions are eigenfunctions of Lnz [Eq. (5.105)], we conclude that the integral 
in (7.27) is zero unless m = m. Also, the multiplicative constant in Ym

l  [Eq. (5.147) of 
Prob. 5.34] has been chosen so that the spherical harmonics are normalized [Eq. (6.117)]. 
Therefore (7.27) is valid.

The integral 8 f 0Bn 0 g9  can be simplified if either f or g is an eigenfunction of the 
Hermitian operator Bn. If Bng = cg, where c is a constant, then

8 f 0Bn 0 g9 = 8 f 0Bng9 = 8 f 0 cg9 = c8 f 0 g9
If Bn f = k f, where k is a constant, then use of the Hermitian property of Bn gives

8 f 0Bn 0 g9 = 8g 0Bn 0 f 9* = 8g 0Bn f 9* = 8g 0 k f 9* = k*8g 0 f 9* = k8 f 0 g9
since the eigenvalue k is real. The relation 8 f 0Bn 0 g9 = k8 f 0 g9  shows that the Hermitian 
operator Bn can act to the left in 8 f 0Bn 0 g9 .

A proof of the uncertainty principle is outlined in Prob. 7.60.

7.3 Expansion in Terms of Eigenfunctions
In the previous section, we proved the orthogonality of the eigenfunctions of a Her-
mitian operator. We now discuss another important property of these functions; this 
property allows us to expand an arbitrary well-behaved function in terms of these 
eigenfunctions.

We have used the Taylor-series expansion (Prob. 4.1) of a function as a linear combi-
nation of the nonnegative integral powers of 1x - a2. Can we expand a function as a linear 
combination of some other set of functions besides 1, 1x - a2, 1x - a22, c? The answer 
is yes, as was first shown by Fourier in 1807. A Fourier series is an expansion of a function 
as a linear combination of an infinite number of sine and cosine functions. We shall not go 
into detail about Fourier series, but shall simply look at one example.
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Expansion of a Function Using Particle-in-a-Box Wave Functions
Let us consider expanding a function in terms of the particle-in-a-box stationary-state 
wave functions, which are [Eq. (2.23)]

	 cn = a 2

l
b

1>2
 sin anpx

l
b ,  n = 1, 2, 3, c 	 (7.28)

for x between 0 and l. What are our chances for representing an arbitrary function f 1x2 in 
the interval 0 … x … l by a series of the form

	 f 1x2 = a


n = 1
 ancn = a 2

l
b

1>2
a


n = 1
 an sin a npx

l
b ,  0 … x … l	 (7.29)

where the an>s are constants? Substitution of x = 0 and x = l in (7.29) gives the restrictions 
that f 102 = 0 and f 1l2 = 0. In other words, f 1x2 must satisfy the same boundary conditions 
as the cn functions. We shall also assume that f 1x2 is finite, single-valued, and continuous, but 
not necessarily differentiable. With these assumptions it can be shown that the expansion (7.29) 
is valid. We shall not prove (7.29) but will simply illustrate its use to represent a function.

Before we can apply (7.29) to a specific f1x2, we must derive an expression for the 
expansion coefficients an. We start by multiplying (7.29) by c*m:

	 c*m f 1x2 = a


n = 1
anc*mcn = a 2

l
b  a



n = 1
an sin a npx

l
b  sin ampx

l
b 	 (7.30)

Now we integrate this equation from 0 to l. Assuming the validity of interchanging the 
integration and the infinite summation, we have

L
l

0
c*m f 1x2 dx = a



n = 1
anL

l

0
c*mcn dx = a



n = 1
ana 2

l
b  L

l

0
sin a npx

l
b  sin ampx

l
b  dx

We proved the orthonormality of the particle-in-a-box wave functions [Eq. (2.27)]. There-
fore, the last equation becomes

	 L
l

0
c*m f 1x2 dx = a



n = 1
andmn	 (7.31)

The type of sum in (7.31) occurs often. Writing it in detail, we have

 a


n = 1
andmn = a1dm,1 + a2dm,2 + g+ amdm,m + am + 1dm,m + 1 + g

	  = 0 + 0 + g + am + 0 + g

	 a


n = 1
andmn = am	 (7.32)

Thus, since dmn is zero except when the summation index n is equal to m, all terms but one 
vanish, and (7.31) becomes

	 am = L
l

0
c*m f 1x2 dx	 (7.33)

which is the desired expression for the expansion coefficients.
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Changing m to n in (7.33) and substituting it into (7.29), we have

	 f1x2 = a


n = 1
 cL

l

0
c*n f1x2 dxdcn1x2	 (7.34)

This is the desired expression for the expansion of an arbitrary well-behaved function 
f 1x2 10 … x … l2 as a linear combination of the particle-in-a-box wave functions cn. 
Note that the definite integral 1 l

0c*n f1x2 dx is a number and not a function of x.
We now use (7.29) to represent a specific function, the function of Fig. 7.1, which is 

defined by

f 1x2 = x  for 0 … x …
1
2 l

	 f 1x2 = l - x  for 1
2 l … x … l	

(7.35)

To find the expansion coefficients an, we substitute (7.28) and (7.35) into (7.33):

 an = L
l

0
c*n f 1x2 dx = a 2

l
b

1>2

L
l

0
sin a npx

l
b f 1x2 dx

 an = a 2

l
b

1>2

L
l>2

0
x sin a npx

l
b  dx +  a 2

l
b

1>2

L
l

l>2
1l - x2 sin a npx

l
b  dx

Using the Appendix integral (A.1), we find

	 an =
12l23>2

n2p2  sin a np

2
b 	 (7.36)

Using (7.36) in the expansion (7.29), we have [since sin  1np>22 equals zero for n even 
and equals +1 or -1 for n odd]

f 1x2 =
4l

p2 c  sinapx

l
b -

1

32 sina 3px

l
b +

1

52 sina 5px

l
b - gd

	  f 1x2 =
4l

p2 a


n = 1
1-12n + 1 1

12n - 122 sin c 12n - 12px

l
d 	 (7.37)

where f1x2 is given by (7.35). Let us check (7.37) at x =
1
2 l. We have

	 f a l

2
b =

4l

p2 a1 +
1

32 +
1

52 +
1

72 + gb 	 (7.38)

Figure 7.1  Function to 
be expanded in terms of 
particle-in-a-box functions.

f(x)

x 5 lx 5 x

l
1
2

l
1
2
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Tabulating the right side of (7.38) as a function of the number of terms we take in the in-
finite series, we get:

Number of terms 1 2 3 4 5 20 100

Right side of (7.38) 0.405l 0.450l 0.467l 0.475l 0.480l 0.495l 0.499l

If we take an infinite number of terms, the series should sum to 1
2 l, which is the value of 

f 11
2 l2. Assuming the validity of the series, we have the interesting result that the infi-

nite sum in parentheses in (7.38) equals p2>8. Figure 7.2 plots f1x2 - g k
n = 1 ancn [where 

f, an, and cn are given by (7.35), (7.36), and (7.28)] for k values of 1 and 5. As k, the num-
ber of terms in the expansion, increases, the series comes closer to f1x2, and the difference 
between f and the series goes to zero.

Expansion of a Function in Terms of Eigenfunctions
We have seen an example of the expansion of a function in terms of a set of functions—
the particle-in-a-box energy eigenfunctions. Many different sets of functions can be used 
to expand an arbitrary function. A set of functions g1, g2, c, gi, c is said to be a com-
plete set if every well-behaved function f that obeys the same boundary conditions as the 
gi functions can be expanded as a linear combination of the gi’s according to

	 f = a
i

ai gi	 (7.39)

where the ai>s are constants. Of course, it is understood that f and the gi>s are all functions 
of the same set of variables. The limits have been omitted from the sum in (7.39). It is un-
derstood that this sum goes over all members of the complete set. By virtue of theorems of 
Fourier analysis (which we have not proved), the particle-in-a-box energy eigenfunctions 
can be shown to be a complete set.

Figure 7.2  Plots of (a) the 
error and (b) the percent 
error in the expansion of 
the function of Fig. 7.1 in 
terms of particle-in-a-box 
wave functions when 1 and 
5 terms are taken in the 
expansion.
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We now postulate that the set of eigenfunctions of every Hermitian operator that 
represents a physical quantity is a complete set. (Completeness of the eigenfunctions can 
be proved in many cases, but must be postulated in the general case.) Thus, every well-
behaved function that satisfies the same boundary conditions as the set of eigenfunctions 
can be expanded according to (7.39). Equation (7.29) is an example of (7.39).

The harmonic-oscillator wave functions are given by a Hermite polynomial H
v
 times 

an exponential factor [Eq. (4.86) of Prob. 4.21c]. By virtue of the expansion postulate, 
any well-behaved function f1x2 can be expanded as a linear combination of harmonic-
oscillator energy eigenfunctions:

f 1x2 = a


n = 0
an12nn!2-1>21a>p21>4Hn1a1>2x2e-a x2>2

How about using the hydrogen-atom bound-state wave functions to expand an arbi-
trary function f1r, u, f2? The answer is that these functions do not form a complete set, 
and we cannot expand f using them. To have a complete set, we must use all the eigen-
functions of a particular Hermitian operator. In addition to the bound-state eigenfunctions 
of the hydrogen-atom Hamiltonian, we have the continuum eigenfunctions, corresponding 
to ionized states. If the continuum eigenfunctions are included along with the bound-state 
eigenfunctions, then we have a complete set. (For the particle in a box and the harmonic 
oscillator, there are no continuum functions.) Equation (7.39) implies an integration over 
the continuum eigenfunctions, if there are any. Thus, if cnlm1r, u, f2 is a bound-state wave 
function of the hydrogen atom and cElm1r, u, f2 is a continuum eigenfunction, then (7.39) 
becomes

f 1r, u, f2 = a


n = 1
a
n - 1

l = 0
a

l

m = -l
anlmcnlm1r, u, f2 + a



l = 0
a

l

m = -l L


0
alm1E2cElm1r, u, f2 dE

As another example, consider the eigenfunctions of pnx [Eq. (3.36)]:

gk = eikx>U,  -  6 k 6 

Here the eigenvalues are all continuous, and the eigenfunction expansion (7.39) of an 
arbitrary function f becomes

f1x2 = L


-

a1k2eikx>U dk

The reader with a good mathematical background may recognize this integral as very 
nearly the Fourier transform of a1k2.

Let us evaluate the expansion coefficients in f = gi aigi [Eq. (7.39)], where the gi 
functions are the complete set of eigenfunctions of a Hermitian operator. The procedure 
is the same as that used to derive (7.33). We multiply f = gi aigi by g*k and integrate over 
all space:

g*k f = a
i

aig*k gi

Lgk* f dt = a
i

aiLg*k gi dt = a
i

aidik = ak

	 ak = Lg*k f dt	 (7.40)



166  Chapter 7	   |  Theorems of Quantum Mechanics 

where we used the orthonormality of the eigenfunctions of a Hermitian operator: 

1g*kgi dt = dik [Eq. (7.26)]. The procedure that led to (7.40) will be used often and is 
worth remembering. Substitution of (7.40) for ai in f = gi aigi gives

	 f = a
i
cLg*i f dtd  gi = a

i
8gi 0 f 9gi	 (7.41)

E x a m p l e

Let F1x2 = x1l - x2 for 0 … x … l and F1x2 = 0 elsewhere. Expand F in terms of the 
particle-in-a-box energy eigenfunctions cn = 12>l21>2  sin1npx>l2 for 0 … x … l.

We begin by noting that F102 = 0 and F1l2 = 0, so F obeys the same bound-
ary conditions as the cn>s and can be expanded using the cn>s. The expansion is 
F = g

n = 1 ancn, where an = 1c*n F dt [Eqs. (7.39) and (7.40)]. Thus

an = Lc*nF dt = a 2

l
b

1>2

L
l

0
a  sin 

npx

l
b  x1l - x2 dx =

23>2l5>2

n3p3
31 - 1-12n4

where details of the integral evaluation are left as a problem (Prob. 7.18). The expansion 
F = g

n = 1 ancn is

x1l - x2 =
4l2

p3  a


n = 1

1 - 1-12n

n3  sin 
npx

l
,  for 0 … x … l

Exercise  Let G1x2 = 1 for 0 … x … l and G1x2 = 0 elsewhere. Expand G in terms of 
the particle-in-a-box energy eigenfunctions. Since G is not zero at 0 and at l, the expan-
sion will not represent G at these points but will represent G elsewhere. Use the first 
7 nonzero terms of the expansion to calculate G at x =

1
4 l. Repeat this using the first 

70 nonzero terms (use a programmable calculator). (Answers: 0.1219, 0.9977.)

A useful theorem is the following:

Theorem 3.  Let the functions g1, g2, c be the complete set of eigenfunc-
tions of the Hermitian operator An, and let the function F be an eigenfunction of An 
with eigenvalue k (that is, AnF = kF). Then if F is expanded as F = g i aigi, the 
only nonzero coefficients ai are those for which gi has the eigenvalue k. (Because of 
degeneracy, several gi>s may have the same eigenvalue k.)

Thus in the expansion of F, we include only those eigenfunctions that have the same 
eigenvalue as F. The proof of Theorem 3 follows at once from ak = 1g*kF dt [Eq. (7.40)]; 
if F and gk correspond to different eigenvalues of the Hermitian operator An, they will be 
orthogonal [Eq. (7.22)] and ak will vanish.

We shall occasionally use a notation (called ket notation) in which the function f is denoted 
by the symbol 0 f 9 . There doesn’t seem to be any point to this notation, but in advanced 
formulations of quantum mechanics, it takes on a special significance. In ket notation,  
Eq. (7.41) reads

	 0 f 9 = a
i
0 gi98gi 0 f 9 = a

i
0 i98i 0 f 9 	 (7.42)

Ket notation is conveniently used to specify eigenfunctions by listing their eigenvalues. 
For example, the hydrogen-atom wave function with quantum numbers n, l, m is denoted 
by cnlm =  0 nlm9 .
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The contents of Sections 7.2 and 7.3 can be summarized by the statement that the 
eigenfunctions of a Hermitian operator form a complete, orthonormal set, and the eigen-
values are real.

7.4 Eigenfunctions of Commuting Operators
If the state function  is simultaneously an eigenfunction of the two operators An and 
Bn with eigenvalues aj and bj, respectively, then a measurement of the physical prop-
erty A will yield the result aj and a measurement of B will yield bj. Hence the two 
properties A and B have definite values when  is simultaneously an eigenfunction of 
An and Bn.

In Section 5.1, some statements were made about simultaneous eigenfunctions of two 
operators. We now prove these statements.

First, we show that if there exists a common complete set of eigenfunctions for two 
linear operators then these operators commute. Let An and Bn denote two linear operators 
that have a common complete set of eigenfunctions g1, g2, c:

	 Angi = aigi,  Bngi = bigi	 (7.43)

where ai and bi are the eigenvalues. We must prove that

	 3An, Bn4 = 0n 	 (7.44)

Equation (7.44) is an operator equation. For two operators to be equal, the results of oper-
ating with either of them on an arbitrary well-behaved function f must be the same. Hence 
we must show that

1AnBn - BnAn2 f = 0n f = 0

where f is an arbitrary function. We begin the proof by expanding f (assuming that it obeys 
the proper boundary conditions) in terms of the complete set of eigenfunctions gi:

f = a
i

cigi

Operating on each side of this last equation with AnBn - BnAn, we have

1AnBn - BnAn2 f = 1AnBn - BnAn2 a
i

 cigi

Since the products AnBn and BnAn are linear operators (Prob. 3.16), we have

1AnBn - BnAn2 f = a
i

ci1AnBn - BnAn2gi = a
i

ci3An1Bngi2 - Bn1Angi24

where the definitions of the sum and the product of operators were used. Use of the eigen-
value equations (7.43) gives

1AnBn - BnAn2 f = a
i

ci3An1bigi2 - Bn1aigi24 = a
i

ci1biaigi - aibigi2 = 0

This completes the proof of:

Theorem 4.   If the linear operators An and Bn have a common complete set of 
eigenfunctions, then An and Bn commute.

It is sometimes erroneously stated that if a common eigenfunction of An and Bn exists, 
then they commute. An example that shows this statement to be false is the fact that the 
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spherical harmonic Y0
0  is an eigenfunction of both Lnz and Lnx even though these two op-

erators do not commute (Section 5.3). It is instructive to examine the so-called proof that 
is given for this erroneous statement. Let g be the common eigenfunction: Ang = ag and 
Bng = bg. We have

AnBng = Anbg = abg and BnAng = Bnag = bag = abg

	 AnBng = BnAng	 (7.45)

The “proof” is completed by canceling g from each side of (7.45) to get

	 AnBn = BnAn 1?2	 (7.46)

It is in going from (7.45) to (7.46) that the error occurs. Just because the two operators AnBn 
and BnAn give the same result when acting on the single function g is no reason to conclude 
that AnBn = BnAn. (For example, d>dx and d2>dx2 give the same result when operating on ex, 
but d>dx is certainly not equal to d2>dx2.) The two operators must give the same result 
when acting on every well-behaved function before we can conclude that they are equal. 
Thus, even though An and Bn do not commute, one or more common eigenfunctions of An and 
Bn might exist. However, we cannot have a common complete set of eigenfunctions of two 
noncommuting operators, as we proved earlier in this section.

We have shown that, if there exists a common complete set of eigenfunctions of the 
linear operators An and Bn, then they commute. We now prove the following:

Theorem 5.  If the Hermitian operators An  and Bn commute, we can select a 
common complete set of eigenfunctions for them.

The proof is as follows. Let the functions gi and the numbers ai be the eigenfunctions 
and eigenvalues of An:

Angi = aigi

Operating on both sides of this equation with Bn, we have

BnAngi = Bn1aigi2
Since An and Bn commute and since Bn is linear, we have

	 An1Bngi2 = ai1Bngi2	 (7.47)

This equation states that the function Bngi is an eigenfunction of the operator An with the 
same eigenvalue ai as the eigenfunction gi. Suppose the eigenvalues of An are nondegener-
ate, so that for any given eigenvalue ai one and only one linearly independent eigenfunc-
tion exists. If this is so, then the two eigenfunctions gi and Bngi, which correspond to the 
same eigenvalue ai, must be linearly dependent; that is, one function must be simply a 
multiple of the other:

	 Bngi = kigi	 (7.48)

where ki is a constant. This equation states that the functions gi are eigenfunctions of Bn, 
which is what we wanted to prove. In Section 7.3, we postulated that the eigenfunctions of 
any operator that represents a physical quantity form a complete set. Hence the gi>s form 
a complete set.

We have just proved the desired theorem for the nondegenerate case, but what about 
the degenerate case? Let the eigenvalue ai be n-fold degenerate. We know from Eq. (7.47) 
that Bngi is an eigenfunction of An with eigenvalue ai. Hence, Theorem 3 of Section 7.3 tells 
us that, if the function Bngi is expanded in terms of the complete set of eigenfunctions of An, 
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then all the expansion coefficients will be zero except those for which the An eigenfunction 
has the eigenvalue ai. In other words, Bngi must be a linear combination of the n linearly 
independent An eigenfunctions that correspond to the eigenvalue ai:

	 Bngi = a
n

k = 1
ckgk , where Angk = aigk for k = 1 to n	 (7.49)

where g1, c, gn denote those An eigenfunctions that have the degenerate eigenvalue ai. 
Equation (7.49) shows that gi is not necessarily an eigenfunction of Bn. However, by taking 
suitable linear combinations of the n linearly independent An eigenfunctions correspond-
ing to the degenerate eigenvalue ai, one can construct a new set of n linearly independent 
eigenfunctions of An that will also be eigenfunctions of Bn. Proof of this statement is given 
in Merzbacher, Section 8.5.

Thus, when An and Bn commute, it is always possible to select a common complete set 
of eigenfunctions for them. For example, consider the hydrogen atom, where the opera-
tors Lnz and Hn  were shown to commute. If we desired, we could take the phi factor in the 
eigenfunctions of Hn  as sin mf and cos mf (Section 6.6). If we did this, we would not have 
eigenfunctions of Lnz, except for m = 0. However, the linear combinations

R1r2S1u21cos mf + i sin mf2 = RSeimf,  m = - l, c, l

give us eigenfunctions of Lnz that are still eigenfunctions of Hn  by virtue of the theorem in 
Section 3.6.

Extension of the above proofs to the case of more than two operators shows that for a 
set of Hermitian operators An, Bn, Cn, c there exists a common complete set of eigenfunc-
tions if and only if every operator commutes with every other operator.

A useful theorem that is related to Theorem 5 is:

Theorem 6.  If gm and gn are eigenfunctions of the Hermitian operator An with 
different eigenvalues (that is, if Angm = amgm and Angn = angn with am � an), 
and if the linear operator Bn commutes with An, then

	 8gn 0Bn 0 gm9 = 0  for an � am	 (7.50)

To prove (7.50), we start with

	 8gn 0AnBn 0 gm9 = 8gn 0BnAn 0 gm9 	 (7.51)

Use of the Hermitian property of An gives the left side of (7.51) as

 8gn 0AnBn 0 gm9 = 8gn 0An 0Bngm9 = 8Bngm 0An 0 gn9* = 8Bngm 0 an 0 gn9*
	  = a*n8gn 0Bngm9 = an8gn 0Bn 0 gm9
The right side of (7.51) is

8gn 0BnAn 0 gm9 = 8gn 0Bn 0Angm9 = am8gn 0Bn 0 gm9
Equating the final expressions for the left and right sides of (7.51), we get

an8gn 0Bn 0 gm9 = am8gn 0Bn 0 gm9
1an - am28gn 0Bn 0 gm9 = 0

Since am � an, we have 8gn 0Bn 0 gm9 = 0, which completes the proof.
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7.5 Parity
Certain quantum-mechanical operators have no classical analog. An example is the parity 
operator. Recall that the harmonic-oscillator wave functions are either even or odd. We 
shall show how this property is related to the parity operator.

The parity operator n  is defined in terms of its effect on an arbitrary function f:

	 n f 1x, y, z2 = f 1-x, -y, -z2	 (7.52)

The parity operator replaces each Cartesian coordinate with its negative. For example, 
n 1x2 - zeay2 = x2 + ze-ay.

As with any quantum-mechanical operator, we are interested in the eigenvalues ci and 
the eigenfunctions gi of the parity operator:

	 n gi = cigi	 (7.53)

The key to the problem is to calculate the square of n :

n 2 f1x, y, z2 = n 3n f 1x, y, z24 = n 3 f 1-x, -y, -z24 = f 1x, y, z2
Since f is arbitrary, we conclude that n 2 equals the unit operator:

	 n 2 = 1n 	 (7.54)

We now operate on (7.53) with n  to get n n gi = n cigi. Since n  is linear (Prob. 7.26), 
we have n 2gi = cin gi, which becomes

	 n 2gi = c2
i gi	 (7.55)

where the eigenvalue equation (7.53) was used. Since n 2 is the unit operator, the left side 
of (7.55) is simply gi, and

gi = c2
i gi

The function gi cannot be zero everywhere (zero is always rejected as an eigenfunction on 
physical grounds). We can therefore divide by gi to get c2

i = 1 and

	 ci = {1	 (7.56)

The eigenvalues of n  are +1 and -1. Note that this derivation applies to any operator 
whose square is the unit operator.

What are the eigenfunctions gi? The eigenvalue equation (7.53) reads

n gi1x, y, z2 = {gi1x, y, z2
gi1-x, -y, -z2 = {gi1x, y, z2

If the eigenvalue is +1, then gi1-x, -y, -z2 = gi1x, y, z2 and gi is an even function. If the 
eigenvalue is -1, then gi is odd: gi1-x, -y, -z2 = -gi1x, y, z2. Hence, the eigenfunctions 
of the parity operator n  are all possible well-behaved even and odd functions.

When the parity operator commutes with the Hamiltonian operator Hn , we can select 
a common set of eigenfunctions for these operators, as proved in Section 7.4. The eigen-
functions of Hn  are the stationary-state wave functions ci. Hence when

	 3n , Hn4 = 0	 (7.57)
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the wave functions ci can be chosen to be eigenfunctions of n . We just proved that the 
eigenfunctions of n  are either even or odd. Hence, when (7.57) holds, each wave function 
can be chosen to be either even or odd. Let us find out when the parity and Hamiltonian 
operators commute.

We have, for a one-particle system,

3Hn , n 4 = 3Tn, n 4 + 3Vn, n 4 = -
U2

2m
 a c 02

0x2, n d + c 02

0y2, n d + c 02

0z2, n d b + 3Vn, n 4

Since

 n c 02

0x2 f 1x, y, z2 d =
0

01-x2  
0

01-x2 f 1-x, -y, -z2 =
02

0x2 f 1-x, -y, -z2

	  =
02

0x2 n f 1x, y, z2

where f is any function, we conclude that

c 02

0x2, n d = 0

Similar equations hold for the y and z coordinates, and 3Hn , n 4  becomes

	 3Hn , n 4 = 3Vn, n 4 	 (7.58)

Now

	 n 3V1x, y, z2 f1x, y, z24 = V1-x, -y, -z2 f1-x, -y, -z2	 (7.59)

If the potential energy is an even function, that is, if V1-x, -y, -z2 = V1x, y, z2, then 
(7.59) becomes

n 3V1x, y, z2 f1x, y, z24 = V1x, y, z2 f1-x, -y, -z2 = V1x, y, z2n  f1x, y, z2
so 3Vn, n 4 = 0. Hence, when the potential energy is an even function, the parity operator 
commutes with the Hamiltonian:

	 3Hn , n 4 = 0  if V is even	 (7.60)

These results are easily extended to the n-particle case. For an n-particle system, the 
parity operator is defined by

	 n f1x1, y1, z1, c, xn, yn, zn2 = f 1-x1, -y1, -z1, c, -xn, -yn, -zn2	 (7.61)

It is easy to see that (7.57) holds when

	 V1x1, y1, z1, c, xn, yn, zn2 = V1-x1, -y1, -z1, c, -xn, -yn, -zn2	 (7.62)

If V satisfies this equation, V is said to be an even function of the 3n coordinates. In sum-
mary, we have:

Theorem 7.  When the potential energy V is an even function, we can choose 
the stationary-state wave functions so that each ci is either an even function or an 
odd function.
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A function that is either even or odd is said to be of definite parity.
If the energy levels are all nondegenerate (as is usually true in one-dimensional prob-

lems), then only one independent wave function corresponds to each energy eigenvalue 
and there is no element of choice (apart from an arbitrary multiplicative constant) in the 
wave functions. Thus, for the nondegenerate case, the stationary-state wave functions 
must be of definite parity when V is an even function. For example, the one-dimensional 
harmonic oscillator has V =

1
2 kx2, which is an even function, and the wave functions have 

definite parity.
The hydrogen-atom potential-energy function is even, and the hydrogenlike orbitals 

can be chosen to have definite parity (Probs. 7.22 and 7.29).
For the degenerate case, we have an element of choice in the wave functions, since an 

arbitrary linear combination of the functions corresponding to the degenerate level is an 
eigenfunction of Hn . For a degenerate energy level, by taking appropriate linear combina-
tions we can choose wave functions that are of definite parity, but there is no necessity 
that they be of definite parity.

Parity aids in evaluating integrals. We showed that 1

-
f1x2 dx = 0 when f1x2 is 

an odd function [Eq. (4.51)]. Let us extend this result to the 3n-dimensional case. An odd 
function of 3n variables satisfies

	 g1-x1, -y1, -z1, c, -xn, -yn, -zn2 = -g1x1, y1, z1, c, xn, yn, zn2	 (7.63)

If g is an odd function of the 3n variables, then

	 L


-

 c  L


-

g1x1, c, zn2 dx1 gdzn = 0	 (7.64)

where the integration is over the 3n coordinates. This equation holds because the contri-
bution to the integral from the value of g at 1x1, y1, z1, c, xn, yn, zn2 is canceled by the 
contribution from 1-x1, -y1, -z1, c, -xn, -yn, -zn2. Equation (7.64) also holds when the 
integrand is an odd function of some (but not necessarily all) of the variables. See Prob. 7.30.

7.6 Measurement and the Superposition of States
Quantum mechanics can be regarded as a scheme for calculating the probabilities of the 
various possible outcomes of a measurement. For example, if we know the state function 
1x, t2, then the probability that a measurement at time t of the particle’s position yields 
a value between x and x + dx is given by 01x, t2 0 2 dx. We now consider measurement of 
the general property B. Our aim is to find out how to use  to calculate the probabilities for 
each possible result of a measurement of B. The results of this section, which tell us what 
information is contained in the state function , lie at the heart of quantum mechanics.

We shall deal with an n-particle system and use q to symbolize the 3n coordinates. 
We have postulated that the eigenvalues bi of the operator Bn are the only possible results of 
a measurement of the property B. Using gi for the eigenfunctions of Bn, we have

	 Bngi1q2 = bigi1q2	 (7.65)

We postulated in Section 7.3 that the eigenfunctions of any Hermitian operator that 
represents a physically observable property form a complete set. Since the gi>s form a 
complete set, we can expand the state function  as

	 1q, t2 = a
i

ci1t2gi1q2	 (7.66)
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To allow for the change of  with time, the expansion coefficients ci vary with time.
Since 0 0 2 is a probability density, we require that

	 L  * dt = 1	 (7.67)

Substituting (7.66) into the normalization condition and using (1.33) and (1.32), we get

	 1 = L a
i

c*i g*i a
i

ci gi dt = L a
i

c*i g*ia
k

ck gk dt = L a
i
a

k
c*i ck g*i gk dt	 (7.68)

Since the summation indexes in the two sums in (7.68) need not have the same value, 
different symbols must be used for these two dummy indexes. For example, consider the 
following product of two sums:

a
2

i = 1
si a

2

i = 1
ti = 1s1 + s221t1 + t22 = s1t1 + s1t2 + s2t1 + s2t2

If we carelessly write

a
2

i = 1
si a

2

i = 1
ti =

1wrong2
a

2

i = 1
a

2

i = 1
si ti =  a

2

i = 1
1s1t1 + s2t22 = 21s1t1 + s2t22

we get the wrong answer. The correct way to write the product is

a
2

i = 1
si a

2

i = 1
ti = a

2

i = 1
si a

2

k = 1
tk = a

2

i = 1
a

2

k = 1
si tk = a

2

i = 1
1si t1 + si t22 = s1t1 + s1t2 + s2t1 + s2t2

which gives the right answer.
Assuming the validity of interchanging the infinite summation and the integration in 

(7.68), we have

a
i
a

k
 c*i ckLg*i gk dt = 1

Since Bn is Hermitian, its eigenfunctions gi are orthonormal [Eq. (7.26)]; hence

 a
i
a

k
 c*i ckdik = 1

	  a
i
0 ci 0 2 = 1	 (7.69)

We shall point out the significance of (7.69) shortly.
Recall the postulate (Section 3.7) that, if  is the normalized state function of a sys-

tem, then the average value of the property B is

8B9 = L  *1q, t2Bn1q, t2 dt

Using the expansion (7.66) in the average-value expression, we have

8B9 = L a
i

c*i g*i Bn a
k

ckgk dt = a
i
a

k
c*i ckLg*i Bngk dt
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where the linearity of Bn was used. Use of Bngk = bkgk [Eq. (7.65)] gives

8B9 = a
i
a

k
 c*i ck bkLg*i gk dt = a

i
a

k
 c*i ck bk dik

	 8B9 = a
i
0 ci 0 2bi	 (7.70)

How do we interpret (7.70)? We postulated in Section 3.3 that the eigenvalues of an 
operator are the only possible numbers we can get when we measure the property that the 
operator represents. In any measurement of B, we get one of the values bi (assuming there 
is no experimental error). Now recall Eq. (3.81):

	 8B9 = a
bi

P1bi2bi	 (7.71)

where P1bi2 is the probability of getting bi in a measurement of B. The sum in (7.71) goes 
over the different eigenvalues bi, whereas the sum in (7.70) goes over the different eigen-
functions gi, since the expansion (7.66) is over the gi>s. If there is only one independent 
eigenfunction for each eigenvalue, then a sum over eigenfunctions is the same as a sum 
over eigenvalues, and comparison of (7.71) and (7.70) shows that, when there is no degen-
eracy in the Bn eigenvalues, 0 ci 0 2 is the probability of getting the value bi in a measurement 
of the property B. Note that the 0 ci 0 2 values sum to 1, as probabilities should [Eq. (7.69)]. 
Suppose the eigenvalue bi is degenerate. From (7.71), P1bi2 is given by the quantity that 
multiplies bi. With degeneracy, more than one term in (7.70) contains bi, so the probability 
P1bi2 of getting bi in a measurement is found by adding the 0 ci 0 2 values for those eigen-
functions that have the same eigenvalue bi. We have proved the following:

Theorem 8.  If bm is a nondegenerate eigenvalue of the operator Bn and gm is 
the corresponding normalized eigenfunction 1Bngm = bmgm2, then, when the 
property B is measured in a quantum-mechanical system whose state function at 
the time of the measurement is , the probability of getting the result bm is given 
by 0 cm 0 2, where cm is the coefficient of gm in the expansion  = gi cigi. If the 
eigenvalue bm is degenerate, the probability of obtaining bm when B is measured is 
found by adding the 0 ci 0 2 values for those eigenfunctions whose eigenvalue is bm.

When can the result of a measurement of B be predicted with certainty? We can do 
this if all the coefficients in the expansion  = g i cigi are zero, except one: ci = 0 
for all i � k and ck � 0. For this case, Eq. (7.69) gives 0 ck 0 2 = 1 and we are certain to find 
the result bk. In this case, the state function  = g i cigi is given by  = gk. When  is an 
eigenfunction of Bn with eigenvalue bk, we are certain to get the value bk when we measure B.

We can thus view the expansion  = gi cigi [Eq. (7.66)] as expressing the gen-
eral state  as a superposition of the eigenstates gi of the operator Bn. Each eigenstate gi 
corresponds to the value bi for the property B. The degree to which any eigenfunction gi 
occurs in the expansion of , as measured by 0 ci 0 2, determines the probability of getting 
the value bi in a measurement of B.

How do we calculate the expansion coefficients ci so that we can get the probabilities 
0 ci 0 2? We multiply  = g i cigi by g*j , integrate over all space, and use the orthonormality 
of the eigenfunctions of the Hermitian operator Bn to get

Lg*j  dt = a
i

ciLg*j gi dt = a
i

 cidij

	 cj = Lg*j  dt = 8gj 09 	 (7.72)
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The probability of finding the nondegenerate eigenvalue bj in a measurement of B is

	 0 cj 0 2 = `Lg*j  dt `
2

= 0 8gj 09 0 2	 (7.73)

where Bngj = bjgj. The quantity 8gj 09  is called a probability amplitude.
Thus, if we know the state of the system as determined by the state function , we 

can use (7.73) to predict the probabilities of the various possible outcomes of a measure-
ment of any property B. Determination of the eigenfunctions gj and eigenvalues bj of Bn is 
a mathematical problem.

To determine experimentally the probability of finding gj when B is measured, we 
take a very large number n of identical, noninteracting systems, each in the same state 
, and measure the property B in each system. If nj of the measurements yield bj, then 
P1bj2 = nj>n = 0 8gj 090 2.

We can restate the first part of Theorem 8 as follows:

Theorem 9.  If the property B is measured in a quantum-mechanical system 
whose state function at the time of the measurement is , then the probabil-
ity of observing the nondegenerate Bn eigenvalue bj is 0 8gj 09 0 2, where gj is the 
normalized eigenfunction corresponding to the eigenvalue bj.

The integral 8gj 09 = 1g*j  dt will have a substantial absolute value if the normalized 
functions gj and  resemble each other closely and so have similar magnitudes in each region 
of space. If gj and  do not resemble each other, then in regions where gj is large  will be 
small (and vice versa), so the product g*j  will always be small and the absolute value of the 
integral 1g*j  dt will be small; the probability 08gj 090 2 of getting bj will then be small.

E x a m p l e

Suppose that we measure Lz of the electron in a hydrogen atom whose state at the time 
the measurement begins is the 2px state. Give the possible outcomes of the measurement 
and give the probability of each outcome. Use these probabilities to calculate 8Lz9  for 
the 2px state.

From (6.118),

 = 2px = 2-1>212p12 + 2-1>212p-12
This equation is the expansion of  as a linear combination of Lnz eigenfunctions. The 
only nonzero coefficients are for 2p1 and 2p-1, which are eigenfunctions of Lnz with ei-
genvalues U and -U, respectively. (Recall that the 1 and -1 subscripts give the m quantum 
number and that the Lnz eigenvalues are mU.) Using Theorem 8, we take the squares of the 
absolute values of the coefficients in the expansion of  to get the probabilities. Hence 
the probability for getting U when Lz is measured is 0 2-1>2 0 2 = 0.5, and the probability 
for getting -U is 0 2-1>2 0 2 = 0.5. To find 8Lz9 from the probabilities, we use Eq. (7.71):

8Lz9 = a
Lz,i

P1Lz,i2Lz,i = 0.5U + 0.51-U2 = 0

where P1Lz,i2 is the probability of observing the value Lz,i, and all probabilities except 
two are zero. Of course, 8Lz9  can also be calculated from the average-value equation 
(3.88) as 82px 0 Lnz 0 2px9 .

Exercise  Write down a hydrogen-atom wave function for which the probability 
of getting the n = 2 energy if E is measured is 1, the probability of getting 2U2 if 
L2 is measured is 1, and there are equal probabilities for getting -U, 0, and U if Lz is 
measured. Is there only one possible answer? (Partial answer: No.)
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E x a m p l e

Suppose that the energy E is measured for a particle in a box of length l and that at the 
time of the measurement the particle is in the nonstationary state  = 301>2l-5>2x1l - x2 
for 0 … x … l. Give the possible outcomes of the measurement and give the probability of 
each possible outcome.

The possible outcomes are given by postulate (c) of Section 3.9 as the eigenvalues 
of the energy operator Hn . The eigenvalues of the particle-in-a-box Hamiltonian are 
E = n2h2>8ml2 1n = 1, 2, 3, c2, and these are nondegenerate. The probabilities are 
found by expanding  in terms of the eigenfunctions cn of Hn;  = g

n = 1 cncn, where 
cn = 12>l21>2 sin 1npx>l2. In the example after Eq. (7.41), the function x1l - x2 was 
expanded in terms of the particle-in-a-box energy eigenfunctions. The state function 
301>2l-5>2x1l - x2 equals x1l - x2 multiplied by the normalization constant 301>2l-5>2. 
Hence the expansion coefficients cn are found by multiplying the an coefficients in the 
earlier example by 301>2l-5>2 to get

cn =
124021>2

n3p3
31 - 1-12n4

The probability P1En2 of observing the value En = n2h2>8ml2 equals 0 cn 0 2:

	 P1En2 =
240

n6p6
31 - 1-12n42	 (7.74)

The first few probabilities are

n 1 2 3 4 5

En h2>8ml2 4h2>8ml2 9h2>8ml2 16h2>8ml2 25h2>8ml2

P1En2 0.99855 0 0.001370 0 0.000064

The very high probability of finding the n = 1 energy is related to the fact that the para-
bolic state function 301>2l-5>2x1l - x2 closely resembles the n = 1 particle-in-a-box 
wave function 12>l21>2  sin 1px>l2 (Fig. 7.3). The zero probabilities for n = 2, 4, 6, c  

Figure 7.3  Plots of 
 = 13021>2l -5>2x1l - x2 
and the n 5 1 particle-
in-a-box wave function.

1.5

1

0
0 0.5 1

0.5

l1/2C

l1/2cn 5 1

l1/2cn 5 1

x / l



7.7 Position Eigenfunctions  |  177

are  due to the fact that, if the origin is put at the center of the box, the state function 
 = 301>2l-5>2x1l - x2 is an even function, whereas the n = 2, 4, 6, c functions are 
odd functions (Fig. 2.3) and so cannot contribute to the expansion of . The integral 
8gn 09  vanishes when the integrand is an odd function.

If the property B has a continuous range of eigenvalues (for example, position; 
Section 7.7), the summation in the expansion (7.66) of  is replaced by an integration over 
the values of b:

	  = Lcbgb1q2 db	 (7.75)

and 08gb1q2 0 90 2 is interpreted as a probability density; that is, the probability of finding a 
value of B between b and b + db for a system in the state  is

	 08gb1q2 01q, t29 0 2 db	 (7.76)

7.7 Position Eigenfunctions
We derived the eigenfunctions of the linear-momentum and angular-momentum opera-
tors. We now ask: What are the eigenfunctions of the position operator xn?

The operator xn is multiplication by x. Denoting the position eigenfunctions by ga1x2, 
we write

	 xga1x2 = aga1x2	 (7.77)

where a symbolizes the possible eigenvalues. It follows that

	 1x - a2ga1x2 = 0	 (7.78)

We conclude from (7.78) that

	 ga1x2 = 0 for x � a	 (7.79)

Moreover, since an eigenfunction that is zero everywhere is unacceptable, we have

	 ga1x2 � 0 for x = a	 (7.80)

These conclusions make sense. If the state function is an eigenfunction of xn with eigen-
value a,  = ga1x2, we know (Section 7.6) that a measurement of x is certain to give the 
value a. This can be true only if the probability density 0 0 2 is zero for x � a, in agree-
ment with (7.79).

Before considering further properties of ga1x2, we define the Heaviside step function 
H1x2 by (see Fig. 7.4)

H1x2 = 1 for x 7 0

	 H1x2 = 0 for x 6 0	 (7.81)

H1x2 =
1
2 for x = 0

We next define the Dirac delta function d1x2 as the derivative of the Heaviside step 
function:

	 d1x2 K
dH1x2

dx
	 (7.82)

From (7.81) and (7.82), we have at once (see also Fig. 7.4)

	 d1x2 = 0 for x � 0	 (7.83)
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Since H1x2 makes a sudden jump at x = 0, its derivative is infinite at the origin:

	 d1x2 =  for x = 0	 (7.84)

We can generalize these equations slightly by setting x = t - a and then changing 
the symbol t to x. Equations (7.81) to (7.84) become

	 H1x - a2 = 1, x 7 a	 (7.85)

	 H1x - a2 = 0, x 6 a	 (7.86)

	 H1x - a2 =
1
2, x = a	 (7.87)

	 d1x - a2 = dH1x - a2>dx 	 (7.88)

	 d1x - a2 = 0, x � a and d1x - a2 = , x = a	 (7.89)

Now consider the following integral:

L


-
 f 1x2d1x - a2 dx

We evaluate it using integration by parts:

Lu dv = uv - Lv du

u = f 1x2, dv = d1x - a2 dx
Using (7.88), we have

du = f1x2 dx, v = H1x - a2

L


-
 f 1x2d1x - a2 dx = f 1x2H1x - a2 `



-

- L


-
 H1x - a2 f1x2 dx

	 L


-
 f 1x2d1x - a2 dx = f 12 - L



-
 H1x - a2 f1x2 dx	 (7.90)

where (7.85) and (7.86) were used. Since H1x - a2 vanishes for x 6 a, (7.90) becomes

 L


-
 f 1x2d1x - a2 dx = f 12 - L



a
 H1x - a2 f1x2 dx

	  = f 12 - L


a
f1x2 dx = f 12 - f 1x2 `



a

	 L


-
 f 1x2d1x - a2 dx = f1a2	 (7.91)

Figure 7.4  The Heaviside step 
function.
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Comparing (7.91) with the equation g k ckdik = ci, we see that the Dirac delta function plays 
the same role in an integral that the Kronecker delta plays in a sum. The special case of (7.91) 
with f1x2 = 1 is

L


-

d1x - a2 dx = 1

The properties (7.89) of the Dirac delta function agree with the properties (7.79) and 
(7.80) of the position eigenfunctions ga1x2. We therefore tentatively set

	 ga1x2 = d1x - a2	 (7.92)

To verify (7.92), we now show it to be in accord with the Born postulate that 01a, t2 0 2 da 
is the probability of observing a value of x between a and a + da. According to (7.76), 
this probability is given by

	 08ga1x2 01x, t29 0 2 da = `L


-

g*a1x21x, t2 dx ̀
2

 da	 (7.93)

Using (7.92) and then (7.91), we have for (7.93)

`L


-

d1x - a21x, t2 dx `
2

 da =  01a, t20 2 da

which completes the proof.
Since the quantity a in d1x - a2 can have any real value, the eigenvalues of xn form a 

continuum: -  6 a 6 . As usual for continuum eigenfunctions, d1x - a2 is not qua-
dratically integrable (Prob. 7.43).

Summarizing, the eigenfunctions and eigenvalues of position are

	 xnd1x - a2 = ad1x - a2	 (7.94)

where a is any real number.
The delta function is badly behaved, and consequently the manipulations we per-

formed are lacking in rigor and would make a mathematician shudder. However, one can 
formulate things rigorously by considering the delta function to be the limiting case of a 
function that becomes successively more peaked at the origin (Fig. 7.5). The delta function 
is not really a function but is what mathematicians call a distribution (see en.wikipedia 
.org/wiki/Dirac_delta_function).

Figure 7.5  Functions that 
approximate d1x2 with suc-
cessively increasing accuracy. 
The area under each curve is 1.
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7.8 The Postulates of Quantum Mechanics
This section summarizes the postulates of quantum mechanics introduced in previous 
chapters.

Postulate 1.  The state of a system is described by a function  of the coordinates 
of the particles and the time. This function, called the state function or wave function, 
contains all the information that can be determined about the system. We further pos-
tulate that  is single-valued, continuous, and quadratically integrable. For continuum 
states, the quadratic integrability requirement is omitted.

The designation “wave function” for  is perhaps not the best choice. A physical 
wave moving in three-dimensional space is a function of the three spatial coordinates 
and the time. However, for an n-particle system, the function  is a function of 3n spatial 
coordinates and the time. Hence, for a many-particle system, we cannot interpret  as any 
sort of physical wave. The state function is best thought of as a function from which we 
can calculate various properties of the system. The nature of the information that  con-
tains is the subject of Postulate 5 and its consequences.

Postulate 2.  To every physically observable property there corresponds a linear 
Hermitian operator. To find this operator, write down the classical-mechanical expres-
sion for the observable in terms of Cartesian coordinates and corresponding linear-
momentum components, and then replace each coordinate x by the operator x #  and 
each momentum component px by the operator - iU 0 >0x.

We saw in Section 7.2 that the restriction to Hermitian operators arises from the 
requirement that average values of physical quantities be real numbers. The require-
ment of linearity is closely connected to the superposition of states discussed in Sec-
tion 7.6. In our derivation of (7.70) for the average value of a property B for a state 
that was expanded as a superposition of the eigenfunctions of Bn, the linearity of Bn 
played a key role.

When the classical quantity contains a product of a Cartesian coordinate and its con-
jugate momentum, we run into the problem of noncommutativity in constructing the cor-
rect quantum-mechanical operator. Several different rules have been proposed to handle 
this case. See J. R. Shewell, Am. J. Phys., 27, 16 (1959); E. H. Kerner and W. G. Sutcliffe, 
J. Math. Phys., 11, 391 (1970); A. de Souza Dutra, J. Phys. A: Math. Gen., 39, 203 (2006) 
(arxiv.org/abs/0705.3247).

The process of finding quantum-mechanical operators in non-Cartesian coordinates 
is complicated. See K. Simon, Am. J. Phys., 33, 60 (1965); G. R. Gruber, Found. Phys., 1, 
227 (1971).

Postulate 3.  The only possible values that can result from measurements of the 
physically observable property B are the eigenvalues bi in the equation Bngi = bigi, 
where Bn is the operator corresponding to the property B. The eigenfunctions gi are 
required to be well behaved.
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Our main concern is with the energy levels of atoms and molecules. These are given 
by the eigenvalues of the energy operator, the Hamiltonian Hn . The eigenvalue equation 
for Hn , Hnc = Ec, is the time-independent Schrödinger equation. However, finding the 
possible values of any property involves solving an eigenvalue equation.

Postulate 4.  If Bn is a linear Hermitian operator that represents a physically observ-
able property, then the eigenfunctions gi of Bn form a complete set.

There are Hermitian operators whose eigenfunctions do not form a complete set (see 
Griffiths, pp. 99, 106; Messiah, p. 188; Ballentine, Sec. 1.3). The completeness requirement 
is essential to developing the theory of quantum mechanics, so it is necessary to postulate 
that all Hermitian operators that correspond to observable properties have a complete set of 
eigenfunctions. Postulate 4 allows us to expand the wave function for any state as a super-
position of the orthonormal eigenfunctions of any quantum-mechanical operator:

	  = a
i

cigi = a
i
0 gi9  8gi 09 	 (7.95)

Postulate 5.  If 1q, t2 is the normalized state function of a system at time t, then 
the average value of a physical observable B at time t is

	 8B9 = L *Bn dt	 (7.96)

The definition of the quantum-mechanical average value is given in Section 3.7 and 
should not be confused with the time average used in classical mechanics.

From Postulates 4 and 5, we showed in Section 7.6 that the probability of observ-
ing the nondegenerate eigenvalue bi in a measurement of B is P1bi2 = 0 1g*i  dt 0 2 =  
08gi 090 2, where Bngi = bigi. If  happens to be one of the eigenfunctions of Bn, that is, 
if  = gk, then P1bi2 becomes P1bi2 = 01g*igk dt 0 2 = 0 dik 0 2 = dik, where the ortho-
normality of the eigenfunctions of the Hermitian operator Bn was used. We are certain to 
observe the value bk when  = gk.

Postulate 6.  The time development of the state of an undisturbed quantum-mechanical 
system is given by the Schrödinger time-dependent equation

	 -
U

i

0

0t
= Hn 	 (7.97)

where Hn  is the Hamiltonian (that is, energy) operator of the system.

The time-dependent Schrödinger equation is a first-order differential equation in the 
time, so that, just as in classical mechanics, the present state of an undisturbed system 
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determines the future state. However, unlike knowledge of the state in classical mechan-
ics, knowledge of the state in quantum mechanics involves knowledge of only the prob-
abilities for various possible outcomes of a measurement. Thus, suppose we have several 
identical noninteracting systems, each having the same state function 1t02 at time t0. If 
we leave each system undisturbed, then the state function for each system will change in 
accord with (7.97). Since each system has the same Hamiltonian, each system will have 
the same state function 1t12 at any future time t1. However, suppose that at time t2 we 
measure property B in each system. Although each system has the same state function 
1t22 at the instant the measurement begins, we will not get the same result for each 
system. Rather, we will get a spread of possible values bi, where bi are the eigenvalues of Bn. 
The relative number of times we get each bi can be calculated from the quantities 0 ci 0 2, 
where 1t22 = g i cigi with the gi>s being the eigenfunctions of Bn.

If the Hamiltonian is independent of time, we have the possibility of states of definite 
energy E. For such states the state function must satisfy

	 Hn  = E	 (7.98)

and the time-dependent Schrödinger equation becomes

-
U

i

0

0t
= E

which integrates to  = Ae-iEt>U, where A, the integration “constant,” is independent of 
time. The function  depends on the coordinates and the time, so A is some function of 
the coordinates, which we designate as c1q2. We have

	 1q, t2 = e-iEt>Uc1q2	 (7.99)

for a state of constant energy. The function c1q2 satisfies the time-independent 
Schrödinger equation

Hnc1q2 = Ec1q2
which follows from (7.98) and (7.99). The factor e-iEt>U simply indicates a change in the 
phase of the wave function 1q, t2 with time and has no direct physical significance. 
Hence we generally refer to c1q2 as “the wave function.” The Hamiltonian operator plays 
a unique role in quantum mechanics in that it occurs in the fundamental dynamical equa-
tion, the time-dependent Schrödinger equation. The eigenstates of Hn  (known as stationary 
states) have the special property that the probability density 0 0 2 is independent of time.

The time-dependent Schrödinger equation (7.97) is 1iU 0 >0t - Hn2 = 0. Because 
the operator iU 0 >0t - Hn  is linear, any linear combination of solutions of the time-depen-
dent Schrödinger equation (7.97) is a solution of (7.97). For example, if the Hamiltonian 
Hn  is independent of time, then there exist stationary-state solutions n = e-iEnt>Ucn1q2 
[Eq. (7.99)] of the time-dependent Schrödinger equation. Any linear combination

	  = a
n

cnn = a
n

cne
-iEnt>Ucn1q2	 (7.100)

where the cn>s are time-independent constants is a solution of the time-dependent 
Schrödinger equation, although it is not an eigenfunction of Hn . Because of the complete-
ness of the eigenfunctions cn, any state function can be written in the form (7.100) if Hn  is 
independent of time. (See also Section 9.8.) The state function (7.100) represents a state 
that does not have a definite energy. Rather, when we measure the energy, the probability 
of getting En is 0 cne

-iEnt>U 0 2 = 0cn 0 2.
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To find the constants cn in (7.100), we write (7.100) at time t0 as 1q, t02 =gn cne
-iEnt0>Ucn1q2. Multiplication by cj*1q2 followed by integration over all space gives

8cj1q2 01q, t029 = a
n

 cne
-iEnt0>U8cj 0cn9 = a

n
 cne

-iEnt0>Udjn = cje
-iEj t0>U

so cj = 8cj 01q, t029eiEj t0>U and (7.100) becomes

	 1q, t2 = a
j
8cj1q2 01q, t029e-iEj1t- t02>Ucj1q2 if Hn  ind. of t	 (7.101)

where Hncj = Ejcj and the cj>s have been chosen to be orthonormal. Equation (7.101) 
tells us how to find  at time t from  at an initial time t0 and is the general solution 
of the time-dependent Schrödinger equation when Hn  is independent of t. [Equation 
(7.101) can also be derived directly from the time-dependent Schrödinger equation; 
see Prob. 7.46.]

E x a m p l e

A particle in a one-dimensional box of length l has a time-independent Hamiltonian 
and has the state function  = 2-1>2c1 + 2-1>2c2 at time t = 0, where c1 and c2 are 
particle-in-a-box time-independent energy eigenfunctions [Eq. (2.23)] with n = 1 and 
n = 2, respectively. (a) Find the probability density as a function of time. (b) Show 
that 0 0 2 oscillates with a period T = 8ml2>3h. (c) Use a spreadsheet or Mathcad to 
plot l 0 0 2 versus x>l at each of the times jT>8, where j = 0, 1, 2, c, 8.

(a)	 Since Hn  is independent of time,  at any future time will be given by (7.100) with 
c1 = 2-1>2, c2 = 2-1>2, and all other c’s equal to zero. Therefore,

  =
122

 e-iE1t>Ua 2

l
b

1>2
 sin 

px

l
+

122
 e-iE2t>Ua 2

l
b

1>2
 sin 

2px

l

 =
122

e-iE1t>Uc1 +
122

e-iE2t>Uc2

We find for the probability density (Prob. 7.47)

		  * =
1
2c

2
1 +

1
2c

2
2 + c1c2 cos31E2 - E12t>U4 	 (7.102)

(b)	 The time-dependent part of 0 0 2 is the cosine factor in (7.102). The period T is 
the time it takes for the cosine to increase by 2p, so 1E2 - E12T>U = 2p and 
T = 2pU> 1E2 - E12 = 8ml2>3h, since En = n2h2>8ml2. (c) Using (7.102), the 
expressions for c1 and c2, and T = 2pU>1E2 - E12, we have

	 l 0 0 2 = sin 21pxr2 + sin212pxr2 + 2 sin1pxr2 sin12pxr2 cos12pt>T2	 (7.103)

where xr K x>l. With t = jT>8, the graphs are easily plotted for each j value. The 
plots show that the probability-density maximum oscillates between the left and 
right sides of the box. Using Mathcad, one can produce a movie of 0 0 2 as time 
changes (Prob. 7.47). (An online resource that allows one to follow 0 0 2 as a func-
tion of time for systems such as the particle in a box or the harmonic oscillator for 
any chosen initial mixture of stationary states is at www.falstad.com/qm1d; one 
chooses the mixture by clicking on the small circles at the bottom and dragging on 
each rotating arrow within a circle.)



184  Chapter 7	   |  Theorems of Quantum Mechanics 

Equation (7.100) with the cn>s being constant is the general solution of the time-
dependent Schrödinger equation when Hn  is independent of time. For a system acted on by 
an external time-dependent force, the Hamiltonian contains a time-dependent part: 
Hn = Hn 0 + Hn 1t2, where Hn 0 is the Hamiltonian of the system in the absence of the ex-
ternal force and Hn 1t2 is the time-dependent potential energy of interaction of the system 
with the external force. In this case, we can use the stationary-state time-independent ei-
genfunctions of Hn 0 to expand  in an equation like (7.100), except that now the cn>s de-
pend on t. An example is an atom or molecule exposed to the time-dependent electric field 
of electromagnetic radiation (light); see Section 9.8.

What determines whether a system is in a stationary state such as (7.99) or a nonsta-
tionary state such as (7.100)? The answer is that the history of the system determines its 
present state. For example, if we take a system that is in a stationary state and expose it 
to radiation, the time-dependent Schrödinger equation shows that the radiation causes the 
state to change to a nonstationary state; see Section 9.8.

You might be wondering about the absence from the list of postulates of the Born pos-
tulate that 01x, t2 0 2 dx is the probability of finding the particle between x and x + dx. This 
postulate is a consequence of Postulate 5, as we now show. Equation (3.81) is 8B9 = gb Pbb, 
where Pb is the probability of observing the value b in a measurement of the property B 
that takes on discrete values. The corresponding equation for the continuous variable x is 
8x9 = 1

-
P1x2x dx, where P1x2 is the probability density for observing various values of 

x. According to Postulate 5, we have 8x9 = 1

-
*xn  dx = 1

-
0 0 2x dx. Comparison of 

these two expressions for 8x9  shows that 0 0 2 is the probability density P1x2.
Chapter 10 gives two further quantum-mechanical postulates that deal with spin and 

the spin–statistics theorem.

7.9 �Measurement and the Interpretation of 
Quantum Mechanics

In quantum mechanics, the state function of a system changes in two ways. [See E. P. 
Wigner, Am. J. Phys., 31, 6 (1963).] First, there is the continuous, causal change with 
time given by the time-dependent Schrödinger equation (7.97). Second, there is the sud-
den, discontinuous, probabilistic change that occurs when a measurement is made on the 
system. This kind of change cannot be predicted with certainty, since the result of a mea-
surement cannot be predicted with certainty; only the probabilities (7.73) are predictable. 
The sudden change in  caused by a measurement is called the reduction (or collapse) of 
the wave function. A measurement of the property B that yields the result bk changes the 
state function to gk, the eigenfunction of Bn whose eigenvalue is bk. (If bk is degenerate,  
is changed to a linear combination of the eigenfunctions corresponding to bk.) The prob-
ability of finding the nondegenerate eigenvalue bk is given by Eq. (7.73) and Theorem 9 as 
0 8gk 09 0 2, so the quantity 0 8gk 09 0 2 is the probability the system will make a transition 
from the state  to the state gk when B is measured.

Consider an example. Suppose that at time t we measure a particle’s position. Let 
1x, t-2 be the state function of the particle the instant before the measurement is made 
(Fig. 7.6a). We further suppose that the result of the measurement is that the particle is 
found to be in the small region of space

	 a 6 x 6 a + da	 (7.104)

We ask: What is the state function 1x, t+2 the instant after the measurement? To answer 
this question, suppose we were to make a second measurement of position at time t+. 
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Since t+ differs from the time t of the first measurement by an infinitesimal amount, we 
must still find that the particle is confined to the region (7.104). If the particle moved a 
finite distance in an infinitesimal amount of time, it would have infinite velocity, which 
is unacceptable. Since 01x, t+2 0 2 is the probability density for finding various values 
of x, we conclude that 1x, t+2 must be zero outside the region (7.104) and must look 
something like Fig. 7.6b. Thus the position measurement at time t has reduced  from a 
function that is spread out over all space to one that is localized in the region (7.104). The 
change from 1x, t-2 to 1x, t+2 is a probabilistic change.

The measurement process is one of the most controversial areas in quantum mechan-
ics. Just how and at what stage in the measurement process reduction occurs is unclear. 
Some physicists take the reduction of  as an additional quantum-mechanical postulate, 
while others claim it is a theorem derivable from the other postulates. Some physicists re-
ject the idea of reduction [see M. Jammer, The Philosophy of Quantum Mechanics, Wiley, 
1974, Section 11.4; L. E. Ballentine, Am. J. Phys., 55, 785 (1987)]. Ballentine advocates 
Einstein’s statistical-ensemble interpretation of quantum mechanics, in which the wave 
function does not describe the state of a single system (as in the orthodox interpretation) 
but gives a statistical description of a collection of a large number of systems each pre-
pared in the same way (an ensemble). In this interpretation, the need for reduction of the 
wave function does not occur. [See L. E. Ballentine, Am. J. Phys., 40, 1763 (1972); Rev. 
Mod. Phys., 42, 358 (1970).] There are many serious problems with the statistical-ensemble 
interpretation [see Whitaker, pp. 213–217; D. Home and M. A. B. Whitaker, Phys. Rep., 
210, 223 (1992); Prob. 10.4], and this interpretation has been largely rejected.

“For the majority of physicists the problem of finding a consistent and plausible quan-
tum theory of measurement is still unsolved. . . . The immense diversity of opinion . . . 
concerning quantum measurements . . . [is] a reflection of the fundamental disagreement 
as to the interpretation of quantum mechanics as a whole” (M. Jammer, The Philosophy of 
Quantum Mechanics, pp. 519, 521).

The probabilistic nature of quantum mechanics has disturbed many physicists, in-
cluding Einstein, de Broglie, and Schrödinger. These physicists and others have sug-
gested that quantum mechanics may not furnish a complete description of physical reality. 
Rather, the probabilistic laws of quantum mechanics might be simply a reflection of de-
terministic laws that operate at a subquantum-mechanical level and that involve “hidden 
variables.” An analogy given by the physicist Bohm is the Brownian motion of a dust par-
ticle in air. The particle undergoes random fluctuations of position, and its motion is not 
completely determined by its position and velocity. Of course, Brownian motion is a result 
of collisions with the gas molecules and is determined by variables existing on the level of 

Figure 7.6  Reduction of 
the wave function caused by 
a measurement of position.

C(x, t1)C(x, t2)

x xa a 1 da

(a) (b)
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molecular motion. Analogously, the motions of electrons might be determined by hidden 
variables existing on a subquantum-mechanical level. The orthodox interpretation (often 
called the Copenhagen interpretation) of quantum mechanics, which was developed by 
Heisenberg and Bohr, denies the existence of hidden variables and asserts that the laws of 
quantum mechanics provide a complete description of physical reality. (Hidden-variables  
theories are discussed in F. J. Belinfante, A Survey of Hidden-Variables Theories, 
Pergamon, 1973.)

In 1964, J. S. Bell proved that, in certain experiments involving measurements on two 
widely separated particles that originally were in the same region of space, any possible 
local hidden-variable theory must make predictions that differ from those that quantum 
mechanics makes (see Ballentine, Chapter 20). In a local theory, two systems very far 
from each other act independently of each other. The results of such experiments agree 
with quantum-mechanical predictions, thus providing very strong evidence against all de-
terministic, local hidden-variable theories but do not rule out nonlocal hidden-variable 
theories. These experiments are described in A. Aspect, in The Wave-Particle Dualism, 
S. Diner et al. (eds.), Reidel, 1984, pp. 377–390; A. Shimony, Scientific American, Jan. 
1988, p. 46; A. Zeilinger, Rev. Mod. Phys, 71, S288 (1999).

Further analysis by Bell and others shows that the results of these experiments and 
the predictions of quantum mechanics are incompatible with a view of the world in which 
both realism and locality hold. Realism (also called objectivity) is the doctrine that exter-
nal reality exists and has definite properties independent of whether or not we observe this 
reality. Locality excludes instantaneous action-at-a-distance and asserts that any influ-
ence from one system to another must travel at a speed that does not exceed the speed of 
light. Clauser and Shimony stated that quantum mechanics leads to the “philosophically 
startling” conclusion that we must either “totally abandon the realistic philosophy of most 
working scientists, or dramatically revise our concept of space–time” to permit “some 
kind of action-at-a-distance” [J. F. Clauser and A. Shimony, Rep. Prog. Phys., 41, 1881 
(1978); see also B. d’Espagnat, Scientific American, Nov. 1979, p. 158; A. Aspect, Nature, 
446, 866 (2007); S. Gröblacher et al., Nature, 446, 871 (2007)].

Quantum theory predicts and experiments confirm that when measurements are made 
on two particles that once interacted but now are separated by an unlimited distance the 
results obtained in the measurement on one particle depend on the results obtained from 
the measurement on the second particle and also depend on which property of the second 
particle is measured. (Such particles are said to be entangled. For more on entanglement, 
see en.wikipedia.org/wiki/Quantum_entanglement; chaps. 7–10 of J. Baggott, Beyond 
Measure, Oxford, 2004; L. Gilder, The Age of Entanglement, Vintage, 2009; Part II of A. 
Whitaker, The New Quantum Age, Oxford, 2012.) Such instantaneous “spooky actions at 
a distance” (Einstein’s phrase) have led one physicist to remark that “quantum mechanics 
is magic” (D. Greenberger, quoted in N. D. Mermin, Physics Today, April 1985, p. 38).

The relation between quantum mechanics and the mind has been the subject of much 
speculation. Wigner argued that the reduction of the wave function occurs when the result 
of a measurement enters the consciousness of an observer and thus “the being with con-
sciousness must have a different role in quantum mechanics than the inanimate measur-
ing device.” He believed it likely that conscious beings obey different laws of nature than 
inanimate objects and proposed that scientists look for unusual effects of consciousness 
acting on matter. [E. P. Wigner, “Remarks on the Mind–Body Question,” in The Scien-
tist Speculates, I. J. Good, ed., Capricorn, 1965, p. 284; Proc. Amer. Phil. Soc., 113, 95 
(1969); Found. Phys., 1, 35 (1970).]

In 1952, David Bohm (following a suggestion made by de Broglie in 1927 that the 
wave function might act as a pilot wave guiding the motion of the particle) devised a 
nonlocal deterministic hidden-variable theory that predicts the same experimental results 
as quantum mechanics [D. Bohm, Phys. Rev., 85, 166, 180 (1952)]. In Bohm’s theory, a 
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particle at any instant of time possesses both a definite position and a definite momentum 
(although these quantities are not observable), and it travels on a definite path. The par-
ticle also possesses a wave function  whose time development obeys the time-dependent 
Schrödinger equation. In Bohm’s theory, the wave function is a real physical entity that 
determines the motion of the particle. If we are given a particle at a particular position 
with a particular wave function at a particular time t, Bohm’s theory postulates a certain 
equation that allows us to calculate the velocity of the particle at that time from its wave 
function and position; knowing the position and velocity at t, we can find the position at 
time t + dt and can use the time-dependent Schrödinger equation to find the wave func-
tion at t + dt; then we calculate the velocity at t + dt from the position and wave function 
at t + dt; and so on. Hence the path can be calculated from the initial position and wave 
function (assuming we know the potential energy). In Bohm’s theory, the particle’s posi-
tion turns out to obey an equation like Newton’s second law m d2x>dt2 = -0V>0x [Eqs. 
(1.8) and (1.12)], except that the potential energy V is replaced by V + Q, where Q is a 
quantum potential that is calculated in a certain way from the wave function. In Bohm’s 
theory, collapse of the wave function does not occur. Rather, the interaction of the system 
with the measuring apparatus follows the equations of Bohm’s theory, but this interaction 
leads to the system evolving after the measurement in the manner that would occur if the 
wave function had been collapsed.

Bohm’s work was largely ignored for many years, but interest in his theory has 
increased. For more on Bohm’s theory, see Whitaker, Chapter 7; D. Bohm and B. J. Hiley, The 
Undivided Universe, Routledge, 1992; D. Z Albert, Scientific American, May 1994, p. 58; 
S. Goldstein, “Bohmian Mechanics,” plato.stanford.edu/entries/qm-bohm; en.wikipedia 
.org/wiki/De_Broglie-Bohm_theory. One of the main characters in Rebecca Goldstein’s 
novel Properties of Light (Houghton Mifflin, 2000) is modeled in part on David Bohm.

Some physicists argue that the wave function represents merely our knowledge 
about the state of the system (this epistemic interpretation is used in the Copenhagen 
viewpoint), whereas others argue that the wave function corresponds directly to an ele-
ment of physical reality (the ontic interpretation). A paper published in 2012 used cer-
tain mild assumptions to prove a result that the authors argued strongly favored the 
ontic interpretation; M. F. Pusey, J. Barrett, and T. Rudolph, Nature Phys. 8, 476 (2012) 
(arxiv.org/abs/1111.3328). For discussion of this result (called the PBR theorem), see 
www.aps.org/units/gqi/newsletters/upload/vol6num3.pdf; mattleifer.info/2011/11/20/
can-the-quantum-state-be-interpreted-statistically.

Although the experimental predictions of quantum mechanics are not arguable, its 
conceptual interpretation is still the subject of heated debate. Excellent bibliographies 
with commentary on this subject are B. S. DeWitt and R. N. Graham, Am. J. Phys., 39, 
724 (1971); L. E. Ballentine, Am. J. Phys., 55, 785 (1987). See also B. d’Espagnat, Con-
ceptual Foundations of Quantum Mechanics, 2nd ed., Benjamin, 1976; M. Jammer, The 
Philosophy of Quantum Mechanics, Wiley, 1974; Whitaker, Chapter 8; P. Yam, Scientific 
American, June 1997, p. 124. An online bibliography by A. Cabello on the foundations of 
quantum mechanics lists 12 different interpretations of quantum mechanics (arxiv.org/
abs/quant-ph/0012089); a Wikipedia article lists 14 interpretations of quantum mechanics 
(en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics).

7.10 Matrices
Matrix algebra is a key mathematical tool in doing modern-day quantum-mechanical cal-
culations on molecules. Matrices also furnish a convenient way to formulate much of the 
theory of quantum mechanics. Matrix methods will be used in some later chapters, but 
this book is written so that the material on matrices can be omitted if time does not allow 
this material to be covered.
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A matrix is a rectangular array of numbers. The numbers that compose a matrix 
are called the matrix elements. Let the matrix A have m rows and n columns, and let aij 
1i = 1, 2, c, m and j = 1, 2, c, n2 denote the element in row i and column j. Then

A = ±
a11 a12 g a1n

a21 a22 g a2n
# # g #

am1 am2 g amn

≤

A is said to be an m by n matrix. Do not confuse A with a determinant (Section 8.3); a 
matrix need not be square and is not equal to a single number.

A row matrix (also called a row vector) is a matrix having only one row. A column 
matrix or column vector has only one column.

Two matrices R and S are equal if they have the same number of rows, and the same 
number of columns, and have corresponding elements equal. If R = S, then rjk = sjk for 
j = 1, c, m and k = 1, c, n, where m and n are the dimensions of R and S. A matrix 
equation is thus equivalent to mn scalar equations.

The sum of two matrices A and B is defined as the matrix formed by adding cor-
responding elements of A and B; the sum is defined only if A and B have the same di-
mensions. If P = A + B, then we have the mn scalar equations pjk = ajk + bjk for 
j = 1, c, m and k = 1, c, n.

	 If P = A + B, then pjk = ajk + bjk	 (7.105)

The product of the scalar c and the matrix A is defined as the matrix formed by mul-
tiplying every element of A by c.

	 If D = cA, then djk = cajk	 (7.106)

If A is an m by n matrix and B is an n by p matrix, the matrix product R = AB is 
defined to be the m by p matrix whose elements are

	 rjk K aj1b1k + aj2b2k + g+ ajnbnk = a
n

i = 1
ajibik	 (7.107)

To calculate rjk we take row j of A (this row’s elements are aj1, aj2, c, ajn), multiply each 
element of this row by the corresponding element in column k of B (this column’s ele-
ments are b1k, b2k, c, bnk), and add the n products. For example, suppose

A = a-1 3 1
2

0 4 1
b and B = °

1 0 -2

2 5 6

-8 3 10

¢

The number of columns of A equals the number of rows of B, so the matrix product AB is 
defined. AB is the product of the 2 by 3 matrix A and the 3 by 3 matrix B, so R K AB is a 
2 by 3 matrix. The element r21 is found from the second row of A and the first column of B 
as follows: r21 = 0112 + 4122 + 11-82 = 0. Calculation of the remaining elements gives

R = a1 161
2 25

0 23 34
b
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Matrix multiplication is not commutative; the products AB and BA need not be equal. 
(In the preceding example, the product BA happens to be undefined.) Matrix multiplica-
tion can be shown to be associative, meaning that A1BC2 = 1AB2C and can be shown 
to be distributive, meaning that A1B + C2 = AB + AC and 1B + C2D = BD + CD.

A matrix with equal numbers of rows and columns is a square matrix. The order of a 
square matrix equals the number of rows.

I f A  is a square matr ix, its square, cube, c are  def ined by A2 K AA, 
A3 K AAA, c.

The elements a11, a22, c, ann of a square matrix of order n lie on its principal diago-
nal. A diagonal matrix is a square matrix having zero as the value of each element not on 
the principal diagonal.

The trace of a square matrix is the sum of the elements on the principal diagonal. If A 
is a square matrix of order n, its trace is Tr A = gn

i = 1 aii.
A diagonal matrix whose diagonal elements are each equal to 1 is called a unit ma-

trix or an identity matrix. The ( j, k)th element of a unit matrix is the Kronecker delta djk; 
1I2jk = djk, where I is a unit matrix. For example, the unit matrix of order 3 is

°
1 0 0

0 1 0

0 0 1

¢

Let B be a square matrix of the same order as a unit matrix I. The ( j, k)th element of the 
product IB is given by (7.107) as 1IB2jk = g i 1I2ji bik = g idji bik = bjk. Since the ( j, k)th 
elements of IB and B are equal for all j and k, we have IB = B. Similarly, we find BI = B. 
Multiplication by a unit matrix has no effect.

A matrix all of whose elements are zero is called a zero matrix, symbolized by 0. A 
nonzero matrix has at least one element not equal to zero. These definitions apply to row 
vectors and column vectors.

Most matrices in quantum chemistry are either square matrices or row or column 
matrices.

Matrices and Quantum Mechanics
In Section 7.1, the integral1fm*An fn dt was called a matrix element of An. We now justify 
this name by showing that such integrals obey the rules of matrix algebra.

Let the functions f1, f2, cbe a complete, orthonormal set and let the symbol5 fi6  
denote this complete set. The numbers Amn K 8 fm 0An 0 fn9 K 1 f *m An fn dt are called matrix 
elements of the linear operator An in the basis5 fi6. The square matrix

	 A = °
A11 A12 c
A21 A22 c
........................

¢ = °
8f1 0 An 0 f19 8f1 0 An 0 f29 c
8f2 0 An 0 f19 8f2 0 An 0 f29 c
...............................................

¢	 (7.108)

is called the matrix representative of the linear operator An in the5 fi6  basis. Since5 fi6  
usually consists of an infinite number of functions, A is an infinite-order matrix.

Consider the addition of matrix-element integrals. Suppose Cn = An + Bn. A typical 
matrix element of Cn in the5 fi6  basis is

 Cmn = 8 fm 0Cn 0 fn9 = 8 fm 0An + Bn 0 fn9 = L  f*m1An + Bn2 fn dt

 = L  f*m An fn dt + L  f*mBn fn dt = Amn + Bmn
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Thus, if Cn = An + Bn, then Cmn = Amn + Bmn, which is the rule (7.105) for matrix addition. 
Hence, if Cn = An + Bn, then C = A + B, where A, B, and C are the matrix representatives 
of the operators An, Bn, Cn.

Similarly, if Pn = cSn, where c is a constant, then we find (Prob. 7.52) Pjk = cSjk, 
which is the rule for multiplication of a matrix by a scalar.

Finally, suppose that Rn = Sn Tn. We have

	 Rmn = L  f*mRn fn dt = L  f *m SnTn fn dt	 (7.109)

The function Tnfn can be expanded in terms of the complete orthonormal set 5 fi6  as [Eq. 
(7.41)]:

Tnfn = a
i

 ci fi = a
i

 8 fi 0 Tnfn9 fi = a
i

 8 fi 0 Tn 0 fn9 fi = a
i

Tin fi

and Rmn becomes

	 Rmn = L  f*mSn a
i

Tin fi dt = a
i L  f *m Sn fi dt Tin = a

i
SmiTin	 (7.110)

The equation Rmn = g i SmiTin is the rule (7.107) for matrix multiplication. Hence, if 
Rn = SnTn, then R = ST.

We have proved that the matrix representatives of linear operators in a complete 
orthonormal basis set obey the same equations that the operators obey. Combining Eqs. 
(7.109) and (7.110), we have the useful sum rule

	 a
i

 8m 0 Sn 0 i9  8i 0 Tn 0 n9 = 8m 0 SnTn 0 n9 	 (7.111)

Suppose the basis set 5 fi6  is chosen to be the complete, orthonormal set of eigen-
functions gi of An, where Angi = aigi. Then the matrix element Amn is

Amn = 8gm 0An 0 gn9 = 8gm 0Angn9 = 8gm 0 angn9 = an8gm 0 gn9 = andmn

The matrix that represents An in the basis of orthonormal An eigenfunctions is thus a diag-
onal matrix whose diagonal elements are the eigenvalues of An. Conversely, one can prove 
(Prob. 7.53) that, when the matrix representative of An using a complete orthonormal set 
is a diagonal matrix, then the basis functions are the eigenfunctions of An and the diagonal 
matrix elements are the eigenvalues of An.

We have used the complete, orthonormal basis5 fi6 to represent the operator An by 
the matrix A of (7.108). The basis5 fi6 can also be used to represent an arbitrary function 
u, as follows. We expand u in terms of the complete set5 fi6, according to u = g i ui fi, 
where the expansion coefficients ui are numbers (not functions) given by Eq. (7.40) as 
ui = 8 fi 0 u9. The set of expansion coefficients u1, u2, c is formed into a column matrix 
(column vector), which we call u, and u is said to be the representative of the function u 
in the5 fi6 basis. If Anu = w, where w is another function, then we can show (Prob. 7.54) 
that Au = w, where A, u, and w are the matrix representatives of An, u, and w in the5 fi6 
basis. Thus, the effect of the linear operator An on an arbitrary function u can be found if 
the matrix representative A of An is known. Hence, knowing the matrix representative A is 
equivalent to knowing what the operator An is.
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Summary
A linear quantum-mechanical operator An that represents a physical quantity must be Her-
mitian, meaning that it satisfies 1 f*Anu dt = 1u1Anf2* dt for all well-behaved functions f 
and u. The eigenvalues of Hermitian operators are real numbers. For a Hermitian operator, 
eigenfunctions that correspond to different eigenvalues are orthogonal, and eigenfunctions 
that correspond to a degenerate eigenvalue can be chosen to be orthogonal.

We postulated that the eigenfunctions gi of any Hermitian operator that represents a 
physical quantity form a complete set, meaning that any well-behaved function f can be 
expanded as f = g k ck gk, where the gk>s are orthonormal and where ck = 1g*k f dt.

If two quantum-mechanical operators commute, they have a complete set of eigenfunc-
tions in common. Two quantum-mechanical operators that have a common complete set 
of eigenfunctions must commute.

If the potential energy V is an even function, each stationary-state wave function can 
be chosen to be either even or odd.

If the property B is measured in a system whose state function is , the probability 
that the nondegenerate eigenvalue bi is found is given by 08gi 09 0 2, where Bngi = bigi.

The postulates of quantum mechanics are summarized in Section 7.8.
Matrices are rectangular arrays of numbers and obey the rules (7.105)–(7.107) for 

addition, scalar multiplication, and matrix multiplication. If5 fi6 is a complete, orthonormal 
set of functions, then the matrix A with elements Amn K 8 fm 0An 0 fn9  represents the linear 
operator An in the 5 fi6  basis. Also, the column matrix u with elements ui equal to the 
coefficients in the expansion u = gi ui fi represents the function u in the5 fi6 basis. The 
matrix representatives of operators and functions in a given basis obey the same relations 
as the operators and functions. For example, if Cn = An + Bn, Rn = SnTn, and w = Anu, then 
C = A + B, R = ST, and w = Au.

Problems

Sec. 7.1 7.2 7.3 7.4 7.5

Probs 7.1–7.3 7.4–7.17 7.18–7.19 7.20 7.21–7.30

Sec. 7.6 7.7 7.8 7.10 general

Probs 7.31–7.41 7.42–7.45 7.46–7.48 7.49–7.55 7.56–7.64

	 7.1	 True or false? (If a relation is sometimes true and sometimes false, answer “false”.) Here, 
f and g are functions, c is a constant, and Bn is a linear operator. (a) 8 f 0Bn 0 g9 = 8 f 0Bng9; 
(b) 8 f 0Bn 0 cg9 = c8 f 0Bn 0 g9; (c) 8cf 0Bn 0 g9 = c8 f 0Bn 0 g9.

	 7.2	 If c is a constant, under what condition is 8cfm 0An 0 fn9  equal to 8 fm 0An 0cfn9?
	 7.3	 Verify the equation after (7.3). Verify the equations in (7.5).

	 7.4	 What operator is shown to be Hermitian by the equation 8m 0 n9 = 8n 0m9*?

	 7.5	 If Bn is Hermitian, prove that 8 f 0Bn 0 g9 = 8Bn f 0 g9.
	 7.6	 Let An and Bn be Hermitian operators and let c be a constant. (a) Show that cAn is Hermitian if c 

is a real number and that cAn is not Hermitian if c is not real. (b) Show that An + Bn is Hermitian.

	 7.7	 (a) Show that d2>dx2 and Tnx are Hermitian, where Tnx K - 1U2>2m2 d2>dx2. (See Prob. 7.6a.) 
(b) Show that 8Tx9 = 1U2>2m21 0 0>0x 0 2 dt. (c) For a one-particle system, does8T9equal 
8Tx9 + 8Ty9 + 8Tz9? (d) Show that 8T9 Ú 0 for a one-particle system.

	 7.8	 Which of the following operators are Hermitian: d>dx, i d>dx, 4 d2>dx2, i d2>dx2? (See 
Prob. 7.6.)



192  Chapter 7	   |  Theorems of Quantum Mechanics 

	 7.9	 Which of the following operators meet the requirements for a quantum-mechanical operator 
that is to represent a physical quantity: (a) 1 21>2; (b) d>dx; (c) d2>dx2; (d) i d>dx?

	7.10	 Verify that Ln z is Hermitian using spherical coordinates.

	7.11	 Let An be a Hermitian operator. Show that 8A29 = 1 0Anc 0 2 dt and therefore 8A29 Ú 0. 
[This result can be used to derive Eq. (5.131) more rigorously than in the text. Thus, 
since Mn 2 - Mn 2

z = Mn 2
x + Mn 2

y  we have 8M29 - 8M2
z 9 = 8M2

x 9 + 8M2
y 9. Now 8M29 = c, 

8M2
z 9 = b2

k, and by the theorem of this exercise 8M2
x 9 Ú 0, 8M2

y 9 Ú 0. Hence c - b2
k Ú 0.]

	7.12	 (a) If An and Bn are Hermitian operators, prove that their product AnBn is Hermitian if and only 
if An and Bn commute. (b) If An and Bn are Hermitian, prove that AnBn + BnAn is Hermitian. The 
operator AnBn + BnAn is called the anticommutator of An and Bn. (c) Is xnpnx Hermitian? (d) Is 
1
21xn pnx + pnxxn2 Hermitian?

	7.13	 A linear operator Cn is anti-Hermitian if 8 f 0Cn 0 g9 = -8g 0Cn 0 f 9* for all pairs of well-behaved 
functions. (a) Show that d>dx is anti-Hermitian. (b) If An and Bn are Hermitian, prove that their 
commutator AnBn - BnAn is anti-Hermitian.

	7.14	 Explain why each of the following integrals must be zero, where the functions are hydrogen-
like wave functions: (a) 82p1 0 Ln z 0 3p-19 ; (b) 83p0 0 Lnz 0 3p09 .

	7.15	 Evaluate 8cm 0Hn 0cn9  if (a) Hn  is the harmonic-oscillator Hamiltonian operator and cm and cn 
are harmonic-oscillator stationary-state wave functions with vibrational quantum numbers m 
and n; (b) Hn  is the particle-in-a-box Hn  and cm and cn are particle-in-a-box energy eigenfunc-
tions with quantum numbers m and n.

	7.16	 If c2 is a harmonic-oscillator wave function with v = 2 and Hn  is the harmonic-oscillator 
Hamiltonian, simplify the integral8c2 0Hn 0 f1x29.

	7.17	 (a) Show that the hydrogenlike wave functions 2px and 2p1 are not orthogonal. (b) Use the 
Schmidt procedure to construct linear combinations of 2px and 2p1 that will be orthogonal. 
Then normalize these functions. Which of the operators Hn , Ln2, Lnz are your linear combinations 
eigenfunctions of?

	7.18	 (a) Fill in the details in the evaluation of the expansion coefficients an in the example in Sec-
tion 7.3. (b) Write the x1l - x2 expansion of this example for x =

1
2  l and use the first five 

nonzero terms to approximate p3. (c) Calculate the percent error in this x1l - x2 expansion 
at x = l>4 when the first 1, 3, and 5 nonzero terms are taken.

	7.19	 (a) Expand the function f1x2 = -1 for 0 … x …
1
2l and f1x2 = 1 for 1

2 l 6 x … l in terms 
of the particle-in-a-box wave functions. (Since f is discontinuous at 1

2 l, the expansion cannot 
be expected to represent f at this point. Since f does not obey the particle-in-a-box boundary 
conditions of being zero at x = 0 and x = l, the expansion will not represent f at these points. 
The expansion will represent f at other points.) (b) Calculate the percent error at x = l>4 when 
the first 1, 3, 5, and 7 nonzero terms are taken in this expansion.

	7.20	 True or false? (a) If two Hermitian operators do not commute, then they cannot possess any 
common eigenfunctions. (b) If two Hermitian operators commute, then every eigenfunction of 
one must be an eigenfunction of the other. (c) The integral 82px 0 Lnz 0 3px9  involving hydrogen-
like orbitals must equal zero.

	7.21	 Let n  be the parity operator and m be a positive integer. What is n m if m is even? if m is odd?

	7.22	 For the hydrogenlike atom, V = -Z1e2>4pe021x2 + y2 + z22-1>2, so the potential energy is 
an even function of the coordinates. (a) What is the parity of the 2s wave function? (b) What 
is the parity of 2px? (c) Consider 2s + 2px. Is it an eigenfunction of Hn? Does it have definite 
parity?

	7.23	 Let n  be the parity operator and let cm1x2 be a normalized harmonic-oscillator wave function. 
We define the matrix elements mn as mn = 1

-
c*mn cn dx. Show that mn = 0 for m � n 

and mm = {1.

	7.24	 Use parity to find which of the following integrals must be zero: (a) 82s 0 x 0 2px9 ; 
(b)82s 0 x2 0 2px 9; (c) 82py 0 x 0 2px 9. The functions in these integrals are hydrogenlike wave 
functions.

	7.25	 Let Rn be a linear operator such that Rnn = 1n, where n is a positive integer and no lower power 
of Rn equals 1n . Find the eigenvalues of Rn.



	7.26	 (a) Show that the parity operator is linear. (b) Show that the parity operator is Hermitian; a 
proof in one dimension is sufficient.

	7.27	 Since the parity operator is Hermitian (Prob. 7.26), two eigenfunctions of n  that correspond 
to different eigenvalues must be orthogonal. Show directly that this is so.

	7.28	 Consider the integral 8v2 0 x 0 v19 , where the functions are one-dimensional harmonic-oscillator 
wave functions with quantum numbers v2 and v1. Under what conditions do parity consid-
erations allow us to conclude that this integral must be zero? Might the integral be zero in 
other cases as well? (This integral is important in discussing radiative transitions.)

	7.29	 (a) In Cartesian coordinates the parity operator n  corresponds to the transformation of 
variables x S - x, y S - y, z S - z. Show that in spherical coordinates the parity oper-
ator corresponds to the transformation r S r, u S p- u, f S f +p. (b) Show that 
n eimf = 1-12meimf. (c) Use Eq. (5.97) to show that

n Sl,m1u2 = 1-12l- 0m 0Sl,m1u2 = 1-12l- mSl,m1u2

		  (d) Combine the results of (b) and (c) to conclude that the spherical harmonic Ym
l 1u, f2 is an 

even function if l is even and is an odd function if l is odd.

	7.30	 Let f be an odd function of only some of its variables, meaning that

		�   f 1-q1, -q2, c, -qk, qk + 1, qk + 2, c, qm2 = - f1q1, q2, c, qk, qk + 1, qk + 2, c, qm2
		  where 1 … k … m. Explain why

L


-
gL



-

f1q1, c, qm2 dq1 gdqm = 0

		  Hint: Write the integral as

L


-
gL



-

cL


-
gL



-

f1q1, c, qk, qk + 1, c, qm2 dq1 gdqkd  dqk + 1 gdqm

	7.31	 For a hydrogen atom in a p state, the possible outcomes of a measurement of Lz are -U, 0, 
and U. For each of the following wave functions, give the probabilities of each of these three 
results: (a) 2pz; (b) 2py; (c) 2p1. Then use the results to find 8Lz9  for each of these three wave 
functions.

	7.32	 Suppose that at time t a hydrogen atom is in a nonstationary state with

 = 6-1>212p12 - 2-1>2i12p02 - 3-1>213d12
		  If Lz is measured at t, give the possible outcomes and give the probability of each possible 

outcome. Then find 8Lz9  for this state.

	7.33	 If L2 is measured in a hydrogen atom whose state function is that in Prob. 7.32, give the pos-
sible outcomes and their probabilities. Then calculate 8L29  for this state.

	7.34	 If E is measured in a hydrogen atom whose state function is that in Prob. 7.32, give the pos-
sible outcomes and their probabilities. Then calculate 8E9  for this state.

	7.35	 A measurement yields 2U2 for the square of the magnitude of a particle’s orbital angular 
momentum. If Lx is now measured, what are the possible outcomes?

	7.36	 Suppose that a particle in a box of length l is in a nonstationary state with  = 0 for x 6 0 
and for x 7 l, and

		   =
1
2 exp1- ih2t>8ml2U2a2

l
b

1>2
 sin 

px

l
+

1
223eip exp1- ih2t>2ml2U2a2

l
b

1>2
 sin 

2px

l

		  for 0 … x … l. If the energy is measured at time t, give the possible outcomes and their 
probabilities.
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	7.37	 Suppose that a particle in a box of length l is in the nonstationary state  = 1105>l721>2x21l - x2 
for 0 … x … l (and  = 0 elsewhere) at the time the energy is measured. Give the possible 
outcomes and their probabilities. Calculate the probability for n = 1, 2, and 3.

	7.38	 Suppose that the electron in a hydrogen atom has the state function  = 127>pa321>2e-3r>a 
1where a = 4pe0U2>me22 at the time its energy is measured. Find the probability that the 
energy value -e2>8pe0a is found.

	7.39	 (a) Combine Eqs. (2.30) and (3.33) to write down  for a free particle in one dimension. (b) 
Show that this  is a linear combination of two eigenfunctions of pnx. What are the eigenvalues 
for these eigenfunctions? (c) If px of a free particle in one dimension is measured, give the 
possible outcomes and give their probabilities.

	7.40	 Use the results of the last example in Section 7.6 to evaluate g
m = 0 31>12m + 1264 .

	7.41	 (a) Show that, for a particle in a one-dimensional box (Fig. 2.1) of length l, the probability of 
observing a value of px between p and p + dp is

	
4 0 N 02s2

l1s2 - b222 31 - 1-12n cos bl4  dp	 (7.112)

		  where s K npl -1 and b K pU-1. The constant N is to be chosen so that the integral from minus 
infinity to infinity of (7.112) is unity. Do not evaluate N. (b) Evaluate (7.112) in terms of 0N 0  
for p = {nh>2l. [At these values of px, the denominator of (7.112) is zero and the probability 
reaches a large but finite value.]

	7.42	 Find (a) 1

-
d1x2 dx; (b) 1-1

-d1x2 dx; (c) 11
-1d1x2 dx; (d) 12

1 f1x2d1x - 32 dx.

	7.43	 Show that 1

-
0 d1x - a2 0 2 dx = .

	7.44	 What is the value of 1
0 f1x2d1x2 dx?

	7.45	 The functions in Fig. 7.5 approximate the Dirac delta function. Draw graphs of the corresponding 
functions that approximate the Heaviside step function with successively increasing accuracy.

	7.46	 Quantum mechanics postulates that the present state of an undisturbed system determines 
its future state. Consider the special case of a system with a time-independent Hamiltonian 
Hn . Suppose it is known that at time t0 the state function is 1x, t02. Derive Eq. (7.101) by 
substituting the expansion (7.66) with gi = ci into the time-dependent Schrödinger equation 
(7.97); multiply the result by c*m, integrate over all space, and solve for cm.

	7.47	 For the time-dependent particle-in-a-box states with  at t = 0 equal to 2-1>2c1 + 2-1>2c2 in 
the example after Eq. (7.101), (a) calculate the period T for an electron in a box of length 2.00 
Å; (b) verify (7.102) for 0 0 2; (c) use a spreadsheet or program like Mathcad to plot l 0 0 2 in 
(7.103) for t = jT>8 with j = 0, 1, c, 8; (d) use Mathcad to produce an animation of 0 0 2 
as time changes.

	7.48	 Consider the particle-in-a-box time-dependent states with  at t = 0 given by 2-1>2c1 + 2-1>2cn, 
where n � 1. (a) Find the equations that correspond to (7.102) and (7.103) for 0 0 2 and l 0 0 2; 
(b) produce animations of 0 0 2 as time changes for n = 3, n = 4, and n = 5. For which of 
the values n = 2, 3, 4, 5 does 0 0 2 remain symmetrical about the box midpoint as t changes?

	7.49	 For the matrices

		  A = a2 1

0 -3
b , B = a1 -1

4 4
b

		  find (a) AB; (b) BA; (c) A + B; (d) 3A; (e) A - 4B.

	7.50	 Calculate the matrix products CD and DC, where

C = °
 5

 0

-1

¢ and D = 1i 2 12



	7.51	 Find the matrix representative of the unit operator 1n  in a complete, orthonormal basis.

	7.52	 If Pn = cSn, where c is a constant, show that Pjk = cSjk.

	7.53	 If 5 fi6  is a complete, orthonormal basis such that 8 fm 0An 0 fn9 = amdmn for all m and n (that is, 
the matrix representative of An is diagonal), prove that the functions 5 fi6 are eigenfunctions of 
An and the ai>s are the eigenvalues of An. Hint: Expand Anfn in terms of the set 5 fi6.

	7.54	 (a) If An is a linear operator,5 fi6 is a complete, orthonormal basis, and u is an arbitrary func-
tion, show that Anu = g j 1g i 8 fj 0An 0 fi9  8 fi 0 u92 fj. Hint: Expand u in terms of the set5 fi6 , apply 
An to this expansion, and then expand An fi. (b) If Anu = w, with w = g j wj fj and u = g i ui fi 
(where the expansion coefficients wj and ui are numbers), show that the equation in (a) says 
that wj = gi Aji ui, and hence that w = Au, where w, A, and u are the representatives of w, An , 
and u.

	7.55	 Write down the l = 2 portion of the matrix representative of Lnz in the 5Y m
l 6 basis.

	7.56	 Calculate the uncertainty Lz for these hydrogen-atom stationary states: (a) 2pz; (b) 2px.

	7.57	 For the system of Prob. 7.36, (a) use orthonormality [Eq. (2.27)] to verify that  is normalized; 
(b) find 8E9  at time t; (c) find 8x9  at time t, and find the maximum and minimum values of 
8x9considered as a function of t.

	7.58	 Consider an operator An that contains the time as a parameter. We are interested in how the 
average value of the property A changes with time, and we have

d8A9
dt

=
d

dt L   *An dt

		  The definite integral on the right side of this equation is a function of the parameter t, and 
it is generally a valid mathematical operation to calculate its derivative with respect to t by 
differentiating the integrand with respect to t:

			 
d8A9

dt
= L  

0

0t
1*An2 dt = L  

0*

0t
An  dt + L   *

0An

0t
 dt + L   *An

0

0t
 dt

		  Use the time-dependent Schrödinger equation, its complex conjugate, and the Hermitian prop-
erty of Hn  to show that

	
d8A9

dt
= L   *

0An

0t
 dt +

i

U L   *1HnAn - AnHn2 dt

	
d8A9

dt
= h0An

0t
i +

i

U
8  3HnAn - AnHn4  9 	 (7.113)

	7.59	 Use (7.113) and (5.8) to show that

	
d

dt
8x9 =

8px9
m

=
1
m L   * U

i

0

0x
 dt	 (7.114)

		  From (7.114) it follows that

	
d 28x9

dt 2 =
1
m

d

dt
 8px9

		  Use (7.113), (5.9), and (4.24) to show that

	 8Fx9 = m
d28x9

dt2 	 (7.115)
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		  If we consider a classical-mechanical particle, its wave function will be large only in a very 
small region corresponding to its position, and we may then drop the averages in (7.115) to 
obtain Newton’s second law. Thus classical mechanics is a special case of quantum mechanics. 
Equation (7.115) is known as Ehrenfest’s theorem, after the physicist who derived it in 1927.

	7.60	 Prove the uncertainty principle (5.12) for any two Hermitian operators An and Bn as follows. 
(a) Define the function u as u K f - cg, where c K 8g 0 f 9>8g 0 g9  and f and g are any two 
quadratically integrable functions. Consider the integral 8u 0 u9. Since u*u = 0 u 0 2 Ú 0, the 
integrand is never negative, so we have 8u 0 u9 Ú 0. Substitute the definition of u into this 
last inequality, multiply the result by the positive quantity 8g 0 g9, and show that this leads to 
8 f 0 f 9  8g 0 g9 - 8 f 0 g9  8g 0 f 9 Ú 0 or 8 f 0 f 9  8g 0 g9 Ú 08 f 0 g9 0 2, a result known as the Schwarz 
inequality. (b) Let f K 1An - 8A92 and g K 1Bn - 8B92. Use the Hermitian property 
of An - 8A9  and Bn - 8B9  to show that 1A22 = 8 f 0 f 9  and 1B22 = 8g 0g9, where the uncer-
tainties are defined by Eq. (5.11). (c) For the complex number z K x + iy, where x and y 
are real numbers, we have 0 z 0 2 = x2 + y2 Ú y2. Verify that y = 1z - z*2>2i. Therefore, 
0 z 0 2 Ú 31z - z*2>2i42. Let z K 8 f 0g9. Then 08 f 0 g90 2 Ú 318 f 0 g9 - 8g 0 f92>2i42. Combine this 
result with the results of parts (a) and (b) to show that 1A221B22 Ú -

1
418 f 0 g9 - 8g 0 f922, 

where f and g are defined in (b). (d) Use the definitions of f and g and the normalization of 
 to verify that 8 f 0 g9 = 8g 0 f 9* = 8 0AnBn 09 - 8A98B9. From the definitions of f and g, 
interchanging f and g interchanges A and B, so it follows that 8g 0 f 9 = 8 0BnAn 09 - 8B98A9. 
Verify that the result of part (c) becomes 1A221B22 Ú -

1
48 0 3An, Bn4 092. (e) Use the 

results of Prob. 7.13 to show that 8 0 3An, Bn4 09 = -8 0 3An, Bn4 09*. Then substitute this 
result for one of the integrals on the right side of the inequality in part (d) to show that 
1A221B22 Ú

1
4 0 8 0 3An, Bn4 09 0 2, which gives the uncertainty principle (5.12).

	7.61	 Write a computer program that uses the expansion (7.37) to calculate the function (7.35) at 
x values of 0, 0.1l, 0.2l, . . . , l. Have the program do the calculations for 5, 10, 15, and 20 
terms taken in the expansion.

	7.62	 In finding eigenvalues by solving differential equations, quantization occurs only when we 
apply the condition that the eigenfunctions be well behaved. Ladder operators were used in 
Section 5.4 to find the eigenvalues of Mn 2 and Mn z and in Prob. 5.36 to find the harmonic-
oscillator energy eigenvalues. Where was the condition that the eigenfunctions be well-
behaved used in the derivations in Section 5.4 and Prob. 5.36? Hint: See Prob. 7.11.

	7.63	 Without consulting the text, prove that (a) eigenvalues of a Hermitian operator are real; (b) 
eigenfunctions of a Hermitian operator that correspond to different eigenvalues are orthogonal.

	7.64	 True or false? (a) The state function is always equal to a function of time multiplied by a func-
tion of the coordinates. (b) In both classical and quantum mechanics, knowledge of the present 
state of an isolated system allows its future state to be calculated. (c) The state function is 
always an eigenfunction of the Hamiltonian. (d) Every linear combination of eigenfunctions of 
the Hamiltonian is an eigenfunction of the Hamiltonian operator. (e) If the state function is not 
an eigenfunction of the operator An, then a measurement of the property A might give a value 
that is not one of the eigenvalues of An. (f) The probability density is independent of time for a 
stationary state. (g) If two Hermitian operators do not commute, then they cannot possess any 
common eigenfunctions. (h) If two Hermitian operators commute, then every eigenfunction of 
one must be an eigenfunction of the other. (i) Two linearly independent eigenfunctions of the 
same Hermitian operator are always orthogonal to each other. (j) If the operator Bn corresponds 
to a physical property of a quantum-mechanical system, the state function  must be an eigen-
function of Bn. (k) Every linear combination of solutions of the time-dependent Schrödinger 
equation is a solution of this equation. (l) The normalized state function  is dimensionless 
(that is, has no units). (m) All eigenfunctions of Hermitian operators must be real functions. 
(n) The quantities 8 fm 0An 0 fn9  and 8 fm 0 fn9  are numbers. (o) When  is an eigenfunction of 
Bn with eigenvalue bk, we are certain to observe the value bk when the property B is measured. 
(p) The relation 8 f 0Bn 0 g9 = 8g 0Bn 0 f 9* is valid only when f and g are eigenfunctions of the 
Hermitian operator Bn. (q) The time-dependent Schrödinger equation is more fundamental than 
the time-independent Schrödinger equation. (r) For all states, 1Hn 2> is equal to the energy 
E of the state.
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Chapter 8

The Variation Method

8.1 The Variation Theorem
To deal with the time-independent Schrödinger equation for systems (such as atoms or 
molecules) that contain interacting particles, we must use approximation methods. This 
chapter discusses the variation method, which allows us to approximate the ground-state 
energy of a system without solving the Schrödinger equation. The variation method is 
based on the following theorem:

T h e  Va r i at i o n  T h e o r e m

Given a system whose Hamiltonian operator Hn  is time independent and whose 
lowest-energy eigenvalue is E1, if f is any normalized, well-behaved function of 
the coordinates of the system’s particles that satisfies the boundary conditions of 
the problem, then

	 Lf*Hnf dt Ú E1,  f normalized	 (8.1)

The variation theorem allows us to calculate an upper bound for the system’s ground-
state energy.

To prove (8.1), we expand f in terms of the complete, orthonormal set of eigenfunc-
tions of Hn , the stationary-state eigenfunctions ck:

	 f = a
k

akck	 (8.2)

where

	 Hnck = Ekck	 (8.3)

Note that the expansion (8.2) requires that f obey the same boundary conditions as the ck’s. 
Substitution of (8.2) into the left side of (8.1) gives

L  f*Hnf dt = L  a
k

 a*kc*kHn  a
j

ajcj dt = L  a
k

a*kc*k a
j

ajHncj dt

Using the eigenvalue equation (8.3) and assuming the validity of interchanging the integra-
tion and the infinite summations, we get

 L  f*Hnf dt = L  a
k

a*kc*ka
j

aj Ejcj dt =  a
k
a

j
a*kaj EjL  c*kcj dt

 = a
k
a

j
 a*kajEjdk j
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where the orthonormality of the eigenfunctions ck was used. We perform the sum over j, 
and, as usual, the Kronecker delta makes all terms zero except the one with j = k, giving

	 Lf*Hnf dt = a
k

 a*k ak Ek = a
k

 0 ak 02Ek	 (8.4)

Since E1 is the lowest-energy eigenvalue of Hn , we have Ek Ú E1. Since 0 ak 0 2 is never 
negative, we can multiply the inequality Ek Ú E1 by � ak �2 without changing the direction 
of the inequality sign to get � ak �2Ek Ú � ak �2E1. Therefore, g k   0 ak   0 2Ek Ú  g k  0 a  k 02E1, and 
use of (8.4) gives

	 Lf*Hnf dt = a
k
0 ak 0 2Ek Ú a

k
0 ak 02E1 = E1a

k
0 ak 02	 (8.5)

Because f is normalized, we have 1f*f dt = 1. Substitution of the expansion (8.2) 
into the normalization condition gives

1 = Lf*f dt = L a
k

a*kc*ka
j

ajcj dt = a
k
a

j
a*kajLc*kcj dt = a

k
a

j
a*kajdkj

	 1 = a
k
0 ak 0 2	 (8.6)

[Note that in deriving Eqs. (8.4) and (8.6) we essentially repeated the derivations of Eqs. 
(7.70) and (7.69), respectively.]

Use of (8.6) in (8.5) gives the variation theorem (8.1):

	 Lf*Hnf dt Ú E1,  f normalized	 (8.7)

Suppose we have a function f that is not normalized. To apply the variation theorem, 
we multiply f by a normalization constant N so that Nf is normalized. Replacing f by 
Nf in (8.7), we have

	 � N �2Lf*Hnf dt Ú E1	 (8.8)

N is determined by 1 1Nf2*Nf dt = � N �21f*f dt = 1 ; so � N �2 = 1> 1f*f dt and 
(8.8) becomes

	 Lf*Hnf dt

Lf*f dt
Ú E1	 (8.9)

where f is any well-behaved function (not necessarily normalized) that satisfies the bound-
ary conditions of the problem.

The function f is called a trial variation function, and the integral in (8.1) [or the 
ratio of integrals in (8.9)] is called the variational integral. To arrive at a good approxi-
mation to the ground-state energy E1, we try many trial variation functions and look for 
the one that gives the lowest value of the variational integral. From (8.1), the lower the 
value of the variational integral, the better the approximation we have to E1. One way 
to disprove quantum mechanics would be to find a trial variation function that made the 
variational integral less than E1 for some system where E1 is known.

Let c1 be the true ground-state wave function:

	 Hnc1 = E1c1	 (8.10)
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If we happened to be lucky enough to hit upon a variation function that was equal to c1, 
then, using (8.10) in (8.1), we see that the variational integral will be equal to E1. Thus the 
ground-state wave function gives the minimum value of the variational integral. We there-
fore expect that the lower the value of the variational integral, the closer the trial variational 
function will approach the true ground-state wave function. However, it turns out that the 
variational integral approaches E1 a lot faster than the trial variation function approaches 
c1, and it is possible to get a rather good approximation to E1 using a rather poor f.

In practice, one usually puts several parameters into the trial function f and 
then varies these parameters so as to minimize the variational integral. Successful 
use of the variation method depends on the ability to make a good choice for the 
trial function.

Let us look at some examples of the variation method. Although the real utility of 
the method is for problems to which we do not know the true solutions, we will consider 
problems that are exactly solvable so that we can judge the accuracy of our results.

E x a m p l e

Devise a trial variation function for the particle in a one-dimensional box of length l.
The wave function is zero outside the box and the boundary conditions require 

that c = 0 at x = 0 and at x = l. The variation function f must meet these bound-
ary conditions of being zero at the ends of the box. As noted after Eq. (4.57), the 
ground-state c has no nodes interior to the boundary points, so it is desirable that f 
have no interior nodes. A simple function that has these properties is the parabolic 
function

	 f = x1l - x2 for 0 … x … l	 (8.11)

and f = 0 outside the box. Since we have not normalized f, we use Eq. (8.9). Inside 
the box the Hamiltonian is - 1U2>2m2 d2>dx2. For the numerator and denominator of 
(8.9), we have

Lf*Hnf dt = -
U2

2m L
l

0
1lx - x22 d2

dx21lx - x22 dx =
U2

m L
l

0
1lx - x 22 dx =

U2l3

6m
	 (8.12)

	 L  f*f dt = L
l

0
x21l - x22 dx =

l5

30
	 (8.13)

Substituting in the variation theorem (8.9), we get

E1 …
5h2

4p2ml2 = 0.1266515
h2

ml2

From Eq. (2.20), E1 = h2>8ml2 = 0.125h2>ml2, and the energy error is 1.3%.
Since 1 0f 0 2 dt = l5>30, the normalized form of (8.11) is 130>l521>2x1l - x2. 

Figure 7.3 shows that this function rather closely resembles the true ground-state 
particle-in-a-box wave function.

Exercise  A one-particle, one-dimensional system has the potential energy function 
V = V0 for 0 … x … l and V = � elsewhere (where V0 is a constant). (a) Use the 
variation function f = sin1px>l2 for 0 … x … l and f = 0 elsewhere to estimate the 
ground-state energy of this system. (b) Explain why the result of (a) is the exact ground-
state energy. Hint: See one of the Chapter 4 problems. (Answer: (a) V0 + h2>8ml2.)

The preceding example did not have a parameter in the trial function. The next 
example does.
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E x a m p l e

For the one-dimensional harmonic oscillator, devise a variation function with a 
parameter and find the optimum value of the parameter. Estimate the ground-state 
energy.

The variation function f must be quadratically integrable and so must go to zero as 
x goes to {�. The function e-x has the proper behavior at + � but becomes infinite at 
- � . The function e-x2

 has the proper behavior at {� . However, it is dimensionally 
unsatisfactory, since the power to which we raise e must be dimensionless. This can be 
seen from the Taylor series ez = 1 + z + z2>2! + g  [Eq. (4.44)]. Since all the terms 
in this series must have the same dimensions, z must have the same dimensions as 1; 
that is, z in ez must be dimensionless. Hence we modify e-x2

 to e-cx2
, where c has units 

of length-2. We shall take c as a variational parameter. The true ground-state c must 
have no nodes. Also, since V =

1
2 kx2 is an even function, the ground-state c must have 

definite parity and must be an even function, since an odd function has a node at the 
origin. The trial function e-cx2

 has the desired properties of having no nodes and of 
being an even function.

Use of (4.30) for Hn  and Appendix integrals gives (Prob. 8.3)

 L  f*Hnf dt = -
U2

2m L
�

- �

 e-cx2 d2e-cx2

dx2  dx + 2p2v2m L
�

- �

x2e-2cx2
 dx

 =
U2

m
apc

8
b

1>2
+ v2m ap

5

8
b

1>2
c-3>2

 L  f*f dt = L
�

- �

 e-2cx2
dx = 2 L

�

0
 e-2cx 2

dx = a p

2c
b

1>2

The variational integral W is

	 W K
L  f*Hnf dt

L  f*f dt
=

U2c

2m
+

p2n2m

2c
	 (8.14)

We now vary c to minimize the variational integral (8.14). A necessary condition that W 
be minimized is that

dW

dc
= 0 =

U2

2m
-

p2n2m

2c2

	 c = {pnm>U	 (8.15)

The negative root c = -pnm>U is rejected, since it would make f = e-cx2
 not quad-

ratically integrable. Substitution of c = pnm>U into (8.14) gives W =
1
2 hn. This is the 

exact ground-state harmonic-oscillator energy. With c = pnm>U the variation function 
f is the same (except for being unnormalized) as the harmonic-oscillator ground-state 
wave function (4.53) and (4.31).

For the normalized harmonic-oscillator variation function f = 12c>p21>4e-cx2
, a 

large value of c makes f fall off very rapidly from its maximum value at x = 0. This 
makes the probability density large only near x = 0. The potential energy V =

1
2 kx2 

is low near x = 0, so a large c means a low 8V9 = 8f � V �f9 . [Note also that 8V9  
equals the second term on the right side of (8.14).] However, because a large c makes 
f fall off very rapidly from its maximum, it makes 0 df>dx 0  large in the region near 
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x = 0. From Prob. 7.7b, a large � df>dx �  means a large value of 8T9  [which equals 
the first term on the right side of (8.14)]. The optimum value of c minimizes the sum 
8T9 + 8V9 = W. In atoms and molecules, the true wave function is a compromise 
between the tendency to minimize 8V9  by confining the electrons to regions of low V 
(near the nuclei) and the tendency to minimize 8T9  by allowing the electron probabil-
ity density to spread out over a large region.

Exercise  Consider a one-particle, one-dimensional system with V = 0 for - 1
2 l … x …

1
2 l 

and V = bU2>ml2 elsewhere (where b is a positive constant) (Fig. 2.5 with V0 = bU2>ml2 
and the origin shifted). (a) For the variation function f = 1x - c21x + c2 = x2 - c2 for 
-c … x … c and f = 0 elsewhere, where the variational parameter c satisfies c 7

1
2 l, one 

finds that the variational integral W is given by

W =
U2

ml2 c 5l2

4c2 + ba1 -
15l

16c
+

5l3

32c3 -
3l5

256c5 b d

Sketch f and V on the same plot. Find the equation satisfied by the value of c that 
minimizes W. (b) Find the optimum c and W for V0 = 20U2>ml2 and compare with 
the true ground-state energy 2.814U2>ml2 (Prob. 4.31c). (Hint: You may want to use 
the Solver in a spreadsheet or a programmable calculator to find c>l.) (Answer: (a) 
48t4 - 24t2 - 128t3>b + 3 = 0, where t K c>l. (b) c = 0.6715l, W = 3.454U2>ml2.)

8.2 Extension of the Variation Method
The variation method as presented in the last section gives information about only the 
ground-state energy and wave function. We now discuss extension of the variation method 
to excited states. (See also Section 8.5.)

Consider how we might extend the variation method to estimate the energy of the 
first excited state. We number the stationary states of the system 1, 2, 3, c in order of 
increasing energy:

E1 … E2 … E3 … c

We showed that for a normalized variational function f [Eqs. (8.4) and (8.6)]

L  f*Hnf dt = a
�

k = 1
 0 ak 0 2Ek and L  f*f dt = a

�

k = 1
 0 ak 0 2 = 1

where the ak’s are the expansion coefficients in f = g k akck [Eq. (8.2)]. We have 
ak = 8ck 0f9  [Eq. (7.40)]. Let us restrict ourselves to normalized functions f that are 
orthogonal to the true ground-state wave function c1. Then we have a1 = 8c1 0f9 = 0 and

	 L  f*Hnf dt = a
�

k = 2
 0 ak 0 2Ek and L  f*f dt = a

�

k = 2
 0 ak 0 2 = 1	 (8.16)

For k Ú 2, we have Ek Ú E2 and 0 ak 0 2Ek Ú  0 ak 0 2E2. Hence

	 a
�

k = 2
 0 ak 0 2Ek Ú a

�

k = 2
 0 ak 0 2E2 = E2a

�

k = 2
 0 ak 0 2 = E2	 (8.17)

Combining (8.16) and (8.17), we have the desired result:

	 Lf*Hnf dt Ú E2 if  L  c*1f dt = 0 and L  f*f dt = 1	 (8.18)



202  Chapter 8  |  The Variation Method

The inequality (8.18) allows us to get an upper bound to the energy E2 of the first excited 
state. However, the restriction 8c1 0f9 = 0 makes this method troublesome to apply.

For certain systems, it is possible to be sure that 8c1 0f9 = 0 even though we do not 
know the true ground-state wave function. An example is a one-dimensional problem for 
which V is an even function of x. In this case the ground-state wave function is always an 
even function, while the first excited-state wave function is odd. (All the wave functions 
must be of definite parity. The ground-state wave function is nodeless, and, since an odd 
function vanishes at the origin, the ground-state wave function must be even. The first 
excited-state wave function has one node and must be odd.) Therefore, for odd trial func-
tions, it must be true that 8c1 0f9 = 0; the even function c1 times the odd function f gives 
an odd integrand whose integral from - � to � is zero.

Another example is a particle moving in a central field (Section 6.1). The form of 
the potential energy might be such that we could not solve for the radial factor R(r) in the 
eigenfunction. However, the angular factor in c is a spherical harmonic [Eq. (6.16)], and 
spherical harmonics with different values of l are orthogonal. Thus we can get an upper 
bound to the energy of the lowest state with any given angular momentum l by using the 
factor Ym

l  in the trial function. This result depends on the extension of (8.18) to higher 
excited states:

	
1f*Hnf dt

1f*f dt
Ú Ek + 1 if L  c*1f dt = L  c*2f dt = g = L  c*kf dt = 0 	 (8.19)

8.3 Determinants
Section 8.5 discusses a kind of variation function that gives rise to an equation involving 
a determinant. Therefore, we now discuss determinants.

A determinant is a square array of n2 quantities (called elements); the value of the 
determinant is calculated from its elements in a manner to be given shortly. The number 
n is the order of the determinant. Using aij to represent a typical element, we write the 
nth-order determinant as

	 det1aij2 = 6 a11 a12 a13 g a1n

a21 a22 a23 g a2n
# # # g #
# # # g #
# # # g #

an1 an2 an3 g ann

6 	 (8.20)

The vertical lines in (8.20) have nothing to do with absolute value. Before considering 
how the value of the nth-order determinant is defined, we consider determinants of first, 
second, and third orders.

A first-order determinant has one element, and its value is simply the value of that 
element. Thus

	  0 a11 0  = a11	 (8.21)

where the vertical lines indicate a determinant and not an absolute value.
A second-order determinant has four elements, and its value is defined by

	 ` a11 a12

a21 a22
` = a11a22 - a12a21	 (8.22)
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The value of a third-order determinant is defined by

	 † 
a11 a12 a13

a21 a22 a23

a31 a32 a33

† = a11 ` a22 a23

a32 a33
` - a12 ` a21 a23

a31 a33
` + a13 ` a21 a22

a31 a32
` 	 (8.23)

= a11a22a33 - a11a32a23 - a12a21a33 + a12a31a23

	 +a13a21a32 - a13a31a22	 (8.24)

A third-order determinant is evaluated by writing down the elements of the top row with 
alternating plus and minus signs and then multiplying each element by a certain second-
order determinant; the second-order determinant that multiplies a given element is found 
by crossing out the row and column of the third-order determinant in which that element 
appears. The 1n - 12-order determinant obtained by striking out the ith row and the jth 
column of the nth-order determinant is called the minor of the element aij. We define the 
cofactor of aij as the minor of aij times the factor 1-12i+ j. Thus (8.23) states that a third-
order determinant is evaluated by multiplying each element of the top row by its cofactor 
and adding up the three products. [Note that (8.22) conforms to this evaluation by means 
of cofactors, since the cofactor of a11 in (8.22) is a22, and the cofactor of a12 is -a21.] 
A numerical example is

 †
5 10 2

0.1 3 1

0 4 4

† = 5 ` 3 1

4 4
` - 10 ` 0.1 1

0 4
` + 2 ` 0.1 3

0 4
`

 = 5182 - 1010.42 + 210.42 = 36.8

Denoting the minor of aij by Mij and the cofactor of aij by Cij, we have

	 Cij = 1-12i+ jMi j	 (8.25)

The expansion (8.23) of the third-order determinant can be written as

	 det1aij2 = † 
a11 a12 a13

a21 a22 a23

a31 a32 a33

† = a11C11 + a12C12 + a13C13	 (8.26)

A third-order determinant can be expanded using the elements of any row and the corresponding 
cofactors. For example, using the second row to expand the third-order determinant, we have

	 det1aij2 = a21C21 + a22C22 + a23C23	 (8.27)

	 det1aij2 = -a21 ` a12 a13

a32 a33
` + a22 ` a11 a13

a31 a33
` - a23 ` a11 a12

a31 a32
` 	 (8.28)

and expansion of the second-order determinants shows that (8.28) is equal to (8.24). We 
may also use the elements of any column and the corresponding cofactors to expand the 
determinant, as can be readily verified. Thus for the third-order determinant, we can write

det1aij2 = ak1Ck1 + ak2Ck2 + ak3Ck3 = a
3

l = 1
aklCkl,  k = 1 or 2 or 3

det1aij2 = a1kC1k + a2kC2k + a3kC3k = a
3

l = 1
alkClk,  k = 1 or 2 or 3

The first expansion uses one of the rows; the second uses one of the columns.
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We define determinants of higher order by an analogous row (or column) expansion. 
For an nth-order determinant,

	 det1aij2 = a
n

l = 1
aklCkl = a

n

l = 1
alkClk, k = 1 or 2 or c or n	 (8.29)

Some theorems on determinants are as follows (for proofs, see Sokolnikoff and 
Redheffer, pp. 702–707):

	 I.	 If every element of a row (or column) of a determinant is zero, the value of the deter-
minant is zero.

	II.	 Interchanging any two rows (or columns) multiplies the value of a determinant 
by -1.

	III.	 If any two rows (or columns) of a determinant are identical, the determinant has the 
value zero.

	IV.	 Multiplication of each element of any one row (or any one column) by some constant 
k multiplies the value of the determinant by k.

	 V.	 Addition to each element of one row of the same constant multiple of the corresponding 
element of another row leaves the value of the determinant unchanged. This theorem 
also applies to the addition of a multiple of one column to another column.

	VI.	 The interchange of all corresponding rows and columns leaves the value of the determi-
nant unchanged. (This interchange means that column one becomes row one, column 
two becomes row two, etc.)

E x a m p l e

Use Theorem V to evaluate

	 B = ∞
1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

∞ 	 (8.30)

Addition of -2 times the elements of row one to the corresponding elements of row four 
changes row four to 2 + 1-221 = 0, 3 + 1-22122 = -1, 4 + 1-223 = -2, and 
1 + 1-224 = -7. Then, addition of -3 times row one to row three and -4 times row 
one to row two gives

	 B = ∞
1 2 3 4

0 -7 -10 -13

0 -2 -8 -10

0 -1 -2 -7

∞ = 1 †
-7 -10 -13

-2 -8 -10

-1 -2 -7

†	 (8.31)

where we expanded B in terms of elements of the first column. Subtracting twice row 
three from row two and seven times row three from row one, we have

	 B = †
0 4 36

0 -4 4

-1 -2 -7

† = 1-12 `  4 36

-4 4
` = - 116 + 1442 = -160	 (8.32)

The diagonal of a determinant that runs from the top left to the lower right is the 
principal diagonal. A diagonal determinant is a determinant all of whose elements are 
zero except those on the principal diagonal. For a diagonal determinant,
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 5 a11 0 0 g 0

0 a22 0 g 0

0 0 a33 g 0
. . . g .

0 0 0 g ann

5 = a11
4 a22 0 g 0

0 a33 g 0
. . g .

0 0 g ann

4 = a11 a22
4 a33 0 g 0

0 a44 g 0
. . g .

0 0 g ann

4
	  = g = a11a22a33 cann	 (8.33)

A diagonal determinant is equal to the product of its diagonal elements.
A determinant whose only nonzero elements occur in square blocks centered about the 

principal diagonal is in block-diagonal form. If we regard each square block as a determi-
nant, then a block-diagonal determinant is equal to the product of the blocks. For example,

	 6  a b 0 0 0 0

c d 0 0 0 0

0 0 e 0 0 0

0 0 0 f g h

0 0 0 i j k

0 0 0 l m n

6 = ` a b

c d
` 1e2 †  

f g h

i j k

l m n

† 	 (8.34)

The dashed lines outline the blocks. Equation (8.34) is readily proved by expanding the left 
side in terms of elements of the top row and expanding several subsequent determinants 
using their top rows (Prob. 8.21).

8.4 Simultaneous Linear Equations
To deal with the kind of variation function discussed in the next section, we need to know 
about simultaneous linear equations.

Consider the following system of n linear equations in n unknowns:

a11x1 + a12x2 + g + a1nxn = b1

a21x1 + a22x2 + g + a2nxn = b2

	 .	 .	 .	 .	 g	 .	 .	 .	 .	 (8.35)

an1x1 + an2x2 + g + annxn = bn

where the a’s and b’s are known constants and x1, x2, c, xn are the unknowns. If at least 
one of the b’s is not zero, we have a system of inhomogeneous linear equations. Such a 
system can be solved by Cramer’s rule. (For a proof of Cramer’s rule, see Sokolnikoff and 
Redheffer, p. 708.) Let det1aij2 be the determinant of the coefficients of the unknowns in 
(8.35). Cramer’s rule states that xk 1k = 1, 2, c, n2 is given by

	 xk =

∞  
a11 a12 c a1,k - 1 b1 a1,k + 1 c a1n

a21 a22 c a2,k - 1 b2 a2,k + 1 c a2n

. . c . . . c .

an1 an2 c an,k - 1 bn an,k + 1 c ann

∞

det1aij2 , k = 1, 2, c, n	 (8.36)

where det1ai j2 is given by (8.20) and the numerator is the determinant obtained by replac-
ing the kth column of det1ai j2 with the elements b1, b2, c, bn. Although Cramer’s rule is 
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of theoretical significance, it should not be used for numerical calculations, since successive 
elimination of unknowns is much more efficient.

A widely used successive-elimination procedure is Gaussian elimination, which 
proceeds as follows: Divide the first equation in (8.35) by the coefficient a11 of x1, thereby 
making the coefficient of x1 equal to 1 in this equation. Then subtract a21 times the first 
equation from the second equation, subtract a31 times the first equation from the third 
equation, c, and subtract an1 times the first equation from the nth equation. This elimi-
nates x1 from all equations but the first. Now divide the second equation by the coefficient 
of x2; then subtract appropriate multiples of the second equation from the 3rd, 4th, c, 
nth equations, so as to eliminate x2 from all equations but the first and second. Continue 
in this manner. Ultimately, equation n will contain only xn, equation n - 1 only xn - 1 and 
xn, and so on. The value of xn found from equation n is substituted into equation n - 1 to 
give xn - 1; the values of xn and xn - 1 are substituted into equation n - 2 to give xn - 2; and 
so on. If at any stage a coefficient we want to divide by happens to be zero, the equation 
with the zero coefficient is exchanged with a later equation that has a nonzero coefficient 
in the desired position. (The Gaussian elimination procedure also gives an efficient way 
to evaluate a determinant; see Prob. 8.25.)

A related method is Gauss–Jordan elimination, which proceeds the same way as 
Gaussian elimination, except that instead of eliminating x2 from equations 3, 4, c, n, 
we eliminate x2 from equations 1, 3, 4, c, n, by subtracting appropriate multiples of the 
second equation from equations 1, 3, 4, c, n; instead of eliminating x3 from equations 
4, 5, c, n, we eliminate x3 from equations 1, 2, 4, 5, c, n; and so on. At the end of 
Gauss–Jordan elimination, equation 1 contains only x1, equation 2 contains only x2, c, 
equation n contains only xn. Gauss–Jordan elimination requires more computation than 
Gaussian elimination.

If all the b’s in (8.35) are zero, we have a system of linear homogeneous equations:

a11x1 + a12x2 + g + a1nxn = 0

a21x1 + a22x2 + g + a2nxn = 0

	 .	 .	 .	 .	 c	 .	 .	 .	 .	 (8.37)

an1x1 + an2x2 + g + annxn = 0

One obvious solution of (8.37) is x1 = x2 = g = xn = 0, which is called the 
trivial solution. If the determinant of the coefficients in (8.37) is not equal to zero, 
det1aij2 � 0, then we can use Cramer’s rule (8.36) to solve for the unknowns, and we find 
xk = 0, k = 1, 2, c, n, since the determinant in the numerator of (8.36) has a column 
all of whose elements are zero. Thus, when det1aij2 � 0, the only solution is the trivial 
solution, which is of no interest. For there to be a nontrivial solution of a system of n linear 
homogeneous equations in n unknowns, the determinant of the coefficients must be zero. 
Also, this condition can be shown to be sufficient to ensure the existence of a nontrivial 
solution. We thus have the extremely important theorem:

A system of n linear homogeneous equations in n unknowns has a nontrivial 
solution if and only if the determinant of the coefficients is zero.

Suppose that det1aij2 = 0, so that (8.37) has a nontrivial solution. How do we find it? With 
det1aij2 = 0, Cramer’s rule (8.36) gives xk = 0>0, k = 1, c, n, which is indeterminate. 
Thus Cramer’s rule is of no immediate help. We also observe that, if x1 = d1, x2 = d2, c,
xn = dn is a solution of (8.37), then so is x1 = cd1, x2 = cd2, c, xn = cdn, where c is an 
arbitrary constant. This is easily seen, since

a11cd1 + a12cd2 + g + a1ncdn = c1a11d1 + a12d2 + g + a1ndn2 = c # 0 = 0
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and so on. Therefore, the solution to the linear homogeneous system of equations will 
contain an arbitrary constant, and we cannot determine a unique value for each unknown. 
To solve (8.37), we therefore assign an arbitrary value to any one of the unknowns, say xn; 
we set xn = c, where c is an arbitrary constant. Having assigned a value to xn, we transfer 
the last term in each of the equations of (8.37) to the right side to get

a11x1 + a12x2 + g + a1,n - 1xn - 1 = -a1,nc

a21x1 + a22x2 + g + a2,n - 1xn - 1 = -a2,nc

	 .	 .	 .	 .	 .	 .		  .	 .	 (8.38)

an - 1,1x1 + an - 1,2x2 + g + an - 1,n - 1xn - 1 = -an - 1,nc

an1x1 + an2x2 + g + an,n - 1xn - 1 = -annc

We now have n equations in n - 1 unknowns, which is one more equation than we need. 
We therefore discard any one of the equations of (8.38), say the last one. This gives a sys-
tem of n - 1 linear inhomogeneous equations in n - 1 unknowns. We could then apply 
Cramer’s rule (8.36) to solve for x1, x2, c, xn - 1. Since the constants on the right side of 
the equations in (8.38) all contain the factor c, Theorem IV in Section 8.3 shows that all the 
unknowns contain this arbitrary constant as a factor. The form of the solution is therefore

	 x1 = ce1, x2 = ce2, c, xn - 1 = cen - 1, xn = c	 (8.39)

where e1, c, en - 1 are numbers and c is an arbitrary constant.

E x a m p l e

Solve

3x1 + 4x2 + x3 = 0

x1 + 3x2 - 2x3 = 0

x1 - 2x2 + 5x3 = 0

This is a set of linear homogeneous equations, and we begin by evaluating the deter-
minant of the coefficients. We find (see the Exercise)

†
3 4 1

1 3 -2

1 -2 5

† = 0

Therefore, a nontrivial solution exists. We set x3 equal to an arbitrary constant c 
1x3 = c2 and discard the third equation to give

3x1 + 4x2 = -c

x1 + 3x2 = 2c

Subtracting 3 times the second equation from the first, we get -5x2 = -7c, so 
x2 =

7
5c. Substitution into x1 + 3x2 = 2c gives x1 +

21
5 c = 2c, so x1 = -

11
5 c. Hence 

the general solution is x1 = -
11
5 c, x2 =

7
5c, x3 = c. For those allergic to fractions, 

we define a new arbitrary constant s as s K
1
5c and write x1 = -11s, x2 = 7s, x3 = 5s.

Exercise  (a) Verify that the coefficient determinant in this example is zero. (b) Verify 
that the third equation in this example can be obtained by adding a certain constant 
times the second equation to the first equation.
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The procedure just outlined fails if the determinant of the inhomogeneous system 
of n - 1 equations in n - 1 unknowns [(8.38) with the last equation omitted] happens 
to be zero. Cramer’s rule then has a zero in the denominator and is of no use. We could 
try to get around this difficulty by initially assigning the arbitrary value to another of the 
unknowns rather than to xn. We could also try discarding some other equation of (8.38), 
rather than the last one. What we are looking for is a nonvanishing determinant of order 
n - 1 formed from the determinant of the coefficients of the system (8.37) by striking out a 
row and a column. If such a determinant exists, then by the procedure given, with the right 
choice of the equation to be discarded and the right choice of the unknown to be assigned 
an arbitrary value, we can solve the system and will get solutions of the form (8.39). If 
no such determinant exists, we must assign arbitrary values to two of the unknowns and 
attempt to proceed from there. Thus the solution to (8.37) might contain two (or even more) 
arbitrary constants.

An efficient way to solve a system of linear homogeneous equations is to do Gauss–
Jordan elimination on the equations. If only the trivial solution exists, the final set of 
equations obtained will be x1 = 0, x2 = 0, c, xn = 0. If a nontrivial solution exists, at 
least one equation will be reduced to the form 0 = 0; if m equations of the form 0 = 0 are 
obtained, we assign arbitrary constants to m of the unknowns and express the remaining 
unknowns in terms of these m unknowns.

E x a m p l e

Use Gauss–Jordan elimination to solve the set of equations in the preceding 
example.

In doing Gaussian or Gauss–Jordan elimination on a set of n inhomogeneous 
or homogeneous equations, we can eliminate needless writing by omitting the 
variables x1, c, xn and writing down only the n-row, 1n + 12-column array of 
coefficients and constant terms (including any zero coefficients); we then produce 
the next array by operating on the numbers of each row as if that row were the 
equation it represents.

To eliminate one set of divisions, we interchange the first and second equations so 
that we start with a11 = 1. Detaching the coefficients and proceeding with Gauss–
Jordan elimination, we have

1 3 -2 0  1 3 -2 0

3 4 1 0 S 0 -5 7 0

1 -2 5 0  0 -5 7 0

 

 1 3 -2 0  1 0 11
5 0

S 0 1 -  75 0 S 0 1 -  75 0

 0 -5 7 0  0 0 0 0

The first array is the original set of equations with the first and second equations  
interchanged. To eliminate x1 from the second and third equations, we subtract 3 times 
row one from row two and 1 times row one from row three, thereby producing the  
second array. Division of row two by -5 produces the third array. To eliminate x2 
from the first and third equations, we subtract 3 times row two from row one and  
-5 times row two from row three, thereby producing the fourth array. Because the 
fourth array has the x3 coefficient in row three equal to zero, we cannot use row 
three to eliminate x3 from rows one and two (as would be the last step in the Gauss–
Jordan algorithm). Discarding the last equation, which reads 0 = 0, we assign x3 = k, 
where k is an arbitrary constant. The first and second equations in the last array read 
x1 +

11
5 x3 = 0 and x2 -

7
5 x3 = 0, or x1 = -

11
5 x3, x2 =

7
5 x3. The general solution is 

x1 = -
11
5 k, x2 =

7
5 k, x3 = k.
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8.5 Linear Variation Functions
A special kind of variation function widely used in the study of molecules is the linear 
variation function. A linear variation function is a linear combination of n linearly inde-
pendent functions f1, f2, c, fn:

	 f = c1 f1 + c2 f2 + g + cn fn = a
n

j = 1
 cj fj	 (8.40)

where f is the trial variation function and the coefficients cj are parameters to be deter-
mined by minimizing the variational integral. The functions fj (which are called basis 
functions) must satisfy the boundary conditions of the problem. We shall restrict ourselves 
to real f so that the cj’s and fj’s are all real. In (8.40), the functions fj are known functions.

We now apply the variation theorem (8.9). For the real linear variation function, we 
have

L  f*f dt = L  a
n

j = 1
 cj fj a

n

k = 1
 ck fk dt = a

n

j = 1
a

n

k = 1
 cjck L fj fk dt K a

n

j = 1
a

n

k = 1
 cjckSjk	 (8.41)

where we defined the overlap integral Sjk as

	 Sjk K L f*j fk dt	 (8.42)

Note that Sjk is not necessarily equal to djk, since there is no reason to suppose that the 
functions fj are mutually orthogonal. They are not necessarily the eigenfunctions of any 
operator. The numerator in (8.9) is

 L  f *Hnf dt = L  a
n

j = 1
cj fjHn  a

n

k = 1
 ck fk dt

 = a
n

j = 1
a

n

k = 1
 cjck L fjHn fk dt K a

n

j = 1
a

n

k = 1
 cjckHjk

where we defined Hjk as

	 Hjk K L f*j Hn fk dt	 (8.43)

The variational integral W is

	 W K
Lf*Hnf dt

Lf*f dt
=

a n
j = 1 a n

k = 1cjckHjk

a n
j = 1a n

k = 1cjckSjk

	 (8.44)

	 W a
n

j = 1
a

n

k = 1
cjckSjk = a

n

j = 1
a

n

k = 1
cjckHjk	 (8.45)

We now minimize W so as to approach as closely as we can to E1 1W Ú E12. The varia-
tional integral W is a function of the n independent variables c1, c2, c, cn:

W = W1c1, c2, c, cn2
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A necessary condition for a minimum in a function W of several variables is that its 
partial derivatives with respect to each of the variables must be zero at the minimum:

	
0W

0ci
= 0,  i = 1, 2, c, n	 (8.46)

We now differentiate (8.45) partially with respect to each ci to obtain n equations:

0W

0ci
a

n

j = 1
a

n

k = 1
cjckSjk + W

0

0ci
 a

n

j = 1
a

n

k = 1
cjckSjk =

0

0ci
 a

n

j = 1
a

n

k = 1
cjckHjk, i = 1, 2, c, n	 (8.47)

Now

0

0ci
a
n

j = 1
a

n

k = 1
cjckSjk = a

n

j = 1
a

n

k = 1
c 0

0ci
 1cjck2 d  Sjk = a

n

j = 1
a

n

k = 1
ack 

0cj

0ci
+ cj 

0ck

0ci
bSjk

The cj’s are independent variables, and therefore

0cj

0ci
= 0 if j � i,  

0cj

0ci
= 1 if j = i

	
0cj

0ci
= dij	 (8.48)

We then have

0

0ci
a
n

j = 1
a

n

k = 1
cjckSjk = a

n

k = 1
a

n

j = 1
ckdijSjk + a

n

j = 1
a

n

k = 1
cjdikSjk = a

n

k = 1
ckSik + a

n

j = 1
cjSji

where we evaluated one of the sums in each double summation using Eq. (7.32). Use of 
(7.4) gives

	 Sji = S*ij = Sij	 (8.49)

where the last equality follows because we are dealing with real functions. Hence,

	
0

0ci
a
n

j = 1
a

n

k = 1
cjckSjk = a

n

k = 1
ckSik + a

n

j = 1
cjSij = a

n

k = 1
ckSik + a

n

k = 1
ckSik = 2a

n

k = 1
ckSik	 (8.50)

where the fact that j is a dummy variable was used.
By replacing Sjk by Hjk in each of these manipulations, we get

	
0

0ci
a
n

j = 1
a

n

k = 1
cjckHjk = 2a

n

k = 1
ckHik	 (8.51)

This result depends on the fact that

	 Hji = H*ij = Hij	 (8.52)

which is true because Hn  is Hermitian, and fi, fj, and Hn  are real.
Substitution of Eqs. (8.46), (8.50), and (8.51) into (8.47) gives

2W a
n

k = 1
ckSik = 2 a

n

k = 1
ckHik,  i = 1, 2, c, n

	 a
n

k = 1
 31Hik - SikW2ck4 = 0,  i = 1, 2, c, n	 (8.53)
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Equation (8.53) is a set of n simultaneous, linear, homogeneous equations in the n unknowns 
c1, c2, c, cn [the coefficients in the linear variation function (8.40)]. For example, for 
n = 2, (8.53) gives

1H11 - S11W 2c1 + 1H12 - S12W 2c2 = 0

	 1H21 - S21W 2c1 + 1H22 - S22W 2c2 = 0
	 (8.54)

For the general case of n functions f1, c, fn, (8.53) is

	

1H11 - S11 W2c1 + 1H12 - S12 W2c2 + g+ 1H1n - S1n  W2cn = 0

1H21 - S21 W2c1 + 1H22 - S22 W2c2 + g+ 1H2n - S2n  W2cn = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1Hn1 - Sn1 W2c1 + 1Hn2 - Sn2 W2c2 + g+ 1Hnn - Snn  W2cn = 0

	 (8.55)

From the theorem of Section 8.4, for there to be a solution to the linear homogeneous 
equations (8.55) besides the trivial solution 0 = c1 = c2 = g = cn (which would make 
the variation function f zero), the determinant of the coefficients must vanish. For n = 2 
we have

	 2 H11 - S11 W H12 - S12 W

H21 - S21 W H22 - S22 W
2 = 0	 (8.56)

and for the general case

	 det1Hij - SijW2 = 0	 (8.57)

	 6 H11 - S11 W H12 - S12 W g H1n - S1n  W

H21 - S21 W H22 - S22 W g H2n - S2n  W
. . g .

. . g .

. . g .

Hn1 - Sn1 W Hn2 - Sn2 W g Hnn - Snn  W

6 = 0	 (8.58)

Expansion of the determinant in (8.58) gives an algebraic equation of degree n in the 
unknown W. This algebraic equation has n roots, which can be shown to be real. Arranging 
these roots in order of increasing value, we denote them as

	 W1 … W2 … c … Wn	 (8.59)

If we number the bound states of the system in order of increasing energy, we have

	 E1 … E2 … c … En … En + 1 … c 	 (8.60)

where the E’s denote the true energies of various states. From the variation theorem, we 
know that E1 … W 1. Moreover, it can be proved that [J. K. L. MacDonald, Phys. Rev., 43, 
830 (1933); R. H. Young, Int. J. Quantum Chem., 6, 596 (1972); see Prob. 8.40]

	 E1 … W1, E2 … W2, E3 … W3, c, En … Wn	 (8.61)

Thus, the linear variation method provides upper bounds to the energies of the lowest n 
bound states of the system. We use the roots W1, W2, c, Wn as approximations to the 
energies of the lowest states. If approximations to the energies of more states are wanted, 
we add more functions  fk to the trial function f. The addition of more functions  fk can 
be shown to increase (or cause no change in) the accuracy of the previously calculated 
energies. If the functions  fk in f = g k ck fk form a complete set, then we will obtain the 
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true wave functions of the system. Unfortunately, we usually need an infinite number of 
functions to have a complete set.

Quantum chemists may use dozens, hundreds, thousands, or even millions of terms in 
linear variation functions so as to get accurate results for molecules. Obviously, a computer 
is essential for this work. The most efficient way to solve (8.58) (which is called the secular 
equation) and the associated linear equations (8.55) is by matrix methods (Section 8.6).

To obtain an approximation to the wave function of the ground state, we take the low-
est root W 1 of the secular equation and substitute it in the set of equations (8.55); we then 
solve this set of equations for the coefficients c112

1 , c112
2 , c, c112

n , where the superscript 112 
was added to indicate that these coefficients correspond to W 1. [As noted in the previous 
section, we can determine only the ratios of the coefficients. We solve for c112

2 , c, c112
n  

in terms of c112
1 , and then determine c112

1  by normalization.] Having found the c112
k ’s, we 

take f1 = gk c112
k fk as an approximate ground-state wave function. Use of higher roots of 

(8.58) in (8.55) gives approximations to excited-state wave functions. These approximate 
wave functions can be shown to be orthogonal (Prob. 8.40).

Solution of (8.58) and (8.55) is simplified by having as many of the integrals equal to 
zero as possible. We can make some of the off-diagonal Hi j’s vanish by choosing the func-
tions  fk as eigenfunctions of some operator An  that commutes with Hn . If  fi and  fj correspond 
to different eigenvalues of An , then Hij vanishes (Theorem 6 of Section 7.4). If the func-
tions  fk are orthonormal, the off-diagonal Si j’s vanish 1Sij = dij2. If the initially chosen
 fk’s are not orthogonal, we can use the Schmidt (or some other) procedure to find n linear 
combinations of these  fk’s that are orthogonal and then use the orthogonalized functions.

Equations (8.55) and (8.58) are also valid when the restriction that the variation func-
tion be real is removed (Prob. 8.39).

E x a m p l e

Add functions to the function x1l - x2 of the first example of Section 8.1 to form a 
linear variation function for the particle in a one-dimensional box of length l and find 
approximate energies and wave functions for the lowest four states.

In the trial function f = gn
k = 1 ck fk, we take  f1 = x1l - x2. Since we want ap-

proximations to the lowest four states, n must be at least 4. There are an infinite number 
of possible well-behaved functions that could be used for  f2, f3, and  f4. The function 
x21l - x22 obeys the boundary conditions of vanishing at x = 0 and x = l and leads 
to simple integrals, so we take  f2 = x21l - x22.

If the origin is placed at the center of the box, the potential energy (Fig. 2.1) is an 
even function, and, as noted in Section 8.2, the wave functions alternate between 
being even and odd functions (see also Fig. 2.3). (Throughout this example, the 
terms even and odd will refer to having the origin at the box’s center.) The functions 
 f1 = x1l - x2 and  f2 = x21l - x22 are both even functions (see Prob. 8.34). If we 
were to take f = c1x1l - x2 + c2x

21l - x22, we would end up with upper bounds to 
the energies of the lowest two states with even wave functions (the n = 1 and n = 3 
states) and would get approximate wave functions for these two states. Since we also 
want to approximate the n = 2 and n = 4 states, we shall add in two functions that are 
odd. An odd function must vanish at the origin [as noted after Eq. (4.50)], so we need 
functions that vanish at the box midpoint x =

1
2 l, as well as at x = 0 and l. A simple 

function with these properties is  f3 = x1l - x211
2 l - x2. To get f4, we shall multiply 

 f2 by 11
2 l - x2. Thus we take f = g4

k = 1 ck fk, with

 f1 = x1l - x2, f2 = x21l - x22, f3 = x1l - x211
2 l - x2, f4 = x21l - x2211

2 l - x2	 (8.62)

Note that  f1, f2, f3, and  f4 are linearly independent, as assumed in (8.40).
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Because  f1 and  f2 are even, while  f3 and  f4 are odd, many integrals will vanish. 
Thus

	 S13 = S31 = 0, S14 = S41 = 0, S23 = S32 = 0, S24 = S42 = 0	 (8.63)

because the integrand in each of these overlap integrals is an odd function with respect 
to the origin at the box center. The functions  f1,  f2,  f3,  f4 are eigenfunctions of the 
parity operator �n  (Section 7.5) with the even functions  f1 and  f2 having parity eigen-
value +1 and  f3 and  f4 having eigenvalue -1. The operator �n  commutes with Hn  
(since V is an even function), so by Theorem 6 of Section 7.4, Hi j vanishes if  fi is an 
odd function and  fj is even, or vice versa. Thus

	 H13 = H31 = 0, H14 = H41 = 0, H23 = H32 = 0, H24 = H42 = 0	 (8.64)

From (8.63) and (8.64), the n = 4 secular equation (8.58) becomes

	

4 H11 - S11 W H12 - S12 W 0 0

H21 - S21 W H22 - S22 W 0 0

0 0 H33 - S33 W H34 - S34 W

0 0 H43 - S43 W H44 - S44 W

4 = 0	 (8.65)

The secular determinant is in block-diagonal form and so is equal to the product of its 
blocks [Eq. (8.34)]:2 H11 - S11 W H12 - S12 W

H21 - S21 W H22 - S22 W
2 * 2 H33 - S33 W H34 - S34 W

H43 - S43 W H44 - S44 W
2 = 0

The four roots of this equation are found from the equations

	  2 H11 - S11 W H12 - S12 W

H21 - S21 W H22 - S22 W
2 = 0	 (8.66)

	  2 H33 - S33 W H34 - S34 W

H43 - S43 W H44 - S44 W
2 = 0	 (8.67)

Let the roots of (8.66) (which are approximations to the n = 1 and n = 3 energies) be 
W 1 and W 3 and let the roots of (8.67) be W 2 and W 4. After solving the secular equation 
for the W’s, we substitute them one at a time into the set of equations (8.55) to find the 
coefficients ck in the variation function. From the secular equation (8.65), the set of 
equations (8.55) with the root W 1 is

	
1H11 - S11 W12c112

1
+ 1H12 - S12 W12c112

2

1H21 - S21 W12c112
1

+ 1H22 - S22 W12c112
2

	
= 0

= 0
r 	 (8.68a)

	
1H33 - S33 W12c112

3
+ 1H34 - S34 W12c112

4
= 0

1H43 - S43 W12c112
3

+ 1H44 - S44 W12c112
4

= 0
r 	 (8.68b)

Because W 1 is a root of (8.66), the set of equations (8.68a) has the determinant of its 
coefficients [which is the determinant in (8.66)] equal to zero. Hence (8.68a) has a 
nontrivial solution for c112

1  and c112
2 . However, W 1 is not a root of (8.67), so the deter-

minant of the coefficients of the set of equations (8.68b) is nonzero. Hence, (8.68b) 
has only the trivial solution c112

3 = c112
4 = 0. The trial function f1 corresponding to 

the root W1 thus has the form f1 = g4
k = 1 c112

k fk = c112
1 f1 + c112

2 f2. The same reasoning 
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shows that f3 is a linear combination of  f1 and  f2, while f2 and f4 are each linear 
combinations of  f3 and  f4:

f1 = c112
1 f1 + c112

2 f2, f3 = c132
1 f1 + c132

2 f2

	 f2 = c122
3 f3 + c122

4 f4, f4 = c142
3 f3 + c142

4 f4	
(8.69)

The even wave functions c1 and c3 are approximated by linear combinations of the 
even functions  f1 and  f2; the odd functions c2 and c4 are approximated by linear com-
binations of the odd functions  f3 and  f4.

When the secular equation is in block-diagonal form, it factors into two or more 
smaller secular equations, and the set of simultaneous equations (8.55) breaks up into 
two or more smaller sets of equations.

We now must evaluate the Hi j and Sij integrals so as to solve (8.66) and (8.67) for 
W 1, W 2, W 3, and W 4. We have

 H11 = 8 f1 0Hn 0 f19 = L
l

0
 x1l - x2a-U2

2m
b  

d2

dx2 3x1l - x24  dx =
U2l3

6m

 S11 = 8 f1 0 f19 = L
l

0
x21l - x22 dx =

l5

30

where Eqs. (8.12) and (8.13) were used. Evaluation of the remaining integrals using 
(8.62), (8.49), and (8.52) gives (Prob. 8.35)

H12 = H21 = 8 f2 0Hn 0 f19 = U2l5>30m, H22 = U2l7>105m

H33 = U2 l5>40m, H44 = U2l9>1260m, H34 = H43 = U2l7>280m

S12 = S21 = 8 f1 0 f29 = l7>140, S22 = l9>630

S33 = l7>840, S44 = l11>27720, S34 = S43 = l9>5040

Equation (8.66) becomes

	 4 U2
 l3

6m
-

l5

30
 W

U2
 l5

30m
-

l7

140
 W

U2
 l5

30m
-

l7

140
 W

U2
 l7

105m
-

l9

630
 W

4 = 0	 (8.70)

Using Theorem IV of Section 8.3, we eliminate the fractions by multiplying row one of 
the determinant by 420m>l3, row two by 1260m>l5, and the right side of (8.70) by both 
factors, to get 2 70U2 - 14ml2

 W 14U2
 l2 - 3ml4

 W

42U2 - 9ml2
 W 12U2

 l2 - 2ml4
 W

2 = 0

m2l4W2 - 56ml2 U2W + 252U4 = 0

	 W = 1U2>ml22128{15322 = 0.1250018h2>ml2, 1.293495h2>ml2	 (8.71)

Substitution of the integrals into (8.67) leads to the roots (Prob. 8.36)

	 W = 1U2>ml22160{116202 = 0.5002930h2>ml2, 2.5393425h2>ml2	 (8.72)

The approximate values 1ml2>h22W = 0.1250018, 0.5002930, 1.293495, and 2.5393425 
may be compared with the exact values [Eq. (2.20)] 1ml2>h22E = 0.125, 0.5, 1.125, and 
2 for the four lowest states. The percent errors are 0.0014%, 0.059%, 15.0%, and 27.0% 
for n = 1, 2, 3, and 4, respectively. We did great for n = 1 and 2; lousy for n = 3 and 4.
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We now find the approximate wave functions corresponding to these W’s. Substitu-
tion of W1 = 0.1250018h2>ml2 into the set of equations (8.68a) corresponding to 
(8.71) gives (after division by h2)

 0.023095c112
1 - 0.020381c112

2 l2 = 0

	  -0.061144c112
1 + 0.053960c112

2 l2 = 0	 (8.73)

where, for example, the first coefficient is found from

70U2 - 14ml2W = 70h2>4p2 - 1410.12500182h2 = 0.023095h2

To solve the homogeneous equations (8.73), we follow the procedure given near the 
end of Section 8.4. We discard the second equation of (8.73), transfer the c112

2  term to 
the right side, and solve for the coefficient ratio; we get

c112
1

= k, c112
2

= 1.133k>l2

where k is a constant. We find k from the normalization condition:

 8f1 0  f19 = 1 = 8kf1 + 1.133kf2>l2 0  kf1 + 1.133kf2>l29
 = k218 f1 0 f19 + 2.2668 f1 0 f29 >l2 + 1.2848 f2 0 f29 >l42
 = k21S11 + 2.266S12>l2 + 1.284S22>l42 = 0.05156k2l5

where the previously found values of the overlap integrals were used. Therefore 
k = 4.404>l5>2 and

 f1 = c112
1 f1 + c112

2 f2 = 4.404 f1>l5>2 + 4.990 f2>l9>2

	  f1 = l -1>234.4041x>l211 - x>l2 + 4.9901x>l2211 - x>l224 	 (8.74)

where (8.62) was used.
Using W 2, W 3, and W 4 in turn in (8.55), we find the following normalized linear 

variation functions (Prob. 8.38), where X K x >l :

f2 = l -1>2316.78X11 - X211
2 - X2 + 71.85X211 - X2211

2 - X24
	 f3 = l -1>2328.65X11 - X2 - 132.7X 211 - X224 	 (8.75)

	 f4 = l -1>2398.99X11 - X211
2 - X2 - 572.3X 211 - X2211

2 - X24

8.6 Matrices, Eigenvalues, and Eigenvectors
Matrix algebra (Section 7.10) was developed during the period 1855–1858 by the British 
mathematician Arthur Cayley as a shorthand way of dealing with simultaneous linear 
equations and linear transformations from one set of variables to another. [Cayley had to 
support himself by working as a lawyer for 14 years until he obtained a professorship in 
1860. While working as a lawyer, he published hundreds of papers in mathematics and 
regularly discussed mathematics with his fellow lawyer John Joseph Sylvester. Sylvester 
coined the term matrix for rectangular arrays (after the Latin word for “womb”) and 
obtained a mathematics professorship in 1855.] Matrix algebra remained unknown to 
most physicists for many years, and when Heisenberg discovered the matrix-mechanics 
version of quantum mechanics in 1925, he did not realize that the entities he was dealing 
with were matrices. When he showed his work to Born, Born, who was well-trained in 
mathematics, recognized that Heisenberg was using matrices. Nowadays, matrix alge-
bra is an essential tool in quantum chemistry computations and is widely used in most 
branches of physics.
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The set of linear inhomogeneous equations (8.35) can be written as the matrix equation

	 §a11 a12 g a1n

a21 a22 g a2n

f f f f
an1 an2 g ann

¥§x1

x2

f
xn

¥ = §b1

b2

f
bn

¥	 (8.76)

	 Ax = b	 (8.77)

where A is the coefficient matrix and x and b are column matrices. The equivalence of 
(8.35) and (8.76) is readily verified using the matrix-multiplication rule (7.107).

The determinant of a square matrix A is the determinant whose elements are the same 
as the elements of A. If det A � 0, the matrix A is said to be nonsingular.

The inverse of a square matrix A of order n is the square matrix whose product with 
A is the unit matrix of order n. Denoting the inverse by A-1, we have

	 AA-1 = A-1A = I	 (8.78)

where I is the unit matrix. One can prove that A-1 exists if and only if det A � 0. (For 
efficient methods of computing A-1, see Press et al., Section 2.3; Shoup, Section 3.3; 
Prob. 8.51. Many spreadsheets have a built-in capability to find the inverse of a matrix.)

If det A � 0 for the coefficient matrix A in (8.76), then we can multiply each side of (8.77) 
by A-1 on the left to get A-11Ax2 = A-1b. Since matrix multiplication is associative (Section 
7.10), we have A-11Ax2 = 1A-1A2x = Ix = x. Thus, left multiplication of (8.77) by A-1 
gives x = A-1b as the solution for the unknowns in a set of linear inhomogeneous equations.

The linear variation method is widely used to find approximate molecular wave func-
tions, and matrix algebra gives the most computationally efficient method to solve the 
equations of the linear variation method. If the functions  f1, c, fn in the linear variation 
function f = gn

k = 1 ck fk are made to be orthonormal, then Sij = 1 f*i fj dt = dij , and the 
homogeneous set of equations (8.55) for the coefficients ck that minimize the variational 
integral becomes

H11c1 + H12c2 + g + H1ncn = Wc1

H21c1 + H22c2 + g + H2ncn = Wc2

	    f    f    f    f	 (8.79a)

Hn1c1 + Hn2c2 + g + Hnncn = Wcn

	 §H11 H12 g H1n

H21 H22 g H2n

f f f f
Hn1 Hn2 g Hnn

¥§c1

c2

f
cn

¥ = W §c1

c2

f
cn

¥	 (8.79b)

	 Hc = Wc	 (8.79c)

where H is the square matrix whose elements are Hij = 8 fi 0Hn 0 fj9  and c is the column vec-
tor of coefficients c1, c, cn. In (8.79c), H is a known matrix and c and W are unknowns 
to be solved for.

If
	 Ac = lc	 (8.80)

where A is a square matrix, c is a column vector with at least one nonzero element, and l 
is a scalar, then c is said to be an eigenvector (or characteristic vector) of A and l is an 
eigenvalue (or characteristic value) of A.
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Comparison of (8.80) with (8.79c) shows that solving the linear variation problem 
with Sij = di j amounts to finding the eigenvalues and eigenvectors of the matrix H. The 
matrix eigenvalue equation Hc = Wc is equivalent to the set of homogeneous equations 
(8.55), which has a nontrivial solution for the c’s if and only if det1Hij - dijW2 = 0 [Eq. 
(8.57) with Sij = dij]. For a general square matrix A of order n, the corresponding equation 
satisfied by the eigenvalues is

	 det1Aij - dijl2 = 0	 (8.81)

Equation (8.81) is called the characteristic equation of matrix A. When the nth-order 
determinant in (8.81) is expanded, it gives a polynomial in l (called the characteristic 
polynomial) whose highest power is ln. The characteristic polynomial has n roots for l 
(some of which may be equal to each other and some of which may be imaginary), so a 
square matrix of order n has n eigenvalues. (The set of eigenvalues of a square matrix A 
is sometimes called the spectrum of A.)

The matrix equation (8.79c) for H corresponds to (8.80) for A. The elements of the 
eigenvectors of A satisfy the following set of equations that corresponds to (8.79a):

A11c1 + A12c2 + g + A1ncn = lc1

	      f     f    f       f	 (8.82)

An1c1 + An2c2 + g + Anncn = lcn

For each different eigenvalue, we have a different set of equations (8.82) and a different 
set of numbers c1, c2, c, cn, giving a different eigenvector.

If all the eigenvalues of a matrix are different, one can show that solving (8.82) leads 
to n linearly independent eigenvectors (see Strang, Section 5.2), where linear inde-
pendence means that no eigenvector can be written as a linear combination of the 
other eigenvectors. If some eigenvalues are equal, then the matrix may have fewer 
than n linearly independent eigenvectors. The matrices that occur in quantum mechan-
ics are usually Hermitian (this term is defined later in this section), and a Hermitian 
matrix of order n always has n linearly independent eigenvectors even if some of its 
eigenvalues are equal (see Strang, Section 5.6 for the proof).

If A is a diagonal matrix (aij = 0 for i � j), then the determinant in (8.81) is diagonal. 
A diagonal determinant equals the product of its diagonal elements [Eq. (8.33)], so the 
characteristic equation for a diagonal matrix is

1a11 - l21a12 - l2 g 1ann - l2 = 0

The roots of this equation are l1 = a11, l2 = a22, c, ln = ann. The eigenvalues 
of a diagonal matrix are equal to its diagonal elements. (For the eigenvectors, see 
Prob. 8.46.)

If c is an eigenvector of A, then clearly d K kc is also an eigenvector of A, where k 
is any constant. If k is chosen so that

	 a
n

i= 1
 0 di 0 2 = 1	 (8.83)

then the column vector d is said to be normalized. Two column vectors b and c that each 
have n elements are said to be orthogonal if

	 a
n

i = 1
 b*i ci = 0	 (8.84)
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Let us denote the n eigenvalues and the corresponding eigenvectors of H in the 
variation-method equations (8.79) by W1, W2, c, Wn and c112, c122, c, c1n2, so that

	 Hc1i2 = Wi c
1i2 for i = 1, 2, c, n	 (8.85)

where c1i2 is a column vector whose elements are c1i2
1 , c, c1i2

n  and the basis functions fi are 
orthonormal. Furthermore, let C be the square matrix whose columns are the eigenvectors 
of H, and let W be the diagonal matrix whose diagonal elements are the eigenvalues of H:

	 C = §c112
1 c122

1 g c1n2
1

c112
2 c122

2 g c1n2
2

f f f f
c112

n c122
n g c1n2

n

¥ ,  W = §W1 0 g 0

0 W2 g 0
f f f f
0 0 g Wn

¥	 (8.86)

The set of n eigenvalue equations (8.85) can be written as the single equation:

	 HC = CW	 (8.87)

To verify the matrix equation (8.87), we show that each element 1HC2ij of the matrix 
HC equals the corresponding element 1CW2ij of CW. The matrix-multiplication rule 
(7.107) gives 1HC2ij = g k Hik1C2kj = gkHik c1 j2

k . Consider the eigenvalue equation 

HC1 j2 = Wj c
1 j2 [Eq. (8.85)]. Hc1 j2 and Wj c

1 j2 are column matrices. Using (7.107) to equate 
the elements in row i of each of these column matrices, we have g k Hik c1 j2

k = Wj c
1 j2
i . Then

1HC2ij = a
k

Hik c1 j2
k = Wj c

1 j2
i , 1CW2ij = a

k
1C2ik1W2kj = a

k
c1k2

i dkjWk = c1 j2
i  Wj

Hence 1HC2ij = 1CW2ij and (8.87) is proved.
Provided C has an inverse (see below), we can multiply each side of (8.87) by C-1 

on the left to get C-1HC = C-11CW2. [Since matrix multiplication is not commutative, 
when we multiply each side of HC = CW by C-1, we must put the factor C- 1 on the 
left of HC and on the left of CW (or on the right of HC and the right of CW).] We have 
C-1HC = C-11CW2 = 1C-1C2W = IW = W :

	 C -1HC = W	 (8.88)

To simplify (8.88), we must learn more about matrices.
A square matrix B is a symmetric matrix if all its elements satisfy bmn = bnm. The 

elements of a symmetric matrix are symmetric about the principal diagonal; for example, 
b12 = b21. A square matrix D is a Hermitian matrix if all its elements satisfy dmn = d*nm. 
For example, if

	 M = £2 5 0

5 i 2i

0 2i 4

≥ ,  N = £ 6 1 + 2i 8

1 - 2i -1 - i

8 i 0

≥	 (8.89)

then M is symmetric and N is Hermitian. (Note that the diagonal elements of a Hermitian 
matrix must be real; dmm = d*mm.) A real matrix is one whose elements are all real num-
bers. A real Hermitian matrix is a symmetric matrix.

The transpose AT (often written �A) of the matrix A is the matrix formed by inter-
changing rows and columns of A so that column 1 becomes row one, column 2 becomes 
row two, and so on. The elements aT

mn of AT are related to the elements of A by aT
mn = anm. 

For a square matrix, the transpose is found by reflecting the elements about the principal 
diagonal. A symmetric matrix is equal to its transpose. Thus, for the matrix M in (8.89), 
we have MT = M.
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The complex conjugate A* of A is the matrix formed by taking the complex conjugate 
of each element of A. The conjugate transpose A- (read as A dagger) of the matrix A is 
formed by taking the transpose of A*; thus A- = 1A*2T and

	 a -
mn = 1anm2*	 (8.90)

(Physicists call A- the adjoint of A, a name that has been used by mathematicians to denote 
an entirely different matrix.) An example is

B = ¢2 3 + i

0 4i
≤ ,    BT = ¢ 2 0

3 + i 4i
≤ ,    B- = ¢ 2 0

3 - i -4i
≤

For a Hermitian matrix A, Eq. (8.90) gives a-
mn = 1anm2* = amn, so 1A-2mn = 1A2mn 

and A- = A. A Hermitian matrix is equal to its conjugate transpose. (Physicists often use 
the term self-adjoint for a Hermitian matrix.)

An orthogonal matrix is a square matrix whose inverse is equal to its transpose:

	 A-1 = AT if A is orthogonal	 (8.91)

A unitary matrix is one whose inverse is equal to its conjugate transpose:

	 U-1 = U- if U is unitary	 (8.92)

From the definition (8.92), we have U-U = I if U is unitary. By equating 1U-U2mn to 
1I2mn, we find (Prob. 8.43)

	 a
k

u*kmukn = dmn	 (8.93)

for columns m and n of a unitary matrix. Thus the columns of a unitary matrix (viewed 
as column vectors) are orthogonal and normalized (orthonormal), as defined by (8.84) 
and (8.83). Conversely, if (8.93) is true for all columns, then U is a unitary matrix. If U is 
unitary and real, then U- = UT, and U is an orthogonal matrix.

One can prove that two eigenvectors of a Hermitian matrix H that correspond to 
different eigenvalues are orthogonal (see Strang, Section 5.5). For eigenvectors of H that 
correspond to the same eigenvalue, one can take linear combinations of them that will be 
orthogonal eigenvectors of H. Moreover, the elements of an eigenvector can be multiplied 
by a constant to normalize the eigenvector. Hence, the eigenvectors of a Hermitian matrix 
can be chosen to be orthonormal. If the eigenvectors are chosen to be orthonormal, then 
the eigenvector matrix C in (8.86) is a unitary matrix, and C -1 = C-; Eq. (8.88) then 
becomes

	 C-HC = W if H is Hermitian	 (8.94)

For the common case that H is real as well as Hermitian (that is, H is real and symmetric), 
the c’s in (8.79a) are real (since W and the Hi j’s are real) and C is real as well as unitary; 
that is, C is orthogonal, with C -1 = CT; Eq. (8.94) becomes

	 CTHC = W if H is real and symmetric	 (8.95)

The eigenvalues of a Hermitian matrix can be proven to be real numbers (Strang, Section 5.5).

E x a m p l e

Find the eigenvalues and normalized eigenvectors of the Hermitian matrix

A = ¢ 3 2i

-2i 0
≤
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by solving algebraic equations. Then verify that C-AC is diagonal, where C is the 
eigenvector matrix.

The characteristic equation (8.81) for the eigenvalues l is det1aij - di jl2 = 0, 
which becomes

` 3 - l 2i

-2i - l
 ` = 0

l2 - 3l - 4 = 0

l1 = 4, l2 = -1

A useful theorem in checking eigenvalue calculations is the following (Strang, Exer-
cise 5.1.9): The sum of the diagonal elements of a square matrix A of order n is equal 
to the sum of the eigenvalues li of A; that is, gn

i = 1 aii = gn
i = 1 li. In this example, g i aii = 3 + 0, which equals the sum 4 - 1 = 3 of the eigenvalues.

For the root l1 = 4, the set of simultaneous equations (8.82) is

13 - l12c112
1

+ 2ic112
2

= 0

-2ic112
1

- l1c112
2

= 0

or
-c112

1
+ 2ic112

2
= 0

-2ic112
1

- 4c112
2

= 0

Discarding either one of these equations, we find

c112
1

= 2ic112
2

Normalization gives

1 = 0 c112
1

0 2 +  0 c112
2

0 2 = 4 0 c112
2

0 2 +  0 c112
2

0 2
0 c112

2
0 = 1>25, c112

2
= 1>25

c112
1

= 2ic112
2

= 2i>25

where the phase of c112
2

 was chosen to be zero.

Similarly, we find for l2 = -1 (Prob. 8.49)

c122
1

= - i>25, c122
2

= 2>25

The normalized eigenvectors are then

c112 = a2i>25

1>25
b , c122 = a- i>25

2>25
b

Because the eigenvalues l1 and l2 of the Hermitian matrix A differ, c112 and c122 are 
orthogonal (as you should verify). Also, c112 and c122 are normalized. Therefore, C is 
unitary and C-1 = C-. Forming C and its conjugate transpose, we have

 C-1AC = C-AC = a-2i>25 1>25

i>25 2>25
b a 3 2i

-2i 0
b a2i>25  - i>25

1>25 2>25
b

 = a-2i>25 1>25

i>25 2>25
b a8i>25 i>25

4>25     - 2>25
b = a4 0

0  -1
b

which is the diagonal matrix of eigenvectors.
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We have shown that if H is a real symmetric matrix with eigenvalues Wi and ortho-
normal eigenvectors c1i2 (that is, if Hc1i2 = Wi c

1i2 for i = 1, 2, c, n), then CTHC = W 
[Eq. (8.95)], where C is the real orthogonal matrix whose columns are the eigenvectors c1i2 
and W is the diagonal matrix of eigenvalues Wi. The converse of this theorem is readily 
proved; that is, if H is a real symmetric matrix, B is a real orthogonal matrix, and BTHB 
equals a diagonal matrix �, then the columns of B are the eigenvectors of H and the 
diagonal elements of � are the eigenvalues of H.

To find the eigenvalues and eigenvectors of a Hermitian matrix of order n, we can use 
either of the following procedures: (1) Solve the characteristic equation det1Hij - dijW2 = 0 
[Eq. (8.81)] for the eigenvalues W1, c, Wn. Then substitute each Wk into the set of alge-
braic equations (8.79a) and solve for the elements c1k2

1 , c, c1k2
n  of the kth eigenvector. (2) 

Search for a unitary matrix C such that C-HC is a diagonal matrix. The diagonal elements 
of C-HC are the eigenvalues of H, and the columns of C are the orthonormal eigenvectors 
of H. For the large matrices that occur in quantum chemistry, procedure (2) (called matrix 
diagonalization) is computationally much faster than (1).

One reason that expanding the characteristic determinant and solving the character-
istic equation is not a good way to find the eigenvalues of large matrices is that, for 
large matrices, a very small change in a coefficient in the characteristic polynomial 
may produce a large change in the eigenvalues (see Prob. 8.54). Hence we might 
have to calculate the coefficients in the characteristic polynomial to hundreds or 
thousands of decimal places in order to get eigenvalues accurate to a few decimal 
places. Although it is true that for certain matrices a tiny change in the value of an 
element of that matrix might produce large changes in the eigenvalues, one can prove 
that for Hermitian matrices, a small change in a matrix element always produces only 
small changes in the eigenvalues. Hence method (2) of the preceding paragraph is the 
correct way to get accurate eigenvalues.

A systematic way to diagonalize a real symmetric matrix H is as follows. Construct 
an orthogonal matrix O1 such that the matrix H1 K OT

1HO1 has zero in place of the 
off-diagonal elements H12 and H21 of H. (Because H is symmetric, we have H12 = H21. 
Also, the transformed matrices H1, H2, c are symmetric.) Then construct an orthogonal 
matrix O2 such that H2 K OT

2H1O2 = OT
2OT

1HO1O2 has zeros in place of the elements 
1H1213 and 1H1231 of H1; and so on. Unfortunately, when a given pair of off-diagonal 
elements is made zero in a step, some off-diagonal elements made zero in a previous step 
are likely to become nonzero, so one has to go back and recycle through the off-diagonal 
elements over and over again. Generally an infinite number of steps are required to make 
all off-diagonal elements equal to zero. In practice, one skips a step if the absolute value 
of the off-diagonal elements to be zeroed in that step is less than some tiny number, and 
one stops the procedure when the absolute values of all off-diagonal elements are less 
than some tiny number. The eigenvalues are then the diagonal elements of the transformed 
matrix gOT

3OT
2OT

1HO1O2O3g, and the eigenvector matrix is the product O1O2O3g. 
This method (the cyclic Jacobi method) is not very efficient for large matrices when run 
on a serial computer but is efficient on a parallel computer.

More-efficient approaches to diagonalize real, symmetric matrices than the Jacobi 
method begin by carrying out a series of orthogonal transformations to reduce the 
original matrix H to a symmetric tridiagonal matrix T. A tridiagonal matrix is one 
whose elements are all zero except for those on the principal diagonal (elements tii) 
and those on the diagonals immediately above and immediately below the principal 
diagonal (elements ti- 1,i and ti+ 1,i, respectively). The relation between T and H is 
T = OTHO, where O is a real orthogonal matrix that is the product of the orthogonal 
matrices used in the individual steps of going from H to T. Two efficient methods of 
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transforming H to tridiagonal form are due to Givens and to Householder. An efficient 
method to find the eigenvalues of a symmetric tridiagonal matrix is the QR method. 
Here, T is expressed as the product of an orthogonal matrix Q and an upper triangular 
matrix R (one whose elements below the principal diagonal are all zero). A series of 
iterative steps yields matrices converging to a diagonal matrix whose diagonal ele-
ments are the eigenvalues of T, which equal the eigenvalues of H (Prob. 8.55). With 
certain refinements, the QR method is a very efficient way to find eigenvalues and 
eigenvectors (see Strang, Sections 5.3 and 7.3 for details).

Details of matrix diagonalization procedures and computer programs are given in 
Press et al., Chapter 11; Acton, Chapters 8 and 13; Shoup, Chapter 4.

A major compilation of procedures and computer programs for scientific and engi-
neering calculations is Press et al.; the text of older editions of this book is available free 
on the Internet at www.nr.com. For comments on older editions of this book, see amath
.colorado.edu/computing/Fortran/numrec.html.

Programs for mathematical and scientific calculations can be found at www.netlib 
.org and at gams.nist.gov. Downloadable free personal-computer mathematical software 
and demonstration software for such commercial programs as Mathcad and Maple can be 
found at archives.math.utk.edu.

The procedure for using matrix algebra to solve the linear variation equations when 
nonorthonormal basis functions are used is outlined in Prob. 8.57.

The Excel spreadsheet can be used to find eigenvalues and eigenvectors; see Prob. 8.53.
Computer algebra systems such as Maple, Mathematica, and Mathcad and some elec-

tronic calculators have built-in commands to easily find eigenvalues and eigenvectors.
The methods for finding matrix eigenvalues and eigenvectors discussed in this section 

are useful for matrices of order up to 103. Special methods are used to find the lowest few 
eigenvalues and corresponding eigenvectors of matrices of order up to 109 that occur in 
certain quantum-chemistry calculations (see Section 16.2).

As noted after Eq. (8.80), for the linear variation function gn
i = 1ci fi with orthonor-

mal basis functions fi, the eigenvalues of the matrix H formed from the matrix elements 
8  fi 0Hn 0  fk9  are the roots of the secular equation, and the eigenvector corresponding to the 
eigenvalue Wm gives the coefficients in the variation function that corresponds to Wm. 
Problems 8.60 to 8.65 apply the linear variation method to problems such as the double 
well and the harmonic oscillator using particle-in-a-box wave functions as basis functions 
and using a computer algebra program such as Mathcad to find the eigenvalues and eigen-
vectors of the H matrix.

We have discussed matrix diagonalization in the context of the linear variation method. 
However, finding the eigenvalues ak and eigenfunctions gk of any Hermitian operator 
1Angk = akgk2 can be formulated as a matrix-diagonalization problem. If we choose a 
complete, orthonormal basis set 5 fi6  and expand the eigenfunctions as gk = g i c1k2

i fi , 

then (Prob. 8.59) the eigenvalues of the matrix A whose elements are aij = 8 fi 0An 0 fj9  are 
the eigenvalues of the operator An, and the elements c1k2

i
 of the eigenvectors c1k2 of A give 

the coefficients in the expansions of the eigenfunctions gk.
The material of this section further emphasizes the correspondence between linear 

operators and matrices and the correspondence between functions and column vectors 
(Section 7.10).

The PageRanks of Web pages indexed by Google are calculated by Google by con-
structing a certain matrix (called the Google matrix) and finding its eigenvector that 
corresponds to the eigenvalue 1. The order of the Google matrix equals the number of 
indexed pages and was between 1010.5 and 1011 in 2012. The components of this eigen-
vector are the PageRanks. For details, see www.ams.org/samplings/featurecolumn/
fcarc-pagerank.
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Summary
The variation theorem states that for a system with time-independent Hamiltonian Hn  and 
ground-state energy E1, we have 1  f*Hnf dt> 1  f*f dt Ú E1, where f is any well-
behaved function that obeys the boundary conditions of the problem. The variation theorem 
allows us to obtain approximations for the ground-state energy and wave function.

The mathematics of determinants was reviewed in Section 8.3. A set of n linear homo-
geneous equations in n unknowns has a nontrivial solution if and only if the determinant 
of the coefficients is equal to zero.

For the linear variation function f = gn
i = 1 ci fi, variation of the coefficients ci to 

minimize the variational integral W leads to the secular equation det1Hi j - Si jW2 = 0, 
whose roots W1, c, Wn are upper bounds for the n lowest bound-state energy eigenvalues; 
here, Hij K 8 fi 0Hn 0 fj9  and Si j K 8 fi 0 fj9 . Substitution of W1, c, Wn one at a time into 
the simultaneous homogeneous equations (8.55) allows the coefficients ci that correspond 
to each W to be found.

The eigenvalues li and eigenvectors ci of a square matrix A satisfy Aci = lici. For 
a Hermitian matrix H, the eigenvector matrix C (whose columns are the eigenvectors 
of H) is unitary (meaning that its inverse equals its conjugate transpose C-), and C-HC 
equals the diagonal matrix whose diagonal elements are the eigenvalues of H. For a real 
symmetric matrix, the eigenvector matrix is orthogonal. For the linear variation function 
f = g i ci fi formed from orthonormal functions fi, each set of optimized coefficients ci is 
an eigenvector of the matrix whose elements are 8 fi 0Hn 0 fj9  and the corresponding values 
of the variational integral are the eigenvalues of this matrix.

Problems

Sec. 8.1 8.2 8.3 8.4 8.5 8.6 general

Probs 8.1–8.16 8.17–8.18 8.19–8.22 8.23–8.28 8.29–8.40 8.41–8.56 8.57–8.66

	8.1	 Calculations on the Li atom with three well-behaved variation functions gave the following 
values of the variational integral: -203.2 eV, -192.0 eV, and -201.2 eV. Therefore, the true 
ground-state energy of Li must be 1…  or Ú2 than ? eV. (Choose one of the two inequality 
signs and replace the ? with a number.)

	8.2	 (a) Consider a one-particle, one-dimensional system with potential energy

V = V0 for 14 l … x …
3
4 l,  V = 0 for 0 … x …

1
4 l and 34 l … x … l

		  and V = � elsewhere (where V0 is a constant). Plot V versus x. Use the trial variation function 
f1 = 12>l21>2 sin1px>l2 for 0 … x … l to estimate the ground-state energy for V0 = U 2>ml 2 
and compare with the true ground-state energy E = 5.750345U2>ml 2. To save time in evaluat-
ing integrals, note that 8f1 0Hn 0f19 = 8f1 0 Tn 0f19 + 8f1 0Vn 0f19  and explain why 8f1 0 Tn 0  f19  
equals the particle-in-a-box ground-state energy h 2>8ml 2. (b) For this system, use the variation 
function f2 = x1l - x2. To save time, note that 8f2 0 Tn 0f29  is given by Eq. (8.12). (Why?)

	8.3	 Verify the result for 8f 0Hn 0  f9  in the last example of Section 8.1.

	8.4	 If the normalized variation function f = 13>l 321>2 x for 0 … x … l is applied to the particle-
in-a-one-dimensional-box problem, one finds that the variational integral equals zero, which 
is less than the true ground-state energy. What is wrong?

	8.5	 For a particle in a three-dimensional box with sides of length a, b, c, write down the variation 
function that is the three-dimensional extension of the variation function f = x1l - x2 used 
in Section 8.1 for the particle in a one-dimensional box. Use the integrals in Eqs. (8.12) and 
(8.13) to evaluate the variational integral for the three-dimensional case. Find the percent error 
in the ground-state energy.

	8.6	 (a) A particle in a spherical box of radius b has V = 0 for 0 … r … b and V = � for r 7 b. 
Use the trial function f = b - r for 0 … r … b and f = 0 for r 7 b to estimate the 
ground-state energy and compare with the true value h2>8mb2 (Prob. 6.2). (b) Devise another 
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simple variation function that obeys the boundary conditions for this problem and work out 
the percent error in the ground-state energy given by your function.

	  8.7	 Application of the variation function f = e-cx2
 (where c is a variational parameter) to a prob-

lem with V = af1x2, where a is a positive constant and f1x2 is a certain function of x, gives 
the variational integral as W = cU2>2m + 15a>64c3. Find the minimum value of W (in terms 
of a and physical constants) for this variation function.

	  8.8	 Consider a particle moving in one dimension with V1x2 = � for x 6 0 and V1x2 = bx 
for x Ú 0, where b is a positive constant. (With b = mg, this is a particle bouncing on 
an impenetrable surface in a gravitational field.) (a) What must be true about c at x = 0? 
(b) Apply the variation function f = xe-cx for x Ú 0 and f = 0 for x 6 0 to this problem. 
Find the optimum value of the variational parameter c and compare your energy result with 
the accurate ground-state energy value 1.8557570811U 2>3b2>3>m1>32. (See also Prob. 4.34.) 
Rather amazingly, quantized states of a neutron in the Earth’s gravitational field have been 
observed: See the references in arxiv.org/abs/hep-ph/0602093.

	 8.9	 Consider the variation functions f1 = af + bg and f2 = f + cg, where f and g in f1 are the 
same functions as f and g in f2, and a, b, and c are parameters whose values are chosen to 
minimize the variational integral W. Explain why f1 and f2 will give the same result for W 
when applied to the same problem.

	8.10	 Apply the variation function f = e-cr to the hydrogen atom. Choose the parameter c (which is 
real) to minimize the variational integral, and calculate the percent error in the ground-state energy.

	8.11	 A one-dimensional quartic oscillator has V = cx4, where c is a constant. Devise a variation 
function with a parameter for this problem, and find the optimum value of the parameter to 
minimize the variational integral and estimate the ground-state energy in terms of c. Compare 
with the Numerov-method ground-state energy found in Prob. 4.32.

	8.12	 For a particle in a box of length l, use the variation function f = xk1l - x2k for 0 … x … l. 
You will need the integral

L
l

0
 xs1l - x2t dx = ls + t+ 1

�1s + 12�1t + 12
�1s + t + 22

		  where the gamma function obeys the relation �1z + 12 = z�1z2. The definition of the 
gamma function �1z2 need not concern you, since the gamma functions will ultimately cancel. 
(a) Show that the variational integral equals 1U2>ml2214k2 + k2>12k - 12. (b) Find the 
optimum value of k and calculate the percent error in the ground-state energy for this k.

	8.13	 Consider a one-particle, one-dimensional system with V = 0 for 0 … x … l and V = V0 elsewhere 
(Fig. 2.5). (a) Use the variation function f = sin3p1x + c2>1l + 2c24  for -c … x … l + c 
and f = 0 elsewhere, where c is a positive variational parameter. Sketch f and V on the same 
plot. Choose c to minimize the variational integral W and find the expression for W. (Hint: Use a 
simple substitution to put the integrals in the form of integrals in the Appendix.) (b) Find W for 
V0 = 20U 2>ml 2 and compare with the true ground-state energy 2.814U2>ml 2 (Prob. 4.31c).

	8.14	 Prove that, for a system with a nondegenerate ground state, 1  f*Hnf dt 7 E1, if f is any 
normalized, well-behaved function that is not equal to the true ground-state wave function. 
Hint: Let b be a positive constant such that E1 + b 6 E2. Turn (8.4) into an inequality by 
replacing all Ek’s except E1 with E1 + b. (The notation E1, E2, c, is as in Section 8.2.)

	8.15	 A paper published in 1971 applied the normalized variation function N exp1-br 2>a2
0 - cr>a02 

to the hydrogen atom and stated that minimization of the variational integral with respect to 
the parameters b and c yielded an energy 0.7% above the true ground-state energy for infinite 
nuclear mass. Without doing any calculations, state why this result must be in error.

	8.16	 (a) Use the triangular function (7.35) as a variation function for the ground state of the particle 
in a box. Note that f �1x2 is infinite at x =

1
2 l because of the discontinuity in f �1x2 at this 

point. Therefore, in evaluating 1  f *Hnf dx, we run into difficulty in evaluating the integral of 
ff �. One way around this problem is to first show that

		  L
l

0
ff � dx = - L

l

0
1 f �22 dx = - L

l>2

0
1 f �22 dx - L

l

l>2
1 f �22 dx	 (8.96)
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		  for any function obeying the boundary conditions. Then, using the expression on the right of 
(8.96), we can calculate the variational integral. Prove (8.96), and then calculate the percent 
error in the ground-state energy, using this triangular function. Note that there is no parameter 
in this trial function. [If you are ambitious, try this alternative procedure: Note that f �1x2 
involves the Heaviside step function (Section 7.7), and therefore f �1x2 involves the Dirac delta 
function. Use the properties of the delta function to evaluate 1 l

0 ff � dx, and find the percent 
error using this triangular function.] (b) The variation function f of the first example in 
Section 8.1 has discontinuities in f� at x = 0 and x = l, so, strictly speaking, we should use 
one of the procedures of part (a) of this problem to evaluate 8  f 0Hn 0f 9 . Do this and show that 
the same value of 8f 0Hn 0f9  is obtained.

	8.17	 (a) For the ground state of the hydrogen atom, use the Gaussian trial function f =

exp1-cr 2>a 2
02. Find the optimum value of c and the percent error in the energy. (Gaussian 

variational functions are widely used in molecular quantum mechanics; see Section 15.4.)  
(b) Multiply the function in (a) by the spherical harmonic Y 0

2, and then minimize the varia
tional integral. This yields an upper bound to the energy of which hydrogen-atom state?

	8.18	 For the system of Prob. 8.2, explain why the variation function f = 12>l21>2sin12px>l2 gives 
an upper bound to the energy E2 of the first excited state. (Hint: With the origin at the center of 
the box, V is an even function.) Use this f to evaluate the variation integral for V0 = U2>ml 2 
and compare with the true value E2 = 20.23604U2>ml2.

	8.19	 Evaluate

	 (a)	 3 3 1 i

-2 4 0

5 7 1
2

3 	 (b)	 4 2 5 1 3

8 0 4 -1

6 6 6 1

5 -2 -2 2

4
	8.20	 (a) Prove that the value of a determinant all of whose elements below the principal diago-

nal are zero is equal to the product of the diagonal elements. (Such a determinant is 
called upper triangular.) (b) How many terms are there in the expansion of an nth-order 
determinant?

	8.21	 Verify the block-diagonal determinant equation (8.34).

	8.22	 (a) Consider some permutation of the integers 1, 2, 3, c , n. The permutation is an even 
permutation if an even number of interchanges of pairs of integers restores the permutation to 
the natural order 1, 2, 3, c, n. An odd permutation requires an odd number of interchanges 
of pairs to reach the natural order. For example, the permutation 3124 is even, since two 
interchanges restore it to the natural order: 3124 S 1324 S 1234. Write down and classify 
(even or odd) all permutations of 123. (b) Verify that the definition (8.24) of the third-order 
determinant is equivalent to3 a11 a12 a13

a21 a22 a23

a31 a32 a33

3 = a
 

 

 ({1)a1i a2 j  a3k

		  where ijk is one of the permutations of the integers 123, the sum is over the 3! different per-
mutations of these integers, and the sign of each term is plus or minus, depending on whether 
the permutation is even or odd. (c) How would we define the nth-order determinant using this 
type of definition?

	8.23	 Use Gaussian elimination with detached coefficients to solve

 2x1 - x2 + 4x3 + 2x4 = 16

 3x1 - x3 + 4x4 = -5

 2x1 + x2 + x3 - 2x4 = 8

 -4x1 + 6x2 + 2x3 + x4 = 3

	8.24	 When Gaussian elimination is programmed for a computer (or done on an electronic calcula-
tor), one should use exchanges of equations to avoid dividing by a coefficient that is much 
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smaller in absolute value than the other coefficients in the equations. Explain why division by 
an extremely small coefficient can lead to large errors in the results.

	8.25	 Gaussian elimination can be used to efficiently evaluate a determinant, as follows. Divide 
each element of row 1 of the determinant (8.20) by a11 and place the factor a11 in front of the 
determinant (Theorem IV of Section 8.3). Then subtract the appropriate multiples of the row 
1 elements from row 2, row 3, c , row n to make a21, a31, c, an1 zero (Theorem V). Next 
divide the second-row elements by the current value of a22 and insert the factor a22 in front 
of the determinant, and so on. Ultimately, we get a determinant all of whose elements below 
the principal diagonal are zero. From Prob. 8.20, this determinant equals the product of its 
diagonal elements. Use this procedure to evaluate the determinant in Prob. 8.19b.

	8.26	 Solve each set of simultaneous equations, where i = 2-1 :

		  (a) 
8x - 15y = 0

-3x + 4y = 0
 		  (b) 

-4x + 3iy = 0

5ix +
15
4 y = 0

	8.27	 Solve each set of simultaneous equations using Gauss–Jordan elimination with detached 
coefficients or some other method:

		  (a) 
x + 2y + 3z = 0

3x + y + 2z = 0

2x + 3y + z = 0

  	 (b) 
x + 2y + 3z = 0

x - y + z = 0

7x - y + 11z = 0

	8.28	 Write a computer program that uses Gaussian elimination to solve a system of n linear, 
simultaneous, inhomogeneous equations in n unknowns, where n … 10. Test it on a couple 
of examples.

	8.29	 Consider the linear variation function f = g i ci fi. State whether each of the following state-
ments about the basis functions fi is true or false. (a) Each fi must be normalized. (b) Each fi 
must be well behaved. (c) The functions { fi} must be orthogonal to one another. (d) Each fi 
must be an eigenfunction of the system’s Hamiltonian operator.

	8.30	 When the variation function f = c1 f1 + c2 f2 is applied to a certain quantum-mechanical 
problem, one finds 8  f1 0Hn 0  f19 = 4a,  8  f1 0Hn 0  f29 = a,  8  f2 � Hn 0  f29 = 6a,   8  f1 0  f19 = 2b,  
 8  f2 0  f29 = 3b,   8  f1 0  f29 = b,  where a and b are known positive constants. Use this f to find 
(in terms of a and b) upper bounds to the lowest two energies, and for each W, find c1 and c2 
for the normalized f.

	8.31	 Solve the second-order secular equation (8.56) for the special case where H11 = H22 and 
S11 = S22. (Reminder: f1 and f2 are real functions.) Then solve for c1>c2 for each of the two 
roots W1 and W2.

	8.32	 For the system of Prob. 8.2 with V0 = U2>ml2 (a particle in a box with a rectangular bump in the 
middle), consider the linear variation function 

f = c1 f1 + c2 f2 = c112>l21>2 sin1px>l2 + c212>l21>2 sin13px>l2 

		  for 0 … x … l. (a) Explain why this variation function will give upper bounds to the 
energies E1 and E3 in (8.60). (b) Explain why f1 and f2 are orthonormal. (c) Note that 
8  fi 0Hn 0  fj9 = 8  fi 0 Tn 0 fj9 + 8  fi 0V 0  fj9 . Explain why Tnfj = ej fj (for 0 … x … l), and give the 
Tn eigenvalues e1 and e2. Show that 8  fi 0 Tn 0 fj9 = di jej. (d) Using the results of parts (b) and 
(c) to help evaluate the integrals, set up and solve the secular equation. Then find the variation 
functions f1 and f2 that correspond to W1 and W2. Compare W1 and W2 with the true ener-
gies E1 = 5.750345U2>ml2 and E3 = 44.808373U2>ml2. Compare W1 with the value 
W = 5.753112U2>ml2 found in Prob. 8.2 using f = f1. (e) If we want to improve on the results 
of part (d) by using a three-term linear variation function, what would be a logical choice for f1, f2, 
and  f3?

	8.33	 Apply the linear variation function

f = c1x
21l - x2 + c2x1l - x22, 0 … x … l

		  to the particle in a one-dimensional box. (See Prob. 8.31.) Calculate the percent errors for 
the n = 1 and n = 2 energies. Sketch x21l - x2, x1l - x22, and the two approximate wave 
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functions you find. (To help sketch the functions, find the nodes and the maxima and minima 
of each function.)

	8.34	 Show that if the change of variable x� K x -
1
2l (corresponding to shifting the origin to the 

center of the box) is made in the functions (8.62), then f1 and f2 are even functions of x� and 
f3 and f4 are odd.

	8.35	 Verify the values given for H12, H22, S12, and S22 in the example in Section 8.5.

	8.36	 Derive the roots (8.72) of the odd-function secular equation in the Section 8.5 example.

	8.37	 Use a spreadsheet or a program like Mathcad to plot the percent deviation of the variation 
function (8.74) from the true ground-state wave function versus x>l.

	8.38	 Derive the functions f2 and f3 in Eq. (8.75) of the Section 8.5 example.

	8.39	 Let the variation function of (8.40) be complex. Then cj = aj + ibj, where aj and bj are real 
numbers. There are 2n parameters to be varied, namely, the aj’s and bj’s. (a) Use the chain 
rule to show that the minimization conditions 0W>0ai = 0, 0W>0bi = 0 are equivalent to the 
conditions 0W>0ci = 0, 0W>0c*i = 0. (b) Show that minimization of W leads to Eq. (8.53) 
and its complex conjugate, which may be discarded. Hence Eqs. (8.53) and (8.58) are valid 
for complex variation functions.

	8.40	 We wish to prove that the approximate wave functions obtained in the linear variation method 
are orthogonal and that the approximate energies obtained are upper bounds to the energies 
of the n lowest states. Let the approximate function fa have the value Wa for the variational 
integral and the coefficients c1a2j  in (8.40). (We add a to distinguish the n different f’s.) We 
rewrite (8.53) as

	 a
k

 318 fi 0Hn 0 fk9 - 8 fi 0 fk9Wa2c1a2k 4 = 0, i = 1, c, n 	 (8.97)

	 (a) Show that 8fi 0Hn - Wa 0fa9 = 0 by showing this integral to equal the left side of (8.97). 
(b) Use the result of (a) to show 8fb 0Hn - Wa 0fa9 = 0 and 8fa 0Hn - Wb 0fb9* = 0 for all 
a and b. (c) Equate the two integrals in (b), and use the Hermitian property of Hn  to show that 
8fb 0fa9 1Wb - Wa2 = 0. We conclude that, for Wa � Wb, fa and fb are orthogonal. (For 
Wa = Wb, we can form orthogonal linear combinations of fa and fb that will have the same 
value for the variational integral.) (d) Let f1, f2, c, fn be the normalized approximate wave 
functions found in the variation method, where the functions are listed in order of increasing 
value of the variational integral. Consider the function g = gm

a= 1bafa, where m … n and 
the coefficients ba are chosen so that 8g 0c19 = 0, 8g 0c29 = 0, c,8g 0cm - 19 = 0 and so 
that g is normalized. Here c1, c2, c , are the true wave functions of the lowest-energy states. 
Explain why 8g 0Hn 0 g9 Ú Em. (See Section 8.2.) (e) Use the results of parts (b) and (c) to show that 
8  fa 0Hn 0fb9 = 0 for a � b. (f) Use the result of (e) to show that 8g 0Hn 0 g9 = gm

a= 1 0 ba 0 2Wa. 
(g) Use the orthonormality of the f’s to show that gm

a= 1 0 ba 0 2 = 1. (h) Use the results of (f) 
and (g) to show that 8g 0Hn 0 g9 … Wm. Hint: See Eq. (8.5). (i) Combine (h) and (d) to give the 
desired result: Wm Ú Em for m = 1, 2, c , n.

	8.41	 Find A*, AT, and A- if

A = £ 7 3 0

2 - i 2i i

1 + i 4 2

≥
	8.42	 (a) Which of the following matrices are real? (b) Which are symmetric? (c) Which are 

Hermitian?

B = ¢ i 2 + i

2 - i 3
≤  C = ¢ i 2 + i

2 + i -1
≤  D = ¢ 3 2 - i

2 + i -1
≤  F = ¢5 3

3 -1
≤

	8.43	 Verify the orthonormality equation (8.93) for the column vectors of a unitary matrix.

	8.44	 If the functions v and w are normalized and orthogonal, and if v and w are expanded in terms 
of the complete, orthonormal set { fi} as v = g i vi fi and w = g i wi fi (where the expansion 
coefficients vi and wi are constants), show that the column vectors v and w that consist of the 
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expansion coefficients v1, v2, c and w1, w2, c , respectively, are normalized and orthogo-
nal, as defined by (8.83) and (8.84).

	8.45	 Without using a computer, find the eigenvalues and normalized eigenvectors of each of these 
matrices. Begin by solving the characteristic equation. Check that the sum of the eigenvalues 
equals the trace of the matrix.

A = a0 -1

3 2
b  B = a2 0

9 2
b  C = a4 0

0 4
b

	8.46	 If A is a diagonal square matrix of order three with unequal diagonal elements a11, a22, a33, 
find the normalized eigenvectors of A.

	8.47	 (a) Without using a computer, find the eigenvalues and normalized eigenvectors of

A = a2 2

2 -1
b

		  (b) Is A real and symmetric? Is A Hermitian? (c) Is the eigenvector matrix C orthogonal? Is the 
eigenvector matrix C unitary? (d) Write down C-1 without doing any calculations. (e) Verify that 
C-1AC equals the diagonal matrix of eigenvalues. (f) Verify Eq. (8.80) for each eigenvector.

	8.48	 For

A = a 2 -2i

2i 2
b

		  find the eigenvalues and normalized eigenvectors and answer the questions of Prob. 8.47(b)–(e).

	8.49	 Find the eigenvector c122 for the eigenvalue l2 in the example in Section 8.6.

	8.50	 Find the eigenvalues and normalized eigenvectors of the matrix

A = °
-1 0 -2

0 5 0

-2 4 2

¢

		  You can avoid solving a cubic equation if you expand the characteristic determinant in the 
simplest way and do not fully multiply out the characteristic polynomial.

	8.51	 An efficient way to calculate the inverse of a square matrix A of order n is as follows: (a) Place 
the nth-order unit matrix I at the right of the matrix A to form an n-row, 2n-column array, which 
we denote by 1AfI2. (b) Perform Gauss–Jordan elimination on the rows of 1AfI2 so as to 
reduce the A portion of 1AfI2 to the unit matrix. At the end of this process, the array will have 
the form 1IfB2. The matrix B is A-1. (If A-1 does not exist, it will be impossible to reduce the 
A portion of the array to I.) Use this procedure to find the inverse of the matrix in Prob. 8.50.

	8.52	 Use a computer-algebra system to find the eigenvalues and normalized eigenvectors of the 
square matrix B of order six with elements bjk = 1 j2 + k 22>1 j + k2.

	8.53	 Excel can find eigenvalues and eigenvectors of real, symmetric matrices as follows. If the 
eigenvalues of the nth-order real, symmetric matrix H are arranged in increasing order: 
l1 … l2 … g … ln, an extension of a theorem due to Rayleigh and Ritz states that 
l1 = min1xTHx>xTx2, where x is an nth-order nonzero column vector whose elements are 
varied to minimize the quantity in parentheses; also, l2 = min1yTHy>yTy2 if yTc1 = 0, where 
c1 is the eigenvector corresponding to l1; l3 = min1zTHz>zTz2 if zTc1 = 0 and zTc2 = 0, 
where c2 is the eigenvector corresponding to l2; and so on. (Note the close analogy with the 
results of Sections 8.1 and 8.2.) Use this theorem to have Excel find the eigenvalues and nor-
malized eigenvectors of the matrix in Prob. 8.47. Hints: Assign names in Excel to the various 
matrices involved. To multiply matrices A and B, select an appropriately sized rectangular 
array of cells where you want the matrix product to appear; then type =MMULT(A,B) and press 
the Control, Shift, and Enter keys simultaneously. The transpose of matrix C is found similarly 
using the formula =TRANSPOSE(C). To find l1, start with a guess for x and use the Solver to 
vary x so as to minimize xTHx subject to the constraint that xTx = 1. After you find the first 
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eigenvalue and eigenvector, add the relevant orthogonality constraint to the Solver and find 
the next eigenvalue and eigenvector; and so on.

	8.54	 For a matrix of order 20 whose eigenvalues are 1, 2, 3, c, 20, the characteristic equa-
tion can be written as w20

m = 11l - m2 = 0, where the product notation is defined by wn
k = 1 bk K b1b2gbn. Use a spreadsheet or computer-algebra system to graph the charac-

teristic polynomial for l in the range l = 0.9 to 20.1. Choose the scale on the vertical axis 
so that the points where the curve crosses the horizontal axis are clearly visible. Now add 
the quantity 1 * 10-8l19 to the characteristic polynomial, graph the altered characteristic 
polynomial, and notice what has happened to the roots of the characteristic polynomial. If 
you see fewer than 20 roots for the altered polynomial, explain where the missing roots are. 
In the original characteristic polynomial, the coefficient of l19 is the sum of the integers 1 to 
20, which is 210, so the change made was less than one part in 1010 in the l19 coefficient, yet 
it caused a major change in the eigenvalues.

	8.55	 If B = M-1AM, prove that the square matrices A and B have the same eigenvalues. Also, 
express the eigenvectors of B in terms of the eigenvectors of A. Hints: Start with the eigen-
value equation for A, replace A by its expression in terms of B, and multiply the resulting 
equation by M-1 on the left to obtain the eigenvalue equation for B.

	8.56	 If l1, l2, c, ln are the eigenvalues of A, find the eigenvalues and eigenvectors of A2.

	8.57	 This problem deals with the matrix solution of the linear-variation method when the basis func-
tions are nonorthogonal. (a) If { fi} in f = gn

i = 1 ci fi is not an orthonormal set, we take linear 
combinations of the functions { fi} to get a new set of functions {gm} that are orthonormal. 
We have gm = g k akm fk, m = 1, 2, c, n, where the coefficients akm are constants and 
where 8gj 0  gm 9 = djm. [One procedure to choose the akm coefficients is the Schmidt method 

		  (Section 7.2); another method is discussed in Prob. 8.58.] (a) In 8  gj 0  gm 9 = djm, substitute 
the summation expression for each g and show that the resulting equation is equivalent to the 
matrix equation A-SA = I, where I is a unit matrix, S is the overlap matrix with elements 
Sjk, and A is the matrix of coefficients akm. (b) Verify that the set of equations (8.53) can be 
written as Hc = WSc, where c is the column vector of coefficients c1, c2, c, cn. As we did 
in going from (8.79c) to (8.95), we introduce the index i to label the various eigenvalues and 
eigenvectors and we write Hc = WSc as Hc1i2 = WiSc1i2 for i = 1, 2, c, n. Verify that 
HC = SCW, where C and W are the matrices in (8.86). (c) Since AA-1 = I, we can write 
HC = SCW as HAA-1C = SAA-1CW. Multiply this last equation by A- on the left. Use 
the result of (a) to show that we get H�C� = C�W, where C� K A-1C and H� K A-HA. 
Comparison with (8.87) shows that H�C� = C�W is the eigenvalue equation for the H� 
matrix. The matrix procedure to solve the linear variation problem HC = SCW with nonor-
thogonal basis functions is then as follows: (1) Compute the matrix elements of H and S using 
the nonorthogonal basis. (2) Use the overlap integrals and a procedure such as the Schmidt 
method to find a matrix A whose elements akm transform the nonorthogonal functions { fi} to 
orthonormal functions {gi}. (3) Calculate H� using H� K A-HA. (4) Find the eigenvalues 
Wi and the eigenvectors c�1i2 of the H� matrix. (5) Use C = AC� to compute the coefficient 
matrix C. The eigenvalues Wi found in step 4 and the coefficients found in step 5 are the 
desired energy estimates and variation-function coefficients.

	8.58	 The symmetric (or Löwdin) orthogonalization procedure is often used to orthogonalize a 
basis set. Given the nonorthogonal basis set { fi}, we form the set of functions {gm} as the 
linear combinations gm = g k akm fk. As shown in Prob. 8.57(a), for {gm} to be an orthogo-
nal set, the matrix of transformation coefficients akm must satisfy A-SA = I, where S is the 
overlap matrix with Sjk = 8 fj 0 fk9 . If the square matrix B satisfies B2 = S, then B is a square 
root of S, which is written as B = S1>2. (A matrix can have more than one square root.) Thus 
S1>2 satisfies S1>2S1>2 = S. The inverse of S1>2 is written as S-1>2. By the definition of the 
inverse, S-1>2S1>2 = S1>2S-1>2 = I. (a) Since S is a Hermitian matrix, it can be diagonalized 
by the unitary matrix U of its orthonormal eigenvectors, and we have U-SU = s, where s is 
the diagonal matrix of eigenvalues of S. Show that S = UsU-. (b) Let si denote the eigen-
values of S. Let s and s-1>2 denote the diagonal matrices whose diagonal elements are si and 
s-1>2

i , respectively, where si
-1>2 denotes the reciprocals of the positive square roots of the S 
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eigenvalues. [The eigenvalues of S can all be proven to be positive (see Szabo and Ostlund, 
p. 143), so no si is zero and all the numbers si

-1>2 exist.] Show that the matrix M K Us1>2U- 
satisfies M2 = UsU- = S. Hence M is a square root of S; M = S1>2. (c) Show that the matrix 
N K Us-1>2U- satisfies MN = I. Since M = S1>2, we have S1>2N = I, so N = S -1>2 and 
S-1>2 = Us-1>2U-. (d) The symmetric orthogonalization procedure takes the transforma-
tion matrix A to be S-1>2; that is, A = S-1>2 = Us-1>2U-. To show that this choice satisfies 
the requirement A-SA = I, we need to find A-. Prove that 1BC2- = C-B- by finding the 
(i, j)th elements of 1BC2- and C-B-. Then set C = DE and show that 1BDE2- = E-D-B-. 
Next, show that A- = Us-1>2U-. Then show that A-SA = I. Hence, to use symmetric orthogo-
nalization, we find the eigenvalues and orthonormal eigenvectors of S, use the eigenvalues si 
to form the matrix s-1>2, use the eigenvectors to form U, calculate the transformation matrix 
A = Us-1>2U-, and take the orthonormal functions as gm = gk akm fk.

	8.59	 Suppose Angn = angn. Let the eigenfunctions gn be expanded in terms of the complete ortho-
normal set { fi} according to gn = gk c 1n2

k fk. Substitute this expansion into Angn = angn, multi-
ply by f *i,  integrate over all space, and show that the set of equations gk1Aik - andik2c 1n2

k = 0 
for i = 1, 2, 3, c is obtained, where Aik K 8  fi 0An 0  fk9 . This set of equations has the same 
form as the set (8.53) with Sik = dik. Thus, just as the W values and the coefficients ck in (8.53) 
with Sik = dik can be found by finding the eigenvalues and eigenvectors of the H matrix, the 
eigenvalues an of An and the expansion coefficients c1n2

k  of the eigenfunctions gn of An can be 
found by finding the eigenvalues an and eigenvectors c1n2 of the matrix A, whose elements 
are Aik.

	8.60	 Consider the double-well potential with V = � for x 6 0, V = 0 for 0 … x …
1
4 l, V = V0 

for 1
4l 6 x 6

3
4l, V = 0 for 3

4l … x … l, and V = � for x 7 l, where l and V0 are positive 
constants. Use Mathcad or some other computer-algebra program to apply the linear variation 
method to this problem, taking the basis functions as the m lowest particle-in-a-box (pib) wave 
functions (2.23). Use dimensionless variables (Section 4.4 and Prob. 4.37). Set things up so that 
V0 and m can be readily changed. Use the program’s ability to find eigenvalues and eigenvectors 
to solve for the approximate energies and wave functions. Have the program graph the lowest 
four approximate wave functions. Show that Tjk = k2p2U2>2ml2 but let the program evaluate 
the Vjk integrals. Hint: In Mathcad, you may need to adjust the value of the TOL variable. 
(a) For V0 = 100U2>ml2, find the lowest four energy levels using the following numbers of pib 
basis functions: 4; 8; 16; 32. Compare with the following exact reduced-energy values found 
from Eq. (4.90): 45.802165653, 46.107222914, 113.938076461, and 143.353993916. Which 
basis functions contribute substantially to the ground-state wave function? Which contribute 
substantially to the first-excited-state wave function? (b) With four basis functions, you will 
find that the variational energy of the one-node function that corresponds to the first excited 
state lies below the variational energy of the even function that corresponds to the ground state. 
Is this a violation of the variation theorem inequalities (8.59) to (8.61)?

	8.61	 Revise your solution to the double-well problem 8.60 so as to treat even and odd functions 
separately. Do this by introducing a parameter whose value is 1 or 0, depending on whether 
we are treating the even or the odd wave functions. Calculate the lowest two Hamiltonian 
eigenvalues using the first 16 even pib functions. Repeat with the lowest 16 odd pib functions. 
Compare your results with those of Prob. 8.60.

	8.62	 Consider the one-particle, one-dimensional problem with V = V01U2>ml22x for 0 … x … l 
and V = � elsewhere. Modify your solution to Prob. 8.60 to estimate the lowest four energy 
eigenvalues for V0 = 200 using the following numbers of particle-in-a-box basis functions: 
(a) 8; (b) 12. Note the appearance of the lowest four wave functions. Which particle-in-a-box 
states make substantial contributions to the ground state? to the first excited state?

	8.63	 Revise your solution to Prob. 8.60 to treat the one-dimensional harmonic oscillator using 
particle-in-a-box (pib) basis functions. Recall that in Section 4.4 we found that for Er … 5, 
the wave function can be taken as zero outside the region -5 … xr … 5, where Er and xr are 
defined by (4.75) and (4.76). Therefore, we shall take the pib basis functions to extend from 
-5 to 5, with the center of the “box” at xr = 0. Since the box has a length of 10 units in xr, we 
have fj = 12>1021>2 sin3 jp1xr + 52>104  for 0 xr 0 … 5 and fj = 0 elsewhere. You will also 
need to revise the kinetic- and potential-energy matrix elements. Increase the number of pib 
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basis functions until all energy values with Er 6 5 are accurate to three decimal places. Check 
the appearance of the lowest three variation functions. Which pib basis functions contribute 
most to the ground state? to the first excited state?

	8.64	 Revise your solution to Prob. 8.60 to apply the pib basis functions to the one-dimensional quar-
tic oscillator with V = cx4. See Prob. 8.63 for hints. Take the “box” to extend from xr = -3.5 
to 3.5, where xr is as found in Prob. 4.32. Increase the number of pib basis functions until the 
lowest three energy values remain stable to three decimal places. Compare the lowest three 
energies with those found by the Numerov method in Prob. 4.32. Check the appearance of the 
lowest three variational functions. Now repeat for the box going from xr = -4.5 to 4.5. For 
which box length do we get faster convergence to the true energies?

	8.65	 Apply the particle-in-a-box basis functions to the radial equation for the hydrogen atom for 
the l = 0 states. Recall that in Section 6.9, we expressed the radial factor in the H-atom wave 
function as R1r2 = r-1F1r2, where F1r2 = 0 at r = 0. The variation function in this prob-
lem will have the form f = r-1F1r2Y m

l 1u, f2; take the dimensionless function Fr1rr2 to be 
a linear combination of 28 pib basis functions, where the box goes from rr = 0 to 27, where 
rr is defined in Section 6.9. Work out the proper forms for the integrals Hjk and Sjk. Find the 
estimates for the lowest three l = 0 energies. For the ground-state variation function, how 
many pib basis functions appear with a coefficient greater than 0.1?

	8.66	 True or false? (a) The transpose of a column vector is a row vector. (b) The matrix product 
bc of a row vector b with n elements times a column vector c with n elements is a scalar. 
(c) The diagonal elements of a Hermitian matrix must be real numbers. (d) The eigenvalues 
of a diagonal matrix are equal to the diagonal elements. (e) For a square matrix all of whose 
elements below the principal diagonal are zero, the eigenvalues are equal to the diagonal ele-
ments. (See Prob. 8.20.) (f) Every nonzero column vector with n elements is an eigenvector 
of the unit matrix of order n. (g) Every nonzero linear combination of two eigenvectors that 
correspond to the same eigenvalue of a matrix is an eigenvector of that matrix. (h) Zero is not 
allowed as an eigenvalue of a matrix. (i) A zero column vector is not allowed as an eigenvec-
tor of a matrix. (j) Every square matrix has an inverse. (k) If AB = AC, then the matrices 
B and C must be equal. (l) If A is a square matrix of order n and c is a column vector with n 
elements, then Ac is a column vector with n elements. (m) Every real symmetric matrix is a 
Hermitian matrix. (n) The sum of the eigenvalues of a square matrix always equals the trace 
of the matrix.
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Chapter 9

Perturbation Theory

9.1 Perturbation Theory
This chapter discusses the second major quantum-mechanical approximation method, 
perturbation theory.

Suppose we have a system with a time-independent Hamiltonian operator Hn  and we 
are unable to solve the Schrödinger equation

	 Hncn = En  cn	 (9.1)

for the eigenfunctions and eigenvalues of the bound stationary states. Suppose also that 
the Hamiltonian Hn  is only slightly different from the Hamiltonian Hn 0 of a system whose 
Schrödinger equation

	 Hn 0
 c102

n = E102
n c102

n 	 (9.2)

we can solve. An example is the one-dimensional anharmonic oscillator with

	 Hn = -
U2

2m
 
d2

dx2 +
1

2
kx2 + cx3 + dx4	 (9.3)

The Hamiltonian (9.3) is closely related to the Hamiltonian

	 Hn 0 = -
U2

2m
 
d2

dx2 +
1

2
kx2	 (9.4)

of the harmonic oscillator. If the constants c and d in (9.3) are small, we expect the eigen-
functions and eigenvalues of the anharmonic oscillator to be closely related to those of the 
harmonic oscillator.

We shall call the system with Hamiltonian Hn 0 the unperturbed system. The system 
with Hamiltonian Hn  is the perturbed system. The difference between the two Hamil
tonians is the perturbation Hn �: 

	 Hn � K Hn - Hn 0	 (9.5)

	 Hn = Hn 0 + Hn �	 (9.6)

(The prime does not denote differentiation.) For the anharmonic oscillator with Hamiltonian 
(9.3), the perturbation on the related harmonic oscillator is Hn � = cx3 + dx4.

In Hn 0c102
n = E102

n c102
n  [Eq. (9.2)], E102

n  and c102
n  are called the unperturbed energy 

and unperturbed wave function of state n. For Hn 0 equal to the harmonic-oscillator 
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Hamiltonian (9.4), E102
n  is 1n +

1
22hn [Eq. (4.45)], where n is a nonnegative integer. 

(n is used instead of v for consistency with the perturbation-theory notation.) Note that 
the superscript 102 does not mean the ground state. Perturbation theory can be applied to 
any state. The subscript n labels the state we are dealing with. The superscript 102 denotes 
the unperturbed system.

Our task is to relate the unknown eigenvalues and eigenfunctions of the perturbed 
system to the known eigenvalues and eigenfunctions of the unperturbed system. To aid in 
doing so, we shall imagine that the perturbation is applied gradually, giving a continuous 
change from the unperturbed to the perturbed system. Mathematically, this corresponds 
to inserting a parameter l into the Hamiltonian, so that

	 Hn = Hn 0 + lHn �	 (9.7)

When l is zero, we have the unperturbed system. As l increases, the perturbation grows 
larger, and at l = 1 the perturbation is fully “turned on.” We inserted l to help relate 
the perturbed and unperturbed eigenfunctions, and ultimately we shall set l = 1, thereby 
eliminating it.

Sections 9.1 to 9.7 deal with time-independent Hamiltonians and stationary states. 
Section 9.8 deals with time-dependent perturbations.

9.2 Nondegenerate Perturbation Theory
The perturbation treatments of degenerate and nondegenerate energy levels differ. This 
section examines the effect of a perturbation on a nondegenerate level. If some of the 
energy levels of the unperturbed system are degenerate while others are nondegenerate, 
the treatment in this section will apply to the nondegenerate levels only.

Nondegenerate Perturbation Theory 
Let c102

n  be the wave function of some particular unperturbed nondegenerate level with energy 
E102

n . Let cn be the perturbed wave function into which c102
n  is converted when the perturba-

tion is applied. From (9.1) and (9.7), the Schrödinger equation for the perturbed state is

	 Hncn = 1Hn 0 + lHn �2cn = Encn	 (9.8)

Since the Hamiltonian in (9.8) depends on the parameter l, both the eigenfunction cn and 
the eigenvalue En depend on l:

cn = cn1l, q2 and En = En1l2
where q denotes the system’s coordinates. We now expand cn and En as Taylor series 
(Prob. 4.1) in powers of l:

	  cn = cn � l= 0 +
0cn

0l
2
l= 0

l +
02

 cn

0l2
2
l= 0

 
l2

2!
+ g	 (9.9)

	  En = En � l= 0 +
dEn

dl
2
l= 0

l +
d2

 En

dl2
2
l= 0

 
l2

2!
+ g	 (9.10)

By hypothesis, when l goes to zero, cn and En go to c102
n  and E102

n :

	 cn 0 l= 0 = c102
n  and En 0 l= 0 = E102

n 	 (9.11)

We introduce the following abbreviations:

	 c1k2
n K

1

k!
 
0kcn

0lk
2
l= 0

,  E1k2
n K

1

k!
 
dkEn

dlk
2
l= 0

,  k = 1, 2, c 	 (9.12)
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Equations (9.9) and (9.10) become

	 cn = c102
n + lc112

n + l2c122
n + g + lkc1k2

n + g	 (9.13)

	 En = E102
n + lE112

n + l2E122
n + g + lkE1k2

n + g	 (9.14)

For k = 1, 2, 3, c, we call c1k2
n  and E1k2

n  the kth-order corrections to the wave function 
and energy. We shall assume that the series (9.13) and (9.14) converge for l = 1, and we 
hope that for a small perturbation, taking just the first few terms of the series will give a 
good approximation to the true energy and wave function. (Quite often, perturbation-theory 
series do not converge, but even so, the first few terms of a nonconvergent series can often 
give a useful approximation.)

We shall take c102
n  to be normalized: 8c102

n 0c102
n 9 = 1. Instead of taking cn as normal-

ized, we shall require that cn satisfy

	 8  c102
n 0cn9 = 1	 (9.15)

If cn does not satisfy this equation, then multiplication of cn by the constant 1> 8c102
n 0cn9  

gives a perturbed wave function with the desired property. The condition (9.15), called 
intermediate normalization, simplifies the derivation. Note that multiplication of cn by 
a constant does not change the energy in the Schrödinger equation Hncn = Encn, so use of 
intermediate normalization does not affect the results for the energy corrections. If desired, 
at the end of the calculation, the intermediate-normalized cn can be multiplied by a constant 
to normalize it in the usual sense.

Substitution of (9.13) into 1 = 8c102
n 0cn9  [Eq. (9.15)] gives

1 = 8c102
n 0c102

n 9 + l8c102
n 0c112

n 9 + l28c102
n 0c122

n 9+ g

Since this equation is true for all values of l in the range 0 to 1, the coefficients of like 
powers of l on each side of the equation must be equal, as proved after Eq. (4.11). Equating 
the l0 coefficients, we have 1 = 8c102

n 0c102
n 9 , which is satisfied since c102

n  is normalized. 
Equating the coefficients of l1, of l2, and so on, we have

	 8c102
n 0c112

n 9 = 0,  8c102
n 0c122

n 9 = 0,  etc.	 (9.16)

The corrections to the wave function are orthogonal to c102
n  when intermediate normaliza-

tion is used.
Substituting (9.13) and (9.14) into the Schrödinger equation (9.8), we have

1Hn 0 + lHn �21c(02
n + lc112

n + l2c122
n + g2

 = 1E(02
n + lE112

n + l2E122
n + g21c(02

n + lc112
n + l2c122

n + g2
Collecting like powers of l, we have

Hn 0c102
n + l1Hn �c(02

n + Hn 0c112
n 2 + l21Hn 0c(22

n + Hn �c112
n 2 + g

	 = E102
n c102

n + l1E(12
n c102

n + E102
n c112

n 2 + l21E(22
n c102

n + E112
n c112

n + E102
n c122

n 2 + g
(9.17)

Now (assuming suitable convergence) for the two series on each side of (9.17) to be equal to 
each other for all values of l, the coefficients of like powers of l in the two series must be equal.

Equating the coefficients of the l0 terms, we have Hn 0c102
n = E102

n c102
n , which is the 

Schrödinger equation for the unperturbed problem, Eq. (9.2), and gives us no new information.
Equating the coefficients of the l1 terms, we have

Hn �c102
n + Hn 0c112

n = E112
n c102

n + E102
n c112

n

	 Hn0c112
n - E102

n c112
n = E112

n c102
n - Hn �c102

n 	 (9.18)
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The First-Order Energy Correction 
To find E112

n  we multiply (9.18) by c102
m * and integrate over all space, which gives

	 8c102
m 0Hn 0 0c112

n 9 - E102
n 8c102

m 0c112
n 9 = E112

n 8c102
m 0c102

n 9 - 8c102
m 0  Hn � 0c102

n 9 	 (9.19)

where bracket notation [Eqs. (7.1) and (7.3)] is used. Hn 0 is Hermitian, and use of the 
Hermitian property (7.12) gives for the first term on the left side of (9.19)

8c102
m 0Hn 0 0c112

n 9 = 8c112
n 0Hn 0 0c102

m 9* = 8c112
n 0Hn 0c102

m 9*
	 = 8c112

n 0E102
m c102

m 9* = E102
m *8c112

n 0c102
m 9* = E102

m 8c102
m 0c112

n 9 	 (9.20)

where we used the unperturbed Schrödinger equation Hn 0c102
m = E102

m c102
m , the fact that E102

m  
is real, and (7.4). Substitution of (9.20) into (9.19) and use of the orthonormality equation 
8c102

m 0c102
n 9 = dmn for the unperturbed eigenfunctions gives

	 1E(02
m - E102

n 28c102
m 0c112

n 9 = E112
n dmn - 8c102

m 0Hn � 0c102
n 9 	 (9.21)

If m = n, the left side of (9.21) equals zero, and (9.21) becomes

	 E112
n = 8c102

n 0Hn � 0c102
n 9 = Lc102

n *Hn �c102
n  dt	 (9.22)

The first-order correction to the energy is found by averaging the perturbation Hn �over the 
appropriate unperturbed wave function.

Setting l = 1 in (9.14), we have

	 En � E102
n + E112

n = E102
n + Lc102

n *Hn �c102
n  dt	 (9.23)

E x a m p l e

For the anharmonic oscillator with Hamiltonian (9.3), evaluate E112 for the ground state if 
the unperturbed system is taken as the harmonic oscillator.

The perturbation is given by Eqs. (9.3) to (9.5) as

Hn � = Hn - Hn 0 = cx3 + dx4

and the first-order energy correction for the state with quantum number v is given 
by (9.22) as E112

v
= 8c102

v

0 cx3 + dx4 0c102
v

9 , where c102
v

 is the harmonic-oscillator wave
function for state v. For the v = 0 ground state, use of c102

0 = 1a>p21>4e-ax2>2 [Eq.
(4.53)] gives

E112
0 = 8c102

0 0 cx3 + dx4 0c102
0 9 = a a

p
b

1>2

L
�

-�

e-ax21cx3 + dx42 dx

The integral from - � to � of the odd function cx3e-ax2
 is zero. Use of the Appendix 

integral (A.10) with n = 2 and (4.31) for a gives

E112
0 = 2d a a

p
b

1>2

L
�

0
e-ax2

x4 dx =
3d

4a2 =
3dh2

64p4n2m2

The unperturbed ground-state energy is E102
0 =

1
2 hn and E102

0 + E112
0 =  

1
2 hn + 3dh2>64p4n2m2.

Exercise  Consider a one-particle, one-dimensional system with V = � for x 6 0 
and for x 7 l, and V = cx for 0 … x … l, where c is a constant. (a) Sketch V for 
c 7 0. (b) Treat the system as a perturbed particle in a box and find E112 for the state 
with quantum number n. Then use Eq. (3.88) to state why the answer you got is to be 
expected. (Partial Answer: (b) 12 cl.)
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The First-Order Wave-Function Correction
For m � n, Eq. (9.21) is

	 1E(02
m - E102

n 28c102
m 0c112

n 9 = -8c102
m 0Hn � 0c102

n 9 , m � n	 (9.24)

To find c112
n , we expand it in terms of the complete, orthonormal set of unperturbed 

eigenfunctions c102
m  of the Hermitian operator Hn 0: 

	 c112
n = a

m
amc

102
m ,  where am = 8c102

m 0c112
n 9 	 (9.25)

where Eq. (7.41) was used for the expansion coefficients am. Use of am = 8c102
m 0c112

n 9  in 
(9.24) gives

1E(02
m - E102

n 2am = - 8c102
m 0 Hn � 0c102

n 9 , m � n

By hypothesis, the level E102
n  is nondegenerate. Therefore E102

m � E102
n  for m � n, and we 

may divide by 1E(02
m - E102

n ) to get

	 am =
8c102

m 0 Hn � 0c102
n 9

E102
n - E102

m

, m � n	 (9.26)

The coefficients am in the expansion (9.25) of c112
n  are given by (9.26) except for an, the 

coefficient of c102
n . From the second equation in (9.25), an = 8c102

n 0c112
n 9 . Recall that 

the choice of intermediate normalization for cn makes 8c102
n 0c112

n 9 = 0 [Eq. (9.16)]. 
Hence an = 8c102

n 0c112
n 9 = 0, and Eqs. (9.25) and (9.26) give the first-order correction 

to the wave function as

	 c112
n = a

m � n

8c102
m 0 Hn � 0c102

n 9
E102

n - E102
m

 c102
m 	 (9.27)

The symbol gm � n means we sum over all the unperturbed states except state n.
Setting l = 1 in (9.13) and using just the first-order wave-function correction, we have 

as the approximation to the perturbed wave function

	 cn � c102
n + a

m � n

8c102
m 0 Hn � 0c102

n 9
E102

n - E102
m

 c102
m 	 (9.28)

For c122
n  and the normalization of c, see Kemble, Chapter XI.

The Second-Order Energy Correction
Equating the coefficients of the l2 terms in (9.17), we get

	 Hn 0c122
n - E102

n c122
n = E122

n c102
n + E112

n c112
n - Hn �c112

n 	 (9.29)

Multiplication by c102
m * followed by integration over all space gives

8c102
m 0Hn 0 0c122

n 9 - E102
n 8c102

m 0c122
n 9

	 = E122
n 8c102

m 0c102
n 9 + E112

n 8c102
m 0c112

n 9 - 8c102
m 0Hn � 0c112

n 9 	 (9.30)

The integral 8c102
m 0Hn 0 0c122

n 9  in this equation is the same as the integral in (9.20), except 
that c112

n  is replaced by c122
n . Replacement of c112

n  by c122
n  in (9.20) gives

	 8c102
m 0 Hn 0 0c122

n 9 = E102
m 8c102

m 0c122
n 9 	 (9.31)

Use of (9.31) and orthonormality of the unperturbed functions in (9.30) gives

1E (02
m - E102

n 28c102
m 0c122

n 9 = E122
n dmn + E112

n 8c102
m 0c112

n 9 - 8c102
m 0Hn � 0c112

n 9 	 (9.32)
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For m = n, the left side of (9.32) is zero and we get

 E122
n = -E112

n 8c102
n 0c112

n 9 + 8c102
n 0Hn � 0c112

n 9
	  E122

n = 8c102
n 0Hn � 0c112

n 9 	 (9.33)

since 8c102
n 0c112

n 9 = 0 [Eq. (9.16)]. Note from (9.33) that to find the second-order correc-
tion to the energy, we have to know only the first-order correction to the wave function. In 
fact, it can be shown that knowledge of c112

n  suffices to determine E132
n  also. 

In general, it can be shown that if we know the corrections to the wave function 
through order k, then we can compute the corrections to the energy through order 2k + 1 
(see Bates, Vol. I, p. 184).

Substitution of (9.27) for c112
n  into (9.33) gives

	 E122
n = a

m � n

8c102
m 0 Hn � 0c102

n 9
E102

n - E102
m

8c102
n 0 Hn � 0c102

m 9 	 (9.34)

since the expansion coefficients am [Eq. (9.26)] are constants that can be taken outside the 
integral. Since Hn � is Hermitian, we have

 8c102
m 0Hn � 0c102

n 9 8c102
n 0Hn � 0c102

m 9 = 8c102
m 0Hn � 0c102

n 9 8c102
m 0Hn � 0c102

n 9*
 = 0 8c102

m 0Hn � 0c102
n 9 0 2

and (9.34) becomes

	 E(2)
n = a

m � n

0 8c102
m 0Hn � 0c102

n 9 0 2
E102

n - E102
m

	 (9.35)

which is the desired expression for E122
n  in terms of the unperturbed wave functions and 

energies.
Inclusion of E122

n  in (9.14) with l = 1 gives the approximate energy of the perturbed 
state as

	 En � E102
n + H=

nn + a
m � n

0 H=
mn 02

E102
n - E102

m

	 (9.36)

where the integrals are over the unperturbed normalized wave functions.
For formulas for higher-order energy corrections, see Bates, Volume I, pages 181–185. 

The form of perturbation theory developed in this section is called Rayleigh–Schrödinger 
perturbation theory; other approaches exist.

Discussion
Equation (9.28) shows that the effect of the perturbation on the wave function c102

n  is to “mix 
in” contributions from other states c102

m , m � n. Because of the factor 1> 1E102
n - E102

m 2, 
the most important contributions (aside from c102

n ) to the perturbed wave function come 
from states nearest in energy to state n.

To evaluate the first-order correction to the energy, we must evaluate only the single 
integral H=

nn, whereas to evaluate the second-order energy correction, we must evaluate the 
matrix elements of Hn � between the nth state and all other states m, and then perform the 
infinite sum in (9.35). In many cases the second-order energy correction cannot be evalu-
ated exactly. It is even harder to deal with third-order and higher-order energy corrections.

The sums in (9.28) and (9.36) are sums over different states rather than sums over dif-
ferent energy values. If some of the energy levels (other than the nth) are degenerate, we 
must include a term in the sums for each linearly independent wave function corresponding 
to the degenerate levels.
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We have a sum over states in (9.28) and (9.36) because we require a complete set of 
functions for the expansion (9.25), and therefore we must include all linearly independent 
wave functions in the sum. If the unperturbed problem has continuum wave functions 
(for example, the hydrogen atom), we must also include an integration over the continuum 
functions, if we are to have a complete set. If c102

E  denotes an unperturbed continuum wave 
function of energy E102, then (9.27) and (9.35) become

c112
n = a

m � n

H=
mn

E102
n - E102

m

 c102
m + L

H=
E,n

E102
n - E102 c

102
E  dE102

	 E122
n = a

m � n

0 H=
mn 0 2

E102
n - E102

m

+ L
0 H=

E,n 0 2
E102

n - E102 dE102	 (9.37)

where H=
E,n K 8c102

E 0Hn � 0c102
n 9 . The integrals in these equations are over the range of 

continuum-state energies (for example, from zero to infinity for the hydrogen atom). The exis-
tence of continuum states in the unperturbed problem makes evaluation of E122

n  even harder.

Comparison of the Variation and Perturbation Methods
The perturbation method applies to all the bound states of a system. Although the variation 
theorem stated in Section 8.1 applies only to the lowest state of a given symmetry, we can 
use the linear variation method to treat excited bound states.

Perturbation calculations are often hard to do because of the need to evaluate the 
infinite sums over discrete states and integrals over continuum states that occur in the 
second-order and higher-order energy corrections.

In the perturbation method, one can calculate the energy much more accurately (to 
order 2k + 1) than the wave function (to order k). The same situation holds in the variation 
method, where one can get a rather good energy with a rather inaccurate wave function. If 
one calculates properties other than the energy, the results will generally not be as reliable 
as the calculated energy.

The Variation–Perturbation Method
The variation–perturbation method allows one to accurately estimate E122 and higher-order 
perturbation-theory energy corrections for the ground state of a system without evaluating 
the infinite sum in (9.36). The method is based on the inequality

	 8u 0Hn 0 - E102
g 0 u9 + 8u 0Hn � - E112

g 0c102
g 9 + 8c102

g 0Hn � - E112
g 0 u9 Ú E122

g 	 (9.38)

where u is any well-behaved function that satisfies the boundary conditions and where the 
subscript g refers to the ground state. For the proof of (9.38), see Hameka, Section 7-9. 
By taking u to be a trial function with parameters that we vary to minimize the left side of 
(9.38), we can estimate E122

g . The function u turns out to be an approximation to c112
g , the 

first-order correction to the ground-state wave function, and u can then be used to estimate 
E132

g  also. Similar variational integrals can be used to find higher-order corrections to the 
ground-state energy and wave function.

9.3 �Perturbation Treatment of the Helium-Atom 
Ground State

The helium atom has two electrons and a nucleus of charge +2e. We shall consider 
the nucleus to be at rest (Section 6.6) and place the origin of the coordinate system 
at the nucleus. The coordinates of electrons 1 and 2 are 1x1, y1, z12 and 1x2, y2, z22; 
see Fig. 9.1.
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If we take the nuclear charge to be +Ze instead of +2e, we can treat heliumlike ions 
such as H- , Li+ , and Be2 + . The Hamiltonian operator is

	 Hn = -
U2

2me
�2

1 -
U2

2me
�2

2 -
Ze2

4pe0r1
-

Ze2

4pe0r2
+

e2

4pe0r12
	 (9.39)

where me is the mass of the electron, r1 and r2 are the distances of electrons 1 and 2 from 
the nucleus, and r12 is the distance from electron 1 to 2. The first two terms are the operators 
for the electrons’ kinetic energy [Eq. (3.48)]. The third and fourth terms are the potential 
energies of attraction between the electrons and the nucleus. The final term is the potential 
energy of interelectronic repulsion [Eq. (6.58)]. Note that the potential energy of a system 
of interacting particles cannot be written as the sum of potential energies of the individual 
particles. The potential energy is a property of the system as a whole.

The Schrödinger equation involves six independent variables, three coordinates for 
each electron. In spherical coordinates, c = c1r1, u1, f1, r2, u2, f22. 

The operator �2
1 is given by Eq. (6.6) with r1, u1, f1 replacing r, u, f. The variable r12 

is r12 = 31x1 - x222 + 1y1 - y222 + 1z1 - z22241>2, and by using the relations between 
Cartesian and spherical coordinates, we can express r12 in terms of r1, u1, f1, r2, u2, f2. 

Because of the e2>4pe0r12 term, the Schrödinger equation for helium cannot be sepa-
rated in any coordinate system, and we must use approximation methods. The perturba-
tion method separates the Hamiltonian (9.39) into two parts, Hn 0 and Hn �, where Hn 0 is the 
Hamiltonian of an exactly solvable problem. If we choose

	 Hn 0 = -
U2

2me
�2

1 -
Ze2

4pe0r1
-

U2

2me
�2

2 -
Ze2

4pe0r2
	 (9.40)

	 Hn � =
e2

4pe0r12
	 (9.41)

then Hn 0 is the sum of two hydrogenlike Hamiltonians, one for each electron:

	 Hn 0 = Hn 0
1 + Hn 0

2 	 (9.42)

	 Hn 0
1 K -

U2

2me
�2

1 -
Ze2

4pe0r1
, Hn 0

2 K -
U2

2me
�2

2 -
Ze2

4pe0r2
	 (9.43)

The unperturbed system is a helium atom in which the two electrons exert no forces on 
each other. Although such a system does not exist, this does not prevent us from applying 
perturbation theory to this system.

Since the unperturbed Hamiltonian (9.42) is the sum of the Hamiltonians for two 
independent particles, we can use the separation-of-variables results of Eqs. (6.18) to (6.24) 
to conclude that the unperturbed wave functions have the form

	 c1021r1, u1, f1, r2, u2, f22 = F11r1, u1, f12F21r2, u2, f22	 (9.44)

(x2, y2, z2)

(x1, y1, z1)

2e

2e

12e

r2

r1

r12

Figure 9.1  Interparticle 
distances in the helium atom.
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and the unperturbed energies are

	 E102 = E1 + E2	 (9.45)

	 Hn 0
1F1 = E1F1,  Hn 0

2F2 = E2F2	 (9.46)

Since Hn 0
1  and Hn 0

2  are hydrogenlike Hamiltonians, the solutions of (9.46) are the hydrogen-
like eigenfunctions and eigenvalues. From Eq. (6.94), we have

	 E1 = -
Z2

n2
1

 
e2

8pe0a0
,  E2 = -

Z2

n2
2

 
e2

8pe0a0
	 (9.47)

	 E102 = -Z2a 1

n2
1

+
1

n2
2
b e2

8pe0a0
,  

n1 = 1, 2, 3, c
n2 = 1, 2, 3, c

	 (9.48)

where a0 is the Bohr radius. Equation (9.48) gives the zeroth-order energies of states with 
both electrons bound to the nucleus. The He atom also has continuum states.

The lowest level has n1 = 1, n2 = 1, and its zeroth-order wave function is [Eq. (6.104)]

	 c
102
1s2 =

1

p1>2 a
Z
a0

b
3>2

e- Zr1>a0 # 1

p1>2 a
Z
a0

b
3>2

e- Zr2>a0 = 1s1121s122	 (9.49)

where 1s1121s122 denotes the product of hydrogenlike 1s functions for electrons 1 and 2, 
and where the subscript indicates that both electrons are in hydrogenlike 1s orbitals. (Note 
that the procedure of assigning electrons to orbitals and writing the atomic wave function 
as the product of one-electron orbital functions is an approximation.) The energy of this 
unperturbed ground state is

	 E102
1s2 = -Z2122 e2

8pe0a0
	 (9.50)

The quantity -e2>8pe0a0 is the ground-state energy of the hydrogen atom (taking the 
nucleus to be infinitely heavy) and equals 213.606 eV [Eqs. (6.105)–(6.108)]. If the elec-
tron mass me in a0 is replaced by the reduced mass for 4He, -e2>8pe0a0 is changed to 
-13.604 eV, and we shall use this number to (partly) correct for the nuclear motion in He. 
For helium, Z = 2 and (9.50) gives -8113.604 eV2 = -108.83 eV:

	 E102
1s2 = -108.83 eV	 (9.51)

How does this zeroth-order energy compare with the true helium ground-state energy? 
The experimental first ionization energy of He is 24.587 eV. The second ionization energy 
of He is easily calculated theoretically, since it is the ionization energy of the hydrogenlike 
ion He+  and is equal to 22113.604 eV2 = 54.416 eV. If we choose the zero of energy as 
the completely ionized atom [this choice is implicit in (9.39)], then the ground-state energy 
of the helium atom is - 124.587 + 54.4162 eV = -79.00 eV. The zeroth-order energy 
(9.51) is in error by 38%. We should have expected such a large error, since the perturba-
tion term e2>4pe0r12 is not small.

The next step is to evaluate the first-order perturbation correction to the energy. The 
unperturbed ground state is nondegenerate, and use of (9.22) and (9.49) gives

E112 = 8c102 0Hn � 0c1029

E112 =
Z6e2

14pe02p2a6
0 L

2p

0 L
2p

0 L
p

0 L
p

0 L
�

0 L
�

0
e-2Zr1>a0e-2Zr2>a0

1
r12

r2
1  sin u1

	 *  r2
2 sin u2 dr1 dr2 du1 du2 df1 df2	 (9.52)
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The volume element for this two-electron problem contains the coordinates of both elec-
trons; dt = dt1 dt2. The integral in (9.52) can be evaluated by using an expansion of 1>r12 
in terms of spherical harmonics, as outlined in Prob. 9.14. One finds

	 E112 =
5Z

8
a e2

4pe0a0
b 	 (9.53)

Recalling that 1
2 e2>4pe0a0 equals 13.604 eV when the 4He reduced mass is used, and 

putting Z = 2, we find for the first-order perturbation energy correction for the helium 
ground state:

E112 =
10
4 113.604 eV2 = 34.01 eV

Our approximation to the energy is now

	 E102 + E112 = -108.83 eV + 34.01 eV = -74.82 eV	 (9.54)

which, compared with the experimental value of 279.00 eV, is in error by 5.3%.
To evaluate the first-order correction to the wave function and higher-order corrections 

to the energy requires evaluating the matrix elements of 1>r12 between the ground unper-
turbed state and all excited states (including the continuum) and performing the appropriate 
summations and integrations. No one has yet figured out how to evaluate directly all the 
contributions to E112. Note that the effect of c112 is to mix into the wave-function contribu-
tions from other configurations besides 1s2. We call this configuration interaction. The 
largest contribution to the true ground-state wave function of helium comes from the 1s2 
configuration, which is the unperturbed (zeroth-order) wave function.

E122 for the helium ground state has been calculated using the variation–perturbation 
method, Eq. (9.38). Scherr and Knight used 100-term trial functions to get extremely 
accurate approximations to the wave-function corrections through sixth order and thus to 
the energy corrections through thirteenth order [C. W. Scherr and R. E. Knight, Rev. Mod. 
Phys., 35, 436 (1963)]. For calculations of the energy corrections through order 401, see 
J. D. Baker et al., Phys. Rev. A, 41, 1247 (1990). The second-order correction E122 turns 
out to be -4.29 eV, and E132 is +0.12 eV. Through third order, we have for the ground-
state energy

E � -108.83 eV + 34.01 eV - 4.29 eV + 0.12 eV = -78.99 eV

which is close to the experimental value -79.00 eV. Including corrections through 
thirteenth order, Scherr and Knight obtained a ground-state helium energy of  
-2.903724331e2>4pe0a02, which is close to the value -2.903724381e2>4pe0a02 obtained 
from the purely variational calculations described in the next section.

The perturbation-theory series expansion for the He-atom energy can be proved to 
converge [R. Ahlrichs, Phys. Rev. A, 5, 605 (1972)].

An exact wave function and energy cannot be found for the two-electron ground-
state He atom, but remarkably, there exists a two-electron problem for which the 
exact ground-state solution of the Schrödinger equation has been found. This is a 
hypothetical atom (called the Hooke’s-law atom or harmonium) with Hamiltonian 
operator

Hn = -
U2

2me
�2

1 -
U2

2me
�2

2 +
1
2 k1r2

1 + r2
22 +

e2

4pe0r12

where r1 and r2 are the distances of the electrons from the origin. For certain values 
of the force-constant k, exact ground-state wave functions and energies have been 
found. See en.wikipedia.org/wiki/Hooke's_atom.
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9.4 Variation Treatments of the Ground State of Helium
In the last section, we wrote the helium-atom Hamiltonian as Hn = Hn 0 + Hn �, where the 
ground-state eigenfunction c102

g  of Hn 0 is (9.49). What happens if we use the zeroth-order 
perturbation-theory ground-state wave function c102

g  as the variation function f in the varia-
tional integral? The variational integral 8f 0Hn 0f9 = 8f 0Hnf9  then becomes

 8f 0Hn 0f9 = 8c102
g 0 1Hn 0 + Hn �2c102

g 9 = 8c102
g 0Hn 0c102

g + Hn �c102
g 9

	  = 8c102
g 0E102

g c102
g 9 + 8c102

g 0Hn �c102
g 9 = E102

g + E112
g 	 (9.55)

since Hnc102
g = E102

g c102
g , 8c102

g 0c102
g 9 = 1, and E112

g = 8c102
g 0Hn � 0c102

g 9  [Eq. (9.22)]. Use 
of c102

g  as the variation function gives the same energy result as in first-order perturbation 
theory.

Now consider variation functions for the helium-atom ground state. If we used c102
g  

[Eq. (9.49)] as the trial function, we would get the first-order perturbation result, -74.82 
eV. To improve on this result, we introduce a variational parameter into (9.49). We try the 
normalized function

	 f =
1
p
a z

a0
b

3

e-zr1>a0e-zr2>a0	 (9.56)

which is obtained from (9.49) by replacing the true atomic number Z by a variational 
parameter z (zeta). z has a simple physical interpretation. Since one electron tends to 
screen the other from the nucleus, each electron is subject to an effective nuclear charge 
somewhat less than the full nuclear charge Z. If one electron fully shielded the other from 
the nucleus, we would have an effective nuclear charge of Z - 1. Since both electrons 
are in the same orbital, they will be only partly effective in shielding each other. We thus 
expect z to lie between Z - 1 and Z.

We now evaluate the variational integral. To expedite things, we rewrite the helium 
Hamiltonian (9.39) as

	Hn = c- U2

2me
�2

1 -
ze2

4pe0r1
-

U2

2me
�2

2 -
ze2

4pe0r2
d + 1z - Z2 e2

4pe0r1
+ 1z - Z2 e2

4pe0r2

	 +
e2

4pe0r12
� (9.57)

where the terms involving zeta were added and subtracted. The terms in brackets in (9.57) 
are the sum of two hydrogenlike Hamiltonians for nuclear charge z. Moreover, the trial 
function (9.56) is the product of two hydrogenlike 1s functions for nuclear charge z. There-
fore, when these terms operate on f, we have an eigenvalue equation, the eigenvalue being 
the sum of two hydrogenlike 1s energies for nuclear charge z:

	 c- U2

2me
�2

1 -
ze2

4pe0r1
-

U2

2me
�2

2 -
ze2

4pe0r2
df = -z2122 e2

8pe0a0
f	 (9.58)

Using (9.57) and (9.58), we have

L  f*Hnf dt = -z2 e2

4pe0a0 L  f*f dt +
1z - Z2e2

4pe0 L
f*f

r1
 dt

	 +
1z - Z2e2

4pe0 L
f*f

r2
 dt +

e2

4pe0 L
f*f

r12
 dt	 (9.59)
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Let f1 be a normalized 1s hydrogenlike orbital for nuclear charge z, occupied by 
electron 1. Let f2 be the same function for electron 2:

	 f1 =
1

p1>2 a
z

a0
b

3>2
e-zr1>a0,  f2 =

1

p1>2 a
z

a0
b

3>2
e-zr2>a0	 (9.60)

Noting that f = f1 f2, we now evaluate the integrals in (9.59):

 Lf*f dt = LL f *1 f *2 f1 f2 dt1 dt2 = L f *1 f1 dt1 L f *2 f2 dt2 = 1

 L
f*f

r1
 dt = L

f *1 f1
r1

 dt1 L f *2 f2 dt2 = L
f *1 f1
r1

 dt1

 =
1
p

 
z3

a3
0 L

�

0
e-2zr1>a0 

r2
1

r1
 dr1L

p

0
 sin u1 du1L

2p

0
df1 =

z

a0

where the Appendix integral (A.8) was used. Also,

L
f*f

r2
 dt = L

f *2 f2
r2

 dt2 = L
f *1 f1
r1

 dt1 =
z

a0

since it doesn’t matter whether the label 1 or 2 is used on the dummy variables in the 
definite integral. Finally, we must evaluate 1e2>4pe021  1f*f>r122 dt. This is the same 
as the integral (9.52) that occurred in the perturbation treatment, except that Z is replaced 
by z. Hence, from (9.53)

e2

4pe0 L
f*f

r12
 dt =

5ze2

32pe0a0

The variational integral (9.59) thus has the value

	 Lf*Hnf dt = 1z2 - 2Zz +
5
8z2 e2

4pe0a0
	 (9.61)

As a check, if we set z = Z in (9.61), we get the first-order perturbation-theory result, 
(9.50) plus (9.53).

We now vary z to minimize the variational integral:

0

0zLf*Hnf dt = 12z - 2Z +
5
82 e2

4pe0a0
= 0

	 z = Z -
5

16	 (9.62)

As anticipated, the effective nuclear charge lies between Z and Z - 1. Using (9.62) and 
(9.61), we get

	 Lf*Hnf dt = 1-Z2 +
5
8 Z -

25
2562 e2

4pe0a0
= - 1Z -

5
1622 e2

4pe0a0
	 (9.63)

Putting Z = 2, we get as our approximation to the helium ground-state energy 
- 127>16221e2>4pe0a02 = - 1729>25622113.604 eV2 = -77.48 eV, as compared with 
the true value of -79.00 eV. Use of z instead of Z has reduced the error from 5.3% to 
1.9%. In accord with the variation theorem, the true ground-state energy is less than the 
variational integral.
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How can we improve our variational result? We might try a function that had the 
general form of (9.56), that is, a product of two functions, one for each electron:

	 f = u112u122	 (9.64)

However, we could try a variety of functions u in (9.64), instead of the single exponential 
used in (9.56). A systematic procedure for finding the function u that gives the lowest value 
of the variational integral will be discussed in Section 11.1. This procedure shows that for 
the best possible choice of u in (9.64) the variational integral equals -77.86 eV, which is 
still in error by 1.5%. We might ask why (9.64) does not give the true ground-state energy, 
no matter what form we try for u. The answer is that, when we write the trial function 
as the product of separate functions for each electron, we are making an approximation. 
Because of the e2>4pe0r12 term in the Hamiltonian, the Schrödinger equation for helium 
is not separable, and the true ground-state wave function cannot be written as the product 
of separate functions for each electron. To reach the true ground-state energy, we must go 
beyond a function of the form (9.64).

The Bohr model gave the correct energies for the hydrogen atom but failed when 
applied to helium. Hence, in the early days of quantum mechanics, it was important to show 
that the new theory could give an accurate treatment of helium. The pioneering work on 
the helium ground state was done by Hylleraas in the years 1928–1930. To allow for the 
effect of one electron on the motion of the other, Hylleraas used variational functions that 
contained the interelectronic distance r12. One function he used is

	 f = N3e-zr1>a0e-zr2>a011 + br1224 	 (9.65)

where N is the normalization constant and z and b are variational parameters. Since

	 r12 = 31x2 - x122 + 1y2 - y122 + 1z2 - z12241>2	 (9.66)

the function (9.65) goes beyond the simple product form (9.64). Minimization of the 
variational integral with respect to the parameters gives z = 1.849, b = 0.364>a0, and a 
ground-state energy of -78.7 eV, in error by 0.3 eV. The 1 + br12 term makes the wave 
function larger for large values of r12. This is as it should be, because the repulsion between 
the electrons makes it energetically more favorable for the electrons to avoid each other. 
Using a more complicated six-term trial function containing r12, Hylleraas obtained an 
energy only 0.01 eV above the true ground-state energy.

Hylleraas’s work has been extended by others. Using a 1078-term variational function, 
Pekeris found a ground-state energy of -2.9037243751e2>4pe0a02 [C. L. Pekeris, Phys. 
Rev., 115, 1216 (1959)]. With relativistic and nuclear-motion corrections added, this gave for 
Ei, the ionization energy of helium, Ei>hc = 198310.69 cm- 1, compared with the experi-
mental value 198310.67 cm21. Using an improved variational function, Frankowski and 
Pekeris bettered Perkeris’s result by obtaining the energy -2.903724377031e2>4pe0a02, a 
result believed to be within 10- 111e2>4pe0a02 of the true nonrelativistic, infinite-nuclear-
mass ground-state energy [K. Frankowski and C. L. Pekeris, Phys. Rev., 146, 46 (1966)]. 
Drake and Yan used linear variational functions containing r12 to calculate the ground-state 
energy and many excited-state energies of He that are thought to be accurate to 1 part in 1014 
or better [G. W. F. Drake and Z-C. Yan, Chem. Phys. Lett., 229, 486 (1994); Phys. Rev. A, 
46, 2378 (1992)]. These workers similarly calculated Li variational energies for the ground 
state and two excited states with 1 part in 109 accuracy or better [Z-C. Yan and G. W. F. 
Drake, Phys. Rev. A, 52, 3711 (1995)]. Adding in relativistic and nuclear motion corrections, 
Drake and Yan found good agreement between theoretically calculated and experimental 
spectroscopic transition frequencies of He and Li. By doing a series of variational calcula-
tions with increasing numbers of terms in the variation function and extrapolating to the 
limit of an infinite number of terms, Drake and co-workers found the following ground-state, 
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nonrelativistic, infinite-nuclear-mass He energy: -2.903724377034119598311e2>4pe0a02, 
which is believed accurate to 21 significant figures [G. W. F. Drake et al., Phys. Rev. A, 
65, 054501 (2002)].

9.5 Perturbation Theory for a Degenerate Energy Level
We now consider the perturbation treatment of an energy level whose degree of degen-
eracy is d. We have d linearly independent unperturbed wave functions corresponding to 
the degenerate level. We shall use the labels 1, 2, c, d for the states of the degenerate 
level, without implying that these are necessarily the lowest-lying states. The unperturbed 
Schrödinger equation is

	 Hn 0c102
n = E102

n c102
n 	 (9.67)

with

	 E
102
1 = E

102
2 = g = E

102
d 	 (9.68)

The perturbed problem is

	 Hncn = Encn	 (9.69)

	 Hn = Hn 0 + lHn �	 (9.70)

As l goes to zero, the eigenvalues in (9.69) go to the eigenvalues in (9.67); we have 
limlS0 En = E102

n . Figure 9.2 shows this for a hypothetical system with six states and a 
threefold-degenerate unperturbed level. Note that the perturbation splits the degenerate 
energy level. In some cases the perturbation may have no effect on the degeneracy or may 
only partly remove the degeneracy.

As l S 0, the eigenfunctions satisfying (9.69) approach eigenfunctions satisfying 
(9.67). Does this mean that limlS0 cn = c102

n ? Not necessarily. If E102
n  is nondegenerate, 

there is a unique normalized eigenfunction c102
n  of Hn 0 with eigenvalue E102

n , and we can 
be sure that limlS0 cn = c102

n . However, if E102
n  is the eigenvalue of the d-fold degenerate 

level, then (Section 3.6) any linear combination

	 c1c
102
1 + c2c

102
2 + g + cdc

102
d 	 (9.71)

is a solution of (9.67) with eigenvalue (9.68). The set of linearly independent normalized 

functions c
102
1 , c

102
2 , c, c

102
d , which we use as eigenfunctions corresponding to the states 
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Figure 9.2  Effect of a 
perturbation on energy levels.
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of the degenerate level, is not unique. Using (9.71), we can construct an infinite number of 
sets of d linearly independent normalized eigenfunctions for the degenerate level. As far 
as the unperturbed problem is concerned, one such set is as good as another. For example, 
for the three degenerate 2p states of the hydrogen atom, we can use the 2p1, 2p0, and 2p- 1 
functions; the 2px, 2py, and 2pz, functions; or some other set of three linearly independent 
functions constructed as linear combinations of the members of one of the preceding sets. 
For the perturbed eigenfunctions that correspond to the d-fold degenerate unperturbed 
level, all we can say is that as l approaches zero they each approach a linear combination 
of unperturbed eigenfunctions:

	 lim
lS0

cn = a
d

i = 1
cic

102
i ,  1 … n … d	 (9.72)

Our first task is thus to determine the correct zeroth-order wave functions (9.72) for 
the perturbation Hn �. Calling these correct zeroth-order functions f102

n , we have

	 f102
n = lim

lS 0
  cn = a

d

i = 1
cic

102
i ,  1 … n … d	 (9.73)

Each different function f102
n  has a different set of coefficients in (9.73). The correct set of 

zeroth-order functions depends on what the perturbation Hn � is.
The treatment of the d-fold degenerate level proceeds like the nondegenerate treatment 

of Section 9.2, except that instead of c102
n  we use f102

n . Instead of Eqs. (9.13) and (9.14), 
we have

	 cn = f102
n + lc112

n + l2c122
n + g,  n = 1, 2, c, d	 (9.74)

	 En = E102
d + lE112

n + l2E122
n + g,  n = 1, 2, c, d	 (9.75)

where (9.68) was used. Substitution into Hncn = Encn gives

1Hn 0 + lHn �21f102
n + lc112

n + l2c122
n + g2

= 1E102
d + lE112

n + l2E122
n + g21f102

n + lc112
n + l2c122

n + g2
Equating the coefficients of l0 in this equation, we get Hn 0f102

n = E102
d f102

n . By the 
theorem of Section 3.6, each linear combination f102

n  (n = 1, 2, c, d) is an eigenfunction 
of Hn 0 with eigenvalue E102

d , and this equation gives no new information.
Equating the coefficients of the l1 terms, we get

Hn 0c112
n + Hn �f102

n = E102
d c112

n + E112
n f102

n

	 Hn 0c112
n - E102

d c112
n = E112

n f102
n - Hn �f102

n ,  n = 1, 2, c, d	 (9.76)

We now multiply (9.76) by c102
m * and integrate over all space, where m is one of the states 

corresponding to the d-fold degenerate unperturbed level under consideration; that is, 
1 … m … d. We get

8c102
m 0Hn 0 0c112

n 9 - E102
d 8c102

m 0c112
n 9 = E112

n 8c102
m 0f102

n 9 - 8c102
m 0 Hn � 0f102

n 9 ,

	 1 … m … d	 (9.77)

From Eq. (9.20), we have 8c102
m 0Hn 0 0c112

n 9 = E102
m 8c102

m 0c112
n 9 . From (9.68), E102

m = E102
d  for 

1 … m … d, so 8c102
m 0Hn 0 0c112

n 9 = E102
d 8c102

m 0c112
n 9 , and the left side of (9.77) equals zero. 

Equation (9.77) becomes

8c102
m 0 Hn � 0f102

n 9 - E112
n 8c102

m 0f102
n 9 = 0,  m = 1, 2, c, d
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Substitution of the linear combination (9.73) for f102
n  gives

	 a
d

i = 1
ci8c102

m 0 Hn � 0c102
i 9 - E112

n a
d

i = 1
ci8c102

m 0c102
i 9 = 0	 (9.78)

The zeroth-order wave functions c102
i  (i = 1, 2, c, d) of the degenerate level can always 

be chosen to be orthonormal, and we shall assume this has been done:

	 8c102
m 0c102

i 9 = dmi	 (9.79)

for m and i in the range 1 to d. Equation (9.78) becomes

	 a
d

i = 1
38c102

m 0Hn � 0c102
i 9 - E112

n dmi4ci = 0,  m = 1, 2, c, d	 (9.80)

This is a set of d linear, homogeneous equations in the d unknowns c1, c2, c , cd, which 
are the coefficients in the correct zeroth-order wave function f102

n  in (9.73). Writing out 
(9.80), we have

1H=
11 - E112

n 2c1 + H=
12c2 + g + H=

1dcd = 0

H=
21c1 + 1H=

22 - E112
n 2c2 + g + H=

2dcd = 0

	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	 (9.81)

H=
d1c1 + H =

d2c2 + g + 1H=
dd - E112

n 2cd = 0

H=
mi K 8c102

m 0Hn � 0c102
i 9

For this set of linear homogeneous equations to have a nontrivial solution, the determinant 
of the coefficients must vanish (Section 8.4):

	  det38c102
m 0Hn � 0c 102

i 9 - E112
n dmi4 = 0	 (9.82)

	 ∞
H   

=
11 - E112

n H =12 g H =1d

H =21 H =22 - E112
n g H =2d

f f f f
H =d1 H =d2 g H =dd - E112

n

∞ = 0	 (9.83)

The secular equation (9.83) is an algebraic equation of degree d in E112
n . It has d 

roots, E112
1 , E112

2 , c, E112
d , which are the first-order corrections to the energy of the d-fold 

degenerate unperturbed level. If the roots are all different, then the first-order perturbation 
correction has split the d-fold degenerate unperturbed level into d different perturbed levels 
of energies (correct through first order):

E102
d + E112

1 ,  E102
d + E112

2 , c, E102
d + E112

d

If two or more roots of the secular equation are equal, the degeneracy is not completely 
removed in first order. In the rest of this section, we shall assume that all the roots of (9.83) 
are different.

Having found the d first-order energy corrections, we go back to the set of equations 
(9.81) to find the unknowns ci, which determine the correct zeroth-order wave functions. 
To find the correct zeroth-order function

	 f102
n = c1c

102
1 + c2c

102
2 + g + cdc

102
d 	 (9.84)
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corresponding to the root E112
n , we solve (9.81) for c2, c3, c, cd in terms of c1 and then 

find c1 by normalization. Use of (9.79) in 8f102
n 0f102

n 9 = 1 gives (Prob. 9.21)

	 a
d

k = 1
0 ck 0 2 = 1	 (9.85)

For each root E112
n , n = 1, 2, c, d, we have a different set of coefficients c1, c2, c, cd, 

giving a different correct zeroth-order wave function.
In the next section, we shall show that

	 E112
n = 8f102

n 0Hn � 0f102
n 9 , n = 1, 2, c, d	 (9.86)

which is similar to the nondegenerate-case formula (9.22), except that the correct zeroth-
order functions have to be used.

Using procedures similar to those for the nondegenerate case, one can now find 
the first-order corrections to the correct zeroth-order wave functions and the second-
order energy corrections. For the results, see Bates, Volume I, pages 197–198; Hameka, 
pages 230–231.

As an example, consider the effect of a perturbation Hn � on the lowest degenerate 
energy level of a particle in a cubic box. We have three states corresponding to this level: 
c102

211, c
102
121, and c102

112. These unperturbed wave functions are orthonormal, and the secular 
equation (9.83) is

	 38211 0Hn � 0 2119-E112
n 8211 0Hn � 0 1219 8211 0Hn � 0 1129

8121 0Hn � 0 2119 8121 0Hn � 0 1219-E112
n 8121 0Hn � 0 1129

8112 0Hn � 0 2119 8112 0Hn � 0 1219 8112 0Hn � 0 1129-E112
n

   3 = 0	 (9.87)

Solving this equation, we find the first-order energy corrections: E112
1 , E112

2 , E112
3 . The 

triply degenerate unperturbed level is split into three levels of energies (through first 
order): 16h2>8ma22 + E112

1 , 16h2>8ma22 + E112
2 , 16h2>8ma22 + E112

3 . Using each of the 
roots E112

1 , E112
2 , E112

3 , we get a different set of simultaneous equations (9.81). Solving each 
set, we find three sets of coefficients, which determine the three correct zeroth-order wave 
functions.

If you are familiar with matrix algebra, note that solving (9.83) and (9.81) 
amounts to finding the eigenvalues and eigenvectors of the matrix whose elements are  
8c102

m 0Hn � 0c102
i 9 . 

9.6 Simplification of the Secular Equation
The secular equation (9.83) is easier to solve if some of the off-diagonal elements of the 
secular determinant are zero. In the most favorable case, all the off-diagonal elements are 
zero, and

	 ∞
H=

11 - E112
n 0 g 0

0 H=
22 - E112

n g 0
f f f f
0 0 g H=

dd - E112
n

∞ = 0	 (9.88)

1H=
11 - E112

n 21H=
22 - E112

n 2 g1H=
dd - E112

n 2 = 0

	 E112
1 = H=

11, E112
2 = H=

22, c, E112
d = H=

dd	 (9.89)
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Now we want to find the correct zeroth-order wave functions. We shall assume that the 
roots (9.89) are all different. For the root E112

n = H=
11, the system of equations (9.81) is

 0 = 0

 1H =
22 - H=

112c2 = 0
.................................
 1H =

dd - H=
112cd = 0

Since we are assuming unequal roots, the quantities H=
22 - H =

11, c, H=
dd - H =

11 are all 
nonzero. Therefore, c2 = 0, c3 = 0, c, cd = 0. The normalization condition (9.85) 
gives c1 = 1. The correct zeroth-order wave function corresponding to the first-order per-
turbation energy correction H=

11 is then [Eq. (9.73)] f102
1 = c102

1 . For the root H=
22, the 

same reasoning gives f102
2 = c

102
2 . Using each of the remaining roots, we find similarly: 

f102
3 = c102

3 , c, f102
d = c102

d .
When the secular determinant is in diagonal form, the initially assumed wave functions 

c102
1 , c102

2 , c, c102
n  are the correct zeroth-order wave functions for the perturbation Hn �. 

The converse is also true. If the initially assumed functions are the correct zeroth-
order functions, then the secular determinant is in diagonal form. This is seen as follows. 
From f102

1 = c102
1  we know that the coefficients in the expansion f102

1 = gd
i = 1 cic

102
i  are 

c1 = 1, c2 = c3 = g = 0, so for n = 1 the set of simultaneous equations (9.81) becomes

H=
11 - E112

1 = 0,  H =
21 = 0,  c,  H=

d1 = 0

Applying the same reasoning to the remaining functions f102
n , we conclude that H=

mi = 0 
for i � m. Hence, use of the correct zeroth-order functions makes the secular determinant 
diagonal. Note also that the first-order corrections to the energy can be found by averaging 
the perturbation over the correct zeroth-order wave functions:

	 E112
n = H =

nn = 8f102
n 0Hn � 0f102

n 9 	 (9.90)

a result mentioned in Eq. (9.86).
Often, instead of being in diagonal form, the secular determinant is in block-diagonal 

form. For example, we might have

	 ∞
H=

11 - E112
n H=

12 0 0

H=
21 H=

22 - E112
n 0 0

0 0 H=
33 - E112

n H=
34

0 0 H=
43 H=

44 - E112
n

∞ = 0	 (9.91)

The secular determinant in (9.91) has the same form as the secular determinant in the 
linear-variation secular equation (8.65) with Si j = di j. By the same reasoning used to 
show that two of the variation functions are linear combinations of f1 and f2 and two are 
linear combinations of f3 and f4 [Eq. (8.69)], it follows that two of the correct zeroth-order 
wave functions are linear combinations of c102

1  and c102
2  and two are linear combinations 

of c102
3  and c102

4 :

 f
102
1 = c1c

102
1 + c2c

102
2 ,  f

102
2 = c=1c

102
1 + c=2c

102
2

 f
102
3 = c3c

102
3 + c4c

102
4 ,  f

102
4 = c=3c

102
3 + c=4c

102
4

where primes were used to distinguish different coefficients.
When the secular determinant of degenerate perturbation theory is in block-diagonal 

form, the secular equation breaks up into two or more smaller secular equations, and 
the set of simultaneous equations (9.81) for the coefficients ci breaks up into two or more 
smaller sets of simultaneous equations.
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Conversely, if we have, say, a fourfold-degenerate unperturbed level, and we happen 
to know that f102

1  and f102
2  are each linear combinations of c102

1  and c102
2  only, while f102

3  
and f102

4  are each linear combinations of c102
3  and c102

4  only, we deal with two second-order 
secular determinants rather than a fourth-order secular determinant.

How can we choose the right zeroth-order wave functions in advance and thereby 
simplify the secular equation? Suppose there is an operator An that commutes with both Hn 0 
and Hn �. Then we can choose the unperturbed functions to be eigenfunctions of An. Because An 
commutes with Hn �, this choice of unperturbed functions will make the integrals H=

ij 
vanish if c102

i  and c102
j  belong to different eigenvalues of An [see Eq. (7.50)]. Thus, if the 

eigenvalues of An for c102
1 , c102

2 , c, c102
d  are all different, the secular determinant will 

be in diagonal form, and we will have the right zeroth-order wave functions. If some of the 
eigenvalues of An are the same, we get block-diagonal rather than diagonal form. In general, 
the correct zeroth-order functions will be linear combinations of those unperturbed func-
tions that have the same eigenvalue of An. (This is to be expected since An commutes with 
Hn = Hn 0 + Hn �, so the perturbed eigenfunctions of Hn  can be chosen to be eigenfunctions 
of An.) For an example, see Prob. 9.23.

9.7 �Perturbation Treatment of the First Excited 
States of Helium

Section 9.3 applied perturbation theory to the ground state of the helium atom. We now treat 
the lowest excited states of He. The unperturbed energies are given by (9.48). The lowest unper-
turbed excited states have n1 = 1, n2 = 2 or n1 = 2, n2 = 1, and substitution in (9.48) gives

E102 = -
5Z2

8
a e2

4pe0a0
b = -

20

8
 2a e2

8pe0a0
b = -5113.606 eV2 = -68.03 eV	 (9.92)

Recall that the n = 2 level of a hydrogenlike atom is fourfold degenerate, the 2s and three 
2p states all having the same energy. The first excited unperturbed energy level of He is 
eightfold degenerate. The eight unperturbed wave functions are [Eq. (9.44)]

c102
1 = 1s1122s122, c102

2 = 2s1121s122, c102
3 = 1s1122px122, c102

4 = 2px1121s122
	c102

5 = 1s1122py122, c102
6 = 2py1121s122, c102

7 = 1s1122pz122, c102
8 = 2pz1121s122

� (9.93)

where 1s1122s122 signifies the product of a hydrogenlike 1s function for electron 1 and a 
hydrogenlike 2s function for electron 2. The explicit form of c 102

8 , for example, is (Table 6.2)

c102
8 =

1

412p21>2 a
Z
a0

b
5>2

r1e
- Zr1>2a0 cos u1

# 1

p1>2 a
Z
a0

b
3>2

e- Zr2>a0

We chose to use the real 2p hydrogenlike orbitals, rather than the complex ones.
Since the unperturbed level is degenerate, we must solve a secular equation. The 

secular equation (9.83) assumes that the functions c102
1 , c102

2 , c, c102
8  are orthonormal. 

This condition is met. For example,

 L  c102
1 *c102

1  dt = LL  1s112*2s122*1s1122s122 dt1 dt2

 = L 0 1s112 0 2 dt1 L 0 2s122 0 2 dt2 = 1 # 1 = 1

 L  c102
3 *c102

5  dt = L 0 1s112 0 2 dt1 L  2px122*2py122 dt2 = 1 # 0 = 0

where the orthonormality of the hydrogenlike orbitals has been used.



9.7 Perturbation Treatment of the First Excited States of Helium  |  251

The secular determinant contains 82 = 64 elements. The operator Hn � is Hermitian, 
and H=

i j = 1H=
ji2*. Also, since Hn � and c102

1 , c, c102
8  are all real, we have 1H=

ji2* = H=
ji, 

so H=
i j = H=

ji. The secular determinant is symmetric about the principal diagonal. This cuts 
the labor of evaluating integrals almost in half.

By using parity considerations, we can show that most of the integrals H=
i j are zero. 

First consider H=
13: 

H=
13 = L

�

-� L
�

-� L
�

-� L
�

-� L
�

-� L
�

-�

 1s1122s122 e2

4pe0r12
 1s1122px122 dx1 dy1 dz1 dx2 dy2 dz2

An s hydrogenlike function depends only on r = 1x2 + y2 + z221>2 and is therefore an 
even function. The 2px122 function is an odd function of x2 [Eq. (6.119)]. r12 is given by 
(9.66), and if we invert all six coordinates, r12 is unchanged:

r12 S 31-x1 + x222 + 1-y1 + y222 + 1-z1 + z22241>2 = r12

Hence, on inverting all six coordinates, the integrand of H�13 goes into minus itself. There-
fore [Eq. (7.64)], H�13 = 0. The same reasoning gives H�14 = H�15 = H�16 = H�17 =  
H�18 = 0 and  H�23 = H�24 = H�25 = H�26 = H�27 = H�28 = 0. Now consider H=

35:

H=
35 = L

�

- �
gL

�

- �

 1s1122px122 e2

4pe0r12
 1s1122py122 dx1gdz2

Suppose we invert the x coordinates: x1 S -x1 and x2 S -x2. This transformation will 
leave r12 unchanged. The functions 1s(1) and 2py122 will be unaffected. However, 2px122 
will go over to minus itself, so the net effect will be to change the integrand of H=

35 
into minus itself. Hence (Prob. 7.30), H=

35 = 0. Likewise, H=
36 = H=

37 = H=
38 = 0 and 

H=
45 = H=

46 = H=
47 = H=

48 = 0. By considering the transformation y1 S -y1, y2 S -y2, 
we see that H=

57 = H=
58 = H=

67 = H=
68 = 0. The secular equation is thus

8 b11 H=
12 0 0 0 0 0 0

H=
12 b22 0 0 0 0 0 0

0 0 b33 H=
34 0 0 0 0

0 0 H=
34 b44 0 0 0 0

0 0 0 0 b55 H=
56 0 0

0 0 0 0 H=
56 b66 0 0

0 0 0 0 0 0 b77 H=
78

0 0 0 0 0 0 H=
78 b88

8 = 0

bii K H=
ii - E112,  i = 1, 2, c, 8

The secular determinant is in block-diagonal form and factors into four determinants, 
each of second order. We conclude that the correct zeroth-order functions have the form

 f102
1 = c1c

102
1 + c2c

102
2 ,  f102

2 = c1c
102
1 + c2c

102
2

 f102
3 = c3c

102
3 + c4c

102
4 ,  f

102
4 = c3c

102
3 + c4c

102
4

 f102
5 = c5c

102
5 + c6c

102
6 ,  f102

6 = c5c
102
5 + c6c

102
6

	  f102
7 = c7c

102
7 + c8c

102
8 ,  f102

8 = c7c
102
7 + c8c

102
8

	 (9.94)

where the unbarred coefficients correspond to one root of each second-order determinant 
and the barred coefficients correspond to the second root.
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The first determinant is

	 ` H
=
11 - E112 H=

12

H=
12 H=

22 - E112 ` = 0	 (9.95)

We have

 H=
11 = L

�

- �
gL

�

- �

1s1122s122 e2

4pe0r12
 1s1122s122 dx1 gdz2

 H=
11 = LL 31s1124232s12242 e2

4pe0r12
 dt1 dt2

 H=
22 = LL 31s1224232s11242 e2

4pe0r12
 dt1 dt2

The integration variables are dummy variables and may be given any symbols whatever. 
Let us relabel the integration variables in H=

22 as follows: We interchange x1 and x2, 
interchange y1 and y2, and interchange z1 and z2. This relabeling leaves r12 [Eq. (9.66)] 
unchanged, so

	 H=
22 = LL 31s1124232s12242 e2

4pe0r12
 dt2 dt1 = H=

11	 (9.96)

The same argument shows that H=
33 = H=

44, H
=
55 = H=

66, and H=
77 = H=

88.
We denote H=

11 by the symbol J1s2s: 

	 H=
11 = J1s2s = LL 31s1124232s12242 e2

4pe0r12
 dt1 dt2	 (9.97)

This is an example of a Coulomb integral, the name arising because J1s2s is equal to the 
electrostatic energy of repulsion between an electron with probability density function 
31s42 and an electron with probability density function 32s42.

The integral H=
12 is denoted by K1s2s: 

	 H=
12 = K1s2s = LL1s1122s122 e2

4pe0r12
 2s1121s122 dt1 dt2	 (9.98)

This is an exchange integral: The functions on the left and right of e2>4pe0r12 differ from 
each other by an exchange of electrons 1 and 2.

The general definitions of the Coulomb integral Jmn and the exchange integral 
Kmn are

	  Jmn K 8fm112fn122 0 e2>4pe0r12 0 fm112 fn1229 	 (9.99)

	  Kmn K 8 fm112fn122 0 e2>4pe0r12 0 fn112 fm1229 	 (9.100)

where the integrals go over the full range of the spatial coordinates of electrons 1 and 2, 
and fm and fn are spatial orbitals.

Substitution of (9.96) to (9.98) into (9.95) gives

	  ̀
J1s2s - E112 K1s2s

K1s2s J1s2s - E112 ` = 0	 (9.101)

 1J1s2s - E11222 = 1K1s2s22

	  E112
1 = J1s2s - K1s2s,  E112

2 = J1s2s + K1s2s	 (9.102)
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We now find the coefficients of the correct zeroth-order wave functions that correspond 
to these two roots. Use of E112

1  in (9.81) gives

 K1s2sc1 + K1s2sc2 = 0

 K1s2sc1 + K1s2sc2 = 0

Hence c2 = -c1. Normalization gives

8f102
1 0f102

1 9 = 8c1c
102
1 - c1c

102
2 0 c1c

102
1 - c1c

102
2 9 = 0 c1 0 2 + 0 c1 0 2 = 1

c1 = 2- 1>2

where the orthonormality of c102
1  and c102

2  was used. The zeroth-order wave function 
corresponding to E112

1  is then

	 f102
1 = 2-1>21c102

1 - c102
2 2 = 2-1>231s1122s122 - 2s1121s1224 	 (9.103)

Similarly, one finds the function corresponding to E112
2  to be

	 f
102
2 = 2-1>21c102

1 + c102
2 2 = 2-1>231s1122s122 + 2s1121s1224 	 (9.104)

We have three more second-order determinants to deal with:

	 ` H
=
33 - E112 H=

34

H=
34 H=

33 - E112 ` = 0	 (9.105)

	 ` H
=
55 - E112 H=

56

H=
56 H=

55 - E112 ` = 0	 (9.106)

	 ` H
=
77 - E112 H=

78

H=
78 H=

77 - E112 ` = 0	 (9.107)

Consider H=
33 and H=

55:

 H=
33 = L

�

-�
gL

�

-�

1s1122px122 e2

4pe0r12
 1s1122px122 dx1 gdz2

 H=
55 = L

�

-�
gL

�

-�

1s1122py122 e2

4pe0r12
 1s1122py122 dx1gdz2

These two integrals are equal—the only difference between them involves replacement of 
2px122 by 2py122—and these two orbitals differ only in their orientation in space. More 
formally, if we relabel the dummy integration variables in H=

33 according to the scheme 
x2 S y2, y2 S x2, x1 S y1, y1 S x1, then r12 is unaffected and H=

33 is transformed to H=
55. 

Similar reasoning shows H=
77 = H=

33. Introducing the symbol J1s2p for these Coulomb inte-
grals, we have

H=
33 = H=

55 = H=
77 = J1s2p = LL1s1122pz122 e2

4pe0r12
 1s1122pz122 dt1 dt2

Also, the exchange integrals involving the 2p orbitals are equal:

H=
34 = H =

56 = H=
78 = K1s2p = LL1s1122pz122 e2

4pe0r12
 2pz1121s122 dt1 dt2

The three determinants (9.105) to (9.107) are thus identical and have the form

` J1s2p - E112 K1s2p

K1s2p J1s2p - E112 ` = 0
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The determinant is similar to (9.101), and by analogy with (9.102)–(9.104), we get

	  E112
3 = E112

5 = E112
7 = J1s2p - K1s2p	 (9.108)

	  E112
4 = E112

6 = E112
8 = J1s2p + K1s2p	 (9.109)

 f102
3 = 2-1>231s1122px122 - 1s1222px1124

 f102
4 = 2-1>231s1122px122 + 1s1222px1124

	  f102
5 = 2-1>231s1122py122 - 1s1222py1124

	 (9.110)
 f102

6 = 2-1>231s1122py122 + 1s1222py1124
 f102

7 = 2-1>231s1122pz122 - 1s1222pz1124
 f102

8 = 2-1>2 31s1122pz122 + 1s1222pz1124
The electrostatic repulsion e2>4pe0r12 between the electrons has partly removed the 

degeneracy. The hypothetical eightfold-degenerate unperturbed level has been split into two 
nondegenerate levels associated with the configuration 1s2s and two triply degenerate levels 
associated with the configuration 1s2p. It might be thought that higher-order energy cor-
rections would further resolve the degeneracy. Actually, application of an external magnetic 
field is required to completely remove the degeneracy. Because the e2>4pe0r12 perturbation 
has not completely removed the degeneracy, any normalized linear combinations of f102

3 , 
f102

5 , and f102
7  and of f102

4 , f102
6 , and f102

8  can serve as correct zeroth-order wave functions.
To evaluate the Coulomb and exchange integrals in E112 in (9.102) and (9.108), one 

uses the 1>r12 expansion given in Prob. 9.14. The results are

J1s2s = a 17

81
b Ze2

4pe0a0
= 11.42 eV,  J1s2p = a 59

243
b Ze2

4pe0a0
= 13.21 eV

	 K1s2s = a 16

729
b Ze2

4pe0a0
= 1.19 eV,  K1s2p = a 112

6561
b Ze2

4pe0a0
= 0.93 eV

	 (9.111)

where we used Z = 2 and e2>8pe0a0 = 13.606 eV. Recalling that E102 = -68.03 eV 
[Eq. (9.92)], we get (Fig. 9.3)

Figure 9.3  The first excited 
levels of the helium atom.
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 E102 + E112
1 = E102 + J1s2s - K1s2s = -57.8 eV

 E102 + E112
2 = E102 + J1s2s + K1s2s = -55.4 eV

 E102 + E112
3 = E102 + J1s2p - K1s2p = -55.75 eV

 E102 + E112
4 = E102 + J1s2p + K1s2p = -53.9 eV

The first-order energy corrections seem to indicate that the lower of the two levels of the 
1s2p configuration lies below the higher of the two levels of the 1s2s configuration. Study 
of the helium spectrum reveals that this is not so. The error is due to neglect of the higher-
order perturbation-energy corrections.

Using the variation–perturbation method (Section 9.2), Knight and Scherr calculated the 
second- and third-order corrections E122 and E132 for these four excited levels. [R. E. Knight 
and C. W. Scherr, Rev. Mod. Phys., 35, 431 (1963); for energy corrections through 17th order, 
see F. C. Sanders and C. W. Scherr, Phys. Rev., 181, 84 (1969).] Figure 9.4 shows their results 
(which are within 0.1 eV of the experimental energies). Figure 9.4 shows that Fig. 9.3 is quite 
inaccurate. Since the perturbation e2>4pe0r12 is not really very small, a perturbation treat-
ment that includes only the E112 correction does not give accurate results.

The first-order correction to the wave function, c112, will include contributions from 
other configurations (configuration interaction). When we say that a level belongs to the 
configuration 1s2s, we are indicating the configuration that makes the largest contribution 
to the true wave function.

We started with the eight degenerate zeroth-order functions (9.93). These functions 
have three kinds of degeneracy. There is the degeneracy between hydrogenlike functions 
with the same n, but different l; the 2s and the 2p functions have the same energy. There 
is the degeneracy between hydrogenlike functions with the same n and l, but different m; 
the 2p1, 2p0, and 2p- 1 functions have the same energy. (For convenience we used the real 
functions 2px,y,z, but we could have started with the functions 2p1,0,- 1.) Finally, there is 
the degeneracy between functions that differ only in the interchange of the two electrons 
between the orbitals; the functions c102

1 = 1s1122s122 and c102
2 = 1s1222s112 have the 

same energy. This last kind of degeneracy is called exchange degeneracy. When the inter-
electronic repulsion e2>4pe0r12 was introduced as a perturbation, the exchange degeneracy 
and the degeneracy associated with the quantum number l were removed. The degeneracy 
associated with m remained, however; each 1s2p helium level is triply degenerate, and we 
could just as well have used the 2p1, 2p0, and 2p- 1 orbitals instead of the real orbitals in 
constructing the correct zeroth-order wave functions. Let us consider the reasons for the 
removal of the l degeneracy and the exchange degeneracy.

The interelectronic repulsion in helium makes the 2s orbital energy less than the 2p 
energy. Figures 6.9 and 6.8 show that a 2s electron has a greater probability than a 2p 
electron of being closer to the nucleus than the 1s electron(s). A 2s electron will not be as 
effectively shielded from the nucleus by the 1s electrons and will therefore have a lower 
energy than a 2p electron. [According to Eq. (6.94), the greater the nuclear charge, the 
lower the energy.] Mathematically, the difference between the 1s2s and the 1s2p energies 
results from the Coulomb integral J1s2s being smaller than J1s2p. These Coulomb integrals 

1s2p

1s2s

257.8 eV

258.1

258.4

259.2

221/2[1s(1)2s(2) 1 2s(1)1s(2)]

221/2[1s(1)2s(2) 2 2s(1)1s(2)]

Figure 9.4  E(0) 1 E(1) 1 
E(2) 1 E(3) for the first excited 
levels of helium. Also shown 
are the correct zeroth-order 
wave functions for the 1s2s 
levels.
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represent the electrostatic repulsion between the appropriate charge distributions. When 
the 2s electron penetrates the charge distribution of the 1s electron, it feels a repulsion 
from only the unpenetrated part of the 1s charge distribution. Hence the 1s–2s electrostatic 
repulsion is less than the 1s–2p repulsion, and the 1s2s levels lie below the 1s2p levels. 
The interelectronic repulsion in many-electron atoms lifts the l degeneracy, and the orbital 
energies for the same value of n increase with increasing l.

Now consider the removal of the exchange degeneracy. The functions (9.93) with 
which we began the perturbation treatment have each electron assigned to a definite orbital. 
For example, the function c102

1 = 1s1122s122 has electron 1 in the 1s orbital and electron 
2 in the 2s orbital. For c102

2  the opposite is true. The secular determinant was not diago-
nal, so the initial functions were not the correct zeroth-order wave functions. The correct 
zeroth-order functions do not assign each electron to a definite orbital. Thus the first two 
correct zeroth-order functions are

f102
1 = 2-1>231s1122s122 - 1s1222s1124 , f102

2 = 2-1>231s1122s122 + 1s1222s1124
We cannot say which orbital electron 1 is in for either f102

1  or f102
2 . This property of 

the wave functions of systems containing more than one electron results from the indis-
tinguishability of identical particles in quantum mechanics and will be discussed further 
in Chapter 10. Since the functions f102

1  and f102
2  have different energies, the exchange 

degeneracy is removed when the correct zeroth-order functions are used.

9.8 Time-Dependent Perturbation Theory
In spectroscopy, we start with a system in some stationary state, expose it to electromag-
netic radiation (light), and then observe whether the system has made a transition to another 
stationary state. The radiation produces a time-dependent potential-energy term in the 
Hamiltonian, so we must use the time-dependent Schrödinger equation. The most con-
venient approach here is an approximate one called time-dependent perturbation theory.

Let the system (atom or molecule) have the time-independent Hamiltonian Hn 0 in the 
absence of the radiation (or other time-dependent perturbation), and let Hn �1t2 be the time-
dependent perturbation. The time-independent Schrödinger equation for the unperturbed 
problem is

	 Hn 0c0
k = E0

kc
0
k	 (9.112)

where E0
k  and c0

k are the stationary-state energies and wave functions. The time-dependent 
Schrödinger equation (7.97) in the presence of the radiation is

	 -
U

i
 
0�

0t
= 1Hn 0 + Hn �2�	 (9.113)

where the state function � depends on the spatial and spin coordinates (symbolized by q) 
and on the time: � = �1q, t2. (See Chapter 10 for a discussion of spin coordinates.)

First suppose that Hn �1t2 is absent. The unperturbed time-dependent Schrödinger 
equation is

	 - 1U>i20�0>0t = Hn 0�0	 (9.114)

The system’s possible stationary-state state functions are given by (7.99) as �0
k =

 exp1- iE0
k t>U2c0

k, where the c0
k functions are the eigenfunctions of Hn 0 [Eq. (9.112)]. 

Each �0
k is a solution of (9.114). Moreover, the linear combination

	 �0 = a
k

ck�
0
k = a

k
ck exp1- iE0

k t>U2c0
k	 (9.115)
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with the ck’s being arbitrary time-independent constants, is a solution of the time-dependent 
Schrödinger equation (9.114), as proved in the discussion leading to Eq. (7.100). The func-
tions �0

k form a complete set (since they are the eigenfunctions of the Hermitian operator 
Hn 0), so any solution of (9.114) can be expressed in the form (9.115). Hence (9.115) is 
the general solution of the time-dependent Schrödinger equation (9.114), where Hn 0 is 
independent of time.

Now suppose that Hn �1t2 is present. The function (9.115) is no longer a solution of the 
time-dependent Schrödinger equation. However, because the unperturbed functions �0

k 
form a complete set, the true state function � can at any instant of time be expanded as 
a linear combination of the �0

k functions according to � = g k bk�
0
k. Because Hn  is time-

dependent, � will change with time and the expansion coefficients bk will change with 
time. Therefore,

	 � = a
k

bk1t2 exp 1- iE0
k t>U2c0

k	 (9.116)

In the limit Hn �1t2 S 0, the expansion (9.116) reduces to (9.115).
Substitution of (9.116) into the time-dependent Schrödinger equation (9.113) and use 

of (9.112) gives

 -
U

i
 a

k

dbk

dt
 exp 1- iE0

k t>U2c0
k + a

k
E0

k bk exp1- iE0
k t>U2c0

k

 = a
k

bk exp1- iE0
k t>U2E0

kc
0
k + a

k
bk exp1- iE0

k t>U2Hn �c0
k

 -
U

i ak

dbk

dt
 exp1- iE0

k t>U2c0
k = a

k
bk exp1- iE0

k t>U2Hn �c0
k

We now multiply by c0
m* and integrate over the spatial and spin coordinates. Using 

the orthonormality equation 8c0
m 0c0

k 9 = dmk, we get

-
U

i
 a

k

dbk

dt
  exp 1- iE0

k t>U2dmk = a
k

 bk exp 1- iE0
k t>U2 8c0

m 0Hn � 0c0
k 9

Because of the dmk factor, all terms but one in the sum on the left are zero, and the left side 
equals - 1U>i21dbm>dt2 exp1- iE0

mt>U2. We get

	
dbm

dt
= -

i

U
 a

k
 bk exp 3i1E0

m - E0
k 2t>U48c0

m 0Hn � 0c0
k 9 	 (9.117)

Let us suppose that the perturbation Hn �1t2 was applied at time t = 0 and that before 
the perturbation was applied the system was in stationary state n with energy E102

n . The state 
function at t = 0 is therefore � = exp1- iE0

n t>U2c0
n [Eq. (7.99)], and the t = 0 values 

of the expansion coefficients in (9.116) are thus bn102 = 1 and bk102 = 0 for k � n :

	 bk102 = dkn	 (9.118)

We shall assume that the perturbation Hn � is small and acts for only a short time. 
Under these conditions, the change in the expansion coefficients bk from their initial 
values at the time the perturbation is applied will be small. To a good approximation, we 
can replace the expansion coefficients on the right side of (9.117) by their initial values 
(9.118). This gives

	
dbm

dt
� -

i

U
 exp3i1E0

m - E0
n 2t>U48c0

m 0Hn � 0c0
n9 	 (9.119)
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Let the perturbation Hn � act from t = 0 to t = t�. Integrating from t = 0 to t� and 
using (9.118), we get

	 bm1t�2 � dmn -  
i

U
 L

t�

0
exp3i1E0

m - E0
n 2t>U4 8c0

m 0Hn � 0c0
n9  dt	 (9.120)

Use of the approximate result (9.120) for the expansion coefficients in (9.116) gives the 
desired approximation to the state function at time t� for the case that the time-dependent per-
turbation Hn � is applied at t = 0 to a system in stationary state n. [As with time-independent 
perturbation theory, one can go to higher-order approximations (see Fong, pp. 234–244).]

For times after t�, the perturbation has ceased to act, and Hn � = 0. Equation (9.117) 
gives dbm>dt = 0 for t 7 t�, so bm = bm1t�2 for t Ú t�. Therefore, for times after expo-
sure to the perturbation, the state function � is [Eq. (9.116)]

	 � = a
m

 bm1t�2 exp 1- iE0
mt>U2 c0

m  for t Ú t�	 (9.121)

where bm1t�2 is given by (9.120). In (9.121), � is a superposition of the eigenfunctions c0
m 

of the energy operator Hn 0, the expansion coefficients being bm exp1- iE0
mt>U2. [Compare 

(9.121) and (7.66).] The work of Section 7.6 tells us that a measurement of the system’s 
energy at a time after t� will give one of the eigenvalues E0

m of the energy operator Hn 0, 
and the probability of getting E0

m equals the square of the absolute value of the expansion 
coefficient that multiplies c0

m; that is, it equals 0 bm1t�2 exp 1- iE0
mt>U2 0 2 = 0 bm1t�2 0 2.

The time-dependent perturbation changes the system’s state function from 
 exp 1- iE0

n t>U2c0
n to the superposition (9.121). Measurement of the energy then changes 

� to one of the energy eigenfunctions  exp 1- iE0
mt>U2c0

m (reduction of the wave function, 
Section 7.9). The net result is a transition from stationary state n to stationary state m, the 
probability of such a transition being 0 bm1t�2 0 2. 

9.9 Interaction of Radiation and Matter
We now consider the interaction of an atom or molecule with electromagnetic radiation.  
A proper quantum-mechanical approach would treat both the atom and the radiation quan-
tum mechanically, but we shall simplify things by using the classical picture of the light 
as an electromagnetic wave of oscillating electric and magnetic fields.

A detailed investigation, which we omit, shows that usually the interaction between 
the radiation’s magnetic field and the atom’s charges is much weaker than the interaction 
between the radiation’s electric field and the charges, so we shall consider only the latter 
interaction. (In NMR spectroscopy the important interaction is between the magnetic dipole 
moments of the nuclei and the radiation’s magnetic field. We shall not consider this case.)

Let the electric field � of the electromagnetic wave point in the x direction only. (This 
is plane-polarized radiation.) The electric field is defined as the force per unit charge, so 
the force on charge Qi is F = Qi�x = -dV>dx, where (4.24) was used. Integration gives 
the potential energy of interaction between the radiation’s electric field and the charge as 
V = -Qi�xx, where the arbitrary integration constant was taken as zero. For a system of sev-
eral charges, V = -g iQixi�x. This is the time-dependent perturbation Hn �1t2. The space and 
time dependence of the electric field of an electromagnetic wave traveling in the z direction 
with wavelength l and frequency n is given by (see a first-year physics text) �x =

�0 sin12pnt - 2pz>l2, where �0 is the maximum value of �x (the amplitude). Therefore,

Hn �1t2 = -�0 a
i

 Qixi sin12pnt - 2pzi>l2

where the sum goes over all the electrons and nuclei of the atom or molecule.



9.9 Interaction of Radiation and Matter  |  259

Defining v and vmn as

	 v K 2pn,  vmn K 1E0
m - E0

n2>U	 (9.122)

and substituting Hn �1t2 into (9.120), we get the coefficients in the expansion (9.116) of the 
state function � as

bm � dmn +
i�0

U L
t�

0
exp1ivmnt2hc0

m ` a
i

Qixi sin1vt - 2pzi>l2 ` c0
ni dt

The integral 8c0
m 0 g i g 0c0

n9  in this equation is over all space, but significant con-
tributions to its magnitude come only from regions where c0

m and c0
n are of significant 

magnitude. In regions well outside the atom or molecule, c0
m and c0

n are vanishingly small, 
and such regions can be ignored. Let the coordinate origin be chosen within the atom or 
molecule. Since regions well outside the atom can be ignored, the coordinate zi can be 
considered to have a maximum magnitude of the order of one nm. For ultraviolet light, 
the wavelength l is on the order of 102 nm. For visible, infrared, microwave, and radio-
frequency radiation, l is even larger. Hence 2pzi>l is very small and can be neglected, 
and this leaves g i Qixi sin vt in the integral.

Use of the identity (Prob. 1.29)  sin vt = 1eivt - e- ivt2>2i gives

bm1t�2 � dmn +
�0

2U
 hc0

m ` a
i

Qixi ` c0
niL

t�

0

3ei1vmn +v2t - ei1vmn -v2t4  dt

Using 1 t�
0 eat dt = a- 11eat� - 12, we get

	 bm1t�2 � dmn +
�0

2Ui
hc0

m ` a
i

Qixi ` c0
ni c ei1vmn +v2t� - 1

vmn + v
-

ei1vmn -v2t� - 1
vmn - v

d 	 (9.123)

For m � n, the dmn term equals zero.
As noted at the end of Section 9.8, 0 bm1t�2 0 2 gives the probability of a transition to 

state m from state n. There are two cases where this probability becomes of significant 
magnitude. If vmn = v, the denominator of the second fraction in brackets is zero and this 
fraction’s absolute value is large (but not infinite; see Prob. 9.27). If vmn = -v, the first 
fraction has a zero denominator and a large absolute value.

For vmn = v, Eq. (9.122) gives E0
m - E0

n = hn. Exposure of the atom to radiation of 
frequency n has produced a transition from stationary state n to stationary state m, where 
(since n is positive) E0

m 7 E0
n. We might suppose that the energy for this transition came 

from the system’s absorption of a photon of energy hn. This supposition is confirmed by a 
fully quantum-mechanical treatment (called quantum field theory) in which the radiation 
is treated quantum mechanically rather than classically. We have absorption of radiation 
with a consequent increase in the system’s energy.

For vmn = -v, we get E0
n - E0

m = hn. Exposure to radiation of frequency n has 
induced a transition from stationary state n to stationary state m, where (since n is posi-
tive) E0

n 7 E0
m. The system has gone to a lower energy level, and a quantum-field-theory 

treatment shows that a photon of energy hn is emitted in this process. This is stimulated 
emission of radiation. Stimulated emission occurs in lasers.

A defect of our treatment is that it does not predict spontaneous emission, the emis-
sion of a photon by a system not exposed to radiation, the system falling to a lower energy 
level in the process. Quantum field theory does predict spontaneous emission.

Note from (9.123) that the probability of absorption is proportional to 
0 8c0

m 0 g i Qixi 0c0
n9 0 2. The quantity g i Qixi is the x component of the system’s electric-

dipole-moment operator Mn  (see Section 14.2 for details), which is [Eqs. (14.14) and (14.15)] 
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Mn = i g i Qixi + j gi Qiyi + k gi Qizi = imn x + jmn y + kmn z, where i, j, k are unit vectors 
along the axes and mn x, mn y, mn z are the components of Mn . We assumed polarized radiation with 
an electric field in the x direction only. If the radiation has electric-field components in the y 
and z directions also, then the probability of absorption will be proportional to

0 8c0
m 0mn x 0c0

n9 0 2 + 0 8c0
m 0mn y 0c0

n9 0 2 + 0 8c0
m 0mn z 0c0

n9 0 2 =  0 8c0
m 0Mn 0c0

n9 0 2

where Eq. (5.25) was used. The integral 8c0
m 0Mn 0c0

n9 = Mmn is the transition (dipole) 
moment.

When Mmn = 0, the transition between states m and n with absorption or emission of 
radiation is said to be forbidden. Allowed transitions have Mmn � 0. Because of approxi-
mations made in the derivation of (9.123), forbidden transitions may have some small 
probability of occurring.

Consider, for example, the particle in a one-dimensional box (Section 2.2). The tran-
sition dipole moment is 8c0

m 0Qx 0c0
n9 , where Q is the particle’s charge and x is its coor-

dinate and where c0
m = 12>l21>2 sin1mpx>l2 and c0

n = 12>l21>2 sin1npx>l2. Evaluation 
of this integral (Prob. 9.28) shows it is nonzero only when m - n = {1, {3, {5, c 
and is zero when m - n = 0, {2, c. The selection rule for a charged particle in a 
one-dimensional box is that the quantum number must change by an odd integer when 
radiation is absorbed or emitted.

Evaluation of the transition moment for the harmonic oscillator and for the two-
particle rigid rotor gives the selection rules �v = {1 and �J = {1 stated in Sections 
4.3 and 6.4.

The quantity 0 bm 0 2 in (9.123) is sharply peaked at v = vmn and v = -vmn, but 
there is a nonzero probability that a transition will occur when v is not precisely equal 
to 0vmn 0 , that is, when hn is not precisely equal to 0E0

m - E0
n 0 . This fact is related to the 

energy–time uncertainty relation (5.15). States with a finite lifetime have an uncertainty 
in their energy.

Radiation is not the only time-dependent perturbation that produces transitions 
between states. When an atom or molecule comes close to another atom or molecule, it 
suffers a time-dependent perturbation that can change its state. Selection rules derived for 
radiative transitions need not apply to collision processes, since Hn �1t2 differs for the two 
processes.

Summary
For a system whose time-independent Schrödinger equation is 1Hn 0 + Hn �2cn = Encn, per-
turbation theory expresses the energies and wave functions of the nondegenerate levels as 
En = E102

n + E112
n + E122

n + g and cn = c102
n + c112

n + c122
n + g, where the unper-

turbed wave functions c102
n  and energies E102

n  satisfy Hn 0c102
n = E102

n c102
n . The first-order 

energy correction is E112
n = 1c102

n *Hn �c102
n  dt. The second-order energy correction is given 

by (9.35). The first-order correction to the wave function is c112
n = gm � namc

102
m , where the 

expansion coefficients am are given by (9.26). For a degenerate level with degree of degen-
eracy d, we have cn = f102

n + c112
n + g, where the correct zeroth-order wave func-

tions are f102
n = gd

i = 1cic
102
i  for n =  1, c, d. The first-order energy corrections for the 

degenerate level are found from the secular equation det38c102
m 0Hn � 0c102

i 9 - E112
n dmi4 = 0, 

and then the coefficients ci are found by solving (9.81).
Perturbation theory was applied to the helium atom, with Hn � taken as e2>4pe0r12. 

The unperturbed ground-state wave function is c102 = 1s1121s122. The first-order 
energy correction was calculated for the ground state. Degenerate perturbation theory was 
applied to the first group of helium excited states. We found that the 1s2s configuration 
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gives rise to two nondegenerate energy levels with correct zeroth-order wave functions 
31s1122s122 { 1s1222s1124 >22; the 1s2p configuration gives rise to two triply degen-
erate levels with correct zeroth-order wave functions 31s1122p122 { 1s1222p1124 >22, 
where 2p can be 2px, 2py, or 2pz. (These conclusions will be modified when electron spin 
is taken into account in Chapter 10.) The 1s2s levels lie below the 1s2p levels.

Time-dependent perturbation theory shows that, when an atom or molecule in a sta-
tionary state is exposed to electromagnetic radiation of frequency n, the molecule may 
make a transition between two stationary states m and n whose energy difference is hn, 
provided the transition dipole moment 8c0

m 0Mn 0c0
n9  is nonzero for states m and n.

Problems

Sec. 9.2 9.3 9.4 9.5 9.6 9.7 9.8 general

Probs. 9.1–9.11 9.12–9.16 9.17 9.18–9.22 9.23 9.24–9.26 9.27–9.29 9.30–9.31

	 9.1	 Consider a one-particle, one-dimensional system with V = � for x 6 0 and for x 7 l and 
V = C for 0 … x … l, where C is a constant. (a) Sketch V for C 7 0. (b) Treat the system as 
a perturbed particle in a box and find E112

n  for the state with quantum number n.

	 9.2	 (a) For the perturbed particle in a box of Prob. 9.1, find E122
n  for the state with quantum number 

n. (b) Find c112
n  for this system. (c) Use the results of Prob. 4.52 to explain why the results of 

Prob. 9.1 and 9.2 make sense.

	 9.3	 For the anharmonic oscillator with Hamiltonian (9.3), evaluate E112 for the first excited state, 
taking the unperturbed system as the harmonic oscillator. What is E102?

	 9.4	 Consider the one-particle, one-dimensional system with potential-energy

V = V0 for 1
4 l 6 x 6

3
4 l,  V = 0 for 0 … x …

1
4 l and 3

4 l … x … l

		  and V = � elsewhere, where V0 = U2>ml2. Treat the system as a perturbed particle in a box. 
(a) Find the first-order energy correction for the general stationary state with quantum number 
n. (b) For the ground state and for the first excited state, compare E102

+ E112 with the true 
energies 5.750345U2>ml2 and 20.23604U2>ml2. Explain why E102

+ E112 for each of these 
two states is the same as obtained by the variational treatment of Probs. 8.2a and 8.18.

	 9.5	 For the perturbed particle in a box of Prob. 9.4, explain (without doing any calculations) why 
we expect E112 to be greatest for the n = 1 state.

	 9.6	 For the perturbed particle in a box of Prob. 9.4, find the first-order correction to the wave 
function of the stationary state with quantum number n.

	 9.7	 Consider the perturbed particle in a box of Prob. 9.4. (a) Explain why 8c102
m 0Hn � 0c102

n 9 = 0 
when n = 1 and m is an even integer. (b) Use a computer to evaluate E122 for the ground state 
by summing over odd values of m in (9.35). Keep adding terms until the last added term is 
negligibly small in magnitude. Compare E102 + E112 + E122 with the true ground-state energy 
5.750345U2>ml2.

	 9.8	 Consider a one-particle, one-dimensional system with

 V = V0 for 10.25 + c2l 6 x 6 10.75 + c2l,

 V = 0 for 0 … x … 10.25 + c2l and 10.75 + c2l … x … l,

		  and V = � elsewhere. V0 and c are constants and 0 … c … 0.25. (a) Take the unperturbed 
system as a particle in a one-dimensional box and find E112 in terms of V0 and c. (b) Plot 
E112>V0 versus c for the ground state.

	 9.9	 Assume that the charge of the proton is distributed uniformly throughout the volume of a 
sphere of radius 10- 13 cm. Use perturbation theory to estimate the shift in the ground-state 
hydrogen-atom energy due to the finite proton size. The potential energy experienced by 
the electron when it has penetrated the nucleus and is at distance r from the nuclear center 
is -eQ>4pe0r, where Q is the amount of proton charge within the sphere of radius r. The 
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evaluation of the integral is simplified by noting that the exponential factor in c is essentially 
equal to 1 within the nucleus.

	9.10	 True or false? The second-order correction E122 to the ground-state energy is never positive.

	9.11	 For an anharmonic oscillator with Hn = - 1U2>2m2d2>dx2 +
1
2 kx 2 + cx 3, take Hn � as cx3. 

(a) Find E112 for the state with quantum number v. (b) Find E122 for the state with quan-
tum number v. You will need the following integral (Levine, Molecular Spectroscopy, 
p. 154):

 8c102
v� 0 x3 0c102

v

9 = 31v + 121v + 221v + 32>8a341>2d
v�,v + 3

 + 331v + 12>2a43>2d
v�,v + 1 + 31v>2a23>2d

v�,v - 1

 + 3v1v - 121v - 22>8a341>2d
v�,v - 3

		  where the c102’s are harmonic-oscillator wave functions and a is defined by (4.31). (c) Which 
unperturbed states contribute to c112

v
?

	9.12	 When Hylleraas began his calculations on helium, it was not known whether the isolated 
hydride ion H-  was a stable entity. Calculate the ground-state energy of H-  predicted by the 
trial function (9.56). Compare the result with the ground-state energy of the hydrogen atom, 
-13.60 eV, and show that this simple variation function (erroneously) indicates H-  is unstable 
with respect to ionization into a hydrogen atom and an electron. (More complicated variational 
functions give a ground-state energy of -14.35 eV.)

	9.13	 There is more than one way to divide a Hamiltonian Hn  into an unperturbed part Hn 0 and a per-
turbation Hn �. Instead of the division (9.40) and (9.41), consider the following way of dividing 
up the helium-atom Hamiltonian:

 Hn 0 = -
U2

2me
 �2

1 -
U2

2me
 �2

2 - aZ -
5

16
b e2

4pe0r1
- aZ -

5

16
b e2

4pe0r2

 Hn � = - a 5

16
b e2

4pe0r1
- a 5

16
b e2

4pe0r2
+

e2

4pe0r12

		  What are the unperturbed wave functions? Calculate E102 and E112 for the ground state. 
(See Section 9.4.)

	9.14	 One can show that (see Eyring, Walter, and Kimball, p. 369)

	
1

r12
= a

�

l = 0
a

l

m = - l

4p

2l + 1
 

rl
6

rl+ 1
7

 3Y m
l 1u1, f124*Y m

l 1u2, f22 	 (9.124)

		  where r6  means the smaller of r1 and r2, and r7  is the larger of r1 and r2. Substitute this expan-
sion into (9.52). Then multiply the right side by Y 0

0 1u1, f123Y 0
0 1u2, f224*14p2, which from 

(5.101) equals 1. Use the orthonormality of the spherical harmonics [Eq. (7.27)] to evaluate 
the angular integrals in terms of Kronecker deltas. Perform the sums to show that

E112
=

16Z 6e2

4pe0a
6
0 L

�

0 L
�

0
e-2Zr1>a0e-2Zr2>a0

1
r7

 r2
1r 2

2  dr1 dr2

		  Next, integrate first over r1 and write the r1 integral as the sum of integrals from 0 to r2 and 
from r2 to �. In the range 0 … r1 … r2, we have r7 = r2; in the range r2 … r1 … �, we have 
r7 = r1. Use indefinite integrals in the Appendix to do the r1 integrals to obtain r2 integrals, 
which are evaluated using an Appendix integral. Show that the result is (9.53).

	9.15	 Most (but not all) of the effect of nuclear motion in helium can be corrected for by replac-
ing the electron’s mass me by the reduced mass (6.59) in the expression for the energy. The 
energy of helium is proportional to what power of me? [See Eq. (9.63).] Use of m instead of 
me multiplies the energies calculated on the basis of infinite nuclear mass by what factor?

	9.16	 Use (9.53) to estimate 81>r129 - 1 for the ground-state He atom. 
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	9.17	 Calculate 8r19  for the helium trial function (9.56). To save time, use the result of Prob. 6.23.

	9.18	 A certain unperturbed system has a doubly degenerate energy level for which the perturba-
tion integrals have the values H =

11 = 4b, H =
12 = 2b, H =

22 = 6b, where b is a positive constant, 
H =

jk K 8c102
j 0Hn � 0c102

k 9 , and 8c102
j 0c102

k 9 = djk. (a) In terms of b, find the E112 values for the 
perturbed system. (b) Find the normalized correct zeroth-order wave functions.

	9.19	 Explain why without solving for the E112 values in Prob. 9.18, we can be certain that the sum 
of the E112 values is 10b.

	9.20	 Show that the secular equation (9.82) can be written as

 det38c102
m 0Hn 0c102

i 9 - 1E102
n + E112

n 2dmi4 = 0

	9.21	 Verify the normalization condition (9.85) for the coefficients in a correct zeroth-order wave 
function.

	9.22	 (a) For a particle in a square box of length l with origin at x = 0, y = 0, write down the wave 
functions and energy levels. (b) If the system of (a) is perturbed by

Hn � = b  for 1
4 l … x …

3
4 l and 1

4 l … y …
3
4 l

		  where b is a constant and Hn � = 0 elsewhere, find E112 for the ground state. For the first excited 
energy level, find the E112 values and the correct zeroth-order wave functions.

	9.23	 For a hydrogen atom perturbed by a uniform applied electric field in the z direction, the per-
turbation Hamiltonian is

Hn � K e�z = e�r cos u

		  where � is the magnitude of the electric field. Consider the effect of Hn � on the n = 2 energy 
level, which is fourfold degenerate. Since Hn � commutes with the angular-momentum opera-
tor Lnz, the ideas of Section 9.6 lead us to set up the secular determinant using the complex 
hydrogen-atom orbitals 2s, 2p1, 2p0, and 2p-1, which are eigenfunctions of Lnz. Set up the 
secular determinant using the fact that matrix elements of Hn � between states with different 
values of the quantum number m will vanish. Also, use parity considerations to show that 
certain other integrals are zero (see Prob. 7.29). Evaluate the nonzero integrals, and find the 
first-order energy corrections and the correct zeroth-order wave functions. Hint: Choose the 
order of the orbitals so as to make the secular determinant block diagonal.

	9.24	 Consider the perturbation treatment of the helium configurations 1s3s, 1s3p, and 1s3d. With-
out setting up the secular equation, but simply by analogy to the results of Section 9.7, write 
down the 18 correct zeroth-order wave functions. How many energy levels correspond to each 
of these three configurations, and what is the degeneracy of each energy level? The levels of 
which configuration lie lowest? highest?

	9.25	 We have considered helium configurations in which only one electron is excited. Get a rough 
estimate of the energy of the 2s2 configuration from Eq. (9.48). Compare this with the ground-
state energy of the He+ ion to show that the 2s2 helium configuration is unstable with respect 
to ionization to He+ and an electron. If we had obtained a more accurate estimate of the 2s2 
energy by including the first-order energy correction, would this increase or decrease our 
estimate of the 2s2 energy?

	9.26	 For helium the first-order perturbation energy correction is e2>4pe0r12 averaged over 
the correct unperturbed wave function. Show that if we evaluate 8e2>4pe0r129  using the 
incorrect zeroth-order functions 1s1122s122 or 1s1222s112, we get J1s2s in each case. Now 
show that when we use the correct functions (9.103) and (9.104) to evaluate 8e2>4pe0r129 , 
we get J1s2s { K1s2s (as found from the secular equation). The exchange-integral contribu-
tion to the energy thus arises from the indistinguishability of electrons in the same atom.

	9.27	 Evaluate limsS01eas - 12>s. [s corresponds to vmn { v in (9.123).]

	9.28	 Evaluate 8c0
m 0Qx 0c0

n9 for the particle in a one-dimensional box.

	9.29	 Find the selection rules for a charged particle in a three-dimensional box exposed to unpolar-
ized radiation.



264  Chapter 9  |  Perturbation Theory

	9.30	 (a) Set f in (7.41) equal to BnS and operate on each side of the resulting equation with An. Then 
multiply by R* and integrate over all space to obtain the sum rule

a
i
8R 0An 0 gi9 8gi 0Bn 0 S9 =  8R 0AnBn 0 S9

		  where the functions gi form a complete, orthonormal set, the functions R and S are any two 
well-behaved functions, the operators An and Bn are linear, and the sum is over all members of 
the complete set. [See also Eq. (7.111). For other sum rules, see A. Dalgarno, Rev. Mod. Phys., 
35, 522 (1963).] (b) An approximate way to evaluate E122

n  in (9.35) is to replace E102
n - E102

m  
by �E, where �E is some sort of average excitation energy for the problem, whose value can 
be roughly estimated from the spacings of the unperturbed levels. Use the sum rule of (a) to 
show that this replacement gives

E122
n �

1

�E
 38n 0 1Hn �22 0 n9 - 8n 0Hn � 0 n924

		  where n stands for c102
n .

	9.31	 True or false: (a) Every linear combination of solutions of the time-dependent Schrödinger 
equation is a solution of this equation. (b) Every linear combination of solutions of the time-
independent Schrödinger equation is a solution of this equation. (c) The nondegenerate 
perturbation-theory formula E112

= 8c102 0Hn � 0c1029  applies only to the ground state. (d) The 
exact ground-state He-atom wave function has the form f112 f122, where f1i2, i = 1, 2, is a 
function of the coordinates of electron i.
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Chapter 10

Electron Spin and the  
Spin–Statistics Theorem

10.1 Electron Spin
All chemists are familiar with the yellow color imparted to a flame by sodium atoms. 
The strongest yellow line (the D line) in the sodium spectrum is actually two closely 
spaced lines. The sodium D line arises from a transition from the excited configura-
tion 1s22s22p63p to the ground state. The doublet nature of this and other lines in the Na 
spectrum indicates a doubling of the expected number of states available to the valence 
electron.

To explain this fine structure of atomic spectra, Uhlenbeck and Goudsmit proposed 
in 1925 that the electron has an intrinsic (built-in) angular momentum in addition to the 
orbital angular momentum due to its motion about the nucleus. If we picture the electron 
as a sphere of charge spinning about one of its diameters, we can see how such an intrin-
sic angular momentum can arise. Hence we have the term spin angular momentum or, 
more simply, spin. However, electron “spin” is not a classical effect, and the picture of 
an electron rotating about an axis has no physical reality. The intrinsic angular momen-
tum is real, but no easily visualizable model can properly explain its origin. We cannot 
hope to understand microscopic particles based on models taken from our experience in 
the macroscopic world. Other elementary particles besides the electron have spin angular 
momentum.

In 1928, Dirac developed the relativistic quantum mechanics of an electron, and in 
his treatment electron spin arises naturally.

In the nonrelativistic quantum mechanics to which we are confining ourselves, elec-
tron spin must be introduced as an additional hypothesis. We have learned that each physi-
cal property has its corresponding linear Hermitian operator in quantum mechanics. For 
such properties as orbital angular momentum, we can construct the quantum-mechanical 
operator from the classical expression by replacing px, py, pz by the appropriate operators. 
The inherent spin angular momentum of a microscopic particle has no analog in classical 
mechanics, so we cannot use this method to construct operators for spin. For our pur-
poses, we shall simply use symbols for the spin operators, without giving an explicit form 
for them.

Analogous to the orbital angular-momentum operators Ln 2, Ln x, Ln y, Ln z, we have the 
spin angular-momentum operators Sn2, Snx, Sny, Snz, which are postulated to be linear and 
Hermitian. Sn2 is the operator for the square of the magnitude of the total spin angular 
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momentum of a particle. Snz is the operator for the z component of the particle’s spin angular 
momentum. We have

	 Sn2 = Sn2
x + Sn2

y + Sn2
z 	 (10.1)

We postulate that the spin angular-momentum operators obey the same commuta-
tion relations as the orbital angular-momentum operators. Analogous to 3Ln x, Ln y4 =

iULnz, 3Ln y, Ln z4 = iULn x, 3Ln z, Ln x4 = iULn y [Eqs. (5.46) and (5.48)], we have

	 3Snx, Sny4 = iUSnz,  3Sny, Snz4 = iUSnx,  3Snz, Snx4 = iUSny	 (10.2)

From (10.1) and (10.2), it follows, by the same operator algebra used to obtain (5.49) and 
(5.50), that

	 3Sn2, Snx4 = 3Sn2, Sny4 = 3Sn2, Snz4 = 0	 (10.3)

Since Eqs. (10.1) and (10.2) are of the form of Eqs. (5.107) and (5.108), it follows from 
the work of Section 5.4 (which depended only on the commutation relations and not on 
the specific forms of the operators) that the eigenvalues of Sn2 are [Eq. (5.142)]

	 s1s + 12U2,  s = 0, 12, 1, 32, c 	 (10.4)

and the eigenvalues of Snz are [Eq. (5.141)]

	 msU,  ms = -s,  -s + 1, c, s - 1, s	 (10.5)

The quantum number s is called the spin of the particle. Although nothing in 
Section 5.4 restricts electrons to a single value for s, experiment shows that all elec-
trons do have a single value for s, namely, s =

1
2. Protons and neutrons also have s =

1
2. 

Pions have s = 0. Photons have s = 1. However, Eq. (10.5) does not hold for photons. 
Photons travel at speed c in vacuum. Because of their relativistic nature, it turns out 
that photons can have either ms = +1 or ms = -1, but not ms = 0 (see Merzbacher, 
Chapter 22). These two ms values correspond to left circularly polarized and right 
circularly polarized light.

With s =
1
2, the magnitude of the total spin angular momentum of an electron is 

given by the square root of (10.4) as

	 31
213

22U241>2 =
1
223U	 (10.6)

For s =
1
2, Eq. (10.5) gives the possible eigenvalues of Snz of an electron as + 1

2U and -1
2U. 

The electron spin eigenfunctions that correspond to these Snz eigenvalues are denoted by a 
and b:

	  Snza = +
1
2Ua 	 (10.7)

	  Snzb = -
1
2Ub	 (10.8)

Since Snz commutes with Sn2, we can take the eigenfunctions of Snz to be eigenfunctions of 
Sn2 also, with the eigenvalue given by (10.4) with s =

1
2:

	 Sn2a =
3
4U2a,  Sn2b =

3
4U2b	 (10.9)

Snz does not commute with Snx or Sny , so a and b are not eigenfunctions of these opera-
tors. The terms spin up and spin down refer to ms = +

1
2 and ms = -

1
2, respectively. See 

Fig. 10.1. We shall later show that the two possibilities for the quantum number ms give 
the doubling of lines in the spectra of the alkali metals.
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The wave functions we have dealt with previously are functions of the spatial 
coordinates of the particle: c = c1x, y, z2. We might ask: What is the variable for the 
spin eigenfunctions a and b? Sometimes one talks of a spin coordinate v, without re-
ally specifying what this coordinate is. Most often, one takes the spin quantum num-
ber ms as being the variable on which the spin eigenfunctions depend. This procedure 
is quite unusual as compared with the spatial wave functions; but because we have 
only two possible electronic spin eigenfunctions and eigenvalues, this is a convenient 
choice. We have

	 a = a1ms2,  b = b1ms2	 (10.10)

As usual, we want the eigenfunctions to be normalized. The three variables of a 
one-particle spatial wave function range continuously from -� to +  � , so normalization 
means

L
�

- � L
�

- � L
�

- �

 �c1x, y, z2 � 2 dx dy dz = 1

The variable ms of the electronic spin eigenfunctions takes on only the two discrete values 
+

1
2 and -1

2. Normalization of the one-particle spin eigenfunctions therefore means

	 a
1>2

ms = -1>2
�a1ms2 � 2 = 1,  a

1>2

ms = -1>2
�b1ms2 � 2 = 1 	 (10.11)

Since the eigenfunctions a and b correspond to different eigenvalues of the Hermitian 
operator Snz, they are orthogonal:

	 a
1>2

ms = -1>2
a*1ms2b1ms2 = 0	 (10.12)

Taking a1ms2 = dms,1>2 and b1ms2 = dms, -1>2, where djk is the Kronecker delta function, 
we can satisfy (10.11) and (10.12).

When we consider the complete wave function for an electron including both space 
and spin variables, we shall normalize it according to

	 a
1>2

ms = -1>2L
�

- � L
�

- � L
�

- �

 �c1x, y, z, ms2� 2 dx dy dz = 1	 (10.13)

The notation

	 L�c1x, y, z, ms2�2 dt

Figure 10.1  Possible ori-
entations of the electron spin 
vector with respect to the  
z axis. In each case, S lies on 
the surface of a cone whose 
axis is the z axis.

z z
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will denote summation over the spin variable and integration over the full range of the spa-
tial variables, as in (10.13). The symbol 1dy will denote integration over the full range of 
the system’s spatial variables.

An electron is currently considered to be a pointlike elementary particle with no substructure. 
High-energy electron–positron collision experiments show no evidence for a nonzero electron 
size and put an upper limit of 3 * 10-19 m on the radius of an electron [D. Bourilkov, Phys. 
Rev. D, 62, 076005 (2000); arxiv.org/abs/hep-ph/0002172]. Protons and neutrons are made of 
quarks, and so are not elementary particles. The proton rms charge radius is 0.88 * 10-15 m.

10.2 Spin and the Hydrogen Atom
The wave function specifying the state of an electron depends not only on the coordinates 
x, y, and z but also on the spin state of the electron. What effect does this have on the wave 
functions and energy levels of the hydrogen atom?

To a very good approximation, the Hamiltonian operator for a system of electrons 
does not involve the spin variables but is a function only of spatial coordinates and deriva-
tives with respect to spatial coordinates. As a result, we can separate the stationary-state 
wave function of a single electron into a product of space and spin parts:

c1x, y, z2g1ms2
where g1ms2 is either one of the functions a or b, depending on whether ms =

1
2 or -1

2. 
[More generally, g1ms2 might be a linear combination of a and b; g1ms2 = c1a + c2b.] 
Since the Hamiltonian operator has no effect on the spin function, we have

Hn 3c1x, y, z2g1ms24 = g1ms2Hnc1x, y, z2 = E3c1x, y, z2g1ms24
and we get the same energies as previously found without taking spin into account. The 
only difference spin makes is to double the possible number of states. Instead of the state 
c1x, y, z2, we have the two possible states c1x, y, z2a and c1x, y, z2b. When we take spin 
into account, the degeneracy of the hydrogen-atom energy levels is 2n2 rather than n2.

10.3 The Spin–Statistics Theorem
Suppose we have a system of several identical particles. In classical mechanics the identity 
of the particles leads to no special consequences. For example, consider identical billiard 
balls rolling on a billiard table. We can follow the motion of any individual ball, say by 
taking a motion picture of the system. We can say that ball number one is moving along a 
certain path, ball two is on another definite path, and so on, the paths being determined by 
Newton’s laws of motion. Thus, although the balls are identical, we can distinguish among 
them by specifying the path each takes. The identity of the balls has no special effect on 
their motions.

In quantum mechanics the uncertainty principle tells us that we cannot follow the 
exact path taken by a microscopic “particle.” If the microscopic particles of the system 
all have different masses or charges or spins, we can use one of these properties to dis-
tinguish the particles from one another. But if they are all identical, then the one way 
we had in classical mechanics of distinguishing them, namely by specifying their paths, 
is lost in quantum mechanics because of the uncertainty principle. Therefore, the wave 
function of a system of interacting identical particles must not distinguish among the 
particles. For example, in the perturbation treatment of the helium-atom excited states 
in Chapter 9, we saw that the function 1s1122s122, which says that electron 1 is in the 1s 
orbital and electron 2 is in the 2s orbital, was not a correct zeroth-order wave function. 
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Rather, we had to use the functions 2-1>231s1122s122 { 1s1222s1124 , which do not 
specify which electron is in which orbital. (If the identical particles are well separated 
from one another so that their wave functions do not overlap, they may be regarded as 
distinguishable.)

We now derive the restrictions on the wave function due to the requirement of in-
distinguishability of identical particles in quantum mechanics. The wave function of a 
system of n identical microscopic particles depends on the space and spin variables of the 
particles. For particle 1, these variables are x1, y1, z1, ms1. Let q1 stand for all four of these 
variables. Thus c = c1q1, q2,  c, qn2.

We define the exchange or permutation operator Pn12 as the operator that inter-
changes all the coordinates of particles 1 and 2:

	 Pn12 f1q1, q2, q3, c, qn2 = f1q2, q1, q3, c, qn2	 (10.14)

For example, the effect of Pn12 on the function that has electron 1 in a 1s orbital with spin 
up and electron 2 in a 3s orbital with spin down is

	 Pn1231s112a1123s122b1224 = 1s122a1223s112b112	 (10.15)

What are the eigenvalues of Pn12? Applying Pn12 twice has no net effect:

Pn12Pn12 f1q1, q2, c, qn2 = Pn12 f1q2, q1, c, qn2 = f1q1, q2, c, qn2
Therefore, Pn2

12 = 1n . Let wi and ci denote the eigenfunctions and eigenvalues of Pn12. We 
have Pn12wi = ciwi. Application of Pn12 to this equation gives Pn 2

12wi = ciP12wi. Substitu-
tion of Pn 2

12 = 1n  and Pn12wi = ciwi in Pn 2
12wi = ciPn12wi gives wi = c2

i wi. Since zero is not 
allowed as an eigenfunction, we can divide by wi to get 1 = c2

i  and ci = {1. The eigen-
values of Pn12 (and of any linear operator whose square is the unit operator) are + 1 and -1.

If w+  is an eigenfunction of Pn12 with eigenvalue +1, then

Pn12w+ 1q1, q2, c, qn2 = 1+12w+ 1q1, q2, c, qn2

	 w+ 1q2, q1, c, qn2 = w+ 1q1, q2, c, qn2	 (10.16)

A function such as w+  that has the property (10.16) of being unchanged when particles 1 
and 2 are interchanged is said to be symmetric with respect to interchange of particles 1 
and 2. For eigenvalue -1, we have

	 w- 1q2, q1, c, qn2 = -w- 1q1, q2, c, qn2	 (10.17)

The function w-  in (10.17) is antisymmetric with respect to interchange of particles 1 
and 2, meaning that this interchange multiplies w-  by -1. There is no necessity for an 
arbitrary function f1q1, q2, c, qn2 to be either symmetric or antisymmetric with respect 
to interchange of 1 and 2.

Do not confuse the property of being symmetric or antisymmetric with respect to 
particle interchange with the property of being even or odd with respect to inversion in 
space. The function x1 + x2 is symmetric with respect to interchange of 1 and 2 and is an 
odd function of x1 and x2. The function x2

1 + x2
2 is symmetric with respect to interchange 

of 1 and 2 and is an even function of x1 and x2.
The operator Pnik is defined by

	 Pnik f1q1, c, qi, c, qk, c, qn2 = f1q1, c, qk, c, qi, c, qn2	 (10.18)

The eigenvalues of Pnik are, like those of Pn12, +1 and -1.
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We now consider the wave function of a system of n identical microscopic particles. 
Since the particles are indistinguishable, the way we label them cannot affect the state of 
the system. Thus the two wave functions

c1q1, c, qi, c, qk, c, qn2 and c1q1, c, qk, c, qi, c, qn2
must correspond to the same state of the system. Two wave functions that correspond to 
the same state can differ at most by a multiplicative constant. Hence

 c1q1, c, qk, c, qi, c, qn2 = cc1q1, c, qi, c, qk, c, qn2

 Pnikc1q1, c, qi, c, qk, c, qn2 = cc1q1, c, qi, c, qk, c, qn2 

The last equation states that c is an eigenfunction of Pnik. But we know that the only 
possible eigenvalues of Pnik are 1 and -1. We conclude that the wave function for a 
system of n identical particles must be symmetric or antisymmetric with respect to 
interchange of any two of the identical particles, i and k. Since the n particles are all 
identical, we could not have the wave function symmetric with respect to some inter-
changes and antisymmetric with respect to other interchanges. Thus the wave function 
of n identical particles must be either symmetric with respect to every possible inter-
change or antisymmetric with respect to every possible interchange of two particles. 
(The argument just given is not rigorous. The statement that the wave function of a 
system of identical particles must be either completely symmetric or completely an-
tisymmetric with respect to interchange of two particles is called the symmetrization 
postulate.)

We have seen that there are two possible cases for the wave function of a system of 
identical particles, the symmetric and the antisymmetric cases. Experimental evidence 
(such as the periodic table of the elements to be discussed later) shows that for electrons 
only the antisymmetric case occurs. Thus we have an additional postulate of quantum 
mechanics, which states that the wave function of a system of electrons must be antisym-
metric with respect to interchange of any two electrons.

In 1926, Dirac concluded (based on theoretical work and experimental data) that 
electrons require antisymmetric wave functions and photons require symmetric wave 
functions. However, Dirac and other physicists erroneously believed in 1926 that all 
material particles required antisymmetric wave functions. In 1930, experimental 
data indicated that a particles (which have s = 0) require symmetric wave functions; 
physicists eventually realized that what determines whether a system of identical par-
ticles requires symmetric or antisymmetric wave functions is the spin of the parti-
cle. Particles with half-integral spin (s =

1
2, 32, and so on) require antisymmetric wave 

functions, while particles with integral spin (s = 0, 1, and so on) require symmetric 
wave functions. In 1940, the physicist Wolfgang Pauli used relativistic quantum field 
theory to prove this result. Particles requiring antisymmetric wave functions, such as 
electrons, are called fermions (after E. Fermi), whereas particles requiring symmetric 
wave functions, such as pions, are called bosons (after S. N. Bose). In nonrelativistic 
quantum mechanics, we must postulate that the wave function of a system of identical 
particles must be antisymmetric with respect to interchange of any two particles if 
the particles have half-integral spin and must be symmetric with respect to inter-
change if the particles have integral spin. This statement is called the spin–statistics 
theorem (since the statistical mechanics of a system of bosons differs from that of a 
system of fermions).

Many proofs of varying validity have been offered for the spin–statistics theorem; 
see I. Duck and E. C. G. Sudurshan, Pauli and the Spin-Statistics Theorem, World 
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Scientific, 1997; Am. J. Phys., 66, 284 (1998); Sudurshan and Duck, Pramana-J. Phys., 
61, 645 (2003) (available at www.ias.ac.in/pramana/v61/p645/fulltext.pdf). Several 
experiments have confirmed the validity of the spin–statistics theorem to extremely 
high accuracy; see G. M. Tino, Fortschr. Phys., 48, 537 (2000) (available at arxiv.org/
abs/quant-ph/9907028).

The spin–statistics theorem has an important consequence for a system of identical 
fermions. The antisymmetry requirement means that

	 c1q1, q2, q3, c, qn2 = -c1q2, q1, q3, c, qn2	 (10.19)

Consider the value of c when electrons 1 and 2 have the same coordinates, that is, when 
x1 = x2, y1 = y2, z1 = z2, and ms1 = ms2. Putting q2 = q1 in (10.19), we have

	  c1q1, q1, q3, c, qn2 = -c1q1, q1, q3, c, qn2
 2c = 0

	  c1q1, q1, q3, c, qn2 = 0 	 (10.20)

Thus, two electrons with the same spin have zero probability of being found at the same 
point in three-dimensional space. (By “the same spin,” we mean the same value of ms). 
Since c is a continuous function, Eq. (10.20) means that the probability of finding two elec-
trons with the same spin close to each other in space is quite small. Thus the antisymmetry 
requirement forces electrons of like spin to keep apart from one another. To describe this, 
one often speaks of a Pauli repulsion between such electrons. This “repulsion” is not a real 
physical force, but a reflection of the fact that the electronic wave function must be antisym-
metric with respect to exchange.

The requirement for symmetric or antisymmetric wave functions also applies to a 
system containing two or more identical composite particles. Consider, for example, an 
16O2 molecule. The 16O nucleus has 8 protons and 8 neutrons. Each proton and each 
neutron has s =

1
2 and is a fermion. Therefore, interchange of the two 16O nuclei in-

terchanges 16 fermions and must multiply the molecular wave function by 1-1216 = 1. 
Thus the 16O2 molecular wave function must be symmetric with respect to interchange 
of the nuclear coordinates. The requirement for symmetry or antisymmetry with respect 
to interchange of identical nuclei affects the degeneracy of molecular wave functions and 
leads to the symmetry number in the rotational partition function [see McQuarrie (2000), 
pp. 104–105].

For interchange of two identical composite particles containing m identical bosons 
and n identical fermions, the wave function is multiplied by 1+12m1-12n = 1-12n.

A composite particle is thus a fermion if it contains an odd number of fermions and 
is a boson otherwise.

When the variational principle (Section 8.1) is used to get approximate electronic 
wave functions of atoms and molecules, the requirement that the trial variation function 
be well-behaved includes the requirement that it be antisymmetric.

10.4 The Helium Atom
We now reconsider the helium atom from the standpoint of electron spin and the antisym-
metry requirement. In the perturbation treatment of helium in Section 9.3, we found the 
zeroth-order wave function for the ground state to be 1s1121s122. To take spin into ac-
count, we must multiply this spatial function by a spin eigenfunction. We therefore consider 
the possible spin eigenfunctions for two electrons. We shall use the notation a112a122 to 
indicate a state where electron 1 has spin up and electron 2 has spin up; a112 stands for 
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a1ms12. Since each electron has two possible spin states, we have at first sight the four 
possible spin functions:

a112a122,  b112b122,  a112b122,  a122b112
There is nothing wrong with the first two functions, but the third and fourth functions violate 
the principle of indistinguishability of identical particles. For example, the third function 
says that electron 1 has spin up and electron 2 has spin down, which does distinguish 
between electrons 1 and 2. More formally, if we apply Pn12 to these functions, we find that 
the first two functions are symmetric with respect to interchange of the two electrons, but the 
third and fourth functions are neither symmetric nor antisymmetric and so are unacceptable.

What now? Recall that we ran into essentially the same situation in treating the he-
lium excited states (Section 9.7), where we started with the functions 1s1122s122 and 
2s1121s122. We found that these two functions, which distinguish between electrons 1 
and 2, are not the correct zeroth-order functions and that the correct zeroth-order func-
tions are 2-1>231s1122s122 { 2s1121s1224 . This result suggests pretty strongly that in-
stead of a112b122 and b112a122, we use

	 2-1>23a112b122 { b112a1224 	 (10.21)

These functions are the normalized linear combinations of a112b122 and b112a122 that are 
eigenfunctions of Pn12, that is, are symmetric or antisymmetric. When electrons 1 and 2 are 
interchanged, 2-1>23a112b122 + b112a1224  becomes 2-1>23a122b112 + b122a1124 , 
which is the same as the original function. In contrast, 2-1>23a112b122 - b112a1224  be-
comes 2-1>23a122b112 - b122a1124 , which is -1 times the original function. To show 
that the functions (10.21) are normalized, we have

a
ms1

a
ms2

122
3a112b122 { b112a1224* 122

3a112b122 { b112a1224

	 =
1

2 a
ms1

�a112 �2a
ms2

�b122 �2 {
1

2 a
ms1

a*112b112a
ms2

b*122a122

	 {
1

2 a
ms1

b*112a112a
ms2

a*122b122 +
1

2 a
ms1

�b112 �2a
ms2

�a122 �2 = 1

where we used the orthonormality relations (10.11) and (10.12).
Therefore, the four normalized two-electron spin eigenfunctions with the correct ex-

change properties are

	

symmetric:     •
a(1)a(2)

b(1)b(2)

[a(1)b(2) + b(1)a(2)]>22

	 (10.22)

		

(10.23)

		

(10.24)

	 antisymmetric: 3a112b122 - b112a1224 >22	 (10.25)

We now include spin in the He zeroth-order ground-state wave function. The function 
1s1121s122 is symmetric with respect to exchange. The overall electronic wave function 
including spin must be antisymmetric. Hence we must multiply the symmetric space func-
tion 1s1121s122 by an antisymmetric spin function. There is only one antisymmetric two-
electron spin function, so the ground-state zeroth-order wave function for the helium atom 
including spin is

	 c102 = 1s1121s122 # 2-1>23a112b122 - b112a1224 	 (10.26)

c102 is an eigenfunction of Pn12 with eigenvalue -1.
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To a very good approximation, the Hamiltonian does not contain spin terms, so the 
energy is unaffected by inclusion of the spin factor in the ground-state wave function. 
Also, the ground state of helium is still nondegenerate when spin is considered.

To further demonstrate that the spin factor does not affect the energy, we shall as-
sume we are doing a variational calculation for the He ground state using the trial function 
f = f1r1, r2, r1222-1>23a112b122 - b112a1224 , where f is a normalized function sym-
metric in the coordinates of the two electrons. The variational integral is

L  f*Hnf dt = a
ms1

a
ms2 LL f *1r1, r2, r122 122

3a112b122 - b112a1224*

*  Hnf1r1, r2, r122 122
3a112b122 - b112a1224  dv1 dv2

Since Hn  has no effect on the spin functions, the variational integral becomes

LL  f*Hnf dv1 dv2 a
ms1

a
ms2

1

2
�a112b122 - b112a122 �2

Since the spin function (10.25) is normalized, the variational integral reduces to 

11 f*Hnf dv1 dv2, which is the expression we used before we introduced spin.
Now consider the excited states of helium. We found the lowest excited state to have 

the zeroth-order spatial wave function 2-1>231s1122s122 - 2s1121s1224  [Eq. (9.103)]. 
Since this spatial function is antisymmetric, we must multiply it by a symmetric spin func-
tion. We can use any one of the three symmetric two-electron spin functions, so instead of 
the nondegenerate level previously found, we have a triply degenerate level with the three 
zeroth-order wave functions

	 2-1>231s1122s122 - 2s1121s1224a112a122	 (10.27)

	 2-1>231s1122s122 - 2s1121s1224b112b122	 (10.28)

	 2-1>231s1122s122 - 2s1121s12242-1>23a112b122 + b112a1224 	 (10.29)

For the next excited state, the requirement of antisymmetry of the overall wave function 
leads to the zeroth-order wave function

	 2-1>231s1122s122 + 2s1121s12242-1>23a112b122 - b112a1224 	 (10.30)

The same considerations apply for the 1s2p states.

10.5 The Pauli Exclusion Principle
So far, we have not seen any very spectacular consequences of electron spin and the anti
symmetry requirement. In the hydrogen and helium atoms, the spin factors in the wave 
functions and the antisymmetry requirement simply affect the degeneracy of the levels but 
do not (except for very small effects to be considered later) affect the previously obtained 
energies. For lithium, the story is quite different.

Suppose we take the interelectronic repulsions in the Li atom as a perturbation on the 
remaining terms in the Hamiltonian. By the same steps used in the treatment of helium, the 
unperturbed wave functions are products of three hydrogenlike functions. For the ground 
state,

	 c102 = 1s1121s1221s132	 (10.31)
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and the zeroth-order (unperturbed) energy is [Eq. (9.48) and the paragraph after (9.50)]

E102 = - a 1

12 +
1

12 +
1

12 b a
Z2e2

8pe0a0
b = - 27a e2

8pe0a0
b = -27113.606 eV2 = -367.4 eV

The first-order energy correction is E112 = 8c102 � Hn � �c1029 . The perturbation Hn � 
consists of the interelectronic repulsions, so

E112 = L �1s112 �2 �1s122 �2 �1s132 �2
e2

4pe0r12
 dv + L �1s112 �2 �1s122 �2 �1s132 �2

e2

4pe0r23
 dv

+ L  � 1s112 �2 � 1s122 �2 � 1s132 �2
e2

4pe0r13
 dv

The way we label the dummy integration variables in these definite integrals cannot affect 
their value. If we interchange the labels 1 and 3 on the variables in the second integral, it 
is converted to the first integral. Hence these two integrals are equal. Interchange of the 
labels 2 and 3 in the third integral shows it to be equal to the first integral also. Therefore

E112 = 3LL  � 1s112 �2 � 1s122 �2
e2

4pe0r12
 dv1 dv2 L  � 1s132 �2 dv3

The integral over electron 3 gives 1 (normalization). The integral over electrons 1 and 2 
was evaluated in the perturbation treatment of helium, and [Eqs. (9.52) and (9.53)]

E112 = 3a 5Z

4
b a e2

8pe0a0
b =

45

4
113.606 eV) = 153.1 eV

E102 + E112 = -214.3 eV

Since we can use the zeroth-order perturbation wave function as a trial variation func-
tion (recall the discussion at the beginning of Section 9.4), E102 + E112 must be, according 
to the variation principle, equal to or greater than the true ground-state energy. The experi-
mental value of the lithium ground-state energy is found by adding up the first, second, 
and third ionization energies, which gives [C. E. Moore, “Ionization Potentials and Ioniza-
tion Limits,” publication NSRDS-NBS 34 of the National Bureau of Standards (1970); 
available at www.nist.gov/data/nsrds/NSRDS-NBS34.pdf]

- 15.39 + 75.64 + 122.452 eV = -203.5 eV

We thus have E102 + E112 as less than the true ground-state energy, which is a violation of 
the variation principle. Moreover, the supposed configuration 1s3 for the Li ground state dis-
agrees with the low value of the first ionization potential and with all chemical evidence. If 
we continued in this manner, we would have a 1sZ ground-state configuration for the element 
of atomic number Z. We would not get the well-known periodic behavior of the elements.

Of course, our error is failure to consider spin and the antisymmetry requirement. The 
hypothetical zeroth-order wave function 1s1121s1221s132 is symmetric with respect to 
interchange of any two electrons. If we are to have an antisymmetric c102, we must multi-
ply this symmetric space function by an antisymmetric spin function. It is easy to construct 
completely symmetric spin functions for three electrons, such as a112a122a132. However, 
it is impossible to construct a completely antisymmetric spin function for three electrons.

Let us consider how we can systematically construct an antisymmetric function for 
three electrons. We shall use f, g, and h to stand for three functions of electronic coordi-
nates, without specifying whether we are considering space coordinates or spin coordi-
nates or both. We start with the function

	 f112g122h132	 (10.32)
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which is certainly not antisymmetric. The antisymmetric function we desire must be con-
verted into its negative by each of the permutation operators Pn12, Pn13, and Pn23. Applying 
each of these operators in turn to f112g122h132, we get

	 f122g112h132,  f132g122h112,  f112g132h122	 (10.33)

We might try to construct the antisymmetric functions as a linear combination of the four 
functions (10.32) and (10.33), but this attempt would fail. Application of Pn12 to the last 
two functions in (10.33) gives

	 f132g112h122 and f122g132h112	 (10.34)

which are not included in (10.32) or (10.33). We must therefore include all six functions 
(10.32) to (10.34) in the desired antisymmetric linear combination. These six functions are 
the six 13 # 2 # 12 possible permutations of the three electrons among the three functions 
f, g, and h. If f112g122h132 is a solution of the Schrödinger equation with eigenvalue E, 
then, because of the identity of the particles, each of the functions (10.32) to (10.34) is 
also a solution with the same eigenvalue E (exchange degeneracy), and any linear combi-
nation of these functions is an eigenfunction with eigenvalue E.

The antisymmetric linear combination will have the form

	 c1f112g122h132 + c2 f122g112h132 + c3 f132g122h112 + c4 f112g132h122
	 + c5 f132g112h122 + c6 f122g132h112	 (10.35)

Since f122g112h132 = Pn12 f112g122h132, in order to have (10.35) be an eigenfunction of 
Pn12  with eigenvalue -1,  we must have c2 = -c1.  Likewise,    f132g122h112 =

Pn13 f112g122h132 and f112g132h122 = Pn23 f112g122h132, so c3 = - c1 and c4 = - c1. 
Since f132g112h122 = Pn12 f132g122h112, we must have c5 = - c3 = c1. Similarly, we 
find c6 = c1. We thus arrive at the linear combination

	 c13  f112g122h132 - f122g112h132 - f132g122h112 - f112g132h122
	 + f132g112h122 + f122g132h1124 	 (10.36)

which is easily verified to be antisymmetric with respect to 1–2, 1–3, and 2–3 interchange. 
[Taking all signs as plus in (10.36), we would get a completely symmetric function.]

Let us assume f, g, and h to be orthonormal and choose c1 so that (10.36) is normal-
ized. Multiplying (10.36) by its complex conjugate, we get many terms, but because of 
the assumed orthogonality the integrals of all products involving two different terms of 
(10.36) vanish. For example,

L 3 f112g122h1324*f122g112h132 dt

	 = L f*112g112 dt1Lg*122f122 dt2Lh*132h132 dt3 = 0 # 0 # 1 = 0

Integrals involving the product of a term of (10.36) with its own complex conjugate are 
equal to 1, because f, g, and h are normalized. Therefore,

 1 = L�110.362� 2 dt = � c1 � 211 + 1 + 1 + 1 + 1 + 12
 c1 = 1>26

We could work with (10.36) as it stands, but its properties are most easily found if we 
recognize it as the expansion [Eq. (8.24)] of the following third-order determinant:

	
126

 †  
f112 g112 h112
f122 g122 h122
f132 g132 h132

† 	 (10.37)
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(See also Prob. 8.22.) The antisymmetry property holds for (10.37) because interchange 
of two electrons amounts to interchanging two rows of the determinant, which multiplies 
it by -1.

We now use (10.37) to prove that it is impossible to construct an antisymmetric spin 
function for three electrons. The functions f, g, and h may each be either a or b. If we take 
f = a, g = b, h = a, then (10.37) becomes

	
126

 †
a112 b112 a112
a122 b122 a122
a132 b132 a132

† 	 (10.38)

Although (10.38) is antisymmetric, we must reject it because it is equal to zero. The first 
and third columns of the determinant are identical, so (Section 8.3) the determinant van-
ishes. No matter how we choose f, g, and h, at least two columns of the determinant must 
be equal, so we cannot construct a nonzero antisymmetric three-electron spin function.

We now use (10.37) to construct the zeroth-order ground-state wave function for lith-
ium, including both space and spin variables. The functions f, g, and h will now involve 
both space and spin variables. We choose

	 f112 = 1s112a112	 (10.39)

We call a function like (10.39) a spin-orbital. A spin-orbital is the product of a 
one-electron spatial orbital and a one-electron spin function.

If we were to take g112 = 1s112a112, this would make the first and second columns 
of (10.37) identical, and the wave function would vanish. This is a particular case of the 
Pauli exclusion principle: No two electrons can occupy the same spin-orbital. Another 
way of stating this is to say that no two electrons in an atom can have the same values for 
all their quantum numbers. The Pauli exclusion principle is a consequence of the more 
general antisymmetry requirement for the wave function of a system of identical spin@1

2 
particles and is less satisfying than the antisymmetry statement, since the exclusion prin-
ciple is based on approximate (zeroth-order) wave functions.

We therefore take g112 = 1s112b112, which puts two electrons with opposite spin in 
the 1s orbital. For the spin-orbital h, we cannot use either 1s112a112 or 1s112b112, since 
these choices make the determinant vanish. We take h112 = 2s112a112, which gives the 
familiar Li ground-state configuration 1s22s and the zeroth-order wave function

	 c102 =
126

†
1s112a112 1s112b112 2s112a112
1s122a122 1s122b122 2s122a122
1s132a132 1s132b132 2s132a132

† 	 (10.40)

Note especially that (10.40) is not simply a product of space and spin parts (as we found 
for H and He), but is a linear combination of terms, each of which is a product of space 
and spin parts.

Since we could just as well have taken h112 = 2s112b112, the ground state of lith-
ium is, like hydrogen, doubly degenerate, corresponding to the two possible orientations 
of the spin of the 2s electron. We might use the orbital diagrams

1s 2s

c T c
    and  

1s 2s

c T T

to indicate this. Each spatial orbital such as 1s or 2p0 can hold two electrons of opposite 
spin. A spin-orbital such as 2sa can hold one electron.

Although the 1s22p configuration will have the same unperturbed energy E102 as the 
1s22s configuration, when we take electron repulsion into account by calculating E112 and 
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higher corrections, we find that the 1s22s configuration lies lower for the same reason as 
in helium.

Consider some points about the Pauli exclusion principle, which we restate as follows: 
In a system of identical fermions, no two particles can occupy the same state. If we have 
a system of n interacting particles (for example, an atom), there is a single wave function 
(involving 4n variables) for the entire system. Because of the interactions between the parti-
cles, the wave function cannot be written as the product of wave functions of the individual 
particles. Hence, strictly speaking, we cannot talk of the states of individual particles, only 
the state of the whole system. If, however, the interactions between the particles are not 
too large, then as an initial approximation we can neglect them and write the zeroth-order 
wave function of the system as a product of wave functions of the individual particles. In 
this zeroth-order wave function, no two fermions can have the same wave function (state).

Since bosons require a wave function symmetric with respect to interchange, there is 
no restriction on the number of bosons in a given state.

In 1925, Einstein showed that in an ideal gas of noninteracting bosons, there is a very 
low temperature Tc (called the condensation temperature) above which the fraction f of 
bosons in the ground state is negligible but below which f becomes appreciable and goes 
to 1 as the absolute temperature T goes to 0. The equation for f for noninteracting bo-
sons in a cubic box is f = 1 - 1T >Tc23>2 for T 6 Tc [McQuarrie (2000), Section 10-4]. 
The phenomenon of a significant fraction of bosons falling into the ground state is called 
Bose–Einstein condensation. Bose–Einstein condensation is important in determining 
the properties of superfluid liquid 4He (whose atoms are bosons), but the interatomic in-
teractions in the liquid make theoretical analysis difficult.

In 1995, physicists succeeded in producing Bose–Einstein condensation in a gas 
[Physics Today, August 1995, p. 17; C. E. Wieman, Am. J. Phys., 64, 847 (1996)]. They 
used a gas of 87

37Rb atoms. An 87Rb atom has 87 nucleons and 37 electrons. With an even 
number (124) of fermions, 87Rb is a boson. With a combination of laser light, an ap-
plied inhomogeneous magnetic field, and applied radiofrequency radiation, a sample of 
104 87Rb atoms was cooled to 10- 7 K, thereby condensing a substantial fraction of the at-
oms into the ground state. The radiofrequency radiation was then used to remove most of 
the atoms in excited states, leaving a condensate of 2000 atoms, nearly all of which were 
in the ground state. Each Rb atom in this experiment was subject to a potential-energy 
function V 1x, y, z2 produced by the interaction of the atom’s total spin magnetic moment 
with the applied magnetic field (Sections 6.8 and 10.9). The inhomogeneous applied mag-
netic field was such that the potential energy V was that of a three-dimensional harmonic 
oscillator (Prob. 4.20) plus a constant. The Rb atoms in the Bose–Einstein condensate are 
in the ground state of this harmonic-oscillator potential.

10.6 Slater Determinants
Slater pointed out in 1929 that a determinant of the form (10.40) satisfies the antisym-
metry requirement for a many-electron atom. A determinant like (10.40) is called a Slater 
determinant. All the elements in a given column of a Slater determinant involve the same 
spin-orbital, whereas elements in the same row all involve the same electron. (Since inter-
changing rows and columns does not affect the value of a determinant, we could write the 
Slater determinant in another, equivalent form.)

Consider how the zeroth-order helium wave functions that we found previously can 
be written as Slater determinants. For the ground-state configuration 1s2, we have the 
spin-orbitals 1sa and 1sb, giving the Slater determinant

	
122

 `1s112a112 1s112b112
1s122a122 1s122b122` = 1s1121s122 122

3a112b122 - b112a1224 	 (10.41)
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which agrees with (10.26). For the states corresponding to the excited configuration 
1s2s, we have the possible spin-orbitals 1sa, 1sb, 2sa, 2sb, which give the four Slater 
determinants

 D1 =
122

`1s112a112 2s112a112
1s122a122 2s122a122 `  D2 =

122
` 1s112a112 2s112b112
1s122a122 2s122b122 `

 D3 =
122

`1s112b112 2s112a112
1s122b122 2s122a122 `  D4 =

122
` 1s112b112
1s122b122 

2s112b112
2s122b122 `

Comparison with (10.27) to (10.30) shows that the 1s2s zeroth-order wave functions are 
related to these four Slater determinants as follows:

	 2- 1>231s1122s122 - 2s1121s1224a112a122 = D1	 (10.42)

	 2- 1>231s1122s122 - 2s1121s1224b112b122 = D4	 (10.43)

2-1>231s1122s122 - 2s1121s12242-1>23a112b122 + b112a1224 = 2-1>21D2 + D32	 (10.44)

2-1>231s1122s122 + 2s1121s12242-1>23a112b122 - b112a1224 = 2-1>21D2 - D32	 (10.45)

(To get a zeroth-order function that is an eigenfunction of the spin and orbital angular-
momentum operators, we sometimes have to take a linear combination of the Slater 
determinants of a configuration; see Chapter 11.)

Next, consider some notations used for Slater determinants. Instead of writing a 
and b for spin functions, one often puts a bar over the spatial function to indicate the 
spin function b, and a spatial function without a bar implies the spin factor a. With this 
notation, (10.40) is written as

	 c102 =
126

†
1s112 1s112 2s112
1s122 1s122 2s122
1s132 1s132 2s132

† 	 (10.46)

Given the spin-orbitals occupied by the electrons, we can readily construct the Slater de-
terminant. Therefore, a shorthand notation for Slater determinants that simply specifies 
the spin-orbitals is often used. In this notation, (10.46) is written as

	 c102 = �1s1s2s � 	 (10.47)

where the vertical lines indicate formation of the determinant and multiplication by 1>26.
We showed that the factor 1>26 normalizes a third-order Slater determinant con-

structed of orthonormal functions. The expansion of an nth-order determinant has n! 
terms (Prob. 8.20). For an nth-order Slater determinant of orthonormal spin-orbitals, 
the same reasoning used in the third-order case shows that the normalization constant is 
1>2n!. We always include a factor 1>2n! in defining a Slater determinant of order n.

10.7 �Perturbation Treatment of the Lithium 
Ground State

Let us carry out a perturbation treatment of the ground state of the lithium atom.  
Defining e� as e� K e>4pe0, we take

Hn0 = -
U2

2me
 �2

1 -
U2

2me
�2

2 -
U2

2me
�2

3 -
Ze�2

r1
-

Ze�2

r2
-

Ze�2

r3
, Hn� =

e�2

r12
+

e�2

r23
+

e�2

r13



10.8 Variation Treatments of the Lithium Ground State  |  279

We found in Section 10.5 that to satisfy the antisymmetry requirement, the ground-state 
configuration must be 1s22s. The correct zeroth-order wave function is (10.40):

c102 = 6- 1>231s1121s1222s132a112b122a132 - 1s1122s1221s132a112a122b132
	 -1s1121s1222s132b112a122a132 + 1s1122s1221s132b112a122a132
	 +2s1121s1221s132a112a122b132 - 2s1121s1221s132a112b122a1324 	

(10.48)

What is E102? Each term in c102 contains the product of two 1s hydrogenlike func-
tions and one 2s hydrogenlike function, multiplied by a spin factor. Hn0 is the sum of three 
hydrogenlike Hamiltonians, one for each electron, and does not involve spin. Thus c102 
is a linear combination of terms, each of which is an eigenfunction of Hn0 with eigenvalue 
E102

1s + E102
1s + E102

2s , where these are hydrogenlike energies. Hence c102 is an eigenfunc-
tion of Hn0 with eigenvalue E102

1s + E102
1s + E102

2s . Therefore [Eq. (6.94)],

	 E102 = - a 1

12 +
1

12 +
1

22 b a
Z2e�2

2a0
b = -

81

4
113.606 eV2 = -275.5 eV	 (10.49)

The evaluation of E112 = 8c102 � Hn � �c1029  is outlined in Prob. 10.15. One finds

E112 = 2LL  1s21122s2122e�2

r12
dy1 dy2 + LL  1s21121s2122e�2

r12
dy1 dy2

	 - LL  1s1122s1221s1222s112e�2

r12
dy1 dy2	 (10.50)

These integrals are Coulomb and exchange integrals:

	 E112 = 2J1s2s + J1s1s - K1s2s	 (10.51)

We have [Eqs. (9.52), (9.53), and (9.111)]

J1s1s =
5

8
 
Ze�2

a0
,  J1s2s =

17

81
 
Ze�2

a0
,  K1s2s =

16

729
 
Ze�2

a0

E112 =
5965

972
a e�2

2a0
b = 83.5 eV

The energy through first order is -192.0 eV, as compared with the true ground-state 
energy of lithium, -203.5 eV. To improve on this result, we could calculate higher-order 
wave-function and energy corrections. This will mix into the wave function contributions 
from Slater determinants involving configurations besides 1s22s (configuration interaction).

10.8 Variation Treatments of the Lithium Ground State
The zeroth-order perturbation wave function (10.40) uses the full nuclear charge 1Z = 32 
for both the 1s and 2s orbitals of lithium. We expect that the 2s electron, which is partially 
shielded from the nucleus by the two 1s electrons, will see an effective nuclear charge that 
is much less than 3. Even the 1s electrons partially shield each other (recall the treatment 
of the helium ground state). This reasoning suggests the introduction of two variational 
parameters b1 and b2 into (10.40).

Instead of using the Z = 3 1s function in Table 6.2, we take

	 f K
1

p1>2 a b1

a0
b

3>2
e- b1r>a0	 (10.52)
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where b1 is a variational parameter representing an effective nuclear charge for the 1s 
electrons. Instead of the Z = 3 2s function in Table 6.2, we use

	 g =
1

412p21>2 a
b2

a0
b

3>2
a2 -

b2r
a0

b  e- b2r>2a0	 (10.53)

Our trial variation function is then

	 f =
126

†  
f112a112 f112b112 g112a112
f122a122 f122b122 g122a122
f132a132 f132b132 g132a132

† 	 (10.54)

The use of different charges b1 and b2 for the 1s and 2s orbitals destroys their orthog-
onality, so (10.54) is not normalized. The best values of the variational parameters are 
found by setting 0W>0b1 = 0 and 0W>0b2 = 0, where the variational integral W is given 
by the left side of Eq. (8.9). The results are [E. B. Wilson, Jr., J. Chem. Phys., 1, 210 
(1933)] b1 = 2.686, b2 = 1.776, and W = -201.2 eV. W is much closer to the true value 
-203.5 eV than the result -192.0 eV found in the last section. The value of b2 shows sub-
stantial, but not complete, screening of the 2s electron by the 1s electrons.

We might try other forms for the orbitals besides (10.52) and (10.53) to improve the trial 
function. However, no matter what orbital functions we try, if we restrict ourselves to a trial 
function of the form of (10.54), we can never reach the true ground-state energy. To do this, 
we can introduce r12, r23, and r13 into the trial function or use a linear combination of sev-
eral Slater determinants corresponding to various configurations (configuration interaction).

10.9 Spin Magnetic Moment
Recall that the orbital angular momentum L of an electron has a magnetic moment 
- 1e>2me2L associated with it [Eq. (6.128)], where -e is the electron charge. It is natural 
to suppose that there is also a magnetic moment mS associated with the electronic spin 
angular momentum S. We might guess that mS would be - 1e>2me2 times S. Spin is a 
relativistic phenomenon, however, and we cannot expect mS to be related to S in exactly 
the same way that mL is related to L. In fact, Dirac’s relativistic treatment of the electron 
gave the result that (in SI units)

	 mS = -ge
e

2me
S	 (10.55)

where Dirac’s treatment gave ge = 2 for the electron g factor ge. Theoretical and ex-
perimental work subsequent to Dirac’s treatment has shown that ge is slightly greater than 
2; ge = 211 + a>2p  +  c2 = 2.0023, where the dots indicate terms involving higher 
powers of a and where the fine-structure constant a is

	 a K
e2

4pe0Uc
= 0.00729735257	 (10.56)

ge has been measured with extraordinary accuracy [D. Hanneke et al., Phys. Rev. A, 83, 
052122 (2011); available at arxiv.org/abs/1009.4831]: ge = 2.002319304361. [Some 
workers prefer to omit the minus sign in (10.55) and use the convention that ge is negative; 
see www.stanford.edu/group/Zarelab/publinks/zarepub642.pdf.]

The magnitude of the spin magnetic moment of an electron is (in SI units)

	 � mS � = ge
e

2me
� S � = geA3

4
 

eU

2me
	 (10.57)

The ferromagnetism of iron is due to the electron’s magnetic moment.
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The two possible orientations of an electron’s spin and its associated spin magnetic 
moment with respect to an axis produce two energy levels in an externally applied mag-
netic field. In electron-spin-resonance (ESR) spectroscopy, one observes transitions be-
tween these two levels. ESR spectroscopy is applicable to species such as free radicals 
and transition-metal ions that have one or more unpaired electron spins and hence have a 
nonzero total electron spin and spin magnetic moment.

NMR Spectroscopy
Many atomic nuclei have a nonzero spin angular momentum I. Similar to (10.4) and 
(10.5), the magnitude of I is 3I1I + 1241>2 U, where the nuclear-spin quantum number 
I can be 0, 1

2, 1, and so on, and the z component of I has the possible values MIU, where 
MI = -I, -I + 1, c, I. Some I values are: 0 for every nucleus with an even number of 
protons and an even number of neutrons (for example, 16

8O and 12
6C); 12 for 11H, 13

6C, 19
9F, and 

31
15P; 1 for 21H and 14

7N; 32 for 11
5B, 23

11Na and 35
17Cl. If I � 0, the nucleus has a spin magnetic 

moment mI given by an equation similar to (10.55):

	 mI = gN1e>2mp2I K gI	 (10.58)

where mp is the proton mass and the nuclear g factor gN  has a value characteristic of 
the nucleus. The quantity g, called the magnetogyric ratio of the nucleus, is defined by 
g K mI>I = gNe>2mp. Values of I, gN, and g for some nuclei are

nucleus 1H 12C 13C 15N 19F 31P

I 1/2 0 1/2 1/2 1/2 1/2

gN 5.58569 1.40482 –0.56638 5.25773 2.2632

g> 1MHz>T2 267.522 67.283 –27.126 251.815 108.39

In nuclear-magnetic-resonance (NMR) spectroscopy, one observes transitions between 
nuclear-spin energy levels in an applied magnetic field. The sample (most commonly a 
dilute solution of the compound being studied) is placed between the poles of a strong mag-
net. The energy of interaction between an isolated nuclear-spin magnetic moment mI in an 
external magnetic field B is given by Eq. (6.131) as E = -mI

# B. Using (10.58) for mI and 
taking the z axis as coinciding with the direction of B, we have

E = -mI
# B = -g1Ixi + Iy j + Izk2 # 1Bk2 = -gBIz

We convert this classical expression for the energy into a Hamiltonian operator by replac-
ing the classical quantity Iz by the operator Inz. Thus, Hn = -gBInz. Let � MI9  denote the 
function that is simultaneously an eigenfunction of the operators In2 (for the square of 
the magnitude of the nuclear-spin angular momentum) and Inz. We have

	 Hn  � MI9 = -gBInz � MI9 = -gBMIU � MI9 	 (10.59)

Therefore, (10.59) gives the energy levels of the isolated nuclear spin in the applied mag-
netic field as

E = -gUBMI,  MI = -I, -I + 1, c, I

In NMR spectroscopy, the sample is exposed to electromagnetic radiation that in-
duces transitions between nuclear-spin energy levels. The selection rule turns out to be 
�MI = {1. The NMR transition frequency n is found as follows:

	 hn = � �E � = �g � UB � �MI � = �g � UB

	 n = 1 �g � >2p2B = � gN � 1e>4pmp2B 	 (10.60)
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The value of g differs greatly for different nuclei, and in any one experiment, one 
studies the NMR spectrum of one kind of nucleus. The most commonly studied nucleus 
is 1H, the proton. The second most studied nucleus is 13C. The 13C isotope occurs in 1% 
abundance in carbon.

Equation (10.60) is for a nucleus isolated except for the presence of the external 
magnetic field B. For a nucleus present in a molecule, we also have to consider the 
contribution of the molecular electrons to the magnetic field felt by each nucleus. In 
most ground-state molecules, the electron spins are all paired and there is no elec-
tronic orbital angular momentum. With no electronic spin or orbital angular momen-
tum, the electrons do not contribute to the magnetic field experienced by each nucleus. 
However, the application of the external applied field B perturbs the molecular elec-
tronic wave function, thereby producing an electronic contribution to the magnetic 
field at each nucleus. This electronic contribution is proportional to the magnitude of 
the external field B and is usually in the opposite direction to B. Therefore, the mag-
netic field experienced by nucleus i in a molecule is B - si B = 11 - si2B, where 
the proportionality constant si is called the screening constant or shielding con-
stant for nucleus I and is much less than 1. Equation (10.60) becomes for a nucleus in 
a molecule

	 ni = 1 �g � >2p211 - si2B	 (10.61)

The value of si is the same for nuclei that are in the same electronic environment in the 
molecule. For example, in CH3CH2OH, the three CH3 protons have the same si, and the 
two CH2 protons have the same si. (A Newman projection of ethanol, which has a stag-
gered conformation, shows that two of the three CH3 hydrogens are closer to the OH 
group than is the third CH3 hydrogen, but the low barrier to internal rotation in ethanol al-
lows the three methyl hydrogens to be rapidly interchanged at room temperature, thereby 
making the electronic environment the same for these three hydrogens.)

We might thus expect the 1H NMR spectrum of ethanol to show three peaks—one 
for the CH3 protons, one for the CH2 protons, and one for the OH proton, with the relative 
intensities of these peaks being 3:2:1. However, there is an additional effect, called spin–
spin coupling, in which the nuclear spins of the protons on one carbon affect the magnetic 
field experienced by the protons on an adjacent carbon. Different possible orientations 
of the proton spins on one carbon produce different magnetic fields at the protons of the 
adjacent carbon, thereby splitting the NMR transition of the protons at the adjacent car-
bon. For example, the two CH2 proton nuclei have the following four possible nuclear-spin 
orientations:

	 c c   c T   T c   T T 	 (10.62)

where the up and down arrows represent MI =
1
2 and MI = -

1
2, respectively. [Actually, 

because of the indistinguishability of identical particles, the middle two spin states in 
(10.62) must be replaced by linear combinations of these two states, to give nuclear-spin 
states that are analogous to the electron spin functions (10.22) to (10.25).] The middle two 
spin states in (10.62) have the same effect on the magnetic field felt by the CH3 protons, 
so the four spin states in (10.62) produce three different magnetic fields at the CH3 pro-
tons, thereby splitting the CH3 proton NMR absorption line into three closely spaced lines 
of relative intensities 1:2:1, corresponding to the number of CH2 proton spin states that 
produce each magnetic field. One might expect the CH2 protons to also split the OH pro-
ton NMR line. However, even a trace of water present in the ethanol will catalyze a rapid 
exchange of the OH proton between different ethanol molecules, thereby eliminating the 
splitting of the OH line.
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A similar analysis of the possible CH3 proton orientations (Prob. 10.22) shows that 
the CH3 protons split the ethanol CH2 proton NMR line into four lines of relative intensi-
ties 1:3:3:1. The general rule is that a group of n equivalent protons on an atom splits the 
NMR line of protons on an adjacent atom into n + 1 lines. The spin–spin splitting (which 
is transmitted through the chemical bonds) is too weak to affect the NMR lines of protons 
separated by more than three bonds from the protons doing the splitting. In the proton 
NMR spectrum of CH3CH2C1O2H, the CH3 protons split the CH2 proton line into 4 lines, 
and each of these is split into two lines by the C(O)H proton, so the CH2 NMR line is split 
into 8 lines. (The intermolecular proton exchange in ethanol prevents the OH proton from 
splitting the CH2 proton NMR absorption.)

Nuclei with I = 0 (for example, 12C, 16O) don’t split proton NMR peaks. It turns out 
that nuclei with I 7

1
2 (for example, 35Cl, 37Cl, 14N) generally don’t split proton NMR 

peaks. The 19F nucleus has I =
1
2 and does split proton NMR peaks. Also, a quantum-

mechanical analysis shows that the spin–spin interactions between equivalent protons 
don’t affect the NMR spectrum.

The treatment just given (called a first-order analysis) is actually an approxima-
tion that is valid provided that the spin–spin splittings are much smaller than all the 
NMR frequency differences between chemically nonequivalent nuclei. In very large 
molecules, there will likely be chemically nonequivalent nuclei that are in only slightly 
different electronic environments, so the NMR frequency differences between them 
will be quite small and the first-order analysis will not hold. By increasing the strength 
of the applied magnetic field, one increases the NMR frequency differences between 
chemically nonequivalent nuclei, thereby tending to make the spectrum first-order, 
which is easier to analyze. Also, the signal strength is increased as the field is increased. 
Therefore, people try and use as high a field as is feasible. Current NMR research spec-
trometers have fields that correspond to proton NMR frequencies in the range 300 to 
1000 MHz.

NMR spectroscopy is the premier structural research tool in organic chemistry, and 
special NMR techniques allow the structures of small proteins to be determined with the 
aid of NMR.

10.10 Ladder Operators for Electron Spin
The spin angular-momentum operators obey the general angular-momentum commuta-
tion relations of Section 5.4, and it is often helpful to use spin-angular-momentum ladder 
operators.

From (5.110) and (5.111), the raising and lowering operators for spin angular momen-
tum are

	 Sn+ = Snx + iSny and Sn- = Snx - iSny	 (10.63)

Equations (5.112) and (5.113) give

	  Sn+Sn- = Sn2 - Sn2
z + USnz	 (10.64)

	  Sn-S+
n = Sn2 - Sn2

z - USnz	 (10.65)

The spin functions a and b are eigenfunctions of Snz with eigenvalues +1
2U and -1

2U, 
respectively. Since Sn+  is the raising operator, the function Sn+b is an eigenfunction of Snz 
with eigenvalue +1

2U. The most general eigenfunction of Snz with this eigenvalue is an arbi-
trary constant times a. Hence

	 Sn+b = ca	 (10.66)
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where c is some constant. To find c, we use normalization [Eq. (10.11)]:

1 = a
ms

3a1ms24*a1ms2 = a 1Sn+b>c2*1Sn+b>c2

� c � 2 = a 1Sn+b2*Sn+b = a 1Sn+b2*1Snx + iSny2b

	 � c � 2 = a 1Sn+b2*Snxb + i a 1Sn+b2*Snyb	 (10.67)

We now use the Hermitian property of Snx and Sny. For an operator An that acts on functions 
of the continuous variable x, the Hermitian property is

L
�

- �

f*1x2Ang1x2 dx = L
�

- �

g1x)3Anf1x24* dx

For an operator such as Snx that acts on functions of the variable ms, which takes on discrete 
values, the Hermitian property is

	 a
ms

f*1ms2Snxg1ms2 = a
ms

g1ms)3Snx f1ms24*	 (10.68)

Taking f = Sn+b and g = b, we can write (10.67) as

c*c = ab1SnxSn+b2* + i ab1SnySn +b2*
Taking the complex conjugate of this equation and using (10.63) and (10.65), we have

 cc* = ab*SnxSn+b - i ab*SnySn +b

 � c � 2 = ab*1Snx - iSny2Sn+b = ab*Sn-Sn+b

 � c � 2 = ab*1Sn2 - Sn2
z - USnz2b

 � c � 2 = ab*13
4U2 -

1
4U2 +

1
2U22b = U2 ab*b = U2

 � c � = U

Choosing the phase of c as zero, we have c = U, and (10.66) reads

	 Sn+b = Ua	 (10.69)

A similar calculation gives

	 Sn-a = Ub	 (10.70)

Since a is the eigenfunction with the highest possible value of ms, the operator Sn+  acting 
on a must annihilate it [Eq. (5.135)]:

Sn+a = 0

Likewise,
Sn-b = 0

From these last four equations, we get

	 1Sn+ + Sn- 2b = Ua,  1Sn+ - Sn- 2b = Ua	 (10.71)

Use of (10.63) in (10.71) gives

	 Snxb =
1
2Ua,  Snyb = -

1
2iUa	 (10.72)

Similarly, we find

	 Snxa =
1
2Ub,  Snya =

1
2iUb	 (10.73)

Matrix representatives of the spin operators are considered in Prob. 10.28.
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Summary
An elementary particle possesses a spin angular momentum of magnitude 3s1s + 12U241>2 
and z component msU, where ms = -s, -s + 1, c, s - 1, s. For an electron, s =

1
2. 

The spin angular-momentum operators Snx, Sny, Snz, and Sn2 obey relations analogous to 
those obeyed by the orbital angular-momentum operators. The electron spin eigenfunc-
tions corresponding to the states ms =

1
2 and ms = -

1
2 are denoted by a and b. We have 

Snza =
1
2 Ua, Snz b = -

1
2 Ub, Sn2a =

1
213

22U2a, and Sn2b =
1
213

22U2b. The spin functions a and 
b are orthonormal [Eqs. (10.11) and (10.12)]. For a one-electron system, the complete 
stationary-state wave function is the product of a spatial function c1x, y, z2 and a spin 
function (a or b or a linear combination of a and b).

According to the spin–statistics theorem, the complete wave function (including both 
space and spin coordinates) of a system of identical particles with half-integral spin must 
be antisymmetric with respect to interchange of any two such particles. The complete wave 
function of a system of identical particles with integral spin must be symmetric with respect 
to interchange of any two particles. Particles requiring antisymmetric wave functions are 
called fermions, and particles requiring symmetric wave functions are called bosons.

The two-electron spin eigenfunctions consist of the three symmetric functions 
a112a122, b112b122, and 3a112b122 + b112a1224 >12 and the antisymmetric func-
tion 3a112b122 - b112a1224 >12. For the helium atom, each stationary-state wave 
function is the product of a symmetric spatial function and an antisymmetric spin function 
or an antisymmetric spatial function and a symmetric spin function. Some approximate 
helium-atom wave functions are Eqs. (10.26) to (10.30).

A spin-orbital is the product of a one-electron spatial wave function and a one-electron 
spin function. An approximate wave function for a system of electrons can be written as a 
Slater determinant of spin-orbitals. Interchange of two electrons interchanges two rows in 
the Slater determinant, which multiplies the wave function by -1, ensuring antisymmetry. 
In such an approximate wave function, no two electrons can be assigned to the same spin-
orbital. This is the Pauli exclusion principle and is a consequence of the antisymmetry 
requirement.

An electron has a spin magnetic moment mS that is proportional to its spin angular 
momentum S. Transitions between different nuclear-spin energy levels in an applied mag-
netic field give rise to the NMR spectrum of a molecule.

By using ladder operators, we found the effects of Snx and Sny on a and b.

Problems

Sec. 10.1 10.3 10.4 10.6 10.7

Probs. 10.1–10.4 10.5–10.7 10.8–10.10 10.11–10.14 10.15–10.16

Sec. 10.9 10.10 general

Probs. 10.17–10.23 10.24–10.26 10.27–10.29

	10.1	 Calculate the magnitude of the spin angular momentum of a proton. Give a numerical answer.

	10.2	 Calculate the angle that the spin vector S makes with the z axis for an electron with spin 
function a.

	10.3	 The most general spin function for an electron is c1a + c2 b, where c1 and c2 are 
constants. (a)  Complete these equations: Sn21c1a + c2 b2 = ?, Snz1c1a + c2 b2 = ?, and 
Sn2

z1c1a + c2b2 = ?. (b) The requirement that c1a + c2 b be normalized leads to what rela-
tion between c1 and c2?

	10.4	 (a) If Sz of a particle with spin quantum number s is measured, what are the possible outcomes? 
(b) If Sx of a particle with spin quantum number s is measured, what are the possible outcomes? 
(c) In the statistical-ensemble interpretation of quantum mechanics (Section 7.9), all properties 
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of a particle have precise values at all times. Consider the relation S2 = S2
x + S2

y + S2
z  between 

a particle’s spin magnitude and its spin components. For each of the spin quantum number 
values s =

1
2, s = 1, and s =

3
2, examine whether S2 = S2

x + S2
y + S2

z  can be obeyed with 
all of the four quantities S2, Sx, Sy, and Sz simultaneously having experimentally observable 
values.

	  10.5	 State whether each of the following is a boson or a fermion: (a) an electron; (b) a proton; 
(c) a neutron; (d) a photon; (e) a 12C nucleus; (f) a 13C nucleus; (g) a 12C atom; (h) a 13C atom; 
(i) an 14N atom; (j) an 15N atom.

	  10.6	 (a) Show that Pn12 commutes with the Hamiltonian for the lithium atom. (b) Show that Pn12 
and Pn23 do not commute with each other. (c) Show that Pn12 and Pn23 commute when they are 
applied to antisymmetric functions.

	  10.7	 Show that Pn12 is Hermitian.

	  10.8	 Classify each of these functions as symmetric, antisymmetric, or neither symmetric nor antisymmetric. 
(a) f112g122a112a12); (b) f112f12)3a112b122 - b112a12)4; (c) f112f122f132b112b122b13); 
(d) e- a1r1 - r22; (e) 3f112g122 - g112f12)4 3a112b122 - a122b11)4 ; (f) r2

12e
- a1r1 + r22.

	  10.9	 If electrons had a spin of zero, what would be the zeroth-order (interelectronic repulsions 
neglected) wave functions for the ground state and first excited state of lithium?

	10.10	 Explain why the function Ne- cr1e- cr21r1 - r22 should not be used as a trial variation function 
for the helium-atom ground state.

	10.11	 The antisymmetrization operator An is defined as the operator that antisymmetrizes a product 
of n one-electron functions and multiplies it by 1n!2-1>2. For n = 2,

Anf112g122 =
122

`  f112 g112
f122 g122 `

		  (a) For n = 2, express An in terms of Pn12. (b) For n = 3, express An in terms of Pn12, Pn13, and Pn23.

	10.12	 Use theorems about determinants to show that taking the lithium spin-orbitals in a Slater 
determinant as 1sa, 1sb, and 1s1c1a + c2b2, where c1 and c2 are constants, gives a wave 
function that equals zero.

	10.13	 A permanent is defined by the same expansion as a determinant except that all terms are given 
a plus sign. Thus the second-order permanent is

		  +      +

		  ` a b

c d
` = ad + bc

		  Can you think of a use for permanents in quantum mechanics?

	10.14	 A muon has the same charge and spin as an electron, but a heavier mass. What would be the 
ground-state configuration of a lithium atom with two electrons and one muon?

	10.15	 Derive Eq. (10.50) for E112 of lithium as follows. (a) Group together terms in c102 that have 
the same spin factor, to get

c102 = ab112a122a132 + ba112b122a132 + ca112a122b132 = A + B + C

		  where a, b, and c are certain spatial functions and A K ab112a122a132, with similar defini-
tions for B and C. Then verify that E112 = 1 � A � 2H�dt + 1 � B � 2H�dt + 1 � C � 2H�dt + g, 
where the dots stand for six integrals that each contain two of the functions A, B, and C. Use 
orthogonality of spin functions [Eq. (10.12)] to show that each of the six integrals represented 
by dots is zero. (b) Use the normalization of spin functions to show that

E112 = 111  a2H�dv1 dv2 dv3 + 111  b2H�dv1 dv2 dv3 + 111  c2H�dv1 dv2 dv3

		  where spin is no longer involved. (c) Use relabeling of dummy integration variables to show 
that the three integrals in (b) are equal to one another. (d) Use orthonormality of the 1s and 2s 
orbitals and relabeling of integration variables to prove (10.50).

	10.16	 If we had incorrectly used as the zeroth-order Li ground-state wave function the nonantisym-
metric function 1s1121s1222s132, what would E112 be calculated to be?
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	10.17	 Calculate the magnitude of the spin magnetic moment of an electron.

	10.18	 (a) Use Eq. (6.131) to find the expression for the energy levels of the electron spin magnetic 
moment mS in an applied magnetic field B. (b) Calculate the ESR absorption frequency of an 
electron in a magnetic field of 1.00 T.

	10.19	 A 35Cl nucleus has I = 3/2. (a) Find the magnitude of the spin angular momentum of a 35Cl 
nucleus. (b) Find the possible values that can result if the z component of the spin angu-
lar momentum of a 35Cl nucleus is measured. (c) The same as (b) for measurement of the 
y component.

	10.20	 (a) Verify the value of g for 1H given in the table after (10.58). (b) Calculate the NMR absorp-
tion frequency of a proton (1H nucleus) in a magnetic field of 1.00 T.

	10.21	 (a) For a nucleus with I =
1
2 and gN 7 0, sketch a graph of the nuclear-spin energy levels 

versus the applied field B. (b) Repeat (a) for a nucleus with I = 1 and gN 7 0.

	10.22	 For the three CH3 protons in ethanol, draw diagrams similar to (10.62) showing the possible 
nuclear-spin orientations. Deduce the number of lines into which the adjacent CH2 proton 
NMR transition is split, and give the relative intensities of these lines.

	10.23	 The proton NMR spectrum of ethanol contains a triplet peak with relative intensities 1:2:1 
for the CH3 protons, a quartet with relative intensities 1:3:3:1 for the CH2 protons, and a 
singlet peak for the OH proton. These peaks have total relative intensity ratios of 3:2:1. 
For  each of the following molecules give a similar description of the proton NMR spec-
trum: (a) CH3CH2C1O2H; (b) CH3CH2OCH2CH3; (c) benzene; (d) 1,4-dichlorobenzene; 
(e) 1,3-dichlorobenzene.

	10.24	 Verify the spin-operator equations (10.70) and (10.73).

	10.25	 Show that a and b are each eigenfunctions of Sn2
x (but not of Snx). Give a physical explanation 

of why these results make sense (see Prob. 10.26a).

	10.26	 (a) If the spin component Sx of an electron is measured, what possible values can result? 
(b) The functions a and b form a complete set, so any one-electron spin function can be 
written as a linear combination of them. Use Eqs. (10.72) and (10.73) to construct the two 
normalized eigenfunctions of Snx with eigenvalues +1

2U and -1
2U. (c) Suppose a measurement 

of Sz for an electron gives the value +1
2U. If a measurement of Sx is then carried out, give the 

probabilities for each possible outcome. (d) Do the same as in (b) for Sny instead of Snx. In the 
Stern–Gerlach experiment, a beam of particles is sent through an inhomogeneous magnetic 
field, which splits the beam into several beams each having particles with a different compo-
nent of magnetic dipole moment in the field direction. For example, a beam of ground-state 
sodium atoms is split into two beams, corresponding to the two possible orientations of the 
valence electron’s spin. (This neglects the effect of the nuclear spin; for a complete discus-
sion, see H. Kopfermann, Nuclear Moments, Academic Press, 1958, pp. 42–51.) Problem 
10.26c corresponds to setting up a Stern–Gerlach apparatus with the field in the z direction 
and then allowing the +1

2U beam from this apparatus to enter a Stern–Gerlach apparatus that 
has the field in the x direction.

	10.27	 (a) Let Yjm be the normalized eigenfunction of the generalized angular-momentum operators 
(Section 5.4) Mn 2 and Mn z:

Mn 2Yjm = j1j + 12U2Yjm,  Mn zYjm = mUYjm

		  From Section 5.4, the effect of Mn +  on Yjm is to increase the Mn z eigenvalue by U:

Mn +Yjm = AYj,m + 1

		  where A is a constant. Use the procedure that led to (10.69) and (10.70) to show that

	 Mn +Yjm = 3j1j + 12 - m1m + 1241>2UYj,m + 1	 (10.74)

	 Mn -Yjm = 3j1j + 12 - m1m - 1241>2UYj,m - 1	 (10.75)

		  (b) Show that (10.74) and (10.75) are consistent with (10.69) and (10.70). (c) With M = L, the 
function Yjm is the spherical harmonic Ym

l 1u, f2. Verify (10.74) directly for l = 2, m = -1. 
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[Actually, for consistency with the phase choice of Eqs. (10.74) and (10.75), we must add the 
factor 1- i2m + �m� to the definition (5.147) of the spherical harmonics; this introduces a minus 
sign for odd positive values of m.]

	10.28	 The eigenfunctions a and b of the Hermitian operator Snz form a complete, orthonormal set, 
and any one-electron spin function can be written as c1a + c2b. We saw in Section 7.10 that 
functions can be represented by column vectors and operators by square matrices. For the 
representation that uses a and b as the basis functions, (a) write down the column vectors that 
correspond to the functions a, b, and c1a + c2b; (b) use the results of Section 10.10 to show 
that the matrices that correspond to Snx, Sny, Snz, and Sn2 are

		  Sx =
1

2
U a0 1

1 0
b ,  Sy =

1

2
U a0 - i

i 0
b ,  Sz =

1

2
U a1 0

0 -1
b ,  S2 =

1

4
U2 a3 0

0 3
b

		  (c) Verify that the matrices in (b) obey SxSy - SySx = iUSz [Eq. (10.2)]. (d) Find the eigen-
values and eigenvectors of the Sx matrix. Compare the results with those of Prob. 10.26.

	10.29	 True or false? (a) The allowed values of the quantum number s of an electron are -1
2 and 1

2. 
(b) The magnitude of the z component Sz of the spin angular momentum of a particle with 
nonzero spin must always be less than the magnitude � S �  of the spin angular momentum. 
(c) For every two-electron system, the spin factor in the wave function must be antisymmetric. 
(d) For every system of several fermions, interchange of the labels of two fermions in the wave 
function must multiply the wave function by -1. (e) An atom of 79Br is a boson. (f) An atom 
of 3He is a fermion. (g) The magnetic moment of a nucleus is much less than the magnetic 
moment of an electron. (h) For a proton in an external magnetic field that points in the positive 
z direction, the MI = -

1
2 state is higher in energy than the MI =

1
2 state.
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Chapter 11

Many-Electron Atoms

11.1 The Hartree–Fock Self-Consistent-Field Method
For the hydrogen atom, the exact wave function is known. For helium and lithium, very 
accurate wave functions have been calculated by including interelectronic distances in the 
variation functions. For atoms of higher atomic number, one way to find an accurate wave 
function is to first find an approximate wave function using the Hartree–Fock procedure, 
which we shall outline in this section. The Hartree–Fock method is the basis for the use 
of atomic and molecular orbitals in many-electron systems.

The Hamiltonian operator for an n-electron atom is

	 nH = -
U2

2me
a

n

i = 1
 2

i - a
n

i = 1
 

Ze2

4pe0ri
+ a

n - 1

i = 1
a

n

j = i+ 1

e2

4pe0rij
	 (11.1)

where an infinitely heavy point nucleus was assumed (Section 6.6). The first sum in (11.1) 
contains the kinetic-energy operators for the n electrons. The second sum is the potential 
energy (6.58) for the attractions between the electrons and the nucleus of charge Ze. For a 
neutral atom, Z = n. The last sum is the potential energy of the interelectronic repulsions. 
The restriction j 7 i avoids counting each interelectronic repulsion twice and avoids terms 
like e2>4pe0rii. The Hamiltonian (11.1) is incomplete, because it omits spin–orbit and 
other interactions. The omitted terms are small (except for atoms with high Z ) and will be 
considered in Sections 11.6 and 11.7.

The Hartree SCF Method 
Because of the interelectronic repulsion terms e2>4pe0rij, the Schrödinger equation for 
an atom is not separable. Recalling the perturbation treatment of helium (Section 9.3), we 
can obtain a zeroth-order wave function by neglecting these repulsions. The Schrödinger 
equation would then separate into n one-electron hydrogenlike equations. The zeroth-order 
wave function would be a product of n hydrogenlike (one-electron) orbitals:

	 c102 = f11r1, u1, f12 f2 1r2, u2, f22 gfn1rn, un, fn2	 (11.2)

where the hydrogenlike orbitals are

	 f = Rnl1r2Y m
l 1u, f2	 (11.3)

For the ground state of the atom, we would feed two electrons with opposite spin into  
each of the lowest orbitals, in accord with the Pauli exclusion principle, giving the 
ground-state configuration. Although the approximate wave function (11.2) is qualita-
tively useful, it is gravely lacking in quantitative accuracy. For one thing, all the orbitals 
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use the full nuclear charge Z. Recalling our variational treatments of helium and lithium, 
we know we can get a better approximation by using different effective atomic numbers 
for the different orbitals to account for screening of electrons. The use of effective atomic 
numbers gives considerable improvement, but we are still far from having an accurate 
wave function. The next step is to use a variation function that has the same form as (11.2) 
but is not restricted to hydrogenlike or any other particular form of orbitals. Thus we take

	 f = g11r1, u1, f12g2 1r2, u2, f22ggn1rn, un, fn2	 (11.4)

and we look for the functions g1, g2, c, gn that minimize the variational integral 
8f � Hn �f9 > 8f �f9. Our task is harder than in previous variational calculations, where we 
guessed a trial function that included some parameters and then varied the parameters. In 
(11.4) we must vary the functions gi. [After we have found the best possible functions gi, 
Eq. (11.4) will still be only an approximate wave function. The many-electron Schrödinger 
equation is not separable, so the true wave function cannot be written as the product of n 
one-electron functions.]

To simplify matters somewhat, we approximate the best possible atomic orbitals with 
orbitals that are the product of a radial factor and a spherical harmonic:

	 gi = hi1ri2Y mi
li 1ui, fi2	 (11.5)

This approximation is generally made in atomic calculations.
The procedure for finding the functions gi was introduced by Hartree in 1928 and is 

called the Hartree self-consistent-field (SCF) method. Hartree arrived at the SCF pro-
cedure by intuitive physical arguments. The proof that Hartree’s procedure gives the best 
possible variation function of the form (11.4) was given by Slater and by Fock in 1930. [For 
the proof and a review of the SCF method, see S. M. Blinder, Am. J. Phys., 33, 431 (1965).]

Hartree’s procedure is as follows. We first guess a product wave function

	 f0 = s11r1, u1, f12 s21r2, u2, f22 gsn1rn, un, fn2	 (11.6)

where each si is a normalized function of r multiplied by a spherical harmonic. A reason-
able guess for f0 would be a product of hydrogenlike orbitals with effective atomic num-
bers. For the function (11.6), the probability density of electron i is � si � 2. We now focus 
attention on electron 1 and regard electrons 2, 3, c, n as being smeared out to form a 
fixed distribution of electric charge through which electron 1 moves. We are thus aver-
aging out the instantaneous interactions between electron 1 and the other electrons. The 
potential energy of interaction between point charges Q1 and Q2 is V12 = Q1Q2>4pe0r12 
[Eq. (6.58)]. We now take Q2 and smear it out into a continuous charge distribution such 
that r2 is the charge density, the charge per unit volume. The infinitesimal charge in the 
infinitesimal volume dv2 is r2 dv2, and summing up the interactions between Q1 and the 
infinitesimal elements of charge, we have

V12 =
Q1

4pe0 L  
r2

r12
  dv2

For electron 2 (with charge -e), the charge density of the hypothetical charge cloud is 
r2 = -e � s2 � 2, and for electron 1, Q1 = -e. Hence

V12 =
e2

4pe0 L  
0 s2 0 2
r12

 dv2

Adding in the interactions with the other electrons, we have

V12 + V13 + g+ V1n = a
n

j = 2
 

e2

4pe0 L  
0 sj 0 2
r 1j

 dvj
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The potential energy of interaction between electron 1 and the other electrons and the 
nucleus is then

	 V11r1, u1, f12 = a
n

j = 2

e2

4pe0 L  
0 sj 0 2
r 1 j

 dvj -
Ze2

4pe0r1
	 (11.7)

We now make a further approximation beyond assuming the wave function to be a 
product of one-electron orbitals. We assume that the effective potential acting on an elec-
tron in an atom can be adequately approximated by a function of r only. This central-field 
approximation can be shown to be generally accurate. We therefore average V11r1, u1, f12 
over the angles to arrive at a potential energy that depends only on r1:

	 V11r12 =
L

2p

0 L
p

0
V11r1, u1, f12 sin u1 du1 df1

L
2p

0 L
p

0
sin u du df

	 (11.8)

We now use V11r12 as the potential energy in a one-electron Schrödinger equation,

	 c- U2

2me
2

1 + V11r12 d t1112 = e1t1112	 (11.9)

and solve for t1112, which will be an improved orbital for electron 1. In (11.9), e1 is the 
energy of the orbital of electron 1 at this stage of the approximation. Since the potential 
energy in (11.9) is spherically symmetric, the angular factor in t1112 is a spherical harmonic 
involving quantum numbers l1 and m1 (Section 6.1). The radial factor R1112 in t1 is the solution 
of a one-dimensional Schrödinger equation of the form (6.17). We get a set of solutions 
R1112, where the number of nodes k interior to the boundary points 1r = 0 and ) starts at 
zero for the lowest energy and increases by 1 for each higher energy (Section 4.2). We now 
define the quantum number n as n K l + 1 + k, where k = 0,  1, 2, c. We thus have 1s, 
2s, 2p, and so on, orbitals (with orbital energy e increasing with n) just as in hydrogenlike 
atoms, and the number of interior radial nodes 1n - l - 12 is the same as in hydrogenlike 
atoms (Section 6.6). However, since V11r12 is not a simple Coulomb potential, the radial 
factor R11r12 is not a hydrogenlike function. Of the set of solutions R11r12, we take the one 
that corresponds to the orbital we are improving. For example, if electron 1 is a 1s electron 
in the beryllium 1s2 2s2 configuration, then V11r12 is calculated from the guessed orbitals 
of one 1s electron and two 2s electrons, and we use the radial solution of (11.9) with k = 0 
to find an improved 1s orbital.

We now go to electron 2 and regard it as moving in a charge cloud of density

-e3 0 t1112 0 2 + 0 s3132 0 2 + 0 s4142 0 2 + g+ 0 sn1n2 0 24
due to the other electrons. We calculate an effective potential energy V21r22 and solve 
a one-electron Schrödinger equation for electron 2 to get an improved orbital t2122. We 
continue this process until we have a set of improved orbitals for all n electrons. Then we 
go back to electron 1 and repeat the process. We continue to calculate improved orbitals 
until there is no further change from one iteration to the next. The final set of orbitals gives 
the Hartree self-consistent-field wave function.

How do we get the energy of the atom in the SCF approximation? It seems natu-
ral to take the sum of the orbital energies of the electrons, e1 + e2 + g+ en , but this 
is wrong. In calculating the orbital energy e1, we iteratively solved the one-electron 
Schrödinger equation (11.9). The potential energy in (11.9) includes, in an average way, 
the energy of the repulsions between electrons 1 and 2, 1 and 3, c,1 and n. When we 
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solve for e2, we solve a one-electron Schrödinger equation whose potential energy includes 
repulsions between electrons 2 and 1, 2 and 3, c, 2 and n. If we take g i ei, we will count 
each interelectronic repulsion twice. To correctly obtain the total energy E of the atom, 
we must take

	  E = a
n

i = 1
ei - a

n - 1

i = 1
a

n

j = i+ 1LL  
e2 0  gi1i2 0 2 0 gj1 j2 0 2

4pe0ri j
 dvi dvj	 (11.10)

	  E = a
i
ei - a

i
a
j7 i

Jij

where the average repulsions of the electrons in the Hartree orbitals of (11.4) were sub-
tracted from the sum of the orbital energies, and where the notation Jij was used for 
Coulomb integrals [Eq. (9.99)].

The set of orbitals belonging to a given principal quantum number n constitutes a 
shell. The n = 1, 2, 3, c shells are the K, L, M, c shells, respectively. The orbitals 
belonging to a given n and a given l constitute a subshell. Consider the sum of the Hartree 
probability densities for the electrons in a filled subshell. Using (11.5), we have

	 2 a
l

m = -l
0  hn,l1r2 0 2 0 Y m

l 1u, f2 0 2 = 2 0 hn,l1r2 0 2 a
l

m = -l
0 Y m

l 1u, f2 0 2	 (11.11)

where the factor 2 comes from the pair of electrons in each orbital. The spherical-harmonic 
addition theorem (Merzbacher, Section 9.7) shows that the sum on the right side of (11.11) 
equals 12l + 12>4p. Hence the sum of the probability densities is 3(2l + 12>2p4  �  hn,l1r2 �2, 
which is independent of the angles. A closed subshell gives a spherically symmetric prob-
ability density, a result called Unsöld’s theorem. For a half-filled subshell, the factor 2 is 
omitted from (11.11), and here also we get a spherically symmetric probability density.

The Hartree–Fock SCF Method 
The alert reader may have realized that there is something fundamentally wrong with the 
Hartree product wave function (11.4). Although we have paid some attention to spin and 
the Pauli exclusion principle by putting no more than two electrons in each spatial orbital, 
any approximation to the true wave function should include spin explicitly and should 
be antisymmetric to interchange of electrons (Chapter 10). Hence, instead of the spatial 
orbitals, we must use spin-orbitals and must take an antisymmetric linear combination of 
products of spin-orbitals. This was pointed out by Fock (and by Slater) in 1930, and an SCF 
calculation that uses antisymmetrized spin-orbitals is called a Hartree–Fock calculation. 
We have seen that a Slater determinant of spin-orbitals provides the proper antisymmetry. 
For example, to carry out a Hartree–Fock calculation for the lithium ground state, we start 
with the function (10.54), where f and g are guesses for the 1s and 2s orbitals. We then 
carry out the SCF iterative process until we get no further improvement in f and g. This 
gives the lithium ground-state Hartree–Fock wave function.

The differential equations for finding the Hartree–Fock orbitals have the same general 
form as (11.9):

	 Fnui = eiui,  i = 1, 2, c, n	 (11.12)

where ui is the ith spin-orbital, the operator Fn, called the Fock (or Hartree–Fock) 
operator, is the effective Hartree–Fock Hamiltonian, and the eigenvalue ei is the orbital 
energy of spin-orbital i. However, the Hartree–Fock operator Fn has extra terms as com-
pared with the effective Hartree Hamiltonian given by the bracketed terms in (11.9). The 
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Hartree–Fock expression for the total energy of the atom involves exchange integrals Kij 
in addition to the Coulomb integrals that occur in the Hartree expression (11.10). See 
Section 14.3. [Actually, Eq. (11.12) applies only when the Hartree–Fock wave function 
can be written as a single Slater determinant, as it can for closed-subshell atoms and 
atoms with only one electron outside closed subshells. When the Hartree–Fock wave 
function contains more than one Slater determinant, the Hartree–Fock equations are more 
complicated than (11.12).]

The orbital energy ei in the Hartree–Fock equations (11.12) can be shown to be a good 
approximation to the negative of the energy needed to ionize a closed-subshell atom by 
removing an electron from spin-orbital i (Koopmans’ theorem; Section 15.5).

Originally, Hartree–Fock atomic calculations were done by using numerical methods 
to solve the Hartree–Fock differential equations (11.12), and the resulting orbitals were 
given as tables of the radial functions for various values of r. [The Numerov method (Sec-
tions 4.4 and 6.9) can be used to solve the radial Hartree–Fock equations for the radial 
factors in the Hartree–Fock orbitals; the angular factors are spherical harmonics. See  
D. R. Hartree, The Calculation of Atomic Structures, Wiley, 1957; C. Froese Fischer, 
The Hartree–Fock Method for Atoms, Wiley, 1977.]

In 1951, Roothaan proposed representing the Hartree–Fock orbitals as linear combi-
nations of a complete set of known functions, called basis functions. Thus for lithium we 
would write the Hartree–Fock 1s and 2s spatial orbitals as

	 f = a
i

bixi, g = a
i

cixi	 (11.13)

where the xi functions are some complete set of functions, and where the bi>s and ci>s are 
expansion coefficients that are found by the SCF iterative procedure. Since the xi (chi i) 
functions form a complete set, these expansions are valid. The Roothaan expansion proce-
dure allows one to find the Hartree–Fock wave function using matrix algebra (see Section 
14.3 for details). The Roothaan procedure is readily implemented on a computer and is 
often used to find atomic Hartree–Fock wave functions and nearly always used to find 
molecular Hartree–Fock wave functions.

A commonly used set of basis functions for atomic Hartree–Fock calculations is the 
set of Slater-type orbitals (STOs) whose normalized form is

	
12z>a02n + 1>2

312n2!41>2 r n - 1e-zr>a0Y m
l 1u, f2	 (11.14)

The set of all such functions with n, l, and m being integers obeying (6.96)–(6.98) but with 
z having all possible positive values forms a complete set. The parameter z is called the 
orbital exponent. To get a truly accurate representation of the Hartree–Fock orbitals, we 
would have to include an infinite number of Slater orbitals in the expansions. In practice, 
one can get very accurate results by using only a few judiciously chosen Slater orbitals. 
(Another possibility is to use Gaussian-type basis functions; see Section 15.4.)

Clementi and Roetti did Hartree–Fock calculations for the ground state and some 
excited states of the first 54 elements of the periodic table [E. Clementi and C. Roetti, At. 
Data Nucl. Data Tables, 14, 177 (1974); Bunge and co-workers have recalculated these 
wave functions; C. F. Bunge et al., At. Data Nucl. Data Tables, 53, 113 (1993); Phys. Rev. 
A, 46, 3691 (1992); these atomic wave functions can be found at www.ccl.net/cca/data/
atomic-RHF-wavefunctions/index.shtml]. For example, consider the Hartree–Fock ground-
state wave function of helium, which has the form [see Eq. (10.41)]

f112f122 # 2-1>23a112b122 - a122b1124
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Clementi and Roetti expressed the 1s orbital function f as the following combination of 
five 1s Slater-type orbitals:

f = p-1>2a
5

i = 1
 ci a

zi

a0
b

3>2
e-zir>a0

where the expansion coefficients ci are c1 = 0.76838, c2 = 0.22346, c3 = 0.04082,
 c4 = -0.00994, c5 = 0.00230 and where the orbital exponents zi are z1 = 1.41714, 
z2 = 2.37682, z3 = 4.39628, z4 = 6.52699, z5 = 7.94252. [The largest term in the expan
sion has an orbital exponent that is similar to the orbital exponent (9.62) for the simple 
trial function (9.56).] The Hartree–Fock energy is -77.9 eV, as compared with the true 
nonrelativistic energy, -79.0 eV. The 1s orbital energy corresponding to f was found to 
be -25.0 eV, as compared with the experimental helium ionization energy of 24.6 eV.

For the lithium ground state, Clementi and Roetti used a basis set consisting of two 1s 
STOs (with different orbital exponents) and four 2s STOs (with different orbital exponents). 
The lithium 1s and 2s Hartree–Fock orbitals were each expressed as a linear combination 
of all six of these basis functions. The Hartree–Fock energy is -202.3  eV, as compared 
with the true energy -203.5 eV.

Electron densities calculated from Hartree–Fock wave functions are quite accurate. 
Figure 11.1 compares the radial distribution function of argon (found by integrating the 
electron density over the angles u and f and multiplying the result by r2) calculated by the 
Hartree–Fock method with the experimental radial distribution function found by electron 
diffraction. (Recall from Section 6.6 that the radial distribution function is proportional 
to the probability of finding an electron in a thin spherical shell at a distance r from the 
nucleus.) Note the electronic shell structure in Fig. 11.1. The high nuclear charge in 18Ar 
makes the average distance of the 1s electrons from the nucleus far less than in H or He. 
Thus there is only a moderate increase in atomic size as we go down a given group in 
the periodic table. Calculations show that the radius of a sphere containing 98% of the 
Hartree–Fock electron probability density gives an atomic radius in good agreement with 
the empirically determined van der Waals radius. [See C. W. Kammeyer and D. R. Whitman, 
J. Chem. Phys., 56, 4419 (1972).]

Although the radial distribution function of an atom shows the shell structure, the 
electron probability density integrated over the angles and plotted versus r does not oscil-
late. Rather, for ground-state atoms this probability density is a maximum at the nucleus 
(because of the s electrons) and continually decreases as r increases. Similarly, in mol-
ecules the maxima in electron probability density usually occur at the nuclei; see, for 
example, Fig. 13.7. [For further discussion, see H. Weinstein, P. Politzer, and S. Srebnik, 
Theor. Chim. Acta, 38, 159 (1975).]

Figure 11.1  Radial distribu-
tion function in Ar as a  
function of r. The broken line 
is the result of a Hartree–Fock 
calculation. The solid line is the 
result of electron-diffraction 
data. [Reprinted figure with 
permission from L.S. Bartell 
and L. O. Brockway, Physical 
Review Series II, Vol 90, 833, 
1953. Copyright 1953 by the 
American Physical Society.]
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Accurate representation of a many-electron atomic orbital (AO) requires a linear com-
bination of several Slater-type orbitals. For rough calculations, it is convenient to have 
simple approximations for AOs. We might use hydrogenlike orbitals with effective nuclear 
charges, but Slater suggested an even simpler method: to approximate an AO by a single 
function of the form (11.14) with the orbital exponent z taken as

	 z = 1Z - s2>n	 (11.15)

where Z is the atomic number, n is the orbital’s principal quantum number, and s is a 
screening constant calculated by a set of rules (see Prob. 15.62). A Slater orbital replaces 
the polynomial in r in a hydrogenlike orbital with a single power of r. Hence a single Slater 
orbital does not have the proper number of radial nodes and does not represent well the 
inner part of an orbital.

A lot of computation is required to perform a Hartree–Fock SCF calculation for a 
many-electron atom. Hartree did several SCF calculations in the 1930s, when electronic 
computers were not in existence. Fortunately, Hartree’s father, a retired engineer, enjoyed 
numerical computation as a hobby and helped his son. Nowadays computers have replaced 
Hartree’s father.

11.2 Orbitals and the Periodic Table
The orbital concept and the Pauli exclusion principle allow us to understand the periodic 
table of the elements. An orbital is a one-electron spatial wave function. We have used 
orbitals to obtain approximate wave functions for many-electron atoms, writing the wave 
function as a Slater determinant of one-electron spin-orbitals. In the crudest approximation, 
we neglect all interelectronic repulsions and obtain hydrogenlike orbitals. The best possible 
orbitals are the Hartree–Fock SCF functions. We build up the periodic table by feeding 
electrons into these orbitals, each of which can hold a pair of electrons with opposite spin.

Latter [R. Latter, Phys. Rev., 99, 510 (1955)] calculated approximate orbital ener-
gies for the atoms of the periodic table by replacing the complicated expression for the 
Hartree–Fock potential energy in the Hartree–Fock radial equations by a much simpler 
function obtained from the Thomas–Fermi–Dirac method, which uses ideas of statistical 
mechanics to get approximations to the effective potential-energy function for an electron 
and the electron-density function in an atom (Bethe and Jackiw, Chapter 5). Figure 11.2 
shows Latter’s resulting orbital energies for neutral ground-state atoms. These AO energies 
are in pretty good agreement with both Hartree–Fock and experimentally found orbital  
energies (see J. C. Slater, Quantum Theory of Matter, 2nd ed., McGraw-Hill, 1968, 
pp. 146, 147, 325, 326).

Orbital energies change with changing atomic number Z. As Z increases, the orbital 
energies decrease because of the increased attraction between the nucleus and the elec-
trons. This decrease is most rapid for the inner orbitals, which are less well-shielded from 
the nucleus.

For Z 7 1, orbitals with the same value of n but different l have different energies. For 
example, for the n = 3 orbital energies, we have e3s 6 e3p 6 e3d for Z 7 1. The splitting 
of these levels, which are degenerate in the hydrogen atom, arises from the interelectronic 
repulsions. (Recall the perturbation treatment of helium in Section 9.7.) In the limit Z S , 
orbitals with the same value of n are again degenerate, because the interelectronic repul-
sions become insignificant in comparison with the electron–nucleus attractions.

The relative positions of certain orbitals change with changing Z. Thus in hydrogen the 
3d orbital lies below the 4s orbital, but for Z in the range from 7 through 20 the 4s is below 
the 3d. For large values of Z, the 3d is again lower. At Z = 19, the 4s is lower; hence 19K 
has the ground-state configuration 1s2 2s2 2p6 3s2 3p6 4s. Recall that s orbitals are more 
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penetrating than p or d orbitals; this allows the 4s orbital to lie below the 3d orbital for some 
values of Z. Note the sudden drop in the 3d energy, which starts at Z = 21, when filling 
of the 3d orbital begins. The electrons of the 3d orbital do not shield each other very well; 
hence the sudden drop in 3d energy. Similar drops occur for other orbitals.

To help explain the observed electron configurations of the transition elements and 
their ions, Vanquickenborne and co-workers calculated Hartree–Fock 3d and 4s orbital 
energies for atoms and ions for Z = 1 to Z = 29 [L. G. Vanquickenborne et al., Inorg. 
Chem., 28, 1805 (1989); J. Chem. Educ., 71, 469 (1994)].

One complication is that a given electron configuration may give rise to many states. 
[For example, recall the several states of the He 1s 2s and 1s 2p configurations (Sections 9.7
and 10.4).] To avoid this complication, Vanquickenborne and co-workers calculated 
Hartree–Fock orbitals and orbital energies by minimizing the average energy Eav of the 

Figure 11.2  Atomic-
orbital energies as a func-
tion of atomic number for 
neutral atoms, as calculated 
by Latter. [Reprinted figure 
with permission from  
R. Latter, redrawn by  
M. Kasha, Physical Review 
Series II, 90, 510, 1955.  
Copyright 1955 by the 
American Physical Society.] 
Note the logarithmic scales. 
EH is the ground-state hydro-
gen-atom energy, -13.6 eV.
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states of a given electron configuration, instead of by minimizing the energy of each indi-
vidual state of the configuration. The average orbitals obtained differ only slightly from 
the true Hartree–Fock orbitals for a given state of the configuration.

For each of the atoms 1H to 19K, Vanquickenborne and co-workers calculated the 3d 
average orbital energy e3d for the electron configuration in which one electron is removed 
from the highest-occupied orbital of the ground-state electron configuration and put in 
the 3d orbital; they calculated e4s for these atoms in a similar manner. In agreement with 
Fig. 11.2, they found e3d 6 e4s for atomic numbers Z 6 6 and e4s 6 e3d for Z = 7 to 19 
for neutral atoms.

For discussion of the transition elements with Z from 21 to 29, Fig. 11.2 is inadequate 
because it gives only a single value for e3d for each element, whereas e3d (and e4s) for 
a given atom depend on which orbitals are occupied. This is because the electric field 
experienced by an electron depends on which orbitals are occupied. Vanquickenborne 
and co-workers calculated e3d and e4s for each of the valence-electron configurations 
3dn4s2, 3dn + 14s1, and 3dn + 24s0 and found e3d 6 e4s in each of these configurations of 
the neutral atoms and the +1 and +2 ions of the transition elements 21 Sc through 29 Cu 
(which is the order shown in Fig. 11.2).

Since 3d lies below 4s for Z above 20, one might wonder why the ground-state con-
figuration of, say, 21Sc is 3d14s2, rather than 3d3. Although e3d 6 e4s for each of these 
configurations, this does not mean that the 3d3 configuration has the lower sum of orbital 
energies. When an electron is moved from 4s into 3d, e4s and e3d are increased. An orbital 
energy is found by solving a one-electron Hartree–Fock equation that contains potential-energy 
terms for the average repulsions between the electron in orbital i and the other electrons 
in the atom, so ei depends on the values of these repulsions and hence on which orbit-
als are occupied. For the first series of transition elements, the 4s orbital is much larger 
than the 3d orbital. For example, Vanquickenborne and co-workers found the following 
8r9  values in Sc: 8r93d = 0.89 Å and 8r94s = 2.09 Å for 3d14s2; 8r93d = 1.11 Å 
and 8r94s = 2.29 Å for 3d24s1. Because of this size difference, repulsions involving 
4s electrons are substantially less than repulsions involving 3d electrons, and we have 
14s,4s2 6 14s,3d2 6 13d,3d2, where (4s,3d) denotes the average repulsion between an 
electron distributed over the 3d orbitals and an electron in a 4s orbital. (These repulsions 
are expressed in terms of Coulomb and exchange integrals.) When an electron is moved 
from 4s into 3d, the increase in interelectronic repulsion that is a consequence of the 
preceding inequalities raises the orbital energies e3d and e4s. For example, for 21Sc, the 
3d14s2 configuration has e3d = -9.35  eV and e4s = -5.72 eV, whereas the 3d24s1 con-
figuration has e3d = -5.23 eV and e4s = -5.06 eV. For the 3d14s2 configuration, the sum 
of valence-electron orbital energies is -9.35 eV + 21- 5.72 eV2 = -20.79 eV, whereas 
for the 3d24s1 configuration, this sum is 21- 5.23 eV2 - 5.06 eV = -15.52 eV. Thus, 
despite the fact that e3d 6 e4s for each configuration, transfer of an electron from 4s to 3d 
raises the sum of valence-electron orbital energies in Sc. [As we saw in Eq. (11.10) for the 
Hartree method and will see in Section 14.3 for the Hartree–Fock method, the Hartree 
and Hartree–Fock expressions for the energy of an atom contain terms in addition to the 
sum of orbital energies, so we must look at more than the sum of orbital energies to see 
which configuration is most stable.]

For the +2 ions of the transition metals, the reduction in screening makes the valence 
3d and 4s electrons feel a larger effective nuclear charge Zeff than in the neutral atoms. By 
analogy to the H-atom equation E = - 1Z2>n221e2>8pe0a2 [Eq. (6.94)], the orbital ener-
gies e3d and e4s are each roughly proportional to Z2

eff and the energy difference e4s - e3d is 
roughly proportional to Z2

eff. The difference e4s - e3d is thus much larger in the transition-
metal ions than in the neutral atoms; the increase in valence-electron repulsion is no longer 
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enough to make the 4s to 3d transfer energetically unfavorable; and the +2 ions have 
ground-state configurations with no 4s electrons.

For further discussion of electron configurations, see W. H. E. Schwarz, J. Chem. 
Educ., 87, 444 (2010); Schwarz and R. L. Rich, ibid., 87, 435.

Figure 11.2 shows that the separation between ns and np orbitals is much less than that 
between np and nd orbitals, giving the familiar ns2np6 stable octet.

The orbital concept is the basis for most qualitative discussions of the chemistry of 
atoms and molecules. The use of orbitals, however, is an approximation. To reach the true 
wave function, we must go beyond a Slater determinant of spin-orbitals.

11.3 Electron Correlation
Energies calculated by the Hartree–Fock method are typically in error by about 1

2% for 
light atoms. On an absolute basis this is not much, but for the chemist it is too large. For 
example, the total energy of the carbon atom is about -1000 eV, and 1

2% of this is 5 eV. 
Chemical single-bond energies run about 5 eV. Calculating a bond energy by taking the 
difference between Hartree–Fock molecular and atomic energies, which are in error by 
several electronvolts for light atoms, is an unreliable procedure. We must seek a way to 
improve Hartree–Fock wave functions and energies. (Our discussion will apply to mol-
ecules as well as atoms.)

A Hartree–Fock SCF wave function takes into account the interactions between 
electrons only in an average way. Actually, we must consider the instantaneous interac-
tions between electrons. Since electrons repel each other, they tend to keep out of each 
other’s way. For example, in helium, if one electron is close to the nucleus at a given 
instant, it is energetically more favorable for the other electron to be far from the nucleus 
at that instant. One sometimes speaks of a Coulomb hole surrounding each electron in 
an atom. This is a region in which the probability of finding another electron is small. 
The motions of electrons are correlated with each other, and we speak of electron 
correlation. We must find a way to introduce the instantaneous electron correlation 
into the wave function.

Actually, a Hartree–Fock wave function does have some instantaneous electron cor-
relation. A Hartree–Fock function satisfies the antisymmetry requirement. Therefore [Eq. 
(10.20)], it vanishes when two electrons with the same spin have the same spatial coordi-
nates. For a Hartree–Fock function, there is little probability of finding electrons of the 
same spin in the same region of space, so a Hartree–Fock function has some correlation 
of the motions of electrons with the same spin. This makes the Hartree–Fock energy lower 
than the Hartree energy. One sometimes refers to a Fermi hole around each electron in a 
Hartree–Fock wave function, thereby indicating a region in which the probability of find-
ing another electron with the same spin is small.

The correlation energy Ecorr is the difference between the exact nonrelativistic energy 
Enonrel and the (nonrelativistic) Hartree–Fock energy EHF:

	 Ecorr K Enonrel - EHF	 (11.16)

where Enonrel and EHF should both either include corrections for nuclear motion or omit 
these corrections. For the He atom, the (nonrelativistic) Hartree–Fock energy uncorrected 
for nuclear motion is -2.861681e2>4pe0a02 [E. Clementi and C. Roetti, At. Data Nucl. 
Data Tables, 14, 177 (1974)] and variational calculations (Section 9.4) give the exact 
nonrelativistic energy uncorrected for nuclear motion as -2.903721e2>4pe0a02. There-
fore,  Ecorr, He = -2.903721e2>4pe0a02 + 2.861681e2>4pe0a02 = -0.042041e2>4pe0a02
= -1.14 eV. For atoms and molecules where Enonrel cannot be accurately calculated, 
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one combines the experimental energy with estimates for relativistic and nuclear-motion 
corrections to get Enonrel. For neutral ground-state atoms, � Ecorr �  has been found to increase 
roughly linearly with the number n of electrons:

Ecorr � -0.0170n1.311e2>4pe0a02 = -0.0170n1.31127.2 eV2
[E. Clementi and G. Corongiu, Int. J. Quantum Chem., 62, 571 (1997)]. The percentage 
1Ecorr>Enonrel2 * 100% decreases with increasing atomic number. Some values are 0.6% 
for Li, 0.4% for C, 0.2% for Na, and 0.1% for K.

We have already indicated two of the ways in which we may provide for instantaneous 
electron correlation. One method is to introduce the interelectronic distances rij into the 
wave function (Section 9.4).

Another method is configuration interaction. We found (Sections 9.3 and 10.4)  
the zeroth-order wave function for the helium-atom 1s2 ground state to be 
1s1121s1223a112b122 - b112a1224 >22. We remarked that first- and higher-order 
corrections to the wave function will mix in contributions from excited configurations, 
producing configuration interaction (CI), also called configuration mixing (CM).

The most common way to do a configuration-interaction calculation on an atom or 
molecule uses the variation method. One starts by choosing a basis set of one-electron 
functions xi. In principle, this basis set should be complete. In practice, one is limited to 
a basis set of finite size. One hopes that a good choice of basis functions will give a good 
approximation to a complete set. For atomic calculations, STOs [Eq. (11.14)] are often 
chosen as the basis functions.

The SCF atomic (or molecular) orbitals fi are written as linear combinations of the 
basis-set members [see (11.13)], and the Hartree–Fock equations (11.12) are solved to give 
the coefficients in these linear combinations. The number of atomic (or molecular) orbit-
als obtained equals the number of basis functions used. The lowest-energy orbitals are 
the occupied orbitals for the ground state. The remaining unoccupied orbitals are called 
virtual orbitals.

Using the set of occupied and virtual spin-orbitals, one can form antisymmetric many-
electron functions that have different orbital occupancies. For example, for helium, one can form 
functions that correspond to the electron configurations 1s2, 1s 2s, 1s 2p, 2s2, 2s 2p, 2p2, 1 s3s, 
and so on. Moreover, more than one function can correspond to a given electron configura-
tion. Recall the functions (10.27) to (10.30) corresponding to the helium 1s 2s configuration. 
Each such many-electron function i is a Slater determinant or a linear combination of a few 
Slater determinants. Use of more than one Slater determinant is required for certain open-
shell functions such as (10.44) and (10.45). Each i is called a configuration state function 
or a configuration function or simply a “configuration.” (This last name is unfortunate, 
since it leads to confusion between an electron configuration such as 1s2 and a configuration 
function such as 01s 1s 0 .)

As we saw in perturbation theory, the true atomic (or molecular) wave function c 
contains contributions from configurations other than the one that makes the main con-
tribution to c, so we express c as a linear combination of the configuration functions i:

	 c = a
i

cii	 (11.17)

We then regard (11.17) as a linear variation function (Section 8.5). Variation of the coef-
ficients ci to minimize the variational integral leads to the equation

	 det1Hij - ESij2 = 0	 (11.18)

where Hij K 8  i 0 Hn 0  j9  and Sij K 8i 0  j9 . Commonly, the i functions are ortho
normal, but if they are not orthogonal, they can be made so by the Schmidt method. [Only 
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configuration functions whose angular-momentum eigenvalues are the same as those of 
the state c will contribute to the expansion (11.17); see Section 11.5.]

Because the many-electron configuration functions i are ultimately based on a one-
electron basis set that is a complete set, the set of all possible configuration functions is a 
complete set for the many-electron problem: Any antisymmetric many-electron function 
(including the exact wave function) can be expressed as a linear combination of the i func-
tions. (For a proof of this, see Szabo and Ostlund, Section 2.2.7.) Therefore, if one starts 
with a complete one-electron basis set and includes all possible configuration functions, 
a CI calculation will give the exact atomic (or molecular) wave function c for the state 
under consideration. In practice, one is limited to a finite, incomplete basis set, rather than 
an infinite, complete basis set. Moreover, even with a modest-size basis set, the number 
of possible configuration functions is extremely large, and one usually does not include 
all possible configuration functions. Part of the “art” of the CI method is choosing those 
configurations that will contribute the most.

Because it generally takes very many configuration functions to give a truly accurate 
wave function, configuration-interaction calculations for systems with more than a few 
electrons are time-consuming, even on supercomputers. Other methods for allowing for 
electron correlation are discussed in Chapter 16.

In summary, to do a CI calculation, we choose a one-electron basis set xi, iteratively 
solve the Hartree–Fock equations (11.12) to determine one-electron atomic (or molecular) 
orbitals fi as linear combinations of the basis set, form many-electron configuration func-
tions i using the orbitals fi, express the wave function c as a linear combination of these 
configuration functions, solve (11.18) for the energy, and solve the associated simultaneous 
linear equations for the coefficients ci in (11.17). [In practice, (11.18) and its associated 
simultaneous equations are solved by matrix methods; see Section 8.6.]

As an example, consider the ground state of beryllium. The Hartree–Fock SCF 
method would find the best forms for the 1s and 2s orbitals in the Slater determinant 
01s1s2s2s 0  and use this for the ground-state wave function. [We are using the notation 
of Eq. (10.47).] Going beyond the Hartree–Fock method, we would include contribu-
tions from excited configuration functions (for example, 01s1s3s3s 0 ) in a linear variation 
function for the ground state. Bunge did a CI calculation for the beryllium ground state 
using a linear combination of 650 configuration functions [C. F. Bunge, Phys. Rev. A, 
14, 1965 (1976)]. The Hartree–Fock energy is -14.57301e2>4pe0a02, Bunge’s CI result 
is -14.66691e2>4pe0a02, and the exact nonrelativistic energy is -14.66741e2>4pe0a02. 
Bunge was able to obtain 99.5% of the correlation energy.

A detailed CI calculation for the He atom is shown in Section 16.2.

11.4 Addition of Angular Momenta
For a many-electron atom, the operators for individual angular momenta of the electrons do 
not commute with the Hamiltonian operator, but their sum does. Hence we want to learn 
how to add angular momenta.

Suppose we have a system with two angular-momentum vectors M1 and M2. They 
might be the orbital angular-momentum vectors of two electrons in an atom, or they might 
be the spin angular-momentum vectors of two electrons, or one might be the spin and the 
other the orbital angular momentum of a single electron. The eigenvalues of Mn 2

1, Mn 2
2, Mn 1z, 

and Mn 2z are j11 j1 + 12U2, j21 j2 + 12U2, m1U, and m2U, where the quantum numbers obey 
the usual restrictions. The components of M1

n  and M2
n  obey the angular-momentum com-

mutation relations [Eqs. (5.46), (5.48), and (5.107)]

	 3Mn 1x, Mn 1y4 = iUMn 1z, etc. 3Mn 2x, Mn 2y4 = iUMn 2z, etc.	 (11.19)
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We define the total angular momentum M of the system as the vector sum

	 M = M1 + M2	 (11.20)

M is a vector with three components:

	 M = Mx i + My j + Mzk	 (11.21)

The vector equation (11.20) gives the three scalar equations

	 Mx = M1x + M2x ,  My = M1y + M2y ,  Mz = M1z + M2z	 (11.22)

For the operator Mn 2, we have

	 Mn 2 =   Mn  �   Mn = Mn 2
x + Mn 2

y + Mn 2
z 	 (11.23)

	 Mn 2 = 1Mn 1 + Mn 22 � 1Mn 1 + Mn 22
	 Mn 2 = Mn 2

1 + Mn 2
2 + Mn 1 � Mn 2 + Mn 2 � Mn 1	 (11.24)

If Mn 1 and Mn 2 refer to different electrons, they will commute with each other, since each 
will affect only functions of the coordinates of one electron and not the other. Even if Mn 1 
and Mn 2 are the orbital and spin angular momenta of the same electron, they will commute, 
as one will affect only functions of the spatial coordinates while the other will affect func-
tions of the spin coordinates. Thus (11.24) becomes

	 Mn 2 = Mn 2
1 + Mn 2

2 + 2Mn 1 � Mn 2	 (11.25)

	 Mn 2 = Mn 2
1 + Mn 2

2 + 21Mn 1x Mn 2x + Mn 1y Mn 2y + Mn 1z Mn 2z2	 (11.26)

We now show that the components of the total angular momentum obey the usual 
angular-momentum commutation relations. We have [Eq. (5.4)]

 3Mn x, Mn y4 = 3Mn 1x + Mn 2x, Mn 1y + Mn 2y4
 = 3Mn 1x, Mn 1y + Mn 2y4 + 3Mn 2x, Mn 1y + Mn 2y4
 = 3Mn 1x, Mn 1y4 + 3Mn 1x, Mn 2y4 + 3Mn 2x, Mn 1y4 + 3Mn 2x, Mn 2y4

Since all components of Mn 1 commute with all components of Mn 2, we have

	 3Mn x, Mn y4 = 3Mn 1x, Mn 1y4 + 3Mn 2x, Mn 2y4 = iUMn 1z + iUMn 2z

	 3Mn x, Mn y4 = iUMn z

	 (11.27)

Cyclic permutation of x, y, and z gives

	 3Mn y, Mn z4 = iUMn x,  3Mn z, Mn x4 = iUMn y	 (11.28)

The same commutator algebra used to derive (5.109) gives

	 3Mn 2, Mn x4 = 3Mn 2, Mn y4 = 3Mn 2, Mn z4 = 0	 (11.29)

Thus we can simultaneously quantize M2 and one of its components, say Mz. Since the 
components of the total angular momentum obey the angular-momentum commutation 
relations, the work of Section 5.4 shows that the eigenvalues of Mn 2 are

	 J1J + 12U2,  J = 0, 12, 1, 32, 2, c 	 (11.30)

and the eigenvalues of Mn z are

	 MJ U,  MJ = -J, - J + 1, c  , J - 1, J	 (11.31)
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We want to find out how the total-angular-momentum quantum numbers J and MJ are 
related to the quantum numbers j1, j2, m1, m2 of the two angular momenta we are adding 
in (11.20). We also want the eigenfunctions of Mn 2 and Mn z. These eigenfunctions are charac-
terized by the quantum numbers J and MJ, and, using ket notation (Section 7.3), we write them 
as 0  JMJ9 . Similarly, let 0  j1m19denote the eigenfunctions of Mn 2

1  and Mn 1z and 0  j2m29  denote 
the eigenfunctions of Mn 2

2  and Mn 2z. Now it is readily shown (Prob. 11.10) that

	 3Mn x, Mn
2
14 = 3Mn y, Mn

2
14 = 3Mn z, Mn

2
14 = 3Mn 2, Mn 2

14 = 0	 (11.32)

with similar equations with Mn 2
2 replacing Mn 2

1. Hence we can have simultaneous eigenfunctions 
of all four operators Mn 2

1, Mn 2
2, Mn 2, Mn z, and the eigenfunctions 0 JMJ9  can be more fully writ-

ten as 0 j1 j2 JMJ9. However, one finds that Mn 2 does not commute with Mn 1z or Mn 2z (Prob. 
11.12), so the eigenfunctions 0  j1 j2 JMJ9  are not necessarily eigenfunctions of Mn 1z or Mn 2z.

If we take the complete set of functions 0  j1m19  for particle 1 and the complete set 
0  j2m29  for particle 2 and form all possible products of the form 0 j1m19 0 j2m29 , we will have 
a complete set of functions for the two particles. Each unknown eigenfunction 0  j1 j2J MJ9  
can then be expanded using this complete set:

	 0 j1 j2 JMJ9 = aC1 j1 j2JMJ; m1m22 0 j1m19 0 j2m29 	 (11.33)

where the expansion coefficients are the C1 j1 g m22’s. The functions 0  j1 j2 JMJ9  are 
eigenfunctions of the commuting operators Mn 2

1, Mn 2
2, Mn 2, and Mn z with the following 

eigenvalues:

Mn 2
1 Mn 2

2 Mn 2 Mn z

j11j1 + 12U2 j21j2 + 12U2 J1J + 12U2 Mn J U

The functions 0 j1m19 0 j2m29  are eigenfunctions of the commuting operators Mn 2
1, Mn 1z,

Mn 2
2, Mn 2z with the following eigenvalues:

Mn 2
1 Mn 1z Mn 2

2 Mn 2z

j11 j1 + 12U2 m1U j21 j2 + 12U2 m2U

Since the function �  j1 j2 JMJ9  being expanded in (11.33) is an eigenfunction of Mn 2
1  

with eigenvalue j11 j1 + 12U2, we include in the sum only terms that have the same j1 value 
as in the function 0  j1 j2 JMJ9. (See Theorem 3 at the end of Section 7.3.) Likewise, only 
terms with the same j2 value as in 0  j1 j2 JMJ9 are included in the sum. Hence the sum goes 
over only the m1 and m2 values. Also, using Mn z = Mn 1z + Mn 2z, we can prove (Prob. 11.11) 
that the coefficient C vanishes unless

	 m1 + m2 = MJ	 (11.34)

To find the total-angular-momentum eigenfunctions, one must evaluate the coefficients in 
(11.33). These are called Clebsch–Gordan or Wigner or vector addition coefficients. For 
their evaluation, see Merzbacher, Section 16.6.

Thus each total-angular-momentum eigenfunction 0  j1 j2 JMJ9  is a linear combination 
of those product functions 0  j1m19  0  j2m29  whose m values satisfy m1 + m2 = MJ.

We now find the possible values of the total-angular-momentum quantum  
number J that arise from the addition of angular momenta with individual quantum num-
bers j1 and j2.

Before discussing the general case, we consider the case with j1 = 1, j2 = 2. The 
possible values of m1 are -1, 0, 1, and the possible values of m2 are -2, -1, 0, 1, 2. If we 
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describe the system by the quantum numbers j1,  j2, m1, m2, then the total number of pos-
sible states is fifteen, corresponding to three possibilities for m1 and five for m2. Instead, 
we can describe the system using the quantum numbers j1,  j2, J, MJ, and we must have 
the same number of states in this description. Let us tabulate the fifteen possible values of 
MJ using (11.34):

m1 = -1   0 1

-3 -2 -1 -2 = m2

-2 -1 0 -1

 -1 0 1   0

0 1 2   1

1 2 3   2

where each MJ value in the table is the sum of the m1 and m2 values at the top and side. 
The number of times each value of MJ occurs is

value of MJ 3 2 1 0 -1 -2 -3

number of occurrences 1 2 3 3    3    2   1

The highest value of MJ is +3. Since MJ ranges from -J to +J, the highest value of J 
must be 3. Corresponding to J = 3, there are seven values of MJ ranging from -3 to +3. 
Eliminating these seven values, we are left with

value of MJ 2 1 0 -1 -2

number of occurrences 1 2 2   2   1

The highest remaining value, MJ = 2, must correspond to J = 2. For J = 2, we have five 
values of MJ, which when eliminated leave

value of MJ 1 0 -1

number of occurrences 1 1   1

These remaining values of MJ clearly correspond to J = 1. Thus, for the individual 
angular-momentum quantum numbers j1 = 1, j2 = 2, the possible values of the total-
angular-momentum quantum number J are 3, 2, and 1.

Now consider the general case. There are 2j1 + 1 values of m1 (ranging from - j1 
to + j12 and 2j2 + 1 values of m2. Hence there are 12j1 + 1212j2 + 12 possible states 
0 j1m19 0 j2m29  with fixed j1 and j2 values. The highest possible values of m1 and m2 
are j1 and j2, respectively. Therefore, the maximum possible value of MJ = m1 + m2 is 
j1 + j2 [Eq. (11.34)]. Since MJ ranges from -J to +J, the maximum possible value of 
J must also be j1 + j2:

	 Jmax = j1 + j2	 (11.35)

The second-highest value of MJ is j1 + j2 - 1, which arises in two ways: m1 = j1 - 1, 
m2 = j2 and m1 = j1, m2 = j2 - 1. Linear combinations of these two states must give one 
state with J = j1 + j2, MJ = j1 + j2 - 1 and one state with J = j1 + j2 - 1, MJ =

j1 + j2 - 1. Continuing in this manner, we find that the possible values of J are

j1 + j2,  j1 + j2 - 1,  j1 + j2 - 2,  c  ,  Jmin

where Jmin is the lowest possible value of J.
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We determine Jmin by the requirement that the total number of states be 
12j1 + 1212j2 + 12. For a particular value of J, there are 2J + 1 MJ values, and so 2J + 1 
states correspond to each value of J. The total number of states 0  j1 j2 JMJ9  for fixed j1 and 
j2 is found by summing the number of states 2J + 1 for each J from Jmin to Jmax:

	 number of states = a
Jmax

J = Jmin

12J + 12	 (11.36)

This sum goes from Jmin to Jmax. Let us now take the lower limit of the sum to be J = 0 
instead of Jmin. This change adds to the sum terms with J values of 0, 1, 2, c, Jmin - 1. To 
compensate, we must subtract the corresponding sum that goes from J = 0 to J = Jmin - 1. 
Therefore, (11.36) becomes

number of states = a
Jmax

J = 0
12 J + 12 - a

Jmin - 1

J = 0
12 J + 12

Problem 6.16 gives gn - 1

l = 0 12l + 12 = n2. Replacing n - 1 with b, we get gb

j = 012 J + 12 =

1b + 122. Therefore,

number of states = 1Jmax + 122 - J 2min = J 2 max + 2 Jmax + 1 - J 2min

Replacing Jmax by j1 + j2 [Eq. (11.35)] and equating the number of states to 
12j1 + 1212 j2 + 12 = 4 j1 j2 + 2 j1 + 2 j2 + 1, we have

1 j1 + j222 + 21 j1 + j22 + 1 - J 2min = 4 j1 j2 + 2 j1 + 2 j2 + 1

J2
min = j2

1 - 2j1 j2 + j2
2 = 1 j1 - j222

	 Jmin = { 1 j1 - j22	 (11.37)

If j1 = j2, then Jmin = 0. If j1 � j2, then one of the values in (11.37) is negative and must 
be rejected [Eq. (11.30)]. Thus

	 Jmin =  0  j2 - j1 0 	 (11.38)

To summarize, we have shown that the addition of two angular momenta character-
ized by quantum numbers  j1 and  j2 results in a total angular momentum whose quantum 
number J has the possible values

	 J = j1 + j2 , j1 + j2 - 1, c  , 0  j1 - j2 0 	 (11.39)

E x a m p l e

Find the possible values of the total-angular-momentum quantum number resulting 
from the addition of angular momenta with quantum numbers j1 = 2 and j2 = 3.

The maximum and minimum J values are given by (11.39) as j1 + j2 = 2 + 3 = 5 
and 0  j1 - j2 0 = 0 2 - 3 0 = 1. The possible J values (11.39) are therefore 
J = 5, 4, 3, 2, 1.

Exercise  Find the possible values of the total-angular-momentum quantum number 
resulting from the addition of angular momenta with quantum numbers j1 = 3 and 
j2 =

3
2. (Answer: J =

9
2, 72, 52, 32.)
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E x a m p l e

Find the possible J values when angular momenta with quantum numbers j1 = 1, 
j2 = 2, and j3 = 3 are added.

To add more than two angular momenta, we apply (11.39) repeatedly. Addition of j1 = 1 
and j2 = 2 gives the possible quantum numbers 3, 2, and 1. Addition of j3 to each of these 
values gives the following possibilities for the total-angular-momentum quantum number:

	 6, 5, 4, 3, 2  , 1, 0;  5, 4, 3, 2, 1;  4, 3, 2	 (11.40)

We have one set of states with total-angular-momentum quantum number 6, two sets of 
states with J = 5, three sets with J = 4, and so on.

Exercise  Find the possible J values when angular momenta with quantum numbers 
j1 = 1,  j2 = 1, and j3 = 1 are added. (Answer: J = 3, 2, 2, 1, 1, 1, 0.)

11.5 Angular Momentum in Many-Electron Atoms
Total Electronic Orbital and Spin Angular Momenta 
The total electronic orbital angular momentum of an n-electron atom is defined as the 
vector sum of the orbital angular momenta of the individual electrons:

	 L = a
n

i = 1
 Li	 (11.41)

Although the individual orbital-angular-momentum operators Ln i do not commute with the 
atomic Hamiltonian (11.1), one can show (Bethe and Jackiw, pp. 102–103) that Ln  does 
commute with the atomic Hamiltonian [provided spin–orbit interaction (Section 11.6) is 
neglected]. We can therefore characterize an atomic state by a quantum number L, where 
L1L + 12U2 is the square of the magnitude of the total electronic orbital angular momen-
tum. The electronic wave function c of an atom satisfies Ln2c = L1L + 12U2c. The total-
electronic-orbital-angular-momentum quantum number L of an atom is specified by a code 
letter, as follows:

L 0 1 2 3 4 5 6 7 8
	 (11.42)

letter S P D F G H I K L

The total orbital angular momentum is designated by a capital letter, while lowercase letters 
are used for orbital angular momenta of individual electrons.

E x a m p l e

Find the possible values of the quantum number L for states of the carbon atom that 
arise from the electron configuration 1s22s22p3d.

The s electrons have zero orbital angular momentum and contribute nothing to the 
total orbital angular momentum. The 2p electron has l = 1 and the 3d electron has 
l = 2. From the angular-momentum addition rule (11.39), the total-orbital-angular-
momentum quantum number ranges from 1 + 2 = 3 to 01 - 2 0 = 1; the possible values 
of L are L = 3, 2, 1. The configuration 1s22s22p3d gives rise to P, D, and F states. [The 
Hartree–Fock central-field approximation has each electron moving in a central-field 
potential, V = V1r2. Hence, within this approximation, the individual electronic orbital 
angular momenta are constant, giving rise to a wave function composed of a single 



306  Chapter 11  |  Many-Electron Atoms

configuration that specifies the individual orbital angular momenta. When we go beyond 
the SCF central-field approximation, we mix in other configurations so we no longer 
specify precisely the individual orbital angular momenta. Even so, we can still use the 
rule (11.39) for finding the possible values of the total orbital angular momentum.]

Exercise  Find the possible values of L for states that arise from the electron configu-
ration 1s2 2s2 2p6 3s2 3p 4p. (Answer: 2, 1, 0.)

The total electronic spin angular momentum S of an atom is defined as the vector 
sum of the spins of the individual electrons:

	 S = a
n

i = 1
 Si	 (11.43)

The atomic Hamiltonian Hn  of (11.1) (which omits spin–orbit interaction) does not involve spin 
and therefore commutes with the total-spin operators Sn2 and Snz. The fact that Sn2 commutes 
with Hn  is not enough to show that the atomic wave functions c are eigenfunctions of Sn2. The 
antisymmetry requirement means that each c must be an eigenfunction of the exchange opera-
tor Pnik with eigenvalue -1 (Section 10.3). Hence Sn2 must also commute with Pnik if we are to 
have simultaneous eigenfunctions of Hn , Sn2, and Pnik. Problem 11.19 shows that 3Sn2, Pnik4 = 0, 
so the atomic wave functions are eigenfunctions of Sn2. We have Sn2c = S1S + 12U2c, and 
each atomic state can be characterized by a total-electronic-spin quantum number S.

E x a m p l e

Find the possible values of the quantum number S for states that arise from the electron 
configuration 1s 2 2s 2  2p 3d.

Consider first the two 1s electrons. To satisfy the exclusion principle, one of these 
electrons must have ms = +

1
2 while the other has ms = -

1
2. If MS is the quantum 

number that specifies the z component of the total spin of the 1s electrons, then the only 
possible value of MS is 12 -

1
2 = 0 [Eq. (11.34)]. This single value of MS clearly means 

that the total spin of the two 1s electrons is zero. Thus, although in general when we 
add the spins s1 =

1
2 and s2 =

1
2 of two electrons according to the rule (11.39), we get 

the two possibilities S = 0 and S = 1, the restriction imposed by the Pauli principle 
leaves S = 0 as the only possibility in this case. Likewise, the spins of the 2s electrons 
add up to zero. The exclusion principle does not restrict the ms values of the 2p and 3d 
electrons. Application of the rule (11.39) to the spins s1 =

1
2 and s2 =

1
2 of the 2p and 

3d electrons gives S = 0 and S = 1. These are the possible values of the total spin 
quantum number, since the 1s and 2s electrons do not contribute to S.

Exercise  Find the possible values of S for states that arise from the electron configu-
ration 1s2 2s2 2p6 3s2 3p 4p. (Answer: 0 and 1.)

Atomic Terms
A given electron configuration gives rise in general to several different atomic states, some 
having the same energy and others having different energies, depending on whether the 
interelectronic repulsions are the same or different for the states. For example, the 1s 2s 
configuration of helium gives rise to four states: The three states with zeroth-order wave 
functions (10.27) to (10.29) all have the same energy; the single state (10.30) has a dif-
ferent energy. The 1s 2p electron configuration gives rise to twelve states: The nine states 
obtained by replacing 2s in (10.27) to (10.29) by 2px, 2py, or 2pz have the same energy; the 
three states obtained by replacing 2s in (10.30) by 2px, 2py, or 2pz have the same energy, 
which differs from the energy of the other nine states.
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Thus the atomic states that arise from a given electron configuration can be grouped 
into sets of states that have the same energy. One can show that states that arise from the 
same electron configuration and that have the same energy (with spin–orbit interaction 
neglected) will have the same value of L and the same value of S (see Kemble, Section 63a). 
A set of equal-energy atomic states that arise from the same electron configuration and 
that have the same L value and the same S value constitutes an atomic term. For a fixed 
L value, the quantum number ML (where ML U is the z component of the total electronic 
orbital angular momentum) takes on 2L + 1 values ranging from -L to +L. For a fixed S 
value, MS takes on 2S + 1 values. The atomic energy does not depend on ML or MS, and 
each term consists of 12L + 1212S + 12 atomic states of equal energy. The degeneracy 
of an atomic term is 12L + 1212S + 12 (spin–orbit interaction neglected).

Each term of an atom is designated by a term symbol formed by writing the numerical 
value of the quantity 2S + 1 as a left superscript on the code letter (11.42) that gives the L 
value. For example, a term that has L = 2 and S = 1 has the term symbol 3D, since 2S + 1 = 3.

E x a m p l e

Find the terms arising from each of the following electron configurations: (a) 1s2p; 
(b) 1s22s22p3d. Give the degeneracy of each term.

(a)	 The 1s electron has quantum number l = 0 and the 2p electron has l = 1. The 
addition rule (11.39) gives L = 1 as the only possibility. The code letter for L = 1 
is P. Each electron has s =

1
2, and (11.39) gives S = 1, 0 as the possible S values. 

The possible values of 2S + 1 are 3 and 1. The possible terms are thus 3P and 
1P. The 3P term has quantum numbers L = 1 and S = 1, and its degeneracy is 
12L + 1212S + 12 = 3132 = 9. The 1P term has L = 1 and S = 0, and its degener-
acy is 12L + 1212S + 12 = 3112 = 3. [The nine states of the 3P term are obtained 
by replacing 2s in (10.27) to (10.29) by 2px, 2py, or 2pz. The three states of the 
1P term are obtained by replacing 2s in (10.30) by 2p functions.]

(b)	 In the two previous examples in this section, we found that the configuration 
1s 2 2s 2 2p3d has the possible L values L = 3, 2, 1 and has S = 1, 0. The code 
letters for these L values are F, D, P, and the terms are

	 1P,  3P,  1D,  3D,  1F,  3F	 (11.44)

The degeneracies are found as in (a) and are 3, 9, 5, 15, 7, and 21, respectively.

Derivation of Atomic Terms
We now examine how to systematically derive the terms that arise from a given electron 
configuration.

First consider configurations that contain only completely filled subshells. In such 
configurations, for each electron with ms = +

1
2 there is an electron with ms = -

1
2. Let the 

quantum number specifying the z component of the total electronic spin angular momen-
tum be MS. The only possible value for MS is zero 1MS = gi msi = 02. Hence S must be 
zero. For each electron in a closed subshell with magnetic quantum number m, there is an 
electron with magnetic quantum number -m. For example, for a 2p6 configuration we have 
two electrons with m = +1, two with m = -1, and two with m = 0. Denoting the quantum 
number specifying the z component of the total electronic orbital angular momentum by 
ML, we have ML = gi  

mi = 0. We conclude that L must be zero. In summary, a configu-
ration of closed subshells gives rise to only one term: 1S. For configurations consisting of 
closed subshells and open subshells, the closed subshells make no contribution to L or S 
and may be ignored in finding the terms.
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We now consider two electrons in different subshells; such electrons are called non-
equivalent. Nonequivalent electrons have different values of n or l or both, and we need 
not worry about any restrictions imposed by the exclusion principle when we derive the 
terms. We simply find the possible values of L from l1 and l2 according to (11.39); combin-
ing s1 and s2 gives S = 0, 1. We previously worked out the pd case, which gives the terms 
in (11.44). If we have more than two nonequivalent electrons, we combine the individual 
l’s to find the values of L, and we combine the individual s’s to find the values of S. 
For example, consider a pdf configuration. The possible values of L are given by (11.40). 
Combining three spin angular momenta, each of which is 1

2, gives S =
3
2, 12, 12. Each of the 

three possibilities in (11.40) with L = 3 may be combined with each of the two possibili-
ties for S =

1
2, giving six 2F terms. Continuing in this manner, we find that the following 

terms arise from a pdf configuration: 2S122, 2P142, 2D162, 2F162, 2G162, 2H142, 2I122, 
4S, 4P122, 4D132, 4F132, 4G132, 4H122,4I, where the number of times each type of term 
occurs is in parentheses.

Now consider two electrons in the same subshell (equivalent electrons). Equivalent 
electrons have the same value of n and the same value of l, and the situation is complicated 
by the necessity to avoid giving two electrons the same four quantum numbers. Hence not 
all the terms derived for nonequivalent electrons are possible. As an example, consider the 
terms arising from two equivalent p electrons, an np2 configuration. (The carbon ground-
state configuration is 1s2 2s2 2p2.) The possible values of m and ms for the two electrons 
are listed in Table 11.1, which also gives ML and MS.

Note that certain combinations are missing from this table. For example, 
m1 = 1, ms1 =

1
2, m2 = 1, ms2 =

1
2 is missing, since it violates the exclusion principle. 

Another missing combination is m1 = 1, ms1 = -
1
2, m2 = 1, ms2 =

1
2. This combination 

differs from m1 = 1, ms1 =
1
2, m2 = 1, ms2 = -

1
2 (row 1) solely by interchange of elec-

trons 1 and 2. Each row in Table 11.1 stands for a Slater determinant, which when expanded 

Table 11.1  Quantum Numbers for Two Equivalent p Electrons
m1 ms1 m2 ms2 ML 5 m1 1 m2 MS 5 ms1 1 ms2

  1   1
2   1 -

1
2   2   0

  1   1
2   0   1

2   1   1

  1   1
2   0 -

1
2   1   0

  1 -
1
2   0   1

2   1   0

  1 -
1
2   0 -

1
2   1 -1

  1   1
2 -1   1

2   0   1

  1   1
2 -1 -

1
2   0   0

  1 -
1
2 -1   1

2   0   0

  1 -
1
2 -1 -

1
2   0 -1

  0   1
2   0 -

1
2   0   0

  0   1
2 -1   1

2 -1   1

  0   1
2 -1 -

1
2 -1   0

  0 -
1
2 -1   1

2 -1   0

  0 -
1
2 -1 -

1
2 -1 -1

-1   1
2 -1 -

1
2 -2   0
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contains terms for all possible electron interchanges among the spin-orbitals. Two rows 
that differ from each other solely by interchange of two electrons correspond to the same 
Slater determinant, and we include only one of them in the table.

The highest value of ML in Table 11.1 is 2, which must correspond to a term with 
L = 2, a D term. The ML = 2 value occurs in conjunction with MS = 0, indicating that 
S = 0 for the D term. Thus we have a 1D term corresponding to the five states

	 ML = 2 1 0 -1 -2

	 MS = 0 0 0    0    0	
(11.45)

The highest value of MS in Table 11.1 is 1, indicating a term with S = 1. MS = 1 occurs 
in conjunction with ML = 1, 0, -1, which indicates a P term. Hence we have a 3P term 
corresponding to the nine states

	 ML = 1 1 1 0 0 0 -1 -1 -1

	 MS = 1 0 -1 1 0 -1 1 0 -1	
(11.46)

Elimination of the states of (11.45) and (11.46) from Table 11.1 leaves only a single state, 
which has ML = 0, MS = 0, corresponding to a 1S term. Thus a p2 configuration gives 
rise to the terms 1S, 3P, 1D. (In contrast, two nonequivalent p electrons give rise to six 
terms: 1S, 3S, 1P, 3P, 1D, 3D.)

Table 11.2a lists the terms arising from various configurations of equivalent elec-
trons. These results may be derived in the same way that we found the p2 terms, but this 
procedure can become quite involved. To derive the terms of the f 7 configuration would 
require a table with 3432 rows. More efficient methods exist [R. F. Curl and J. E. Kilpatrick, 
Am. J. Phys., 28, 357 (1960); K. E. Hyde, J. Chem. Educ., 52, 87 (1975)].

Table 11.2  Terms Arising from Various Electron Configurations
Configuration Terms

(a) Equivalent electrons

s2; p6; d10 1S

p; p5 2P

p2; p4 3P, 1D, 1S

p3 4S, 2D, 2P

d; d9 2D

d2; d 8 3F, 3P, 1G, 1D, 1S

d3; d7 4F, 4P, 2H, 2G, 2F, 2D(2), 2P

d 4; d 6

e
5D, 3H, 3G, 3F122, 3D, 3P12)
1I, 1G122, 1F, 1D122, 1S122

d 5

e
6S, 4G, 4F, 4D, 4P, 2I, 2H, 2G122
2F122, 2D132, 2P, 2S

(b) Nonequivalent electrons

ss 1S, 3S

sp 1P, 3P

sd 1D, 3D

pp 3D, 1D, 3P, 1P, 3S, 1S
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Note from Table 11.2a that the terms arising from a subshell containing N electrons 
are the same as the terms for a subshell that is N electrons short of being full. For example, 
the terms for p2 and p4 are the same. We can divide the electrons of a closed subshell into 
two groups and find the terms for each group. Because a closed subshell gives only a 1S 
term, the terms for each of these two groups must be the same. Table 11.2b gives the terms 
arising from some nonequivalent electron configurations.

To deal with a configuration containing both equivalent and nonequivalent electrons, 
we first find separately the terms from the nonequivalent electrons and the terms from the 
equivalent electrons. We then take all possible combinations of the L and S values of these 
two sets of terms. For example, consider an sp3 configuration. From the s electron, we get a 
2S term. From the three equivalent p electrons, we get the terms 2P, 2D, and 4S (Table 11.2a). 
Combining the L and S values of these terms, we have as the terms of an sp3 configuration

	 3P, 1P, 3D, 1D, 5S, 3S	 (11.47)

Hund’s Rule
To decide which one of the terms arising from a given electron configuration is lowest in 
energy, we use the empirical Hund’s rule: For terms arising from the same electron con-
figuration, the term with the largest value of S lies lowest. If there is more than one term 
with the largest S, then the term with the largest S and the largest L lies lowest.

E x a m p l e

Use Table 11.2 to predict the lowest term of (a) the carbon ground-state configuration 
1s22s22p2; (b) the configuration 1s22s22p63s23p63d24s2.

(a) Table 11.2a gives the terms arising from a p2 configuration as 3P, 1D, and 1S. 
The term with the largest S will have the largest value of the left superscript 2S + 1. 
Hund’s rule predicts 3P as the lowest term. (b) Table 11.2a gives the d2 terms as 
3F, 3P, 1G, 1D, 1S. Of these terms, 3F and 3P have the highest S. 3F has L = 3; 3P has 
L = 1. Therefore, 3F is predicted to be lowest.

Exercise  Predict the lowest term of the 1s22s2p3 configuration using (11.47). 
(Answer: 5S.)

Hund’s rule works very well for the ground-state configuration, but occasionally fails 
for an excited configuration (Prob. 11.30).

Hund’s rule gives only the lowest term of a configuration and should not be used to 
decide the order of the remaining terms. For example, for the 1s22s2p3 configuration of 
carbon, the observed order of the terms is

5S 6  3D 6  3P 6  1D 6  3S 6  1P

The 3S term lies above the 1D term, even though 3S has the higher spin S.
It is not necessary to consult Table 11.2a to find the lowest term of a partly filled sub-

shell configuration. We simply put the electrons in the orbitals so as to give the greatest 
number of parallel spins. Thus, for a d3 configuration, we have

	 m: 
c

+2
 

c

+1
 

c

0
 

-1
 

-2
	 (11.48)

The lowest term thus has three parallel spins, so S =
3
2, giving 2S + 1 = 4. The 

maximum value of ML is 3, corresponding to L = 3, an F term. Hund’s rule thus predicts 
4F as the lowest term of a d3 configuration.



11.5 Angular Momentum in Many-Electron Atoms  |  311

The traditional explanation of Hund’s rule is as follows: Electrons with the same spin 
tend to keep out of each other’s way (recall the idea of Fermi holes), thereby minimizing 
the Coulombic repulsion between them. The term that has the greatest number of paral-
lel spins (that is, the greatest value of S) will therefore be lowest in energy. For example, 
the 3S term of the helium 1s2s configuration has an antisymmetric spatial function that 
vanishes when the spatial coordinates of the two electrons are equal. Hence the 3S term 
is lower than the 1S term.

This traditional explanation turns out to be wrong in most cases. It is true that the 
probability that the two electrons are very close together is smaller for the helium 3S 1s 2s 
term than for the 1S 1s 2s term. However, calculations with accurate wave functions show 
that the probability that the two electrons are very far apart is also less for the 3S term. 
The net result is that the average distance between the two electrons is slightly less for 
the 3S term than for the 1S term, and the interelectronic repulsion is slightly greater for 
the 3S term. The calculations show that the 3S term lies below the 1S term because of 
a substantially greater electron–nucleus attraction in the 3S term as compared with the 
1S term. Similar results are found for terms of the atoms beryllium and carbon. [See 
J. Katriel and R. Pauncz, Adv. Quantum Chem., 10, 143 (1977).] The following explana-
tion of these results has been proposed [I. Shim and J. P. Dahl, Theor. Chim. Acta, 48, 
165 (1978)]. The Pauli “repulsion” between electrons of like spin makes the average 
angle between the radius vectors of the two electrons larger for the 3S term than for the 
1S term. This reduces the electronic screening of the nucleus and allows the electrons to 
get closer to the nucleus in the 3S term, making the electron–nucleus attraction greater 
for the 3S term. [See also R. E. Boyd, Nature, 310, 480 (1984); T. Oyamada et al., 
J. Chem. Phys., 133, 164113 (2010).]

Eigenvalues of Two-Electron Spin Functions
The helium atom 1s2s configuration gives rise to the term 3S with degeneracy 
12L + 1212S + 12 = 1132 = 3 and to the term 1S with degeneracy 1112 = 1. The three 
helium zeroth-order wave functions (10.27) to (10.29) must correspond to the triply degen-
erate 3S term, and the single function (10.30) must correspond to the 1S term. Since S = 1 
and MS = 1, 0, -1 for the 3S term, the three spin functions in (10.27) to (10.29) should 
be eigenfunctions of Sn2 with eigenvalue S1S + 12U2 = 2U2 and eigenfunctions of Snz with 
eigenvalues MS U = U, 0, and -U. The spin function in (10.30) should be an eigenfunction 
of Sn2 and Snz with eigenvalue zero in each case, since S = 0 and MS = 0 here. We now 
verify these assertions.

From Eq. (11.43), the total-electron-spin operator is the sum of the spin operators for 
each electron:

	 Sn = Sn1 + Sn2	 (11.49)

Taking the z components of (11.49), we have

	 Snz = Sn1z + Sn2z	 (11.50)

 Snz a112a122 = Sn1z a112a122 + Sn2z a112a122
 = a122Sn1z a112 + a112Sn2z a122
 =

1
2Ua112a122 +

1
2Ua112a122

	  Snz a112a122 = Ua112a122 	 (11.51)

where Eq. (10.7) has been used. Similarly, we find

	 Snz b112b122 = -Ub112b122	 (11.52)
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	 Snz3a112b122 + b112a1224 = 0	 (11.53)

	 Snz3a112b122 - b112a1224 = 0	 (11.54)

Consider now Sn2. We have [Eq. (11.26)]

	 Sn2 = 1Sn 1 + Sn 22 # 1Sn 1 + Sn 22 = Sn2
1 + Sn2

2 + 21Sn1x Sn2x + Sn1y Sn2y + Sn1z Sn2z2 	 (11.55)

Sn2a112a122 = a122Sn2
1a112 + a112Sn2

2a122 + 2Sn1xa112Sn2xa122
	 +  2Sn1ya112Sn2ya122 + 2Sn1za112Sn2za122

Using Eqs. (10.7) to (10.9) and (10.72) and (10.73), we find

	 Sn2a112a122 = 2U2a112a122	 (11.56)

Hence a112a122 is an eigenfunction of Sn2 corresponding to S = 1. Similarly, we find

  Sn2b112b122 = 2U2b112b122
 Sn23a112b122 + b112a1224 = 2U23a112b122 + b112a1224
 Sn23a112b122 - b112a1224 = 0

Thus the spin eigenfunctions in (10.27) to (10.30) correspond to the following values for 
the total spin quantum numbers:

	 S	 MS

triplet•
a(1)a(2) 1 1         (11.57)

2-1/2[a(1)b(2) + b(1)a(2)] 1  0         (11.58)

b(1)b(2) 1 -1          (11.59)

	 singlet 52-1>23a112b122 - b112a1224	 0	 0� (11.60)

[In the notation of Section 11.4, we are dealing with the addition of two angular 
momenta with quantum numbers j1 =

1
2 and j2 =

1
2 to give eigenfunctions with total 

angular-momentum quantum numbers J = 1 and J = 0. The coefficients in (11.57) to 
(11.60) correspond to the coefficients C in (11.33) and are examples of Clebsch–Gordan 
coefficients.]

Figure 11.3 shows the vector addition of S1 and S2 to form S. It might seem surprising 
that the spin function (11.58), which has the z components of the spins of the two electrons 
pointing in opposite directions, could have total spin quantum number S = 1. Figure 11.3 
shows how this is possible.

Atomic Wave Functions
In Section 10.6, we showed that two of the four zeroth-order wave functions of the 
1s2s helium configuration could be written as single Slater determinants, but the other 
two functions had to be expressed as linear combinations of two Slater determinants. 
Since Ln2 and Sn2 commute with the Hamiltonian (11.1) and with the exchange opera-
tor Pnik , the zeroth-order functions should be eigenfunctions of Ln2 and Sn2. The Slater 
determinants D2 and D3 of Section 10.6 are not eigenfunctions of these operators and 
so are not suitable zeroth-order functions. We have just shown that the linear combina-
tions (10.44) and (10.45) are eigenfunctions of Sn2, and they can also be shown to be 
eigenfunctions of Ln2.

For a configuration of closed subshells (for example, the helium ground state), we can 
write only a single Slater determinant. This determinant is an eigenfunction of Ln2 and Sn2 
and is the correct zeroth-order function for the nondegenerate 1S term. A configuration 
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with one electron outside closed subshells (for example, the boron ground configuration) 
gives rise to only one term. The Slater determinants for such a configuration differ from 
one another only in the m and ms values of this electron and are the correct zeroth-order 
functions for the states of the term. When all the electrons in singly occupied orbitals have 
the same spin (either all a or all b), the correct zeroth-order function is a single Slater 
determinant [for example, see (10.42)]. When this is not true, one has to take a linear 
combination of a few Slater determinants to obtain the correct zeroth-order functions, 
which are eigenfunctions of Ln2 and Sn2. The correct linear combinations can be found by 
solving the secular equation of degenerate perturbation theory or by operator techniques. 
Tabulations of the correct combinations for various configurations are available (Slater, 
Atomic Structure, Vol. II). Hartree–Fock calculations of atomic term energies use these 
linear combinations and find the best possible orbital functions for the Slater determinants.

Each wave function of an atomic term is an eigenfunction of Ln 2, Sn2, Ln z, and Snz. There-
fore, when one does a configuration-interaction calculation, only configuration functions 
that have the same Ln 2, Sn2, Ln z, and Snz eigenvalues as the state under consideration are 
included in the expansion (11.17). For example, the helium 1s2 ground term is 1S, which 
has L = 0 and S = 0. The electron configuration 1s2p produces 1P and 3P terms only and 
so gives rise to states with L = 1 only. No configuration functions arising from the 1s2p 
configuration can occur in the CI wave function (11.17) for the He ground state.

Parity of Atomic States
Consider the atomic Hamiltonian (11.1). We showed in Section 7.5 that the parity 
operator n  commutes with the kinetic-energy operator. The quantity 1>ri in (11.1) is 
r-1

i = 1x2
i + y2

i + z2
i 2-1>2. Replacement of each coordinate by its negative leaves 1>ri 

unchanged. Also

r-1
ij = 3(xi - xj22 + 1yi - yj22 + 1zi - zj224-1>2

and inversion has no effect on 1>rij. Thus n  commutes with the atomic Hamiltonian, and 
we can choose atomic wave functions to have definite parity.

z z

z

z

x
x

y y

S

S2

S2

S2

S1

S1

S1
S2

S1

S

S

a(1)a(2) b(1)b(2)
1 [a(1)b(2) 1 b(1)a(2)]

1 [a(1)b(2) 2 b(1)a(2)]

Figure 11.3  Vector 
addition of the spins of two 
electrons. For a112a122 and 
b112b122, the projections 
of S1 and S2 in the xy plane 
make an angle of 90° with 
each other (Prob. 11.18c).
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For a one-electron atom, the spatial wave function is c = R1r2Y m
l 1u, f2. The radial 

function is unchanged on inversion, and the parity is determined by the angular factor. In 
Prob. 7.29 we showed that Ym

l  is an even function when l is even and is an odd function 
when l is odd. Thus the states of one-electron atoms have even or odd parity according to 
whether l is even or odd.

Now consider an n-electron atom. In the Hartree–Fock central-field approximation, 
we write the wave function as a Slater determinant (or linear combination of Slater deter-
minants) of spin-orbitals. The wave function is the sum of terms, the spatial factor in each 
term having the form

R11r12gRn1rn2Ym1
l1 1u1, f12 gY mn

l 1un, fn2
The parity of this product is determined by the spherical-harmonic factors. We see that 
the product is an even or odd function according to whether l1 + l2 +  g  + ln is an even 
or odd number. Therefore, the parity of an atomic state is found by adding the l values of 
the electrons in the electron configuration that gives rise to the state: If g i li is an even 
number, then c is an even function; if g i li is odd, c is odd. For example, the configuration 
1s2 2s 2p3 has g i li = 0 + 0 + 0 + 1 + 1 + 1 = 3, and all states arising from this electron 
configuration have odd parity. (Our argument was based on the SCF approximation to c, 
but the conclusions are valid for the true c.)

Total Electronic Angular Momentum and Atomic Levels
The total electronic angular momentum J of an atom is the vector sum of the total elec-
tronic orbital and spin angular momenta:

	 J = L + S	 (11.61)

The operator Jn  for the total electronic angular momentum commutes with the atomic 
Hamiltonian, and we may characterize an atomic state by a quantum number J, which has 
the possible values [Eq. (11.39)]

	 L + S, L + S -1, c,  0 L - S 0 	 (11.62)

We have Jn2c = J1J + 12U2c.
For the atomic Hamiltonian (11.1), all states that belong to the same term have the 

same energy. However, when spin–orbit interaction (Section 11.6) is included in Hn , one 
finds that the value of the quantum number J affects the energy slightly. Hence states that 
belong to the same term but that have different values of J will have slightly different 
energies. The set of states that belong to the same term and that have the same value of J 
constitutes an atomic level. The energies of different levels belonging to the same term are 
slightly different. (See Fig. 11.6 in Section 11.7.) To denote the level, one adds the J value as 
a right subscript on the term symbol. Each level is 12J + 12-fold degenerate, corresponding 
to the 2J + 1 values of MJ, where MJ U is the z component of the total electronic angular 
momentum J. Each level consists of 2J + 1 states of equal energy.

E x am  p le

Find the levels of a 3P term and give the degeneracy of each level.
For a 3P term, 2S + 1 = 3 and S = 1; also, from (11.42), L = 1. With L = 1 and 

S = 1, (11.62) gives J = 2, 1, 0. The levels are 3P2, 
3P1, and 3P0.

The 3P2 level has J = 2 and has 2J + 1 = 5 values of MJ, namely, -2, - 1, 0, 1, 
and 2. The 3P2 level is 5-fold degenerate. The 3P1 level is 2112 + 1 = 3-fold degener-
ate. The 3P0 level has 2J + 1 = 1 and is nondegenerate.
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The total number of states for the three levels 3P2, 
3P1, and 3P0 is 5 + 3 + 1 = 9. 

When spin–orbit interaction was neglected, we had a 3P term that consisted of 
12L + 1212S + 12 = 3132 = 9 equal-energy states. With spin–orbit interaction, the 
9-fold-degenerate term splits into three closely spaced levels: 3P2 with five states, 3P1 
with three states, and 3P0 with one state. The total number of states is the same for the 
term 3P as for the three levels arising from this term.

Exercise  Find the levels of a 2D term and give the level degeneracies. (Answer: 
2D5>2, 2D3>2; 6, 4.)

The quantity 2S + 1 is called the electron-spin multiplicity (or the multiplicity) of 
the term. If L Ú S, the possible values of J in (11.62) range from L + S to L - S and are 
2S + 1 in number. If L Ú S, the spin multiplicity gives the number of levels that arise from 
a given term. For L 6 S, the values of J range from S + L to S - L and are 2L + 1 in 
number. In this case, the spin multiplicity is greater than the number of levels. For example, 
if L = 0 and S = 1 (a 3S term), the spin multiplicity is 3, but there is only one possible 
value for J, namely, J = 1. For 2S + 1 = 1, 2, 3, 4, 5, 6, c, the words singlet, doublet, 
triplet, quartet, quintet, sextet, c, are used to designate the spin multiplicity. The level 
symbol 3P1 is read as “triplet P one.”

For light atoms, the spin–orbit interaction is very small and the separation between 
levels of a term is very small. Note from Fig. 11.6 in Section 11.7 that the separations 
between the 3P0, 

3P1, and 3P2 levels of the helium 1s 2p 3P term are far, far less than the 
separation between the 1P and 3P terms of the 1s 2p configuration.

Terms and Levels of Hydrogen and Helium
The hydrogen atom has one electron. Hence L = l and S = s =

1
2. The possible values of J 

are L +
1
2 and L -

1
2, except for L = 0, where J =

1
2 is the only possibility. Each electron 

configuration gives rise to only one term, which is composed of one level if L = 0 and two 
levels if L � 0. The ground-state configuration 1s gives the term 2S, which is composed 
of the single level 2S1>2; the level is twofold degenerate 1MJ = -

1
2, 122. The 2s configura-

tion also gives a 2S1>2 level. The 2p configuration gives rise to the levels 2P3>2 and 2P1>2; 
the 2P3>2 level is fourfold degenerate, and the 2P1>2 level is twofold degenerate. There are 
2 + 4 + 2 = 8 states with n = 2, in agreement with our previous work.

The helium ground-state configuration 1s2 is a closed subshell and gives rise to the 
single level 1S0, which is nondegenerate 1MJ = 02. The 1s 2s excited configuration gives 
rise to the two terms 1S and 3S, each of which has one level. The 1S0 level is nondegenerate; 
the 3S1 level is threefold degenerate. The 1s 2p configuration gives rise to the terms 1P and 3P. 
The levels of 3P are 3P2, 

3P1, and 3P0; 
1P has the single level 1P1.

Tables of Atomic Energy Levels
The spectroscopically determined energy levels for atoms with atomic number less than 
90 are given in the tables of C. E. Moore and others: C. E. Moore, Atomic Energy Levels, 
National Bureau of Standards Circular 467, vols. I, II, and III, 1949, 1952, and 1958, 
Washington D.C.; these have been reprinted as Natl. Bur. Stand. Publ. NSRDS-NBS 35, 
1971; W. C. Martin et al., Atomic Energy Levels—The Rare-Earth Elements, Natl. Bur. 
Stand. Publ. NSRDS-NBS 60, Washington, D.C., 1978. The atomic-energy-level data in 
Moore’s tables and subsequent revisions are available online at the NIST Atomic Spectra 
Database at www.nist.gov/pml/data/asd.cfm.

These tables also list the levels of many atomic ions. Spectroscopists use the symbol I 
to indicate a neutral atom, the symbol II to indicate a singly ionized atom, and so on. To 
view the energy level data for the C2 +  ion in the NIST online database, click on Levels 
and then enter C III after Spectrum.
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The tables take the zero level of energy at the lowest energy level of the atom and list 
the level energies Ei as Ei>hc in cm-1, where h and c are Planck’s constant and the speed 
of light. The difference in E>hc values for two levels gives the wavenumber [Eq. (4.64)] of 
the spectral transition between the levels (provided the transition is allowed). An energy 
E of 1 eV corresponds to E>hc = 8065.544 cm-1 (Prob. 11.29).

Figure 11.4 shows some of the term energies of the carbon atom. The separations 
between levels of each term are too small to be visible in this figure.

11.6 Spin–Orbit Interaction
The atomic Hamiltonian (11.1) does not involve electron spin. In reality, the existence 
of spin adds an additional term, usually small, to the Hamiltonian. This term, called the 
spin–orbit interaction, splits an atomic term into levels. Spin–orbit interaction is a rela-
tivistic effect and is properly derived using Dirac’s relativistic treatment of the electron. 
This section gives a qualitative discussion of the origin of spin–orbit interaction.

If we imagine ourselves riding on an electron in an atom, from our viewpoint, the 
nucleus is moving around the electron (as the sun appears to move around the earth). 
This apparent motion of the nucleus produces a magnetic field that interacts with the 
intrinsic (spin) magnetic moment of the electron, giving the spin–orbit interaction term in 
the Hamiltonian. The interaction energy of a magnetic moment m with a magnetic field 
B is given by (6.131) as -m # B. The electron’s spin magnetic moment mS is proportional 
to its spin S [Eq. (10.57)], and the magnetic field arising from the apparent nuclear motion 
is proportional to the electron’s orbital angular momentum L. Therefore, the spin–orbit 
interaction is proportional to L # S. The dot product of L and S depends on the relative 
orientation of these two vectors. The total electronic angular momentum J = L + S also 
depends on the relative orientation of L and S, and so the spin–orbit interaction energy 
depends on J [Eq. (11.67)].

When a proper relativistic derivation of the spin–orbit-interaction term HnS.O. in the 
atomic Hamiltonian is carried out, one finds that for a one-electron atom (see Bethe and 
Jackiw, Chapters 8 and 23)
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energies of the carbon atom.
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	 HnS.O. =
1

2m2
ec

2 
1
r

 
dV

dr
 Ln  # Sn 	 (11.63)

where V is the potential energy experienced by the electron in the atom and c is the speed 
of light. One way to calculate HnS.O. for a many-electron atom is first to neglect HnS.O. and 
do an SCF calculation (Section 11.1) using the central-field approximation to get an effec-
tive potential energy Vi1ri2 for each electron i in the field of the nucleus and the other 
electrons viewed as charge clouds [Eqs. (11.7) and (11.8)]. One then sums (11.63) over 
the electrons to get

	 HnS.O. �
1

2m2
ec

2 a
i

1
ri

 
dVi1ri2

dri
 Ln i # Sn i = a

i
ji1ri2Ln i # Sn i	 (11.64)

where the definition of ji1ri2 is obvious and Ln i and Sn i are the operators for orbital and spin 
angular momenta of electron i.

Calculating the spin–orbit interaction energy ES.O. by finding the eigenfunctions and 
eigenvalues of the operator Hn111.12 + HnS.O., where Hn111.12 is the Hamiltonian of Eq. (11.1), 
is difficult. One therefore usually estimates ES.O. by using perturbation theory. Except for 
heavy atoms, the effect of HnS.O. is small compared with the effect of Hn111.12, and first-order 
perturbation theory can be used to estimate ES.O..

Equation (9.22) gives ES.O. � 8c 0  HnS.O. 0c9 , where c is an eigenfunction of Hn111.12. 
For a one-electron atom,

	 ES.O. � 8c 0 j1r2Ln  # Sn 0c9 	 (11.65)

We have

 J # J = 1L + S2 # 1L + S2 = L2 + S2 + 2L # S

  L # S =
1
21J2 - L2 - S22

  1Ln  # Sn 2c =
1
21Jn2 - Ln2 - Sn22c =

1
23J1J + 12 - L1L + 12 - S1S + 124U2c

since the unperturbed c is an eigenfunction of Ln2, Sn2, and Jn2. Therefore,

	 ES.O. � 1
2 8j9U23J1J + 12 - L1L + 12 - S1S + 124 	 (11.66)

For a many-electron atom, it can be shown (Bethe and Jackiw, p. 164) that the spin–orbit 
interaction energy is

	 ES.O. � 1
2AU23J1J + 12 - L1L + 12 - S1S + 124 	 (11.67)

where A is a constant for a given term; that is, A depends on L and S but not on J. 
Equation (11.67) shows that when we include the spin–orbit interaction, the energy 
of an atomic state depends on its total electronic angular momentum J. Thus each 
atomic term is split into levels, each level having a different value of J. For example, 
the 1s2 2s2 2p6 3p configuration of sodium has the single term 2P, which is composed 
of the two levels 2P3>2 and 2P1>2. The splitting of these levels gives the observed fine 
structure of the sodium D line (Fig. 11.5). The levels of a given term are said to form 
its multiplet structure.

What about the order of levels within a given term? Since L and S are the same for such 
levels, their relative energies are determined, according to Eq. (11.67), by AJ1J + 12. If 
A is positive, the level with the lowest value of J lies lowest, and the multiplet is said to be 
regular. If A is negative, the level with the highest value of J lies lowest, and the multiplet 
is said to be inverted. The following rule usually applies to a configuration with only one 
partly filled subshell: If this subshell is less than half filled, the multiplet is regular; if this 
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subshell is more than half filled, the multiplet is inverted. (A few exceptions exist.) For the 
half-filled case, see Prob. 11.28.

E x a m p l e

Find the ground level of the oxygen atom.
The ground electron configuration is 1s22s22p4. Table 11.2 gives 1S, 1D, and 3P as 

the terms of this configuration. By Hund’s rule, 3P is the lowest term. [Alternatively, 
a diagram like (11.48) could be used to conclude that 3P is the lowest term.] The 3P 
term has L = 1 and S = 1, so the possible J values are 2, 1, and 0. The levels of 3P are 
3P2, 

3P1, and 3P0. The 2p subshell is more than half filled, so the rule just given predicts 
the multiplet is inverted, and the 3P2 level lies lowest. This is the ground level of O.

Exercise  Find the ground level of the Cl atom. (Answer: 2P3>2.)

11.7 The Atomic Hamiltonian
The Hamiltonian operator of an atom can be divided into three parts:

	 Hn = Hn 0 + Hn rep + HnS.O.	 (11.68)

where Hn 0 is the sum of hydrogenlike Hamiltonians,

	 Hn 0 = a
n

i = 1
a-

U2

2me
2

i -
Ze2

4pe0ri
b 	 (11.69)

Hn rep consists of the interelectronic repulsions,

	 Hn rep = a
i
a
j7 i

e2

4pe0rij
	 (11.70)

and HnS.O. is the spin–orbit interaction (11.64):

	 HnS.O. = a
n

i = 1
 jiLn i # Sn i	 (11.71)

If we consider just Hn 0, all atomic states corresponding to the same electronic configura-
tion are degenerate. Adding in Hn rep, we lift the degeneracy between states with different 
L or S or both, thus splitting each configuration into terms. Next, we add in HnS.O., which 
splits each term into levels. Each level is composed of states with the same value of J and 
is 12J + 12-fold degenerate, corresponding to the possible values of MJ.

Figure 11.5  Fine structure 
of the sodium D line. 1s2 2s2 2p6 3p

1s2 2s2 2p6 3s 2S1/2
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We can remove the degeneracy of each level by applying an external magnetic field 
(the Zeeman effect). If B is the applied field, we have the additional term in the Hamilto-
nian [Eq. (6.131)]

	 HnB = -mn  # B = - 1mn L + mn S2 # B	 (11.72)

where both the orbital and spin magnetic moments have been included. Using 
mL = - 1e>2me2L, mS = - 1e>me2S, and m B K eU>2me [Eqs. (6.128), (10.55) with 
ge � 2, and (6.130)], we have

	 HnB = m BU-11Ln + 2Sn2 # B = m BU-11Jn + Sn 2 # B = m BBU-11Jnz + Snz2	 (11.73)

where mB is the Bohr magneton and the z axis is taken along the direction of the field. 
If the external field is reasonably weak, its effect will be less than that of the spin–orbit 
interaction, and the effect of the field can be calculated by use of first-order perturbation 
theory. Since Jnzc = MJ Uc, the energy of interaction with the applied field is

EB = 8c �  HnB �c9 = m BBMJ + m BBU-18Sz9
Evaluation of 8Sz 9  (Bethe and Jackiw, p. 169) gives as the final weak-field result:

	 EB = mBgBMJ	 (11.74)

where g (the Landé g factor) is given by

	 g = 1 +
3J1J + 12 - L1L + 12 + S1S + 124

2J1J + 12 	 (11.75)

Thus the external field splits each level into 2J + 1 states, each state having a different 
value of MJ.

Figure 11.6 shows what happens when we consider successive interactions in an atom, 
using the 1s2p configuration of helium as the example.

Figure 11.6  Effect of 
inclusion of successive  
terms in the atomic  
Hamiltonian for the 1s2p 
helium configuration. HB

n  
is not part of the atomic 
Hamiltonian but is due to an 
applied magnetic field.
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We have based the discussion on a scheme in which we first added the individual 
electronic orbital angular momenta to form a total-orbital-angular-momentum vector  
and did the same for the spins: L = g i Li and S = g i Si. We then combined L and S to 
get J. This scheme is called Russell–Saunders coupling (or L–S coupling) and is 
appropriate where the spin–orbit interaction energy is small compared with the interelec-
tronic repulsion energy. The operators Ln  and Sn  commute with Hn 0 + Hn rep, but when HnS.O. 
is included in the Hamiltonian, Ln  and Sn  no longer commute with Hn . (Jn does commute with 
Hn 0 + Hn rep + HnS.O..) If the spin–orbit interaction is small, then Ln  and Sn  “almost” commute 
with Hn , and L9S coupling is valid.

As the atomic number increases, the average speed v of the electrons increases. As 
v>c increases, relativistic effects such as the spin–orbit interaction increase. For atoms with 
very high atomic number, the spin–orbit interaction exceeds the interelectronic repulsion 
energy, and we can no longer consider Ln  and Sn  to commute with Hn; the operator Jn, however, 
still commutes with Hn . In this case we first add in HnS.O. to Hn 0 and then consider Hn rep. This 
corresponds to first combining the spin and orbital angular momenta of each electron to 
give a total angular momentum j i for each electron: j i = Li + Si. We then add the j i’s to 
get the total electronic angular momentum: J = g i ji. This scheme is called j–j coupling. 
For most heavy atoms, the situation is intermediate between j–j and L–S coupling, and 
computations are difficult.

Several other effects should be included in the atomic Hamiltonian. The finite size of 
the nucleus and the effect of nuclear motion slightly change the energy (Bethe and Salpeter, 
pp. 102, 166, 351). There is a small relativistic term due to the interaction between the 
spin magnetic moments of the electrons (spin–spin interaction). We should also take into 
account the relativistic change of electronic mass with velocity. This effect is significant 
for inner-shell electrons of heavy atoms, where average electronic speeds are not negligible 
in comparison with the speed of light.

If the nucleus has a nonzero spin, the nuclear spin magnetic moment interacts with the 
electronic spin and orbital magnetic moments, giving rise to atomic hyperfine structure. 
The nuclear spin angular momentum I adds vectorially to the total electronic angular 
momentum J to give the total angular momentum F of the atom: F = I + J. For example, 
consider the ground state of the hydrogen atom. The spin of a proton is 1

2, so I =
1
2; also, 

J =
1
2. Hence the quantum number F can be 0 or 1, corresponding to the proton and 

electron spins being antiparallel or parallel. The transition F = 1 S 0 gives a line at 
1420 MHz, the 21-cm line emitted by hydrogen atoms in outer space. In 1951, Ewen and 
Purcell stuck a horn-shaped antenna out the window of a Harvard physics laboratory and 
detected this line. The frequency of the hyperfine splitting in the ground state of hydrogen is 
one of the most accurately measured physical constants: 1420.405751768 { 0.000000002 
MHz [S. G. Karshenboim, Can. J. Phys., 78, 639 (2000); arxiv.org/abs/physics/0008051].

11.8 The Condon–Slater Rules
In the Hartree–Fock approximation, the wave function of an atom (or molecule) is a Slater 
determinant or a linear combination of a few Slater determinants [for example, Eq. (10.44)]. 
A configuration-interaction wave function such as (11.17) is a linear combination of many 
Slater determinants. To evaluate the energy and other properties of atoms and molecules 
using Hartree–Fock or configuration-interaction wave functions, we must be able to evalu-
ate integrals of the form 8D �  Bn �  D9 , where D and D are Slater determinants of ortho-
normal spin-orbitals and Bn is an operator.

Each spin-orbital ui is a product of a spatial orbital ui and a spin function si, where 
si is either a or b. We have ui = ui si and 8ui112 �  uj1129 = dij, where 8ui112 �  uj1129  
involves a sum over the spin coordinate of electron 1 and an integration over its spatial 
coordinates. If ui and uj have different spin functions, then (10.12) ensures the orthogonality 



11.8 The Condon–Slater Rules  |  321

of ui and uj. If ui and uj have the same spin function, their orthogonality is due to the 
orthogonality of the spatial orbitals ui and uj.

For an n-electron system, D is

	 D =
12n!

4 u1112 u2112 c un112
u1122 u2122 c un122
f f f f

u11n2 u21n2 c un1n2

4 	 (11.76)

An example with n = 3 is Eq. (10.40). D has the same form as D except that u1, u2, c, un 
are replaced by u1, u2, c, un.

We shall assume that the columns of D and D are arranged so as to have as many 
as possible of their left-hand columns match. For example, if we were working with the 
Slater determinants 0  1s1s2s3p0 0 and 0  1s1s3p04s 0, we would interchange the third and fourth 
columns of the first determinant (thereby multiplying it by 21) and let D = 0  1s1s3p02s 0 
and D = 01s1s3p04s 0.

The operator Bn typically has the form

	 Bn = a
n

i = 1
fni + a

n - 1

i = 1
a
j7 i

gnij	 (11.77)

where the one-electron operator fni involves only coordinate and momentum operators of 
electron i and the two-electron operator gnij involves electrons i and j. For example, if Bn 
is the atomic Hamiltonian operator (11.1), then fni = - 1U2>2me22

i - Ze2>4pe0ri and 
gnij = e2>4pe0rij.

Condon and Slater showed that the n-electron integral 8D 0Bn 0D 9  can be reduced to 
sums of certain one- and two-electron integrals. The derivation of these Condon–Slater 
formulas uses the determinant expression of Prob. 8.22 together with the orthonormal-
ity of the spin-orbitals. (See Parr, pp. 23–27 for the derivation.) Table 11.3 gives the 
Condon–Slater formulas.

In Table 11.3, each matrix element of gn12 involves summation over the spin coordi-
nates of electrons 1 and 2 and integration over the full range of the spatial coordinates of 
electrons 1 and 2. Each matrix element of fn1 involves summation over the spin coordinate 
of electron 1 and integration over its spatial coordinates. The variables in the sums and 
definite integrals are dummy variables.

Table 11.3  The Condon–Slater Rules
 
D and D' differ by hD ` a

n

i = 1
fi
n ` Di hD `  a

n - 1

i = 1
a
j71

gnij ` Di

no spin-orbitals a
n

i = 1
8ui112 0 fn1 0 ui112 9 a

n - 1

i = 1
a
j71

3 8ui112uj122 0 gn12 0 ui112uj1229
- 8ui112uj122 0 gn12 0 uj112ui122 94

one spin-orbital 8un112 0 fn1 0 un112 9 a
n - 1

j = 1
 3 8un112uj122 0 gn12 0 un112uj122 9

un � un - 8un112uj122 0gn12 0uj112un122 94
two spin-orbitals 0 8un112un - 1122 0 gn12 0 un112un - 1122 9
un � un, un - 1 � un - 1 - 8un112un - 1122 0 gn12 0 un - 1112un122 9
three or more  
spin-orbitals

0 0
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If the operators fni and gnij do not involve spin, the expressions in Table 11.3 can be 
further simplified. We have ui = uisi and

 8ui112 0 fn1 0 ui1129 = Lu*i 112 fn1ui112 dv1 a
ms1

s*i 112si112

 = L  u*i 112 fn1ui112 dv1 = 8ui112 0 fn
1
0 ui1129

since si is normalized. Using this result and the orthonormality of si and sj, we get for 
the case D = D (Prob. 11.37)

	 hD ` a
n

i = 1
fni ` Di = a

n

i = 1
8ui112 � fn1 �ui1129 	 (11.78)

hD ` a
n - 1

i = 1
a
j7 1

gnij ` Di =

a
n - 1

i = 1
a
j7 1

38  ui112uj122 �gn 12 � ui112uj122 9 - dms,ims,j
8 ui112uj122 � gn12 � uj112ui122 94 	 (11.79)

where dms,i ms, j
 is 0 or 1 according to whether ms,i � ms, j or ms,i = ms, j. Similar equations 

hold for the other integrals.
Let us apply these equations to evaluate 8D �  Hn �  D9 , where Hn  is the Hamiltonian of 

an n-electron atom with spin–orbit interaction neglected and D is a Slater determinant of n 
spin-orbitals. We have Hn = g i fni + g ig j7 i gnij, where fni = - 1U2>2me22

i - Ze2>4pe0ri 
and gnij = e2>4pe0rij. Introducing the Coulomb and exchange integrals (9.99) and (9.100) 
and using (11.78) and (11.79), we have

	 8D � Hn �  D9 = a
n

i = 1
8ui112 � fn1 �  ui1129 + a

n - 1

i = 1
a
j7 1

1Jij - dms,ims, j
Kij2	 (11.80)

Jij = 8ui112uj122 0 e2>4pe0r12 0  ui112uj1229, Kij = 8ui112uj122 0  e2>4pe0r12 0  uj112ui122	(11.81)

	 fn1 = - (U2>2me)1
2 - Ze2>4pe0r1	 (11.82)

The Kronecker delta in (11.80) results from the orthonormality of the one-electron spin 
functions.

As an example, consider Li. The SCF approximation to the ground-state c is the 
Slater determinant  D = 01s1s2s 0 . The spin-orbitals are u1 = 1sa, u2 = 1sb, and 
u3 = 2sa. The spatial orbitals are u1 = 1s, u2 = 1s, and u3 = 2s. We have J12 = J1s1s 
and J13 = J23 = J1s2s. Since ms1 � ms2 and ms2 � ms3, the only exchange integral that 
appears in the energy expression is K13 = K1s2s. We get exchange integrals only between 
spin-orbitals with the same spin. Equation (11.80) gives the SCF energy as

E = 8D 0  Hn  0  D9 = 281s112 0 fn1 0  1s112 9 + 82s112 0 fn1 0 2s112 9 + J1s1s + 2J1s2s - K1s2s

The terms involving fn1 are hydrogenlike energies, and their sum equals E102 in Eq. (10.49). 
The remaining terms equal E112 in Eq. (10.51). As noted at the beginning of Section 9.4, 
E102 + E112 equals the variational integral 8D � Hn  �  D9 , so the Condon–Slater rules have 
been checked in this case.

For an atom with closed subshells only (for example, ground-state Be with a 1s22s2 
configuration), the n electrons reside in n>2 different spatial orbitals, so u1 = u2, u3 = u4, 
and so on. Let f1 K u1 = u2, f2 K u3 = u4, c  , fn>2 K un - 1 = un. If one rewrites 
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(11.80) using the f’s instead of the u’s, one finds (Prob. 11.38) for the SCF energy of the 
1S term produced by a closed-subshell configuration

	 E = 8D 0 Hn 0 D9 = 2 a
n>2

i = 1
 8fi112 0 fn1 0 fi1129 + a

n>2

j = 1
 a

n>2

i = 1
 12Ji j - Ki j)	 (11.83)

where fn1 is given by (11.82) and where Ji j and Ki j have the forms in (11.81) but with ui and 
uj replaced by fi and fj. Each sum in (11.83) goes over all the n>2 different spatial orbitals.

For example, consider the 1s22s2 electron configuration. We have n = 4 and the 
two different spatial orbitals are 1s and 2s. The double sum in Eq. (11.83) is equal to 
2J1s1s - K1s1s + 2J1s2s - K1s2s + 2J2s1s - K2s1s + 2J2s2s - K2s2s. From the definition 
(11.81), it follows that Jii = Kii. The labels 1 and 2 in (11.81) are dummy variables, and 
interchanging them can have no effect on the integrals. Interchanging 1 and 2 in Jij converts 
it to Jji; therefore, Jij = Jji. The same reasoning gives Kij = Kji. Thus

	 Jii = Kii,  Jij = Jji,   Kij = Kji	 (11.84)

Use of (11.84) gives the Coulomb- and exchange-integrals expression for the 1s22s2 con-
figuration as J1s1s + J2s2s + 4J1s2s - 2K1s2s. Between the two electrons in the 1s orbital, 
there is only one Coulombic interaction, and we get the term J1s1s. Each 1s electron interacts 
with two 2s electrons, for a total of four 1s–2s interactions, and we get the term 4J1s2s. As 
noted earlier, exchange integrals occur only between spin-orbitals of the same spin. There 
is an exchange integral between the 1sa and 2sa spin-orbitals and an exchange integral 
between the 1sb and 2sb spin-orbitals, which gives the -2K1s2s term.

The magnitude of the exchange integrals is generally much less than the magnitude 
of the Coulomb integrals [for example, see Eq. (9.111)].

Summary
The Hartree SCF method approximates the atomic wave function as a product of one-
electron spatial orbitals [Eq. (11.2)] and finds the best possible forms for the orbitals by 
an iterative calculation in which each electron is assumed to move in the field produced 
by the nucleus and a hypothetical charge cloud due to the other electrons.

The more accurate Hartree–Fock method approximates the wave function as an anti-
symmetrized product (Slater determinant or determinants) of one-electron spin-orbitals 
and finds the best possible forms for the spatial orbitals in the spin-orbitals. Hartree–Fock 
calculations are usually done by expanding each orbital as a linear combination of basis 
functions and iteratively solving the Hartree–Fock equations (11.12). The Slater-type orbit-
als (11.14) are often used as the basis functions in atomic calculations. The difference 
between the exact nonrelativistic energy and the Hartree–Fock energy is the correlation 
energy of the atom (or molecule).

To go beyond the Hartree–Fock approximation and approach the true wave func-
tion and energy, we can use configuration interaction (CI), expressing c as a linear 
combination of configuration functions corresponding to various electron configurations 
[Eq. (11.17)].

Let M1 and M2 be two angular momenta with quantum numbers j1 , m1 and j2, m2, and 
let M be their sum: M = M1 + M2. We showed that, for the angular-momentum sum, 
Mn 2 has eigenvalues J1J + 12U2 and Mn z has eigenvalues MJ U, where the possible values 
of J and MJ are J = j1 + j2,  j1 + j2 - 1, c  , �  j1 - j2 �  and MJ = J, J - 1, c  , - J.

For a many-electron atom where spin–orbit interaction is small, the individual elec-
tronic orbital angular momenta add to give a total electronic orbital angular momentum 
1L = gi Li2, and similarly for the spin angular momenta 1S = g i Si2. The eigenvalues 
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of the operators Ln2 and Sn2 for the squares of the magnitudes of the total electronic orbital 
and spin angular momenta are L1L + 12U2 and S1S + 12U2, respectively. For nonequiva-
lent electrons (electrons in different subshells), the possible L values arising from a given 
electron configuration are readily found by using the angular-momentum addition rule 
(11.39), ignoring any closed subshells. For equivalent electrons, the possible L values can 
be found by consulting Table 11.2a. The possible S values are found using (11.39), ignor-
ing all electrons that are paired.

With spin–orbit interaction neglected, atomic states that have the same energy have the 
same L value and the same S value. A set of equal-energy states with the same L and the 
same S constitutes a term. The term is denoted by the term symbol 2S + 11L2, where 2S + 1 
is called the spin multiplicity and (L) is a code letter that gives the L value [see (11.42)]. 
The degeneracy of an atomic term is 12L + 1212S + 12.

When spin–orbit interaction is included, each term is split into a number of levels, each 
level having a different value of the total-electronic-angular-momentum quantum number 
J. The total electronic angular momentum is J = L + S, and the eigenvalues of Jn2 are 
J1J + 12U2, where J ranges from L + S to � L - S �  in integral steps. The symbol for a 
level is 2S + 11L2J. Each level is 12J + 12-fold degenerate, corresponding to the 2J + 1 
values of MJ, which range from J to -J. The degeneracy of an atomic level can be removed 
by application of an external magnetic field, which splits each level into 2J + 1 states of 
slightly different energies.

In summary, 

Configurations 
interelectronic 

repulsions
::::::T:T  Terms 

spin–orbit 

interaction
::::::T:T  Levels 

external 

field
::::::T:T  States

The Condon–Slater rules give the values of one- and two-electron integrals involving 
Slater determinants and can be used to evaluate properties (such as the energy) for a wave 
function that is a linear combination of Slater determinants.

Problems

Sec. 11.1 11.2 11.3 11.4 11.5 11.6

Probs. 11.1–11.4 11.5–11.6 11.7 11.8–11.12 11.13–11.32 11.33–11.35

Sec. 11.7 11.8 general

Probs. 11.36 11.37-11.39 11.40–11.42

	11.1	 How many electrons can be put in each of the following: (a) a shell with principal quantum 
number n; (b) a subshell with quantum numbers n and l; (c) an orbital; (d) a spin-orbital?

	11.2	 Without consulting the text, write the Hamiltonian operator for the lithium atom without using 
any sum symbols. Assume an infinitely heavy nucleus (and omit spin–orbit interaction).

	11.3	 If R1r12 is the radial factor in the function t1 in the Hartree differential equation (11.9), write 
the differential equation satisfied by R.

	11.4	 Which STOs have the same form as hydrogenlike AOs?

	11.5	 Estimate the nonrelativistic 1s orbital energy in Ar. Check with Fig. 11.2.

	11.6	 At what atomic number does the second crossing of the 3d and 4s orbital energies occur in 
Fig. 11.2? Take account of the logarithmic scale. (Atomic spectral data show that the crossing 
actually occurs between 20 and 21.)

	11.7	 (a) Use the Clementi–Corongiu formula to estimate the correlation energy in the ground-state 
He atom and compare the result with the true value. (b) Use the Clementi–Corongiu formula to 
estimate the correlation energy in the ground-state N atom. Find the ground-state energy of the 
N atom by using data in the online reference in Sec. 10.5 to add up all the ionization energies 
of N. About what percentage of the true energy is the correlation energy in N?
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	  11.8	 Give the possible values of the total-angular-momentum quantum number J that result from 
the addition of angular momenta with quantum numbers (a) 3

2 and 4; (b) 2, 3, and 1
2.

	  11.9	 True or false? The angular-momentum addition rule (11.39) shows that the number of values 
of J obtained by adding j1 and j2 is always 2j6 + 1, where j6  is the smaller of j1 and j2 or 
is j1 if j1 = j2.

	11.10	 Verify the angular-momentum commutation relations (11.32).

	11.11	 Prove that m1 + m2 = MJ [Eq. (11.34)], as follows: Apply Mn z = Mn 1z + Mn 2z to (11.33), 
substitute (11.33) in the resulting equation, combine terms, and use the linear independence 
of the functions involved to deduce (11.34).

	11.12	 Show that 3Mn 2, Mn 1z4 = 2iU1Mn 1xMn 2y - Mn 1yMn 2x2, where M = M1 + M2.

	11.13	 True or false? (Answer without looking at Chapter 11 tables.) (a) The terms arising from the 
1s22s22p3p configuration are the same as the terms arising from 1s22s22p2. (b) The terms 
arising from a 3d3 configuration are the same as those from a 3d7 configuration.

	11.14	 Verify the terms in Table 11.2b.

	11.15	 Find the terms that arise from each of the following electron configurations: 
(a) 1s22s22p63s23p5g; (b) 1s22s22p3p3d; (c) 1s22s22p44d. You may use Table 11.2a for part (c).

	11.16	 Which of the following electron configurations will contribute configuration functions to a CI 
calculation of the ground state of He? (a) 1s2s; (b) 1s2p; (c) 2s2; (d) 2s2p; (e) 2p2; (f) 3d 2.

	11.17	 Verify the spin-eigenfunction equations (11.52) to (11.54), (11.56), and the three equations 
following (11.56).

	11.18	 (a) Calculate the angle in Fig. 11.3 between the z axis and S for the spin function a112a122. 
(b) Calculate the angle between S1 and S2 for each of the functions (11.57) to (11.60). [Hint: 
Use S #  S = 1S1 + S22 #  1S1 + S22.4  (c) If a vector A has components 1Ax, Ay, Az2, what 
are the components of the projection of A in the xy plane? Use the answer to this ques-
tion to find the angle between the projections of S1 and S2 in the xy plane for the function 
a112a122.

	11.19	 (a) If Sn2 = 1Sn 1 + Sn 2 + g2 #  1Sn 1 + Sn 2 + g2, show that 3Sn2, Pnik4 = 0, where Pnik is 
the exchange operator. (b) Show that 3Ln 2, Pnik4 = 0, where L is the total electronic orbital 
angular momentum.

	11.20	 Of the atoms with Z … 10, which have ground states of odd parity?

	11.21	 Give the number of states that belong to each of the following terms: (a) 4F; (b) 1S; (c) 3P; 
(d) 2D.

	11.22	 How many states belong to each of the following carbon configurations? (a) 1s22s22p2; 
(b) 1s22s22p3p.

	11.23	 Give the possible spin multiplicities of the terms that arise from each of the following electron 
configurations: (a) f; (b) f 2; (c) f 3; (d) f 7; (e) f 12; (f) f 13.

	11.24	 Give the levels that arise from each of the following terms, and give the degeneracy of each 
level: (a) 1S; (b) 2S; (c) 3F; (d) 4D.

	11.25	 For a state belonging to a 3D3 level, give the magnitude of (a) the total electronic orbital 
angular momentum; (b) the total electronic spin angular momentum; (c) the total electronic 
angular momentum.

	11.26	 Give the symbol for the ground level of each of the atoms with Z … 10.

	11.27	 Give the symbol for the ground level of each of the atoms with 21 … Z … 30. Which one of 
these atoms has the most degenerate ground level?

	11.28	 (a) Use a diagram like (11.48) to show that the lowest term of a single half-filled-subshell 
configuration has L = 0. (b) How many levels arise from a term with L = 0? Explain why no 
rule is needed to find the lowest level of the lowest term of a half-filled-subshell configuration.

	11.29	 Verify that if E = 1 eV, then E>hc = 8065.54 cm-1.

	11.30	 Consult Moore’s table of atomic energy levels (Section 11.5) to find at least three electron 
configurations of the neutral carbon atom for which Hund’s rule does not correctly predict 
the lowest term.
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	11.31	 Selection rules for spectral transitions of atoms where Russell–Saunders coupling is valid are 
(Bethe and Jackiw, Chapter 11) L = 0, { 1; S = 0; J = 0, {1 (but J = 0 to J = 0 
is forbidden); 1g i li2 = { 1, meaning that the change in configuration must change the 
sum of the l values of the electrons by {1. For most atomic spectral lines, only one electron 
changes its subshell; here the 1g i li2 = {1 rule becomes l = {1 for the electron making 
the transition.

			   For the carbon atom, the levels that arise from the 1s22s22p2 configuration are

Level 3P0
3P1

3P2
1D2

1S0

1E>hc2>cm-1 0 16.4 43.4 10192.6 21648.0

and the energy levels of the 1s22s2p3 configuration are

5S2
3D3

3D1
3D2

3P1
3P2

3P0

33735.2 64086.9 64089.8 64090.9 75254.0 75255.3 75256.1

1D2
3S1

1P1

97878 105798.7 119878

		  Use the above selection rules to find the wavenumbers of all the transitions that are allowed 
between pairs of these 15 levels.

	11.32	 Go to www.nist.gov/pml/data/asd.cfm, click on Levels, enter C I in Spectrum, and click 
Retrieve Data to find the energy levels of the 2s22p3s configuration of C. Then use the 
selection rules given in Prob. 11.31 to find the wavenumbers and wavelengths of all allowed 
transitions between the levels of 2s 22p3s and the levels of 2s22p2 given in Prob. 11.31. Check 
your wavelengths by clicking on Lines instead of Levels.

	11.33	 Use Eq. (11.66) to calculate the separation between the 2P3>2 and 2P1>2 levels of the hydrogen-
atom 2p configuration. (Because of other relativistic effects, the result will not agree accu-
rately with experiment.)

	11.34	 Does Fig. 11.6 contain a violation of the rule given in Section 11.6 for determining whether 
a multiplet is regular or inverted?

	11.35	 Draw a diagram similar to Fig. 11.6 for the carbon 1s22s22p2 configuration. (The 1S term is 
the highest.)

	11.36	 Use Eq. (11.74) to calculate the energy separation between the MJ =
1
2 and MJ = -

1
2 states 

of the 2p 2P1>2 hydrogen-atom level, if a magnetic field of 0.200 T is applied.

	11.37	 (a) Derive Eq. (11.78). (b) Derive (11.79).

	11.38	 For a closed-subshell configuration, (a) show that the double sum in (11.80) equals

		  a
j7 i

a
n>2

i = 1
14Ji j - 2Ki j2 + a

n>2

i = 1
Jii

		  where the Coulomb and exchange integrals are defined in terms of the n>2 different spatial 
orbitals fi; (b) use (11.84) and the result of part (a) to derive (11.83).

	11.39	 Use the Condon–Slater rules to prove the orthonormality of two n-electron Slater determinants 
of orthonormal spin-orbitals.

	11.40	 Explain why it would be incorrect to calculate the experimental ground-state energy of lithium 
by taking - 1E2s + 2E1s2, where E2s is the experimental energy needed to remove the 2s 
electron from lithium and E1s is the experimental energy needed to remove a 1s electron from 
lithium.

	11.41	 The total magnetic moment m of an atom contains contributions from the magnetic moments 
mL, mS, and mI associated with the total electronic orbital angular momentum L, the total 
electronic spin angular momentum S, and the nuclear spin angular momentum I. (a) For an 
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atom with L, S, and I all nonzero, which one of these three contributions to m is by far the 
smallest? (b) For the 87Rb ground electronic state (used in the Bose–Einstein condensation 
experiment of Section 10.5), which one of these three contributions is zero?

	11.42	 True or false? (a) The spin multiplicity of every term of an atom with an odd number of 
electrons must be an even number. (b) The spin multiplicity of every term of an atom with an 
even number of electrons must be an odd number. (c) The spin multiplicity of a term is always 
equal to the number of levels of that term. (d) In the Hartree SCF method, the energy of an 
atom equals the sum of the orbital energies of the electrons. (e) The Hartree–Fock method is 
capable of giving the exact nonrelativistic energy of a many-electron atom.
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Chapter 12

Molecular Symmetry

12.1 Symmetry Elements and Operations
Qualitative information about molecular wave functions and properties can often be  
obtained from the symmetry of the molecule. By the symmetry of a molecule, we mean the 
symmetry of the framework formed by the nuclei held fixed in their equilibrium positions. 
(Our starting point for molecular quantum mechanics will be the Born–Oppenheimer 
approximation, which regards the nuclei as fixed when solving for the electronic wave 
function; see Section 13.1.) The symmetry of a molecule can differ in different electronic 
states. For example, HCN is linear in its ground electronic state, but nonlinear in certain 
excited states. Unless otherwise specified, we shall be considering the symmetry of the 
ground electronic state.

Symmetry Elements and Operations
A symmetry operation is a transformation of a body such that the final position is phys-
ically indistinguishable from the initial position, and the distances between all pairs of 
points in the body are preserved. For example, consider the trigonal-planar molecule BF3 
(Fig. 12.1a), where for convenience we have numbered the fluorine nuclei. If we rotate the 
molecule counterclockwise by 120° about an axis through the boron nucleus and perpen-
dicular to the plane of the molecule, the new position will be as in Fig. 12.1b. Since in re-
ality the fluorine nuclei are physically indistinguishable from one another, we have carried 
out a symmetry operation. The axis about which we rotated the molecule is an example of 
a symmetry element. Symmetry elements and symmetry operations are related but differ-
ent things, which are often confused. A symmetry element is a geometrical entity (point, 
line, or plane) with respect to which a symmetry operation is carried out.

We say that a body has an n-fold axis of symmetry (also called an n-fold proper 
axis or an n-fold rotation axis) if rotation about this axis by 360>n degrees (where n is an 

Figure 12.1 (a) The BF3 
molecule. (b) BF3 after a 
120 rotation about the axis 
through B and perpendi­
cular to the molecular plane.

F1

F1 F2

B

(a) (b)
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F2 F3

F3
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integer) gives a configuration physically indistinguishable from the original position; n is 
called the order of the axis. For example, BF3 has a threefold axis of symmetry perpen-
dicular to the molecular plane. The symbol for an n-fold rotation axis is Cn. The three-
fold axis in BF3 is a C3 axis. To denote the operation of counterclockwise rotation by 
1360>n2, we use the symbol Cnn. The “hat” distinguishes symmetry operations from sym-
metry elements. BF3 has three more rotation axes; each BiF bond is a twofold symmetry 
axis (Fig. 12.2).

A second kind of symmetry element is a plane of symmetry. A molecule has a plane 
of symmetry if reflection of all the nuclei through that plane gives a configuration phys-
ically indistinguishable from the original one. The symbol for a symmetry plane is s 
(lowercase sigma). (Spiegel is the German word for mirror.) The symbol for the operation 
of reflection is sn . BF3 has four symmetry planes. The plane of the molecule is a symme-
try plane, since nuclei lying in a reflection plane do not move when a reflection is carried 
out. The plane passing through the B and F1 nuclei and perpendicular to the plane of the 
molecule is a symmetry plane, since reflection in this plane merely interchanges F2 and F3. 
It might be thought that this reflection is the same symmetry operation as rotation by 
180 about the C2 axis passing through B and F1, which also interchanges F2 and F3. This 
is not so. The reflection carries points lying above the plane of the molecule into points 
that also lie above the molecular plane, whereas the Cn2 rotation carries points lying above 
the molecular plane into points below the molecular plane. Two symmetry operations 
are equal only when they represent the same transformation of three-dimensional space. 
The remaining two symmetry planes in BF3 pass through BiF2 and BiF3 and are 
perpendicular to the molecular plane.

The third kind of symmetry element is a center of symmetry, symbolized by i (no 
connection with 2-1). A molecule has a center of symmetry if the operation of inverting 
all the nuclei through the center gives a configuration indistinguishable from the original 
one. If we set up a Cartesian coordinate system, the operation of inversion through the 
origin (symbolized by in) carries a nucleus originally at (x, y, z) to 1-x, -y, -z2. Does BF3 
have a center of symmetry? With the origin at the boron nucleus, inversion gives the result 
shown in Fig. 12.3. Since we get a configuration that is physically distinguishable from 
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FIGURE 12.2  A C2 axis 
in BF3.
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FIGURE 12.3  Effect of 
inversion in BF3.
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the original one, BF3 does not have a center of symmetry. For SF6, inversion through the 
sulfur nucleus is shown in Fig. 12.4, and it is clear that SF6 has a center of symmetry. (An 
operation such as in  or Cnn may or may not be a symmetry operation. Thus, in  is a sym-
metry operation in SF6 but not in BF3.)

The fourth and final kind of symmetry element is an n-fold rotation–reflection axis 
of symmetry (also called an improper axis or an alternating axis), symbolized by Sn. 
A body has an Sn axis if rotation by 1360>n2 (n integral) about the axis, followed by 
reflection in a plane perpendicular to the axis, carries the body into a position physically 
indistinguishable from the original one. Clearly, if a body has a Cn axis and also has a 
plane of symmetry perpendicular to this axis, then the Cn axis is also an Sn axis. Thus the 
C3 axis in BF3 is also an S3 axis. It is possible to have an Sn axis that is not a Cn axis. An 
example is CH4. In Fig. 12.5 we have first carried out a 90 proper rotation 1Cn42 about 
what we assert is an S4 axis. As can be seen, this operation does not result in an equivalent 
configuration. When we follow the Cn4 operation by reflection in the plane perpendicular 
to the axis and passing through the carbon atom, we do get a configuration indistinguish-
able from the one existing before we performed the rotation and reflection. Hence CH4 
has an S4 axis. The S4 axis is not a C4 axis, although it is a C2 axis. There are two other S4 
axes in methane, each perpendicular to a pair of faces of the cube in which the tetrahedral 
molecule is inscribed.

The operation of counterclockwise rotation by 1360>n2 about an axis, followed by 
reflection in a plane perpendicular to the axis, is denoted by Snn. An Sn1 operation is a 360 
rotation about an axis, followed by a reflection in a plane perpendicular to the axis. Since 
a 360 rotation restores the body to its original position, an Sn1 operation is the same as 
reflection in a plane; Sn1 = sn . A plane of symmetry has an S1 axis perpendicular to it.

Consider now the Sn2 operation. Let the S2 axis be the z axis (Fig. 12.6). Rotation by 
180 about the S2 axis changes the x and y coordinates of a point to -x and -y, respec-
tively, and leaves the z coordinate unaffected. Reflection in the xy plane then converts 
the z coordinate to -z. The net effect of the Sn2 operation is to bring a point originally at 
(x, y, z) to 1-x,  -y,  -z2, which amounts to an inversion through the origin: Sn2 = in. Any 
axis passing through a center of symmetry is an S2 axis. Reflection in a plane and inver-
sion are special cases of the Snn operation.
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inversion in BF6.

C

S4

H1

H1

H1H4

H3 H3

H3

H2

H2

^

H2

H4

H4C

S4

C

S4

sĈ4
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The Snn operation may seem an arbitrary kind of operation, but it must be included as 
one of the kinds of symmetry operations. For example, the transformation from the first 
to the third CH4 configuration in Fig. 12.5 certainly meets the definition of a symmetry 
operation, but it is neither a proper rotation nor a reflection nor an inversion.

Performing a symmetry operation on a molecule gives a nuclear configuration that 
is physically indistinguishable from the original one. Hence the center of mass must have 
the same position in space before and after a symmetry operation. For the operation Cnn, 
the only points that do not move are those on the Cn axis. Therefore, a Cn symmetry axis 
must pass through the molecular center of mass. Similarly, a center of symmetry must 
coincide with the center of mass; a plane of symmetry and an Sn axis of symmetry must 
pass through the center of mass. The center of mass is the common intersection of all the 
molecular symmetry elements.

In discussing the symmetry of a molecule, we often place it in a Cartesian coor-
dinate system with the molecular center of mass at the origin. The rotational axis of 
highest order is made the z axis. A plane of symmetry containing this axis is designated 
s

v
 (for vertical); a plane of symmetry perpendicular to this axis is designated sh (for 

horizontal).

Products of Symmetry Operations
Symmetry operations are operators that transform three-dimensional space, and (as with any 
operators) we define the product of two such operators as meaning successive application 
of the operators, the operator on the right of the product being applied first. Clearly, the 
product of any two symmetry operations of a molecule must be a symmetry operation.

As an example, consider BF3. The product of the Cn3 operator with itself, Cn3Cn3 = Cn2
3, 

rotates the molecule 240� counterclockwise. If we take Cn3Cn3Cn3 = Cn3
3, we have a 360� 

rotation, which restores the molecule to its original position. We define the identity 
operation En as the operation that does nothing to a body. We have Cn3

3 = En. (The symbol 
comes from the German word Einheit, meaning unity.)

Now consider a molecule with a sixfold axis of symmetry, for example, C6H6. The 

operation Cn6 is a 60� rotation, and Cn2
6 is a 120� rotation; hence Cn2

6 = Cn3. Also Cn3
6 = Cn2. 

Therefore, a C6 symmetry axis is also a C3 and a C2 axis.
Since two successive reflections in the same plane bring all nuclei back to their origi-

nal positions, we have sn 2 = En. Also, in2 = En. More generally, sn n = En,  inn = En for even 
n, while sn n = sn ,  inn = in  for odd n.

Do symmetry operators always commute? Consider SF6. We examine the products 
of a Cn4 rotation about the z axis and a Cn2 rotation about the x axis. Figure 12.7 shows that 
Cn41z2Cn21x2 � Cn21x2Cn41z2. Thus symmetry operations do not always commute. Note 
that we describe symmetry operations with respect to a fixed coordinate system that does 
not move with the molecule when we perform a symmetry operation. Thus the C21x2 axis 
does not move when we perform the Cn41z2 operation.

Figure 12.6  The Sn2 
operation.(x, y, z) (2x, 2y, z)
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Symmetry and Dipole Moments
As an application of symmetry, we consider molecular dipole moments. Since a symmetry 
operation produces a configuration that is physically indistinguishable from the original 
one, the direction of the dipole-moment vector must remain unchanged after a symmetry 
operation. (This is a nonrigorous, unsophisticated argument.) Hence, if we have a Cn axis 
of symmetry, the dipole moment must lie along this axis. If we have two or more non-
coincident symmetry axes, the molecule cannot have a dipole moment, since the dipole 
moment cannot lie on two different axes. CH4, which has four noncoincident C3 axes, 
has no dipole moment. If there is a plane of symmetry, the dipole moment must lie in this 
plane. If there are several symmetry planes, the dipole moment must lie along the line of 
intersection of these planes. In H2O the dipole moment lies on the C2 axis, which is also 
the intersection of the two symmetry planes (Fig. 12.8). A molecule with a center of sym-
metry cannot have a dipole moment, since inversion reverses the direction of a vector.  
A monatomic molecule has a center of symmetry. Hence atoms do not have dipole 
moments. (There is one exception to this statement; see Prob. 14.4.) Thus we can use 
symmetry to discover whether a molecule has a dipole moment. In many cases symmetry 
also tells us along what line the dipole moment lies.

Symmetry and Optical Activity
Certain molecules rotate the plane of polarization of plane-polarized light that is passed 
through them. Experimental evidence and a quantum-mechanical treatment (Kauzmann, 
pp. 703–713) show that the optical rotary powers of two molecules that are mirror images 
of each other are equal in magnitude but opposite in sign. Hence, if a molecule is its own 
mirror image, it is optically inactive: a = -a, 2a = 0, a = 0, where a is the optical ro-
tary power. If a molecule is not superimposable on its mirror image, it may be optically 
active. If the conformation of the mirror image differs from that of the original molecule 
only by rotation about a bond with a low rotational barrier, then the molecule will not be 
optically active.

What is the connection between symmetry and optical activity? Consider the Snn 
operation. It consists of a rotation 1Cnn2 and a reflection 1sn 2. The reflection part of the 
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Snn operation converts the molecule to its mirror image, and if the Snn operation is a sym-
metry operation for the molecule, then the Cnn rotation will superimpose the molecule and 
its mirror image:

molecule   
Cnn  rotated molecule  

sn
  rotated mirror image

We conclude that a molecule with an Sn axis is optically inactive. If the molecule has no Sn 
axis, it may be optically active.

Since Sn1 = sn  and Sn2 = in, a molecule with either a plane or a center of symmetry is 
optically inactive. However, an Sn axis of any order rules out optical activity.

A molecule can have a symmetry element and still be optically active. If a Cn axis is 
present and there is no Sn axis, the molecule can be optically active.

Symmetry Operations and Quantum Mechanics
What is the relation between the symmetry operations of a molecule and quantum me-
chanics? To classify the states of a quantum-mechanical system, we consider those op-
erators that commute with the Hamiltonian operator and with each other. For example, 
we classified the states of many-electron atoms using the quantum numbers L, S, J, and 
MJ, which correspond to the operators Ln2,  Sn2, Jn2, and Jnz, all of which commute with one 
other and with the Hamiltonian (omitting spin–orbit interaction). The symmetry opera-
tions discussed in this chapter act on points in three-dimensional space, transforming 
each point to a corresponding point. All the quantum-mechanical operators we have 
discussed act on functions, transforming each function to a corresponding function. Cor-
responding to each symmetry operation Rn, we define an operator OnR that acts on func-
tions in the following manner. Let Rn bring a point originally at (x, y, z) to the location 
1x�, y�, z�2:

	 Rn1x, y, z2 S 1x�, y�, z�2	 (12.1)

The operator OnR is defined so that the function OnR f  has the same value at 1x�, y�, z�2 that 
the function f has at (x, y, z):

	 OnR f1x�, y�, z�2 = f1x, y, z2	 (12.2)

For example, let Rn be a counterclockwise 90� rotation about the z axis: Rn = Cn41z2; 
and let f be a 2px hydrogen orbital: f = 2px = Nxe-k1x2 + y2 + z221>2

. The shape of the 2px 
orbital is two distorted ellipsoids of revolution about the x axis (Section 6.7). Let these 
ellipsoids be “centered” about the points (a, 0, 0) and 1-a, 0, 02, where a 7 0 and 
2px 7 0 on the right ellipsoid. The operator Cn41z2 has the following effect (Fig. 12.9):

	 Cn41z21x, y, z2 S 1-y, x, z2	 (12.3)

For example, the point originally at (a, 0, 0) is moved to (0, a, 0), while the point 
at 1-a, 0, 02 is moved to 10, -a, 02. From (12.2), the function OnC41z22px must have 

Figure 12.9  The effect of 
a Cn41z2 rotation is to move 
the point at 1x, y2 to 1x�, y�2.
Use of trigonometry shows 
that x� = -y and y� = x.

(x9, y9)

(x, y)
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its contours centered about (0, a, 0) and 10, -a, 02, respectively. We conclude that 
(Fig. 12.10)

	 OnC41z22px = 2py	 (12.4)

For the inversion operation, we have

	 in1x, y, z2 S 1-x, -y, -z2	 (12.5)

and (12.2) reads

On i f1-x, -y, -z2 = f1x, y, z2
We now rename the variables as follows: x = -x, y = -y,  z = -z. Hence

On i f1x, y, z2 = f1-x, -y, -z2
The point 1x, y, z2 is a general point in space, and we can drop the bars to get

On i f1x, y, z2 = f1-x, -y, -z2
We conclude that On i is the parity operator (Section 7.5): On i = n .

The wave function of an n-particle system is a function of 4n variables, and we extend 
the definition (12.2) of OnR to read

OnR f1x1, y1, z1, ms1, c, xn, yn, zn, msn2 = f1x1, y1, z1, ms1, c, xn, yn, zn, msn2
Note that OnR does not affect the spin coordinates. Thus, in looking at the parity of 

atomic states in Section 11.5, we looked at the spatial factors in each term of the expansion 
of the Slater determinant and omitted consideration of the spin factors, since these are 
unaffected by n .

When a system is characterized by the symmetry operations Rn1, Rn2, c, then the cor-
responding operators OnR1

, OnR2
, c commute with the Hamiltonian. (For a proof, see Schon-

land, Sections 7.1–7.3.) For example, if the nuclear framework of a molecule has a center 
of symmetry, then the parity operator n  commutes with the Hamiltonian for the electronic 
motion. We can then choose the electronic states (wave functions) as even or odd, according 
to the eigenvalue of n . Of course, not all the symmetry operations may commute among 
themselves (Fig. 12.7). Hence the wave functions cannot in general be chosen as eigenfunc-
tions of all the symmetry operators OnR. (Further discussion on the relation between sym-
metry operators and molecular wave functions is given in Section 15.2.)

There is a close connection between symmetry and the constants of the motion (these 
are properties whose operators commute with the Hamiltonian Hn ). For a system whose 
Hamiltonian is invariant (that is, doesn’t change) under any translation of spatial coordinates, 
the linear-momentum operator pn will commute with Hn  and p can be assigned a definite value 
in a stationary state. An example is the free particle. For a system with Hn  invariant under any 
rotation of coordinates, the operators for the angular-momentum components commute with 
Hn , and the total angular momentum and one of its components are specifiable. An example 
is an atom. A linear molecule has axial symmetry, rather than the spherical symmetry of an 
atom; here only the axial component of angular momentum can be specified (Chapter 13).
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Figure 12.10  Effect of 
OnC 41z2 on a px orbital.
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Matrices and Symmetry Operations
The symmetry operation Rn moves the point originally at x, y, z to the new location 
x, y, z, where each of x, y, z is a linear combination of x, y, z (for proof of this see 
Schonland, pp. 52–53):

x = r11x + r12y + r13z

y = r21x + r22y + r23z

z = r31x + r32y + r33z

 or °
x

y

z

¢ = °
r11 r12 r13

r21 r22 r23

r31 r32 r33

¢°
x

y

z

¢

where r11, r12, c, r33 are constants whose values depend on the nature of Rn. One says 
that the symmetry operation Rn is represented by the matrix R whose elements are 
r11, r12, c, r33. The set of functions x, y, z, whose transformations are described by R, is 
said to be the basis for this representation.

For example, from (12.3) and (12.5), for the Cn41z2  operation, we have 
x = -y, y = x, z = z; for in, we have x = -x, y = -y, z = -z. The matrices rep-
resenting Cn41z2 and in  in the x, y, z basis are

C41z2 = °
0 -1 0

1 0 0

0 0 1

¢,   i = °
-1 0 0

0 -1 0

0 0 -1

¢

If the product RnSn  of two symmetry operations is Tn, then the matrices representing 
these operations in the x, y, z basis multiply in the same way; that is, if RnSn = Tn, then 
RS = T. (For proof, see Schonland, pp. 56–57.)

12.2 Symmetry Point Groups
We now consider the possible combinations of symmetry elements. We cannot have arbi-
trary combinations of symmetry elements in a molecule. For example, suppose a molecule 
has one and only one C3 axis. Any symmetry operation must send this axis into itself. 
The molecule cannot, therefore, have a plane of symmetry at an arbitrary angle to the C3 
axis; any plane of symmetry must either contain this axis or be perpendicular to it. (In 
BF3 there are three sy planes and one sh plane.) The only possibility for a Cn axis nonco-
incident with the C3 axis is a C2 axis perpendicular to the C3 axis. The corresponding Cn2 
operation will send the C3 axis into itself. Since Cn3 and Cn2

3 are symmetry operations, if we 
have one C2 axis perpendicular to the C3 axis, we must have a total of three such axes (as 
in BF3).

The set of all the symmetry operations of a molecule forms a mathematical group. 
A group is a set of entities (called the elements or members of the group) and a rule 
for combining any two members of the group to form the product of these members, 
such that certain requirements are met. Let A, B, C, D, c (assumed to be all different 
from one another) be the members of the group and let B *C denote the product of B 
and C. The product B *C need not be the same as C *B. The requirements that must be 
met to have a group are as follows: (1) The product of any two elements (including the 
product of an element with itself) must be a member of the group (the closure require-
ment). (2) There is a single element I of the group, called the identity element, such that 
K * I = K  and I *K = K  for every element K of the group. (3) Every element K of the 
group has an inverse (symbolized by K-1) that is a member of the group and that satis-
fies K *K-1 = I and K-1 * K = I, where I is the identity element. (4) Group multiplica-
tion is associative, meaning that 1B * D2 * G = B * 1D * G2 always holds for elements 
of the group.



336  Chapter 12  |  Molecular Symmetry

The number of elements in a group is called the order of the group. A group for 
which B *C = C * B for every pair of group elements is commutative or Abelian.

An example of a group is the set of all integers (positive, negative, and zero) 
with the rule of combination being ordinary addition. Closure is satisfied since the 
sum of two integers is an integer. The identity element is 0. The inverse of the inte-
ger n is the integer -n. Addition is associative. This group is of infinite order and is 
Abelian.

The set of all symmetry operations of a three-dimensional body, with the rule 
of combination of Rn and Sn  being successive performance of Rn and Sn, forms a group. 
Closure is satisfied because the product of any two symmetry operations must be a 
symmetry operation. The identity element of the group is the identity operation En, 
which does nothing. Associativity is satisfied [Eq. (3.6)]. The inverse of a symmetry 
operation Rn is the symmetry operation that undoes the effect of Rn. For example, the 
inverse of the inversion operation in  is in  itself, since inin = En. The inverse of a Cn3 120 
counterclockwise rotation is a 120 clockwise rotation, which is the same as a 240 
counterclockwise rotation: Cn3 Cn2

3 = En  and Cn -1
3 = Cn2

3. Note that it is the symmetry 
operations of a molecule (and not the symmetry elements) that are the members 
(elements) of the group. We will make some use of group theory in Section 15.2, 
but a full development of group theory and its applications is omitted (see Cotton or 
Schonland).

For any symmetry operation of a molecule, the point that is the center of mass re-
mains fixed. Hence the symmetry groups of isolated molecules are called point groups. 
For a crystal of infinite extent, we can have symmetry operations (for example, transla-
tions) that leave no point fixed, giving rise to space groups. Consideration of space groups 
is omitted.

Every molecule belongs to one of the symmetry point groups that we now list. For 
convenience the point groups have been classified into four divisions. Script letters denote 
point groups.

I. Groups with no Cn axis : �1, �s, �i

�1: If a molecule has no symmetry elements at all, it belongs to this group. The 
only symmetry operation is En (which is a Cn1 rotation). CHFClBr belongs to point 
group �1.

�s: A molecule whose only symmetry element is a plane of symmetry belongs 
to this group. The symmetry operations are En and sn . An example is HOCl 
(Fig. 12.11).

�i: A molecule whose only symmetry element is a center of symmetry belongs to this 
group. The symmetry operations are in  and En.
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Figure 12.11  Molecules 
with no Cn axis.



12.2 Symmetry Point Groups  |  337

II. Groups with a single Cn axis : �n, �nh, �nv
, �2n

�n, n = 2, 3, 4, c: A molecule whose only symmetry element is a Cn axis belongs to 
this group. The symmetry operations are Cnn, Cn

2
n, c, Cnn - 1

n , En. A molecule belong-
ing to �2 is shown in Fig. 12.12.

�nh, n = 2, 3, 4, c : If we add a plane of symmetry perpendicular to the Cn axis, 
we have a molecule belonging to this group. Since sn hCnn = Snn, the Cn axis is also 
an Sn axis. If n is even, the Cn axis is also a C2 axis, and the molecule has the sym-
metry operation sn hCn2 = Sn2 = in. Thus, for n even, a molecule belonging to �nh 
has a center of symmetry. (The group �1h is the group �s discussed previously.) 
Examples of molecules belonging to groups �2h and �3h are shown in Fig. 12.12.

�nv
, n = 2, 3, 4, c: A molecule in this group has a Cn axis and n vertical symmetry 

planes passing through the Cn axis. (Group �1v
 is the group �s.) H2O with a C2 axis and 

two vertical symmetry planes belongs to �2v
. NH3 belongs to �3v

. (See Fig. 12.12.)

�n, n = 4, 6, 8, c: �n is the group of symmetry operations associated with an Sn 
axis. First consider the case of odd n. We have Snn = sn hCnn. The operation Cnn affects 
the x and y coordinates only, while the sn h operation affects the z coordinate only. 
Hence these operations commute, and we have

Snn
n = 1sn hCnn2n = sn hCnnsn hCnn g sn hCnn = sn n

hCn
n
n

Now Cnn
n = En, and, for odd n, sn n

h = sn h. Hence the symmetry operation Snn
n equals 

sn h for odd n, and the group �n has a horizontal symmetry plane if n is odd. Also,

Snn + 1
n = Snn

nSnn = sn hSnn = sn hsn hCnn = Cnn,    n odd

so the molecule has a Cn axis if n is odd. We conclude that �n is identical to the 
group �nh if n is odd. Now consider even values of n. Since Sn2 = in, the group �2 
is identical to �i. Thus it is only for n = 4, 6, 8, c that we get new groups. The 
S2n axis is also a Cn axis: Sn2

2n = sn 2
hCn

2
2n = EnCnn = Cnn.

III. Groups with one Cn axis and n C2 axes : �n, �nh, �nd

�n, n = 2, 3, 4, c: A molecule with a Cn axis and n C2 axes perpendicular to the 
Cn axis (and no symmetry planes) belongs to �n. The angle between adjacent C2 
axes is p>n radians. The group �2 has three mutually perpendicular C2 axes, and 
the symmetry operations are En, Cn21x2, Cn21y2, Cn21z2.
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Figure 12.12  Molecules 
with a single Cn axis.
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�nh, n = 2, 3, 4, c: This is the group of a molecule with a Cn axis, n C2 axes, and a 
sh symmetry plane perpendicular to the Cn axis. As in �nh, the Cn axis is also an Sn 
axis. If n is even, the Cn axis is a C2 and an S2 axis, and the molecule has a center 
of symmetry. Molecules in �nh also have n vertical planes of symmetry, each such 
plane passing through the Cn axis and a C2 axis. (For the proof, see Prob. 12.29.) 
BF3 belongs to �3h; PtCl2 -

4  belongs to �4h; benzene belongs to �6h (Fig. 12.13).

�nd, n = 2, 3, 4, c: A molecule with a Cn axis, nC2 axes, and n vertical planes of 
symmetry, which pass through the Cn axis and bisect the angles between adjacent 
C2 axes, belongs to this group. The n vertical planes are called diagonal planes and 
are symbolized by sd. The Cn axis can be shown to be an S2n axis. The staggered 
conformation of ethane is an example of group �3d (Fig. 12.13). [The symmetry 
of molecules with internal rotation (for example, ethane) actually requires special 
consideration; see H. C. Longuet-Higgins, Mol. Phys., 6, 445 (1963).]

IV. Groups with more than one Cn axis, n 7 2 : �d, �, �h, �h, �, �h, �, _h

These groups are related to the symmetries of the Platonic solids, solids bounded by 
congruent regular polygons and having congruent polyhedral angles. There are five 
such solids: The tetrahedron has four triangular faces, the cube has six square faces, 
the octahedron has eight triangular faces, the pentagonal dodecahedron has twelve 
pentagonal faces, and the icosahedron has twenty triangular faces.

�d: The symmetry operations of a regular tetrahedron constitute this group. The prime 
example is CH4. The symmetry elements of methane are four C3 axes (each CiH 
bond), three S4 axes, which are also C2 axes (Fig. 12.5), and six symmetry planes, 
each such plane containing two C—H bonds. (The number of combinations of 
4 things taken 2 at a time is 4!/2!2! 5 6.)

�h: The symmetry operations of a cube or a regular octahedron constitute this group. 
The cube and octahedron are said to be dual to each other; if we connect the mid-
points of adjacent faces of a cube, we get an octahedron, and vice versa. Hence the 
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Figure 12.13  Molecules 
with a Cn axis and n C2 axes.
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cube and octahedron have the same symmetry elements and operations. A cube 
has six faces, eight vertices, and twelve edges. Its symmetry elements are as follows: 
a center of symmetry, three C4 axes passing through the centers of opposite faces 
of the cube (these are also S4 and C2 axes), four C3 axes passing through opposite 
corners of the cube (these are also S6 axes), six C2 axes connecting the midpoints of 
pairs of opposite edges, three planes of symmetry parallel to pairs of opposite faces, 
and six planes of symmetry passing through pairs of opposite edges. Octahedral 
molecules such as SF6 belong to �h.

�h: The symmetry operations of a regular pentagonal dodecahedron or icosahedron 
(which are dual to each other) constitute this group. The B12H

2 -
12  ion belongs to 

group �h. The twelve boron atoms lie at the vertices of a regular icosahedron 
(Fig. 12.14). The soccer-ball-shaped molecule C60 (buckminsterfullerene) belongs to 
�h. Its shape is a truncated icosahedron formed by slicing off each of the 12 vertices 
of a regular icosahedron (Fig. 12.14), thereby generating a figure with 12 pentagonal 
faces (5 faces meet at each vertex of the original icosahedron), 20 hexagonal faces 
(formed from the 20 triangular faces of the original icosahedron), and 12 * 5 = 60 
vertices (5 new vertices are formed when one of the original vertices is sliced off).

_h: This is the group of symmetry operations of a sphere. (Kugel is the German word 
for sphere.) An atom belongs to this group.

For completeness, we mention the remaining groups related to the Platonic solids; 
these groups are chemically unimportant. The groups �, �, and � are the groups of 
symmetry proper rotations of a tetrahedron, cube, and icosahedron, respectively. These 
groups do not have the symmetry reflections and improper rotations of these solids or 
the inversion operation of the cube and icosahedron. The group �h contains the sym-
metry rotations of a tetrahedron, the inversion operation, and certain reflections and 
improper rotations.

What groups do linear molecules belong to? A rotation by any angle about the inter-
nuclear axis of a linear molecule is a symmetry operation. A regular polygon of n sides 
has a Cn axis, and taking the limit as n S  we get a circle, which has a C  axis. The 
internuclear axis of a linear molecule is a C  axis. Any plane containing this axis is a 
symmetry plane. If the linear molecule does not have a center of symmetry (for example, 
CO, HCN), it belongs to the group � v

. If the linear molecule has a center of symmetry 
(for example, H2, C2H2), then it also has a sh symmetry plane and an infinite number of 
C2 axes perpendicular to the molecular axis. Hence it belongs to �  h.

How do we find what point group a molecule belongs to? One way is to find all the 
symmetry elements and then compare with the above list of groups. A more systematic 
procedure is given in Fig. 12.15 [J. B. Calvert, Am. J. Phys., 31, 659 (1963)]. This proce-
dure is based on the four divisions of point groups.

Figure 12.14  Molecules 
with more than one Cn axis, 
n 7 2. (For B12H2

12
2, the 

hydrogen atoms have been 
omitted for clarity.)
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We begin by checking whether or not the molecule is linear. Linear molecules are 
classified in � h or �y according to whether or not there is a center of symmetry. If the 
molecule is nonlinear, we look for two or more rotational axes of threefold or higher order. 
If these are present, the molecule is classified in one of the groups related to the symmetry 
of the regular polyhedra (division IV). If these axes are not present, we look for any Cn 
axis at all. If there is no Cn axis, the molecule belongs to one of the groups �s, �i, �1 (di-
vision I). If there is at least one Cn axis, we pick the Cn axis of highest order as the main 
symmetry axis before proceeding to the next step. (If there are three mutually perpendicu-
lar C2 axes, we may pick any one of these axes as the main axis.) We next check for n C2 
axes at right angles to the main Cn axis. If these are present, we have one of the division III 
groups. If these are absent, we have one of the division II groups. If we find the n C2 axes, 
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determine the point group 
of a molecule.



we look for a symmetry plane perpendicular to the main Cn axis. If it is present, the group 
is �nh. If it is absent, we check for n planes of symmetry containing the main Cn axis (if 
the molecule has three mutually perpendicular C2 axes, we must try each axis as the main 
axis in looking for the two s

v
 planes; the three C2 axes are equivalent in the groups �nh 

and �n, but not in �nd). If we find n s
v
 planes, the group is �nd; otherwise it is �n. If the 

molecule does not have n C2 axes perpendicular to the main Cn axis, we classify it in one 
of the groups �nh, �nv

, �2n, or �n, by looking first for a sh plane, then for n s
v
 planes, 

and, finally, if these are absent, checking whether or not the Cn axis is an S2n axis. The pro-
cedure of Fig. 12.15 does not locate all symmetry elements. After classifying a molecule, 
check that all the required symmetry elements are indeed present. Although the above pro-
cedure might seem involved, it is really quite simple and is easily memorized.

The most common error students make in classifying a molecule is to miss the n 
C2 axes perpendicular to the Cn axis of a molecule belonging to �nd. For example, it 
is easy to see that the C “ C “ C axis of allene is a C2 axis, but the other two C2 axes 
(Fig. 12.16) are often overlooked. Molecules with two equal halves “staggered” with 
respect to each other generally belong to �nd. Models may be helpful for those with 
visualization difficulties.

Summary
A symmetry operation transforms an object into a position that is physically indistinguish-
able from the original position and preserves the distances between all pairs of points in 
the object. A symmetry element is a geometrical entity with respect to which a symmetry 
operation is performed. For molecules, the four kinds of symmetry elements are an n-fold 
axis of symmetry 1Cn2, a plane of symmetry 1s2, a center of symmetry (i), and an n-fold 
rotation–reflection axis of symmetry 1Sn2. The product of symmetry operations means 
successive performance of them. We have Cn n

n = En, where En is the identity operation; also, 
Sn1 = sn , and Sn2 = in, where the inversion operation moves a point at x, y, z to -x, -y, -z. 
Two symmetry operations may or may not commute.

For the symmetry operation Rn that brings a point at x, y, z to x,  y, z, the operator OnR 
is defined by the equation OnR  f1x, y, z2 = f1x, y, z2. If a molecule has the symmetry 
operations Rn1, Rn2, c, then the operators OnR1

, OnR2
, c, commute with the molecular Ham-

iltonian Hn . If Rn1, Rn2, c all commute with one another, then the molecular wave functions 
can be taken as eigenfunctions of OnR1

, OnR2
, c.

The set of all symmetry operations of a molecule constitutes a mathematical point 
group. The possible point groups of molecules are as follows. I. Groups with no Cn axis: 
�1, �s, �i. II. Groups with a single Cn axis: �n, �nh, �ny, �2n. III. Groups with one Cn axis 
and n C2 axes: �n, �nh, �nd. IV. Groups with more than one Cn axis, n 7 2: �d, �h, �h, 
and others.

Summary  |  341
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Problems

Sec. 12.1 12.2 general

Probs. 12.1–12.15 12.16–12.34 12.35

	  12.1	 True or false? (a) Symmetry operations always commute. (b) Symmetry operations never 
commute. (c) The product of two symmetry operations of a molecule must be a symmetry 
operation for that molecule.

	  12.2	 Give all the symmetry elements of each of the following molecules: (a) H2S; (b) NH3; 
(c) CHF3; (d) HOCl; (e) 1,3,5-trichlorobenzene; (f) CH2F2; (g) CHFClBr.

	  12.3	 List all the symmetry operations of each of the molecules in Prob. 12.2.

	   12.4	 Consider the square-planar ion PtCl2 -
4 . Suppose we interchange two Cl atoms that are cis to each 

other. Does this interchange meet the definition of a symmetry operation (Section 12.1)? If so, 
express it in terms of some combination of the four kinds of symmetry operations discussed.

	  12.5	 What symmetry operation is each of the following products of operations equal to? (a) sn 4; 
(b) sn 7; (c) Cn 2

4; (d) Cn 6
4; (e) Sn2

4; (f) Sn
3
6; (g) Cn 3

12; (h) in3.
	  12.6	 Use Fig. 12.7 to state what symmetry operation in SF6 each of the following products of 

symmetry operations is equal to. (a) Cn21x2Cn41z2; (b) Cn41z2Cn21x2.

	  12.7	 For SF6, which of the following pairs of operations commute? (a) Cn41z2, sn 1xy); 
(b) Cn41z2, sn 1yz2; (c) Cn21z2, Cn21x2; (d) sn 1xy2, sn 1yz2; (e) in, sn 1xy2.

	  12.8	 What information does symmetry give about the dipole moment of each of the molecules in 
Prob. 12.2?

	  12.9	 (a) Does H2O2 (Fig. 12.12) have an Sn axis? (b) Is it optically active? Explain.

	12.10	 For each of the following symmetry operations, find the matrix representative in the x, y, z 
basis. (a) En ; (b) sn 1xy2; (c) sn 1yz2; (d) Cn21x2; (e) Sn41z2; (f) Cn31z2.

	12.11	 (a) Use SF6 (Fig. 12.7) to verify that Cn21x2sn 1xy2 = sn 1xz2. (b) Write down the matrix rep-
resentatives in the x, y, z basis of the three operations in part (a). Verify that these matrices 
multiply the same way the symmetry operations multiply.

	12.12	 (a) What are the eigenvalues of OnC4
? (b) Is this operator Hermitian?

	12.13	 Do the same as in Prob. 12.12 for OnC2
.

	12.14	 To what function is a 2pz hydrogenlike orbital converted by (a) OnC41z2; (b) OnC41y2?
	12.15	 It is common to use rotation–inversion axes (rather than rotation–reflection axes) to classify 

the symmetry of crystals. Any Sn axis is equivalent to a rotation–inversion axis (symbolized 
by p) whose order p may differ from n. A rotation–inversion operation consists of rotation 
by 2p>p radians followed by inversion. Show that

		  Snn1z2 = in3Cnn1z2Cn21z)4
		  Thus we have the following correspondence:

Sn 1 2 3 4

p 2 1 6 4

		  Give the next three pairs of entries in this table.

	12.16	 State whether each of the following is a group. (a) All the real numbers with the rule of 
combination for forming the product of two elements being addition. (b) All positive integers 
with the rule of combination being multiplication. (c) All real numbers except zero, with the 
rule of combination being multiplication.

	12.17	 Does the set of all square matrices of order four form a group if the rule for forming the 
“product” of two elements is matrix addition?

	12.18	 Does the set of the nth roots of unity [Eq. (1.36)] with the rule of combination being ordinary 
multiplication form a group? Justify your answer.

	12.19	 Give the point group of each of the following molecules. (a) CH4; (b) CH3F; (c) CH2F2; 
(d) CHF3; (e) SF6; (f) SF5Br; (g) trans@SF4Br2; (h) CDH3.



	12.20	 Give the point group of (a) CH2 “ CH2; (b) CH2 “ CHF; (c) CH2 “ CF2; (d) cis@CHF “ CHF; 
(e) trans@CHF “ CHF.

	12.21	 Give the point group of (a) benzene; (b) fluorobenzene; (c) o-difluorobenzene; 
(d) m-difluorobenzene; (e) p-difluorobenzene; (f) 1,3,5-trifluorobenzene; (g) 1,4-difluoro-
2,5-dibromobenzene; (h) naphthalene; (i) 2-chloronaphthalene.

	12.22	 Give the point group of (a) HCN; (b) H2S; (c) CO2; (d) CO; (e) C2H2; (f) CH3OH; (g) ND3; 
(h) OCS; (i) P4; (j) PCl3; (k) PCl5; (l) B12Cl2 -

12 ; (m) UF6; (n) Ar.

	12.23	 Give the point group of (a) FeF3 -
6 ; (b) IF5; (c) CH2 “ C “ CH2; (d) C8 H8, cubane; 

(e) C6H6Cr1CO23; (f) B2H6; (g) XeF4; (h) F2O; (i) spiropentane.

	12.24	 Give the order of each of the following groups: (a) �3v
; (b) �s; (c) � v

; (d) �3h.

	12.25	 The product of two members of a group must be a member of that group. (a) List the mem-
bers (the symmetry operations) of the group �2v

, using the x, y, and z axes to specify the 
axis or plane with respect to which each symmetry operation is performed. (b) For every 
possible product of two members of this group, state which symmetry operation it is equal 
to. Note that symmetry operations do not necessarily commute. (c) The multiplication 
table of a group shows all possible products of two members of the group. Write down the 
multiplication table for �2v

 with each member of the group shown at the top and at the left 
of the table, and each entry in the table being the product of the member at the left of the 
row and the member at the top of the column of that entry.

	12.26	 State whether each of these groups is Abelian. (a) �3; (b) �3v
.

	12.27	 The structure of ferrocene, C5H5FeC5H5, is an iron atom sandwiched midway between two 
parallel regular pentagons. For the eclipsed conformation, the vertices of the two penta-
gons are aligned; for the staggered conformation, one pentagon is rotated 2p>10 radians 
with respect to the other. Electron diffraction results show that the gas-phase equilibrium 
conformation is the eclipsed one, with a quite low barrier to internal rotation of the 
rings. [See S. Coriani et al., ChemPhysChem, 7, 245 (2006).] What is the point group of 
(a) eclipsed ferrocene; (b) staggered ferrocene?

	12.28	 What is the point group of the tris(ethylenediamine)cobalt(III) complex ion? (Each 
NH2CH2CH2NH2 group occupies two adjacent positions of the octahedral coordination sphere.)

	12.29	 Consider a �nh molecule with the z axis coinciding with the Cn axis and the x axis coincid-
ing with one of the C2 axes. Show that the product s1xy2Cn21x2 moves a point originally at 
(x, y, z) to 1x, -y, z2. Therefore, sn 1xy2Cn21x2 = sn 1xz2. Since Cn21x2 and sn 1xy2 are symme-
try operations, their product must be a symmetry operation. Hence the xz plane is a symmetry 
plane. The same argument holds for any C2 axis, so the molecule has n s

v
 planes.

	12.30	 Give the point group of (a) a square-based pyramid; (b) a right circular cone; (c) a square 
lamina; (d) a square lamina with the top and bottom sides painted different colors; (e) a right 
circular cylinder; (f) a right circular cylinder with the two ends painted different colors; (g) a 
right circular cylinder with a stripe painted parallel to the axis; (h) a snowflake; (i) a dough-
nut; (j) a baseball (Fig. 12.17); (k) a 2pz orbital; (l) a human being (ignore internal organs 
and slight external left–right asymmetries).

	12.31	 (a) What Platonic solid is dual to the regular tetrahedron? (b) How many vertices does a 
pentagonal dodecahedron have?

	12.32	 (a) For what values of n does the presence of an Sn axis imply the presence of a plane of 
symmetry? (b) For what values of n does the presence of an Sn axis imply the presence of a 
center of symmetry? (c) The group �nd has an S2n axis. For what values of n does it have a 
center of symmetry?

	12.33	 For which point groups can a molecule have a dipole moment?

	12.34	 For which point groups can a molecule be optically active?

	12.35	 Two people play the following game. Each in turn places a penny on the surface of a large 
chessboard. The pennies can be put anywhere on the board, as long as they do not overlap 
previously placed pennies. A penny may overlap more than one square. Once placed, a penny 
cannot be moved. When one of the players finds there is no room to place another penny on 
the board, she loses. With best play, will the person placing the first penny or her opponent 
win? Give the winning strategy.

Figure 12.17  A baseball. 
The dashed and solid parts 
of the seam are in different 
hemispheres.
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Chapter 13

Electronic Structure of 
Diatomic Molecules

13.1 The Born–Oppenheimer Approximation
We now begin the study of molecular quantum mechanics. If we assume the nuclei and 
electrons to be point masses and neglect spin–orbit and other relativistic interactions 
(Sections 11.6 and 11.7), then the molecular Hamiltonian operator is

	 Hn = -
U2

2 a
a

1
ma

�2
a -
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2me
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i
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a
b7a

ZaZbe2

4pe0rab
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Zae2
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i7 j

e2

4pe0ri j
	

� (13.1)

where a and b refer to nuclei and i and j refer to electrons. The first term in (13.1) is the 
operator for the kinetic energy of the nuclei. The second term is the operator for the kinetic 
energy of the electrons. The third term is the potential energy of the repulsions between 
the nuclei, rab being the distance between nuclei a and b with atomic numbers Za and 
Zb. The fourth term is the potential energy of the attractions between the electrons and the 
nuclei, ria being the distance between electron i and nucleus a. The last term is the potential 
energy of the repulsions between the electrons, ri j being the distance between electrons i 
and j. The zero level of potential energy for (13.1) corresponds to having all the charges 
(electrons and nuclei) infinitely far from one another.

As an example, consider H2. Let a and b be the two protons, 1 and 2 be the two elec-
trons, and mp be the proton mass. The H2 molecular Hamiltonian operator is

 Hn = -
U2

2mp
�2

a -
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2mp
�2

b -
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-
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+
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	 (13.2)

The wave functions and energies of a molecule are found from the Schrödinger 
equation:

	 Hnc(qi, qa) = Ec(qi, qa)	 (13.3)

where qi and qa symbolize the electronic and nuclear coordinates, respectively. The molec-
ular Hamiltonian (13.1) is formidable enough to terrify any quantum chemist. Fortunately, 
a very accurate, simplifying approximation exists. Since nuclei are much heavier than 
electrons (ma W me), the electrons move much faster than the nuclei. Hence, to a good 
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approximation as far as the electrons are concerned, we can regard the nuclei as fixed 
while the electrons carry out their motions. Speaking classically, during the time of a cycle 
of electronic motion, the change in nuclear configuration is negligible. Thus, considering 
the nuclei as fixed, we omit the nuclear kinetic-energy terms from (13.1) to obtain the 
Schrödinger equation for electronic motion:

	 1Hnel + VNN2cel = Ucel	 (13.4)

where the purely electronic Hamiltonian Hnel is

	 Hnel = -
U2

2me
a

i
�2

i - a
a
a

i
 

Zae2
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+ a

j
a
i7 j

 
e2

4pe0ri j
	 (13.5)

The electronic Hamiltonian including nuclear repulsion is Hnel + VNN. The nuclear-repulsion 
term VNN is

	 VNN = a
a

a
b7a

 
ZaZbe2

4pe0rab
	 (13.6)

The energy U in (13.4) is the electronic energy including internuclear repulsion. The 
internuclear distances rab in (13.4) are not variables, but are each fixed at some constant 
value. Of course, there are an infinite number of possible nuclear configurations, and 
for each of these we may solve the electronic Schrödinger equation (13.4) to get a set of 
electronic wave functions and corresponding electronic energies. Each member of the set 
corresponds to a different molecular electronic state. The electronic wave functions and 
energies thus depend parametrically on the nuclear coordinates:

cel = cel,n1qi; qa2 and U = Un1qa2
where n symbolizes the electronic quantum numbers.

The variables in the electronic Schrödinger equation (13.4) are the electronic coordi-
nates. The quantity VNN is independent of these coordinates and is a constant for a given 
nuclear configuration. Now it is easily proved (Prob. 4.52) that the omission of a constant 
term C from the Hamiltonian does not affect the wave functions and simply decreases each 
energy eigenvalue by C. Hence, if VNN is omitted from (13.4), we get

	 Hnelcel = Eelcel	 (13.7)

where the purely electronic energy Eel1qa2 (which depends parametrically on the nuclear 
coordinates qa) is related to the electronic energy including internuclear repulsion by

	 U = Eel + VNN	 (13.8)

We can therefore omit the internuclear repulsion from the electronic Schrödinger equation. 
After finding Eel for a particular configuration of the nuclei by solving (13.7), we calculate 
U using (13.8), where the constant VNN is easily calculated from (13.6) using the assumed 
nuclear locations.

For H2, with the two protons at a fixed distance rab = R, the purely electronic Ham-
iltonian is given by (13.2) with the first, second, and fifth terms omitted. The nuclear 
repulsion VNN equals e2>4pe0R. The purely electronic Hamiltonian involves the six elec-
tronic coordinates x1, y1, z1, x2, y2, z2 as variables and involves the nuclear coordinates as 
parameters.

The electronic Schrödinger equation (13.4) can be dealt with by approximate meth-
ods to be discussed later. If we plot the electronic energy including nuclear repulsion 
for a bound state of a diatomic molecule against the internuclear distance R, we find a 
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curve like the one shown in Fig. 13.1. At R = 0, the internuclear repulsion causes U to 
go to infinity. The internuclear separation at the minimum in this curve is called the 
equilibrium internuclear distance Re. The difference between the limiting value of U at 
infinite internuclear separation and its value at Re is called the equilibrium dissociation 
energy (or the dissociation energy from the potential-energy minimum) De:

	 De K U1�2 - U1Re2	 (13.9)

When nuclear motion is considered (Section 13.2), one finds that the equilibrium 
dissociation energy De differs from the molecular ground-vibrational-state dissociation 
energy D0. The lowest state of nuclear motion has zero rotational energy [as shown by 
Eq.  (6.47)] but has a nonzero vibrational energy—the zero-point energy. If we use the 
harmonic-oscillator approximation for the vibration of a diatomic molecule (Section 4.3), 
then this zero-point energy is 12 hn. This zero-point energy raises the energy for the ground 
state of nuclear motion 1

2 hn above the minimum in the U1R2 curve, so D0 is less than De 
and D0 � De -

1
2 hn. Different electronic states of the same molecule have different U1R2 

curves (Figs. 13.5 and 13.19) and different values of Re, De, D0, and n.
Consider an ideal gas composed of diatomic molecules AB. In the limit of abso-

lute zero temperature, all the AB molecules are in their ground states of electronic and 
nuclear motion, so D0NA (where NA is the Avogadro constant and D0 is for the ground 
electronic state of AB) is the change in the thermodynamic internal energy U and enthalpy 
H for dissociation of 1 mole of ideal-gas diatomic molecules: NAD0 = �U �0 = �H �0 for 
AB1g2 S A1g2 + B1g2.

For some diatomic-molecule electronic states, solution of the electronic Schrödinger 
equation gives a U1R2 curve with no minimum. Such states are not bound and the molecule 
will dissociate. Examples include some of the states in Fig. 13.5.

Assuming that we have solved the electronic Schrödinger equation, we next consider 
nuclear motions. According to our picture, the electrons move much faster than the nuclei. 
When the nuclei change their configuration slightly, say from q�a to q�a, the electrons imme-
diately adjust to the change, with the electronic wave function changing from cel1qi; q�a2 to 
cel1qi; q�a2 and the electronic energy changing from U1q�a2 to U1q�a2. Thus, as the nuclei 
move, the electronic energy varies smoothly as a function of the parameters defining the 
nuclear configuration, and U1qa2 becomes, in effect, the potential energy for the nuclear 
motion. The electrons act like a spring connecting the nuclei. As the internuclear distance 

Figure 13.1  Electronic 
energy including internuclear 
repulsion as a function of 
the internuclear distance R 
for a diatomic-molecule 
bound electronic state.
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changes, the energy stored in the spring changes. Hence the Schrödinger equation for 
nuclear motion is

	 HnNcN = EcN	 (13.10)

	 HnN = -
U2

2 a
a

1
ma

�2
a + U1qa2	 (13.11)

The variables in the nuclear Schrödinger equation are the nuclear coordinates, symbolized 
by qa. The energy eigenvalue E in (13.10) is the total energy of the molecule, since the 
Hamiltonian (13.11) includes operators for both nuclear energy and electronic energy.  
E is simply a number and does not depend on any coordinates. Note that for each electronic 
state of a molecule we must solve a different nuclear Schrödinger equation, since U dif-
fers from state to state. In this chapter we shall concentrate on the electronic Schrödinger 
equation (13.4).

In Section 13.2, we shall show that the total energy E for an electronic state of a 
diatomic molecule is approximately the sum of electronic, vibrational, rotational, and 
translational energies, E � Eelec + Evib + Erot + Etr, where the constant Eelec [not to be 
confused with Eel in (13.7)] is given by Eelec = U1Re2.

The approximation of separating electronic and nuclear motions is called the Born–
Oppenheimer approximation and is basic to quantum chemistry. [The American physi-
cist J. Robert Oppenheimer (1904–1967) was a graduate student of Born in 1927. During 
World War II, Oppenheimer directed the Los Alamos laboratory that developed the atomic 
bomb.] Born and Oppenheimer’s mathematical treatment indicated that the true molecular 
wave function is adequately approximated as

	 c1qi, qa2 = cel1qi; qa2cN1qa2	 (13.12)

if 1me>ma21>4 V 1. The Born–Oppenheimer approximation introduces little error for 
the ground electronic states of diatomic molecules. Corrections for excited electronic 
states are larger than for the ground state, but still are usually small as compared with 
the errors introduced by the approximations used to solve the electronic Schrödinger 
equation of a many-electron molecule. Hence we shall not worry about corrections to 
the Born–Oppenheimer approximation. For further discussion of the Born–Oppenheimer 
approximation, see J. Goodisman, Diatomic Interaction Potential Theory, Academic 
Press, 1973, Volume 1, Chapter 1.

Born and Oppenheimer’s 1927 paper justifying the Born–Oppenheimer approximation 
is seriously lacking in rigor. Subsequent work has better justified the Born–Oppenheimer 
approximation, but significant questions still remain; “the problem of the coupling of 
nuclear and electronic motions is, at the moment, without a sensible solution and c is 
an area where much future work can and must be done” [B. T. Sutcliffe, J. Chem. Soc. 
Faraday Trans., 89, 2321 (1993); see also B. T. Sutcliffe and R. G. Woolley, Phys. Chem. 
Chem. Phys., 7, 3664 (2005), and Sutcliffe and Woolley, arxiv.org/abs/1206.4239].

13.2 Nuclear Motion in Diatomic Molecules
Most of this chapter deals with the electronic Schrödinger equation for diatomic molecules, 
but this section examines nuclear motion in a bound electronic state of a diatomic molecule. 
From (13.10) and (13.11), the Schrödinger equation for nuclear motion in a diatomic-
molecule bound electronic state is

	 c- U2

2ma

�2
a -

U2

2mb

�2
b + U1R2 dcN = EcN	 (13.13)
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where a and b are the nuclei, and the nuclear-motion wave function cN is a function of 
the nuclear coordinates xa, ya, za, xb, yb, zb.

The potential energy U1R2 is a function of only the relative coordinates of the two 
nuclei, and the work of Section 6.3 shows that the two-particle Schrödinger equation (13.13) 
can be reduced to two separate one-particle Schrödinger equations—one for translational 
energy of the entire molecule and one for internal motion of the nuclei relative to each 
other. We have

	 cN = cN,trcN,int and E = Etr + Eint	 (13.14)

The translational energy levels can be taken as the energy levels (3.72) of a particle in 
a three-dimensional box whose dimensions are those of the container holding the gas of 
diatomic molecules.

The Schrödinger equation for cN,int is [Eq. (6.43)]

	 c- U2

2m
�2 + U1R2 dcN,int = EintcN,int,  m K mamb>1ma + mb2	 (13.15)

where cN,int is a function of the coordinates of one nucleus relative to the other. The best 
coordinates to use are the spherical coordinates of one nucleus relative to the other (Fig. 6.5 
with mN and me replaced by ma and mb). The radius r in relative spherical coordinates is 
the internuclear distance R, and we shall denote the relative angular coordinates by uN and 
fN. Since the potential energy in (13.15) depends on R only, this is a central-force problem, 
and the work of Section 6.1 shows that

	 cN,int = P1R2YM
J   1uN, fN2,  J = 0, 1, 2, c, M = -J, c, J	 (13.16)

where the YM
J  functions are the spherical harmonic functions with quantum numbers J 

and M.
From (6.17), the radial function P(R) is found by solving

	 -
U2

2m
cP�1R2 +

2

R
P�1R2 d +

J1J + 12U2

2mR2 P1R2 + U1R2P1R2 = EintP1R2	 (13.17)

This differential equation is simplified by defining F(R) as

	 F1R2 K RP1R2	 (13.18)

Substitution of P = F>R into (13.17) gives [Eq. (6.137)]

	 -
U2

2m
F�1R2 + cU1R2 +

J1J + 12U2

2mR2 dF1R2 = EintF1R2	 (13.19)

which is a one-dimensional Schrödinger equation with the effective potential energy 
U1R2 + J1J + 12U2>2mR2.

The most fundamental way to solve (13.19) is as follows: (a) Solve the electronic 
Schrödinger equation (13.7) at several values of R to obtain Eel of the particular molecular 
electronic state you are interested in; (b) add ZaZbe2>4pe0 R to each Eel value to obtain U 
at these R values; (c) devise a mathematical function U1R2 whose parameters are adjusted to 
give a good fit to the calculated U values; (d) insert the function U1R2 found in (c) into the 
nuclear-motion radial Schrödinger equation (13.19) and solve (13.19) by numerical methods.

A commonly used fitting procedure for step (c) is the method of cubic splines, for 
which computer programs exist (see Press et al., Chapter 3; Shoup, Chapter 6).

As for step (d), numerical solution of the one-dimensional Schrödinger equation (13.19) 
is done using either the Cooley–Numerov method [see J. Tellinghuisen, J. Chem. Educ., 66, 



13.2 Nuclear Motion in Diatomic Molecules  |  349

51 (1989)], which is a modification of the Numerov method (Sections 4.4 and 6.9), or the 
finite-element method [see D. J. Searles and E. I. von Nagy-Felsobuki, Am. J. Phys., 56, 
444 (1988)].

The solutions F1R2 of the radial equation (13.19) for a given J are characterized by 
a quantum number v, where v is the number of nodes in F1R2; v = 0, 1, 2, c. The 
energy levels Eint [which are found from the condition that P1R2 = F1R2>R be quadrati-
cally integrable] depend on the quantum number J, which occurs in (13.19), and depend 
on v, which characterizes F1R2; Eint = E

v, J. The angular factor YM
J  1uN, fN2 in (13.16) is 

a function of the angular coordinates. Changes in uN and fN with R held fixed correspond 
to changes in the spatial orientation of the diatomic molecule, which is rotational motion. 
The quantum numbers J and M are rotational quantum numbers. Note that YM

J  is the wave 
function of a rigid two-particle rotor [Eq. (6.46)]. A change in the R coordinate is a change 
in the internuclear distance, which is a vibrational motion, and the quantum number v, 
which characterizes F1R2, is a vibrational quantum number.

Since accurate solution of the electronic Schrödinger equation [step (a)] is hard, one 
often uses simpler, less accurate procedures than that of steps (a) to (d). The simplest 
approach is to expand U1R2 in a Taylor series about Re (Prob. 4.1):

U1R2 = U1Re2 + U�1Re21R - Re2 +
1
2U �1Re21R - Re22

+
1
6 U�1Re21R - Re23 + g � (13.20)

At the equilibrium internuclear distance Re, the slope of the U1R2 curve is zero (Fig. 13.1), 
so U�1Re2 = 0. We can anticipate that the molecule will vibrate about the equilibrium 
distance Re. For R close to Re, 1R - Re23 and higher powers will be small, and we 
shall neglect these terms. Defining the equilibrium force constant ke as ke K U�1Re2, 
we have

	 U1R2 � U1Re2 +
1
2ke1R - Re22 = U1Re2 +

1
2kex2	 (13.21)

	 ke K U�1Re2 and x K R - Re	

We have approximated U1R2 by a parabola [Fig. 4.6 with V K U1R2 - U1Re2 and 
x K R - Re].

With the change of independent variable x K R - Re, (13.19) becomes

	 -
U2

2m
S�1x2 + cU1Re2 +

1
2 kex2 +

J1J + 12U2

2m1x + Re22 d S1x2 � EintS1x2	 (13.22)

	 where S1x2 K F1R2	 (13.23)

Expanding 1> 1x + Re22 in a Taylor series, we have (Prob. 13.7)

	
1

1x + Re22 =
1

R2
e 11 + x>Re22 =

1

R2
e
a1 - 2

x

Re
+ 3

x2

R2
e

- gb �
1

R2
e
	 (13.24)

We are assuming that R - Re = x is small compared with Re, so all terms after the 1 have 
been neglected in (13.24). Substitution of (13.24) into (13.22) and rearrangement gives

	 -
U2

2m
S�1x2 +

1
2kex2S1x2 � cEint - U1Re2 -

J1J + 12U2

2mR2
e

d S1x2	 (13.25)

Equation (13.25) is the same as the Schrödinger equation for a one-dimensional har-
monic oscillator with coordinate x, mass m, potential energy 12kex2, and energy eigenvalues 
Eint - U1Re2 - J1J + 12U2>2mR2

e. [The boundary conditions for (13.25) and (4.32) are 
not the same, but this difference is unimportant and can be ignored (Levine, Molecular 
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Spectroscopy, p. 147).] We can therefore set the terms in brackets in (13.25) equal to the 
harmonic-oscillator eigenvalues, and we have

	 Eint - U1Re2 - J1J + 12U2>2mR2
e � 1v +

1
22hne	

	 Eint � U1Re2 + 1v +
1
22hne + J1J + 12U2>2mR2

e	 (13.26)

	 ne = 1ke>m21>2>2p,  v = 0, 1, 2, c	 (13.27)

where (4.23) was used for ne, the equilibrium (or harmonic) vibrational frequency. 
The molecular internal energy Eint is approximately the sum of the electronic energy 
U1Re2 K Eelec (which differs for different electronic states of the same molecule), the 
vibrational energy 1v +

1
22hne, and the rotational energy J1J + 12U2>2mR2

e. The approxi-
mations (13.21) and (13.24) correspond to a harmonic-oscillator, rigid-rotor approxima-
tion. From (13.26) and (13.14), the molecular energy E = Etr + Eint is approximately the 
sum of translational, rotational, vibrational, and electronic energies:

E � Etr + Erot + Evib + Eelec

From (13.14), (13.16), (13.18), and (13.23), the nuclear-motion wave function is

	 cN � cN,trSv
1R - Re2R-1YM

J  1uN, fN2	 (13.28)

where S
v
1R - Re2 is a harmonic-oscillator eigenfunction with quantum number v.

The approximation (13.26) gives rather poor agreement with experimentally 
observed vibration–rotation energy levels of diatomic molecules. The accuracy can 
be improved by the addition of the first- and second-order perturbation-theory energy 
corrections due to the terms neglected in (13.21) and (13.24). When this is done (see 
Levine, Molecular Spectroscopy, Section 4.2), the energy contains additional terms 
corresponding to vibrational anharmonicity [Eq. (4.60)], vibration–rotation interaction, 
and rotational centrifugal distortion of the molecule (Section 6.4), where vibrational 
anharmonicity is the largest of these corrections and centrifugal distortion is the  
smallest.

E x a m p l e

An approximate representation of the potential-energy function of a diatomic molecule 
is the Morse function

U1R2 = U1Re2 + De31 - e-a1R - Re242

Use of U�1Re2 = ke [Eq. (4.59)] and (13.27) gives (see Prob. 4.29; the Morse func-
tions in Prob. 4.29 and in this example differ because of different choices for the zero 
of energy)

a = 1ke>2De21>2 = 2pne1m>2De21>2

Use the Morse function and the Numerov method (Section 4.4) to (a) find the lowest 
six vibrational energy levels of the 1H2 molecule in its ground electronic state, which 
has De>hc = 38297 cm-1, ne>c = 4403.2 cm-1, and Re = 0.741 Å, where h and c 
are Planck’s constant and the speed of light; (b) find 8R9  for each of these vibrational 
states.

(a)	 The vibrational energy levels correspond to states with the rotational quantum number 
J = 0. Making the change of variables x K R - Re and S1x2 K F1R2 [Eq. (13.23)] 
and substituting the Morse function into the nuclear-motion Schrödinger equation 
(13.19), we get for J = 0

- 1U2>2m2S�1x2 + De11 - e-ax22S1x2 = 3Eint - U1Re24S1x2 = EvibS1x2
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since for J = 0, Eint = Eelec + Evib = U1Re2 + Evib [Eq. (13.26)]. As usual in the 
Numerov method, we switch to the dimensionless reduced variables Evib,r K Evib>A 
and xr K x>B, where A and B are products of powers of the constants U, m, and a. 
The procedure of Section 4.4 gives (Prob. 13.8a) A = U2a2>m and B = a-1, so

xr K x>B = ax,  Evib,r K Evib>A = mEvib>U2a2 = 12De>h2n2
e2Evib

where we used a = 2pne1m>2De21>2. Substitution of

x = xr>a, Evib = U2a2Evib,r>m, De,r = De> 1U2a2>m2, S1x2 = Sr1xr2B-1>2

S� = B-5>2S�r = B-1>2B-2S�r = B-1>2a2S�r

	 [Eqs. (4.78) and (4.79)] into the differential equation for S(x) gives

S�r1xr2 = 32De, r11 - e-xr22 - 2Evib,r4Sr1xr2 K GrSr1xr2
	 This last equation has the form of (4.82) with Gr K 2De, r11 - e-xr22 - 2Evib,r, 

so we are now ready to apply the Numerov procedure of Section 4.4. For the H2 
ground electronic state, we find (Prob. 13.8b)

A = h2n2
e >2De = h2c214403.2 cm-122>2hc138297 cm-12 = 1253.129 cm-12hc

B = 0.51412 Å,  De, r = De>A = 151.294

	 We want to start and end the Numerov procedure in the classically forbidden  
regions. If we used the harmonic-oscillator approximation for the vibrational levels, 
the energies of the first six vibrational levels would be 1v +

1
22hne, v = 0, 1, c, 5. 

The reduced energy of the sixth harmonic-oscillator vibrational level would be 
5.5hne>A = 5.5hne> 1253 cm-12hc = 5.5(4403 cm-12>(253 cm-12 = 95.7. 
Because of anharmonicity (Section 4.3), the sixth vibrational level will actually  
occur below 95.7, so we are safe in using 95.7 to find the limits of the classically  
allowed region. We have De, r11 - e-xr22 = 95.7, and with De, r = 151.29, we find 
xr = -0.58 and xr = 1.58 as the limits of the classically allowed region for a 
reduced energy of 95.7. Extending the range by 1.2 at each end, we would start the  
Numerov procedure at xr = -1.8 and end at xr = 2.8. However, xr = 1R - Re2>B =

1R - 0.741Å2>10.514Å2 and the minimum possible internuclear distance R is 0, 
so the minimum possible value of xr is -1.44. We therefore start at xr = -1.44 and 
end at 2.8. If we take an interval of sr = 0.04, we will have about 106 points, which 
is adequate, but we will try for higher accuracy by taking sr = 0.02 to give about 
212 points. With these choices, we set up the Numerov spreadsheet in the usual man-
ner (or use Mathcad or the computer program of Table 4.1). We find (Prob. 13.9) 
the following lowest six Evib,r values: 8.572525, 24.967566, 40.362582, 54.757570, 
68.152531, 80.547472. Using Evib,r K Evib>A, we find the lowest levels to be 
Evib>hc = 2169.95, 6320.01, 10216.94, 13860.73, 17251.38, 20388.90 cm-1. Note 
the reduced spacings between levels as the vibrational quantum number increases.  
(For comparison, the harmonic-oscillator approximation gives the following values: 
2201.6, 6604.8, 11008.0, 15411.2, 19814.4, 24217.6 cm-1.)

It happens that the Schrödinger equation for the Morse function can be ana-
lytically solved virtually exactly, and the analytic solution (Prob. 13.11) gives the 
following lowest eigenvalues: 2169.96, 6320.03, 10216.97, 13860.78, 17251.47, 
20389.02 cm-1. Agreement between the Numerov Morse-function values and the 
analytic Morse-function values is very good. The experimentally observed low-
est vibrational levels of H2 are 2170.08, 6331.22, 10257.19, 13952.43, 17420.44, 
20662.00 cm-1. The deviations of the Morse-function values from the experimental 
values indicate that the Morse function is not a very accurate representation of the 
ground-state H2 U1R2 function.
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(b)	 We have 8xr9 � 12.8
-1.44xr 0 Sr 0 2 dxr � g2.8

xr = 1.44 xr 0 Sr 0 2sr, where sr = 0.02 is the 
interval spacing (not to be confused with the vibrational wave function Sr2, and where 
the vibrational wave function Sr must be normalized. (See also Prob. 13.12.) We 
normalize Sr as described in Section 4.4, and then create a column of xr 0 Sr 0 2sr values. 
Next we sum these values to find the following results for the six lowest vibrational 
states (Prob. 13.9b) 8xr9 = 0.0440, 0.1365, 0.2360, 0.3435, 0.4605, 0.5884. Using 
xr = 1R - Re2>B, we find the following values: 8R9 = 0.763, 0.811, 0.862, 0.918,
0.978, 1.044 Å. (To get accurate 8xr9  values, Evib,r must be found to many more 
decimal places than given in (a)—enough places to make the wave function close to 
zero at 2.8. If the spreadsheet does not allow you to enter enough decimal places to 
do this for v = 0, you can take the right-hand limit as 2.5 instead of 2.8.) Because of 
vibrational anharmonicity, the molecule gets larger as the vibrational quantum number 
increases. This effect is rather large for light atoms such as hydrogen. The v = 5 
Numerov–Morse vibrational wave function (Fig. 13.2) shows marked asymmetry 
about the origin 1xr = 0, which corresponds to R = Re2. For a spectacular example 
of the effect of anharmonicity on bond length, see the discussion of He2 (the world’s 
largest diatomic molecule) near the end of Section 13.7.

Figure 13.2  The v = 5 
Morse vibrational wave 
function for H2 as found 
by the Numerov method.

13.3 Atomic Units
Most quantum chemists report the results of their calculations using atomic units.

The hydrogen-atom Hamiltonian operator (assuming infinite nuclear mass) in SI units 
is - 1U2>2me2�2 - e2>4pe0r. The system of atomic units is defined as follows. The units 
of mass, charge, and angular momentum are defined as the electron’s mass me, the proton’s 
charge e, and U, respectively (rather than the kilogram, the coulomb, and the kg m2/s); the 
unit of permittivity is 4pe0, rather than the C2 N-1 m-2. (The atomic unit of mass used in 
quantum chemistry should not be confused with the quantity 1 amu, which is one-twelfth 
the mass of a 12C atom.) When we switch to atomic units, U, me, e, and 4pe0 each have a 
numerical value of 1. Hence, to change a formula from SI units to atomic units, we simply 
set each of these quantities equal to 1. Thus, in SI atomic units, the H-atom Hamiltonian 
is - 1

2 �2 - 1>r, where r is now measured in atomic units of length rather than in meters. 
The ground-state energy of the hydrogen atom is given by (6.94) as -1

21e2>4pe0a02. Since 
[Eq.  (6.106)] a0 = 4pe0 U2>mee2, the numerical value of a0 (the Bohr radius) in atomic 
units is 1, and the ground-state energy of the hydrogen atom has the numerical value 
(neglecting nuclear motion) - 1

2 in atomic units.
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The atomic unit of energy, e2>4pe0a0, is called the hartree (symbol Eh):

1 hartree K Eh K
e2

4pe0a0
=

mee
4

14pe022U2 = 27.211385 eV = 4.359744 * 10-18 J	 (13.29)

The ground-state energy of the hydrogen atom is - 1
2 hartree if nuclear motion is neglected. 

The atomic unit of length is called the bohr:

	 1 bohr K a0 K 4pe0 U2>mee
2 = 0.52917721Å	 (13.30)

To find the atomic unit of any other quantity (for example, time) one combines U, me, e, 
and 4pe0 so as to produce a quantity having the desired dimensions. One finds (Prob. 
13.14) the atomic unit of time to be U>Eh = 2.4188843 * 10-17 s and the atomic unit of 
electric dipole moment to be ea0 = 8.478353 * 10-30 C m.

Atomic units will be used in Chapters 13 to 17.

A more rigorous way to define atomic units is as follows. Starting with the H-atom 
electronic Schrödinger equation in SI units, we define (as in Section 4.4) the dimen-
sionless reduced variables Er K E>A and rr K r>B, where A and B are products of 
powers of the Schrödinger-equation constants U, me, e, and 4pe0 such that A and B 
have dimensions of energy and length, respectively. The procedure of Section  4.4 
shows that (Prob. 13.13) A = mee

4> 14pe022 U2 = e2>4pe0a0 K 1 hartree and 
B = U24pe0>mee

2 = a0 K 1 bohr. For this three-dimensional problem, the H-atom 
wave function has dimensions of L-3>2, so the reduced dimensionless cr is defined as 
cr K cB3>2. Also,

02cr

0r 2
r

= B3>2 02c

0r 2 a 0r

0rr
b

2

= B3>2 02c

0r 2 B2 = B3>2 02c

0r 2 a2
0

Introducing the reduced quantities into the Schrödinger equation, we find (Prob. 13.13)  
that the reduced H-atom Schrödinger equation is -

1
2 �2

rcr - 11>rr2cr = Ercr, 
where �2

r  is given by Eq. (6.6) with r replaced by rr. In practice, people do not 
bother to include the r subscripts and instead write - 1

2 �2c - 11>r2c = Ec.

13.4 The Hydrogen Molecule Ion
We now begin the study of the electronic energies of molecules. We shall use the  
Born–Oppenheimer approximation, keeping the nuclei fixed while we solve, as best we 
can, the Schrödinger equation for the motion of the electrons. We shall usually be consid-
ering an isolated molecule, ignoring intermolecular interactions. Our results will be most 
applicable to molecules in the gas phase at low pressure. For inclusion of solvent effects, 
see Sections 15.17 and 17.6.

We start with diatomic molecules, the simplest of which is H+
2 , the hydrogen mol-

ecule ion, consisting of two protons and one electron. Just as the one-electron H atom 
serves as a starting point in the discussion of many-electron atoms, the one-electron H+

2  
ion furnishes many ideas useful for discussing many-electron diatomic molecules. The 
electronic Schrödinger equation for H+

2  is separable, and we can get exact solutions for 
the eigenfunctions and eigenvalues.

Figure 13.3 shows H+
2 . The nuclei are at a and b; R is the internuclear distance; ra and 

rb are the distances from the electron to nuclei a and b. Since the nuclei are fixed, we have 
a one-particle problem whose purely electronic Hamiltonian is [Eq. (13.5)]

	 Hnel = -
U2

2me
�2 -

e2

4pe0ra
-

e2

4pe0rb
	 (13.31)
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The first term is the electronic kinetic-energy operator; the second and third terms are 
the attractions between the electron and the nuclei. In atomic units the purely electronic 
Hamiltonian for H+

2  is

	 Hnel = -
1
2�2 -

1
ra

-
1
rb

	 (13.32)

In Fig. 13.3 the coordinate origin is on the internuclear axis, midway between the 
nuclei, with the z axis lying along the internuclear axis. The H+

2  electronic Schrödinger 
equation is not separable in spherical coordinates. However, separation of variables is 
possible using confocal elliptic coordinates j, h, and f. The coordinate f is the angle of 
rotation of the electron about the internuclear (z) axis, the same as in spherical coordinates. 
The coordinates j (xi) and h (eta) are defined by

	 j K
ra + rb

R
,  h K

ra - rb

R
	 (13.33)

The ranges of these coordinates are

	 0 … f … 2p,  1 … j … �,  -1 … h … 1	 (13.34)

We must put the Hamiltonian (13.32) into these coordinates. We have

	 ra =
1
2R1j + h2,  rb =

1
2R1j - h2	 (13.35)

We also need the expression for the Laplacian in confocal elliptic coordinates. One way 
to find this is to express j, h, and f in terms of x, y, and z, the Cartesian coordinates 
of the electron, and then use the chain rule to find 0 >0x, 0 >0y, and 0 >0z in terms of 
0 >0j, 0 >0h, and 0 >0f. We then form �2 K 02>0x2 + 02>0y2 + 02>0z2. The derivation of 
�2 is omitted. (For a discussion, see Margenau and Murphy, Chapter 5.) Substitution 
of �2 and (13.35) into (13.32) gives Hnel of H+

2  in confocal elliptic coordinates. The 
result is omitted.

For the hydrogen atom, whose Hamiltonian has spherical symmetry, the electronic 
angular-momentum operators Ln2 and Lnz both commute with Hn . The H+

2  ion does not have 
spherical symmetry, and one finds that 3Ln2, Hnel4 � 0 for H+

2 . However, H+
2  does have 

axial symmetry, and one can show that Lnz commutes with Hnel of H+
2 . Therefore, the elec-

tronic wave functions can be chosen to be eigenfunctions of Lnz. The eigenfunctions of Lnz 
are [Eq. (5.81)]

	 constant # 12p2-1>2eimf,  where m = 0, {1, {2, {3, c 	 (13.36)

The z component of electronic orbital angular momentum in H+
2  is mU or m in atomic units. 

The total electronic orbital angular momentum is not a constant for H+
2 .

Figure 13.3  Interparticle 
distances in H+

2.
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The “constant” in (13.36) is a constant only as far as 0 >0f is concerned, so the H+
2  

wave functions have the form cel = F1j, h2(2p2-1>2eimf. One now tries a separation of 
variables:

	 cel = L1j2M1h2(2p2-1>2eimf	 (13.37)

Substitution of (13.37) into Hnelcel = Eelcel gives an equation in which the variables are 
separable. One gets two ordinary differential equations, one for L1j2 and one for M1h2. 
Solving these equations, one finds that the condition that cel be well-behaved requires that, 
for each fixed value of R, only certain values of Eel are allowed. This gives a set of different 
electronic states. There is no algebraic formula for Eel; it must be calculated numerically 
for each desired value of R for each state. In addition to the quantum number m, the H+

2  
electronic wave functions are characterized by the quantum numbers nj and nh, which give 
the number of nodes in the L1j2 and M1h2 factors in cel.

For the ground electronic state, the quantum number m is zero. At R = �, the 
H+

2  ground state is dissociated into a proton and a ground-state hydrogen atom; hence 
Eel1�2 = -

1
2 hartree. At R = 0, the two protons have come together to form the He+  

ion with ground-state energy: - 1
21222 hartrees = -2 hartrees. Addition of the internuclear 

repulsion 1>R (in atomic units) to Eel1R2 gives the U1R2 potential-energy curve for nuclear 
motion. Plots of the ground-state Eel1R2 and U1R2, as found from solution of the electronic 
Schrödinger equation, are shown in Fig. 13.4. At R = � the internuclear repulsion is 0, 
and U is - 1

2 hartree.
The U1R2 curve is found to have a minimum at Re = 1.9972 bohrs = 1.057 Å, 

indicating that the H+
2  ground electronic state is a stable bound state. The calculated 

value of Eel at 1.9972 bohrs is -1.1033 hartrees. Addition of the internuclear repulsion 
1>R gives U1Re2 = -0.6026 hartree, compared with -0.5000 hartree at R = �. The 
ground-state binding energy is thus De = 0.1026 hartree = 2.79 eV. This corresponds to 
64.4 kcal>mol = 269 kJ>mol. The binding energy is only 17% of the total energy at the 
equilibrium internuclear distance. Thus a small error in the total energy can correspond to 
a large error in the binding energy. For heavier molecules the situation is even worse, since 
chemical binding energies are of the same order of magnitude for most diatomic molecules, 
but the total electronic energy increases markedly for heavier molecules.

Figure 13.4  Electronic 
energy with (U) and without 
(Eel) internuclear repulsion 
for the H+

2 ground electronic 
state.
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Note that the single electron in H+
2  is sufficient to give a stable bound state.

Figure 13.5 shows the U1R2 curves for the first several electronic energy levels of H+
2 , 

as found by solving the electronic Schrödinger equation.
The angle f occurs in Hnel of H+

2  only as 02>0f2. When cel of (13.37) is substituted into 
Hnelcel = Eelcel, the eimf factor cancels, and we are led to differential equations for L1j2 
and M1h2 in which the m quantum number occurs only as m2. Since Eel is found from the 
L1j2 and M1h2 differential equations, Eel depends on m2, and each electronic level with 
m � 0 is doubly degenerate, corresponding to states with quantum numbers + 0m 0  and 
- 0m 0 . In the standard notation for diatomic molecules [F. A. Jenkins, J. Opt. Soc. Am., 
43, 425 (1953)], the absolute value of m is called l:

l K 0m 0
(Some texts define l as identical to m.) Similar to the s, p, d, f, g notation for 
hydrogen-atom states, a letter code is used to specify l, the absolute value (in atomic 
units) of the component along the molecular axis of the electron’s orbital angular 
momentum:

	

l 0 1 2 3 4

letter s p d f g 	
(13.38)

Thus the lowest H+
2  electronic state is a s state.

Besides classifying the states of H+
2  according to l, we can also classify them accord-

ing to their parity (Section 7.5). From Fig. 13.12, inversion of the electron’s coordinates 
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curve of the first excited 
electronic state at 12.5 bohrs 
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through the origin O changes f to f + p, ra to rb, and rb to ra. This leaves the potential-
energy part of the electronic Hamiltonian (13.31) unchanged. We previously showed the 
kinetic-energy operator to be invariant under inversion. Hence the parity operator com-
mutes with the Hamiltonian (13.31), and the H+

2  electronic wave functions can be classified 
as either even or odd. For even electronic wave functions, we use the subscript g (from the 
German word gerade, meaning even); for odd wave functions, we use u (from ungerade).

The lowest sg energy level in Fig. 13.5 is labeled 1sg, the next-lowest sg level at small 
R is labeled 2sg, and so on. The lowest su level is labeled 1su, and so on. The alternative 
notation sg1s indicates that this level dissociates to a 1s hydrogen atom. The meaning of 
the star in s*u1s will be explained later.

For completeness, we must take spin into account by multiplying each spatial H+
2  

electronic wave function by a or b, depending on whether the component of electron spin 
along the internuclear axis is +

1
2 or -

1
2 (in atomic units). Inclusion of spin doubles the 

degeneracy of all levels.
The H+

2  ground electronic state has Re = 2.00 bohrs = 2.0014pe0 U2>mee22. The 
negative muon (symbol m-) is a short-lived (half-life 2 * 10-6 s) elementary particle whose 
charge is the same as that of an electron but whose mass mm is 207 times me. When a beam 
of negative muons (produced when ions accelerated to high speed collide with ordinary 
matter) enters H2 gas, muomolecular ions that consist of two protons and one muon are 
formed. This species, symbolized by 1pmp2+ , is an H+

2  ion in which the electron has been 
replaced by a muon. Its Re is found by replacing me with mm in Re:

2.0014pe0 U2>mme22 = 2.0014pe0 U2>207mee22 = 12.00>2072 bohr = 0.0051 Å

The two nuclei in this muoion are 207 times closer than in H+
2 . The magnitude of the 

vibrational-wave-function factor S
v
1R - Re2 in (13.28) is small but not entirely negligible 

for R - Re = -0.0051 Å, so there is some probability for the nuclei in 1pmp2+  to come 
in contact, and nuclear fusion might occur. The isotopic nuclei 2H (deuterium, D) and 3H 
(tritium, T) undergo fusion much more readily than protons, so instead of H2 gas, one uses 
a mixture of D2 and T2 gases. After fusion occurs, the muon is released and can then be 
recaptured to catalyze another fusion. Under the right conditions, one muon can catalyze 
150 fusions on average before it decays. Unfortunately, at present, more energy is needed 
to produce the muon beam than is released by the fusion. (See en.wikipedia.org/wiki/
Muon-catalyzed_fusion.)

In the rest of this chapter, the subscript el will be dropped from the electronic  
wave function, Hamiltonian, and energy. It will be understood in Chapters 13 to 17 that 
c means cel.

13.5 �Approximate Treatments of the H2
+ Ground 

Electronic State
For a many-electron atom, the self-consistent-field (SCF) method is used to construct 
an approximate wave function as a Slater determinant of (one-electron) spin-orbitals. 
The one-electron spatial part of a spin-orbital is an atomic orbital (AO). We took each 
AO as a product of a spherical harmonic and a radial factor. As an initial approxi-
mation to the radial factors, we can use hydrogenlike radial functions with effective 
nuclear charges.

For many-electron molecules, which (unlike H+
2 ) cannot be solved exactly, we want 

to use many of the ideas of the SCF treatment of atoms. We shall write an approximate 
molecular electronic wave function as a Slater determinant of (one-electron) spin-orbitals. 
The one-electron spatial part of a molecular spin-orbital is a molecular orbital (MO). 
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Because of the Pauli principle, each MO can hold no more than two electrons, just as for 
AOs. What kind of functions do we use for the MOs? Ideally, the analytic form of each MO 
is found by an SCF calculation (Section 14.3). In this section, we seek simple approxima-
tions for the MOs that will enable us to gain some qualitative understanding of chemical 
bonding. Just as we took the angular part of each AO to be the same kind of function (a 
spherical harmonic) as in the one-electron hydrogenlike atom, we shall take the angular 
part of each diatomic MO to be 12p2-1>2eimf, as in H+

2 . However, the j and h factors in 
the H+

2  wave functions are complicated functions not readily usable in MO calculations. 
We therefore seek simpler functions that will provide reasonably accurate approximations 
to the H+

2  wave functions and that can be used to construct molecular orbitals for many-
electron diatomic molecules. With this discussion as motivation for looking at approxi-
mate solutions in a case where the Schrödinger equation is exactly solvable, we consider 
approximate treatments of H+

2 .
We shall use the variation method, writing down some function containing several 

parameters and varying them to minimize the variational integral. This will give an 
approximation to the ground-state wave function and an upper bound to the ground-state 
energy. By use of the factor eimf in the trial function, we can get an upper bound to the 
energy of the lowest H+

2  level for any given value of m (see Section 8.2). By using linear 
variation functions, we can get approximations for excited states.

The H+
2  ground state has m = 0, and the wave function depends only on j and h. We 

could try any well-behaved function of these coordinates as a trial variation function. We 
shall, however, use a more systematic approach based on the idea of a molecule as being 
formed from the interaction of atoms.

Consider what the H+
2  wave function would look like for large values of the inter-

nuclear separation R. When the electron is near nucleus a, nucleus b is so far away that 
we essentially have a hydrogen atom with origin at a. Thus, when ra is small, the ground-
state H+

2  electronic wave function should resemble the ground-state hydrogen-atom wave 
function of Eq. (6.104). We have Z = 1, and the Bohr radius a0 has the numerical value 1 
in atomic units; hence (6.104) becomes

	 p-1>2e-ra	 (13.39)

Similarly, we conclude that when the electron is near nucleus b, the H+
2  ground-state wave 

function will be approximated by

	 p-1>2e-rb	 (13.40)

This suggests that we try as a variation function

	 c1p
-1>2e-ra + c2p

-1>2e-rb	 (13.41)

where c1 and c2 are variational parameters. When the electron is near nucleus a, the vari-
able ra is small and rb is large, and the first term in (13.41) predominates, giving a function 
resembling (13.39). The function (13.41) is a linear variation function, and we are led to 
solve a secular equation, which has the form (8.56), where the subscripts 1 and 2 refer to 
the functions (13.39) and (13.40).

We can also approach the problem using perturbation theory. We take the unperturbed 
system as the H+

2  molecule with R = �. For R = �, the electron can be bound to nucleus 
a with wave function (13.39), or it can be bound to nucleus b with wave function (13.40). In 
either case the energy is - 1

2 hartree, and we have a doubly degenerate unperturbed energy 
level. Bringing the nuclei in from infinity gives rise to a perturbation that splits the doubly 
degenerate unperturbed level into two levels. This is illustrated by the U1R2 curves for the 
two lowest H+

2  electronic states, which both dissociate to a ground-state hydrogen atom 
(see Fig. 13.5). The correct zeroth-order wave functions for the perturbed levels are linear 
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combinations of the form (13.41), and we are led to a secular equation of the form (8.56), 
with W replaced by E102 + E112 (see Prob. 9.20).

Before solving (8.56), let us improve the trial function (13.41). Consider the limiting 
behavior of the H+

2  ground-state electronic wave function as R goes to zero. In this limit 
we get the He+  ion, which has the ground-state wave function [put Z = 2 in (6.104)]

	 23>2p-1>2e-2r	 (13.42)

From Fig. 13.3 we see that as R goes to zero, both ra and rb go to r. Hence as R goes to 
zero, the trial function (13.41) goes to 1c1 + c22p-1>2e-r. Comparing with (13.42), we 
see that our trial function has the wrong limiting behavior at R = 0; it should go to e-2r, 
not e-r. We can fix things by multiplying ra and rb in the exponentials by a variational 
parameter k, which will be some function of R; k = k1R2. For the correct limiting behavior 
at R = 0 and at R = �, we have k102 = 2 and k1�2 = 1 for the H+

2  ground electronic 
state. Physically, k is some sort of effective nuclear charge, which increases as the nuclei 
come together. We thus take the trial function as

	 f = ca1sa + cb1sb	 (13.43)

where the c’s are variational parameters and

	 1sa = k3>2p-1>2e-kra,  1sb = k3>2p-1>2e-krb	 (13.44)

The factor k3/2 normalizes 1sa and 1sb [see Eq. (6.104)]. The molecular-orbital function 
(13.43) is a linear combination of atomic orbitals, an LCAO-MO. The trial function 
(13.43) was first used by Finkelstein and Horowitz in 1928.

For the function (13.43), the secular equation (8.56) is

	 ` Haa - WSaa Hab - WSab

Hba - WSba Hbb - WSbb
` = 0	 (13.45)

The integrals Haa and Hbb are

	 Haa = L1s*a Hn1sa dv,  Hbb = L1s*bHn1sb dv	 (13.46)

where the H+
2  electronic Hamiltonian operator Hn  is given by (13.32). We can relabel 

the variables in a definite integral without affecting its value. Changing a to b and b to 
a changes 1sa to 1sb but leaves Hn  unaffected (this would not be true for a heteronuclear 
diatomic molecule). Hence Haa = Hbb. We have

	 Hab = L1s*a Hn1sb dv,  Hba = L1s*bHn1sa dv	 (13.47)

Since Hn  is Hermitian and the functions in these integrals are real, we conclude that 
Hab = Hba. The integral Hab is called a resonance (or bond) integral. Since 1sa and 1sb 
are normalized and real, we have

	 Saa = L1s*a1sa dv = 1 = Sbb	

	 Sab = L1s*a1sb dv = Sba	 (13.48)

The overlap integral Sab lies between 1 and 0, and decreases as the distance between the 
two nuclei increases.
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The secular equation (13.45) becomes

	 ` Haa - W Hab - SabW

Hab - SabW Haa - W
` = 0	 (13.49)

	 Haa - W = { 1Hab - SabW2	 (13.50)

	 W1 =
Haa + Hab

1 + Sab
,  W2 =

Haa - Hab

1 - Sab
	 (13.51)

These two roots are upper bounds to the energies of the ground and first excited electronic 
states of H+

2 . We shall see that Hab is negative, so W1 is the lower-energy root.
We now find the coefficients in (13.43) for each of the roots of the secular equation. 

From Eq. (8.54), we have

	 1Haa - W2ca + 1Hab - SabW2cb = 0	 (13.52)

Substituting in W1 from (13.51) [or using (13.50)], we get

	 ca>cb = 1	 (13.53)

	 f1 = ca11sa + 1sb2	 (13.54)

We fix ca by normalization:

	 0 ca 0 2L 11s2
a + 1s2

b + 2 # 1sa1sb2 dv = 1	 (13.55)

	 0 ca 0 =
1

12 + 2Sab21>2	 (13.56)

The normalized trial function corresponding to the energy W1 is therefore

	 f1 =
1sa + 1sb2211 + Sab21>2	 (13.57)

For the root W2, we find cb = -ca and

	 f2 =
1sa - 1sb2211 - Sab21>2	 (13.58)

Equations (13.57) and (13.58) come as no surprise. Since the nuclei are identical, we 
expect 0f 0 2 to remain unchanged on interchanging a and b; in other words, we expect no 
polarity in the bond.

We now consider evaluation of the integrals Haa, Hab, and Sab. From (13.44) and 
(13.33), the integrand of Sab is 1sa1sb = k3p-1e-k1ra + rb2 = k3p-1e-kRj. The volume ele-
ment in confocal elliptic coordinates is (Eyring, Walter, and Kimball, Appendix III)

	 dv =
1
8 R31j2 - h22 dj dh df	 (13.59)

Substitution of these expressions for 1sa1sb and dv into Sab and use of the Appendix integral 
(A.11) to do the j integral gives (Prob. 13.16)

	 Sab = e-kR11 + kR +
1
3 k2R22	 (13.60)

The evaluation of Haa and Hab is considered in Prob. 13.17. The results are

	 Haa =
1
2k2 - k - R-1 + e-2kR1k + R-12	 (13.61)
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	 Hab = -
1
2k2Sab - k12 - k2(1 + kR2e-kR	 (13.62)

where Hn  is given by (13.32) and so omits the internuclear repulsion.
Substituting the values for the integrals into (13.51), we get

W1,2 = -
1
2k2 +

k2 - k - R-1 + R-111 + kR2e-2kR { k1k - 2211 + kR2e-kR

1 { e-kR11 + kR + k2R2>32 	(13.63)

where the upper signs are for W1. Since Hn  in (13.32) omits the internuclear repulsion 1>R, 
W1 and W2 are approximations to the purely electronic energy Eel, and 1>R must be added 
to W1,2 to get U1,21R2 [Eq. (13.8)].

The final task is to vary the parameter k at many fixed values of R so as to mini-
mize first U11R2 and then U21R2. This can be done numerically using a computer (Prob. 
13.19) or analytically. The results are that, for the 1sa + 1sb function (13.57), k increases 
almost monotonically from 1 to 2 as R decreases from � to 0; for the 1sa - 1sb func-
tion (13.58), k decreases almost monotonically from 1 to 0.4 as R decreases from � to 0. 
Since 0 6 k … 2 and Sab 7 0, Eq. (13.62) shows that the integral Hab is always negative. 
Therefore, W1 in (13.51) corresponds to the ground electronic state sg1s of H+

2 . For the 
ground state, one finds k1Re2 = 1.24.

We might ask why the variational parameter k for the s*u1s state goes to 0.4, rather 
than to 2, as R goes to zero. The answer is that this state of H+

2  does not go to the ground 
state (1s) of He+  as R goes to zero. The s*u1s state has odd parity and must correlate with 
an odd state of He+ . The lowest odd states of He+ are the 2p states (Section 11.5); since 
the s*u1s state has zero electronic orbital angular momentum along the internuclear (z) 
axis, this state must go to an atomic 2p state with m = 0, that is, to the 2p0 = 2pz state.

Having found k(R) for each root, one calculates W1 and W2 from (13.63) and adds 1>R to 
get the U1R2 curves. The calculated ground-state U1R2 curve has a minimum at 2.00 bohrs 
(Prob. 13.20), in agreement with the true Re value 2.00 bohrs, and has U1Re2 = -15.96 eV, 
giving a predicted De of 2.36 eV, as compared with the true value 2.79 eV. (If we omit vary-
ing k but simply set it equal to 1, we get Re = 2.49 bohrs and De = 1.76 eV.)

Now consider the appearance of the trial functions for the sg1s and s*u1s states at 
intermediate values of R. Figure 13.6 shows the values of the functions 11sa22 and 11sb22 
at points on the internuclear axis (see also Fig. 6.7). For the sg1s function 1sa + 1sb, we 
get a buildup of electronic probability density between the nuclei, as shown in Fig. 13.7. It 
is especially significant that the buildup of charge between the nuclei is greater than that 
obtained by simply taking the sum of the separate atomic charge densities. The probability 

Figure 13.6  Atomic 
probability densities for H+

2. 
Note the cusps at the nuclei.
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density for an electron in a 1sa atomic orbital is 11sa22. If we add the probability density 
for half an electron in a 1sa AO and half an electron in a 1sb AO, we get

	 1
211s2

a + 1s2
b2	 (13.64)

However, in quantum mechanics, we do not add the separate atomic probability densities. 
Instead, we add the wave functions, as in (13.57). The H+

2  ground-state probability density 
is then

	 f2
1 =

1

211 + Sab2
31s2

a + 1s2
b + 211sa1sb24 	 (13.65)

The difference between (13.65) and (13.64) is

	 f2
1 -

1
211s2

a + 1s2
b2 =

1

211 + Sab2
3211sa1sb2 - Sab11s2

a + 1s2
b24 	 (13.66)

Putting R = 2.00 and k = 1.24 in Eq. (13.60), we find that Sab = 0.46 at Re. (It might 
be thought that because of the orthogonality of different AOs, the overlap integral Sab 
should be zero. However, the AOs 1sa and 1sb are eigenfunctions of different Hamiltonian 
operators—one for a hydrogen atom at a and one for a hydrogen atom at b. Hence the 
orthogonality theorem does not apply.)

Consider now the relative magnitudes of the two terms in brackets in (13.66) for 
points on the molecular axis. To the left of nucleus a, the function 1sb is very small; to the 
right of nucleus b, the function 1sa is very small. Hence outside the region between the 
nuclei, the product 1sa1sb is small, and the second term in brackets in (13.66) is dominant. 
This gives a subtraction of electronic charge density outside the internuclear region, as 
compared with the sum of the densities of the individual atoms. Now consider the region 
between the nuclei. At the midpoint of the internuclear axis (and anywhere on the plane 
perpendicular to the axis and bisecting it), we have 1sa = 1sb, and the bracketed terms in 
(13.66) become 211sa22 - 0.9211sa22 � 1s2

a, which is positive. We thus get a buildup of 
charge probability density between the nuclei in the molecule, as compared with the sum of 
the densities of the individual atoms. This buildup of electronic charge between the nuclei 
allows the electron to feel the attractions of both nuclei at the same time, which lowers 
its potential energy. The greater the overlap in the internuclear region between the atomic 
orbitals forming the bond, the greater the charge buildup in this region.

The preceding discussion seems to attribute the bonding in H+
2  mainly to the lower-

ing in the average electronic potential energy that results from having the shared electron 
interact with two nuclei instead of one. This, however, is an incomplete picture. Calcula-
tions on H+

2  by Feinberg and Ruedenberg show that the decrease in electronic potential 
energy due to the sharing is of the same order of magnitude as the nuclear repulsion energy 
1>R and hence is insufficient by itself to give binding. Two other effects also contribute 
to the bonding. The increase in atomic orbital exponent 1k = 1.24 at Re versus 1.0 at �2 
causes charge to accumulate near the nuclei (as well as in the internuclear region), and 
this further lowers the electronic potential energy. Moreover, the buildup of charge in the 
internuclear region makes 0c>0z zero at the midpoint of the molecular axis and small in the 

a b z

[ 1sa(0, 0, z) 1 1sb(0, 0, z)]2

2 (1 1 Sab)

Figure 13.7  Probability 
density along the internu-
clear axis for the LCAO- 
MO function N11sa + 1sb2.
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region close to this point. Hence the z component of the average electronic kinetic energy 
[which can be expressed as 1

2 1  0 0c>0z 0 2 dt; Prob. 7.7b] is lowered as compared with the 
atomic 8Tz9 . (However, the total average electronic kinetic energy is raised; see Section 
14.5.) For details, see M. J. Feinberg and K. Ruedenberg, J. Chem. Phys., 54, 1495 (1971); 
M. P. Melrose et al., Theor. Chim. Acta, 88, 311 (1994); see also K. Ruedenberg and M. W. 
Schmidt, J. Phys. Chem. A, 113, 1954 (2009); J. Comput. Chem., 28, 391 (2007).

Bader, however, has criticized the views of Feinberg and Ruedenberg. Bader states (among 
other points) that H+

2  and H2 are atypical and that, in contrast to the increase of charge den-
sity in the immediate vicinity of the nuclei in H2 and H+

2 , molecule formation that involves 
atoms other than H is usually accompanied by a substantial reduction in charge density in 
the immediate vicinity of the nuclei. See R. F. W. Bader in The Force Concept in Chemistry, 
B. M. Deb, ed., Van Nostrand Reinhold, 1981, pp. 65–67, 71, 95–100, 113–115. Further study 
is needed before the origin of the covalent bond can be considered a settled question.

The s*u1s trial function 1sa - 1sb is proportional to e-kra - e-krb. On the plane perpen-
dicular to the internuclear axis and midway between the nuclei, we have ra = rb, so this 
plane is a nodal plane for the s*u 1s function. We do not get a buildup of charge between 
the nuclei for this state, and the U1R2 curve has no minimum. We say that the sg1s orbital 
is bonding and the s*u1s orbital is antibonding. (See Fig. 13.8.)

Reflection of the electron’s coordinates in the sh symmetry plane perpendicular to 
the molecular axis and midway between the nuclei converts ra to rb and rb to ra and leaves 
f unchanged [Eq. (13.79)]. The operator Onsh

 (Section 12.1) commutes with the electronic 
Hamiltonian (13.32) and with the parity (inversion) operator. Hence we can choose the 
H+

2  wave functions to be eigenfunctions of this reflection operator as well as of the parity 
operator. Since the square of this reflection operator is the unit operator, its eigenvalues 
must be +1 and -1 (Section 7.5). States of H+

2  for which the wave function changes sign 
upon reflection in this plane (eigenvalue -1) are indicated by a star as a superscript to the 
letter that specifies l. States whose wave functions are unchanged on reflection in this 
plane are left unstarred. Since orbitals with eigenvalue -1 for this reflection have a nodal 
plane between the nuclei, starred orbitals are antibonding.

Instead of using graphs, we can make contour diagrams of the orbitals (Section 6.7); 
see Fig. 13.9.

Figure 13.8  Probability 
density along the internu-
clear axis for the LCAO-MO 
function N�11sa - 1sb2.
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Figure 13.9  Contours of 
constant 0c 0  for the sg1s 
and s*u 1s MOs. The three-
dimensional contour sur-
faces are generated by rotat-
ing these figures about the 
z axis. Note the resemblance 
of the antibonding-MO con-
tours to those of a 2pz AO.
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Sometimes the binding in H+
2  is attributed to the resonance integral Hab, since in the 

approximate treatment we have given, it provides most of the binding energy. This view-
point is misleading. In the exact treatment of Section 13.4, there arose no such resonance 
integral. The resonance integral simply arises out of the nature of the LCAO approxima-
tion we used.

In summary, we have formed the two H+
2  MOs (13.57) and (13.58), one bonding and 

one antibonding, from the AOs 1sa and 1sb. The MO energies are given by Eq. (13.51) as

	 W1,2 = Haa {
Hab - HaaSab

1 { Sab
	 (13.67)

where Haa = 81sa 0Hn 0 1sa9, with Hn  being the purely electronic Hamiltonian of H+
2 . The 

integral Haa would be the molecule’s purely electronic energy if the electron’s wave func-
tion in the molecule were 1sa. In a sense, Haa is the energy of the 1sa orbital in the mol-
ecule. In the limit R = �, Haa becomes the 1s AO energy in the H atom. In the molecule, 
Haa is substantially lower than the electronic energy of an H atom because the electron is 
attracted to both nuclei. A diagram of MO formation from AOs is given in Fig. 13.22. To 
get U1R2, the electronic energy including nuclear repulsion, we must add 1>R to (13.67).

Problem 13.21 outlines the use of Mathcad to create an animation showing how 
contour plots of the H+

2  LCAO MOs f1 and f2 change as R changes.
We have described the lowest two H+

2  electronic states according to the state of the 
hydrogen atom obtained on dissociation. This is a separated-atoms description. Alter-
natively, we can use the state of the atom formed as the internuclear distance goes to zero. 
This is a united-atom description. We saw that for the two lowest electronic states of H+

2  
the united-atom states are the 1s and 2p0 states of He+ . The united-atom designation is put 
on the left of the symbol for l. The sg1s state thus has the united-atom designation 1ssg. 
The s*u 1s state has the united-atom designation 2ps*u . It is not necessary to write this state 
as 2p0s*u , because the fact that it is a s state tells us that it correlates with the united-atom 
2p0 state. For the united-atom description, the subscripts g and u are not needed, since 
molecular states correlating with s, d, g, c atomic states must be g, while states correlat-
ing with p, f, h, c atomic states must be u. From the separated-atoms states, we cannot 
tell whether the molecular wave function is g or u. Thus from the 1s separated-atoms state 
we formed both a g and a u function for H+

2 .
Before constructing approximate molecular orbitals for other H+

2  states, we consider 
how the trial function (13.57) can be improved. From the viewpoint of perturbation theory, 
(13.57) is the correct zeroth-order wave function. We know that the perturbation of mol-
ecule formation will mix in other hydrogen-atom states besides 1s. Dickinson in 1933 used 
a trial function with some 2p0 character mixed in (since the ground state of H+

2  is a s state, 
it would be wrong to mix in 2p{1 functions); he took

	 f = 31sa + c12p02a4 + 31sb + c12p02b4 	 (13.68)

where c is a variational parameter and where (Table 6.2)

1sa = k3>2p-1>2e-kra,  12p02a = 12pz2a =
b5>2

412p21>2 rae
-bra>2 cos ua

with k and b being two other variational parameters. We have similar expressions for 1sb 
and 12p02b. The angles ua and ub refer to two sets of spherical coordinates, one set at each 
nucleus; see Fig. 13.10. The definitions of ua and ub correspond to using a right-handed 
coordinate system on atom a and a left-handed system on atom b. The coefficient c goes 
to zero as R goes to either zero or infinity.
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The mixing together of two or more AOs on the same atom is called hybridiza-
tion. The function 1s + c2p0 is a hybridized atomic orbital. Since the 2p0 function is 
positive in one lobe and negative in the other, the inclusion of 2p0 produces additional 
charge buildup between the nuclei, giving a greater binding energy. The hybridization 
allows for the polarization of the 1sa and 1sb atomic orbitals that occurs on molecule 
formation. The function (13.68) gives a U1R2 curve with a minimum at 2.01 bohrs. 
At this distance, the parameters have the values k = 1.246, b = 2.965, and c = 0.138 
[F. Weinhold, J. Chem. Phys., 54, 530 (1971)]. The calculated De is 2.73 eV, close to 
the true value 2.79 eV.

The quantum mechanics and spectroscopy of H+
2  are reviewed in C. A. Leach and 

R. E. Moss, Annu. Rev. Phys. Chem., 46, 55 (1995).
One final point. The approximate wave functions in this chapter are written in atomic 

units. When rewriting these functions in ordinary units, we must remember that wave 
functions are not dimensionless. A one-particle wave function c has units of length-3>2 
(Section 3.5). The AOs 1sa and 1sb that occur in the functions (13.57) and (13.58) are given 
by (13.44) in atomic units. In ordinary units, 1sa = 1k>a023>2p-1>2e-kra>a0.

13.6 Molecular Orbitals for H2
+ Excited States

In the preceding section, we used the approximate functions (13.57) and (13.58) for the two 
lowest H+

2  electronic states. Now we construct approximate functions for further excited 
states so as to build up a supply of H+

2 -like molecular orbitals. We shall then use these MOs 
to discuss many-electron diatomic molecules qualitatively, just as we used hydrogenlike 
AOs to discuss many-electron atoms.

To get approximations to higher H+
2  MOs, we can use the linear-variation-function 

method. We saw that it was natural to take variation functions for H+
2  as linear combina-

tions of hydrogenlike atomic-orbital functions, giving LCAO-MOs. To get approximate 
MOs for higher states, we add in more AOs to the linear combination. Thus, to get approxi-
mate wave functions for the six lowest H+

2  s states, we use a linear combination of the 
three lowest m = 0 hydrogenlike functions on each atom:

f = c11sa + c22sa + c312p02a + c41sb + c52sb + c612p02b

As found in the preceding section for the function (13.43), the symmetry of the homo-
nuclear diatomic molecule makes the coefficients of the atom-b orbitals equal to {1 times 
the corresponding atom-a orbital coefficients:

	 f = 3c11sa + c22sa + c312p02a4{ 3c11sb + c22sb + c312p02b4 	 (13.69)

where the upper sign goes with the even (g) states.

Figure 13.10  Coordinate 
systems for a homonuclear 
diatomic molecule.
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Consider the relative magnitudes of the coefficients in (13.69). For the two electronic 
states that dissociate into a 1s hydrogen atom, we expect that c1 will be considerably 
greater than c2 or c3, since c2 and c3 vanish in the limit of R going to infinity. Thus the 
Dickinson function (13.68) has the 2p0 coefficient equal to one-seventh the 1s coefficient 
at Re. (This function does not include a 2s term, but if it did, we would find its coefficient 
to be small compared with the 1s coefficient.) As a first approximation, we therefore set 
c2 and c3 equal to zero, taking

	 f = c111sa { 1sb2	 (13.70)

as an approximation for the wave functions of these two states (as we already have done). 
From the viewpoint of perturbation theory, if we take the separated atoms as the unper-
turbed problem, the functions (13.70) are the correct zeroth-order wave functions.

The same argument for the two states that dissociate to a 2s hydrogen atom gives as 
approximate wave functions for them

	 f = c212sa { 2sb2	 (13.71)

since c1 and c3 will be small for these states. The functions (13.71) are only an approxima-
tion to what we would find if we carried out the linear variation treatment. To find rigorous 
upper bounds to the energies of these two H+

2  states, we must use the trial function (13.69) 
and solve the appropriate secular equation (8.58) (or use matrix algebra—Section 8.6).

In general, we have two H+
2  states correlating with each separated-atoms state, and 

rough approximations to the wave functions of these two states will be the LCAO functions 
fa + fb and fa - fb, where f is a hydrogenlike wave function. The functions (13.70) give the 
sg1s and s*u1s states. Similarly, the functions (13.71) give the sg2s and s*u2s molecular 
orbitals. The outer contour lines for these orbitals are like those for the corresponding MOs 
made from 1s AOs. However, since the 2s AO has a nodal sphere while the 1s AO does not, 
each of these MOs has one more nodal surface than the corresponding sg1s or s*u 1s MO.

Next we have the combinations

	 12p02a { 12p02b = 12pz2a { 12pz2b	 (13.72)

giving the sg2p and s*u 2p MOs (Fig. 13.11). These are s MOs even though they correlate 
with 2p separated AOs, since they have m = 0.

The preceding discussion is oversimplified. For the hydrogen atom, the 2s and 2p 
AOs are degenerate, and so we can expect the correct zeroth-order functions for the 
sg2s, s*u 2s, sg2p, and s*u 2p MOs of H+

2  to each be mixtures of 2s and 2p AOs rather 
than containing only 2s or 2p character. [In the R S � limit, H+

2  consists of an H atom 
perturbed by the essentially uniform electric field of a far-distant proton. Problem 9.23 

Figure 13.11  Formation 
of sg2p and s*u2p MOs from 
2pz AOs. The dashed lines 
indicate nodal surfaces. 
The signs on the contours 
give the sign of the wave 
function. The contours are 
symmetric about the z axis. 
(Because of substantial 2s–2p 
hybridization, these contours 
are not accurate representa-
tions of true MO shapes. For 
accurate contours, see the 
reference for Fig. 13.20.)
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showed that the correct zeroth-order functions for the n = 2 levels of an H atom in a uni-
form electric field in the z direction are 2-1>212s + 2p02, 2-1>212s - 2p02, 2p1, and 2p-1. 
Thus, for H+

2 , 2s and 2p0 in Eqs. (13.71) and (13.72) should be replaced by 2s + 2p0 and 
2s - 2p0.] For molecules that dissociate into many-electron atoms, the separated-atoms 
2s and 2p AOs are not degenerate but do lie close together in energy. Hence the first-order 
corrections to the wave functions will mix substantial 2s character into the s2p MOs and 
substantial 2p character into the s2s MOs. Thus the designation of an MO as s2s or s2p 
should not be taken too literally. For H+

2  and H2, the united-atom designations of the MOs 
are preferable to the separated-atoms designations, but we shall use mostly the latter.

For the other two 2p atomic orbitals, we can use either the 2p+ 1 and 2p-1 complex 
functions or the 2px and 2py real functions. If we want MOs that are eigenfunctions of Lnz, 
we will choose the complex p orbitals, giving the MOs

	 12p+ 12a + 12p+ 12b	 (13.73)

	 12p+ 12a - 12p+ 12b	 (13.74)

	 12p-12a + 12p-12b	 (13.75)

	 12p-12a - 12p-12b	 (13.76)

From Eq. (6.114) we have, since fa = fb = f,

	 12p+12a + 12p+12b =
1
8p

-1>21rae-ra>2 sin ua + rbe
-rb>2 sin ub2eif	 (13.77)

Since l = 0m 0 = 1, this is a p orbital. The inversion operation amounts to the coordinate 
transformation (Fig. 13.12)

	 ra S rb,  rb S ra,  f S f + p	 (13.78)

We have ei1f+p2 = 1cos p + i sin p2eif = -eif. From Fig. 13.12 we see that inversion 
converts ua to ub and vice versa. Thus inversion converts (13.77) to its negative, meaning 
it is a u orbital. Reflection in the plane perpendicular to the axis and midway between the 
nuclei causes the following transformations (Prob. 13.24):

	 ra S rb,  rb S ra,  f S f,  ua S ub,  ub S ua	 (13.79)

This leaves (13.77) unchanged, so we have an unstarred (bonding) orbital. The designation 
of (13.77) is then pu 2p+ 1.

Figure 13.12  The effect 
of inversion of the elec-
tron’s coordinates in H2

+. 
We have rá 5 rb, rb́ 5 ra, and 
f� = f + p.

(x, y, z)

(2x, 2y, 2z)

ba O z
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The function (13.77) is complex. Taking its absolute value, we can plot the orbital contours 
of constant probability density (Section 6.7). Since 0 eif 0 = 1, the probability density is inde-
pendent of f, giving a density that is symmetric about the z (internuclear) axis. Figure 13.13 
shows a cross section of this orbital in a plane containing the nuclei. The three-dimensional 
shape is found by rotating this figure about the z axis, creating a sort of fat doughnut.

The MO (13.75) differs from (13.77) only in having eif replaced by e-if and is 
designated pu2p-1. The coordinate f enters the H+

2  Hamiltonian as 02>0f2. Since 
02eif>0f2 = 02e-if>0f2, the states (13.73) and (13.75) have the same energy. Recall (Sec-
tion 13.4) that the l = 1 energy levels are doubly degenerate, corresponding to m = {1. 
Since 0 eif 0 = 0 e-if 0 , the pu2p+ 1 and pu2p-1 MOs have the same shapes, just as the 2p+1 
and 2p-1 AOs have the same shapes.

The functions (13.74) and (13.76) give the p*g2p+ 1 and p*g2p-1 MOs. These functions 
do not give charge buildup between the nuclei; see Fig. 13.14.

Now consider the more familiar alternative of using the 2px and 2py AOs to make the 
MOs. The linear combination

	 12px2a + 12px2b	 (13.80)

gives the pu2px MO (Fig. 13.15). This MO is not symmetrical about the internuclear axis 
but builds up probability density in two lobes, one above and one below the yz plane, which 
is a nodal plane for this function. The wave function has opposite signs on each side of 
this plane. The linear combination

	 12px2a - 12px2b	 (13.81)

gives the p*g2px MO (Fig. 13.15). Since the 2py functions differ from the 2px functions 
solely by a rotation of 90° about the internuclear axis, they give MOs differing from those 
of Fig. 13.15 by a 90° rotation about the z axis. The linear combinations

	 12py2a + 12py2b	 (13.82)

	 12py2a - 12py2b	 (13.83)

give the pu2py and p*g2py molecular orbitals. The MOs (13.80) and (13.82) have the same 
energy. The MOs (13.81) and (13.83) have the same energy. (Note that the g p2p MOs 
are antibonding, while the u p2p MOs are bonding.)

Figure 13.13  Cross section of the 
pu2p11 (or pu2p21) molecular orbital. 
To obtain the three-dimensional con-
tour surface, rotate the figure about 
the z axis. The z axis is a nodal line for 
this MO (as it is for the 2p11 AO.)

Nodal
line

a b
z

Figure 13.14  Cross section 
of the p*g2p11 (or p*g2p21) 
MO. To obtain the three- 
dimensional contour sur-
face, rotate the figure about 
the z axis. The z axis and the 
xy plane are nodes.

a b
z
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Just as the 2px and 2py AOs are linear combinations of the 2p+ 1 and 2p-1 AOs 
[Eqs. (6.118) and (6.120)], the pu2px and pu2py MOs are linear combinations of the 
pu2p+ 1 and pu2p-1 MOs. We can use any linear combination of the eigenfunctions of 
a degenerate energy level and still have an energy eigenfunction. Just as the 2p+ 1 and 
2p-1 AOs are eigenfunctions of Lnz and the 2px and 2py AOs are not, the pu2p+ 1 and 
pu2p-1 MOs are eigenfunctions of Lnz and the pu2px and pu2py MOs are not. For the 
H+

2  pu2p energy level, we can use the pair of real MOs (13.80) and (13.82), or the pair 
of complex MOs (13.73) and (13.75), or any two linearly independent linear combina-
tions of these functions.

We have shown the correlation of the H+
2  MOs with the separated-atoms AOs. We 

can also show how they correlate with the united-atom AOs. As R goes to zero, the s*u1s 
MO (Fig. 13.9) increasingly resembles the 2pz AO, with which it correlates. Similarly, 
the pu2p MOs correlate with p united-atom states, while the p*g2p MOs correlate with 
d united-atom states.

An online simulation of H+
2  MOs is at www.falstad.com/qmmo; you can vary the 

internuclear distance.

13.7 �MO Configurations of Homonuclear 
Diatomic Molecules

We now use the H+
2  MOs developed in the last section to discuss many-electron homonu-

clear diatomic molecules. (Homonuclear means the two nuclei are the same; heteronuclear 
means they are different.) If we ignore the interelectronic repulsions, the zeroth-order wave 
function is a Slater determinant of H+

2 -like one-electron spin-orbitals. We approximate the 
spatial part of the H+

2  spin-orbitals by the LCAO-MOs of the last section. Treatments that 
go beyond this crude first approximation will be discussed later.

The sizes and energies of the MOs vary with varying internuclear distance for each 
molecule and vary as we go from one molecule to another. Thus we saw how the orbital 
exponent k in the H+

2  trial function (13.54) varied with R. As we go to molecules with higher 
nuclear charge, the parameter k for the sg1s MO will increase, giving a more compact 
MO. We want to consider the order of the MO energies. Because of the variation of these 
energies with R and variations from molecule to molecule, numerous crossings occur, just 

Figure 13.15  Formation 
of the pu2px and p*g2px MOs. 
Since f 5 0 in the xz plane, 
the cross sections of these 
MOs in the xz plane are the 
same as for the correspond-
ing pu2p11 and p*g2p21 
MOs. However, the p2px 
MOs are not symmetrical 
about the z axis. Rather, they 
consist of blobs of probabil-
ity density above and below 
the nodal yz plane.
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as for atomic-orbital energies (Fig. 11.2). Hence we cannot give a definitive order. However, 
the following is the order in which the MOs fill as we go across the periodic table:

sg1s 6 s*u 1s 6 sg2s 6 s*u 2s 6 pu2px = pu2py 6 sg2p 6 p*g 2px = p*g 2py 6 s*u2p

Each bonding orbital fills before the corresponding antibonding orbital. The pu2p orbitals 
are close in energy to the sg 2p orbital, and it was formerly believed that the sg 2p MO 
filled first.

Besides the separated-atoms designation, there are other ways of referring to these 
MOs; see Table 13.1. The second column of this table gives the united-atom designations. 
The nomenclature of the third column uses 1sg for the lowest sg MO, 2sg for the second 
lowest sg MO, and so on.

Figure 13.16 shows how these MOs correlate with the separated-atoms and united-
atom AOs. Because of the variation of MO energies from molecule to molecule, this 

Table 13.1    �Molecular-Orbital Nomenclature for 
Homonuclear Diatomic Molecules

Separated-Atoms  
Description

United-Atom  
Description

Numbering by  
Symmetry

sg1s 1ssg 1sg

s*u1s 2ps*u 1su

sg2s 2ssg 2sg

s*u2s 3ps*u 2su

pu2p 2ppu 1pu

sg2p 3ssg 3sg

p*g2p 3dp*g 1pg

s*u2p 4ps*u 3su

su*2s

su*1s

sg1s

pg* 2p

sg2s

United-atom
state

Separated-atoms
state

1s

2s

2p

2p

2s

1s

3s

3p

3d

3ddg

dg3d

sg3s

su*2p

sg2ppu2p

pu3p

3ppu

2ppu

3dsg

3ssg

2ssg

4psu*

3dpg*

3psu*

2psu*

1ssg

Figure 13.16  Correlation 
diagram for homonuclear 
diatomic MOs. (This diagram 
does not hold for H+

2.) The 
dashed vertical line corre-
sponds to the order in which 
the MOs fill.
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diagram is not quantitative. (The word correlation is being used here to mean a correspon-
dence; this is a different meaning than in the term electron correlation.)

Recall (Prob. 7.29 and Fig. 6.13) that s, d, g, c united-atom AOs are even functions 
and therefore correlate with gerade (g) MOs, whereas p, f, h, c AOs are odd functions 
and correlate with ungerade (u) MOs.

A useful principle in drawing orbital correlation diagrams is the noncrossing rule, 
which states that for MO correlation diagrams of many-electron diatomic molecules, the 
energies of MOs with the same symmetry cannot cross. For diatomic MOs the word sym-
metry refers to whether the orbital is g or u and whether it is s, p, dc. For example, two 
sg MOs cannot cross on a correlation diagram. From the noncrossing rule, we conclude 
that the lowest MO of a given symmetry type must correlate with the lowest united-
atom AO of that symmetry, and similarly for higher orbitals. [A similar noncrossing rule 
holds for potential-energy curves U1R2 for different electronic states of a many-electron 
diatomic molecule.] The proof of the noncrossing rule is a bit subtle; see C. A. Mead,  
J. Chem. Phys., 70, 2276 (1979) for a thorough discussion.

Just as we discussed atoms by filling in the AOs, giving rise to atomic configurations 
such as 1s22s2, we shall discuss homonuclear diatomic molecules by filling in the MOs, 
giving rise to molecular electronic configurations such as 1sg1s221s*u1s22. (Recall that 
with a single atomic configuration there is associated a hierarchy of terms, levels, and 
states; the same is true for a molecular configuration; see Section 13.8.)

Figure 13.17 shows the homonuclear diatomic MOs formed from the 1s, 2s, and 
2p AOs.

For H+
2  we have the ground-state configuration sg1s, which gives a one-electron bond. 

For excited states the electron is in one of the higher MOs.
For H2 we put the two electrons in the sg1s MO with opposite spins, giving the 

ground-state configuration 1sg1s22. The two bonding electrons give a single bond. The 
ground-state dissociation energy De is 4.75 eV.

Now consider He2. Two electrons go in the sg1s MO, thereby filling it. The other 
two go in the next MO, s*u1s. The ground-state configuration is 1sg1s221s*u1s22. With 

Figure 13.17  Homonuclear 
diatomic MOs formed from 
1s, 2s, and 2p AOs.
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two bonding and two antibonding electrons, we expect no net bonding, in agreement with 
the fact that the ground electronic state of He2 shows no substantial minimum in the 
potential-energy curve. However, if an electron is excited from the antibonding s*u1s MO 
to a higher MO that is bonding, the molecule will have three bonding electrons and only 
one antibonding electron. We therefore expect that He2 has bound excited electronic states, 
with a significant minimum in the U1R2 curve of each such state. Indeed, about two dozen 
such bound excited states of He2 have been spectroscopically observed in gas discharge 
tubes. Of course, such excited states decay to the ground electronic state, and then the 
molecule dissociates.

The repulsion of two 1s2 helium atoms can be ascribed mainly to the Pauli repulsion 
between electrons with parallel spins (Section 10.3). Each helium atom has a pair of elec-
trons with opposite spin, and each pair tends to exclude the other pair from occupying the 
same region of space.

Removal of an antibonding electron from He2 gives the He+
2  ion, with ground-state 

configuration 1sg1s221s*u1s2 and one net bonding electron. Ground-state properties of 
this molecule are quite close to those for H+

2 ; see Table 13.2 later in this section.
Li2 has the ground-state configuration 1sg1s221s*u1s221sg2s22 with two net bond-

ing electrons, leading to the description of the molecule as containing an Li9Li single 
bond. Experimentally, Li2 is a stable species. In Li2 the orbital exponent of the 1s AOs 
is considerably greater than in H+

2  or H2, because of the increase in the nuclear charges 
from 1 to 3. This shrinks the 1sa and 1sb AOs in closer to the corresponding nuclei. There 
is thus only very slight overlap between these two AOs, and the integrals Sab and Hab 
are very small for these AOs. As a result, the energies of the sg1s and s*u1s MOs in Li2 
are nearly equal to each other and to the energy of a 1s Li AO. (For very small R, the 
1sa and 1sb AOs do overlap appreciably and their energies then differ considerably.) The 
Li2 ground-state configuration is often written as KK1sg2s22 to indicate the negligible 
change in inner-shell orbital energies on molecule formation, which is in accord with the 
chemist’s usual idea of bonding involving only the valence electrons. The orbital exponent 
of the 2s AOs in Li2 is not much greater than 1, because these electrons are screened from 
the nucleus by the 1s electrons.

The Be2 ground-state configuration KK1sg 2s221s*u 2s22 has no net bonding electrons.
The B2 ground-state configuration KK1sg 2s221s*u 2s221pu 2p22 has two net bond-

ing electrons, indicating a stable ground state, as is found experimentally. The bonding 
electrons are p electrons, which is at variance with the notion that single bonds are 
always s bonds. We have two degenerate pu2p MOs. Recall that when we had an 
atomic configuration such as 1s22s22p2 we obtained several terms, which because of 
interelectronic repulsions had different energies. We saw that the term with the highest 
total spin was generally the lowest (Hund’s rule). With the molecular configuration 
of B2 given above, we also have a number of terms. Since the lower 1s2 MOs are 
all filled, their electrons must be paired and contribute nothing to the total spin. If 
the two pu2p electrons are both in the same MO (for example, both in pu2p+ 1), their 
spins must be paired (antiparallel), giving a total molecular electronic spin of zero. 
If, however, we have one electron in the pu2p+ 1 MO and the other in the pu2p-1 MO, 
their spins can be parallel, giving a net spin of 1; by Hund’s rule, this term will be 
lowest, and the ground term of B2 will have spin multiplicity 2S + 1 = 3. Investiga-
tion of the electron-spin-resonance spectrum of B2 trapped in solid neon at low tem-
perature showed that the B2 ground term is a triplet with S = 1 [L. B. Knight et al., 
J. Am. Chem. Soc., 109, 3521 (1987)].

The C2 ground-state configuration KK1sg2s221s*u2s221pu2p24 with four net bond-
ing electrons gives a stable ground state with a double bond. As mentioned, the pu2p 
and sg2p MOs have nearly the same energy in many molecules. The triplet term of the 
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Table 13.2    �Properties of Homonuclear Diatomic Molecules in Their Ground 
Electronic States

Molecule Ground Term Bond Order De >eV Re >Å �Ne >cm21

H+
2

2� +
g

1
2

2.79 1.06 2322

H2
1� +

g 1 4.75 0.741 4403

He+
2

2� +
u

1
2

2.5 1.08 1698

He2
1� +

g
0 0.0009 2.97 33

Li2 1� +
g 1 1.07 2.67 351

Be2
1� +

g 0 0.115 2.45 276

B2
3�-

g 1 3.1 1.59 1051

C2
1� +

g 2 6.3 1.24 1855

N+
2

2� +
g 21

2
8.85 1.12 2207

N2
1� +

g
3 9.91 1.10 2358

O+
2

2�g 21
2

6.78 1.12 1905

O2
3�-

g
2 5.21 1.21 1580

F2
1� +

g
1 1.66 1.41 917

Ne2
1� +

g 0 0.0036 3.1 14

C2 KK1sg2s221s*u2s221pu2p231sg2p2 configuration lies only 0.09 eV above the ground 
1pu2p24 singlet term.

The N2 ground-state configuration KK1sg2s221s*u2s221pu2p241sg2p22 with six net 
bonding electrons gives a triple bond, in accord with the Lewis structure : N ‚ N :.

The O2 ground-state configuration is

KK1sg2s221s*u 2s221sg2p221pu2p241p*g 2p22

Spectroscopic evidence shows that in O2 (and in F2) the sg2p MO is lower in energy than 
the pu2p MO. The four net bonding electrons give a double bond. The p*g 2px and p*g 2py 
MOs have the same energy, and by putting one electron in each with parallel spins, we get 
a triplet term. By Hund’s rule this is the ground term. This explanation of the paramagnet-
ism of O2 was one of the early triumphs of MO theory.

For F2 the c1p*g 2p24 ground-state configuration gives a single bond.
For Ne2 the c1p*g 2p241s*u 2p22 configuration gives no net bonding electrons and 

no chemical bond.
We can go on to describe homonuclear diatomic molecules formed from atoms of 

the next period. Thus the lowest electron configuration of Na2 is KKLL1sg3s22. However, 
there are some differences as compared with the corresponding molecules of the preceding 
period. For Al2, the ground term is the triplet term of the c1sg3p21pu3p2 configura-
tion, which lies a mere 0.02 eV below the triplet term of the c1pu3p22 configuration [C. 
W. Bauschlicher et al., J. Chem. Phys., 86, 7007 (1987)]. For Si2, the ground term is the 
triplet term of the c1sg3p221pu3p22 configuration, which lies 0.08 eV below the triplet 
term of the c1sg3p21pu3p23 configuration [T. N. Kitsopolous et al., J. Chem. Phys., 
95, 1441 (1991)].

Table 13.2 lists De, Re, and n�e K ne>c for the ground electronic states of some homo-
nuclear diatomic molecules, where ne is the harmonic vibrational frequency (13.27). (In 
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the research literature, n�e is written as ve.) The table also lists the bond order, which is 
one-half the difference between the number of bonding and antibonding electrons. [For 
a survey of various methods to calculate bond orders, see J. J. Jules and J. R. Lombardi, 
THEOCHEM, 664–665, 255 (2003); see also J. F. Gonthier et al., Chem. Soc. Rev., 41, 
4671 (2012).] As the bond order increases, De and ne tend to increase and Re decreases. 
(The high ne of H2 is due to its small reduced mass m.) The term symbols in this table are 
explained in the next section.

Bonding MOs produce charge buildup between the nuclei, whereas antibonding 
MOs produce charge depletion between the nuclei. Hence removal of an electron from a 
bonding MO usually decreases De, whereas removal of an electron from an antibonding 
MO increases De. (Note that as R decreases in Fig. 13.16, the energies of bonding MOs 
decrease, while the energies of antibonding MOs increase.) For example, the highest filled 
MO in N2 is bonding, and Table 13.2 shows that in going from the ground state of N2 to that 
of N+

2  the dissociation energy decreases (and the bond length increases). In contrast, the 
highest filled MO of O2 is antibonding, and in going from O2 to O+

2  the dissociation energy 
increases (and Re decreases). The designation of bonding or antibonding is not relevant to 
the effect of the electrons on the total energy of the molecule. Energy is always required 
to ionize a stable molecule, no matter which electron is removed. Hence both bonding and 
antibonding electrons in a stable molecule decrease the total molecular energy.

If the interaction between two ground-state He atoms were strictly repulsive (as pre-
dicted by MO theory), the atoms in He gas would not attract one another at all and the 
gas would never liquefy. Of course, helium gas can be liquefied. Configuration-interaction 
calculations and direct experimental evidence from scattering experiments show that as 
two He atoms approach each other there is an initial weak attraction, with the potential 
energy reaching a minimum at 2.97Å of 0.00095 eV below the separated-atoms energy. 
At distances less than 2.97 Å, the force becomes increasingly repulsive because of overlap 
of the electron probability densities. The initial attraction (called a London or dispersion 
force) results from instantaneous correlation between the motions of the electrons in one 
atom and the motions of the electrons in the second atom. Therefore, a calculation that 
includes electron correlation is needed to deal with dispersion attractions.

The general term for all kinds of intermolecular forces is van der Waals forces. 
Except for highly polar molecules, the dispersion force is the largest contributor to inter-
molecular attractions. The dispersion force increases as the molecular size increases, so 
boiling points tend to increase as the molecular weight increases.

The slight minimum in the U1R2 curve at relatively large intermolecular separation 
produced by the dispersion force can be deep enough to allow the existence at low tem-
peratures of molecules bound by the dispersion interaction. Such species are called van 
der Waals molecules. For example, argon gas at 100 K has a small concentration of Ar2 
van der Waals molecules. Ar2 has De = 0.012 eV, Re = 3.77 Å, and has seven bound 
vibrational levels 1v = 0, c, 62.

For the ground electronic state of He2 [corresponding to the electron configura-
tion 1sg1s221s*u1s224 , the zero-point vibrational energy is very slightly less than the 
dissociation energy De associated with the dispersion attraction, so the v = 0, J = 0 
level is the only bound level. Because of the extremely weak binding, He2 exists in sig-
nificant amounts only at very low temperatures. He2 was detected mass spectrometri-
cally in a beam of helium gas cooled to 10-3 K by expansion [F. Luo et al., J. Chem. 
Phys., 98, 3564 (1993); 100, 4023 (1994)]. Accurate theoretical calculations on He2 give 
De = 0.000948 eV, D0 = 0.00000014 eV, Re = 2.97 Å and give the average internuclear 
distance in He2 as 8R9 � 47 Å [M. Przybytek et al., Phys. Rev. Lett., 104, 183003 (2010); 
M. Jeziorska et al., J. Chem. Phys., 127, 124303 (2007)]. 8R9  is huge because the v = 0 
level lies so close to the dissociation limit.
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Examples of diatomic van der Waals molecules and their Re and De values include Ne2,  
3.1 Å, 0.0036 eV; HeNe,  3.2 Å, 0.0012 eV; Ca2, 4.28 Å, 0.13 eV; Mg2, 3.89 Å, 0.053 eV. 
Observed polyatomic van der Waals molecules include 1O222, H2-N2, Ar-HCl, and 1Cl222. 
For van der Waals bonding, Re is significantly greater and De is very substantially less than 
the values for chemically bound molecules. The Be2 bond length of 2.45 Å is much shorter 
than is typical for van der Waals molecules; the closeness of the 2p orbitals to 2s orbitals in 
Be allows substantial 2s–2p hybridization in Be2 and perhaps gives some amount of covalent 
character in addition to the dispersion attraction. For more on van der Waals molecules, see 
Chem. Rev., 88, 813–988 (1988); 94, 1721–2160 (1994); 100, 3861–4264 (2000).

13.8 Electronic Terms of Diatomic Molecules
We now consider the terms arising from a given diatomic molecule electron configuration.

For atoms, each set of degenerate atomic orbitals constitutes an atomic subshell. For 
example, the 2p+ 1, 2p0, and 2p-1 AOs constitute the 2p subshell. An atomic electronic 
configuration is defined by giving the number of electrons in each subshell; for example, 
1s22s22p4. For molecules, each set of degenerate molecular orbitals constitutes a molecular 
shell. For example, the pu2p+ 1 and pu2p-1 MOs constitute the pu2p shell. Each diatomic 
s shell consists of one MO, while each p, d, f, c shell consists of two MOs; diatomic s 
shells are filled with two electrons, while non@s shells hold up to four electrons. We define 
a molecular electronic configuration by giving the number of electrons in each shell, for 
example, 1sg1s221s*u1s221sg2s221s*u2s221pu2p23.

For H+
2 , the operator Lnz commutes with Hn . For a many-electron diatomic molecule, 

one finds that the operator for the axial component of the total electronic orbital angular 
momentum commutes with Hn . The component of electronic orbital angular momentum 
along the molecular axis has the possible values MLU, where ML = 0, {1, {2, {c. To 
calculate ML, we simply add algebraically the m’s of the individual electrons. Analogous 
to the symbol l for a one-electron molecule, � is defined as

	 � K 0ML 0 	 (13.84)

(Some people define � as equal to ML.) The following code specifies the value of � :

� 0 1 2 3 4

letter � � � � �

For � � 0, there are two possible values of ML, namely, +� and -�. As in H+
2 , the 

electronic energy depends on M2
L, so there is a double degeneracy associated with the two 

values of ML. Note that lowercase letters refer to individual electrons, while capital letters 
refer to the whole molecule.

Just as in atoms, the individual electron spins add vectorially to give a total electronic spin 
S, whose magnitude has the possible values 3S1S + 1241>2U, with S = 0, 12, 1, 32, c. The 
component of S along an axis has the possible values MSU, where MS = S, S - 1, c, -S. 
As in atoms, the quantity 2S + 1 is called the spin multiplicity and is written as a left 
superscript to the code letter for �. Diatomic electronic states that arise from the same 
electron configuration and that have the same value for � and the same value for S are 
said to belong to the same electronic term. We now consider how the terms belonging to 
a given electron configuration are derived. (We are assuming Russell–Saunders coupling, 
which holds for molecules composed of atoms of not-too-high atomic number.)

A filled diatomic molecule shell consists of one or two filled molecular orbitals. 
The Pauli principle requires that, for two electrons in the same molecular orbital, one 
have ms = +

1
2 and the other have ms = -

1
2. Hence the quantum number MS, which is 

the algebraic sum of the individual ms values, must be zero for a filled-shell molecular 
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configuration. Therefore, we must have S = 0 for a configuration containing only filled 
molecular shells. A filled s shell has two electrons with m = 0, so ML is zero. A filled 
p shell has two electrons with m = +1 and two electrons with m = -1, so ML (which is 
the algebraic sum of the m’s) is zero. The same situation holds for filled d, f, c shells. 
Thus a closed-shell molecular configuration has both S and � equal to zero and gives rise 
to only a 1� term. An example is the ground electronic configuration of H2. (Recall that 
a filled-subshell atomic configuration gives only a 1S term.) In deriving molecular terms, 
we need consider only electrons outside filled shells.

A single s electron has s =
1
2, so S must be 1

2, and we get a 2� term. An example is 
the ground electronic configuration of H+

2 . A single p electron gives a 2� term, and so on.
Now consider more than one electron. Electrons that are in different molecular shells 

are called nonequivalent. For such electrons we do not have to worry about giving two of 
them the same set of quantum numbers, and the terms are easily derived. Consider two 
nonequivalent s electrons, a ss configuration. Since both m’s are zero, we have ML = 0. 
Each s is 1

2, so S can be 1 or 0. We thus have the terms 1� and 3�. Similarly, a sp con-
figuration gives 1� and 3� terms.

For a pd configuration, we have singlet and triplet terms. The p electron can have 
m = {1, and the d electron can have m = {2. The possible values for ML are thus 
+3, -3, +1, and -1. This gives � = 3 or 1, and we have the terms 1�, 3�, 1�, 3�. (In 
atoms we add the vectors Li to get the total L; hence a pd atomic configuration gives P, 
D, and F terms. In diatomic molecules, however, we add the z components of the orbital 
angular momenta. This is an algebraic rather than a vectorial addition, so a pd molecular 
configuration gives � and � terms and no � terms.)

For a pp configuration of two nonequivalent electrons, each electron has m = {1, 
and we have the ML values 2, -2, 0, 0. The values of � are 2, 0, and 0; the terms are 
1�, 3�, 1�, 3�, 1�, and 3�. The values +2 and -2 correspond to the two degenerate states 
of the same � term. However, � terms are nondegenerate (apart from spin degeneracy), 
and the two values of ML that are zero indicate two different � terms (which become four 
� terms when we consider spin).

Consider the forms of the wave functions for the pp terms. We shall call the two p 
subshells p and p� and shall use a subscript to indicate the m value. For the � terms, both 
electrons have m = +1 or both have m = -1. For ML = +2, we might write as the spatial 
factor in the wave function p+ 1112p�+ 1122 or p+ 1122p�+ 1112. However, these functions 
are neither symmetric nor antisymmetric with respect to exchange of the indistinguishable 
electrons and are unacceptable. Instead, we must take the linear combinations (we shall 
not bother with normalization constants)

	 1� : p+ 1112p�+ 1122 + p+ 1122p�+ 1112	 (13.85)

	 3� : p+ 1112p�+ 1122 - p+1122p�+ 1112	 (13.86)

Similarly, with both electrons having m = -1, we have the spatial factors

	 1� : p-1112p�-1122 + p-1122p�-1112	 (13.87)

	 3� : p-1112p�-1122 - p-1122p�-1112	 (13.88)

The functions (13.85) and (13.87) are symmetric with respect to exchange. They there-
fore go with the antisymmetric two-electron spin factor (11.60), which has S = 0. Thus 
(13.85) and (13.87) are the spatial factors in the wave functions for the two states of the 
doubly degenerate 1� term. The antisymmetric functions (13.86) and (13.88) must go 
with the symmetric two-electron spin functions (11.57), (11.58), and (11.59), giving the 
six states of the 3� term. These states all have the same energy (if we neglect spin–orbit 
interaction).
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Now consider the wave functions of the � terms. These have one electron with 
m = +1 and one electron with m = -1. We start with the four functions

p+ 1112p�-1122 ,  p+ 1122p�-1112 ,  p-1112p�+ 1122,  p-1122p�+ 1112
Combining them to get symmetric and antisymmetric functions, we have

 1� + : p+ 1112p�-1122 + p+ 1122p�-1112 + p-1112p�+ 1122 + p-1122p�+ 1112
 1�-: p+ 1112p�-1122 + p+ 1122p�-1112 - p-1112p�+ 1122 - p-1122p�+ 1112
 3� + : p+ 1112p�-1122 - p+ 1122p�-1112 + p-1112p�+ 1122 - p-1122p�+ 1112  (13.89)

 3�-: p+ 1112p�-1122 - p+ 1122p�-1112 - p-1112p�+ 1122 + p-1122p�+ 1112 

The first two functions in (13.89) are symmetric. They therefore go with the antisymmetric 
singlet spin function (11.60). Clearly, these two spatial functions have different energies. 
The last two functions in (13.89) are antisymmetric and hence are the spatial factors in 
the wave functions of the two 3� terms. The four functions in (13.89) are found to have 
eigenvalue +1 or -1 with respect to reflection of electronic coordinates in the xz s

v
 sym-

metry plane containing the molecular (z) axis (Prob. 13.30). The superscripts 1 and 2 refer 
to this eigenvalue.

Examination of the � terms (13.85) to (13.88) shows that they are not eigenfunctions 
of the symmetry operator Ons

v

 (Section 12.1). Since a twofold degeneracy (apart from spin 
degeneracy) is associated with these terms, there is no necessity that their wave functions 
be eigenfunctions of this operator. However, since Ons

v

 commutes with the Hamiltonian, 
we can choose the eigenfunctions to be eigenfunctions of Ons

v

. Thus we can combine the 
functions (13.85) and (13.87), which belong to a degenerate energy level, as follows:

113.85) + 113.87) and 113.85) - 113.87)

These two linear combinations are eigenfunctions of Ons
v

 with eigenvalues +1 and -1, and 
we could refer to them as 1� +  and 1�- states. Since they have the same energy, there is no 
point in using the 1 and 2 superscripts. Thus the 1 and 2 designations are used only for 
� terms. However, when one considers the interaction between the molecular rotational 
angular momentum and the electronic orbital angular momentum, there is a very slight 
splitting (called �-type doubling) of the two states of a 1� term. It turns out that the cor-
rect zeroth-order wave functions for this perturbation are the linear combinations that are 
eigenfunctions of Ons

v

, so in this case there is a point to distinguishing between � +  and �- 
states. The linear combinations (13.85) {  (13.87), which are eigenfunctions of Ons

v

, are not 
eigenfunctions of Lnz but are superpositions of Lnz eigenfunctions with eigenvalues +2 and -2.

We can distinguish +  and -  terms for one-electron configurations. The wave function 
of a single s electron has no phi factor and hence must correspond to a � +  term. For a 
p electron, the MOs that are eigenfunctions of Lnz are the p+ 1 and p-1 functions (whose 
probability densities are each symmetric about the z axis; Fig. 13.14). The p+ 1 and p-1 
functions are not eigenfunctions of Ons

v

, but the linear combinations p+ 1 + p-1 = px 
and p+ 1 - p-1 = py are. The px and py MOs (whose probability densities are not 
symmetric about the z axis; Fig. 13.15) are the correct zeroth-order functions if the 
perturbation of the electronic wave functions due to molecular rotation is considered. 
The px and py MOs have eigenvalues +1 and -1, respectively, for reflection in the 
xz plane, and eigenvalues -1 and +1, respectively, for reflection in the yz plane. (The 
operators Lnz and Ons

v

 do not commute; Prob. 13.31. Hence we cannot have all the eigen-
functions of Hn  being eigenfunctions of both these operators as well. However, since 
each of these operators commutes with the electronic Hamiltonian and since there is no 
element of choice in the wave function of a nondegenerate level, all the s MOs must 
be eigenfunctions of both Lnz and Ons

v

.)
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Electrons in the same molecular shell are called equivalent. There are fewer terms 
for equivalent electrons than for the corresponding nonequivalent electron configuration, 
because of the Pauli principle. Thus, for a p2 configuration of two equivalent p electrons, 
four of the eight functions (13.85) to (13.89) vanish; the remaining functions give a 1� term, 
a 1� +  term, and a 3�- term. Alternatively, we can make a table similar to Table 11.1 and 
use it to derive the terms for equivalent electrons.

Table 13.3 lists terms arising from various electron configurations. A filled shell 
always gives the single term 1� + . A p3 configuration gives the same result as a p 
configuration.

For homonuclear diatomic molecules, a g or u right subscript is added to the term 
symbol to show the parity of the electronic states belonging to the term. Terms aris-
ing from an electron configuration that has an odd number of electrons in molecular 
orbitals of odd parity are odd (u); all other terms are even (g). This is the same rule as 
for atoms.

The term symbols given in Table 13.2 are readily derived from the MO configurations. 
For example, O2 has a p2 configuration, which gives the three terms 1� +

g , 3�-
g , and 1�g. 

Hund’s rule tells us that 3�-
g  is the lowest term, as listed. The v = 0 levels of the 1�g and 

1� +
g  O2 terms lie 0.98 eV and 1.6 eV, respectively, above the v = 0 level of the ground 3�-

g  
term. Singlet O2 is a reaction intermediate in many organic, biochemical, and inorganic 
reactions. [See C. S. Foote et al., eds., Active Oxygen in Chemistry, Springer, 1995; J. S. 
Valentine et al., eds., Active Oxygen in Biochemistry, Springer, 1995; C. Schweitzer and 
R. Schmidt, Chem. Rev., 103, 1685 (2003).]

Most stable diatomic molecules have a 1� +  ground term (1� +
g  for homonuclear 

diatomics). Exceptions include B2, Al2, Si2, O2, and NO, which has a 2� ground term.
Spectroscopists prefix the ground term of a molecule by the symbol X . Excited 

terms of the same spin multiplicity as the ground term are designated as A, B, C, c  ,  
while excited terms of different spin multiplicity from the ground term are designated as 
a, b, c, c. Exceptions are C2 and N2, where the ground terms are 1� +

g  but the letters 
A, B, C, c are used for excited triplet terms.

Just as for atoms, spin–orbit interaction can split a molecular term into closely spaced 
energy levels, giving a multiplet structure to the term. The projection of the total electronic 

Table 13.3    �Electronic Terms of Diatomic Molecules

Configuration Terms

ss 1� + , 3� +

sp; sp3 1�, 3�

pp; pp3 1� + , 3� + , 1�-, 3�-, 1�, 3�

pd; p3d; pd3 1�, 3�, 1�, 3�

s 2� +

s2; p4; d4 1� +

p; p3 2�

p2 1� + , 3�-, 1�

d; d3 2�

d2 1� + , 3�-, 1�
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spin S on the molecular axis is MSU. In molecules the quantum number MS is called � 
(not to be confused with the symbol meaning � = 0):

� = S, S - 1, c, -S

The axial components of electronic orbital and spin angular momenta add, giving as 
the total axial component of electronic angular momentum 1� + �2U. (Recall that � is 
the absolute value of ML. We consider � to be positive when it has the same direction as 
�, and negative when it has the opposite direction as �.) The possible values of � + � are

� + S, � + S - 1, c, � - S

The value of � + � is written as a right subscript to the term symbol to distinguish the 
energy levels of the term. Thus a 3� term has � = 2 and S = 1 and gives rise to the levels 
3�3, 

3�2, and 3�1. In a sense, � + � is the analog in molecules of the quantum number J 
in atoms. However, � + � is the quantum number of the z component of total electronic 
angular momentum and therefore can take on negative values. Thus a 4� term has the four 
levels 4�5>2, 4�3>2, 4�1>2, and 4�-1>2. The absolute value of � + � is called � :

	 � K 0� + � 0 	 (13.90)

The spin–orbit interaction energy in diatomic molecules can be shown to be well 
approximated by A��, where A  depends on � and on the internuclear distance R but not 
on �. The spacing between levels of the multiplet is thus constant. When A  is positive, 
the level with the lowest value of � + � lies lowest, and the multiplet is regular. When 
A  is negative, the multiplet is inverted. Note that for � � 0 the spin multiplicity 2S + 1 
always equals the number of multiplet components. This is not always true for atoms.

Each energy level of a multiplet with � � 0 is doubly degenerate, corresponding 
to the two values for ML. Thus a 3� term has six different wave functions [Eqs. (13.86), 
(13.88), (11.57) to (11.59)] and therefore six different molecular electronic states. Spin–orbit 
interaction splits the 3� term into three levels, each doubly degenerate. The double degen-
eracy of the levels is removed by the �@type doubling mentioned previously.

For � terms 1� = 02, the spin–orbit interaction is very small (zero in the first approx-
imation), and the quantum numbers � and � are not defined.

A 1� term always corresponds to a single nondegenerate energy level.

13.9 The Hydrogen Molecule
The hydrogen molecule is the simplest molecule containing an electron-pair bond. The 
purely electronic Hamiltonian (13.5) for H2 is in atomic units

	 Hn = -
1
2 �2

1 -
1
2 �2

2 -
1

ra1
-

1
ra2

-
1

rb1
-

1
rb2

+
1

r12
	 (13.91)

where 1 and 2 are the electrons and a and b are the nuclei (Fig. 13.18). Just as in the 
helium atom, the 1>r12 interelectronic-repulsion term prevents the Schrödinger equation 
from being separable. We therefore use approximation methods.

We start with the molecular-orbital approach. The ground-state electron configuration 
of H2 is 1sg1s22, and we can write an approximate wave function as the Slater determinant

 
122

` sg1s112a112 sg1s112b112
sg1s122a122 sg1s122b122 ` = sg1s112sg1s122 # 2-1>23a112b122 - b112a1224

	 = f112f122 # 2-1>23a112b122 - b112a1224 � (13.92)
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which is similar to (10.26) for the helium atom. To save time, we write f instead of sg1s. As 
we saw in Section 10.4, omission of the spin factor does not affect the variational integral 
for a two-electron problem. Hence we want to choose f so as to minimize

11 f*112 f *122Hn f112 f122 dv1 dv2

11 0 f112 0 2 0 f122 0 2 dv1 dv2

where the integration is over the spatial coordinates of the two electrons. Ideally, f should 
be found by an SCF calculation. For simplicity we can use an H+

2 @like MO. (The H2 Ham-
iltonian becomes the sum of two H+

2  Hamiltonians if we omit the 1>r12 term.) We saw in 
Section 13.5 that the function [Eq. (13.57)]

k3>2

12p21>211 + Sab21>2 1e-kra + e-krb2

gives a good approximation to the ground-state H+
2  wave function. Hence we try as a varia-

tion function f for H2 the product of two such LCAO functions, one for each electron:

	 f =
z3

2p11 + Sab2 1e-zra1 + e-zrb121e-zra2 + e-zrb22 	 (13.93)

	 f =
1

211 + Sab2 31sa112 + 1sb1124 31sa122 + 1sb1224 	 (13.94)

where the effective nuclear charge z will differ from k for H+
2 . Since

Hn = Hn 0
1 + Hn 0

2 + 1>r12

where Hn 0
1  and Hn 0

2  are H+
2  Hamiltonians for each electron, we have

LLf*Hnf dv1 dv2 = 2W1 + LL
f2

r12
  dv1 dv2

where W 1 is given by (13.63) with k replaced by z. The evaluation of the 1>r12 integral 
is complicated and is omitted [see Slater, Quantum Theory of Molecules and Solids, 
Volume 1, page 65, and Appendix 6]. Coulson performed the variational calculation in 
1937, using (13.93). [For the literature references of the H2 calculations mentioned in this 
and later sections, see the bibliography in A. D. McLean et al., Rev. Mod. Phys., 32, 211 
(1960).] Coulson found Re = 0.732 Å, which is close to the true value 0.741 Å; the mini-
mum in the calculated U1R2 curve gave De = 3.49 eV, as compared with the true value 

Figure 13.18  Interparticle 
distances in H2.
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4.75 eV (Table 13.2). (Of course, the percent error in the total electronic energy is much 
less than the percent error in De, but De is the quantity of chemical interest.) The value of 
z at 0.732 Å is 1.197, which is less than k for H+

2 . We attribute this to the screening of the 
nuclei from each electron by the other electron.

How can we improve on the above simple MO result? We can look for the best pos-
sible MO function f in (13.92) to get the Hartree–Fock wave function for H2. This was 
done by Kolos and Roothaan [W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys., 32, 219 
(1960)]. They expanded f in elliptic coordinates [Eq. (13.34)]. Since m = 0 for the ground 
state, the eimf factor in the SCF MO is equal to 1 and f is a function of j and h only. The 
expansion used is

f = e-aja
p, q

apqj
phq

where p and q are integers and a and apq are variational parameters. The Hartree–Fock 
results are Re = 0.732 Å and De = 3.64 eV, which is not much improvement over the 
value 3.49 eV given by the simple LCAO molecular orbital. The correlation energy for H2 
is thus -1.11 eV, close to the value -1.14 eV for the two-electron helium atom (Section 
11.3). To get a truly accurate binding energy, we must go beyond the SCF approximation 
of writing the wave function in the form f 112 f 122. We can use the same methods we used 
for atoms: configuration interaction and introduction of r12 into the trial function.

First, consider configuration interaction (CI). To reach the exact ground-state wave 
function, we include contributions from SCF (or other) functions for all the excited states 
with the same symmetry as the ground state. In the first approximation, only contributions 
from the lowest-lying excited states are included. The first excited configuration of H2 is 
1sg1s2(s*u1s2, which gives the terms 1� +

u  and 3� +
u . (We have one g and one u electron, so 

the terms are of odd parity.) The ground-state configuration 1sg1s22 is a 1� +
g  state. Hence 

we do not get any contribution from the 1sg1s2(s*u 1s2 states, since they have different par-
ity from the ground state. Next consider the configuration 1s*u 1s22. This is a closed-shell 
configuration having the single state 1� +

g . This is of the right symmetry to contribute to the 
ground-state wave function. As a simple CI trial function, we can take a linear combination 
of the MO wave functions for the 1sg1s22 and 1s*u 1s22 configurations. To simplify things, 
we will use the LCAO-MOs as approximations to the MOs. Thus we take

	 f = sg1s112sg1s122 + cs*u 1s112s*u 1s122	 (13.95)

where sg1s and s*u 1s are given by (13.57) and (13.58) with a variable orbital exponent and 
c is a variational parameter. This calculation was performed by Weinbaum in 1933. The 
result is a bond length of 0.757 Å and a dissociation energy of 4.03 eV, which is a con-
siderable improvement over the Hartree–Fock result De = 3.64 eV. The orbital exponent 
has the optimum value 1.19. We can improve on this result by using a better form for the 
MOs of each configuration and by including more configuration functions. Hagstrom did 
a CI calculation in which the MOs were represented by expansions in elliptic coordinates. 
With 33 configuration functions, he found De = 4.71 eV, close to the true value 4.75 eV 
[S. Hagstrom and H. Shull, Rev. Mod. Phys., 35, 624 (1963)].

Now consider the use of r12 in H2 trial functions. The first really accurate calculation 
of the hydrogen-molecule ground state was done by James and Coolidge in 1933. They 
used the trial function

exp3-d1j1 + j224  a cmn jkp3jm
1 j

n
2h

j
1h

k
2 + jn

1j
m
2h

k
1h

j
24r p

12

where the summation is over integral values of m, n, j, k, and p. The variational param-
eters are d and the cmnjkp coefficients. The James and Coolidge function is symmetric with 
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respect to interchange of electrons 1 and 2, as it should be, since we have an antisym-
metric ground-state spin function. With 13 terms in the sum, James and Coolidge found 
De = 4.72 eV, only 0.03 eV in error. Their work has been extended by Kolos, Wolnie-
wicz, and co-workers, who used as many as 279 terms in the sum. Since it is D0 that 
is determined from the observed electronic spectrum, they used the Cooley–Numerov 
method (Section 13.2) to calculate the vibrational levels from their theoretical U1R2 
curve and then calculated D0. Including relativistic corrections and corrections to the 
Born–Oppenheimer approximation, they found D0>hc = 36118.1 cm-1, in agreement 
with the spectroscopically determined value 36118.1 cm-1 [W. Kolos et al., J. Chem. 
Phys., 84, 3278 (1986); L. Wolniewicz, J. Chem. Phys., 99, 1851 (1993)]. An even 
more precise D0 was calculated by workers who did high-precision calculations of rela-
tivistic corrections, corrections to the Born–Oppenheimer approximation, and quantum- 
electrodynamics corrections using a Born–Oppenheimer U1R2 found from wave functions 
having as many as 7000 terms to get D0>hc = 36118.0695(10) cm-1, where the number 
in parentheses is the estimate of the uncertainty of the last digits [K. Piszczatowski et al., 
J. Chem. Theory Comput., 5, 3039 (2009); www.fuw.edu.pl/~krp/papers/D0.pdf]. The 
experimental value is 36118.0696(4) cm-1. (Quantum electrodynamics is the relativistic 
quantum-mechanical theory of the interaction of radiation and matter formulated by 
Feynman, Schwinger, and Tomonaga in the late 1940s and is an improvement on the 
quantum field theory of Dirac.)

13.10 The Valence-Bond Treatment of H2
The first quantum-mechanical treatment of the hydrogen molecule was by Heitler and 
London in 1927. Their ideas have been extended to give a general theory of chemical 
bonding, known as the valence-bond (VB) theory. The valence-bond method is more 
closely related to the chemist’s idea of molecules as consisting of atoms held together by 
localized bonds than is the molecular-orbital method. The VB method views molecules 
as composed of atomic cores (nuclei plus inner-shell electrons) and bonding valence elec-
trons. For H2, both electrons are valence electrons.

The first step in the Heitler–London treatment of the H2 ground state is to approxi-
mate the molecule as two ground-state hydrogen atoms. The wave function for two such 
noninteracting atoms is

f1 = 1sa1121sb122
where a and b refer to the nuclei and 1 and 2 refer to the electrons. Of course, the function

f2 = 1sa1221sb112
is also a valid wave function. This then suggests the trial variation function

	 c1 f1 + c2 f2 = c11sa1121sb122 + c21sa1221sb112	 (13.96)

This linear variation function leads to the determinantal secular equation  
det1Hij - SijW2 = 0 [Eq. (8.57)], where H11 = 8 f1 0Hn 0  f19 , S11 = 8 f1 0 f19 , c.

We can also consider the problem using perturbation theory (as Heitler and London 
did). A ground-state hydrogen molecule dissociates to two neutral ground-state hydrogen 
atoms. We therefore take as the unperturbed problem two ground-state hydrogen atoms at 
infinite separation. One possible zeroth-order (unperturbed) wave function is 1sa1121sb122. 
However, electron 2 could just as well be bound to nucleus a, giving the unperturbed wave 
function 1sa1221sb112. These two unperturbed wave functions belong to a doubly degener-
ate energy level (exchange degeneracy). Under the perturbation of molecule formation, the 
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doubly degenerate level is split into two levels, and the correct zeroth-order wave functions 
are linear combinations of the two unperturbed wave functions:

c11sa1121sb122 + c21sa1221sb112
This leads to a 2 * 2 secular determinant that is the same as (8.56), except that W is 
replaced by E102 + E112; see Prob. 9.20.

We now solve the secular equation. The Hamiltonian is Hermitian, all functions are 
real, and f1 and f2 are normalized. Therefore

H12 = H21,  S12 = S21,  S11 = S22 = 1

Consider H11 and H22:
 H11 = 81sa1121sb122 0Hn 0 1sa1121sb1229
 H22 = 81sa1221sb112 0Hn 01sa1221sb1129

Interchange of the coordinate labels 1 and 2 in H22 converts H22 to H11, since this relabel-
ing leaves Hn  unchanged. Hence H11 = H22. The secular equation det1Hij - SijW 2 = 0 
becomes

	 ` H11 - W H12 - WS12

H12 - WS12 H11 - W
` = 0	 (13.97)

This equation has the same form as Eq. (13.49), and by analogy to Eqs. (13.51), (13.57), 
and (13.58) the approximate energies and wave functions are

	 W 1 =
H11 + H12

1 + S12
 ,  W 2 =

H11 - H12

1 - S12
	 (13.98)

	 f1 =
f1 + f22211 + S1221>2,  f2 =

f1 - f22211 - S1221>2	 (13.99)

The numerators of (13.99) are

f1 { f2 = 1sa1121sb122{1sa1221sb112
From our previous discussion, we know that the ground state of H2 is a 1� state with the 
antisymmetric spin factor (11.60) and a symmetric spatial factor. Hence f1 must be the 
ground state. The Heitler–London ground-state wave function is

	
1sa1121sb122 + 1sa1221sb1122211 + S1221>2  

122
3a112b122 - a122b1124 	 (13.100)

The Heitler–London wave functions for the three states of the lowest 3� term are

	
1sa1121sb122 - 1sa1221sb1122211 - S1221>2 •

a112a122
2-1/23a112b122 + b112a1224
b112b122

	 (13.101)

where S12 is given in Prob. 13.33.
Now consider the ground-state energy expression. We write the molecular electronic 

Hamiltonian as the sum of two H-atom Hamiltonians plus perturbing terms:

	 Hn = Hna112 + Hnb122 + Hn �	 (13.102)

Hna112 = -
1
2 �2

1 -
1

ra1
,  Hnb112 = -

1
2 �2

2 -
1

rb2
,  Hn � = -

1
rb1

-
1

ra2
+

1
r12
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The Heitler–London calculation does not introduce an effective nuclear charge into the 
1s function. Hence 1sa112 is an eigenfunction of Hna112 with eigenvalue -1

2 hartree, the 
hydrogen-atom ground-state energy. Using this result, one finds the following expressions 
for the VB energies (Prob. 13.33):

	 W 1 = -1 +
Q + A

1 + S2
ab

,  W 2 = -1 +
Q - A

1 - S2
ab

	 (13.103)

where the Coulomb integral Q and the exchange integral A are defined by:

	 Q K 81sa1121sb122 0Hn � 01sa1121sb1229 	 (13.104)

	 A K 81sa1221sb112 0Hn � 01sa1121sb1229 	 (13.105)

and the overlap integral Sab is defined by (13.48). The quantity -1 hartree in these expres-
sions is the energy of two ground-state hydrogen atoms. To obtain the U1R2 potential-
energy curves, we add the internuclear repulsion 1>R to these expressions.

Many of the integrals needed to evaluate W 1 and W 2 have been evaluated in the treat-
ment of H+

2  in Section 13.5. The only new integrals are those involving 1>r12. The hardest 
one is the two-center, two-electron exchange integral:

LL1sa1121sb122 1
r12

1sa1221sb112 dv1 dv2

Two-center means that the integrand contains functions centered on two different 
nuclei, a and b; two-electron means that the coordinates of two electrons occur in 
the integrand. This can be evaluated using an expansion for 1>r12 in confocal elliptic 
coordinates, similar to the expansion in Prob. 9.14 in spherical coordinates. Details 
of the integral evaluations are given in Slater, Quantum Theory of Molecules and 
Solids, Volume 1, Appendix 6. The results of the Heitler–London treatment are 
De = 3.15 eV, Re = 0.87 Å. The agreement with the experimental values De = 4.75 eV,
Re = 0.741 Å is only fair. In this treatment, most of the binding energy is provided by 
the exchange integral A.

Consider some improvements on the Heitler–London function (13.100). One obvious 
step is the introduction of an orbital exponent z in the 1s function. This was done by 
Wang in 1928. The optimum value of z is 1.166 at Re, and De and Re are improved to 
3.78 eV and 0.744 Å. Recall that Dickinson in 1933 improved the Finkelstein–Horowitz 
H+

2  trial function by mixing in some 2pz character into the atomic orbitals (hybrid-
ization). In 1931 Rosen used this idea to improve the Heitler–London–Wang function.  
He took the trial function

f = fa112fb122 + fa122fb112
where the atomic orbital fa is given by fa = e-zra11 + cza2, with a similar expression 
for fb. This allows for the polarization of the AOs on molecule formation. The result is 
a binding energy of 4.04 eV. Another improvement, the use of ionic structures, will be 
considered in the next section.

13.11 Comparison of the MO and VB Theories
Let us compare the molecular-orbital and valence-bond treatments of the H2 ground state.

If fa symbolizes an atomic orbital centered on nucleus a, the spatial factor of the 
unnormalized LCAO-MO wave function for the H2 ground state is

	 3fa112 + fb1124  3fa122 + fb1224 	 (13.106)
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In the simplest treatment, f is a 1s AO. The function (13.106) equals

	 fa112fa122 + fb112fb122 + fa112fb122 + fb112fa122	 (13.107)

What is the physical significance of the terms? The last two terms have each electron in an 
atomic orbital centered on a different nucleus. These are covalent terms, corresponding to 
equal sharing of the electrons between the atoms. The first two terms have both electrons 
in AOs centered on the same nucleus. These are ionic terms, corresponding to the chemi-
cal structures

H- H+ and H+  H-

The covalent and ionic terms occur with equal weight, so this simple MO function gives a 
50–50 chance as to whether the H2 ground state dissociates to two neutral hydrogen atoms 
or to a proton and a hydride ion. Actually, the H2 ground state dissociates to two neutral 
H atoms. Thus the simple MO function gives the wrong limiting value of the energy as R 
goes to infinity.

How can we remedy this? Since H2 is nonpolar, chemical intuition tells us that ionic 
terms should contribute substantially less to the wave function than covalent terms. The 
simplest procedure is to omit the ionic terms of the MO function (13.107). This gives

	 fa112fb122 + fb112fa122	 (13.108)

We recognize (13.108) as the Heitler–London function (13.100).
Although interelectronic repulsion causes the electrons to avoid each other, there 

is some probability of finding both electrons near the same nucleus, corresponding to 
an ionic structure. Therefore, instead of simply dropping the ionic terms from (13.107), 
we might try

	 fVB,imp = fa112fb122 + fb112fa122 + d3fa112fa122 + fb112fb1224 	 (13.109)

where d1R2 is a variational parameter and the subscript imp indicates an improved VB 
function. In the language of valence-bond theory, this trial function represents ionic–
covalent resonance. Of course, the ground-state wave function of H2 does not undergo 
a time-dependent change back and forth from a covalent function corresponding to the 
structure HiH to ionic functions. Rather (in the approximation we are considering), 
the wave function is a time-independent mixture of covalent and ionic functions. Since 
H2 dissociates to neutral atoms, we know that d1�2 = 0. A variational calculation done 
by Weinbaum in 1933 using 1s AOs with an orbital exponent gave the result that at Re 
the parameter d has the value 0.26; the orbital exponent was found to be 1.19, and the 
dissociation energy was calculated as 4.03 eV, a modest improvement over the Heitler– 
London–Wang value of 3.78 eV. With d equal to zero in (13.109), we get the VB function 
(13.108). With d equal to 1, we get the LCAO-MO function (13.107). The optimum value 
of d turns out to be closer to zero than to 1, and, in fact, the Heitler–London–Wang VB 
function gives a better dissociation energy than the LCAO-MO function.

Let us compare the improved valence-bond trial function (13.109) with the simple 
LCAO-MO function improved by configuration interaction. The LCAO-MO CI trial func-
tion (13.95) has the (unnormalized) form

fMO,imp = 3fa112 + fb1124 3fa122 + fb1224 + g3fa112 - fb1124 3fa122 - fb1224
Since we have not yet normalized this function, there is no harm in multiplying it by the 
constant 1> 11 - g2. Doing so and rearranging terms, we get

fMO,imp = fa112fb122 + fb112fa122 +
1 + g

1 - g
3fa112fa122 + fb112fb1224
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There is also no harm done if we define a new constant d as d = 11 + g2>11 - g2. We see 
then that this improved MO function and the improved VB function (13.109) are identical. 
Weinbaum viewed his H2 calculation as a valence-bond calculation with inclusion of ionic 
terms. We have shown that we can just as well view the Weinbaum calculation as an MO 
calculation with configuration interaction. (This was the viewpoint adopted in Section 13.9.)

The MO function (13.107) underestimates electron correlation, in that it says that struc-
tures with both electrons on the same atom are just as likely as structures with each electron 
on a different atom. The VB function (13.108) overestimates electron correlation, in that it 
has no contribution from structures with both electrons on the same atom. In MO theory, 
electron correlation can be introduced by configuration interaction. In VB theory, electron 
correlation is reduced by ionic–covalent resonance. The simple VB method is more reliable at 
large R than the simple MO method, since the latter predicts the wrong dissociation products.

To further fix the differences between the MO and VB approaches, consider how 
each method divides the H2 electronic Hamiltonian into unperturbed and perturbation 
Hamiltonians. For the MO method, we write

Hn = c a-
1
2 �2

1 -
1

ra1
-

1
rb1

b + a-
1
2 �2

2 -
1

ra2
-

1
rb2

b d +
1

r12

where the unperturbed Hamiltonian consists of the bracketed terms. In MO theory the 
unperturbed Hamiltonian for H2 is the sum of two H+

2  Hamiltonians, one for each electron. 
Accordingly, the zeroth-order MO wave function is a product of two H+

2 @like wave func-
tions, one for each electron. Since the H+

2  functions are complicated, we approximate the 
H+

2 @like MOs as LCAOs. The effect of the 1>r12 perturbation is taken into account in an 
average way through use of self-consistent-field molecular orbitals. To take instantaneous 
electron correlation into account, we can use configuration interaction.

For the valence-bond method, the terms in the Hamiltonian are grouped in either of 
two ways:

Hn = c a-
1
2 �2

1 -
1

ra1
b + a-

1
2 �2

2 -
1

rb2
b d -

1
ra2

-
1

rb1
+

1
r12

Hn = c a-
1
2 �2

1 -
1

rb1
b + a-

1
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2 -
1

ra2
b d -

1
ra1

-
1

rb2
+

1
r12

The unperturbed system is two hydrogen atoms. We have two zeroth-order functions con-
sisting of products of hydrogen-atom wave functions, and these belong to a degenerate 
level. The correct ground-state zeroth-order function is the linear combination (13.100).

The MO method is used far more often than the VB method, because it is compu-
tationally much simpler than the VB method. The MO method was developed by Hund, 
Mulliken, and Lennard-Jones in the late 1920s. Originally, it was used largely for qualita-
tive descriptions of molecules, but the electronic digital computer has made possible the 
calculation of accurate MO functions (Section 13.14). For a discussion of the relative merits 
of the MO and VB methods, see R. Hoffman et al., Acc. Chem. Res., 36, 750 (2003).

13.12 �MO and VB Wave Functions for 
Homonuclear Diatomic Molecules

The MO approximation puts the electrons of a molecule in molecular orbitals, which extend 
over the whole molecule. As an approximation to the molecular orbitals, we usually use 
linear combinations of atomic orbitals. The VB method puts the electrons of a molecule in 
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atomic orbitals and constructs the molecular wave function by allowing for “exchange” of 
the valence electron pairs between the atomic orbitals of the bonding atoms. We compared 
the two methods for H2. We now consider other homonuclear diatomic molecules.

We begin with the ground state of He2. Each separated helium atom has the ground-
state configuration 1s2. This closed-subshell configuration does not have any unpaired 
electrons to form valence bonds, and the VB wave function is simply the antisymmetrized 
product of the atomic-orbital functions. In the notation of Eq. (10.47), the He VB ground 
state wave function is the Slater determinant

	 0 1sa1sa1sb1sb 0 	 (13.110)

The subscripts a and b refer to the two atoms, and the bar indicates spin function b. The 1s 
function in this wave function is a helium-atom 1s function, which ideally is an SCF atomic 
function but can be approximated by a hydrogenlike function with an effective nuclear 
charge. The VB wave function for He2 has each electron paired with another electron in 
an orbital on the same atom and so predicts no bonding.

In the MO approach, He2 has the ground-state configuration 1sg1s221s*u1s22. With 
no net bonding electrons, no bonding is predicted, in agreement with the VB method. The 
MO approximation to the wave function is

	 0sg1s sg1s s*u1s su *1s 0 	 (13.111)

The simplest way to approximate the (unnormalized) MOs is to take them as linear com-
binations of the helium-atom AOs: sg1s = 1sa + 1sb and s*u1s = 1sa - 1sb. With this 
approximation, (13.111) becomes

	 0 11sa + 1sb2 11sa + 1sb2 11sa - 1sb2 11sa - 1sb2 0 	 (13.112)

Using theorems about determinants, we can show (Prob. 13.34) that (13.112) is equal to

	 4 0 1sa1sa1sb1sb 0 	 (13.113)

which is identical (after normalization) to the VB function (13.110). This result is easily 
generalized to the statement that the simple VB and simple LCAO-MO methods give the 
same approximate wave functions for diatomic molecules formed from separated atoms 
with completely filled atomic subshells. We could now substitute the trial function (13.110) 
into the variational integral and calculate the repulsive curve for the interaction of two 
ground-state He atoms.

Before going on to Li2, let us express the Heitler–London valence-bond functions 
for H2 as Slater determinants. The ground-state Heitler–London function (13.100) and 
Prob. 13.33a can be written as

	 1
211 + S2

ab2-1>2e ` 1sa112a112 1sb112b112
1sa122a122 1sb122b122 ` - ` 1sa112b112 1sb112a112

1sa122b122 1sb122a122 ` f

	 = 12 + 2S2
ab2-1>2 5 0 1sa1sb 0 - 0 1sa1sb 0 6  	 (13.114)

In each Slater determinant, the electron on atom a is paired with an electron of opposite 
spin on atom b, corresponding to the Lewis structure HiH. The Heitler–London functions 
(13.101) for the lowest H2 triplet state can also be written as Slater determinants. Omitting 
normalization constants, we write the Heitler–London H2 functions as

	  Singlet: 0 1sa1sb 0 - 0 1sa1sb 0 	 (13.115)

	  Triplet: •
0 1sa1sb 0
0 1sa1sb 0 + 0 1sa1sb 0
0 1sa 1sb 0

	 (13.116)
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Now consider Li2. The ground-state configuration of Li is 1s22s, and the Lewis struc-
ture of Li2 is LiiLi, with the two 2s Li electrons paired and the 1s electrons remaining 
in the inner shell of each atom. The part of the valence-bond wave function involving the 
1s electrons will be like the He2 function (13.110), while the part of the VB wave func-
tion involving the 2s electrons (which form the bond) will be like the Heitler–London H2 
function (13.115). Of course, because of the indistinguishability of the electrons, there is 
complete electronic democracy, and we must allow every electron to be in every orbital. 
Hence we write the ground-state VB function for Li2 using 6 * 6 Slater determinants:

	 0 1sa1sa1sb1sb2sa2sb 0 - 0 1sa1sa1sb1sb 2sa2sb 0 	 (13.117)

We have written down (13.117) simply by analogy to (13.110) and (13.115). For a fuller 
justification of it, we should show that it is an eigenfunction of the spin operators Sn2 and 
Snz with eigenvalue zero for each operator, which corresponds to a singlet state. This can 
be shown, but we omit doing so. To save space, (13.117) is sometimes written as

	 01sa1sa1sb1sb 2sa2sb 0 	 (13.118)

where the curved line indicates the pairing (bonding) of the 2sa and 2sb AOs.
The MO wave function for the Li2 ground state is

	 0sg1s sg1s s*u1s su*1s sg2s sg2s 0 	 (13.119)

If we approximate the two lowest MOs by 1sa { 1sb then the same procedure used in Prob. 
13.34 to show that (13.111) is the same wave function as (13.110) shows that (13.119) is 
the same as

0 1sa1sa1sb1sb sg2s sg2s 0
Recall the notation KK1sg2s22 for the Li2 ground-state configuration.

Now consider the VB treatment of the N2 ground state. The lowest configuration 
of N is 1s22s22p3. Hund’s rule gives the ground level as 4S3>2, with one electron in each 
of the three 2p AOs. We can thus pair the two 2px electrons, the two 2py electrons, and 
the two 2pz electrons to form a triple bond. The Lewis structure is :N ‚ N:. How is this 
Lewis structure translated into the VB wave function? In the VB method, opposite spins 
are given to orbitals bonded together. We have three such pairs of orbitals and two ways to 
give opposite spins to the electrons of each bonding pair of AOs. Hence there are 23 = 8 
possible Slater determinants that we can write. We begin with

D1 = 0 1sa1sa 2sa 2sa1sb1sb 2sb2sb 2pxa 2pxb 2pya 2pyb2pza 2pzb 0
In all eight determinants, the first eight columns will remain unchanged, and to save space 
we write D1 as

	 D1 =  0  g 2pxa 2pxb 2pya 2pyb 2pza 2pzb 0 	 (13.120)

Reversing the spins of the electrons in 2pxa and 2pxb, we get

	 D2 =  0 g2pxa 2pxb 2pya 2pyb 2pza 2pzb 0 	 (13.121)

There are six other determinants formed by interchanges of spins within the three pairs of 
bonding orbitals, and the VB wave function is a linear combination of eight determinants 
(Prob. 13.35). The following rule (see Kauzmann, pages 421–422) gives a VB wave func-
tion that is an eigenfunction of Sn2 with eigenvalue 0 (as is desired for the ground state): The 
coefficient of each determinant is +1 or -1 according to whether the number of spin inter-
changes required to generate the determinant from D1 is even or odd, respectively. Thus D2 
has coefficient -1. [Compare also (13.115).] Clearly, the single-determinant ground-state 
N2 MO function is easier to handle than the eight-determinant VB function.
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13.13 Excited States of H2
We have concentrated mostly on the ground electronic states of diatomic molecules. In 
this section we consider some of the excited states of H2. Figure 13.19 gives the potential-
energy curves for some of the H2 electronic energy levels.

The lowest MO configuration is 11sg22, where the notation of the third column of 
Table 13.1 is used. This closed-shell configuration gives only a nondegenerate 1� +

g  level, 
designated X 1� +

g . The LCAO-MO function is (13.93).
The next-lowest MO configuration is 11sg2(1su2, which gives rise to the terms 1� +

u  
and 3� +

u  (Table 13.3). Since there is no axial electronic orbital angular momentum, each 
of these terms corresponds to one level. Spectroscopists have named these electronic levels 
B1� +

u  and b3� +
u . By Hund’s rule, the b level lies below the B level. The LCAO-MO func-

tions for these levels are [see Eqs. (10.27)–(10.30)]

 b3� +
u : 2-1>231sg1121su122 - 1sg1221su1124 •

a112a122
2-1>23a112b122 + a122b1124
b112b122

 B1� +
u : 2-1>231sg1121su122 + 1sg1221su11242-1>23a112b122 - a122b1124

where 1sg � N11sa + 1sb2 and 1su � N �11sa - 1sb2. The b3� +
u  level is triply degener-

ate. The B1� +
u  level is nondegenerate. The Heitler–London wave functions for the b level 

are given by (13.101). Both these levels have one bonding and one antibonding electron, 
and we would expect the potential-energy curves for both levels to be repulsive. Actually, 

Figure 13.19  U(R) curves 
for some electronic states  
of H2. [See W. Kolos and 
L. Wolniewicz, J. Chem. Phys., 
43, 2429 (1965); 45, 509 
(1966); J. Gerhauser and  
H. S. Taylor, J. Chem. Phys., 
42, 3621 (1965); W. Kolos, 
J. Mol. Spectry, 143, 237 
(1990).]
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the B level has a minimum in its U1R2 curve. The stability of this state should caution us 
against drawing too hasty conclusions from very approximate wave functions.

We expect the next-lowest configuration to be 11sg212sg2, giving rise to 1� +
g  and 

3� +
g  levels. These levels of H2 are designated E1� +

g  and a3� +
g . By Hund’s rule, the triplet 

lies lower. The E state has two substantial minima in its U1R2 curve, and is often called 
the EF state because of the two minima.

Although the 2su MO fills before the two 1pu MOs in going across the periodic table, 
the 1pu MOs lie below the 2su MO in H2. The configuration 11sg211pu2 gives rise to the 
terms 1�u and 3�u, the triplet lying lower. These terms are designated C1�u and c3�u. The 
c term gives rise to the levels c3�2u, c

3�1u, and c3�0u. These levels lie so close together 
that they are usually not resolved in spectroscopic work. The C level shows a slight hump 
in its potential-energy curve at large R. Each level is twofold degenerate, which gives a 
total of eight electronic states arising from the 11sg211pu2 configuration.

13.14 SCF Wave Functions for Diatomic Molecules
This section presents some examples of SCF MO wave functions for diatomic molecules.

The spatial orbitals fi in an MO wave function are each expressed as a linear combi-
nation of a set of one-electron basis functions xs:

	 fi = a
s

csixs	 (13.122)

For SCF calculations on diatomic molecules, one can use Slater-type orbitals [Eq. (11.14)] 
centered on the various atoms of the molecule as the basis functions. (For an alternative 
choice, see Section 15.4.) The procedure used to find the coefficients csi of the basis functions 
in each SCF MO is discussed in Section 14.3. To have a complete set of AO basis functions, 
an infinite number of Slater orbitals are needed, but the true molecular Hartree–Fock wave 
function can be closely approximated with a reasonably small number of carefully chosen 
Slater orbitals. A minimal basis set for a molecular SCF calculation consists of a single basis 
function for each inner-shell AO and each valence-shell AO of each atom. An extended basis 
set is a set that is larger than a minimal set. Minimal-basis-set SCF calculations are easier 
than extended-basis-set calculations, but the latter are much more accurate.

SCF wave functions using a minimal basis set were calculated by Ransil for several 
light diatomic molecules [B. J. Ransil, Rev. Mod. Phys., 32, 245 (1960)]. As an example, 
the SCF MOs for the ground state of Li2 [MO configuration 11sg2211su2212sg22] at 
R = Re are

 1sg = 0.70611sa + 1sb2 + 0.00912s#a + 2s#b2 + 0.000312psa + 2psb2
 1su = 0.70911sa - 1sb2 + 0.02112s#a - 2s#b2 + 0.00312psa - 2psb2	 (13.123)

 2sg = -0.05911sa + 1sb2 + 0.52312s#a + 2s#b2 + 0.11412psa + 2psb2

The AO functions in these equations are STOs, except for 2s#. A Slater-type 2s AO has 
no radial nodes and is not orthogonal to a 1s STO. The Hartree–Fock 2s AO has one radial 
node 1n - l - 1 = 12 and is orthogonal to the 1s AO. We can form an orthogonalized 2s 
orbital with the proper number of nodes by taking the following normalized linear combina-
tion of 1s and 2s STOs of the same atom (Schmidt orthogonalization):

	 2s# = 11 - S22-1>212s - S # 1s2	 (13.124)
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where S is the overlap integral 81s 0 2s9 . Ransil expressed the Li2 orbitals using the (nonor-
thogonal) 2s STO, but since the orthogonalized 2s#  function gives a better representation 
of the 2s AO, the orbitals have been rewritten using 2s#. This changes the 1s and 2s coef-
ficients, but the actual orbital is, of course, unchanged; see Prob. 13.37. The notation 2ps 
for an AO indicates that the p orbital points along the molecular (z) axis; that is, a 2ps AO 
is a 2pz AO. (The 2px and 2py AOs are called 2pp AOs.) The optimum orbital exponents 
for the orbitals in (13.123) are z1s = 2.689, z2s = 0.634, z2ps = 0.761.

Our previous simple expressions for these MOs were

 1sg = sg1s = 2-1>211sa + 1sb2
 1su = s*u1s = 2-1>211sa - 1sb2
 2sg = sg2s = 2-1>212sa + 2sb2

Comparison of these with (13.123) shows the simple LCAO functions to be reasonable first 
approximations to the minimal-basis-set SCF MOs. The approximation is best for the 1sg 
and 1su MOs, whereas the 2sg MO has substantial 2ps AO contributions in addition to the 
2s AO contributions. For this reason the notation of the third column of Table 13.1 (Section 
13.7) is preferable to the separated-atoms MO notation. The substantial amount of 2s -2ps 
hybridization is to be expected, since the 2s and 2p AOs are close in energy [see Eq. (9.27)]. 
The hybridization allows for the polarization of the 2s AOs in forming the molecule.

Let us compare the 3sg MO of the F2 ground state at Re as calculated by Ransil using 
a minimal basis set with that calculated by Wahl using an extended basis set [A. C. Wahl, 
J. Chem. Phys., 41, 2600 (1964)]:

3sg,min = 0.03811sa + 1sb2 - 0.18412sa + 2sb2 + 0.64812psa + 2psb2
z1s = 8.65,  z2s = 2.58,  z2ps = 2.49

3sg,ext = 0.04811sa + 1sb2 + 0.00311s�a + 1s�b2 - 0.25712sa + 2sb2
+  0.58212psa + 2psb2 + 0.30712ps�a + 2ps�b2 + 0.08512ps�a + 2ps�b2

-0.05613sa + 3sb2 + 0.04613dsa + 3dsb2 + 0.01414 fsa + 4 fsb2
 z1s = 8.27,  z1s� = 13.17,  z2s = 2.26

 z2ps = 1.85,  z2ps� = 3.27,  z2ps� = 5.86

 z3s = 4.91,  z3ds = 2.44,  z4fs = 2.83

Just as several STOs are needed to give an accurate representation of Hartree–Fock AOs 
(Section 11.1), one needs more than one STO of a given n and l in the linear combi-
nation of STOs that is to accurately represent the Hartree–Fock MO. The primed and 
double-primed AOs in the extended-basis-set function are STOs with different orbital 
exponents. The 3ds and 4fs AOs are AOs with quantum number m = 0, that is, the 3d0 
and 4f0 AOs. The total energies found are -197.877Eh and -198.768Eh for the minimal 
and extended calculations, respectively (where Eh is the hartree). Extrapolation of calcula-
tions using much larger basis sets than Wahl used gives the Hartree–Fock F2 energy at 
Re as -198.773Eh [L. Bytautas et al., J. Chem. Phys., 127, 164317 (2007)]. The experi-
mental energy of F2 at Re is U1Re2 = -199.672Eh.The correlation-energy definition 
(11.16) uses the nonrelativistic energy of the molecule. The relativistic contribution to the 
F2 energy has been calculated to be -0.142Eh, so the exact nonrelativistic F2 energy at 
Re is -199.672Eh + 0.142Eh = -199.530Eh. Therefore, the correlation energy in F2 is 
-199.530Eh + 198.773Eh = -0.757Eh = -20.6 eV.
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In discussing H+
2  and H2, we saw how hybridization (the mixing of different AOs 

of the same atom) improves molecular wave functions. There is a tendency to think 
of hybridization as occurring only for certain molecular geometries. The SCF calcu-
lations make clear that all MOs are hybridized to some extent. Thus any diatomic-
molecule s MO is a linear combination of 1s, 2s, 2p0, 3s, 3p0, 3d0, c AOs of the 
separated atoms.

To aid in deciding which AOs contribute to a given diatomic MO, we use two rules. 
First, only s-type AOs 1s, ps, ds, c2 can contribute to a s MO; only p@type AOs 
1pp, dp, c2 can contribute to a p MO; and so on. Second, only AOs of reasonably 
similar energy contribute substantially to a given MO. (For examples, see the minimal- and 
extended-basis-set MOs quoted above.)

Wahl plotted the contours of the near Hartree–Fock molecular orbitals of homonuclear 
diatomic molecules from H2 through F2. Figure 13.20 shows these plots for Li2.

Of course, Hartree–Fock wave functions are only approximations to the true wave 
functions. It is possible to prove that a Hartree–Fock wave function gives a very good 
approximation to the electron probability density r1x, y, z2 for nuclear configurations 
in the region of the equilibrium configuration. A molecular property that involves 
only one-electron operators can be expressed as an integral involving r; see Eq. (14.8). 
Consequently, such properties are accurately calculated using Hartree–Fock wave 
functions. An example is the molecular dipole moment [Eq. (14.21)]. For example, 
the LiH dipole moment calculated with a near Hartree–Fock c is 6.00 D (debyes) 
[S. Green, J. Chem. Phys., 54, 827 (1971)], compared with the experimental value 5.83 
D. (One debye = 3.33564 * 10-30 C m.) For NaCl, the calculated and experimental 
dipole moments are 9.18 D and 9.02 D [R. L. Matcha, J. Chem. Phys., 48, 335 (1968)]. 
An error of about 0.2 D is typical in such calculations, but where the dipole moment 
is small, the percent error can be large. An extreme example is CO, for which the 
experimental moment is 0.11 D with the polarity C-O+ , but the near-Hartree–Fock 
moment is 0.27 D with the wrong polarity C+O-. However, a configuration-interaction 
wave function gives 0.12 D with the correct polarity [S. Green, J. Chem. Phys., 54, 
827 (1971)].

A major weakness of the Hartree–Fock method is its failure to give accurate molecular 
dissociation energies. For example, an extended-basis-set calculation [P. E. Cade et al.,  
J. Chem. Phys., 44, 1973 (1966)] gives De = 5.3 eV for N2, as compared with the true 
value 9.9 eV. (To calculate the Hartree–Fock De, the molecular energy at the minimum 
in the U1R2 Hartree–Fock curve is subtracted from the sum of the Hartree–Fock 
energies of the separated atoms.) A related defect of Hartree–Fock molecular wave 
functions is that the energy approaches the wrong limit as R S �. Recall the MO 
discussion of H2.

Figure 13.20  Hartree–Fock 
MO electron-density contours 
for the ground electronic 
state of Li2 as calculated by 
Wahl. [A. C. Wahl, Science, 
151, 961 (1966); Scientific 
American, April 1970, p. 54; 
Atomic and Molecular 
Structure: 4 Wall Charts, 
McGraw-Hill, 1970.]
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13.15 MO Treatment of Heteronuclear Diatomic Molecules
The treatment of heteronuclear diatomic molecules is similar to that for homonuclear 
diatomic molecules. We first consider the MO description.

Suppose the two atoms have atomic numbers that differ only slightly; an example 
is CO. We could consider CO as being formed from the isoelectronic molecule N2 by a 
gradual transfer of charge from one nucleus to the other. During this hypothetical transfer, 
the original N2 MOs would slowly vary to give finally the CO MOs. We therefore expect 
the CO molecular orbitals to resemble somewhat those of N2. For a heteronuclear diatomic 
molecule such as CO, the symbols used for the MOs are similar to those for homonuclear 
diatomics. However, for a heteronuclear diatomic, the electronic Hamiltonian (13.5) is not 
invariant with respect to inversion of the electronic coordinates (that is, Hnel does not com-
mute with �n ), and the g, u property of the MOs disappears. The correlation between the 
N2 and CO shell designations is

N2 1sg 1su 2sg 2su 1pu 3sg 1pg 3su

CO 1s 2s 3s 4s 1p 5s 2p 6s

MOs of the same symmetry are numbered in order of increasing energy. Because of the 
absence of the g, u property, the numbers of corresponding homonuclear and heteronuclear 
MOs differ. Figure 13.21 is a sketch of a contour of the CO 1p{1 MOs as determined by an 
extended-basis-set SCF calculation [W. M. Huo, J. Chem. Phys., 43, 624 (1965)]. Note its 
resemblance to the contour of Fig. 13.13, which is for the 1pu,{1 MOs of a homonuclear 
diatomic molecule.

The ground-state configuration of CO is 1s22s23s24s21p45s2, as compared with 
the N2 configuration 11sg2211su2212sg2212su2211pu2413sg22.

As in homonuclear diatomics, the heteronuclear diatomic MOs are approximated as 
linear combinations of atomic orbitals. The coefficients are found by the procedure of 
Section 14.3. For example, a minimal-basis-set SCF calculation using Slater AOs (with 
nonoptimized exponents given by Slater’s rules) gives for the CO 5s, 1p, and 2p MOs at 
R = Re [B. J. Ransil, Rev. Mod. Phys., 32, 245 (1960)]:

5s = 0.02711sC2 + 0.01111sO2 + 0.73912s#C2 + 0.03612s#O2
-0.56612psC2 - 0.43812psO2

1p = 0.46912ppC2 + 0.77112ppO2,  2p = 0.92212ppC2 - 0.69012ppO2
The expressions for the p MOs are simpler than those for the s MOs because s and ps 
AOs cannot contribute to p MOs. For comparison, the corresponding MOs in N2 at R = Re 
are (Ransil, op. cit.):

 3sg = 0.03011sa + 1sb2 + 0.39512s#a + 2s#b2 - 0.60312psa + 2psb2
 1pu = 0.62412ppa + 2ppb2, 1pg = 0.83512ppa - 2ppb2

The resemblance of CO and N2 MOs is apparent. The 1s MO in CO is found to be 
nearly the same as a 1s oxygen-atom AO; the 2s MO in CO is essentially a carbon-atom 
1s AO.

In general, for a heteronuclear diatomic molecule AB where the valence AOs of each 
atom are of s and p type and where the valence AOs of A do not differ greatly in energy 
from the valence AOs of B, we can expect the Fig. 13.17 pattern of

ss 6 s*s 6 pp 6 sp 6 p*p 6 s*p

Figure 13.21  Cross section 
of a contour of the 1p61 
MOs in CO.

C O z
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valence-shell MOs formed from s and p valence-shell AOs to hold reasonably well. 
Figure 13.17 would be modified in that each valence AO of the more electronegative 
atom would lie below the corresponding valence AO of the other atom.

When the valence-shell AO energies of B lie very substantially below those of 
A, the s and ps valence AOs of B lie below the s valence-shell AO of A, and this 
affects which AOs contribute to each MO. Consider the molecule BF, for example.  
A minimal-basis-set calculation [Ransil, Rev. Mod. Phys., 32, 245 (1960)] gives the 
1s MO as essentially 1sF and the 2s MO as essentially 1sB. The 3s MO is predomi-
nantly 2sF, with small amounts of 2sB, 2psB, and 2psF. The 4s MO is predominantly 
2psF, with significant amounts of 2sB and 2sF and a small amount of 2psB. This is 
quite different from N2, where the corresponding MO is formed predominantly from 
the 2s AOs on each N. The 1p MO is a bonding combination of 2ppB and 2ppF. The 
5s MO is predominantly 2sB, with a substantial contribution from 2psB and a signifi-
cant contribution from 2psF. This is unlike the corresponding MO in N2, where the 
largest contributions are from 2ps MOs on each atom. The 2p MO is an antibond-
ing combination of 2ppB and 2ppF. The 6s MO has important contributions from 
2psB, 2sB, 2sF, and 2psF.

We see from Fig. 11.2 that the 2pF AO lies well below the 2sB AO. This causes the 
2psF AO to contribute substantially to lower-lying MOs and the 2sB AO to contribute 
substantially to higher-lying MOs, as compared with what happens in N2. (This effect 
occurs in CO, although to a lesser extent. Note the very substantial contribution 
of 2sC to the 5s MO. Also, the 4s MO in CO has a very substantial contribution 
from 2psO.)

For a diatomic molecule AB where each atom has s and p valence-shell AOs (this 
excludes H and transition elements) and where the A and B valence AOs differ widely in 
energy, we may expect the pattern of valence MOs to be s 6 s 6 p 6 s 6 p 6 s, 
but it is not so easy to guess which AOs contribute to the various MOs or the bonding or 
antibonding character of the MOs. By feeding the valence electrons into these MOs, we 
can make a plausible guess as to the number of unpaired electrons and the ground term of 
the AB molecule (Prob. 13.38).

Diatomic hydrides are a special case, since H has only a 1s valence AO. Consider HF 
as an example. The ground-state configurations of the atoms are 1s for H and 1s22s22p5 
for F. We expect the filled 1s and 2s F subshells to take little part in the bonding. The four 
2pp fluorine electrons are nonbonding (there are no p valence AOs on H). The hydrogen 
1s AO and the fluorine 2ps AO have the same symmetry 1s2 and have rather similar 
energies (Fig. 11.2), and a linear combination of these two AOs will form a s MO for the 
bonding electron pair:

f = c111sH2 + c212psF2
where the contributions of 1sF and 2sF to this MO have been neglected. Since F is more 
electronegative than H, we expect that c2 7 c1. (In addition, the 1sH and 2psF AOs form 
an antibonding MO, which is unoccupied in the ground state.)

The picture of HF just given is only a crude qualitative approximation. A minimal-
basis-set SCF calculation using Slater orbitals with optimized exponents gives as the MOs 
of HF [B. J. Ransil, Rev. Mod. Phys., 32, 245 (1960)]

 1s = 1.00011sF2 + 0.01212s#F2 + 0.00212psF2 - 0.00311sH2
 2s = -0.01811sF2 + 0.91412s#F2 + 0.09012psF2 + 0.15411sH2
 3s = -0.02311sF2 - 0.41112s#F2 + 0.71112psF2 + 0.51611sH2

 1p+ 1 = 12pp+ 12F,  1p-1 = 12pp-12F
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The ground-state MO configuration of HF is 1s2 2s2 3s2 1p4. The 1s MO is virtually 
identical with the 1s fluorine AO. The 2s MO is pretty close to the 2s fluorine AO. The 
1p MOs are required by symmetry to be the same as the corresponding fluorine p AOs. 
The bonding 3s MO has its largest contribution from the 2ps fluorine and 1s hydrogen 
AOs, as would be expected from the discussion of the preceding paragraph. However, the 
2s fluorine AO makes a substantial contribution to this MO. (Since a single 2s function 
is only an approximation to the 2s AO of F, we cannot use this calculation to say exactly 
how much 2s AO character the 3s HF molecular orbital has.)

For qualitative discussion (but not quantitative work), it is useful to have simple 
approximations for heteronuclear diatomic MOs. In the crudest approximation, we can take 
each valence MO of a heteronuclear diatomic molecule as a linear combination of two AOs 
fa and fb, one on each atom. (As the discussions of CO and BF show, this approximation 
is often quite inaccurate.) From the two AOs, we can form two MOs:

c1fa + c2fb and c�1fa + c�2fb

The lack of symmetry in the heteronuclear diatomic makes the coefficients unequal in mag-
nitude. The coefficients are determined by solving the secular equation [see Eq. (13.45)]

` Haa - W Hab - WSab

Hab - WSab Hbb - W
` = 0

	 1Haa - W 2(Hbb - W 2 - 1Hab - WSab22 = 0	 (13.125)

where Hn  is some sort of effective one-electron Hamiltonian. Suppose that Haa 7 Hbb, and 
let f1W2 be defined as the left side of (13.125). The overlap integral Sab is less than 1 (except 
at R = 0). [A rigorous proof of this follows from Eq. (3-114) in Margenau and Murphy.] 
The coefficient of W 2 in f 1W2 is 11 - S2

ab2 7 0; therefore f 1�2 = f 1- �2 = + � 7 0. 
For W = Haa or Hbb, the first product in (13.125) vanishes. Hence f 1Haa2 6 0 and 
f1Hbb2 6 0. The roots of (13.125) occur where f 1W2 equals 0. Hence, by continuity, 
one root must be between + � and Haa and the other between Hbb and - �. Therefore, the 
orbital energy of one MO is less than both Haa and Hbb (the energies of the two AOs in the 
molecule; Section 13.5), and the energy of the other MO is greater than both Haa and Hbb. 
One bonding and one antibonding MO are formed from the two AOs. Figure 13.22 shows 
the formation of bonding and antibonding MOs from two AOs, for the homonuclear and 
heteronuclear cases. These figures are gross oversimplifications, since a given MO has 
contributions from many AOs, not just two.

The coefficients c1 and c2 in the bonding heteronuclear MO in Fig. 13.22 are both posi-
tive, so as to build up charge between the nuclei. For the antibonding heteronuclear MO, the 
coefficients of fa and fb have opposite signs, causing charge depletion between the nuclei.

Figure 13.22  Formation 
of bonding and antibonding 
MOs from AOs in the homo-
nuclear and heteronuclear 
cases. (See Prob. 13.39.)

fa
fafb

fb

N0[(c2 1 Sab c1)fa 2 (c1 1 Sab c2)fb]

N(fa 1 fb)
c1fa 1 c2fb

N9(fa 2 fb)
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13.16 �VB Treatment of Heteronuclear 
Diatomic Molecules

Consider the valence-bond ground state wave function of HF. We expect a single bond to be 
formed by the pairing of the hydrogen 1s electron and the unpaired fluorine 2ps electron. 
The Heitler–London function corresponding to this pairing is [Eq. (13.117)]

	 fcov = 0 g1sH2psF 0 - 0 g1sH2psF 0 	 (13.126)

where the dots stand for 1sF1sF2sF2sF2ppxF2ppxF2ppyF2ppyF. This function is essentially 
covalent, the electrons being shared by the two atoms. However, the high electronega-
tivity of fluorine leads us to include a contribution from an ionic structure as well. An 
ionic valence-bond function has the form fa112fa122 [Eq. (13.109)]. Introduction of the 
required antisymmetric spin factor gives as the valence-bond function for an ionic structure 
in HF:

fion = 0 g2psF2psF 0
The VB wave function is then written as

	 f = c1fcov + c2fion	 (13.127)

The optimum values of c1 and c2 are found by the variation method. This leads to the usual 
secular equation. We have ionic–covalent “resonance,” involving the structures HiF and 
H+F-. The true molecular structure is intermediate between the covalent and ionic struc-
tures. A term c3 0 1sH1sH 0  corresponding to the ionic structure H- F+  could also be included 
in the wave function, but this should contribute only slightly for HF. For molecules that 
are less ionic, both ionic structures might well be included.

For a highly ionic molecule such as NaCl, we expect the VB function to have c2 W c1. 
It might be thought that NaCl would dissociate to Na+  and Cl- ions, but this is not true. 
The ionization energy of Na is 5.1 eV, while the electron affinity of Cl is only 3.6 eV. 
Hence, in the gas phase the neutral separated ground-state atoms Na + Cl are more stable 
than the ground-state separated ions Na+  + Cl-. (In aqueous solution the ions are more 
stable because of the hydration energy, which makes the separated ions more stable than 
even the diatomic NaCl molecule.) If the nuclei are slowly pulled apart, a gas-phase NaCl 
molecule will dissociate to neutral atoms. Therefore, as R increases from Re, the ratio c2>c1 
in (13.127) must decrease, becoming zero at R = �. For intermediate values of R, the 
Coulombic attraction between the ions is greater than the 1.5@eV difference between the 
ionization potential and electron affinity, and the molecule is largely ionic. For very large 
R, the Coulombic attraction between the ions is less than 1.5 eV, and the molecule is largely 
covalent. However, if the nuclei in NaCl are pulled apart very rapidly, then the electrons will 
not have a chance to adjust their wave function from the ionic to the covalent wave function, 
and both bonding electrons will go with the chlorine nucleus, giving dissociation into ions.

Cesium has the lowest ionization energy, 3.9 eV. Chlorine has the highest electron 
affinity, 3.6 eV. Thus, even for CsCl and CsF, the separated ground-state neutral atoms 
are more stable than the separated ground-state ions. There are, however, cases of excited 
states of diatomic molecules that dissociate to ions.

13.17 The Valence-Electron Approximation
Suppose we want to treat Cs2, which has 110 electrons. In the MO method, we would 
start by writing down a 110 * 110 Slater determinant of molecular orbitals. We would 
then approximate the MOs by functions containing variational parameters and go on 
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to minimize the variational integral. Clearly, the large number of electrons makes this 
a formidable task. One way to simplify the problem is to divide the electrons into two 
groups: the 108 core electrons and the two 6s valence electrons, which provide bonding. 
We then try to treat the valence electrons separately from the core, taking the molecular 
energy as the sum of core- and valence-electron energies. This approach, introduced in 
the 1930s, is called the valence-electron approximation.

The simplest approach is to regard the core electrons as point charges coinciding 
with the nucleus. For Cs2 this would give a Hamiltonian for the two valence electrons 
that is identical with the electronic Hamiltonian for H2. If we then go ahead and mini-
mize the variational integral for the valence electrons in Cs2, with no restrictions on 
the valence-electron trial functions, we will clearly be in trouble. Such a procedure 
will cause the valence-electrons’ MO to “collapse” to the sg1s MO, since the core 
electrons are considered absent. To avoid this collapse, one can impose the constraint 
that the variational functions used for the valence electrons be orthogonal to the orbit-
als of the core electrons. Of course, the task of keeping the valence orbitals orthogonal 
to the core orbitals means more work. A somewhat different approach is to drop the 
approximation of treating the core electrons as coinciding with the nucleus, and to treat 
them as a charge distribution that provides some sort of effective repulsive potential 
for the motion of the valence electrons. This leads to an effective Hamiltonian for the 
valence electrons, which is then used in the variational integral. The valence-electron 
approximation is widely used in approximate treatments of polyatomic molecules 
(Chapter 17).

Summary
Because electrons are much lighter than nuclei, we can use the Born–Oppenheimer 
approximation to deal with molecules. This approximation takes the molecular wave func-
tion c as the product of wave functions for electronic motion and for nuclear motion: 
c = cel1qi; qa2cN1qa2, where qi and qa are the electronic and nuclear coordinates, respec-
tively. We solve the electronic Schrödinger equation for fixed positions of the nuclei. 
This equation is 1Hnel + VNN2cel = Ucel, where V NN is the internuclear-repulsion term 
and Hnel is the sum of operators for electronic kinetic energy, electron–nuclear attractions, 
and electron–electron repulsions. U is the electronic energy including internuclear repul-
sions. After finding U1qa2, we solve the nuclear-motion Schrödinger equation, which is 
1TnN + U2cN = EcN, where TnN is the nuclear-kinetic-energy operator and E is the (total) 
molecular energy. Solution of the nuclear-motion Schrödinger equation shows that the 
molecular energy is approximately the sum of translational, rotational, vibrational, and 
electronic energies.

Quantum chemists use atomic units, in which energies are measured in hartrees and 
lengths in bohrs [Eqs. (13.29) and (13.30)].

The electronic Schrödinger equation for H+
2  can be solved exactly to give wave func-

tions that are eigenfunctions of Ln z, the operator for the component of electronic orbital 
angular momentum along the internuclear axis. The letters s, p, d, f, c  denote l K 0m 0  
values of 0, 1, 2, 3, c, respectively, where mU is the Ln z eigenvalue.

Approximate wave functions for the two lowest electronic states of H+
2  are 

N11sa + 1sb2 and N �11sa - 1sb2, where 1sa and 1sb are 1s AOs centered on nuclei a and b, 
respectively.

Approximate MOs for homonuclear diatomic molecules were constructed as 
N11sa{1sb2, N12sa{2sb2, c  , and in the separated-atoms notation, these were called 
sg1s, s*u 1s, sg2s, s*u 2s, c  ,  where s means l = 0, g or u denotes even or odd functions, 
and the star denotes an antibonding MO. An alternative notation, 1sg, 1su, 2sg, 2su, c, 
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numbers the MOs of each symmetry type in order of increasing energy. Using these 
approximate MOs, we examined the electron configurations, bond orders, and spin multi-
plicities of the ground terms of H2, He2, Li2, c, Ne2.

A molecular electronic configuration gives rise to one or more electronic terms. Each 
diatomic-molecule term designation has the form 2S + 11�2, where S is the total electronic 
spin quantum number and 1�2 is a code letter (�, �, �, �, c) that gives the 0ML 0  
value 10, 1, 2, 3, c2, where MLU is the component of the total electronic orbital angular 
momentum along the internuclear axis. � terms are designated � +  or �-, according to 
whether the eigenvalue of cel for reflection in a plane containing the molecular axis is +1 
or  -1. For homonuclear diatomic molecules, a g or u subscript is added to the term symbol 
to show whether cel is even or odd.

The simple LCAO-MO wave function for the H2 ground electronic state is

sg1s112sg1s1222-1>23a112b122 - b112a1224
� N31sa112 + 1sb1124 31sa122 + 1sb12242-1>23a112b122 - b112a1224

The simple covalent VB wave function for ground-state H2 is constructed by interchange 
of the bonding electrons between the bonding atoms to give

N31sa1121sb122 + 1sa1221sb11242-1>23a112b122 - b112a1224
The H2 MO function gives equal weight to covalent and ionic terms and thus underes-

timates electron correlation, which acts to keep electrons apart and makes the ionic terms 
less important than the covalent terms. The MO function can be improved by configura-
tion interaction. The H2 covalent VB wave function can be improved by the addition of a 
contribution from ionic terms.

The MO wave function for a 1� diatomic-molecule state is a single Slater determinant 
of spin-orbitals. The VB wave function is a linear combination of Slater determinants that 
involve interchanges of spins within the pairs of bonding AOs.

A minimal basis set consists of one basis function for each inner shell and each valence 
AO. Examples of minimal- and extended-basis-set SCF wave functions for diatomic mol-
ecules were given in Sections 13.14 and 13.15. SCF wave functions give pretty accurate 
molecular geometries and dipole moments, but very inaccurate dissociation energies, due 
to improper behavior as R S �.

Problems

Sec. 13.1 13.2 13.3 13.5 13.6 13.7

Probs. 13.1–13.6 13.7–13.12 13.13–13.15 13.16–13.23 13.24 13.25–13.26

Sec. 13.8 13.9 13.10 13.12 13.13 13.14 13.15 general

Probs. 13.27–13.31 13.32 13.33 13.34–13.35 13.36 13.37 13.38–13.39 13.40–13.43

	13.1	 True or false? (a) For a diatomic molecule, D0 is greater than De. (b) The electronic wave 
function of a diatomic molecule changes when the internuclear distance changes. (c) The total 
energy of a molecule is the sum of the electronic energy (including nuclear repulsion) U and 
the energy E found by solving the nuclear Schrödinger equation HncN = EcN.

	13.2	 For the H2 ground electronic state, D0 = 4.4781 eV. Find �H �0  for H21g2 S 2H1g2 in 
kJ>mol.

	13.3	 Use the D0 value of H2 14.478 eV2 and the D0 value of H+
2  12.651 eV2 to calculate the first 

ionization energy of H2 (that is, the energy needed to remove an electron from H2).
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	  13.4	 The infrared absorption spectrum of 1H35Cl has its strongest band at 8.65 * 1013Hz. For this 
molecule, D0 = 4.43 eV. (a) Find De for 1H35Cl. (b) Find D0 for 2H35Cl.

	  13.5	 (a) Verify that if anharmonicity is taken into account by inclusion of the nexe term in the 
vibrational energy, then De = D0 +

1
2 hne -

1
4 hnexe. (b) The 7Li1H ground electronic state has 

D0 = 2.4287 eV, ne>c = 1405.65 cm-1, and ne xe>c = 23.20 cm-1, where c is the speed of 
light. (These last two quantities are usually designated ve and vexe in the literature.) Calculate 
De for 7Li1H.

	  13.6	 Without consulting the text, write down the complete nonrelativistic Hamiltonian oper-
ator for the H2 molecule. Then write down the purely electronic Hamiltonian operator 
for H2.

	  13.7	 Verify the Taylor-series expansion (13.24).

	  13.8	 For the Morse-function H2 example in Section 13.2: (a) Derive the expressions for A and B 
in terms of U, m, and a. (Hint: Use the fact that the argument of an exponential function must 
be dimensionless.) (b) Calculate the numerical values of A, B, and De,r . (See Table A.3 in the 
Appendix.)

	  13.9	 (a) Use the Numerov method with the endpoints and interval recommended in the Section 13.2 
example to find the lowest six Morse-function vibrational levels of H2. (b) Calculate 8xr9  
and 8R 9  for these six levels. (c) Find the Morse-function v = 6, 7, 8, and 9 H2 vibrational 
levels.

	13.10	 The 127I2 ground electronic state has De>hc = 12550 cm-1, ne>c = 214.5 cm-1, and 
Re = 2.666 Å. Use the Morse function and the Numerov method to calculate the six low-
est vibrational energy levels of this electronic state. (The experimental Evib>hc values for 
v = 0, 2, 4 are 107.19, 532.55, 953.01 cm-1.)

	13.11	 Analytical solution of the Schrödinger equation for the Morse-function potential energy 
gives Evib = 1v +

1
22hne - 1v +

1
222h2n2

e >4De. (The Morse-function U becomes infinite 
at R = - �. The expression given for Evib corresponds to the boundary conditions that c 
becomes zero at R = � and at R = - �, whereas for a diatomic molecule, we actually 
require that the vibrational wave function become zero at R = 0. This discrepancy is of no 
significance, since at R = 0, the Morse potential energy is very high and the Morse vibra-
tional wave function is very close to zero.) For the 1H2 ground electronic state, (a) calculate 
the six lowest analytical Morse vibrational energies to verify the values given in the Section 
13.2 example; (b) find the maximum value of v predicted by the Morse function and compare 
with the true value v = 14.

	13.12	 If cN,int is the approximate nuclear wave function of (13.14) and (13.28), verify that 
8R - Re9 = 1 0cN, int 0 21R - Re2 dt = 1�

0 0 S
v

0 21R - Re2 dR.

	13.13	 (a) If Q stands for the dimension electric charge, show that 34pe04 = Q2M-1L-3T2. 
(b) Derive the expressions for A and B given in Section 13.3. (c) Verify the reduced form of 
the H-atom Schrödinger equation given in Section 13.3.

	13.14	 (a) Derive the expressions for the atomic units of time and electric dipole moment given in 
Section 13.3. (b) Find the expression for the atomic unit of electric field strength and calculate 
its value in volts per meter.

	13.15	 Give the numerical value in atomic units of each of the following quantities: (a) proton mass; 
(b) electron charge; (c) Planck’s constant; (d) He+  ground-state energy, assuming infinite nuclear 
mass; (e) one second; (f) c (speed of light); (g) hydrogen-atom ground-state energy, taking 
internal nuclear motion into account; (h) one debye 31 debye 1D2 � 3.33564 * 10-30 C m4 .

	13.16	 Derive (13.60) for the overlap integral Sab.

	13.17	 (a) Derive (13.61) for the Haa integral as follows. Add and subtract k >ra in (13.32) to get 
Hn = Hna + 1k - 12>ra - 1>rb, where Hna is the Hamiltonian operator for a hydrogenlike 
atom of nuclear charge k with nucleus at a. Use this expression to write Haa as the sum of three 
integrals. Evaluate the first integral using Hna1sa = -

1
2 k21sa. Evaluate the 1>ra integral using 

spherical coordinates with origin at a. Use confocal elliptic coordinates and Eqs. (13.59), 
(13.44), and (13.35) to evaluate the third integral. (b) Derive (13.62) for Hab.



400  Chapter 13  |  Electronic Structure of Diatomic Molecules

	13.18	 (a) Show that the variational integral W 1 for the ground state of H+
2  [Eq. (13.63)] can be writ-

ten as W 1 = k2F1t2 + kG1t2, where t K kR and where F and G are certain functions of t. 
(b) Show that the minimization condition 0W 1>0k = 0 leads to

	 k = -
G1t2 + tG�1t2
2F1t2 + tF�1t2

		  Using this equation, we can find k for a given value of t. We then use R = t>k to find the 
value of R corresponding to our value of k.

	13.19	 Write a computer program that will calculate the optimum value of the orbital exponent k 
for the H+

2  trial function (13.54) for a given R value. Have the program calculate W 1 + 1>R 
[where W 1 is given by (13.63)] for k ranging from 0 to 3 in steps of 0.001 and have the 
program pick the k value that gives the smallest W 1 + 1>R. Write the program so that the 
value of R, the initial and final values of k, and the interval between k values are input from 
the keyboard for each run. Use the program to find k to the nearest 0.001 for R values of 
0.5, 1.0, 2.0, 3.0, 4.0, and 6.0. Use the calculated energies to plot the U1R2 curve predicted by 
this trial function. (For more efficient ways to find the minimum of a function of one variable, 
see Press et al., Chapter 10.)

	13.20	 Write a computer program that will simultaneously find the values of k and R that minimize 
W 1 + 1>R in (13.63). On the first run, have R range from 0.1 to 6 in steps of 0.01 and have k 
range from 0 to 3 in steps of 0.01; compute W 1 + 1>R for all possible pairs of k and R values 
in these ranges and have the computer find the pair of k and R values that gives the smallest 
W 1 + 1>R. Let these values be k � and R �. Rerun the program with k and R ranging from 
k� - 0.01 to k � + 0.01 and R� - 0.01 to R � + 0.01, respectively, each in steps of 0.0001 
to find the optimum k and R, each accurate to 0.0001. (For much more efficient ways to find 
the minimum of a function of two variables, see Press et al., Chapter 10.)

	13.21	 (a) Use Mathcad to create an animation showing how contours and three-dimensional plots 
of the H+

2  LCAO MOs f1 and f2 [Eqs. (13.57) and (13.58)] for a plane containing the 
nuclei change as R changes from 3.8 to 0.1 bohr. Proceed as follows. Define the function 
U1R, k2 by adding the internuclear repulsion to (13.63). Include a parameter b in U, such 
that for b = 1 we get U for f1 and b = -1 we get U for f2. Specify the b value before 
defining U. Set R equal to 3.8 - FRAME>10, where the animation variable FRAME will 
later be defined to go from 0 to 37. To find the optimum k value at each R, use the Mathcad 
function root1f1k2, k2, which finds the k value that makes f1k2 = 0 provided we enter an 
initial guess for k. Take f1k2 as the derivative of U1R, k2 with respect to k. Do not find 
this derivative yourself but use the d>dx facility in Mathcad to have Mathcad take the 
derivative. Define an initial value for k before setting k equal to the root function. [In some 
versions of Mathcad, the root function will fail to find the solution for certain initial values 
of k. Use trial-and-error to find k values that work, and if a single initial k value does not 
work at all R values, use the if function (or nested if functions) to specify various k values 
at various R values. Different k values may be needed for the bonding and antibonding 
MOs.] To make the plot, define xi and zi to vary from –2.5 to 2.5 bohrs with increments of 
1>6 bohr. Then use (13.57) and (13.58) to define phi1x, z2 as the MO’s value in the xz plane. 
Define the array (matrix) M by defining Mij as phi1xi, zi2. Create a contour plot, enter-
ing -2.5 and 2.5 as the limits for the axes. Also create a three-dimensional-surface plot 
taking appropriate values for the limits of y. Then create the animation. (b) By adding 
statements to the worksheet of part (a), use the solve block facility to find the predicted  
Re for f1 and the optimum k at Re. The conditions to be satisfied are that the derivative of 
U with respect to R must be zero and the derivative of U with respect to k must be zero. 
Also include conditions that R and k must be positive.

	13.22	 Use a modified form of the Mathcad worksheet for Prob. 13.21 to find the optimum k for 
each of the H+

2  MOs (13.57) and (13.58) at each of these R >bohr values: (a) 10; (b) 6; (c) 4; 
(d) 2.5; (e) 2; (f) 1; (g) 0.1.

	13.23	 Use a spreadsheet to calculate the k values asked for in Prob. 13.22.

	13.24	 Verify Eq. (13.79) for a sh reflection.
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	13.25	 Which species of each pair has the greater De? (a) Li2 or Li+
2 ; (b) C2 or C+

2 ; (c) O2 or O+
2 ; 

(d) F2 or F+
2 .

	13.26	 Predict the bond order and the number of unpaired electrons for each of the following mol-
ecules: (a) S2; (b) S+

2 ; (c) S-
2; (d) N+

2 ; (e) N-
2; (f) F+

2 ; (g) F-
2 ; (h) Ne+

2 ; (i) Na+
2 ; (j) Na-

2; 
(k) H-

2 ; (l) C+
2 ; (m) C2; (n) C-

2.

	13.27	 Use the results of Prob. 13.26 and Table 13.3 to predict the ground term of each molecule in 
Prob. 13.26.

	13.28	 How many independent electronic wave functions correspond to each of the following 
diatomic-molecule terms: (a) 1�-; (b) 3� + ; (c) 3�; (d) 1�; (e) 6�?

	13.29	 Give the levels belonging to each of the terms in Prob. 13.28.

	13.30	 Show that the four functions of (13.89) have the indicated eigenvalues with respect to a 
s

v
1xz2 reflection of electronic coordinates. Start by showing that this reflection converts f 

to -f and leaves ra and rb unchanged.

	13.31	 Show that for a diatomic molecule 3Lnz, Ons
v

4 � 0.

	13.32	 The ground state of H2 has 1� +
g  symmetry. What restriction does this impose on the values 

of m, n, j, and k in the James and Coolidge wave function (Section 13.9)?

	13.33	 For the VB integrals S12, H11, and H12 in (13.97), show that (a) S12 = S2
ab; (b) H11 = Q - 1; 

(c) H12 = A - S2
ab. Then use these results to verify (13.103).

	13.34	 For the determinant (13.112), add column 1 to column 3 and add column 2 to column 4. Show 
that the result is equal to 4 0  11sa + 1sb211sa + 1sb21sa1sa 0 . In this determinant, subtract col-
umn 3 from column 1 and subtract column 4 from column 2. Then use column interchanges 
to show that the result equals (13.113). At each step, state which theorem about determinants 
is being used.

	13.35	 Write down abbreviated expressions for the remaining six determinants of the N2 VB function 
of Section 13.12. Use the rule given in that section to find the coefficient of each determinant 
in the wave function.

	13.36	 (a) Show that the simple MO wave function for the b3� +
u  level of H2 is the same as the 

Heitler–London VB function for this level. (b) Show that the simple MO wave function for 
the B1� +

u  level of H2 contains only ionic terms.

	13.37	 Verify that the 2s#  AO in (13.124) is orthogonal to the 1s AO and is normalized. (b) Let 
an MO f have the form f = a11s2 + b12s2 + g when expressed using a nonorthogo-
nal 2s STO and the form f = c11s2 + d12s#2 + g when expressed using an orthogo-
nalized 2s orbital. Show that c = a + Sb and d = b11 - S221>2, where S = 81s 0  2s9 . 
(c) Let z1 and z2 be the orbital exponents of 1s and 2s STOs, respectively. Show that 
S = 24z3>2

1 z5>2
2 >31>21z1 + z224.

	13.38	 Use simple MO theory to predict the number of unpaired electrons and the ground term of 
each of the following: (a) BF; (b) BN; (c) BeS; (d) BO; (e) NO; (f) CF; (g) CP; (h) NBr;  
(i) ClO; ( j) BrCl. Compare your results with the experimentally observed ground terms: (a) 1� + ; 
(b) 3�; (c) 1�+; (d) 2� + ; (e) 2�; (f) 2�; (g) 2� + ; (h) 3�-; (i) 2�; (j) 1�+.

	13.39	 (a) Use orthogonality (Section 8.5 and Prob. 8.40) to derive the expression given in Fig. 13.22 
for the heteronuclear antibonding MO. Then do the same for the homonuclear antibonding 
MO. (b) Verify that the functions (13.57) and (13.58) are orthogonal.

	13.40	 In applying quantum chemistry to chemical reactions, which would be the more accurate 
approximation, the simple MO or the simple VB method?

	13.41	 In Section 13.14, an experimental value for U1Re2 of F2 was given. Explain how this value 
is found from certain other data. Hint: See the paragraph after Eq. (13.1).

	13.42	 Use notation such as 1sa112 to write down without consulting this chapter (a) the simple MO 
wave function for H2 including spin; (b) the simple VB wave function for H2 including spin.

	13.43	 True or false: (a) If 0c1 0 = 0c2 0 , then c1 and c2 must represent the same state. (b) The 
Hartree–Fock U1R2 curve for the H+

2  ground electronic state shows the proper behavior as 
R S �. (c) The Hartree–Fock U1R2 curve for the H2 ground electronic state shows the proper 
behavior as R S �.
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Chapter 14

Theorems of Molecular 
Quantum Mechanics

This chapter discusses theorems that are used in molecular quantum mechanics. 
Section 14.1 expresses the electron probability density in terms of the wave function. 
Section 14.2 shows how the dipole moment of a molecule is calculated from the wave 
function. Section 14.3 gives the procedure for calculating the Hartree–Fock wave func-
tion of a molecule. Sections 14.4 to 14.7 discuss the virial theorem and the Hellmann–
Feynman theorem, which are helpful in understanding chemical bonding.

14.1 Electron Probability Density
How is the wave function of a many-electron molecule related to the electron probability 
density? We want to find the probability of finding an electron in the rectangular volume 
element located at point 1x,	y,	z2 in space with edges dx,	dy,	dz. The electronic wave func-
tion c is a function of the spatial and spin coordinates of the n electrons. (For simplicity 
the parametric dependence on the nuclear configuration will not be explicitly indicated.) 
We know that

	 �c1x1,	c,	zn,	ms1,	c,	msn2�2	dx1	dy1	dz1 g dxn	dyn	dzn	 (14.1)

is the probability of simultaneously finding electron 1 with spin ms1 in the volume ele-
ment dx1	dy1	dz1 at 1x1,	y1,	z12, electron 2 with spin ms2 in the volume element dx2	dy2	dz2 
at 1x2,	y2,	z22, and so on. Since we are not interested in what spin the electron we find at 
1x,	y,	z2 has, we sum the probability (14.1) over all possible spin states of all electrons to 
give the probability of simultaneously finding each electron in the appropriate volume ele-
ment with no regard for spin:

	 a
ms1

ga
msn

�c �2	dx1 g dzn	 (14.2)

Suppose we want the probability of finding electron 1 in the volume element dx	dy	dz 
at 1x,	y,	z2. For this probability we do not care where electrons 2 through n are. We there-
fore add the probabilities for all possible locations for these electrons. This amounts to 
integrating (14.2) over the coordinates of electrons 2,	3,	c,	n:

	 c a
all	msLgL � c1x,	y,	z,	x2,	y2,	z2,	c,	xn,	yn,	zn,	ms1,	c,	msn2�2	dx2gdzn d dx	dy	dz	

(14.3)
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where there is a 13n - 32-fold integration over x2 through zn.
Now suppose we ask for the probability of finding electron 2 in the volume element 

dx	dy	dz at 1x,	y,	z2. By analogy to (14.3), this is

c a
all	msLgL �c1x1,	y1,	z1,	x,	y,	z,	x3,	c,	zn,	ms1,	c,	msn2�2	dx1	dy1	dz1	dx3 gdzn d dx	dy	dz

	 (14.4)

Of course, electrons do not come with labels, and this indistinguishability (Section 10.3) 
means that the probabilities (14.3) and (14.4) must be equal. This equality is readily 
proved. The wave function c is antisymmetric with respect to electron exchange, so �c�2 
is unchanged by an electron exchange. Interchanging the spatial and spin coordinates of 
electrons 1 and 2 in c in (14.4) and doing some relabeling of dummy variables, we see 
that (14.4) is equal to (14.3). Thus (14.3) gives the probability of finding any one par-
ticular electron in dx	dy	dz. Since the system has n electrons, the probability of finding 
an electron in dx	dy	dz is n times (14.3). (In drawing this conclusion, we assume that the 
probability of finding more than one electron in the infinitesimal region dx	dy	dz is negli-
gible compared with the probability of finding one electron. This is certainly valid since 
the probability of finding two electrons will involve the product of six infinitesimal quan-
tities as compared with the product of three infinitesimal quantities for the probability of 
finding one electron.)

Thus the probability density r for finding an electron in the neighborhood of point 
1x,	y,	z2 is

	r1x,	y,	z2 = n a
all	msLcL �c1x,	y,	z,	x2,	c,	zn,	ms1,	c,	msn2�2	dx2 gdzn

	r1r2 = n a
all	msLcL �c1r,	r2,	c,	rn,	ms1,	c,	msn2�2	dr2gdrn	 (14.5)

where the vector notation for spatial variables (Section 5.2) is used. The atomic units of r 
are electrons>bohr3.

r is the electron probability density. The corresponding electronic charge density av-
eraged over time is equal to -er1x,		y,		z2, where -e is the charge on an electron. In atomic 
units, the electronic charge density is -r. In addition, there are the positive charges of the 
nuclei. The term electronic charge density is commonly shortened to charge density.

 A molecule’s r is an experimentally observable quantity that can be found from 
measured x-ray diffraction intensities of molecular crystals or electron-diffraction in-
tensities of gases. See P. Coppens and M. B. Hall (eds.), Electron Distributions and the 
Chemical Bond, Plenum, 1982; D. A. Kohl and L. S. Bartell, J. Chem. Phys., 51, 2891, 
2896 (1969); P. Coppens, J. Phys. Chem., 93, 7979 (1989); P. Coppens, Annu. Rev. Phys. 
Chem., 43, 663 (1992); C. Gatti and P. Macchi (eds.), Modern Charge-Density Analysis, 
Springer, 2012.

To illustrate (14.5), consider the electron density for the simple VB and MO ground-
state H2 wave functions. The wave function is a product of a spatial factor and the spin 
function (11.60). (For more than two electrons, c cannot be factored into a product of a 
spatial part and a spin part; see Chapter 10.) Summation of (11.60) over ms1 and ms2 gives 
one (Section 10.4). Thus (14.5) becomes for H2

r1x,	y,	z2 = 2LLL�f1x,	y,	z,	x2,	y2,	z22 � 2	dx2	dy2	dz2



404  Chapter 14  |  Theorems of Molecular Quantum Mechanics

where f is the spatial factor. When f is taken as the spatial factor in the VB function 
(13.100) and Prob. 13.33 or the MO function (13.94), we get (Prob. 14.1)

	 rVB =
1s2

a + 1s2
b + 2Sab1sa1sb

1 + S2
ab

,		rMO =
1s2

a + 1s2
b + 211sa1sb2

1 + Sab
	 (14.6)

One finds (Prob. 14.2) that rMO 7 rVB at the midpoint of the bond, so the MO function 
(which underestimates electron correlation) piles up more charge between the nuclei than 
the VB function.

The MO probability density in (14.6) is twice r for the H+
2@like	1sA + 1sB MO 

[Eq. (13.65)]. One can prove that, for a many-electron MO wave function, r is found 
by multiplying the probability-density function of each MO by the number of electrons 
occupying it and summing the results:

	 r1x,	y,	z2 = a
j

nj �fj � 2	 (14.7)

where the sum is over the different orthogonal spatial MOs, and nj (whose possible values 
are 0, 1, or 2) is the number of electrons in the MO fj. [We used (14.7) in Eq. (11.11).]

Calculations of r from high-quality wave functions show that for nearly all mole-
cules, local maxima in r occur only at the nuclei. One of the few exceptions is the ground 
electronic state of Li2, for which r has a small local maximum at the bond midpoint 
[Bader, Section E2.1; G. I. Bersuker et al., J. Phys. Chem., 97, 9323 (1993)].

Let B1ri2 be a function of the spatial coordinates xi,	yi,	zi of electron i, where the 
notation of Section 5.2 is used. For an n-electron molecule, consider the average value

hc ` a
n

i = 1
B1ri2 ` ci = Lc*a

n

i = 1
B1ri2c	dt = a

n

i = 1 L �c�2B1ri2	dt

where c is the electronic wave function. Since the electrons are indistinguishable, 
each term in the sum g i1 �c �2B	dt must have the same value. Therefore we have 
8c�gn

i = 1B1ri2 �c9 = 1n �c �2B1r12	dt. Since B1r12 depends only on x1,	y1,	z1, before 
we integrate over x1,	y1,	z1, we can integrate n �c �2 over the spatial coordinates of elec-
trons 2 to n and sum over all the spin coordinates. From Eq. (14.5), this produces the elec-
tron probability density r1r12. Therefore, 8c � gn

i = 1 B1ri2 �c9 = 1r1r12B1r12	dr1. The 
subscript 1 on the integration variables is not needed, and the final result is

	 Lc*a
n

i = 1
B1ri2c	dt = Lr1r2B1r2	dr	 (14.8)

where the integration is over the three spatial coordinates x, y, z. This result will be used 
later in this chapter and in Chapter 15.

14.2 Dipole Moments
We now show how to calculate molecular dipole moments from wave functions.

The classical expression for the electric dipole moment Mcl of a set of discrete charges 
Qi is

	 Mcl = a
i

Qiri	 (14.9)

where ri is the position vector from the origin to the ith charge [Eq. (5.33)]. The electric 
dipole moment is a vector whose x component is
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	 mx,cl = a
i

Qi xi	 (14.10)

with similar expressions for the other components. For a continuous charge distribution 
with charge density rQ1x,	y,	z2,	Mcl is found by summing over the infinitesimal elements 
of charge dQi = rQ1x,	y,	z2	dx	dy	dz:

	 Mcl = LrQ1x,	y,	z2r	dx	dy	dz,		where	r = xi + yj + zk	 (14.11)

Now consider the quantum-mechanical definition of the electric dipole moment. Sup-
pose we apply a uniform external electric field E to an atom or molecule and ask for the 
effect on the energy of the system. To form the Hamiltonian operator, we first need the 
classical expression for the energy. The electric field strength E is defined as E K F>Q, 
where F is the force the field exerts on a charge Q. We take the z direction as the direction 
of the applied field: E = �z k. The potential energy V is [Eq. (4.24)]

dV>dz = -Fz = -Q�z	and	V = -Q�z z

This is the potential energy of a single charge in the field. For a system of charges,

	 V = -�za
i

Qi zi	 (14.12)

where zi is the z coordinate of charge Qi. The extension of (14.12) to the case where the 
electric field points in an arbitrary direction follows from (4.24) and is

	 V = -�xa
i

Qi xi - �ya
i

Qi yi - �za
i

Qi zi = -E # Mcl	 (14.13)

This is the classical-mechanical expression for the energy of an electric dipole in a uni-
form applied electric field.

To calculate the quantum-mechanical expression, we use perturbation theory. The 
perturbation operator Hn � corresponding to (14.13) is Hn � = -E # Mn , where the electric 
dipole-moment operator Mn  is

	 Mn = a
i

Qirn i = imn x + jmn y + kmn z	 (14.14)

	 mn x = a
i

Qi xi,		mn y = a
i

Qi yi,		mn z = a
i

Qi zi	 (14.15)

The first-order correction to the energy is [Eq. (9.22)]

	 E112 = -E #Lc102*Mn c102	dt	 (14.16)

where c102 is the unperturbed wave function. Comparison of (14.16) and (14.13) shows 
that the quantum-mechanical quantity that corresponds to Mcl is the integral

	 M = Lc102*Mnc102	dt	 (14.17)

M in (14.17) is the quantum-mechanical electric dipole moment of the system.
An objection to taking (14.17) as the dipole moment is that we considered only the 

first-order energy correction. If we had included E122 in (14.16), the comparison with 
(14.13) would not have given (14.17) as the dipole moment. Actually, (14.17) is the dipole 
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moment of the system in the absence of an applied electric field and is the permanent 
electric dipole moment. Application of the field distorts the wave function from c102, giv-
ing rise to an induced electric dipole moment in addition to the permanent dipole moment. 
The induced dipole moment corresponds to the energy correction E122. (For the details, 
see Merzbacher, Section 17.4.) The induced dipole moment Mind is related to the applied 
electric field E by

	 Mind = aE	 (14.18)

where a is the polarizability of the atom or molecule. The greater the polarizabil-
ity of molecule B, the greater the London dispersion force (Section 13.7) between two 
B molecules.

The shift in the energy of a quantum-mechanical system caused by an applied electric 
field is called the Stark effect. The first-order (or linear) Stark effect is given by (14.16), 
and from (14.17) it vanishes for a system with no permanent electric dipole moment. The 
second-order (or quadratic) Stark effect is given by the energy correction E122 and is pro-
portional to the square of the applied field.

The electric dipole-moment operator (14.14) is an odd function of the coordinates. If 
the wave function in (14.17) is either even or odd, then the integrand in (14.17) is an odd 
function, and the integral over all space vanishes. We conclude that the permanent electric 
dipole moment M is zero for states of definite parity.

The permanent electric dipole moment of a molecule in electronic state cel is

	 M = Lcel
* Mn cel	dtel	 (14.19)

The electronic wave functions of homonuclear diatomic molecules can be classified as g 
or u, according to their parity. Hence, a homonuclear diatomic molecule has a zero per-
manent electric dipole moment, a result that is not too astonishing. The same holds true 
for any molecule with a center of symmetry. The electric dipole-moment operator for a 
molecule includes summation over both the electronic and nuclear charges:

	 Mn = a
i
1-eri2 + a

a

Zaera	 (14.20)

where ra is the vector from the origin to the nucleus of atomic number Za, and ri is the 
vector to electron i. Since both the dipole-moment operator (14.20) and the electronic 
wave function depend on the parameters defining the nuclear configuration, the molecu-
lar electronic dipole moment M depends on the nuclear configuration. To indicate this, 
the quantity (14.19) can be called the dipole-moment function of the molecule. In writ-
ing (14.19), we ignored the nuclear motion. When the dipole moment of a molecule is 
experimentally determined, what is measured is the quantity (14.19) averaged over the 
zero-point vibrations (assuming the temperature is not high enough for there to be ap-
preciable population of higher vibrational levels). We might use M0 and Me to indicate the 
dipole moment averaged over zero-point vibrations and the dipole moment at the equilib-
rium nuclear configuration, respectively.

Since the second sum in (14.20) is independent of the electronic coordinates, we have

	M = Lcel
* a

i
1- eri2cel	dtel + a

a

Za eraLcel
*cel	dtel

	 = -eL �cel �2a
i

ri	dtel + ea
a

Zara
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Using (14.8), we have

	 M = -eLLLr1x,	y,	z2r	dx	dy	dz + e	a
a

Zara	 (14.21)

where r is the electron probability density. Equation (14.21) is what would be obtained 
if we pretended that the electrons were smeared out into a continuous charge distribution 
whose charge density is given by -er1x,		y,		z2 and we used the classical equation (14.11) 
to calculate M.

14.3 The Hartree–Fock Method for Molecules
A key development in quantum chemistry has been the computation of accurate self-
consistent-field wave functions for many diatomic and polyatomic molecules. The prin-
ciples of molecular SCF MO calculations are essentially the same as those for atomic SCF 
calculations (Section 11.1). We shall restrict ourselves to closed-shell configurations. For 
open shells, the formulas are more complicated.

The molecular Hartree–Fock wave function is written as an antisymmetrized product 
(Slater determinant) of spin-orbitals, each spin-orbital being a product of a spatial orbital 
fi and a spin function (either a or b).

The expression for the Hartree–Fock molecular electronic energy EHF is given by 
the variation theorem as EHF = 8D � Hnel + VNN � D9, where D is the Slater-determinant 
Hartree–Fock wave function, and the purely electronic Hamiltonian Hnel and the inter-
nuclear repulsion VNN are given by (13.5) and (13.6). Since VNN doesn’t involve electronic 
coordinates and D is normalized, we have 8D�VNN � D9 = VNN8D � D9 = VNN. The opera-
tor Hnel is the sum of one-electron operators fni and two electron operators gni j; we have 
Hnel = g i fni + g jg i7 j gn i j, where (in atomic units)

fni = -
1
2 �2

i - a
a

Za

ria
	and	gni j =

1
ri j

The Hamiltonian Hnel is the same as the Hamiltonian Hn  for an atom except that gaZa>ria replaces Z>ri in fni. Hence Eq. (11.83) can be used to give 8D � Hnel � D9 . There-
fore, the Hartree–Fock energy of a diatomic or polyatomic molecule with only closed 
shells is

	 EHF = 2a
n>2

i = 1
Hcore

ii + a
n>2

i = 1
	a

n>2

j = 1
12Ji j - Ki j2 + VNN	 (14.22)

	 H core
ii K 8fi112 � Hn core112 �fi1129 K hfi112 ` -1

2 �2
1 - a

a

Za

r1a
	 ` fi112i	 (14.23)

	 Jij K 8fi112fj122�1>r12 �fi112fj1229,	Ki j K 8fi112fj122�1>r12 �fj(12fi1229 	 (14.24)

where the one-electron-operator symbol was changed from fn1 to Hn core112. The one-
electron core Hamiltonian

Hn core112 K -
1
2 �2

1 - a
a

Za

r1a

is the sum of the kinetic-energy operator for electron 1 and the potential-energy operators 
for the attractions between electron 1 and the nuclei. Hn core112 omits the interactions of 
electron 1 with the other electrons. The sums over i and j are over the n>2 occupied spatial 
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orbitals fi of the n-electron molecule. In the Coulomb integrals Ji j and the exchange in-
tegrals Ki j, the integration goes over the spatial coordinates of electrons 1 and 2.

The Hartree–Fock method looks for those orbitals fi that minimize the variational 
integral EHF. Each MO is taken to be normalized: 8fi112 �fi1129 = 1.  Moreover, for 
computational convenience one takes the MOs to be orthogonal: 8fi112 �fj1129 = 0 for 
i � j. It might be thought that a lower energy could be obtained if the orthogonality re-
striction were omitted, but this is not so. A closed-shell antisymmetric wave function is a 
Slater determinant, and one can use the properties of determinants to show that a Slater 
determinant of nonorthogonal orbitals is equal to a Slater determinant in which the orbit-
als have been orthogonalized by the Schmidt or some other procedure; see Section 15.9 
and F. W. Bobrowicz and W. A. Goddard, Chapter 4, Section 3.1 of Schaefer, Methods of 
Electronic Structure Theory. In effect, the Pauli antisymmetry requirement removes non-
orthogonalities from the orbitals.

The derivation of the equation that determines the orthonormal fi’s that minimize 
EHF is complicated and is omitted. (For the derivation, see Lowe and Peterson, Appendix 7; 
Szabo and Ostlund, Sections 3.1 and 3.2; Parr, pages 21–23.) One finds that the closed-
shell orthogonal Hartree–Fock MOs satisfy

	 Fn112fi112 = ei fi112	 (14.25)

where ei is the orbital energy and where the (Hartree–) Fock operator Fn is (in atomic 
units)

	 Fn112 = Hncore112 + a
n>2

j = 1
	32Jnj112 - Knj1124 	 (14.26)

	 Hncore112 K -
1
2 �2

1 - a
a

Za

r1a
	 (14.27)

where the Coulomb operator Jnj and the exchange operator Kn j are defined by

	 Jnj112 f112 = f112L 	�fj122 � 2 1
r12

	dv2	 (14.28)

	 Knj112 f112 = fj112L
fj
*122 f122

r12
	dv2	 (14.29)

where f is an arbitrary function and the integrals are definite integrals over all space.
The first term on the right of (14.27) is the operator for the kinetic energy of one elec-

tron. The second term is the sum of the potential-energy operators for the attractions between 
one electron and the nuclei. The Coulomb operator Jnj112 is the potential energy of inter-
action between electron 1 and a smeared-out electron with electronic density - �fj122 �2. 
The factor 2 in (14.26) occurs because there are two electrons in each spatial orbital. The 
exchange operator has no simple physical interpretation but arises from the requirement that 
the wave function be antisymmetric with respect to electron exchange. The exchange opera-
tors are absent from the Hartree equations (11.9). The Hartree–Fock MOs fi in (14.25) are 
eigenfunctions of the same operator Fn, the eigenvalues being the orbital energies ei.

The orthogonality of the MOs greatly simplifies MO calculations, causing many 
integrals to vanish. In contrast, the VB method uses atomic orbitals, and AOs centered on 
different atoms are not orthogonal. MO calculations are much simpler than VB calcula-
tions, and the MO method is used far more often than the VB method.
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The true Hamiltonian operator and wave function involve the coordinates of all n 
electrons. The Hartree–Fock Hamiltonian operator Fn is a one-electron operator (that 
is, it involves the coordinates of only one electron), and (14.25) is a one-electron dif-
ferential equation. This has been indicated in (14.25) by writing Fn and fi as functions 
of the coordinates of electron 1. Of course, the coordinates of any electron could 
have been used. The operator Fn is peculiar in that it depends on its own eigenfunc-
tions [see Eqs. (14.26) to (14.29)], which are not known initially. Hence the Hartree–
Fock equations must be solved by an iterative process, starting with an initial guess 
for the MOs.

To obtain the expression for the orbital energies ei, we multiply (14.25) by fi
*112 

and integrate over all space. Using the fact that fi is normalized and using the result of 
Prob. 14.8, we get ei = 1fi

*112Fn112fi 112	dv1 and

	 ei = 8fi112 � Hn core112 �fi1129+ a
j
328fi112 � Jnj112 �fi1129- 8fi112 � Kn j112 �fi11294

	 ei = H core
ii + a

n>2

j = 1
12Ji j - Ki j2� (14.30)

where H core
ii ,	Ji j, and Kij are defined by (14.23) and (14.24).

Summation of (14.30) over the n>2 occupied orbitals gives

	 a
n>2

i = 1
ei = a

n>2

i = 1
H	core

ii + a
n>2

i = 1
a
n>2

j = 1
12Jij - Kij2	 (14.31)

Solving this equation for g i H core
ii  and substituting the result into (14.22), we obtain the 

Hartree–Fock energy as

	 EHF = 2a
n>2

i = 1
ei - 	a

n>2

i = 1
a
n>2

j = 1
	12Jij - Kij2 + VNN	 (14.32)

Since there are two electrons per MO, the quantity 2g i ei is the sum of the orbital energies. 
Subtraction of the double sum in (14.32) avoids counting each interelectronic repulsion 
twice, as discussed in Section 11.1.

A key development that made feasible the calculation of accurate molecular SCF 
wave functions was Roothaan’s 1951 proposal to expand the spatial orbitals fi as linear 
combinations of a set of one-electron basis functions xs:

	 fi = a
b

s = 1
csixs	 (14.33)

To exactly represent the MOs fi, the basis functions xs should form a complete set. 
This requires an infinite number of basis functions. In practice, one must use a finite num-
ber b of basis functions. If b is large enough and the functions xs are well chosen, one can 
represent the MOs with negligible error.

To avoid confusion, we shall use the letters r, s, t, u to label the basis functions x, and 
the letters i, j, k, l to label the MOs f. (Often the Greek letters m,	n,	l,	s are used to label 
the basis functions.)

Substitution of the expansion (14.33) into the Hartree–Fock equations (14.25) gives

a
s

csiFnxs = eia
s

csixs
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Multiplication by xr
* and integration gives

	 a
b

s = 1
csi1Frs - ei Srs2 = 0,  r = 1, 2, c, b	 (14.34)

	 Frs K 8xr � Fn �xs9,  Srs K 8xr �xs9 	 (14.35)

The equations (14.34) form a set of b simultaneous linear homogeneous equations in the b 
unknowns csi, s = 1, 2, c, b, that describe the MO fi in (14.33). For a nontrivial solu-
tion, we must have

	 det1Frs - ei Srs2 = 0	 (14.36)

This is a secular equation whose roots give the orbital energies ei. The (Hartree–Fock–) 
Roothaan equations (14.34) must be solved by an iterative process, since the Frs integrals 
depend on the orbitals fi (through the dependence of Fn on the fi’s), which in turn depend 
on the unknown coefficients csi.

One starts with guesses for the occupied-MO expressions as linear combinations of 
the basis functions, as in (14.33). This initial set of MOs is used to compute the Fock 
operator Fn from (14.26) to (14.29). The matrix elements (14.35) are computed, and the 
secular equation (14.36) is solved to give an initial set of ei’s. These ei’s are used to solve 
(14.34) for an improved set of coefficients, giving an improved set of MOs, which are then 
used to compute an improved Fn, and so on. One continues until no further improvement 
in MO coefficients and energies occurs from one cycle to the next. The calculations are 
done using a computer. (The most efficient way to solve the Roothaan equations is to use 
matrix-algebra methods; see the last part of this section.)

We have used the terms SCF wave function and Hartree–Fock wave function 
interchangeably. In practice, the term SCF wave function is applied to any wave func-
tion obtained by iterative solution of the Roothaan equations, whether or not the basis set 
is large enough to give a really accurate approximation to the Hartree–Fock SCF wave 
function. There is only one true Hartree–Fock wave function, which is the best possible 
wave function that can be written as a Slater determinant of spin-orbitals. With current 
computer power, one can use very large basis sets for small molecules and obtain wave 
functions that differ negligibly from the true Hartree–Fock wave functions. Because of 
deficiencies in properties calculated from Hartree–Fock wave functions, several methods 
that go beyond the Hartree–Fock method are widely used (see Chapter 16).

The Fock Matrix Elements
To solve the Roothaan equations (14.34), we first must express the Fock matrix elements 
(integrals) Frs in terms of the basis functions x. The Fock operator Fn is given by (14.26), so

 Frs = 8xr112 � Fn112 �xs1129

 Frs = 8xr112 � Hn core112 �xs1129+ a
n>2

j = 1
328xr112 � Jnj112xs1129- 8xr112 � Knj112xs11294 	 (14.37)

Replacement of f by xs in (14.28), followed by use of the expansion (14.33), gives

Jnj112xs112 = xs112L  
fj
*122fj122

r12
 dv2 = xs112a

t
a

u
ct j
* cu jL  

xt
*122xu122

r12
 dv2

Multiplication by xr*112 and integration over the coordinates of electron 1 gives

	 8xr112 � Jnj112xs1129 = a
t
a

u
ct j
* cu jLL  

xr
*112xs112xt

*122xu122
r12

 dv1 dv2
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	 8xr112 � Jnj112xs1129 = a
b

t= 1
a
b

u = 1
ct j
* cu j1rs � tu2	 (14.38)

where the two-electron repulsion integral 1rs � tu2 is defined as

	 1rs � tu2 K LL 	
xr
*112xs112xt

*122xu122
r12

	dv1	dv2	 (14.39)

The widely used notation of (14.39) should not be misinterpreted as an overlap integral. 
Other notations, some of which are mutually contradictory, are used for electron repulsion 
integrals, so it is always wise to check an author’s definition.

Similarly, replacement of f by xs in (14.29) leads to (Prob. 14.9)

	 8xr112 � Knj112xs1129 = a
b

t = 1
a
b

u = 1
	ct j
* cu j1ru � ts2	 (14.40)

Substituting (14.40) and (14.38) into (14.37) and changing the order of summation, we 
get the desired expression for Frs in terms of integrals over the basis functions x	:

	 	Frs = H core
rs + a

b

t = 1
	a

b

u = 1
	a

n>2

j = 1
	ct j
* cu j321rs � tu2 - 1ru � ts24

	 	Frs = H core
rs + a

b

t = 1
	a

b

u = 1
Ptu31rs � tu2 -

1
21ru � ts24 	 (14.41)

	 Ptu K 2a
n>2

j = 1
ct j
* cu j,	t = 1,	2,	c,	b,	u = 1,	2,	c,	b	 (14.42)

	 H core
rs K 8xr112 � Hn core112 �xs1129

The quantities Ptu are called density matrix elements or charge, bond-order matrix 
elements. [Some workers use the definition Put K 2g j ct j* cu j.] Substitution of the expansion 
(14.33) into (14.7) for the electron probability density r gives for a closed-shell molecule:

	 r = 2	a
n>2

j = 1
	fj
*fj = 2	a

b

r = 1
a

b

s = 1
a
n>2

j = 1
cr j
*cs jxr

*xs = a
b

r = 1
a

b

s = 1
Prsxr

*xs	 (14.43)

To express the Hartree–Fock energy in terms of integrals over the basis functions x, 
we first solve (14.31) for g ig j12Ji j - Ki j2 and substitute the result into (14.32) to get

EHF = a
n>2

i = 1
ei + a

n>2

i = 1
Hcore

ii + VNN

We have, using the expansion (14.33),

	 H core
ii = 8fi � Hn core �fi9 = a

r
a

s
cri
*csi8xr � Hn core �xs9 = a

r
a

s
cri
*csiH

core
rs

	 EHF = a
n>2

i = 1
ei + a

r
a

s
a
n>2

i = 1
cri
*csiH

core
rs + VNN

	 EHF = a
n>2

i = 1
ei +

1

2
	a

b

r = 1
	a

b

s = 1
PrsH core

rs + VNN	 (14.44)
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An alternative expression for EHF is useful. Multiplication of Fnfi = eifi [Eq. (14.25)] 
by fi

* and integration gives ei = 8fi � Fn �fi9 . Substitution of fi = gb
s = 1csixs [Eq. (14.33)] 

gives ei = g rg scri
*csi8xr � Fn �xs9 = g rg scri

*csi Frs. The first sum in (14.44) becomes g i ei = grg sg i	cri
*csi Frs =

1
2g rg s	PrsFrs, where the definition (14.42) of Prs was used. 

Equation (14.44) becomes

	 EHF =
1

2
	a

b

r = 1
	a

b

s = 1
Prs1Frs + H core

rs 2 + VNN	 (14.45)

which expresses EHF of a closed-shell molecule in terms of the density, Fock, and core-
Hamiltonian matrix elements calculated with the basis functions xr.

E x a m p l e

Do an SCF calculation for the helium-atom ground state using a basis set of two 1s 
STOs with orbital exponents z1 = 1.45 and z2 = 2.91. [By trial and error, these 
have been found to be the optimum z’s to use for this basis set; see C. Roetti and 
E. Clementi, J. Chem. Phys., 60, 4725 (1974).]

From (11.14), the normalized basis functions are (in atomic units)

	 x1 = 2z3>2
1 e-z1rY 0

0,		x2 = 2z3>2
2 e-z2rY 0

0,		z1 = 1.45,		z2 = 2.91	(14.46)

To solve the Roothaan equations (14.34), we need the integrals Frs and Srs. The 
overlap integrals Srs are

	S11 = 8x1 �x19 = 1,		S22 = 8x2 �x29 = 1

	S12 = S21 = 8x1 �x29 = 4z3>2
1 z3>2

2 	L
�

0
e-1z1 +z22rr2	dr =

8z3>2
1 z3>2

2

1z1 + z223 = 0.8366

where the Appendix integral (A.8) was used.
The integrals Frs are given by (14.41) and depend on H core

rs ,	Ptu, and 1rs � tu2. From 
(14.27), Hn core = -

1
2 �2 - 2>r = -

1
2 �2 - z>r + 1z-22>r. The integrals H core

rs  are 
evaluated the same way that similar integrals were evaluated in the variation treatment 
of He in Section 9.4. We find (Prob. 14.12)

	H core
11 = 8x1 � Hn core �x19 = -

1
2z

2
1 + 1z1 - 22z1 =

1
2z

2
1 - 2z1 = -1.8488

	H core
22 =

1
2z

2
2 - 2z2 = -1.5860

	H core
12 = H core

21 = 8x1 � Hn core �x29 = -
1
2z

2
2S12 +

41z2 - 22z3>2
1 z3>2

2

1z1 + z222

      	H core
12 = H core

21 =
z3>2

1 z3>2
2 14z1z2 - 8z1 - 8z22

1z1 + z223 = -1.8826

Many of the electron-repulsion integrals 1rs � tu2 are equal to one another. For real 
basis functions, one can show that (Prob. 14.13)

	 1rs�tu2 = 1sr�tu2 = 1rs�ut2 = 1sr�ut2 = 1tu�rs2 = 1ut�rs2 = 1tu�sr2 = 1ut�sr2	 (14.47)

The electron-repulsion integrals are evaluated using the 1>r12 expansion (9.124) in 
Prob. 9.14. One finds [see Eq. (9.53) and Prob. 14.14]
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	111�112 =
5
8z1 = 0.9062,		122�222 =

5
8z2 = 1.8188

	111�222 = 122 �112 = 1z4
1z2 + 4z3

1z
2
2 + z1z

4
2 + 4z2

1z
3
22>1z1 + z224 = 1.1826

	112 �122 = 121�122 = 112�212 = 121�212 = 20z3
1z

3
2>1z1 + z225 = 0.9536

	111�122 = 111�212 = 112�112 = 121�112 =
16z9>2

1 z3>2
2

13z1 + z224 c
12z1 + 8z2

1z1 + z222 +
9z1 + z2

2z2
1

d = 0.9033

	112�222 = 122 �122 = 121�222 = 122�212
= the	111 � 122	expression	with	1	and	2	interchanged = 1.2980

To start the calculation, we need an initial guess for the ground-state AO expan-
sion coefficients csi in (14.33) so that we can get an initial estimate of the density 
matrix elements Ptu in (14.41). We saw in Section 9.4 that the optimum orbital expo-
nent for a helium AO that consists of one 1s STO is 27

16 = 1.6875. Since the orbital 
exponent z1 is much closer to 1.6875 than is z2, we expect that the coefficient of x1 in 
f1 = c11x1 + c21x2 will be substantially larger than the coefficient of x2. Let us take 
as an initial guess c11>c21 � 2. [A more general method to get an initial guess for the 
csi coefficients is to neglect the electron-repulsion integrals in (14.41) and approxi-
mate Frs in the secular equation (14.36) by Frs � H core

rs ; we then solve (14.36) and 
(14.34). This would give c11>c21 � 1.5 (Prob 14.15).] The normalization condition 

1 �f1�2	dt = 1 gives for real coefficients (Prob. 14.17)

	 c21 = 11 + k2 + 2kS122-1>2,		where	k K c11>c21	 (14.48)

Substitution of k = 2 and S12 = 0.8366 gives c21 � 0.3461 and c11 � 2c21 = 0.6922.  
With n = 2 and b = 2, Eq. (14.42) gives

	 P11 = 2c11
*c11,		P12 = 2c11

*c21,		P21 = P12
* ,		P22 = 2c21

* c21	 (14.49)

The initial guess c11 � 0.6922,	c21 � 0.3461 gives as the initial density matrix elements

P11 � 0.9583,		P12 = P21 � 0.4791,		P22 � 0.2396

The Fock matrix elements are found from (14.41) with b = 2. Using (14.47) and 
P12 = P21 for real functions, we get (Prob. 14.16a)

	F11 = H core
11 +

1
2 P11111�112 + P12111�122 + P223111�222 -

1
2112�2124

	F12 = F21 = H core
12 +

1
2 P11112�112 + P1233

2112�122 -
1
2111�2224 +

1
2 P22112 �222

	F22 = H core
22 + P113122�112 -

1
2121�1224 + P12122�122 +

1
2 P22122�222

Substitution of the values of the Hcore
rs  and 1rs � tu2 integrals listed previously gives 

(Prob. 14.16b)

	 F11 = -1.8488 + 0.4531P11 + 0.9033P12 + 0.7058P22	 (14.50)

	 F12 = F21 = -1.8826 + 0.45165P11 + 0.8391P12 + 0.6490P22	 (14.51)

	 F22 = -1.5860 + 0.7058P11 + 1.2980P12 + 0.9094P22	 (14.52)

Substitution of the initial guess for the Ptu’s into (14.50) to (14.52) gives as the 
initial estimates of the Frs matrix elements:

F11 � -0.813,		F12 = F21 � -0.892,		F22 � -0.070
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The initial estimate of the secular equation det1Frs - Srsei2 = 0 is

	̀
-0.813 - ei					-0.892 - 0.8366ei

-0.892 - 0.8366ei			 - 0.070 - ei	
` � 0

	0.3001e2
i - 0.6095ei - 0.739 � 0

e1 � -0.854,	e2 � 2.885

Substitution of the lower root e1 into the Roothaan equation (14.34) with r = 2 gives

	c111F21 - e1S212 + c211F22 - e1S222 � 0

-0.1775c11 + 0.784c21 � 0

c11>c21 � 4.42

Substitution of k = 4.42 and S12 = 0.8366 in the normalization condition (14.48) gives

c21 � 0.189,		c11 = kc21 � 0.836

Substitution of these improved coefficients into (14.49) gives as the improved 
density matrix elements

P11 � 1.398,		P12 = P21 � 0.316,		P22 � 0.071

Substitution of these improved Ptu’s into (14.50) to (14.52) gives as the improved Frs 
values

F11 � -0.880,		F12 = F21 � -0.940,		F22 � -0.1246

The improved secular equation is

` -0.880 - ei		 - 0.940 - 0.8366ei

-0.940 - 0.8366ei		 - 0.1246 - ei	
` � 0

e1 � -0.918,		e2 � 2.810

The improved e1 value gives c11>c21 � 4.61 and

c11 � 0.842,		c21 � 0.183

Another cycle of calculation yields (Prob. 14.18)

	 P11 = 1.418,		P12 = P21 = 0.308,		P22 = 0.067

	 F11 = -0.881,		F12 = F21 = -0.940,		F22 = -0.1245	 (14.53)

	 e1 = -0.918,		e2 = 2.809	 (14.54)

	 c11 = 0.842,		c21 = 0.183

These last c’s are the same as those for the previous cycle, so the calculation has con-
verged and we are finished. The He ground-state SCF AO for this basis set is

f1 = 0.842x1 + 0.183x2

The SCF energy is found from (14.44) with n = 2 and b = 2 as

	EHF = -0.918 +
1
231.4181-1.84882 + 210.30821-1.88262 + 0.0671-1.586024 + 0

	 = -2.862	hartrees = -77.9	eV

A more precise calculation with z1 = 1.45363 and z2 = 2.91093 gives an SCF 
energy of -2.8616726 hartrees, as compared with the limiting Hartree–Fock energy 
-2.8616799 hartrees found with five basis functions [C. Roetti and E. Clementi, 
J. Chem. Phys., 60, 4725 (1974)].
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Matrix Form of the Roothaan Equations
The Roothaan equations are most efficiently solved using matrix methods. The Roothaan 
equations (14.34) read

a
b

s = 1
Frscsi = a

b

s = 1
Srscsiei,		r = 1,	2,	c,	b

The coefficients csi relate the MOs fi to the basis functions xs according to fi = g scsixs. 
Let C be the square matrix of order b whose elements are the coefficients csi. Let F be the 
square matrix of order b whose elements are Frs = 8xr � Fn �xs9 . Let S be the square matrix 
whose elements are Srs = 8xr �xs9 . Let E be the diagonal square matrix whose diagonal 
elements are the orbital energies e1,	e2,	c,	eb so that the elements of E are emi = dmi ei, 
where dmi is the Kronecker delta.

Use of the matrix multiplication rule (7.107) gives the (s, i)th element of the matrix 
product CE as 1CE2si = gmcsmemi = gmcsmdmiei = csiei. Hence the Roothaan equa-
tions read

	 a
b

s = 1
Frscsi = a

b

s = 1
Srs1CE2si	 (14.55)

From the matrix multiplication rule, the left side of (14.55) is the (r, i)th element of FC, 
and the right side is the (r, i)th element of S1Ce2. Since the general element of FC equals 
the general element of SCE, these matrices are equal:

	 FC = SCE	 (14.56)

This is the matrix form of the Roothaan equations.
The set of basis functions xs used to expand the MOs is not an orthogonal set. However, 

one can use the Schmidt or some other procedure to form orthogonal linear combinations of the 
basis functions to give a new set of basis functions x�s that is an orthonormal set: x�s = g t atsxt 
and S�rs = 8x�r �x�s9 = drs. (See Probs. 8.57 and 8.58 and Szabo and Ostlund, Section 3.4.5, for 
details of the orthogonalization procedure.) With this orthonormal basis set, the overlap matrix 
is a unit matrix, and the Roothaan equations (14.56) have the simpler form

	 F�C� = C�E	 (14.57)

where F�rs = 8x�r � Fn �x�s9  and C� is the matrix of the coefficients that relate the MOs fi 
to the orthonormal basis functions: fi = g s c�six�s. It was shown in Prob. 8.57c that the F 
and F� matrices and the C and C� matrices are related by

F� = A-FA	and	C = AC�

where A is the matrix of coefficients ats in x�s = g s atsxt, so we can readily calculate F� 
from F and C from C�. [H in Prob. 8.57 corresponds to F in (14.56).]

The matrix equation (14.57) has the same form as Eq. (8.87), which is HC = CW, 
where C and W [defined by (8.86)] are the eigenvector matrix and eigenvalue matrix, 
respectively, of H. Thus, the orbital energies ei are the eigenvalues of the Fock matrix F� 
and each column of C� is an eigenvector of F�. Because the Fock operator Fn is Hermitian, 
the Fock matrix F� is a Hermitian matrix. As noted in the paragraph preceding Eq. (8.94), 
the eigenvector matrix C� of the Hermitian matrix F� can be chosen to be unitary, mean-
ing that its inverse equals its conjugate transpose [Eq. (8.92)] C�-1 = C�-. (With a unitary 
coefficient matrix C�, the MOs fi are orthonormal; see Prob. 14.22.) Multiplication of 
(14.57) on the left by C�-1 = C�- gives [see Eqs. (8.88) and (8.94)]

	 C�-F�C� = E	 (14.58)

which has the same form as Eq. (8.94).
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The following procedure is commonly used to do an SCF MO calculation at a speci-
fied molecular geometry.

	 1.	 Choose a basis set xs.
	 2.	 Evaluate the H core

rs ,		Srs, and 1rs � tu2 integrals.
	 3.	 Use the overlap integrals Srs and an orthogonalization procedure to calculate the A 

matrix of coefficients ats that will produce orthonormal basis functions x�s = g t atsxt.
	 4.	 Make an initial guess for the coefficients csi in the MOs fi = g s csixs. From the initial 

guess of coefficients, calculate the density matrix P in (14.42).
	 5.	 Use (14.41) to calculate an estimate of the Fock matrix elements Frs from P and the 

1rs � tu2 and H core
rs  integrals.

	 6.	 Calculate the matrix F� using F� = A-FA.
	 7.	 Use a matrix-diagonalization method (Section 8.6) to find the eigenvalue and eigen-

vector matrices E and C� of F�.
	 8.	 Calculate the coefficient matrix C = AC�.
	 9.	 Calculate an improved estimate of the density matrix from C using P* = 2CC-, which 

is the matrix form of (14.42) (Prob. 14.10c).
	10.	 Compare the improved P with the preceding estimate of P. If all corresponding matrix 

elements differ by negligible amounts from each other, the calculation has converged 
and one uses the converged SCF wave function to calculate molecular properties. If the 
calculation has not converged, go back to step (5) to calculate an improved F matrix 
from the current P matrix and then do the succeeding steps.

One way to begin an SCF calculation is to initially estimate the Fock matrix elements 
by Frs � H core

rs , which amounts to neglecting the double sum in (14.41). This gives a very 
crude estimate. More commonly, SCF calculations get the initial estimate of the density 
matrix by doing a semiempirical calculation (Section 17.4) on the molecule. Semiempiri-
cal calculations are very fast. Still another possibility is to construct a guess for the P 
matrix by using the density matrices for the atoms composing the molecule. To find the 
equilibrium geometry of a molecule, one does a series of SCF calculations at many suc-
cessive geometries (see Section 15.10). For the second and later SCF calculations of the se-
ries, one takes the initial guess of P as P for the SCF wave function of a nearby geometry.

14.4 The Virial Theorem
We now derive the virial theorem. Let Hn  be the time-independent Hamiltonian of a system 
in the bound stationary state c:

	 Hnc = Ec	 (14.59)

Let An  be a linear, time-independent operator. Consider the integral

	 Lc*3Hn ,	An4c	dt = 8c � HnAn - AnHn �c9 = 8c � Hn � Anc9-E8c � An �c9 	 (14.60)

where (14.59) was used. Since Hn  is Hermitian, we have

8c � Hn � Anc9 = 8Anc � Hn �c9* = E*8Anc �c9* = E8c � Anc9 = E8c � An �c9
and Eq. (14.60) becomes

	 Lc*3Hn ,	An4c	dt = 0	 (14.61)
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Equation (14.61) is the hypervirial theorem. [For some of its applications, see J. O. 
Hirschfelder, J. Chem. Phys., 33, 1462 (1960); J. H. Epstein and S. T. Epstein, Am. J. 
Phys., 30, 266 (1962).] In deriving (14.61), we used the Hermitian property of Hn . The 
proof that pnx and pn2

x are Hermitian, and hence that Hn  is Hermitian, requires that c vanish 
at {� [see Eq. (7.17)]. Hence the hypervirial theorem does not apply to continuum sta-
tionary states, for which c does not vanish at �.

We now derive the virial theorem from (14.61). We choose An to be

	 a
i

qnipn i = - iU a
i

qi
0

0qi
	 (14.62)

where the sum runs over the 3n Cartesian coordinates of the n particles. (Particle 1 has 
Cartesian coordinates q1,	q2,	q3 and linear-momentum components p1,	p2,	p3. In this 
chapter the symbol q will indicate a Cartesian coordinate.) To evaluate 3Hn ,	An4 , we use 
(5.4), (5.5), (5.8), and (5.9) to get

	 	cHn ,	a
i

qnipni d = a
i
3Hn ,	qni pni4 = a

i
qni3Hn ,	pni4 + a

i
3Hn ,	qni4pni

	 	 = iUa
i

qi
0V

0qi
- iU	a

i

1
mi

pn 2
i = iU	a

i
qi

0V

0qi
- 2iUTn	 (14.63)

where Tn and Vn are the kinetic- and potential-energy operators for the system. Substitution 
of (14.63) into (14.61) gives

	 hc ` a
i

qi
0V

0qi
` ci = 28c � Tn �c9 	 (14.64)

Using 8B9  for the quantum-mechanical average of B, we write (14.64) as

	 h a
i

qi
0V

0qi
i = 28T9 	 (14.65)

Equation (14.65) is the quantum-mechanical virial theorem. Note that its validity 
is restricted to bound stationary states. (The word vires is Latin for “forces.” In clas-
sical mechanics, the derivatives of the potential energy give the negatives of the force 
components. There is also a classical-mechanical virial theorem.)

For certain systems the virial theorem takes on a simple form. To discuss these sys-
tems, we introduce the idea of a homogeneous function. A function f1x1,	x2,	c,	xj2 of 
several variables is homogeneous of degree n if it satisfies

	 f1sx1,	sx2,	c,	sxj2 = sn f1x1,	x2,	c,	xj2	 (14.66)

where s is an arbitrary parameter. For example, the function g = 1>y3 + x>y2z2 is homo-
geneous of degree -3, since g1sx,	sy,	sz2 = 1>s3y3 + sx>s2y2s2z2 = s-3g1x,	y,	z2.

Euler’s theorem on homogeneous functions states that, if f1x1,	c,	xj2 is homoge-
neous of degree n, then

	 a
j

k = 1
xk

0f

0xk
= nf 	 (14.67)

The theorem is proved as follows. Let

u1 K sx1,		u2 K sx2,		c,		uj = sxj
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Use of the chain rule gives for the partial derivative of the left side of (14.66) with respect 
to s

	
0f1u1,	c,	uj2

0s
=

0f

0u1
	
0u1

0s
+

0f

0u2
	
0u2

0s
+ g+

0f

0uj
	
0uj

0s

	 = x1
0f

0u1
+ x2

0f

0u2
+ g+xj

0f

0uj
= a

j

k = 1
xk

0f

0uk

The partial derivative of Eq. (14.66) with respect to s is thus

	 a
j

k = 1
xk

0f1u1,	c,	uj2
0uk

= nsn - 1f1x1,	c,	xj2	 (14.68)

Let s = 1, so that ui = xi; Eq. (14.68) then gives (14.67). This completes the proof.
Now we return to the virial theorem (14.65). If the potential energy V is a homo-

geneous function of degree n when expressed in Cartesian coordinates, Euler’s theorem 
gives

	 a
i

qi
0V

0qi
= nV 	 (14.69)

and the virial theorem (14.65) simplifies to

	 28T9 = n8V9 	 (14.70)

for a bound stationary state. Since (Prob. 6.35)

	 8T9 + 8V9 = E	 (14.71)

we can write (14.70) in two other forms:

	 8V9 =
2E

n + 2
	 (14.72)

	 8T9 =
nE

n + 2
	 (14.73)

E x a m p l e

Apply the virial theorem to (a) the one-dimensional harmonic oscillator; (b) the hydro-
gen atom; (c) a many-electron atom.

(a) � For the one-dimensional harmonic oscillator, V =
1
2	kx2, which is homogeneous of 

degree n = 2. Equations (14.70) and (14.72) give

	 8T9 = 8V9 =
1
2 E =

1
2 hn1v+

1
22	 (14.74)

	 This was verified for the ground state in Prob. 4.9.

(b) � For the H atom, V = -1> 1x2 + y2 + z221>2 in Cartesian coordinates and atomic 
units. V is a homogeneous function of degree -1. Hence

	 28T9 = - 8V9 	 (14.75)



14.4 The Virial Theorem  |  419

	� which was verified for the ground state in Prob. 6.36. For every hydrogen-atom 
bound stationary state,

	 8V9 = 2E	and	8T9 = -E	 (14.76)

(c)  For a many-electron atom with spin–orbit interaction neglected,

V = -Z	a
n

i = 1
	

1

1x2
i + y2

i + z2
i 21>2 + a

i
a
j7 i

	
1

31xi - xj22 + 1yi - yj22 + 1zi - zj2241>2

	� Replacing each of the 3n coordinates by s times the coordinate, we find that V is 
homogeneous of degree -1. Hence Eqs. (14.75) and (14.76) hold for every atom.

Now consider molecules. In the Born–Oppenheimer approximation, the molecular 
wave function is [Eq. (13.12)]

c = cel1qi;	qa2cN1qa2
where qi and qa symbolize the electronic and nuclear coordinates, respectively. cel is 
found by solving the electronic Schrödinger equation (13.7):

Hnelcel1qi;	qa2 = Eel1qa2cel1qi;	qa2
where Eel is the purely electronic energy and where (in atomic units)

	 Hnel = Tnel + Vnel	 (14.77)

	 Tnel = -
1

2 a
i

	a 02

0x2
i

+
02

0y2
i

+
02

0z2
i
b 	 (14.78)

	 	Vnel = - a
a

	a
i

	
Za

31xi - xa22 + 1yi - ya22 + 1zi - za2241>2

	 	+ 	a
i

	a
j7 i

	
1

31xi - xj22 + 1yi - yj22 + 1zi - zj2241>2	 (14.79)

Let the system be in the electronic stationary state cel. If we put the subscript el on Hn  
and c in (14.59) and regard the variables of cel to be the electronic coordinates qi (with 
the nuclear coordinates qa being parameters), then the derivation of the virial theorem 
(14.65) is seen to be valid for the electronic kinetic- and potential-energy operators, and 
we have

	 28cel � Tnel �cel9 = hcel `a
i

qi
0Vel

0qi
` celi	 (14.80)

Viewed as a function of the electronic coordinates, Vel is not a homogeneous function, 
since

31sxi - xa22 + 1syi - ya22 + 1szi - za224-1>2

� s-131xi - xa22 + 1yi - ya22 + 1zi - za224-1>2

Thus the virial theorem for the average electronic kinetic and potential energies of a mol-
ecule will not have the simple form (14.75), which holds for atoms. We can, however, 
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view Vel as a function of both the electronic and the nuclear Cartesian coordinates. From 
this viewpoint Vel is a homogeneous function of degree -1, since

31sxi - sxa22 + 1syi - sya22 + 1szi - sza224-1>2

= s-131xi - xa22 + 1yi - ya22 + 1zi - za224-1>2

Therefore, considering Vel as a function of both electronic and nuclear coordinates and 
applying Euler’s theorem (14.67), we have

a
i

qi
0Vel

0qi
+ a

a

qa
0Vel

0qa
= -Vel

Using this equation in (14.80), we get

	 28cel � Tnel �cel9 = - 8cel � Vnel �cel9 - hcel `a
a

qa
0Vel

0qa
`celi	 (14.81)

which contains an additional term as compared with the atomic virial theorem (14.75). 
Consider this extra term. We have

hcel `a
a

qa
0Vel

0qa
` celi = a

a

qaLcel	*	
0Vel

0qa
cel	dtel

where the nuclear coordinate qa was taken outside the integral over electronic coordinates. 
In Section 14.7 we shall show that [see the bracketed sentence after Eq. (14.126)]

	 Lcel
*

0Vel

0qa
cel	dtel =

0Eel

0qa
	 (14.82)

[Equation (14.82) is an example of the Hellmann–Feynman theorem.] Using these last two 
equations in the molecular electronic virial theorem (14.81), we get

	 28cel � Tnel �cel9 = - 8cel � Vnel �cel9 - a
a

qa
0Eel

0qa

	 28Tel9 = - 8Vel9 - a
a

qa
0Eel

0qa
	 (14.83)

where the qa’s are the nuclear Cartesian coordinates. Using

	 8Tel9+ 8Vel9 = Eel	 (14.84)

we can eliminate either 8Tel9  or 8Vel9  from (14.83), which is the molecular form of the 
virial theorem.

Now consider a diatomic molecule. The electronic energy is a function of R, the in-
ternuclear distance: Eel = Eel1R2. The summation in (14.83) is over the nuclear Cartesian 
coordinates xa,	ya,	za,	xb,	yb,	zb. We have

	 	
0Eel

0xa
=

dEel

dR
	
0R

0xa
,		

0Eel

0xb
=

dEel

dR
	
0R

0xb

	 	R = 31xa - xb22 + 1ya - yb22 + 1za - zb2241>2

	 	
0R

0xa
=

xa - xb

R
,		

0R

0xb
=

xb - xa

R
	 (14.85)



14.4 The Virial Theorem  |  421

with similar equations for the y and z coordinates. The sum in (14.83) becomes

a
a

qa
0Eel

0qa
=

1

R
	
dEel

dR
3xa1xa - xb2 + xb1xb - xa2 + ya1ya - yb2

+ yb1yb - ya2 + za1za - zb2 + zb1zb - za24

a
a

qa
0Eel

0qa
= R

dEel

dR

where 1xa - xb22 + 1ya - yb22 + 1za - zb22 = R2 was used. The virial theorem (14.83) 
for a diatomic molecule becomes

	 28Tel9 = - 8Vel9 - R
dEel

dR
	 (14.86)

Using (14.84), we have the two alternative forms

	 8Tel9 = -Eel - R
dEel

dR
	 (14.87)

	 8Vel9 = 2Eel + R
dEel

dR
	 (14.88)

In deriving the molecular electronic virial theorem (14.83), we omitted the inter
nuclear repulsion

	 VNN = a
b

a
a7b

	
Za Zb

31xa - xb22 + 1ya - yb22 + 1za - zb2241>2	 (14.89)

from the electronic Hamiltonian (14.77) to (14.79). Let

V = Vel + VNN

where Vel is given by (14.79). We can rewrite the electronic Schrödinger equation 
Hnelcel = Eelcel as [Eq. (13.4)]

1Tnel + Vn2cel = U1qa2cel

where

U1qa2 = Eel1qa2 + VNN

U1qa2 is the potential-energy function for nuclear motion. Consider what happens to the 
right side of (14.83) when we add VNN to Vel and Eel. We have

- Lcel
* 1Vnel + VNN2cel	dtel - a

a

qa
0U

0qa

	 = - 8cel � Vnel �cel9 - VNN - a
a

qa
0Eel

0qa
- a

a

qa
0VNN

0qa
	 (14.90)

Since VNN is a homogeneous function of the nuclear Cartesian coordinates of degree -1, 
Euler’s theorem gives

a
a

qa
0VNN

0qa
= -VNN
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and (14.90) becomes

	 - 8cel � Vnel + VNN �cel9 - a
a

qa
0U

0qa
= - 8cel � Vnel �cel9 - a

a

qa
0Eel

0qa
	 (14.91)

Substitution of (14.91) into (14.83) gives

	 28cel � Tnel �cel9 = - 8cel � Vnel + VNN �cel9 - a
a

qa
0U

0qa

	 28Tel9 = - 8V9 - a
a

qa
0U

0qa
	 (14.92)

which has the same form as (14.83). Therefore the molecular electronic virial theorem 
holds whether or not we include the internuclear repulsion. Corresponding to Eqs. (14.86) 
to (14.88) for diatomic molecules, we have

	 	28Tel9 = - 8V9 	- 	R1dU>dR2	 (14.93)

	 	8Tel9 = -U - R1dU>dR2 	 (14.94)

	 	8V9 = 2U + R1dU>dR2 	 (14.95)

The potential energy V = Vel + VNN takes the zero of energy with all particles (elec-
trons and nuclei) at infinite separation from one another. Therefore, U1R2 in (14.93) to 
(14.95) does not go to zero at R = � but goes to the sum of the energies of the separated 
atoms, which is negative.

The true (nonrelativistic) wave functions for a system with V a homogeneous function 
of the coordinates must satisfy the form of the virial theorem (14.70). What determines 
whether an approximate wave function for such a system satisfies (14.70)? The answer 
is that, by inserting a variational parameter as a multiplier of each Cartesian coordinate 
and choosing this parameter to minimize the variational integral, we can make any trial 
variation function satisfy the virial theorem. (For the proof, see Kauzmann, page 229.) 
This process is called scaling, and the variational parameter multiplying each coordinate 
is called a scale factor. For a molecular trial function, the scaling parameter must be in-
serted in front of the nuclear Cartesian coordinates, as well as in front of the electronic 
coordinates.

Consider some examples. The zeroth-order perturbation wave function (9.49) for the 
heliumlike atom has no scale factor and so does not satisfy the virial theorem. If we were 
to calculate 8T9  and 8V9  for (9.49), we would find 28T9 � -8V9 ; see Prob. 14.26. The 
Heitler–London trial function for H2, Eq. (13.100), has no scale factor and does not satisfy 
the virial theorem. The Heitler–London–Wang function, which uses a variationally deter-
mined orbital exponent, satisfies the virial theorem. Hartree–Fock wave functions satisfy 
the virial theorem; note the scale factor in the Slater basis functions (11.14).

14.5 The Virial Theorem and Chemical Bonding
We now use the virial theorem to examine the changes in electronic kinetic and potential 
energy that occur when a covalent chemical bond is formed in a diatomic molecule. For 
formation of a stable bond, the U1R2 curve must have a substantial minimum. At this 
minimum we have

	
dU

dR
`
Re

= 0	 (14.96)
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and Eqs. (14.93) to (14.95) become

	 	28Tel9� Re
= - 8V9� Re

	 (14.97)

	 	8Tel9� Re
= -U1Re2	 (14.98)

	 	8V9� Re
= 2U1Re2 	 (14.99)

These equations resemble those for atoms [Eqs. (14.75) and (14.76)]. At R = � we have 
the separated atoms, and the atomic virial theorem gives

	 28Tel9�� = - 8V9��,		8Tel9�� = -U1�2,		8V9�� = 2U1�2	 (14.100)

U1�2 is the sum of the energies of the two separated atoms. Equations (14.98)–(14.100) 
give

	 8Tel9�Re
- 8Tel9�� = U1�2 -U1Re2	 (14.101)

	 8V9�Re
- 8V9�� = 23U1Re2 -U1�24 	 (14.102)

For bonding, we have U1Re2 6 U1�2. Therefore, Eqs. (14.101) and (14.102) show that 
the average molecular potential energy at Re is less than the sum of the potential energies 
of the separated atoms, whereas the average molecular kinetic energy is greater at Re than 
at �. The decrease in potential energy is twice the increase in kinetic energy, and results 
from allowing the electrons to feel the attractions of both nuclei and perhaps from an 
increase in orbital exponents in the molecule (see Section 13.5). The equilibrium dissocia-
tion energy (13.9) is De =

1
218V9�� - 8V9� Re

2.
Consider the behavior of the average potential and kinetic energies for large R. The 

forces between uncharged atoms or molecules (other than those due to bond formation) 
are called van der Waals forces. For two neutral atoms, at least one of which is in an S 
state, quantum-mechanical perturbation theory shows that the van der Waals force of at-
traction is proportional to 1>R7, and the potential energy behaves like

	 U1R2 � U1�2 -
A

R6 ,		R	large	 (14.103)

where A is a positive constant. (See Kauzmann, Chapter 13.) This expression was first 
derived by London, and van der Waals forces between neutral atoms are called London 
forces or dispersion forces. (Recall the discussion near the end of Section 13.7.)

Substitution of (14.103) for U and dU>dR into (14.94) and (14.95), and use of (14.100) 
gives

	 8V9 � 8V9�� +
4A

R6 ,		8Tel9 � 8Tel9�� -
5A

R6 ,		R	large	 (14.104)

Hence, as R decreases from infinity, the average potential energy at first increases, 
while the average kinetic energy at first decreases. The combination of these conclu-
sions with our conclusions about 8V9�Re

 and 8Tel9�Re
 shows that 8V9  must go through a 

maximum somewhere between Re and infinity and 8Tel9  must go through a minimum 
in this region.

Now consider small values of R. One can treat a diatomic molecule by applying 
perturbation theory to the united atom (UA) formed by merging the two atoms of the 
molecule. The perturbation is the difference between the molecular and the united-atom 
Hamiltonians: H� = Hnmol - HnUA. One finds that the molecular purely electronic en-
ergy has the following form at small R [W. A. Bingel, J. Chem. Phys., 30, 1250 (1959); 
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I. N. Levine, J Chem. Phys., 40, 3444 (1964); 41, 2044 (1965); W. Byers Brown and 
E. Steiner, J. Chem. Phys. 44, 3934 (1966)]:

	 Eel = EUA + aR2 + bR3 + cR4 + dR5 + eR5	ln	R + g	 (14.105)

where EUA is the united-atom energy and a,	b,	c,	d,	e are constants. For R 66 Re, we can 
use (14.105) and U = Eel + VNN [Eq. (13.8)] to write

	 U1R2 �
ZaZb

R
+ EUA + aR2,		R	small	 (14.106)

The virial theorem then gives (in atomic units)

	8Tel9 � -EUA - 3aR2,		R	small

	8V9 �
ZaZb

R
+ 2EUA + 4aR2,		R	small

Since the virial theorem (14.76) holds for the united atom, we have 8Tel9�0 = -EUA and 
8Vel9�0 = 2EUA. Therefore,

	 	8Tel9 � 8Tel9�0 - 3aR2,		R	small	 (14.107)

	 	8V9 �
ZaZb

R
+ 8Vel9�0 + 4aR2,		R	small	 (14.108)

8V9  goes to infinity as R goes to zero, because of the internuclear repulsion.
Having found the general behavior of 8V9  and 8Tel9  as functions of R, we now draw 

Fig. 14.1. This figure is not for any particular molecule but resembles the known curves 
for H2 and H+

2  [W. Kolos and L. Wolniewicz, J. Chem. Phys., 41, 3663 (1964); Slater, 
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Figure 14.1  Variation 
of the average potential 
and kinetic energies of a 
diatomic molecule. The 
unit of energy is taken 
as the electronic kinetic 
energy of the separated 
atoms.
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Quantum Theory of Molecules and Solids, Volume 1, p. 36]. Similar curves hold for other 
diatomic molecules [see Fig. 1 in J. Hernandez-Trujillo et al., Faraday Discuss., 135, 
79 (2007)].

How can we explain the changes in average kinetic and potential energy with R? Con-
sider H+

2 . The electronic potential-energy function is in atomic units

	 Vel = -
1
ra

-
1
rb

	 (14.109)

If we plot Vel for points on the molecular axis for a large value of R, we get a curve like 
Fig. 14.2, which resembles two hydrogen-atom potential-energy curves (Fig. 6.6) placed 
side by side. We saw that the overlapping of the 1s AOs occurring in molecule formation 
increases the charge probability density between the nuclei for the ground state. However, 
Fig. 14.2 shows that the potential energy is relatively high in the region midway between 
the nuclei when R is large. Thus 8V9  initially increases as R decreases from infinity. Now 
consider the kinetic energy. The uncertainty principle (5.13) gives 1�x221�px22 Ú U2>4. 
For a stationary state, 8px9  is zero [see Eq. (3.92) and Prob. 14.31] and (5.11) gives 
1�px22 = 8p2

x 9 . Hence a small value of 1�x22 means a large value of 8p2
x9  and a large 

value of the average kinetic energy, which equals 8p29 >2m. Thus a compact cel corre-
sponds to a large electronic kinetic energy. In the separated atoms, the wave function is 
concentrated in two rather small regions about each nucleus (Fig. 6.7). In the initial stages 
of molecule formation, the buildup of probability density between the nuclei corresponds 
to having a wave function that is less compact than it was in the separated atoms. Thus, as 
R decreases from infinity, the electronic kinetic energy initially decreases. The energies 
Eel of the two lowest H+

2  states have been indicated in Fig. 14.2. For large R the region 
between the nuclei is classically forbidden, but it is accessible according to quantum me-
chanics (tunneling).

Now consider what happens as R decreases further. Plotting (14.109) for an interme-
diate value of R, we find that now the region between the nuclei is a region of low poten-
tial energy, since an electron in this region feels substantial attractions from both nuclei. 
(See Fig. 14.3.) Hence at intermediate values of R, the overlap charge buildup between the 
nuclei lowers the potential energy. For intermediate values of R, the wave function has 
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tial energy along the 
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become more compact compared with large R, which gives an increase in 8Tel9  as R is 
reduced. In fact, we see from Fig. 14.1 and Eq. (14.101) that 8Tel9  is greater at Re in the 
molecule than in the separated atoms. Hence the molecular wave function at Re is more 
compact than the separated-atoms wave functions.

For very small R, the average potential energy goes to infinity, because of the in-
ternuclear repulsion. However, for R = Re, Fig. 14.1 shows that 8V9  is still decreasing 
sharply with decreasing R, and it is the increase in 8Tel9 , and not the nuclear repulsion, 
that causes the U1R2 curve to turn up as R becomes less than Re. The squeezing of the 
molecular wave function into a smaller region with the associated increase in 8Tel9  is 
more important than the internuclear repulsion in causing the initial repulsion between 
the atoms.

14.6 The Hellmann–Feynman Theorem
Consider a system with a time-independent Hamiltonian Hn  that involves parameters. An 
obvious example is the molecular electronic Hamiltonian (13.5), which depends parametri-
cally on the nuclear coordinates. However, the Hamiltonian of any system contains pa-
rameters. For example, in the one-dimensional harmonic-oscillator Hamiltonian operator 
- 1U2>2m21d2>dx22 +

1
2 kx2, the force constant k is a parameter, as is the mass m. Al-

though U is a constant, we can consider it as a parameter also. The stationary-state energies 
En are functions of the same parameters as Hn . For example, for the harmonic oscillator

	 En = 1v +
1
22hn = 1v +

1
22U1k>m21>2	 (14.110)

The stationary-state wave functions also depend on the parameters in Hn . We now inves-
tigate how En varies with each of the parameters. More specifically, if l is one of these 
parameters, we ask for 0En>0l, where the partial derivative is taken with all other param-
eters held constant.

We begin with the Schrödinger equation

	 Hncn = Encn	 (14.111)

where the cn’s are the normalized stationary-state eigenfunctions. Because of 
normalization, we have

	 En = Lcn
*Hncn	dt	 (14.112)

	
0En

0l
=

0

0l
	Lcn

*Hncn	dt	 (14.113)

The integral in (14.112) is a definite integral over all space, and its value depends para-
metrically on l since Hn  and cn depend on l. Provided the integrand is well behaved, we 
can find the integral’s derivative with respect to a parameter by differentiating the inte-
grand with respect to the parameter and then integrating. Thus

	
0En

0l
= L

0

0l
1cn

*Hncn2	dt = L
0cn

*

0l
Hncn	dt + Lcn

* 0

0l
1Hncn2		dt	 (14.114)

We have

	
0

0l
	1Hncn2 =

0

0l
	1Tncn2 +

0

0l
	1Vncn2	 (14.115)
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The potential-energy operator is just multiplication by V, so

	
0

0l
	1Vncn2 =

0V

0l
cn + V

0cn

0l
	 (14.116)

The parameter l will occur in the kinetic-energy operator as part of the factor multiplying 
one or more of the derivatives with respect to the coordinates. For example, taking l as 
the mass of the particle, we have for a one-particle problem

	Tn = -
U2

2l
a 02

0x2 +
02

0y2 +
02

0z2 b

	
0

0l
1Tnc2 = -

U2

2
	

0

0l
c 1

l
a 02c

0x2 +
02c

0y2 +
02c

0z2 b d

	 =
U2

2l2	a 02c

0x2 +
02c

0y2 +
02c

0z2 b -
U2

2l
	 a 02

0x2 +
02

0y2 +
02

0z2 b a
0c

0l
b

since we can change the order of the partial differentiations without affecting the result. 
We can write this last equation as

	
0

0l
1Tncn2 = a 0Tn

0l
bcn + Tn a 0cn

0l
b 	 (14.117)

where 0Tn>0l is found by differentiating Tn with respect to l just as if it were a function 
instead of an operator. Although we got (14.117) by considering a specific Tn and l, the 
same arguments show it to be generally valid. Combining (14.116) and (14.117), we 
write

	
0

0l
1Hncn2 = a 0Hn

0l
bcn + Hn a 0cn

0l
b 	 (14.118)

Equation (14.114) becomes

	
0En

0l
= L

0cn
*

0l
	Hncn	dt + Lcn

*	0Hn

0l
cn	dt + Lcn

*Hn 	
0cn

0l
	dt	 (14.119)

For the first integral in (14.119), we have

	 L
0cn

*

0l
	Hncn	dt = EnL

0cn
*

0l
	cn	dt	 (14.120)

The Hermitian property of Hn  and (14.111) give for the last integral in (14.119)

Lcn
*Hn	

0cn

0l
	dt = L

0cn

0l
	1Hncn2*	dt = EnLcn

*
0cn

0l
	dt

Therefore,

	
0En

0l
= Lcn

* 0Hn

0l
cn	dt + EnL

0cn
*

0l
	cn	dt + EnLcn*

0cn

0l
	dt	 (14.121)
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The wave function is normalized, so

	 Lcn
*cn	dt = 1,		

0

0lLcn
*cn	dt = 0

	 L
0cn

*

0l
	cn	dt + Lcn

*	
0cn

0l
	dt = 0	 (14.122)

Using (14.122) in (14.121), we obtain

	
0En

0l
= Lcn

* 0Hn

0l
cn	dt	 (14.123)

Equation (14.123) is the (generalized) Hellmann–Feynman theorem. [For a discussion 
of the origin of the Hellmann–Feynman and related theorems, see J. I. Musher, Am. J. 
Phys., 34, 267 (1966).]

E x a m p l e

Apply the generalized Hellmann–Feynman theorem to the one-dimensional harmonic 
oscillator with l taken as the force constant.

For the harmonic oscillator, Hn = - 1U2>2m21d2>dx22 +
1
2 kx2 and 0Hn >0k =

1
2 x2. 

The energy levels are E
v

= 1v +
1
22hn = 1v +

1
22h1k>m21>2>2p. We have

0E
v
>0k =

1
21v +

1
22hk-1>2 m-1>2>2p = 	121v +

1
22hn>k

Substitution in (14.123) gives

	 L
�

- �

c
v

* x2c
v
	dx = 1v +

1
22hn>k	 (14.124)

We have found 8x29  for any harmonic-oscillator stationary state without evaluating any 
integrals. This result was also obtained from the virial theorem; see Eq. (14.74). For a 
third derivation, see Eyring, Walter, and Kimball, p. 79.

The derivation of the Hellmann–Feynman theorem assumes that 0c>0l exists. For a 
state belonging to a degenerate energy level, this assumption may not be true and (14.123) 
need not hold. Changing the parameter’s value from l to l + dl amounts to applying 
a perturbation Hn � K Hn1l + dl2 - Hn1l2 � 10Hn >0l2dl. This perturbation changes 
c from c1l2 to c1l + dl2. If c1l2 is not one of the correct zeroth-order wave func-
tions (9.73) for the perturbation Hn �, then c1l2 need not equal limdlS0 c1l + dl2, so c 
will make a discontinuous jump at dl = 0 and 0c>0l will not exist at this point. The 
Hellmann–Feynman theorem (14.123) applies to the wave functions of a degenerate level 
only if we use the correct zeroth-order wave functions for the perturbation Hn �. These 
correct functions are found by solving (9.83) and (9.81) with Hn � K 10Hn >0l2dl. [Since 
E112

n  will be proportional to dl, we can replace Hn � with 0Hn >0l and E112
n  with E112

n >dl in 
(9.83) and (9.81).] For further details, see references 4–7 in G. P. Zhang and T. F. George, 
Phys. Rev. B, 69, 167102 (2004).

Application of the Hellmann–Feynman theorem to the hydrogenlike atom, with Z as 
the parameter, gives (Prob. 14.37a)

	 Lr-1 �c � 2	dt = h 1
r
i =

Z

n2 a
1
a
b 	 (14.125)

This result was also obtained from the virial theorem; see Eq. (14.76).
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14.7 The Electrostatic Theorem
Hellmann and Feynman independently applied Eq. (14.123) to molecules, taking l as a 
nuclear Cartesian coordinate. We now consider their results.

As usual, we are using the Born–Oppenheimer approximation, solving the electronic 
Schrödinger equation for a fixed nuclear configuration [Eqs. (13.4) to (13.6)]:

1Tnel + Vn2cel = 1Tnel + Vnel + VnNN2cel = Ucel

where Tnel,	Vnel, and VnNN are given by (14.78), (14.79), and (14.89). The Hamiltonian opera-
tor Tnel + Vnel + VnNN depends on the nuclear coordinates as parameters. If xd is the x coor-
dinate of nucleus d, the generalized Hellmann–Feynman theorem (14.123) gives

	
0U

0xd
= Lcel

* 	
01Tnel + Vnel + VnNN2

0xd
	cel	dtel = Lcel

* a 0Vel

0xd
+

0VNN

0xd
b cel	dtel	 (14.126)

since Tnel is independent of the nuclear Cartesian coordinates, as can be seen from 
(14.78). [If we had omitted VNN from V, we would have obtained Eq. (14.82), which was 
used in deriving the molecular electronic virial theorem.] From (14.79) we get in atomic 
units

	
0Vel

0xd
= -a

i

Zd1xi - xd2
r3

id
	 (14.127)

where rid is the distance from electron i to nucleus d. To find 0VNN>0xd, we need to con-
sider only internuclear repulsion terms that involve nucleus d. Hence

0VNN

0xd
=

0

0xd
	 a
a�d

	
ZaZd

31xa - xd22 + 1ya - yd22 + 1za - zd2241>2 = a
a�d

ZaZd

xa - xd
R3
ad

where Rad is the distance between nuclei a and d. Since 0VNN>0xd does not involve the 
electronic coordinates and cel is normalized, (14.126) becomes

	
0U

0xd
= -ZdL�cel � 2	a

i
	
xi - xd

r3
id

	dtel + a
a�d

ZaZd	
xa - xd

R3
ad

	 (14.128)

Consider the integral in (14.128). Using Eq. (14.8) with B1ri2 = 1xi - xd2>r3
id, we get

	
0U

0xd
= -ZdLLLr1x,	y,	z2x - xd

r3
d

	dx	dy	dz + a
a�d

ZaZd

xa - xd
R3
ad

	 (14.129)

The variable rd is the distance between nucleus d and point 1x,	y,	z2 in space:

rd = 31x - xd22 + 1y - yd22 + 1z - zd2241>2

What is the significance of (14.129)? In the Born–Oppenheimer approximation, 
U1xa,	ya,	za,	xb,	c2 is the potential-energy function for nuclear motion, the nuclear 
Schrödinger equation being

	 a-
U2

2 a
a

1
ma

�2
a + UbcN = EcN	 (14.130)

The quantity -0U>0xd can thus be viewed [see Eq. (5.31)] as the x component of the ef-
fective force on nucleus d due to the other nuclei and the electrons. In addition to (14.129), 
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we have two corresponding equations for 0U>0yd and 0U>0zd. If Fd is the effective force 
on nucleus d, then

	 Fd = - i
0U

0xd
- j

0U

0yd
- k

0U

0zd
	 (14.131)

	 Fd = -ZdLLLr1x,	y,	z2	
rd
r3
d

	dx	dy	dz + a
a�d

ZaZd

Rad

R3
ad

	 (14.132)

where rd is the vector from point 1x,	y,	z2 to nucleus d,

	 rd = i1xd - x2 + j1yd - y2 + k1zd - z2	 (14.133)

and where Rad is the vector from nucleus a to nucleus d:

Rad = i1xd - xa2 + j1yd - ya2 + k1zd - za2
Equation (14.132) has a simple physical interpretation. Let us imagine the electrons 

smeared out into a charge distribution whose density in atomic units is -r1x,	y,	z2. The 
force on nucleus d exerted by the infinitesimal element of electronic charge -r	dx	dy	dz is 
[Eq. (6.56)]

	 -Zd

rd
r3
d

r	dx	dy	dz	 (14.134)

and integration of (14.134) shows that the total force exerted on d by this hypothetical 
electron smear is given by the first term on the right of (14.132). The second term on the 
right of (14.132) is clearly the Coulomb’s law force on nucleus d due to the electrostatic 
repulsions of the other nuclei.

Thus the effective force acting on a nucleus in a molecule can be calculated by sim-
ple electrostatics as the sum of the Coulombic forces exerted by the other nuclei and 
by a hypothetical electron cloud whose charge density -r1x,	y,	z2 is found by solving 
the electronic Schrödinger equation. This is the Hellmann–Feynman electrostatic theo-
rem. The electron probability density depends on the parameters defining the nuclear 
configuration: r = r1x,	y,	z;	 xa,	ya,	za,	xb,	c2.

It is quite reasonable that the electrostatic theorem follows from the Born–
Oppenheimer approximation, since the rapid motion of the electrons allows the electronic 
wave function and probability density to adjust immediately to changes in nuclear config-
uration. The rapid motion of the electrons causes the sluggish nuclei to “see” the electrons 
as a charge cloud rather than as discrete particles. The fact that the effective forces on the 
nuclei are electrostatic affirms that there are no “mysterious quantum-mechanical forces” 
acting in molecules.

Let us consider the implications of the electrostatic theorem for chemical bonding 
in diatomic molecules. We take the internuclear axis as the z axis (Fig. 14.4). By sym-
metry the x and y components of the effective forces on the two nuclei are zero. [Also, 
one can show that the z force components on nuclei a and b are related by Fz,	a = -Fz,	b 
(Prob. 14.40). The effective forces on nuclei a and b are equal in magnitude and opposite 
in direction.]

From (14.134) and (14.133), the z component of the effective force on nucleus a due to 
the element of electronic charge in the infinitesimal region about (x, y, z) is

	 -Zar31za - z2>r3
a4 	dx	dy	dz = Zar1cos	ua>r2

a2	dx	dy	dz	 (14.135)
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Figure 14.4  Coordinate 
system for a diatomic mol-
ecule. The origin is at O.

(x, y, z)

a O b z

ra

rb

ubua

since cos	ua = 1-za + z2>ra. (za is negative.) Similarly, the z component of force on nu-
cleus b due to this charge is

	 -Zbr1cos	ub>r2
b 2	dx	dy	dz	 (14.136)

A positive value of (14.135) or (14.136) corresponds to a force in the +z direction, that 
is, to the right in Fig. 14.4. When the force on nucleus a is algebraically greater than the 
force on nucleus b, then the element of electronic charge tends to draw a toward b. Hence 
electronic charge that is binding is located in the region where

	 Zar1cos	ua>r2
a2	dx	dy	dz 7 -Zbr1cos	ub>r2

b2	dx	dy	dz	 (14.137)

Since the probability density r is nonnegative, division by r preserves the direction of the 
inequality sign, and the binding region of space is where

	 Za
cos	ua

r 2
a

+ Zb
cos	ub

r2
b

7 0	 (14.138)

When the force on b is algebraically greater than that on a, the electronic charge element 
tends to draw b away from a. The antibinding region of space is thus characterized by a 
negative value for the left side of (14.138). The surfaces for which the left side of (14.138) 
equals zero divide space into the binding and antibinding regions. [T. Berlin, J. Chem. 
Phys., 19, 208 (1951); J. Hinze, J. Chem. Phys., 101, 6369 (1994); Berlin’s ideas are ex-
tended to polyatomic molecules in T. Koga et al., J. Am. Chem. Soc., 100, 7522 (1978); 
X. Wang and Z. Peng, Int. J. Quantum. Chem., 47, 393 (1993).]

Figures 14.5 and 14.6 show the binding and antibinding regions for a homonuclear 
and a heteronuclear diatomic molecule. As might be expected, the binding region for a 
homonuclear diatomic molecule lies between the nuclei. Charge in this region tends to 
draw the nuclei together. Bonding leads to a transfer of charge probability density into the 
region between the nuclei because of the overlap between the bonding AOs. Electronic 

Figure 14.5  Cross section 
of binding and antibinding 
regions in a homonuclear 
diatomic molecule. To ob-
tain the three-dimensional 
regions, rotate the figure 
about the internuclear axis.

a

Binding

bAntibinding Antibinding
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charge that is “behind” the nuclei (to the left of nucleus a or to the right of nucleus b in 
Fig. 14.5) exerts a greater attraction on the nucleus that is nearer to it than on the other 
nucleus and thus tends to pull the nuclei apart. 

From the Hellmann–Feynman viewpoint, we seem to be considering chemical bond-
ing solely in terms of potential energy, whereas the virial-theorem discussion involved 
both potential and kinetic energy. For the purposes of the Hellmann–Feynman discus-
sion, we are imagining the electrons to be smeared out into a continuous charge distribu-
tion. Hence we make no reference to electronic kinetic energy. The use of the electrostatic 
theorem to explain chemical bonding has been criticized by some quantum chemists on 
the grounds that it hides the role of kinetic energy in bonding. [See the references cited 
after Eq. (13.66).]

In 1939, Feynman conjectured that the dispersion attraction between two mole-
cules A and B at relatively large intermolecular distances is explainable as follows: The 
interactions between the two molecules cause the electron probability density of each 
molecule to be distorted and shifted somewhat toward the other molecule. The attractions 
of the nuclei in molecule A toward the distorted (polarized) electron density of molecule 
A and the attractions of the B nuclei toward the polarized B electron density then draw 
the two molecules together. In 1990, Hunt proved that the dispersion interaction between 
any two molecules in their ground electronic states results from the attractions of the nu-
clei in each molecule to the polarized electron density of the same molecule [K. L. C. 
Hunt, J. Chem. Phys., 92, 1180 (1990)].

For further applications of the Hellmann–Feynman electrostatic theorem, see B. M. 
Deb, ed., The Force Concept in Chemistry, Van Nostrand Reinhold, 1981.

Summary
The electron probability density r of an n-electron molecule is found by summation of �c �2 
over spins, integration over the spatial coordinates of n - 1 electrons, and multiplication by 
n [Eq. (14.5)]. The dipole moment of a molecule is given by (14.21).

The best possible forms for the MOs fi of a molecule are the solutions of the 
Hartree–Fock equations Fnfi = eifi, where Fn is the Fock operator [Eqs. (14.26) to 
(14.29)] and ei is the orbital energy. To solve the Hartree–Fock equations, we expand 
fi using a set of basis functions: fi = g s csi xs; this leads to the Roothaan equations 
(14.34) for the coefficients csi and orbital energies ei. Since the Fock operator Fn and its 
matrix elements Frs [Eq. (14.41)] depend on the occupied MOs, which are unknown, the 
Roothaan equations are solved by an iterative process that starts with an initial guess 
for the occupied MOs.

For a bound stationary state, the quantum-mechanical virial theorem states that 
28T9 = g i8qi10V>0qi29 , where the sum is over the Cartesian coordinates of all the particles. 

Figure 14.6  Binding and 
antibinding regions for a 
heteronuclear diatomic 
molecule with Zb 7 Za.

a b

Antibinding
Binding
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If V is a homogeneous function of degree n, then 28T9 = n8V9 . For a diatomic molecule, 
the virial theorem becomes 8Tel9 = -U - R1dU>dR2 and 8V9 = 2U + R1dU>dR2, 
where U1R2 is the potential-energy function for nuclear motion. The virial theorem shows 
that at Re,	8V9  of a diatomic molecule is less than the total 8V9  of the separated atoms, 
and 8Tel9  is greater than the total 8Tel9  of the separated atoms.

For a bound stationary state, the generalized Hellmann–Feynman theorem is 
0En>0l = 1cn*10Hn >0l2cn	dt, where l is a parameter in the Hamiltonian. (In case of 
degeneracy, cn must be a correct zeroth-order wave function for the perturbation of chang-
ing l.) Taking l as a nuclear coordinate, we are led to the Hellmann–Feynman electrostatic 
theorem, which states that the force on a nucleus in a molecule is the sum of the electrostatic 
forces exerted by the other nuclei and the electron charge density.

Problems

Sec. 14.1 14.2 14.3 14.4 14.5 14.6 14.7

Probs. 14.1–14.2 14.3–14.5 14.6–14.22 14.23–14.31 14.32–14.36 14.37–14.39 14.40–14.41

	  14.1	 Derive (14.6) for rVB and rMO.

	  14.2	 Show that rMO of (14.6) is greater than rVB of (14.6) at the midpoint of the line joining the 
nuclei.

	  14.3	 Show that the dipole moment (14.9) of a system of charges is independent of the choice of 
the coordinate origin, provided the system has no net charge.

	  14.4	 (a) Explain why the permanent dipole moment of a many-electron atom in a stationary state is 
always zero. (b) Explain why the permanent electric dipole moment of H can be nonzero for 
certain excited states. (c) Show qualitatively that two of the four correct zeroth-order functions 
of Prob. 9.23 give nonzero permanent dipole moments.

	  14.5	 For NaCl, Re = 2.36 Å. The ionization energy of Na is 5.14 eV, and the electron affinity of 
Cl is 3.61 eV. Use the simple model of NaCl as a pair of spherical ions in contact to estimate 
De and the dipole moment of NaCl. Compare with the experimental values De = 4.25	eV and 
m = 9.0	D. [One debye (D) is 3.33564 * 10-30 C m.]

	  14.6	 Prove that the one-electron Hartree–Fock operator (14.26) is Hermitian.

	  14.7	 Explain the origin of the extra terms in the molecular Hartree–Fock operator (14.26) as com-
pared with the atomic Hartree operator of (11.9) and (11.7).

	  14.8	 Verify that the Coulomb and exchange integrals Jij and Kij can be written in terms of the 
Coulomb and exchange operators of Section 14.3 as

Jij = 8fi112 � Jnj112 �fi1129 ,		Ki j = 8fi112 � Knj112 �fi1129
	  14.9	 Verify Eq. (14.40) for the Knj integral over basis functions.

	14.10	 (a) Use the definition (14.42) of Ptu to show that Prs = Psr
* , meaning that the den-

sity matrix P is a Hermitian matrix. (b) Show that Eq. (14.45) can be written as 
EHF =

1
2Tr1P*F + P*Hcore2 + VNN, where Tr denotes the trace of a matrix (Section 7.10) 

and the P, F, and Hcore matrices have elements Prs,	Frs, and Hcore
rs . (c) Verify that (14.42) can 

be written as P* = 2CC-, where C is the matrix of coefficients cuj.

	14.11	 From (14.5), show that 1 �

- � 1 �

- � 1 �

- � 	r	dx	dy	dz = n, where r is the electron probability 
density of an n-electron molecule. (b) Use the result of (a) and Eq. (14.43) to show that 
n = g rg s Prs Srs = g rg s Prs Ssr

*. (c) Show that n = Tr1PS*2, which becomes n = Tr1PS2 
for real basis functions. Here, P and S are the density and overlap matrices.

	14.12	 Verify the equations for H core
11  and H core

22  in the Section 14.3 example.

	14.13	 Verify the equalities (14.47) for electron-repulsion integrals.

	14.14	 Use Eq. (9.124) of Prob. 9.14 to verify the expressions for the integrals 111 � 222 and 122 � 222 
in the Section 14.3 example.
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	14.15	 For the He-atom SCF calculation in Section 14.3, find the initial estimate of c11>c21 given by 
the approximation Frs � H core

rs .

	14.16	 (a) Verify the equations for F11,	F12, and F22 that immediately precede Eq. (14.50). (b) Verify 
Eqs. (14.50) to (14.52) for F11,	F12, and F22.

	14.17	 Derive (14.48) from the normalization condition for f1.

	14.18	 Verify the numerical results for P11,	P12,	P22,	F11,	F12,	F22,	e1,	e2,	c11, and c21 obtained on the 
last cycle of calculation in the Section 14.3 example [Eqs. (14.53), (14.54), and the preceding 
and following equations].

	14.19	 Repeat the He SCF calculation of Section 14.3 using the same basis functions but starting with 
the initial guess c11 = c21 and c21 determined by the normalization condition (14.48).

	14.20	 (a) Write a computer program that will perform the helium-atom SCF calculation of Section 
14.3. Have the input to the program be z1,	z2, and the initial guess for c11>c21. Do not use 
the Section 14.3 values of the integrals, but have the program calculate all integrals from 
z1 and z2. Have the program print c11,	c21,	e1, and e2 for each cycle of calculation. Use the 
convergence criterion that c11 and c21 each differ from the c11 and c21 values of the previous 
cycle by less than 10-5 atomic units. (b) Use your program with z1 = 1.45 and z2 = 2.91 
to find the number of iterations needed to reach convergence for each of these initial guesses 
for c11>c21:	100,	10,	1,	0,	-1,	-10,	-100. (c) Run the program with z1 = 1.45363 and 
z2 = 2.91093 to verify the SCF energy given for these z’s at the end of the Section 14.3 
example. (d) Run the program with z1 changed by +0.01 and by -0.01 from the value in (c), 
and verify that each EHF obtained is higher than that in (c). Repeat for z2.

	14.21	 Calculate r for the He SCF wave function of the Section 14.3 example at r = 0 and at r = 1 
bohr.

	14.22	 Given that fi = g s c�six�s, where the x�s functions are orthonormal, show that the orbitals fi 
form an orthonormal set if the matrix C� of coefficients c�si is unitary.

	14.23	 Which of the following functions are homogeneous? Give the degree of homogeneity. 
(a) x + 3yz; (b) 179; (c) x2>yz3; (d) 1ax3 + bxy221>2.

	14.24	 Let 1 and 2 be two bound stationary states of an atom, with E2 7 E1. For which state is the 
average electronic kinetic energy larger?

	14.25	 Show that the hypervirial theorem follows from Eq. (7.113).

	14.26	 (a) Calculate 8T9  and 8V9  for the helium-atom trial function (9.56). All the needed integrals 
were evaluated in Chapter 9. (b) Verify that the virial theorem is satisfied for z = Z - 5>16 
but not for z = Z.

	14.27	 A one-dimensional harmonic oscillator in a stationary state has 8T9 =  5.0 * 10-19	J. Find 
E and 8V9  for this state.

	14.28	 A certain excited stationary state of He has an energy of -59.10 eV [with the zero of energy 
chosen as in Eq. (11.1)]. Find 8T9  for this state. (Assume relativistic effects are negligible.)

	14.29	 A particle is subject to the potential energy V = ax4 + by4 + cz4. If its ground-state energy 
is 10 eV, calculate 8T9  and 8V9  for the ground state.

	14.30	 The zero level of potential energy is arbitrary and we can always add a constant C to the poten-
tial energy function V. (See Prob. 4.52.) If we add C to V, state what happens to each of the 
following for a stationary state: 8V9 , 8T9 , E. Do these results contradict the virial theorem? 
Explain your answer.

	14.31	 Prove that for a bound stationary state: (a) 8px9 = 0; (b) 80V>0x9 = 0. Hint: Use certain 
equations in Section 5.1.

	14.32	 The U1R2 curve for a diatomic-molecule repulsive electronic state can be roughly approxi-
mated by the function ae-bR - c, where a, b, and c are positive constants with a 7 c. (This 
function omits the van der Waals minimum and fails to go to infinity at R = 0.) Sketch 
U,	8Tel9 , and 8V9  as functions of R for this function.

	14.33	 Prove that 0 8V9 > 0R must be nonnegative at R = Re; that is, 8V9  cannot be increasing with 
decreasing R as we go through the minimum in the U1R2 curve (Fig. 14.1). State and prove 
the corresponding theorem for 8Tel9 .
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	14.34	 Let c be the complete wave function for a molecule, with the Born–Oppenheimer approximation 
c = celcN not necessarily holding. Is it true that

28c � Tnel + TnN �c9 = - 8c � Vn �c9
		  where Tnel and TnN are the kinetic-energy operators for the electrons and nuclei and Vn is the 

complete potential-energy operator? Justify your answer.

	14.35	 Given that De = 4.75	eV and Re = 0.741 Å for the ground electronic state of H2, find 
U1Re2,	8V9�Re

,	8Vel9�Re
, and 8Tel9 �Re

 for this state.

	14.36	 The Fues potential-energy function for nuclear vibration of a diatomic molecule is 
U1R2 = U1�2 + De1-2Re>R + R2

e >R22. Find the expressions for 8Tel9  and 8V9  predicted 
by this potential and comment on the results.

	14.37	 (a) Apply the generalized Hellmann–Feynman theorem with Z as the parameter to find 81>r9  
for the hydrogenlike-atom bound states cnlm. (b) Since hydrogenlike functions cnlm with the 
same n but different l or m have the same energy, we must be sure that the functions cnlm 
are  the correct zeroth-order functions for the perturbation of varying Z. Use a theorem of 
Section 9.6 to verify this.

	14.38	 Use the generalized Hellmann–Feynman theorem to find 8p2
x 9  for the one-dimensional 

harmonic-oscillator stationary states. Check that the result obtained agrees with the virial 
theorem.

	14.39	 Differentiate (9.7) and (9.14) with respect to l, substitute the results into the generalized 
Hellmann–Feynman theorem, and let l = 0 to derive the perturbation-theory equation 
E112

n = 8c102
n � Hn � �c102

n 9 .

	14.40	 Use Fz,	a = -0U>0za  and (14.85) to show that in Fig. 14.4, Fz,	a = -10U>0R231za - zb2>R4 . 
Find a similar equation for Fz,	b and verify that Fz,	a = -Fz,	b.

	14.41	 The Re values for the ground electronic states of HF, HCl, HBr, and HI are 0.92, 1.27, 1.41, and 
1.61 Å. The surface enclosing the antibinding region “behind” the proton in these molecules 
intersects the internuclear axis at two points, one of which is the proton location. Calculate 
the distance between these two points of intersection for each of the hydrogen halides.



Chapter 15

Molecular Electronic 
Structure

15.1 �Ab Initio, Density-Functional, Semiempirical, 
and Molecular-Mechanics Methods

The electronic wave function of a polyatomic molecule depends on several parameters—
the bond distances, bond angles, and dihedral angles of rotation about single bonds (these 
angles define the molecular conformation). A full theoretical treatment of a polyatomic 
molecule involves calculation of the electronic wave function for a range of each of these 
parameters. The equilibrium bond distances, bond angles, and dihedral angles are then 
found as those values that minimize the electronic energy including nuclear repulsion.

The four main approaches to calculating molecular properties are ab initio methods, 
semiempirical methods, the density-functional method, and the molecular-mechanics method.

Semiempirical molecular quantum-mechanical methods use a simpler Hamiltonian 
than the correct molecular Hamiltonian and use parameters whose values are adjusted to 
fit experimental data or the results of ab initio calculations. An example is the Hückel MO 
treatment of conjugated hydrocarbons (Section 17.2), which uses a one-electron Hamil-
tonian and takes the bond integrals as adjustable parameters rather than quantities to be 
calculated theoretically. In contrast, an ab initio (or first principles) calculation uses the 
correct Hamiltonian and does not use experimental data other than the values of the fun-
damental physical constants. A Hartree–Fock SCF calculation seeks the antisymmetrized 
product � of one-electron functions that minimizes 1�*Hn � dt, where Hn  is the true 
Hamiltonian and is thus an ab initio calculation. (Ab initio is Latin for “from the begin-
ning” and indicates a calculation based on fundamental principles.) The term ab initio 
should not be interpreted to mean “100% correct.” An ab initio SCF MO calculation uses 
the approximation of taking c as an antisymmetrized product of one-electron spin-orbitals 
and uses a finite (and hence incomplete) basis set.

The density-functional method (Section 16.5) does not attempt to calculate the 
molecular wave function but calculates the molecular electron probability density r and 
calculates the molecular electronic energy from r.

The molecular-mechanics method (Section 17.5) is not a quantum-mechanical method 
and does not use a molecular Hamiltonian operator or wave function. Instead, it views the 
molecule as a collection of atoms held together by bonds and expresses the molecular energy 
in terms of force constants for bond bending, stretching, and torsion and other parameters.

This chapter discusses general principles of electronic structure calculations for 
polyatomic molecules and discusses the Hartree–Fock calculation method. As noted in 
Section 11.3, the Hartree–Fock method does not take account of electron correlation. 

436
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Ab initio and density-functional methods that take account of electron correlation are 
discussed in Chapter 16. Chapter 17 discusses semiempirical methods and the molecular-
mechanics method.

A free database of references to molecular ab initio and density-functional calculations 
is the Quantum Chemistry Literature Database at qcldb2.ims.ac.jp.

The National Institute of Standards and Technology’s Computational Chemistry Com-
parison and Benchmark Database (CCCBDB) at cccbdb.nist.gov tabulates the results of ab 
initio, density functional, and semiempirical calculations with various basis sets (Section 15.4) 
on 1420 molecules and includes gas-phase experimental data for the tabulated species. Cal-
culated properties listed include energy, geometry, dipole moment, polarizability, harmonic 
vibrational frequencies, moments of inertia, barriers to internal rotation, gas-phase thermo-
dynamic properties, and atomic charges (Section 15.7), The program Spartan (Section 15.14) 
gives access to part or all (depending on the type of license the user has) of a database of ab 
initio and density functional results for 140000 molecules, for a small number of basis sets.

15.2 Electronic Terms of Polyatomic Molecules
For polyatomic molecules, the operator Sn2 for the square of the total electronic spin angu-
lar momentum commutes with the electronic Hamiltonian operator, and, as for diatomic 
molecules, the electronic terms of polyatomic molecules are classified as singlets, doublets, 
triplets, and so on, according to the value of 2S + 1. (The commutation of Sn2 and Hnel holds 
provided spin–orbit interaction is omitted from the Hamiltonian. For molecules containing 
heavy atoms, spin–orbit interaction is considerable, and S is not a good quantum number.)

For linear polyatomic molecules, the operator Lnz for the component of the total elec-
tronic orbital angular momentum along the molecular axis commutes with the electronic 
Hamiltonian, and the same term classifications are used as for diatomic molecules (Sec-
tion 13.8), giving such possibilities as 1�+, 1�-, 3�+, 1�, and so on. For linear polyatomic 
molecules with a center of symmetry, the g, u classification is added.

For nonlinear polyatomic molecules, no orbital angular-momentum operator com-
mutes with the electronic Hamiltonian, and the angular-momentum classification of elec-
tronic terms cannot be used. Operators that do commute with the electronic Hamiltonian 
are the symmetry operators OnR of the molecule (Section 12.1), and the electronic states 
of polyatomic molecules are classified according to the behavior of the electronic wave 
function on application of these operators. Consider H2O as an example.

In its equilibrium configuration, the water molecule belongs to group �2v
 with the 

symmetry operations

	 En  Cn21z2  sn
v
1xz2  sn

v
1yz2	 (15.1)

The standard convention [R.S. Mulliken, J. Chem. Phys., 23, 1997 (1955); 24, 1118 (1956)] 
takes the molecular plane as the yz plane (Fig. 15.1). We readily find that each of the 

H1 H2

z

y

Figure 15.1  Coordinate 
axes for the H2O molecule. 
The x axis is perpendicular 
to the molecular plane.
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­symmetry operations commutes with the other three. Therefore, the electronic wave func-
tions can be chosen as simultaneous eigenfunctions of all four symmetry operators. Since 
OnE is the unit operator, we have OnEcel = cel. Each of the remaining symmetry operators 
satisfies On2

R = 1n, and so each has as its eigenvalues +1 and -1 [Eq. (7.55)]. Therefore, 
each electronic wave function of H2O is an eigenfunction of OnE with eigenvalue +1 and an 
eigenfunction of each of the other three symmetry operators with the eigenvalue +1 or -1.

How many different combinations of these symmetry eigenvalues are there for H2O? 
At first sight, we might think there are 112122122122 = 8 possible sets. However, certain 
sets can be ruled out, as we now show. Let the product of the symmetry operations Rn and 
Sn  be the symmetry operation Tn; RnSn = Tn. Let cel be an eigenfunction of OnR, OnS, and OnT 
with eigenvalues r, s, and t, respectively. Since the symmetry operators multiply the same 
way the symmetry operations do, we have

tcel = OnTcel = OnR1OnScel2 = sOnRcel = rscel

Dividing by cel, we have rs = t if RnSn = Tn. Hence the eigenvalues of the symmetry opera-
tors must multiply in the same way the symmetry operations do. Now consider H2O. Let 
us examine the set of symmetry eigenvalues

	
En Cn21z2 sn

v
1xz2 sn

v
1yz2

1      -1   -1     -1
	 (15.2)

We find that Cn21z2sn
v
1xz2 = sn

v
1yz2. The set (15.2), however, has the product of the 

OnC2
 and Ons

v
1xz2 eigenvalues as 1-121-12 = 1, which differs from the Ons

v
1yz2 eigen-

value in (15.2). The set (15.2) must be discarded. Of the eight possible symmetry-
eigenvalue combinations, only the following four sets are found to multiply properly 
(Prob. 15.1):

	

A1

A2

B1

B2

	

En Cn21z2 sn
v
1xz2 sn

v
1yz)

1    1    1    1

1    1 -1 -1

1 -1    1 -1

1 -1 -1    1

	 (15.3)

In this table the sets have been labeled A1, A2, B1, and B2. The letter A or B indicates 
whether the symmetry eigenvalue for the highest-order Cnn or Snn operation of the molecule 
[Cn2(z) for water] is +1 or -1, respectively. The subscripts 1 and 2 distinguish sets having 
the same letter label. Each possible set of symmetry eigenvalues in (15.3) is called a sym-
metry species (or symmetry type). (The group-theory term is irreducible representation.) 
The symmetry species with all symmetry eigenvalues +1 1A1 for H2O2 is called the totally 
symmetric species.

Each molecular electronic term of H2O is designated by giving the symmetry spe-
cies of the electronic wave functions of the term, with the spin multiplicity 2S + 1 as a 
left superscript. For example, an electronic state of H2O with two electrons unpaired and 
with the electronic wave function unchanged by all four symmetry operators belongs to 
a 3A1 term. (The subscript 1 is not an angular-momentum eigenvalue but is part of the 
symmetry-species label.)

We now consider the orbital degeneracy of molecular electronic terms. This is 
degeneracy connected with the electrons’ spatial (orbital) motion, as distinguished 
from spin degeneracy. Thus 1� and 3� terms of linear molecules are orbitally degen-
erate, while 1� and 3� terms are orbitally nondegenerate. Consider an operator Fn that 
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commutes with the molecular electronic Hamiltonian and that does not involve spin. 
We have

FnHnelcel,i = FnEelcel,i

	 Hnel1Fncel,i2 = Eel1Fncel,i2	 (15.4)

Thus Fncel,i is an eigenfunction of Hnel with eigenvalue Eel. Let the orbital degeneracy of 
the term to which cel,i belongs be n. It follows from (15.4) that Fncel,i must be some linear 
combination of the n orbitally degenerate wave functions of the term that have the same 
value of Sz as cel,i:

	 Fncel,i = a
n

j = 1
ci j,Fcel, j	 (15.5)

where the c’s are certain constants. (These arguments were previously given in Section 7.3.) 
For a level that is not orbitally degenerate 1n = 12, Eq. (15.5) reduces to

	 Fncel,i = cFcel,i	 (15.6)

and here cel,i must be an eigenfunction of Fn. For n 7 1, we can choose n linear combina-
tions of the cel, j functions that are eigenfunctions of Fn, but there is no necessity for the 
eigenfunctions of a degenerate level to be eigenfunctions of Fn. If we have two operators 
Fn and Gn  that commute with Hnel but not with each other, we can pick the linear combina-
tions to be eigenfunctions of Fn or of Gn , but not in general of both Fn and Gn  simultaneously.

Now consider symmetry operators. For H2O all the symmetry operators commute 
among themselves, and so each electronic wave function is simultaneously an eigenfunc-
tion of all the symmetry operators. If all the electronic wave functions were orbitally non-
degenerate, then it would automatically follow from (15.6) that they were simultaneously 
eigenfunctions of all the symmetry operators. We therefore suspect (but have not proved) 
that the electronic wave functions of H2O are all orbitally nondegenerate. This statement 
is in fact correct. The letters A and B designate symmetry species of orbitally nondegen-
erate electronic terms. For any molecule all of whose symmetry operators commute with 
one another, the electronic wave functions are each simultaneous eigenfunctions of all the 
symmetry operators, and the only symmetry species are nondegenerate A and B species.

For some point groups, the symmetry operators do not all commute. An example is 
�h (Fig. 12.7). When the symmetry operators do not all commute, some of the electronic 
terms are orbitally degenerate. A symmetry operator applied to an electronic wave function 
of an orbitally degenerate term converts it to a linear combination of the wave functions of 
the term [Eq. (15.5)]. The effects of the symmetry operator OnR on the wave functions of an 
n-fold orbitally degenerate electronic term are specified by the n2 numbers

	 cij,R,  i = 1, c, n,  j = 1, c, n	 (15.7)

The n2 numbers (15.7) when arranged in an n * n square array form a matrix (Sec-
tion 7.10). If there are h symmetry operations in the molecular point group, then the h 
matrices of coefficients in (15.5) constitute the symmetry species of the degenerate-term 
wave functions in (15.5). The following letter labels are used for the symmetry species, 
according to the orbital degeneracy n:

	
n 1 2 3 4 5

Letter A, B E T G H
	 (15.8)

Numerical subscripts distinguish different symmetry species having the same letter desig-
nation. For molecules with a center of symmetry, a g or u subscript is added, depending 
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on whether the wave function has the eigenvalue +1 or -1 for inversion of all electronic 
spatial coordinates. The possible symmetry species can be found in a systematic way using 
group theory (see Schonland). As an example, group theory shows the possible symmetry 
species of a �6h molecule to be

	
A1g A2g B1g B2g E1g E2g

A1u A2u B1u B2u E1u E2u
	 (15.9)

We shall not give the numbers cij,R that specify these symmetry species, except to note that 
A1g is the totally symmetric symmetry species, with all c’s equal to 1.

It is an empirical fact that for most molecules in their electronic ground states the 
electronic wave function belongs to the (nondegenerate) totally symmetric species. Also, 
the electronic spins are usually all paired in the ground state, and the ground state is a 
singlet. For H2O the ground electronic state is 1A1; for benzene it is 1A1g.

We have been using the equilibrium-geometry point groups of H2O and C6H6. For 
nonequilibrium nuclear configurations, the symmetry is in general less than that of �2v

 or 
�6h. For reasonably small departures from equilibrium, however, the symmetry behavior 
should be given to a good approximation by the symmetry species of the equilibrium-
geometry point group. Excited states sometimes differ in their equilibrium point group 
from the ground electronic state. For example, the point group of NH3 is �3h for several 
excited electronic states. (For properties of molecular electronic states, see G. Herzberg, 
Electronic Spectra of Polyatomic Molecules, Van Nostrand, 1966, Appendix VI.)

Corresponding to a given molecular electronic term, there are in general several elec-
tronic states. The interactions between electronic spin and electronic orbital motion and 
between electronic and nuclear motions split the energies of these states. These splittings 
are usually small.

15.3 The SCF MO Treatment of Polyatomic Molecules
The purely electronic nonrelativistic Hamiltonian for a polyatomic molecule is (in atomic 
units)

	 Hnel = -
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If interelectronic repulsions are neglected, the zeroth-order wave function is the product 
of one-electron spatial functions (molecular orbitals). Allowance for electron spin and 
antisymmetry gives a zeroth-order wave function that is an antisymmetrized product of 
molecular spin-orbitals, each spin-orbital being a product of a spatial MO and a spin func-
tion. The best possible variation function that has the form of an antisymmetrized product 
of spin-orbitals is the Hartree–Fock SCF function. [Improvements beyond the Hartree–
Fock stage require some method (Chapter 16) to allow for electron correlation.] The MOs 
are usually expressed as linear combinations of basis functions, the coefficients being found 
by solution of the Roothaan equations (Section 14.3). If a large enough basis set is used, the 
MOs are accurate approximations to the Hartree–Fock MOs. If a minimal basis set is used, 
the MOs are only rough approximations to the Hartree–Fock MOs but are still referred 
to as SCF molecular orbitals. The SCF MO method has been widely used in polyatomic-
molecule electronic-structure calculations, but is now losing ground to density functional 
calculations and to other methods that allow for electron correlation (Chapter 16).

How are polyatomic MOs classified? As might be expected, the MOs of a polyatomic 
molecule show the same kinds of possible symmetry behavior as the overall electronic 
wave function does (Section 15.2); for the proof, see C. C. J. Roothaan, Rev. Mod. Phys., 
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23, 69 (1951). The MOs are therefore classified according to the symmetry species of the 
molecular point group. For example, the MOs of H2O have the possible symmetry species 
a1, a2, b1, and b2 of (15.3). Lowercase letters are used for MO symmetry species. To distin-
guish MOs of the same symmetry species, we number them in order of increasing energy. 
Thus the lowest three a1 MOs of water are called 1a1, 2a1, and 3a1. This nomenclature is 
similar to that of the third column in Table 13.1.

Each MO holds two electrons of opposite spin. MOs having the same energy constitute 
a shell. A shell that consists of a single MO of symmetry species a or b holds two electrons. 
A shell that consists of two e MOs having the same energy holds four electrons; and so on. 
For H2O there are no degenerate symmetry species, and each shell holds two electrons. 
For C6H6 there are some doubly degenerate symmetry species [see (15.9)], so some of 
the benzene MOs occur in pairs having the same energy. Specification of the number of 
electrons in each shell specifies the molecular electronic configuration. Just as in atoms 
and diatomic molecules, a given electron configuration of a polyatomic molecule gives rise 
to one or more electronic terms. [For example, an 1e1g22 configuration of a �6h molecule 
gives the terms 1A1g, 

1E2g, and 3A2g.] The systematic method for finding the terms of a 
configuration uses group theory and will not be discussed here. For tables of the terms 
arising from various configurations, see G. Herzberg, Electronic Spectra of Polyatomic 
Molecules, Van Nostrand, 1966, pp. 330–334, 570–573. A closed-shell configuration gives 
rise to a single nondegenerate term whose spin multiplicity is 1 and whose symmetry spe-
cies is the totally symmetric one. Most polyatomic molecules have a closed-shell ground 
state, for which the MO wave function is a single Slater determinant. For states arising 
from open-shell configurations, the MO wave function may require a linear combination 
of a few Slater determinants.

SCF MO Wave Functions for Open-Shell States
For SCF MO calculations on closed-shell states of molecules and atoms, electrons paired 
with each other are almost always given precisely the same spatial orbital function. A 
Hartree–Fock wave function in which electrons whose spins are paired occupy the same 
spatial orbital is called a restricted Hartree–Fock (RHF) wave function. (The unmodified 
term Hartree–Fock wave function is understood to mean the RHF wave function.)

Although the RHF wave function is generally used for closed-shell states, two dif-
ferent approaches are widely used for open-shell states. In the restricted open-shell 
Hartree–Fock (ROHF) method, electrons that are paired with each other are given the 
same spatial orbital function. For example, the ROHF wave function of the Li ground state 
is 01s1s2s 0 , where the two 1s electrons occupy the same spatial MO. The 2s electron in this 
ROHF function has been given spin a. Since electrons with the same spin tend to keep 
away from each other (Pauli repulsion; Section 10.3), the interaction between the 2sa and 
1sa electrons differs from the interaction between the 2sa and 1sb electrons, and it seems 
reasonable to give the two 1s electrons slightly different spatial orbitals, which we shall 
call 1s and 1s�. This gives the unrestricted Hartree–Fock (UHF) wave function for the 
Li ground state as 0 1s1s�2s 0  where 1s � 1s�. In a UHF wave function, the spatial orbitals 
of spin@a electrons are allowed to differ from those of spin@b electrons.

The UHF wave function gives a slightly lower energy than the ROHF wave function 
and is more useful in predicting electron-spin-resonance spectra (see Szabo and Ostlund, 
Section 3.8.6). The main problem with the UHF wave function is that it is not an eigenfunc-
tion of the spin operator Sn2 (nor can it be made an eigenfunction of Sn2 by taking a linear 
combination of a few UHF functions), whereas the true wave function and the ROHF wave 
function are eigenfunctions of Sn2. When a UHF wave function is found, one calculates 
8S29  for the UHF function. If the deviation of 8S29  from S1S + 12U2 is substantial, the 
UHF wave function should be viewed with suspicion.
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15.4 Basis Functions
Most molecular quantum-mechanical methods, whether SCF, CI, perturbation theory (Sec-
tion 16.3), coupled cluster (Section 16.4), or density functional (Section 16.5), begin the 
calculation with the choice of a set of basis functions xr, which are used to express the 
MOs fi as fi = g i crixr [Eq. (14.33)]. (Density-functional theory uses orbitals called 
Kohn–Sham orbitals fKS

i  that are expressed as fKS
i = g i crixr; see Section 16.5.) The use 

of an adequate basis set is an essential requirement for success of the calculation.
For diatomic molecules, the basis functions are usually taken as atomic orbitals, some 

centered on one atom, the remainder centered on the other atom. Each AO can be repre-
sented as a linear combination of one or more Slater-type orbitals (STOs). An STO centered 
on atom a has the form Nrn - 1

a e-zraY m
l 1ua, fa2 [Eq. (11.14)]. For nonlinear molecules, the 

real form of the STOs, with Ym
l  replaced by 31Y m

l 2*{Y m
l 4 >21>2 (Section 6.6), is used. 

Each MO fi is expressed as fi = g r crixr, where the xr’s are the STO basis functions. 
We have LC-STO MOs.

For polyatomic molecules, the LC-STO method uses STOs centered on each of the 
atoms. The presence of more than two atoms causes difficulties in evaluating the needed 
integrals. For a triatomic molecule, one must deal with three-center, two-center, and one-
center integrals. For a molecule with four or more atoms, one also has four-center inte-
grals, but the number of centers in any one integral does not exceed four. Solution of the 
Roothaan equations requires evaluation of the electron-repulsion integrals 1rs 0 tu2 and the 
H core

rs  integrals [Eq. (14.41)]. If the basis functions xr112, xs112, xt122, xu122 are each 
centered on a different nucleus, then 1rs 0 tu2 is a four-center integral. The H core

rs  integrals 
involve either one or two centers.

For the basis set x1, x2, c, xb, there are b different possibilities for each basis 
function in 1rs 0 tu2, and use of the identities 1rs 0 tu2 = 1sr 0 tu2 = g [Eq. (14.47)] shows 
that there are about b4>8 different electron-repulsion integrals to be evaluated. Accu-
rate SCF molecular calculations on small- to medium-size molecules might use from 
50 to 500 basis functions, producing from 700000 to 1010 electron-repulsion integrals. 
Computer evaluation of three- and four-center integrals over STO basis functions is very 
time consuming.

To speed up molecular integral evaluation, Boys proposed in 1950 the use of Gaussian-
type functions (GTFs) instead of STOs for the atomic orbitals in an LCAO wave function. 
A Cartesian Gaussian centered on atom b is defined as

	 gijk = Nxi
by j

b z k
be-ar2

b	 (15.11)

where i, j, and k are nonnegative integers, a is a positive orbital exponent, xb, yb, zb are 
Cartesian coordinates with the origin at nucleus b, and rb is the distance to nucleus b. The 
Cartesian-Gaussian normalization constant is

N = a 2a
p

b
3>4

c 18a2i+ j+ ki! j!k!

12i2! 12 j2! 12k2!
d

1>2

When i + j + k = 0 (that is, i = 0, j = 0, k = 0), the GTF is called an s-type 
Gaussian. When i + j + k = 1, we have a p-type Gaussian, which contains the factor xb, 
yb, or zb. When i + j + k = 2, we have a d-type Gaussian. There are six d-type Gaussians, 
with the factors x2

b, y2
b, z

2
b, xbyb, xbzb, and ybzb. If desired, five linear combinations (having 

the factors xbyb, xbzb, ybzb, x
2
b - y2

b, and 3z2
b - r2

b) can be formed to have the same angular 
behavior as the five real 3d AOs; a sixth combination with the factor x2

b + y2
b + z2

b = r2
b 

is like a 3s function. This sixth combination is often omitted from the basis set. Similarly, 
there are ten f-type Gaussians, and these could be combined to have the angular behavior 
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of the seven real 4f AOs. [In general, linear combinations of Cartesian Gaussians can be 
formed to have the form Nrl

be
-ar2

b31Ym
l 2*{Y m

l 4 >21>2.]
Note the absence of the principal quantum number n in (15.11). Any s AO (whether 

1s or 2s or . . . ) is represented by a linear combination of several Gaussians with differ-
ent orbital exponents, each Gaussian having the form exp1-ar2

b2; any atomic px orbital is 
represented by a linear combination of Gaussians, each of the form xb exp1-ar2

b2; and so 
on. The Cartesian Gaussians form a complete set.

An alternative to Cartesian Gaussians is spherical Gaussians, whose real form is 
Nrn - 1

b e-ar2
b31Ym

l 2*{Ym
l 4 >21>2.

The behavior of the Gaussian exponential factor is shown in Fig. 4.4a, where the origin 
is at nucleus b. A Gaussian function does not have the desired cusp at the nucleus and hence 
gives a poor representation of an AO for small values of rb. To accurately represent an AO, 
we must use a linear combination of several Gaussians. Therefore, an LC-GTF SCF MO 
calculation involves evaluation of very many more integrals than the corresponding LC-
STO SCF MO calculation, since the number of two-electron integrals is proportional to 
the fourth power of the number of basis functions. However, Gaussian integral evaluation 
takes much less computer time than Slater integral evaluation. This is because the product 
of two Gaussian functions centered at two different points is equal to a single Gaussian 
centered at a third point. Thus all three- and four-center two-electron repulsion integrals 
are reduced to two-center integrals.

Let us discuss some of the terminology used to describe STO basis sets. A minimal 
(or minimum) basis set consists of one STO for each inner-shell and valence-shell AO of 
each atom (Section 14.3). For example, for C2H2 a minimal basis set consists of 1s, 2s, 2px, 
2py, and 2pz AOs on each carbon and a 1s STO on each hydrogen. There are five STOs on 
each C and one on each H, for a total of 12 basis functions. This set contains two s-type 
STOs and one set of p-type STOs on each carbon and one s-type STO on each hydrogen. 
Such a set is denoted by (2s1p) for the carbon functions and (1s) for the hydrogen functions, 
a notation that is further abbreviated to 12s1p>1s2. The numbers of basis functions in a 
minimal STO set for the first part of the periodic table are

H, He Li9Ne Na9Ar K, Ca Sc9Kr

1 5 9 13 18

For each of the atoms Na to Ar, the minimal-basis AOs are 1s, 2s, 2px,y,z, 3s, 3px,y,z (but 
not 3d).

A double-zeta (DZ) basis set is obtained by replacing each STO of a minimal basis 
set by two STOs that differ in their orbital exponents z (zeta). (Recall that a single STO is 
not an accurate representation of an AO. Use of two STOs gives substantial improvement.) 
For example, for C2H2 a double-zeta set consists of two 1s STOs on each H, two 1s STOs, 
two 2s STOs, two 2px, two 2py and two 2pz STOs on each carbon, for a total of 24 basis 
functions; this is a 14s2p>2s2 basis set. (Recall that we did a double-zeta SCF calculation 
on He in Section 14.3.) Since each basis function xr in fi = g i crixr has its own inde-
pendently determined variational coefficient cri, the number of variational parameters in 
a double-zeta-basis-set wave function is twice that in a minimal-basis-set wave function. 
A triple-zeta (TZ) basis set replaces each STO of a minimal basis set by three STOs that 
differ in their orbital exponents.

A split-valence (SV) basis set uses two (or more) STOs for each valence AO but only 
one STO for each inner-shell (core) AO. An SV basis set is minimal for inner-shell AOs 
and double zeta (or triple zeta or . . .) for the valence AOs. Split-valence sets are called 
valence double zeta (VDZ), valence triple-zeta (VTZ), . . . according to the number of 
STOs used for each valence AO.
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AOs are distorted in shape and have their centers of charge shifted upon molecule 
formation. To allow for this polarization, one adds basis-function STOs whose l quantum 
numbers are greater than the maximum l of the valence shell of the ground-state atom. 
Any such basis set is a polarized (P) basis set. A common example is a double-zeta plus 
polarization set (DZ + P or DZP), which typically adds to a double-zeta set a set of five 
3d functions on each “first-row” and each “second-row” atom and a set of three 2p func-
tions (2px, 2py, 2pz) on each hydrogen atom. In the quantum-chemistry literature, Li–Ne 
are called the first-row elements, even though they are actually the second row of the 
periodic table. This terminology will be used in this chapter and in Chapters 16 and 17. 
A DZP STO basis set for C2H5OSiH3 is designated as (6s4p1d>4s2p1d>2s1p), where the 
slashes separate the functions for atoms of different rows of the periodic table in decreasing 
order. For increased accuracy, higher-l polarization functions can be added.

Now consider Gaussian-basis-set terminology. Instead of using the individual Gauss-
ian functions (15.11) as basis functions, the current practice is to take each basis function 
as a normalized linear combination of a few Gaussians, according to

	 xr = a
u

durgu	 (15.12)

where the gu’s are normalized Cartesian Gaussians [Eq. (15.11)] centered on the same 
atom and having the same i, j, k values as one another, but different a’s. The contraction 
coefficients dur are constants that are held fixed during the calculation. In (15.12), xr is 
called a contracted Gaussian-type function (CGTF) and the gu’s are called primitive 
Gaussians. By using contracted Gaussians instead of primitive Gaussians as the basis set, 
the number of variational coefficients to be determined is reduced, which gives large sav-
ings in computational time with little loss in accuracy if the contraction coefficients dur 
are well chosen.

The classifications given for STO basis sets also apply to CGTF basis sets if “STO” 
is replaced by “CGTF” in each definition. For example, a minimal basis set of contracted 
Gaussians consists of one contracted Gaussian function for each inner-shell AO and for 
each valence-shell AO. A DZ basis set has two CGTFs for each such AO, and a DZP 
set adds contracted Gaussians with higher l values to the DZ set, where l K i + j + k 
in (15.11).

In molecular calculations using CGTF basis functions, the orbital exponents and con-
traction coefficients of the basis functions are kept fixed at the predetermined values for the 
basis set used. Therefore, in a CGTF minimal-basis-set calculation, there is no way for the 
basis functions to adjust their sizes to differing molecular environments. By using a double-
zeta basis set, we allow the AO sizes to vary from one molecule to another. For example, 
suppose we have two 1s CGTFs 1s� and 1s� centered on a certain H atom. Each function 
1s� and 1s� is a linear combination of a few s-type primitive Gaussians [Eq. (15.12)]. Let 
the orbital exponents in the primitives of 1s� be much larger than those in 1s�. Then 1s� 
is spread out over a much larger region of space than 1s�. The expression for a given MO 
will contain the terms c11s� + c21s�, where the optimum c1 and c2 values are found by 
the SCF process. The size of the function c11s� + c21s� will increase as the ratio c2>c1 
increases (assuming c1 and c2 have the same signs).

By adding polarization functions, we allow the AO shapes to vary, thereby shift-
ing charge density away from the nuclei and into the bonding regions in the molecule. 
For example, adding 2p functions to a 1s function on a hydrogen atom, we get the terms 
c11s + c22px + c32py + c42pz as part of an MO. This AO will be polarized in a direc-
tion determined by the values of c2, c3, and c4. For example, suppose c3 = 0, c4 = 0, 
c1 7 0, c2 7 0. Then, since 2px has opposite signs on each side of the x axis, the term 
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c22px will cancel some of the probability density of the c11s term on one side of the H atom 
and will augment it on the other side, thereby polarizing the 1s function in the positive 
x direction. (Recall the discussion of hybridization in Section 13.5.) Similarly, p-type AOs 
can be polarized by mixing in d-type AOs.

Several methods exist to form contracted Gaussian sets. Minimal CGTF sets are often 
formed by fitting STOs. One starts with a minimal basis set of one STO per AO, with the 
STO orbital exponents fixed at values found to work well in calculations on small mol-
ecules. Each STO is then approximated as a linear combination of N Gaussian functions, 
where the Gaussian orbital exponents and the coefficients in the linear combination are 
chosen to give the best least-squares fit to the STO. Most commonly, N = 3, giving a set 
of CGTFs called STO-3G; this basis set is defined for the atoms H through I. Since a linear 
combination of three Gaussians is only an approximation to an STO, the STO-3G basis set 
gives results not quite as good as a minimal-basis-set STO calculation. A minimal basis set 
of STOs for a compound containing only first-row elements and hydrogen is denoted by 
12s1p>1s2. Since each STO is replaced by a linear combination of three primitive Gauss-
ians (which is one contracted Gaussian), the STO-3G basis set for a compound of first-row 
atoms and H is denoted by 16s3p>3s2 contracted to [2s1p>1s], where parentheses indicate 
the primitive Gaussians and brackets indicate the contracted Gaussians.

Suppose we want to fit a linear combination of three Cartesian GTFs to a 1s STO having 
z = 1. In atomic units, this STO is [Eqs. (11.14) and (5.101)] S1r; 12 = p-1>2e-r, where 
the value of the parameter z is given in parentheses. From (15.11) and the following 
normalization-constant expression, the normalized s-type Gaussian is (2a>p)3>4e-ar2

. 
The desired normalized linear combination of three Gaussians has the form

G3N1r; 12 = c112a1>p23>4e-a1r
2

+ c212a2>p23>4e-a2r
2

+ c312a3>p23>4e-a3r
2

where the six parameters c1, c2, c3, a1, a2, a3 must be adjusted to fit the function S, 
and N indicates a normalized function. Using a least-squares criterion of goodness 
of fit and the Solver in the Excel spreadsheet, we find (Prob. 15.9) c1 = 0.444615, 
c2 = 0.535336, c3 = 0.154340, a1 = 0.109814, a2 = 0.40575, a3 = 2.22746.

Suppose we now want to fit a 1s STO with orbital exponent z with a linear combina-
tion of three GTFs. We can show (Prob. 15.10) that the correct fit is found by taking 
the function G3N1r; 12 and replacing each orbital exponent ai by z2ai, while leaving the 
coefficients ci unchanged. The quantity z is called a scale factor. The value z = 1.24 
is found to work well as the STO orbital exponent of an H-atom 1s basis function in 
SCF MO molecular calculations. Multiplication of the preceding orbital exponents by 
11.2422 gives the orbital exponents for z = 1.24 as 0.16885, 0.62388, and 3.42494. 
These orbital exponents, along with the coefficients listed above, define the STO-3G 1s 
orbital for H. To get the STO-3G 1s orbital for another atom, one uses the appropriate 
z for that atom and multiplies the z = 1 orbital exponents by z2.

Another way to form contracted Gaussians is to start with atomic GTF SCF calcula-
tions. Huzinaga used a 19s5p2 basis set of uncontracted Gaussians to do SCF calculations 
on the atoms Li–Ne. For example, for the ground state of the O atom, the optimized orbital 
exponents of the nine s-type basis GTFs were found to be [S. Huzinaga, J. Chem. Phys., 
42, 1293 (1965)]

g1 g2 g3 g4 g5 g6 g7 g8 g9

7817 1176 273.2 81.2 27.2 9.53 3.41 0.940 0.285

The expansion coefficients for the 1s SCF oxygen AO were found to be

g1 g2 g3 g4 g5 g6 g7 g8 g9

0.0012 0.009 0.043 0.144 0.356 0.461 0.140 -0.0006 0.001
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and the 2s SCF AO coefficients are

g1 g2 g3 g4 g5 g6 g7 g8 g9

-0.0003 -0.002 -0.010 -0.036 -0.095 -0.196 -0.037 0.596 0.526

Suppose we want to form a valence-double-zeta (VDZ) [3s2p] set of contracted GTFs 
for O. We see that the g1, g2, g3, g4, g5, and g7 coefficients are much larger for the 1s AO 
than for the 2s AO, the g8 and g9 coefficients are much larger for the 2s AO than for the 
1s AO, and g6 makes substantial contributions to both 1s and 2s. We might therefore take 
the contracted 1s basis function as

1s = N10.0012g1 + 0.009g2 + 0.043g3 + 0.144g4 + 0.356g5 + 0.461g6 + 0.140g72
where the normalization constant N is needed because g8 and g9 have been omitted. For 
a VDZ set, we need two basis functions for the 2s AO. These will be formed from g6, g8, 
and g9, which are the main contributors to the 2s AO. Of these three, the function g9 has 
the smallest orbital exponent and so falls off most slowly as r increases. 1g9 is called a 
diffuse function.2 The outer region of an AO changes the most upon molecule formation, 
and to allow for this change we can take the diffuse function g9 as one of the basis func-
tions, giving as the 2s oxygen contracted basis functions

2s = N�1-0.196g6 + 0.596g82,   2s� = g9

The 2p and 2p� CGTFs can be formed similarly.
Dunning’s DZ 34s2p4  and Dunning and Hay’s VDZ 33s2p4  contractions of Huzinaga’s 

19s5p2 first-row-atom AOs were often used in molecular calculations [T. H. Dunning, 
J. Chem. Phys., 53, 2823 (1970); T. H. Dunning and P. J. Hay in Schaefer, Methods of 
Electronic Structure Theory, pp. 1–27].

The 3-21G basis set (defined for the atoms H through Cs) and the 6-31G set (defined 
for H through Zn) are VDZ basis sets of CGTFs. In the 3-21G set, each inner-shell AO 
(1s for Li–Ne; 1s, 2s, 2px, 2py, 2pz for Na–Ar; and so on) is represented by a single CGTF 
that is a linear combination of three primitive Gaussians. For each valence-shell AO (1s 
for H; 2s and the 2p’s for Li–Ne; . . . ; 4s and the 4p’s for K, Ca, Ga–Kr; 4s, the 4p’s, and 
the five 3d’s for Sc–Zn), there are two basis functions, one of which is a CGTF that is a 
linear combination of two Gaussian primitives and one that is a single diffuse Gaussian. 
The 6-31G set uses six primitives in each inner-shell CGTF and represents each valence-
shell AO by one CGTF with three primitives and one Gaussian with one primitive. The 
orbital exponents and contraction coefficients dur in these basis sets were determined by 
using these basis sets to minimize the SCF energies of atoms. However, in the 3-21G basis 
set, the orbital exponents found for H in an atomic calculation are increased using a scale 
factor, and in the 6-31G set, the valence orbital exponents of H and of Li through O are 
scaled to be more appropriate for molecular calculations.

The 6-31G* basis set (defined for the atoms H through Zn) is a valence double-zeta 
polarized basis set that adds to the 6-31G set six d-type Cartesian–Gaussian polarization 
functions on each of the atoms Li through Ca and ten f-type Cartesian–Gaussian polar-
ization functions on each of the atoms Sc through Zn. The 6-31G** basis set adds to the 
6-31G* set a set of three p-type Gaussian polarization functions on each hydrogen and 
helium atom. The orbital exponents of the polarization functions in these two basis sets 
were determined as the average of the optimum values found in calculations on small 
molecules. Each polarization function in 6-31G* or 6-31G** consists of a single primitive 
Gaussian function. The 6-31G* and 6-31G** sets are sometimes denoted as 6-31G(d) and 
6-31G(d, p), respectively. In the 6-31G* basis set, a phosphorus atom has 19 basis functions 
centered on it (1s, 2s, 2px, 2py, 2pz, 3s, 3s�, 3px, 3py, 3pz, 3p�x, 3p�y, 3p�z, and six d’s) and is 
[4s3p1d] for P.
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For second-row atoms, d orbitals contribute significantly to the bonding. To allow 
for this, the 3@21G(*) basis set (defined for H through Ar) is constructed by the addi-
tion to the 3-21G set of a set of six d-type Gaussian functions on each second-row atom 
(Na through Ar). For H–Ne, the 3@21G(*) set (which is often called 3-21G*) is the same 
as the 3-21G set.

Anions, compounds with lone pairs, and hydrogen-bonded dimers have significant 
electron density at large distances from the nuclei. To improve the accuracy for such com-
pounds, the 3@21+G and 6@31+G* basis sets are formed from the 3@21G and 6@31G* sets 
by the addition of four highly diffuse functions 1s, px, py, pz2 on each nonhydrogen atom. 
A highly diffuse function is one with a very small orbital exponent (typically, 0.01 to 
0.1). The 3@21+ +G and 6@31+ +G* sets also include a highly diffuse s function on each 
hydrogen atom.

Basis sets larger than the relatively small 6-31G* and 6-31G** basis sets are often used 
in calculations that include electron correlation. An example is the 6-311G** set defined 
for H–Ca, Ga–Kr and I, which is single zeta for the core AOs, triple zeta for the valence 
AOs, and contains five d-type Gaussian polarization functions on each first- and second-
row atom and three p-type polarization functions on each hydrogen atom. The 6-311G** 
set cannot really be considered to be a large basis set. Large basis sets typically use more 
than one set of polarization functions on each atom. An example of a large basis set for 
correlation calculations is the 6@311+ +G13df, 3pd2 set, defined for H–Ar. The pluses indi-
cate diffuse functions on all atoms; the letters in parentheses indicate that three sets of five 
d-type Gaussian polarization functions (each set having a different orbital exponent) are 
added to each nonhydrogen (giving fifteen d functions on nonhydrogens), one set of seven 
f-type Gaussians is added to each nonhydrogen, and three sets of three p-type Gaussians 
and one set of five d-type Gaussians are added to each hydrogen. This is a VTZ3PD set, 
meaning valence triple zeta, triple polar, and diffuse functions on all atoms.

The basis sets STO-3G, 3-21G, 3@21G(*), 6-31G*, 6-31G**, etc., were developed by 
Pople and co-workers (see Hehre et al., Section 4.3).

Dunning and co-workers have developed the CGTF basis sets cc-pVDZ, cc-pVTZ, 
cc-pVQZ, cc-pV5Z, and cc-pV6Z (collectively denoted as cc-pVnZ, where n goes from 2 to 6), 
designed for use in calculation methods (such as CI) that include electron correlation. 
Here, cc-pVDZ stands for correlation-consistent, polarized valence double-zeta. Unlike 
the Pople-type functions, where the number of d functions used varies from set to set, the 
cc family of functions always uses five d functions, seven f functions, etc. These sets are 
defined for the elements H–Ar, and Ca–Kr for n = 2, 3, 4, and 5; and for H, He, B–Ne, 
and Al–Ar for n = 6. For first-row atoms, the contracted Gaussians present in the cc basis 
sets are

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z

[3s2p1d] [4s3p2d1f ] [5s4p3d2 f1g] [6s5p4d3 f 2g1h] [7s6p5d4 f 3g2h1i]

14 30 55 91 140

where the last row gives the number of basis functions for a first-row atom [for example, 
3112 + 2132 + 1152 = 14 for cc-pVDZ]. Note that as we go from one basis set to the 
next, the number of sets of basis functions of each angular-momentum l value is increased 
by one and one set of functions with the next higher l value is added. The idea is that in 
going from one set to the next larger set, one adds basis functions that make similar contri-
butions to the correlation energy (hence the name “correlation consistent”). For example, 
the first set of f functions has been found to lower the energy by a similar amount as the 
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second set of added d functions, so in going from cc-pVDZ to cc-pVTZ, one adds a second 
set of d functions and the first set of f functions (and an additional s and a p set).

For an H atom, the cc-pVDZ set is [2s1p] and the same pattern is followed as for 
first-row atoms. For example, in going to cc-pVTZ for H, one adds an s set, a p set, and a 
d set to get [3s2p1d].

The cc-pVDZ set is roughly comparable to the 6-31G** set, since both are [2s1p] for 
H and [3s2p1d] for first-row atoms.

The addition of diffuse primitive nonpolarization and polarization functions to the 
cc-pVnZ basis sets gives the augmented sets aug-cc-pVDZ, aug-cc-pVTZ, etc., especially 
suitable for calculations on anions and hydrogen-bonded species. To form the set aug-cc-
pVnZ from cc-pVnZ, the number of sets of basis functions of each angular-momentum 
l value is increased by one by the addition of diffuse primitives. Thus, aug-cc-pVTZ is 
[5s4p3d2 f ] for a first-row atom. For calculation of the electric polarizability of molecules, 
the convergence rate with increase in basis-set size is greatly increased by using doubly 
augmented (d-aug-cc-pVnZ) sets. For a first-row atom, d-aug-cc-pVTZ is [6s5p4d3 f ].

The addition of certain primitive Gaussians to the cc-pVnZ sets gives the cc-pCVDZ, 
cc-pCVTZ, . . . sets (where CV stands for core/valence), which are designed for calcula-
tions that include correlation effects involving the core electrons. Diffuse functions can be 
added to these CV sets to give the aug-cc-pCVnZ sets.

The correlation-consistent basis sets have the advantage that as the basis-set size is 
expanded, the calculated values of a molecular property usually converge smoothly to a 
limiting value, making it easy to find this value by extrapolation. Because of this feature, 
these basis sets are the most widely used sets in high-level ab initio calculations. The dis-
advantage of these basis sets is that they are rather large.

A review of what degree of augmentation with diffuse basis functions is needed for 
calculations of various molecular properties by various methods is given in E. Papajak 
et al., J. Chem. Theory Comput., 7, 3027 (2011). These workers found that augmentation 
with diffuse functions is generally not needed for hydrogen atoms. Deletion of H-atom 
diffuse functions from a basis set gives a basis set denoted by the prefix jul- by these work-
ers, where jul is used because July precedes August in the calendar. Thus the jul-cc-pV5Z 
basis set is formed from the aug-cc-pV5Z set by deleting the diffuse functions on the H 
atoms. Deletion of successive diffuse subshells on heavier atoms gives the jun-, may-, and 
apr- calendar basis sets. For example, the aug-cc-pVTZ basis set has s, p, d, and f diffuse 
functions on each carbon atom, and the jun-cc-pVTZ set deletes the f diffuse functions on 
C and the diffuse functions on H.

Commonly used Gaussian basis sets and literature references for them are available at 
the Basis Set Exchange website (bse.pnl.gov/bse/portal) at the Environmental Molecular 
Sciences Laboratory of the Pacific Northwest Laboratory.

Because of the time savings given by Gaussians in multicenter-integral evaluation, 
nearly all current molecular ab initio calculations use contracted-Gaussian basis sets. 
Most semiempirical methods (which neglect large classes of integrals) use STOs. Density-
functional calculations may use Gaussians, STOs, or other basis functions.

E x a m p l e

Use the Basis Set Exchange on the Internet to find the 3-21G basis functions for the 
oxygen atom.

On the basis-set form, choose the 3-21G basis set and click O on the periodic table. 
From the drop-down menu at the upper left choose All Electron. The website allows 
one to choose the basis-set output to correspond to the format used by one of several 
programs. If we choose Gaussian94 and click on Get Basis Set, we get Table 15.1. The 
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O in the first row indicates the oxygen atom. The zero after the O is required by the 
Gaussian 94 program and can be ignored. On the second line, the S and 3 indicate that 
an s-type CGTF consisting of 3 primitive Gaussians follows; the 1.00 is a scale factor 
and since its value is 1, it can be ignored. The first and second columns in the next three 
rows give the orbital exponents and contraction coefficients, respectively. The large 
values of these orbital exponents show that this is the inner-shell (core) 1s AO. Thus the 
1s CGTO is

1s = 0.0592394gs1322.0372 + 0.3515gs148.43082 + 0.707658gs110.42062

where gs1322.0372 denotes a normalized primitive s-type GTF with orbital expo-
nent 322.037 [Eq. (15.11)]. The SP on the sixth and ninth lines indicates that orbital 
exponents and contraction coefficients for s-type and p-type CGTFs follow. These are 
for the valence 2s and 2p AOs. The 3-21G set uses the same orbital exponents for the 
2s and 2p AOs, so as to speed up calculations. The first column of numbers gives the 
orbital exponents and the second and third columns give the contraction coefficients. 
Thus the valence CGTFs are 2s� = -0.404453gs17.402942 + 1.22156gs11.57622, 
2p�x = 0.244586gpx

17.402942 + 0.853955gpx
11.57622, c, 2s� = gs10.3736842, 

2p�x = gpx
10.3736842, c, where the dots indicate 2py and 2pz CGTFs. [Sometimes 

people omit the normalization constant from each primitive Gaussian (15.11) and 
include it within the contraction coefficient for that Gaussian. The fact that the contrac-
tion coefficient for each outer 2s and 2p CGTF is 1.00 assures us that the primitive 
Gaussians are normalized.]

To describe a quantum-mechanical calculation, one specifies the method and the basis 
set. The letters HF (for Hartree–Fock) denote any ab initio SCF MO calculation, whether 
or not the basis set is large enough to come close to the Hartree–Fock limit. Thus the 
notation HF/3-21G denotes an ab initio SCF MO calculation that uses the 3-21G basis set.

15.5 The SCF MO Treatment of H2O
For a minimal-basis-set MO treatment of H2O (Fig. 15.1 in Section 15.2), we start with the 
O1s, O2s, O2px, O2py, and O2pz inner-shell and valence oxygen AOs, and the H11s and 
H21s valence AOs of the hydrogen atoms. Linear combinations of these seven basis AOs 
give LCAO approximations to the seven lowest MOs of water. As stated in Section 15.3, 
the MOs can be chosen so that upon application of the molecular symmetry operators each 

Table 15.1  The 3-21G Basis Set for the Oxygen Atom

O 0

S 3	 1.00

322.03700000 0.05923940

48.43080000 0.35150000

10.42060000 0.70765800

SP 2	 1.00

7.40294000 20.40445300 0.24458600

1.57620000 1.22156000 0.85395500

SP 1	 1.00

0.37368400 1.00000000 1.00000000
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MO transforms according to one of the symmetry species of the molecular point group. To 
aid in choosing the right linear combinations of AOs, we examine the symmetry behavior 
of the AOs.

The 1s and 2s oxygen AOs are spherically symmetric, so rotation about the C21z2 axis 
and reflection in the xz or yz plane has no effect on them. They thus belong to the totally 
symmetric symmetry species a1 of (15.3). The effect of a Cn21z2 rotation on the oxygen 2py 
AO is shown in Fig. 15.2. This rotation sends O2py into its negative (see also Fig. 12.10). 
Reflection in the xz plane sends O2py into its negative, and reflection in the molecular yz 
plane sends O2py into itself. The symmetry eigenvalues of O2py are 1, -1, -1, and 1. The 
symmetry species of this AO is b2. Similarly, the symmetry species of O2px and O2pz are 
found to be b1 and a1, respectively.

Now for the hydrogen 1s AOs. Reflection in the yz plane leaves each of them unchanged. 
However, rotation by 180� about the z axis sends H11s into H21s and vice versa (Fig. 15.3). 
The H11s and H21s functions are not eigenfunctions of OnC21z2 and so do not transform 
according to any of the symmetry species of H2O.

As a preliminary step in finding the MOs of a molecule, it is helpful (but not essential) 
to construct linear combinations of the original basis AOs such that each linear combi-
nation does transform according to one of the molecular symmetry species. Such linear 
combinations are called symmetry orbitals or symmetry-adapted basis functions. The 
symmetry orbitals are used as the basis functions xs in the expansions fi = g s csixs 
[Eq. (14.33)] of the MOs fi. The use of basis functions that transform according to the 
molecular symmetry species simplifies the calculation by putting the secular determinant 
in block-diagonal form. This will be illustrated below.

Each oxygen AO transforms according to one of the symmetry species of H2O and 
can serve as a symmetry orbital. However, neither of the two hydrogen 1s AOs belongs 
to a symmetry species of H2O, and we must construct two symmetry orbitals from these 
AOs. Consider the linear combinations:

	 H11s + H21s and H11s - H21s	 (15.13)

Figure 15.2  The effect of 
Cn21z2 on the 2py oxygen AO 
in H2O.
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Figure 15.3  The effect 
of a Cn21z2 rotation on the 
H11s AO in H2O.

C2(z)

z z

^

H1 H1H2 H2



We have

 OnC21z21H11s + H21s2 = H21s + H11s

 OnC21z21H11s - H21s2 = H21s - H11s

Thus the first and second functions in (15.13) are eigenfunctions of OnC21z2 with eigenvalues 
+1 and -1, respectively. Examination of the effects of the other three symmetry operators 
shows the functions (15.13) to belong to the symmetry species a1 and b2, respectively. We 
shall not bother to normalize the symmetry orbitals (15.13). The seven basis symmetry 
functions and their symmetry species are then

	

x1 x2 x3 x4 x5 x6 x7

H11s + H21s O1s O2s O2pz H11s - H21s O2py O2px

a1 a1 a1 a1 b2 b2 b1

	 (15.14)

Now consider the SCF secular determinant det1Frs - eiSrs2 [Eq. (14.36)]. We assert 
that

	 Frs K 8xr 0Fn 0xs9 = 0	 (15.15)

whenever xr and xs belong to different symmetry species. This result follows from the 
theorem [Eq. (7.50)] that 8gj 0Bn 0 gk9 = 0 if gj and gk are eigenfunctions of a Hermitian oper
ator An with different eigenvalues, where An commutes with Bn. The symmetry orbitals 
of H2O are eigenfunctions of the symmetry operators, each of which commutes with 
the electronic Hamiltonian and with the Fock operator Fn. Symmetry orbitals xr and xs 
that belong to different symmetry species differ in at least one symmetry eigenvalue. 
Hence (15.15) follows. Moreover, since two eigenfunctions of a Hermitian operator that 
correspond to different eigenvalues are orthogonal, we have

	 Srs K 8xr 0xs9 = 0	 (15.16)

whenever xr and xs belong to different symmetry species. From (15.15) and (15.16), it 
follows that the use of symmetry orbitals puts the secular determinant of H2O in block-
diagonal form, each block corresponding to a different symmetry species. The blocks are 
4 * 4, 2 * 2, and 1 * 1. [For molecules with degenerate symmetry species (E, T, and so 
on), the symmetry orbitals of the degenerate species are not necessarily eigenfunctions of 
the symmetry operators. Nevertheless, the symmetry orbitals still put the secular determi-
nant in block-diagonal form, as can be shown using group theory.]

The set of Roothaan simultaneous equations (14.34) then breaks up into one set of 
four simultaneous equations, one set of two simultaneous equations, and one set of one 
“simultaneous” equation (Section 9.6). The first set contains matrix elements involving 
only the four a1 symmetry orbitals. Therefore, four of the lowest seven H2O MOs are linear 
combinations of the four a1 symmetry orbitals. These four MOs must have a1 symmetry. 
Similarly, we have two MOs of b2 symmetry and one MO of b1 symmetry. The symmetry 
orbitals are not (in general) the MOs, but each MO must be a linear combination of those 
symmetry orbitals having the same symmetry species as the MO. The forms of the lowest 
MOs of H2O are then

f1 = c11x1 + c21x2 + c31x3 + c41x4  f5 = c55x5 + c65x6

f2 = c12x1 + c22x2 + c32x3 + c42x4  f6 = c56x5 + c66x6

f3 = c13x1 + c23x2 + c33x3 + c43x4  f7 = x7

	 f4 = c14x1 + c24x2 + c34x3 + c44x4 	

(15.17)
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The next step in the SCF MO calculation is to choose explicit forms for the seven 
AOs. The orbital energies and the coefficients of the symmetry orbitals are then found 
using Roothaan’s equations.

Pitzer and Merrifield did an H2O minimal-basis-set calculation, representing each 
AO by a single STO [R. M. Pitzer and D. P. Merrifield, J. Chem. Phys., 52, 4782 (1970); 
S. Aung, R. M. Pitzer, and S. I. Chan, J. Chem. Phys., 49, 2071 (1968)]. They optimized 
the orbital exponents, finding 1.27 for H1s, 7.66 for O1s, 2.25 for O2s, and 2.21 for 
O2p. (To optimize the exponents, one must repeat the entire SCF iterative calculation 
for several different sets of orbital exponents to locate the set that gives the minimum 
energy. Since orbital-exponent optimization is time consuming, it is only feasible for 
small molecules.) The calculated orbital energies in hartrees are: 1a1, -20.56; 2a1, -1.28; 
1b2, -0.62; 3a1, -0.47; 1b1, -0.40. The ground-state electron configuration of this ten-
electron molecule is

	 11a12212a12211b22213a12211b122	 (15.18)

The ground state has a closed-shell configuration and is a 1
 A1 state.

The five lowest SCF MOs found by Pitzer and Merrifield at the experimental geom-
etry are

 1a1 = 1.0001O1s2 + 0.0151O2s#2 + 0.0031O2pz2 - 0.0041H11s + H21s2
 2a1 = -0.0271O1s2 + 0.8201O2s#2 + 0.1321O2pz2 + 0.1521H11s + H21s2
 1b2 = 0.6241O2py2 + 0.4241H11s - H21s2
 3a1 = -0.0261O1s2 - 0.5021O2s#2 + 0.7871O2pz2 + 0.2641H11s + H21s2

	  1b1 = O2px 	

(15.19)

The O2s#  orbital in (15.19) is an orthogonalized orbital [Eq. (13.125)]:

	 O2s# = 1.0283O2s - 0.23131O1s24 	 (15.20)

where O2s is the ordinary 2s STO:

O2s = 2.255>2p-1>23-1>2rO exp1-2.25rO2
where rO is the distance to the oxygen nucleus. The MO approximation to the ground-state 
wave function of H2O is the 10 * 10 Slater determinant

	 01a11a12a12a11b21b23a13a11b11b1 0 	 (15.21)

Consider the nature of the MOs. The lowest MO, 1a1, is essentially a pure nonbonding 
1s oxygen AO, which is hardly surprising.

The oxygen part of the 2a1 MO is mostly O2s with some O2pz mixed in. This 
mixing in (hybridization) of O2pz adds to the value of the O2s AO along the positive 
z axis (which lies between the hydrogens; Fig. 15.1) and subtracts from O2s along the 
negative z axis. The combination of the hybridized O2s and O2pz orbitals with the H11s 
and H21s orbitals in the 2a1 MO then gives electron probability-density buildup in the 
region enclosed by the three nuclei. Therefore, the 2a1 MO contributes to the bonding 
in water.

Consider the 1b2 MO. The 2py oxygen AO has its positive lobe on the H1 side of 
the molecule, and so the positive lobe of O2py adds to H11s in the 1b2 MO, giving elec-
tron charge buildup between the H1 and O nuclei. Similarly, the negative lobe of O2py 
adds to -H21s, giving charge buildup between O and H2 in this MO. Hence 1b2 is a 
bonding MO.



The hybridization of the 2s and 2pz oxygen AOs in 3a1 builds up electron probability 
density in the region around the negative z axis, away from the hydrogens, giving this 
MO substantial lone-pair character. On the positive side of the z axis, the oxygen 2s and 
2pz AOs tend to cancel each other, and we get little bonding overlap between the oxygen 
hybrid and the hydrogen AOs. Alternatively, we can look separately at the overlap between 
O2s#  and the hydrogens (which is negative or antibonding) and the overlap between O2pz 
and the hydrogens (which is positive or bonding). Because of the approximate cancellation 
of these overlaps (see Section 15.6), the 3a1 MO has little bonding character and is best 
described as mainly a lone-pair MO.

The 1b1 MO is a nonbonding lone-pair 2px oxygen AO.
Figure 15.4 shows the shapes of the bonding MOs 2a1 and 1b2. Note that their sym-

metry eigenvalues are as given by (15.3). [For accurately plotted H2O MO contours, see 
T. H. Dunning, R. M. Pitzer, and S. Aung, J. Chem. Phys., 57, 5044 (1972).]

Each of the SCF bonding MOs in (15.19) and Fig. 15.4 is delocalized over the entire 
molecule and does not resemble a chemical bond. The relation of these MOs to the picture 
presented in many chemistry books, where one bonding MO points along the OiH1 bond 
and the other points along the OiH2 bond, is discussed in Section 15.8.

The unoccupied 4a1 and 2b2 MOs of water calculated by Pitzer and Merrifield (for 
nonoptimized, Slater-rule exponents) are

4a1 = 0.081O1s2 + 0.841O2s#2 + 0.701O2pz2 - 0.751H11s + H21s2
	 2b2 = 0.991O2py2 - 0.891H11s - H21s2	

(15.22)

For these two MOs, the opposite signs of the oxygen and hydrogen AO coefficients give 
charge depletion between the nuclei. These MOs are antibonding.

The unoccupied orbitals (15.22) are called virtual orbitals. Because they were calcu-
lated for the electron configuration (15.18), they are not accurate representations of the SCF 
orbitals actually occupied in H2O excited electronic states. When the electron configura-
tion changes, the interorbital electronic interactions change, thereby changing the forms of 
all the SCF orbitals. We can, however, use the virtual orbitals and their calculated energies 
as rough approximations to the higher SCF orbitals and energies.

The formation of the H2O MOs from the separated-atoms AOs is illustrated schemati-
cally in Fig. 15.5. The dashed lines indicate which AOs contribute significantly to each 
MO. Note that only AOs of roughly the same energy combine to a significant degree in 
a given MO. [This fact is explained by the 1>1E(02

n - E102
m 2 term in Eq. (9.28).] We can 

thus get a qualitative idea of the MOs without doing any calculations by using the rules 
that only symmetry orbitals of the same symmetry species combine and that only AOs of 
comparable energy (Fig. 11.2) contribute significantly to a given MO.

Figure 15.4  Sketches of 
the two main bonding MOs 
of H2O.

1

1

1

2

2

O O

H1 H1H2 H2

2a1 1b2

15.5 The SCF MO Treatment of H2O  |  453



454  Chapter 15  |  Molecular Electronic Structure

O2px O2py O2pz

O2s

O1s

H11s H21s

1b1

1b2

1a1

3a1

4a1

2b2

2a1

Energy
(eV)

10

210

220

230

240

2560

20

0

Figure 15.5  Formation 
of the H2O MOs from the 
minimal-basis AOs. The five 
lowest MOs are filled in the 
ground state. (Note the 
break in the scale.)

Table 15.2 lists some of the many ab initio SCF MO calculations on the H2O ground 
electronic state. The size and quality of the basis set used determine how closely the 
Hartree–Fock limit is approached. The experimental equilibrium electronic energy of 
H2O is -76.480 hartrees. (This is the energy needed to go from the molecule at its equi-
librium geometry to nuclei and electrons at infinite separation from one another.) All 
the calculations listed are nonrelativistic. The only significant relativistic correction will 
occur in the 1s inner-shell electrons of oxygen (see Section 11.7). Since this shell remains 
essentially unchanged on molecule formation, one can use the relativistic energy correc-
tion calculated for the O atom as the relativistic correction for H2O. In addition, there is a 
small correction due to motion of the center of mass of the nuclei relative to the center of 
mass of the molecule. When these two corrections are subtracted from the experimental 
energy of -76.480 hartrees, we obtain the nonrelativistic fixed-nuclei H2O energy as 
-76.438 hartrees.

Note that, except for the first three calculations in Table 15.2, the SCF MO calcula-
tions give a bond length that is somewhat shorter than the true length. This is a general 
characteristic of the HF method, as is the tendency of HF calculations to predict a dipole 
moment that is somewhat too large.

As mentioned in Section 15.4, the cc basis sets can be used to extrapolate to the 
complete-basis-set (CBS) limit for molecular properties. Energies in hartrees for SCF MO 
H2O optimized-geometry calculations with the cc-pVnZ basis sets for n = 2, 3, 4, 5, 6 are 
-76.02705, -76.05777, -76.06552, -76.06778, -76.06810, respectively. The following 
empirical formula has been found to work rather well for extrapolating cc-pVnZ SCF MO 
energies to the CBS limit:

	 ESCF1n2 = ESCF1�2 + Ae-Bn	 (15.23)

where ESCF1n2 is the SCF energy found with the cc-pVnZ set, ESCF1�2 is the CBS limit 
predicted by cc-pVnZ in the limit n S �, and A and B are positive parameters whose values 



are found by a least-squares fit of the calculated energies. (This formula can be applied 
using either energies at optimized geometries or energies at a fixed geometry.) There are 
three unknown quantities in (15.23), A, B, and ESCF1�2, and we have five calculated ener-
gies to do the least-squares fit. Although all five energies could be used, experience shows 
that the accuracy of the extrapolation is usually improved if the energy of the rather small  

Table 15.2  H2O Hartree–Fock Calculationsa

Referenceb Basis�Setc Energy>Eh M>D U ROH>Å

CCCBDB STO-3G, 7 274.966 1.71 100.0° 0.989

CCCBDB 3-21G, 13 275.586 2.39 107.7° 0.967

Pitzer, Merrifield Minimal STO, 7 275.705 1.92 100.3° 0.990

CCCBDB 6-31G*, 19 276.011 2.20 105.5° 0.947

CCCBDB 6-31G**, 25 276.024 2.15 106.0° 0.943

CCCBDB cc-pVDZ, 24 276.027 2.04 104.6° 0.946

K. S. Kim et al. 6-31111G(2d,2p), 47 276.057 2.02 106.3° 0.940

CCCBDB cc-pVTZ, 58 276.058 1.99 106.0° 0.941

CCCBDB aug-cc-pVTZ, 92 276.061 1.93 106.3° 0.941

Dunning et al. [6s5p2d>3s1p], 43 276.062 2.08 106.6° 0.941

Rosenberg et al. (5s4p2d>3s1p)STO, 39 276.064 2.00 106.1° 0.940

CCCBDB cc-pVQZ, 115 276.0655 1.97 106.2° 0.940

CCCBDB aug-cc-pVQZ, 172 276.0667 1.94 106.3° 0.940

Amos [8s6p4d2f>6s3p1d], 112 276.0675 106.3° 0.940

K. S. Kim et al. (13s8p4d2f>8s4p2d), 131 276.0676 1.94 106.3° 0.940

Bakken et al. cc-pV5Z, 201 276.0678 1.96 106.33° 0.9396

Bakken et al. aug-cc-pV5Z, 287 276.0680 1.94 106.34° 0.9396

Cortez et al. cc-pV6Z, 322 276.06810 1.95 106.34° 0.9396

aug-cc-pV6Z, 443 276.06815 1.94 106.34° 0.9396

Pahl, Handy specialc 276.06817 106.34° 0.9396

Estimated Hartree–Fock energyd 276.0683

Nonrelativistic fixed–nuclei energye 276.438

Experimental values 276.480e 1.85 104.5°f 0.9578f

aEnergy>Eh is the total electronic energy including nuclear repulsion in hartrees at the calculated equilibrium geometry; m, u, 
and ROH are the calculated electric dipole moment, equilibrium bond angle, and equilibrium bond length.
bCCCBDB is the Computational Chemistry Comparison and Benchmark DataBase (Section 15.1); R. M. Pitzer and 
D. P. Merrifield, J. Chem. Phys., 52, 4782 (1970); K. S. Kim et al., J. Chem. Phys., 97, 6649 (1992); T. H. Dunning, 
R. M. Pitzer, and S. Aung, J. Chem. Phys., 57, 5044 (1972); B. J. Rosenberg and I. Shavitt, J. Chem. Phys., 63, 2162 
(1975) and B. J. Rosenberg, W. C. Ermler, and I. Shavitt, J. Chem. Phys., 65, 4072 (1976); R. D. Amos, J. Chem. Soc. 
Faraday Trans. 2, 83, 1595 (1987); K. S. Kim et al., op. cit; V. Bakken et al., Mol. Phys., 96, 653 (1999); M. H. Cortez 
et al., J. Chem. Theory Comput., 3, 1267 (2007); F. A. Pahl and N. C. Handy, Mol. Phys., 100, 3199 (2002).
cThe number of basis functions is given. All the basis sets are GTFs except the Pitzer–Merrifield, Rosenberg et al., and 
Pahl–Handy sets. Brackets denote CGTF sets and parentheses denote an uncontracted set. A slash separates the oxygen and 
hydrogen basis functions. The Pahl–Handy set consists of plane waves and radial polynomials.
dThis estimate is for the calculated Hartree–Fock equilibrium geometry. See D. Feller, C. M. Boyle, and E. R. Davidson, J. Chem. 
Phys., 86, 3424 (1987).
eA. Lüchow, J. B. Anderson, and D. Feller, J. Chem. Phys., 106, 7706 (1997).
fP. Jensen et al., J. Mol. Spectrosc., 168, 271 (1994); A. Császár et al., J. Chem. Phys., 122, 214305 (2005).
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cc-pVDZ set is not used in the fit. Use of the n = 3, 4, 5, and 6 energies gives (Prob. 15.21) 
ESCF1�2 = -76.0686 hartrees, close to the -76.0683 value listed in Table 15.2.

Although the SCF MO calculations give good geometries and fairly good dipole 
moments, they give poor dissociation energies. For the near-Hartree–Fock calculations of 
Rosenberg et al., the difference between the energy of two isolated hydrogen atoms and 
one oxygen atom (as calculated with the oxygen basis set used in the H2O calculation) 
and the calculated H2O energy at the optimized geometry gives De = 6.94 eV, compared 
with the experimental value 10.09 eV. This large error in dissociation energy is typical of 
Hartree–Fock calculations, as we saw for diatomics. When H2O is formed from 2H + O, 
two new electron pairs are formed. Two electrons paired in the same MO move through the 
same region of space, and hence the correlation energy of such a pair is substantial. The 
Hartree–Fock calculation does not take into account this extra correlation in the molecule 
(as compared with the separated atoms) and hence gives too small a binding energy.

Hartree–Fock orbital energies have experimental as well as theoretical significance. 
In 1933, Koopmans gave arguments that indicate that the energy required to remove an 
electron from a closed-shell atom or molecule is reasonably well approximated by minus 
the orbital energy e of the AO or MO from which the electron is removed, a result called 
Koopmans’ theorem. A partial justification of this result is the fact that, if we neglect the 
change in the form of the MOs that occurs when the molecule is ionized, then the differ-
ence between the Hartree–Fock energies of the ion and the neutral closed-shell molecule 
can be shown to equal the orbital energy of the MO from which the electron was removed 
(see Prob. 15.18).

The energy needed to remove an electron from an MO of a molecule can be found 
experimentally using photoelectron spectroscopy. Here, one uses photons of known 
energy to knock electrons out of gas-phase molecules and measures the kinetic ener-
gies of the emitted electrons. A comparison of minus the near-Hartree–Fock orbital 
energies (Rosenberg and Shavitt, cited in Table 15.2) with the experimentally observed 
vertical ionization energies from the various H2O MOs follows, where the energies are 
in electronvolts and the experimental values are in parentheses: 1a1, 559.5 1539.72; 
2a1, 36.7 132.22; 1b2, 19.5 118.52; 3a1, 15.9 114.72; 1b1, 13.8 112.62. (The vertical ion-
ization energy is the energy difference between the molecule M and the ion M+ when 
M+ is at the equilibrium geometry of M, whereas for the adiabatic ionization energy, 
M+ is at the equilibrium geometry of M+. In the unlikely event that the equilibrium 
geometries of M and M+ are the same, these two ionization energies are equal. Other-
wise, the vertical ionization energy is larger than the adiabatic ionization energy. Koop-
mans’ theorem predicts the vertical ionization energy.) Koopmans’-theorem ionization 
energies are somewhat inaccurate because of (1) neglect of the change in the forms of 
the MOs that occurs on ionization, and (2) neglect of the change in correlation energy 
between the neutral molecule and the ion.

15.6 Population Analysis and Bond Orders
A widely used (and widely criticized) method to analyze SCF MO wave functions is popu-
lation analysis, introduced by Mulliken. He proposed a method that apportions the elec-
trons of an n-electron molecule into net populations nr in the basis functions xr and overlap 
populations nr - s for all possible pairs of basis functions.

For the set of basis functions x1, x2, c, xb, each MO fi has the form

fi = a
b

s = 1
csixs = c1ix1 + c2ix2 + g + cbixb



15.6 Population Analysis and Bond Orders  |  457

For simplicity, we shall assume that the csi>s and xs>s are real. The probability density 
associated with one electron in fi is

0fi 0 2 = c2
1ix

2
1 + c2

2ix
2
2 + g + 2c1ic2ix1x2 + 2c1ic3ix1x3 + 2c2ic3ix2x3 + g

Integrating this equation over three-dimensional space and using the fact that fi and the 
xs’s are normalized, we get

	 1 = c2
1i + c2

2i + g + 2c1ic2iS12 + 2c1ic3iS13 + 2c2ic3iS23 + g	 (15.24)

where the S’s are overlap integrals: S12 = 1x1x2 dv1 dv2, etc. Mulliken proposed that the 
terms in (15.24) be apportioned as follows. One electron in the MO fi contributes c2

1i to 
the net population in x1, c

2
2i to the net population in x2, etc., and contributes 2c1ic2iS12 to 

the overlap population between x1 and x2, 2c1ic3iS13 to the overlap population between x1 
and x3, etc.

Let there be ni electrons in the MO fi 1ni = 0, 1, 22 and let nr,i and nr - s,i symbolize 
the contributions of electrons in the MO fi to the net population in xr and to the overlap 
population between xr and xs, respectively. We have

	 nr,i = nic
2
ri,  nr - s,i = ni12cricsiSrs2	 (15.25)

By summing over the occupied MOs fi, we obtain the Mulliken net population nr in xr 
and the overlap population nr -s for the pair xr and xs as

nr = a
i

nr,i and nr - s = a
i

nr - s,i

The sum of all the net and overlap populations equals the total number of electrons n in 
the molecule (Prob. 15.23): g rnr + g r 7 sg snr - s = n.

E x a m p l e

For the H2O MOs in (15.19), calculate the net and overlap population contributions 
from the 2a1 MO and find nr for each basis function. Use H11s and H21s as basis 
functions, rather than the symmetry-adapted basis functions.

To find overlap populations, we need the overlap integrals. Since an orthogonalized  
2s AO is used, all the basis functions centered on oxygen are mutually orthogonal, and 
the overlap populations are zero for all pairs of functions centered on oxygen. (For 
extended basis sets, this is not true. For example, a DZ basis set uses two 1s-type func-
tions on oxygen, and these functions are not orthogonal to each other.) Overlap integrals 
between basis STOs centered on different atoms can be found by interpolation in the 
tables of R. S. Mulliken et al., J. Chem. Phys., 17, 1248 (1949). One finds (Prob. 15.24)

8H11s 0O1s9 = 8H21s 0O1s9 = 0.054, 8H11s 0O2s#9 = 8H21s 0O2s#9 = 0.471

8H11s 0O2py9 = - 8H21s 0O2py9 = 0.319, 8H11s 0O2pz9 = 8H21s 0O2pz9 = 0.247

8H11s 0H21s9 = 0.238

The contributions to the net populations in the basis functions from the two electrons 
in the 2a1 MO are given by (15.25) and (15.19) as

 nO1s,2a1
= 21-0.02722 = 0.0015, nO2s# ,2a1

= 210.82022 = 1.345, nO2pz,2a1
= 0.035

 nH11s,2a1
= 210.15222 = 0.046,  nH21s,2a1

= 0.046
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The 2a1 contributions to the nonzero overlap populations are given by (15.25) and 
(15.19) as

 nO1s - H11s,2a1
= 21221-0.027210.152210.0542 = -0.0009 = nO1s - H21s,2a1

 nO2s# - H11s,2a1
= 0.235 = nO2s# - H21s,2a1

 nO2pz - H11s,2a1
= 0.020 = nO2pz - H21s,2a1

, nH11s - H21s,2a1
= 0.022

The net population of O1s is found from (15.25) and (15.19) as the sum of contribu-
tions from each occupied MO:

nO1s = 211.00022 + 21-0.02722 + 21-0.02622 = 2.00

The net populations for the other basis functions are (Prob. 15.25a) nO2s#
= 1.85,

nO2px
= 2.00, nO2py

= 0.78, nO2pz
= 1.27, nH11s = 0.545, nH21s = 0.545.

To decide whether the MO fi in a covalent molecule is bonding, we examine the sum 
of those overlap-population contributions nr - s,i for which the basis functions xr and xs 
lie on different atoms. If this interatomic overlap population contribution is substantially 
positive, the MO is bonding; if it is substantially negative, the MO is antibonding. If it is 
zero or near zero, the MO is nonbonding.

For example, for the 3a1 MO in (15.19), overlap of O1s with H11s contributes 
21221-0.026210.264210.0542 = -0.0015, overlap of O1s with H21s contributes -0.0015, 
overlap of O2s#  with H11s contributes 21221-0.502210.264210.4712 = -0.250, 
overlap of O2s#  with H21s contributes -0.250, overlap of O2pz with H11s contrib-
utes 0.205 and with H21s contributes 0.205, and overlap of H11s with H21s contributes 
212210.2642210.2382 = 0.066. Summing, we get an interatomic overlap population of 
-0.03 for the 3a1 MO. This value is near zero, indicating a nonbonding (lone-pair) MO. 
The interatomic overlap population for 2a1 is found to be 0.53, and that for 1b2 is 0.50 
(Prob. 15.25). These are bonding MOs. For the inner-shell 1a1 MO, we get 0.00.

Instead of apportioning the electrons into net populations in basis functions and over-
lap populations for pairs of basis functions, it is convenient for some purposes to appor-
tion the electrons among the basis functions only, with no overlap populations. Mulliken 
proposed that this be done by splitting each overlap population nr - s equally between the 
basis functions xr and xs. For each basis function xr, this gives a gross population Nr 
in xr that equals the net population nr plus one-half the sum of the overlap populations 
between xr and all other basis functions:

Nr = nr +
1

2 a
s � r

nr - s

The sum of all the gross populations equals the number of electrons in the molecule: gb
r = 1Nr = n.

For example, the contribution to the gross population of O2s#  from the 2a1 MO in 
(15.19) is

NO2s# ,2a1
= 2310.82022 + 10.820210.152210.4712 + 10.820210.152210.47124 = 1.58

One finds these other contributions to the gross population of O2s# : 0.00 from 1a1, 0.25 
from 3a1, zero from 1b2 and 1b1. Addition of these contributions gives a gross population (or 
occupation number) of 1.83 for O2s# . Doing the calculation for the other basis functions, one 
finds (Prob. 15.25c) these gross populations (where the contributions are listed in the order 
1a1, 2a1, 1b2, 3a1,1b1): NO1s = 2.00 + 0.00 + 0 + 0.00 + 0 = 2.00;  NO2s#

= 1.83;
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NO2px
= 0 + 0 + 0 + 0 + 2 = 2;   NO2py

= 0 + 0 + 1.12 + 0 + 0 = 1.12;   NO2pz
=

0 + 0.055 + 0 + 1.445 + 0 = 1.50;   NH11s = 0.00 + 0.184 + 0.442 + 0.150 + 0 =

0.776;  NH21s = 0.776.
Addition of the gross populations for all basis functions centered on atom B gives the 

gross atomic population NB for atom B:

NB = a
r�B

Nr

where the notation r � B denotes all basis functions centered on atom B. Provided all basis 
functions are atom centered (this is usually true), the sum of the gross atomic populations 
equals the number of electrons in the molecule. The Mulliken net atomic charge qB on 
atom B with atomic number ZB is defined as

qB K ZB - NB

For example, for the Pitzer–Merrifield H2O wave function, the gross atomic popula-
tions, found by summing the gross populations of the basis functions on each atom, are 
NO = 2.00 + 1.83 + 2 + 1.12 + 1.50 = 8.45, NH1

= 0.776 = NH2
: the net charges are 

qO = 8 - 8.45 = -0.45, qH1
= 1 - 0.776 = 0.224 = qH2

. As expected, the oxygen is 
negatively charged.

One should not rely too much on numbers calculated by population analysis. Mulliken’s 
assignment of half the overlap population to each basis function is arbitrary and sometimes 
leads to unphysical results (see Mulliken and Ermler, Diatomic Molecules, pages 36–38, 
88–89). Moreover, a small change in basis set can produce a large change in the calculated 
net charges. For example, net atomic charges on each H atom in CH4, NH3, H2O, and HF 
calculated from HF/STO-3G, HF/3-21G, HF/6-31G*, and HF/6-31G** wave functions are 
(CCCBDB, Section 15.1)

 CH4 NH3 H2O HF

STO@3G 0.07 0.15 0.17 0.19

3@21G 0.20 0.29 0.37 0.45

6@31G* 0.16 0.33 0.43 0.52

6@31G** 0.12 0.26 0.34 0.39

Comparison of values calculated with the same basis set correctly shows the increasing 
charge on each H atom as the electronegativity increases from C to N to O to F, but com-
parison of values calculated with different basis sets could erroneously lead one to say that 
the C—H bond in CH4 is more polar than the F—H bond in FH.

An improvement on Mulliken population analysis (MPA) is natural population 
analysis (NPA) [A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83, 735 
(1985)], which uses ideas related to natural orbitals (Pilar, Section 10-7). Here, one first 
calculates a set of orthonormal natural atomic orbitals (NAOs) from the AO basis set xr. 
The NAOs are then used to compute a set of orthonormal natural bond orbitals (NBOs), 
where each occupied NBO is classifiable as a core, lone pair, or bond orbital. Using these 
NBOs, one carries out a population analysis. NPA net atomic charges show less basis-set 
dependence than those from Mulliken population analysis. Other methods of assigning net 
atomic charges are discussed in the next section. Still another method of population analy-
sis that yields net atomic charges is Löwdin population analysis (Cramer, Section 9.1.3.2).

A review of population analysis recommended that in view of the existence of improved 
methods, Mulliken population analysis should no longer be used [S. M. Bachrach in  
K. Lipkowitz and D. B. Boyd (eds.), Reviews in Computational Chemistry, vol. 5, VCH 
(1994), Chapter 3.]
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Bond Orders
Many methods have been proposed to calculate bond orders from SCF MO wave functions. 
One useful definition is due to Mayer [I. Mayer, Chem. Phys. Lett., 97, 270 (1983)]. For a 
closed-shell molecule whose occupied MOs are fi = g s csixs, the Mayer bond order BCD 
between atoms C and D is defined as

	 BCD K a
t�C

a
u�D

a a
r

PtrSrub a a
r

PurSrtb 	 (15.26)

where the density matrix element Ptr is given by (14.42) as Ptr K g j njc*t j cuj, the notation 
t � C denotes all basis functions centered on atom C, Srt is the overlap integral between 
basis functions xr and xt, and nj is the number of electrons in MO j. The Mayer bond orders 
usually have values close to those found from Lewis electron-dot formulas.

15.7 �The Molecular Electrostatic Potential, 
Molecular Surfaces, and Atomic Charges

The Molecular Electrostatic Potential
The electric potential f at a point P in space is defined as the reversible work per unit 
charge needed to move an infinitesimal test charge Qt from infinity to P, which we write as 
fP K w�SP>Qt. The SI unit of f is the volt (V), where 1 V K 1 J/C. When we do revers-
ible work w on the test charge, we change its potential energy V by w (just as reversibly rais-
ing or lowering a mass in the earth’s gravitational field changes its potential energy). If we 
take the potential energy of Qt as zero at infinity, we therefore have VP = w�SP = fPQt. 
The electrical potential energy V of a charge at point P (where the electric potential is fP) 
is fPQt. From the definition of fP, it readily follows (Prob. 15.26) that in the space around 
a point charge Q, the electric potential (in SI units) is fP = Q>4pe0d, where d is the dis-
tance between point P and the charge. The electric potential is a function of the location 
(x, y, z) of point P in space: f = f1x, y, z2. 

If the system consists of a single point charge QA located at 1xA, yA, zA2, then 
f1 = QA>4pe0r1A, where r1A is the distance between point A and point 1 with coordinates 
1x1, y1, z12. If the system consists of several point charges, then each contributes to f and

	 f1 = a
i

Qi

4pe0r1i
	 (15.27)

If the system is a molecule, we view it as a collection of point-charge nuclei and electronic 
charge smeared out into a continuous distribution. Electrons are point charges and are 
not actually smeared out into a continuous charge distribution, but the electronic-charge-
cloud picture is a reasonable approximation when considering interactions between two 
molecules that are not too close to each other. The probability of finding a molecular 
electron in a tiny volume dv = dx dy dz is r dv, where r is the electron probability density 
[Eq. (14.5)]. Therefore, the amount of electronic charge in dv is -er dv. Addition of the 
contributions of the molecular electronic charge and of the nuclei a gives the molecular 
electric potential as

	 f1x1, y1, z12 = a
a

Zae

4pe0r1a
- eLLL  

r1x2, y2, z22
4pe0r12

 dx2 dy2 dz2	 (15.28)

where r12 is the distance between points 1 and 2 and the integration is over all space. In 
atomic units, the e and the 4pe0 disappear from (15.28).
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Quantum chemists call f the molecular electrostatic potential (MEP) or the elec-
trostatic potential (ESP—no connection with parapsychology). Although the SI units of f 
are volts, quantum chemists traditionally multiply (15.28) by the proton charge e (thereby 
converting its units to joules) and by the Avogadro constant NA (thereby converting its 
units to J/mol). Thus a quantum chemist’s MEP value at a point P is the molar electrical 
interaction energy between the molecule and a proton placed at point P, assuming that the 
molecule is not polarized by the proton.

To calculate f1x, y, z2 one calculates an approximate electronic wave function for 
the equilibrium geometry (Section 15.10), uses (14.5) to calculate r1x, y, z2 from the 
approximate wave function, and uses (15.28) to calculate f. [In density-functional theory 
(DFT) (Section 16.5), r is calculated without first finding the molecular wave function.] 
The MEP is found not to be strongly affected by the choice of basis set or by the inclu-
sion of electron correlation. The MEP is often calculated at the HF/6-31G* level of theory 
or using DFT. The MEP can be calculated from accurate experimental X-ray-diffraction 
crystallography data [N. Bouhmadia et al., J. Chem. Phys., 116, 6196 (2002)].

The electron probability density r1x, y, z2 tells us how the electronic charge is dis-
tributed in a molecule. The MEP f1x, y, z2 tells us the interaction energy between a non-
polarizing positive test charge at 1x, y, z2 and the nuclear charges and electronic charge 
distribution of the molecule. The MEP is commonly depicted by a contour map show-
ing curves of constant f in a particular plane through the molecule or by a surface in 
three-dimensional space on which f is constant. MEPs are generally found to be positive 
throughout the spatial region within a molecule, due to the strong positive contributions 
from the nuclei. Outside a molecule, f can be positive or negative. For each of the mol-
ecules H2O and HC1O2NH2, the MEP is negative in the region outside the oxygen atom 
and positive outside other atoms.

When two molecules approach each other, the MEP of each plays a key role in their 
interaction. An electrophilic (electron-loving) species will preferentially attack a molecule 
at sites where the MEP is most negative. (This is not invariably true, since the MEP ignores 
polarization of the molecule by the incoming species.) MEPs provide insight into molecular 
recognition processes such as enzyme–substrate and drug–receptor interactions.

If we model each atom in a molecule as a sphere of radius equal to the van der Waals 
radius of the atom (for bonded atoms, these spheres overlap, and the spheres of bonded 
atoms are truncated), the van der Waals surface of a molecule is defined by the outward-
facing surfaces of these atomic spheres. The van der Waals surface is what one sees in the 
familiar space-filling CPK (R. B. Corey–Pauling–Koltun) molecular models. In discuss-
ing intermolecular interactions, the MEPs in the regions on and outside the van der Waals 
surface are most significant.

A more sophisticated surface than the van der Waals surface is an isodensity surface, 
defined as a surface on which the molecule’s electron probability density r is constant. The 
molecular isodensity surface for which r = 0.001 electrons/bohr3 = 0.006748 electrons/
Å3 was found to have about the same surface area as the van der Waals surface [C. K. 
Kim et al., J. Comput. Chem., 25, 2073 (2004)], and this isodensity surface is often used, 
although many workers prefer the 0.002 electrons/bohr3 isodensity surface. For certain 
purposes, one wants values of the molecular surface area and the molecular volume. 
Of course, these quantities have no well-defined meaning, but these values are usually 
calculated as the area of and the volume enclosed by the van der Waals surface or by an 
isodensity surface with a specified r value.

As an alternative to showing surfaces of constant MEP, one often examines the MEP 
values on an isodensity surface of the molecule. These values constitute the molecular 
surface electrostatic potential (MSEP or MSESP). The MSEP is often depicted using a 
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color scheme such as red denoting the most negative MEP values, blue the most positive, 
and other spectrum colors intermediate values. Negative regions of the MSEP arise from 
lone pairs on electronegative atoms, from p electrons (for example, the MSEP of benzene 
is negative within much of the hexagon above and below the molecular plane), and from 
strained carbon–carbon bonds (the MSEP of cyclopropane is negative in the three regions 
that lie near to and outside the three carbon–carbon bonds and near the plane of the C 
atoms). To see many examples of MSEP’s, click on Images in Google and enter molecular 
surface electrostatic potential. (You can also create such surfaces using some quantum 
chemistry programs; see Prob. 15.49.)

Politzer and co-workers defined several statistical quantities (such as the average 
MSEP, the standard deviation of the MSEP) that are calculated from the MSEP and found 
empirical relations between condensed-phase organic-compound macroscopic properties 
that depend on intermolecular interactions (such as normal boiling point, heats of fusion 
and vaporization, surface tension) and the MSEP quantities. This allows prediction of these 
macroscopic properties from the MSEP with a fair degree of success [P. Politzer and J. S. 
Murray, Fluid Phase Equilib., 185, 129 (2001)].

For information on the role of the MEP in biochemical processes, see B. Honig and A. 
Nicholls, Science, 268, 1144 (1995). For reviews of MEPs, see P. Politzer and J. S. Murray 
in K. B. Lipkowitz and D. B. Boyd (eds.), Reviews in Computational Chemistry, vol. 2., 
VCH, 1991, Chapter 7; P. Politzer and J. S. Murray, Theor. Chem. Acc., 108, 134 (2002); 
Murray and Politzer, WIREs Comput. Mol. Sci., 1, 153 (2011).

Atomic Charges
Whereas the MEP is a well-defined, physically significant quantity that can be accurately 
calculated from a reasonably accurate wave function, there is no unique, well-defined 
answer to the question: What is the charge on a particular atom in a molecule? (The terms 
atomic charge, net atomic charge, and partial atomic charge are used synonymously.)

As noted in Section 15.6, Mulliken population analysis gives atomic charges that vary 
erratically as the basis set is improved. Better values are obtained from natural population 
analysis (NPA).

A popular way to get reasonable atomic charges Qa is by fitting the MEP f. One first 
uses a molecular wave function to calculate values of f at a grid of many points in the 
region outside the molecule’s van der Waals surface. One then places a charge Qa at each 
nucleus a and calculates the quantity fapprox

i K gaQae>4pe0ria at each grid point. One 
then varies the Qa values (subject to the constraint that they add to zero for a neutral mol-
ecule) so as to minimize the sum of the squares of the deviations fapprox

i - fi for the grid 
points. Various ways of choosing the grid points and of including other refinements give 
different schemes for finding the atomic charges Qa, which are called ESP (electrostatic 
potential) charges. Three common schemes are the Merz–Singh–Kollman (MK or MSK) 
method, the CHELPG method (charges from electrostatic potentials, grid method), and the 
RESP (restrained ESP) method. The MEP depends most strongly on the charges assigned 
to atoms near the surface of the molecule and depends only quite weakly on the charges of 
atoms in the interior, so ESP charges of atoms in the interior cannot be accurately assigned.

Another procedure that yields atomic charges is Bader’s atoms-in-molecules (AIM) 
theory [Bader; R. F. W. Bader, Chem. Rev., 91, 893 (1991)]. Here, one first calculates an 
approximate wave function for the molecule, and from this wave function one calculates 
the electron probability density r1x, y, z2. One now imagines drawing all the contour 
surfaces of constant r (isodensity surfaces). Then one draws lines (called gradient paths) 
throughout three-dimensional space such that at every point on a given line, that line is 
perpendicular to the isodensity surface that passes through the point. (A simple example is 
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the ground-state H atom. Here the isodensity surfaces are spheres centered at the nucleus, 
and the gradient paths are radii emanating from the nucleus.) One finds that most such 
gradient paths start at infinity and end at one of the nuclei. For molecules containing rings 
(for example, benzene), many gradient paths will go from the point within the ring where r 
is a minimum to a nucleus. The three-dimensional region of space �A belonging to atom A 
of the molecule is then defined as the region that contains all the gradient paths that end at 
the nucleus of atom A. The AIM charge on atom A with atomic number ZA is then defined 
by QA = ZA - 1�A

r dV, where the integration goes over the region �A.
The gradient vector �r at a point P can be shown to be perpendicular to the isoden-

sity surface r = constant at P. There is only one perpendicular direction to a surface at a 
particular point, so a line drawn perpendicular to isodensity surfaces will have its direc-
tion at any point be in the direction of �r. Hence such a line is called a gradient path. 
Because �r has a unique direction at each point in space (except for points where �r is 
zero or undefined), gradient paths from different nuclei cannot cross each other, and the 
gradient paths terminating at each nucleus divide space into nonoverlapping regions, one 
for each atom.

AIM charges have been criticized for being larger than seems chemically reasonable 
and, according to Cramer, “are of little chemical utility” (Cramer, p. 317). For Bader’s 
defense of AIM charges, see R. F. W. Bader and C. F. Matta, J. Phys. Chem. A, 108, 8385 
(2004). [See also C. F. Matta and R. F. W. Bader, J. Phys. Chem. A, 110, 6365 (2006).]

Cramer, Truhlar, and co-workers have devised the methods Charge-Model 1 (CM1), 
CM2, CM3, CM4, and CM5 to calculate atomic charges [Cramer, Sec. 9.1.3.4; C. P. Kelly 
et al., Theor. Chem. Acc., 113, 133 (2005); comp.chem.umn.edu/solvation/comparison
.htm#charges]. These methods start with a set of charges such as the Mulliken charges 
or the Löwdin charges and then improve these charges by using a specified formula that 
transfers charges from one atom to another to get the final CM charges. The formula used 
to transfer charges contains parameters whose values have been fixed at those values that 
allow CM-charge-calculated molecular dipole moments mCM of a large set of training mol-
ecules to give the best fit to the experimental dipole moments of these molecules, where 
the CM dipole moments are calculated from mCM = 0 gB QCM

B rB 0 , where QCM
B  is the CM 

charge on atom B, and the sum goes over the atoms of the molecule. More specifically, 
CM2 and CM3 use the formula

QCM
k = QL

k + a
k�� k

BM
kk�1Dkk� + Ckk�B

M
kk�2

where QL
k  is the charge given by Löwdin population analysis, BM

kk� is the Mayer bond order 
for atoms k and k�, the sum goes over all atoms except atom k, and the values of the param-
eters Ckk� and Dkk� depend only on the atomic numbers of the two atoms. Different sets 
of C and D parameters are used depending on which method (HF, DFT, etc.) and which 
basis set are used to find QL

k .
The Charge Model 5 (CM5) method [A. V. Marenich et al., J. Chem. Theory Comput.,  8, 

527 (2012)] of finding atomic charges uses the formula

QCM5
k = QH

k + a
k�� k

Tkk�Bkk�

where QH
k  is the Hirshfeld charge (discussed in the next paragraph) on atom k; the sum goes 

over all atoms in the molecule except k; Tkk� is a parameter that depends on which elements 
atoms k and k� are; and Bkk� K  exp3-a1rkk� - Rk - Rk�24 , where a is a parameter, rkk� 
is the distance between atoms k and k� in the molecule, and Rk and Rk� are the tabulated 
atomic covalent radii of atoms k and k�. The values of the parameters were chosen so that 
the method gave a good fit to the dipole moments of a large series of molecules.
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Another method to find atomic charges is the Hirshfeld method. Here, atomic charges 
are obtained by distributing the molecular electronic probability density at each point in 
space among the atoms in the molecule according to the formula

rA1x, y, z2 =
r0

A1x, y, z2
aA

r0
A1x, y, z2 rmol1x, y, z2

where rmol1x, y, z2 is the molecular electronic probability density at a point (calcu-
lated from some approximate wave function), rA1x, y, z2 is the portion of the electronic 
density at 1x, y, z2 being assigned to atom A, r0

A1x, y, z2 is the electronic density com-
puted for the isolated atom A (calculated using the same method and basis set used to get  
rmol2, and the sum is evaluated by adding up the probability densities of isolated atoms 
each located at where it is in the molecule. The charge QA on atom A is then found as 
QA = ZA - 1�

-� 1�

-� 1�

-�
 rA dx dy dz, where ZA is the atomic number of A. Because Hirsh-

feld charges have several deficiencies, the improved Hirshfeld-I method (where I stands 
for iterative) was proposed [P. Bultnick et al., J. Chem. Phys., 126, 144111 (2007)]. This 
method starts from the Hirshfeld charges and uses an iterative process that converges to a 
set of improved charges. A modification of the Hirshfeld-I method is the valence Hirshfeld-
I method, which divides only the valence electronic charge density among the atoms, and 
assigns all the density of the core electrons of an atom to that atom [L. Vanduyfhuys et al., 
J. Chem. Theory Comput., 8, 3217 (2012)].

An assessment of several atomic charge methods applied to gas-phase polypeptide 
conformers found that the Hirshfeld-I method performed best overall in reproducing MP2-
calculated electric dipole moments and in being transferable from one conformer of a 
molecule to another [T. Verstraelen et al., J. Chem. Theory Comput., 8, 661 (2012)]. Also, 
Hirshfeld-I charges reproduce the molecular electrostatic potential with good accuracy.

Calculated atomic charges are used as parameters in molecular-mechanics calcula-
tions (Section 17.5) to model the electrostatic interactions between nonbonded atoms. ESP-
derived charges and CM1 charges are often used for this purpose.

For reviews of atomic charges, see M. M. Francl and L. E. Chirlian in K. B. Lipkowitz 
and D. B. Boyd (eds.), Reviews in Computational Chemistry, vol. 14, Wiley, 2000, Chapter 1; 
Cramer, Section 9.1.3.

15.8 Localized MOs
The idea of a chemical bond between a pair of atoms in a molecule is fundamental to 
chemistry. The experimental evidence supporting this concept is substantial. One can 
assign bond energies to various kinds of bonds and obtain good estimates for the heats 
of atomization of most molecules by adding the energies of the individual bonds. Other 
molecular properties (for example, magnetic susceptibility, dipole moment) can also be 
analyzed as the sum of contributions from individual bonds (and lone pairs). The infra-
red spectrum of a compound containing an OH group shows a characteristic band near 
3600 cm-1. This OH stretching vibrational band occurs at nearly the same frequency in 
HOH, HOCl, and CH3OH. The length of an OH bond is nearly constant from molecule to 
molecule, about 0.96 Å.

The MO picture of H2O presented in Section 15.5 appears to be gravely deficient, in 
that it is seemingly inconsistent with the existence of individual bonds in the molecule. 
Each of the bonding MOs in (15.19) is delocalized over the entire molecule. If one were to 
compare the bonding MOs for HOH and HOCl, one would find them to be quite different. 
Yet we know that the OH parts of these two molecules are similar. Actually, MO theory can 
explain the observed near invariance of a given kind of chemical bond, as we now show.
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The MO approximation to the ground state of H2O is a Slater determinant of the form

	 0f1f1f2f2f3f3f4f4f5f5 0 	 (15.29)

Putting (15.29) into words, we say that two electrons are in each of the orthonormal MOs 
f1, f2, f3, f4, and f5. However, this MO description is not unique. The addition of a mul-
tiple of one column of a determinant to another column leaves the determinant unchanged 
in value. Adding column 7 to column 9 and column 8 to column 10 in (15.29), we get

	 0f1f1f2f2f3f3f4f41f4 + f521f4 + f52 0 	 (15.30)

This determinant leads to the description of the molecule as having the MOs f1, f2, f3, f4, 
and f4 + f5 each doubly occupied. Despite the different verbal descriptions, the wave 
functions (15.29) and (15.30) are identical.

[In discussing SCF calculations, we used an orthogonalized 2s AO of the form 
a11s2 + b12s2, where 2s is a (nodeless) 2s Slater-type orbital. This procedure is justified 
by use of the freedom of adding a multiple of one column of a determinant to another. The 
determinantal wave function for the oxygen atom is the same whether it is the 2s or the 
orthogonalized 2s#  AO that is used.]

An objection that can be raised to (15.30) is that the MO f4 + f5 is neither normal-
ized nor orthogonal to f4. Consider, however, the Slater determinant

	 0f1f1f2f2f3f31bf4 + cf521bf4 + cf521cf4 - bf521cf4 - bf52 0 	 (15.31)

where b and c are any two real constants such that

	 b2 + c2 = 1	 (15.32)

We now show (15.31) and (15.29) to be the same wave function. Multiplication of columns 
7 and 8 of (15.29) by b and columns 9 and 10 by -b-1 gives

0 c bf41bf421-b-1f521-b-1f52 0
This step multiplies (15.29) by b21-b-122 = 1. Next, -bc times column 9 is added to 
column 7 and -bc times column 10 is added to column 8 to give

0g1bf4 + cf521bf4 + cf521-b-1f521-b-1f52 0
Finally, c>b times column 7 is added to column 9, c>b times column 8 is added to column 
10, and (15.32) is used. This gives

0g1bf4 + cf521bf4 + cf521cf4 - bf521cf4 - bf52 0
This completes the proof. The orthonormality of the MOs cf4 - bf5 and bf4 + cf5 
readily follows from (15.32) and the orthonormality of f4 and f5. Thus we can describe 
the molecule as having the orthonormal MOs

	 f1, f2, f3, bf4 + cf5, c4f4 - bf5	 (15.33)

each doubly occupied.
There are an infinite number of other MO descriptions consistent with (15.29): Let d 

and e be any two real constants such that d2 + e2 = 1. If the procedure used to go from 
(15.29) to (15.31) is applied to columns 5, 6, 7, and 8 of (15.31), we end up with

0f1f1f2f21df3 + bef4 + cef521df3 + bef4 + cef52
* 1ef3 - bdf4 - cdf521ef3 - bdf4 - cdf521cf4 - bf521cf4 - bf52 0

We can thus describe the electronic configuration as having the orthonormal MOs

f1, f2, 1df3 + bef4 + cef52, 1ef3 - bdf4 - cdf52, 1cf4 - bf52
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each doubly occupied. Continuing on in this manner, we can derive orthonormal MOs, 
each of which is a linear combination of all the original MOs f1, f2, f3, f4, f5. For the 
general conditions that must be satisfied by the coefficients in these linear combinations, 
see Szabo and Ostlund, Section 3.2.3.

Thus for a given closed-shell electronic state of a molecule, there are many possible 
MO descriptions. The delocalized MOs (15.19) of H2O are uniquely determined as the 
solutions of the SCF equations [Eq. (14.25)]

	 Fnfi = eifi, i = 1, 2, c	 (15.34)

Hence you may be wondering how we can have other sets of MOs that also minimize the 
variational integral. Actually, Eq. (15.34) is not the most general equation satisfied by the 
MOs that minimize the variational integral. Instead, one finds in deriving the SCF equations 
that the Hartree–Fock MOs must satisfy

	 Fnfi = a
N

j = 1
lj ifj,  i = 1, c, N	 (15.35)

where the sum runs over the occupied MOs. The lji’s are certain constants (Lagrangian 
multipliers), which can be chosen arbitrarily, subject to the MO orthonormality require-
ment. Different choices of the lji’s give different sets of MOs, but each such set minimizes 
the variational integral. For a closed-shell configuration, one possible choice of the lji’s 
can be shown to be

	 lji = eidi j	 (15.36)

This choice reduces (15.35) to (15.34). [For the proof of (15.35) and (15.36), see Szabo 
and Ostlund, Chapter 3.]

The delocalized MOs [such as (15.19) for H2O] that satisfy (15.34) are called the 
canonical MOs. The canonical MOs are eigenfunctions of the Fock operator, which com-
mutes with the molecular symmetry operators, and hence the canonical MOs each trans-
form according to one of the possible molecular symmetry species. A set of MOs like 
(15.33) satisfies (15.35) but not (15.34) and does not necessarily transform according to 
the molecular symmetry species.

For an open-shell configuration, one can also find canonical delocalized MOs that sat-
isfy (15.34) and that transform according to the molecular symmetry species. However, the 
form of Fn is more complicated than that for the closed-shell case. [See C. C. J. Roothaan, 
Rev. Mod. Phys., 32, 179 (1960).]

Of the possible MO sets formed as linear combinations of the delocalized canonical 
MOs of water, a set that would appeal to a chemist is one for which the charge probability 
density of each bonding MO is localized in the region of one of the OH bonds. There are 
many ways of taking linear combinations of the delocalized MOs to get such localized 
MOs (LMOs). A natural requirement that the two localized bonding MOs in water should 
satisfy is that they be equivalent to each other; that is, each localized bonding MO of water 
should be transformed into the other by the Cn21z2 symmetry operation (Fig. 15.7). Local-
ized MOs that are permuted among one another by a symmetry operation that permutes 
equivalent chemical bonds are called equivalent orbitals. As we shall see, localized MOs 
reconcile MO theory with the chemist’s intuitive picture of chemical bonding.

For H2O, the Lewis electron-dot formula suggests the localized MOs to be a pair of 
equivalent bonding orbitals b1OH12 and b1OH22, an inner-shell 1s oxygen orbital i(O), 
and two lone-pair equivalent MOs l11O2 and l21O2 on oxygen.

The most “localized” MOs are those that are most separated from one another. By 
this, we mean that set of MOs for which the interelectronic repulsion between the different 
MOs viewed as “charge clouds” is a minimum. The energy of repulsion between the charge 
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clouds of electron 1 in the MO fi and electron 2 in the MO fj is a Coulomb integral of the 
form (9.99). The total interorbital charge-cloud repulsion energy is then

	 4a
i
a
j7 i LL 0fi112 0 2 0fj122 0 2 1

r12
 dv1 dv2	 (15.37)

where the sums run over the occupied MOs. (The factor 4 comes from the four interor-
bital repulsions of the electrons in each MO pair.) We define the localized MOs as those 
orthonormal MOs that minimize (15.37). [It turns out that minimization of (15.37) implies 
the maximization of the total intraorbital electron repulsion and the minimization of the 
magnitude of the (interorbital) exchange energy.] This definition was originally suggested 
by Lennard-Jones and Pople and has been applied to many molecules by Edmiston and 
Ruedenberg [C. Edmiston and K. Ruedenberg, Rev. Mod. Phys., 35, 457 (1963); J. Chem. 
Phys., 43, S97 (1965); P.-O. Löwdin, ed., Quantum Theory of Atoms, Molecules, and the 
Solid State, Academic Press, 1966, pages 263–280].

The MOs that minimize (15.37) are called the energy-localized MOs. For molecules 
with symmetry, we expect that the energy-localized MOs will also be equivalent orbitals, 
and this is borne out by the calculated energy-localized MOs. Energy-localized MOs are 
thus a generalization of equivalent MOs.

Liang and Taylor calculated the energy-localized MOs for H2O, starting with the 
minimal-basis canonical MOs (15.19). In terms of the canonical (delocalized) MOs, 
Liang and Taylor found (J. H. Liang, Ph.D. thesis, Ohio State University, 1970; quoted in  
F. Franks, ed., Water, Vol. 1, Plenum, 1972, p. 42)

 i1O2 = 0.9911a12 - 0.1212a12 + 0.0613a12
 b1OH12 = 0.0511a12 + 0.5712a12 + 0.7111b22 + 0.4213a12
 b1OH22 = 0.0511a12 + 0.5712a12 - 0.7111b22 + 0.4213a12

 l11O2 = 0.0811a12 + 0.4212a12 - 0.5713a12 - 0.7111b12
	  l21O2 = 0.0811a12 + 0.4212a12 - 0.5713a12 + 0.7111b12	

(15.38)

The lone-pair 1b1 MO 12pxO2 is equally divided between the equivalent lone-pair local-
ized orbitals; note that 0.71 = 10.521>2. The inner-shell 1a1 MO contributes substantially 
to only the i(O) MO. The bonding 1b2 MO is equally divided between the two bonding 
localized MOs. The bonding 2a1 MO makes substantial contributions to the two bonding 
localized MOs and smaller, but still substantial, contributions to the lone-pair localized 
MOs. The largely lone-pair 3a1 MO makes substantial contributions to the lone-pair local-
ized MOs and lesser contributions to the bonding localized MOs.

In terms of the AOs, the energy-localized MOs of H2O are

i1O2 = -0.0071H11s2 - 0.0071H21s2 + 0.991O1s2 - 0.121O2s#2 + 0.031O2pz2
b1OH12 = 0.501H11s2 - 0.101H21s2 + 0.021O1s2 + 0.251O2s#2
	 +0.4071O2pz2 + 0.4411O2py2
b1OH22 = -0.101H11s2 + 0.501H21s2 + 0.021O1s2 + 0.251O2s#2
	 +0.4071O2pz2 - 0.4411O2py2

 l11O2 = -0.091H11s2 - 0.091H21s2 + 0.091O1s2 + 0.631O2s#2
	 -0.391O2pz2 - 0.711O2px2

 l21O2 = -0.091H11s2 - 0.091H21s2 + 0.091O1s2 + 0.631O2s#2
	 -0.391O2pz2 + 0.711O2px2	

(15.39)
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The MO wave function

0 i1O2i1O2b1OH12b1OH12b1OH22b1OH22l11O2l11O2l21O2l21O2 0
is identical to (15.21).

Let us analyze these localized MOs for water. The i(O) MO is nearly a pure 1s inner-
shell oxygen AO.

To define the angle between the two localized bonding MOs, we draw the line from 
O to H1 along which the electron probability density in b1OH12 is a maximum, and we 
draw a similar line from O to H2. The angle between these lines where they intersect at 
the O nucleus defines the angle between the localized bonding MOs. (If this angle dif-
fers significantly from the angle defined by straight lines between the nuclei, the bonds 
are said to be bent.) The angle between the localized bonding MOs is determined mainly 
by the oxygen 2py and 2pz AO contributions (with a small influence by the hydrogen 1s 
AOs). For b1OH12 the O2pyO2pz contribution contains the terms 0.407zO + 0.441yO. Let 
us rotate the coordinates in the zy plane by an angle a = arctan10.441>0.4072 = 471

2�, as 
in Fig. 15.6. The relation between coordinates in the unrotated system and in the rotated 
z�y� system is given by the well-known formulas

 z� = z cos a + y sin a

	  y� = -z sin a + y cos a	
(15.40)

From (15.40) and Fig. 15.6 we have 0.407zO + 0.441yO = 0.600z�O. Multiplication by the 
exponential factor of the 2p oxygen AO then gives

	 0.4071O2pz2 + 0.4411O2py2 = 0.601O2pz�2	 (15.41)

In other words, the hybridized 2pz2py AO on the left of (15.41) is the same function as 0.60 
times a 2p AO inclined at an angle of 471

2� with the z axis. Thus the bonding 2pz2py hybrid 
AOs of oxygen in b1OH12 and b1OH22 point in the general direction of the hydrogen 
atoms. The contribution from the hydrogen atoms to b1OH12 is mostly from H11s, and 
the overlap between H11s and the 2pz2py oxygen hybrid then forms the OiH1 chemical 
bond. The angle between the two hybrid oxygen AOs in b1OH12 and b1OH22 is 95�, and 
this is approximately the angle between the localized bonding MOs.

Energy-localized H2O bonding MOs calculated from an extended-basis-set SCF MO 
wave function were found to have an angle of 96� between the oxygen hybrids that con-
tribute to these MOs and an angle of 103� between the localized MOs themselves, which 
is nearly the same as the 1041

2� molecular bond angle, indicating negligible bending for 
the bonds in H2O. [W. von Niessen, Theor. Chim. Acta, 29, 29 (1973).] In contrast, in 
the strained molecule cyclopropane, the angle between the carbon hybrids contributing 
to the carbon–carbon bonding energy-localized MOs deviates outward by 28� from the 
internuclear lines [M. D. Newton, E. Switkes, and W. N. Lipscomb, J. Chem. Phys., 53, 
2645 (1970)].

The b1OH12 energy-localized MO is not completely confined to the region of the 
OiH1 bond. We see from (15.39) that this MO has a small contribution from the H21s 
AO. (The ratio of the contributions of two AOs to an MO is given essentially by the 
square of the ratio of their coefficients.) Consider the contributions of O2s# , O2py, and 
O2pz to b1OH12. The 2py2pz hybrid has a positive lobe in the region of the OH1 bond, 
and the contribution of the O2s#  AO reinforces this positive lobe. Overlap with H11s 
then gives the OiH1 bond. The 2py2pz hybrid has a negative lobe on the side of the 
oxygen opposite the OH1 bond. This negative lobe is partly, but not completely, canceled 
by the O2s#  contribution. Thus the b1OH12 MO has a “tail” on the side of the O away 
from H1, this tail being somewhat distorted toward H2 by the -0.10H21s contribution 

Figure 15.6  A coordinate 
rotation in the yz plane.
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(Fig. 15.7). (For accurately plotted contours, see F. Franks, ed., Water, Vol. 1, Plenum, 
New York, 1972, p. 46.) Despite this tail, this MO is far more localized than any of 
the bonding canonical MOs in (15.19). Because b1OH12 is mostly localized in the OH1 
region, we expect only a small change in its form on going from HOH to, say, HOCl. The 
observed near invariance of the OiH bond from molecule to molecule is explained by 
MO theory using localized bonding MOs. (Neglect of the contribution of H21s to the 
b1OH12 localized MO gives a two-center orbital called a bond orbital.)

Finally, consider the two lone-pair MOs l11O2 and l21O2. These MOs are mainly 
localized on the oxygen atom and are equivalent to each other. They are directed away 
from the hydrogen atoms and project above and below the molecular (yz) plane (Fig. 15.8). 
The sn

v
1yz2 operation interchanges the lone-pair MOs. The angle between them is approxi-

mately 2 arctan10.71>0.392 = 122�. The angle between localized lone-pair MOs calcu-
lated from a more accurate wave function is 114�; W. von Niessen, Theor. Chim. Acta, 
29, 29 (1973).

For N2 we expect 1:N ‚ N:2 the localized MOs to be an inner-shell 1s AO on each 
atom, a lone-pair 2s AO on each atom, and three bonding MOs spread over the two 
atoms. The canonical-MO picture is that the triple bond consists of one s bond and two 
p bonds, as in Section 13.7. The energy-localized bonding MOs were found by Edmiston 
and Ruedenberg to be three equivalent banana-shaped orbitals spaced 120� apart from 
one another. The AOs that contribute significantly to the localized bonding MOs are the 
2s, 2ps, 2ppx, and 2ppy orbitals of each atom. The i1Na2 and i1Nb2 localized MOs were 
found to be nearly pure 1s nitrogen AOs. Each of the l1Na2 and l1Nb2 localized MOs is 
a hybrid of the 2s and 2ps AOs of the relevant nitrogen atom, with the 2s AO making 
the larger contribution to the MO. Each lone-pair localized MO is directed away from the 
other nitrogen atom.

The concept of localized MOs is not as widely applicable as that of delocalized canoni-
cal MOs. Delocalized MOs are valid for any molecule. However (as noted in Section 11.5), 

Figure 15.7  Rough 
sketches of the localized 
bonding MOs in H2O.
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the Hartree–Fock wave functions of nonclosed-shell electronic states are, in most cases, 
linear combinations of a few Slater determinants [for example, see (10.44) and (10.45)], 
and the above localization procedure does not apply to the open-shell orbitals in these 
wave functions. Thus, in a molecule in an excited electronic state with an open-shell 
configuration, the electrons in the incompletely filled MOs are delocalized over much of 
the molecule.

The great success of the concept of chemical bonds between pairs of atoms is a 
reflection of the fact that the electronic ground states of most molecules have closed-shell 
configurations, for which the localized MO description is just as valid as the delocalized 
MO description.

For a closed-shell ground-state molecule, those properties that involve only the 
ground-state wave function can be calculated just as well with either the localized or 
the delocalized MO description. Such properties include electron probability density, 
dipole moment, geometry, and heat of formation. Properties of a molecule that involve 
the wave function of the ground state and also the wave function of an open-shell excited 
state or the wave function of an open-shell ion cannot be calculated using a localized MO 
description. Such properties include the electronic absorption spectrum and molecular 
ionization energies.

Localized MOs are approximately transferable from molecule to molecule, which is 
not true for canonical MOs. The localized b(CH) MO in CH4 is quite similar to the local-
ized b(CH) MOs in C2H6 and in CH3OH [S. Rothenberg, J. Chem. Phys., 51, 3389 (1969); 
J. Am. Chem. Soc., 93, 68 (1971)].

Calculation of the Edmiston–Ruedenberg energy-localized MOs is very time con-
suming. Boys (and Foster) proposed a method to find localized MOs that is compu-
tationally much faster than the Edmiston–Ruedenberg method and that gives similar 
results in most cases; see D. A. Kleier, J. Chem. Phys., 61, 3905 (1974). The Boys 
method defines the LMOs as those that maximize the sum of the squares of the dis-
tances between the centroids of charge of all pairs of occupied LMOs. The centroid 
of charge of orbital fi is defined as the point at 1xC, yC, zC2, where xC K 8fi 0 x 0fi9 , 
yC K 8fi 0 y 0fi9 , zC K 8fi 0 z 0fi9 . If ri j is the distance between the centroids of LMOs i 
and j, the Boys LMOs maximize g j7 i g i r2

i j.
Still another way to calculate LMOs is the Pipek–Mezey method, which maximizes a 

certain sum that is related to the Mulliken gross populations of the orbitals [J. Pipek and 
P. G. Mezey, J. Chem. Phys., 90, 4916 (1989)]. Unlike the Edmiston–Ruedenberg and the 
Boys LMOs, the Pipek–Mezey LMOs for a double bond consist of one s and one p MO. 
(See Section 15.9.)

As well as providing insight into chemical bonds, LMOs are useful in speeding up 
correlation calculations on large molecules (see Section 16.3).

15.9 �The SCF MO Treatment of Methane, 
Ethane, and Ethylene

Methane
The AOs for a minimal-basis-set SCF MO calculation of CH4 are the carbon 1s, 2s, 2px, 2py, 
and 2pz AOs and a 1s AO on each hydrogen atom. The point group of CH4 is �d. Group 
theory (see Cotton or Schonland) gives the possible symmetry species as A1, A2, E, T1, and 
T2. We shall not worry about specifying the symmetry behavior that corresponds to each 
symmetry species and shall use the species mainly as labels for the MOs. As usual, we set 
up the coordinate system with the z axis coinciding with the highest-order Cn or Sn axis. For 
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methane this is an S4 axis (Fig. 12.5). The coordinates of the hydrogen atoms H1, H2, H3, H4 
are 1q, q, q2, 1q, -q, -q2, 1-q, q, -q2, and 1-q, -q, q2, respectively, where 2q is the edge 
of the cube in which the molecule is inscribed (Fig. 15.9). Note the equivalence of the x, 
y, and z axes.

The carbon atom is at the center of the molecule, and the carbon 1s and 2s AOs are 
each sent into themselves by every symmetry operation. These AOs transform according 
to the totally symmetric species A1. The carbon 2px, 2py, and 2pz AOs are given by x, y, 
or z times a radial function. Their symmetry behavior is the same as that of the functions 
x, y, and z, respectively. From the formulas for rotation of coordinates [Eq. (15.52)], we 
see that any proper rotation sends each of the functions x, y, and z into some linear com-
bination of x, y, and z. Any improper rotation is the product of some proper rotation and 
an inversion (Prob. 12.15); the inversion simply converts each coordinate to its negative. 
Hence the three-carbon 2p orbitals are sent into linear combinations of one another by 
each symmetry operation. They must therefore transform according to one of the triply 
degenerate symmetry species. Further investigation (which is omitted) shows the symmetry 
species of the 2p AOs to be T2.

Just as in H2O, each 1s hydrogen AO in CH4 does not transform according to any 
of the molecular symmetry species, and it is convenient to form symmetry-adapted basis 
functions by taking linear combinations of the 1s AOs. One obvious symmetry function is

	 x1 = H11s + H21s + H31s + H41s	 (15.42)

Since each methane symmetry operator permutes the hydrogen 1s orbitals among them-
selves, (15.42) is sent into itself by each symmetry operation and belongs to the totally 
symmetric species A1. We need three more symmetry functions. The construction of these 
is not obvious without the use of group theory, and we shall simply write down the results. 
The remaining three orthogonal (unnormalized) symmetry-adapted basis functions can be 
taken as

	 x2 = H11s + H21s - H31s - H41s	 (15.43)

	 x3 = H11s - H21s + H31s - H41s	 (15.44)

	 x4 = H11s - H21s - H31s + H41s	 (15.45)

Each of these three functions is transformed into some linear combination of the three 
functions by each symmetry operation. For example, a Cn3 rotation about the CH1 bond per-
mutes the hydrogen atoms as follows: 1 S 1, 2 S 3, 3 S 4, 4 S 2. The corresponding OnC3

 
operator transforms x2, x3, and x4 into x3, x4, and x2, respectively. These three symmetry 
functions therefore transform according to one of the triply degenerate symmetry species. 
The function x2 has positive signs for the hydrogen AOs with a positive x coordinate and 
negative signs for the hydrogen AOs with a negative x coordinate. We thus expect x2 to 
have the same symmetry behavior as the function x. Similarly, x3 and x4 behave as y and 
z, respectively. (As an example, note that a 120� counterclockwise rotation about the CH1 
bond has the following effect on the three unit vectors: i S j, j S k, k S i; this is the same 
behavior shown by the functions x2, x3, and x4 for this rotation.) These three symmetry 
orbitals thus transform according to the same symmetry species as C2px, C2py, and C2pz, 
that is, the species T2.

The symmetry-adapted basis functions are

Symmetry function x1 x2 x3 x4 C1s C2s C2px C2py C2pz

Symmetry species a1 t2 t2 t2 a1 a1 t2 t2 t2

H4

H1

H3

H2

C y

x

z

Figure 15.9  Coordinate 
axes for CH4. The origin is at 
the center of the cube.
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The nine lowest MOs therefore consist of three a1 and six t2 MOs. The six t2 MOs 
belong to triply degenerate levels and thus fall into two different shells 1t2 and 2t2. Each 
such shell contains three MOs of equal orbital energy and each shell holds six electrons. 
SCF MO calculations give the three lowest shells as 1a1, 2a1, and 1t2, with orbital ener-
gies -11.20, -0.93, and -0.54 hartrees, respectively. The ground state of methane thus 
has the closed-shell electron configuration 11a12212a12211t226 and is a 1A1 state.

Pitzer did SCF MO calculations on CH4, using a minimal-basis set of STOs [R. M. 
Pitzer, J. Chem. Phys., 46, 4871 (1967)]. He found the optimized orbital exponents to be 
1.17 for H1s, 5.68 for C1s, 1.76 for C2s, and 1.76 for C2pz, which may be compared with 
the values 1.0, 5.7, 1.625, and 1.625 given by Slater’s rules (Prob. 15.62). Pitzer found the 
minimum in energy to be at a bond distance of 1.089 Å, close to the experimental value 
1.085 Å. The MOs at the experimental equilibrium bond length are

 1a1 = -0.0051H11s + H21s + H31s + H41s2 + 1.0011C1s2 + 0.0251C2s#2
 2a1 = 0.1861H11s + H21s + H31s + H41s2 - 0.0641C1s2 + 0.5841C2s#2
 1t2x = 0.3181H11s + H21s - H31s - H41s2 + 0.5541C2px2
 1t2y = 0.3181H11s - H21s + H31s - H41s2 + 0.5541C2py2

	  1t2z = 0.3181H11s - H21s - H31s + H41s2 + 0.5541C2pz2	

(15.46)

The 1a1 MO is essentially the carbon 1s AO. The 2a1 MO is a bonding combination of 
the carbon 2s AO and the symmetry orbital (15.42). This MO has charge buildup between 
the carbon atom and each of the four hydrogen atoms. The 1t2x MO is a bonding MO; the 
function (15.43) is positive on the positive half of the x axis and negative on the negative 
half of the x axis, and its overlap with C2px gives charge buildup about the positive and 
negative sides of the x axis. Similarly, the bonding 1t2y and 1t2z MOs have charge buildup 
in the regions about the y and z axes, respectively.

We now consider the four localized (equivalent) bonding MOs of methane. Because of 
the tetrahedral symmetry, each of these orbitals must point along a CH bond, since otherwise 
they would not be equivalent to one another. (This is not true for water, where the equivalence 
requirement is satisfied by any two bonding MOs that make the same angle with the C2 axis.) 
Each localized bonding MO is some linear combination of the five canonical occupied MOs:

	 b1CH12 = a11a12 + b12a12 + d11t2x2 + e11t2y2 + f11t2z2	 (15.47)

with similar expressions for b1CH22, b1CH32, and b1CH42. Since 1a1 is a nonbonding 
low-energy inner-shell orbital, we expect 0 a 0 V 0 b 0 . The 1a1 and 2a1 canonical MOs are 
directed equally to all four hydrogens, and so varying a or b in (15.47) does not direct 
b1CH12 preferentially to any one hydrogen. The 1t2x, 1t2y, and 1t2z MOs are directed along 
the x, y, and z axes, respectively, so that by adjusting d, e, and f appropriately, we can get 
b1CH12 to be localized mainly in the region of the CH1 bond. To fix d, e, and f, we use 
some properties of direction cosines.

If line L passes through the origin and makes the angles a, b, and g with the x, y, and 
z axes, respectively, then the quantities

	 l K cos a,  m K cos b,  n K cos g	 (15.48)

are the direction cosines of L. If 1xL, yL, zL2 is a point on L, then clearly

	 xL = r cos a,  yL = r cos b,  zL = r cos g	 (15.49)

where r is the distance from the origin. From x2 + y2 + z2 = r2 it follows that
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	 l2 + m2 + n2 = 1	 (15.50)

Let the lines L1 and L2 go from the origin to 1x1, y1, z12 and 1x2, y2, z22, respectively. If u12 
is the angle between L1 and L2, then [Eq. (5.20)]

cos u12 =
x1x2 + y1y2 + z1z2

r1r2

	 cos u12 = l1l2 + m1m2 + n1n2	 (15.51)

Direction cosines are useful in discussing changes in coordinate axes. Let the x�y�z� 
and the xyz Cartesian coordinate systems have a common origin, and let the x�y�z� axes 
be obtained from the xyz axes by rotation, reflection, inversion, or some combination of 
these operations. Let the direction cosines of the x� axis with respect to the xyz system be 
l1, m1, n1; let l2, m2, n2 and l3, m3, n3 be the direction cosines of the y� and z� axes, respec-
tively. Let the vector s have coordinates (x, y, z) and 1x�, y�, z�2 in the unrotated and rotated 
coordinate systems. We have x� = s � i�, where i� is a unit vector along the x� axis. Since 
i� is of unit length, it follows from (15.49) and (15.48) that the coordinates of i� in the xyz 
system are l1, m1, and n1. Hence

 x� = l1x + m1y + n1z

 y� = l2x + m2y + n2z

	  z� = l3x + m3y + n3z	

(15.52)

where the y� and z� equations follow from y� = s � j� and z� = s � k�. [Equation (15.40) 
is a special case of (15.52).] Since the angle between any pair of the x�, y�, and z� axes is 
90�, it follows from (15.51) that the direction cosines of these axes satisfy

l1l2 + m1m2 + n1n2 = 0

l1l3 + m1m3 + n1n3 = 0

	 l2l3 + m2m3 + n2n3 = 0	

(15.53)

Now we return to the determination of d, e, and f. The MOs 1t2x, 1t2y, and 1t2z are 
directed along the x, y, and z axes, respectively, and the contributions of the carbon 2px, 2py, 
and 2pz AOs to these MOs are

	 xe-zr, ye-zr, ze-zr	 (15.54)

The contribution of the hydrogen AOs to the 1t2 MOs has a more complicated form (the 
hydrogens are not at the coordinate origin), but we need not explicitly consider the hydro-
gen part of the MOs. This is because the hydrogen symmetry orbitals (15.43) to (15.45) 
have the same directional properties as the corresponding carbon 2p AOs (15.54) with 
which each is combined in the 1t2 MOs [Eq. (15.46)]. The linear combination (15.47) has 
as its carbon 2p contribution

	 1dx + ey + fz2e-zr	 (15.55)

Let l1, m1, and n1 be the direction cosines of the CH1 line. We assert that if d, e, and f are 
chosen as proportional to these direction cosines, then b1CH12 will be directed toward H1. 
To verify this, we set d : e : f = l1 : m1 : n1 in (15.55) and use (15.52) to get

	 c1l1x + m1y + n1z2e-zr = cx�e-zr	 (15.56)

where c is some constant and the x� axis runs from C to H1.
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Similarly, by picking d, e, and f proportional to the direction cosines of the other CH 
lines, we form localized orbitals along these bonds. From (15.49) the direction cosines of 
the CH lines are

CH1: 3-1>2, 3-1>2, 3-1>2  CH2: 3-1>2, -3-1>2, -3-1>2

	 CH3: -3-1>2, 3-1>2, -3-1>2  CH4: -3-1>2, -3-1>2, 3-1>2	
(15.57)

To satisfy the equivalence requirement, the values of a and b in (15.47) must be the same 
for each bonding localized MO. The equivalent localized MOs for methane thus have the 
forms

 b1CH12 = a11a12 + b12a12 + 3-1>2c11t2x + 1t2y + 1t2z2
 b1CH22 = a11a12 + b12a12 + 3-1>2c11t2x - 1t2y - 1t2z2
 b1CH32 = a11a12 + b12a12 + 3-1>2c1-1t2x + 1t2y - 1t2z2

	  b1CH42 = a11a12 + b12a12 + 3-1>2c1-1t2x - 1t2y + 1t2z2	

(15.58)

Orthonormality of the bonding localized MOs (15.58) requires that

	 a2 + b2 + c2 = 1 and a2 + b2 -
1
3 c2 = 0	 (15.59)

Hence

	 c =
1
223, 1a2 + b221>2 =

1
2	 (15.60)

The equivalence, direction, and orthonormality requirements have fixed all but one param-
eter (the ratio a>b) in the localized bonding MOs of methane.

The 1t2x MO points equally in the +x and -x directions. Similarly, the 1t2y and 1t2z 
MOs point equally on both sides of the carbon atom. This is not true of the bonding local-
ized MOs: The 2a1 MO is positive in most of the bonding region between the carbon atom 
and the hydrogen atoms. [It is negative in the region very near the carbon atom, because 
of the -0.061C1s2 term and the negative portion of the orthogonalized C2s AO; see Eq. 
(15.20).] The linear combination 1t2x + 1t2y + 1t2z points equally in the 11, 1, 12>23 and 
the 1-1, -1, -12>23 directions. If b in (15.58) is taken as positive (as we have taken c), 
then the 2a1 MO adds to the positive half of this linear combination of the 1t2 MOs and 
cancels much of the negative half of this linear combination. With b and c having the same 
sign, the b1CH12 MO points mostly in the 11, 1, 12>23 direction, with only a small “tail” 
in the 1-1, -1, -12>23 direction.

Pitzer’s SCF calculation gives the energy-localized bonding and inner-shell methane 
MOs as

b1CH12 = 0.05511a12 + 0.49712a12 +
1
2 11t2x + 1t2y + 1t2z2

b1CH22 = 0.05511a12 + 0.49712a12 +
1
2 11t2x - 1t2y - 1t2z2

b1CH32 = 0.05511a12 + 0.49712a12 +
1
2 1-1t2x + 1t2y - 1t2z2

b1CH42 = 0.05511a12 + 0.49712a12 +
1
21-1t2x - 1t2y + 1t2z2

	 i1C2 = 0.99411a12 - 0.11112a12	

(15.61)

From (15.46) and (15.61), we have

i1C2 = 1.0021C1s2 - 0.0401C2s#2 - 0.0251H11s + H21s + H31s + H41s2
b1CH12 = 0.0241C1s2 + 0.2921C2s#2 + 0.5691H11s2 - 0.0661H21s + H31s + H41s2
	 + 0.2771C2px + C2py + C2pz2	 (15.62)
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From Eqs. (15.54) to (15.56), the linear combination dpx + epy + f pz is equal to a 
rotated p orbital pointing along the x� axis and containing the factor dx + ey + f z =

c1l1x + m1y + n1z2 = cx�, where  l1, m1, n1 are the direction cosines of the x� axis rela-
tive to the x, y, z axes. Substitution of l1 = d>c, m1 = e>c, n1 = f>c into l2

1 + m2
1 + n2

1 = 1 
[Eq. (15.50)] gives c = 1d2 + e2 + f 221>2. Therefore, a localized MO that contains the 
terms aC2s# + dC2px + eC2py + f C2pz can be viewed as containing the terms aC2s# +

1d2 + e2 + f 221>2C2px�, and we say the hybridization of the carbon AO in this MO is

	 sp1d2 + e2 + f 22>a2
	 (15.63)

For example, for the localized bonding MO (15.62) of CH4, a2 = 0.0853, d2 +

e2 + f 2 = 0.230, and this MO is an sp2.7 hybrid, which is close to the traditional sp3 
hybridization of VB theory (Section 16.12).

Ethane
The most fascinating property of C2H6 is the barrier to internal rotation about the car-
bon–carbon single bond. The staggered conformation of a C2H6 molecule is more stable 
than the eclipsed conformation by 0.125 eV = 0.00461 hartree, which is equivalent to 
2.89 kcal/mol. In 1936, J. D. Kemp and Kenneth Pitzer discovered this fact in examining 
thermodynamic data for ethane. The correlation energy for an N-electron species is very 
roughly - 10.04 hartree21N - 12 [S. Kristyán, Chem. Phys. Lett., 247, 101 (1995)], so 
the Hartree–Fock energy of C2H6 will differ by about 0.7 hartree � 20 eV from the true 
molecular energy. This SCF energy error is far greater than the barrier height. At first 
sight, it seems hopeless to expect an SCF MO calculation to give a meaningful result for 
the ethane barrier.

The minimal-basis-set AOs for ethane are the hydrogen 1s orbitals and the carbon 
1s, 2s, and 2p orbitals, a total of 6112 + 2152 = 16 basis AOs. To calculate the barrier 
in ethane, we must calculate the energy of the staggered and the eclipsed conformations, 
which requires two separate SCF calculations. One first forms appropriate linear combina-
tions of the hydrogen AOs and of the carbon AOs to get symmetry-adapted basis functions. 
The Roothaan equations are then solved iteratively to give the basis-function coefficients 
and orbital energies, and the total molecular energy is found.

The pioneering ethane calculation is by Russell Pitzer (Kenneth Pitzer’s son) and  
W. N. Lipscomb, who did an SCF MO calculation using a minimal STO basis set with 
orbital exponents chosen according to Slater’s rules [R. M. Pitzer and W. N. Lipscomb, 
J.  Chem. Phys., 39, 1995 (1963)]. They used the experimentally observed equilibrium 
geometry for staggered C2H6 and assumed the geometry of the eclipsed form to be that 
given by rigidly rotating one methyl group with respect to the other. Their calculated 
energies of -78.98593 and -78.99115 hartrees for the eclipsed and staggered forms, 
respectively, give a barrier of 3.3 kcal/mol, in reasonable agreement with experiment. 
Clementi and Popkie did a near-Hartree–Fock calculation with a basis set of 102 CGTFs  
[E. Clementi and H. Popkie, J. Chem. Phys., 57, 4870 (1972)]. They varied the bond angles 
and the CC bond length for each conformation to minimize the energy and found an 
increase of 0.02 Å in the CC length and a decrease of 0.3� in the HCH angle on going from 
the staggered to the eclipsed form. Their calculated barrier is 3.2 kcal/mol.

Why do SCF MO calculations give good values of the ethane rotational barrier? The 
answer lies in the correlation energy. Electrons paired in the same localized orbital move 
through the same region of space. Hence the intraorbital correlation for such a pair should 
be substantially greater in magnitude than the interorbital correlation energy for two elec-
trons in different localized MOs. In line with this, it was formerly believed that the mag-
nitude of the total interorbital molecular correlation energy was much less than the total 
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intraorbital correlation energy. However, there are many more interorbital pair correlations 
than intraorbital correlations, and it is now recognized that the total interorbital correlation 
is not negligible and in some cases can be of comparable magnitude to the total intraorbital 
correlation. [See E. Steiner, J. Chem. Phys., 54, 1114 (1971).] Hence we must consider both 
kinds of correlation in ethane.

Rotation of a methyl group in ethane does not change any of the bonds, and thus 
intraorbital correlation should be essentially the same in the staggered and eclipsed forms. 
Moreover, we expect most of the interorbital correlations to be essentially unchanged in 
the two forms. In particular, correlations between the CiH bonds within each methyl 
group should remain virtually the same, and so should correlations between the CiC 
and CiH bonding pairs. It is only the correlations between CiH pairs of different 
methyl groups that should change, and these make the smallest contributions to interorbital 
correlation. Thus we expect the total correlation energy to be only slightly changed from 
staggered to eclipsed. Thus the energy error in an SCF MO calculation is about the same 
for the two forms, and the Hartree–Fock energy difference should yield a good estimate of 
the barrier. Recall that Hartree–Fock calculations give poor values for dissociation ener-
gies. This is because the number of electron pairs changes in forming a chemical bond 
from atoms, thereby changing the correlation energy substantially.

Some HF/6-31G* results for other rotational barriers calculated with geometry optimi-
zation of all structures are (values in kcal/mol): CH3OH, 1.36 calculated versus 1.07 experi-
mental; CH3CHO, 1.03 calculated versus 1.17 experimental; CH3NH2, 2.39 calculated 
versus 1.98 experimental; CH3SiH3, 1.40 calculated versus 1.70 experimental (CCCBDB).

The physical origin of the ethane rotational barrier has been the subject of intense 
controversy. The steric-repulsion viewpoint attributes the barrier to the Pauli repulsion 
(Section 10.3) between the eclipsing localized C—H bonding electron pairs in eclipsed 
ethane [R. M. Pitzer, Acc. Chem. Res., 16, 207 (1983); F. M. Bickelhaupt and E. J. Baerends, 
Angew. Chem. Int. Ed., 42, 4183 (2003)]. The hyperconjugation viewpoint [A. E. Reed and 
F. Weinhold, Isr. J. Chem., 31, 277 (1991); V. Pophristic and L. Goodman, Nature, 411, 565 
(2001); F. Weinhold, Nature, 411, 539 (2001); F. Weinhold, Angew. Chem. Int. Ed., 42, 4188 
(2003)] attributes the barrier to greater stabilization of the staggered form by hyperconjuga-
tion. (In the language of the VB method, hyperconjugation stabilization in ethane is due to 
contributions of ionic resonance structures that have a double bond between the carbons 
and have an H+ on one carbon and an H- on the other carbon, with no bonds to these ionic 
H’s. In the language of MO theory, hyperconjugation stabilization is due to interaction 
between a filled, localized bonding CH MO on one C and a vacant, localized antibonding 
CH MO on the second carbon. Hyperconjugation involves delocalization of localized s 
electrons, whereas conjugation involves delocalization of localized p electrons. s and p 
LMOs are defined at the end of Section 15.9.)

An analysis of ab initio VB wave functions for ethane and related molecules found  
that the main contributor to the barrier is steric repulsion, with hyperconjugation contrib-
uting only one-third of the ethane barrier [Y. Mo et al., Angew. Chem. Int. Ed., 43, 1986 
(2004); L. Song et al., J. Phys. Chem. A, 109, 2310 (2005); Y. Mo and J. Gao, Acc. Chem. 
Res., 40, 113 (2007); Y. Mo, WIREs Comput. Mol. Sci., 1, 164 (2011)]. The experimentally 
observed structure of CH3CH2CCCH2CH3 has been interpreted as providing strong sup-
port for the steric-repulsion origin of the ethane barrier [R. K. Bohn, J. Phys. Chem. A, 
108, 6814 (2004)].

Ethylene
For C2H4, the ground-state equilibrium-geometry point group is �2h. The standard choice 
of coordinate axes is shown in Fig. 15.10.
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There are eight symmetry operations for �2h. Each symmetry operation commutes 
with every other symmetry operation, so the electronic wave function must be an eigen-
function of all the symmetry operators, and we have only nondegenerate (A and B) sym-
metry species. Since the three rotations, the three reflections, and the inversion operation 
each have their squares equal to the identity operation, these symmetry operations must 
have the eigenvalues {1. All eight symmetry operations can be expressed as the product 
of one, two, or three of the reflections (each reflection simply converts one coordinate to 
its negative):

En = 3sn 1xy242,  i = sn 1xy2sn 1xz2sn 1yz2
Cn21x2 = sn 1xy2sn 1xz2,  Cn21y2 = sn 1xy2sn 1yz2,  Cn21z2 = sn 1xz2sn 1yz2

Since the symmetry eigenvalues multiply the same way the symmetry operations do, speci-
fication of the eigenvalues of the three reflections is sufficient to fix all eight symmetry 
eigenvalues. There are thus 23 = 8 possible symmetry species. The standard notation for 
these is given in Table 15.3. The g or u subscript corresponds to eigenvalue +1 or -1 for 
in. For �2h the designation A is used only for symmetry species with eigenvalue +1 for all 
three Cn2 rotations.

There are 14 minimal-basis-set AOs. It is easy to set up symmetry orbitals by trial 
and error. Unnormalized symmetry orbitals and their symmetry species are listed in 
Table 15.4.

The 14 lowest MOs include four ag, four b1u, two b2u, two b3g, one b3u, and one b2g 
MO. Eight of these MOs are occupied in the ground state. SCF MO calculations give as 
the electron configuration of the 1Ag ground state [U. Kaldor and I. Shavitt, J. Chem. Phys., 
48, 191 (1968)]

11ag2211b1u2212ag2212b1u2211b2u2213ag2211b3g2211b3u22

Each canonical MO of a planar molecule is classified as s or p according to whether 
its eigenvalue for reflection in the molecular plane is +1 or -1, respectively. (This usage 
is somewhat inconsistent with the s, p, d, g classification of linear-molecule MOs. For 
linear molecules, the symbols s and p signify an axial component of electronic orbital 
angular momentum of 0 and {U, respectively. For nonlinear molecules we cannot specify 
the component of L along an internuclear line. For linear molecules, s MOs are nondegen-
erate and p MOs are doubly degenerate. For nonlinear molecules, the s-p classification 
is unrelated to the degeneracy.) For the ground state of water, all the occupied MOs are s 
MOs except the lone-pair 1b1 MO, which is a p MO.

Figure 15.10  Coordinate 
axes for C2H4. The x axis is 
perpendicular to the molecular 
plane.

y

z

H2

H1 H3

H4

C2C1



478  Chapter 15  |  Molecular Electronic Structure

Table 15.3  �Symmetry Species 
Eigenvalues for �2h

Sn 1xy2 Sn 1xz2 Sn 1yz2
Ag +1 +1 +1

Au -1 -1 -1

B1g +1 -1 -1

B1u -1 +1 +1

B2g -1 +1 -1

B2u +1 -1 +1

B3g -1 -1 +1

B3u +1 +1 -1

Table 15.4  �Symmetry-Adapted Basis Functions 
for C2H4

Symmetry Function Symmetry Species

H11s + H21s + H31s + H41s ag

C11s + C21s ag

C12s + C22s ag

C12pz - C22pz ag

H11s + H21s - H31s - H41s b1u

C11s - C21s b1u

C12s - C22s b1u

C12pz + C22pz b1u

H11s - H21s + H31s - H41s b2u

C12py + C22py b2u

H11s - H21s - H31s + H41s b3g

C12py - C22py b3g

C12px + C22px b3u

C12px - C22px b2g

For ethylene, the only occupied p MO in the ground electronic state is the 1b3u MO, 
the highest occupied MO. Since there is only one b3u symmetry orbital in Table 15.4, the 
minimal-basis 1b3u MO must be identical (apart from a normalization constant) to this 
symmetry orbital. One finds (using STOs) 1b3u = 0.631C12px + C22px2. This bonding 
MO formed by overlap of the 2px AOs of carbon resembles the pu MO of Fig. 13.15. The 
1b3u p MO accounts for the planarity of ethylene in its ground state. As one CH2 group is 
rotated relative to the other, the overlap between the two carbon 2px AOs rapidly dimin-
ishes, and the energy of the 1b3u MO increases; hence the molecule strongly resists torsion 
about the carbon–carbon bond.

The lowest-lying unoccupied MO of ethylene is the 1b2g antibonding p MO: 
 1b2g = 0.821C12px - C22px2. It resembles the pg MO in Fig. 13.15. The excited ethyl-
ene configuration 11ag22 g 11b3g2211b3u211b2g2 gives rise to two terms (a singlet and 
a triplet), and it is likely that these electronic states are nonplanar, with one CH2 group 
rotated about 90� with respect to the other [K. B. Wiberg et al., J. Phys. Chem., 96, 10756 
(1992)]. Moreover, in the singlet excited state, one of the CH2 groups is pyramidalized, 
with the two CH bonds of one CH2 group bent toward one of the hydrogens of the other 
CH2 group, so that the plane of one CH2 group is not perpendicular to the plane of the 
other CH2 group [S. El-Taher et al., Int. J. Quantum Chem., 82, 242 (2001); M. Barbatti 
et al., J. Chem. Phys. 121, 11614 (2004).]

The canonical s MOs of ethylene each contain contributions from AOs of all six atoms 
and are delocalized over the whole molecule. By taking appropriate linear combinations 
of the canonical s MOs, we can form localized s MOs. We expect these MOs to consist 
of the following inner-shell and bonding MOs:

i1C12,   i1C22
	 b1C1C22,  b1C1H12,  b1C1H22,  b1C2H32,  b1C2H42	

(15.64)
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The MOs b1C1C22 and 1b3u give the familiar description of the carbon–carbon double 
bond as one s and one p bond (Fig. 15.11). We still do not, however, have the equivalent 
MOs of ethylene, since the p MO 1b3u is not equivalent to any of the s MOs in (15.64), 
nor is it equivalent to itself; it goes into its negative upon a Cn21z2 rotation. By adding and 
subtracting the b1C1C22 and 1b3u MOs, we can form two equivalent localized carbon–
carbon bonding MOs:

	 b11C1C22 = 2-1>23b1C1C22 + 1b3u4 	 (15.65)

	 b21C1C22 = 2-1>23b1C1C22 - 1b3u4 	 (15.66)

The MOs (15.65) and (15.66) lead to the description of the carbon–carbon bond as com-
posed of two “banana” bonds (Fig. 15.12).

There has been controversy as to whether the ethylene double bond is best described 
as two equivalent bent banana bonds or as a s and a p bond. Kaldor calculated the energy-
localized MOs of ethylene from minimal-basis-set SCF MOs [U. Kaldor, J. Chem. Phys., 46, 
1981 (1967)]. Since there is no a priori necessity that the energy-localized MOs be equiva-
lent orbitals, this calculation provides evidence as to which is the “better” description of 
the carbon–carbon double bond. Kaldor found the energy-localized carbon–carbon bond 
orbitals in ethylene to be the two equivalent banana bonds. For acetylene he found the 
energy-localized carbon–carbon bond orbitals to be three equivalent banana bonds and not 
one s and two p bonds. Of course, although the electron densities in the individual MOs 
differ for the banana-bond versus s-p descriptions, the total probability density for the 
four or six electrons in the double or triple bond is the same in either picture.

The energy-localized C1H1 bond MO in ethylene was found by Kaldor to be

0.36371C12s#2 + 0.41431C12py2 - 0.25741C12pz2 + 0.49391H11s2 + c

where the dots indicate small contributions from other AOs. From (15.63), the hybridization 
of carbon in this localized MO is sp1.8, which is close to the sp2 of VB theory. The angle 
made by the carbon hybrid AO in b1CH12 with the C- C axis is p - arctan11.612 = 122�, 
essentially the same as the experimental bond angle. Hence the localized CH bond orbitals 
are not bent in planar ethylene.

Figure 15.11  s, p description 
of the ethylene double bond. The 
cross sections are taken in a plane 
perpendicular to the molecular 
plane, which is a nodal plane for 
the p MO.
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Figure 15.12  Banana-
bond description of the 
ethylene double bond. The 
cross sections are the same 
as in Fig. 15.11.
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We noted earlier in this section that each canonical MO of a planar molecule is 
­classified as p or s according to whether or not the molecular plane is a nodal plane for the 
MO. A localized bonding MO of a molecule (planar or nonplanar) is classified as s or p 
or d according to whether this MO has 0 or 1 or 2 nodal planes containing the line joining 
the nuclei of the two bonded atoms. The bonding localized MOs in water (Fig. 15.7) are 
s MOs; the ethylene double-bond localized MOs in Fig. 15.11 consist of one s and one p 
MO; the b1CH12 MO (15.62) in CH4 is a s MO. In certain transition-metal compounds 
(for example, Re2Cl2 -

8 ), overlap of d AOs produces a d localized bonding MO, and these 
compounds have a quadruple bond consisting of one s, two p, and one d MO; see F. A. 
Cotton et al. (eds.), Multiple Bonds Between Metal Atoms, 3rd ed., Springer, 2005. A few 
organometallic compounds exist that contain quintuple bonds between two Cr atoms or 
between two Mo atoms (en.wikipedia.org/wiki/Quintuple_bond) and the gas-phase dimers 
Mo2 and W2 contain sextuple bonds (en.wikipedia.org/wiki/Sextuple_bond).

15.10 Molecular Geometry
Equilibrium Geometry
The equilibrium geometry of a molecule corresponds to the nuclear arrangement that mini-
mizes U, the molecular electronic energy including internuclear repulsion [Eqs. (13.4) and 
(13.8)].

The changes in U as a bond length or bond angle varies over moderate ranges are 
substantially smaller in magnitude than the molecular correlation energy. For example, for 
H2O a large basis-set CI calculation [P. Hennig et al., Theor. Chim. Acta, 47, 233 (1978)] 
found that a variation of {15� from the equilibrium 105� angle changed U by 0.008% and 
variations of 20.16 Å or 10.21 Å from the equilibrium OH bond lengths changed U by 
0.07%. In contrast, the correlation energy of H2O is 0.5% of U (Table 15.2). Also, changes 
in dihedral angles produce changes that are far less than the correlation energy (recall the 
discussion of ethane in Section 15.9).

Despite the smallness of these changes of molecular energy with nuclear locations as 
compared with the energy error (the correlation energy) inherent in the SCF MO method, ab 
initio SCF MO wave functions usually give good predictions (0 to 3% error) of equilibrium 
bond distances and angles in molecules not involving transition metals. Some HF/6-31G* 
bond angles and lengths follow (taken mostly from the CCCBDB), where experimental 
values are in parentheses. NH3: 107� 1107�2 and 1.00 Å 11.01 Å2; H2O 105.5� 1104.5�2 
and 0.95 Å (0.96 Å); C2H6: 108� 1108�2 for HCH, 1.09 Å (1.09 Å) for CiH, and 1.53 Å 
(1.54 Å) for CiC; C2H4: 116� 1117�2 for HCH and 1.32 Å (1.34 Å) for C “ C; H2CO: 
116� 1116 �2 for HCH and 1.18 Å (1.20 Å) for C “ O. (For extensive comparisons, see the 
CCCBDB and Hehre.)

Evidently, the correlation energy remains approximately constant for bond angle and 
length variations in the region of the equilibrium geometry.

For transition-metal compounds, HF geometries are not reliable and one of the correla-
tion methods of Chapter 16 needs to be used. Also, HF/STO-3G geometries for compounds 
not containing transition elements fairly often show substantial errors and should not be 
relied on. The minimal STO-3G basis set is essentially obsolete because of its unreliable 
performance for molecular properties.

The Potential-Energy Surface (PES)
The geometry of a nonlinear molecule with N nuclei is defined by 3N - 6 independent 
nuclear coordinates q1, q2, c, q3N - 6, and its electronic energy U is a function of these 
coordinates. The number 6 is subtracted from the total number of nuclear coordinates 
because the three translational and three rotational degrees of freedom leave U unchanged. 
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(A diatomic molecule has only two rotational degrees of freedom, the angles u and f in 
Fig. 6.3, and here U is a function of only one variable, the internuclear distance R.) The 
function U gives what is called the potential-energy surface (PES) for the molecule, so 
called because U is the potential energy in the Schrödinger equation (13.10) and (13.11) 
for nuclear motion. If U depended on two variables, then a plot of U1q1, q22 in three 
dimensions would give a surface in ordinary three-dimensional space. Because of the 
large number of variables, U is a “surface” in an abstract “space” of 3N - 5 dimensions. 
To find U, we must solve the electronic Schrödinger equation at many nuclear configura-
tions, which is a formidable task for a large molecule. Calculation of U at one particular 
arrangement of the nuclei is called a single-point calculation, since it gives one point on 
the molecular PES.

A complicating fact is that a large molecule may have many minima on its PES. 
Figure 15.13 sketches the variation of the electronic energy U for butane, CH3CH2CH2CH3, 
as a function of the CCCC dihedral angle. At each point on this curve, all geometrical coor-
dinates except the CCCC dihedral angle have been varied to yield the energy minimum 
for the particular fixed CCCC dihedral angle. The 0� dihedral angle gives the syn (or cis) 
conformation with the methyl groups eclipsing one another. This is an energy maximum 
with respect to variation of the dihedral angle. However, because the geometry has been 
optimized for all variables except the dihedral angle, the 0� point corresponds to an energy 
minimum for the 3N - 7 remaining variables. The 0� point is a first-order saddle point, 
meaning that it is an energy maximum for one variable and an energy minimum for the 
remaining variables. (The point where the rider sits on a saddle is a point of maximum 
height on the curve that goes from one side of the saddle to the other and is a minimum 
point on the curve that goes from the back to the front of the saddle.) The energy minimum 
at about 65� corresponds to the 1gauche conformation, and the minimum at 180� is the 
anti (or trans) conformation. The 180� minimum is the lowest-energy point on the butane 
PES and so is called the global minimum. The 65� minimum is a local minimum, mean-
ing that it is lower in energy than all PES points in its immediate vicinity. The minimum 
near -65� is the -gauche conformation, which is a nonsuperimposable mirror image of 
the 1gauche conformation.

The conformation of a molecule is specified by giving the values of all dihedral 
angles about single bonds. A conformation that corresponds to an energy minimum (local 
or global) is called a conformer.

Large molecules with many single bonds may have astronomical numbers of local 
minima, producing the multiple-minima problem. For example, consider the n-residue 
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versus the CCCC dihedral angle.
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polypeptide 1iNHiCHRiC(O2i2n. Even if one assumes that each OCiNH dihe-
dral angle is 180� (its most common value) and ignores the conformations of the amino 
acid side chains R, the polypeptide has 2n adjustable dihedral angles (the torsion angles 
about the NHiCHR and CHRiC1O2 bonds), each of which has three likely minima 
160�, -60�,  and  180�2. This gives 32n possible conformations that are local energy min-
ima. For n = 40, this is 380 � 1038 conformations to be examined. Methods for searching 
for low-energy conformations of medium-size and large molecules are discussed in Sec-
tion 15.11.

The dihedral angle v = D1RSTU2 in Fig. 15.14a is defined as the angle v between 
the half plane RST and the half plane STU. More precisely, the dihedral angle is angle 
RSX, where lines RS and SX are both perpendicular to line ST. In dealing with a molecular 
dihedral angle D(ABCD) involving four atoms A, B, C, D, the AB and CD bonds are not 
likely to be perpendicular to the BC bond, so one must project AB and CD into a plane 
perpendicular to line BC. This is done by drawing a Newman projection with line BC per-
pendicular to the plane of the paper (Fig. 15.14b). The range of dihedral angles is chosen 
to be either 0� … v 6 360� or -180� 6 v … 180�. By definition, a clockwise rotation 
of the projected front bond AB to bring it to atom D corresponds to a positive dihedral 
angle D(ABCD).

Some references on geometry optimization are H. B. Schlegel in Yarkony, Part I, 
Chapter 8; Leach, Chapter 5; H. B. Schlegel, J. Comput. Chem., 24, 1514 (2003); H. B. 
Schlegel, WIREs Comput. Mol. Sci., 1, 790 (2011).

Geometry Optimization
Many systematic mathematical procedures (algorithms) exist to find a local minimum of 
a function of several variables. These procedures will find a local minimum in U in the 
neighborhood of the initially assumed molecular geometry. The process of finding such 
a minimum is called geometry optimization or energy minimization. For a molecule 
with several conformations, one must repeat the local-minimum search procedure for 
each possible conformation, so as to locate the global minimum. For large molecules, 
there may be too many conformations for all of them to be examined. Moreover, the true 
global-minimum equilibrium geometry might correspond to a highly unconventional 
structure that the researcher might not think to consider. For example, high-level calcu-
lations that use large basis sets and include electron correlation show that, for the vinyl 
cation, the classical structure (Fig. 15.15a) lies about 4 kcal/mol higher in energy than 
the true equilibrium structure (Fig. 15.15b), which has a three-center bond [C. Liang 
et al., J. Chem. Phys., 92, 3653 (1990); B. T. Psciuk et al., Theor. Chem. Acc., 118, 
75 (2007)]; the infrared spectrum of the vinyl cation also shows the three-center-bond 
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Figure 15.14  (a) The 
dihedral angle v between 
the half planes RST and STU.  
(b) The dihedral angle 
D(ABCD). Atom C is behind B.
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structure to be more stable [M. W. Crofton et al., J. Chem. Phys., 91, 5139 (1989)]. 
The ethyl cation has a similar symmetrical bridged structure [B. Ruscic et al., J. Chem. 
Phys., 91, 114 (1989)].

Some procedures to find a local minimum in U require only repeated calculation of U 
at various values of its variables, but these procedures are very inefficient. More efficient 
procedures require repeated calculation of both U and its derivatives. The set of 3N - 6 
first partial derivatives of U with respect to each of its variables constitutes a vector (in a 
“space” of 3N - 6 dimensions) called the gradient of U (Section 5.2). At a local minimum, 
the gradient must be zero, meaning that each of the 3N - 6 first partial derivatives of U 
must be zero. Any point on the PES where the gradient is zero is called a stationary (or 
critical) point. A stationary point on a PES may be a minimum, a maximum, or a saddle 
point.

Analytical calculation of the gradient is the key to efficient geometry optimization. 
The SCF MO energy expression is Eq. (14.44), and its derivatives with respect to the 
nuclear coordinates would seem to involve the derivatives of the Hcore

rs  and 1rs 0 tu2 integrals 
(which occur in ei), the derivatives of VNN, and the derivatives of the SCF coefficients csi 
(which occur in Prs). However, the terms involving the derivatives of the csi’s turn out to 
add up to zero, leaving only the derivatives of the integrals and of VNN. The derivatives 
of the integrals are readily calculated, since the derivative of a Gaussian-type function 
with respect to a nuclear coordinate is another GTF. The derivatives of VNN are trivial. 
Thus an analytic formula for the gradient of the ab initio SCF energy is known [see Hehre 
et al., Section 3.3.3; P. Pulay, Adv. Chem. Phys., 69, 241 (1987); P. Pulay in Yarkony, Part II, 
Chapter 9]. Once the SCF energy U and wave function have been found for some chosen 
geometry, the time needed to analytically calculate the energy gradient is roughly equal 
to the time needed to do the SCF wave function and energy calculation. (To calculate the 
gradient numerically requires varying the 3N - 6 nuclear coordinates one at a time by 
a small amount, repeating the SCF calculation for each new geometry to get U for that 
geometry, and estimating each derivative as the ratio of the change in U to the change in 
the coordinate. Numerical evaluation of the gradient thus takes about 3N - 6 times as long 
as analytic evaluation of the gradient.)

As well as using the energy gradient (the 3N - 6 first partial derivatives 
0U>0q1, 0U>0q2, c), some energy minimization methods also use the second derivatives 
of U. The set of second derivatives 02U>0q2

1, 0
2U>0q10q2, 0

2U>0q20q1, 0
2U>0q2

2, c, when 
arranged in a square array form a matrix called the Hessian or the force-constant matrix 
[since the second derivatives of U are force constants; see the equation after (13.21)]. An 
efficient way to find a local minimum of a function of several variables is the Newton 
(or Newton–Raphson) method, which approximates the function by a Taylor-series 
expansion that is terminated after the quadratic terms, and uses accurately evalu-
ated first and second partial derivatives of the function (which occur in the linear 
and quadratic terms of the Taylor series). Because analytic calculation of the second 
derivatives in an ab initio SCF calculation is very costly in computer time, ab initio 
SCF geometry optimizations commonly use a modification of the Newton procedure, 

Figure 15.15  (a) Classical 
structure of the vinyl cation. 
(b) True equilibrium struc-
ture of the vinyl cation.
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called the quasi-Newton (or quasi-Newton–Raphson or variable metric) method. In 
the quasi-Newton method, one does not calculate the Hessian directly, but instead 
starts with an estimate (or guess) for the Hessian and gradually improves (updates) 
this estimate using gradient information calculated at each step in the optimization 
cycle.

To optimize the geometry, one starts with a guess for the equilibrium structure. The 
guessed structure is based on typical values for bond lengths, bond angles estimated from 
a method such as the VSEPR method, and dihedral angles guessed based on experience 
with similar compounds. [One can use a model-builder computer program (Section 15.15) 
to get an initial structure guess.]

Some typical bond lengths are listed in Table 15.5, where Xn denotes an atom X 
bonded to n neighbors and Car is an aromatic carbon.

The VSEPR (valence-shell electron-pair repulsion) method predicts the bond angles 
at an atom based on the number of valence electron pairs around that atom in the Lewis 
electron-dot formula of the molecule. The VSEPR method predicts 180� angles for two 
pairs, 120� angles for three pairs, 109 12 � (tetrahedral) angles for four pairs, and 90� angles 
(octahedral arrangement of pairs) for six pairs. For example, the Lewis structure of H2O 
shows four pairs around the O atom, which indicates a tetrahedral 109 12 � bond angle. 
Because lone pairs occupy a larger volume of space than bonded pairs, we expect the angle 
to be a little less than 1091

2�. The observed angle is 1041
2�. The VSEPR method counts a 

double or triple bond as only one pair. Thus, 120� angles are predicted at each carbon in 
H2C “ CH2, but because the double bond contains two pairs, we expect the HCH angle 
to be somewhat less than 120�. For further details on the VSEPR method, see any general 
chemistry textbook or R. J. Gillespie and I. Hargittai, The VSEPR Model of Molecular 
Geometry, Prentice Hall, 1991.

Some rules for predicting dihedral angles in acyclic organic compounds follow 
[adapted from J. A. Pople and M. Gordon, J. Am. Chem. Soc., 89, 4253 (1967)].

	 1.	 The conformation about a bond connecting two atoms each with tetrahedral bond 
angles is usually staggered.

	 2.	 For an atom A with tetrahedral angles bonded to an atom B with trigonal 1120�2 bond 
angles, (a) one of the non-B atoms bonded to A lies in the same plane as B and the 
atoms bonded to B; (b) the lowest energy conformer usually has the double bond on 
B eclipsing a single bond to A.

	 3.	 When two bonded atoms A and B both have trigonal bond angles, all atoms bonded 
to A and B lie in the same plane.

For example, rule 2 tells us that one of the methyl hydrogens in CH3iCH “ CH2 
is in the same plane as the CH “ CH2 part of the molecule and eclipses the double bond, 
and further tells us that formic acid, HC(O)OH, is planar with the lowest-energy conformer 
having the OH hydrogen eclipsing the double bond.

Table 15.5  Some Typical Bond Lengths in Angstromsa

C4iH C3iH C2iH C4iC4 C4iC3 C4iC2 C3iC3 C3iC2 C2iC2

1.09 1.08 1.06 1.54 1.52 1.46 1.46 1.45 1.38

C3 “ C3 C3 “ C2 C2 “ C2 C2 ‚ C2 CarCar O2iO2 O2iH O2iC4 O2iC3

1.34 1.31 1.28 1.20 1.40 1.48 0.96 1.43 1.36

O2iC2 O1 “ C3 O1 “ C2 N3iH N2iH N3iC4 N2iC4 N3iN3

1.36 1.22 1.16 1.01 0.99 1.47 1.47 1.45
aExcerpted from J. A. Pople and M. Gordon, J. Am. Chem. Soc., 89, 4253 (1967).
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After guessing the geometry, one searches for the minimum nearest the initially 
assumed geometry. One chooses a basis set and uses the SCF MO (or some other) 
method to approximately solve the electronic Schrödinger equation to find U and its 
gradient at the guessed initial geometry. Using the calculated values of U and �U (and 
perhaps information about the Hessian), the geometry optimization program changes the 
3N - 6 nuclear coordinates to a new set that is likely to be closer to a minimum than the 
initial set, and the SCF U and �U are calculated at this new structure. Using the results 
of the new calculation, a further improved set of nuclear coordinates is calculated, and 
the SCF calculation is repeated at the new geometry. The process is repeated until �U 
differs negligibly from zero, indicating that a minimum (at which �U is zero) may have 
been found. Typically, about 3N - 6 to 2(3N - 6) repetitions of the SCF and gradi-
ent calculations are needed to find a minimum. The availability of analytical gradients 
makes possible the efficient determination of the ab initio equilibrium geometry of 
small- and medium-size molecules, and the introduction of analytical gradients into ab 
initio calculations (by Pulay in 1969) has been called a “revolution” [L. Schäfer, J. Mol. 
Struct., 100, 51 (1983)].

Common methods of geometry optimization can converge to a stationary point that is 
not a minimum, but is a saddle point. For example, if one does a HF/6-31G* calculation on 
NH3 starting with a planar geometry, the geometry optimizer in the program Gaussian 09 
converges to a planar geometry with 0.99 Å bond lengths and 120� angles. This geometry 
is a maximum with respect to motion of the nitrogen atom in the direction perpendicular 
to the molecular plane but is a minimum with respect to the remaining coordinates. Hence 
this stationary point is a first-order saddle point. To be sure that one has found a mini-
mum and not a saddle point, it is essential to test the nature of the stationary point found 
by the geometry optimization. This is done by doing a vibrational-frequency calculation 
(Section 15.12) at the geometry found. For a true minimum, all the calculated frequencies 
will be real. For a first-order saddle point, one calculated frequency will be imaginary. 
Sad to say, there are optimized geometries reported in the literature that are saddle points 
rather than minima.

As an example of geometry optimization, a HF/3-21G geometry optimization of 
the formic acid molecule HC(O)OH using the Gaussian 09 program converged in three 
steps as shown in Table 15.6. The initial geometry uses bond distances from Table 15.5 
and bond angles given by VSEPR and assumes the molecule is planar, as predicted by 
the preceding dihedral-angle rules. A conformation with the OH hydrogen eclipsing the 
carbonyl oxygen was assumed. (For the other likely conformation, see Prob. 15.57.) The 
final optimized geometry is that at step 3, since the predicted coordinate changes from 
step 3 to step 4 are all less than the program’s cutoff for convergence and the magnitudes 
of the gradient components at the step 3 geometry are all less than the cutoff value. 
The maximum bond-length and bond-angle changes from step 3 to step 4 would have 
been 0.0003 Å and 0.06�. A frequency calculation at the step 3 geometry gives all real 

Table 15.6  HF/3-21G Geometry Optimization of a Formic Acid Conformera

R(CH) R(C�O) R(CO) R(OH) �(HC�O) �(OCO) �(COH)

initial 1.080 1.220 1.360 0.960 120.0� 120.0� 109.5�

step 1 1.070 1.205 1.347 0.970 124.8 125.1 110.5

step 2 1.074 1.197 1.349 0.972 126.2 124.4 113.5

step 3 1.074 1.198 1.350 0.9696 125.78 124.69 112.76

(step 4) 1.074 1.198 1.350 0.9695 125.73 124.64 112.69
aIn this conformer, the OH hydrogen eclipses the carbonyl oxygen. Bond lengths are in angstroms.
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vibrational frequencies, confirming that this geometry is a minimum and not a saddle 
point. The energy U and the magnitude 0 �U 0  of the gradient at the steps of this optimi-
zation are as follows:

initial step 1 step 2 step 3

U>hartrees -187.694797 -187.699879 -187.700158 -187.700199

0 �U 0 > 1hartrees>bohr2 0.0723 0.0217 0.0061 0.0007

Note the decreasing energy and the decreasing magnitude of the gradient as the minimum 
is approached.

The choice of coordinates used in the search affects the convergence rate of the 
optimization. One choice is the Cartesian coordinates of the nuclei. Another choice 
is to use bond distances, bond angles, and dihedral angles, which constitute the primi-
tive internal coordinates. (Internal coordinates describe molecular vibrations but not 
translations or rotations.) For nonrigid molecules containing more than 30 atoms, certain 
linear combinations of the primitive internal coordinates, called delocalized internal 
coordinates, perform much better than Cartesian coordinates. For example, a semiem-
pirical SCF optimization of the antibiotic jawsamycin 1C32H13N3O6, 3N - 6 = 2462 
required 409 cycles of coordinate changes using Cartesian coordinates but only 71 cycles 
using delocalized internal coordinates [J. Baker et al., J. Chem. Phys., 105, 192 (1996); 
110, 4986 (1999)]. Several other choices of internal coordinates are in use [see V. Bak-
ken and T. Helgaker, J. Chem. Phys., 117, 9160 (2002); K. Németh and M. Challacombe, 
ibid., 121, 2877 (2004)].

Ab initio SCF MO single-point calculations on molecules with several hundred atoms 
are now feasible with small basis sets. However, ab initio geometry optimization of such 
large molecules is not yet routinely possible, unless the molecule is highly symmetrical.

Notation
We shall use the ideas of an n-dimensional vector space—Section 5.2. Let q be the 
13N - 62-dimensional vector whose components are the nuclear coordinates that 
define the molecular geometry. [If Cartesian coordinates are used in the optimization, 
we deal with a 3N-dimensional vector; if internal coordinates are used, we have a 
13N - 62-dimensional vector.] Thus the molecular geometry corresponds to a point 
in 13N - 62-dimensional space. Let q1 be the initially assumed geometry, and let 
q2, q3, c, qk, qk + 1, c be the geometries generated by the optimization procedure. 
The geometry-optimization procedure produces a series of steps. The kth step is defined 
by the vector �qk that goes from qk to qk + 1; thus �qk = qk + 1 - qk. The components 
of �qk are the changes in each nuclear coordinate for step k. The length and direction 
of the kth step are the length and direction of the vector �qk.

The quasi-Newton Method
To illustrate the quasi-Newton method, we shall pretend that U is a function of only two 
variables X and Y. Let X1 and Y1 denote the initially assumed molecular geometry. If we 
neglect terms higher than quadratic, the Taylor series for a function of two variables is 
(Sokolnikoff and Redheffer, p. 336)

U1X, Y2 � U1X1, Y12 +
0U

0X
`
X1,Y1

1X - X12 +
0U

0Y
`
X1,Y1

1Y - Y12 +
1

2
 
02U

0X2 `
X1,Y1

1X - X122

	 +
02U

0X 0Y
`
X1,Y1

1X - X121Y - Y12 +
1
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02U

0Y2 `
X1,Y1

1Y - Y122� (15.67)
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Let UX K 0U>0X, UY K 0U>0Y, UXX K 02U>0X2, UXY K 02U>0X 0Y, and UYY K 02U>0Y2; 
let the subscript 1 denote evaluation at the point 1X1, Y12. Then

U1X, Y2 � U1 + UX,11X - X12 + UY,11Y - Y12 +
1
2UXX,11X - X122

	 + UXY,11X - X121Y - Y12 +
1
2UYY,11Y - Y122	

(15.68)

Just as the harmonic-oscillator approximation to a diatomic molecule’s U(R) function 
works well in the region near Re (Fig 4.6), the quadratic approximation (15.68) works 
well in the region near a minimum.

If U were accurately a quadratic function of the coordinates in the region near 1X1, Y12, 
then the second partial derivatives (the elements of the Hessian matrix) would be constants 
in this region, and the subscript 1 on the second partials would be unnecessary. Accurate 
ab initio SCF calculation of the second derivatives is very time-consuming, so one usu-
ally uses a quasi-Newton method, meaning that one starts with an approximation for the 
Hessian and improves this approximation as the geometry optimization proceeds. We 
therefore write

U1X, Y2 � U1 + UX,11X - X12 + UY,11Y - Y12 +
1
2U112

XX 1X - X122

	 + U112
XY 1X - X121Y - Y12 +

1
2U112

YY 1Y - Y122	
(15.69)

where the superscript112 denotes our first approximation to the Hessian matrix elements at 
(or near) the equilibrium geometry.

How do we get the initial guesses for the second derivatives of U? These deriva-
tives are force constants, and force constants for stretching or bending a particular kind 
of bond length or angle are roughly constant from molecule to molecule. Thus if we are 
dealing with a compound containing an HiC “ O group, we use known typical force 
constants for stretching the HiC and C “ O bonds and for bending the HCO angle to 
help construct an initial estimate of the Hessian. [This approach is closely related to the 
molecular-mechanics method (Section 17.5).] A procedure for estimating the initial Hessian 
based on typical force constants is built into most programs that do geometry optimiza-
tion. An alternative would be to get the initial Hessian from a semiempirical calculation 
(Chapter 17), which is much faster than an ab initio calculation.

Partial differentiation of (15.69) with respect to X and with respect to Y gives

UX1X, Y2 � UX,1 + U112
XX 1X - X12 + U112

XY 1Y - Y12
	 UY1X, Y2 � UY,1 + U112

XY 1X - X12 + U112
YY 1Y - Y12	

(15.70)

At a minimum, UX1X, Y2 and UY1X, Y2 are zero. Let 1X2�, Y2�2 denote the point where the 
estimated first derivatives UX and UY (the gradient components) on the left sides of (15.70) 
vanish. At 1X, Y2 = 1X2�, Y2�2, Eq. (15.70) becomes

0 = UX,1 + U112
XX 1X2� - X12 + U112

XY 1Y2� - Y12
	 0 = UY,1 + U112

XY 1X2� - X12 + U112
YY 1Y2� - Y12	

(15.71)

Solving for X2� and Y2�, we get

	 X2� = X1 +
U112

XY UY,1 - U112
YY UX,1

U112
XX U112

YY - 1U112
XY 22

, Y2� = Y1 +
U112

XY UX,1 - U112
XX UY,1

U112
XX U112

YY - 1U112
XY 22

	 (15.72)

Starting at the initially guessed geometry 1X1, Y12, we have used the calculated gradi
ent at point 1 and the initial guess for the Hessian to find point 2�. The step from point 
1 to point 2� calculated from (15.72) is called a Newton (–Raphson) step. If U were 
truly a quadratic function in the region we are working in and if we had accurate values 
for the Hessian matrix elements, the formula (15.72) would give us the minimum  
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in U in a single step. In actuality, 1X2�, Y2�2 is only an approximation to the point that 
minimizes U.

We now use the ab initio SCF MO method (or some other method) to calculate U and 
its gradient at 1X2�, Y2�2.

We could now use 1X2�, Y2�2 as the new starting geometry for the next cycle of the 
geometry optimization, but faster convergence is obtained if instead we take the new start-
ing point as X2 = X1 + a1X2� - X12, Y2 = Y1 + a1Y2� - Y12, where the value of a is 
found as follows. One expresses U as a polynomial (typically a cubic or quartic) whose 
coefficients are determined so that the U polynomial will have the values that were cal-
culated for U at 1X1, Y12 and at 1X2�, Y2�2, and the gradient of U will have the calculated 
gradient values at these two geometries. One then varies a to minimize the U polynomial, 
thereby giving the new predicted geometry 1X2, Y22. This is an example of a line search. 
By varying a, we are searching along a line in 13N - 62-dimensional space that joins 
1X1, Y12 and 1X2�, Y2�2.

Having obtained the new geometry 1X2, Y22, we could now do an SCF calculation of U 
and its gradient at 1X2, Y22, but it is accurate enough to just use the interpolated values of 
these quantities found from the U polynomial that was fitted to the data at points 1 and 2�.

One now uses the values of the gradient of U at points 1 and 2 to improve (update) 
the estimate of the Hessian by requiring that the improved Hessian satisfy Eq. (15.70) for 
points 1 and 2. Using a superscript 122 to denote the improved Hessian matrix elements, 
we require that

UX,2 = UX,1 + U122
XX 1X2 - X12 + U122

XY 1Y2 - Y12
	 UY,2 = UY,1 + U122

XY 1X2 - X12 + U122
YY 1Y2 - Y12	

(15.73)

There are three Hessian matrix elements to be solved for, but only two equations to be 
satisfied, so there is not a unique solution for the U122’s, and several recipes have been pro-
posed to find improved U122’s that satisfy (15.73). One widely used recipe is the Broyden, 
Fletcher, Goldfarb, Shanno (BFGS) procedure (Leach, Section 5.6).

Having improved the Hessian, we now use (15.72) with the U112 ’s replaced by the U122 ’s 
and with point 1 replaced by point 2 to calculate the new coordinates 1X3�, Y3�2. We then 
check for convergence by seeing if the absolute values of the predicted coordinate changes 
X3� - X2 and Y3� - Y2 are both less than some tiny fixed amount and if the gradient com-
ponents 0UX,2 0  and 0UY,2 0  are both less than some tiny amount. (The gradient must vanish at 
a minimum.) If all these conditions are met, the optimization is finished and the predicted 
geometry is point 2. If convergence has not been achieved, we calculate U and �U at point 
3�, do a line search between points 2 and 3� to locate point 3; and so on.

For a function of many variables, the best way to write the Taylor series and the 
geometry-search equations is using matrices.

Early in the quasi-Newton procedure when one is not very close to a minimum, the 
procedure may well predict large coordinate changes for which the quadratic approxi
mation to the PES may be quite inaccurate and the predicted quasi-Newton step might 
make things worse rather than better. To avoid this problem, one imposes a trust radius. 
When the length of a predicted step exceeds the trust radius, the coordinate changes are 
reduced by a scale factor; also, the direction of the step may be varied from the quasi-
Newton prediction using some other search procedure.

In the quasi-Newton method, the next geometry is obtained from the Newton formula 
(15.72) plus a line search. A commonly used alternative to the quasi-Newton method is to 
calculate the next set of nuclear coordinates by a modified form of (15.72) in which the 
current coordinates X1, Y1 are replaced by linear combinations of the current coordinates 
and the coordinates in all the previous search steps, and the current gradient components 
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are replaced by similar linear combinations of current and previous gradient components. 
The coefficients in the linear combinations are chosen so as to minimize the distance in 
the 3N - 6 dimensional space from the point that is the linear combination of coordinates 
to the next predicted geometry point. No line search is needed. The Hessian may or may 
not be updated. This procedure is the GDIIS (geometry by direct inversion in the iterative 
subspace) method [P. Császár and P. Pulay, J. Mol. Struct., 114, 31 (1984); O. Farkas and 
H. B. Schlegel, Phys. Chem. Chem. Phys., 4, 11 (2002)].

In the molecular-mechanics method (Section 17.5), analytic evaluation of the sec-
ond derivatives of U is rapid, so (provided the molecule is not very large) instead of 
the quasi-Newton method, one can use the Newton (–Raphson) method, in which the 
Hessian is accurately calculated instead of being estimated. The molecular-mechanics 
method allows geometry optimization for molecules containing thousands of atoms. For 
such large molecules, the Newton method is too computationally demanding, since one 
must deal with a large Hessian matrix. For very large molecules, molecular-mechanics 
geometry optimizations often use a modification of the Newton–Raphson method called 
the block-diagonal Newton–Raphson method. Here, one makes the approximation that 
02U>0qi 0qj = 0 whenever qi and qj are Cartesian coordinates of different atoms. This 
approximation puts the Hessian matrix in block-diagonal form, where each block is 3 * 3 
and contains 9 second partial derivatives that involve only the coordinates of a particular 
atom. This allows us to deal with the atoms one at a time. For a 1000-atom molecule, 
instead of having to deal with a Hessian containing 30002 = 9 * 106 elements (or 29942 
elements after vibrations and rotations are removed), we deal with 1000 matrices, each 
containing only 32 = 9 elements.

An alternative when the size of the molecule prevents use of the quasi-Newton or 
Newton–Raphson methods is to choose an optimization method that uses only the gradient 
and not the Hessian. Two such methods are the steepest-descent method and the conjugate-
gradient method.

The Steepest-Descent and Conjugate-Gradient Methods
In the steepest-descent method, one begins by calculating U and �U at the initially 
assumed geometry. Let these quantities be U1 and �U1. Recall (Section 5.2) that the vector 
�U points in the direction of greatest rate of increase in U. In the steepest-descent method, 
each search step is taken in the direction for which U decreases the fastest, which means 
that the first step is in the direction of  - �U1. (This direction is perpendicular to the contour 
surface of constant U that goes through point 1.) The size of the step is determined by a 
line search, as follows. One calculates U at several points along the - �U1 direction, fits 
a polynomial to the calculated U values on the line, and finds the minimum of the fitted 
polynomial, thereby giving point 2. One then calculates U2 and �U2 and does a line search 
in the direction of - �U2. One continues until the gradient and predicted step size have 
become negligibly small. The steepest-descent method can be very inefficient near the end 
of the search where �U is small, and so is used only at the beginning of the search when 
one is not close to a minimum point and �U is large. One then switches to another search 
method when �U becomes small.

An improvement on the steepest-descent method is the conjugate-gradient method. 
Here, the first step is the same as in the steepest-descent method, so q2 = q1 - l1�U1, 
where l1 is found from a line search. The direction of each subsequent step k is defined by a 
vector dk (where k = 2, 3, c) that is a linear combination of the negative gradient  - �Uk and 
the preceding search direction. The explicit formulas for the conjugate-gradient method are

qk + 1 = qk + lkdk

d1 K - �U1 and dk K - �Uk + bkdk - 1   for k 7 1
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The constant lk is found by a line search that minimizes U in the direction of dk. In 
the Fletcher–Reeves version of the conjugate-gradient method, bk is calculated from the 
formula

bk K 1�Uk��Uk2>1�Uk - 1��Uk - 12
(An alternative formula for bk is the Polak–Ribiere formula; see Leach, Section 5.4.4.) 
The idea of the conjugate-gradient method (which really should be called the conjugate-
direction method) is to choose each new step in a direction that is conjugate to the directions 
used in the previous steps (where the word “conjugate” has a certain technical meaning that 
will not be defined here), so as to avoid undoing the minimization work done in previous 
steps.

The Truncated Newton Method
In the Newton and quasi-Newton methods, one solves a set of linear equations like (15.71) 
to find each Newton–Raphson step. For large molecules, repeated solution of these linear 
equations is time-consuming. Early in the search, when one is not very close to the mini-
mum, the Newton step direction is not expected to be that accurate, and it is a waste of 
time to solve for this direction accurately. The truncated Newton (TN) method therefore 
solves these linear equations only approximately. The method is programmed so that the 
accuracy with which the linear equations are solved increases as the gradient decreases 
and one comes closer to the minimum. In the TN method the linear equations are often 
solved with a conjugate-gradient procedure, giving a procedure labeled TNCG. The TNCG 
method is often used in molecular-mechanics geometry optimizations.

15.11 Conformational Searching
Large molecules may have huge numbers of conformations that are energy minima. One is 
usually interested in finding not only the lowest-energy conformation (the global minimum 
on the PES), but also all minima whose energies are low enough so that these conforma-
tions have significant populations at room temperature. The biologically active conformer 
of a biomolecule might not be the global-minimum conformation. Because of entropy 
effects, the global minimum might not be the most populated conformer at room tempera-
ture. Currently, no method exists that is guaranteed to find the global minimum and all 
low-lying minima of a large flexible molecule. Many methods of conformational search-
ing exist. Because of the many possible conformers, the geometry optimization part of a 
conformational search for a large molecule is usually done using the molecular-mechanics 
method (Sections 15.1 and 17.5), rather than a quantum-mechanical calculation. (For a 
fuller discussion, see Leach, Chapter 9.)

In the systematic (or grid) search method, one uses a computer to systematically 
increment each dihedral angle involving rotation about a single bond by a fixed amount 
�u until all possible combinations of dihedral angles for the chosen �u have been gener-
ated. Typical values for �u are 30�, 60�, or 120�. The larger the value of �u, the fewer 
the number of possibilities that have to be examined and the more likely it is that minima 
might be missed. When each new set of dihedral angles is generated, one first checks that 
the configuration produced does not have any nonbonded atoms too close to each other (as 
determined by the van der Waals radii of the atoms); this is called a bump check. If the 
conformation generated passes the bump check, one uses a geometry-optimization proce-
dure to find the nearest energy minimum on the PES. When the nearest minimum has been 
found, one checks that it differs from any previously found minima. Special procedures are 
needed to apply a systematic search to ring compounds. Systematic searches are limited 
to molecules with no more than about 15 or 20 dihedral angles.
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In the random (or stochastic or Monte Carlo) search method, one starts with a stable 
conformer and generates new initial configurations either by randomly changing the values 
of randomly chosen dihedral angles or by adding small random amounts to the Cartesian 
coordinates of each atom. This is followed by a bump check and energy minimization. 
(The term Monte Carlo denotes random sampling of points, rather than taking a regular 
grid of points. Monte Carlo is a European gambling resort where the laws of probability 
are continually tested.)

The distance-geometry search method describes the molecule by a distance matrix 
whose elements dij are the distances between all possible pairs of atoms i and j. One begins 
by assigning a minimum and maximum permitted value to each internuclear distance. For 
two atoms bonded to each other (1,2 atoms), the minimum and maximum permitted values 
are usually set equal to the typical bond length for the two atoms and the kind of bond 
(Table 15.5). The distance between two atoms A and C each bonded to the same atom  
B (1,3 atoms) is usually set equal to the value determined from the assigned A—B and 
B—C bond distances and the ABC bond angle, whose value can be taken as a standard 
value (109 12 � for a tetrahedral angle, and so on). (Instead of using standard bond distances 
and bond angles to fix the 1,2 and 1,3 distances, one can use the bond distances and bond 
angles in a single conformer that has been energy minimized.) For two atoms A and D 
separated by three bonds (1,4 atoms, A—B—C—D) the minimum allowed A to D distance 
is the distance when the ABCD dihedral angle is 0 and the maximum allowed distance is 
the value corresponding to a 180� dihedral angle.

For a 1,n pair of atoms with n 7  4, the minimum allowed distance is initially set 
equal to the sum of the van der Waals radii of the atoms, and the maximum allowed dis-
tance is temporarily set equal to some large number (say, 100 Å). These maximum allowed 
distances are then reduced using the triangle inequality dAE … dAG + dGE, where A, E, 
and G are any three nuclei. (To see the validity of this relation, just join A, E, and G to form 
a triangle.) One repeatedly examines all possible sets of three nuclei and lowers each AE 
maximum-allowed distance that does not satisfy uAE … uAG + uGE, where u denotes the 
upper bound (maximum allowed value). The preceding triangle inequality can be written 
as dAG Ú dAE - dGE. One therefore repeatedly examines all trios of nuclei and raises any 
lower-bound distances lAG that do not satisfy lAG Ú lAE - uGE.

Once the final values of the minimum and maximum allowed distances have been 
arrived at, the distance-geometry method assigns each internuclear distance a random 
value that lies in its permitted range. These assigned internuclear distances may well 
not correspond to a possible arrangement of the atoms in three-dimensional space, so 
the distance-geometry method then uses mathematical procedures that produce a set of 
nuclear Cartesian coordinates for which the internuclear distances lie as close as possible 
to the randomly chosen values and that lie (as far as is possible) within the permitted 
ranges. Starting from these nuclear coordinates, one then does an energy minimization 
to find a conformer. (The equations of distance geometry, which find nuclear Cartesian 
coordinates from internuclear distances, aid in converting internuclear distances found by 
two-dimensional NMR spectroscopy of proteins into protein structures.)

The genetic algorithm (GA) method uses procedures analogous to mating, muta-
tion, and survival of the fittest in living organisms. (The GA method is an example of an 
evolutionary algorithm method.) In a GA conformational search, each molecular dihedral 
angle is expressed as a string of n zeros and ones (bits—binary digits), where n is typically 
in the range 6 to 12. For example, with n = 9, the string 011010001 is the binary number 
01282 + 11272 + 11262 + 01252 + 11242 + 01232 + 01222 + 01212 + 11202 = 209, 
and the dihedral angle is defined as 1209>292360� = 147�. (For technical reasons, the 
GA method often uses a different procedure, called Gray coding, to represent each angle 
as a binary string. In Gray coding, the binary representations of the successive decimal 
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integers m and m + 1 differ by a single bit change. See R. Judson in K. B. Lipkowitz and 
D. B. Boyd (eds.), Reviews in Computational Chemistry, Vol. 10, Wiley, 1997, Chapter 1, 
which is a good review article on the GA method.) The set of single-bond dihedral angles 
in a molecule is encoded by stringing together the strings that encode each dihedral angle, 
thereby forming a “chromosome” containing nd bits, where d is the number of single-bond 
dihedral angles. A chromosome encodes the conformation of a molecule.

The GA method typically begins by generating a set of about 100 first-generation 
chromosomes, where each such chromosome is formed by setting each of its nd bits ran-
domly equal to 0 or 1. For each chromosome, one does an energy calculation using the 
molecular-mechanics method to find the chromosome’s molecular electronic energy U 
(really its steric energy; see Section 17.5). The lowest-energy chromosome is ranked as the 
fittest, the second lowest is the second fittest, and so on.

To form the next generation, one first takes the fittest 10% of chromosomes and moves 
them into the next generation; the fittest chromosome is moved unchanged, and the rest of 
the fittest 10% are each subjected to a small probability of a mutation (a random change in 
a bit). The remaining 90% of the second generation is formed by mating. Mating is done by 
first picking two chromosomes at random from the breeding pool, which typically consists 
of the fittest 40% of the first generation. One then forms two “children” of the chosen pair 
by replacing the first m bits of each chosen chromosome with the corresponding first m bits 
of the other chromosome, where m is a randomly chosen number in the range 1 to nd - 1. 
In addition to interchanging the first part of the two parent chromosomes, a small prob-
ability for mutation is included. Enough matings are done to make the size of the second 
generation equal that of the first. Energy evaluations and rankings are then done for the 
second-generation chromosomes, and the third generation is formed from the second the 
same way the second was formed from the first.

One continues for typically 100 generations. Then the members of the last genera-
tion are sorted into groups, where each group has a similar set of dihedral angles, and the 
lowest-energy member of each group is energy minimized (Section 15.10). The process can 
be repeated by choosing a new set of random first-generation chromosomes.

In the molecular dynamics search method, one begins with a conformation that is 
a minimum and then assigns to each atom a set of velocity components vx, vy, vz that are 
randomly chosen from a Maxwell distribution at an elevated temperature (typically 500 K 
or 1000 K). The initial position and velocity of each atom are therefore known. One then 
applies Newton’s second law of motion to each atom, where each component of the force on 
atom i is calculated as Fx,i = -0U>0xi, where U is obtained from a molecular-mechanics 
force field (Section 17.5). One numerically integrates Newton’s second law to get the posi-
tion of each atom at the times �t, 2�t, 3�t, c, where the time interval �t is typically 
10-15 s and one typically follows the atomic motions for 10-9 s. At equal time intervals, one 
samples configurations generated by the atomic motions (typically 103 to 104 configura-
tions are taken) and each sampled configuration is subjected to energy minimization, so as 
to find a conformation. The elevated temperature used allows the molecule to climb over 
potential energy barriers to reach new regions of the PES that may contain lower-energy 
minima than the current region.

In the Metropolis Monte Carlo search method, one assigns the molecule an elevated 
temperature T (typically 1000 K). Starting with an initial conformation of the molecule, one 
randomly changes one (or a few) randomly chosen dihedral angles to give a new conformation 
whose energy is evaluated using a molecular-mechanics force field. If the new conformation 
has a lower energy than the initial one, the new conformation is accepted and becomes the 
starting conformation for the next random dihedral-angle change. If the new conformation 
has a higher energy, a random number r that lies between 0 and 1 is generated, and the new 
conformation is rejected unless e- 0�E 0 >kT 7 r, where 0 �E 0  is the energy difference between 
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the two successive conformations and k is Boltzmann’s constant. This acceptance rule is the 
Metropolis criterion, named after the person who proposed it in conjunction with simula-
tions designed to calculate the thermodynamic properties of fluids. One generates several 
thousand new conformations using this procedure, which produces a set of conformations 
whose energies are distributed according to the Boltzmann distribution law. From this set of 
conformations, one takes the nth, the 2nth, the 3nth, . . . , where n is typically 200, to give a 
few hundred conformations, each of which is then subjected to energy minimization.

Annealing consists of heating a solid to a high temperature, holding it at that tempera-
ture for a while, and then very slowly cooling it, thereby relieving strains and reaching the 
global minimum in the Gibbs free energy. Similarly, very slow cooling of a liquid favors 
formation of a single, highly ordered, low free-energy crystal. In contrast, rapid cooling 
of a liquid (quenching) leads to a polycrystalline or amorphous solid that is not the global 
free-energy minimum. (The minimization procedures of Section 15.10 find the nearest 
local minimum, rather than the global one, and are somewhat analogous to quenching.) 
Simulated annealing is a calculational procedure that uses a “cooling” process to obtain 
what is hoped will be the global energy minimum.

One can do simulated annealing with either the Metropolis Monte Carlo or the molecu-
lar dynamics search procedures. Using the Metropolis Monte Carlo procedure, one starts 
with a high-energy conformer that is a local minimum and assigns the molecule an elevated 
temperature Thigh (say, 1000 K or 1500 K). One does several hundred random dihedral angle 
changes at Thigh, accepting or rejecting each change using the Metropolis criterion. (The 
number of Monte Carlo steps needed at each temperature increases with an increase in the 
number of molecular dihedral angles and increases with an increase in the complexity of 
the PES.) Then the temperature in the acceptance/rejection inequality is reduced by a small 
amount; typically, one multiplies it by 0.9. Several hundred Metropolis Monte Carlo steps 
are taken at the new temperature, which is then reduced by multiplying it by 0.9. The whole 
process is repeated until T reaches a very low temperature Tlow, typically 50 K. (Also, when 
T is low enough so that a large percentage of the random dihedral changes lead to rejected 
conformations, one limits the size of the allowed dihedral-angle changes.) If the simulated 
annealing has been done appropriately for the molecule being studied, the conformation 
obtained at Tlow will be the global minimum and no energy minimization will be needed. 
In practice, one often applies an energy-minimization procedure (Section 15.10) to the final 
Tlow conformation. One then repeats the whole process several times, starting with a new 
initial conformation at Thigh. If the same final conformation is found on the majority of the 
runs, one can have some confidence that the global minimum has been found.

The Metropolis Monte Carlo simulated annealing method gave excellent results when 
applied to a decapeptide containing 10 alanine residues. With 1000 steps taken at each 
T, 14 out of 20 runs reached the same minimum, which is therefore believed to be the 
global minimum [S. R. Wilson and W. Cui, Biopolymers, 29, 225 (1990)]. However, this 
decapeptide with all its residues identical has a very symmetrical PES and is not a strin-
gent test of simulated annealing. When Metropolis Monte Carlo simulated annealing was 
applied to the pentapeptide Met-enkephalin, it failed, reaching 24 different conformations 
on 24 runs [A. Nayeem, J. Vila, and H. A. Scheraga, J. Comput. Chem., 12, 594 (1991)]. 
(Met-enkephalin, with 24 single-bond dihedral angles, is a naturally occurring opiate 
neurotransmitter that has been widely used in conformational searches. Several methods 
have given the same global minimum for Met-enkephalin.)

Using the molecular dynamics approach for simulated annealing, after the atomic 
positions have evolved for several hundred time steps, one cools the system a bit by multi-
plying each velocity component by a scale factor that is slightly less than one. After another 
several hundred time steps, one again reduces the velocity components. This procedure is 
repeated until the temperature is very low, typically 50 K.
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Simulated annealing is widely used to refine biomolecular structures found from X-ray 
crystallography or NMR.

In the diffusion-equation method (DEM), one starts with a molecular-mechanics 
expression for the PES U as a function of the nuclear coordinates. One applies a certain 
mathematical operator Bn to U so as to smooth out its maxima and minima. Bn is a func-
tion of a parameter t that is analogous to time. As t increases, more and more minima in 
U disappear. One sets the value of t equal to a time t0 at which one believes that only one 
minimum remains. The nature of Bn is such that the derivative 0U>0t obeys a differential 
equation that has the same form as the equation describing the process of diffusion of a solute 
in solution. One therefore solves this diffusion differential equation to find the smoothed 
PES Usmoothed at t0. The smoothing process not only removes minima but also changes 
the locations of the minima that remain. One hopes and prays that Usmoothed has only one 
remaining minimum and that this minimum originated from the global minimum in the 
original PES. With only one minimum in Usmoothed, this minimum is easily located using 
one of the methods of Section 15.10. One then reverses the process and mathematically 
transforms Usmoothed back to the original U in several steps, giving the series of functions 
Usmoothed, Usmoothed - 1, Usmoothed - 2, c, U. One searches Usmoothed - 1 for a minimum, start-
ing the search at the location of the minimum in Usmoothed. Then the Usmoothed - 2 surface 
is searched starting at the location of the minimum on Usmoothed - 1. And so on. Thus the 
minimum on the Usmoothed surface is traced back to where it occurred on the U surface. 
The DEM is quite fast. For example, in only 10 minutes of supercomputer time it found a 
structure close to the global minimum of Met-enkephalin on a certain molecular-mechanics 
PES [J. Kostrowicki and H. Scheraga, J. Phys. Chem., 96, 7442 (1992)]. A variation of the 
DEM procedure is to transform the PES to leave a few minima and then trace each of these 
back to the original PES. DEM is an example of a potential-smoothing (PS) search method. 
Other PS methods exist.

Unfortunately, the minimum found by the DEM is often not the global minimum, 
so DEM by itself is an unsatisfactory method. A two-step procedure has been proposed 
in which one first uses the DEM to locate a minimum and then searches the coordinate 
space in the region of this minimum. By confining the second search to the region near 
the DEM minimum, one greatly reduces the ranges of variables that must be searched [S. 
Nakamura et al., J. Phys. Chem., 99, 8374 (1995)]. Moreover, one can also do searching 
in the regions of the minima found during the various steps of the DEM reversal process.

In the low-mode conformational search method (LMOD or LMCS), one starts with 
a minimum-energy conformer and calculates the 3N - 6 normal vibrational modes 
(Section  15.12). Vibrational modes that involve torsion about single bonds have low 
frequencies, so the method uses only modes having vibrational wavenumbers less than 
250 cm-1. One moves the atoms from their minimum-energy position along the paths they 
would follow in one of the low-frequency vibrational modes until a steep energy increase 
is seen. The high-energy structure that results is then subjected to energy minimization 
in the hope that a potential-energy barrier will be crossed in the minimization process, 
thereby leading to a new minimum-energy conformer. This procedure is repeated first 
for each low-frequency mode of the original conformer, and then is repeated for random 
mixtures of the low-frequency modes. The low-mode search procedure is then applied to 
each new local-minimum conformer that has been found. An evaluation of the ability of 
several molecular-mechanics programs to find the known conformations of protein-bound 
ligands found the low-mode conformational search method in the MacroModel program 
(Section 17.5) to perform well [J. Boström, J. Comput. Aid. Mol. Des., 15, 1137 (2001)].

For any of the search methods used, all conformers found should be verified to be 
local minima, rather than saddle points, by calculating their vibrational frequencies and 
checking that these are all real.
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The ring hydrocarbon cycloheptadecane 1C17H342 was used to test several methods 
of conformational searching. At comparable search times, the following numbers of local-
minimum conformers were found that have an energy within 3 kcal/mol of the global 
minimum on the PES of a certain molecular-mechanics potential-energy function, called 
the MM2 PES: random dihedral search—249; random Cartesian search—222; system-
atic search—211; distance geometry—176; molecular dynamics—169 [M. S. Saunders 
et al., J. Am. Chem. Soc., 112, 1419 (1990)]. Combining the search results gave a total 
of 262 minima in this energy range. Although this study found random searching to do 
better than a systematic search, a subsequent study of C17H34 using an improved system-
atic search method called SUMM (systematic unbounded multiple minima) found that 
SUMM was superior to all the methods used in the previous study. SUMM found all 262 
minima [I. Kolossváry and W. C. Guida, J. Comput. Chem., 14, 691 (1993)]. In a com-
parison of SUMM with LMOD, SUMM took 52 hours of workstation time to find all 262 
C17H34 low-energy conformers, whereas LMOD accomplished this task in only 28 hours 
[I. Kolossváry and W. C. Guida, J. Am. Chem. Soc., 118, 5011 (1996); J. Comput. Chem. 
20, 1671 (1999)].

Another study of C17H34 used a version of DEM plus local searching called PS-NMLS 
(potential-smoothing with normal-mode local searching) and found (in 13 days of work-
station time) a total of 20469 C17H34 conformers on the MM2 PES [R.V. Pappu et al., 
J. Phys. Chem. B, 102, 9725 (1998)]. The energy distribution of these conformers was 
roughly Gaussian-shaped, with a peak in the 8 to 9 kcal/mol range and maximum conformer 
energy about 25 kcal/mol above the global minimum.

Most medium-size flexible molecules exist as an equilibrium mixture of a great number 
of conformers whose shapes can differ considerably from one another. In contrast, a globular 
protein in its native, biologically active state has a well-defined three-dimensional shape 
that is determined by intramolecular interactions such as electrostatic attractions between 
charged amino and carboxylate groups, hydrogen bonding, and dispersion attractions and 
by interactions with the solvent. (There are significant exceptions to this statement; about 
30% of human proteins contain large disordered, unstructured regions; see S. Everts, Chem. 
Eng. News, April 2, 2007, p. 58.) The conformation of a structured protein does fluctuate 
with time, but the fluctuations are not great and the overall shape is maintained.

A major problem is the protein-folding problem. Given the astronomical number of 
possible conformations of a protein molecule, how does a protein fold into its native state 
when it is synthesized, and how can we predict the three-dimensional structure of a pro-
tein knowing only its amino acid sequence? The native state of a protein is believed to be 
the Gibbs free-energy minimum of the protein in solution. If we neglect both the entropy 
contribution to G and the effect of the solvent, the native state would be the global energy 
minimum (GEM). Hence people are deeply interested in finding the GEM of a protein. 
Methods used to search for the GEM of a protein include simulated annealing, DEM, 
genetic algorithms, and many others; see D. J. Wales, Energy Landscapes, Cambridge 
Univ. Press, 2003, Sections 6.7 and 9.2.

In addition to the problem of the huge number of possible conformations, inaccura-
cies in currently used molecular-mechanics force fields (Section 17.5) are also a stumbling 
block. An analysis of errors involved when calculating protein-folding energies found that 
as protein size increases, random and systematic errors propagate throughout the protein 
and distort its potential-energy surface so much that current methods “have little chance 
of success in finding the free energy minima of large proteins” [J. C. Faver et al., PLOS 
ONE, 6, e18868 (2011); www.ncbi.nlm.nih.gov/pmc/articles/PMC3081830].

A 2012 review of protein structure prediction noted that so far “no success” has been 
achieved in predicting protein structures solely by finding the conformations of lowest 
free energy, due to the difficulty of accurately modeling intra-protein and protein-solute  
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interactions at the atomic level and to the huge number of conformations that must  
be searched; the success that has been achieved is done by using information from known 
structures of related proteins [A. Roy and Y. Zhang, “Protein Structure Predictions” in 
Encyclopedia of Life Sciences, Wiley, www.els.net (available at zhanglab.ccmb.med
.umich.edu/papers/2012_12.pdf)].

15.12 Molecular Vibrational Frequencies
Geometry optimization (Section 15.10) yields a quantum-mechanical estimate of the 
molecular electronic energy U evaluated at a local minimum, and a conformational search 
(Section 15.11) yields an estimate of the global energy minimum. However, the nuclei 
in a molecule vibrate about their equilibrium positions, and it is essential to include the 
molecular vibrational zero-point energy EZPE if accurate quantum-mechanical estimates 
of energy differences are wanted. Calculation of EZPE requires knowing the molecular 
vibrational frequencies. Also, theoretical calculation of vibrational frequencies helps in 
analyzing infrared spectra; “it is virtually impossible to interpret and correctly assign the 
vibrational spectra of larger polyatomic molecules without quantum-mechanical calcula-
tions” (P. Pulay in Yarkony, Part II, Chapter 19). Finally, calculation of vibrational frequen-
cies allows one to classify a stationary point on the PES found by a geometry-optimization 
method as a local minimum (all real vibrational frequencies) or an nth-order saddle-point 
(n imaginary frequencies).

The Schrödinger equation for nuclear motion in a molecule is given by Eqs. (13.10) and 
(13.11) as HnNcN = 1TnN + U2cN = EcN. The nuclear Schrödinger equation for diatomic 
molecules was solved approximately in Section 13.2. For polyatomic molecules, derivations 
will be omitted. (For discussion of polyatomic-molecule vibrations, see Wilson, Decius, 
and Cross.) The total molecular energy E is approximately the sum of translational, rota-
tional, vibrational, and electronic energies. In the harmonic-oscillator approximation, the 
vibrational energy of an N-atom molecule is the sum of 3N - 6 normal-mode vibrational 
energies (3N - 5 for a linear molecule):

	 Evib � a
3N - 6

k = 1
1vk +

1
22hnk	 (15.74)

where nk is the harmonic (or equilibrium) vibrational frequency for the kth normal mode 
and each vibrational quantum number vk has the possible values 0, 1, 2, c independent 
of the values of the other vibrational quantum numbers. For the ground vibrational state, 
each of the 3N - 6 vibrational quantum numbers equals zero, and the zero-point energy 
in the harmonic-oscillator approximation is EZPE � 1

2g3N - 6
k = 1 hvk.

The harmonic vibrational frequencies of a molecule are calculated as follows. (1) 
Solve the electronic Schrödinger equation 1Hnel + VNN2cel = Ucel for several molecular 
geometries to find the equilibrium geometry of the molecule (Section 15.10). (2) Calculate 
the set of second derivatives 102U>0Xi 0Xj2e of the molecular electronic energy U with 
respect to the 3N nuclear Cartesian coordinates of a coordinate system with origin at the 
center of mass, where these derivatives (the Hessian matrix elements—Section 15.10) are 
evaluated at the equilibrium geometry. These second derivatives can be evaluated analyti-
cally from ab initio SCF MO wave functions (and many other wave functions), although 
their ab initio calculation is time-consuming. (3) Form the mass-weighted force-constant 
(or mass-weighted Hessian) matrix elements

	 Fij K
1

1mimj21>2 a
02U

0Xi 0Xj
b

e
	 (15.75)
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where i and j each go from 1 to 3N and mi is the mass of the atom corresponding to 
coordinate Xi. (4) Solve the following set of 3N linear equations in 3N unknowns:

	 a
3N

j = 1
1Fij - di jlk2ljk = 0,  i = 1, 2, c, 3N	 (15.76)

In this set of equations, di j is the Kronecker delta, and lk and the ljk’s are as-yet unknown 
parameters whose significance will be seen shortly. In order that this set of homogeneous 
equations have a nontrivial solution, the coefficient determinant must vanish:

	 det1Fij - dijlk2 = 0	 (15.77)

This determinant is of order 3N and when expanded gives a polynomial whose highest 
power of lk is l3N

k , so the determinantal (secular) equation will yield 3N roots (some of 
which may be the same) for lk. The molecular harmonic vibrational frequencies are then 
calculated from

nk = l1>2
k >2p

Six of the lk values found by solving (15.77) will be zero, yielding six frequencies 
with value zero, corresponding to the three translational and three rotational degrees of 
freedom of the molecule. (In practice, because the equilibrium geometry is never found 
with infinite accuracy, one may find six vibrational frequencies with values close to zero: 
0 nk 0 >c 6 30 cm-1.) The remaining 3N - 6 vibrational frequencies are the molecular 
harmonic vibrational frequencies.

Note that a vibrational-frequency calculation must be preceded by a geometry optimiza-
tion using the same method and basis set as used for the frequency calculation. “Frequencies” 
calculated at a point that is not a stationary point are not true vibrational frequencies.

Once the lk’s have been found, we solve the set of equations (15.76) 3N - 6 times, 
each time with a different one of the nonzero lk values, to yield the numbers ljk. The 
quantity m1>2

s ljk>m1>2
j lsk gives the ratio of the classical-mechanical vibrational amplitude 

of the coordinate Xj to the amplitude of Xs for the kth normal mode. For example, for 
the diatomic molecule 1H19F, there is only one normal mode 1k = 12. Letting the coordi-
nates X1, c, X6 be xH, yH, zH, xF, yF, zF, respectively, with origin at the center of mass and 
z axis through the nuclei, one finds on solving (15.76) (Levine, Molecular Spectroscopy, 
Section 6.2) that l31>l61 = - 1mF>mH21>2. Hence m1>2

6 l31>m1>2
3 l61 = -mF>mH = -19. Thus 

the vibrational amplitude (maximum displacement from equilibrium) of the H nucleus  
in HF is 19 times the amplitude of the F nucleus, with the vibrational displacements being 
in opposite directions. Figure 15.16 shows the forms of the normal modes of the water 
molecule.

In matrix notation, the equations (15.76) are FL1k2 = lkL
1k2, where F has matrix 

elements Fij and L1k2 is a column vector with elements ljk. Thus the lk’s are eigen-
values of the mass-weighted force-constant matrix, and are found by the usual matrix 
methods (Section 8.6).

Figure 15.16  Normal 
modes of H2O. The harmonic 
1ve2 and fundamental 1v2 
wavenumbers of the modes 
are given.H H

O

v1, e 5 3832 cm21

v1 5 3657 cm21

v2, e 5 1649 cm21

v2 5 1595 cm21

v3, e 5 3943 cm21

v3 5 3756 cm21
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The observed light-absorption frequency for the transition in which the vibrational 
quantum number vk goes from 0 to 1 with no change in the other vibrational quantum 
numbers is called the fundamental (or anharmonic) frequency for the kth normal mode. 
Because of vibrational anharmonicity, a fundamental frequency is smaller than the cor-
responding harmonic frequency [recall Eq. (4.62) for diatomic molecules]. Vibrational 
frequencies are converted to wavenumbers by being divided by c 3n� K 1>l = v>c, 
Eq. (4.64)] and wavenumbers are usually expressed in the units cm-1. (Chemists have the 
bad habit of referring to the n� values as “frequencies.”) Fundamental vibrational wave-
numbers are usually symbolized by v. The harmonic and fundamental wavenumbers 
of gas-phase H2O are shown in Fig. 15.16. Experimental values of harmonic vibrational 
frequencies are calculated from observed fundamental frequencies using anharmonicity 
constants found from analysis of vibrational infrared and Raman spectra. For medium 
and large molecules, often only the fundamental frequencies are known. For calculating 
EZPE from 12g k hnk, more accurate results are obtained by using the fundamental frequen-
cies rather than the harmonic frequencies, since the fundamental frequencies incorporate 
anharmonicity corrections.

Harmonic vibrational frequencies calculated by the Hartree–Fock method are usu-
ally several percent higher than observed harmonic frequencies. Pretty good estimates 
of experimental fundamental frequencies can be found by multiplying ab initio SCF MO 
harmonic frequencies by an empirically found scale factor. For HF/6-31G* calculations, 
the vibrational scale factor is 0.895 [A. P. Scott and L. Radom, J. Phys. Chem., 100, 16502 
(1996); this paper gives scale factors for many methods and basis sets, including separate 
scale factors for vibrational frequencies, zero-point energies, and thermodynamic proper-
ties]. The Scott–Radom study found that with the 0.895 scale factor, 84% of HF/6-31G* 
fundamental frequencies of a sample of 122 molecules were within 6% of the experimental 
value and recommended this basis set for HF vibrational-frequency calculations. For exam-
ple, HF/6-31G* harmonic wavenumbers for H2O are 4070, 1826, and 4188 cm-1. With the 
0.895 scale factor, the predicted HF/6-31G* fundamental wavenumbers of gas-phase H2O 
are 3643, 1634, and 3748 cm-1, in good agreement with the fundamentals in Fig. 15.16. 
The CCCBDB (cccbdb.nist.gov) lists vibrational scale factors for a variety of methods and 
basis sets; see also J. M. Alecu et al., J. Chem. Theory Comput., 6, 2872 (2010) (available 
at static.msi.umn.edu/rreports/2010/163.pdf).

15.13 Thermodynamic Properties
This section discusses how gas-phase thermodynamic properties can be calculated from 
molecular quantities such as the electronic energy, the equilibrium geometry, and the 
vibrational frequencies.

The (total) ground-state dissociation energy D0 of a molecule is the energy needed to 
dissociate the molecule in its ground vibrational state to atoms in their ground states. D0 dif-
fers from the equilibrium dissociation energy De by the zero-point vibrational energy EZPE:

	 D0 = De - EZPE � De -
1

2
h a

3N - 6

k = 1
nk	 (15.78)

where fundamental, rather than harmonic, vibrational frequencies are used in EZPE. To cal-
culate De, one calculates the molecular electronic energy Ue at the equilibrium geometry, 
calculates the ground-state energy of each atom in the molecule using the same method 
and basis set used in the molecular calculation, and takes the difference between the total 
atomic energies and the molecular energy. Even though the zero-point energy of a single 
vibrational mode is rather small, a medium-size or large molecule has many vibrational 
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modes and its EZPE is substantial. For example, 1,3-butadiene, CH2CHCHCH2, with 
24 normal modes, has EZPE = 2.2 eV, which corresponds to 50 kcal/mol.

Recall from Section 13.1 that NAD0 = �U�0 = �H �0 for the process

gas@phase molecule S gas@phase atoms

This process is called atomization (at), and the 0 K gas-phase atomization energy is 
�U�at,0 = NAD0.

For example, for H2O, a geometry-optimized HF/6-31G* calculation gives 
Ue = -76.010746 hartrees = -76.010746Eh. In doing energy-difference calculations 
involving nonsinglet species (such as most ground-state atoms), one usually uses the UHF 
rather than the ROHF energy (Section 15.3). UHF/6-31G* ground-state atomic energies 
are -0.498233Eh for H and -74.783931Eh for O. The predicted De is then De>Eh =

21-0.4982332 + 1-74.7839312 - 1-76.0107462 = 0.23035 and Table A.2 gives 
De = 6.27 eV. The HF/6-31G* scaled fundamental vibrational wavenumbers of H2O are 
(Section 15.12) 3643, 1634, and 3748 cm-1, which give EZPE � 0.56 eV and D0 = 5.71 eV, 
as compared with the experimental value D0 = 9.51 eV. The D0 = 5.71 eV value when 
multiplied by the Avogadro constant NA gives a predicted atomization energy �U�at,0 =

551 kJ>mol = 132 kcal>mol. To compare this predicted value with experiment, one con-
sults a table of thermodynamic data. Gas-phase enthalpies of formation �H �f,0 = �U�f,0 
at 0 K are 216.04 kJ>mol for H(g), 246.79 kJ>mol for O(g), and -238.92 kJ>mol for 
H2O1g2 (Chase et al.). These data give the experimental atomization energy as 
�U�at,0 = 917.79 kJ>mol = 219.4 kcal>mol. Accurate calculation of dissociation ener-
gies requires inclusion of electron correlation (see Chapter 16).

Enthalpies of formation are more commonly used than atomization energies and 
are readily calculated from a predicted atomization energy and known thermodynamic 
data for the elements. For H2O1g2, �H �f  is �H� for the reaction H21g2 +

1
2O21g2 S  

H2O1g2. Using the scheme reactants S atoms S products, we can calculate �H � for the 
formation reaction by subtracting the theoretically predicted atomization energy of  
the product from the experimental atomization energies of the reactants. Using the data 
in the preceding paragraph, we have as the HF/6-31G* prediction: �H�f,01H2O(g2) =  
321216.042 + 246.79 - 5514  kJ>mol = 128 kJ>mol = 30.6 kcal>mol. The experimen-
tal value is -238.9 kJ>mol = -57 kcal>mol. The error is, of course, the same as the error 
in the atomization energy.

So far, we have worked at 0 K. Values at 298 K are of more interest. Statistical 
mechanics (see any physical chemistry text) gives the translational contribution to the 
molar internal energy of an ideal gas as 3

2 RT, the rotational contribution as RT for linear 
molecules and 32 RT  for nonlinear molecules, and the vibrational contribution by a formula 
given in Prob. 15.39. (The electronic contribution is negligible at room temperature except 
for a few cases of molecules with low-lying excited electronic states.) One finds that only 
vibrational modes with wavenumbers below 900 cm-1 contribute significantly to the room-
temperature vibrational internal energy (Prob. 15.39). For H2, O2, and H2O, which have no 
low-frequency vibrations, the vibrational contributions to the internal energy are negligible 
at room temperature. For the formation reaction H21g2 +

1
2O21g2 S H2O1g2, the molar 

internal energy of the product is 32 RT +
3
2 RT = 3RT  higher at T than at 0 K, and the molar 

internal energy of the reactants is 32 RT + RT +
1
2
# 3

2 RT +
1
2 RT = 3.75RT  higher at T than 

at 0. In addition, the formation reaction has a net change of -1
2 mole of gas, and the rela-

tions H K U + PV = U + nRT  tell us that

�H�f,T = �U�f,T -
1
2 RT = �U�f,0 - 0.75RT -

1
2 RT = �U�f,0 -

5
4 RT = �H �f,0 -

5
4 RT

Thus the HF/6-31G* predicted value 30.6 kcal>mol for �H �f,0 of H2O1g2 corresponds to 
a predicted �H �f,298 of 29.9 kcal>mol.
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Statistical mechanics gives the molar entropy of an ideal gas as the sum of translational, 
rotational, vibrational, and electronic contributions. (See any physical chemistry text.) The 
translational contribution depends only on the molar mass of the gas. The rotational contri-
bution Srot depends on the symmetry number and the principal moments of inertia. These 
quantities are readily found from the molecule’s equilibrium geometry. The vibrational con-
tribution Svib depends on the molecular vibrational frequencies, which can usually be rather 
accurately calculated with the aid of a scale factor. The electronic contribution depends on 
the electronic degeneracy of the ground electronic state and in a few cases on the energies 
of any low-lying excited electronic states. Thus, ab initio quantum chemistry calculations 
can give accurate predictions of gas-phase room-temperature entropies for small molecules.

For example, East and Radom devised a procedure they call E1, which calculates Srot 
from the MP2/6-31G* geometry (MP2 calculations are discussed in Section 16.3) and Svib 
from HF/6-31G* scaled vibrational frequencies and the harmonic-oscillator approxima-
tion, except that internal rotations with barriers less than 1.4RT are treated as free rotations 
[A. L. L. East and L. Radom, J. Chem. Phys., 106, 6655 (1997)]. For 19 small molecules 
with no internal rotors, their E1 procedure gave gas-phase S�m,298 values with a mean 
absolute deviation from experiment of only 0.2 J>mol@K and a maximum deviation of 
0.6 J>mol@K. The E1 procedure was in error by up to 11

2 J>mol@K for molecules with one 
internal rotor and by up to 2 J>mol@K for molecules with two rotors. An improved proce-
dure called E2 replaces the harmonic-oscillator potential for internal rotors by a cosine 
potential calculated using the MP2 method and a large basis set, and reduces the error to 
1 J>mol@K for one-rotor molecules.

Improved accuracy in thermodynamic quantities is obtained if anharmonicity cor-
rections (calculated using density functional theory) are included and if internal rotation 
about single bonds is properly treated; see M. Barone, J. Chem. Phys., 120, 3059 (2004), 
and this procedure is included in the Gaussian program (Section 15.14).

One is often interested in energy differences between two species B and C, such 
as different isomers or different conformers. The quantity NA1Ue,B - Ue,C2 gives the 
molar internal-energy difference at 0 K with zero-point energies neglected. The quan-
tity NA31Ue,B + EZPE,B2 - 1Ue,C + EZPE,C24  gives the molar internal-energy difference 
at 0 K. Different conformers usually have similar zero-point vibrational energies, so the 
zero-point-energy contribution is often neglected here. Translational, rotational, and vibra-
tional contributions are included to get energy differences at temperatures warmer than  
0 K. As an example, a high-level ab initio calculation that included electron correlation 
found the following energy (and enthalpy) differences between the gauche and anti 
conformers of butane(g): 0.59 kcal/mol at 0 K with zero-point energy neglected,  
0.70 kcal/mol at 0 K with zero-point energy included, and 0.64 kcal/mol at 298 K, as 
compared with an experimental value 0.67 kcal/mol averaged over the range 220 to  
298 K [G. D. Smith and R. L. Jaffe, J. Phys. Chem., 100, 18718 (1996)].

15.14 Ab Initio Quantum Chemistry Programs
This section surveys some of the available ab initio quantum chemistry program packages.

The program Gaussian (www.gaussian.com), which exists in various versions 
(… Gaussian 94, Gaussian 98, Gaussian 03, Gaussian 09,…) labeled by release year, 
is a widely used versatile program package that includes all common ab initio methods, 
such as Hartree–Fock, CI, MCSCF, MP (Section 16.3), and CC (Section 16.4), the density 
functional method, many semiempirical methods, and the molecular-mechanics method. 
Gaussian can optimize geometries, calculate vibrational frequencies, thermodynamic 
properties, and NMR shielding constants, search for transition states, calculate MEPs, 
and include the effects of a solvent. Gaussian is available in versions for supercomputers, 
workstations, PCs running Windows, and Macintosh computers.
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GAMESS (General Atomic and Molecular Electronic Structure System) includes all 
the common ab initio, density functional, and semiempirical methods and has the advan-
tage of being free. It runs on supercomputers, workstations, Macintoshes, and Windows 
PCs. For details, see www.msg.chem.iastate.edu/gamess; M. W. Schmidt et al., J. Com-
put. Chem., 14, 1347 (1993); M. S. Gordon and M. W. Schmidt, “Advances in electronic 
structure theory: GAMESS a decade later,” in Theory and Applications of Computa-
tional Chemistry, C. E. Dykstra et al. eds., Elsevier 2005. GAMESS is sometimes called 
GAMESS-US to distinguish it from a different program GAMESS-UK.

Q-Chem (www.q-chem.com) is an ab initio package for computers using UNIX or 
LINUX and can also be run on Windows and Macintosh machines by using the Spartan 
program (see below) as a front end. Q-Chem allows calculations on large molecules and 
can do Hartree–Fock, MP, CC, and density-functional calculations [Y. Shao et al., Phys. 
Chem. Chem. Phys., 8, 3172 (2006)]. It incorporates methods such as CFMM and ONX to 
achieve linear scaling (Section 15.16) for large molecules.

Jaguar (www.schrodinger.com) runs on Linux, Windows, or Macintosh and can do 
HF, MP2, density functional, and GVB (Section 16.13) calculations.

NWChem (www.nwchem-sw.org) is a free ab initio and density functional program 
designed to run on parallel supercomputers and workstation clusters and also runs on Win-
dows and Macintosh computers [M. Valiev et al., Comput. Phys. Commun., 181, 1477 (2010)].

The ACES III program (www.qtp.ufl.edu/ACES) is a free program designed for per-
forming CC and MP (Sections 16.3 and 16.4) calculations on parallel machines.

Turbomole (www.cosmologic.de/QuantumChemistry/main_qChemistry.html) is an ab 
initio and density functional program that runs on workstations and Windows and Macintosh 
computers.

Molpro (www.molpro.net) is an ab initio and density functional program designed 
for highly accurate calculations on small- and medium-size molecules and includes many 
electron-correlation methods.

ORCA (www.mpibac.mpg.de/bac/logins/neese/description.php) is a UNIX and Win-
dows ab initio, density functional, and semiempirical program that is free to academic 
users [F. Neese, WIREs Comput. Mol. Sci., 2, 73 (2012)].

PSI4 (www.psicode.org) is a free ab initio and density functional program that runs on 
Linux and Macintosh machines [J. M. Turney et al., WIREs Comput. Mol. Sci., 2, 556 (2012)].

Spartan (www.wavefun.com) includes ab initio (Hartree–Fock, MP, CC, CI), density 
functional, semiempirical, and molecular-mechanics methods, has several conformational 
searching methods, and runs on workstations, PCs, and Macintoshes. Spartan Student 
Edition is an inexpensive version with fewer capabilities.

HyperChem (www.hyper.com) includes Hartree–Fock, MP2, density-functional, 
semiempirical, and molecular-mechanics methods and runs on PCs, Macs, and worksta-
tions. Student HyperChem is an inexpensive student version that limits the size of the 
molecule that can be calculated.

Large-scale quantum chemistry calculations can be economically done on a cluster 
of networked off-the-shelf PCs running in parallel. Such clusters (which typically contain 
from 8 to 128 PCs) are either put together by the researcher or can be bought.

15.15 Performing Ab Initio Calculations
This section discusses some practical matters in using ab initio calculations.

Input
The input section of a calculation specifies the molecule, the calculational method to be 
used, the basis set, the kind of calculation (single-point, geometry optimization, frequency, 
and so on), and a molecular geometry (which will be used for a single-point calculation 
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or optimized in an optimization calculation). For example, Table 15.7 shows the Gaussian 
input section for a geometry optimization of the H-eclipsing-O conformer of acetaldehyde, 
CH3CHO (Fig. 15.17), using the Hartree–Fock method with the 3-21G basis set. The first 
line specifies the restricted Hartree–Fock method (the letters HF could have been used 
instead of RHF) and the 3-21G basis set. The keyword Opt requests a geometry optimiza-
tion. If no keyword were present, a single-point calculation would be done. The second 
line is blank. The third line is a description of the calculation for the user’s information and 
does not affect the computation. The fourth line is blank. The first number in the fifth line 
specifies the molecular charge and the second number gives the spin multiplicity 2S + 1. 
The next seven lines specify the initial guess for the geometry. The last line of the input 
file is blank. (In the PC version of Gaussian, the first three nonblank lines of Table 15.7 
are entered into lines labeled Route Section, Title Section, and Charge and Multipl., respec-
tively, and required blank lines are automatically inserted by the program.)

The molecular-geometry guess in Table 15.7 is specified in internal coordinates (bond 
distances, bond angles, and dihedral angles) in a format called a Z-matrix. Each row in 
a Z-matrix specifies the location of an atom relative to previously specified atoms. The 
first column of the Z-matrix lists the atoms in the molecule. The numbers 1 through 7 are 
optional and were included for convenience. The order in which the atoms are listed in  
the first column is chosen by the user. In any given row (except the first), the third column 
of the Z-matrix specifies the distance (bond length) in angstroms between the atom in the 
first column and the atom whose row number the user listed in the second column. For 

Table 15.7  �Input for Gaussian CH3CHO 
Geometry Optimization

# RHF/3-21G Opt

Acetaldehyde (H eclipsing O) HF/3-21G optimization

0 1

C1

C2 1 1.52

O3 1 1.22 2 120.0

H4 2 1.09 1 109.5 3 0.0

H5 2 1.09 1 109.5 3 120.0

H6 2 1.09 1 109.5 3 2120.0

H7 1 1.08 2 120.0 3 180.0

Figure 15.17  The H-eclipsing-O 
conformation of CH3CHO. O
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example, the 1.52 in column 3 of row 2 of the Z-matrix specifies the C2 to C1 distance 
as 1.52 Å and the 1.09 in column 3 of row 5 specifies the H5 to C2 distance as 1.09 Å. 
(The bond distances and angles were chosen as standard values—see Section 15.10 and  
Table 15.5.) In any given row of the Z-matrix (except the first and second), the fifth column 
specifies the angle in degrees for the bond formed by the atoms referred to in columns 
1, 2, and 4 of that row, with the column-2 atom at the vertex of the angle. For example, 
the 120.0 in column 5 of row 3 specifies the angle O3C1C2, and the 109.5 in column 5 of 
row 4 specifies the angle H4C2C1. (Gaussian requires that all bond distances, angles, and 
dihedral angles have a decimal point.)

In any given row (except the first, second, and third), the entry in column 7 gives the 
dihedral angle for the four atoms listed in columns 1, 2, 4, and 6, in that order. For example, 
the 0.0 in column 7 of row 4 is the dihedral angle D(H4, C2, C1, O3). To determine this 
angle, we draw a Newman projection with the middle two atoms C2 and C1 perpendicular 
to the plane of the paper (Fig. 15.17). This figure shows that H4 and O3 eclipse each other, 
which is a 0� dihedral angle. A 120� clockwise rotation is needed to turn the front atom H5 
to reach O3, so row 5 has D(H5, C2, C1, O3) equal to 120�. Since a 120� counterclockwise 
rotation is needed to turn H6 to reach O3, row 6 has D(H6, C2, C1, O3) equal to -120�. Row 
7 has D1H7, C1, C2, O32 = 180.0�. This is an unusual dihedral angle in that the end atoms 
H7 and O3 are both bonded to the same atom, C1. This situation could have been avoided 
by putting a 4 instead of a 3 in column 6 of row 7, but in a molecule such as H2C “ O, one 
cannot avoid a dihedral angle with the end atoms both bonded to the same atom.

A Z-matrix is constructed one row at a time from the assumed geometry. Row 1 
contains only a single atom. Row 2 contains a bond length but no bond angle or dihedral 
angle. Row 3 contains a bond length and a bond angle, but no dihedral angle. Row 4 and 
all subsequent rows each contain a bond length, a bond angle, and a dihedral angle. The 
atom numbers used in a given row to specify which bond length, bond angle, or dihedral 
angle is being defined must all refer to atoms previously specified. For example, in row 4 
of the Table 15.7 Z-matrix, we cannot put a 5 in column 4, since atom 5 has not yet been 
specified. It takes some practice to become good at constructing Z-matrices.

The hardest problem is getting the dihedral angles right. If row r of the Z-matrix  
contains the atoms r, i, k, d, in that order, then the last entry in row r is the dihedral angle  
D(r, i, k, d), whose value is found as follows: draw a Newman projection with the i to k 
bond perpendicular to the plane of the paper and with atom i in front of k. The dihedral 
angle D(r, i, k, d) is the angle needed to rotate the bond to r clockwise until it coincides 
with the bond to d. Chemists usually follow the convention that dihedral angles lie in the 
range -180� to 180�, so if a counterclockwise rotation is needed to make the bond to r 
coincide with the bond to d, then D(r, i, k, d) is in the range 0� to -180�.

In specifying a bond angle u in a Z-matrix, the angle must be in the range 
0 6 u 6 180�. For a linear molecule such as CO2, the forbidden angle of 180� is avoided 
as follows: One adds a dummy atom, symbolized by X. A convenient location for X is 
1.0 Å from C with the fictitious C—X bond perpendicular to the molecular axis. The  
X atom is ignored in the calculation and simply serves as a reference point in the Z-matrix 
to define bond angles. When dealing with rings, it’s a good idea to put a dummy atom 
in the center of the ring.

Sometimes one wants to hold one or more geometrical parameters constant during an 
optimization. For example, to find the electronic energy U as a function of the torsional 
angle in butane (Fig. 15.13), we would do several calculations, in each of which the dihedral 
angle D(CCCC) is held constant at a different value, while all other internal coordinates 
are optimized. A procedure for doing this in Gaussian is described in Prob. 15.53.

Instead of using bond lengths, angles, and dihedral angles in the Z-matrix, one can 
specify the nuclear positions using Cartesian coordinates for each atom. For example, for 
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CO2, if we take the z axis as the molecular axis and guess a bond length of 1.22 Å, the 
geometry specification is

C	 0.0	 0.0	 0.0
O	 0.0	 0.0	 1.22
O	 0.0	 0.0	 21.22

To obtain Cartesian coordinates for complicated molecules, one can use a molecule 
builder, as discussed in the next paragraph and in the subsection at the end of this section.

Instead of using a Z-matrix or Cartesian coordinates to input the guessed geometry 
(which becomes tedious and prone to error for large molecules), many programs have a 
molecule builder, which allows one to construct a ball-and-stick (or wireframe or space-
filling) model of the molecule on screen. The model is built from fragments selected by 
the user. Possible fragments are atoms, groups, rings, and so on. The builder uses standard 
bond lengths and bond angles and allows one to adjust dihedral angles to get a desired 
conformer, or the dihedral angle chosen by the builder can be used. One can interrogate 
the model to get the bond lengths, bond angles, and dihedral angles, and can obtain the 
Cartesian coordinates of the atoms in the model. Once the model has been constructed, 
one chooses the desired kind of calculation from a menu. Most molecule builders allow 
you to use the molecular-mechanics method to improve the structure of the molecule before 
running the quantum-mechanical calculation. Molecular mechanics (Section 17.5) is a very 
fast nonquantum-mechanical method.

Several programs exist that have molecule builders that can provide input to pro-
grams like Gaussian and GAMESS that do not contain graphical interfaces; many of 
these builders can also visualize results (such as displaying MO shapes and isodensity 
surfaces, animating normal vibrational modes, displaying predicted spectra, etc.) from the 
output of Gaussian and GAMESS. The program GaussView (www.gaussian.com; Linux, 
Windows, Macintosh) does this for Gaussian, and the Windows program ChemBio3D 
Ultra (www.cambridgesoft.com) does this for Gaussian, GAMESS (which is included 
as part of ChemBio3D Ultra), and Jaguar. The program Maestro (www.schrodinger.com; 
free to academic users; Linux, Windows, Macintosh) provides a graphical interface for 
Jaguar. The Windows program Molden (www.cmbi.ru.nl/molden), free to academic users, 
provides a graphical interface for Gaussian and GAMESS output. The free program Mac-
MolPlt (www.scl.ameslab.gov/~brett/MacMolPlt; Linux, Windows, Macintosh) provides a 
graphical interface for GAMESS. The free program Avogadro (avogadro.openmolecules 
.net; Windows, Macintosh, Linux) provides a graphical interface for input and output 
to a variety of programs (Gaussian, GAMESS, Q-Chem, NWChem, MolPro, MOPAC) 
[M. D. Hanwell et al., J. Cheminform., 4, 17 (2012)]. The free program Gabedit (gabedit
.sourceforge.net; Windows, Macintosh, Linux) provides graphical input and output for nine 
quantum chemistry programs [A.-R. Allouche, J. Comput. Chem., 32, 174 (2011)]. Q-Chem 
can use the free program IQmol (iqmol.org) for graphical input and output. The free program 
Molekel (molekel.cscs.ch; Linux, Windows, Macintosh) will visualize output from Gaussian 
and GAMESS. The free program Ecce (ecce.emsl.pnl.gov) provides a graphical interface to 
NWChem and Gaussian. The free Windows program Facio (www1.bbiq.jp/zzzfelis/Facio
.html) is a graphical interface to GAMESS and Gaussian.

You can use a free online demonstration version of the program WebMO to build a mol-
ecule, view the corresponding Z-matrix, and run a variety of computations (provided each 
computation does not exceed the time limit). Go to www.webmo.net/demo and follow the 
directions given in the tutorial at the bottom of the page. In addition to providing the ener-
gies and structures predicted by several methods, the WebMO demo can calculate vibrational 
frequencies and show animations of normal vibrational modes, and can display the predicted 
NMR spectrum, the shapes of MOs, and the molecular surface electrostatic potential.
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After a geometry optimization calculation is finished, programs such as WebMO and 
Spartan Student Edition display a model of the molecule; the calculated bond distances, 
bond angles, and dihedral angles can be found by clicking on atoms of the model. A com-
mon student error in finding bond angles is to click on the atoms in the wrong order. For 
example, the bond angle in water must be found by clicking in the order HOH.

Kinds of Calculations
So far in this chapter, single-point, geometry optimization, and frequency calculations 
have been mentioned (Sections 15.10 and 15.12). Other important kinds of calculations are 
discussed in later sections (transition-state searches, reaction-path following, PES scans in 
Section 16.14; inclusion of solvation effects in Section 15.17).

Although it is desirable that molecular geometry be optimized before molecular prop-
erties are calculated, ab initio geometry optimizations are impractical for very large mole-
cules with little symmetry. For very large molecules we must be content with single-point ab 
initio calculations done at either an experimentally determined geometry or at a geometry 
optimized using a semiempirical or molecular-mechanics method. Geometry optimization 
with many of the methods that include electron correlation is limited to smaller molecules 
than can be optimized using the Hartree–Fock (HF) or density-functional method. Since 
the HF and density-functional methods yield generally reliable geometries, a frequent 
procedure is to optimize the geometry with the HF or density functional method and then 
use a correlation method to do a single-point calculation of the molecular energy at the 
HF or density functional geometry.

Geometry optimization was discussed in Section 15.10, where it was noted that many 
of the optimization procedures used in quantum chemistry programs can converge to a sta-
tionary point that is a saddle point rather than a minimum. To verify that a true minimum 
has been found, one can follow the geometry optimization with a frequency calculation. 
All 3N - 6 calculated vibrational frequencies must be real to have a minimum. One way 
to avoid getting a saddle point instead of a minimum is to eliminate all symmetry in the 
starting geometry. For example, for NH3, we would input different values for each bond 
length and different values for each bond angle, and would make sure no symmetry plane 
was present in the starting structure. (Recall that when all four atoms are in the same plane 
in the input geometry, Gaussian converges to a planar geometry.) Eliminating symmetry 
increases the time needed for the geometry optimization.

As noted in Section 15.12, a frequency calculation should be done at a minimum in 
the PES, so the frequency calculation should be preceded by a geometry optimization that 
uses the same method and basis set as the frequency calculation. Putting the two keywords 
Opt and Freq on the input line that begins with a # will cause Gaussian to follow the 
optimization with a frequency calculation.

Output
We now consider a few points about the output of a Gaussian calculation. Fuller details are 
given in Foresman and Frisch and in the online Gaussian manual (www.gaussian.com). 
The CCCBDB (Section 15.1) contains the input and output files of many Gaussian calcula-
tions; these can be downloaded and viewed in a word processor. You can also view Gauss-
ian output files of jobs you run in the WebMO demo program by clicking Raw output.

The default procedure is for Gaussian not to print out the wave function. The keyword 
Pop = Reg will produce the coefficients of the MO expansions in terms of the basis func-
tions for the five highest occupied and five lowest virtual MOs. The keyword Pop = Full 
produces all the MOs.

In a frequency calculation, Gaussian lists the harmonic frequencies (really the wave-
numbers) in order of increasing value and in units of cm-1. Any imaginary frequencies 



506  Chapter 15  |  Molecular Electronic Structure

are listed first and are preceded by a minus sign as a signal that these are imaginary 
frequencies. Also listed are the symmetry species (Section 15.2) and relative coordinate 
displacements for the normal mode corresponding to each frequency.

Automatic Model Builders
An automatic model builder program is one that given the two-dimensional structure 
of a molecule (the atoms and their bonding linkages and specification of such stereo-
chemical relations as cis or trans at each double bond) will attempt to construct a three-
dimensional low-energy conformer without any user intervention. Comparison of the 
three-dimensional structures produced by several such programs with 639 accurately 
known organic structures found that CORINA (from the word coordinates) gave the 
best overall results [J. Gasteiger et al., J. Chem. Inf. Comput. Sci., 36, 1030 (1996); 
J. Sadowski, J. Gasteiger, and G. Klebe, ibid., 34, 1000 (1994); J. Sadowski and J. Gasteiger, 
Chem. Rev., 93, 2567 (1993)]. For 42% of the 639 structures, CORINA gave rms dif-
ferences between the calculated and experimental atomic coordinates of less than 0.3 Å, 
and for 50% of the structures, the CORINA dihedral angles had an rms deviation from 
the true values of less than 15�. CORINA uses standard bond lengths and angles, assigns 
dihedral angles to minimize steric repulsions, and uses a simplified molecular-mechanics- 
like pseudo force field to do a geometry optimization for each ring in the molecule.

You can use the Internet to generate CORINA structures at no charge. Go to www
.molecular-networks.com/online_demos/corina_demo.html, where you can either draw the 
molecule you are interested in or enter its structural formula as a SMILES string. SMILES 
is a way of representing a structural formula by a one-dimensional string. Some examples 
are CC=O for CH3CHO (an equals sign denotes a double bond, and hydrogens are omit-
ted from organic compounds), CC(C)C for (CH3)2CHCH3, and C1CCC1 for cyclobutane 
(the numeral ones indicate that the carbons preceding them are connected to each other). 
Further information on SMILES can be found at www.daylight.com/dayhtml/doc/theory/
theory.smiles.html or in D. Weininger, J. Chem. Inf. Comput. Sci., 28, 31 (1988). After the 
SMILES string and the molecule’s name are entered, click on Submit to produce a rotatable 
three-dimensional model of the CORINA structure (provided you have a molecule-viewer 
such as Jmol (jmol.sourceforge.net), RASMOL, or CHIME installed on your computer). If 
you are using the Jmol viewer, by right-clicking the structure and choosing Show and then 
Extract MOL data, you will get a window with the Cartesian coordinates of the atoms.

Unlike CORINA, which produces a single conformer, the program OMEGA produces 
up to a few hundred low-energy conformers [www.eyesopen.com/omega; P. C. D. Hawkins 
et al., J. Chem. Inf. Model., 50, 572 (2010)].

The free online database ChemDB [cdb.ics.uci.edu and J. Chen et al., Bioinformat-
ics, 21, 4133 (2005); 23, 2348 (2007)] contains about 5 million commercially available 
compounds whose three-dimensional structures have been estimated using CORINA; the 
database can be efficiently searched for desired structural features. After entering the name 
or SMILES string of what you are looking for, the search may give you more than one 
result. Choose the molecule you want by clicking on the number near its formula. You will 
get a rotatable three-dimensional model. In the drop-down list, choose the XYZ – Xmol 
XYZ format and click on Download Chemical. Save it to your computer. When you open 
the saved file with a word processor, you will see the Cartesian coordinates.

People doing drug design are keenly interested in finding structures whose shape fits a 
target receptor site and that have certain desired chemical properties that will enhance binding 
to the site. [For a review of protein–ligand docking, see B. Waszkowycz et al., WIREs Comput. 
Mol. Sci., 1, 229 (2011).] One way to find such structures is to search databases of structures. 
The Cambridge Structural Database [www.ccdc.cam.ac.uk/; F. H. Allen, Acta Crystallogr. B, 
58, 380 (2002)] contains over 600000 X-ray and neutron-diffraction-determined structures of 
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small- and medium-size (typically 20 to 100 atoms) organic and organometallic compounds. 
Databases containing millions of three-dimensional structures produced by automatic model 
builders exist. ChemDB was mentioned above. Another such searchable free database is ZINC 
[zinc.docking.org; J. J. Irwin et al., J. Chem. Inf. Model., 52, 1757 (2012)] with over 20 million 
commercially available compounds.

For methods of searching structural databases for desired features, see Leach, Chap-
ter 12; Y. C. Martin, M. G. Bures, and P. Willett, in K. Lipkowitz and D. B. Boyd (eds.), 
Reviews in Computational Chemistry, Vol. 1, VCH, Chapter 6.

15.16 Speeding Up Hartree–Fock Calculations
Dealing with Electron-Repulsion Integrals
The calculation of the approximately b4>8 electron-repulsion integrals (ERIs) 1rs 0 tu2 
[Eq. (14.39)] over the b basis functions consumes a major part of the time in an SCF MO 
calculation. Several methods are used to reduce the number of integrals evaluated.

Molecular symmetry is used to identify integrals that are equal, so that only one of 
them need be evaluated. For example, in H2O, the integrals 1H11s O2s 0H21s H21s2 and 
1H21s O2s 0H11s H11s2 are equal, provided the OiH1 and OiH2 bond distances are 
equal. Use of symmetry cuts the number of integrals to be evaluated in H2O approximately 
in half.

In a large molecule, any one atom is far from most of the other atoms, and so a large 
fraction of the two-electron integrals are negligibly small for large molecules; 1rs 0 tu2 will 
be very small if xr112 and xs112 or xt122 and xu122 are centered on widely separated 
nuclei. Hence, many programs test each 1rs 0 tu2 integral to get its order of magnitude 
before it is calculated accurately. Integrals smaller than a certain threshold value can be 
neglected without affecting the accuracy of the overall calculation. Although the number 
of two-electron integrals increases as b4, the number of such integrals whose value exceeds 
a fixed threshold increases only as b2 for large molecules. Calculations on large molecules 
done with integrals of value less than 10-9 hartree neglected showed that the time to do 
an SCF calculation increased only as b2.3 [R. Ahlrichs et al., Chem. Phys. Lett., 162, 165 
(1989); see also D. L. Strout and G. E. Scuseria, J. Chem. Phys., 102, 8448 (1995)].

Many 1rs 0 tu2 integrals involve basis functions representing inner-shell orbitals. These 
orbitals are little changed on molecule formation, and one can eliminate the need to explic-
itly represent them by using an effective core potential (ECP) or pseudopotential (Section 
13.17). The ECP is a one-electron operator that replaces those two-electron Coulomb and 
exchange operators in the valence-electrons’ Hartree–Fock equation Fnfi = eifi that arise 
from interactions between the core electrons and the valence electrons. ECPs are derived 
from ab initio all-electron calculations on atoms. For compounds of main-group elements, 
calculations that use properly chosen ECPs give almost the same results as comparable 
all-electron ab initio calculations. For transition elements, obtaining accurate results with 
ECPs is harder. ECPs are reviewed in M. Krauss and W. J. Stevens, Ann. Rev. Phys. Chem., 
35, 357 (1984); G. Frenking et al., in K. B. Lipkowitz and D. B. Boyd, eds., Reviews in 
Computational Chemistry, Vol. 8, Wiley, 1996, Chapter 2; T. R. Cundari et al., in Reviews 
in Computational Chemistry, Vol. 8, Chapter 3; M. Dolg and X. Cao, Chem. Rev., 112, 
403 (2012).

The integrals 1rs 0 tu2 not only must be calculated but also must be stored and then 
recalled from memory as their values are needed in each SCF iteration (recall the SCF 
example in Section 14.3). Typically, 5 to 50 iterations are needed to achieve SCF conver-
gence. For the large basis sets used in modern ab initio calculations, the number of 1rs 0 tu2 
values to be stored for a large-molecule calculation may exceed the internal (core) memory 
capacity of the computer, and the 1rs 0 tu2 values must be stored on external memory disk 
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drives. Locating and reading in the value of an integral from external memory is a rela-
tively slow process.

To avoid the use of external storage memory, Almlöf developed the direct SCF 
method (not to be confused with the direct CI method of Section 16.2), in which no 
1rs 0 tu2 integrals are stored, but each two-electron integral is recomputed each time its 
value is needed. The direct SCF method allows ab initio calculations of large molecules 
and is very widely used.

When the direct SCF method was developed in the early 1980s, the internal memory 
of computers was rather limited. Nowadays, personal computers with internal memories of 
16 gigabytes, hard-drive memories of a couple of thousand gigabytes, and very rapid speeds 
for reading and writing hard-drive data are common. This has made conventional calcu-
lations with all the integrals being stored more competitive with the direct SCF method, 
especially when several personal computers running in parallel are used [A. V. Mitin  
et al., J. Comput. Chem., 24, 154 (2003)].

A compromise between the direct method, which recomputes all integrals as needed, 
and the conventional stored-integral method, is the widely used semidirect method, which 
stores some integrals (those most time-consuming to calculate) and recomputes others.

Rapid Evaluation of Fock Matrix Elements
The expression (14.41) for the Fock matrix elements Frs in Hartree–Fock theory for a 
closed-shell molecule can be written as

Frs = 8xr 0Fn 0xs9 = Hcore
rs + Jrs -

1
2 Krs

	 Jrs K a
b

t = 1
 a

b

u = 1
Ptu1rs 0 tu2,  Krs K a

b

t = 1
 a

b

u = 1
Ptu1ru 0 ts2	 (15.79)

where the Coulomb matrix element Jrs and the exchange matrix element Krs (which 
involve the basis functions xr and the density matrix elements Ptu) should not be confused 
with the Coulomb and exchange integrals Jij and Kij in (14.24) (which involve the MOs 
fi and fj). Computation of the Frs values is time-consuming because of the huge number 
of electron-repulsion integrals 1rs 0 tu2 that occur in Jrs and Krs. To speed up calculation 
of the Jrs matrix elements, quantum chemists use ideas developed by the mathematicians 
Greengard and Rokhlin in their fast multipole method (FMM). The FMM speeds up the 
calculation of the potential energy C g i g j7 i QiQj>ri j of a system of N point charges (or 
point masses), when N is very large. Here, Qi and Qj are charges (or masses) separated by 
a distance rij and C is a constant. The potential energy contains 1

2 N1N - 12 terms. The 
time required to calculate the potential energy is essentially proportional to N2 when N is 
large, and we say that this is an O1N22 calculation, where O stands for “order of.”

In the FMM, the system of charges is imagined to be located in a box that is divided 
and subdivided repeatedly into various levels of smaller boxes. Interactions between 
charges close to each other (the near field) are calculated directly by the usual summation 
formula. Interactions between charges far from one another (the far field) are calculated 
using a multipole expansion. Given a group of charges close to one another, a multipole 
expansion expresses the contribution of the charge group to the potential energy at a point 
P outside the group as an infinite series. Each term in the series depends on the distance 
of the point P from the group of charges, a spherical harmonic function, and a multipole 
moment of the charge group. The multipole moments in successive terms of the series are 
the electric monopole moment (which equals the net charge of the group of charges), the 
electric dipole moment, the electric quadrupole moment, and so on. Accurate results can 
be obtained by including only a limited number of terms in the multipole expansions. If N 
is very large, the FMM method reduces the calculation from O1N22 to O1N2. A related 
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method for dealing with this classical-physics problem is the tree code method of Barnes 
and Hut, which also uses boxes and multipole expansions but differs in calculational details 
from the FMM. For discussion of the FMM and tree-code methods, see L. Greengard, 
Science, 265, 909 (1994).

Calculation of the Coulomb matrix element Jrs in (15.79) involves not point charges 
(as in the FMM method) but continuous distributions of charge defined by the basis func-
tions. Therefore, quantum chemists modified the FMM method to deal with interactions 
involving continuous charge distributions. One such modification for rapid evaluation of 
the Coulomb matrix elements for large molecules is the continuous fast multipole method 
(CFMM) [C. A. White et al., Chem. Phys. Lett., 253, 268 (1996)]. Another is the Gaussian 
very fast multipole method (GvFMM) [M. C. Strain, G. E. Scuseria, and M. J. Frisch, 
Science, 271, 51 (1996)].

The quantum-chemical tree code (QCTC) [M. Challacombe and E. Schwegler, 
J. Chem. Phys., 106, 5526 (1997)] is a modification of the classical tree-code method. 
The QCTC method allows calculation of the matrix elements Jrs of the Coulomb matrix 
J for large molecules in a time that is proportional to the number of basis functions b; 
this calculation is O(b), and one says that the calculation exhibits linear scaling with size 
of the molecule. Challacombe and Schwegler used the QCTC method to do an ab initio 
SCF MO calculation on the 698-atom monomer of the P53 protein at a fixed geometry 
(obtained from a protein data bank) using the 3-21G basis set (3836 basis functions). They 
then calculated the molecular electrostatic potential (Section 15.7) of the P53 monomer. 
(The P53 protein is a tetramer and acts as a tumor suppressor. Mutations in the gene for 
this protein are found in half of human cancers.)

For small molecules, evaluation of J by conventional methods is faster than by a fast 
multipole method. The number of basis functions at which the FMM becomes faster is 
called the crossover point or the onset point.

When a fast-multipole method is used, short-range interelectronic interactions must 
still be computed by evaluating the relevant electron-repulsion integrals. These integrals 
are tested and those whose values are negligible are omitted, but this still leaves a lot of 
integrals to be evaluated for a large molecule. The electron-repulsion integrals 1rs 0 tu2 
are used to compute the Coulomb and exchange matrix elements Jrs and Krs; the values 
of the individual 1rs 0 tu2>s are not in themselves really needed. To speed up evaluation of 
the Jrs values, White and Head-Gordon devised what they call a J-matrix engine, which 
is an efficient procedure that calculates the Jrs values without explicitly forming all the 
1rs 0 tu2 integrals [C. A. White and M. Head-Gordon, J. Chem. Phys., 104, 2620 (1996)]. 
In the traditional approach, the 1rs 0 tu2 integrals are calculated as intermediate quantities, 
which are then used to calculate the Jrs values. The J-matrix engine uses a different set of 
intermediate quantities to calculate the Jrs>s, so as to reduce the computational time without 
making any approximations.

A widely used alternative to multipole methods to speed up the evaluation of  
J is the resolution of the identity (RI) approximation (also called the density fitting 
method). Here, one uses an auxiliary basis set gk to expand the products xr112xs112 and 
xt122xu122 in the 1rs 0 tu2 integral:

	 xr112xs112 = a
k

drs,kgk112,  xt122xu122 = a
k

dtu,kgk122	 (15.80)

The drs coefficients that give good fits to the xr112xs112 products are computed by the 
program. The gk set usually is atom-centered Gaussians and has 2 to 4 times the number of 
basis functions as the xs set. Because the gk basis set is incomplete, (15.80) is an approxi-
mation, and one must keep the errors introduced by the RI approximation small. The 
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expansions (15.80) allow the very numerous four-center integrals 1rs 0 tu2 to be expressed 
as sums containing less numerous three-center integrals involving the gk functions and the 
drs coefficients. The RI method can speed up calculation of the exchange matrix elements 
Krs as well as the Jrs>s. The RI method can give huge savings in time for calculations with 
very large basis sets xs [F. Weigend, Phys. Chem. Chem. Phys., 4, 4285 (2002); C. Hättig. 
ibid., 7, 59 (2005)].

An alternative method to the RI approximation is the Cholesky decomposition (CD) 
method, which also uses an auxiliary basis set to evaluate electron-repulsion integrals 
[F. Aquilante et al., Chapter 13 in J. Leszczyinski (ed.) Linear Scaling Techniques in 
Computational Chemistry, Springer, 2011; available at uu.diva-portal.org/smash/get/
diva2:396223/FULLTEXT01.] A comparison found the RI method to be significantly 
faster than the CD method but noted that Cholesky decomposition is more useful in 
high-accuracy benchmark calculations with very large basis sets [F. Wiegand, J. Chem. 
Phys., 130, 164106 (2009)].

The multiplicative integral approximation (MIA) is similar to the RI approxima-
tion in that it uses the expansions (15.80) to evaluate the 1rs 0 tu2’s, but differs in details. 
Using the MIA method, Van Alsenoy and co-workers did an ab initio SCF MO geometry 
optimization (Section 15.10) of the 642-atom molecule crambin (a 46-residue protein) using 
the 4-21G basis set with starting coordinates taken as the structure found from X-ray 
crystallography [C. Van Alsenoy et al., J. Phys. Chem. A, 102, 2246 (1998)]. At the time 
it was published, this was the largest ab initio geometry optimization ever done, although 
the energy minimum was not located as precisely as is done with smaller molecules. The 
calculation took 6300 hours (260 days) of CPU time on a workstation.

The multipole accelerated resolution of the identity (MARI-J) approximation finds 
the J matrix using a multipole method to evaluate the far-field ERIs and the RI method 
to calculate the near-field integrals [M. Sierka et al., J. Chem. Phys., 118, 9136 (2003)].

Still another method to speed up evaluation of J is the Fourier-transform Coulomb 
(FTC) method, which replaces the evaluation of the contributions of ERIs that involve 
three and four Gaussian basis functions with a numerical evaluation using a plane-wave 
basis set. A plane-wave function has the form ei1kx + ly + mz2, where k, l, and m are con-
stants. Combining the FTC, CFMM, and J-engine methods in one program gives a very 
rapid, accurate method for computing J for large molecules [L. Füsti-Molnar and J. Kong, 
J. Chem. Phys., 122, 074108 (2005)].

The ONX (order-N exchange) method and the LinK (linear exchange K) method use 
procedures to eliminate calculation of exchange matrix elements Krs that are negligibly 
small and allow linear scaling to be achieved in the calculation of the exchange matrix 
K for large molecules that have a nonnegligible energy gap between the highest occupied 
and lowest vacant MO [E. Schwegler, M. Challacombe, and M. Head-Gordon, J. Chem. 
Phys., 106, 9703 (1997); C. Ochsenfeld, C. A. White, and M. Head-Gordon, ibid., 109, 
1663 (1998)].

15.17 Solvent Effects
So far, we have treated the stationary-state quantum mechanics of an isolated molecule. 
The molecular properties so calculated are appropriate for gas-phase molecules not at 
high pressure. However, most of chemistry and biochemistry occurs in solution, and the 
solvent can have a major effect on the position of chemical equilibrium and on reaction 
rates. (For a survey of solvent effects on rates, equilibria, IR, UV, and NMR spectra, 
see C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, 1988.) We 
now examine solvent effects on molecular and thermodynamic properties. (See also 
Section 17.6 for semiempirical solvation methods.)
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Consider a dilute solution of a polar solute molecule M in a polar solvent S; for exam-
ple, a solution of CH3Cl in water. The water molecules near the CCl side of a solute 
molecule will tend to be oriented with their positively charged hydrogen atoms toward the 
negatively charged Cl atom, while water molecules on the H3C side of a solute molecule 
will tend to be oriented with their negatively charged O atoms toward the methyl group. 
In addition, the dipole moment of a solute molecule will induce a dipole moment in each 
nearby solvent molecule that adds to the permanent dipole moment. The net result of these 
orientation and induction effects is that the solvent acquires a bulk polarization in the 
region of each solute molecule. The polarized solvent generates an electric field, called the 
reaction field, at each solute molecule. The reaction field distorts the solute’s molecular 
electronic wave function from what it was in the gas phase, thereby producing an induced 
dipole moment that adds to the permanent gas-phase dipole moment of M. The increased 
dipole moment of M further polarizes the solvent, and so on.

Because of the additional dipole moment induced by the solvent’s reaction field, a 
polar molecule will have a larger dipole moment in a polar solvent than in the gas phase. 
Moreover, the dipole moment of a solute molecule will fluctuate with time, as the orienta-
tions of the nearby solvent molecules fluctuate. For example, for a solute water molecule 
in the solvent water (that is, for pure water), a molecular dynamics simulation in which 
the intermolecular interactions are modeled by placing fluctuating positive point charges 
on each H atom, and a fluctuating negative charge on each molecular C2 axis near each 
O atom, and including a Lennard-Jones 6–12 potential interaction between each pair of  
O atoms (the TIP4P-FQ model, standing for transferable intermolecular potential with four 
interaction sites and fluctuating charges) gives the average electric dipole moment 8m9  at 
25�C as 2.6 D (compared with 1.85 D in the gas phase) and gives a distribution of dipole 
moments with a full width at half maximum of 0.5 D [S. W. Rick et al., J. Chem. Phys., 
101, 6141 (1994)]. 8m9  of liquid water cannot be directly measured (and its meaning is 
subject to some ambiguity, since the electron density between water molecules is not zero, 
giving rise to controversy about the best definition). However, since this simulation gives 
good results for the dielectric constant and since other simulations with different models 
give similar results for 8m9 , we can be reasonably confident in the results for 8m9. Several 
other theoretical studies gave values in the range 2.4 to 3.1 D; see A. V. Gubskaya and P. G. 
Kusalik, J. Chem. Phys., 117, 5290 (2002); D. D. Kemp and M. S. Gordon, J. Phys. Chem. 
A, 112, 4885 (2008); H. C. Georg and S. Canuto, J. Phys. Chem. B, 116, 11247 (2012).

The molecular electronic wave function and all molecular properties in solution will 
differ to some extent from their gas-phase counterparts.

The rigorous way to deal with solvent effects on molecular properties is to carry out 
quantum-mechanical calculations on a system consisting of a solute molecule surrounded 
by many solvent molecules. One repeats the calculations for various orientations of the 
solvent molecules and takes a suitable average over orientations to find average properties 
at a particular temperature and pressure. Such a calculation is usually impractical. Calcu-
lations that include a number of individual solvent molecules are called explicit solvent 
calculations, and discussion of these is omitted (see Cramer, Chapter 12 for details).

Perhaps the most common way to calculate solvent effects is to use a continuum 
solvent model. Here, the molecular structure of the solvent is ignored, and the solvent is 
modeled as a continuous dielectric of infinite extent that surrounds a cavity containing the 
solute molecule M. (A dielectric is a nonconductor of electricity.) The continuous dielectric 
is characterized by its dielectric constant (also called relative permittivity) er, whose value 
is the experimental dielectric constant of the solvent at the temperature and pressure of 
the solution. The solute molecule can be treated classically as a collection of charges that 
interacts with the dielectric, or it can be treated quantum mechanically. In a quantum-
mechanical treatment, the interaction between a solute molecule M and the surrounding 
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dielectric continuum is modeled by a term Vnint that is added to the molecular electronic 
(fixed-nuclei) Hamiltonian Hn102

M , where Hn102
M  is for M in vacuum.

For reviews of continuum solvation models, see Cramer, Chap. 11; C. J. Cramer and 
D. G. Truhlar, Chem. Rev., 99, 2161 (1999); F. J. Luque et al., Phys. Chem. Chem. Phys., 
5, 3827 (2003).

In the usual quantum-mechanical implementation of the continuum solvation model, 
the electronic wave function and electronic probability density of the solute molecule M 
are allowed to change upon going from the gas phase to the solution phase, so as to achieve 
self-consistency between the M charge distribution and the solvent’s reaction field. Any 
treatment in which such self-consistency is achieved is called a self-consistent reaction-
field (SCRF) model. Many versions of SCRF models exist. These differ in how they 
choose the size and shape of the cavity that contains the solute molecule M and in how 
they calculate Vnint.

The Quantum-Onsager SCRF Method
In the dipole-in-a-sphere (or quantum-Onsager or Born–Kirkwood–Onsager) SCRF 
method, the molecular cavity is a sphere of radius a and the interaction between the molecu-
lar charge distribution and the reaction field is calculated by approximating the molecular 
charge distribution as an electric dipole located at the cavity center with electric dipole 
moment M. In 1936, Onsager showed that the electric field in the cavity (the reaction field) 
produced by the polarization of the solvent by M is (in atomic units)

	 ER =
21er - 12
12er + 12a3 M	 (15.81)

The potential energy of electrostatic interaction between M and the reaction field ER is 
Vnint = -M � ER. The corresponding quantum-mechanical operator in atomic units is

	 Vnint = -Mn � ER,  Mn = - a
i

ri + a
a

ZaRa	 (15.82)

where the electric dipole moment operator was taken from (14.20).
In an SCRF quantum-Onsager calculation, one starts by using a method such as HF, 

DFT (Section 16.5), MP2 (Section 16.3), or whatever, to calculate an electron probabil-
ity density r1021r2 for the isolated molecule, preferably at an optimized geometry. [r102 
is calculated from (14.5) in a wave-function-based method or from (16.45) in density-
functional theory.] One then calculates the electric dipole moment in vacuum from (14.21) 
as M102 = -1r1021r2r dr + ga Zara. Then M102 is used in (15.81) to give an initial esti-
mate E102

R  of the reaction field. From E102
R , one calculates an initial estimate of the 

operator Vnint as Vn102
int = -Mn � E102

R , where Mn  is given by (15.82). Using Vn102
int , one solves the 

equations of the quantum method being used and obtains an improved electron probability 
density r112.

For example, suppose the Hartree–Fock method is being used. One finds that the 
part of Vnint in (15.82) that involves electron 1 is added to the Fock operator Fn112 of the 
Hartree–Fock equations (14.25) to give as the Hartree–Fock equations

3Fn112 + r1 � ER4fi112 = eifi112
for the orbitals in the presence of the reaction field. Since the nuclei are fixed in solving 
the electronic Schrödinger equation, the interaction - ga ZaRa � ER of the nuclear charges 
with the reaction field is a constant term, that, like VNN in (13.6), appears in the electronic 
energy but not in the equations for the orbitals. [In density-functional theory (Section 16.5), 
the Kohn–Sham operator is similarly modified.]

From r112, one calculates from (14.21) a value M112 for the molecular dipole moment 
that allows for the effect of E102

R . Using M112 in (15.79), one obtains an improved estimate 
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E112
R  for the reaction field. Then an improved Vn112

int = -Mn � E112
R  is used to solve for an 

improved electron density. And so on. Iterations are continued until there is no further 
change in r, M, and ER. The molecular geometry should be reoptimized in the presence 
of the reaction field, but this step is sometimes omitted, since changes in geometry from 
the gas phase to the solution phase are usually small.

If the solute species has a net charge Q, the constant term - 1er - 12Q2>era (first 
derived by Born), is added to Vint.

In the quantum-Onsager SCRF method, an uncharged solute molecule with no per-
manent dipole moment is unaffected by the solvent. In reality, the quadrupole and higher 
moments of the solute will interact with the solvent to give a reaction field.

With Vnint included in the Hamiltonian operator, one obtains a molecular electronic 
energy (including nuclear repulsion) U1 f 2 that is an eigenvalue of Hn 102

M + Vnint. We have 
U1 f 2 = 8c1 f 2 0Hn 102

M + Vnint 0c1 f 29 , where c1 f 2 is the final electronic wave function of M, 
found when self-consistency is attained. The molecular electronic energy in vacuum is 
U102 = 8c102 0Hn 102

M 0c1029 . Thus

	 U1 f 2
= 8c1 f 2 0Hn 102

M + Vnint 0c1 f 29 ,  U102 = 8c102 0Hn 102
M 0c1029 	 (15.83)

The energy U1 f 2 includes the energy of solute interaction with the solvent-produced 
reaction field, but there is another energy contribution that must also be included. This is 
the energy change in the solvent that results from its being polarized by the solute. The 
work required to polarize the solvent can be shown to be

	 Epol = -
1
2 8c1 f 2 0Vnint 0c1 f 29 	 (15.84)

Gibbs Energy of Solvation
The standard Gibbs free-energy change �G�solv for solvation of the solute species M in 
the solvent S at a particular temperature is defined as �G� for the process of gas-phase 
M plus liquid-phase S going to a solution of M in S. The standard states most commonly 
used in the definition of �G�solv are as follows. The solute standard state is the ficti-
tious state with the solute at a 1 mole per liter concentration in the solvent but with the 
solute experiencing only interactions with solvent molecules and not with other solute 
molecules (as would be true in an ideally dilute solution). The gas-phase standard state 
of M is the fictitious state of pure gaseous solute at a 1 mole per liter concentration but 
with no intermolecular interactions (as would be true in an ideal gas). These standard 
states are not the ones most commonly used in thermodynamics. Confusion exists in the 
literature since people dealing with solvation energies often do not specify what standard 
states they are using.

Theoretical treatments of �G�solv separate it into several components. The electro-
static contribution �G�solv,el to �G�solv results from the electrostatic interactions between 
the solute and solvent. One can show that �G�solv,el can be found from an SCRF calculation 
as follows:

 �G�solv,el = 1U1 f 2 + Epol2 - U102 = U1 f 2 -
1
2 8c1 f 2 0Vnint 0c1 f 29 - U102

	  �G�solv,el = 8c1 f 2 0Hn102
M +

1
2Vnint 0c1 f 29 - 8c102 0Hn102

M 0c1029 	
(15.85)

(Since �G�solv is expressed on a per-mole basis, the right sides of these equations should 
be multiplied by the Avogadro constant NA.) Although energy is both a molecular and a 
macroscopic property, both entropy and free energy are macroscopic but not molecular 
properties. The dielectric continuum model uses the macroscopic property er of the sol-
vent, and the macroscopic treatment of the solvent allows us to find �G�solv,el, which is a 
contribution to a macroscopic property. The dielectric continuum treatment of solvation is 
a combined quantum-mechanical and statistical-mechanical treatment.
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In addition to the electrostatic contribution to �G�solv, there are the following contribu-
tions. The cavitation contribution �G�solv,cav is the work needed to form the cavities in the 
solvent that are occupied by the solute molecules. The dispersion contribution �G�solv,dis 
results from London dispersion attractions between solute and solvent molecules. The 
repulsion contribution �G�solv,rep (often called the exchange-repulsion contribution) results 
from quantum-mechanical repulsions between solute and solvent molecules. The molecu-
lar motion (or thermal) contribution is �G�solv,mm = -RT ln1zM(sln2>zM1g2), where zM1sln2 
and zM1g2 are the molecular partition functions of M in the solution and in the gas at the 
temperature T, and where 1 mol/L standard states are used in both the gas and in solution. 
This contribution results from changes in molecular motions upon going from the gas to 
the solution phase. (Recall the statistical-mechanical formula A - U0 = -kT ln Z for the 
Helmholtz free energy, where Z is the canonical partition function and U0 is the internal 
energy at absolute zero, with all molecules in the lowest energy level.) There is also a P �V  
contribution resulting from the difference between �A and �G, which is negligible. Some 
workers also include a contribution from specific structural interactions, such as hydrogen 
bonding, between solute and solvent molecules. Much of the effect of hydrogen bonding 
is included in the electrostatic contribution.

Several methods have been proposed to calculate �G�solv,cav. The scaled-particle-
theory formula (derived by Reiss, Frisch, Helfand, and Lebowitz and first applied to a 
solute in solution by Pierotti) calculates �G�solv,cav from the radii of the solute and solvent 
molecules (assumed spherical), the number of solvent molecules per unit volume, and the 
temperature and pressure [H. Reiss et al., J. Chem. Phys., 32, 119 (1960)]. For solvation 
methods that use a nonspherical molecular cavity, the scaled-particle theory spherical-
cavity formula for �G�solv,cav was modified by Claverie to give what is often called the 
Pierotti–Claverie formula. The available methods give quite different results for �G�solv,cav; 
which method is best is unclear, since �G�solv,cav is not a measurable quantity. Monte Carlo 
simulations of liquid water indicate that the Pierotti–Claverie formula may be significantly 
in error [F. M. Floris et al., J. Chem. Phys., 107, 6353 (1997)]. For details, see J. Tomasi 
and M. Persico, Chem. Rev., 94, 2027 (1994), Section V.B.

The dispersion energy is commonly approximated as the sum of dispersion attractions 
between each atom of the solute molecule M and each atom of the surrounding solvent 
molecules, where each atom–atom dispersion energy has the form [Eq. (14.103)] -dij>r6

i j, 
where rij is the distance between atoms i and j, and the coefficient dij is taken from experi-
mental data or from theoretical calculations. The dispersion energy is proportional to the 
density of solvent molecules and involves the distribution function that gives the probability 
density for atoms i and j being a distance rij apart. A commonly used approximation for this 
probability density is to take it as zero when the solvent atom j is in the molecular cavity 
of M and to take it as a constant otherwise. Once the solute–solvent dispersion energy is 
obtained, it must be converted to a dispersion free energy by a calculational procedure (see 
Tomasi and Persico, op. cit., Section V.C).

The repulsion contribution �G�solv,rep is calculated the same way as the dispersion 
contribution, except that -dij>r6 is replaced by cij>r12 [recall the Lennard-Jones 6–12 
potential—Eq. (17.89)]. The repulsion contribution is much smaller than the dispersion 
contribution and is often omitted.

In the molecular-motion contribution, the molecular partition function is the product 
of translational, rotational, vibrational, and electronic partition functions. If the molecule 
in solution is assumed to have the entire volume of the solution available to it, the ratio of 
gas-phase and solution-phase translational partition functions equals one. Likewise, the 
electronic partition function ratio will be one. It is unclear what one should use for the 
rotational partition function in solution, but if this is assumed to have the same form as 
that in the gas phase, the rotational partition function ratio (which involves the moments of 
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inertia) will be very close to one, since structural changes from gas to solution are slight. 
Significant contributions to the vibrational partition function are made only by the low-
frequency vibrational normal modes, and these modes sometimes show substantial changes 
in frequency on going from the gas phase to solution. If a vibrational calculation is done in 
the gas phase and in solution, one can calculate �G�solv,mm, but the most common procedure 
is to omit it, assuming that its contribution is negligible.

The Multipole-Expansion Method
Two crude approximations in the quantum-Onsager SCRF method are the use of a spheri-
cal cavity for the solute molecular shape and the replacement of the actual distribution 
of solute molecular charge by a dipole. The true potential energy of interaction between 
a distribution of molecular charge and the surrounding continuum dielectric can be writ-
ten as an infinite series (called a multipole expansion), in which the first term for a 
neutral molecule involves the molecular dipole moment [see Eq. (14.21)], the second 
term involves the molecular quadrupole moment, the third term involves the molecular 
octupole moment, and so on. Whereas the quantum-Onsager method includes only the 
first term, the multipole expansion method includes higher terms as well. The number of 
terms included is decided by the person doing the calculation. One finds that the terms 
after the Onsager dipole term make substantial contributions, and neglect of these terms 
is not justified. The fact that dipole-in-a-sphere SCRF calculations sometimes give good 
results has been ascribed to a partial cancellation of errors, with the neglect of the higher 
electrostatic terms partly canceling the error caused by using a spherical molecular shape 
[J. B. Foresman et al., J. Phys. Chem., 100, 16098 (1996)].

An improvement on a spherical molecular shape is an ellipsoidal molecular shape. 
Quantum-Onsager and multipole-expansion SCRF calculations using an ellipsoidal cavity 
give better results than spherical-cavity results, but the improvement is not great.

The PCM Method
Accurate ab initio calculation of solvent effects requires a molecular shape more realistic 
than a sphere or an ellipsoid. In the polarizable-continuum model (PCM) of Miertus, 
Scrocco, and Tomasi, each atomic nucleus in the solute molecule M is surrounded by a 
sphere of radius 1.2 times the van der Waals radius of that atom [see the references in  
V. Barone et al., J. Comput. Chem., 19, 404 (1998)]. (The volume occupied by these 
overlapping atomic spheres has sharp crevices where spheres intersect, so a smoothing 
procedure is sometimes used to eliminate the crevices.)

Since the PCM cavity has a complex shape, analytic expressions for the expansion 
coefficients in a multipole expansion cannot be found, and an analytic multipole expan-
sion method is not feasible. Instead, a numerical method is used to find the solute–solvent 
interaction potential energy term Vnint. One can show from classical electrostatics that the 
electric potential fs produced by the polarized dielectric continuum is equal to the elec-
tric potential produced by an apparent surface charge (ASC) distributed on the surface 
of the molecular cavity. The ASC is a continuous distribution of charge characterized by 
a surface charge density (charge per unit surface area) that varies from point to point of 
the cavity surface. In practice, one approximates this continuous ASC by replacing it with 
many point charges on the cavity surface. The cavity surface is divided into many tiny 
regions, and an apparent charge Qk is placed in the kth region. If rk is the point at which 
Qk is located, then the electric potential fs1r2 due to the polarization of the dielectric is 
(in atomic units) [Eq. (15.27)]

	 fs1r2 = a
k

Qk

0 r - rk 0 	 (15.86)
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Classical electrostatics gives the following expression for the apparent charges:

	 Qk = 31er - 12>4per4Ak�fin1rk2 � nk	 (15.87)

where Ak is the area of the kth region, rk is the point at which Qk is located, �fin1rk2 is 
the gradient of the electric potential within the cavity evaluated in the limit as point rk is 
approached, and nk is a unit vector perpendicular to the cavity surface at rk and pointing 
out of the cavity. [The gradient of f is discontinuous at the cavity surface, so it is neces-
sary to distinguish �fin1rk2 from �fout1rk2.] The electric potential within the cavity is 
the sum of the contribution fM,in from the charge distribution of the solute molecule M and 
the contribution fs,in from the polarized dielectric: fin = fM,in + fs,in.

Since neither fin nor Qk is known initially, one finds the apparent surface charges by 
the following iterative process. One initially neglects fs,in and takes the initial estimate 
of fin as f1002

in = f102
M,in where f102

M,in is calculated from the electron density r102 of an M 
molecule in vacuum. [r102 is found from the wave function or, in DFT, the Kohn–Sham 
orbitals, of M in vacuum. Note that f102

M  is the molecular electrostatic potential of Eq. 
(15.28).] Then (15.87) is used to find initial estimates Q1002

k  of the ASCs, which are used in 
(15.86) to find an initial estimate f1002

s,in  of the electric potential produced by the polarized 
dielectric. The improved potential f1012

in = f102
M,in + f1002

s,in  is used in (15.87) to get improved 
charges Q1012

k , which are used in (15.86) to find f1012
s,in , and so on. (The first superscript 

zero in Q1002
k  and f1012

s,in  indicates the use of f102
M,in.) One continues iterating until the charges 

converge to values Q10f 2
k .

The converged charges are used to find an initial estimate of Vnint as

Vn 102
int = -a

i
f10 f 2
s 1ri2 + a

a

Zaf
10 f 2
s 1ra2

where the sums go over the electrons and nuclei and f10 f 2
s  is found from (15.86) using 

the Q10 f 2
k ’s. Vn 0

int is added to the molecular electronic Hamiltonian, which is used to get an 
improved electron density r112 for M, which gives f112

M,in, which gives the improved poten-
tial f1102

in = f
112
M,in + f

10f 2
s,in , which is used in (15.87) to start a new cycle of charge and fs 

iterations. One continues until everything has converged.
The original PCM method uses atomic spheres with radii 1.2 times the van der Waals 

radii to define the molecular cavity. The isodensity polarizable continuum model (IPCM) 
is a modification of the PCM that defines the surface of the molecular cavity as a contour 
surface of constant electron probability density of the solute molecule M [J. B. Foresman 
et al., J. Phys. Chem., 100, 16098 (1996)]. The isodensity value 0.0004 electrons/bohr3 is 
commonly used, but other values have also been recommended [C.-G. Zhan and D. M. 
Chipman, J. Chem. Phys., 109, 10543 (1998)]. Since the solute’s electronic wave func-
tion changes in each SCRF iteration, the size of the molecular cavity changes in each 
IPCM iteration. In the IPCM method, Vnint is calculated from apparent surface charges. The 
self-consistent isodensity PCM (SCIPCM) method is a refinement of the IPCM method 
(Foresman and Frisch, Chapter 10), which allows geometry optimization and vibrational-
frequency calculations to be done for the solute molecule in solution.

The united-atom Hartree–Fock (UAHF) PCM method uses atomic spheres to define 
the molecular cavity, but the assignment of sphere radii is more involved than in the 
original PCM method. In the UAHF PCM method [V. Barone, M. Cossi, and J. Tomasi,  
J. Chem. Phys., 107, 3210 (1997)], hydrogen atoms are not assigned spheres, but are 
included within the sphere of the atom they are bonded to (hence the name united atom). 
The sphere radius RX of a nonhydrogen atom X is given by a formula that contains param-
eters. The method has 11 parameters, whose values were chosen so that the method gives 
good results for aqueous solvation free energies. (When the method is applied to a dif-
ferent solvent than water, different values must be used for the 11 parameters.) Using 
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HF/6-31G* calculations, geometries optimized in vacuum but not reoptimized in solution, 
and including electrostatic, cavitation, dispersion, and repulsion contributions, the UAHF 
PCM method gave free energies of solvation of 43 uncharged organic molecules in water 
with a mean absolute error of 0.2 kcal/mol, and a maximum error of 0.6 kcal/mol, a very 
good result. (To give an idea of the order of magnitude of the contributions, for CH3NH2 
in water, the electrostatic contribution was -4.4 kcal/mol, the cavitation contribution was 
6.8 kcal/mol, and the dispersion plus repulsion contribution was -7.0 kcal/mol.)

The PCM method has been reformulated to eliminate the iterative calculation of the 
solute’s wave function in solution. In this reformulation, the mutually consistent solute 
wave function in solution and the interaction operator Vnint are found directly in a single 
SCF cycle, thereby speeding up the calculations [M. Cossi et al., Chem. Phys. Lett., 255, 
327 (1996)].

The PCM method is also referred to as D-PCM (dielectric PCM).
The integral equation formulation PCM (IEF-PCM) method is a generalization of the 

PCM method that allows one to deal with anisotropic solvents such as liquid crystals, as 
well as with isotropic solvents [E. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys., 
107, 3032 (1997)]. IEF-PCM has given good results when applied to aqueous ionic solutions 
[M. Cossi et al., Chem. Phys. Lett., 286, 253 (1998)].

The COSMO (conductorlike solvation model) method of treating solvation resembles 
the PCM method in using a realistic solute-molecule shape and in using surface charges 
on the cavity surface around the solute molecule, but these charges are initially calculated 
using a condition suitable for a solvent medium that is an electrical conductor rather than 
a dielectric. The initial charges are then multiplied by the function 1er - 12>1er + 0.52 
to yield approximations for the charges suitable for the dielectric solvent (A. Klamt and 
G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 1993, 799). The simplified procedure for 
finding the charges make COSMO computationally fast. A particular implementation of 
COSMO that allows efficient geometry optimization in solution is called C-PCM (conduc-
tor PCM) [V. Barone and M. Cossi, J. Phys. Chem. A, 102, 1995 (1998)].

COSMO-RS (COSMO for real solvents) is an extension of COSMO beyond the 
dielectric-continuum approximation [A. Klamt et al., J. Phys. Chem. A, 102, 5074 (1998); 
A. Klamt, COSMO-RS, Elsevier, 2005]. COSMO-RS begins with a quantum-mechanical 
COSMO calculation, and follows this with a statistical-mechanical procedure whose aim 
is to reduce the errors introduced by the continuum-solvent approximation. The ability of 
COSMO-RS to predict activity coefficients, vapor–liquid equilibria, and enthalpies of mix-
ing was tested for many solutions [H. Grensemann and J. Gmehling, Ind. Eng. Chem. Res., 
44, 1610 (2005)]. COSMO-RS predictions were found to be much less reliable than those of 
empirical group-contribution methods traditionally used by chemical engineers. Neverthe-
less, the authors recommended the use of COSMO-RS for situations where the parameters 
needed to use group-contribution methods are not available. [See also A. Klamt, Ind. Eng. 
Chem. Res., 51, 13538 (2012); J. Gmehling et al., ibid., 51, 13541 (2012).] For a review of 
COSMO and COSMO-RS, see A. Klamt, WIREs, Comput. Mol. Sci, 1, 699 (2011).

Chemical Equilibria in Solution
From gas-phase values of �U�r  and �S�r  for a reaction, calculated as described in Section 
15.13, we can find a theoretical value of the gas-phase �G�r  for a reaction at the desired 
temperature. Then one calculates �G�solv for each reactant and product and combines these 
values with the gas-phase �G�r  value to find �G�r  for the reaction in solution, which then 
allows calculation of the equilibrium constant in solution.

This procedure has been applied to several isomerization reactions and also to 
calculate relative populations of different conformers in solution. For isomerizations or 
conformational changes, it’s usually a good approximation to assume the two species 
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have nearly the same cavitation and dispersion contributions, so these contributions will 
essentially cancel and need not be calculated.

For example, for the keto–enol equilibrium 2-pyridone m 2-hydroxypyridine, 
dipole-in-a-sphere ab initio calculations with cavitation and dispersion contributions omit-
ted gave the following values at 298 K in the gas phase and in the solvents cyclohexane 
1er = 2.02 and acetonitrile 1er = 362: �Gr� = -0.6, 0.4, and 2.3 kcal/mol, respectively, 
compared with the estimated experimental values -0.8, 0.3, and 3.0 kcal/mol [M. W. Wong, 
K. B. Wiberg, and M. J. Frisch, J. Am. Chem. Soc., 114, 1645 (1992)]. The more-polar keto 
form 2-pyridone (calculated gas-phase m = 4.2 D) was stabilized more than the enol form 
(calculated gas-phase m = 1.5 D) in solution.

Molecular Properties in Solution
The following data give examples of changes in calculated molecular properties from the 
gas phase to solution. For the gauche conformer of 1,2-dichloroethane, some SCIPCM 
density-functional calculated structural changes on going from the gas phase to a dilute 
solution in a solvent with er = 47 are: r(CC) from 1.512 to 1.505 Å, r(CCl) from 1.810 to 
1.820 Å, �CCCl from 112.9° to 112.8°, D(ClCCCl) from 69.9° to 68.6°, and the dipole 
moment changed from 2.92 to 3.82 D [K. B. Wiberg et al., J. Phys. Chem., 99, 9072 
(1995)]. For formamide, HCONH2, some PCM density-functional calculated vibrational 
wavenumber changes from the gas phase to the solvent water with er = 78 are 162 to 
366 cm-1 for NH2 inversion, 650 to 682 cm-1 for NH2 twisting, 1276 to 1302 cm-1 for CN 
stretching, and 1621 to 1588 cm-1 for NH2 bending [V. Barone, M. Cossi, and J. Tomasi, 
J. Comput. Chem., 19, 404 (1998)]. For H2O, calculations and experiments give gas-to-
liquid changes in bond length and angle from 0.958 Å to 0.97 Å and from 104.5° to 106° 
[Table 5 in H. C. Georg and S. Canuto, J. Phys. Chem. B, 116, 11247 (2012)].

Problems

Sec. 15.2 15.4 15.5 15.6 15.7 15.9

Probs. 15.1–15.3 15.4–15.12 15.13–15.22 15.23–15.25 15.26–15.27 15.28–15.30

Sec. 15.10 15.11 15.12 15.13 15.15 15.16 general

Probs. 15.31–15.35 15.36–15.37 15.38 15.39–15.40 15.41–15.60 15.61 15.62

	  15.1	 Verify that (15.3) are the possible symmetry species for �2v
.

	  15.2	 Work out the possible symmetry species for �2.

	  15.3	 How many independent molecular wave functions correspond to (a) a 3E term? (b) a 1E term?

	  15.4	 (a) Give the number of CGTFs used in a 34s2p>2s4  calculation of C3H7OH. (b) Give 
the number of CGTFs used in a DZ calculation of C4H9OH.

	  15.5	 For C4H9OH, give the number of CGTFs used in a calculation with each of the following 
basis sets: (a) STO-3G; (b) 3-21G; (c) 6-31G*; (d) 6-31G**; (e) 6@31+G*; (f) cc-pVTZ; 
(g) cc-pVQZ; (h) aug-cc-pVDZ.

	  15.6	 How many primitive and how many contracted GTFs are used in a calculation on Si24O60H24 
with each of these basis sets: (a) STO-3G; (b) 3-21G; (c) 6-31G*?

	  15.7	 Use the CCCBDB (Section 15.1) to find the electronic energy, dipole moment, and equilib-
rium geometry for the ground electronic state of NH3 given by a HF/6-31G* calculation and 
by a HF/cc-pVDZ calculation.

	  15.8	 Repeat Prob. 15.7 for the gauche and the anti conformers of butane (see Fig. 15.13). Be sure 
and give the CCCC dihedral angle for each. Comment on the dipole moment values.

	  15.9	 Use a spreadsheet to do a least-squares fit of the STO S K p-1>2e-r with a normalized linear 
combination G3N of three normalized s-type Cartesian Gaussians. Suppose we divide space 
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into infinitesimal volume elements dt, compute 1S - G3N22 dt at a point in each volume 
element, sum these quantities to give the definite integral I K 11S - G3N22 dt, and vary the 
six parameters in G3N to minimize I. (a) Show that I = 4p1�

0 1S - G3N22r2 dr. (b) Set up a 
spreadsheet to compute I as I � g300

i = 13S1ri2 - G3N1ri2424pr 2
i  �r, where ri goes from 0 to 15 

in steps of �r = 0.05. (Beyond r = 15, the integrand in I is negligible.) Assign cells to the 
orbital exponents a1, a2, a3, the multiplicative coefficients d1, d2, d3 of the individual normal-
ized Gaussians in the unnormalized Gaussian (which we shall call G3 ), and the coefficients 
c1 = Nd1, c2 = Nd2, c3 = Nd3 in the normalized Gaussian G3N. Start with initial guesses for 
the six parameters (the a’s and the d’s). Put the ri values in column A, the S1ri2 values in col-
umn B, the unnormalized function G3 in column C, the quantities 3G31ri242 r2

i  in column D, 
the normalized function G3N = NG3 in column E, and the quantities 4p �r1S - G3N22r2

i  in 
column F. Compute the normalization constant N = 54p �rg300

i = 13G31ri242 r2
i 6-1>2 in some 

cell. Compute I in some cell. Graph S and G3N on the same graph. Use the Solver in Excel to 
vary the six parameters in G3 to minimize I. Rerun the Solver with different initial guesses 
for the parameters. (c) For which range of r is G3N significantly less than S? Significantly 
greater than S?

	15.10	 The fit in Prob. 15.9 gives S1r2 � g3
i = 1 ciGi1r2, where S1r2 is a 1s STO with orbital exponent 

1 and Gi is a 1s GTO with orbital exponent ai. Let S1r, z2 K z3>2p-1>2e-zr. Let Gi1r, z2 be 
the function obtained by replacing ai in Gi1r2 by aiz

2. Show that S1r, z2 � g3
i = 1 ciGi1r, z2.

	15.11	 Use the Basis Set Exchange (bse.pnl.gov) to find (a) the 6-31G** basis functions for H; (b) 
the 6-31G* basis functions for C.

	15.12	 Give an example of a molecule for which the HF/6-31G* and HF/6-31G** energies are the 
same.

	15.13	 For formaldehyde: (a) Work out the symmetry orbitals for a minimal-basis-set calculation; 
give the symmetry species of each symmetry orbital. (Choose the x axis perpendicular to 
the molecular plane.) (b) How many s and how many p canonical MOs will result from a 
minimal-basis-set calculation? (See the Section 15.9 discussion of ethylene for the definition 
of s and p MOs.) How many occupied s and occupied p MOs are there for the ground 
state? (c) For each of the eight energy-localized MOs, state which AOs will make significant 
contributions. (d) What is the maximum-size secular determinant that occurs in finding the 
minimal-basis-set canonical MOs?

	15.14	 Work out the minimal-basis symmetry orbitals and their symmetry species for cis-1,2-
difluoroethylene. Choose the x axis perpendicular to the molecular plane.

	15.15	 Sketch the 1a1, 3a1, 1b1, 4a1, and 2b2 MOs of water.

	15.16	 Give the form of the normalization constants for the symmetry orbitals in Eq. (15.13).

	15.17	 Suppose a ground-state calculation gives us some virtual orbitals for the molecule M. In 
which one of the following species would an excited electron occupy an MO that was well 
approximated by a virtual orbital of ground-state M? (a) M; (b) M+; (c) M-. Explain.

	15.18	 Let EHF be the Hartree–Fock energy of a closed-shell molecule; let E+
k,HF,approx be the approxi-

mate Hartree–Fock energy of the ion formed by removal of an electron from the kth MO of 
this molecule, this energy being calculated using the MOs of the un-ionized molecule. For 
both the molecule and the ion, the Hartree–Fock wave function is a single determinant. Use 
Eqs. (11.80) to (11.82) [where (11.82) is modified to allow for the presence of several nuclei] 
and Eq. (14.30) to show that EHF - E+

k,HF,approx = ek, where ek is the orbital energy of MO k.

	15.19	 Write symmetry orbitals for a minimal-basis-set calculation of H2.

	15.20	 Suppose an SCF calculation that includes 3d orbitals on oxygen is done on H2O (Fig. 15.1). 
For each of the occupied ground-state H2O MOs, use symmetry-species arguments to decide 
which of the following 3d oxygen AOs will contribute to that MO: 3dz2, 3dxz, 3dyz, 3dxy, 
3dx2 - y2.

	15.21	 (a) As noted in the text, for the cc-pVnZ basis sets, it is best not to use the n = 2 energy 
value in extrapolations. Also, the n = 6 energy value is often not available. Use (15.23) 
and  the  H2O HF/cc-pVnZ energies for n = 3, 4, and 5 given just before (15.23) to find 
the values of the three parameters in (15.23). There are three equations in three unknowns. 
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Subtract the n = 3 equation from the n = 4 equation and from the n = 5 equation to obtain 
two equations in two unknowns. Then combine these equations to eliminate A. To solve the 
remaining equation for B, put all terms on one side of the equation and use the Excel Solver 
to find B. Then find the other two unknowns. (b) Now use the n = 3, 4, 5, and 6 energies 
and the Excel Solver to find the values of the three parameters in (15.23) that minimize g6

n = 31E(15.232 - Ecc@pVnZ22. Take the initial guesses for the parameters as the results from 
part (a). In Excel 2010, be sure and uncheck the Make Unconstrained Variables Non-Negative 
box in the Solver Parameters box.

	15.22	 (a) Instead of (15.23), the following equation has been proposed for extrapolation from SCF 
aug-cc-pVQZ and aug-cc-pV5Z energies to the CBS limit [A. Karton and J. M. L. Martin, 
Theor. Chem. Acc., 115, 330 (2006)]:

	 ESCF1aug@n2 = ESCF1�2 + A1L + 12e-92L� (15.88)

			   where L is the largest orbital-angular momentum l value that appears in the basis set. For H2O, 
aug-cc-pVQZ and aug-cc-p5Z SCF energies at optimized geometries are -76.066676 
and -76.068009 hartrees. Find the CBS limit predicted by this extrapolation formula. 
(b) Equation (15.88) can also be used with the aug-cc-pV5Z and aug-cc-pV6Z Hartree–
Fock energies. The HF/aug-cc-pV6Z geometry-optimized energy for H2O is -76.068153 
hartrees. Find the HF/CBS limit predicted by (15.88) and the aug-cc-pV5Z and aug-­
cc-pV6Z SCF energies. Compare the CBS values found in this problem to the estimate 
in Table 15.2.

	15.23	 (a) Use (15.24) to show that 1 = g r c2
ri + 2g r 7 sg s cricsi Srs. (b) Use the result of (a) to verify 

that g r nr + g r 7 sg s nr - s = n.

	15.24	 Use the tables referred to in Prob. 15.29c [or one of the other available overlap-integral tables; 
see the reference given after (17.69)] to verify the values of the H2O overlap integrals given 
in Section 15.6.

	15.25	 (a) Verify the net populations given at the end of the Section 15.6 example. (b) Verify the 
H2O 2a1 and 1b2 interatomic overlap populations given in Section 15.6. (c) Verify the gross 
populations given in Section 15.6 for the H2O basis functions.

	15.26	 Use Coulomb’s law to show that the electric potential fP at a point P a distance d from a point 
charge Q is fP = Q>4pe0d.

	15.27	 On Fig. 13.9 for ground-state H+
2, sketch gradient paths that lie in the plane of the figure. 

Include the gradient path that does not end at a nucleus.

	15.28	 Frequently, the x and z axes of ethylene are interchanged as compared with Fig. 15.10. What 
change does this cause in the MO labeling? [The symmetry-species designations in Table 15.3 
are retained.]

	15.29	 (a) Does having the coefficient of C1s greater than 1.0 in the 1a1 methane MO in (15.46) 
violate the condition that the MO be normalized? Explain. (b) Use the results of Prob. 13.37 
to express the 2a1 methane MO of (15.46) using a nonorthogonal 2s STO. (c) Verify that 
the 2a1 MO found in part (b) is normalized. [The needed overlap integrals can be found by 
interpolating in the tables of R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, J. Chem. 
Phys., 17, 1248 (1949).]

	15.30	 Call the ethylene symmetry orbitals in Table 15.4 g1 to g14, in order. For each of the eight 
canonical ethylene MOs occupied in the ground state, decide, as best you can, which sym-
metry orbitals will make major contributions; give the sign of each such symmetry orbital in 
the MO expression. (Hint: Decide how many inner-shell and how many bonding canonical 
MOs there are; combine the symmetry orbitals so as to build up charge density between the 
nuclei for the bonding MOs. One further hint: The third symmetry orbital in Table 15.4 makes 
no significant contribution to 3ag.) Sketch the canonical MOs. Assume an orthogonalized 2s 
orbital is used.

	15.31	 Find the components of the gradient and the elements of the Hessian for each of the following 
functions, where the c’s are constants: (a) U = c1x

2 + c2y2 + c3z
2; (b) U = c1x + y + z22.
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	15.32	 Give initial guesses for the geometry (bond lengths, bond angles, and dihedral angles) of the 
likely conformers of each of the following ground-state molecules. (a) CH3OH; (b) C2H4; 
(c) CH3NH2; (d) 1CH322CO.

	15.33	 For the function U = 2x2 - y2, (a) find the stationary points; (b) find the first-order saddle 
points.

	15.34	 Consider the function U = 41x - 122 + 31y - 222. (a) By inspection, find its minimum. 
(b) Start at an arbitrary point x1, y1 and show that the Newton–Raphson equation (15.72) with 
all partial derivatives evaluated exactly from U gives the minimum in one step.

	15.35	 For the function U = 3x2 + 6y2, (a) locate the minimum by inspection; (b) start at the point 
x = 9, y = 9 and apply the conjugate-gradient method to locate the minimum. Do the cal-
culations by hand. Recall that the equation of the straight line that passes through point x1, y1 
with slope m is m = 1y - y12>1x - x12.

	15.36	 Write down the distance matrix for H2O using the experimental geometry in Table 15.2. Take 
oxygen as atom 1.

	15.37	 True or false? (a) All triatomic molecules are planar. (b) The distance matrix is a symmetric 
matrix. (c) The diagonal elements of the distance matrix are zero. (d) The Hessian is a sym-
metric matrix.

	15.38	 As stated in Sections 15.3 and 15.5, the canonical MOs of a molecule can be chosen so that 
each one transforms according to one of the symmetry species of the molecule when the 
molecular symmetry operators are applied. The same is true of the normal-mode vibrations. 
For example, when each of the four symmetry operators of H2O is applied to the v1 vibra-
tion in Fig. 15.16, the vibration displacement vectors end up looking unchanged. This normal 
mode therefore belongs to the totally symmetric symmetry species a1. Give the symmetry 
species of the other two normal modes in Fig. 15.16. Take the axes as in Fig. 15.1.

	15.39	 The contribution of molecular vibrations to the molar internal energy Um of a gas 
of nonlinear N-atom molecules is (zero-point vibrational energy not included) 
Um,vib = R g3N - 6

s = 1 us> 1eus>T - 12, where us K hns>k and ns is the vibrational frequency of 
normal mode s. Calculate the contribution to Um,vib at 25�C of a normal mode with wavenum-
ber n� K vs>c of (a) 900 cm-1; (b) 300 cm-1; (c) 2000 cm-1.

	15.40	 (a) For CO2 a geometry-optimized HF/6-31G* calculation gives Ue = -187.634176 har-
trees. UHF/6-31G* ground-state energies are -37.680860 and -74.783931 hartrees for C 
and O, respectively. Calculate the predicted HF/6-31G* De of CO2. (b) Unscaled HF/6-31G* 
vibrational wavenumbers for CO2 are 745.8, 745.8, 1518.5, and 2585.0 cm-1. Scale these 
by 0.89, find the HF/6-31G* prediction for D0, and compare with the experimental value 
D0 = 16.56 eV. Also calculate the predicted atomization energy in kcal/mol. (c) Thermody-
namic tables give �H�f,0 as 246.79 kJ/mol for O(g) and 711.2 kJ/mol for C(g) and give the 
molar enthalpy difference Hm,298 - Hm,0 as 1.05 kJ/mol for graphite. Find the HF/6-31G* 
predictions for �H�f,0 and �H�f,298 of CO21g2. The experimental values are -393.2 kJ>mol 
and -393.5 kJ>mol.

	15.41	 Using standard bond lengths and bond angles, write Z-matrices using internal coordinates for 
each of the following: (a) CO2; (b) CH4; (c) H2CO; (d) NH3; (e) C2H4; (f) CH3OH (do both 
staggered and eclipsed conformations); (g) CH2ClCH2Cl (anti and gauche conformations).

	15.42	 Given the following Z-matrix (where the semicolons are used to denote the end of a row), 
draw a Newman projection of the molecule. C1; C2 1 1.5; F3 1 1.4 2 109.5; Cl4 2 1.8 1 120.0 
3 0.0; H5 1 1.1 2 109.5 4 120.0; H6 1 1.1 2 109.5 4 -120.0; O7 2 1.2 1 120.0 3 180.0

	15.43	 If the dihedral angle D(R, S, T, U) is 60�, what is the value of the dihedral angle D(U, T, S, R)?

	15.44	 For a nonlinear molecule containing N atoms, how many internal coordinates (bond lengths, 
bond angles, and dihedral angles) are specified in its Z-matrix? Justify your answer.

	15.45	 (a) For CH2O, run HF/3-21G geometry optimization and vibrational-frequency calculations 
to obtain the predicted geometry, dipole moment, and harmonic vibrational wavenumbers. 
Verify that all vibrational wavenumbers are real. (b) Repeat (a) using a HF/6-31G* calcula-
tion. Multiply the HF/6-31G* harmonic wavenumbers by the 0.895 scale factor and compare 
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the results with the fundamental wavenumbers listed in the CCCBDB. (c) Using a program 
such as the WebMO Demo or Spartan Student that can show animations of each normal mode, 
view the modes and sketch each CH2O normal mode using arrows to show atomic motions. 
For modes that involve out-of-plane vibrations, it is helpful to rotate the model as it vibrates. 
Also, have the program draw the predicted infrared spectrum. (d) From the predicted IR 
normal-mode intensities, which mode has the strongest absorption and which the weakest? 
(e) As noted in Prob. 15.38, each normal mode can be classified according to its symmetry 
species. Use the results of part (c) to give the symmetry species of each normal mode.

	15.46	 (a) Do an HF/6-31G* calculation to find the predicted harmonic vibrational wavenumbers of 
CH2 “ CHCl using a program that can show animations of vibrational modes. Examine the 
animations and answer the following questions. Give the wavenumber of the mode that shows 
the greatest amount of CC bond stretching. Give the wavenumber of the mode that shows the 
greatest amount of CCl bond stretching. Give the wavenumbers of the modes that involve 
out-of-plane motions. (To answer this, rotate the model so that the molecule is perpendicular 
to the plane of the screen.) Have the program draw the predicted IR spectrum. (b) Multiply 
the wavenumbers found in (a) by the scale factor 0.895 to give estimates of the fundamental 
frequencies and compare with the experimental fundamental frequencies, which can be found 
in the CCCBDB. (c) Use the wavenumbers found in (b) to estimate the zero-point energy of 
this molecule.

	15.47	 For this problem, use a program that can display molecular orbitals, Use the HF/6-31G* 
method to display each of the occupied MOs and the lowest unoccupied MO (LUMO) of H2O. 
Describe each occupied MO as predominantly inner-shell, bonding, or lone pair. For each 
lobe (region) of each MO, state which atoms are involved and whether the lobe is positive or 
negative. Give the HF/6-31G* orbital energy and the symmetry species of each of these MOs. 
(If you are using the online WebMO Demo, after you get the optimized-geometry model using 
Gaussian, click on New Job Using This Geometry, click the right arrow, choose Gaussian, 
click the right arrow, then choose Molecular Orbitals as the Calculation. When you get the 
output model, scroll down to see the list of MOs and click the magnifying glass for the MO 
you want to view. You can right-click on an MO surface and choose Opacity to change the 
type of display. Be sure you have Jmol installed when using WebMO; jmol.sourceforge.net.)

	15.48	 Repeat Prob. 15.47 for C2H4. Also state whether each MO is s or p.

	15.49	 For this problem, use a program that can display molecular surface electrostatic potential 
(MSESP) maps. For each of the following molecules, use the HF/6-31G* method to view 
the MSESP map at the HF/6-31G* equilibrium geometry. State where the most negative 
regions and the most positive regions are located. (a) formamide; (b) ethene; (c) benzene; 
(d) cyclopropane. If you are using the online WebMO demo, follow the directions given in 
Prob. 15.47 to get the list of MOs. Then click on the magnifying glass opposite Electrostatic 
potential (which is below the MO list) to see the electrostatic potential map.

	15.50	 For H2O use HF/6-31G* to optimize the geometry and then calculate the ESP charges 
according to each of the methods Merz–Singh–Kollman, CHELP, and CHELPG, To do this 
in Gaussian, in addition to Opt on the line beginning with a #, one includes Pop=MK or 
Pop=CHELP, or Pop=CHELPG. If you are using the online WebMO Demo, after you get 
the optimized-geometry model using Gaussian, click on New Job Using This Geometry, click 
the right arrow, choose Gaussian, click the right arrow, then choose Other as the Calculation, 
and enter Pop=MK in the Enter Calculation window, click OK, and click the right arrow. 
Scroll down in the output model display to see the ESP charges. Compare with the Mulliken 
charges, which are listed as the Partial Charges by WebMO. If you have Spartan Student, 
after you optimize the geometry, go to the Model menu and choose Ball and Spoke; choose 
Configure on the Model menu, click Electrostatic Charge, click OK, and click Labels on the 
Model menu. Only one kind of ESP charge is given by Spartan Student.

	15.51	 The gas-phase benzene dimer species (weakly bound by dispersion forces) has been detected 
by microwave spectroscopy, and its dissociation energy D0 is about 2.4 kcal/mol. Two of the 
several possible structures for this dimer are the eclipsed �6h sandwich structure with the two 
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rings parallel to each other (like the two pieces of bread in a sandwich) and corresponding 
vertices of the two hexagons aligned, and a T structure with one hexagon above the other 
and perpendicular to it. Based on the ESP map of benzene (Prob. 15.49c), which is the more 
likely structure of these? [Actually, using the ESP map is much too crude a way to answer 
this question, and very high-level calculations are needed to determine the relative energies 
of benzene-dimer structures; see M. Pitoňák et al., J. Chem. Theory Comput., 4, 1829 (2008).] 
Aromatic p-p interactions are significant in proteins and DNA, so study of the benzene 
dimer has important applications.

	15.52	 Perform single-point HF/3-21G calculations on H2O with the bond lengths held constant at 
0.96 Å and the bond angle taken as 100�, 102�, 104�, 106�, 108�, 110�, and 112�. Plot the ener-
gies versus bond angle and decide what order polynomial will give a good fit to the data. Use 
a graphing program or spreadsheet to fit the data with such a polynomial and find the 3-21G 
minimum-energy angle at this bond length.

	15.53	 In a Z-matrix for the Gaussian programs, letters can be used to specify some or all of the 
internal coordinates. For example, a Z-matrix for HOCl can be written as

				    O1
				    H2 1 R1
				    Cl3 1 R2 2 A1
				    Variables:
				    R1 0.96
				    R2 1.6
				    A1 108.0

			   If one wanted to hold the bond angle constant at 108� during a geometry optimization, the 
last line of the preceding Z-matrix would be replaced by

				    Constants:
				    A1 108.0

			   Do include a space before each of the words Variables and Constants. (In Gaussian 98 and 03, 
the keyword Opt must be replaced by Opt=Z-matrix.) Set up a Z-matrix for a partial geometry 
optimization for C2H6 in which the dihedral angles are held fixed at values corresponding to 
(a) the staggered form; (b) the eclipsed form. Then perform HF/6-31G** optimizations on 
these two conformations and take the energy difference to find the predicted barrier to internal 
rotation in kcal/mol.

	15.54	 Use CORINA on the Internet to build models and find Cartesian coordinates for the following 
molecules: (a) CH3OH; (b) HC(O)OH.

	15.55	 Use ChemDB to answer Prob. 15.54.

	15.56	 (a) Do a HF/6-31G* geometry optimization and frequency calculation on NH3 starting from 
a planar geometry. Is the final structure planar? Are all the vibrational frequencies real? (b) 
Repeat the calculation starting with a slightly nonplanar geometry. You might find it conve-
nient to use a dummy atom in the Z-matrix. (c) What is the HF/6-31G* predicted barrier to 
inversion of ammonia?

	15.57	 (a) Do HF/6-31G* geometry optimizations on two conformers of HCOOH, one with OCOH 
dihedral angle of 0� and one with 180�. Compare the predicted geometries and the dipole 
moments of the two conformers. What is the predicted energy difference at 0 K omitting 
zero-point energy? (b) Do frequency calculations on these two conformers and use scaled 
vibrational frequencies to get the predicted 0 K energy difference including zero-point energy. 
Are all the vibrational frequencies real for each conformer?

	15.58	 (a) Do HF/6-31G* partial geometry optimizations of n-butane conformations with CCCC 
dihedral angles fixed at several values. Plot the energy versus dihedral angle. From the plot, 
estimate the barriers for the conversions gauche S anti and anti S gauche. (b) Start from a 
60� dihedral angle and do a full geometry optimization to find the predicted dihedral angle 
for the gauche conformer. Calculate the predicted energy difference between gauche and anti 
conformers at 0 K, neglecting zero-point energy. See Prob. 15.53.
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	15.59	 Do HF/6-31G* calculations to find the predicted geometries, dipole moments, and vibrational 
wavenumbers of the conformers of N2H4. What is the predicted energy difference (or differ-
ences) at 0 K?

	15.60	 Repeat Prob. 15.59 for propene, CH2CHCH3.

	15.61	 For a minimal-basis STO calculation on H2, how many different electron-repulsion integrals 
1rs 0 tu2 need to be calculated, taking into account (14.47) and the symmetry of the molecule?

	15.62	 Slater’s rules for finding approximate orbital exponents of K-, L-, and M-shell Slater AOs are 
as follows. The orbital exponent z is taken as 1Z - snl2>n, where n is the principal quantum 
number and Z is the atomic number. The screening constant snl is calculated as follows: The 
AOs are divided into the following groups:

11s2 12s, 2p2 13s, 3p2 13d2
			   To find snl, the following contributions are summed: (a) 0 from electrons in groups to the 

right of the one being considered; (b) 0.35 from each other electron in the group considered, 
except that 0.30 is used in the 1s group; (c) for an s or p orbital, 0.85 from each electron 
whose quantum number n is one less than the orbital considered and 1.00 from each electron 
still further in; for a d orbital, 1.00 for each electron in a group to the left.

				    Calculate the orbital exponents according to Slater’s rules for the atoms H, He, C, N,  
O, S, and Ar. The optimum values of z to use when approximating an AO as a single STO 
have been calculated and are given in E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 
2686 (1963); E. Clementi et al., J. Chem. Phys., 47, 1300 (1967). Compare these optimum val-
ues with the above values found by Slater’s rules. [For n = 4, Slater took z as 1Z - snl2>3.7; 
however, Slater’s rules are generally unreliable for n Ú 4.]



525

Chapter 16

Electron-Correlation Methods

16.1 Correlation Energy
The four sources of error in ab initio molecular electronic calculations are (1) neglect of 
or incomplete treatment of electron correlation, (2) incompleteness of the basis set, (3) 
relativistic effects, and (4) deviations from the Born–Oppenheimer approximation. Devia-
tions from the Born–Oppenheimer approximation are usually negligible for ground-state 
molecules. Relativistic effects will be discussed in Section 16.11. In calculations on mol-
ecules without heavy atoms, (1) and (2) are the main sources of error.

Almost all computational methods expand the MOs in a basis set of one-electron 
functions. The basis set has a finite number of members and hence is incomplete. The 
incompleteness of the basis set produces the basis-set incompleteness (or truncation) 
error (BSIE or BSTE).

The Hartree–Fock method, discussed in Chapter 15, neglects electron correlation. 
Chapter 16 discusses methods that include electron correlation. The main correlation meth-
ods are configuration interaction (CI, Section 16.2), Møller–Plesset (MP) perturbation 
theory (Section 16.3), the coupled cluster (CC) method (Section 16.4), and density func-
tional theory (DFT, Section 16.5).

Correlation Energy
Recall from Eq. (11.16) that the molecular correlation energy is defined as the difference 
between the nonrelativistic true molecular energy and the restricted Hartree–Fock (HF) 
nonrelativistic energy calculated with a complete basis set: Ecorr K Enonrel - EHF. For a 
closed-shell state, the HF wave function is a single Slater determinant. For some open-shell 
states [such as some He excited states—Eqs. (10.44) and (10.45)], the HF wave function 
contains more than one determinant so that it is an eigenfunction of the appropriate spin 
and symmetry operators. Even though these open-shell HF wave functions may have more 
than one Slater determinant, as noted in Section 11.3, they contain only one configuration 
state function (CSF).

In Section 11.6 the existence of a nonzero Ecorr was ascribed to the failure of the HF 
calculation to account for the instantaneous correlations between motions of electrons. This 
source of Ecorr is called dynamic correlation.

There is a second reason why EHF may differ from Enonrel: In some situations, the 
single-Slater-determinant HF wave function (or the few-determinant CSF required for 
some open-shell states) is a poor representation of the system’s state, thereby making EHF 
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deviate very considerably from the true nonrelativistic E, and making Ecorr substantial. 
This contribution to Ecorr is called static (or nondynamic or strong or near-degeneracy) 
correlation. For example, we saw in Section 13.11 that the MO single-determinant wave 
function for H2 has equal probability for ionic terms with both electrons close to one atom 
and covalent terms with one electron on each atom. Since H2 dissociates to two H atoms 
and not to ions, the single-determinant wave function is qualitatively wrong at large inter-
nuclear distances. At large internuclear distances in H2, the static correlation becomes 
substantial. In order to have a qualitatively correct wave function at large R, one must take 
a linear combination of the 1s2

g Slater determinant and the 1�+
g  1s2

u Slater determinant 
[Eq. (13.95) with the right-hand side multiplied by the antisymmetric two-electron spin 
function]; the contribution of the 1s2

u determinant increases as R increases.
At large internuclear distances, the energy difference between the highest occupied 

MO (HOMO) 1sg in H2 and the lowest unoccupied MO (LUMO) 1su becomes small and 
goes to zero as R S �. This near degeneracy of occupied and virtual orbitals is charac-
teristic of systems with substantial static correlation. For example, for the ground state of 
the Be atom, the HF wave function is a single determinant corresponding to the electron 
configuration 1s22s2. However, in Be the 2p AO is nearly degenerate with the 2s AO, and 
the static correlation is substantial. To have a qualitatively correct wave function, one must 
include a contribution from the 1S CSF with orbital occupancy 1s22p2. Another example is 
the ground electronic state of O3, which has only a small gap between the HOMO and the 
LUMO; O3 has substantial biradical character (a resonance structure with an unpaired elec-
tron on each of the noncentral O atoms can be written) and a large contribution from static 
correlation. Other situations not involving covalent bond breaking where static correlation 
is important include molecules with double or triple bonds, transition-metal compounds, 
and the majority of excited electronic states.

To deal with static correlation, one replaces the single determinant (or single CSF) 
used in the HF method with a linear combination of the CSFs that make substantial con-
tributions to the wave function. This gives a multiconfiguration (MC) wave function. 
Various MC methods are discussed in the following sections.

Properties of Methods
A quantum-chemistry approximation method is variational if the energy calculated 
by the method is never less than the true energy of the state being calculated. Since 
an SCF MO wave-function energy is equal to the variational integral (8.1), the SCF 
MO method is variational. Although being variational is a desirable property, we shall 
see that many of the calculation methods currently used (such as MP, CC, DFT) are 
not variational.

Two other desirable properties are size extensivity and size consistency. These terms 
have been used by various people to mean somewhat different things. The definitions given 
here are from I. Shavitt, Mol. Phys., 94, 3 (1998). A method is size extensive if the com-
puted energy of a system composed of n noninteracting identical systems equals n times 
the energy of one subsystem computed by the same method, and the computed energy of a 
uniform system (such as the uniform electron gas of Section 16.5) is proportional to the size 
of the system. Size extensivity is desirable so as to make the energy scale properly as the 
number of particles in the system increases. A method is size consistent if the computed 
energy of a molecule dissociated into two or more infinitely separated parts and treated 
as a single system equals the sum of the computed energies of each part. Size extensivity 
and size consistency are related but not equivalent properties, and a method can have one 
property but not the other. Size consistency applies only at infinite separation of the parts, 
but size extensivity applies at all geometries.
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CBS Extrapolation
A common procedure to reduce basis-set truncation error is to do a series of calculations 
using one method with two, three, or four increasingly larger basis sets and extrapolate the 
results to what one hopes is a value close to the complete-basis-set (CBS) limit. Examples 
are the extrapolation done with the formula (15.23) (Prob. 15.21) and with the formula 
(15.88) (Prob. 15.22) to estimate the CBS HF limit for H2O. When a method such as CC 
that includes correlation is used, the extrapolation is commonly done in two steps. One 
first does HF calculations with a series of basis sets to estimate the CBS HF energy limit 
EHF

� . Then one does a series of CC calculations with the same series of basis sets and 
uses an empirical extrapolation formula to estimate the CBS correlation energy E corr

� . The 
estimate of the CBS molecular energy is then found as EHF

� + E corr
� . See the discussion after 

Eq. (16.31).
The basis sets most commonly used for CBS extrapolations are the correlation consis-

tent (cc) basis sets such as cc-pVnZ and aug-cc-pVnZ (Section 15.4). For a review of basis 
sets, see F. Jensen, WIREs Comput. Mol. Sci. 2012, doi: 10.1002/wcms.1123.

Another method to reduce basis-set truncation error is the F12 method, which intro-
duces interelectronic distances rij into the wave function. See Sections 16.3 and 16.4 for 
discussion.

Notation
A notation having the form Method/(Basis set) is used to specify the method and the basis 
set used in a calculation. For example, HF/6-31G* denotes an SCF MO calculation using 
the 6-31G* basis set. The letters HF denote any SCF MO calculation and do not imply 
that the Hartree–Fock limit has been reached. The notation CCSD(T)/CBS denotes a result 
found by extrapolation of CCSD(T) calculations to the CBS limit. (The CCSD(T) method 
is discussed in Section 16.4.) For high-level calculations, a geometry optimization may 
be too time consuming to do, so one sometimes does a single-point high-level energy cal-
culation at the equilibrium geometry found from a lower-level calculation. The notation  
CCSD(T)/cc-pVQZ//HF/6-31G* denotes a single-point energy calculation done with the 
high-level CCSD(T) method and the cc-pVQZ basis set at the equilibrium geometry found 
by an HF/6-31G* geometry optimization.

Test Sets of Data
Many sets of experimental and high-level calculation data have been compiled for use in 
testing the performance of quantum-chemistry methods.

The G3/05 test set of accurately known experimental thermochemical data consists 
of 270 enthalpies of formation, 105 ionization energies, 63 electron affinities, 10 proton 
affinities, and 6 dimerization energies of H-bonded dimers [L. A. Curtiss et al., J. Chem. 
Phys., 123, 124107 (2005)]. Some medium-size molecules in the G3/05 set are naphtha-
lene 1C10H82, SF6, and C6H13Br. The G3/05 set does not include any transition-metal 
compounds. (Accurate thermochemical data for such compounds is sparse.) The G3/05 set 
(which contains 454 energy changes) is an expansion of the earlier test sets G2 (125 energy 
changes), G2/97 (301 energy changes), and G3/99 (376 energy changes).

Noncovalent interactions such as hydrogen bonding and dispersion (London) forces are 
important in determining the structures of biomolecules. The S66 test set was devised to test 
the accuracy of methods used in biomolecule calculations [J. Řezáč et al., J. Chem. Theory 
Comput., 7, 2427, 3466 (2011)]. S66 contains equilibrium binding energies of 66 nonco-
valently bound molecular complexes subdivided into three categories: hydrogen-bonded 
complexes (for example, the water dimer; the complex of water with N-methylacetamide), 
dispersion-dominated complexes (for example, the benzene dimer; the complex of uracil 
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with pentane), and complexes bound by a mix of dispersion and electrostatic interactions 
(for example, the complex of water and benzene). The energies were calculated using a 
high-level method that accurately estimates the CCSD(T)/CBS limit. The interaction ener-
gies were also calculated for eight nonequilibrium distances along the dissociation curve of 
each complex, and these energies comprise the S66x8 dataset. The S66 set is an improve-
ment on an earlier set, the S22 set. These and other sets can be found at www.begdb.com.

The GMTKN30 database (general main group thermochemistry, kinetics, and nonco-
valent interactions database) is a collection of 30 databases of experimental and high-level 
ab initio atomization energies, ionization potentials, electron affinities, reaction barrier 
heights, reaction energies, energy differences between conformers, isomerization energies, 
noncovalent interaction energies, . . . and contains 841 relative energy values [L. Goerigk 
and S. Grimme, J. Chem. Theory Comput., 7, 291 (2011); toc.uni-muenster.de/GMTKN/
GMTKNmain.html].

16.2 Configuration Interaction
To overcome the deficiencies of the Hartree–Fock wave function (for example, improper 
behavior as internuclear distances go to infinity and very inaccurate dissociation energies), 
one can introduce configuration interaction (CI), thus going beyond the Hartree–Fock 
approximation. Recall (Section 11.3) that in a molecular CI calculation one begins with a 
set of basis functions xi, does an SCF MO calculation to find SCF occupied and virtual 
(unoccupied) MOs, uses these MOs to form configuration (state) functions (CSFs) �i, 
writes the molecular wave function c as a linear combination gi bi�i of the CSFs, and uses 
the variation method to find the bi’s. The number of MOs produced equals the number of 
basis functions used. The type of MOs produced depends on the type of basis functions 
used. For example, if we include only s AOs in the basis set for a CI calculation on a linear 
molecule, we get only s MOs, and no p, d, . . . MOs.

Each CSF is a linear combination of one to a few Slater determinants, is an eigenfunc-
tion of the spin operators Sn2 and Snz, and satisfies the spatial symmetry requirements of the 
molecule. Alternatively, the CI wave function can be expressed as the equivalent linear 
combination of Slater determinants. When this is done, the number of Slater determinants 
is typically 4 or 5 times the number of CSFs.

The configuration functions in a CI calculation are classified as singly excited, dou-
bly excited, triply excited, . . . , according to whether 1, 2, 3, . . . electrons are excited 
from occupied to unoccupied (virtual) orbitals. For example, the H2 configuration function 
2-1>2 0s*u1s s*u1s 0  used in Eq. (13.95) is doubly excited (another term sometimes used is 
doubly substituted).

In the CI expansion c = g i bi�i, one includes only configuration functions that have 
the same symmetry properties (symmetry eigenvalues) as the state that is being approxi-
mated by the expansion. (This follows from Theorem 3 proved in Section 7.3.) For example, 
the ground state of H2 is a 1�+

g  state, and a CI calculation of the H2 ground state would 
include only configuration functions that correspond to 1�+

g  terms. A sgsu electron con-
figuration would have states of odd parity (u) and would not be included in c. A sgpg 
configuration would produce only � terms (Table 13.3 in Section 13.8) and would not be 
included. For a p2

g or p2
u configuration, only the configuration function corresponding to 

the 1�+
g  term (Table 13.3) would contribute to c.

The number of possible configuration functions with the proper symmetry increases 
extremely rapidly as the number of electrons and the number of basis functions increase. 
For n electrons and b basis functions, the number of configuration functions turns out to 
be roughly proportional to bn. A CI calculation that includes all possible configuration 
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functions with proper symmetry is called a full CI calculation. Because of the huge num-
ber of configuration functions, full CI calculations are out of the question except for small 
molecules (small n) and rather small basis sets (small b).

In most calculations (for example, molecular dissociation, excitation of valence-shell 
electrons to produce excited electronic states), one is looking at energy changes in pro-
cesses affecting primarily the valence-shell electrons, so one expects the correlation ener-
gies involving the inner-shell electrons to change only slightly. Hence one usually makes 
the approximation of including only configuration functions that involve excitation of 
valence-shell electrons. The omission of excitations of inner-shell (core) electrons is called 
the frozen-core (FC) approximation. The contribution of core excitations is not always 
small, but their contribution changes only slightly with changes in environment. Use of 
the frozen-core approximation does not disqualify a calculation from being called full 
CI, provided all possible excitations of valence-shell electrons are included. The notation 
FCI(FC) denotes a full-CI calculation with the frozen-core approximation, but use of the 
FC approximation is so common that people often omit the FC. The default option in 
Gaussian 09 CI, MP, and CC calculations is to use the frozen-core approximation unless 
otherwise specified by the user.

For a molecule with n electrons and with spin quantum number S = 0, the number 
of CSFs in a full CI calculation (with spatial symmetry restrictions ignored) is (Wilson, 
page 199)

	
b!1b + 12!

11
2n2! 11

2n + 12! 1b -
1
2n2! 1b -

1
2n + 12!

	 (16.1)

where b is the number of one-electron basis functions used to express the MOs. For a 
6-31G** full CI calculation of the small molecule CH3OH, b = 15 + 15 + 4152 = 50. 
For n = 18 and b = 50, the number of CSFs given by (16.1) is 7.6 * 1017, so a full CI 
6-31G** calculation on CH3OH is not possible. One might therefore try a full CI calcula-
tion with the minimal STO-3G basis set, which has b = 5 + 5 + 4112 = 14 for CH3OH. 
This gives a mere 1.0 * 106 CSFs. This calculation is feasible, since an FCI(FC) calcula-
tion with 65 * 109 determinants has been done on the C2 molecule using a parallel super-
computer [Z. Gan and R. J. Harrison, Proceedings of the ACM/IEEE SC 2005 Conference, 
p. 22], but would be a waste of time. Experience shows that in order to get a substantial 
portion of the correlation energy, one must use a large basis set. For example, for H2O, full 
CI calculations with a (relatively small) DZ basis set and 256473 CSFs gives an energy of 
-76.158 hartrees, compared with the Hartree–Fock limit of -76.068 hartrees and the true 
nonrelativistic energy of -76.438 hartrees (Table 16.1), so only a relatively small portion 
of the -0.370-hartree correlation energy has been obtained. The SCF energy obtained with 
this DZ H2O basis set is -76.010 hartrees, and the difference of -0.148 hartree between 
this SCF energy and the full-CI DZ energy is called the basis-set correlation energy. Even 
for a DZP basis set, a full CI calculation on H2O gives only -76.257 hartrees, which is 
still quite far from -76.438 hartrees.

High-level correlation calculations may use basis sets that are triple zeta with two sets 
of polarization functions with different orbital exponents added on each atom; such a set is 
designated TZ2P. The correlation-consistent basis sets of Dunning and co-workers (Section 
15.4) were especially designed for correlation calculations.

Since full CI calculations cannot be done for medium-size and large molecules, one 
must therefore decide which types of configuration functions are likely to make the larg-
est contributions to c, and one includes only these. We expect the unexcited configura-
tion function (the SCF MO wave function) to make the largest contribution. Which types 
of excited configurations make significant contributions to c? To answer this question, 
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we consider the effects of instantaneous electron correlation as a perturbation on the  
Hartree–Fock wave function. One finds that the first-order correction to the unperturbed (Har-
tree–Fock) wave function of a closed-shell state contains only doubly excited configuration 
functions (for justification, see Section 16.3). Thus we expect the most important correction 
to the Hartree–Fock wave function to come from doubly excited configuration functions. 
Although singly excited configuration functions are less important than double excitations 
in affecting the wave function, it turns out (see I. Shavitt, in Schaefer, Methods of Electronic 
Structure Theory, page 255) that single excitations have a significant effect on one-electron 
properties. [A one-electron property is one calculated as 8c 0Bn 0c9, where the operator Bn is a 
sum of terms, each of which involves only a single particle; an example is the dipole moment; 
Eqs. (14.19) and (14.20).] Therefore, one usually includes single excitations in a CI calculation, 
and the most common type of CI calculation (designated CISD or CI-SD or SDCI) includes 
the singly and doubly excited configuration functions. CISD is an example of limited CI, 
which is anything less than a full CI calculation. (It turns out that the second-order correc-
tion to the Hartree–Fock function includes single, double, triple, and quadruple excitations.)

For calculations on a few 10-electron molecules, CISD gave about 94% of the basis-set 
correlation energy [R. J. Harrison and N. C. Handy, Chem. Phys. Lett., 95, 386 (1983)]. 
This result might seem to be a cause for optimism about CISD, but CISD has serious draw-
backs. Calculations on a simple model system [F. Sasaki, Int. J. Quantum Chem. Symp., 
11, 125 (1977)] indicate that the percentage of the basis-set correlation energy obtained 
by CISD decreases as the size of the molecule increases. For molecules that consist of 
first-row atoms, CISD is estimated to give 82% to 90% of the basis-set correlation energy 
of 20-electron molecules, 68% to 78% of the correlation energy of 50-electron molecules, 
and 55% to 67% for 100-electron molecules (Prob. 16.2).

A related defect is that CISD calculations are neither size extensive nor size consistent 
(see the beginning of Chapter 16). These properties are important whenever calculations on 
molecules of substantially different sizes are to be compared, as, for example, in calculation 
of the energy change in the dissociation reaction A S B + C.

To see that CISD is not size consistent, consider two infinitely separated helium atoms 
Hea and Heb. If we do a CISD calculation of Hea using a complete basis set, we get the exact 
energy Ea of Hea, since CISD is the same as full CI for this two-electron atom. The same 
applies for Heb. Now consider a complete-basis-set CISD calculation for the composite 
system of infinitely separated Hea and Heb. This composite system has four electrons, so 
a CISD calculation is not equivalent to a full CI calculation, and the CISD calculation will 
give an energy higher than the exact energy Ea + Eb of the composite system. Therefore, 
CISD is not size consistent.

Full CI is size extensive and size consistent. SCF MO calculations are size extensive.
Because the CISD wave function is a variation function, the variation theorem assures 

us that the CISD energy cannot be less than the true energy. The CISD method is therefore 
variational. 

Theory indicates that after double excitations, quadruple excitations are next in 
importance. Calculations on some 10-electron molecules found that CI with inclusion of 
single, double, triple, and quadruple excitations (CI-SDTQ) gave over 99% of the basis-set 
correlation energy (Harrison and Handy, op. cit.). For molecules containing only first-row 
atoms, CI-SDTQ is estimated to give the following percentages of the basis-set correlation 
energy: 98% to 99% for 20-electron molecules, 90% to 96% for 50-electron molecules, and 
80% to 90% for 100-electron molecules (Sasaki, op. cit.). Provided we confine ourselves 
to molecules with no more than about 50 electrons, CI-SDTQ will come reasonably close 
to full CI and hence will be approximately size extensive. However, CI-SDTQ calculations 
with basis sets large enough to give good results for the correlation energy involve far too 
many CSFs to be practical.
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An approximate formula due to Davidson [S. R. Langhoff and E. R. Davidson, Int. 
J. Quantum Chem., 8, 61 (1974)] is widely used to estimate the energy contribution �EQ 
due to quadruple excitations:

	 �EQ � 11 - a2
021ECI@SD - ESCF2	 (16.2)

where a0 is the coefficient of the SCF function �0 in the normalized CI expansion 
c = g i ai�i, and ECI@SD and ESCF are the CI-SD and SCF energies calculated with the 
basis set. For example, a DZ calculation on H2O gave (in atomic units) at the equilibrium 
geometry ESCF = -76.009838, ECI@SD = -76.150015, and a0 = 0.97874; from (16.2), we 
find �EQ � -0.005897, which, when added to ECI@SD, gives -76.155912; this result is 
reasonably close to the CI-SDTQ DZ result of -76.157603 (the contribution of triple exci-
tations is small). The Davidson formula becomes less accurate as the size of the molecule 
increases. Other formulas proposed for �EQ give somewhat improved accuracy compared 
with the Davidson formula [see Section 2.1.3.1 of P. G. Szalay et al., Chem. Rev., 112, 108 
(2012)]. (If static correlation is small, a0 will be close to 1, indicating that a single CSF is 
a reasonably good representation of the state. If static correlation is substantial, a0 will be 
substantially less than 1.)

Use of the Davidson correction reduces the size-consistency error. For example, 
CISD/DZP calculations on two H2O molecules separated by 500 Å, a distance at which 
their interaction energy is utterly negligible, found that the CISD energy of this system 
exceeded twice the CISD energy of one H2O molecule by 12.3 kcal/mol, which is the size-
consistency error. The Davidson correction reduced this error to 3.8 kcal/mol [M. J. Frisch 
et al., J. Chem. Phys., 84, 2279 (1986)].

CISD calculations of molecular properties often do not give highly accurate results. 
For example, a comparison of molecular geometries calculated by several correlation meth-
ods found that the CISD method gave the poorest results of those correlation methods 
studied [T. Helgaker et al., J. Chem. Phys., 106, 6430 (1997)]. Highly accurate CI results 
require a CISDTQ calculation, which is generally impractical.

Table 16.1 on page 532 lists some calculations on H2O that include electron correla-
tion. The methods used in these calculations are discussed in Sections 16.2–16.7. All the 
calculations listed are nonrelativistic, fixed-nuclei calculations. The B3LYP/cc-pVTZ cal-
culation gives an energy below the -76.438 true nonrelativistic energy. This is a density-
functional calculation and is not variational. The lowest-energy variational calculation is 
the FN-DQMC calculation, which gives 97% of the correlation energy.

E x a mp  l e

The He SCF MO calculation in Section 14.3 used a basis set of two STOs x1 and x2. 
For the helium ground state treated with this basis set, (a) write down the configuration 
state functions (CSFs) that are present in the wave function in a full CI treatment, and 
(b) carry out a CI calculation that includes only doubly excited CSFs.

(a)	 Since we used two basis functions, the SCF calculation yielded two SCF orbitals f1 
and f2. In the ground state of this two-electron atom, only f1 is occupied, and f2 is an 
unoccupied (virtual) orbital. We found f1 = 0.842x1 + 0.183x2, but didn’t bother 
to find f2. Use of the root e2 = 2.809 [Eq. (14.54)] and the final Frs>s of (14.53) 
in the Roothaan equation (14.34) with r = 1 gives -3.690c12 - 3.290c22 = 0, 
and c12>c22 = -0.892. The normalization condition (14.48) rewritten for c22 gives 
c22 = 1.816; hence c12 = -1.620. The SCF orbitals are

f1 = c11x1 + c21x2 = 0.842x1 + 0.183x2

f2 = c12x1 + c22x2 = -1.620x1 + 1.816x2
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Table 16.1  H2O Calculations That Include Correlationa

Referenceb Methodc>Basis Set Energy>Eh m>D u ROH>A

Harrison, Handy CISD>DZ -76.150

Harrison, Handy FCI>DZ -76.158

CCCBDB MP2(FC)>6@31G* -76.197 2.24 104.0� 0.969

CCCBDB CISD(FC)>6@31G* -76.198 2.24 104.2� 0.966

CCCBDB MP2(full)>6@31G* -76.199 2.24 104.0� 0.969

CCCBDB CCSD(FC)>6@31G* -76.206 2.25 103.9� 0.969

CCCBDB MP4(FC)>6@31G* -76.207 2.25 103.8� 0.970

CCCBDB CCSD(T)(FC)>6@31G* -76.208 2.25 103.8� 0.971

CCCBDB MP2(FC)>6@31G** -76.220 2.20 103.8� 0.961

CCCBDB CISD(FC)>6@31G** -76.221 2.19 104.2� 0.958

CCCBDB MP2(FC)>cc@pVDZ -76.229 2.10 101.9� 0.965

CCCBDB CCSD(T)(FC)>cc@pVDZ -76.241 2.10 101.9� 0.966

Scuseria, Schaefer CISDTQ>DZP -76.270 2.13 104.5� 0.963

Schaefer et al. CISD>TZ2P -76.312 1.94 104.9� 0.952

CCCBDB CISD(FC)>cc@pVTZ -76.314 2.03 104.2� 0.953

CCCBDB MP21FC2>6@31+G13df,2p2 -76.318 2.02 104.5� 0.959

CCCBDB MP21FC2>cc@pVTZ -76.319 2.04 103.5� 0.959

CCCBDB CCSD1T21FC2>cc@pVTZ -76.332 2.04 103.6� 0.959

Cortez et al. CCSD1T21FC2>cc@pV6Z -76.372 104.4� 0.958

Kim et al. CISD1full2>113s c2d2d -76.382 104.8� 0.952

Kim et al. MP21full2>113s c2d2 -76.391 104.2� 0.959

Kim et al. CCSD1full2>113s c2d2 -76.396 104.4� 0.956

Kim et al. CCSD1T21full2>113s c2d2 -76.406 104.1� 0.959

Kim et al. MP41full2>113s c2d2 -76.407 104.1� 0.960

CCCBDB B3LYP>6@31G* -76.409 2.10 103.6� 0.969

CCCBDB B3LYP>6@31G** -76.420 2.04 103.7� 0.965

CCCBDB B3LYP>cc@pVDZ -76.421 1.94 102.7� 0.969

Lüchow et al. MRCISD>aug@cc@pCV5Z -76.427e

Gurtubay, Needs FN@DQMC -76.428e

CCCBDB B3LYP>cc@pVTZ -76.460 1.92 104.5 0.961

Nonrelativistic fixed-nuclei energy -76.438

Experimental values -76.480 1.85 104.5� 0.958
aSee footnote a to Table 15.2 in Section 15.6.
bR. J. Harrison and N. C. Handy, Chem. Phys. Lett., 95, 386 (1983); cccbdb.nist.gov; G. E. Scuseria and H. F. Schaefer, 
III, Chem. Phys. Lett., 146, 23 (1988); H. F. Schaefer, III et al., in Yarkony, Chapter 1; M. H. Cortez et al., J. Chem. Theory 
Comput., 3, 1267 (2007); J. Kim et al., J. Chem. Phys., 102, 310 (1995); A. Lüchow, J. B. Anderson, and D. Feller, J. Chem. 
Phys., 106, 7706 (1997); I. G. Gurtubay and R. J. Needs, J. Chem. Phys., 127, 124306 (2007).
cFC denotes frozen-core calculations and full indicates that the frozen-core approximation is not used.
d(13s . . . 2d) is an uncontracted (13s8p4d2f>8s4p2d) set with 131 basis functions.
eCalculated at a geometry close to the experimental geometry.
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(Note that f2 has a node; f2 is an approximation to the 2s AO of helium.) The terms 
that arise from placing two electrons into these two s orbitals are a 1S term with both 
electrons in f1, a 1S term with both electrons in f2, a 1S term with one electron in f1 
and one in f2, and a 3S term with one electron in f1 and one in f2. Since the ground 
state is 1S, we include only the 1S CSFs, which are [see Eqs. (10.41), (10.45), and 
(11.60)]:

�1 = 0f1f1 0 , �2 = 0f2f2 0
	 �3 =

1
23f1112f2122 + f2112f11224 3a112b122 - b112a1224 	 (16.3)

(b)	 The CSF �2 is doubly substituted, and �3 is singly substituted, so we include only 
�2 in addition to �1. The variational function is c = a1�1 + a2�2, and the secu-
lar equation (11.18) is

	 ` 8�1 0 Hn 0�19 - E 8�1 0 Hn 0�29
8�2 0 Hn 0�19 8�2 0 Hn 0�29 - E

` = 0	 (16.4)

The orthogonality of the orbitals f1 and f2 (Section 14.3) ensures that 8�1 0�29 = 0.
The function �1 is the SCF wave function, so 8�1 0Hn 0�19  is equal to the SCF 

energy -2.862 hartrees calculated in the previous example: 8�1 0Hn 0�19 = -2.862.
In evaluating the integrals in the secular determinant, we can omit the spin factors in 

the wave functions, since summation over these gives 1.
The He Hamiltonian (9.39) is Hn = Hn core112 + Hn core122 + 1>r12, and

8�2 0Hn 0�29 = 8f2112f2122 0Hn core112 + Hn core122 + 1>r12 0f2112f21229
8�2 0Hn 0�29 = 8f2112 0Hn core112 0f21129 8f2122 0f21229

	 + 8f2122 0Hn core122 0f21229 8f2112 0f21129
	 + 8f2112f2122 0 1>r12 0f2112f21229

where 8f2122 0f21229 = 1 = 8f1112 0f11129 . To evaluate the integrals over the 
orbitals fi in terms of integrals over the basis functions xr, we substitute the expansion 
fi = gr crixr [Eq. (14.33)] into the integrals. We get

	 8fi112 0Hn core112 0fj1129 = a
r
a

s
c*ricsj8xr112 0Hn core112 0xs1129 = a

b

r = 1
a
b

s = 1
c*ricsjH

core
rs

� (16.5)

8fi112fj122 01>r12 0fk112fl1229 = a
r
a

s
a

t
a

u
c*ric*sjctkcul8xr112xs122 01>r12 0xt112xu1229

	 8fi112fj122 0 1>r12 0fk112fl1229 = a
b

r = 1
a
b

t = 1
a
b

s = 1
a
b

u = 1
c*rictkc*sjcul1rt 0 su2	 (16.6)

where the notation (14.39) is used. Using these equations, we find (Prob. 16.6)

8�2 0Hn 0�29 = 21c2
12H

core
11 + 2c12c22H

core
12 + c2

22H
core
22 2 + c4

12111 0 112
	 + 4c3

12c22111 0 122 + 2c2
12c

2
22111 0 222 + 4c2

12c
2
22112 0 122

	 + 4c12c
3
22112 0 222 + c4

22122 0 222
	 = 3.226
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where the values of the integrals were taken from the example in Section 14.3. 
Similarly, we find (Prob. 16.6)

8�2 0Hn 0�19 = 8�1 0Hn 0�29 = c2
11c

2
12111 0 112 + 21c2

11c12c22 + c11c
2
12c212111 0 122

	 + 2c11c12c21c22111 0 222
	 + 1c2

11c
2
22 + 2c11c21c12c22 + c2

12c
2
212112 0 122

	 +  2 1c11c21c
2
22 + c12c22c

2
212112 0 222 + c2

21c
2
22122 0 222

	 =  0.2895

The Hn core integrals vanish for 8�2 0Hn 0�19  because of the orthogonality of f1 and f2.
The secular equation (16.4) is

 ̀
-2.862 - E 0.2895

0.2895 3.226 - E
` = 0

E = -2.876, 3.24

The lower root gives

E = -2.876 hartrees = -78.25 eV

as compared with the SCF energy of -77.87 eV and the true energy of -79.00 eV. This 
CI calculation has recovered 34% of the correlation energy. The CI ground-state c is 
found to be (Prob. 16.5) c = 0.9989�1 - 0.0474�2.

One finds that inclusion of the singly excited CSF �3 gives only a very slight further 
improvement (see Jørgensen and Oddershede, page 38). Significant further improve-
ment requires redoing the SCF calculation with a larger basis set, which will generate 
more virtual orbitals so that many more CSFs can be included in the CI calculation.

In a CI calculation that uses SCF MOs, there are two major computational tasks. One 
task is to transform the known integrals over the AO basis functions xr into integrals over 
the SCF MOs fi using Eqs. (16.5) and (16.6). Calculation of the integrals 8fifj 0 1>r12 0fkfl9  
from the 1rs 0 tu2 integrals is especially time consuming. For a basis set of b functions 
x1, . . .  , xb, there are b MOs fi and approximately b4>8 different 8fifj 0 1>r12 0fkfl9  inte-
grals to be computed [the factor 1>8 arises from equalities similar to (14.47)], and there are 
b4 terms in the sums on the right side of (16.6). Hence the number of computations is appar-
ently about b8>8. For 100 basis functions, b8>8 is about 1015. Fortunately, use of a clever 
procedure can reduce the number of computations to about b5 (see Hehre et al., Section 
3.3.4). The second task is to solve the CI secular equation to find the lowest-energy eigen-
value and the corresponding set of expansion coefficients. In an SCF calculation that uses 
500 basis functions, one must solve for the eigenvalues and eigenvectors of a matrix whose 
order is 500. This is readily done using standard matrix diagonalization methods (Section 
8.6). In an accurate CI calculation, one might use 108 CSFs to expand the wave function, 
and one must find the lowest eigenvalue and corresponding eigenvector of a matrix whose 
order is 108. Special techniques have been devised to find the lowest few eigenvalues and 
corresponding eigenvectors of a very large matrix (see I. Shavitt in Schaefer, Methods of 
Electronic Structure Theory, pp. 228–238); Davidson’s method for doing this is widely used 
[see the references in J. H. van Lenthe and P. Pulay, J. Comput. Chem., 11, 1164 (1990)].

In a CI calculation with 108 CSFs, there are 1016 matrix elements Hij between CSFs, 
which is too many to be stored in the internal memory of the computer. To avoid the prob-
lems of dealing with large matrices, Roos developed the direct configuration interaction 
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method in 1972 (see B. O. Roos and P. E. M. Siegbahn, in Schaefer, Methods of Electronic 
Structure Theory, Chapter 7). The direct CI method avoids explicit calculation of the integrals 
Hi j between CSFs and avoids the need to solve the secular equation (11.18). Instead, the CI 
expansion coefficients in (11.16) and the energy are calculated directly from the one- and 
two-electron integrals over the basis functions. The direct CI method (not to be confused with 
the direct SCF method of Section 15.16) allows CI calculations with more than 1010 CSFs.

The CI procedure just discussed calculates SCF occupied and virtual orbitals from the 
basis functions and uses these SCF MOs to form configuration state functions. The con-
vergence rate of this procedure is very slow, and huge numbers of CSFs must be included 
for accurate results. A major reason for the very slow convergence is that the excited 
(virtual) SCF orbitals have much of their probability density at large distances from the 
nuclei, whereas the ground-state wave function has most of its probability density reason-
ably near the nuclei.

Actually, there is no necessity to use SCF MOs in a CI calculation. Any set of MOs 
calculated from the basis set will produce the same final wave function, provided a full CI 
calculation is carried out. Moreover, if the non-SCF MOs are well chosen, they can produce 
much faster convergence to the true wave function than is obtained with SCF MOs, thereby 
allowing substantially fewer CSFs to be included in c. Two approaches that use this idea 
are the use of localized orbitals, and the multiconfiguration SCF method.

The LC Method
The use of localized SCF MOs (Section 15.8) instead of canonical SCF MOs in an electron 
correlation calculation gives the local correlation (LC) method [S. Saebø and P. Pulay, 
Annu. Rev. Phys. Chem., 44, 213 (1993)]. Let �ab

i j  denote the doubly substituted CSF in 
which electrons are moved from the localized occupied MOs i and j to the virtual MOs a 
and b. The two-electron integral 1ia 0 jb2 will be small if the MOs i and a are in different 
regions of space or if j and b are in different regions. This allows many CSFs to be omitted 
from the calculation with very little loss in accuracy. CI calculations on 1,3-butadiene using 
the LC method showed speedups by factors of 20 to 40 [S. Saebø and P. Pulay, Chem. 
Phys. Lett., 113, 13 (1985)]. The LC method can be used not only with the CI method but 
also with other correlation methods.

The MCSCF Method
In the multiconfiguration SCF (MCSCF) method, one writes the molecular wave func-
tion as a linear combination of CSFs �i and varies not only the expansion coefficients bi 
in c = g i bi�i, but also the forms of the molecular orbitals in the CSFs. The MOs are 
varied by varying the expansion coefficients cri that relate the MOs fi to the basis functions 
xr. For example, if we were to do an MCSCF calculation for the He ground state using 
the basis functions x1 and x2 of (14.46) and including only the CSFs �1 and �2 of (16.3), 
we would write as the MCSCF wave function

c = b1�1 + b2�2 = b1 0f1f1 0 + b2 0f2f2 0
= b1 0 1c11x1 + c21x221c11x1 + c21x22 0  +  b2 0 1c12x1 + c22x221c12x1 + c22x22 0

and we would simultaneously vary the coefficients b1, b2, c11, c21, c12, and c22 (subject to the 
conditions of orthonormality of f1 and f2 and normalization of c) to minimize the varia-
tional integral. The MCSCF values found for these six coefficients will differ from the cor-
responding values found in the SCF plus CI calculations we did, and the energy will be lower, 
since the cri’s will be optimal for the MCSCF c, rather than being optimal for the SCF c.
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The optimum MCSCF orbitals can be found by an iterative process somewhat simi-
lar to the iterative process used to find SCF wave functions; see A. C. Wahl and G. Das, 
Chapter 3 in Schaefer, Methods of Electronic Structure Theory. By optimizing the orbitals, 
one can get good results with inclusion of relatively few CSFs. Because the orbitals are 
varied, the amount of calculation required in the MCSCF procedure is great, but advances 
in methods of computing MCSCF wave functions [R. Shepard, Adv. Chem. Phys., 69, 63 
(1987)] have led to wide use of the MCSCF and related methods.

The most commonly used kind of MCSCF method is the complete active space SCF 
(CASSCF or CAS) method [B. O. Roos, Adv. Chem. Phys., 69, 399 (1987)]. Here, as usual, 
one writes the orbitals fi to be used in the CSFs as linear combinations of basis functions: 
fi = gb

r = 1crixr. One divides the orbitals in the CSFs into inactive and active orbitals. 
The inactive orbitals are kept doubly occupied in all CSFs. The electrons not in the inactive 
orbitals are called active electrons. One writes the wave function as a linear combination 
of all CSFs �i that can be formed by distributing the active electrons among the active 
orbitals in all possible ways and that have the same spin and symmetry eigenvalues as the 
state to be treated: c = g i bi�i. One then does an MCSCF calculation to find the optimum 
coefficients cri and bi. A reasonable choice is to take the active orbitals as those MOs that 
arise from the valence orbitals of the atoms that form the molecule.

For example, the C2 ground-state configuration is

11sg2211su2212sg2212su2211pu24

The 2s and 2p carbon AOs give rise to the 2sg, 2su, 1pux, 1puy, 3sg, 1pgx, 1pgy, and 3su 
MOs, where the last four are unoccupied in the ground state. One might thus take the inac-
tive orbitals as the 1sg and 1su MOs (giving eight active electrons) and the active orbitals 
as the 2sg, 2su, 1pu, 3sg, 1pg, and 3su MOs (giving eight active orbitals). A CASSCF cal-
culation on the C2 ground electronic state used a basis set of 82 functions and took the inac-
tive orbitals as 1sg and 1su and the active orbitals as 2sg, 2su, 1pu, 3sg, 1pg, 3su, 4sg, 
and 4su [W. P. Kraemer and B. O. Roos, Chem. Phys., 118, 345 (1987)]. Distribution of 
the eight active electrons among the ten active orbitals gave a wave function consisting of 
1900 CSFs. The electronic energy was calculated for several points in the neighborhood of 
Re, and the calculated U(R) curve was substituted into the Schrödinger equation for nuclear 
motion, which was solved numerically (Section 13.2) to find vibrational–rotational energy 
levels, from which spectroscopic constants were found. The results were (experimental 
values in parentheses): Re>Å = 1.25 (1.24), De>eV = 6.06 (6.3), v�e>cm-1 = 1836 
(1855), and v�exe>cm-1 = 14.9 (13.4), where v�exe K vexe>c [see Eq. (4.60)]. For com-
parison, the Hartree–Fock c gives De = 0.8 eV, v�e>cm-1 = 1905, v�exe>cm-1 = 12.1, 
and Re = 1.24 Å.

With modern computational techniques, very large MCSCF wave functions can be 
calculated. A CASSCF(12,14)/aug-cc-pV5Z calculation on Be3 included 545857 CSFs 
[J. I. Amaro-Estrada et al., J. Chem. Phys, 135, 104311 (2011)]. The notation means that 
12 active electrons were distributed among 14 active MOs. For large molecules, use of all 
the valence orbitals as active gives rise to too many CSFs to be handled, and so the number 
of active orbitals must be limited in such cases. Typically, up to about 15 active orbitals 
and 15 active electrons can be handled.

A CASSCF calculation uses far fewer CSFs than full CI, and its aim is not to recover a 
substantial portion of the correlation energy, but to find how the correlation energy changes 
with change in some process such as a change in geometry or a chemical reaction.

CASSCF calculations are “not for the faint hearted” (Foresman and Frisch, p. 229). 
The choice of active orbitals is often not obvious. Also, the SCF process in CASSCF 
sometimes converges to a function that is not the true energy minimum.
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The MRCI Method
A widely used method that combines the MCSCF and conventional CI methods is the 
multireference CI (MRCI) method. In the conventional (or single-reference) CI method, 
one starts with the SCF wave function �1 (which is called the reference function) and 
moves electrons out of occupied orbitals of �1 into virtual SCF orbitals to produce CSFs 
�2, �3, c, and one writes the wave function as c = g i bi�i. One then varies the bi’s to 
minimize the variational integral. Recall that for H2, although the Hartree–Fock function 
�1 gives a reasonably good representation of the wave function in the region of Re, in the 
limit as R S � we must take the variational function as a linear combination of two CSFs 
in order to get the proper dissociation behavior. For N2, which has a triple bond, one finds 
that a linear combination of 10 CSFs is needed to give proper behavior at large R. In the 
MRCI method, one first does an MCSCF calculation to produce a wave function that is a 
linear combination of several CSFs �1, �2, c, �m with optimized orbitals and that has 
the proper behavior for all nuclear configurations. One then takes this MCSCF function 
and moves electrons out of occupied orbitals of the CSFs �1, �2, c, �m (called the refer-
ence CSFs) into virtual orbitals to produce further CSFs �m + 1, c, �n. Most commonly, 
one does a CISD calculation starting with the MCSCF function, giving an MR-CISD or 
MRSDCI calculation. One writes c = gn

i = 1 bi�i and finds the optimum bi’s. Typically, the 
reference CSFs will contain singly and doubly excited CSFs, and the final wave function 
will include single and double excitations from the reference CSFs. Thus, the final MRCI 
wave function will include some triple and quadruple excitations.

CASSCF wave functions are often used as the starting point for MRCI calculations. 
The calculations that determined the ordering of the lowest states of Si2 and Al2 (Section 
13.7) were CASSCF MRCI calculations.

When a CASSCF wave function is used for a MRCISD calculation, the number of 
CSFs produced may be too many to deal with, so various methods are used to reduce 
the amount of computation needed. One widely used procedure is internally contracted 
MRCI (icMRCI) [H.-J. Werner and P. J. Knowles, J. Chem. Phys., 89, 5803 (1988)]. Here, 
the optimized MCSCF function is treated as a single reference function (with fixed coeffi-
cients) from which one generates doubly excited functions. Each excited function is a linear 
combination of many ordinary CSFs, with the coefficients within a given excited function 
being held fixed at the values for the MCSCF function. Thus, far fewer coefficients need 
to be calculated than in a conventional (uncontracted) MRCI calculation. (Singly excited 
functions are also included, but for technical reasons, these are not contracted but are 
treated as in uncontracted MRCI.) Experience has shown that the contracted MRCI wave 
function is almost as accurate as the uncontracted one.

MRCI methods that use localized orbitals have been developed; see D. Walter et al., 
J. Chem. Phys., 118, 8127 (2003); A. Venkatnathan et al., ibid., 120, 1693 (2004); T. S. 
Chwee et al., J. Chem. Phys., 128, 224106 (2008).

An extensive review of MCSCF and MRCI methods and applications is P. G. Szalay 
et al., Chem. Rev., 112, 108 (2012).

Status of the CI Method
Although calculation of SCF MO wave functions for closed-shell, small- and medium-size 
molecules is essentially a routine procedure, molecular CI calculations often present special 
problems. To obtain reliable results, one must use sound judgment in choosing the basis 
set, the configuration functions to be included, and the procedure to be used.

Because of slow convergence, lack of size consistency, and disappointing results of 
CISD calculations, CI calculations have lost their former dominance in correlation calcu-
lations, and several other correlation methods have been developed (Sections 16.3–16.7). 
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These correlation methods are much more efficient than CISD in giving accurate results 
for ground-state molecules at or near the equilibrium geometry. However, when it comes to 
dealing with geometries far from minima, as when dealing with complete potential-energy 
surfaces and chemical reactions, these methods do not perform so well, and multireference 
CI calculations (MRCI) are widely used to explore potential-energy surfaces and in study-
ing chemical reactions (Section 16.14). “MRCI is perhaps the most widely applicable and 
commonly used method for modeling bond-breaking reactions and ground- and excited-
state potential-energy surfaces in small molecules” [C. D. Sherrill and P. Piecuch, J. Chem. 
Phys., 122, 124104 (2005)].

The CI-Singles Method
The CI-singles (CIS) method (also called the Tamm–Dancoff approximation) is a com-
putationally simple, often used procedure for treating excited states [J. B. Foresman, 
M. Head-Gordon, J. A. Pople, and M. Frisch, J. Phys. Chem., 96, 135 (1992)].

CIS wave functions for the lowest several excited states of a molecule are calcu-
lated as follows. A fixed molecular geometry is chosen. This is typically the optimized 
ground-state geometry found using a basis set and method known to give accurate 
ground-state geometries (or it might be the experimental ground-state geometry). A 
basis set that includes diffuse functions is used to calculate a single-determinant SCF 
MO ground-state wave function �0 at the chosen geometry. This calculation also 
yields a set of unoccupied (virtual) orbitals, whose number depends on the size of the 
basis set used. Let ca

i  denote a singly excited Slater determinant in which the occupied 
spin-orbital i in �0 is replaced by the virtual spin-orbital a. One forms the CIS linear 
variation function cCIS = ga g i ciac

a
i , where the sums go over all the occupied and 

all the virtual spin-orbitals and cia is a variational coefficient. The equations of the 
linear variation method (Sections 8.5 and 8.6) are used to find the lowest several roots 
of the secular equation (where the molecular electronic Hamiltonian used to evaluate 
the matrix elements corresponds to the chosen ground-state geometry) and to find 
the coefficients that go with each root. Each of these roots is an approximation to the 
energy of an excited electronic state at the fixed molecular geometry that was chosen 
for the calculation.

When an electronic transition occurs from the ground state to an excited state, the 
much greater mass of the nuclei than that of the electrons means that the excited state 
has the greatest probability to be produced in a geometry that is close to the equilibrium 
geometry of the ground electronic state (the Franck–Condon principle), even though this 
geometry is not likely to be the equilibrium geometry of the excited state.

The excited state is thus produced in a high vibrational level. Hence the observed 
maximum-intensity frequency nmax in the electronic absorption spectrum corresponds to 
no change in geometry. The energy change hnmax is called the vertical excitation energy. 
The CIS prediction of the vertical excitation energy is found by taking the difference 
between the excited state energy found as a root of the secular equation and the ground-
state energy found from �0. CIS predictions of vertical excitation energies are semiquanti-
tatively correct, but not of high accuracy. Errors run about 1 eV in a quantity whose range 
is typically 3 to 10 eV.

The CIS wave function is found by solving for the coefficients cia. Since analytic gradi-
ents of CIS energies are available, one can then optimize the geometry of each excited state 
and also calculate its vibrational frequencies. CIS excited-state geometries and vibrational 
frequencies are more accurate than CIS vertical excitation energies [J. F. Stanton et al.,  
J. Chem. Phys., 103, 4160 (1995)].

Note that the form of a CIS wave function differs from that of an ordinary CI wave 
function. In an ordinary CI wave function, the reference function (the SCF wave function 
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for the state of interest) makes the largest contribution. In the CIS method for an excited 
state, the reference function is the SCF wave function for the ground state, and this 
reference function does not appear in the CIS wave function. (This makes the CIS wave 
function orthogonal to the ground-state wave function, which is desirable, so as to avoid 
having the variational calculation “collapse” to the ground state.) The CIS wave function 
includes only a modest amount of electron correlation.

Use of the Two-Electron Reduced Density Matrix
The MRCI method is widely used to deal with molecules with substantial static corre-
lation, but can only be applied to relatively small molecules. (The CASPT2 method of 
Section 16.3 can treat static correlation in somewhat larger molecules.) Another approach 
is to avoid using a wave function and instead deal with the two-electron reduced density 
matrix.

The wave function c of an N-particle system is a function of the 3N spatial and N spin 
coordinates of the electrons: c1q2 = c1q1,  q2, c, qN2, where q1 denotes the three spa-
tial coordinates and one spin coordinate of electron 1 and q denotes all the coordinates. The 
function c1q2c*1q�2 = c1q1,  q2, c,  qN2c*1q�1,  q�2, c,  q�N2 is called the Nth-order 
density matrix of the system (although a more mathematically proper term would be den-
sity kernel). The primes do not denote differentiation but just a relabeling of coordinates; 
q�1 stands for x�1,  y�1,  z�1,  m�s1. Note that if we set q� = q, we get the ordinary probability 
density c*1q2c1q2. If we integrate c1q2c*1q�2 over the spatial coordinates of electrons 
3 to N and sum over the spin coordinates of electrons 3 to N and multiply by N1N - 12, 
we get the two-electron reduced density matrix (2-RDM). Because the molecular Ham-
iltonian operator contains only one- and two-electron terms, one can show that the energy 
E = 8c 0Hn 0c9  can be calculated from the 2-RDM (see Pilar, Section 10-5 for a proof).

The 2-RDM involves far fewer variables than does the wave function of a many-
electron system. Hence in the 1950s it was proposed that, rather than searching for the 
wave function that minimizes the variational integral, one search for the 2-RDM that 
minimizes the energy. However, such a procedure gives an energy that is below the true 
ground-state energy. The problem is that one must impose conditions that ensure that the 
2-RDM that is found in the search is one that could possibly arise from (or “represent”) 
an N-electron wave function. These so-called N-representability conditions were unknown 
in the 1950s, but in recent years work by Mazziotti and others has found several neces-
sary N-representability conditions [see the references in D. A. Mazziotti, Phys. Rev. A, 85, 
062507 (2012)]. This has allowed an approximate 2-RDM and energy to be calculated for 
some rather large systems that have static correlation using two different procedures. An 
example is octacene (C42H24), which is much too large to treat using CASSCF. However, 
only a small DZ unpolarized basis set was used in this calculation, and the number of 
applications using the 2-RDM is rather small. For a detailed review, see D. A. Mazziotti, 
Chem. Rev., 112, 244 (2012).

16.3 Møller–Plesset (MP) Perturbation Theory
Physicists and chemists have developed various perturbation-theory methods to deal with 
systems of many interacting particles (nucleons in a nucleus, atoms in a solid, electrons 
in an atom or molecule), and these methods constitute many-body perturbation theory 
(MBPT). In 1934, Møller and Plesset proposed a perturbation treatment of atoms and 
molecules in which the unperturbed wave function is the Hartree–Fock function. This 
form of MBPT is called Møller–Plesset (MP) perturbation theory. Actual molecu-
lar applications of MP perturbation theory (MPPT) began only in 1975 with the work 
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of Pople and co-workers and Bartlett and co-workers [R. J. Bartlett, Ann. Rev. Phys. Chem., 
32, 359 (1981); Hehre et al.]. For a review of MPPT, see D. Cremer, WIREs Comput. Mol. 
Sci., 1, 509 (2011).

The treatment of this section will be restricted to closed-shell, ground-state molecules. 
Also, the development will use spin-orbitals ui, rather than spatial orbitals fi. For spin-
orbitals, the Hartree–Fock equations (14.25) and (14.26) for electron m in an n-electron 
molecule have the forms (Szabo and Ostlund, Section 3.1)

	 fn1m2ui1m2 = eiui1m2	 (16.7)

	 fn1m2 K -
1
2�2

m - a
a

Za

rma

+ a
n

j = 1
3 jnj1m2 - knj1m24 	 (16.8)

where jnj1m2 and knj1m2 are defined by equations like (14.28) and (14.29) with spatial orbit-
als replaced by spin-orbitals and integrals over spatial coordinates of an electron replaced 
by integration over spatial coordinates and summation over the spin coordinate of that 
electron.

The MP unperturbed Hamiltonian is taken as the sum of the one-electron Fock opera-
tors fn1m2 in (16.7):

	 Hn 0 K a
n

m = 1
fn1m2	 (16.9)

The ground-state Hartree–Fock wave function �0 is the Slater determinant 0 u1u2 g un 0  
of spin-orbitals. This Slater determinant is an antisymmetrized product of the spin-orbitals 
[for example, see Eq. (10.36)] and, when expanded, is the sum of n! terms, where each 
term involves a different permutation of the electrons among the spin-orbitals. Each term 
in the expansion of �0 is an eigenfunction of the MP Hn 0; for example, for a four-electron 
system, application of Hn 0 to a typical term in the �0 expansion gives

3 fn112 + fn122 + fn132 + fn1424u1132u2122u3142u4112
= 1e4 + e2 + e1 + e32u1132u2122u3142u4112

where fn1m2ui1m2 = eiui1m2 [Eq. (16.7)] was used. Similarly, each other term in the expan-
sion of 0 u1u2u3u4 0  is an eigenfunction of Hn 0 with the same eigenvalue e1 + e2 + e3 + e4. 
Since �0 is a linear combination of these n! terms, �0 is an eigenfunction of Hn 0 with this 
eigenvalue:

	 Hn 0�0 = a a
n

m = 1
emb�0 = E102�0	 (16.10)

The eigenfunctions of the unperturbed Hamiltonian Hn 0 are the zeroth-order (unper-
turbed) wave functions [Eq. (9.2)], so the Hartree–Fock ground-state function �0 is one of 
the zeroth-order wave functions. What are the other eigenfunctions of Hn 0? The Hermitian 
operator fn1m2 has a complete set of eigenfunctions, these eigenfunctions being all the pos-
sible spin-orbitals of the molecule. The n lowest-energy spin-orbitals are occupied, and there 
are an infinite number of unoccupied (virtual) orbitals. The operator Hn 0 K gn

m = 1 fn1m2 is 
the sum of the operators fn1m2, and so the eigenfunctions of Hn 0 are all possible products 
of any n of the spin-orbitals. However, the wave functions must be antisymmetric, so we 
must antisymmetrize these zeroth-order wave functions by forming Slater determinants. 
Thus, the zeroth-order wave functions are all possible Slater determinants formed using 
any n of the infinite number of possible spin-orbitals. (Of course, the n chosen spin-orbitals 
must all be different or the Slater determinant would vanish.)
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The perturbation Hn � is the difference between the true molecular electronic Hamil-
tonian Hn  and Hn 0; Hn � = Hn - Hn 0. Use of (15.10) for Hn  and (16.9) and (16.8) for Hn 0 gives 
(Prob. 16.9)

	 Hn � = Hn - Hn 0 = a
l
a
m 7 l

1
rlm

- a
n

m = 1
a

n

j = 1
3 jnj1m2 - knj1m24 	 (16.11)

The perturbation Hn � is the difference between the true interelectronic repulsions and the 
Hartree–Fock interelectronic potential (which is an average potential).

The MP first-order correction E 112
0  to the ground-state energy is [Eq. (9.22)] 

E 112
0 = 8c 102

0 0Hn � 0c102
0 9 = 8�0 0Hn � 0�09 , since c102

0 = �0. The subscript 0 denotes the 
ground state. We have

E 102
0 + E 112

0 = 8c102
0 0Hn 0 0c102

0 9 + 8�0 0Hn � 0�09 = 8�0 0Hn 0 + Hn � 0�09 = 8�0 0Hn 0�09
Since 8�0 0Hn 0�09  is the variational integral for the Hartree–Fock wave function �0, it 
equals the Hartree–Fock energy EHF. Hence (recall the beginning of Section 9.4)

E 102
0 + E 112

0 = EHF

Note from (16.10) that the zeroth-order (unperturbed) eigenfunction �0 of Hn 0 has the 
eigenvalue gn

m = 1em. Therefore, [Eq. (9.2)] E102
0 = gn

m = 1em.
To improve on the Hartree–Fock energy, we must find the second-order energy cor-

rection E 122
0 . From (9.35),

	 E 122
0 = a

s � 0

0 8c102
s 0 Hn � 0�09 0 2

E 102
0 - E102

s

	 (16.12)

We saw above that the unperturbed functions c102
s  are all possible Slater determinants 

formed from n different spin-orbitals. Let i, j, k, l, . . . denote the occupied spin-
orbitals in the ground-state Hartree–Fock function �0, and let a, b, c, d, . . . denote the 
unoccupied (virtual) spin-orbitals. Each unperturbed wave function can be classified 
by the number of virtual spin-orbitals it contains; this number is called the excita-
tion level. Let �a

i  denote the singly excited determinant that differs from �0 solely 
by replacement of the occupied spin-orbital ui by the virtual spin-orbital ua. Let �ab

ij  
denote the doubly excited determinant formed from �0 by replacement of ui by ua 
and uj by ub; and so on.

Consider the matrix elements 8c102
s 0Hn � 0�09  in (16.12), where �0 is a closed-shell 

single determinant. One finds (Szabo and Ostlund, Section 6.5) that this integral vanishes 
for all singly excited c102

s ’s; that is, 8�a
i 0Hn � 0�09 = 0 for all i and a. Also, 8c102

s 0Hn � 0�09  
vanishes for all c102

s ’s whose excitation level is three or higher. This follows from the 
Condon–Slater rules (Table 11.3). Hence, we need consider only doubly excited c102

s ’s to 
find E122

0 . Also, the same reasoning applied to Eq. (9.27) shows that c112
0 , the first-order 

correction to the wave function, contains only doubly excited c102
s ’s.

The doubly excited function �ab
ij  is an eigenfunction of Hn 0 = gm fn1m2 with an eigen-

value that differs from the eigenvalue of �0 solely by replacement of ei by ea and replace-

ment of ej by eb. Hence in (16.12), E 102
0

- E 102
s = ei + ej - ea - eb for c102

s = �ab
ij . 

Use of (16.11) for Hn � and of the Condon–Slater rules allows the integrals involving �ab
ij  

to be evaluated; one finds (Prob. 16.10)

	 E 122
0 = a

�

b = a + 1
a
�

a = n + 1
a

n

i = j+ 1
a
n - 1

j = 1

0 8ab 0 r-1
12 0 ij9 - 8ab 0 r-1

12 0 ji9 0 2
ei + ej - ea - eb

	 (16.13)
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where n is the number of electrons and

	 8ab 0 r-1
12 0 ij9 K LLu*a112u*b122r-1

12ui112uj122 dt1 dt2	 (16.14)

The integrals over spin-orbitals (which include a sum over spins) are readily evaluated in 
terms of electron-repulsion integrals. The sums over a, b, i, and j in (16.13) provide for 
the inclusion of all the doubly substituted c102

s ’s in (16.12).
Taking the molecular energy as E102 + E112 + E122 = EHF + E122 gives a calculation 

designated as MP2 or MBPT(2), where the 2 indicates inclusion of energy corrections 
through second order.

Formulas for the MP energy corrections E132, E142, and so on, have also been derived 
[for example, see R. Krishnan and J. A. Pople, Int. J. Quantum Chem., 14, 91 (1978)]. Since 
c112, the first-order correction to the wave function, determines both E122 and E132 (Section 
9.2), and since c112 contains only doubly excited determinants, E132 contains summations 
over only double substitutions. The MP E142 involves summations over single, double, 
triple, and quadruple substitutions. MP calculations that include energy corrections through 
E132 are designated MP3, and those that include corrections through E142 are MP4.

To do an MP electron-correlation calculation, one first chooses a basis set and carries 
out an SCF MO calculation to obtain �0, EHF, and virtual orbitals. One then evaluates E122 
(and perhaps higher corrections) by evaluating the integrals over spin-orbitals in (16.13) in 
terms of integrals over the basis functions. One ought to use a complete set of basis func-
tions to expand the spin-orbitals. The SCF calculation will then produce the exact Hartree–
Fock energy and will yield an infinite number of virtual orbitals. The first two sums in 
(16.13) will then contain an infinite number of terms. Of course, one always uses a finite, 
incomplete basis set, which yields a finite number of virtual orbitals, and the sums in (16.13) 
contain only a finite number of terms. One thus has a basis-set truncation error in addition 
to the error due to truncation of the MP perturbation energy at E122 or E132 or whatever.

In MP4 calculations, evaluation of the terms that involve triply substituted deter-
minants is very time consuming, so these terms are sometimes neglected [even though 
their contribution to E142 is not small], giving an approximation to MP4 that is designated 
MP4(SDQ), where SDQ indicates inclusion of single, double, and quadruple excitations. 
Evaluation of E152 is extremely time consuming and so is almost never done except by 
specialists investigating the convergence of the series.

To save time in MP2, MP3, and MP4 computations, the frozen-core (FC) approxi-
mation is usually used. Here, terms involving excitations out of core orbitals are omitted. 

MP3 calculations take a lot longer than MP2 calculations but provide little improve-
ment over MP2 molecular properties and so are not often done (except as part of an MP4 
calculation). A notable exception is the use of MP3 calculations in the MP2.5 and MP2.X 
methods (Section 16.8). By far, the most common MP level used is MP2; the next most 
common is MP4.

MP2 calculations are much faster than CI calculations, and most ab initio programs 
(Section 15.14) can perform MP calculations. Relative times for geometry-optimization cal-
culations on CH3OH using the 6-31G* basis set (38 basis functions) and the cc-pVTZ basis 
set (116 basis functions) are (cccbdb.nist.gov) 1 for HF>6@31G*, 1.4 for MP2(FC)>6@31G*, 
26 for MP4(FC)>6@31G*, 19 for HF>cc@pVTZ, 46 for MP2(FC)>cc@pVTZ, and 1250 for 
MP4(FC)>cc@pVTZ, where FC means frozen core.

In addition to their computational efficiency, MP calculations truncated at any order 
can be shown to be size extensive (Szabo and Ostlund, Section 6.7.4). However, MP 
calculations are not variational and can produce an energy below the true energy. Cur-
rently, size extensivity is viewed as more important than being variational.
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A study of the convergence of the frozen-core MP perturbation series for small 
atoms and molecules [J. Olsen et al., J. Chem. Phys., 105, 5082 (1996)] found that for the 
cc-pVDZ basis set, the series usually converged, but when the basis set was augmented 
with diffuse functions, the MP series often diverged. For example, for the Ne atom, the 
MPn>aug@cc@pVDZ contributions for n 7 16 increased in magnitude as n increased. (The 
high-order MPn contributions were not calculated directly but were obtained as by-prod-
ucts of FCI calculations.) For the F- ion, the divergence of the perturbation series affected 
the reliability of the MP4>aug@cc@pVDZ results. Large-basis-set MP calculations on small 
diatomic molecules showed the results “to be far from converged at MP4,” with MP4 errors 
in Re and ne often larger than MP2 errors [T. H. Dunning and K. A. Peterson, J. Chem. 
Phys., 108, 4761 (1998)]. For further examples of MP series divergence, see M. L. Leini-
nger et al., J. Chem. Phys., 112, 9213 (2000). These studies raise doubts about the use of 
MP perturbation theory beyond MP2 to calculate molecular properties. A mathematical 
analysis of when MP calculations converge or diverge is given in A. V. Sergeev and D. Z. 
Goodson, J. Chem. Phys., 124, 094111 (2006). Because of the convergence problems with 
the MP method, quantum chemists have largely stopped doing MP4 calculations (except 
for the use of MP4 calculations in the G3 method—Section 16.6), but the MP2 method is 
still very widely used.

As with CI calculations, MP calculations with small basis sets are of little practical 
value, and MP calculations should use a 6-31G* or larger basis set for useful results. For 
DZP basis sets, MP2 calculations on closed-shell molecules typically yield 85% to 95% 
of the basis-set correlation energy [R. J. Bartlett, Ann. Rev. Phys. Chem., 32, 359 (1981)] 
and substantially improve the accuracy of equilibrium-geometry and vibrational-frequency 
predictions.

Experience indicates that in most electron-correlation calculations, the basis-set 
truncation error is larger than the error due to truncation of the correlation treatment. 
For example, when one goes from a 6-31G* basis set to a TZ2P basis set, the errors in 
MP2-predicted equilibrium single-bond lengths are reduced by a factor of 2 or 3 [E. D. 
Simandiras et al., J. Chem. Phys., 88, 3187 (1988)], but when one goes from MP2>TZ2P to 
MP3>TZ2P calculations, no improvement in geometry accuracy is obtained [I. L. Alberts 
and N. C. Handy, J. Chem. Phys., 89, 2107 (1988)].

The energy gradient in MP2 calculations is readily evaluated analytically [see P. Pulay, 
Adv. Chem. Phys., 69, 276 (1987)]. This allows MP2 geometry optimization to be done 
easily and also permits calculation of MP2 vibrational frequencies.

The direct and semidirect MP2 methods, like the corresponding SCF methods (Sec-
tion 15.16), speed up calculations on large molecules by recalculating all or some of the 
electron-repulsion integrals as needed, instead of storing them externally on disk and 
then retrieving them. A semidirect MP2(FC)>TZP geometry optimization of buckminster
fullerene, C60, involved 1140 basis functions and found bond lengths of 1.446 and 1.406 Å 
[M. Häser, J. Almlöf, and G. E. Scuseria, Chem. Phys. Lett., 181, 497 (1991)], in agreement 
with the experimental values 1.45 and 1.40 Å.

A method to speed up MP2 calculations on large molecules is the local MP2 (LMP2) 
method of Saebø and Pulay [S. Saebø and P. Pulay, Annu. Rev. Phys. Chem., 44, 213 
(1993)]. Here, instead of using canonical SCF MOs in the Hartree–Fock reference determi-
nant �0, one transforms to localized MOs (Section 15.8). Also, instead of using the virtual 
orbitals found in the SCF calculation as the orbitals a and b in (16.13) to which electrons 
are excited, one uses atomic orbitals that are orthogonal to the localized occupied MOs. 
Also, in (16.13), one includes only unoccupied orbitals a and b that are in the neighborhood 
of the localized MOs i and j.

As noted in Section 15.16, calculation of 2-electron repulsion integrals in SCF MO 
calculations on large molecules can be speeded up by expanding products like fi112fj112 
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using an auxiliary basis set—the RI approximation. This same approximation is also used 
in the MP2 method, giving the RI-MP2 method. [For a review of the RI approximation, 
see R. A. Kendall and H. A. Früchtl, Theor. Chem. Acc., 97, 158 (1997).] The RI-MP2 
method is also called the DF-MP2 method, where DF stands for density fitting, since it 
fits the one-electron density function fi112fj112 with a series.

The DF-MP2 method has been combined with the LMP2 method to give the  
DF-LMP2 method [H. J. Werner et al., J. Chem. Phys., 118, 8149 (2003)]. The DF-LMP2 
method is so efficient, that for large molecules, the preceding Hartree–Fock part of the 
calculation takes a lot longer than the MP2 part of the calculation.

For species involving open-shell ground states (for example, O2, NO2, and OH), one 
can base an MP calculation on the unrestricted SCF wave function (Section 15.3), giving 
calculations designated UMP2, UMP3, and so on. Unrestricted SCF wave functions are not 
eigenfunctions of Sn2, and this “spin contamination” can sometimes produce serious errors 
in UMP-calculated quantities [K. Wolinski and P. Pulay, J. Chem. Phys., 90, 3647 (1989)]. 
Alternatively, several versions of open-shell MP perturbation theory that are based on the 
ROHF wave function have been developed. It is not clear which of these ROHF MP meth-
ods is best [T. D. Crawford, H. F. Schaefer, and T. J. Lee, J. Chem. Phys., 105, 1060 (1996)].

Another limitation of MP calculations is that, although they work well near the equi-
librium geometry, they do not work well at geometries far from equilibrium. For example, 
DZ calculations on H2O showed that at the equilibrium geometry an MP2 calculation 
obtained 94% of the basis-set correlation energy, but at a geometry with the bonds at twice 
their equilibrium lengths an MP2 calculation obtained only 83% of the basis-set correla-
tion energy [W. D. Laidig et al., Chem. Phys. Lett., 113, 151 (1985)]; also, the MP energy 
series at this stretched geometry converged erratically [N. C. Handy et al., Theor. Chim. 
Acta, 68, 87 (1985)].

A third limitation is that MP calculations are not generally applicable to excited elec-
tronic states.

Because of these limitations, MP calculations have not made CI calculations obsolete, 
and multireference CI calculations are widely used for excited states and for geometries 
far from equilibrium.

Because of its computational efficiency and good results for molecular properties, the 
MP2 method is one of the two most commonly used methods for including correlation 
effects on molecular ground-state equilibrium properties. (The other widely used method 
is the density-functional method—Section 16.5.) Also, in perhaps the most accurate form 
of density-functional theory, the MP2 correlation energy (16.13) is multiplied by an empiri-
cal constant and added to the density functional energy to give improved results; see the 
discussion of double-hybrid functionals in Section 16.5.

Table 16.1 lists results of some MP calculations on H2O.

The MP2-R12 and MP2-F12 Methods
Because we always use a finite, and hence, incomplete, basis set, Eq. (16.13) gives 
only an approximation to the MP2 quantity E122

0 . The aim of the MP2-R12 method is to 
essentially eliminate this basis-set-truncation error and give a value of E122

0
 that is close 

to the value that would be obtained with a complete basis set. The MP2-R12 method 
starts with the variation–perturbation inequality (9.38), where c102

g  is the SCF MO wave 
function �0, and u (which can be any well-behaved function) is an approximation to 
the MP first-order ground-state wave-function correction c112. In the MP2 method, the 
first-order correction to the wave function contains terms involving Slater determinants 
with two electrons excited from occupied to vacant orbitals. In the MP2-R12 method, 
the first-order correction to the wave function used as u in (9.38) contains additional 
terms of the form ci j ri j�0 for all pairs of electrons (this is a bit of an oversimplification), 
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where ci j is a variational parameter, ri j is the distance between electrons i and j, and �0 
is the unperturbed Hartree–Fock function. (When terms that involve ri j are introduced 
into the wave function, one says the wave function is explicitly correlated.) Recall that 
inclusion of r12 in trial variation functions can give extremely accurate results for the 
He atom (Section 9.4). Whereas only two-electron integrals occur in the MP2 method, 
the inclusion of ri j in the MP2-R12 method produces a very large number of three- and 
four-electron integrals containing factors like r12r34>r23. These integrals are evaluated 
by using the resolution-of-the-identity method to express these integrals in terms of two-
electron integrals and an auxiliary basis set. (Mathematically, this is not exactly the same 
as the use of the RI equation in density-fitting methods.) Since the auxiliary basis set is 
necessarily incomplete, the three- and four-electron integrals are being approximated, 
but with a proper basis set, the errors introduced are quite small. The variational param-
eters are evaluated so as to minimize the left side of (9.38), which gives the MP2-R12 
value of E122

0 .
The MP2-R12 method cannot give a better result than would be given by the MP2 

method with a complete basis set, and the hope was that introduction of the ri j terms into 
the MP2 wave function would yield essentially the same result as would be obtained by 
MP2 with a complete basis set. Although MP2-R12 results are significantly improved 
compared with MP2 results with the same medium-size basis set, it turns out that  
MP2-R12 results still differ substantially from the complete-basis-set limit. The reason 
for this is that the form ci j ri j �0 linear in ri j is not the optimum form to use. When ri j is 
replaced in the wave function by exp1-gri j2 where g is a constant, results very close to the 
MP2 complete-basis-set limit are obtained with only a moderate-size basis set [A. J. May 
et al., Phys. Chem. Chem. Phys., 7, 2710 (2005)]. The value used for the constant g has 
only a small effect on the results, and values in the range 0.8 to 2 have been used. Higher 
values work better in molecules with heavy elements. Also, using a smaller value for cor-
relating a valence pair of electrons than for correlating core electrons works better. When 
any function other than the linear function ri j is introduced into the MP2 wave function, 
the method is called MP2-F12, indicating that some function f1r122 of interelectronic 
distances is being used. Tests of several functions found that the function e-gri j worked best 
[D. P. Tew and W. Klopper, J. Chem. Phys., 123, 074101 (2005)]. This function is called a 
Slater-type geminal (STG) correlation factor.

The MP2-R12 and MP2-F12 methods have been combined with the DF-MP2 and 
LMP2 methods to give the DF-LMP2-R12 method [H.-J. Werner and F. R. Manby,  
J. Chem. Phys., 124, 054114 (2006)] and the DF-LMP2-F12 method [F. R. Manby et al., 
J. Chem. Phys., 124, 094103 (2006)].

Since MP2-F12 is much better than MP2-R12, it has made MP2-R12 obsolete.
For reviews of explicitly correlated atomic and molecular wave function calculations, 

see C. Hättig et al., Chem. Rev., 112, 4 (2012); L. Kong et al., Chem. Rev., 112, 75 (2012); 
S. Ten-no and J. Noga, WIREs Comput. Mol. Sci., 2, 114 (2012).

The SCS-MP2 and SOS-MP2 Methods
Because of the orthogonality of the spin functions a and b, the integrals in the MP2 energy 
expression (16.13) and (16.14) will be zero unless either (1) the virtual spin-orbital ua has 
the same spin function as the occupied spin-orbital ui and ub has the same spin function as 
uj, or (2) ua has the same spin function as uj and ub has the same spin function as ui. Thus, 
if ui and uj both have spin function a, then ua and ub must both have spin function a; if ui 
and uj both have spin function b, then ua and ub must both have spin function b; if ui and 
uj have different spin functions, then ua and ub must have different spin functions. We can 
therefore divide the MP2 correlation energy (16.13) into a same-spin 1aa, bb2 component 
(also called a “triplet” component) and an opposite-spin 1ab, ba2 component (also called 
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a “singlet” component). We have E122
= E122

OS + E122
SS , where OS and SS indicate opposite 

spin and same spin. Calculations show that E122
OS  is typically 3 or 4 times E122

SS .
To improve the accuracy of MP2 calculations, Grimme proposed the spin-component-

scaled MP2 (SCS-MP2) method, which takes E 122 = pOSE 122
OS + pSSE 122

SS , where 
the empirical parameters pOS and pSS are given the values pOS = 1.2 and pSS = 1>3 
[S. Grimme, J. Chem. Phys., 118, 9095 (2003)]. These values were found by a least-squares 
fit to a test set of reaction energies calculated by the QCISD(T) method (Section 16.4) with 
a large basis set. The SCS-MP2 method gives results for several properties such as atomi-
zation energies, bond lengths, and vibrational frequencies that are significantly improved 
over MP2 results at no additional computational cost.

The scaled-opposite-spin MP2 (SOS-MP2) method omits the E122
SS  contribution 

entirely and takes E122 = 1.3E122
OS  [Y. Jung et al., J. Chem. Phys., 121, 9793 (2004); 

J. Comput. Chem., 28, 1953 (2007)]. The SOS-MP2 method gives results slightly less 
accurate than the SCS-MP2 method, but is faster and can be applied to larger molecules 
than SCS-MP2. Of course, the use of empirical parameters makes the SCS-MP2 and  
SOS-MP2 methods no longer strictly ab initio methods.

Several other spin-component-scaled MP2 methods have been proposed, and spin-
component scaling has also been applied to the CC method; see S. Grimme et al., WIREs, 
Comput. Mol. Sci., 2, 886 (2012) for a review.

The CASPT2 Method
The MP method applies perturbation theory to a zeroth-order wave function (reference 
function) that is a single Slater determinant. Instead of starting with an SCF wave function 
as the zeroth-order wave function, one can start with an MCSCF wave function (Section 
16.2) as the zeroth-order function and apply perturbation theory to get a generalization of 
MP theory. The MCSCF function most commonly used for this purpose is a CASSCF wave 
function (Section 16.2). The choice of zeroth-order Hamiltonian is not unique, and the Hn0 
used is more complicated than (16.9). Inclusion of energy corrections through E122 gives the 
CASPT2 (complete active space second-order perturbation theory) method [K. Andersson, 
P.-Å. Malmqvist, and B. O. Roos, J. Chem. Phys., 96, 1218 (1992); K. Andersson and B. 
O. Roos in Yarkony, Part I, Chapter 2]. CASPT2 results, though quite good, are typically 
of lower quality than MRCI results, but CASPT2 involves significantly less computational 
effort than MRCI [M. L. Abrams and C. D. Sherrill, J. Phys. Chem. A, 107, 5611 (2003)]. 
One can carry the perturbation treatment to higher orders, giving CASPT3, etc. However, 
multireference MP calculations are found to diverge more often than single-reference MP 
calculations [J. Olsen and M. P. Fülscher, Chem. Phys. Lett., 326, 225 (2000)].

An alternative choice is to take the unperturbed MCSCF wave function as the general-
ized valence-bond (GVB) wave function (Section 16.13).

16.4 The Coupled-Cluster Method
The coupled-cluster (CC) method for dealing with a system of interacting particles was 
introduced around 1958 by Coester and Kümmel in the context of studying the atomic 
nucleus. CC methods for molecular electronic calculations were developed by Čížek, 
Paldus, Sinanoglu, and Nesbet in the 1960s and by Pople and co-workers and Bartlett and 
co-workers in the 1970s. For reviews of the CC method, see R. J. Bartlett, J. Phys. Chem., 
93, 1697 (1989); R. J. Bartlett in Yarkony, Part II, Chapter 16; T. J. Lee and G. E. Scuse-
ria, in S. R. Langhoff (ed.), Quantum Mechanical Electronic Structure Calculations with 
Chemical Accuracy, Kluwer, 1995, pp. 47–108; T. Helgaker et al., J. Phys. Org. Chem., 
17, 913 (2004).
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The fundamental equation in CC theory is

	 c = eTn�0	 (16.15)

where c is the exact nonrelativistic ground-state molecular electronic wave function, �0 
is the normalized ground-state Hartree–Fock wave function, the operator e

nT is defined by 
the Taylor-series expansion

	 eTn K 1 + Tn +
Tn2

2!
+

Tn3

3!
+ g = a

�

k = 0

Tn k

k!
	 (16.16)

and the cluster operator Tn (no connection with kinetic energy) is

	 Tn K Tn1 + Tn2 + g+ Tnn	 (16.17)

where n is the number of electrons in the molecule and the operators Tn1, Tn2, c  are defined 
below. Proof of (16.15) is omitted [see references in R. F. Bishop and H. G. Kümmel, 
Physics Today, March 1987, p. 52], but its plausibility will be shown below. The wave 
function c in (16.15) is not normalized (Prob. 16.15) but can be normalized at the end of 
the calculation.

The one-particle excitation operator Tn1 and the two-particle excitation operator 
Tn2 are defined by

	 Tn1�0 K a
�

a = n + 1
a

n

i = 1
t a
i �a

i ,   Tn2�0 K a
�

b = a + 1
a
�

a = n + 1
a

n

j = i+ 1
a
n - 1

i = 1
t ab

i j �ab
i j 	 (16.18)

where �a
i  is a singly excited Slater determinant with the occupied spin-orbital ui replaced 

by the virtual spin-orbital ua, and t a
i  is a numerical coefficient whose value depends on i 

and a and will be determined by requiring that Eq. (16.15) be satisfied. The operator Tn1 
converts the Slater determinant 0 u1 g un 0 = �0 into a linear combination of all pos-
sible singly excited Slater determinants. �ab

i j  is a Slater determinant with the occupied 
spin-orbitals ui and uj replaced by the virtual spin-orbitals ua and ub, respectively; t ab

i j  is 
a numerical coefficient. Similar definitions hold for Tn3, c, Tnn. Since no more than n 
electrons can be excited from the n-electron function �0, no operators beyond Tnn appear 
in (16.17). The limits in (16.18) are chosen so as to include all possible single and double 
excitations without duplication of any excitation. By definition, when Tn1 or Tn2 or . . . 
operates on a determinant containing both occupied and virtual spin-orbitals, the resulting 
sum contains only determinants with excitations from those spin-orbitals that are occupied 
in �0 and not from virtual spin-orbitals. The function Tn2

1�0 K Tn11Tn1�02 contains only 
doubly excited Slater determinants, and Tn2

2�0 contains only quadruply excited determi-
nants. When Tn1 operates on a determinant containing only virtual spin-orbitals, the result 
is zero, by definition.

The effect of the e
nT operator in (16.15) is to express c as a linear combination of Slater 

determinants that include �0 and all possible excitations of electrons from occupied to vir-
tual spin-orbitals. A full CI calculation also expresses c as a linear combination involving 
all possible excitations, and we know that a full CI calculation with a complete basis set 
gives the exact c. Hence, it is plausible that Eq. (16.15) is valid.

The mixing into the wave function of Slater determinants with electrons excited from 
occupied to virtual spin-orbitals allows electrons to keep away from one another and 
thereby provides for electron correlation.

In the CC method, one works with individual Slater determinants, rather than with 
CSFs, but each CSF is a linear combination of one or a few Slater determinants, and the CC 
and CI methods can each be formulated either in terms of individual Slater determinants 
or in terms of CSFs.
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The aim of a CC calculation is to find the coefficients t a
i ,  t ab

i j ,  t abc
i jk , c  for all i, j, k, . . . , 

and all a, b, c, . . . . Once these coefficients (called amplitudes) are found, the wave func-
tion c in (16.15) is known.

To apply the CC method, two approximations are made. First, instead of using a com-
plete, and hence infinite, set of basis functions, one uses a finite basis set to express the 
spin-orbitals in the SCF MO wave function. One thus has available only a finite number 
of virtual orbitals to use in forming excited determinants. As usual, we have a basis-set 
truncation error. Second, instead of including all the operators Tn1, Tn2, c, Tnn, one approxi-
mates the operator Tn by including only some of these operators. Theory shows (Wilson, 
p. 222) that the most important contribution to Tn is made by Tn2. The approximation 
Tn � Tn2 gives

cCCD = e
nT2�0

Inclusion of only Tn2 gives an approximate CC approach called the coupled-cluster dou-
bles (CCD) method. Since e

nT2 = 1 + Tn2 +
1
2Tn 2

2 + g, the wave function cCCD contains 
determinants with double substitutions, quadruple substitutions, hextuple substitutions, 
and so on. Recall (Section 16.2) that quadruple substitutions are next in importance after 
double substitutions in a CI wave function. The treatment of quadruple substitutions in 
the CCD method is only approximate. The CCD quadruple excitations are produced by 
the operator 1

2Tn 2
2, and so the coefficients of the quadruply substituted determinants are 

determined as products of the coefficients of the doubly substituted determinants [see Eq. 
(16.18)], rather than being determined independently, as in the CI-SDTQ method. The 
CCD approximation of the coefficients of the quadruply substituted determinants turns 
out to be pretty accurate.

We need equations to find the CCD amplitudes. Substitution of c = e
nT �0 [Eq. 

(16.15)] in the Schrödinger equation Hnc = Ec gives

	 Hne
nT �0 = Ee

nT �0	 (16.19)

Multiplication by �*0 and integration gives

	 8�0 0Hn 0 e nT �09 = E8�0 0 e nT �09 	 (16.20)

We have e
nT �0 = 11 + Tn +

1
2 Tn 2 + g2�0 = �0 + Tn �0 +

1
2Tn2 �0 + g. Since 

[Eq. (16.17)] Tn = Tn1 + Tn2 + g+ Tnn, the functions Tn�0, 
1
2 Tn 2 �0, and so on, contain 

only Slater determinants with at least one occupied orbital replaced by a virtual orbital. 
Because of the orthogonality of the spin-orbitals, all such excited Slater determinants are 
orthogonal to �0, as can be seen by replacing gn

i = 1 fni with 1 in Table 11.3. Therefore, 
8�0 0 e nT �09 = 8�0 0�09 = 1, and (16.20) becomes

	 8�0 0Hn 0 e nT �09 = E	 (16.21)

Multiplication of the Schrödinger equation (16.19) by �ab
i j * and integration gives

	 8�ab
i j 0Hn 0 e nT �09 = E8�ab

i j 0 e nT �09 	 (16.22)

Use of (16.21) to eliminate E from (16.22) gives

	 8�ab
i j 0Hn 0 e nT �09 = 8�0 0Hn 0 e nT �09 8�ab

ij 0 e nT �09 	 (16.23)

So far, the treatment is exact. We now invoke the CCD approximation Tn � Tn2, and 
Eqs. (16.21) and (16.23) become

	 ECCD = 8�0 0Hn 0 e nT2 �09 	 (16.24)

	 8�ab
i j 0Hn 0 e nT2 �09 = 8�0 0Hn 0 e nT2 �09 8�ab

ij 0 e nT2 �09 	 (16.25)
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Since these equations are approximate, the exact energy E has been replaced by the CCD 
energy ECCD. Also, the coefficients tab

i j  (produced when e nT2 operates on �0) in these equa-
tions are approximate. The first integral on the right side of (16.25) is

8�0 0Hn 0 e nT2 �09 = 8�0 0Hn 0 11 + Tn2 +
1
2Tn2

2 + g2�09
8�0 0Hn 0 eTn2 �09 = 8�0 0Hn 0�09 + 8�0 0Hn 0 Tn2�09 + 0 = EHF + 8�0 0Hn 0 Tn2�09 	 (16.26)

where EHF is the Hartree–Fock (or SCF) energy. The integral 8�0 0Hn 0 12Tn2
2�09  and similar 

integrals with higher powers of Tn2 vanish because Tn2
2�0 contains only quadruply excited 

determinants. Hence, Tn2
2�0 differs from �0 by four spin-orbitals, and the Condon–Slater 

rules (Table 11.3) show that the matrix elements of Hn  between Slater determinants differing 
by four spin-orbitals are zero. Similar use of the Condon–Slater rules gives for the integral 
on the left of (16.25) (Prob. 16.17)

	 8�ab
i j 0Hn 0 e nT2 �09 = 8�ab

i j 0Hn 0 11 + Tn2 +
1
2Tn2

22�09 	 (16.27)

Also, use of the orthogonality of different Slater determinants gives (Prob. 16.17)

	 8�ab
i j 0 e nT2 �09 = 8�ab

i j 0 Tn2�09 	 (16.28)

Use of (16.26) to (16.28) in (16.25) gives

8�ab
i j 0Hn 0 11 + Tn2 +

1
2Tn2

22�09 = 1EHF + 8�0 0Hn 0 Tn2�09 28�ab
i j 0 Tn2�09 	 (16.29)

i = 1, c, n - 1;  j = i + 1, c, n;  a = n + 1, c;  b = a + 1, c

Next, one uses the definition (16.18) of Tn2 to eliminate Tn2 from (16.29). Tn2�0 is 
a multiple sum involving t ab

i j �ab
i j , and Tn2

2 �0 K Tn21Tn2�02 is a multiple sum involving 
t ab

i j t cd
kl � abcd

i jkl . For each unknown amplitude t ab
i j , there is one equation in (16.29), so the num-

ber of equations is equal to the number of unknowns. After replacing Tn2�0 and Tn2
2�0 by 

these multiple sums, one expresses the resulting integrals involving Slater determinants in 
terms of integrals over the spin-orbitals by using the Condon–Slater rules (Table 11.3). The 
integrals over spin-orbitals are then expressed in terms of integrals over the basis functions. 
The net result is a set of simultaneous nonlinear equations for the unknown amplitudes tab

i j , 
whose form is (see Carsky and Urban, pages 96–97)

	 a
m

s = 1
arsxs + a

m

t = 2
a
t- 1

s = 1
brst xsxt + cr = 0,  r = 1, 2, c, m	 (16.30)

where x1,  x2, c, xm are the unknowns t ab
i j , the quantities ars, brst, and cr are constants 

that involve orbital energies and electron-repulsion integrals over the basis functions, 
and m is the number of unknown amplitudes tab

i j . The set of equations (16.30) is solved 
iteratively, starting with an initial estimate for the x’s found by neglecting many of 
the terms in (16.30). Once the x’s (that is, the t ab

i j >s) are known, the wave function is 
known from cCCD = e nT2�0 [the displayed equation before (16.19)] and the energy is 
found from (16.24).

The next step in improving the CCD method is to include the operator Tn1 and take 
Tn = Tn1 + Tn2 in e

nT; this gives the CC singles and doubles (CCSD) method. With 
Tn = Tn1 + Tn2 + Tn3, one obtains the CC singles, doubles, and triples (CCSDT) method 
[J. Noga and R. J. Bartlett, J. Chem. Phys., 86, 7041 (1987)]. CCSDT calculations give very 
accurate results for correlation energies and molecular properties but are very demanding 
computationally and are only feasible for small molecules. Several approximate forms of 
CCSDT have been developed. The most widely used such approximation is CCSD(T), 
coupled cluster with inclusion of single and double excitations and perturbative inclusion 
of triple excitations.
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Table 16.1 lists the results of some CC calculations on H2O.
The CCD, CCSD, CCSD(T), and CCSDT methods are size extensive but not varia-

tional. Analytic gradients are available for these methods. Usually, the frozen-core (FC) 
approximation is used in CC calculations. Here, excitations of inner-shell electrons are 
omitted.

For open-shell ground states (for example, OH, O2), one can base a CC calculation on 
either a UHF or an ROHF wave function. Spin contamination is less serious for UHF-based 
CC wave functions than for UHF-MP2 wave functions.

A few versions of CC theory have been developed for treating excited states. One such 
version, the equation-of-motion (EOM) CCSD, has given very good results for vertical 
excitation energies. Analytic gradients for the EOM-CCSD method are available, allowing 
calculation of geometries and vibrational frequencies of excited states. For details see R. J. 
Bartlett in Yarkony, Part II, Chapter 16, Section 9; A. I. Krylov, Annu. Rev. Phys. Chem., 
59, 433 (2008). CC excited-state methods are reviewed in K. Sneskov and O. Christiansen, 
WIREs Comput. Mol. Sci., 2, 566 (2012).

Pople and co-workers developed the nonvariational quadratic configuration-
interaction (QCI) method, which is intermediate between the CC and CI methods. The 
QCI method exists in the size-consistent forms QCISD, which is an approximation to 
CCSD, and QCISD(T). QCISD(T) has given excellent results for correlation energies in 
many calculations but occasionally fails dramatically [L. A. Curtiss et al., Chem. Phys. 
Lett, 359, 390 (2002)], so CCSD(T) calculations are currently much preferred to QCISD(T) 
calculations.

The exact basis-set correlation energy (Section 16.2) is obtained by full CI, by CC 
calculations with Tn not truncated, and by MP perturbation-theory carried to infinite order 
(provided the series converges, which isn’t always true). Full CI calculations with DZP 
basis sets were done for the H2O, HF, and BH molecules at their equilibrium geometries 
and at geometries where the bond lengths were stretched to 1.5Re and to 2Re. By compar-
ing the DZP energies obtained by a partial correlation method with the full CI energies 
for these molecules, one can judge the accuracy of the correlation method for calculating 
molecular energies. The average absolute energy errors (deviations from FCI) in millihar-
trees (one millihartree corresponds to 0.627 kcal/mol) for various methods at the equilib-
rium geometry (At Re) and at all three geometries (All R) are as follows (R. J. Bartlett in 
Yarkony, Part II, Chapter 16):

Method MP2 CISD MP3 CISDT CCD CCSD QCISD MP4

At Re 16.5 9.2 7.9 7.1 3.8 3.0 2.7 2.1

All R 27.8 22.0 22.9 16.7 12.8 7.1 6.4 5.9

Method MP5 MP6 CCSD(T) QCISD(T) CCSDT CISDTQ CCSDTQ

At Re 1.3 0.5 0.5 0.4 0.3 0.2 0.01

All R 5.1 1.4 1.2 0.8 0.8 1.1 0.03

The very accurate CCSDTQ, CCSDT, CISDTQ, and MP6 methods are much too compu-
tationally demanding to be used regularly. The CCSD(T) method “is widely considered to 
be the most accurate practicable method at hand” [A. Hesselmann et al., J. Chem. Phys., 
122, 014103 (2005)] and has often been called “the gold standard” for dealing with the 
ground state of a small or medium-size closed-shell molecule near its equilibrium geom-
etry. CCSD(T) bond lengths are typically accurate to 0.003 Å, bond angles are accurate 
to 0.3°, vibrational frequencies are accurate to within 2%, and bond energies are accurate 
to within 2 kcal/mol.
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Most of the methods used to improve the MP2 method (Section 16.3) have also been 
applied to the coupled-cluster method. Thus, the use of localized rather than canonical 
SCF MOs has given the LCCSD and LCCSD(T) methods (where the L is for local), which 
are much faster than the usual CC methods [M. Schütz and H.-J. Werner, J. Chem. Phys., 
114, 661 (2001) and references cited therein]. An approximate version of LCCSD(T) called 
LCCSD(T0) has given “breathtaking” speedups of factors of 1000 to 106 for large mol-
ecules over conventional CCSD(T) and has allowed a single-point LCCSD(T0)>cc@pVDZ 
calculation on indinavir, a 92-atom molecule with 865 basis functions in this basis set [M. 
Schütz, J. Chem. Phys., 113, 9986 (2000)] and on a certain enzyme-catalyzed reaction with 
49 atoms treated quantum mechanically using 1294 basis functions (mainly the cc-pVTZ 
set) with the remaining atoms treated using molecular mechanics [F. Claeyssens et al., 
Angew. Chem. Int. Ed., 45, 6856, (2006)]. This calculation gave a barrier height for the 
reaction in very good agreement with experiment.

A disadvantage of such local correlation methods is that the approximation of neglect-
ing interactions between distant orbitals introduces small discontinuities into the mol-
ecule’s potential-energy surface, which might interfere with geometry optimization. A 
computationally efficient version of local CCSD that avoids such discontinuities has been 
developed [J. E. Subotnik et al., J. Chem. Phys., 125, 074116 (2006)].

As is done in the HF and MP methods, computation of electron-repulsion integrals in 
CC calculations can be speeded up by using the density-fitting (resolution-of-the-identity) 
method [M. Schütz and F. R. Manby, Phys. Chem. Chem. Phys., 5, 3349 (2003)].

As in the MP method, terms linear in interelectronic distances rij or containing 
exp1-gr122 can be introduced into the CC wave function so as to reduce the basis-set 
truncation error, thereby giving the CCSD-R12, CCSD(T)-R12, and CCSD-F12 methods 
[J. Noga and P. Valiron, in Computational Chemistry: Reviews of Current Trends, Vol. 7, 
J. Leszcynski (Ed.), p. 131, World Scientific (2002); J. Noga et al., J. Chem. Phys., 128, 
174103 (2008)]. The CCSD-F12 method gives CCSD energies close to the basis-set limit, 
but the substantial added computational cost in comparison to CCSD makes CCSD-F12 
impractical. Therefore, several approximations to CCSD-F12 have been developed, one 
of which, CCSD(F12*), is nearly as accurate as CCSD-F12 but with only a small added 
computational cost [C. Hättig et al., J. Chem. Phys., 132, 231102 (2010)]. When the F12 
method is used with CCSD(T) calculations, the triples energy contribution is not explicitly 
correlated. The version CCSD(T)-F12b was found to give good results [D. Feller et al.,  
J. Chem. Phys., 133, 184102 (2010)].

Just as one can use spin-component scaling to improve the performance of MP2, one 
can multiply the contribution of the same-spin terms to the CCSD energy by an empirical 
parameter and multiply the contribution of the opposite-spin terms by another parameter. 
This gives the SCS-CCSD method [T. Takatani et al., J. Chem. Phys., 128, 124111 (2008)]. 
The same-spin and opposite-spin parameter values 1.13 and 1.27, respectively, were found 
by fitting a set of known reaction energies. SCS-CCSD performs quite well for intermo-
lecular interactions.

Another way to reduce the basis-set truncation error is to use a formula that attempts 
to extrapolate incomplete-basis-set results to the complete basis set limit. One of many 
such approximate formulas is that due to Helgaker and co-workers [A. Halkier et al., Chem. 
Phys. Lett., 286, 243 (1998)]

	 E corr
n = E corr

� + A>n3	 (16.31)

where Ecorr
n  is the correlation energy found from a CC calculation method [such as 

CCSD or CCSD(T)] using the cc-pVnZ basis set (or a related basis set such as aug-
cc-pVnZ or cc-pCVnZ), A is a parameter, and Ecorr

�  is the estimate of the correlation energy 
that would be found in the complete-basis-set (CBS) limit. (Note that Ecorr

n K En - EHF
n , 
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where En and EHF
n  are the energies found by a CC method and by the Hartree–Fock method, 

respectively, with both calculations using the cc-pVnZ basis set.) Equation (16.31) needs 
to be combined with an extrapolation formula such as (15.23) for the estimated Hartree–
Fock limit so as to obtain the estimated CBS limit for the total energy, according to 
E� = EHF

� + Ecorr
� . Combining the results of cc-pVnZ and cc-pV(n - 1)Z CC calcula-

tions to eliminate A, we get from (16.31) (Prob. 16.18)

	 Ecorr
� =

n3Ecorr
n - 1n - 123Ecorr

n - 1

n3 - 1n - 123
	 (16.32)

which allows Ecorr
�  to be estimated from calculations with two correlation-consistent basis 

sets. Use of the cc-pVDZ and cc-pVTZ pair in (16.32) is found to give much less accuracy 
than use of the cc-pVTZ and cc-pVQZ pair. A test of several proposed CBS extrapolation 
formulas did not find one single formula that is best in all circumstances [D. Feller et al., 
J. Chem. Phys., 135, 044102 (2011)].

Some people feel that separate extrapolation of HF and correlation energies is unnec-
essary and advocate simply extrapolating the total energy. For example, the following 
extrapolation formula was found to work well for CCSD(T)>aug-cc-pVnZ calculations with 
n = 4 and 5 [K. A. Peterson et al., Theor. Chem. Acc., 131, 1079 (2012)]:

En = E� + B> 1n +
1
224

where En is the total CCSD(T) energy for the n = 4 or 5 basis set and E� is the esti
mated CCSD(T) CBS limit. From the E4 and E5 values, one gets the constants B and E� 
(Prob. 16.19).

To overcome the failures of the CCSD(T) method in dealing with bond-breaking and 
open-shell species, several multireference (MR) CC methods have been developed, but 
none of these methods is fully satisfactory. Reviews of MR CC methods noted that “even 
now the situation in the MRCC field is not satisfactory, since none of the MRCC methods 
is in a wide use” [D. I. Lyakh et al., Chem. Rev., 112, 182 (2012)] and a “generally accepted 
multireference CC theory is still lacking” (A. Kohn et al., WIREs Comput. Mol. Sci. 2012, 
doi: 10.1002/wcms.1120).

16.5 Density-Functional Theory
The electronic wave function of an n-electron molecule depends on 3n spatial and n spin 
coordinates. Since the Hamiltonian operator (15.10) contains only one- and two-electron 
spatial terms, one finds that the molecular energy can be written in terms of integrals 
involving only six spatial coordinates (Pilar, Section 10-5). In a sense, the wave function 
of a many-electron molecule contains more information than is needed and is lacking in 
direct physical significance. This has prompted the search for functions that involve fewer 
variables than the wave function and that can be used to calculate the energy and other 
properties.

The Hohenberg–Kohn Theorem
In 1964, Pierre Hohenberg and Walter Kohn proved that for molecules with a nonde-
generate ground state, the ground-state molecular energy, wave function, and all other 
molecular electronic properties are uniquely determined by the ground-state electron prob-
ability density r01x, y, z2 (Section 14.1), a function of only three variables [P. Hohenberg 
and W. Kohn, Phys. Rev., 136, B864 (1964)]. (The zero subscript indicates the ground 
state.) One says that the ground-state electronic energy E0 is a functional of r0 and writes 
E0 = E03r04 , where the square brackets denote a functional relation. Density-functional 
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theory (DFT) attempts to calculate E0 and other ground-state molecular properties from 
the ground-state electron density r0.

What is a functional? Recall that a function f1x2 is a rule that associates a number 
with each value of the variable x for which the function f is defined. For example, the 
function f1x2 = x2 + 1 associates the number 10 with the value 3 of x and associates a 
number with each other value of x. A functional F3f4  is a rule that associates a number 
with each function f. For example, the functional F3 f4 = 1�

-�
f*1x2 f1x2 dx associates 

a number, found by integration of 0 f 0 2 over all space, with each quadratically integrable 
function f1x2. The variational integral W3f4 = 8f 0Hn 0f9 > 8f 0f9  is a functional of the 
variation function f and gives a number for each well-behaved f.

The proof of the Hohenberg–Kohn theorem is as follows. The ground-state electronic 
wave function c0 of an n-electron molecule is an eigenfunction of the purely electronic 
Hamiltonian of Eq. (13.5), which, in atomic units, is

	 Hn = -
1

2 a
n

i = 1
�2

i + a
n

i = 1
v1ri2 + a

j
a
i7 j

1
ri j

	 (16.33)

	 v1ri2 = - a
a

Za

ria
	 (16.34)

The quantity v1ri2, the potential energy of interaction between electron i and the nuclei, 
depends on the coordinates xi,  yi,  zi of electron i and on the nuclear coordinates. Since 
the electronic Schrödinger equation is solved for fixed locations of the nuclei, the 
nuclear coordinates are not variables for the electronic Schrödinger equation. Thus, 
v1ri2 in the electronic Schrödinger equation is a function of only xi,  yi,  zi, which we 
indicate by using the vector notation of Section 5.2. In DFT, v1ri2 is called the external 
potential acting on electron i, since it is produced by charges external to the system 
of electrons.

Once the external potential v1ri2 and the number of electrons n are specified, the 
electronic wave functions and allowed energies of the molecule are determined as the 
solutions of the electronic Schrödinger equation. Hohenberg and Kohn proved that for 
systems with a nondegenerate ground state, the ground-state electron probability density 
r01r2 determines the external potential (except for an arbitrary additive constant) and 
determines the number of electrons. Hence, the ground-state wave function and energy 
(and, for that matter, all excited-state wave functions and energies) are determined by the 
ground-state electron density.

To see that r01r2 determines the number of electrons, we integrate (14.5) over all space 
and use the normalization of c to get 1r01r2 dr = n.

To see that r01r2 determines the external potential v1ri2, we suppose that this is false 
and that there are two external potentials va and vb (differing by more than a constant) that 
each give rise to the same ground-state electron density r0. Let Hna and Hnb be the n-electron 
Hamiltonians (16.33) corresponding to va1ri2 and vb1ri2, where va and vb are not neces-
sarily given by (16.34); they can be any external potential. Let c0,a and c0,b and E0,a and 
E0,b be the normalized ground-state wave functions and energies for these Hamiltonians. 
[Note that even if Hna is a molecular electronic Hamiltonian with va given by (16.34), vb1ri2 
is not restricted to the form (16.34) but can be any function of ri.] c0,a and c0,b must be dif-
ferent functions, since they are eigenfunctions of Hamiltonians that differ by more than 
an additive constant (Prob. 16.22). If the ground state is nondegenerate, then there is only 
one normalized function—the exact ground-state wave function c0, that gives the exact 
ground state energy E0 when used as a trial variation function. According to the variation 
theorem, use of any normalized well-behaved function that differs from c0 will make the 
variational integral greater than E0 (Prob. 8.14): that is, 8f 0Hn 0f9 7 E0 if f � c0 and the 



554  Chapter 16  |  Electron-Correlation Methods

ground state is nondegenerate. Therefore, use of c0,b as a trial function with the Hamiltonian 
Hna gives 

E0,a 6 8c0,b 0Hna 0c0,b9 = 8c0,b 0Hna + Hnb - Hnb 0c0,b9 = 8c0,b 0Hna - Hnb 0c0,b9 + 8c0,b 0Hnb 0c0,b9  

The Hamiltonians Hna and Hnb differ only in their external potentials va and vb, so 
Hna - Hnb = gn

i = 13va1ri2 - vb1ri24  and we have

E0,a 6 hc0,b ` a
n

i = 1
3va1ri2 - vb1ri24 ` c0,bi + E0,b

The quantities va1ri2 and vb1ri2 are one-electron operators, and using Eq. (14.8), we get

E0,a 6 Lr0,b1r23va1r2 - vb1r24  dr + E0,b

where, since the integration is over c0, b, we get the electron density r0, b corresponding to 
c0, b. If we go through the same reasoning with a and b interchanged, we get

E0,b 6 Lr0,a1r23vb1r2 - va1r24  dr + E0,a

By hypothesis, the two different wave functions give the same electron density: r0,a = r0,b. 
Putting r0,a = r0,b and adding the last two inequalities, the two integrals cancel and we get 
E0,a + E0,b 6 E0,b + E0,a. This result is false, so our initial assumption that two different 
external potentials could produce the same ground-state electron density must be false. 
Hence, the ground-state electron probability density r0 determines the external potential (to 
within an additive constant that simply affects the zero level of energy) and also determines 
the number of electrons. Therefore r0 determines the molecular electronic Hamiltonian and 
so determines the ground-state wave function, energy, and other properties.

The ground-state electronic energy E0 is thus a functional of the function r01r2, which 
we write as E0 = E

v

3r04 , where the v subscript emphasizes the dependence of E0 on the 
external potential v1r2, which differs for different molecules.

The purely electronic Hamiltonian (13.5) is the sum of electronic kinetic-energy terms, 
electron–nuclear attractions, and electron–electron repulsions. Taking the average of (13.5) for 
the ground state, we have E = T + VNe + Vee, where, for notational convenience, overbars 
instead of angular brackets have been used to denote averages. Each of the average values in 
this equation is a molecular property determined by the ground-state electronic wave function, 
which, in turn, is determined by r01r2. Therefore, each of these averages is a functional of r0:

E0 = E
v

3r04 = T3r04 + VNe3r04 + Vee3r04
From (13.1), VnNe = gn

i = 1 v1ri2, where v1ri2 = - ga Za>ria in atomic units, so

	 VNe = hc0 ` a
n

i = 1
v1ri2 ` c0i = Lr01r2v1r2 dr	 (16.35)

where (14.8) was used, and where v1r2 is the nuclear attraction potential-energy function 
(16.34) for an electron located at point r. Thus VNe3r04  is known, but the functionals T3r04  
and Vee3r04  are unknown. We have

E0 = E
v

3r04 = Lr01r2v1r2 dr + T3r04 + Vee3r04 = Lr01r2v1r2 dr + F3r04
� (16.36)

where the functional F3r04  defined by F3r04 K T3r04 + Vee3r04 , is independent of the 
external potential. Equation (16.36) does not provide a practical way to calculate E0 from 
r0, because the functional F3r04  is unknown.
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The Hohenberg–Kohn Variational Theorem
To change (16.36) from a formal relation to a practical tool, we need a second theorem 
proven by Hohenberg and Kohn, and an approach developed by Kohn and Sham. Hohenberg 
and Kohn proved that for every trial density function rtr1r2 that satisfies 1rtr1r2 dr = n 
and rtr1r2 Ú 0 for all r, the following inequality holds: E0 … E

v

3rtr4 , where E
v
 is the 

energy functional in (16.36). Since E0 = E
v

3r04 , where r0 is the true ground-state electron 
density, the true ground-state electron density minimizes the energy functional E

v

3rtr4  
(just as the true normalized ground-state wave function minimizes the variational integral).

The proof of this Hohenberg–Kohn variational theorem is as follows. Let rtr satisfy 
the above two conditions of integrating to n and being nonnegative. By the Hohenberg–
Kohn theorem, rtr determines the external potential vtr, and this in turn determines the 
wave function ctr that corresponds to the density rtr. (Actually, this is only true if there 
exists an external potential vtr that will give rise to an antisymmetric wave function 
that corresponds to rtr. If this condition holds, rtr is said to be v-representable. It turns 
out that not all rtr’s are v-representable. This has not caused any practical difficulties 
in applications of DFT. Also, Levy has reformulated the Hohenberg–Kohn theorems 
in a way that eliminates the need for v-representability. See Parr and Yang, Sections 
3.3, 3.4, and 7.3.) Let us use the wave function ctr that corresponds to rtr as a trial 
variation function for the molecule with Hamiltonian Hn . The variation theorem gives

8ctr 0Hn 0ctr9 = hctr ` Tn + Vnee + a
n

i = 1
v1ri2 ` ctri Ú E0 = E

v

3r04

Using the fact that the average kinetic and potential energies are functionals of the electron 
density, and using (16.35) with c0 replaced by ctr, this last equation becomes

	 T3rtr4 + Vee3rtr4 + Lrtrv1r2 dr Ú E
v

3r04 	 (16.37)

The functionals T  and Vee are the same in (16.36) and (16.37), although the functions r0 
and rtr differ. The left side of (16.37) differs from the corresponding expression in (16.36) 
only by having r0 replaced by rtr. Use of (16.36) with r0 replaced by rtr in (16.37) gives 
E

v

3rtr4 Ú E
v

3r04 , which proves that no trial electron density can give a lower ground-state 
energy than the true ground-state electron density.

Hohenberg and Kohn proved their theorems only for nondegenerate ground states. Subse-
quently, Levy proved the theorems for degenerate ground states (see Parr and Yang, Section 3.4).

The Kohn–Sham (KS) Method
If we know the ground-state electron density r01r2, the Hohenberg–Kohn theorem tells 
us that it is possible in principle to calculate all the ground-state molecular properties 
from r0 without having to find the molecular wave function. [In the traditional quantum-
mechanical approach, one first finds the wave function and then finds r by integration; 
Eq. (14.5).] The Hohenberg–Kohn theorem does not tell us how to calculate E0 from r0 
[since the functional F in (16.36) is unknown], nor does it tell us how to find r0 without 
first finding the wave function. A key step toward these goals was taken in 1965 when 
Kohn and Sham devised a practical method for finding r0 and for finding E0 from r0 
[W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965)]. Their method is capable, in 
principle, of yielding exact results, but because the equations of the Kohn–Sham (KS) 
method contain an unknown functional that must be approximated, the KS formulation 
of DFT yields approximate results.

Kohn and Sham considered a fictitious reference system (denoted by the subscript s 
and often called the noninteracting system) of n noninteracting electrons that each experi-
ence the same external potential-energy function vs1ri2, where vs1ri2 is such as to make the 
ground-state electron probability density rs1r2 of the reference system equal to the exact 



556  Chapter 16  |  Electron-Correlation Methods

ground-state electron density r01r2 of the molecule we are interested in; rs1r2 = r01r2. 
Since Hohenberg and Kohn proved that the ground-state probability-density function deter-
mines the external potential, once rs1r2 is defined for the reference system, the external 
potential vs1ri2 in the reference system is uniquely determined, although we might not 
know how to actually find it. The electrons do not interact with one another in the refer-
ence system, so the Hamiltonian of the reference system is

Hn s = a
n

i = 1
3-

1
2 �2

i + vs1ri24 K a
n

i = 1
hn KS

i ,  where hnKS
i K -

1
2 �2

i + vs1ri2	 (16.38)

hnKS
i  is the one-electron Kohn–Sham Hamiltonian. Use of a fictitious system of noninter-

acting electrons should not be too disturbing. Recall that we used a system of noninteract-
ing electrons in the Section 9.3 perturbation treatment of the He atom. We can relate the 
fictitious Kohn–Sham reference system to the real molecule by writing the Hamiltonian 
Hnl K Tn + g i vl1ri2 + lVnee, where the parameter l ranges from 0 (no interelectronic 
repulsions, which is the reference system) to 1 (the real molecule), and vl is defined as 
the external potential that will make the ground-state electron density of the system with 
Hamiltonian Hnl equal to that of the real molecule’s ground state.

Since the reference system s consists of noninteracting particles, the results of 
Section 6.2 and the antisymmetry requirement show that the ground-state wave function 
cs, 0 of the reference system is the antisymmetrized product (Slater determinant) of the 
lowest-energy Kohn–Sham spin-orbitals uKS

i  of the reference system, where the spatial part 
uKS

i 1ri2 of each spin-orbital is an eigenfunction of the one-electron operator hn KS
i :

	 cs, 0 = 0 uKS
1 uKS

2 guKS
n 0 ,  uKS

i = uKS
i 1ri2si	 (16.39)

	 hnKS
i uKS

i = eKS
i uKS

i 	 (16.40)

where si is a spin function (either a or b) and the eKS
i ’s are Kohn–Sham orbital energies.

For a closed-shell ground state, the electrons are paired in the Kohn–Sham orbitals, 
with two electrons of opposite spin having the same spatial Kohn–Sham orbital (as in the 
RHF method).

Kohn and Sham rewrote the Hohenberg–Kohn equation (16.36) as follows. Let �T  
be defined by

	 �T3r4 K T3r4 - Ts3r4 	 (16.41)

where, for convenience, the zero subscript on r is omitted in this and many subsequent 
equations. �T  is the difference in the average ground-state electronic kinetic energy 
between the molecule and the reference system of noninteracting electrons with electron 
density equal to that in the molecule. Let

	 �Vee3r4 K Vee3r4 -
1

2 LL
r1r12r1r22

r12
dr1 dr2	 (16.42)

where r12 is the distance between points x1, y1, z1 and x2, y2, z2. The quantity 
1
2 11r1r12r1r22r-1

12 dr1 dr2 is the classical expression (in atomic units) for the electrostatic 
interelectronic repulsion energy if the electrons were smeared out into a continuous distri-
bution of charge with electron density r. The charge dQ1 in a tiny volume element dr1 of 
such a distribution is dQ1 = -er1r12 dr1 and the potential energy of repulsion between 
dQ1 and the charge in the volume element dr2 located at r2 is e2r-1

12r1r12r1r22 dr1 dr2. 
Integration of this expression over dr2 gives the repulsion energy between dQ1 and the 
charge distribution. Integration over dr1 and multiplication by 1

2 then gives the total inter-
electronic repulsion energy for the continuous distribution, where the factor 1

2 is needed 
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to prevent counting each repulsion twice, once as the repulsion between dQ1 and dQ2 and 
once as the repulsion between dQ2 and dQ1.

With the definitions (16.41) and (16.42), Eq. (16.36) becomes

E
v

3r4 = Lr1r2v1r2 dr + Ts3r4 +
1

2 LL
r1r12r1r22

r12
dr1 dr2 + �T3r4 + �Vee3r4

The functionals �T  and �Vee are unknown. Defining the exchange–correlation energy 
functional Exc3r4  by

	 Exc3r4 K �T3r4 + �Vee3r4 	 (16.43)

we have

E0 = E
v

3r4 = Lr1r2v1r2 dr + Ts3r4 +
1

2 LL
r1r12r1r22

r12
dr1 dr2 + Exc3r4 	 (16.44)

The motivation for the definitions (16.41), (16.42), and (16.43) is to express E
v

3r4  in 
terms of three quantities, the first three terms on the right side of (16.44), that are easy to 
evaluate from r and that include the main contributions to the ground-state energy, plus 
a fourth quantity Exc, which, though not easy to evaluate accurately, will be a relatively 
small term. The key to accurate KS DFT calculation of molecular properties is to get a 
good approximation to Exc.

Before we can evaluate the terms in (16.44), we need to find the ground-state electron 
density. Recall that the fictitious system of noninteracting electrons is defined to have the 
same electron density as that in the ground state of the molecule: rs = r0. It is readily 
proved (see Prob. 16.28) that the electron probability density of an n-particle system whose 
wave function [Eq. (16.39)] is a Slater determinant of the spin-orbitals uKS

i = uKS
i si is given 

by gn
i = 1 0 uKS

i 0 2. Therefore,

	 r = rs = a
n

i = 1
0 uKS

i 0 2	 (16.45)

How do we evaluate the terms in (16.44)? Using (16.34), we have 1r1r2v1r2 dr =

- ga Za1r1r12r-1
1a dr1, which is easily evaluated if r1r2 is known. The Ts term in (16.44) 

is the kinetic energy of the system of noninteracting electrons whose wave function cs in 
(16.39) is equal to a Slater determinant of orthonormal Kohn–Sham spin-orbitals. We have 
Ts[r] = -

1
2 8cs 0 g i�

2
i 0cs9 . The Slater–Condon rules [Table 11.3 and Eq. (11.78)] give 

Ts[r] = -
1
2g i 8uKS

i 112 0 �2
1 0 uKS

i 1129 . Thus (16.44) becomes

E0 = - a
a

ZaL
r1r12

r1a
 dr1 -

1

2 a
n

i = 1
8uKS

i 112 0 �2
1 0 uKS

i 1129

	 +
1

2 LL
r1r12r1r22

r12
dr1 dr2 + Exc3r4 � (16.46)

We can therefore find E0 from r if we can find the KS orbitals uKS
i  and if we know what 

the functional Exc is. The electronic energy including nuclear repulsion is found by adding 
the internuclear repulsion VNN to (16.46).

The Kohn–Sham orbitals are found as follows. The Hohenberg–Kohn variational theo-
rem tells us that we can find the ground-state energy by varying r (subject to the constraint 

1r dr = n) so as to minimize the functional E
v

3r4 . Equivalently, instead of varying r, we 
can vary the KS orbitals uKS

i , which determine r by (16.45). (In doing so, we must constrain 
the uKS

i ’s to be orthonormal, since orthonormality was assumed when we evaluated Ts.) 
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Just as one can show that the orthonormal orbitals that minimize the Hartree–Fock expres-
sion for the molecular energy satisfy the Fock equation (14.25), one can show that the 
Kohn–Sham orbitals that minimize the expression (16.46) for the molecular ground-state 
energy satisfy (for a proof, see Parr and Yang, Section 7.2):

	 c- 1
2�2

1 - a
a

Za

r1a
+ L

r1r22
r12

 dr2 + vxc112 d uKS
i 112 = eKS

i uKS
i 112	 (16.47)

where the function vxc112 is defined by (16.50). From (16.40) and (16.38), alternative 
ways to write (16.47) are

	 3-
1
2�2

1 + vs1124uKS
i 112 = eKS

i uKS
i 112	 (16.48)

	 hnKS112uKS
i 112 = eKS

i uKS
i 112	 (16.49)

The exchange–correlation potential vxc is found as the functional derivative dExc>dr of 
the exchange–correlation energy Exc:

	 vxc1r2 K
dExc3r1r24

dr1r2 	 (16.50)

The precise definition of the functional derivative need not concern us (see Parr and Yang, 
Appendix A). The following formula allows one to find the functional derivative of many 
functionals that occur in DFT. For a functional defined by

F3r4 = L
f

e L
d

c L
b

a
g1x,  y,  z,  r,  rx,  ry,  rz2 dx dy dz

where r is a function of x, y, and z that vanishes at the limits of the integral, and where 
rx K 10r>0x2y, z etc., the functional derivative can be shown to be given by

	
dF

dr
=

0g

0r
-

0

0x
a 0g

0rx
b -

0

0y
a 0g

0ry
b -

0

0z
a 0g

0rz
b 	 (16.51)

Note from (16.51) that the units of dF > dr are not the same as the units of F>r, since F and 
g have different units. One can show that

d1c1F1 + c2F22>dr = c1 dF1>dr + c2 dF2>dr
where c1 and c2 are constants.

If Exc3r4  is known, its functional derivative is readily found from (16.50) and (16.51), 
and so vxc is known. The functional Exc3r4  in (16.46) is a number. The functional derivative 
of Exc3r4  is a function of r (see Prob. 16.23 for an example), and since r is a function of r, 
vxc is a function of r, that is, of x, y, and z. Sometimes people write vxc as vxc1r1r22. [In 
the Kohn–Sham eigenvalue equation (16.49), the variable is taken as r1 rather than as r.] 
The functional derivative dExc3r1r24 >dr1r2 is a function of x, y, and z whose value at 
point 1x, y, z2 depends on how much Exc3r4  changes when r1x, y, z2 changes by a tiny 
amount in a tiny region centered at (x, y, z).

The one-electron Kohn–Sham operator hn KS112 in (16.49) and (16.47) is the same as 
the Fock operator (16.8) in the Hartree–Fock equations except that the exchange operators 
- gn

j = 1 knj in the Fock operator are replaced by vxc (Prob. 16.24), which handles the effects 
of both exchange (antisymmetry) and electron correlation.

There is only one problem in using the Kohn–Sham method to find r and E0. No one 
knows what the correct functional Exc3r4  is. Therefore, both Exc in the energy expression 
(16.46) and vxc in (16.47) and (16.50) are unknown. Various approximations to Exc will be 
discussed shortly.
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The Kohn–Sham orbitals uKS
i  are orbitals for the fictitious reference system of nonin-

teracting electrons, so, strictly speaking, these orbitals have no physical significance other 
than in allowing the exact molecular ground-state r to be calculated from (16.45). The 
density-functional molecular wave function is not a Slater determinant of spin-orbitals. In 
fact, there is no density-functional molecular wave function. However, in practice, one 
finds that the occupied Kohn–Sham orbitals resemble molecular orbitals calculated by the 
Hartree–Fock method, and the Kohn–Sham orbitals can be used (just as Hartree–Fock 
MOs are used) in qualitative MO discussions of molecular properties and reactivities [see 
E. J. Baerends and O. V. Gritsenko, J. Phys. Chem., 101, 5383 (1997); Gritsenko et al., J. 
Chem. Phys., 107, 5007 (1997); R. Stowasser and R. Hoffmann, J. Am. Chem. Soc., 121, 
3414 (1999)]. (Note that, strictly speaking, Hartree–Fock orbitals also have no physical 
reality, since they refer to a fictitious model system in which each electron experiences 
some sort of average field of the other electrons.)

For a closed-shell molecule, each Hartree–Fock occupied-orbital energy is a good 
approximation to the negative of the energy needed to remove an electron from that orbital 
(Koopmans’ theorem). However, this is not true for Kohn–Sham orbital energies. The one 
exception is eKS

i  for the highest-occupied KS orbital, which can be proved to be equal to minus 
the molecular ionization energy. With the currently used approximations to Exc, ionization 
energies calculated from KS highest-occupied-orbital energies agree poorly with experiment.

Various approximate functionals Exc[r] are used in molecular DFT calculations. To 
study the accuracy of an approximate Exc[r], one uses it in DFT calculations and com-
pares calculated molecular properties with experimental ones. The lack of a systematic 
procedure for improving Exc[r] and hence improving calculated molecular properties is 
the main drawback of the DFT method.

In a “true” density-functional theory, one would deal with only the electron density 
(a function of three variables) and not with orbitals, and would search directly for the 
density that minimizes E

v
[r]. Because the functional E

v
 is unknown, one instead uses the 

Kohn–Sham method, which calculates an orbital for each electron. Thus, the KS method 
represents something of a compromise with the original goals of DFT.

The exchange–correlation energy Exc in (16.43) contains the following components: 
the kinetic correlation energy [the �T  term in (16.43), which is the difference in T  for 
the real molecule and the reference system of noninteracting electrons—Eq. (16.41)], the 
exchange energy (which arises from the antisymmetry requirement), the Coulombic cor-
relation energy (which is associated with interelectronic repulsions), and a self-interaction 
correction (SIC). The SIC arises from the fact that the classical charge-cloud electrostatic-
repulsion expression 1

2 11r1r12r1r22r-1
12 dr1 dr2 in (16.42) erroneously allows the portion 

of r in dr1 that comes from the smeared-out part of a particular electron to interact with 
the charge contributions of that same electron to r throughout space. In actuality, an 
electron does not interact with itself. (Note that for a one-electron molecule, there is no 
interelectronic repulsion, but the expression 1

2 11r1r12r1r22r-1
12 dr1 dr2 erroneously gives 

an interelectronic repulsion.) The kinetic energy Ts of the reference system turns out to be 
close to T  of the real molecule, and �T>T  is small. However, the contribution of �T  to 
Exc in (16.43) is not negligible.

The Local-Density Approximation (LDA)
Hohenberg and Kohn showed that if r varies extremely slowly with position, then Exc3r4  
is accurately given by

	 ELDA
xc 3r4 = Lr1r2exc1r2 dr	 (16.52)

where the integral is over all space, dr stands for dx dy dz, and exc1r2 is the exchange plus 
correlation energy per electron in a homogeneous electron gas with electron density r. 
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Jellium is a hypothetical electrically neutral, infinite-volume system consisting of an 
infinite number of interacting electrons moving in a space throughout which positive 
charge is continuously and uniformly distributed. The number of electrons per unit vol-
ume in the jellium has a nonzero constant value r. The electrons in the jellium constitute 
a homogeneous (or uniform) electron gas. Taking the functional derivative of ELDA

xc , 
we find [Eqs. (16.50) and (16.51)]

	 v

LDA
xc =

dELDA
xc

dr
= exc (r(r)) + r1r20exc1r2

0r
	 (16.53)

Kohn and Sham suggested the use of (16.52) and (16.53) as approximations to Exc and vxc 
in (16.46) and (16.47), a procedure that is called the local density approximation (LDA). 
One can show that exc can be written as the sum of exchange and correlation parts:

	 exc1r2 = ex1r2 + ec1r2	 (16.54)

where

	 ex1r2 = -
3

4
a 3
p
b

1>3
(r(r))1>3	 (16.55)

The correlation part ec1r2 has been calculated, and the results have been expressed as a 
very complicated function eVWN

c  of r by Vosko, Wilk, and Nusair (VWN); see Parr and 
Yang, Appendix E; S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, 1200 (1980). 
Thus

	 ec1r2 = eVWN
c 1r2	 (16.56)

where eVWN
c  is a known function. From (16.50), (16.51), (16.52), (16.54), and (16.55), we 

get (Prob. 16.25)

	 v

LDA
xc = v

LDA
x + v

LDA
c , v

LDA
x = - 313>p2r1r241>3, v

LDA
c = v

VWN
c 	 (16.57)

	 E LDA
x K Lrex dr = -

3

4
a 3
p
b

1>3

L 3r1r244>3 dr	 (16.58)

The method for finding the LDA quantities ex and ec is as follows (for fuller details, see 
Parr and Yang, Appendix E). Consider a uniform electron gas (UEG) with r1r2 = k, 
where k is some constant value. As noted after (16.51), vxc = vxc1r1r22, and since 
r1r2 is a constant for a particular UEG, vxc is a constant for a particular UEG. (Of 
course vxc will have different values for two UEGs with different electron densities.) 
In the Kohn–Sham equations (16.47) for the reference system that corresponds to the 
UEG, the constant vxc can be omitted without affecting the eigenfunctions (Prob. 4.52). 
Also, for a UEG, the second term in brackets in (16.47) (the external potential) must 
be replaced by the attraction between electron 1 and the uniformly distributed positive 
charge. Since the UEG is electrically neutral, the positive charge density equals the 
electron density, and the second and third terms in brackets in (16.47) cancel. Thus, the 
term - 1

2 �2
1 is the only surviving term in hnKS for the UEG. The UEG KS orbitals can 

thus be taken as three-dimensional free-particle wave functions Aei1kxx + kyy + kzz2 [recall 
(2.30)], where the value of A is chosen to give the desired electron density in (16.45). 
Because the UEG is electrically neutral in each region of space, the sum of the electro-
static repulsions between the smeared-out electrons [the third term on the right side of 
(16.46)], the attractions between the smeared-out electrons and the continuous positive 
charge distribution [the first term on the right of (16.46) modified to correspond to 
continuous positive charges], and the repulsions between parts of the positive charge 
distribution [analogous to the internuclear repulsion term to be added to (16.46)] adds 
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to zero. This leaves on the right side of the energy expression (16.46) only the Exc term 
and the kinetic-energy term Ts, which is readily evaluated from the known KS orbitals. 
Breaking Exc into the sum of Ex and Ec [Eq. (16.59)], one evaluates Ex from (16.60) 
and the KS orbitals, with the result shown in (16.58). This leaves only Ec as unknown. 
One then does an accurate numerical solution of the UEG Schrödinger equation to find 
the energy for the particular density r = k. Combining this energy with the already 
calculated KS energy terms gives the unknown Ec for that r. Repetition of the entire 
procedure for many density values gives the UEG Ec as a function of r. From Ex and 
Ec, we find ex and ec.

The Functionals Ex and Ec
As an aid to developing approximate functionals for use in KS DFT, the functional Exc 
is written as the sum of an exchange-energy functional Ex and a correlation-energy 
functional Ec:

	 Exc = Ex + Ec	 (16.59)

Ex is defined by the same formula used for the exchange energy in Hartree–Fock theory, 
except that the Hartree–Fock orbitals are replaced by the Kohn–Sham orbitals. The Har-
tree–Fock exchange energy of a closed-shell molecule is given by the terms in (14.22) that 
involve the exchange integrals Ki j. Replacing the Hartree–Fock orbitals by the Kohn–Sham 
orbitals in (14.24), we have for a closed-shell molecule

	 Ex K -
1

4 a
n

i = 1
a

n

j = 1
8uKS

i 112uKS
j 122 0 1>r12 0 uKS

j 112uKS
i 1229 	 (16.60)

where the factor of 14 comes from the fact that in (14.22) we are summing over the orbitals, 
whereas in (16.60) we are summing over the electrons, which gives four times as many 
terms in the double sum in (16.60) (Prob. 16.26). Since, in practice, KS orbitals are found 
to rather closely resemble Hartree–Fock orbitals, the DFT exchange energy is close to the 
Hartree–Fock exchange energy. Now that Ex is defined, the correlation-energy functional 
Ec is defined as the difference between Exc and Ex; that is Ec K Exc - Ex, and (16.59) 
follows. When Ex is evaluated using the definition (16.60) and Ec is evaluated by one of 
the currently available models (such as the LDA), one obtains poor results for molecular 
properties. Thus, in practice it is best to model both Ex and Ec, because this leads to can-
cellation of errors and better results. One therefore uses the LDA (or one of its improved 
versions discussed later) to find both Ex and Ec. (For further discussion of why the known 
exact Ex expression is replaced by an approximate Ex expression, see V. N. Staroverov, 
Chapter 6 in A Matter of Density, N. Sukumar, ed., Wiley, 2013.)

Both Ex and Ec are negative, with 0Ex 0  being much larger than 0Ec 0 . The definition of Ec 
in DFT differs from the definition (11.16) of the correlation energy in Hartree–Fock theory, 
but analysis and calculations show that these two quantities are nearly equal [E. K. U. Gross 
et al. in B. B. Laird et al. (eds.), Chemical Applications of Density Functional Theory, 
American Chemical Society, 1996, Chapter 3]. Starting with accurate electron densities 
from MRCI wave functions for Li2, N2, and F2, Gritsenko and co-workers used an itera-
tive procedure to calculate KS orbitals and the KS quantities Ex and Ec for each of these 
molecules at three internuclear distances [O. V. Gritsenko et al., J. Chem. Phys., 107, 5007 
(1997)]. The KS Ex and Ec values were found to be very close to the corresponding Har-
tree–Fock (HF) values EHF

x  and EHF
c  at the equilibrium internuclear distances, but agree-

ment between these quantities decreased as the internuclear distances increased. For N2 at 
Re, values in hartrees for these quantities and for quantities in (16.41) are: Ex = -13.114, 
EHF

x = -13.008; Ec = -0.475, EHF
c = -0.469; �T = 0.329, T = 109.399. The correla-

tion kinetic energy �T  is a significant part of Ec.
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The Xa Method
The following approximation for Exc gives the XA method (the X stands for exchange). 
Here, the correlation contribution to Exc is omitted (it is substantially smaller in magnitude 
than the exchange contribution), and the exchange contribution is taken as

	 Exc � EXa
x = -

9

8
a 3
p
b

1>3
aL 3r1r244>3 dr	 (16.61)

where a is an adjustable parameter; a values from 2
3 to 1 have been used. Functional 

differentiation of (16.61) [Eqs. (16.50) and (16.51)] gives the Xa exchange potential as 
v

Xa
x = - 13a>2213r>p21>3. Note that with a =

2
3, the Xa expression (16.61) for Exc 

becomes equal to the exchange part (16.58) of the LDA Exc expression. The Xa method 
gives rather erratic results in molecular calculations and has been superseded by bet-
ter approximations to Exc. The Xa method was developed by Slater prior to the work 
of Hohenberg, Kohn, and Sham, and was viewed by Slater as an approximation to the 
Hartree–Fock method. It is sometimes called the Hartree–Fock–Slater method. However, 
the Xa method is best viewed as a special case of DFT.

Performing Kohn–Sham Density-Functional Calculations
How does one do a molecular density-functional calculation with ELDA

xc  (or some other 
functional)? One starts with an initial guess for r, which is usually found by superposing 
calculated electron densities of the individual atoms at the chosen molecular geometry. 
From the initial guess for r1r2, an initial estimate of vxc1r2 is found from (16.53) and 
(16.57). This initial vxc1r2 is used in the Kohn–Sham equations (16.47), which are solved 
for the initial estimate of the KS orbitals. In solving (16.47), the uKS

i ’s are usually expanded 
in terms of a set of basis functions xr

uKS
i = a

b

r = 1
crixr

to yield equations that resemble the Hartree–Fock–Roothaan equations (14.34) and (14.56), 
except that the Fock matrix elements Frs = 8xr 0Fn 0xs9  are replaced by the Kohn–Sham 

matrix elements hKS
rs = 8xr 0 hnKS 0xs9 , where hn KS is in (16.48) and (16.49). Thus, instead 

of (14.34), in KS DFT with a basis-set expansion of the orbitals, one solves the equations

	 a
b

s = 1
csi1hKS

rs - eKS
i Srs2 = 0,  r = 1, 2, c, b	 (16.62)

The basis functions most commonly used in molecular KS DFT calculations are con-
tracted Gaussians, but some DF programs use STOs or still other basis functions.

The KS equations can also be solved numerically, without using a basis-function 
expansion of the orbitals, but this choice is not often used.

The initially found uKS
i ’s are used in (16.45) to get an improved electron density, which 

is then used to find an improved vxc, which is then used in the KS equations (16.47) to find 
improved KS orbitals, and so on. The iterations continue until there is no further significant 
change in the density and the KS orbitals. KS DFT calculations involve iterations until 
self-consistency between the exchange–correlation potential vxc and the KS orbitals uKS

i  
in (16.47) has been reached. They are thus a kind of SCF calculation.

Once the calculation has converged, the ground-state energy E0 in (16.46) is found 
from the converged r and ELDA

xc  (or whatever functional is being used). The dipole moment 
can be calculated from r using (14.21), and other one-electron properties can be found from 
(14.8). Analytic gradients of the energy have been developed for KS DFT calculations, 
so the equilibrium geometry is readily found using one of the methods of Section 15.10. 
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Analytic second derivatives of the KS DFT energy are available, and DF vibrational fre-
quencies are readily calculated.

One significant difference between KS DFT calculations and Hartree–Fock calcula-
tions arises from the fact that vLDA

xc 1r2 and versions of vxc more accurate than the LDA 
are very complicated functions of the coordinates. This makes it impossible to analytically 
evaluate the integrals 8xr 0 vxc 0xs9 , which occur in hKS

rs . Instead, 8xr 0 vxc 0xs9  is evaluated 
numerically by evaluating the integrand at each point of a grid of points in the molecule 
and performing a summation. [A less-used alternative approach is to expand vxc1r2 using 
an auxiliary set of basis functions (not the same set used to expand the orbitals), where the 
expansion coefficients are chosen to give a good least-squares fit to values of vxc1r2 evalu-
ated at a grid of points.] The numerical evaluation of the 8xr 0 vxc 0xs9  integrals is the most 
time-consuming step in a DFT calculation with Gaussian basis functions. If too few grid 
points are used, inaccurate results will be obtained. If very many grid points are used, the 
calculation time can become prohibitive. Many DFT programs give the user the power to 
choose the grid size. [See J. M. L. Martin et al., Comput. Phys. Commun., 133, 189 (2001).]

DF calculations that use a basis-set expansion of the KS orbitals involve the same 
Coulomb matrix elements Jrs [Eq. (15.79)] that occur in Hartree–Fock calculations. Such 
DF calculations can be speeded up and linear scaling obtained for large molecules by the 
same techniques used to speed up Hartree–Fock calculations, namely, direct and semidi-
rect methods, neglect of integrals smaller than a threshold value, use of the RI method to 
evaluate electron repulsion integrals, the continuous fast multipole and quantum-chemical 
tree-code methods, the J-matrix engine. For details, see the references in Section 15.16. 
Also the conjugate-gradient density-matrix search method (Section 17.4) can be used to 
avoid diagonalizing the Kohn–Sham matrix.

Deviations of KS DF calculated results from the true values are due to use of approxi-
mate Exc and vxc expressions, and to basis-set inadequacies.

The programs Gaussian, GAMESS, Q-Chem, Jaguar, Turbomole, Molpro, NWChem, 
Spartan, ORCA, and HyperChem (Section 15.14) all contain KS DFT modules. Some 
programs that only do KS DFT calculations are ADF (www.scm.com) and deMon (www
.demon-software.com).

The Local-Spin-Density Approximation (LSDA)
For open-shell molecules and molecular geometries near dissociation, the local-
spin-density approximation (LSDA) gives better results than the LDA. Whereas in the 
LDA, electrons with opposite spins paired with each other have the same spatial KS orbital, 
the LSDA allows such electrons to have different spatial KS orbitals uKS

ia  and uKS
ib . The 

LSDA is thus analogous to the UHF method (Section 15.3), which allows different spa-
tial Hartree–Fock orbitals for electrons with different spins. The theorems of Hohenberg, 
Kohn, and Sham do not require using different orbitals for electrons with different spins 
(unless an external magnetic field is present), and if the exact functional Exc[r] were 
known, one would not do so. With the approximate Exc functionals that are used in KS DFT 
calculations, it is advantageous to allow the possibility of different orbitals for electrons 
with different spins, so as to improve calculated properties of open-shell species and spe-
cies with geometries near dissociation.

The generalization of density-functional theory that allows different orbitals for 
electrons with different spins is called spin-density-functional theory (Parr and Yang, 
Chapter 8). In spin-DFT, one deals separately with the electron density ra1r2 due to the 
spin-a electrons and the density rb1r2 of the spin-b electrons, and functionals such as Exc 
become functionals of these two quantities: Exc = Exc3ra, rb4 . One deals with separate 
Kohn–Sham eigenvalue equations for the spin-a orbitals and the spin-b orbitals, where 
these equations have va

xc = dExc3ra, rb4 >dra and similarly for vb
xc. For species like CH3 
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or the O2 triplet ground state, the number na of a electrons differs from the number of b 
electrons, so here ra � rb, and spin-DFT will give different orbitals for electrons with 
different spins.

Gunnarsson and Lundqvist did an LSDA spin-DFT calculation of the H2 mole-
cule, expanding the occupied KS orbitals using the 1sa and 1sb AOs as basis functions. 
For internuclear separations up to 3.2 bohrs, they found the lowest energy KS orbitals 
to be uKS

a = uKS
b = N11sa + 1sb2. However, for internuclear separations greater than 

3.2 bohrs, they found the lowest-energy KS orbitals to be uKS
a = N11sa + c1sb2 and 

uKS
b = N1c1sa + 1sb2, where c 6 1 and c decreased to zero as the internuclear separa-

tion increased to infinity. Having the spin-a electron’s KS orbital differ from that of the 
spin-b electron allowed the H2 molecular energy versus internuclear separation curve to 
show the proper dissociation behavior, corresponding to dissociation to one hydrogen atom 
with a spin-a electron and a second H atom with a spin-b electron. [Recall that the RHF 
wave function of H2 dissociates improperly. The UHF H2 wave function shows proper 
dissociation (Szabo and Ostlund, Section 3.8.7).]

As in the UHF method, allowing differing KS orbitals for electrons with different 
spins can produce a wave function for the reference system s that is not an eigenfunction 
of Sn2, but this spin-contamination is less of a problem in KS DFT than in the UHF method.

For species with all electrons paired and molecular geometries in the region of the 
equilibrium geometry, we can expect that ra = rb, and spin-DFT will reduce to the ordi-
nary form of DFT.

Despite the fact that r in a molecule is not a slowly varying function of position, 
the LSDA works surprisingly well for calculating molecular equilibrium geometries, 
vibrational frequencies, and dipole moments, even for transition-metal compounds, where 
Hartree–Fock calculations often give poor results. However, calculated LSDA molecular 
atomization energies are very inaccurate. Accurate dissociation energies require function-
als that go beyond LSDA.

Gradient-Corrected (GGA) Functionals
The LDA and LSDA are based on the uniform-electron-gas model, which is appropriate 
for a system where r varies slowly with position. The integrand in the expression (16.52) 
for ELDA

xc  is a function of only r, and the integrand in ELSDA
xc  is a function of only ra and 

rb. Functionals that go beyond the LSDA aim to correct the LSDA for the variation of 
electron density with position. A common way to do this is by including the gradients [Eq. 
(5.30)] of ra and rb in the integrand. Thus

	 EGGA
xc 3ra, rb4 = L f1ra(r2, rb1r2, �ra1r2, �rb1r22 dr	 (16.63)

where f is some function of the spin densities and their gradients. The letters GGA stand 
for generalized-gradient approximation. The term gradient-corrected functional is also 
used. (The LDA functional is called a local functional because it involves only the value of 
r at the point r. Gradient-corrected functionals are called semilocal because they involve 
the values of r at r and in an infinitesimal neighborhood of r.) EGGA

xc  is usually split into 
exchange and correlation parts, which are modeled separately:

	 EGGA
xc = EGGA

x + EGGA
c 	 (16.64)

Approximate gradient-corrected exchange and correlation energy functionals are devel-
oped using theoretical considerations such as the known behavior of the true (but unknown) 
functionals Ex and Ec in various limiting situations as a guide. Often some empiricism is 
thrown in by choosing the values of parameters in the functionals to give good performance 
for known values of various molecular properties.
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Some commonly used GGA exchange functionals Ex are Perdew and Wang’s 1986 
functional (which contains no empirical parameters), designated PW86 or PWx86, Becke’s 
1988 functional, denoted B88, Bx88, Becke88, or B, and Perdew and Wang’s 1991 exchange 
functional PWx91. The explicit form of the B88 exchange functional is

EB88
x = ELSDA

x - b a
s=a, bL

1rs24>3x2
s

1 + 6bxs ln3xs + 1x2
s + 121>24  dr = ELSDA

x + �EB88
x

where xs K  0 �rs 0 > 1rs24>3, b is an empirical parameter whose value 0.0042 atomic units 
was determined by fitting known Hartree–Fock exchange energies (which are close to KS 
exchange energies) of several atoms, �EB88

x  is an abbreviation for the B88 gradient cor-
rection to ELSDA

x , and [see (16.58) and Prob. 16.27]

	 ELSDA
x = -

3

4
a 6
p
b

1>3

L 31ra24>3 + 1rb24>34  dr	 (16.65)

The PWx86 functional (which has no empirical parameters) and the B88 exchange func-
tional work about equally well in predicting molecular properties.

Commonly used GGA correlation functionals Ec include the Lee–Yang–Parr (LYP) 
functional, the Perdew 1986 correlation functional (P86 or Pc86), and the Perdew–Wang 
1991 parameter-free correlation functional (PW91 or PWc91).

The Perdew–Burke–Ernzerhof (PBE) exchange and correlation functional has no 
empirical parameters [Phys. Rev. Lett., 77, 3865 (1996)] and is widely used in DFT cal-
culations on solids.

Some Ex and Ec values in hartrees for the Ar atom are (A. D. Becke in Yarkony, 
Chapter  15): EHF

x = -30.19, ELSDA
x = -27.86, EB88

x = -30.15; EHF
c = -0.722, 

ELSDA
c = -1.431, EPW91

c = -0.768, where the Hartree–Fock (HF) values should be good 
estimates of the KS DFT values. These values may be compared with the total energy 
-527.54 hartrees for Ar, so the exchange and correlation energies are about 6% and 0.14%, 
respectively, of the total energy.

Any exchange functional can be combined with any correlation functional. For example, 
the notation BLYP>6@31G* denotes a DFT calculation done with the Becke 1988 exchange 
functional and the Lee–Yang–Parr correlation functional, with the KS orbitals expanded 
in a 6-31G* basis set. The letter S (which acknowledges Slater’s Xa method) denotes the 
LSDA exchange functional (16.65). VWN denotes the Vosko–Wilk–Nusair expression for 
the LSDA correlation functional. (Actually, these workers gave two different expressions 
for ELSDA

c , which are sometimes referred to as VWN3 and VWN5.) Thus an LSDA calcu-
lation can be denoted by the letters LSDA or by SVWN.

Meta-GGA Functionals
The GGA density functionals of the form (16.63) depend on the ground-state electron prob-
ability density r and its first derivatives. One way to improve on GGA functionals is to go 
to functionals that also depend on the second derivatives of r and/or a quantity called the 
kinetic-energy density (which is defined below). Such functionals are called meta-GGA 
(mGGA) functionals and have the form

	 EMGGA
xc 3ra, rb4 = L f1ra,  rb,  �ra,  �rb,  �2ra,  �2rb,  ta,  tb2 dr	 (16.66)

where the Kohn–Sham kinetic-energy density for the spin-a electrons is defined by

ta K
1

2 a
i
0 �uKS

ia 0 2
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where the uKS
ia ’s are the Kohn–Sham orbitals for the spin@a electrons and the sum goes over 

the occupied orbitals. The reason for the name “kinetic-energy density” becomes clear if 
you look at Prob. 7.7(b). Most meta-GGA functionals omit �2ra and �2rb from (16.66). 
The dependency of a meta-GGA functional on ta and tb can occur in the exchange part, 
in the correlation part, or in both parts of the functional.

Meta-GGA DFT calculations require a little more time than GGA calculations and 
can give better results than GGA calculations.

Becke’s B95 meta-GGA correlation functional, containing two parameters whose val-
ues were fitted to atomic correlation energy data, is often used. The TPSS (Tau, Perdew, 
Staroverov, Scuseria) meta-GGA functional has given good results for many proper-
ties. A reparametrization of TPSS gave the oTPSS functional, where o is for optimized  
[L. Goerigk and S. Grimme, J. Chem. Theory Comput., 6, 107 (2010)].

Hybrid Functionals
Hybrid exchange–correlation functionals are widely used. A hybrid functional mixes 
together the formula (16.60) for Ex with GGA (or meta-GGA) Ex and Ec formulas and 
was first proposed by Becke. For example, the popular B3LYP (or Becke3LYP) hybrid 
GGA functional (where the 3 indicates a three-parameter functional) is defined by

EB3LYP
xc = 11 - a0 - ax2ELSDA

x + a0E
exact
x + axE

B88
x + 11 - ac2EVWN

c + acE
LYP
c

	 EB3LYP
xc = 0.08ELSDA

x + 0.20E exact
x + 0.72EB88

x + 0.19EVWN
c + 0.81ELYP

c 	 (16.67)

	 EB3LYP
xc = 0.80ELSDA

x + 0.20E exact
x + 0.72�EB88

x + 0.19EVWN
c + 0.81ELYP

c

In (16.67), E exact
x  (which is usually denoted EHF

x , since it uses a Hartree–Fock definition 
of Ex) is given by (16.60); the parameter values a0 = 0.20, ax = 0.72, and ac = 0.81 
were chosen to give good fits to experimental molecular atomization energies; and the 
relation EB88

x = ELSDA
x + �EB88

x  [the equation after (16.64)] was used. In the B3PW91 
hybrid functional, EPW91

c  replaces ELYP
c  in (16.67), and the same a values are used. Becke’s 

one-parameter hybrid meta-GGA functional B1B95 (also called B1B96) is EB1B95
xc =

11 - a02EB88
x + EB95

c + a0E
exact
x , where the empirical-parameter value a0 = 0.28 was 

found by fitting atomization energies. One says that B1B95 contains 28% exact exchange.
Although Becke’s name is associated with the widely used B3LYP functional, he did 

not actually propose it. Rather, he proposed the B3PW91 functional and chose the three 
parameters in it to fit experimental data [A. D. Becke, J. Chem. Phys., 98, 5648 (1993)]. 
Other workers then replaced EPW91

c  with ELYP
c  and did not change the three parameter 

values, giving the B3LYP functional. They then programmed B3LYP into the Gaussian 
program. The enormous popularity of B3LYP is evidenced by the fact that Becke’s paper 
has been cited over 45000 times.

As an improvement on the B3LYP, B3PW91, and B1B95 hybrid functionals, Becke  
[A. D. Becke, J. Chem. Phys., 107, 8554 (1997); H. L. Schmider and Becke, J. Chem. Phys., 
108, 9624 (1998)] proposed the B97 hybrid GGA functional

	 Exc = EGGA
x + cxE

exact
x + EGGA

c 	 (16.68)

where cx is a parameter and EGGA
x  and EGGA

c  are certain GGA functionals that contain three 
and six parameters, respectively. The values of the 10 parameters in Exc were determined 
as the set that gave the best fit to experimental energy data in the G2 test set (Section 
16.1). Using a numerical method to solve the Kohn–Sham equations (so as to avoid basis-
set truncation error), Becke found that the functional (16.68) gave a mean absolute error 
(MAE) of only 1.8 kcal/mol for 55 atomization energies, a significant improvement over 
the functional B3PW91, which had an MAE of 2.4 kcal/mol for these energies. Revised 
versions of B97, called B97-1, B97-2, and B97-3 exist. [For the references, see Table 2  
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in Y. Zhao et al., J. Chem. Theory Comput., 2, 364 (2006).] B98 is a hybrid GGA exchange–
correlation functional that is a revision of B97.

The PBE0 functional is a hybrid extension of PBE and includes 25% exact exchange.
Most density functionals give only fair accuracy for predicted activation energies 

(barrier heights) for chemical reactions. The BMK (Boese–Martin for kinetics) hybrid 
meta-GGA exchange–correlation functional uses 42% exact exchange and contains 16 
parameters whose values were chosen to give good performance for barrier heights without 
significantly sacrificing performance on other properties [A. D. Boese and J. M. L. Martin, 
J. Chem. Phys., 121, 3405 (2004)].

To speed up density-functional calculations on large molecules, one can use the density 
fitting (RI) method (Section 16.3). Hybrid functionals have the disadvantage that when 
density fitting is used with hybrid functionals, the calculations are much slower than when 
a functional that does not include exact exchange is used.

GGA, meta-GGA, hybrid-GGA, and hybrid-meta-GGA functionals give not only good 
equilibrium geometries, vibrational frequencies, and dipole moments, but also generally 
accurate molecular atomization energies. For example, B3LYP>6@311+G(2d,p) calculations 
on the G2 data set gave an MAE of 3.1 kcal/mol (Foresman and Frisch, Chapter 7).

Double-Hybrid Functionals
Grimme proposed improving DFT energy results by using the MP2 second-order energy-
correction formula, as follows [S. Grimme, J. Chem. Phys., 124, 034108 (2006)]. One first 
defines a hybrid-GGA DFT functional of the form

	 Ehybrid - GGA
xc = a1E

GGA
x + 11 - a12E exact

x + a2E
GGA
c 	 (16.69)

and uses this functional to self-consistently solve for KS orbitals (both occupied and vir-
tual) and orbital energies by the standard DFT approach. One then calculates an improved 
value of Exc as

	 Exc = Ehybrid@GGA
xc + 11 - a22EKS@MP2

c 	 (16.70)

where EKS@MP2
c  is calculated from the MP2 equation (16.13) using the KS orbitals and KS 

orbital energies. This improved Exc is then used in (16.46) to calculate the ground-state 
energy E0. The two parameters a1 and a2 are chosen as values that give good fits to a 
chosen set of data. Grimme defined the B2-PLYP functional, also called B2PLYP (where 
the 2 indicates two parameters and the first P stands for perturbation), by taking EGGA

x  
as the B88 exchange functional, taking EGGA

c  as the LYP correlation functional, and tak-
ing a1 = 0.47, a2 = 0.73. The mPW2-PLYP functional uses the modified Perdew–Wang 
functional for exchange and LYP for correlation, and has a1 = 0.45, a2 = 0.75. Since an 
MP2 energy calculation is required, this method requires significantly more time than a 
conventional DFT calculation, but the MP2 calculation can be speeded up by using the RI 
approximation (Section 16.3). Also, since the method is intermediate between DFT and 
MP2, to get good results a larger basis set is required than for DFT, but smaller than for 
MP2. Instead of the MP2 expression in (16.70), the SCS-MP2 energy can be used.

For the G3/05 test set (Section 16.1), mean absolute deviations from experiment are 
2.5 kcal/mol for B2-PLYP and 2.1 kcal/mol for mPW2-PLYP, as compared with 4.4 kcal/
mol for B3LYP [T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys., 8, 4398 (2006)]. In 
these calculations, the geometry was found from a B3LYP calculation with a VTZ2P basis 
set, and the single-point energy calculation was done using a polarized valence quadruple-
zeta basis set.

B2PLYP and mPW2PLYP are called double-hybrid density functionals (DHDFs), 
since they mix in not only some exact exchange but also some correlation calculated by 
the MP2 method.
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According to Grimme, “DHDFs are currently by far the most accurate DFT methods 
available” [S. Grimme et al., WIREs, Comput. Mol. Sci., 2, 886 (2012)].

The preceding density functionals have been grouped into five categories, as follows.

	 1.	 The LDA expression for Exc involves only r1r2.
	 2.	 GGA functionals involve both r and �r.
	 3.	 Meta-GGA functionals involve r, �r, and either �2r or t.
	 4.	 Hybrid functionals add exact exchange.
	 5.	 Double hybrid functionals add a dependence on the unoccupied KS orbitals.

These five categories of functionals correspond roughly to the five rungs on 
what Perdew called a Jacob’s ladder (Genesis 28:10–12) of successively more accurate 
functionals [J. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001); http://dx.doi.
org/10.1063/1.1390175].

Dispersion Corrections
A major deficiency of most of the functionals discussed so far is their poor performance 
in dealing with intramolecular and intermolecular London dispersion interactions between 
nonbonded atoms. Such interactions are important in large molecules such as biomolecules. 
Several methods have been proposed to deal with this failing. For a review, see S. Grimme, 
WIREs Comput. Mol. Sci., 1, 211 (2011).

One approach is to simply add on to the energy a correction term for dispersion after 
the usual KS DFT energy calculation has been done. This procedure is called the DFT-D 
method. The simplest form of correction term is Edisp = - gAB1CAB>R6

AB2 f1RAB2 [see 
Eq. (14.103)] where the sum goes over all pairs of atoms A and B, CAB is a constant, RAB 
is the distance between A and B, and f1RAB2 is a damping function that makes Edisp go 
to zero as RAB S 0. In practice, more complicated forms of Edisp are used. The most suc-
cessful of several DFT-D methods is the DFT-D3 method; the 3 indicates the third version 
[S. Grimme et al., J. Chem. Phys., 132, 154104 (2010)]. DFT-D3 includes three empiri-
cally determined parameters in Edisp, calculates the CAB coefficients theoretically, and also 
includes a 1>R8

AB term. The values of the three parameters depend on which functional the 
dispersion correction is being used with. The DFT-D energy is EDFT - D = EDFT + Edisp.

A few highly parametrized functionals that do not include explicit allowance for dis-
persion do fairly well for nonbonded interactions. An example is the M06-2X functional.

Vydrov and Van Voorhis devised the two-parameter VV10 correlation functional 
EVV10

c  that can be added to any existing Exc functional that does not give significant 
binding in van der Waals complexes to produce a functional that provides for dispersion  
[O. A. Vydrov and T. Van Voorhis, J. Chem. Phys., 133, 244103 (2010)]. Tests of VV10 
with various standard hybrid functionals found quite good performance for energies of non
covalent interactions (5 to 10% error) and for intramolecular and intermolecular distances 
in the complexes of the S22 and S66 test sets [W. Hujo and S. Grimme, J. Chem. Theory 
Comput., doi: 10.1021/ct300813c and references cited therein]. The performance of VV10 
was similar to that of DFT-D3. DFT-D3 is computationally much faster than VV10, but 
VV10 may be more generally applicable than DFT-D3.

Evaluation of Functionals
Hundreds of density functionals have been proposed. For listings and classifications of 
over 40 functionals, see N. E. Schultz et al., J. Phys. Chem. A, 109, 11127 (2005); 109, 
4388 (2005); Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput., 1, 415 (2005). There 
is no correct answer to the question “Which is the best DFT functional?”, since function-
als that give good results for organic compounds may give inferior results for inorganic 
compounds, and functionals that give good results for energy changes in reactions may give 
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inferior results for activation energies of reactions. Thus the best functional to use depends 
on the kinds of compounds being studied and on which properties are being calculated. 
During the period 1995–2010, the B3LYP functional was the most widely used by chem-
ists, since it gives good results for a number of commonly studied properties. Functionals 
that surpass the performance of B3LYP have been developed and will see increasing use.

Zhao and Truhlar developed a set of meta-GGA exchange–correlation function-
als that have the following percentages of exact (Hartree–Fock) exchange: 0% for 
M06-L, 27% for M06, 28% for M05, 54% for M06-2X, 56% for M05-2X, and 100% 
for M06-HF [Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); Acc. 
Chem. Res., 41, 157 (2008)]. M06 stands for the University of Minnesota 2006 and L 
stands for “local,” indicating that no exact exchange is included. [For the functional 
Exc = 1Y>1002Ex

exact + 11 - Y>1002Ex
DFT + Ec

DFT, the percentage of exact exchange is Y.] 
These functionals each have about 35 parameters. Zhao and Truhlar tested the perfor-
mance of 15 functionals for a variety of properties and found that M06-2X, BMK, and 
M05-2X gave the best performance for main-group thermochemistry and kinetics. For 
example, for 177 energy changes, some mean absolute errors (MAEs) are 1.3 kcal/mol 
for M06-2X as compared with 2.6 kcal/mol for B98 and 3.6 kcal/mol for B3LYP; for 76 
chemical-reaction barrier heights, the MAEs are 1.2 kcal/mol for M06-2X as compared with  
3.6 kcal/mol for B98 and 4.5 kcal/mol for B3LYP. (These tests used polarized triple-zeta 
basis sets.) M06-L and M06 gave the best performance for transition-metal thermochemistry. 
M06-2X, M05-2X, M06-HF, M06, and M06-L gave the best performance for noncovalent 
interactions such as hydrogen bonding. The absence of exact exchange in M06-L speeds 
up calculations and allows larger systems to be treated.

Goerigk and Grimme used the GMTKN30 database (Section 16.1) to test 47 func-
tionals with the DFT-D3 dispersion correction added to most of them [L. Goerigk and  
S. Grimme, Phys. Chem. Chem. Phys., 13, 6670 (2011)]. With a quadruple-zeta polar-
ized basis set, they found the following weighted mean absolute energy errors in kcal/
mol (given in parentheses) for functionals on the five rungs of Perdew’s Jacob’s ladder of 
functionals: LDA (12.0), GGA functionals (5.3), meta-GGA functionals (4.4), hybrid func-
tionals (3.3), double-hybrid functionals (1.8). The popular B3LYP-D3 functional did worse 
than average for hybrid functionals with 3.8. MP2 results for comparison are MP2/CBS 
(3.6), SCS-MP2/CBS (2.9), and SOS-MP2/CBS (3.8). The best overall GGAs were B97-D3 
(4.8) and revPBE-D3 (4.6). The best meta-GGA was oTPSS-D3 (3.8), and the best hybrids  
were M062X-D3 (2.2) (but this functional had SCF convergence problems as did other 
Minnesota functionals) and PW6B95 (2.8). The best double-hybrids were DSD-BLYP-D3 
(1.5) and PWPB95-D3 (1.6).

Basis Sets
In the wave-function-theory (WFT) correlation methods of Sections 16.2–16.4, the ade-
quacy of the basis set is crucial. Use of too small a basis set gives unreliable results, and for 
the highest accuracy, one attempts to extrapolate to the complete basis-set limit. In DFT, 
which is based on the electron density r, rather than on the wave function, the basis set 
plays a smaller role, and rather good results can often be obtained with a rather small basis 
set, such as a DZP set (for example, 6-31G*). Moreover, in DFT most properties calculated 
with TZP basis sets have converged. The Goerigk and Grimme study of the last paragraph 
found quite significant improvement in going from a DZP to a TZP basis set, but little 
further improvement in going to a QZP set for most functionals. In DFT, one finds that a 
Pople basis set usually gives significantly better results than a correlation-consistent (cc) 
basis set of similar size [A. D. Boese et al., J. Chem. Phys., 119, 3005 (2003)]. Whereas 
in WFT, the cc basis sets usually allow a smooth extrapolation to the complete-basis-set 
limit, DFT/cc calculations sometimes show irregular convergence to a limit.
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Excited States
DFT was originally developed as a ground-state theory, but several DFT theories that can 
calculate properties of excited electronic states have been developed. The most widely used 
such theory is linear response time-dependent DFT (LR-TDDFT). Here, one applies 
time-dependent perturbation theory to the ground electronic state of a molecule perturbed 
by a weak oscillating time-dependent spatially uniform electric field. The effect of the 
applied field on the ground-state electronic density r is found to depend on a sum whose 
terms involve the energy differences Ej - E0 between the various excited electronic states 
j and the ground electronic state, where these energies are calculated at the same molecular 
geometry. (Thus we are dealing with vertical excitation energies; see the CIS discussion 
in Section 16.2.) By using certain mathematical techniques, one can solve for the quan-
tity Ej - E0 for individual excited electronic states. Moreover, one can also calculate the 
strength of the electronic absorption to state j, so the electronic absorption spectrum can 
be predicted. By repeating the TDDFT calculation at various molecular geometries, one 
can find Ej - E0 at each of these geometries for state j. Use of DFT-calculated E0 values 
at these geometries then gives the potential-energy surface (Section 15.10) for the excited 
state j. Methods to find excited-state energy gradients analytically in LR-TDDFT have been 
developed, which allows efficient location of the equilibrium geometry of an excited state. 
Note that LR-TDDFT calculates properties of an excited state by examining the response 
of the ground-state electron density to the applied field.

The results of LR-TDDFT for vertical electronic excitation energies are quite good, 
with typical errors lying in the range 0.1 to 0.5 eV for situations where the theory is appli-
cable, which is much better than for the CIS method (Section 16.2), which gives errors of 
1 to 2 eV. Moreover, excited-state equilibrium geometries and vibrational frequencies are 
accurately calculated. However, LR-TDDFT works well only for excitations of a single 
valence electron to a low-lying excited state, and fails for molecules involving long-chain 
conjugated p-electron systems and for excited states involving charge transfer. Whether 
future functionals will increase the applicability of LR-TDDFT is unclear.

A review of single-reference methods for large-molecule excited-state calculations 
noted that LR-TDDFT can treat systems with up to 200 to 300 first-row atoms and stated 
that LR-TDDFT “is the most prominent method for the calculation of excited states of 
medium-sized and large molecules” [A. Dreuw and M. Head-Gordon, Chem. Rev., 105, 
4009 (2005)]. For more on TDDFT, see C. Ullrich, Time-Dependent Density-Functional 
Theory, Oxford, 2012.

The Past and Future of DFT
Hohenberg, Kohn, and Sham’s work was published in 1964 and 1965. [For a personal 
account, see P. C. Hohenberg, W. Kohn, and L. J. Sham, Adv. Quantum Chem., 21, 7 
(1990).] Quickly thereafter, physicists applied KS DFT using the LSDA to study solids 
with considerable success, and DFT became the dominant method of doing quantum-
mechanical calculations on solids. Chemists were rather slow to apply DFT to molecules 
because of numerical difficulties in doing reliable DFT molecular calculations, the lack 
of widely available molecular DFT computational programs, and perhaps partly in reac-
tion to disappointment with the Xa method, which had been overpraised by some of its 
practitioners. The numerical difficulties were largely solved around 1980, and LSDA DFT 
molecular calculations in the 1980s achieved good results for molecular geometries but 
failed to give accurate dissociation energies.

The next major advance in DFT was the introduction of gradient-corrected functionals 
in the mid-1980s, which Becke found to give accurate dissociation energies. Also in 1988, 
analytic gradients were implemented in DFT, greatly facilitating calculation of equilibrium 
geometries. The 1989 DFT book by Parr and Yang helped draw the attention of quantum 
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chemists to DFT. In 1993, provision for DF calculations was added to the popular program 
Gaussian. In the mid-1990s molecular DFT calculations experienced explosive growth.

DFT has the advantage of allowing for correlation effects to be included in a calcu-
lation that takes roughly the same time as a Hartree–Fock calculation, which does not 
include correlation. Whether KS DFT should be classified as an ab initio method is a 
matter of debate. If the true Exc were known and used, then KS DFT would be an ab initio 
method. However, the true Exc is unknown and must be replaced by a model Exc, such as 
the LSDA or the LSDA with gradient corrections. Some people would consider that use of 
ELSDA

xc  disqualifies KS DFT as being an ab initio method, but others would not. Many of 
the gradient-corrected functionals contain empirical parameters, and in hybrid function-
als, the mixing constant(s) are determined empirically. Use of functionals with empirically 
determined parameters clearly disqualifies a method as being ab initio, but the number of 
parameters used in these versions of DFT is far fewer than the number used in common 
semiempirical theories such as AM1 or PM3 (Section 17.4), which use different parameters 
for each kind of atom, which is not true in DFT. The KS DFT method is usually considered 
in a category by itself, distinct from ab initio methods such as HF, CI, MP, and CC.

Despite its successes, DFT is not a panacea. Some drawbacks and failings of DFT 
are the following.

The Hohenberg–Kohn–Sham theory is basically a ground-state theory. LR-TDDFT 
can only be applied to certain kinds of excited states. (One can use DFT to calculate the 
lowest state of each symmetry; for example, one can calculate the lowest singlet state and 
the lowest triplet state.)

Because approximate functionals are used, KS DFT is not variational and can yield 
an energy below the true ground-state energy. For example, a B3LYP/cc-pVTZ geometry 
optimization of H2O gives an energy of -76.460 hartrees, compared with the true non-
relativistic energy of -76.438 hartrees (Table 16.1). Calculations with gradient-corrected 
functionals are size-consistent.

The true Exc contains a self-interaction correction that exactly cancels the self-
interaction energy in 1

2 11r1r12r1r22r-1
12 dr1 dr2, but most currently used functionals are 

not completely free of self-interaction. Because of the self-interaction error, most currently 
available functionals give very incorrect U(R) curves at large internuclear distances for 
symmetrical radical ions such as H+

2, He+
2, and F+

2  and overestimate the intermolecular 
interaction in some charge-transfer complexes [Y. Zhang and W. Yang, J. Chem. Phys., 
109, 2604 (1998)].

Although KS DFT yields good results for most molecular properties, with the pres-
ently available functionals, KS DFT cannot match the accuracy that the ab initio CCSD(T) 
method can achieve. Of course, CCSD(T) is limited to dealing with rather small molecules, 
whereas DFT can handle large molecules.

With methods such as CC, CI, and MP, the way to achieve more accurate results is clear. 
One uses larger basis sets and goes to higher orders of correlation (CCSD, CCSDT, . . . ;  
CISD, CISDT, . . . ; MP2, MP3, . . . , provided the perturbation series converges), although 
how far one can go for a given size molecule is limited by currently available computing 
power. In KS DFT, there is no clear way to construct more accurate Exc functionals. One 
must try out new functionals one by one to see whether they will give improved results.

Many of the currently used Exc functionals fail for van der Waals molecules. For exam-
ple, the BLYP, B3LYP, and BPW91 functionals predict no binding in He2 and Ne2. How-
ever, the PBE functional works fairly well here [Y. Zhang et al., J. Chem. Phys., 107, 7921 
(1997)]. Also, Adamo and Barone modified the parameters in the PW91 exchange func-
tional to give the modified Perdew–Wang (mPW or MPW) exchange functional and found 
that the hybrid GGA one-parameter functional Exc = 11 - a2EmPW91

x + aE exact
x + EPW91

c  
with a = 0.25 (called mPW1PW91) performs fairly well for He2 and Ne2 and works well 
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for bond lengths, atomization energies, and vibrational frequencies of ordinary molecules 
[C. Adamo and V. Barone, J. Chem. Phys., 108, 664 (1998)]. Moreover, the DFT-D3 method 
and the VV10 functional work well for dispersion interactions.

Most of the currently available KS DFT functionals give only fair results for activation 
energies of reactions. However, a study of many methods of calculating barrier heights 
found good results from a few functionals, including PWB6K, BMK, BB1K, and MPW1K 
[J. Zheng et al., J. Chem. Theory Comput., 3, 5691 (2007)], with mean absolute errors run-
ning 11

4 to 2 kcal/mol with modest-size basis sets. The functional BB1K (where K stands 
for kinetics) is the same as B1B95 (see above) except that the parameter a0 was fitted to 
kinetics data to give a0 = 0.42. MPW1K is the mPW1PW91 functional with the parameter 
a changed to 0.428. PWB6K is a six-parameter hybrid meta-GGA functional based on 
the PW91 exchange functional and the B95 correlation functional. It has six parameters 
because the parameters within the exchange and correlation functionals (along with the 
fraction of exact exchange) were adjusted to fit kinetics data.

Although many functionals give good results for molecular properties, currently avail-
able forms of these functionals are known to be significantly in error. DFT shows that the 
exact Ex,  Ec,  vx, and vc must satisfy certain conditions, and currently available functionals 
violate at least some of these conditions [see C. Filipi et al., in J. M. Seminario (ed.), Recent 
Developments and Applications of Modern Density Functional Theory, Elsevier, 1996, 
p. 295]. The Hohenberg–Kohn theorem applied to the reference system of noninteract-
ing electrons assures us that the true ground-state electron density determines the exter-
nal potential vs in (16.48). Iterative methods have been devised that take a very accurate 
ground-state molecular electron density found from a high-level calculation (for example, 
CI) and use it to calculate vs for the corresponding reference system. From vs, we can use 
(16.47) and (16.48) to find vxc1r2. The accurate vxc found from an accurate r for a particular 
atom or molecule can then be compared with the vxc’s found from currently used Exc’s. 
The results show that many currently used vxc’s are substantially in error [M. E. Mura, 
P. J. Knowles, and C. A. Reynolds, J. Chem. Phys., 106, 9659 (1997); E. J. Baerends et al., 
in B. B. Laird et al. (eds.) Chemical Applications of Density-Functional Theory, American 
Chemical Society, 1996, Chapter 2].

DFT is now the most common method used in quantum-chemistry calculations. Also, 
DFT has been used to give quantitative definitions of such chemical concepts as electro-
negativity, hardness and softness, and reactivity; see Parr and Yang, Chapters 5 and 10; 
W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem., 100, 12974 (1996); P. Geerlings et 
al., Chem. Rev., 103, 1793 (2003).

16.6 Composite Methods for Energy Calculations
A desirable goal is to compute a thermodynamic energy such as the molecular atomization 
energy or the enthalpy of formation, with chemical accuracy, which means an accuracy 
of 1 kcal/mol. Currently available functionals in DFT cannot do this. High-level methods 
such as CCSD(T), QCISD(T), and CISDTQ with large basis sets (such as aug-cc-pCV6Z), 
can do this but are much too costly to be feasible except for small molecules. The aim of 
the composite methods discussed in this section is to achieve 1 kcal/mol or better accu-
racy with a computational time that allows calculations on molecules containing several 
nonhydrogen atoms. These composite methods use a series of ab initio calculations and 
some of them also include empirical corrections. Composite methods are reviewed in K. 
A. Peterson et al., Theor. Chem. Acc., 131, 1079 (2012).

The Gaussian-3 (G3) method (so called because it is an improvement on its predeces-
sors, the G1 and G2 methods) is designed to give a result close to what would be obtained 
by a QCISD(T)>G3large calculation in much less computer time than required by such a 
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calculation [L. A. Curtiss et al., J. Chem. Phys., 109, 7764 (1998); 114, 9287 (2001)]. G3large 
is an improved version of the 6-311+G(3df,2p) basis set. In the G3 method, the zero-point 
energy is found by scaling the frequencies found in a HF>6@31G* frequency calculation with 
the factor 0.893. All subsequent calculations are done at the optimized geometry found in an 
MP2>6@31G* calculation. One then computes a base energy Ebase from an MP4>6@31G* 
calculation. Various corrections to Ebase are then found as differences between Ebase and 
energies obtained from MP4>6@31+G(d), MP4>6@31G(2df,p), QCISD(T)>6@31G(d), and 
MP2>G3large single-point calculations. These corrections are added to Ebase, and an 
empirical higher-level correction of -Anpairs - Bnunpaired hartrees is added to correct for 
basis-set incompleteness. Here, npairs is the number of valence electron pairs in the molecule 
and nunpaired is the number of unpaired electrons; A and B are empirical parameters with 
A = 0.0006386, B = 0.0002977 for molecules, and A = 0.0006219, B = 0.0001185 for 
atoms. The various corrections to Ebase allow for the effects of including diffuse basis func-
tions, polarization basis functions, and higher levels of electron correlation.

G3>>B3LYP (also called G3B3 or G3B) is a modification of G3 that uses geometries 
and zero-point vibrational energies found from B3LYP>6@31G* calculations instead of 
from MP2>6@31G* and HF>6@31G* calculations [A. G. Baboul, J. Chem. Phys., 110, 7650 
(1999)]. G3>>B3LYP is faster than G3 and just as accurate as G3.

G3X (where the X stands for extension) is an improvement of the G3 method. It uses 
B3LYP>6@31G(2df,p) geometries and zero-point energies and adds a g polarization func-
tion to the G3Large basis set for second- and third-row atoms [L. A. Curtiss et al., J. Chem. 
Phys., 114, 108 (2001)]. For the G3/05 test set, the mean absolute deviation of calculated 
values from experimental values is 1.01 kcal/mol for G3X and 1.13 kcal/mol for G3 [L. A. 
Curtiss et al., J. Chem. Phys., 123, 124107 (2005)].

G3S and G3SX are modifications of G3 and G3X, respectively, in which instead of 
using the additive higher-level correction, one multiplies each of the various parts of the 
Hartree–Fock and the correlation energies by an empirically determined scale factor (six 
such factors are used). These methods give similar performance to G3 and G3X, and have 
the advantage of being applicable to determining the potential-energy surface of reac-
tions where the products have a different number of unpaired electrons than the reactants  
[L. A. Curtiss et al., J. Chem. Phys., 112, 1125 (2000)].

The MP4 calculations are the most time-consuming steps in the G3 and G3X methods 
and prevent their applicability to large molecules. The G3(MP2) and G3X(MP2) methods 
[L. A. Curtiss et al., J. Chem. Phys., 110, 4703 (1999); 114, 108 (2001)] are modifications 
of G3 and G3X that replace MP4 calculations with MP2 calculations, thereby speeding up 
the calculations and allowing somewhat larger molecules to be treated. For the G3/99 test 
set, mean absolute deviations from experiment are 1.31 kcal/mol for G3(MP2), 1.19 kcal/
mol for G3X(MP2), 1.07 kcal/mol for G3, and 0.95 kcal/mol for G3X.

The G4 method is an improvement on G3 and differs from G3 as follows: G4 uses an 
extrapolation procedure [Eq. (15.23)] to estimate the Hartree–Fock energy in the complete-
basis-set limit; uses a larger basis set; replaces the QCISD(T) calculation by a CCSD(T) 
calculation; uses B3LYP>6@31G(2df,p) to find the equilibrium geometry and the zero-
point energy; and includes two additional empirical parameters in the higher-level correc-
tion [L. A. Curtiss et al., J. Chem. Phys., 126, 084108 (2007)]. For the G3/05 test set, G4 
has a mean absolute error of 0.83 kcal/mol, compared with 1.13 kcal/mol for G3. Relative 
computation times for benzene are 2 for G2, 1 for G3, and 3 for G4.

The correlation-consistent composite approach (ccCA) is based in part on the 
G3B  method, but uses Dunning correlation-consistent basis sets instead of Pople basis 
sets,  does extrapolations to the CBS limit, replaces the QCISD(T) calculation with 
a CCSD(T) calculation, includes a relativistic correction, and contains no empirical 
parameters [N. J. DeYonker et al., J. Chem. Phys., 125, 104111 (2006); Mol. Phys., 107, 
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1107 (2009)]. For the G3/99 test set the mean absolute deviations from experiment are 0.96 
and 0.97 kcal/mol for the versions ccCA-P and ccCA-S4 (which differ in the extrapola-
tion formulas used), compared with 1.16 and 0.95 kcal/mol for G3 and G3X, respectively. 
About 20 versions of ccCA exist, including a version for transition metal compounds, a 
multireference version, and RI versions,

The CBS-Q, CBS-QB3, CBS-q, and CBS-4 methods are varieties of CBS (complete 
basis set) composite methods devised for calculations on molecules containing the atoms 
H to Ar. These methods use procedures designed to extrapolate calculated energies to the 
complete-basis-set limit. Like G3, the CBS methods include several correlated calcula-
tions done at a geometry optimized at a lower level of theory. The highest-level calcula-
tion used is QCISD(T)>6@31+G† (the 6-31+G† basis set is a slightly improved version 
of 6-31G*) in the CBS-Q and CBS-QB3 methods, is QCISD(T)>6@31G in the CBS-q 
method, and is MP4(SDQ)>6@31G in the CBS-4 method. Like G3, the CBS methods 
contain empirical corrections. For details see J. W. Ochterski, G. A. Petersson, and J. A. 
Montgomery, J. Chem. Phys., 104, 2598 (1996); J. A. Montgomery et al., J. Chem. Phys., 
110, 2822 (1999).

The composite methods W1, W2, W3, and W4 (where the W stands for the Weiz-
mann Institute, where the methods were developed) use high-level coupled-cluster calcu-
lations to achieve extraordinary accuracy in thermochemical quantities [A. Karton et al., 
J. Chem. Phys., 125, 144108 (2006) and references cited therein]. W1 has one empirically 
determined parameter, but W2, W3, and W4 have no empirical parameters. W1 and W2 
use CCSD(T) and CCSD calculations with correlation-consistent basis sets, do extrapo-
lations to the complete basis-set limit, and include relativistic corrections. W3 and W4 
include CCSDT and CCSDTQ calculations, and W4 includes a CCSDTQ5 calculation 
with a small basis set. For various test sets of small molecules, the mean absolute devia-
tion from experimental atomization energies or heats of formation is 0.6 kcal/mol for 
W1, 0.5 kcal/mol for W2, 0.2 kcal/mol for W3, and 0.1 kcal/mol for W4. W4 also gives 
highly accurate bond distances, harmonic vibrational frequencies, vibrational anharmonic-
ity constants, and dipole moments for small molecules [A. Karton and M. L. Martin, J. 
Chem. Phys., 133, 144102 (2010); arxiv.org/abs/1008.4163]. These methods are limited 
to small molecules.

To make W1 and W2 applicable to larger molecules, the F12 explicitly correlated 
method was used in the CCSD and MP2 calculations and the RI approximation was used 
in the HF, CCSD-F12, and MP2-F12 calculations, giving the W1-F12 and W2-F12 meth-
ods [A. Karton and J. M. L. Martin, J. Chem. Phys., 136, 124114 (2012)]. The use of the 
F12 method allows smaller basis sets to be used than in W1 and W2, thereby speeding 
up the calculation and reducing the storage requirements. For small molecules, W1-F12 
and W2-F12 typical errors in gas-phase enthalpies of formation are about 0.2 kcal/mol. 
W1-F12 has been applied to medium-size molecules such as guanine 1C5H5N5O2 and 
to tetracene 1C18H122; W2-F12 has been applied to adenine 1C5H5N52 and anthracene 
1C14H102.

The HEAT (high accuracy extrapolated ab initio thermochemistry) method, which has 
no empirical parameters, uses CC calculations up to CCSDTQ, extrapolations to the CBS 
limit, corrections for vibrational anharmonicity, relativistic effects, and deviations from 
the Born–Oppenheimer approximation to achieve mean absolute deviation of 0.1 kcal/
mol in atomization energies. The high level of calculations means the method can be used 
only with tetraatomic or smaller molecules. HEAT, like the other methods in this section, 
exists in several versions [A. Tajti et al., J. Chem. Phys., 121, 11599 (2004); J. Y. Bomble 
et al., ibid., 125, 064108 (2006)].

The composite methods of this section have uncovered significant errors in tabulated 
experimental thermodynamic data,
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16.7 The Diffusion Quantum Monte Carlo Method
A quantum Monte Carlo (QMC) method uses a random process to solve the Schrödinger 
equation. Many QMC methods exist, but the diffusion QMC (DQMC) method is most 
commonly used for molecular calculations. Defining the imaginary time variable t K it>U, 
one finds (Prob. 16.32) that in the limit t S �, the time-dependent state function � (no 
matter what its form �0 is at t = 0, provided �0 includes some mixture of the ground 
state) becomes proportional to the ground-stationary-state wave function cgs. Moreover, 
the equation for 0�>0t has the same form as Fick’s second law for the diffusion of a sub-
stance in a 3n-dimensional space (where n is the number of electrons) with an added term 
corresponding to the substance undergoing a first-order reaction (with a rate constant that 
can take on positive or negative values) as well as diffusing. One simulates the diffusion 
and reaction processes on a computer by starting with a large number of particles (called 
walkers) distributed in the regions near the nuclei. One chooses a step size �t, and at each 
increment in t, the particles undergo random changes in coordinates, where the probability 
for a particular size change �x in each coordinate is taken to be proportional to the prob-
ability that a diffusing particle will suffer a displacement by �x in a given direction in 
time �t. Also, at each step �t, each particle has a probability to either disappear or give 
birth to a second particle, corresponding to the first-order reaction term. Eventually, the 
distribution of walkers in 3n-dimensional space will be proportional to the ground-state 
wave function, provided proper allowance is made for the antisymmetry requirement for 
the wave function.

Because of the antisymmetry requirement, the ground-state wave function has nodal 
surfaces in 3n-dimensional space (see Prob. 16.33). To ensure that the walkers converge 
to the ground-state wave function, one must know the locations of these nodes and must 
eliminate any walker that crosses a nodal surface in the simulation. In the fixed-node (FN) 
DQMC method, the nodes are fixed at the locations of the nodes in a known approximate 
wave function for the system, such as is found from a large basis-set Hartree–Fock calcu-
lation. This approximation introduces some error, but FN-DQMC calculations are varia-
tional. In practice, the accuracy of FN-DQMC calculations is improved by a procedure 
called importance sampling. Here, instead of simulating the evolution of � with t, one 
simulates the evolution of f, where f K �ctr, where ctr is a known accurate trial variation 
function for the ground state. ctr guides the random walkers to regions where 0ctr 0  is large. 
ctr typically has the form of a function of interelectronic coordinates ri j multiplied by a 
linear combination of one or more Slater determinants of HF orbitals. (This ctr can also 
be used to define the locations of the nodes.)

QMC calculations are especially well suited to be run on parallel computers. The 
Quantum Monte Carlo at Home project using the home computers of tens of thousands of 
volunteers to run FN-DQMC calculations (qmcathome.org) has calculated accurate interac-
tion energies for the DNA base pairs adenine–thymine and guanine–cytosine. This project 
will be changing its focus to run quantum-mechanical calculations at home in such areas as 
protein–ligand interactions and development of new materials for batteries.

QMC methods have given very accurate results in some calculations on small systems, 
but the method can require very long calculation times, and no efficient method has yet 
been found to allow geometry optimization in a QMC calculation. (The FN-DQMC cal-
culation on H2O in Table 16.1 was done at the experimental geometry.) Currently, none of 
the widely used quantum-chemistry program packages include the DQMC method, and 
its use is restricted to specialists. For more on DQMC, see Probs. 16.32 and 16.33, and  
J. B. Anderson, Int. Rev. Phys. Chem., 14, 85 (1995); K. Raghavachari and J. B. Anderson, 
J. Phys. Chem., 100, 12960 (1996); A. Lüchow and J. B. Anderson, Annu. Rev. Phys. 
Chem., 51, 501 (2000); B. A. Austin et al., Chem. Rev., 112, 263 (2012).
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16.8 Noncovalent Interactions
In the broadest sense, noncovalent interactions in chemistry include all interactions 
except covalent bonding and thus include such things as ionic bonding. In this section we 
will concentrate on hydrogen bonding and dispersion interactions, which are key to the 
structures of such biomolecules as proteins and DNA. The importance of hydrogen bond-
ing in biomolecules has long been recognized, but only recently have calculations shown 
that dispersion interactions in biomolecules are of comparable magnitude to hydrogen 
bonding interactions.

Hydrogen bonding is important throughout chemistry and biochemistry, and for a 
method to give reliable results when applied to large biological molecules, it must treat 
hydrogen bonding properly.

Many gas-phase hydrogen-bonded dimers have been characterized spectroscopically. 
Examples include 1H2O22, 1HCl22, HF9H2O, and HF–HCN. For 1H2O22, the structure 
(determined by molecular-beam microwave spectroscopy) is shown in Fig. 16.1 [T. R. 
Dyke, et al., J. Chem. Phys., 66, 498 (1977)].

For H-bonded dimers, HF STO-3G, 3-21G, and 3@21G1*2 calculations give equilib-
rium-geometry separations between the heavy atoms that are usually substantially in error 
(errors of 0.1 to 0.5 Å); 6-31G* calculations give heavy-atom separations in pretty good 
agreement with experiment (Hehre et al., Table 6.32).

Suppose we want to calculate the dimerization energy of H2O using the 3-21G basis set. 
The natural procedure would be to calculate the energy of the dimer 1H2O22 at its 3-21G 
equilibrium geometry using a 3-21G basis set on each of the six atoms of 1H2O22 and to 
calculate the energy of each H2O monomer at its 3-21G equilibrium geometry using a 3-21G 
basis set on each of the three atoms of the monomer, and to take the dimerization energy as

	 �e = e1AB2d
ab - e1A2m

a - e1B2m
b 	 (16.71)

Here A and B stand for the monomer molecules and AB for the dimer. In this case, 
A = H2O, B = H2O, and AB = 1H2O22. The letters a, b, and ab symbolize the 3-21G 
basis set centered on the atoms of A, the 3-21G basis set centered on the atoms of B, and 
the 3-21G basis set centered on the atoms of AB, respectively. The letters d and m denote 
calculated dimer and monomer equilibrium geometries: e1A2m

a  is the energy of monomer 
A at the A equilibrium geometry calculated with the a basis set, with a similar meaning 
for e1B2m

b ; and the quantity e1AB2d
ab is the energy of AB at the equilibrium geometry of 

AB calculated with the ab basis set. For 1H2O22, e1A2m
a = e1B2m

b , but this is not true for 
a mixed dimer such as HF-H2O.

However, this procedure involves an inconsistency. When the monomer energy e1A2m
a  

is calculated, the electrons of A have available to themselves only the 3-21G orbitals on 
the three atoms of A, whereas when e1AB2d

ab is calculated, the electrons of each H2O 
molecule within the dimer have available not only the orbitals on their own nuclei, but also 
the orbitals on the nuclei of the other H2O molecule. In effect, the dimer basis set is larger 
than that of each monomer, and this produces an artificial lowering of the dimer energy 
relative to that of the separated monomers. This artificial lowering is called the basis-set 
superposition error (BSSE). The BSSE would vanish in the limit of using a complete set 
for each monomer. The most common procedure (due to Boys and Bernardi) to correct for 
the BSSE is to calculate the dimerization energy by adding the following counterpoise 
(CP) correction to �e of (16.71):

	 �eCP = e1A2d
a - e1A2d

ab + e1B2d
b - e1B2d

ab	 (16.72)

where d indicates that each of the four quantities in (16.72) is calculated with the A or B 
atoms located at their calculated locations in the dimer, and e1A2d

ab is calculated with a 

Figure 16.1  The water 
dimer.
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H
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basis set that consists of 3-21G orbitals on each nucleus of the monomer A and the appro-
priate 3-21G orbitals (called “ghost orbitals”) centered at the three points in space that 
would correspond to the equilibrium positions of the other three nuclei in the dimer. The CP 
procedure has been very controversial, but is now accepted by the majority of researchers 
as a good way to reduce the BSSE [G. Chalasinski and M. M. Szczesniak, Chem. Rev., 94, 
1723 (1994); F. B. van Duijneveldt et al., Chem. Rev., 94, 1873; see also the references in 
A. Galano and J. R. Alvarez-Idaboy, J. Comput. Chem., 27, 1203 (2006)]. Because of the 
asymmetry of 1H2O22, e1A2d

ab � e1B2d
ab.

From the temperature and pressure dependences of the thermal conductivity of water 
vapor, �H �373 for 2H2O1g2 S 1H2O221g2 has been found to be -3.6{0.5 kcal>mol 
[L. A. Curtiss et al., J. Chem. Phys., 71, 2703 (1979)]. This �H �373 is found to corre-
spond to an energy change involving nonvibrating, nonrotating, nontranslating species of 
�Eel = -5.0{0.7 kcal>mol [E. M. Mas et al., J. Chem. Phys., 113, 6687 (2000)], where 
the theoretically calculated zero-point energy of the dimer is used to help find the elec-
tronic energy change �Eel.

MP2 calculations with large aug-cc-pVnZ basis sets yielded an estimate of 
5.0{0.1 kcal/mol for the dissociation energy De of the water dimer to two monomers 
in the CBS limit, and the effect of going to the MP4 level was found to be negligible  
[M. W. Feyereisen et al., J. Phys. Chem., 100, 2993 (1996)]. Essentially the same result 
was found by a method called symmetry-adapted perturbation theory (SAPT), which treats 
the interactions between the monomers as a perturbation [E. M. Mas and K. Szalewicz, 
J. Chem. Phys., 104, 7606 (1996)]. CCSD(T) calculations extrapolated to the CBS limit 
gave De = 5.02{0.05 kcal>mol [W. Klopper et al., Phys. Chem. Chem. Phys., 22, 2227 
(2000)].

The theoretical results agreed with the experimental result, but it wasn’t until 2011 
that an accurate and direct measurement of the dimer dissociation energy was made. 
Measurements of velocities and translational energy distributions of monomers pro-
duced by dissociation were analyzed to give the dimer bond dissociation energy as 
D0 = 3.16{0.03 kcal>mol [B. E. Rocher-Casterline et al., J. Chem. Phys., 134, 211101 
(2011)]. Shank and others fitted a potential-energy surface (PES) for the dimer to 30000 
CCSD(T)/aug-cc-pVTZ calculated points, thereby finding an accurate ZPE for the dimer, 
which together with the theoretically calculated De gave for the dimer D0 = 3.15{0.01 
kcal/mol [Y. Shank et al., J. Chem. Phys., 130, 144314 (2009].

Density-functional studies of hydrogen-bonded dimers generally found good results 
with the B3LYP functional, provided large enough basis sets (valence triple zeta with polar-
ization functions) were used [B. Paizs and S. Suhai, J. Comput. Chem., 19, 575 (1998)].

The performance of semiempirical methods for hydrogen bonding in discussed in 
Section 17.4.

In DNA, in addition to the hydrogen bonding between paired bases, one has p gp 
dispersion interactions between the aromatic rings of one base pair and the base pair 
stacked “above” it and the base pair stacked “below” it. Accurate calculations show that 
“the stacking of aromatic systems represents the leading stabilization energy contribu-
tion in biomacromolecules . . . Therefore stacking (dispersion) interactions predominantly 
determine the double helical structure of DNA” (K. E. Riley and P. Hobza, Acc. Chem. Res., 
doi: 10.1021/ar300083h). Accurate stabilization energies for hydrogen bonding between 
base pairs and for stacking (dispersion) were obtained by CCSD(T)/CBS calculations and 
revealed the key role of stacking. “Without dispersion energy a double-helical structure 
would unwind” (Riley and Hobza, ibid.). Moreover, in proteins, dispersion interactions 
involving aromatic rings of amino acids are important, and “dispersion is the dominant 
contribution to attractive interactions involving aromatic amino acids within the hydro-
phobic core of a protein” (Riley and Hobza).
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The reliability of MP2 and CCSD methods for calculating noncovalent interactions 
was tested using the S66 database (Section 16.1); corrections for BSSE were included  
[P. Hobza, Acc. Chem. Res., 45, 663 (2012)]. The following rms errors in kcal/mol 
were found for the best-performing methods: 0.08 for SCS(MI)@CCSD>CBS, 0.14 for 
MP2.X>6@31+G*, 0.25 for SCS@CCSD>CBS, 0.28 for MP2.5>6@31+G*, and 0.38 for 
SCS(MI)@MP2. For comparison, the poorly performing MP2>CBS method gave 0.69. The 
binding energies in the S66 set are mostly in the range 1.5 to 10 kcal/mol. The SCS(MI)-
CCSD and SCS(MI)-MP2 methods are the SCS-CCSD and SCS-MP2 methods (Sections 
16.4 and 16.3), with the two scaling parameters changed to values that work better for nonco-
valent interactions (MI stands for molecular interaction). The MP2.5 method calculates the 
binding energy �E(MP2.5>bas@x) of a hydrogen-bonded or van der Waals complex using

�E1MP2.5>bas@x2 = �E1MP2>CBS2 + 0.53�E1MP3>bas@x2 - �E1MP2>bas@x24
Here �E1MP2>CBS2 is the binding energy found by MP2 calculations extrapolated to 
the CBS limit, and �E1MP3>bas@x2 is the MP3 binding energy found using a relatively 
small basis set (bas-x) such as 6-31+G*. If bas-x were a huge basis set that gave essentially 
the CBS limit, then the MP2.5 method would give the average of the MP2 and MP3 bind-
ing energies. By using a relatively small basis set for the MP3 calculation, one keeps the 
computation time low, allowing larger complexes to be treated. In the CBS limit for bas-x, 
the MP2.5 rms error is reduced to 0.16. The MP2.X method is an improvement on MP2.5 
that replaces the 0.5 in the formula with an empirical parameter whose value depends on 
what bas-x is [K. E. Riley et al., Phys. Chem. Chem. Phys., 13, 21121 (2011)].

Rms errors in kcal/mol for the S22 test set for some density functionals that did 
well on this set are 0.31 for vB97X-D, 0.33 for B2PLYP-D3, and 0.34 for BLYP-D3 
[L. Goerigk and S. Grimme, Phys. Chem. Chem. Phys., 13, 6670 (2011)] as compared with 
0.44 for B3LYP-D3.

16.9 NMR Shielding Constants
To calculate NMR chemical shielding (screening) constants, the applied magnetic field 
B is treated as a perturbation, and one solves a set of equations called coupled perturbed 
equations. For details of the theory, see D. B. Chesnut in K. B. Lipkowitz and D. B. Boyd, 
Reviews in Computational Chemistry, vol. 8, VCH, 1996, Chapter 5. Just as the electric 
field is minus the gradient of the electric potential, the magnetic induction B is given by 
B = � : A, where A is the magnetic vector potential. Many different choices for A give 
the same B. A particular choice defines the “gauge” of the vector potential. Several methods 
have been proposed to give calculated quantum-mechanical results that are independent of 
the choice of gauge. The most widely used of these is the gauge-including atomic orbital 
(GIAO) method, in which each basis AO includes an exponential factor that contains B.

Chemical shifts are reported in parts per million (ppm) and are the difference between 
screening constants in the molecule and that in a reference molecule such as tetrameth-
ylsilane (TMS) for proton and 13C NMR spectra. The chemical shift di of nucleus i is 
defined by

	 di K 1061sref - si2 = sppm
ref - sppm

i 	 (16.73)

where si and sref are the shielding constants for nucleus i and for the reference nucleus 
(usually the protons or 13C in TMS). The ppm superscript denotes values in parts per 
million (which is how the output values in the Gaussian program appear). The shielding 
constant si is actually a second-rank tensor (3 by 3 matrix) with the nine components 
s xx

i ,  s xy
i , c,  s zz

i . In the liquid or gas phase, one observes the rotationally averaged value 
1s xx

i + s yy
i + s zz

i 2>3, which is the isotropic shielding constant.
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For 14 small molecules, MAEs in 13C shifts in ppm using the GIAO method with a 
QZ2P basis set and MP2>TZ2P geometries were as follows: 9 for HF, 14 for LSDA, 6.5 
for BPW91, 8 for BLYP, 7 for B3PW91, and 1.6 for MP2 [J. R. Cheeseman et al., J. Chem. 
Phys., 104, 5497 (1996)]. Since the observed shifts cover a range of about 200 ppm, all 
these results are good. The QZ2P basis set is too large for use with large molecules. For 
a series of molecules with two to eight nonhydrogen atoms, average absolute errors in 
13C shifts in ppm using the GIAO method with B3LYP/6-31G* geometries were 9 for 
HF>6@31G*, 9 for HF>6@311+G12d,p2, and 4 for B3LYP>6@311+G12d,p2 (Cheeseman 
et al., op. cit.).

Many standard quantum-chemistry programs allow calculation of NMR shielding 
constants and spin–spin coupling constants.

Before calculating shielding constants si, one first calculates an optimized molecular 
geometry. After the shielding constants in a molecule have been calculated, one averages 
those of nuclei interchangeable by nearly free rotation about a single bond (such as in a 
methyl group). One then uses the same method and basis set to calculate the shielding 
constant for the reference nucleus in a reference compound (such as tetramethylsilane) 
and subtracts to get the predicted chemical shifts. Large molecules may have several low-
energy conformers, and one should suitably average the calculated shielding constants for 
such conformers. Solvent effects can be allowed for by using a dielectric continuum model 
such as the SCRF method (Section 15.17). Solvent effects in the commonly used solvent 
CDCl3 are often small.

Hartree–Fock calculations of shielding constants are not reliable. DFT calculations 
are most commonly used to predict NMR chemical shifts. Unfortunately, the GIAO 
method can be used only with GGA and hybrid GGA functionals and not with meta-
GGA or hybrid-meta GGA functionals; for these the CSGT (continuous set of gauge 
transformations) method (which requires a larger basis set for good results than the 
GIAO method) is used. MP2 calculations give better results than DFT calculations but 
are too time-consuming to use routinely on medium and large molecules. CCSD(T) 
calculations with large basis sets give accurate shielding constants are but only feasible 
for small molecules.

To improve the accuracy of calculated NMR shifts, an empirical correction to theoreti-
cally calculated results is often used. One takes a large set of compounds, computes 13C 
(or proton) shielding constants in them using a particular method (such as B3LYP or MP2) 
and basis set, and plots the calculated sppm

i, calc values on the y axis versus the experimen-
tally observed chemical shifts di, exp. The true shielding constants are given by (16.73) as 
sppm

i = -di + sppm
ref . If the calculation gave perfect accuracy, the plotted points would lie 

on a straight line with slope -1 and intercept sppm
ref . In practice, if the calculation method 

is a sound one, the resulting points will lie quite close to a straight line, and the slope m of 
the least-squares regression line sppm

calc = mdexp + b fitted to the data points will be close 
to -1. Once the slope m and intercept b of this line are known, one can substitute si values 
calculated with the same method that produced the data points for the line into the regres-
sion equation and solve for the predicted chemical shifts as di = 1si - b2>m. Tables of 
m and b for common density functionals with various basis sets and for MP2 with various 
basis sets can be found at cheshirenmr.info. This empirical scaling procedure typically 
reduces average errors in 13C and proton chemical shifts by a factor of 3 and usually gives 
quite accurate results—typical errors of 0.1 ppm for proton shifts and 2 or 3 ppm for 13C 
shifts, about 1% of the range of observed shifts and close to experimental precision.

Calculations of proton chemical shifts that used several common density functionals 
and basis sets on a test set of compounds together with linear scaling of the results recom-
mended WP04>cc@pVDZ (rms error 0.115 ppm, m = 1.020, b = 31.84), WP04>6-31G** 
(rms error 0.12 ppm, m = 1.033, b = 32.02), B3LYP>6@31G** (rms error 0.13 ppm, 
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m = 1.055, b = 31.84) as giving the best ratio of accuracy/cost [R. Jain et al., J. Org. 
Chem., 74, 4018 (2009)]. WP04 is the B3LYP functional reparametrized to give good 
proton shielding constants in chloroform. (A similar reparametrization of B3LYP for 13C 
shifts gave the WC04 functional.) The B3LYP>6@31G* optimized geometries were used. 
For the recommended methods, the calculations were done using the GIAO method and the 
SCRF method with chloroform as solvent. Surprisingly, it was found, contrary to previous 
recommendations of others, that going to triple-zeta basis sets did not improve the results.

A review of methods for calculating chemical shifts in organic compounds noted 
that “It seems as though every research group has its own preferred density functional 
for these calculations” and went on to recommend geometry optimization using B3LYP>
6-31G* or B3LYP>6@31+G** followed by screening constant calculations using the 
PBE0, mPW1PW91, or B3LYP functional and the 6-311+G(2d,p) basis set, and then lin-
early scaling the results to get the chemical shifts [M. W. Lodewyk et al., Chem. Rev., 
112, 1839 (2012)].

Calculation of NMR spin–spin coupling constants is more challenging than calcula-
tion of shielding constants but can be done with fair accuracy with DFT, thereby allowing 
the complete prediction of the NMR spectrum. For example, the 1H and 13C NMR spec-
tra of several medium-size natural-product molecules were calculated with a fair degree 
of accuracy using such methods as B3LYP>6@31G**, and agreement with experiment 
was improved when the effect of solvent was allowed for by using the PCM method [A. 
Bagno et al., Chem. Eur. J., 12, 5514 (2006)]. A study that calculated proton–proton spin–
spin coupling constants JH - H with many possible combinations of density functionals and 
basis sets recommended B3LYP>6@31G(d,p)u+1s[H] together with scaling as providing 
an economical way to calculate rather accurate values [T. Bally and P. R. Rablen, J. Org. 
Chem., 76, 4818 (2011)]. Here, 6-31G(d,p)u+1s[H] denotes the 6-31G** basis set modified 
by uncontracting the 1s basis functions (that is, allowing all the coefficients in each of them 
to vary) and adding four more s functions with large orbital exponents on each H atom. All 
calculations were done at the B3LYP>6@31G* optimized geometry. Four terms contribute 
to JH - H, and it was found that the most accurate results with scaling were found if only the 
largest term, the Fermi contact term (which involves the electron density at the nucleus), 
is calculated and the calculated JH - H values are multiplied by the scaling factor 0.91. This 
gives JH - H values with an rms error of only 0.5 Hz. Similar accuracy is obtained using 
B3LYP>cc@pVTZ with the scaling factor 1.10, but calculations take much longer. Details 
for carrying out this procedure with the Gaussian program are given at cheshirenmr.info/
Recommendations.htm#ballyccc.

One can use calculated NMR shielding constants and JH - H values to help assign the 
structure of a new compound by seeing which of several possible structures has a calculated 
spectrum in good agreement with the observed one.

16.10 Fragmentation Methods
To deal with large molecules that are currently out of reach of ab initio and density 
functional methods, a slew of methods have been developed that split a large molecule 
into fragments, treat the fragments one at a time (with allowance for interaction of each 
fragment with the rest of the molecule), and then use the results to calculate properties 
of the whole molecule. In addition to allowing for treatment of very large molecules, 
fragmentation methods allow for parallel computation to increase efficiency. A review 
article listed 20 fragmentation methods in a classification diagram [Figure 1 in M. S. 
Gordon et al., Chem. Rev., 112, 263 (2012)]. In detaching bonds to form the fragments, 
some methods add capping atoms (such as H) to detached bonds and other methods do 
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not add caps. The ESP (Section 15.7) produced by the rest of the molecule may be used 
in calculations on each fragment. The GAMESS program has several fragmentation 
methods available.

Applications of fragmentation methods include calculations on proteins, protein–
ligand binding, solids, and nanomaterials, and study of chemical reactions. The above-
cited review noted that fragmentation methods are underused, due perhaps to uncertainty 
as to their accuracy.

16.11 Relativistic Effects
For a nonrelativistic hydrogenlike atom, the root-mean-square speed of a 1s electron is 
Zc>137, where Z is the nuclear charge and c is the speed of light (Prob. 16.36). Hence, 
for atoms of high atomic number, the average speed of inner-shell electrons is a signifi-
cant fraction of c, and relativistic corrections to inner-shell orbitals and orbital energies 
are substantial for high-Z atoms. The valence electrons in an atom or molecule are well 
shielded from the nuclei, and their average speeds are far less than the speed of light, even 
in heavy atoms. Hence, it was formerly believed that one need not worry about relativistic 
corrections in molecules containing high-Z atoms. It is now realized that relativistic effects 
on properties of molecules with heavy atoms can be quite substantial.

The average radius of a hydrogenlike atom is proportional to the Bohr radius a0, and a0 
is inversely proportional to the electron mass. Hence, the relativistic increase of mass with 
velocity shrinks the inner s orbitals in a heavy atom. To maintain their orthogonality to the 
inner s orbitals, the outer s orbitals are required to shrink also. The relativistic increase of 
mass also shrinks the p orbitals, but to a lesser extent than the s orbitals. Because of the 
relativistic shrinkage of the s and p orbitals, these orbitals screen the nucleus more effec-
tively than in nonrelativistic atoms, and this produces an expansion of the d and f orbitals. 
Calculated relativistic contractions of the 6s orbital average radius in some atoms are 4% 
for 55Cs, 7% for 70Yb, 12% for 75Re, 18% for 79Au, and 12% for 86Rn [P. Pyykkö, Chem. 
Rev., 88, 563 (1988)]. Because of relativistic contraction, the atomic radius of Fr is less 
than that of Cs, which lies above Fr in the periodic table.

The relativistic form of the one-electron Schrödinger equation is the Dirac equation. 
One can do relativistic Hartree–Fock calculations using the Dirac equation to modify the 
Fock operator, giving a type of calculation called Dirac–Fock (or Dirac–Hartree–Fock). 
Likewise, one can use a relativistic form of the Kohn–Sham equations (16.49) to do relativ-
istic density-functional calculations. (Relativistic Xa calculations are called Dirac–Slater 
or Dirac–Xa calculations.)

All-electron Dirac–Fock relativistic calculations on molecules containing heavy atoms 
such as Au or U are very time-consuming. A commonly used approach is to do an all-
electron atomic Dirac–Fock calculation on each type of atom in the molecule and use the 
result to derive a relativistic effective core potential (RECP) or pseudopotential (Section 
15.16) for that atom. (Since the smallest parts of the relativistic effects are neglected in 
deriving RECPs, RECPs are sometimes called quasirelativistic ECPs.) One then does 
a molecular Hartree–Fock calculation in which only the valence electrons are treated 
explicitly. The valence electrons are treated nonrelativistically, and the effects of the core 
electrons are represented by adding the operator ga Una to the Fock operator Fn, where Una 
is a relativistic ECP for atom a, and the sum goes over the atoms of the molecule. Here, it 
is assumed that the inner-shell AOs are not significantly changed on going from isolated 
atoms to the molecule. The results of the SCF calculation can be improved using CI or 
MP perturbation theory. MCSCF and MCSCF-CI calculations with RECPs are also done. 
RECPs can also be used in KS DFT calculations. RECPs for most elements of the periodic 
table are available at www.clarkson.edu/~pac/reps.html.
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Another approach is to do a nonrelativistic calculation, using, for example, the Hartree–
Fock method, and then use perturbation theory to correct for relativistic effects. For pertur-
bation-theory formulations of relativistic Hartree–Fock calculations and relativistic KS DFT 
calculations, see W. Kutzelnigg, E. Ottschofski, and R. Franke, J. Chem. Phys., 102, 1740 
(1995) and C. van Wüllen, J. Chem. Phys., 103, 3589 (1995); 105, 5485 (1996).

Some examples of relativistic effects on molecular properties found from Hartree–
Fock calculations with RECPs follow, where the numbers are listed in the following order: 
nonrelativistic-ECP calculated value, relativistic-ECP calculated value, experimental value 
(see P. Pyykkö, op. cit. for references). (Also listed in parentheses are calculated nonrela-
tivistic, calculated relativistic, and experimental values, where the calculated values are 
from nonrelativistic KS DFT and relativistic perturbation-theory KS DFT calculations 
using the B88P86 functional and a contracted Gaussian basis set; see C. van Wüllen, op. 
cit.) Equilibrium bond lengths: 2.80, 2.73, 2.48 Å in Ag2; 1.73, 1.71, 1.70 Å in SnH4; 1.76, 
1.51, 1.52 Å (1.73, 1.56, 1.52 Å) in AuH; 2.83, 2.48, 2.47 Å (2.77, 2.58, 2.47 Å) in Au2; 
2.81, 2.53, 2.50 Å in Hg2 +

2 ; (2.10, 2.06, 2.06 Å) for the W–C length in W1CO26. Bond 
angle: 98.6�, 98.2�, 98� in PbCl2. Dipole moments: 1.02, 0.92, 0.83 D for HBr, 0.71, 0.52, 
0.45 D for HI. Harmonic vibrational wavenumber: 77, 163, 191 cm-1 (121, 165, 191 cm-1 
for Au2. Equilibrium dissociation energies: (52.3, 69.1, 77.4 kcal/mol) for AuH; (33.0, 47.1, 
53.1 kcal/mol) for Au2. Relativistic effects are substantial for these heavy-atom molecules.

Relativistic all-electron calculations on F2, Cl2, Br2, I2, and At2 using various correla-
tion methods found that the relativistic corrections were approximately independent of the 
level of theory used, except for At2 [L. Visscher and K. G. Dyall, J. Chem. Phys., 104, 
9040 (1996)]. For example, with a valence triple-zeta polarized basis set, the changes in 
De on going from a nonrelativistic to a relativistic calculation were -8, -7, -7, -7, -7 
kcal/mol for Br2 using the HF, MP2, CISD, CCSD, CCSD(T) methods, respectively; 
for I2, these changes were -15, -13, -12.5, -13, -13 kcal/mol; for At2, they were 
-30, -27, -24, -25, -24 kcal/mol.

Relativistic DFT calculations on the solids PbO, PbSO4, and PbO2 resulted in a stan-
dard emf for the lead storage cell of 2.13 V, quite close to the true value 2.11 V, whereas 
when relativistic effects were omitted, the calculation gave an emf of only 0.39 V [R. Ahuja 
et al., Phys. Rev. Lett., 106, 018301 (2011)].

Some reviews of relativistic quantum chemistry are N. Kaltsoyannis, J. Chem. Soc., 
Dalton Trans., 1997, 1; K. G. Dyall and K. Faegri, Introduction to Relativistic Quan-
tum Chemistry, Oxford, 2007; T. Nakajima and K. Hirao, Chem. Rev., 112, 385 (2012); 
P. Pyykkö, Annu. Rev. Phys. Chem., 63, 45 (2012).

16.12 Valence-Bond Treatment of Polyatomic Molecules
The valence-bond treatment of polyatomic molecules is closely tied to chemical ideas of 
structure. One begins with the atoms that form the molecule and pairs up the unpaired 
electrons to form chemical bonds. There are usually several ways of pairing up (coupling) 
the electrons. Each pairing scheme gives a VB structure. A Heitler–London-type func-
tion �i (called a bond eigenfunction) is written for each structure i, and the molecular 
wave function c is taken as a linear combination g i ci�i of the bond eigenfunctions. The 
variation principle is then applied to determine the coefficients ci. The VB wave function 
is said to be a resonance hybrid of the various structures.

The weight of each resonance structure in the wave function is sometimes taken as 
proportional to the square of its coefficient in the wave function. Because the bond eigen-
functions are not mutually orthogonal, the electron probability density is not equal to the 
weighted sum of the probability densities of the various structures, and the 0 ci 0 2 quanti-
ties are somewhat lacking in direct physical significance. There are several other ways of 
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assigning weights to VB structures. One procedure defines the occupation number ni for 
the VB structure i as ni K c*i g j cjSi j, where the sum goes over all the VB structures and 
Si j = 8�i 0�j9 . The ni’s add to 1 (Prob. 16.37).

Water
The oxygen-atom ground-state electron configuration is 1s22s22p4, with an unpaired elec-
tron in each of the AOs 2py and 2pz. We thus assume that these AOs along with the hydro-
gen 1s AOs will form electron-pair bonds. The three possible ways of pairing these four 
AOs to get covalent structures are shown in Fig. 16.2.

Let

s1 K H11s,  s2 K H21s,  py K O2py,  pz K O2pz

The normalized VB function corresponding to structure A is [see Eq. (13.119)]

	 �A = N 0 g¬pys1¬pzs2 0 = N 0 g pys1pzs2 0 - N 0 g pys1pzs2 0 	 (16.74)

	 - N 0 g pys1 pzs2 0 + N 0 g pys1pzs2 0
where the signs are determined by the rule in Section 13.12. The dots stand for 
O1sO1sO2sO2sO2pxO2px. Similarly,

	 �B = N 0 g¬pypz¬s1s2 0 , �C = N 0 g¬pys2¬pzs1 0 	 (16.75)

We then take as a trial variation function c, a linear combination of the bond eigenfunc-
tions of structures A, B, and C. However, the functions �A, �B, and �C are not linearly 
independent; we have (Prob. 16.38)

	 �C = - 1�A + �B2	 (16.76)

It is wasted effort to include all three structures; we shall drop structure C, taking 
c = cA�A + cB�B.

For a molecule with n valence AOs to be paired, where n is even, Rumer showed in 
1932 that the following procedure gives the linearly independent covalent structures for 
singlet states: The n AOs are arranged in a ring, and lines are drawn between pairs of AOs; 
those structures where no lines cross are linearly independent. These are the VB canonical 
covalent structures of the molecule. Any structure with lines crossing is linearly depen-
dent on the canonical structures and is omitted from the VB wave function. The number 
of ways of drawing 1

2n noncrossing lines between n points on a circle is

	
n!

11
2n2!11

2n + 12!
	 (16.77)

[For a proof of (16.77), see J. Barriol, Elements of Quantum Mechanics with Chemical 
Applications, Barnes and Noble, 1971, pages 281–282.] H2O has 4!>2!3! = 2 canonical 
covalent structures, and these are A and B. (Actually, which structures are taken as the 
canonical ones is arbitrary, since the orbitals can be arranged in various ways on the ring.) 
To use Rumer’s method when the number of orbitals to be paired is odd, we add a “phan-
tom” orbital, whose contribution is subtracted at the end of the calculation.

O2py

H11s

O2pz O2pz

H21s H21s

O2pz

H21s

O2py

H11s

O2py

H11s

A B C

Figure 16.2  Ways of 
pairing valence AOs in H2O.



584  Chapter 16  |  Electron-Correlation Methods

Rumer’s procedure is easily justified. Let �1 0 0 2, �1 2, and �1* 2 be three bond 
eigenfunctions that involve any number of AOs, but that differ only in the way they pair 
up a certain subset of four AOs. Each of these functions corresponds to one of the three 
different ways of pairing these four AOs (see Fig. 16.2). By a slight extension of (16.76), 
it follows that

	 �1* 2 = - 3�1 0 0 2 + �1 24 	 (16.78)

Any pairing scheme involving lines that cross can be shown by repeated application of 
(16.78) to be a linear combination of structures with no lines crossing. (See Prob. 16.39).

The structures corresponding to the pairing schemes A and B for H2O in Fig. 16.2 are 
shown in Fig. 16.3.

The separation between H1 and H2 is considerably greater than that between O and 
each hydrogen. The small overlap between the hydrogen 1s AOs makes structure A far more 
significant than structure B. Since the 2py and 2pz AOs are at 90� to each other, the VB 
structure A predicts a bond angle of 90�, since this allows maximum overlap between the 
bonding oxygen and hydrogen AOs. The observed angle of 1041

2� can be rationalized by 
considering electrostatic repulsions between the hydrogen atoms (ionic structures) and by 
allowing some mixing in (hybridization) of the 2s oxygen AO with the two bonding 2p AOs.

For H2 the Heitler–London function was improved by inclusion of small contributions 
from ionic structures. Because of the considerable electronegativity difference between O 
and H, we expect ionic structures to be important in H2O. Some ionic structures for H2O 
are shown in Fig. 16.4. Because oxygen is much more electronegative than hydrogen, the 
contributions of G, H, and I are likely to be quite small. The point group �2v

 has no degener-
ate symmetry species, and all the electronic wave functions of H2O must be eigenfunctions 
of the OnC2

 operator (see Section 15.2). The ground electronic state belongs to the totally 
symmetric symmetry species. Therefore, the coefficients of �D and �E in the wave func-
tion must be equal. In place of the terms cD�D + cE�E in the VB wave function, we write 
cDE3N1�D + �E24 , where the normalization constant is N = 12 + 28�D 0�E9 2-1>2. 
The function N1�D + �E2 is called a VB symmetry function (or symmetry structure), 
whereas �D and �E are called individual VB functions. Thus, a reasonable variation 
function for H2O is

	 cA�A + cB�B + cDE3N1�D + �E24 + cF�F	 (16.79)

The ionic functions are written by analogy to the equation preceding (13.128); for example,

�D = 0 g pys1pz pz 0 = 0 g pys1pzpz 0 - 0 g pys1pzpz 0(

Figure 16.3  Structures 
corresponding to the pair
ing schemes A and B of 
Fig. 16.2.
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Figure 16.4  Some ionic 
structures for H2O.
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The linear variation function (16.79) leads to a secular equation

	 det1Hi j - ESi j2 = 0	 (16.80)

The AOs are expressed as STOs or as linear combinations of GTFs, and the matrix elements 
Hi j and overlap integrals between the functions �A, c, �F are calculated. The lowest root 
of the secular equation gives an approximation to the ground-state energy (higher roots 
correspond to excited singlet states). Evaluation of the corresponding coefficients gives 
the VB ground-state wave function. The calculation can be done semiempirically using 
experimental data to evaluate some of the integrals. Calculation of the matrix elements 
is involved, and approximations are often made. For example, overlap integrals between 
different AOs (but not between different structures) are neglected and exchange integrals 
involving interchange of the coordinates of more than two electrons are neglected. System-
atic procedures for evaluating the matrix elements have been developed.

Peterson and Pfeiffer did an ab initio all-electron VB calculation on H2O [C. Peterson 
and G. V. Pfeiffer, Theor. Chim. Acta, 26, 321 (1972)]. They included 10 covalent and 39 
ionic VB structures in their wave function. The large number of structures arises because 
they considered structures arising from such oxygen configurations as 1s22s2p5 and 1s22p6, 
as well as 1s22s22p4. The contribution of the ionic structures, as measured by the sum of 
their occupation numbers, was found to be 62%. The calculated energy and equilibrium 
geometry are -76.02 hartrees and 106.5°, 0.968 Å, which may be compared with the val-
ues in Table 15.2. They also did calculations on OH and O so as to calculate the first and 
second bond dissociation energies of H2O. The calculated dissociation energies were not 
in good agreement with experiment.

Methane
The carbon-atom ground-state electron configuration 1s22s22p2 has two unpaired electrons 
and would seem to indicate a valence of 2. To get the well-known tetravalence of carbon, 
we assume that a 2s electron is promoted to the vacant 2p orbital, giving the configura-
tion 1s22s2p3. If we then assume one bond is formed with the 2s electron and three bonds 
are formed with the 2p electrons, the bonds are not all equivalent as they are known to 
be. Hence Pauling proposed that the 2s and 2p functions be linearly combined to form 
hybridized sp3 atomic orbitals of the form

	 bi1C2s2 + di1C2px2 + ei1C2py2 + fi1C2pz2,  i = 1, c, 4	 (16.81)

For maximum overlap we want each function to point to a vertex of a tetrahedron. From 
the discussion following Eq. (15.47), the constants di, ei, fi are proportional to the direc-
tion cosines in (15.57). Also, each orbital should have the same value of bi so that the four 
hybrid orbitals will be equivalent. Thus the orbitals (16.76) are of the form (15.58) with 
a = 0 and 2a1, 1t2x, 1t2y, 1t2z, replaced by C2s, C2px, C2py, C2pz. If we impose the require-
ment that the hybrid AOs be orthonormal, we have

b2 + c2 = 1,  b2 -
1
3 c2 = 0

c =
1
2 23,  b =

1
2

The four equivalent sp3 hybrid carbon AOs are then

te1 =
1
2 3C2s + C2px + C2py + C2pz4

	 te2 =
1
2 3C2s + C2px - C2py - C2pz4 	

(16.82)
te3 =

1
2 3C2s - C2px + C2py - C2pz4

te4 =
1
2 3C2s - C2px - C2py + C2pz4
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where “te” stands for tetrahedral. A typical sp3 hybrid AO contour is shown in Fig. 16.5. 
(The three-dimensional shape is obtained by rotation about a horizontal axis through car-
bon.) Carbon sp2 and sp hybrid AOs have similar shapes. [See I. Cohen and T. Bustard, 
J. Chem. Educ., 43, 187 (1966).]

There are many canonical covalent VB structures for methane, as well as ionic struc-
tures; however, chemical intuition suggests that the main contribution to the wave function 
is from the following covalent structure:

	 0C1sC1s s1te1 s2te2 s3te3 s4te4 0 	 (16.83)

where s1 = H11s, and so on. The structure (16.83) is a linear combination of 24 = 16 
determinants. Taking the CH4 VB wave function as the single covalent structure (16.83) or 
the H2O VB wave function as the function corresponding to structure A in Fig. 16.3 gives 
what is called the perfect pairing approximation.

Raimondi, Campion, and Karplus did an ab initio all-electron VB calculation on CH4 
using a minimal AO basis set of STOs [M. Raimondi, W. Campion, and M. Karplus, Mol. 
Phys., 34, 1483 (1977)]. Their wave function is a linear combination of 104 symmetry 
functions (and is a linear combination of a much larger number of individual functions) 
and contained 4900 Slater determinants. Very surprisingly, the function with the largest 
coefficient in the wave function is not the perfect-pairing function (16.83), but is an ionic 
symmetry function with two covalent bonds and two ionic bonds. In this function, one of 
the sp3 hybrid AOs on C has two electrons and the H atom it points to has no electrons, 
giving a C-H+ ionic bond, and a second sp3 hybrid has no electrons and the H atom it points 
to has two electrons, giving a C+H- ionic bond. The perfect-pairing function, with four 
covalent bonds, has the second-highest coefficient. Two symmetry functions with three 
covalent bonds and one ionic bond (one symmetry function with a C+H- bond and one 
with a C-H+ bond) have coefficients almost as large as that of the perfect-pairing function. 
The perfect-pairing function has too little electron density in the overlap regions between 
atoms, and the great importance of the ionic structures is due to the fact that they increase 
the electron density in the overlap regions.

For ethylene the VB method uses sp2-hybridized carbon AOs to form the s bonds by 
overlap with the 1s hydrogen AOs. This leaves a p orbital on each carbon to form the bond. 
The HCH bond angle is predicted to be 120�, in reasonable agreement with the observed 
value of 117�. For acetylene each carbon is sp hybridized.

Conjugated Molecules
Consider benzene. The s bonds are formed by sp2 carbon hybrid AOs and 1s hydrogen 
orbitals. This leaves a p orbital on each carbon to form p bonds. There are 6!>3!4! = 5 
canonical covalent structures for pairing the p orbitals, and these are shown in Fig. 16.6. 
Structures I and II are the Kekulé structures, and III, IV, and V are the Dewar structures. The 
VB Dewar structures of benzene are formal ways of pairing up electrons in AOs. Each VB 
Dewar structure is based on a regular-hexagonal arrangement of carbon atoms. Likewise, 
structures I and II correspond to a regular hexagon of carbons and differ from the hypotheti-
cal molecule cyclohexatriene with alternating bond lengths. Each VB resonance structure is 
based on the same internuclear distances, but a different electron-pairing scheme.

( ( ( (

Node

C

1

2

Figure 16.5  Carbon sp3 
hybrid orbital.

Figure 16.6  Canonical 
covalent structures for 
pairing the p orbitals in 
benzene.

I II III IV V
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The ground-state electronic wave function of C6H6 belongs to the totally symmetric 
symmetry species and is an eigenfunction of OnC6

 with eigenvalue +1. The functions I and 
II combine with equal coefficients to form a single symmetry function, and the functions 
III, IV, and V combine to form a second symmetry function.

Benzene has six types of singly polar ionic structures. Four of the six types each 
have 12 associated individual structures, and the other two types each have 6 individual 
structures, giving a total of 60 individual singly polar ionic structures (see Prob. 16.40). 
Doubly and triply polar ionic structures also occur.

Recall that increasing the number of functions fi in a linear variation function g i ci fi 
improves the variation function, that is, lowers the value of the variational integral. If we 
were to consider structure I only, then the energy obtained would be considerably higher 
than when several VB structures are considered. The difference between the energy for the 
individual structure I and that found when all VB structures are included is the resonance 
energy of benzene. One says that benzene is “stabilized by resonance,” but of course reso-
nance is not a real phenomenon.

Such concepts as configuration interaction, resonance, hybridization, and exchange 
are not real physical phenomena, but only artifacts of the approximations used in the cal-
culations. Similarly, the concept of orbitals is but an approximation, and, strictly speaking, 
orbitals do not exist.

Atomic Valence States
The valence state of an atom for a given molecular electronic state is the state in which the 
atom exists in the molecule. Since individual atoms do not really exist in molecules, the 
valence-state concept is an approximate one. The VB approximation constructs molecular 
wave functions from wave functions of the individual atoms. We use the VB wave func-
tion to define the valence state of an atom as the wave function obtained on removing all 
other atoms to infinity, while keeping the form of the molecular wave function invariant. 
This process is purely hypothetical, and the valence state is not in general a stationary 
atomic state.

A simple example is the H2 ground state. The Heitler–London function is

N3 0 1sa1sb 0 - 0 1sa1sb 0 4
Removal of hydrogen atom b leaves (at large internuclear separation, the normalization 
constant for each Slater determinant becomes 1>22)

2-1>21sa - 2-1>21sa

The valence state is a hydrogen atom with a 1s spatial function and a 50% probability of 
having each of spin a or spin b. The valence-state ionization potential of hydrogen is thus 
13.6 eV.

A less trivial example is H2O. Although the H2O ionic VB structures D and E are very 
important, it is traditional to ignore the ionic structures and find the oxygen valence state 
in H2O from the perfect-pairing covalent function (16.74) corresponding to structure A. 
Removal of the H atoms from (16.74) gives

	 N3 0g 2py2pz 0 - 0g 2py2pz 0 - 0g 2py2pz 0 + 0g 2py 2pz 0 4 	 (16.84)

Each determinant in (16.84) belongs to the oxygen configuration 1s22s22p4. This configura-
tion gives the terms 3P, 1D, and 1S (Table 11.2). The first and last determinants are eigen-
functions of Snz with eigenvalues +1U and -1U, respectively; hence these two determinants 
must correspond to states of the 3P term (which has S = 1). Analysis (which we omit) of 
the other two determinants shows each of them to be an equal mixture (coefficients 1>22) 
of states belonging to the 1D and 3P terms. Thus the valence state is a mixture of states of 
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the terms 1D and 3P and is not a stationary state of the atom. The valence-state wave func-
tion cvs is not an eigenfunction of the atomic Hamiltonian. We can, however, calculate an 
average energy 8Evs9 = 8cvs 0Hn 0cvs9 . From cvs = N�3c1c13P2 + c2c11D24 , we have

8Evs9 = 0N� 0 23 0 c1 0 2E13P2 + 0 c2 0 2E11D24
The preceding discussion gives

0 c1 0 2 = 12 + 12-1>222 + 12-1>222 + 12 = 3,  0 c2 0 2 = 12-1>222 + 12-1>222 = 1

We have 0N� 0 2 = 1 0 c1 0 2 + 0 c2 0 22-1 =
1
4 and

8Evs9 =
3
4E13P2 +

1
4E11D2

8Evs9  can then be calculated from tables of atomic energy levels (Section 11.5).
If 2s hybridization is included in the 2p bonding oxygen orbitals of water, the oxygen 

valence state is found to be a linear combination involving terms of the configurations 
1s22s22p4, 1s22s2p5, and 1s22p6 (M. Kotani et al. in S. Flugge, ed., Encyclopedia of Phys-
ics/Handbuch der Physik, Springer, New York, 1961, Volume 37, pages 110–115). Hybrid-
ization gives a mixing of configurations in the valence state.

The valence state of carbon in CH4 is important. Although the VB wave function of 
ground-state CH4 is now known to have major contributions from ionic structures, the tra-
ditional way to find the C valence state is to start with the covalent perfect-pairing function 
(16.83). It is sometimes carelessly stated that the carbon sp3 valence state corresponds to the 
5S term of the carbon atom 2s2p3 configuration. This is not correct. The MS = 2 state of 
the 2s2p3 5S2 level has one 2s and three 2p electrons, with all four of these electrons having 
spin a. It is true that we can use the procedure of Section 15.8 to form linear combinations 
of the 2s and 2p orbitals and thereby put each of the four outer electrons of the 5S2 MS = 2 
state into an sp3 hybrid AO without changing the wave function. However, each such hybrid 
AO would still have spin a. On the other hand, when we remove the hydrogen AOs from 
the CH4 VB wave function (16.83), we are left with a linear combination of sixteen deter-
minants in which each sp3 hybrid AO has spin a in eight determinants and spin b in eight 
determinants. Thus the carbon valence state differs from the 2s2p3 5S2 MS = 2 state and 
in fact differs from the other states of this term. The valence state obtained on removal of 
the hydrogens from (16.83) turns out to be a mixture of states of the 5S, 3D, and 1D terms 
of the 2s2p3 atomic configuration. [When other CH4 VB structures besides (16.83) are 
included, we also get contributions from terms of the 2p4 and 2s22p2 configurations to the 
C valence state.] The valence-state energy of carbon is well above the energy of the ground 
3P term of the 2s22p2 configuration, but the energy gained by forming four bonds instead 
of two more than compensates for the energy needed to form the valence state.

Valence-state ionization potentials are used to estimate integrals in semiempirical cal-
culations (Sections 17.2 and 17.3). The valence-state ionization potential for a 2p electron 
in an sp3-hybridized carbon atom is the energy difference between the valence state of 
sp3-hybridized C and the valence state of sp2-hybridized C+.

Status of the VB Method
The MO method puts electrons into orthogonal MOs. The VB method puts electrons into 
nonorthogonal AOs. This nonorthogonality makes VB calculations a huge computational 
task for a molecule with many electrons. To reduce the calculations, the s electrons in a 
C6H6 ab initio VB calculation [J. M. Norbeck and G. A. Gallup, J. Am. Chem. Soc., 96, 
3386 (1974)] were put into MOs, but even so this calculation did not optimize the molecu-
lar geometry, which is a simple task for an SCF MO calculation. The VB method allows 
for the change in the AOs that occurs on molecule formation by including ionic and other 
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resonance structures, thereby complicating the wave function. One finds quite large con-
tributions from ionic structures even for such compounds as CH4 and C6H6. In contrast to 
the complicated VB wave function, a single-determinant SCF MO wave function usually 
furnishes a good description of the molecular ground electronic state in the region of the 
equilibrium geometry. The VB wave function does have the advantage of dissociating 
properly. For quantitative calculations, the MO method has greatly overshadowed the VB 
method, but there is still interest in generalizations of the VB method (see the next section).

Valence-bond theory has been used to describe the electronic structure of 
transition-metal complex ions, with such concepts as d2sp3 hybridization of the metal 
orbitals. However, the simple VB treatment of complex ions is not fully satisfactory and 
has been replaced by ligand-field theory, which is MO theory applied to species whose 
atoms have d (or f) electrons.

16.13 The GVB, VBSCF, and BOVB Methods
The classical VB method described in the last section uses AOs that are optimized for indi-
vidual atoms. Several modern ab initio VB methods have been developed that use orbitals 
optimized for the molecule. Three such methods are described in this section.

The generalized valence-bond (GVB) method was developed in about 1970 by God-
dard and co-workers [W. J. Hunt, P. J. Hay, and W. A. Goddard, J. Chem. Phys., 57, 738 
(1972); P. J. Hay, W. J. Hunt, and W. A. Goddard, J. Am. Chem. Soc., 94, 8293 (1972); W. 
A. Goddard, T. H. Dunning, W. J. Hunt, and P. J. Hay, Acc. Chem. Res., 6, 368 (1973)].

The Heitler–London VB wave function for ground-state H2 is [Eq. (13.100)] 
1sa1121sb122 + 1sa1221sb112 multiplied by a normalization constant and a spin 
function. The GVB ground-state H2 wave function replaces this spatial function by 
f112g122 + f122g112, where the functions f and g are found by minimization of the 
variational integral. To find f and g, one expands each of them in terms of a basis set of 
AOs and finds the expansion coefficients by iteratively solving one-electron equations that 
resemble the equations of the SCF MO method.

Clearly, the GVB method will give a lower energy than the simple VB wave function. 
The GVB method allows for the change in the AOs that occurs on molecule formation by 
solving variationally for f and g. In the VB method, this change is allowed for by adding to 
the wave function terms that correspond to ionic and other resonance structures. The GVB 
wave function is thus much simpler than a VB wave function with resonance structures 
and the calculations are simpler.

The GVB method gives a De of 4.12 eV for ground-state H2, as compared with 3.15 eV 
for the Heitler–London VB function, 3.78 eV for the Heitler–London–Wang function with 
an optimized orbital exponent, 4.03 eV for the Weinbaum function (13.109) that includes an 
ionic term, and 4.75 eV for the experimental value. At very large internuclear distance R, 
the GVB functions f and g approach the atomic orbitals 1sa and 1sb. Thus, like the VB c 
(but unlike the MO c), the GVB wave function shows the correct behavior on dissociation. 
At intermediate distances, f is a linear combination of AOs that has its most important 
contribution from 1sa but that has a significant contribution from 1sb and lesser contribu-
tions from the other AOs (these contributions reflect the polarization of the 1sa AO that 
occurs on molecule formation).

In the MO method, there is one orbital (an MO) for each electron pair. In the GVB 
method, there are two orbitals ( f and g in the H2 example) for each electron pair.

For CH4 the VB wave function with resonance structures omitted is (16.83). For CH4 
the GVB wave function is

	 0  iaib b1ab1b b2ab2b b3ab3b b4ab4b 0 	 (16.85)( ( ( ( (
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The electrons are divided into pairs, and each pair is given two orbitals. In the VB method, 
the inner-shell orbitals ia and ib are each assumed to be 1s AOs on carbon, the bonding 
orbital b1a is assumed to be an sp3-hybridized carbon AO pointing toward H1, and b1b is 
assumed to be a 1s AO on hydrogen number 1. In the GVB method, no assumptions are 
made about the nature of the orbitals. One simply expands each of them in terms of the 
chosen basis set and solves the GVB equations until self-consistency is attained.

To simplify the calculation, the GVB method restricts orbitals in different pairs to be 
orthogonal to one another. (For example, b1a and b2a are assumed orthogonal, but b1a and 
b1b are not assumed orthogonal.) This should be a good assumption since Pauli repulsion 
between pairs keeps them well separated spatially. Moreover, a few test calculations have 
shown the orthogonality requirement to lead to little error.

For CH4 one finds that ia and ib are essentially C1s AOs; b1a is an orbital centered 
mainly on C with some contribution from H1; b1a points toward H1 and has a carbon AO 
hybridization of sp2.1 (using a minimal basis set). The hybridization differs from the sp3 
hybridization of the VB wave function as a result of the contribution of H11s to b1a. The 
orbital b1b is found to be mainly an H11s AO with some contribution of carbon AOs mixed 
in, thereby polarizing the orbital toward C.

Since inner-shell electrons are little changed on molecule formation, one can simplify 
the GVB calculation by assuming each of ia and ib to be a C1s AO, as is done in the VB 
wave function. This gives little loss in accuracy.

For C2H6 a GVB calculation with a minimal basis set gave a 3.1 kcal/mol rotational 
barrier, in good agreement with the 2.9 kcal/mol experimental value.

For C2H4 a GVB calculation gave a description of the double bond as composed of 
one s and one p bond, in contrast to the energy-localized MOs (Section 15.9), which are 
two equivalent bent banana bonds.

For H2O a GVB calculation produced an inner-shell pair on oxygen, two equivalent 
bonding pairs, and two equivalent lone pairs. With a DZP on oxygen basis set, an energy 
of -76.11 hartrees was obtained, which is below the Hartree–Fock limit of -76.07 har-
trees (Table 15.2).

The GVB method (like the VB method) gives a description in terms of localized 
inner-shell, bonding, and lone pairs, whereas one must carry out a time-consuming special 
procedure to find localized MOs from canonical SCF MOs.

The GVB method is most applicable to molecules for which a single VB covalent 
structure is a good approximation.

The GVB method has been used to develop qualitative descriptions of chemical bond-
ing; see W. A. Goddard and L. B. Harding, Ann. Rev. Phys. Chem., 29, 363 (1978).

The GVB method can be extended by writing the wave function as a linear combina-
tion of functions that correspond to different ways of coupling (combining) the electron 
spins to give a singlet state (just as is done in the VB method when the wave function 
is written as a linear combination of canonical covalent structures). This gives the unre-
stricted GVB wave function. A GVB wave function like (16.85) is sometimes called the 
GVB perfect-pairing (PP) wave function, to distinguish it from the unrestricted GVB 
wave function. The unmodified term GVB wave function usually refers to the GVB-PP 
wave function.

The VBSCF method [J. H. van Lenthe and G. G. Balint-Kurti, J. Chem. Phys., 78, 
5699 (1983)] writes the molecular VB wave function as a linear combination of covalent 
and ionic VB structures and simultaneously optimizes the coefficients in the linear com-
bination and the orbitals (which are expressed using a set of basis functions). The orbitals 
might be localized on individual atoms (as in the classical VB method of the last section) 
or they might be taken as semidelocalized (as in the GVB method).
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The breathing-orbital VB (BOVB) method [P. C. Hiberty and S. Shaik, Theor. 
Chem. Acc., 108, 255 (2002) and references cited therein] differs in two ways from the 
VBSCF method. Each orbital in the BOVB method is always taken to be localized on an 
individual atom. The orbitals used in different structures are free to differ, so that each 
VB structure has its own set of optimized orbitals.

Although the VB method is not part of the standard arsenal of current quantum chem-
istry methods, its modern forms have their strong adherents, who point out that VB theory 
provides valuable conceptual insights and that the computational efficiency of VB methods 
is increasing. Some reviews of classical and modern valence-bond theory are: S. Shaik 
and P. C. Hiberty in K. B. Lipkowitz et al. (eds.), Reviews in Computational Chemistry, 
vol. 20, Chapter 1, 2004, Wiley-VCH; P. C. Hiberty and S. Shaik, J. Comput. Chem., 28, 
137 (2007); A. Shurki, Theor. Chem. Acc., 116, 253 (2006); S. Shaik and P. C. Hiberty, A 
Chemist’s Guide to Valence Bond Theory, Wiley, 2007; Shaik and Hiberty, WIREs Com-
put. Mol. Sci., 1, 18 (2011); W. Wu et al., Chem. Rev., 111, 7557 (2011); P. Su and W. Wu, 
WIREs Comput. Mol. Sci., 3, 56 (2013).

16.14 Chemical Reactions
The course of a chemical reaction is determined by the potential-energy function for 
nuclear motion U1qa2 (Section 13.1), where qa indicates the coordinates of the N nuclei of 
the reactant molecules. To find the potential-energy surface (PES) U1qa2 (Section 15.10), 
we must solve the electronic Schrödinger equation at a very large number of nuclear con-
figurations, which is a formidable task.

Once U is found, we look for the path of minimum potential energy on U connecting 
reactants and products. The point of maximum potential energy U on the minimum-energy 
path is called the transition state. This is a saddle point on the U surface, since it is a 
maximum point on a minimum-energy path. The transition state is not a stable molecule, 
and the transition from reactants to products is a smooth one. (However, in certain theo-
ries of reaction rates, it is convenient to ascribe properties such as entropy, free energy, 
and vibrational frequencies, to the transition state.) The energy difference between the 
transition state and the reactants (omitting zero-point vibrational energies) is called the 
(classical) barrier height for the forward reaction. For the reverse reaction, the surface U 
is the same as for the forward reaction.

When the U surface is known, it is possible (at least in principle) to calculate the reaction 
rate constant k as a function of temperature. Such calculations are extremely difficult. One 
must allow for quantum-mechanical tunneling through the barrier. Tunneling is important 
in reactions involving light species (e-, H+, H, H2), including reactions that transfer such 
species between heavy molecules. Moreover, there is significant probability for molecules 
to traverse the reaction surface on paths that deviate somewhat from the minimum-energy 
path. Thus one must perform averaging over the various possible paths. (In other words, we 
must consider different approaches of the reactant molecules, calculate the probability of 
reaction occurring for each approach, and then suitably average these probabilities.) The rate 
constant thus depends not only on the barrier height, but on the whole shape of the reaction 
potential-energy surface. For qualitative discussion we can use the fact that a large barrier 
height means a small rate constant, and a low barrier means a fast reaction.

By measuring the experimental rate constant k as a function of temperature, one 
can determine an experimental activation energy Ea, where k = A exp1-Ea>RT2. The 
experimental quantity Ea differs slightly from the barrier height on the U surface. [See I. 
Shavitt, J. Chem. Phys., 49, 4048 (1968); M. Menzinger and R. Wolfgang, Angew. Chem. 
Int. Ed. Engl., 8, 438 (1969); Levine, Physical Chemistry, Section 22.4.]
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To determine a complete reaction surface U1qa2, one needs to solve the electronic 
Schrödinger equation at about 10 points on the surface for each of the 3N - 6 variables, 
so one needs about 103N - 6 calculations. For three-, four-, and five-atom systems, one needs 
103, 106, and 109 calculations. Moreover, since the Hartree–Fock method does not usually 
correctly describe the process of molecular dissociation, we must include electron correla-
tion to calculate a PES accurately.

Except for systems with very few atoms, accurate ab initio calculation of the complete 
potential-energy surface is out of the question. Instead, one aims to find the most important 
features of the surface. One attempts to locate the points on the surface where all the first 
derivatives 0U>0qa (the components of the gradient) are zero. These are called stationary 
points. A stationary point may be a local minimum, a local maximum, or a saddle point. To 
determine the nature of a stationary point, one evaluates the 13N - 622 second derivatives 
02U>0qa 0qb (the components of the Hessian) at the point and uses these second deriva-
tives to find the vibrational frequencies (Section 15.12) at the stationary point. At a local 
minimum, all the vibrational frequencies are real numbers. A transition state is a first-order 
saddle point and has one and only one imaginary vibrational frequency. A higher-order 
saddle point has two or more imaginary vibrational frequencies and is not a transition state. 
(Equivalently, since the eigenvalues of the Hessian matrix are proportional to the squares 
of the vibrational frequencies, the Hessian has all positive eigenvalues at a local minimum 
and has one negative eigenvalue at a transition state.)

Local minima correspond to reactants, products, or reaction intermediates. A reaction 
intermediate (which should not be confused with a transition state) is a product in one 
elementary step and a reactant in a subsequent elementary step of a multistep mechanism. 
A reaction intermediate lies at a minimum in U for all nuclear displacements. Reaction 
intermediates are often too short lived to allow spectroscopic determination of their struc-
ture. Hence, a very significant application of quantum chemistry is the determination of 
the structures and relative energies of reaction intermediates; for ab initio SCF MO results, 
see Hehre et al., Section 7.3.

Finding transition states on a PES is much harder than finding local energy minima 
(Section 15.10). Analytical gradients of U facilitate finding transition states. Techniques 
to find transition states are discussed in H. B. Schlegel, Adv. Chem. Phys., 67, 250 (1987); 
H. B. Schlegel in J. Bertran and I. G. Csizmadia (eds.) New Theoretical Concepts for 
Understanding Organic Reactions, Kluwer, 1989, pp. 33–53; H. B. Schlegel in Yarkony, 
Part I, Chapter 8; Leach, Section 5.9.

After finding a transition state (first-order saddle point) on a PES, one must determine 
the nature of the reactants and products for this transition state by following the downhill 
paths from the saddle point to the reactants and to the products. (See the discussion below 
of the IRC.) Moreover, a lower-energy transition state for these reactants and products 
might exist elsewhere on the surface, so one must explore the surface so as to find the 
lowest-energy transition state between given sets of reactants and products.

An aid to finding the reactants and products for a given transition state is the fact that 
the atomic displacements in the normal vibrational mode that corresponds to the imaginary 
frequency tend to be in the directions of the reactants and products for this transition state. 
In the Spartan program, one can produce an animation of this mode.

The PES of a reaction with more than a few atoms may have many first-order saddle 
points. For example, calculations on the PES of the NH2 + NO reaction found 3 possible 
sets of products, 9 reaction intermediates, and 23 first-order saddle points [E. W.-G. Diau 
and S. C. Smith, J. Chem. Phys., 106, 9236 (1997)].

Knowledge of the minima, transition states, and barrier heights on a surface gives a 
good idea of the reaction mechanism.
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Once the structure and vibrational frequencies of the transition state and the barrier 
height have been calculated, a rough estimate of the rate constant can be found using 
Eyring’s transition-state (activated complex) theory (see any physical chemistry text). For 
more precise results, one must locate the minimum-energy path between reactants and 
products.

Although the location of the transition state is independent of the nuclear coordi-
nates used as the variables in U1qa2, one finds that the location of the minimum-energy 
path depends on the choice of coordinates used. (For example, for H2O, one possible 
choice is the O -  H1 and O -  H2 distances and the HOH angle, and another choice is the 
O -  H1, O -  H2, and H1 -  H2 distances.) The minimum-energy path (MEP) usually used is 
the intrinsic reaction coordinate (IRC), which is defined as the path that would be taken 
by a classical particle sliding downhill with infinitesimal velocity from the transition state 
to each of the minima [see Schlegel, Adv. Chem. Phys., 67, 250 (1987)]. The IRC turns out 
to correspond to the minimum-energy path (the path of steepest descent from the transi-
tion state) on a surface whose coordinates are the mass-weighted Cartesian coordinates 
m1>2

a xa, m1>2
a ya, m1>2

a za of the nuclei, where ma is the mass of nucleus a. The IRC is also 
called the reaction path. However, the reaction path is not the actual path taken by reacting 
molecules moving according to classical mechanics, since the molecules have translational, 
rotational, and vibrational kinetic energy. Techniques to determine the IRC are discussed 
in the preceding references for finding transition states.

Once the reaction path and the force-constant matrix at points along the reaction path 
have been found, one can use improved versions of transition-state theory (TST) called 
generalized transition-state theory to calculate rate constants that are more accurate than 
those given by TST [see references cited in D. G. Truhlar, R. Steckler, and M. S. Gordon, 
Chem. Rev., 87, 217 (1987)] and can construct a reaction-path Hamiltonian and use it to 
study such things as vibrational-energy transfer during the reaction [W. H. Miller et al.,  
J. Chem. Phys., 72, 99 (1981); W. H. Miller, J. Phys. Chem., 87, 3811 (1983)].

The Gaussian program contains many features designed to find transition states, fol-
low reaction paths, and explore PESs. To locate a transition state, one can input a guessed 
transition-state structure that is intermediate between the structures of reactants and prod-
ucts of the elementary reaction and use the keyword Opt= (TS,CalcFC). The TS tells 
Gaussian to use a search procedure that is appropriate to finding a first-order saddle 
point. The CalcFC tells Gaussian to accurately calculate the force constants (Hessian 
matrix elements) at the initial input geometry, rather than using the default procedure 
of estimating them (as is done in energy minimization—Section 15.10). Although using 
CalcFC increases the time needed for the calculation, it makes the transition-state search 
considerably more likely to succeed.

If a few guesses and Opt= (TS,CalcFC) don’t succeed in locating a transition state, one 
can have Gaussian calculate an initial estimate of the transition-state structure from the 
structures of the reactants and products using a procedure called synchronous transit (ST) 
and then have Gaussian use this initial estimate as the starting point for the transition-state 
search. In this procedure, one uses the keyword Opt=QST2 and one inputs the structures 
of the reactants and of the products. For details, see Foresman and Frisch, p. 46, and the 
Gaussian manual, which is available at the Gaussian website (www.gaussian.com).

The keyword IRC causes Gaussian to perform an IRC calculation. The input to such 
a job is the geometry of the transition state.

The keyword Scan allows one to use Gaussian to explore a PES. One specifies the 
variable(s) that will be scanned and the ranges of values they take on.

The most famous reaction surface is that for H + H2 S H2 + H. The H3 surface 
has been calculated to an extraordinary accuracy of 0.01 kcal/mol at 4067 points using 
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a highly accurate special extrapolation procedure applied to results of multireference CI 
aug-cc-pVTZ and aug-cc-pVQZ wave functions, and an analytical potential function has 
been very accurately fitted to these points [S. L. Mielke, B. Garrett, and K. A. Peterson,  
J. Chem. Phys., 116, 4142 (2002)]. From this surface, rate constants in very good agreement 
with experiment have been calculated [S. L. Mielke et al., Phys. Rev. Lett., 91, 063201 
(2003)]. This surface is called the CCI (complete configuration interaction) surface, where 
CCI indicates it is extremely close to what would be found from a full-CI calculation with 
a complete basis set. The effect on the H3 barrier height of the main correction to the 
Born–Oppenheimer approximation is calculated in S. L. Mielke, J. Chem. Phys., 122, 
224313 (2005)].

Comparisons of ab initio HF calculations with calculations that include electron corre-
lation indicate that for many reactions ab initio HF transition-state structures are reasonably 
accurate, but for certain classes of reactions, HF transition-state geometries are unreliable 
[F. Bernardi and M. A. Robb, Adv. Chem. Phys., 67, 155 (1987)]. HF calculations do not 
generally give accurate energy differences between points on potential-energy surfaces.

The IMOMO, IMOMM, and ONIOM Methods
Accurate calculation of reaction barrier heights usually requires inclusion of electron cor-
relation and use of a substantial-size basis set, and is impractical for medium and large 
molecules. To deal with this problem, the IMOMO (integrated molecular orbital plus 
molecular orbital) method of Morokuma and co-workers allows one to estimate energy 
changes involving large molecules by combining high-level quantum-mechanical calcula-
tions on a related smaller system (the model system) with low-level calculations on the 
actual system (the real system) [S. Humbel, S. Sieber, and K. Morokuma, J. Chem. Phys., 
105, 1959 (1996)]. The IMOMO energy of a system is taken as

EIMOMO = E1real, low2 + 3E1model, high2 - E1model, low24
Roughly speaking, the quantity in brackets gives an estimate of E1real, high2-  E1real, low2 
so that EIMOMO is an approximation to E(real, high). The low level might be HF, DFT, 
MP2, or a semiempirical MO method (Section 17.4). The high level might be MP2, MP4, 
CCSD(T), CASSCF, and so on. Note that “MO” in the name IMOMO is not synonymous 
with Hartree–Fock but includes such MO-based methods as MP and CC; DFT does not 
use MOs but does use Kohn–Sham orbitals.

As an example, suppose one wants to calculate the barrier height for the reaction 
Cla

- + HaHbCa1Clb2CbH3 S H2C1Cla2CH3 + Clb
-, where the subscripts help distinguish 

identical atoms. The model system can be taken as Cl- + HaHbCa1Cl2Hc, in which an H 
atom (the capping atom) replaces the methyl group, so as to give a smaller system more 
easily treatable at a higher level. The methyl carbon in the real system that is replaced by 
the capping atom is called the link atom. The model system retains the atoms and bonds 
that are most directly involved in the reaction.

To optimize the reactants’ geometries or the transition-state geometry, one varies the 
bond distances, angles, and dihedral angles in the real and the model systems (subject to 
certain constraints) so as to either minimize EIMOMO or to locate a first-order saddle point. 
IMOMO constrains corresponding bond distances, bond angles, and dihedral angles in the 
real and model systems to be the same. For example, the HaCaHb angles in the real and the 
model system are equal, and the HaCaCb angle in the real system equals the HaCaHc angle 
in the model system. Moreover, to avoid problems in geometry optimization, IMOMO 
takes the bond distance CaiHc to the capping atom in the model system and the distance 
CaiCb to the link atom in the real system to be frozen at standard values.

The method works rather well in finding barrier heights and produces large savings 
in computational time.
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The IMOMM (integrated molecular orbital plus molecular mechanics) method 
resembles IMOMO, but the lower level used is the molecular-mechanics method (Sec-
tion 17.5) and some details of the implementation differ from IMOMO [F. Maseras and  
K. Morokuma, J. Comput. Chem., 16, 1170 (1995)].

The IMOHC (integrated molecular orbital method with harmonic cap) method is a 
modification of IMOMO and IMOMM in which the bond distances to the link atom in the 
real system and the capping atom in the model system are not frozen but are allowed to vary 
in the optimization [J. C. Corchado and D. G. Truhlar, J. Phys. Chem. A, 102, 1895 (1998)].

The ONIOM (our own n-layered integrated molecular orbital and molecular mechan-
ics) method is an extension of IMOMO and IMOMM that performs calculations on n dif-
ferent systems using n levels of calculation. Each system and calculation level constitute a 
layer. The IMOMO and IMOMM methods are versions of ONIOM with n = 2. ONIOM3 
is the three-layered version of ONIOM and uses a real system calculated at a low level, 
an intermediate model system calculated at a medium level, and a small model system 
calculated at a high level [M. Svensson et al., J. Phys. Chem., 100, 19357 (1996)].

Problems

Sec. 16.2 16.3 16.4 16.5 16.7 16.9

Probs. 16.1–16.8 16.9–16.14 16.15–16.20 16.21–16.31 16.32–16.33 16.34–16.35

Sec. 16.11 16.12 16.14

Probs. 16.36 16.37–16.44 16.45–16.46

	16.1	 Find the number of CSFs in a full CI calculation of CH2SiHF using a 6-31G** basis set.

	16.2	 Let g be the fraction of the basis-set correlation energy obtained by a CI-SD calculation 
on a molecule with n electrons. Sasaki showed that an approximate equation satisfied by 
g is g- 1 - 1 =

1
2 bgn - b, where b is a quantity whose value is typically 0.015 to 0.03 

for molecules consisting of first-row atoms. For such molecules, use this equation to esti-
mate the percent of the basis-set correlation energy obtained by CI-SD calculations for 
n = 20, 50, 100, and 200.

	16.3	 Frozen-core SCF/DZP and CI-SD/DZP calculations on H2O at its equilibrium geometry gave 
energies of -76.040542 and -76.243772 hartrees. Application of the Davidson correction 
brought the energy to -76.254549 hartrees. Find the coefficient of �0 in the normalized CI-SD 
wave function.

	16.4	 For a CI calculation of the H2 ground electronic state, which of the following electron con-
figurations will produce a CSF that will contribute to the wave function? (a) 11sg212sg2; 
(b) 11sg212su2; (c) 11su22; (d) 11pu211pg2; (e) 11pu213su2; (f) 11pu22; (g) 11pu212pu2.

	16.5	 Verify the expression given for the CI ground-state wave function in the Section 16.2 example.

	16.6	 In the Section 16.2 CI example, verify the expressions given in terms of integrals over the 
basis functions for (a) 8�2 � Hn ��29 ; (b) 8�2 � Hn � �19 .

	16.7	 For a CASSCF wave function in which the active orbitals are taken as those that arise from 
the 2s and 2p AOs, state the number of active electrons and the maximum number of electrons 
excited to virtual orbitals in the ground-state wave function for (a) C2; (b) N2; (c) O2; (d) F2.

	16.8	 For a CASSCF1m,n2 calculation, the number N of singlet CSFs (ignoring any symmetry 
restrictions) is

N =
n!1n + 12!

11
2 m2!11

2 m + 12!1n -
1
2 m2!1n -

1
2 m + 12!

			   (a) Calculate N for a CASSCF(6,6) calculation. (b) Calculate N for a CASSCF(14,14) 
calculation.
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	16.9	 Verify (16.11) for the MP perturbation Hn �.

	16.10	 To derive the MP E122
0 , we set c102

s = �ab
ij  in (16.12); the sum over excited states s � 0 in 

(16.12) is replaced by a quadruple sum over i, j, a, and b that produces all possible determi-
nants that contain two excited spin-orbitals and that represent different states. (a) For this 
quadruple sum, explain why we want the limits for i and j to be as in (16.13); explain why 
�ab

ij = 0 if a = b, and explain why we want the limits for a and b to be as in (16.13). 
(b) Use the Condon–Slater rules to evaluate 8�ab

ij � Hn � ��09 , and show that (16.13) follows.

	16.11	 True or false? A nonrelativistic MP2 calculation can give an energy that is less than the true 
nonrelativistic ground-state energy.

	16.12	 (a) Use MP2(FC)/6-31G* calculations to predict the geometry, vibrational frequencies, dipole 
moment, and atomization energy of CO2. Use 0.95 as the scale factor for the vibrational 
frequencies. Compare with HF/6-31G* and experimental results (Prob. 15.40). (Note that 
frozen core is the default in Gaussian MP calculations, so the keyword MP2 produces an FC 
calculation.) (b) Repeat (a) for H2O.

	16.13	For the HF molecule, find the predicted bond length, dipole moment, electronic energy 
including nuclear repulsion, and unscaled harmonic vibrational frequency using the follow-
ing calculations. Also, if your program calculates these, give the predicted values of the 
thermodynamic quantities U �298 - U �0 and S �298. (a) MP2(FC)/6-31G*; (b) MP4(FC)/6-31G*. 
(You can do these using the WebMO Demo Server.) Compare with HF/6-31G* and experi-
mental values. Note that frozen core is the default option in most programs and need not 
be specified. (Note that Gaussian 09 uses a standard pressure of 1 atm, rather than the 
recommended 1 bar.)

	16.14	 Although ab initio HF calculations fail in predicting molecular atomization energies, one can 
still use HF energies to estimate energy changes for certain types of reactions. Recall that 
good barriers to internal rotation can usually be obtained from ab initio SCF MO calculations 
because of a near cancellation in correlation energies between different molecular conforma-
tions. As ethane goes from staggered to eclipsed, the number of chemical bonds of each type 
does not change. More generally, one might hope that a similar near cancellation of correlation 
energies might occur for an isodesmic chemical reaction; an isodesmic reaction (Greek isos, 
“equal”; desm, “bond”) is one in which the number of bonds of each type does not change 
[W. J. Hehre et al., J. Am. Chem. Soc., 92, 4796 (1970)]. For example, the isodesmic reaction 
CH2 “ CHCH2OH + CH2 “ O S CH2 “ CHOH + CH3CH “ O has seven CH bonds, one 
CC double bond, one CC single bond, one CO double bond, one CO single bond, and one OH 
bond on each side. A special kind of isodesmic reaction is a bond-separation reaction. Here, 
one starts with a molecule and converts it to products, each of which contains only one bond 
between nonhydrogen atoms. For example, starting with CH3iCH “ C “ O, one would form 
the products CH3iCH3, CH2 “ CH2, and CH2 “ O, in which the CiC, C “ C, and C “ O 
bonds are separated from one another. To balance the reaction, one adds an appropriate num-
ber of hydride molecules (for example, CH4, NH3, H2O) to the left side. The bond-separation 
reaction for CH3 CHCO is then CH3iCH “ C “ O + 2CH4 S  C2H6 + C2H4 + CH2O. 
The bond-separation reaction for benzene is C6H6 + 6CH4 S 3C2H6 + 3C2H4. (If the energy 
of a molecule could be represented as the sum of bond energies that were invariant from 
molecule to molecule, then the energy change for any isodesmic reaction would be zero. The 
energy change for a bond-separation reaction measures the interactions between the bonds in 
the molecule.) If an SCF MO calculation could fairly accurately predict the energy change 
for the bond-separation reaction of a large molecule, then we could use the known energies 
of the small product molecules like C2H6 to get a reasonably good estimate for the energy 
of the large molecule from an SCF calculation, without having to use expensive correlation 
methods. (a) Write the bond-separation reaction for cyclopropane. Do the same for CH3 CHO. 
(b) Do HF/6-31G* energy and vibrational frequency calculations on the molecules in the 
CH3 CHO bond-separation reaction. Scale the vibrational frequencies (Section 15.12) to find the 
zero-point energies. Find the �H �

0 value predicted by the HF/6-31G* method for the gas-phase 
CH3CHO bond-separation reaction. Compare with the experimental value of 11.5 kcal/mol. 
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(c) Repeat (b) using MP2/6-31G* calculations. (Although isodesmic-reaction calculations 
work reasonably well for small molecules, the errors become too large when used with large 
molecules.)

	16.15	 Show that c in (16.15) satisfies 8c � �09 = 8�0 � �09 = 1, and show that 8c �c9 � 1. In 
what earlier chapter in this book does an equation like 8c � �09 = 1 appear?

	16.16	 (a) Give an example of an uncharged molecule for which the CCSD(T)(full)/cc-pVQZ energy 
is the same as the CCSD(full)/cc-pVQZ energy. (b) Give an example of an uncharged mol-
ecule for which the CCSD(T)(FC)/cc-pVQZ is exactly the same as the CCSD(FC)/cc-pVQZ 
energy but the CCSD(full)/cc-pVQZ energy differs from the CCSD(T)(full)/cc-pVQZ energy. 
(c) Give an example of an uncharged molecule for which the CCSD energy in the CBS limit 
equals the exact nonrelativistic energy.

	16.17	 (a) Verify the CC equation (16.27). (b) Verify (16.28).

	16.18	 Verify the extrapolation equation (16.32).

	16.19	 For H2O, CCSD(T)(FC) energies in hartrees at the optimized geometry for each basis set for 
the aug-cc-pVnZ basis sets are -76.363588 for n = 4, -76.370298 for n = 5, -76.372559 
for n = 6, and -76.373672 for n = 7 [D. Feller and K. A. Peterson, J. Chem. Phys., 131, 
154306 (2009)]. (The n = 7 basis set exists for only a few elements.) (a) Use the equation 
following (16.32) to derive a formula that expresses E�  in terms of En and En - 1. (b) Use this 
formula with n and n - 1 being 5 and 4 to estimate the CCSD(T)(FC) CBS limit for H2O. 
Repeat for the values 6 and 5 and then for 7 and 6. Your estimates will not be close to the true 
nonrelativistic energy -76.438 listed in Table 16.2 mainly because of the frozen-core approxi-
mation. A CCSD(T)(full)/aug-cc-pCV5Z calculation gives -76.432 hartrees [M. Cortez et al., 
J. Chem. Theory Comput., 3, 1267 (2007)].

	16.20	 For the HF molecule, run the following calculations to find the predicted bond length, 
(unscaled) harmonic vibrational frequency, dipole moment, and electronic energy including 
nuclear repulsion. Also, if your program calculates these, give the predicted values of the 
thermodynamic quantities U �298 - U �0 and S �298. (a) CCSD(FC)/6-31G*; (b) CCSD(T)(FC)/
6-31G*. You can run these on the Internet using the WebMO Demo Server. Note that frozen 
core is the default option in most programs. (c) Compare your results with the MP2 and MP4 
calculations of Prob. 16.13 and with HF/6-31G* and experimental values.

	16.21	 Which of the following are functionals? (a) 1 f1x2 dx; (b) 11

0
f (x) dx; (c) 12

0
3 f1x2 + 142 dx; 

(d) 3f1x2 + 142; (e) df1x2>dx � x = 0.

	16.22	 Let Hna and Hnb be the operators obtained when v1ri2 in (16.33) is replaced by va1ri2 and vb1ri2, 
respectively, where va1ri2 and vb1ri2 differ by more than a constant. Prove that the ground-
state wave functions c0,a and c0,b of these Hamiltonians must be different functions. Hint: 
Assume they are the same function, write the Schrödinger equations for Hna and Hnb, subtract 
one equation from the other, and show that this leads to va1ri2 - vb1ri2 equals a constant, 
thereby contradicting the given information and proving that the two wave functions cannot 
be equal.

	16.23	 (a) Find dEXa
x >dr, where EXa

x  is given by (16.61). (b) If F[r] = 1r- 1�r . �r dv, where 
the integral is over all space, and r is a function of x, y, and z that vanishes at infinity, find 
dF>dr.

	16.24	 Verify that hnKS112 in (16.49) is the same as the Fock operator (16.8) except that the exchange 
operators in the Fock operator are replaced by vxc.

	16.25	 Verify Eqs. (16.57) and (16.58).

	16.26	 Verify (16.60) for Ex.

	16.27	 Verify that (16.65) for E LSDA
x  reduces to (16.58) for E LDA

x  if ra = rb.

	16.28	 (a) For an n-electron molecule, show that the electron probability density is given 
by r1r2 = n8c �d1r - r12 �c9 = 8c � gn

i = 1d1r - ri2 �c9 , where d1r - ri2 =

d1x - xi2d1y - yi2d1z - zi2 and d is the Dirac delta function (Section 7.7). (b)  Use 
the Condon–Slater rules to show that if c is a single Slater determinant of spin-orbitals 
ui = uisi, then r1r2 = gn

i = 1 � ui1r2 � 2.
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	16.29	 (a) For CO2, use SVWN/6-31G*, BLYP/6-31G*, and B3LYP/6-31G* calculations to predict 
the equilibrium geometry, vibrational frequencies, and atomization energy. Do not scale the 
vibrational frequencies. Compare the results and the computational times with HF/6-31G* 
calculations (Prob. 15.40). (b) Repeat (a) for H2O.

	16.30	 Repeat Prob. 15.57 for HCOOH using B3LYP/6-31G* calculations.

	16.31	 Repeat Prob. 16.14(b) using B3LYP/6-31G* calculations.

	16.32	 (a) Problem 7.46 showed that if Hn  is independent of time, � as a function of time is given by 
(7.101), where the cn’s are constants. Use (7.101) to explain why in the limit t S � (where 
t K it/U) we have � = cgs exp1-tEgs2cgs, where cgs is the ground-state wave function. For 
convenience, we shift the zero level of energy by subtracting the constant Vref from Hn , where 
Vref is chosen as the best estimate we have of the ground-state energy Egs. Explain why this 
shift gives � = cgs exp3-t1Egs-Vref24cgs. (Use of Vref prevents � from becoming very small 
or very large at large t.) (b) Show that the time-dependent Schrödinger equation (7.97) for 
an n-electron molecule is 0�>0t =

1
2gn

i = 1�2
i � - 1V - Vref2�. This equation has the same 

form as the equation 0C>0t = D �2C - kC for a species undergoing both diffusion (with 
diffusion coefficient D) and a first-order chemical reaction with rate constant k, where C is 
the concentration, provided we replace the three-dimensional space of the diffusion equation 
with a 3n-dimensional “space” whose variables are the coordinates of the n electrons.

	16.33	 To properly apply the DQMC method, one must allow for the nodes produced by the anti-
symmetry requirement. (a) Consider a system of three electrons in a one-dimensional box, 
where we shall pretend that the interelectronic repulsions are small enough to be neglected. 
By analogy to the Li zeroth-order wave function (10.48), write down the ground-state wave 
function for this system. (b) Use orthogonality of the three different three-electron spin fac-
tors that multiply a, b, and c in Prob. 10.15 to show that each spatial factor that corresponds 
to a, b, or c is an eigenfunction of Hn . Hence, in doing the DQMC computer simulation of 
the imaginary-time Schrödinger equation, we need deal with only one of the spatial factors, 
say, the one corresponding to a. For our system of electrons in a box, there are three spatial 
variables, the coordinates x1, x2, and x3 of the three electrons, and the DQMC simulation is 
done in a three-dimensional space bounded by the sides of a cube, on which the wave func-
tion vanishes. Show that the spatial factor corresponding to a has a nodal surface defined by 
x2 = x3 and this is the only nodal surface within the cube. (Hint: Use a trigonometric identity 
for sin 2z.) (c) Show that the nodal surface x2 = x3 is a plane that divides the cube into two 
regions of equal volume; that in one of these regions (the one with x3 7 x2) the wave function 
is positive, and in the other region, the wave function is negative. Also show that for each 
point P in one region, there is a corresponding point (the one with the values of x2 and x3 
interchanged) where the wave function has minus its value at P. In doing the DQMC simula-
tion, one works entirely within one region and eliminates any walker that crosses the nodal 
surface. (Note that the concentration C in the diffusion equation must always be positive or 
zero.)

	16.34	 (a) For gas-phase CH3CHO, optimize the geometry at the B3LYP/6-31G* level and then use 
the GIAO method with B3LYP/6-31G* to find the predicted proton and 13C isotropic shielding 
constants (in ppm). (In Gaussian, the keyword NMR or NMR=GIAO on the line that begins 
with a # sign produces a GIAO calculation.) If you are using the WebMO Demo Server, you 
will need to click on Raw output to see the shielding constants. (b) The TMS GIAO shielding 
constants for B3LYP/6-31G* are 189.78 ppm for 13C and 32.18 for the protons. Use the results 
of part (a) to find the predicted proton and 13C chemical shifts relative to TMS. (c) Look up 
at cheshirenmr.info the recommended linear scaling constants for the method of part (a) to 
get scaled chemical shift predictions. Compare these with the experimental results at riodb01 
.ibase.aist.go.jp/sdbs. Ignore the effect of the solvent.

	16.35	 Repeat Prob. 16.34 using MP2/6-31+G(d,p) geometry optimization followed by a single-point 
NMR MP2/6-31+G(d,p) calculation.

	16.36	 Use the viral-theorem result (14.76) to show that 8v

291>2>c = Ze2>4pe0Uc � Z>137 for the 
ground-state H atom.

	16.37	 Prove that the sum of the VB occupation numbers ni is 1.
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	16.38	 Verify Eq. (16.76) for the H2O covalent VB structures.

	16.39	 Consider the orbitals 1, 2, . . . , 6 arranged in order on a circle. Use (16.78) repeatedly to show 
that the scheme with the pairings 1–5, 2–4, 3–6 can be expressed as a linear combination of 
structures with no lines crossing.

	16.40	 Draw an example of each of the six types of singly polar ionic benzene structures. Work out 
how many individual structures of each type exist.

	16.41	 For 1,3-butadiene: (a) How many canonical covalent VB structures are there for the p elec-
trons? (b) Draw these structures. (c) Draw the 12 individual singly polar ionic structures for 
the p electrons.

	16.42	 (a) How many canonical covalent structures are there for the naphthalene p electrons? 
(b) Of these, how many are Kekulé structures (no long bonds)? (c) Considering only the Kekulé 
structures, which bonds in naphthalene does the resonance method predict to be the shortest?

	16.43	 The three equivalent sp2 hybrid AOs of carbon point to the corners of an equilateral triangle. 
Derive expressions for them, assuming orthonormality.

	16.44	 The two equivalent sp hybrid carbon AOs make an angle of 180� with each other. Derive them.

	16.45	 Consider the reaction HCN S CNH. (a) Find the HF/6-31G* equilibrium geometries of HCN 
and HNC. (Recall that 180� is not allowed as a Z-matrix bond angle.) (b) Find the HF/6-31G* 
transition-state structure for this reaction. Hints: We expect the transition-state (TS) structure 
to be roughly halfway between the reactant and product structures. Thus we expect a triangular 
TS with the CN distance somewhere between its values in the reactant and product, the HC 
distance somewhat longer than its values in the reactant, and the HN distance somewhat longer 
than its value in the product. Start with an initial guess for the TS structure. In Gaussian, one 
way to find a TS is to replace Opt by Opt(CalcFC,TS).

16.46	 (a) For formic acid, HCOOH, find the two stable conformers at the HF/6-31G* level; check 
that each conformer is a local minimum. Then find the structure of the HF/6-31G* transition 
state between these conformers. (See also Prob. 16.45.) What is the HF/6-31G* barrier to 
internal rotation about the CO single bond (omit zero-point energies)? (b) Repeat for vinyl 
alcohol.
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Chapter 17

Semiempirical and  
Molecular-Mechanics 
Treatments of Molecules

Because of the difficulties in applying ab initio methods to medium and large molecules, 
many semiempirical methods have been developed to treat such molecules. The earli-
est semiempirical methods treated only the p electrons of conjugated molecules. This 
chapter begins with p-electron semiempirical methods (Sections 17.1 to 17.3) and then 
considers general semiempirical methods (Section 17.4).

The molecular-mechanics method (Section 17.5) is a nonquantum-mechanical method 
applicable to much larger molecules than semiempirical methods.

17.1 �Semiempirical MO Treatments of Planar 
Conjugated Molecules

The canonical MOs of a planar unsaturated organic molecule can be divided into s and 
p MOs according to whether the eigenvalue for reflection in the molecular plane is +1 or 
-1, respectively (Section 15.9). The earliest semiempirical methods for planar conjugated 
organic compounds (Sections 17.1–17.3) treated the p electrons separately from the s 
electrons. Coulson stated that the justification for the s- p separability approximation lies 
in the different symmetry of the s and p orbitals and in the greater polarizability of the 
p electrons, which makes them more susceptible to perturbations such as those occurring 
in chemical reactions.

In the P-electron approximation, the np p electrons are treated separately by 
incorporating the effects of the s electrons and the nuclei into some sort of effective 
p@electron Hamiltonian Hnp (recall the similar valence-electron approximation; Sections 
13.17 and 15.16):

	 Hnp = a
np

i = 1
Hp
n

core1i2 + a
np

i = 1
a
j7 i

1
rij

	 (17.1)

	 Hn core
p 1i2 = -

1
2 �2

i + V1i2	 (17.2)

where V1i2 is the potential energy of the ith p electron in the field produced by the nuclei 
and the s electrons. The core is everything except the p electrons. The variational principle 
is then applied to find a p-electron wave function cp that minimizes the variational integral 
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1c*pHnpcp dt to give a p-electron energy Ep. The validity of the p-electron approximation 
has been discussed by Lykos and Parr (see Parr, pages 41–45, 211–218). Since (17.1) is 
not the true molecular electronic Hamiltonian, treatments that make the p-electron approxi-
mation are semiempirical. The main p-electron MO theories are the Hückel MO method 
(Section 17.2) and the Pariser–Parr–Pople method (Section 17.3).

17.2 The Hückel MO Method
The most celebrated semiempirical p-electron theory is the Hückel molecular-orbital 
(HMO) method, developed in the 1930s to treat planar conjugated hydrocarbons. Here 
the p-electron Hamiltonian (17.1) is approximated by the simpler form

	 Hnp = a
np

i = 1
Hn eff1i2	 (17.3)

where Hn eff1i2 somehow incorporates the effects of the p-electron repulsions in an average 
way. This sounds rather vague, and in fact the Hückel method does not specify any explicit 
form for Hn eff1i2. Since the Hückel p-electron Hamiltonian is the sum of one-electron 
Hamiltonians, a separation of variables is possible (Section 6.2). We have

	 Hnpcp = Epcp	 (17.4)

	 cp = q
np

i = 1
fi	 (17.5)

	 Hn eff1i2fi = eifi	 (17.6)

	 Ep = a
np

i = 1
ei	 (17.7)

where the product notation in (17.5) is defined by Eq. (17.22). The wave function (17.5) 
takes no account of spin or the antisymmetry requirement. To do so, we must put each 
electron in a spin-orbital ui = fisi where si is a spin function (either a or b). The wave 
function cp is then written as a Slater determinant of spin-orbitals. Since Hn eff1i2 does not 
involve spin, we have Hn eff1i2ui = eiui. Each term in the antisymmetrized product function 
cp has each electron in a different spin-orbital [see, for example, the equation preceding 
(10.48)]. When Hnp, which is being approximated as the sum of the Hn eff1i2’s, acts on each 
term in cp, it gives the sum of the ei’s. Hence Hnpcp equals g i eicp, and (17.7) still holds 
when allowance is made for spin and antisymmetry.

Since Hn eff is not specified, there is no point in trying to solve (17.6) directly. Instead, 
the variational method is used.

The next assumption in the HMO method is to approximate the p MOs as LCAOs. 
In a minimal-basis-set calculation of a planar conjugated hydrocarbon, the only AOs of p 
symmetry are the carbon 2pp orbitals, where by 2pp we mean the real 2p AOs that are 
perpendicular to the molecular plane. We thus write

	 fi = a
nC

r = 1
cri fr	 (17.8)

where fr is a 2pp AO on the rth carbon atom and nC is the number of carbon atoms. Since 
(17.8) is a linear variation function, the optimum values of the coefficients for the nC lowest 
p MOs satisfy Eq. (8.53):

	 a
nC

s = 1
31H eff

rs - Srsei2csi4 = 0,  r = 1, 2, c, nC	 (17.9)
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where the ei’s are the roots of the secular equation (8.57):

	 det1H eff
rs - Srsei2 = 0	 (17.10)

The key assumptions in the Hückel theory involve the integrals in (17.10). The 
integral H eff

rr  is assumed to have the same value for every carbon atom in the molecule. 
(For benzene the six carbons are equivalent, and this is no assumption. For 1,3-butadiene, 
CH2CHCHCH2, one would expect H eff

rr  for an end carbon and a middle carbon to differ 
slightly.) Moreover, H eff

rr  is assumed to be the same for carbon atoms in different planar 
hydrocarbons. The integral H eff

rs  is assumed to have the same value for any two carbon 
atoms bonded to each other and to vanish for two nonbonded carbons. The integral Srr is 
equal to 1, since the AOs are normalized. The overlap integral Srs is assumed to vanish 
for r � s. We have

	 H eff
rr = L f*r1i2Hn eff1i2 fr1i2 dvi K a	 (17.11)

	 H eff
rs = L f*r1i2Hn eff1i2 fs1i2 dvi K b for Cr and Cs bonded	 (17.12)

	 H eff
rs = 0 for Cr and Cs not bonded together	 (17.13)

	 Srs = L f*r1i2 fs1i2 dvi = drs	 (17.14)

	 fr K Cr2pp	 (17.15)

where drs is the Kronecker delta. a is called the Coulomb integral and b is the bond 
integral (or resonance integral). [Note that a is unrelated to the Coulomb integral in 
Eq. (14.24).] Since carbons not bonded to each other are well separated in space, the 
assumption (17.13) is reasonable. However, taking the overlap integral as zero for carbons 
bonded to each other is a poor assumption. For Slater orbitals, Srs for adjacent carbons 
ranges between 0.2 and 0.3, depending on the bond distance. Inclusion of overlap will 
be considered later.

We want each p MO to be normalized. Using Eqs. (17.8) and (17.14), we have 
1 = 8fi 0fi9 = 8g r cri fr 0 g scsi fs9 = g rg s c*ricsi8 fr 0  fs9 = g rg s c*ricsidrs = g r c*ricri,

	 a
nC

r = 1
 0 cri 0 2 = 1	 (17.16)

This is the normalization condition for the ith Hückel MO.
In application of HMO theory to conjugated hydrocarbons, planarity is assumed. 

Occasionally, this assumption does not hold. In gas-phase biphenyl the two rings are 
twisted at an angle of 44� with each other because of steric interference between the 
ortho hydrogens.

From (17.9) it is clear that the order of the HMO secular determinant equals the number 
of conjugated atoms. Students sometimes make the error of assuming that this order always 
equals the number of p electrons.
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Butadiene
To illustrate the HMO method, we consider 1,3-butadiene. The only thing of significance 
in the simple HMO treatment of a planar hydrocarbon is the topology of the carbon-atom 
framework; by this we mean which carbons are bonded together. No distinction is made 
between s-cis and s-trans butadiene. The terms s-cis and s-trans refer to the conformation 
about the single bond:

zi ” ziz
s@cis s@trans

The s-trans conformation is the dominant one observed for 1,3-butadiene. However, 
the UV, IR, and Raman spectra of 1,3-butadiene show the presence of small amounts 
of a second conformation. High-level CCSD(T) calculations and analysis of spectra 
of gas-phase butadiene show that this second conformation is the nonplanar gauche 
form with a CCCC dihedral angle of about 36°. The cis form is a saddle point that lies 
about 0.5 kcal/mol above the gauche minimum; the gauche conformer lies 3 kcal/mol  
above the trans global minimum. See D. Feller and N. C. Craig, J. Phys. Chem. 
A, 113, 1601 (2009); P. Boopalachandran et  al., ibid., 115, 8920 (2011); 116, 271 
(2012).

The numbering of the carbon atoms is

	 C
1

H2 “ C
2

HiC
3

H “ C
4

H2	 (17.17)

The Hückel assumptions (17.11) to (17.13) give H eff
11 = H eff

22 = H eff
33 = H eff

44 = a,
 H eff

12 = H eff
23 = H eff

34 = b, and H eff
13 = H eff

14 = H eff
24 = 0. The secular equation (17.10) is

	 ∞
a - ek b 0 0

b a - ek b 0

0 b a - ek b

0 0 b a - ek

∞ = 0	 (17.18)

We now divide each row of the determinant by b. This divides the determinant by b4, and 
since 0>b4 = 0, we get

	 ∞
x 1 0 0

1 x 1 0

0 1 x 1

0 0 1 x

∞ = 0	 (17.19)

where

	 x K
a - ek

b
,  ek = a - bx	 (17.20)

A determinant in which all elements are zero except the elements of the principal 
diagonal and the elements immediately above and below this diagonal is called a con-
tinuant. When the elements immediately above the principal diagonal are all equal, 
those on the principal diagonal are all equal, and those immediately below the principal 
diagonal are all equal, the nth-order continuant can be shown to have the value (T. Muir, 
The Theory of Determinants in the Historical Order of Development, Dover, Volume 4, 
1960, page 401)
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	 6 a b 0 0 # # # # 0

c a b 0 # # # # 0

0 c a b # # # # 0
# # # # # # # # #

0 # # # # 0 c a b

0 # # # # 0 0 c a

6 = q
n

j = 1
ca - 21bc21>2 cosa jp

n + 1
b d 	 (17.21)

where n is the order of the determinant. The definition of the product notation used in 
(17.21) is

	 q
n

j = 1
bj = b1b2b3 g bn	 (17.22)

Use of (17.21) in (17.19) gives

q
4

j = 1
 ax - 2cos 

jp

5
b = 0

	 x = 2 cos1 jp>52, j = 1, 2, 3, 4	 (17.23)

	 x = -1.618, -0.618, 0.618, 1.618	 (17.24)

Alternatively, we can expand the secular determinant to yield the algebraic equa- 
tion x4 -3x2 + 1 = 0. The substitution z = x2 yields z2 - 3z + 1 = 0, and the 
quadratic formula gives z = 13 { 51>22>2. Hence x = {z1>2 = 13 { 51>221>2>21>2, 
 - 13 { 51>221>2>21>2.

Corresponding to (17.19), the equations for the HMO coefficients of butadiene are

 xc1j + c2 j = 0

 c1j + xc2 j + c3j = 0

	  c2 j + xc3j + c4 j = 0	
(17.25)

 c3j + xc4 j = 0

We must now substitute each of the roots (17.24) in turn into (17.25), as discussed in  
Section 8.5.

Consider first the root x = -1.618. The first equation of (17.25) reads -1.618c1 +

c2 = 0 (where, for simplicity, the j subscript has been omitted). As discussed in Section 
8.4, the solutions c1, c2, c3, c4 each contain an arbitrary multiplicative constant. Hence we 
shall solve for c2, c3, and c4 in terms of c1. We have c2 = 1.618c1. The second equation in 
(17.25) gives c3 = -c1 - xc2 = -c1 + 1.61811.618c12 = 1.618c1. The fourth equation 
in (17.25) gives c4 = -c3>x = 1.618c1>1.618 = c1.

The normalization condition (17.16) is now used to fix c1. Taking c1 to be a real, posi-
tive number, we have 1 = c2

1 + c2
2 + c2

3 + c2
4 = c2

1 + 11.618c122 + 11.618c122 + c2
1 =

7.236c2
1, and c1 = 0.372. Then c2 = 1.618c1 = 0.602, c3 = 1.618c1 = 0.602, and c4 =

c1 = 0.372. The HMO corresponding to x = -1.618 is then f = 0.372 f1 + 0.602 f2 +

0.602 f3 + 0.372 f4. The energy of this HMO is given by (17.20) as e = a + 1.618b.
Substitution of each of the three remaining roots into (17.25) yields three more HMOs. 

We find the following four normalized HMOs (Prob. 17.4):

 f1 = 0.372 f1 + 0.602 f2 + 0.602 f3 + 0.372 f4

 f2 = 0.602f1 + 0.372f2 - 0.372f3 - 0.602f4

	  f3 = 0.602f1 - 0.372f2 - 0.372f3 + 0.602f4 	
(17.26)

 f4 = 0.372f1 - 0.602f2 + 0.602f3 - 0.372f4
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The HMO energies are

e1 = a + 1.618b, e2 = a + 0.618b

	 e3 = a - 0.618b, e4 = a - 1.618b	
(17.27)

The MO f1 in (17.26) has no nodes (other than the molecular plane) and leads to maximum 
charge buildup between the atoms. Clearly this must be the lowest-energy p MO. Its energy 
is a + 1.618b and, therefore, the bond integral b must be negative. [See also Eq. (13.62).] 
The HMOs and energy levels are sketched in Fig. 17.1. The number of vertical nodal planes 
is zero for the ground MO and increases by one for each higher MO.

From the figure, it is clear that these MOs are orthogonal. We can approximate the energy 
of an electron in a carbon 2pp AO in the molecule by 1 f*i Hn eff

 fi dv = a. An HMO is classi-
fied as bonding or antibonding according to whether its energy is less than or greater than a.

Conjugated Polyenes
Consider the conjugated polyene

	 CH2 “ 3CHiCH “4 s CH2	 (17.28)

where s can be 0, 1, 2, . . . . Let nC be the number of carbon atoms in the polyene. 
The HMO secular equation involves a continuant similar to (17.19) but of order nC. 

Figure 17.1  HMOs for 
butadiene. Nodal planes for 
the π MOs are indicated by 
dashed lines. The ground-
state π-electron MO configu-
ration is shown.
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Equation (17.21) with b = c = 1, a = x, and n = nC gives x = 2 cos3jp> 1nC + 124 , 
where j = 1, c, nC. Since the values of x for j = k and for j = nC + 1 - k are simply 
the negatives of each other, we can write

 x = -2 cos 
jp

nC + 1

	  ej = a + 2b cos 
jp

nC + 1
, j = 1, 2, c, nC	 (17.29)

Since b is negative, e1 is the lowest p energy level. All the p-electron levels are nonde-
generate. The HMO coefficients are (Prob. 17.5)

	 crj = a 2

nC + 1
b

1>2
 sin 

jrp

nC + 1
	 (17.30)

In the ground electronic state of (17.28), the highest occupied and lowest vacant p MOs 
have j =

1
2 nC and 1

2 nC + 1, respectively. HMO theory predicts the longest wavelength 
band of the electronic absorption spectrum of a conjugated polyene to occur at

	
1

l
= -

4b

hc
 sin 

p

2nC + 2
	 (17.31)

where (17.29) and cos a - cos b = -2sin[1
21a + b2]sin[1

21a - b2] were used. The bond 
integral b is a semiempirical parameter and is adjusted to give the best fit to experimental 
data. If we use the observed butadiene longest-wavelength absorption l = 217 nm, we 
find 0b 0 >hc = 37300 cm-1, 0b 0 = 4.62 eV. With this value of b, we then calculate wave-
lengths for the polyenes (17.28). The predicted values do show the correct trend of increase 
in l with increase in nC, but agreement with experiment is poor. Predicted l values show an 
average absolute error of 44% for the first several members of the series (Prob. 17.3). [The 
first excited HMO configuration gives rise to two electronic terms, a singlet and a triplet. 
In the HMO model, neglect of electronic repulsions gives the singlet and triplet terms the 
same energy. The observed longest wavelength electronic transition is a singlet–singlet 
transition, since singlet–triplet transitions are forbidden. Strictly speaking, we should use 
the average of the singlet–singlet and singlet–triplet energy differences to find b.]

An obvious defect of the Hückel approximation for conjugated polyenes is the use of 
a single value of b for each pair of adjacent carbon atoms. The bond lengths in these mol-
ecules alternate, and we expect b to be larger for doubly bonded carbons than for singly 
bonded carbons. Lennard-Jones used two polyene bond integrals b1 and b2 for CiC and 
C “ C bonds, respectively [J. E. Lennard-Jones, Proc. Roy. Soc., A158, 280 (1937)]. With 
b1 = -3.32 eV, b2 = -4.20 eV, agreement with experiment is much improved over the 
single-b predictions; the average absolute error of predicted l values is reduced to 9%.

Benzene
For benzene (Fig. 17.2), the HMO secular equation is

	 6 x 1 0 0 0 1

1 x 1 0 0 0

0 1 x 1 0 0

0 0 1 x 1 0

0 0 0 1 x 1

1 0 0 0 1 x

6 = 0	 (17.32)

where x is given by (17.20).

Figure 17.2  Numbering of 
carbons in benzene.
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The determinant in (17.32) is a special kind called a circulant. A circulant has 
only n independent elements; they appear in the first row, and succeeding rows are 
formed by successive cyclic permutations of these elements. The nth-order circulant 
C1a1, a2, c, an2 is

C1a1, a2, c, an2 = 5 a1 a2 a3 c an

an a1 a2 c an - 1

an - 1 an a1 c an - 2

. . . c .

a2 a3 a4 c a1

5
The value of the nth-order circulant can be shown to be (T. Muir, A Treatise on the Theory 
of Determinants, Dover, 1960, pages 442–445)

	 C1a1, a2, c, an2 = q
n

k = 1
1a1 + vka2 + v2

ka3 + g+ vn - 1
k an2	 (17.33)

where v1, v2, c, vn are the n different nth roots of unity [Eq. (1.36)]:

	 vk = e2pik>n,  k = 1, 2, c, n,  i = 2-1	 (17.34)

Substitution of (17.33) into (17.32), followed by the use of exp32pik15>624 =

exp1-2pik>62 and eiu = cos u + i sin u, gives

q
6

k = 1
1x + e2pik>6 + e-2pik>62 = 0,  i = 2-1

	 x = -2 cosa 2pk

6
b ,  k = 1, c, 6	 (17.35)

x = -1, +1, +2, +1, -1, -2

	 ei = a + 2b, a + b, a + b, a - b, a - b, a - 2b	 (17.36)

There are two nondegenerate and two doubly degenerate Hückel levels. Figure 17.3 shows 
the HMO ground-state p-electron configuration.

The HMO coefficients can be found by solving the usual set of simultaneous equa-
tions, but it is simpler to use molecular symmetry. The OnC6

 symmetry operator commutes 
with the p-electron Hamiltonian, so we can choose each MO to be an eigenfunction of 
this 60� rotation. Since 1OnC6

26 = 1n , the eigenvalues of OnC6
 are the six sixth roots of unity 

(Prob. 7.25):

	 e2pik>6,  k = 0, 1, c, 5	 (17.37)

(Since OnC6
 has some complex eigenvalues, it is not Hermitian. Only operators represent-

ing physical quantities need be Hermitian, and OnC6
 does not correspond to any physical 

Figure 17.3  Hückel MO 
energies for benzene.

a 2 2b

a 2 b

a 1 b

a 1 2b
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property of the molecule.) Substitution of fj = gnC
r = 1 cr j fr [Eq. (17.8)] into the eigenvalue 

equation OnC6
fj = e2pik>6fj gives

 e2pik>6fj = OnC6
fj

 a
6

r = 1
cr je

2pik>6 fr = a
6

r = 1
cr jOnC6

fr = a
6

r = 1
cr j fr - 1 = a

6

r = 1
cr + 1, j fr

where f0 K f6 and c7j K c1j. Equating the coefficients of corresponding AOs, we have

	 cr + 1, j = e2pik>6cr j	 (17.38)

The normalization condition (17.16) is g6
r = 1 0 cr j 0 2 = 1 and Eq. (17.38) shows that all the 

coefficients in the jth MO have the same absolute value. Hence

	 0 crj 0 = 1>26,  r = 1, 2, c, 6	 (17.39)

By setting c1j = 1>26 and using (17.38), we get the desired coefficients. To find which 
coefficients go with which energy, we evaluate the variational integral:

 ej = Lf*j Hn efffj dv = a
6

r = 1
a

6

s = 1
c*r jcsjL f*r Hn eff fs dv

 = a
6

r = 1
 0 cr j 0 2a + a

6

r = 1
c*r jcr + 1, jb + a

6

r = 1
c*r jcr - 1, jb

 = a + e2pik>6a
6

r = 1
 0 crj 0 2b + e-2pik>6a

6

r = 1
 0 crj 0 2b

	  = a + 2b cos12pk>62,  k = 0, c, 5 	 (17.40)

which agrees with (17.36). From (17.38), (17.39), and (17.40), the Hückel MOs and ener-
gies for benzene are

 f1 = 6-1>21 f1 + f2 + f3 + f4 + f5 + f62
 f2 = 6-1>21 f1 + epi>3 f2 + e2pi>3 f3 - f4 + e4pi>3 f5 + e5pi>3 f62
 f3 = 6-1>21 f1 + e-pi>3 f2 + e-2pi>3 f3 - f4 + e-4pi>3 f5 + e-5pi>3 f62

	  f4 = 6-1>21 f1 + e2pi>3 f2 + e4pi>3 f3 + f4 + e2pi>3 f5 + e4pi>3 f62 	
(17.41)

 f5 = 6-1>21 f1 + e-2pi>3 f2 + e-4pi>3 f3 + f4 + e-2pi>3 f5 + e-4pi>3 f62
 f6 = 6-1>21 f1 - f2 + f3 - f4 + f5 - f62

 e1 = a + 2b,  e2 = a + b,  e3 = a + b

 e4 = a - b,  e5 = a - b,  e6 = a - 2b

The condition (17.38) determining the p-MO coefficients for benzene was derived 
solely from symmetry considerations, without use of the Hückel approximations. Thus the 
MOs (17.41) are (except for normalization constants) the correct minimal-basis-set SCF 
p-electron MOs for benzene. (The Hückel energies e1, c, e6 are, however, not the true 
SCF orbital energies. The Hückel method ignores electron repulsions and takes the total 
p-electron energy as the sum of orbital energies. The SCF MO method takes electron 
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repulsions into account in an average way, and the total SCF energy is not the sum of 
orbital energies.) A similar situation occurs for ethylene, where the minimal-basis-set  
p MOs (Section 15.9) are determined solely by symmetry. (An extended-basis-set benzene 
calculation would mix in 3pp, 3dp, c, carbon AOs, and the contributions of these AOs 
must be determined by an explicit SCF calculation.)

The MOs in (17.41) for the degenerate p levels are complex. The two MOs of each 
degenerate level are complex conjugates of each other. By adding and subtracting these 
MOs, we get the commonly used real forms:

 f2,real = 2-1>21f2 + f32, f3,real = -2-1>2i1f2 - f32
 f2,real = 12-1>212 f1 + f2 - f3 - 2f4 - f5 + f62

	  f3,real =
1
21 f2 + f3 - f5 - f62 	 (17.42)

 f4,real = 12-1>212 f1 - f2 - f3 + 2 f4 - f5 - f62
 f5,real =

1
21 f2 - f3 + f5 - f62

Figure 17.4 shows the real benzene p-electron MOs. Note the charge buildup between the 
nuclei for the bonding MOs.

The symmetry species of the benzene p MOs are (Schonland, p. 210)

MO f1 f2 f3 f4 f5 f6

Symmetry species a2u e1g e1g e2u e2u b2g

The ground-state p-electron configuration is 11a2u2211e1g24.

Figure 17.4  Benzene 
π MOs (real form). A top 
view is shown. The π MOs 
change sign on reflection in 
the molecular plane, which 
is a nodal plane for them. 
Dashed lines indicate nodal 
planes perpendicular to the 
molecular plane.
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Monocyclic Conjugated Polyenes
For the monocyclic planar conjugated polyene CnHn, we can use the same treatment as for 
benzene, C6H6. Replacing 6 by nC in (17.40), (17.38), and (17.39), we find as the HMO 
energies and coefficients

	 ek = a + 2b cos
2pk
nC

,  k = 0, c, nC - 1	 (17.43)

	 crk =
12nC

 exp c 2pi1r - 12k

nC
d ,  i = 2-1	 (17.44)

	 fk =
12nC

a
nC

r = 1
 exp c 2pi1r - 12k

nC
d fr	 (17.45)

where fr = Cr2pp. Note that the index k in these equations does not correspond to the 
actual order of the MOs: The lowest MO has k = 0; next are the MOs with k = 1 and 
k = nC - 1; next are the MOs with k = 2 and k = nC - 2; and so on.

An amusing mnemonic device is available for the HMO energies (17.43) [A.A. Frost 
and B. Musulin, J. Chem. Phys., 21, 572 (1953)]. One inscribes a regular polygon of nC sides 
in a circle of radius 2 0b 0 , putting an apex at the bottom of the circle. If a vertical scale of 
energy is set up with energy a coinciding with the center of the circle, then each polygon 
vertex is located at an HMO energy (Fig. 17.5). The method gives the correct degeneracies 
and spacings of the Hückel levels of the ring hydrocarbon CnHn (Prob. 17.8).

Consider the Hückel energy levels for the monocyclic polyene CnHn. The lowest shell 
consists of a nondegenerate level and holds two electrons. Each of the remaining low-
lying shells consists of a doubly degenerate level and holds four electrons. (If nC is even, 
the highest p energy level is nondegenerate, but this level is not occupied in the ground 
state.) To have a stable filled-shell p-electron configuration, we see that the number of 
p electrons must satisfy

	 np = 4m + 2,  m = 0, 1, 2, c 	 (17.46)

This is Hückel’s famous 4m + 2 rule, which ascribes extra stability to monocyclic con-
jugated systems that satisfy (17.46). With 4m + 1 or 4m - 1 p electrons, the compound 
is a free radical. With 4m p electrons, there are two electrons in a shell that can hold four 
electrons, and Hund’s rule predicts a triplet (diradical) ground state.

Benzene satisfies the 4m + 2 rule. The cyclopentadienyl radical �C5H5 is one electron 
short of satisfying (17.46); the cyclopentadienyl anion C5H

-
5  satisfies the 4m + 2 rule; 

the cation C5H
+
5  is predicted to have a triplet ground state and be highly reactive. These 

predictions are borne out; C5H
-
5  is found to be considerably more stable than either C5H

+
5  

or �C5H5. Similarly, C7H
+
7  should be more stable than �C7H7 or C7H

-
7, as is verified experi-

mentally; for example, the salt C7H
+
7Br- is readily prepared.

C4H4 is predicted by the 4m + 2 rule to have a triplet ground state. Cyclobutadiene, 
C4H4, first synthesized in 1965, is a highly reactive compound that dimerizes at temperatures 

Figure 17.5  Mnemonic 
device for HMO energies of 
monocyclic planar hydro-
carbons. The levels shown 
are for cyclobutadiene, the 
cyclopentadienyl radical, and 
benzene.

2 Zb Z

C6H6C5H5C4H4
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above 35 K. Experimental observations and theoretical calculations agree that the ground 
electronic state is a singlet with a rectangular geometry and carbon–carbon bond lengths 
close to ordinary single- and double-bond lengths [see D. W. Whitman and B. K. Carpenter, 
J. Am. Chem. Soc., 102, 4272 (1980); W. T. Borden and E. R. Davidson, Acc. Chem. Res., 
14, 69 (1981)]. The reason for this violation of Hund’s rule is discussed in H. Kollmar and 
V. Staemmler, J. Am. Chem. Soc., 99, 3583 (1977).

HMO theory predicts that planar cyclooctatetraene, C8H8, would have a triplet 
ground state. Experimentally, C8H8 has a nonplanar “tub” structure with alternating 
single and double bonds. The nonplanarity results from steric strain in the planar geom-
etry due to deviation from the 120� bond angle at the sp2-hybridized carbons. Therefore, 
C8H8 does not provide a good test of the 4m + 2 rule. The dianion C8H

2 -
8  satisfies the 

4m + 2 rule. The salt K2C8H8 has been prepared, and the evidence is that C8H
2 -
8  is 

planar. The extra stability arising from delocalization of the p electrons is sufficient to 
overcome the steric strain.

The monocyclic compounds CnHn are called annulenes. Benzene is [6]annulene. 
The annulenes with n = 10, 12, 14, and 16 suffer steric strain and substantial repulsions 
between nonbonded hydrogens, thereby preventing planarity and a clear-cut test of the 
4m + 2 rule. The compound [18]annulene has been much studied, but the results are 
conflicting. [18]annulene has a nearly planar 120°-angle structure with a cis configuration 
about every third double bond. This makes 6 of the 18 hydrogens lie in the interior of the 
ring. X-ray crystallography data of the solid have been interpreted as showing nearly equal 
carbon–carbon bond lengths, but this result is not conclusive. Various high-level ab initio 
calculations give differing results as to whether the bond lengths alternate. Theoretical 
calculations of the NMR proton shifts in [18]annulene found that good agreement with 
the experimental values was achieved only if the molecular geometry showed a carbon–
carbon bond-length alternation of about 0.1 Å [C. S. Wannere et al., Angew. Chem. Int. 
Ed., 43, 4200 (2004)]. DFT calculations in this paper found that the �6h structure with 
nearly equal bond lengths was not an energy minimum, and found a �2 structure with 
substantial bond-length alternation to be the energy minimum. That the �2 structure was 
lower in energy than the �6h structure was confirmed by a single-point CCSD(T) calcula-
tion with a moderate-size basis set. The �6h structure was found to be a transition state 
between bond-alternating �2 structures. The authors argued that since the �6h structure 
is only 2 or 3 kcal/mol higher in energy than equivalent equilibrium �2 structures, rapid 
interconversion makes the X-ray data seem to show nearly equal bond lengths. Despite 
this bond-length alternation, the authors of this paper view [18]annulene as an aromatic 
compound because of its considerable aromatic stabilization energy and the abnormal 
values of its proton NMR chemical shifts.

In the preceding discussion, we used the same HMOs for a neutral compound and 
for its related ions. The Hückel method ignores electron repulsions, so the HMOs are 
unchanged when p electrons are added or removed.

The 4m + 2 rule actually does not depend on the Hückel assumptions (17.11) to (17.14). 
The CnHn p MOs (17.45) were derived solely by symmetry considerations and are the cor-
rect SCF minimal-basis-set p MOs. With k = 0, we have an MO with all plus signs in front 
of the AOs. Clearly this MO has a lower energy than any of the others. For the remaining 
MOs, the pair with k = j and k = nC - j are complex conjugates of each other and must 
have the same energy. [Since Hn  is Hermitian, we have 1f*Hnf dv = 1 1f*2*Hnf* dv.] 
Thus the excited MOs occur in pairs (except that when nC is even, the MO with k =

1
2 nC 

is nondegenerate; with alternating plus and minus signs in front of the AOs, this is the 
highest-energy MO). The pattern of a nondegenerate lowest p level followed by doubly 
degenerate p levels thus holds for the minimal-basis-set SCF MOs. Of course, the energies 
(17.43) are not the correct SCF orbital energies.
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Naphthalene
Now consider the HMO treatment of naphthalene. For butadiene and benzene, we set up 
the secular equation without bothering with the intermediate step of constructing symmetry 
orbitals from the 2pp AOs. For these molecules, the secular equation was easy enough 
to solve without the simplifications introduced by symmetry orbitals. For naphthalene the 
10 * 10 secular determinant is difficult to deal with, and we first find symmetry orbitals. 
The point group of naphthalene (Fig. 17.6) is �2h.

The possible symmetry species are in Table 15.3. The C2pp AOs all have eigenvalue 
-1 for reflection in the molecular (yz) plane. Each symmetry orbital will be some linear 
combination of AOs that are permuted among one another by the symmetry reflections 
(recall ethylene). Hence, to aid in finding the symmetry orbitals, we examine the effects of 
the sn 1xy2 and sn 1xz2 operations on the p AOs. We find the p AOs to fall into three sets:

1, 4, 5, 8  2, 3, 6, 7  9, 10

where the members of each set are permuted among one another by the symmetry reflec-
tions. (These are also the chemically equivalent carbons.) Each symmetry orbital must be 
some linear combination of the AOs of a given set. Naphthalene and ethylene have the 
same point group, and the pattern of the hydrogen symmetry orbitals in Table 15.4 gives 
us the symmetry orbitals of the first two of the above sets of naphthalene AOs. The sym-
metry orbitals and their readily verified symmetry species are then

 b3u: g1 =
1
21 f1 + f4 + f5 + f82, g2 =

1
21 f2 + f3 + f6 + f72, g3 = 2-1>21 f9 + f102

 au: g4 =
1
21 f1 - f4 + f5 - f82, g5 =

1
21 f2 - f3 + f6 - f72

 b2g: g6 =
1
21 f1 - f4 - f5 + f82, g7 =

1
21 f2 - f3 - f6 + f72, g8 = 2-1>21 f9 - f102

 b1g: g9 =
1
21 f1 + f4 - f5 - f82, g10 =

1
21 f2 + f3 - f6 - f72

The constants 1
2 and 1>22 normalize the symmetry orbitals, provided the approximation 

Srs = drs [Eq. (17.14)] is used.
Instead of using the fr’s as basis functions, we set up the secular equation using the 

symmetry orbitals as basis functions:

det38gp 0 Hn eff 0 gq9 - 8gp 0 gq9ek4 = 0

The secular determinant is in block-diagonal form (Section 15.5), and we have two cubic 
and two quadratic equations to solve. Using Srs = drs, we find that 8gp 0 gq9 = dpq when 
gp and gq belong to the same symmetry species. Evaluating the matrix elements, we get as 
the secular equation for the b3u MOs (Prob. 17.15)

†
a - ek b 22b

b a + b - ek 022b 0 a + b - ek

† = 0,  †
x 1 22

1 x + 1 022 0 x + 1

† = 0

Figure 17.6  Axes for 
naphthalene. The x axis is 
perpendicular to the mo-
lecular plane. 1

2

3

4
10

5
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7
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z

y
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1x + 121x2 + x - 32 = 0

x = -1, -
1
2 { 1

2213

Solution of the three remaining secular equations is left as an exercise. The naphthalene 
HMO energy levels in order of increasing energy are found to be (Prob. 17.15)

a + 2.303b, a + 1.618b, a + 1.303b, a + b, a + 0.618b

a - 0.618b, a - b, a - 1.303b, a - 1.618b, a - 2.303b

The levels are all nondegenerate (�2h has only A and B symmetry species).
The HMO coefficients are found by solving the appropriate sets of simultaneous 

equations (Prob. 17.15).

Alternant Hydrocarbons
Note that the HMOs of naphthalene, like those of butadiene and benzene, are paired, mean-
ing that for each HMO with the energy a - xb there is an HMO with energy a + xb. This 
can be proved to be true for every alternant hydrocarbon (for the proof, see Prob. 17.21). 
An alternant hydrocarbon is a planar conjugated hydrocarbon in which the carbon atoms 
can be divided into a starred set and an unstarred set, with starred carbons bonded only to 
unstarred carbons, and vice versa. All planar conjugated hydrocarbons are alternants except 
those containing a ring with an odd number of carbons.

Electronic Transitions
The predicted wavenumber for a transition between the highest occupied and lowest vacant 
HMOs of a conjugated hydrocarbon is

	
1

l
=

0b 0
hc

�x	 (17.47)

where �x is the difference in x values [Eq. (17.20)] for the two MOs. For naphthalene, 
�x = 1.236, and the observed 1>l is 34700 cm-1. Choosing b to fit the observed wave-
length for naphthalene (because of the orbital degeneracy of its first excited term, benzene 
is atypical), we find

0b 0 >hc = 28100 cm-1,  0b 0 = 3.48 eV

Comparison of predicted and observed longest-wavelength absorptions for benzenoid 
hydrocarbons shows only fair agreement with experiment, with many deviations of a few 
thousand cm-1.

Improved agreement can be obtained if we fit the frequencies to a straight line that 
does not pass through the origin; that is, we use

	
1

l
=

1

hc
0b 0 �x + a	 (17.48)

A least-squares fit of benzenoid hydrocarbon data gives [E. Heilbronner and J. N. Murrell, 
J. Chem. Soc., 1962, 2611]

	 a = 8200 cm-1,  0b 0 >hc = 21900 cm-1,  0b 0 = 2.72 eV	 (17.49)

These constants give a good fit to the data; the standard deviation is 600 cm-1. Of course, 
with two parameters instead of one, the agreement is bound to be improved. The fact that 
a semiempirical theory with several adjustable parameters gives a good fit to experimental 
data cannot be taken as overwhelming proof of the validity of the theory.

We can partially justify the constant term in (17.48) as follows. The Hückel method 
neglects electron repulsions and therefore does not distinguish between singlet and triplet 
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terms. Hence we should compare (17.47) with the energy difference between the ground state 
and the average of the energies of the singlet and triplet terms of the configuration with one 
electron excited to the lowest vacant HMO. The experimental frequencies are for singlet–
singlet transitions. If we assume that the singlet–triplet splitting of the first excited configu-
ration is reasonably constant for aromatic hydrocarbons, then a = 8200 cm-1 = 1.0 eV 
can be interpreted as one-half this singlet–triplet splitting. Experimental values for half the 
singlet–triplet splitting in aromatic hydrocarbons are typically 0.7 to 0.8 eV, in reasonable 
agreement with a = 1.0 eV.

Delocalization Energy and Aromaticity
Several properties of conjugated hydrocarbons can be defined using HMO theory. We 
begin with delocalization energy. The corresponding VB term is resonance energy. The 
energy of the occupied ethylene p HMO, the 1b3u MO in Section 15.9, is

L
122

1 f1 + f22*Hn eff
 

122
1 f1 + f22 dv = a + b

There are two p electrons in this MO, and the total Hückel p-electron energy for ethylene 
is 2a + 2b. For butadiene the total Hückel p-electron energy is

	 21a + 1.618b2 + 21a + 0.618b2 = 4a + 4.472b	 (17.50)

If butadiene had two isolated double bonds, its p-electron energy would be twice that 
of ethylene, namely, 4a + 4b. The effect of delocalization is to change the butadiene 
p-electron energy by

4a + 4.472b - 14a + 4b2 = 0.472b

Since b is negative, butadiene is stabilized by p-electron delocalization, and 0.472 0b 0  is 
its HMO delocalization energy.

For benzene the p-electron energy is

	 21a + 2b2 + 41a + b2 = 6a + 8b	 (17.51)

as compared with 6a + 6b for the p-electron energy of three isolated double bonds. The 
delocalization energy of benzene is 2 0b 0 . An “experimental” delocalization energy for 
benzene can be calculated as follows. The gas-phase enthalpy of hydrogenation of cyclo-
hexene to cyclohexane is -28.6 kcal>mol. If benzene had three isolated double bonds, its 
gas-phase enthalpy of hydrogenation to cyclohexane would be three times -28.6 kcal>mol, 
which is -85.8 kcal>mol, The observed value is only -49.8 kcal>mol, indicating that 
benzene is more stable by 36 kcal>mol, than it would be if its double bonds were iso-
lated. (A similar delocalization energy is arrived at by adding up the bond energies of six 
CiH bonds, three CiC bonds, and three C “ C bonds and comparing this to minus 
the enthalpy of formation of gas-phase benzene from its atoms; see Prob. 17.10.) Setting 
2 0b 0 = 36 kcal>mol, we get 0b 0 = 18 kcal>mol = 0.8 eV>molecule.

This 0b 0  is far less than the value 2.72 eV>molecule = 63 kcal>mol found by spec-
troscopic observations [Eq. (17.49)]. Part of the discrepancy is explainable as follows. 
In the hydrogenation of cyclohexene, the carbon–carbon double-bond length becomes 
a single-bond length. The figure of -85.8 kcal>mol applies to the hydrogenation of a 
hypothetical molecule with three isolated double bonds and three single bonds, with 
alternating bond lengths. We must therefore also consider the strain energy needed to 
compress three single bonds and stretch three double bonds to the benzene bond length. 
Even with this correction (Prob. 17.9), the thermochemical value of b differs sharply 
from the spectroscopic value. The difference is to be attributed to the crudity of the 
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HMO method. One finds that a different value of b is required for each different physical 
property that is being considered. Moreover, the optimum values of b differ for chain 
and ring conjugated hydrocarbons.

The just-discussed traditional method of calculating Hückel delocalization energies 
of conjugated hydrocarbons by comparing a molecule’s HMO p-electron energy Ep with 
nd12a + 2b2, where nd is the number of carbon–carbon double bonds, has serious short-
comings. This method predicts a substantial delocalization energy for the linear polyenes 
(17.28), whereas experiment shows the delocalization stabilization in these molecules to 
be small. For example, comparison of twice the enthalpy of hydrogenation of 1-butene 
with the enthalpy of hydrogenation of 1,3-butadiene gives the 1,3-butadiene delocalization 
energy as only 4 kcal/mol. Moreover, this method predicts substantial delocalization stabi-
lization for certain cyclic polyenes that experiment reveals to be unstable, with no aromatic 
character. (A cyclic conjugated polyene is said to be aromatic when it shows substantially 
more stability than a hypothetical structure in which the double bonds do not interact with 
one another and when it undergoes substitution, rather than addition, when treated with 
electrophilic reagents like Br2.)

To produce more reliable predictions of aromaticity, Hess and Schaad (following a 
suggestion of Dewar) calculated delocalization (resonance) energies of cyclic hydrocarbons 
by comparing the compounds’ Hückel theory Ep with a value calculated for a hypothetical 
acyclic conjugated polyene with the same number and kinds of bonds as in a localized 
structure of the cyclic hydrocarbon. [B. A. Hess and L. J. Schaad, J. Am. Chem. Soc., 93, 
305, 2413 (1971); 94, 3068 (1972); 95, 3907 (1973); Schaad and Hess, J. Chem. Educ., 51, 
640 (1974); Hess and Schaad, Pure Appl. Chem., 52, 1471 (1980); Schaad and Hess, Chem. 
Rev., 101, 1465 (2001).]

These workers found that the Hückel p-electron energies of noncyclic conjugated 
polyenes could be accurately calculated as Ep � gb nbEp, b, where nb is the number of 
bonds of a given type, Ep,b is an empirical parameter, and the sum goes over all the types 
of carbon–carbon bonds. A conjugated hydrocarbon has three types of carbon–carbon 
single bonds and five types of double bonds, the types differing in the number of H atoms 
bonded to the carbons. Having found values of the parameters Ep,b by fitting Hückel ener-
gies of noncyclic conjugated polyenes, Hess and Schaad then calculated the resonance 
energy of a cyclic polyene as the difference gb nbEp, b - Ep between the sum gb nbEp, b 
for a localized structure of the cyclic polyene and the cyclic polyene’s Hückel p-electron 
energy Ep. For details, see Prob. 17.13.

Division of the Hess–Schaad resonance energy by the number of p electrons gives the 
resonance energy per p electron (REPE) of the compound. A compound with a substantially 
positive REPE value (greater than, say, 0.01 0b 0 ) is predicted to be aromatic. A compound 
with a near-zero REPE is nonaromatic. A compound with a substantially negative REPE is 
predicted to be antiaromatic, being less stable than if its double bonds were isolated from 
one another. Some antiaromatic hydrocarbons are cyclobutadiene and fulvalene.

For the annulenes, CnHn, Hess–Schaad REPE values are positive for n = 4m + 2 
and negative for n = 4m. As n increases, the REPE becomes negligible, and the aro-
matic 4m + 2 compounds and antiaromatic 4m compounds become nonaromatic. For 
example, REPE>  0b 0  values for n = 4, 6, 8 are -0.268, 0.065, and -0.061, respectively, 
and REPE>  0b 0  values for n = 16, 18, and 20 are -0.011, 0.012, and -0.005, respectively.

Comparison with experiment shows that the Hess–Schaad method is quite successful 
in predicting aromaticity.

For further discussion of the controversial concept of aromaticity, see V. I. Minkin 
et al., Aromaticity and Antiaromaticity, Wiley, 1994; Aromaticity and Other Conjugation 
Effects, R. Gleiter and G. Haberhauer, Wiley-VCH, 2012. The May 2001 and October 2005 
issues of Chemical Reviews are devoted to aromaticity and related topics.
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P-Electron Charges and Bond Orders
Another defined quantity is the p-electron charge. The probability density for an electron 
in the HMO (17.8) is

	 0fi 0 2 = a
r
a

s
 c*ri csi f *r fs	 (17.52)

The HMO normalization condition (17.16) is gnC
r = 1 0 cri 0 2 = 1, and so it is natural to say that 

an electron in the MO fi has the probability 0 cri 0 2 of being in the vicinity of the rth carbon 
atom. If ni 1= 0, 1, or 22 is the number of electrons in the MO fi, then the total P-electron 
charge qr in the region of carbon-atom r is defined as

	 qr K a
i

ni 0 cri 0 2	 (17.53)

where the sum is over the p MOs. qr is often called the p-electron density; this name is 
misleading, since qr is neither a charge density (which has dimensions of charge/volume) 
nor a probability density (which has dimensions of 1/volume). Rather, qr is a pure number 
that gives the approximate number of p electrons in the vicinity of carbon atom r.

For 1,3-butadiene, we have q1 = 2 0 c11 0 2 + 2 0 c12 0 2 = 210.37222 + 210.60222 =

1.000 and q2 = 2 0 c21 0 2 + 2 0 c22 0 2 = 1.000.
For the ground state of a neutral alternant hydrocarbon, all the Hückel p-electron 

charges qr are 1.
In the population-analysis discussion of Section 15.6, we saw that for a real MO fi 

expanded as the linear combination g r cri fr of AOs fr, the quantity 2cricsiSrs in Eq. (15.25) 
(where Srs is the overlap integral) is a reasonable measure of the contribution of an electron 
in MO fi to the bonding overlap between AOs fr and fs. In the HMO method, overlap 
integrals are neglected, so we cannot use this population-analysis expression. The carbon–
carbon bond distances in a conjugated compound are all reasonably similar, so we expect 
the C2pp- C2pp overlap integral Srs to have similar values for all pairs of bonded carbons. 
For nonbonded carbons, Srs should be quite small. Since Srs is approximately constant for 
bonded atoms, we can ignore the factor Srs (and the constant factor 2) and take cricsi as the 
contribution of an electron in the real HMO fi to the p-electron bonding between bonded 
atoms r and s. If the MO fi is complex rather than real, one finds on integrating 0fi 0 2 to 
produce the equation corresponding to (15.24) that the quantity 1

21c*ricsi + c*sicri2 occurs 
instead of cricsi. Coulson therefore defined the P-electron (or mobile) bond order prs for 
the bond between bonded atoms r and s as

	 prs K
1
2 a

i
ni1c*ri csi + c*si cri2	 (17.54)

where the sum is over the p MOs. When the coefficients are all real, (17.54) reduces to 
prs = gi nicricsi. That this definition is reasonable is indicated by the fact that it gives 
p = 1 for the p bond in ethylene.

Addition of the s electrons’ single bond gives the total bond order ptot
rs  as

	 ptot
rs = 1 + prs	 (17.55)

For butadiene we have p12 = 210.372210.6022 + 210.602210.3722 = 0.894 and 
p23 =210.602210.6022 + 210.37221-0.3722 = 0.447. The total bond orders are

	 CH2
  1.894

CH1.447CH1.894CH2	 (17.56)

The central bond has some double-bond character, and the end bonds have some 
single-bond character. (In VB theory, this is explained by contributions from such 
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resonance structures as C
-

H2 iCH “ CH iC
+

H2.2 The sum of the bond orders is 5.235, 
exceeding 5. [This is because the p-electron energy of butadiene exceeds that of two 
isolated double bonds; see Eq. (17.58).] For benzene each carbon–carbon bond order is 
found to be 5>3 = 1.667.

Naturally, we expect a relation between the bond order and the bond length Rrs for 
carbon–carbon bonds. The simplest assumption is a linear relation: Rrs = a + bptot

rs , where 
a and b are constants. The p-electron MO coefficients for ethylene and for benzene are 
determined completely by symmetry and are independent of the Hückel approximations. 
We therefore use the bond orders and bond lengths of ethylene 12; 1.335 Å2 and benzene 
15>3; 1.397 Å2 to find a and b; we get

	 Rrs = 11.707 - 0.186ptot
rs 2 Å = 11.521 - 0.186prs2 Å	 (17.57)

Equation (17.57) works fairly well. Thus the predicted naphthalene 1–2, 2–3, 1–9, and 9–10 
bond lengths 1in Å2, as compared with the experimental gas-phase values (in parentheses) 
are 1.386 (1.371), 1.409 (1.410), 1.418 (1.421), and 1.425 (1.420), respectively. Note that 
the rings are not regular hexagons. For comparison, MP2(FC)/cc-pVTZ naphthalene 1–2, 
2–3, 1–9, and 9–10 bond lengths (from the CCCBDB database) are 1.377, 1.411, 1.415, 
and 1.430 Å, respectively.

A much-investigated question is whether the carbon–carbon bond lengths in very large 
conjugated linear and cyclic polyenes (C2nH2n + 2 and C4m + 2H4m + 2 for m and n large) are 
equal or alternate in length. The HMO bond orders in a linear conjugated polyene become 
equal (except near the chain ends) in the limit of large n. The HMO bond orders in the 
cyclic polyene C4m + 2H4m + 2 are all equal. Hence it was formerly believed that in C2nH2n + 2 
and in C4m + 2H4m + 2 the bond lengths are all equal, except for those near the chain ends in 
C2nH2n + 2. However, HMO calculations that take into account the strain energy involved 
in changing the s bond lengths indicate strongly that for large n and m both linear and 
cyclic conjugated polyenes should have bonds that alternate in length (Salem, Section 8-4). 
Because of the crudity of the HMO method, these conclusions are not definitive.

The polymer trans-polyacetylene, trans@1CH2x contains a very long chain of alternat-
ing single and double carbon–carbon bonds. The term trans refers to the configurations of 
the two hydrogens bonded to each pair of doubly bonded carbons (Fig. 17.7). Analysis of the 
13C NMR spectrum of trans-1CH2x film gave 1.36 Å for the carbon–carbon double-bond 
length and 1.44 Å for the single-bond length, thereby proving the existence of bond-length 
alternation in long-chain polyenes [C. S. Yannoni and T. C. Clarke, Phys. Rev. Lett., 51, 
1191 (1983)]. A density-functional B3LYP/6-31G* geometry optimization of the linear 
polyene trans@C30H32 gave 1.368 and 1.426 Å for the double- and single-bond lengths in 
the center of the molecule [C. Choi et al., J. Chem. Phys., 107, 6712 (1997)].

B3LYP>6@31G* calculations on the cyclic polyenes C4m + 2H4m + 2 up to C66H66 predict 
bond-length alternation for large m [C. H. Choi and M. Kertesz, J. Chem. Phys., 108, 6681 
(1998)]. The fact that we can write two equivalent VB resonance structures for C4m + 2H4m + 2 
such that a given bond is single in one structure and double in the other is no guarantee 
of equal bond lengths.

Figure 17.7 
Trans-polyacetylene.
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Bond-length alternation in the annulenes allows for greater overlap between pairs of 2pp 
orbitals of doubly bonded carbons due to the shorter double-bond distance, thereby stabilizing 
the molecule. Bond-length equality gives energy lowering due to delocalization. As noted in 
the discussion of Hess–Schaad resonance energy, the stabilization gained by p-electron delo-
calization becomes negligible as m goes to infinity in the aromatic annulenes C4m + 2H4m + 2. 
An analysis shows that even in benzene the energy lowering due to greater overlap between 
2pp orbitals in the bond-alternating structure is more important than the delocalization energy 
gained in the equal-bond-length structure, and that it is only because the s framework of 
benzene favors equal bond lengths that benzene has equal bond lengths [S. Shaik et al., Chem. 
Rev., 101, 1501 (2001); P. C. Hiberty and S. Shaik, Theor. Chem. Acc., 114, 169 (2005)].

The Hückel p-electron energy Ep is related to the p bond orders prs and p-electron 
charges qr; in fact (Prob. 17.16),

	 Ep = a a
r

qr + 2b a
s - r

prs	 (17.58)

where the first sum is over the carbon atoms and the second sum is over the carbon–carbon 
bonds.

For conjugated species with partly filled degenerate MOs, there is an ambiguity in 
the qr and prs values if the real forms of the MOs are used. For example, for C6H

-
6, if we 

put the unpaired electron in f4,real of (17.42), then this electron contributes 1
3 to q1, 

1
12 to 

q2, 
1

12 to q3, 
1
3 to q4, 

1
12 to q5, and 1

12 to q6; but if we put the odd electron in f5,real, then this 
electron contributes 0 to q1 and q4 and 14 to each of q2, q3, q5, and q6. This ambiguity can be 
avoided by using the complex MOs, which have the symmetry of the molecule. Putting the 
odd electron in either f4 or f5 of (17.41), we get a contribution of 16 to each q. Alternatively, 
we can average the contributions from f4 and f5 to give a 1

6 contribution at each carbon.
The HMO quantities qr and prs in (17.53) and (17.54) are closely related to the density 

matrix elements Prs [Eq. (14.42)] of SCF theory. We see that the density matrix elements 
with r = s (the diagonal elements) are equal to qr; Prr = qr. Although HMO theory defines 
bond orders only for pairs of bonded atoms, if we formally define prs by (17.54) for non-
bonded pairs of atoms also, then the definitions give prs =

1
21Prs + Psr2, which becomes 

prs = Prs for real MOs.

Heteroatomic Conjugated Molecules
We have applied the HMO method to hydrocarbons only. For planar conjugated molecules 
that involve p bonding to noncarbon atoms, the a and b integrals for the heteroatoms must 
be modified from the carbon values. For heteroatoms X and Y, one writes

aX = aC + hXbCC  and  bXY = kXYbCC

where hX and kXY are certain constants. The best values for these constants vary, depend-
ing on which molecular property is being considered, and the values used are based on a 
mixture of theory and guesswork. For details, see Streitwieser, Chapter 5.

Inclusion of Overlap
Aside from using the one-electron Hamiltonian (17.3), perhaps the most serious approxi-
mation of the simple HMO method is that of taking all overlap integrals equal to zero. 
Wheland proposed using a common nonzero value S for the overlap integral of carbons 
bonded to each other. This replaces each element b in the HMO secular equation (17.10) 
with b - Sei. At the benzene carbon–carbon bond distance, S equals 0.25 for 2pp STOs 
with orbital exponent 1.625 (the value given by Slater’s rules; Prob. 15.62). Inclusion of 
overlap in the HMO method is easy (see Prob. 17.24) but is rarely done. One finds that 
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inclusion of overlap gives only slight changes in predicted transition frequencies of alter-
nant hydrocarbons and gives no change in the p-electron charges and bond orders when 
these are calculated with suitably modified definitions [B. H. Chirgwin and C. A. Coulson, 
Proc. Roy. Soc., A201, 196 (1950)].

Matrix Formulation
The HMO equations (17.9) have the same form as the Roothaan equations (14.34), 
where H eff

rs  corresponds to Frs, and ei corresponds to ei. We showed the matrix form of 
the Roothaan equations to be FC = SCE [Eq. (14.56)]. Hence the HMO equations are 
equivalent to the matrix equation HeffC = SCe = Ce, where H eff, C, S, and e are square 
matrices of order nC with elements H eff

rs , csi, Srs = drs, and emi = dmiei. Since Heff is real 
and symmetric, we have CTHeffC = e. Computer programs to do HMO calculations 
find the orthogonal matrix C that diagonalizes Heff. You can do online HMO calcula-
tions at www.chem.ucalgary.ca/SHMO/ and at www.stolaf.edu/depts/chemistry/courses/
toolkits/247/js/huckel.

Summary
Because of the simplicity of the method, carrying out HMO calculations became a favorite 
pastime of organic chemists, and the results of HMO calculations have been tabulated for 
hundreds of compounds. The HMO method was widely used to rationalize and predict the 
properties and reactivities of conjugated compounds.

The development of semiempirical theories more sophisticated than the HMO theory 
led some workers to argue that “Hückel theory has largely outlived its usefulness” (Murrell 
and Harget, page v). However, these more sophisticated theories have their failings (as we 
shall see), and the success of the Hess–Schaad use of Hückel theory to predict aromaticity 
indicates that HMO theory may still be useful, “especially on a qualitative level as a guide . . .  
in planning and interpreting experiments” (N. Trinajstic in Segal, Part A, Chapter 1).

17.3 The Pariser–Parr–Pople Method
Although the Hückel theory can be used to predict the longest-wavelength bands of aro-
matic hydrocarbons, it would be hopeless to try to use HMO theory to predict the com-
plete electronic spectrum of an aromatic hydrocarbon. For example, Hückel theory, which 
neglects interelectronic repulsions, gives no separation between singlet and triplet elec-
tronic terms arising from the same configuration. Experimentally, separations of 1 or 2 eV  
are observed between such terms.

A semiempirical p-electron theory that takes electron repulsion into account and 
thereby improves on the Hückel method is the Pariser–Parr–Pople (PPP) method, 
developed in 1953. Here, the p-electron Hamiltonian (17.1) including electron repulsions 
is used, and the p-electron wave function is written as an antisymmetrized product 
of p-electron spin-orbitals. A minimal basis set of one 2pp STO on each conjugated 
atom is used, and the spatial p MOs fi are taken as linear combinations of these AOs: 
f = gb

r = 1 cri fr. The Roothaan equations are used to find SCF p MOs within the 
p-electron approximation.

The p-electron Hamiltonian Hnp in (17.1) has the same form as the all-electron opera-
tor Hnel = -

1
2g i �2

i - g iga Za>ria + g ig j7 i 1>rij for a molecule except that Hn core
p 1i2 

replaces Hn core1i2 K -
1
2�2

i - ga Za>ria [Eq. (14.27)], and the sums go over only the np p 
electrons rather than over all the electrons. Hence, similar to (14.25), the SCF p MOs sat-
isfy Fnpfi = eifi, where Fnp is given by (14.26) with Hn core112 replaced by Hn core

p  and n>2 
replaced by np>2. The SCF p-electron energy is given by (14.22) with H core

ii  replaced by 
H core

p,ii  and n>2 replaced by np>2.
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The Roothaan equations (14.34) and (14.41) become

	 a
s

csi1Fp,rs - eiSrs2 = 0,  r = 1, c,b	 (17.59)

	 Fp,rs = H core
p,rs + a

b

t = 1
a

b

u = 1
Ptu31rs 0 tu2 -

1
21ru 0 ts24 	 (17.60)

In addition to assuming s-p separability, the PPP method makes further approxima-
tions. As in Hückel theory, overlap is neglected:

	 Srs K 8 fr112 0 fs1129 = drs	 (17.61)

where drs is the Kronecker delta. Consistent with the neglect of overlap integrals, when 
evaluating electron-repulsion integrals the PPP method makes the approximation of zero 
differential overlap (ZDO):

	 3fr1124*fs112 dv1 = 0,  for r � s	 (17.62)

From (17.62) and 1rs 0 tu2 = 8 fr112 ft122 0 1>r12 0 fs112 fu1229  [Eq. (14.39)], it follows that 
the electron-repulsion integrals are given by

	 1rs 0 tu2 = drsdtu1rr 0 tt2 = drsdtugrt	 (17.63)

where grt K 1rr 0 tt2. Thus the method ignores many (but not all) of the electron-repulsion 
integrals, thereby greatly simplifying the calculation. In particular, all three- and four-
center electron-repulsion integrals are ignored. The ZDO approximation is not used in the 
H core

p,rs  integrals.
The ZDO approximation is at first sight quite drastic. However, a partial theoretical 

justification for it can be given by reinterpreting the AOs used to express the MOs as 
orthogonalized AOs (rather than ordinary AOs). Each orbital in a set of orthogonalized 
AOs is a linear combination of ordinary AOs, the coefficients being chosen so that the 
members of the set are mutually orthogonal. There are many ways to choose the linear 
combinations to produce an orthogonal set. One approach is to make the orthogonalized 
AOs (OAOs) resemble the ordinary AOs as much as possible by minimizing the sum of 
the squares of the deviations of the OAOs from the ordinary AOs. One minimizes the 
sum g i1 0xi,OAO - xi 0 2 dv, where the sum goes over the set of AOs and where xi and 
xi,OAO are the ordinary and the orthogonalized AOs. This produces what are called sym-
metrically orthogonalized (or Löwdin) AOs (see Prob. 8.58; Pilar, Section 14-8). One 
finds that in each symmetrically orthogonalized AO the coefficient of one ordinary AO is 
substantially greater than the coefficients of the other ordinary AOs, so the symmetrically 
orthogonalized AOs are not drastically different from the ordinary AOs. Moreover, with 
symmetrically orthogonalized AOs the integrals not neglected in the ZDO approxima-
tion undergo only small changes in value as compared with their values with ordinary 
AOs. These changes in value can be partly allowed for by the fact that many integrals are 
taken as empirical parameters. Also, with symmetrically orthogonalized AOs, the electron-
repulsion integrals neglected in the ZDO approximation are generally found to be quite 
small (and all overlap integrals are, of course, zero). For details, see the references cited 
on page 27 of Murrell and Harget.

With the approximation (17.63) for 1rs 0 tu2, the matrix elements Fp,rs in (17.60) become 
(Prob. 17.25)

 Fp,rr = Hcore
p,rr + a

t
Pttgrt -

1
2 Prrgrr

	  Fp,rs = Hcore
p,rs -

1
2 Psrgrs,  r � s	

(17.64)
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The PPP method does not attempt to explicitly specify Hn core
p  or to calculate the H core

p,rs  
integrals theoretically. Rather, the integrals H core

p,rs  and grs are calculated from approximate 
semiempirical formulas, some of which contain empirical parameters. For example, when 
the AOs fr and fs are on atoms R and S that are bonded to each other, H core

p,rs  may be taken as 
k8 fr 0 fs9 , where the value of the empirical parameter k is chosen so that the predictions of 
the theory give good agreement with experiment; the overlap integral 8 fr 0 fs9  is calculated 
from the STOs fr and fs, and not taken as zero as in (17.62). When the two different atoms R 
and S are not bonded to each other, H core

p,rs  is taken as zero. (Several versions of the PPP theory 
exist, each of which uses a different set of semiempirical formulas to evaluate the integrals.) 
The two-center electron-repulsion integrals grs are evaluated from a semiempirical formula 
that contains the one-center integrals grr and grs and the distance between atoms R and S. 
The one-center integral grr is evaluated as the difference between the atomic valence-state 
ionization energy and electron affinity of atom R, where these two quantities are evaluated 
using spectroscopically determined atomic energy-level data. The one-center integral H core

p,rr  
is calculated from a semiempirical formula that involves the electron-repulsion integrals grs 
for all the conjugated atoms S � R and involves the orbital energy for a 2pp AO on atom R, 
this orbital energy being evaluated using atomic spectral data.

To do a PPP calculation, one starts with the HMO coefficients as an initial guess for 
the csi>s, calculates the initial density matrix elements Prs, calculates the initial Fp,rs matrix 
elements, solves the equations (17.59) for p-electron orbital energies ei and an improved set 
of coefficients csi, calculates improved Prs values, and so on until convergence is reached. 
To improve the results, CI of the p electrons may be included.

The PPP method gives a good account of the electronic spectra of many, but not all, 
aromatic hydrocarbons. For more on the PPP method, see Parr, Chapter III; Murrell and 
Harget, Chapter 2; Offenhartz, Chapter 11.

The PPP method is not used nowadays and has been superseded by more general 
semiempirical methods (Section 17.4). However, the PPP method is of historical impor-
tance, since many of the PPP approximations used to evaluate integrals are used in current 
semiempirical theories.

17.4 General Semiempirical MO and DFT Methods
The HMO and PPP methods apply only to planar conjugated molecules and treat only the  
p electrons. The semiempirical MO methods discussed in this section apply to all molecules 
and treat all the valence electrons.

Semiempirical MO theories fall into two categories: those using a Hamiltonian that is 
the sum of one-electron terms, and those using a Hamiltonian that includes two-electron 
repulsion terms, as well as one-electron terms. The Hückel method is a one-electron theory, 
whereas the Pariser–Parr–Pople method is a two-electron theory.

The Extended Hückel Method
The most important one-electron semiempirical MO method for nonplanar molecules is the 
extended Hückel theory. An early version was used by Wolfsberg and Helmholz in treating 
inorganic complex ions. The method was further developed and widely applied by Hoffmann 
[R. Hoffmann, J. Chem. Phys., 39, 1397 (1963); 40, 2745, 2474, 2480 (1964); Tetrahedron, 
22, 521, 539 (1966); M. Wolfsberg and L. Helmholz, J. Chem. Phys., 20, 837 (1952)].

The extended Hückel (EH) method begins with the approximation of treating the 
valence electrons separately from the rest (Section 13.17). The valence-electron Hamilto-
nian is taken as the sum of one-electron Hamiltonians:

	 Hnval = a
i

 Hneff1i2	 (17.65)
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where Hneff1i2 is not specified explicitly. The MOs are approximated as linear combinations 
of the valence AOs fr of the atoms:

	 fi = a
b

r = 1
cri fr	 (17.66)

In the simple Hückel theory of planar hydrocarbons, each p MO contains contributions 
from one 2pp AO on each carbon atom. In the extended Hückel treatment of nonplanar 
hydrocarbons, each valence MO contains contributions from four AOs on each carbon 
atom (one 2s and three 2p’s) and one 1s AO on each hydrogen atom. The AOs used are 
usually Slater-type orbitals with fixed orbital exponents determined from Slater’s rules 
(Prob. 15.62). For the simplified Hamiltonian (17.65), the problem separates into several 
one-electron problems:

 Hneff1i2fi = eifi

	  Eval = a
i

ei	
(17.67)

Application of the variation theorem to the linear trial function (17.66) gives as the secular 
equation and the equations for the MO coefficients

	 det1H eff
rs - eiSrs2 = 0	 (17.68)

	 a
s
31H eff

rs - eiSrs2csi4 = 0,  r = 1, 2, c,b	 (17.69)

All this is similar to simple Hückel theory. However, the extended Hückel theory 
does not neglect overlap. Rather, all overlap integrals are explicitly evaluated using the 
forms chosen for the AOs and the internuclear distances at which the calculation is being 
done. Formulas for overlap integrals of STOs are readily available. [Footnotes 12 to 18 of  
D. M. Bishop et al., J. Chem. Phys., 45, 1880 (1966) give references to available tabula-
tions of overlap integrals.] Since overlap is included, off-diagonal ei’s are present in the 
secular determinant.

Since Hneff1i2 is not specified, there is the problem of what to use for the integrals 
H eff

rs . For r = s, the one-electron integral H eff
rr K 8 fr 0 Hneff 0  fr9  looks like an average energy 

for an electron in the AO fr centered on atom R in the molecule. Hence, the EH method 
takes H eff

rr  as equal to the orbital energy of the AO fr for atom R in its valence state; the 
valence state is the hypothetical state of the atom in the molecule. The valence-state orbital 
energy can be found from atomic spectral data. By Koopmans’ theorem (Section 15.5), the 
valence-state orbital energy is taken as equal to minus the valence-state ionization potential 
(VSIP) of fr. For hydrogen and for carbon atoms in a molecule with only single bonds to 
carbon (sp3-hybridized carbon), the VSIP parametrization gives

	 8C2s 0 Hneff 0C2s9 = -20.8 eV,  8C2p 0 Hneff 0  C2p9 = -11.3 eV	
(17.70)8H1s 0 Hneff 0 H1s9 = -13.6 eV

The carbon VSIPs for sp2- and sp-hybridized carbon differ from those in (17.70), but the 
difference is often ignored and an average set of VSIPs is used for all carbons. VSIPs are 
tabulated in J. Hinze and H. H. Jaffé, J. Am. Chem. Soc., 84, 540 (1962); G. Pilcher and 
H. A. Skinner, J. Inorg. Nuc. Chem., 24, 937 (1962); L. C. Cusachs et al., J. Chem. Phys., 
44, 835 (1966).

For the off-diagonal matrix elements H eff
rs , r � s, Wolfsberg, Helmholz, and Hoffmann 

took

	 H eff
rs =

1
2 K1H eff

rr + H eff
ss 2Srs	 (17.71)
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where K is a numerical constant and the remaining quantities are evaluated as above. Since 
H eff

rr  and H eff
ss  are usually negative, (17.71) gives H eff

rs  as negative. The most commonly used 
value of K is 1.75 (although values between 1 and 3 have been suggested). In contrast to 
the simple Hückel theory, H eff

rs  is nonzero for all pairs of orbitals unless Srs vanishes for 
symmetry reasons.

Once the H eff
rs  and Srs integrals have been evaluated, the secular equation is solved for 

the orbital energies and the MO coefficients are found. (Computer programs use matrix 
diagonalization to do this.) Since the H eff

rs  integrals do not depend on the MO coefficients, 
no iteration is needed. The EH method is often used to provide an initial guess for the 
valence MO coefficients in ab initio SCF MO calculations.

The total valence-electron energy is given by (17.67) as the sum of orbital energies. 
To predict molecular geometry using the EH method, one does a series of calculations 
over a range of bond distances and angles and looks for the nuclear configuration that 
minimizes (17.67). Note that (17.67) omits both electron–electron repulsions and nuclear–
nuclear repulsions. It might be thought that such a theory would be useless for predicting 
molecular geometries, but this is not so.

The EH method gives rather accurate bond angles for molecules whose bonds are not 
highly polar, but fails in bond-angle predictions for molecules with very polar bonds (for 
example, H2O, which is predicted to be linear). The EH method is not reliable for predicting 
bond lengths, dipole moments, molecular conformations, and barriers to internal rotation.

Because the EH method gives poor predictions of molecular properties, Jug concluded 
that this method “is obsolete” [K. Jug, Theor. Chim. Acta, 54, 263 (1980)]. However, this 
judgment is too harsh, since Hoffmann and others have used the EH method to provide 
valuable qualitative insights into chemical bonding [for example, P. J. Hay, J. C. Thibeault, 
and R. Hoffmann, J. Am. Chem. Soc., 97, 4884 (1975)]. Gimarc noted that “the real value 
of the extended Hückel method is not in its quantitative results, which have never been 
impressive, but rather in the qualitative nature of the results and in the interpretations those 
results can provide” (B. M. Gimarc, Molecular Structure and Bonding, Academic Press, 
1979, page 216).

The CNDO, INDO, and NDDO Methods
Several semiempirical two-electron MO generalizations of the PPP method were developed 
that apply to both planar and nonplanar molecules. The complete neglect of differen-
tial overlap (CNDO) method was proposed by Pople, Santry, and Segal in 1965. The 
intermediate neglect of differential overlap (INDO) method was proposed by Pople, 
Beveridge, and Dobosh in 1967. Both methods treat only the valence electrons explicitly. 
The valence-electron Hamiltonian has a similar form as (17.1):

	 Hnval = a
nval

i = 1
3-

1
2 �2

i + V1i24 + a
nval

i = 1
a
j7 i

1
ri j

K a
nval

i = 1
Hn core

val 1i2 + a
nval

i = 1
a
j7 i

1
ri j

	 (17.72)

Hn core
val 1i2 K -

1
2�2

i + V1i2
In (17.72), nval is the number of valence electrons in the molecule, V 1i2 is the potential 
energy of valence electron i in the field of the nuclei and the inner-shell (core) electrons, 
and Hn core

val 1i2 is the one-electron part of Hnval. The CNDO and INDO methods are SCF 
MO methods that iteratively solve the Roothaan equations using approximations for the 
integrals in the Fock matrix elements. 

The CNDO method uses a minimal basis set of valence Slater AOs fr with orbital 
exponents fixed at values given by Slater’s rules (Prob. 15.62), except that 1.2 is used for 
H1s. The valence MOs fi are written as fi = gb

r = 1 cri fr . The molecular electronic energy 
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is given by (14.22) with H core
ii  replaced by H core

val,ii, n>2 replaced by nval>2, and VNN replaced 
by the core–core repulsion energy

Vcc = a
a

a
b7a

CaCb

Rab

where the core charge Ca on atom a equals the atomic number of atom a minus the num-
ber of core (inner-shell) electrons on a. The Roothaan equations are given by (17.59) with 
Fp,rs replaced by Fval,rs. The Fock matrix elements Fval,rs [Eq. (14.41)] are given by (17.60) 
with H core

p,rs  replaced by H core
val,rs K 8 fr 0 Hn core

val 0  fs9 :

	 Fval,rs = H core
val,rs + a

b

t = 1
a

b

u = 1
Ptu31rs 0 tu2 -

1
21ru 0 ts24 	 (17.73)

Henceforth in this section, the subscript val will be omitted from Fval,rs, H
core
val,rs, and Hn core

val 1i2.
The CNDO method uses the ZDO approximation (17.62) for all pairs of AOs in over-

lap and electron-repulsion integrals. Thus, Srs = drs and 1rs 0 tu2 = drsdtu1rr 0 tt2 K drsdtugrt 
[Eq. (17.63)], where 1rs 0 tu2 is given by (14.39). In the PPP method for conjugated hydrocar-
bons, there is only one basis AO per atom, the 2pp AO. In the CNDO method, there are 
several basis valence AOs on each atom (except hydrogens), and the ZDO approximation 
neglects electron-repulsion integrals containing the product fr112fs112 where fr and fs are 
different AOs centered on the same atom.

When the Roothaan equations (14.34) [or (14.56)] are solved exactly, the canonical 
MOs and the calculated values of molecular properties do not change if one changes the 
orientation of the coordinate axes. The calculated values are said to be rotationally invari-
ant. Likewise, the results do not change if each basis AO on a particular atom is replaced 
by a linear combination of the basis AOs on that atom, and the results are hybridizationally 
invariant. When approximations are made in solving the Hartree–Fock–Roothaan equa-
tions, rotational and hybridizational invariance may not hold.

To maintain rotational and hybridizational invariance when the ZDO approxima-
tion is used, the CNDO method makes the additional approximation that the electron-
repulsion integral grt K 1rr 0 tt2 depends only on which atoms the AOs fr and ft are 
centered on and does not depend on the nature of the orbitals fr and ft. Let the notation 
frA

, ftB indicate that the valence AOs fr and ft are centered on atoms A and B, respec-
tively, where A and B might be the same atom or different atoms. The CNDO method 
takes 1rArA 0 tBtB2 K grAtB = gAB for all valence AOs fr on A and all valence AOs ft on 
B. In the CNDO method, all one-center valence-electron-repulsion integrals on atom A 
have the value gAA; all two-center valence electron-repulsion integrals involving atoms 
A and B have the value gAB; all three- and four-center electron-repulsion integrals are 
neglected (as a consequence of the ZDO approximation). The integrals gAA and gAB are 
evaluated using valence s STOs on A and B, and so they depend on the orbital exponents, 
the principal quantum numbers of the valence electrons, and on the distance between 
atoms A and B.

CNDO takes the integral Hcore
rs  for r � s as proportional to the overlap integral 

Srs K 8 fr 0  fs9  (recall a similar assumption in the PPP theory):

Hcore
rAsB

= b0
ABSrAsB

  for r � s

where SrAsB
 is evaluated exactly [and not taken as drs, even though it is taken as drs in the 

Roothaan equations (17.59)] and the parameter b0
AB is taken as b0

AB =
1
21b0

A + b0
B2, where 

the parameters b0
A and b0

B are chosen so that the coefficients in CNDO-calculated MOs of 
diatomic molecules resemble the coefficients in minimal-basis ab initio MOs. When A and 
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B are the same atom, SrAsA
 is zero for r � s by orthogonality of AOs on the same atom, 

and CNDO takes H core
rAsA

 as zero for r � s.
Now consider the integrals H core

rArA
. We have Hn core112 = -

1
2 �2

1 + V112, where V 112 is 
the potential energy of valence electron 1 in the field of the core electrons and the nuclei. 
Breaking V 112 into contributions from the individual atomic cores, we have

	 Hn core112 = -
1
2 �2

1 + VA112 + a
B � A

VB112	 (17.74)

where the basis AO frA
 is centered on A. Then

	 H core
rArA

= 8 frA
112 0 - 1

2 �2
1 + VA112 0 frA

1129 + a
B � A

8 frA
112 0VB112  0 frA

1129 	 (17.75)

Two versions of CNDO exist, called CNDO>1 and CNDO>2. The integral

Urr K 8 frA
112 0 -1

2�2
1 + VA112 0 frA

1129
looks like an average energy for an electron in the AO frA

 in the molecule. Hence, CNDO>1 
takes Urr as the negative of the valence-state ionization energy from the AO frA

, where 
this ionization energy is found from atomic energy levels deduced from atomic spectral 
data. (This is an oversimplification; for details and for the CNDO>2 evaluation of Urr, see 
Murrell and Harget, pp. 38–39.) To maintain rotational and hybridizational invariance, the 
integrals 8 frA

112 0VB 0  frA
1129 K VAB in (17.75) are taken as equal for all valence AOs frA

 
on atom A and are calculated in CNDO>1 by using a valence s orbital for electron 1 and 
taking atomic core B as a point charge: VAB = - 8sA112 0CB>r1B 0 sA1129 , where CB is the 
core charge of atom B. With this choice for the electron–core attraction integral V AB in 
CNDO>1, two neutral atoms or molecules separated by several angstroms experienced a 
substantial attraction to each other. To eliminate this spurious attraction, CNDO>2 uses 
the expression V AB = -CBgAB, where gAB is the electron-repulsion integral discussed 
earlier in this subsection.

With these approximations, the Fock matrix elements are evaluated and the Roothaan 
equations are solved iteratively to find the CNDO orbitals and orbital energies.

The INDO method is an improvement on CNDO. In INDO, differential overlap 
between AOs on the same atom is not neglected in one-center electron-repulsion integrals 
1rs 0 tu2 where fr, fs,  ft, and fu are all centered on the same atom, but is still neglected in 
two-center electron-repulsion integrals. Thus fewer two-electron integrals are neglected 
than in CNDO. Otherwise, the two methods are essentially the same. The INDO method 
gives an improvement on CNDO results, especially where electron spin distribution is 
important (for example, in calculating electron-spin-resonance spectra).

As to results, the CNDO and INDO methods give fairly good bond lengths and angles, 
somewhat erratic dipole moments, and poor dissociation energies. (For details on CNDO 
and INDO, see Pople and Beveridge; Leach, Section 2.9; G. Klopman and R. C. Evans in 
Segal, Part A, page 29; Murrell and Harget, Chapter 3.)

Versions of CNDO and INDO parametrized to predict electronic spectra are called 
CNDO>S and INDO>S. These methods include some configuration interaction. Although 
the ground state of a closed-shell molecule is generally well represented by a single-
determinant wave function, one typically requires CI for accurate representation of excited 
states. For details of these methods, see R. L. Ellis and H. H. Jaffé in Segal, Part B, page 
49; J. Michl in Segal, Part B, page 99.

The CNDO and INDO methods are not used nowadays, since they have been made 
obsolete by the improved semiempirical methods discussed in the next subsection. The one 
exception to this statement is INDO/S, which is still widely used to calculate electronic 
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spectra, since it gives good results for vertical excitation energies (Section 16.2) of large 
molecules, including transition-metal compounds [see M. C. Zerner in K. B. Lipkowitz and 
D. B. Boyd (eds.), Reviews in Computational Chemistry, vol. 2, VCH, 1991, pp. 333–335, 
348–353]; INDO>S is often called ZINDO, after the ZINDO program of Zerner.

The neglect of diatomic differential overlap (NDDO) method (suggested by Pople, 
Santry, and Segal in 1965) is an improvement on INDO in which differential overlap is 
neglected only between AOs centered on different atoms: f*r112 fs112 dv1 = 0 only when 
AOs r and s are on different atoms. The degree of neglect of differential overlap in NDDO 
is more justifiable than in CNDO or INDO. The NDDO method satisfies the rotational and 
hybridizational invariance conditions without the need to use a common value for electron-
repulsion integrals involving different valence AOs on a given atom.

A few initial attempts at parametrizing the NDDO method gave rather disappointing 
results (see G. Klopman and R. C. Evans in Segal, Part A, Chapter 2), and the method was 
little used until 1977, when Dewar and Thiel modified it to create the MNDO method, 
discussed later in this section.

The MNDO, AM1, PM3, PM6, PM6-D3H4, PM7, and RM1 Methods
Pople’s aim in the CNDO and INDO methods was to reproduce as well as possible the 
results of minimal-basis-set ab initio SCF MO calculations with theories requiring much 
less computer time than ab initio calculations. Since CNDO and INDO use approximations, 
we can expect their results to be similar to but less accurate than minimal-basis ab initio 
SCF MO results. Thus these methods do pretty well on molecular geometry but fail for 
binding energies. Dewar and co-workers devised several semiempirical SCF MO theories 
that closely resemble the INDO and NDDO methods. However, Dewar’s aim was not to 
reproduce ab initio SCF wave functions and properties but to have a theory that would give 
molecular binding energies with chemical accuracy 1within 1 kcal/mol2 and that could 
be used for large molecules without a prohibitive amount of calculation. It might seem 
unlikely that one could devise an SCF MO theory that involves approximations to the ab 
initio Hartree–Fock method but that succeeds for binding energies, where the Hartree–Fock 
theory fails. However, by proper choice of the parameters in the semiempirical SCF theory, 
one can actually get better results than ab initio SCF calculations, because the choice of 
suitable parameters can compensate for the partial neglect of electron correlation in ab 
initio SCF theory.

The semiempirical theories of this subsection, which follow Dewar’s approach to 
parametrization, will be called Dewar-type theories. These theories treat only the valence 
electrons, and most of these theories use a minimal-basis set of valence Slater-type s and 
p AOs (with orbital exponents given values determined by parametrization) to expand the 
valence-electron MOs. (Extensions to include atoms with valence d orbitals are discussed 
later in this subsection.) The Fock–Roothaan equations (with the overlap integrals Srs taken 
as drs) are solved to find semiempirical SCF MOs. Some degree of neglect of differential 
overlap is used to eliminate many of the electron-repulsion integrals. In ab initio methods, 
the integrals occurring in the Fock matrix elements Frs are evaluated accurately, but this 
is not the approach used in Dewar-type theories. Dewar-type theories take the one-center 
electron-repulsion integrals (ERIs) as parameters whose values are chosen to fit experi-
mental atomic energy-level data and calculate the two-center ERIs from the values of the 
one-center ERIs and the internuclear distances using an approximate formula that may 
involve parameters. The remaining integrals are evaluated from approximate parameter-
containing formulas that are designed not to give values that accurately reproduce ab initio 
values but to be consistent with the approximations used in the theory.

The Dewar-type theories are parametrized so as to yield good values of the 25�C gas-
phase standard enthalpy of formation �H �f,298. These theories calculate �H �f,298 as follows. 
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The molecular valence electronic energy Uval including nuclear repulsion is taken as the 
sum of the purely electronic energy Eel,val of the valence electrons (which is found from 
the results of the semiempirical SCF calculation) and the core–core repulsion energy Vcc 
[compare Eq. (13.8)]:

Uval = Eel,val + Vcc

The Dewar-type theories treat the molecule as a collection of valence electrons and atomic 
cores, where each core consists of an atomic nucleus and the inner-shell (core) electrons. 
For example, the core of a carbon atom consists of the nucleus and the two 1s electrons. 
The simplest approach would be to take Vcc = gB 7 AgAVcc,AB = gB 7 AgACACB>RAB, 
where CA and CB are the core charges of cores A and B. For example, for a carbon atom, 
CA = 6 - 2 = 4, the number of valence electrons. Although this form of V cc is used 
in CNDO and INDO, it is more consistent with the approximations used to evaluate the 
electron–core interaction integrals in Dewar-type theories to take

	 Vcc = a
B 7 A

a
A
3CACB1sAsA 0 sBsB2 + fAB4 	 (17.76)

where the electron-repulsion integral 1sAsA 0 sBsB2 involves the valence s orbitals of atoms 
A and B (and is approximately proportional to 1>RAB), and fAB is a small term whose 
form differs in the various theories. fAB is an empirical function of RAB that fine-tunes 
interatomic attractions and repulsions in the molecule, so as to improve agreement with 
experiment.

The equilibrium geometry is then found by minimizing Uval (Section 15.10) to give the 
equilibrium valence electronic energy including core repulsion: Uval,e = Eel,val,e + Vcc,e. 
Let molecule M be composed of the atoms A1, A2, c, An. The molecular dissociation (or 
atomization) energy De,M of M (Section 15.13) is calculated as De,M = g i Eval,Ai

- Uval,e,M, 
where Eval,Ai

 is the valence electronic energy of atom Ai calculated using the same Dewar-
type method as used to calculate Uval,e,M, and the sum goes over all atoms of the molecule. 
For the dissociation reaction

gas@phase molecules of M S gas@phase atoms A1, A2, c, An

we can write that at 25�C, �H �298 = g i �H �f,298,Ai1g2 - �H �f,298,M1g2, where �H �f,298,M1g2 
and �H �f,298,Ai1g2 are the gas-phase 25�C standard enthalpies of formation of the molecular 
species M and of atom Ai. At 0 K, the enthalpy and energy changes for the dissociation 
reaction are equal, and if we ignore zero-point energy, we can write �H �0 = NADe, where 
the Avogadro constant NA converts from a per molecule to a per mole basis. If we ignore 
the difference between 0 K and 298 K enthalpy changes and take �H �0 = �H �298, we have 
NADe = g i �H �f,298,Ai1g2 - �H �f,298,M1g2. Using the preceding expression for De, we get 
the equation used to calculate a gas-phase �H �f,298 value in a Dewar-type theory:

�H �f,298,M1g2 = NAUval,e,M - NAa
i

Eval,Ai
+ a

i
�H �f,298,Ai1g2

where Uval,e = Eel,val,e + Vcc,e and the �H �f,298,Ai1g2 values are taken from thermodynamics 
tables. This procedure ignores the zero-point vibrational energy (which should be sub-
tracted from De to give D0) and ignores the enthalpy changes from 0 K to 298 K (Section 
15.13). The justification for ignoring these nonnegligible quantities is that the parameters 
of the theory are chosen to fit data that include experimental �H �f,298 values of many com-
pounds, so the parameter values include built-in corrections for the neglected quantities.

The parameter values in a Dewar-type theory are chosen as follows. One decides on 
a set of elements (for example, C, H, O, N, P, Si, S, F, Cl, Br, I) for which the theory is to 
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be parametrized, and one chooses a set of molecules (containing only these elements) for 
which �H �f,298 and the molecular geometry and dipole moment are known from experi-
ment. One systematically varies the parameters of the theory so as to minimize the errors 
in the calculated heats of formation, geometries, and dipole moments.

This process resembles the process of optimizing a molecular geometry (Section 
15.10). In geometry optimization, one varies the bond distances, angles, and dihedral 
angles so as to minimize the molecular electronic energy, including nuclear repulsion. In 
a Dewar-type-theory parametrization, one varies the parameters’ values so as to minimize 
the weighted sums of the squares of the errors in calculated molecular properties Yi—that 
is, to minimize g i Wi1Yi,calc - Yi,exper22, where the Wi’s are weighting factors that deter-
mine the relative importance of the properties Yi in the process. As in geometry optimiza-
tion, it is hard to be sure the global minimum has been found (Section 15.11).

The first useful Dewar-type theory was the MINDO/3 (third version of the modified 
INDO) method, published in 1975. For a sample of compounds containing no elements 
other than C, H, O, and N, the average absolute errors in MINDO/3 calculated proper-
ties are 11 kcal>mol in heats of formation, 0.022 Å in bond lengths, 5.6� in bond angles, 
0.49 D in dipole moments, and 0.7 eV in ionization energies. The errors in �H �f,298 are 
larger than Dewar was aiming for.

MINDO/3 is based on the INDO approximation. The remaining theories of this sub-
section are based on the far more justifiable NDDO approximation (see the preceding 
subsection). These NDDO-based Dewar-type theories give significantly better results than 
MINDO/3, and MINDO/3 is no longer used.

Because MINDO/3 did not meet Dewar’s aims, Dewar and Thiel developed the 
MNDO (modified neglect of diatomic overlap) method. The MNDO method has been 
parametrized for nearly all the main-group elements and for Zn, Cd, and Hg. MNDO gives 
substantially improved results as compared with MINDO/3. For the same sample of C, 
H, O, N compounds used above for MINDO/3 errors, average absolute MNDO errors are 
6.3 kcal/mol in heats of formation, 0.014 Å in bond lengths, 2.8� in bond angles, 0.30 D in 
dipole moments, and 0.5 eV in ionization energies [M. J. S. Dewar and W. Thiel, J. Am. 
Chem. Soc., 99, 4907 (1977)].

The MNDO valence-electron Hamiltonian Hnval is given by (17.72), and the Fock matrix 
elements are given by (17.73). As in (17.74), the core Hamiltonian operator for valence electron 
1 is written as Hn core112 = -

1
2 �2

1 + gB VB112, where VB112 is the part of the potential 
energy of electron 1 due to its interactions with the core (nucleus plus inner-shell electrons) of 
atom B. To evaluate the Fock matrix element Fmn in (17.73), we need the core matrix elements 
H core

mn , the electron-repulsion integrals 1mn 0 ls2, and an initial guess for the density matrix 
elements Pls, so as to start the SCF iterative process. Here m, n, l, s are used instead of r, 
s, t, u as subscripts to avoid confusion with the use of s to denote an s orbital.

The integrals occurring in the MNDO Fock matrix elements Fmn are evaluated as follows.
The core matrix element H core

mAnB
= 8mA112 0Hn core112 0 nB1129  (often called a core reso-

nance integral) involving AOs centered on different atoms A and B is taken (as in CNDO) 
as proportional to the overlap integral (evaluated exactly) between these AOs:

	 H core
mAnB

=
1
21bmA

+ bnB
2SmAnB

,  A � B	 (17.77)

where the b’s are parameters for each type of valence AO. For example, carbon has valence 
AOs of types 2s and 2p, and MNDO has parameters bC2s and bC2p.

The core matrix element H core
mAnA

= 8mA112 0Hn core112 0 nA1129  involving different AOs 
centered on the same atom is evaluated using Hn core112 = -

1
2 �2

1 + VA112 + gB � AVB112 
[Eq. (17.74)] to write

H core
mAnA

= 8mA 0- 1
2 �2 + VA 0  nA9 + a

B � A
8mA 0VB 0  nA9
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The integral 8mA 0 - 1
2 �2 + VA 0  nA9  can be shown to be zero using a theorem of group 

theory (Offenhartz, p. 325). In the crude approximation of taking electron 1 to interact 
with a pointlike core of charge CB, we would have V B = -CB>r1B and 8mA 0V B 0 nA9  
would equal -CB8mA 0 1>r1B 0 nA9 . Instead, similar to the CNDO>2 expression, MNDO 
takes 8mA 0V B 0 nA9 = -CB1mAnA 0 sBsB2, where sB is a valence s orbital on atom B and the 
ERI 1mAnA 0 sBsB2 is evaluated by an approximate procedure discussed briefly below. Thus

	 H core
mAnA

= - a
B � A

CB1mAnA 0 sBsB2  for mA � nA	 (17.78)

The core matrix element H core
mAmA

= 8mA112 0Hn core112 0mA1129  containing the same AO 
twice is evaluated using (17.75) to write

	 H core
mAmA

= 8mA 0 -1
2 �2 + VA 0  mA9 + a

B � A
8mA 0VB 0mA9 	 (17.79)

The integral UmAmA
K 8mA 0 - 1

2 �2 + VA 0mA9  could be evaluated from atomic spectral 
data (as it is in CNDO), but instead, MNDO takes this integral as a parameter. For an 
atom with s and p valence AOs, MNDO thus has parameters denoted Uss and Upp. MNDO 
evaluates the remaining integrals in H core

mAmA
 in (17.79) with the approximation (similar to 

that used in CNDO>228mA 0VB 0mA9 = -CB1mAmA 0 sBsB2, where the ERI is evaluated as 
discussed below. Thus

	 H core
mAmA

= UmAmA
- a

B � A
CB1mAmA 0 sBsB2	 (17.80)

The ERIs are evaluated as follows in MNDO. The ZDO approximation makes 
all three-center and four-center ERIs vanish. The one-center ERIs are not evaluated 
by integration but are assigned values that give a good fit to valence-state ionization 
energies (which are known from atomic spectral data). The one-center ERIs are either 
Coulomb integrals of the form gmn K 1mAmA 0 nAnA2 or exchange integrals of the form 
hmn K 1mAnA 0mAnA2. For an atom with only s and p valence AOs, there are six such 
one-center ERIs: gss, gsp, gpp, gpp�, hsp, hpp�, where the prime denotes that the second p 
AO is along a different axis than the first. The values of these one-center ERIs found by 
fitting atomic data are less than the values given by direct integration, due to correlation 
effects that keep electrons apart.

The two-center ERIs are not evaluated directly by integration but are found from the 
values of the one-center ERIs and the internuclear distances using a complicated approxi-
mate procedure. [This procedure involves multipole expansions of the charge distribu-
tions; see M. J. S. Dewar and W. Thiel, Theor. Chim. Acta, 46, 89 (1977).] The evaluation 
procedure gives values that are correct at the internuclear distances RAB = 0, RAB = �, 
and that are smaller in magnitude than the values found by accurate integration, so as to 
allow for electron correlation (and the use of a minimal basis set).

In MNDO, the core–core repulsion term is given by (17.76) with

	 f MNDO
AB = CACB1sAsA 0 sBsB21e-aARAB + e-aBRAB2	 (17.81)

where aA and aB are parameters for atoms A and B. For the pairs of atoms O–H and N–H, 
a different function than (17.81) is used; namely, the first term e-aARAH in parentheses in 
(17.81) is replaced with 1RAH>Å2e-aARAH, where A is O or N.

In MNDO, there are thus six parameters to be optimized for each kind of atom: 
the one-center, one-electron integrals Uss and Upp, the STO orbital exponent z (MNDO 
takes zs = zp for the valence AOs), bs and bp [Eq. (17.77)], and a [Eq. (17.81)]. For some 
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atoms, MNDO assumes bs = bp and these atoms have five parameters. For H, there are 
no valence p orbitals and there are four parameters for H.

In 1985 Dewar and co-workers published an improved version of MNDO called AM1 
(Austin model 1, named for the University of Texas at Austin) [M. J. S. Dewar, E. G. 
Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985)]. AM1 has 
been parametrized for nearly all the main-group elements and for Zn, Cd, and Hg. The 
only differences between MNDO and AM1 are that the AM1 valence orbital exponents 
zs and zp on the same atom are allowed to differ and the core-repulsion function in AM1 
is given by (17.76) with

fAM1
AB = f MNDO

AB +
CACB

RAB>Å
c a

k
akA exp[-bkA1RAB - ckA22 d

	 + a
k

akB exp[-bkB1RAB - ckB224 	 (17.82)

Here, f MNDO
AB  is given by (17.81); each sum in (17.82) contains two, three, or four Gaussian 

terms, depending which atom is involved; and the quantities akA, bkA, and ckA are param-
eters. [The expression given for f AM1

AB  in Dewar et al., J. Am. Chem. Soc., 107, 3902 (1985) 
is erroneous.] For example, for H there are three terms in the sum, giving nine additional 
parameters a1H, c, c3H. With this modified core-repulsion function, new optimized val-
ues for the original MNDO parameters and optimized values for the parameters in the sums 
in (17.82) were found.

In 1989, Stewart re-parametrized AM1 to give the PM3 method (parametric method 3, 
methods 1 and 2 being MNDO and AM1) [J. J. P. Stewart, J. Comput. Chem., 10, 209, 221 
(1989); 11, 543 (1990); 12, 320 (1991)]. PM3 differs from AM1 as follows. The one-center 
electron-repulsion integrals are taken as parameters to be optimized (rather than being 
found from atomic spectral data). The core-repulsion function has only two Gaussian terms 
per atom. A different method was used to optimize the PM3 parameters. PM3 has been 
parametrized for nearly all the main-group elements and for Zn, Cd, and Hg.

The RM1 method (Recife Model 1, so named because it was developed at the Federal 
University of Pernambuco in Recife, Brazil) has exactly the same structure as AM1, but 
all 191 parameters for the atoms C, H, O, N, S, P, F, Cl, Br, I were reevaluated using data 
from 1736 molecules (as compared with about 200 molecules used for AM1) [G. B. Rocha 
et al., J. Comput. Chem., 27, 1101 (2006); www.rm1.sparkle.pro.br]. Since parameters are 
available for only 10 elements, RM1 is less widely applicable than AM1 or PM3.

The PDDG/PM3 and PDDG/MNDO methods are modifications of PM3 and MNDO 
that add a certain function, called the pairwise distance directed Gaussian (PDDG) func-
tion, containing additional parameters, to the core-repulsion function, thereby significantly 
increasing the accuracy of these methods [M. P. Repasky et al., J. Comput. Chem., 23, 
1601 (2002); I. Tubert-Brohman et al., J. Comput. Chem. 25, 138 (2004); J. Chem. Theory 
Comput., 1, 817 (2005)].

A major limitation of the original versions of the MNDO, AM1, and PM3 methods is 
that they use a basis set of s and p valence AOs only, so they cannot be used with transition-
metal compounds. (In Zn, Cd, and Hg, the d electrons are not valence electrons.) Moreover, 
for compounds containing such second-row elements as S, the contributions of d orbitals 
to MOs are significant, and these methods do not perform well for such compounds.

Thiel and Voityuk [W. Thiel and A. A. Voityuk, J. Am. Chem. Soc., 100, 616 (1996)] 
extended MNDO to include d orbitals for many second-row and later elements, giving the 
MNDO/d method. MNDO>d does not add d orbitals for first-row elements, so for a com-
pound containing only C, H, O, and N, MNDO>d is precisely the same as MNDO. Also, 
it was found that for Na, Mg, Zn, Cd, and Hg, inclusion of d orbitals made little difference, 
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and MNDO>d uses only an sp basis for these elements (but the MNDO parameters for 
these five elements must be reoptimized in MNDO>d). MNDO>d parameters have been 
published for Al, Si, P, S, Cl, Br, and I, and the method has also been parametrized for 
several transition metals.

Stewart revised the PM3 method to give the PM5 method (Stewart, MOPAC2002, 
Fujitsu Limited, Japan, 1999), which gives more accurate �H �f,298 values than PM3 and has 
been parametrized for 50 elements, including many transition elements. (The PM4 method 
was never published, nor was it made available in a program. PM5 was never published.)

In 2007, Stewart published the PM6 method [J. J. P. Stewart, J. Mol. Model., 13, 
1173 (2007)], which has been parametrized for 70 elements (nearly all the main-group 
elements and nearly all the transition elements). Data from 9000 compounds were used 
in the parametrization, including both experimental data and data from HF>6@31G* and 
B3LYP>6@31G* calculations. PM6 takes the core–repulsion term as (17.76) with

fAB = CACB1sAsA 0 sBsB2xAB exp3-aAB1RAB + 0.0003R6
AB24 + gAB

where RAB is in angstroms, gAB = 10-831Z1>3
A + Z1>3

B 2>RAB412 (with ZA and ZB being 
the atomic numbers of A and B), and where xAB and aAB are two-atom parameters whose 
values depend on which atoms A and B are. The function gAB is negligible at ordinary 
chemical distances, but becomes large in the rare situations where RAB is very small; gAB 
represents the repulsion between the cores of A and B. For the AB atom pairs OH and NH, 
the exponential in fAB is replaced by exp1-aABR2

AB2, so as to give a better representation 
of hydrogen bonding. Also, for the atom pair CC, an additional term is included in fAB so 
as to improve the accuracy for compounds with carbon–carbon triple bonds.

With 70 elements, PM6 has 70 # 69>2 + 70 = 2485 different possible pairs of atoms 
for each of which pair a set of two-atom parameters is needed. Actually, PM6 includes 
parameters for about 450 pairs of atoms and covers the situations most commonly encoun-
tered. For a molecule with an atom pair not parametrized in PM6, the contribution of that 
pair to the core–core interaction is negligible if the two atoms are separated by at least 4 Å.

PM6 uses the real form of Slater orbitals as the basis functions. Of course, for transi-
tion elements, d orbitals are required in addition to s and p valence orbitals. To achieve 
improved performance, PM6 also includes d orbitals for many main-group nonmetals such 
as Si, P, S, Cl, As, Se, Br, Sb, Te, and I.

PM6 gives a significant improvement in accuracy over its predecessors. For example, 
for 1157 compounds containing no elements other than C, H, N, and O, the average absolute 
error in gas-phase �H �f,298 values in kcal>mol is 9.4 for AM1, 5.7 for PM3, 5.6 for PM5, 
4.9 for RM1, and 4.6 for PM6; for 1774 compounds containing no elements other than H, 
C, N, O, F, P, S, Cl, Br, I, these errors are 12.6 for AM1, 8.0 for PM3, 6.8 for PM5, 6.6 for 
RM1, and 5.1 for PM6 (Stewart, op. cit.); PM6 gives a better account of hydrogen bonding 
than its predecessors but is still deficient here.

Semiempirical methods usually give satisfactory bond lengths and bond angles, but 
their results are not as accurate as ab initio or DFT results with a suitable-size basis set. 
For 712 bond lengths and 244 bond angles in compounds containing no elements other 
than C, H, O, N, S, P, F, Cl, Br, and I, mean absolute errors in bond lengths in Å are 0.046 
for AM1, 0.037 for PM3, 0.036 for RM1, and 0.031 for PM6; mean absolute errors in bond 
angles are 3.4° for AM1, 3.8° for PM3, 4.0° for RM1, and 3.2° for PM6 (Stewart, op. cit.). 
Semiempirical methods give rather mediocre results for torsional angles. For example, 
PM6 had a mean absolute error of 12.6° for 27 dihedral angles (Stewart, op. cit., supple-
mentary material).

The semiempirical theories discussed so far do poorly in dealing with noncovalent 
interactions (hydrogen bonding, dispersion) that are key to determining the structures of 
biological molecules. The addition of parameter-containing empirical terms to the PM6 
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energy that correct for dispersion (D) and hydrogen bonding (H) gave the PM6-DH2 
method [M. Korth et al., J. Chem. Theory Comput., 6, 344 (2010)]. Further improve-
ments in the dispersion and hydrogen-bonding correction terms gave the PM6-DH+ and 
PM6-D3H4 methods [M. Korth, J. Chem. Theory Comput., 6, 3808 (2010); J. Rezac and 
P. Hobza, ibid., 8, 141 (2012)]. These corrections for hydrogen bonding and dispersion have 
been parametrized for a few other semiempirical methods besides PM6.

The D3H4 energy correction is a function of the geometry of the molecule or interact-
ing molecules. The energy in PM6-D3H4 has the form

EPM6@D3H4 = EPM6 +   EHB + Edisp + EHHrep

where EHB and Edisp are the corrections for hydrogen bonding and dispersion, and EHHrep is 
a term representing repulsions between H atoms that was found necessary to achieve good 
results. In calculations of binding energies of hydrogen-bonded and dispersion-bonded 
complexes, PM6-D3H4 is found to be of similar accuracy to much more expensive DFT-D 
methods and is also pretty accurate in predicting geometries of such complexes. Averages 
of the root-mean-square errors in kcal/mol for eight test sets of intermolecular-interaction 
energies are as follows: 2.8 for B3LYP/6-31G*, 6.0 for AM1, 5.0 for PM3, 1.3 for PM3-
D3H4, 1.1 for PM6-DH2, 1.1 for PM6-DH+, 0.85 for PM6-D3H4, and 0.81 for SCC-
DFTB-D3H4 (discussed in the next subsection).

In 2012, Stewart published the PM7 method (openmopac.net/home.html; J. Mol. 
Model., DOI: 10.1007/s00894-012-1667-x), a reparametrization of PM6 that improves the 
accuracy of heats of formation of organic compounds and that includes dispersion and 
hydrogen-bonding terms to better represent intermolecular interactions. PM7 has been 
parametrized for nearly all the main-group and transition elements. For a sample of 1366 
compounds containing only C, H, O, N, F, Cl, S, P, and Br, mean absolute errors in gas-
phase �H �f,298 values in kcal/mol are 10.0 for AM1, 6.2 for PM3, 5.1 for B3LYP/6-31G*, 
4.4 for PM6, and 4.0 for PM7. When compounds of all elements parametrized are included, 
PM7 gas-phase enthalpies of formation are substantially less accurate on average than 
those of PM6, a result likely due to inaccuracies in the reference data used to parametrize 
PM7. For the S66 test set of intermolecular interaction energies, average absolute errors in 
kcal/mol are 2.3 for B3LYP/6-31G*, 2.7 for PM6, 0.66 for PM6/DH2, 0.64 for PM6-DH+, 
and 0.78 for PM7.

Semiempirical methods are widely available in many programs. Gaussian 09 
(Section 15.14) includes the MNDO, AM1, PM3, PPDG, PM6, MINDO/3, INDO, and 
CNDO methods. Spartan includes the MNDO, MNDO/d, AM1, PM3, PM6, and RM1 
methods. HyperChem has the MNDO, MNDO/d, AM1, PM3, RM1, MINDO/3, CNDO, 
INDO, INDO/S and extended Hückel methods. MOPAC2012 (openmopac.net/home.html) 
has the MNDO, AM1, PM3, PM6, PM6-DH2, PM6-DH+, PM7, and RM1 methods. It is 
available in Linux, Macintosh, and Windows versions and is free to academic researchers. 
An older version is MOPAC2009 (openmopac.net/MOPAC2009.html). AMPAC 9 (www
.semichem.com) has the SAM1, AM1, PM3, RM1, PM6, MNDO, and MNDO/d methods 
and a molecule builder, and is available for Windows, Linux, and Macintosh operating 
systems.

The SCC-DFTB Method
The preceding methods discussed in this section are semiempirical MO methods. The 
SCC-DFTB method (self-consistent-charge density-functional tight-binding method) is a 
semiempirical DFT method [M. Elstner et al., Phys. Rev. B, 58, 7260 (1998); M. Elstner, 
Theor. Chem. Acc., 116, 316 (2006)], somewhat similar to the semiempirical MO meth-
ods. The exchange-correlation energy functional used in SCC-DFTB is usually the PBE 
functional (Section 16.5). The SCC-DFTB method treats only the valence electrons 
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explicitly, uses a minimal basis set of nonorthogonal AOs to expand the Kohn–Sham 
orbitals, neglects many integrals, and uses approximations for many other integrals. The 
method contains two types of parameters: single-atom parameters (which are found from 
atomic DFT calculations), and parameters in interatomic repulsion-energy functions. The 
interatomic parameters are evaluated from bond-stretching energies calculated by DFT 
with the B3LYP functional with a DZP or TZP basis set. Thus the parameters are not 
found using experimental data, but using DFT calculations. The time for an SCC-DFTB 
calculation on a large molecule is similar to the time for an AM1 or PM3 calculation, 
but the results are usually more accurate than AM1 or PM3. The method is available in  
Gaussian 09. The D3H4 correction for hydrogen bonding and dispersion used in 
PM6-D3H4 has also been parametrized for SCC-DFTB, giving the DFTB-D3H4 method, 
whose accuracy for hydrogen-bonded and dispersion-bonded complexes is similar to that 
of PM6-D3H4 (Rezac and Hobza, op. cit.).

Semiempirical Calculations on Very Large Molecules
Methods that allow semiempirical calculations on molecules containing thousands of atoms 
are compared in A. D. Daniels and G. E. Scuseria, J. Chem. Phys., 110, 1321 (1999).

Yang and co-workers developed a “divide-and-conquer” method that combines calcu-
lations done on overlapping regions of the molecule [T.-S. Lee, D. M. York, and W. Yang, 
J. Chem. Phys., 105, 2744 (1996); S. L. Dixon and K. M. Merz, J. Chem. Phys., 107, 879 
(1997)]. This method has been used for large biochemical systems.

Stewart developed the MOZYME linear-scaling method that uses localized MOs to 
solve the SCF equations for systems containing up to 15000 atoms [J. J. P. Stewart, Int. 
J. Quantum Chem., 58, 133 (1996)]. The method is limited to closed-shell molecules that 
can be represented by a conventional Lewis structure.

Stewart used MOZYME and PM6 to optimize the geometries of 45 proteins (including 
some containing metals) starting from the experimentally reported X-ray crystallography 
or NMR structure [J. J. P. Stewart, J. Mol. Model., 15, 765 (2009)]. The calculations were 
done on PCs having 1 or 2 GB of RAM. To speed up the computation, some approxima-
tions were made in evaluating certain integrals. The largest protein optimized had 14566 
atoms. Each optimization finds the PM6 local minimum nearest the initial structure and 
does not find the global minimum. Stewart noted that because of the large computational 
time required, the practical size-limit of this method for routine work is about 9000 atoms. 
(Most of the proteins in the Protein Database contain less than 5000 atoms.) He sug-
gested that such calculations could be useful in detecting large errors in experimentally 
determined protein structures and in refining such structures, and could be used to study 
enzyme–substrate reactions.

The conjugate-gradient density-matrix search method speeds up large-molecule SCF 
calculations by avoiding diagonalization of the Fock matrix [step 7 after Eq. (14.58)]; 
instead, an improved estimate of the density matrix P is found by varying the Ptu matrix 
elements so as to minimize the energy calculated from P and the current estimate of the 
Fock matrix F�. Then the improved P is used to calculate an improved F�, which is used 
to calculate an improved P, and so on. This method allowed single-point AM1 energy cal-
culations to be done on a 19995-atom polymer of glycine and a 6304-atom RNA molecule  
[A. D. Daniels, J. M. Millam, and G. E. Scuseria, J. Chem. Phys., 107, 425 (1997)].

The linear-scaling LocalSCF method [N. A. Anikin et al., J. Chem. Phys., 121, 1266 
(2004)] uses weakly nonorthogonal localized MOs. A LocalSCF single-point AM1 calcula-
tion was done on a 119273-atom protein in 16000 s on a personal computer.

Semiempirical MO calculations on large systems are discussed in T. Clark and J. J. P. 
Stewart, “MNDO-like Semiempirical Molecular Orbital Theory”; Chap. 8 of J. R. Reimers 
(ed.), Computational Methods for Large Systems, Wiley, 2011. SCC-DFTB calculations on 
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such systems are discussed in M. Elstner and M. Gaus, “Self-Consistent-Charge Density 
Functional Tight-Binding Method,” chap. 9 of Reimers, op. cit.

17.5 The Molecular-Mechanics Method
The molecular-mechanics (MM) method is quite different from the semiempirical meth-
ods of the last section. Molecular mechanics is not a quantum-mechanical method, since 
it does not deal with an electronic Hamiltonian or wave function or an electron density. 
Instead, the method uses a model of a molecule as composed of atoms held together by 
bonds. Using such parameters as bond-stretching and bond-bending force constants, and 
allowing for interactions between nonbonded atoms, the method constructs a potential-
energy expression that is a function of the atomic positions. By minimizing this expres-
sion for various molecular conformers, the MM method predicts equilibrium geometries 
and relative energies. The method was developed by Westheimer, Hendrickson, Wiberg, 
Allinger, Warshel, and others, and is applicable to ground electronic states. Most applica-
tions have been to organic compounds, but applications to organometallic compounds and 
transition-metal coordination compounds are growing. Because MM calculations are much 
faster than quantum-mechanical calculations, geometry optimizations of molecules with 
104 atoms and single-point energy calculations on systems with 106 atoms can be done.

Molecular mechanics deals with the changes in a molecule’s electronic energy due to 
bond stretching 1V str2, bond-angle bending 1V bend2, out-of-plane bending 1V oop2, internal 
rotation (torsion) about bonds 1V tors2, interactions between these kinds of motion (which 
produce cross terms V cross), van der Waals attractions and repulsions between nonbonded 
atoms 1V vdW2, and electrostatic interactions between atoms 1V es2. The sum of these con-
tributions gives the molecular-mechanics potential energy V , called the steric energy, for 
motion of the atoms in the molecule (or molecules if the system being calculated has more 
than one molecule):

	 V = V str + V bend + V oop + V tors + V cross + V vdW + V es	 (17.83)

Some people use the term strain energy to designate V in (17.83) but other people use strain 
energy to denote a different quantity (see Burkert and Allinger, pp. 184–189).

The explicit expressions used for each of the terms in (17.83) define what is called 
a molecular-mechanics force field, since the derivatives of the potential-energy function 
determine the forces on the atoms. A force field contains analytical formulas for the terms 
in (17.83) and values for all the parameters that occur in these formulas. The MM method is 
sometimes called the empirical-force-field method. Empirical force fields are used not only 
for single-molecule molecular-mechanics calculations of energy differences, geometries, 
and vibrational frequencies, but also for molecular-dynamics simulations of liquids and 
solutions, where Newton’s second law is integrated to follow the motions of atoms with 
time in systems containing thousands of atoms.

An MM force field assigns each atom in a molecule to one of a number of possible 
atom types, depending on the atom’s atomic number and molecular environment. For 
example, some commonly used atom types in force fields for organic compounds are sp3 
(saturated) carbon, sp2 (doubly bonded) carbon, sp (triply bonded) carbon, carbonyl carbon, 
aromatic carbon, and so on, H bonded to C, H bonded to O, H bonded to N, and so on. 
Different force fields contain somewhat different numbers and kinds of atom types, based 
on the decisions made by their constructors. A force field for organic compounds typically 
contains 50 to 75 atom types.

In ab initio and semiempirical molecular electronic single-point or geometry-
optimization calculations, one inputs the atomic numbers of the atoms and a set of coor-
dinates (Cartesian or internal) for each atom, and no specification is made as to which 
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atoms are bonded to which atoms (Section 15.15). In a molecular-mechanics calculation, 
one must specify not only the initial atomic coordinates, but also which atoms are bonded 
to each atom, so that the V expression can be properly constructed. This specification is 
most conveniently done using a graphical computer interface to construct the molecule on 
screen (Section 15.15).

The following terminology (Fig. 17.8) is used in molecular mechanics: 1,2 atoms are 
atoms bonded to each other; 1,3 atoms are separated by two bonds; 1,4 atoms are separated 
by three bonds; and so on.

Some commonly used force fields are the following.
MM2 of Allinger and co-workers (Burkert and Allinger) is for small- to moderate-size 

organic compounds; MM3 is for small organic compounds, polypeptides, and proteins [N. 
L. Allinger and L. Yan, J. Am. Chem. Soc., 115, 11918 (1993) and references cited therein]; 
MM4 is an improved version [N. L. Allinger et al., J. Comput. Chem., 24, 1447 (2003); J. 
H. Lii et al., ibid., 24, 1473, 1490, 1504 (2003); C. H. Langley et al., ibid., 22, 1396, 1426, 
1451, 1476 (2001)].

The following force fields are for polypeptides, proteins, and nucleic acids: AMBER 
(assisted model building with energy refinement) [W. D. Cornell et al., J. Am. Chem. 
Soc., 117, 5179 (1995); Y. Duan et al., J. Comput. Chem. 24, 1999 (2003); ambermd
.org]; CHARMM (chemistry at Harvard molecular modeling) of Karplus and co-workers 
[B. R. Brooks et al., J. Comput. Chem., 4, 187 (1983); A. D. Mackerell et al., J. Am. Chem. 
Soc., 117, 11946 (1995); J. Phys. Chem. B, 102, 3586 (1998); N. Foloppe and A. D. Mackerell, 
J. Comput. Chem., 21, 86 (2000); www.charmm.org]; OPLS (optimized potential for 
liquid simulations, sometimes called OPLS/AMBER) of Jorgensen and co-workers 
[W. L.  Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc., 110, 1657 (1988); J. Pranata 
et al., J. Am. Chem. Soc., 113, 2810 (1991); OPLS-AA version—W. L. Jorgensen et al., 
J. Am. Chem. Soc., 118, 11225 (1996); G. A. Kaminski et al., J. Phys. Chem. B, 105, 6474 
(2001)]; and GROMOS (Groningen molecular simulation) of van Gunsteren and Berendsen  
[X. Daura, A. E. Mark, and W. F. van Gunsteren, J. Comput. Chem., 19, 535 (1998); C. 
Oostenbrink et al., ibid., 25, 1656 (2004); www.gromos.net]. CHARMm is a commer-
cially available version of CHARMM that is also applicable to smaller organic compounds  
[F. A. Momany and R. Rone, J. Comput. Chem., 13, 888 (1992)]. MMFF94 (Merck molecu-
lar force field 1994 version) of Halgren [T. A. Halgren, J. Comput. Chem., 17, 490, 520, 
553, 616 (1996); T. A. Halgren and R. B. Nachbar, ibid., 17, 587] is for calculations on small 
organic compounds, proteins, and nucleic acids. The Tripos force field (sometimes called 
SYBYL) [M. Clark et al., J. Comput. Chem., 10, 982 (1989)] is applicable to small organic 
molecules and proteins and is used for drug design.

CGenFF (CHARMM General Force Field) is similar to CHARMM but is specifically 
designed to be applied to drug-like molecules [K. Vanommeslaeghe et al., J. Comput. 
Chem., 31, 671 (2010); mackerell.umaryland.edu/~kenno/cgenff]. Unlike CHARMM, 
CGenFF is not applicable to biological macromolecules, but is meant to be used to rep-
resent ligands that might dock to a macromolecule such as a protein. The macromolecule 

Figure 17.8  The heavily 
shaded atoms are 1,2 atoms,  
1,3 atoms, and 1,4 atoms.

1,41,31,2



636  Chapter 17  |  Semiempirical and Molecular-Mechanics Treatments of Molecules 

part of the system is modeled with CHARMM. (Pharmaceutical companies spend lots of 
effort looking for small molecules that might dock to the active sites of enzymes, and MM 
is the usual computational method in such studies.)

The DREIDING force field [S. L. Mayo, B. D. Olafson, and W. A. Goddard, J. Phys. 
Chem., 94, 8897 (1990)] is a general force field applicable to organic and inorganic com-
pounds of all the main-group elements. The UFF (universal force field) [A. K. Rappé  
et al., J. Am. Chem. Soc., 114, 10024 (1992)] is applicable to compounds of all elements 
in the periodic table.

Most of these force fields exist in several versions, and one should specify the version 
used in any calculation.

Some force fields for MM calculations on biomolecules (for example, OPLS, AMBER, 
CHARMM) exist in both united-atom (UA) and all-atom (AA) versions. A UA force field 
saves computational time by not explicitly including hydrogen atoms bonded to aliphatic 
carbon atoms. Instead, the field contains parameters for the CH3, CH2, and CH groups.

For reviews of force fields for calculations on biomolecules, see A. D. Mackerell,  
J. Comput. Chem., 25, 1584 (2004); J. W. Ponder and D. A. Case, Adv. Protein Chem., 66, 
27 (2003); W. L. Jorgensen and J. Tirado-Rives, Proc. Nat. Acad. Sci., 102, 6665 (2005).

One should distinguish between a force field, which is defined by the expression for 
V in (17.83), and a molecular-mechanics program, which is a computer program that uses 
a force field to perform molecular-mechanics calculations. Sometimes MM programs and 
force fields have the same name. For example, CHARMM is also the name of a molecular-
mechanics program. The CHARMM program has available in it, not only the CHARMM 
force field, but also MMFF94.

Some examples of MM computational times on a workstation are: geometry optimiza-
tion of a 29-atom molecule: 0.3 s for MM2* (a modified version of MM2), 80 s for MNDO, 
2 * 105 s for HF/6-31G*; geometry optimization of a 182-atom molecule: 100 s for MM2*, 
1.7 * 104 s for AM1 [C. H. Reynolds, J. Mol. Struc. (Theochem), 401, 267 (1997)].

We now consider the various terms in (17.83).

Stretching
The potential energy V str of bond stretching is taken as the sum of potential energies V str,ij 
for stretching each bond of the molecule: Vstr = g1,2 Vstr,ij, where the sum is over all pairs 
of atoms bonded to each other, that is, over all 1,2 atom pairs. The simplest choice for Vstr,ij 
is to use the harmonic-oscillator approximation (Fig. 4.6) and take Vstr,ij as a quadratic 
function of the displacement of the bond length lij from its reference (or natural) length 
l0
IJ; that is,

	 Vstr,ij =
1
2 kIJ1lij - l0

IJ22	 (17.84)

similar to (13.21). Here, the capital letters I and J denote the atom types of atoms i and 
j in the molecule. The force constant kIJ and the reference length l0

IJ depend on the atom 
types of the two atoms forming the bond. For example, in CH2 “ CHiCH2iCH3, each 
carbon–carbon single bond has a longer reference length and a smaller stretching force 
constant than the carbon–carbon double bond. Note that, because many terms in the steric 
energy (17.83) involve the atoms forming a particular bond, the reference value l0

IJ is not 
necessarily equal to the equilibrium bond length of the bond between atoms i and j in any 
particular molecule. However, it will likely be close to the equilibrium lengths of most 
bonds formed by atoms of types I and J. Many force fields omit the factor 1

2 and write 
Vstr,ij = KIJ1lij - l0

IJ22.
The force fields AMBER, CHARMM, and Tripos use the quadratic function (17.84) 

for Vstr,ij. MM2 uses quadratic and cubic terms in Vstr,ij. MM3 and MMFF94 use quadratic, 
cubic, and quartic terms. For example, in MMFF94,
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Vstr,i j = 1143.93 kcal>mol21
23kIJ>(mdyn>Å2]1�li j>Å2231 - 12 Å-12�li j +

7
1212 Å-122�l2i j4

� (17.85)

where �lij K lij - l0
IJ. It is traditional to use kcal>mol for molecular-mechanics energies, 

and the factor 143.93 converts from mdyn>Å to kcal>mol. The expression (17.85) has the 
form of the first three terms of a Taylor-series expansion of the Morse potential-energy 
function (Prob. 4.29) with the Morse exponential parameter equal to 2>Å; this value was 
found by trial and error to work well in MMFF94. The UFF and DREIDING force fields 
use a quadratic stretching function as the default but can also use Morse functions.

A particular force field will contain values for the parameters kIJ and l0
IJ for all the 

possible bonds formed by the atom types of that force field. Because different force fields 
use different expressions for at least some of the terms in the steric energy (17.83), the 
parameters of one force field are not really comparable to those of another field. (A mis-
take people sometimes make is to supply a missing parameter in one force field by using 
a parameter from another force field.) Some examples of l0

IJ values in Å are: for a bond 
between two sp3 carbons, 1.508 in MMFF94, 1.54 in Tripos 5.2, 1.523 in MM2(87); for 
a bond between an sp3 carbon and an sp2 carbon, 1.482 in MMFF94, 1.501 in Tripos 5.2, 
1.497 in MM2(87); for a double bond between two sp2 carbons, 1.333 in MMFF94, 1.335 
in Tripos 5.2, 1.337 in MM2(87).

Bending
The potential energy V bend of bond bending is taken as the sum of potential energies Vbend,ijk 
for bending each bond angle of the molecule: Vbend = gVbend,ijk, where the sum is over all 
bond angles in the molecule. The simplest choice is to take V bend,ijk as a quadratic function:

	 Vbend,ijk =
1
2kIJK1uijk - u0

IJK22	 (17.86)

where u0
IJK is the reference value for the bond angle type IJK. This form is used in 

CHARMM, AMBER, and Tripos. MMFF94 uses quadratic and cubic terms in V bend,ijk 
and uses a special form for bond angles near 180�. MM2 uses quadratic and sextic terms.

Torsion
The term V tors is taken as the sum of terms Vtors,ijkl over all 1,4 atom pairs: Vtors =g1,4Vtors,ijkl. For example, for ethane, H3CCH3, each hydrogen on the left carbon has a 
1,4 relation to each of the three hydrogens on the right carbon, giving a total of nine terms 
in the V tors sum. For H2CCH2, there are four torsion terms in the sum. A commonly used 
form (MMFF94, MM2, MM3) for Vtors,ijkl is

	 Vtors,ijkl =
1
23V111 + cos f2 + V211 - cos 2f2 + V311 + cos 3f24 	 (17.87)

where f is the dihedral angle D(ijkl) (Fig. 15.14) and V 1, V 2, V 3 are parameters whose 
values depend on the atom types of i, j, k, and l. Tripos, CHARMm, and DREIDING 
use the following simpler form containing only one parameter: 12 Vn31 + cos1nf - f024 , 
where n gives the number of minima over 360� of the torsional potential and f0 determines 
the locations of the minima. For example, for n = 3 and f0 = 0, we get a potential with 
minima at 60�, 180�, and 300�, as in C2H6; with n = 2 and f0 = p, we get a potential 
with minima at 0� and 180�, as in C2H4.

The potential-energy change as one methyl group is rotated relative to the other in 
ethane can be determined experimentally by observation of transitions between vibra-
tional energy levels produced by this potential. In an MM force field, V tors in ethane is the 
sum of contributions Vtors,ijkl from nine dihedral angles, and an individual Vtors,ijkl is not 
experimentally determinable. By taking the appropriate second derivative of the electronic 
energy of ethane and integrating the result, one can use ab initio calculations to estimate 
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Vtors,ijkl. The result from a HF>6@31G* calculation is shown in Fig. 17.9a. When expressed 
as a series of terms involving cos nf, this curve turns out to have significant contributions 
from only the cos f, cos 2f, and cos 3f terms. When the nine dihedral-angle contributions 
are added, the symmetry of C2H6 makes the contributions of the cos f and cos 2f terms 
add to zero, leaving only the cos 3f term (Fig. 17.9b). Because of insufficient experimental 
data, MM2 and MM3 take V 1 and V 2 as zero for HCCH torsion (where C is a saturated 
carbon), but MMFF94 used results of ab initio conformational energy calculations to fit 
nonzero values for these quantities.

By using a large positive value for V 2 in (17.87), one can produce the high barrier to 
out-of-plane twisting in H2C “ CH2.

Out-of-Plane Bending
The molecule cyclobutanone, C3H6C “ O, contains an oxygen doubly bonded to one of 
the carbons of a four-membered ring. The carbonyl carbon and the three atoms bonded 
to it all lie in the same plane. The CCC bond angle at the carbonyl carbon is close to 90�, 
and the CCO bond angles are close to 121360� - 90�2 = 135�. Because these 135� angles 
deviate considerably from the reference angles of approximately 120� at the carbonyl 
carbon, the bond-bending terms V bend,ijk at the carbonyl carbon will make the equilibrium 
position of the oxygen atom lie above the plane of the ring carbons, so as to produce 
near@120� CCO angles. To ensure planarity of the three atoms bonded to a carbonyl 
carbon (which is favored by pi bonding between C and O), one includes in V an out-
of-plane (oop) bending term at each carbonyl carbon. This term can have the form 
1
2koopx

2
oop, where xoop is the angle between the CO bond and the plane of the carbonyl 

carbon and the two carbons bonded to it. (In actual practice, one either includes an out-
of-plane bending term for each of the three atoms bonded to a carbonyl C or uses a single 
term where x is taken as the average of the out-of-plane angles for each of the three 
atoms bonded to the carbonyl C.) Similar out-of-plane bending terms are used to enforce 
planarity at nitrogen atoms in amides. [The question of planarity of the amide group is 
complicated; see T. A. Halgren, J. Comput. Chem., 17, 553 (1996); G. Forgarasi and 
P. G. Szalay, J. Phys. Chem. A, 101, 1400 (1997).] Also, an out-of-plane bending term 
is often used at a carbon double bonded to another carbon, since this allows vibrational 
frequencies to be better reproduced.

Instead of out-of-plane bending terms, some force fields use so-called improper torsion 
terms to achieve the same result.

Cross Terms
The cross terms V cross in (17.83) allow for interactions between stretching, bending, and 
torsional motions. For example, if the CO and OH bonds of a COH bond angle are stretched, 

Figure 17.9  (a) HCCH 
torsional potential in ethane 
found from HF/6-31G* calcu-
lations with bond distances 
and bond angles held fixed 
during torsion [U. Dinur 
and A. T. Hagler, J. Comput. 
Chem., 11, 1234 (1990)]. 
(b) Sum of the nine HCCH 
torsional potentials of (a). –π

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 π

Vtors,HCCH/(kcal/mol)

(b)

0 π–π

Vtors/(kcal/mol)

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0



17.5 The Molecular-Mechanics Method  |  639

then the distance between the end atoms of the COH bond angle is increased, which makes 
it easier to bend the COH angle. Likewise, reducing the COH angle tends to increase the 
OH and CO lengths. To allow for this interaction, one can add a stretch–bend cross term 
with the form 12 k121�l1 + �l22�u, where �l1, �l2, and �u are the deviations of the bond 
lengths and the bond angle from their reference values.

The most commonly used cross terms are stretch–bend, stretch–stretch for two bonds 
to the same atom, stretch–torsion, bend–torsion, and bend–bend for two angles with a 
common central atom. MM2 and MMFF94 include only stretch–bend interactions. The 
TRIPOS, AMBER, CHARMm, DREIDING, and UFF force fields have no cross terms. 
MM3 and MM4 include stretch–bend, bend–bend, and stretch–torsion terms.

Electrostatic Interactions
The electrostatic term V es is commonly taken as the sum of electrostatic interactions involv-
ing all pairs of atoms except 1,2 and 1,3 pairs: V es = g1,Ú 4V es,i j, where atoms i and j have 
a 1,4 or greater relation. V es,ij is calculated by assigning partial atomic charges Qi to each 
atom and using the Coulombic potential energy expression

	 Ves,ij =
QiQj

er 4pe0Rij
	 (17.88)

where er is a dielectric constant. For calculations modeling gas-phase molecules, er is 
typically given a value in the range 1 to 1.5. An er greater than 1 allows for screening 
interactions due to polarization of parts of the molecule lying between atoms i and j.

Various methods are used to assign the partial atomic charges. MMFF94 assumes the 
polarity of a given type of bond to be independent of its environment and assigns charges 
according to Qi = Qi,formal + g vKI, where Qi,formal is the formal charge on atom i (found 
from the Lewis dot structure by dividing the electrons in each bond equally between the 
bonded atoms), vKI is a parameter representing the charge contribution to atom i from the 
bond between atoms i and k (of types I and K), and the sum goes over all bonds to atom 
i. Note that vKI = -vIK. Some values of vKI are 0 for a Csp3-H bond and -0.138 for a 
Csp3-Csp2 bond. The vKI values were found by varying them to make MMFF94 give a 
good least-squares fit to HF>6@31G* dipole moments of several hundred molecules; the 
value zero for Csp3-H bonds was assumed. [It should be noted that MMFF94 replaces Rij 
in (17.88) with Rij + 0.05 Å.4

In AMBER, the charges are found by using charges fit to HF/6-31G* electrostatic 
potentials (ESPs, Section 15.7) of related smaller molecules. For example, to get the 
charges on atoms of the amino acid residue -NHCH(R)C(O2-  of a protein, one uses the 
charges of corresponding atoms of the molecule CH3C(O)NHCH(R)C(O)NH2. Similarly 
for the charges in DNA and RNA.

In OPLS, partial charges are assigned to the atoms in a protein based on the atom 
type. For example, all oxygen atoms in amide groups are given a partial charge of -0.50 
and all carbons in amide groups are given a charge of +0.50.

Several other schemes based on electronegativity are used to assign charges; see 
Leach, Section 4.9.6; T. A. Halgren, J. Comput. Chem., 17, 520 (1996).

MM2 and MM3 do not use (17.88) but assign a dipole-moment vector to each bond 
and compute V es as the sum of the potential energies of interaction between bond moments. 
Each bond dipole moment is located at the center of the bond and points along the bond. 
The values for the bond moment of given types of bond were chosen to fit known dipole 
moments of small molecules.

Some force fields reduce V es,ij of each 1,4 pair of atoms by multiplying it by a scaling 
factor. Some 1,4 electrostatic scaling factors are 0.75 in MMFF94 and 0.5 in AMBER.
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Van der Waals Interactions
The van der Waals term in (17.83) is usually taken as the sum of interactions involving 
all possible 1,4, 1,5, 1,6, . . . atom-pair interactions: VvdW = g1,Ú 4 VvdW,i j, where atoms 
i and j are in a 1,4 or greater relation. The 1,2 and 1,3 van der Waals interactions and 
electrostatic interactions are considered to be implicitly included in the bond-stretching 
and bond-bending parameters. Each van der Waals pair term VvdW,ij is the sum of an 
attraction due to London dispersion forces and a repulsion due mainly to Pauli repulsion. 
The AMBER, CHARMM, DREIDING, UFF, and TRIPOS force fields take VvdW,ij as a 
Lennard-Jones 12-6 potential (Fig. 17.10 and Prob. 17.38), which can be written in two 
equivalent forms:

	 V vdW,i j = eIJc a
R*IJ
Rij

b
12

- 2aR*IJ
Rij

b
6

d = 4eIJc a
sIJ

Rij
b

12

- asIJ

Rij
b

6

d 	 (17.89)

where Rij is the distance between atoms i and j, the well-depth parameter eIJ is the value 
of VvdW,ij at the minimum in the interaction curve, the parameter R*IJ gives the value of Rij 
at the minimum in VvdW,ij and the alternative parameter sIJ is the Rij value at which VvdW,ij 
is zero. MM2 and MM3 use a function with an attractive term proportional to R-6

ij  and a 
repulsive term proportional to e-aRij, where a is a parameter. MMFF94 uses a buffered 
14-7 potential that was found to represent known van der Waals interactions between the 
rare gas atoms more accurately than other forms [T. A. Halgren, J. Am. Chem. Soc., 114, 
7827 (1992)].

For 1,4 interactions, some force fields multiply VvdW,ij by a scale factor that reduces 
its value.

As an example, for CF3CF2CF3, a molecular-mechanics force field has 10 bond-
stretching terms (8 for CF bonds and 2 for CC bonds), 18 bond-bending terms [there are 
1
21423 = 6 bond angles at each C], 18 bond torsion terms (9 about each CC bond), 27 van 
der Waals terms (there are 18 1,4 interactions between the end atoms of the 18 dihedral 
angles plus 9 1,5 interactions between one set of CF3 fluorines and the second set), 27 
electrostatic terms, plus whatever cross terms the force field includes.

Cutoffs
The electrostatic and van der Waals interactions are called nonbonded interactions and 
consume the largest part of the time needed to calculate V steric of a very large molecule. 
For a 3000-atom molecule, V es and V vdW are each the sum of about 1

2130002129902 �
4 * 106 terms. (The last factor is reduced to acknowledge that 1,2 and 1,3 interactions are 

Figure 17.10  The Lennard-
Jones potential as a function 
of interatomic distance. Vvdw,ij

s ij

Rij

Rij

*
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omitted.) To speed up MM calculations on large molecules (and molecular dynamics calcu-
lations on systems containing many molecules), many programs use a cutoff; that is, Ves,ij 
and V vdW,i j terms are omitted for atom pairs that are farther apart than some chosen distance.

If a cutoff is abruptly applied at a particular interatomic distance, this discontinuity 
can cause problems in energy minimization and molecular-dynamics calculations. To avoid 
this, one can use a cutoff that makes the nonbonded interactions go to zero gradually over 
a distance of, say, 1 Å. This is done using what is called a switching function.

Van der Waals interactions are proportional to 1>R6
i j at large distances and so are short 

range. A van der Waals cutoff distance of 8 or 10 Å is typically used and was believed to 
produce little error. However, molecular-dynamics simulations of liquid alkanes using the 
GROMOS force field found that the enthalpies of vaporization and the vapor pressures 
changed very substantially when the van der Waals cutoff distance was varied within the 
range 8 to 14 Å. Thus, a van der Waals cutoff radius of 16 Å is much more justifiable than 
the traditional one of 8 or 10 Å [X. Daura et al., J. Comput. Chem., 19, 535 (1998)].

Often an electrostatic cutoff distance of 10 or 15 Å is used. However, electrostatic 
interactions are long range; thus use of a cutoff distance for them is not justifiable and 
produces serious errors. Instead of using a cutoff, one can calculate the electrostatic inter-
actions using the fast-multipole method (FMM; Section 15.16), but this method may not 
be faster than direct summation of all the pairwise interactions when the system has less 
than 3000 atoms. The structure-adapted multipole method (SAMM) [C. Niedermeier and 
P. Tavan, J. Chem. Phys., 101, 734 (1994)] achieves faster evaluation of the electrostatic 
energy than the FMM at a small sacrifice in accuracy. In SAMM, instead of using the fixed 
subdivision of space that is used in the FMM method, space is divided into regions that 
correspond to various structural features of the biomolecule being studied, thereby allow-
ing the multipole expansions to be truncated at lower orders than in the FMM method. For 
molecular-dynamics calculations on biomolecules, the SAMM method has been combined 
with a multiple-time-step method to yield FAMUSAMM (fast multiple-time-step structure-
adapted multipole method); M. Eichinger et al., J. Comput. Chem., 18, 1729 (1997). In a 
multiple-time-step method, the forces between distant atoms are treated using a longer time 
step than is used for the forces between nearby atoms (which vary more rapidly).

The most widely used method to sum the electrostatic interactions in large systems 
is the particle-mesh Ewald method, which is a modification of a method originally used 
to sum electrostatic interactions in ionic crystals. Here, the electrostatic-energy sum is 
replaced by the sum of sums that can each be calculated more rapidly than the original 
sum; see Leach, Section 6.8.1.

Hydrogen Bonding
For pairs of atoms that can hydrogen bond to each other, some force fields modify the van 
der Waals interaction to a form such as A >R12 - C>R10, but many force fields contain no 
special terms for hydrogen bonding, and rely on the electrostatic and van der Waals terms 
to produce the hydrogen bond.

Conjugated Bonds
Conjugated bonds require special consideration in molecular mechanics. Consider, for 
example, CH2 “ CHiCH “ CH2. Each of the four carbons is an sp2 type. Hence, if the 
stretching force constant and reference length of each bond is assigned simply based on 
the types of the two atoms forming the bond, each carbon–carbon bond in 1,3-butadiene 
will have the same stretching constant and reference length. However, the central and 
end bonds actually have quite different lengths (1.46 and 1.34 Å2. MMFF94 and Tripos 
make the reference bond lengths and stretching force constants depend not only on the 
atom types but also on the bond order in the Lewis structure. For two bonded sp2 carbons, 
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the MMFF94 reference length is 1.333 Å if the bond is a single bond and is 1.430 Å if it 
is a double bond, and the stretching constant for the double bond is about twice that for 
the single bond. Some force fields handle this problem in a slightly different way that is 
equivalent to the MMFF94 procedure. MM2, MM3, and MM4 use the more general pro-
cedure of performing a semiempirical p-electron calculation on the conjugated portion of 
the molecule to derive bond orders and use these orders to assign reference bond lengths 
and force constants to the conjugated bonds.

Parametrization
The general procedure for finding parameter values in a force field is to use experimental 
or ab initio theoretical information to choose an initial set of parameter values and then 
vary these parameters so as to minimize the deviations of force-field predicted molecular 
properties from experimental or ab initio calculated properties of a chosen set of molecules, 
called the training set. Molecular properties used in force-field parametrizations include 
molecular structures, conformational energy differences, vibrational frequencies, barriers 
to internal rotation, dipole moments, and intermolecular interactions. Earlier force fields 
relied mainly on experimental data in the parametrization process, but as ab initio calcula-
tions become increasingly able to accurately treat larger molecules, ab initio calculated 
properties are increasingly being used in parametrization (examples are MMFF94 and 
CGenFF).

Initial estimates of the reference length l0
IJ and angle u0

IJK can be taken as the typical 
experimental or ab initio calculated length of an IJ bond and an IJK angle. These initial 
values can be refined by adjusting them to minimize errors in predicted bond lengths and 
angles of the training-set molecules.

Bond-bending and stretching force constants in polyatomic molecules are not experi-
mentally observable quantities, since the observed vibrational frequencies are related in a 
complicated way to such force constants. However, one can write an approximate expres-
sion for the molecular vibrational potential energy as a sum of quadratic terms involv-
ing bond-stretching, bending of independent bond angles, torsion involving independent 
dihedral angles, plus various cross terms. (Such a valence force field is not the same as 
a molecular-mechanics force field. In an MM force field, the bond-bending angles and 
the dihedral angles are not all independent of one another, and the valence force field 
omits nonbonded interactions.) By using a valence force field and combining vibrational-
frequency data of many unstrained organic compounds, Schachtschneider and Snyder 
obtained bond-stretching and bending force constants that are approximately transfer-
able (Burkert and Allinger, pp. 20–21), and these can be used as initial estimates for 
these parameters. An alternative way to get initial estimates of the force constants is from 
analytical second derivatives of ab initio molecular electronic energies. The initial force 
constants can be improved by adjusting their values to minimize the errors in vibrational 
frequencies predicted by the force field.

An initial estimate of V 3 for HCCH (where C is saturated) can be found by fitting 
the rotational barrier in C2H6. Then V 3 for CCCH can be found by fitting the barrier in 
CH3CH2CH3 and V 3 for CCCC from CH3CH2CH2CH3 (with V 1 and V 2 assumed to be 
zero). To refine V 3 and find V 1 and V 2 values, one can fit conformational energy differ-
ences (experimental or ab initio) for a set of training molecules. V 2 for HC “ CH can be 
fit to the rotational barrier in C2H4.

For van der Waals parameters, one usually assumes that the parameters eIJ and 
R*IJ for interaction between unlike atom types can be calculated from the parameters 
eII, eJJ, R*II, R*JJ for like interactions using mixing rules. The most common mixing rules 
are eIJ = 1eIIeJJ21>2 and R*IJ =

1
21R*II + R*JJ2 or R*IJ = 1R*IIR*JJ21>2. MMFF94 uses more 

elaborate mixing rules, which were found by examining known rare-gas interaction data.
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Sublimation energies of molecular compounds depend on van der Waals interactions, 
and such sublimation-energy data have been used to derive values of van der Waals param-
eters. Some force fields (for example, AMBER94, OPLS) adjust van der Waals parameters 
to give good values for properties such as densities and enthalpies of vaporization found 
in Monte Carlo simulations of liquid compounds.

Since all the parameters in a force field will influence all calculated molecular proper-
ties, parametrization is an iterative process. After adjusting a particular subset of param-
eters to fit some molecular property, the previously done fits of parameter subsets will be 
worsened, so one goes back and readjusts previously fitted parameters. One keeps iterating 
until no further significant improvement is obtained.

To use the molecular-mechanics method, one needs enough data to parametrize the 
force field. This makes it hard to apply molecular mechanics to novel types of compounds, 
but ab initio calculations may help in the parametrization.

An empirical force field may contain hundreds or thousands of parameters. MMFF94 
has roughly the following numbers of parameters: 500 stretching force constants, 500 refer-
ence bond lengths, 2300 bending force constants, 2300 reference bond angles, 600 stretch–
bend constants, 100 out-of-plane force constants, 2800 torsion parameters of which roughly 
half are zero, leaving about 1400 nonzero ones, 400 van der Waals parameters, and 600 
electrostatic charge-increment parameters, for a total of about 9000 parameters. In contrast, 
UFF, which has 126 atom types and can treat compounds of all elements, contains only 
about 800 parameters. The number of parameters is kept relatively small in UFF by devices 
such as taking the reference bond angles u0

IJK to depend only on the atom type of the central 
atom J, calculating reference bond lengths l0

IJ as the sum of bond radii of the atom types 
plus corrections for bond order and for electronegativity differences, calculating stretching 
force constants by an empirical rule that takes them as functions of l0

IJ and effective-charge 
parameters for each atom type, and so on. Because of the relatively small number of param-
eters, UFF cannot achieve the accuracy of highly parametrized force fields such as MM3 or 
MMFF94, but the loss of accuracy is a trade-off for the broad applicability of UFF.

Molecular Properties
What molecular properties can be calculated using molecular mechanics? A molecular-
mechanics geometry optimization starts with the initially assumed geometry and finds the 
nearest local energy minimum by minimizing the steric energy V of (17.83) using one of 
the methods of Section 15.10. Because (17.83) provides an analytical expression for the 
energy, the first and second derivatives of V can be easily evaluated analytically, which 
facilitates energy minimization. Minimization of V yields the MM-predicted equilibrium 
geometry of a particular conformer. Many molecular-mechanics programs have built-in 
searching methods (Section 15.11) that locate many low-energy conformers.

One very practical use of molecular mechanics is to refine the structure produced by 
a molecule builder (Sec. 15.15). After one draws onscreen the molecule to be studied by 
an ab initio, density functional, or semiempirical method, molecule builders in most pro-
grams allow you to refine the structure by doing a quick molecular mechanics calculation 
to locate the local MM energy minimum nearest the structure drawn. By starting from the 
MM structure, the geometry optimization will take less time.

It must be emphasized that the numerical value of the equilibrium steric energy of 
a conformer has no physical significance by itself. The zero level of V corresponds to a 
fictitious molecule in which all the bond lengths and angles have their reference values and 
torsional, van der Waals, and electrostatic interactions are absent. Different force fields 
will typically give very similar equilibrium geometries for a given conformer, but will 
give quite different steric energies for that conformer. Steric energies depend on how the 
force field was constructed and parametrized. In contrast, the electronic energy including 
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nuclear repulsion found by an ab initio calculation has the physical significance of being 
the approximate energy relative to a well-defined system with all electrons and nuclei 
infinitely far apart from one another.

What does have physical significance in molecular mechanics is the steric-energy 
difference (calculated using the same force field) between two species having the same 
numbers and kinds of atoms and the same numbers and kinds of bonds. Thus, one can 
use differences in steric energies to meaningfully calculate energy differences between:  
(a) different conformers of the same molecule [for example, the anti and gauche con-
formers of butane (Section 15.10) or the chair and boat conformers of cyclohexane];  
(b) different stereoisomers of the molecule (for example, cis and trans 1,2-dichloroethylene);  
(c) species differing by rotation about a bond (for example, eclipsed and staggered ethane);  
(d) different geometries of the same molecule (for example, planar NH3 and pyramidal 
NH3); (e) two molecules far apart from each other and the same pair forming a hydrogen 
bond. Intermolecular-interaction energies can be calculated.

The difference between the molecular-mechanics equilibrium steric energies of two 
species with the same numbers and kinds of bonds is an estimate of the difference between 
the equilibrium electronic energies of the two species. Corrections for zero-point vibra-
tional energy differences and thermal energy differences should be added to the steric 
energy difference, but these are usually small and are often omitted.

A molecular-mechanics steric energy can be combined with empirical bond-energy 
parameters to calculate gas-phase heats of formation �H �f,298, as discussed later in this 
section.

Although the empirical force fields discussed in this section provide a good repre-
sentation of potential-energy surfaces in the regions of minima, one cannot use them to 
calculate the complete potential-energy surface for a chemical reaction, since these fields 
are incapable of describing bond breaking.

By taking g i Qiri [Eq. (14.9)], where the sum goes over all the partial atomic charges, 
one can calculate a molecular dipole moment for a given conformation.

By evaluating the second partial derivatives of V at a local minimum, one can use 
the procedure of Section 15.12 to calculate molecular vibrational frequencies. Using the 
calculated structure and vibrational frequencies, one can estimate the gas-phase entropy 
S�298 (Section 15.13).

Molecular-mechanics force fields are widely used in molecular dynamics simula-
tions that integrate the motions of atoms over time. For example, a remarkable series 
of all-atom simulations of the opening and closing of a voltage-gated cell-membrane 
potassium-ion channel used versions of the CHARMM force field; these simulations used 
from 100000 to 230000 atoms followed for 150 to 250 ms [M. Jensen et al., Science, 
336, 229 (2012)] and were done on a special-purpose parallel computer [en.wikipedia.org/
wiki/Anton_(computer)]. Movies of the simulations are available at www.sciencemag.org/
content/336/6078/229/suppl/DC1. (Several protein-folding simulations can be viewed at 
YouTube.com.)

Heats of Formation
The molecular-mechanics zero level of energy has all bond lengths and angles at their 
reference values and no electrostatic, van der Waals, or torsional interactions. In such a 
hypothetical state, one can well approximate the molecular binding energy as the sum of 
empirical bond energies. Therefore, the equilibrium electronic energy Ueq of a molecule 
can be found by combining the molecular-mechanics-calculated equilibrium-geometry 
steric energy V steric with bond energies. For example, for a saturated hydrocarbon with 
formula CnC

HnH
 (where nC and nH are the number of C atoms and H atoms), we have 

Ueq = V steric - nCHbCH - nCCbCC, where nCH and nCC are the numbers of CH and CC 
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single bonds in the molecule, bCH and bCC are CH and CC bond energies (which by conven-
tion are positive), and the zero level of energy is taken to correspond to separated (gas-phase) 
atoms C1g2 and H1g2. In the following discussion, all energies will be on a per mole basis.

For the formation reaction

nCC1graphite2 +
1
2 nHH21g2 S CnC

HnH
 1g2

the change in molar equilibrium electronic energy is

Vsteric - nCHbCH - nCCbCC - nCUC -
1
2 nHUH2

where UC and UH2
 are the molar equilibrium electronic energies of graphite and H21g2 

with respect to the same zero level of energy as above. If we temporarily ignore zero-point 
vibrational energy, we can take this change in equilibrium electronic energy as equal to 
the change in standard-state thermodynamic internal energy for the formation reaction at 
absolute zero:

�U �f,0 = Vsteric - nCHbCH - nCCbCC - nCUC -
1
2 nHUH2

For a saturated hydrocarbon (acyclic or cyclic), it is not hard to see that the numbers of H 
and C atoms are related to the numbers of CH and CC bonds by

nH = nCH  and  nC =
1
4 nCH +

1
2 nCC

At temperature T, the change in translational energy for the above formation reaction 
is 3

2RT -
1
2 nH13

2RT2, and the change in rotational energy is 3
2RT -

1
2 nHRT. The relation 

�H �f = �U�f + �1PV2� = �U�f + �ngRT, where �ng is the change in number of moles 
of gas in the formation reaction, gives �H �f = �U�f + 11 -

1
2 nH2RT. Combining all these 

relations and continuing to ignore the contribution from the change in vibrational energy, 
we have for the standard enthalpy of formation at temperature T

�H �f,T = Vsteric - nCHbCH - nCCbCC - 11
4 nCH +

1
2 nCC2UC -

1
2 nCHUH2

+ 4RT -
7
4 nCHRT

�H�f,T = Vsteric - nCH1bCH +
1
4UC +

1
2UH2

+
7
4 RT2 - nCC1bCC +

1
2UC2 + 4RT

Defining aCH K - 1bCH +
1
4UC +

1
2UH2

+
7
4 RT2 and aCC K - 1bCC +

1
2UC2, we have

	 �H�f,T = Vsteric + nCHaCH + nCCaCC + 4RT 	 (17.90)

One uses (17.90) to find aCH and aCC by a least-squares fit to 25�C experimental �H�f  
data for several gas-phase hydrocarbons. (Typically, aCH � -41

2 kcal>mol and 
aCC � 21

2 kcal>mol.) Then Eq. (17.90) can be used to find the gas-phase �H�f,298 for any 
saturated hydrocarbon from its steric energy calculated by molecular mechanics. A similar 
derivation gives an analogous equation for other kinds of compounds. In arriving at (17.90), 
the contributions of vibrational energy were ignored. It is assumed that these contributions 
are allowed for when aCC and aCH are fit to 25�C �H�f  data. If more than one conformation 
is significantly populated at 25�C, one uses �H�f = g i xi�H�f,i, where xi is the mole fraction 
of conformation i as calculated using the enthalpy and entropy differences between con-
formations, and where �H �f,i is calculated from (17.90) for each conformation. In practice, 
the accuracy of (17.90) is improved by including several correction terms; see Prob. 17.45.

Performance
How well does molecular mechanics perform? When a well-parametrized force field is 
applied to compounds similar to those used in the parametrization, one can get extremely 
good results. For monofunctional organic compounds, MM3 typically gives gas-phase 
�H �f  errors that run 0 to 1 kcal>mol (which is the same magnitude as the experimental 
errors in such data), gives bond lengths within 0.01 Å and bond angles within 2� of experi-
mental values, and usually correctly predicts the most stable conformer.
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However, one cannot expect such good performance when molecular mechanics is 
applied to broad classes of compounds. For a force field with 60 atom types, the number 
of possible types of IJKL dihedral angles is roughly 121602145214521602 � 3 * 106. The 
factor 45 is used instead of 60 because some atom types (for example, halogens, all H types, 
carbonyl oxygen) can only occur as end atoms of a molecular dihedral angle. For each of 
these 3 million types of dihedral angle, one needs V 1, V 2, and V 3 values. No available 
force field will have parameters for all the dihedral angles that might be encountered, so 
one is frequently faced with the problem of missing parameters. Most molecular-mechanics 
programs will use some procedure to estimate a value for each missing parameter. If tor-
sion parameters for the IJKL dihedral angle are missing, the program might use torsion 
parameters for a dihedral angle of type IJKM, with one atom type replaced by a similar 
atom type (for example, hydrogen bonded to O might be replaced with hydrogen bonded 
to C). If this fails to produce the torsion parameters, the program might use a value that 
is typical for torsion about the JK bond, ignoring what types of atoms are bonded to J and 
K. When such estimated parameters are used in a molecular-mechanics calculation, the 
reliability of the result may be greatly diminished.

For dealing with noncovalent interactions such as hydrogen bonding and dispersion, 
the OPLS-AA and the MMFF94s force fields performed better than the MM2, MM3, and 
AMBER fields [R. S. Paton and J. M. Goodman, J. Chem. Inf. Model., 49, 944 (2009)]. 
[MMFF94s differs from MMFF94 only in the treatment of conjugated N atoms such as in 
amides; T. A. Halgren, J. Comput. Chem., 20, 720 (1999).]

Programs
The Spartan program (Section 15.14) can do MM energy minimizations with the MMFF 
and Tripos force fields and does conformational searching. HyperChem (Section 15.14) 
has in it the force fields MM+  (an extension of MM2), AMBER, BIO+  (a version of 
CHARMM), and OPLS and can do energy minimization, molecular dynamics, and Monte 
Carlo calculations. PCModel (www.serenasoft.com) is a Windows and Macintosh program 
with the force fields MM3, MMFF94, Amber, and OPLS-AA. MacroModel [F. Moham-
adi et al., J. Comput. Chem., 11, 440 (1990); www.schrodinger.com] has the force fields 
MM2, MM3, AMBER, OPLS-AA, AMBER94, and MMFF. TINKER is a free molecular-
mechanics and molecular-dynamics program for Windows, Macintosh, and Linux with 
the AMBER, CHARMM, MMFF, MM2, MM3, and other force fields (dasher.wustl.edu/
tinker/) and has a free graphical interface called Force Field Explorer. The WebMO Demo 
Server (www.webmo.net/demo) allows you to access Tinker and run MM2, MM3, and 
OPLS/AA calculations. CHARMM (www.charmm.org) is a workstation program with 
the CHARMM and MMFF94 force fields. ChemBio3D Ultra (www.cambridgesoft.com) 
is a Windows molecular-modeling program with MM2. BALLView (www.ballview.org) 
is a free molecular modeling Windows and Macintosh program with the AMBER and 
CHARMM force fields [A. Moll et al., J. Comput.-Aided Mol. Des., 19, 791 (2005); Bioin-
formatics, 22, 365 (2006)]. Gaussian 09 can do MM calculations with the AMBER, DREI-
DING, and UFF force fields. For other molecular-mechanics programs, see en.wikipedia 
.org/wiki/List_of_software_for_molecular_mechanics_modeling.

QM/MM Methods
Molecular mechanics can treat very large molecules but is not well suited to treat 
chemical reactions. Quantum-mechanical methods (ab initio, density functional, 
and semiempirical) can treat chemical reactions but are not well suited to treat very 
large molecules. To deal with chemical reactions in very large systems, one can use 
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a combined quantum-mechanical/molecular-mechanics (QM/MM) approach, using 
quantum mechanics to treat the part of the system most affected by the reaction and 
molecular mechanics to treat the rest. For a reaction in solution, one treats the react-
ing solute molecules using QM and the surrounding solvent molecules using MM. 
For an enzyme-catalyzed reaction, one treats the enzyme’s active site and part or all 
of the substrate molecule(s) using QM and the rest of the enzyme and surrounding 
water molecules using MM. For enzyme-catalyzed reactions, one must deal with 
covalent bonds that join the QM and MM regions. Several methods have been used 
to handle this problem. Any quantum-mechanical method can be used for the QM 
region. Because of their speed, semiempirical methods such as AM1, PM3, PM6, 
and SCC-DFTB are more often used, but a growing number of studies use DFT-D.

The effective Hamiltonian for the QM/MM system is written as

	 Hneff = HnQM + HnQM>MM + HnMM	 (17.91)

where HnQM is the Hamiltonian of the quantum-mechanical region in a vacuum, HnQM>MM is 
the Hamiltonian for the interaction between the QM and MM regions, and HnMM is taken as 
equal to the steric energy VMM [Eq. (17.83)] of the MM region. If cQM is the wave function 
of the QM region, the energy E of the system is taken as

E = 8cQM 0 HnQM + HnQM>MM 0 cQM9 + VMM

HnQM>MM is often approximated as the electrostatic interactions between the charges (elec-
trons and nuclei) of the QM region and the partial atomic charges on the atoms in the MM 
region plus the van der Waals interactions between the atoms of the QM region and the 
atoms of the MM region:

HnQM>MM = - a
i
a
M

QM

ri,M
+ a

a
a
M

ZaQM

RaM
+ a

a
a
M
eaM c aR*aM

RaM
b

12

- 2aR*aM

RaM
b

6

d

where i and a denote, respectively, the electrons and the nuclei in the QM region and M 
denotes an atom with partial atomic charge QM in the MM region. This approximation 
neglects polarization of solvent molecules by charges in the QM region. For a fixed 
configuration of nuclei (Born–Oppenheimer approximation), all terms in HnQM>MM are 
constants except the first double sum. In solving the electronic Schrödinger equa-
tion using the Hamiltonian Hneff, the first double sum in HnQM>MM has the effect of 
extra nuclei with charges QM. This produces extra one-electron integrals in the Fock 
matrix. cQM is a function of the electronic coordinates of the QM region, and both 
cQM and E are parametric functions of the nuclear coordinates of the QM region and 
the coordinates of the atoms in the MM region. Taking minus the partial derivatives 
of E with respect to the nuclear coordinates, we get the forces needed for a molecular-
dynamics simulation.

The pseudobond QM>MM method [Y. Zhang, T.-S. Lee, and W. Yang, J. Chem. 
Phys., 110, 46 (1999)] divides a large molecule into two parts by cutting a covalent bond 
X:Y between atoms X and Y and does the QM part of the calculation using an ab 
initio method. Let atom X be in the part of the molecule to be treated by QM, and sup-
pose that Y is a carbon atom. The free valence created by cutting the bond is “capped” 
by singly bonding atom X to a one-free-valence pseudocarbon atom Cps that has seven 
valence electrons (so as to be one electron short of an octet), a nuclear charge of seven, 
and no core electrons. The effect of the core electrons is handled by using an effective 
core potential (Section 15.16). The pseudobond X:Cps mimics the properties of the 
X:Y bond. Tests with the QM calculation done with the HF and DFT methods gave 
good results.
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For reviews of the QM>MM method, see J. Gao in K. Lipkowitz and D. B. Boyd 
(eds.), Reviews in Computational Chemistry, vol. 7, VCH, 1996, Chapter 3; H. Lin and 
D. G. Truhlar, Theor. Chem. Acc., 117, 185 (2007).

17.6 �Empirical and Semiempirical Treatments 
of Solvent Effects

Explicit-Solvent versus Continuum-Solvent Methods
Theoretical treatments of solvation can be categorized as either explicit-solvent approaches, 
in which many individual solvent molecules are explicitly included, or as continuum-
solvent methods, where the solvent molecules are replaced by a continuous dielectric 
(Section 15.17).

In an explicit-solvent treatment, one applies the molecular dynamics or the Metropolis 
Monte Carlo method (Sections 15.11 and 17.5) to a system of a solute molecule (or molecules 
if a chemical reaction is being studied) surrounded by hundreds or thousands of solvent 
molecules; by suitable averaging, one obtains thermodynamic or kinetic properties. The 
solvent molecules are treated using an empirical force field. Some of the models used to rep-
resent water molecules are discussed in Leach, Section 4.14. The solute molecule(s) can be 
modeled using molecular mechanics or semiempirical quantum mechanics (the QM>MM 
method of Section 17.5).

Continuum-solvent methods can be categorized as either classical or quantum-
mechanical.

Classical Continuum-Solvent Methods
The simplest and crudest continuum-solvent method is the solvent-accessible-surface 
area (SASA) model, which assumes that the standard free-energy of solvation �G�solv can 
be expressed as

	 �G�solv = a
i
siAi	 (17.92)

Recall (Section 15.7) that the van der Waals surface of a molecule is the outer surface 
formed by intersecting atomic spheres with van der Waals radii. The solvent-accessible 
surface is the surface traced out by the center of a spherical solute molecule as its rolls 
on the molecular van der Waals surface. For H2O, a sphere of radius 1.4 Å is traditionally 
used in (17.92). A i is the solvent-accessible surface area of atom i or group i, depending 
on whether an atom-based or group-based approach is used. The sum goes over all atoms 
(or groups) in the molecule. A i is that portion of the surface area of a sphere centered at 
atom i and having radius ri + rsolvent (where these quantities are the van der Waals radius 
of atom i and the solvent molecular radius) that is not contained within any of the cor-
responding spheres centered at the other atoms in the molecule. The si’s are empirical 
parameters called atomic surface tensions or atomic solvation parameters. They have 
the same dimensions as surface tension but are not macroscopic surface tensions. The si’s 
are found by fitting known �G�solv 25°C data for the solvent under study. The SASA method 
is especially useful for rapid estimation of �G�solv of biopolymers.

A related but more elaborate method than the SASA model is the SM5.0R method [G. 
D. Hawkins, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B, 101, 7147 (1997); Hawkins 
et al., J. Org. Chem. 63, 4305 (1998)]. Here, (17.92) is used, but Ai is taken as the exposed 
van der Waals surface area of atom i (rather than the SASA of i) and si, instead of being 
a constant for a given atom in a given solvent, has the form si = s102

i + g j� i sij f 1Rij2. 
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Here, the sum goes over all atoms in the solute molecule except atom i, s102
i  and sij are 

parameters whose values depend on the nature of atoms i and j, and f1Rij2 is a certain 
function of the distance Rij between atoms i and j. The function f contains parameters 
and is defined to be zero for all distances greater than a certain cutoff distance. Inclusion 
of the sum allows si to be affected by the environment of atom i in the molecule. The 
method contains about 40 parameters for water as the solvent and has been parametrized 
for compounds of H, C, N, O, S, F, Cl, Br, and I in water and in organic solvents.

Rather than develop a separate set of parameter values for each organic solvent, 
SM5.0R takes each surface tension coefficient s102

i  and sij to depend on certain properties 
of the solvent such as its index of refraction, surface tension, and fraction of nonhydrogen 
atoms in the solvent molecule that are aromatic carbons, and to depend on parameters 
many of whose values depend on the nature of atom i or atoms i and j (whether they are 
H, C, N . . .) but whose values are the same for every organic solvent. The values of the 
parameters are fitted using a training set of 1836 �G�solv values for 227 uncharged solutes 
in 90 organic solvents.

The molecular geometry used to calculate Rij is that of the gas-phase solute molecule. 
Test calculations on small uncharged solutes in water using AM1 geometries gave excellent 
results, but for charged solutes the performance was not so good. The SM5.0R method is 
useful for rapid estimations for large molecules. [The SM5 stands for solvation model ver-
sion 5; the R indicates that rigid (that is, gas-phase rather than solution-phase) geometries 
are used; the 0 indicates that no use is made of atomic charges.]

Another classical method to estimate �G�solv is the generalized Born/surface area 
1GB/SA2 method of Still and co-workers [W. C. Still et al., J. Am. Chem. Soc., 112, 
6127 (1990); D. Qiu et al., J. Phys. Chem. A, 101, 3005 (1997)]. In 1920, Born showed 
that when a charge Q distributed on the surface of a conducting sphere of radius a is 
transferred from vacuum to a dielectric medium with dielectric constant er, the free-
energy change is �G = -

1
211 - 1>er2Q2>4pe0a. Now imagine a system of several 

charged spheres having charges Qi and radii ai, with Rij being the distance between 
spheres i and j. If such a system is transferred from vacuum to a medium of dielectric 
constant er, the free-energy change can be approximated by adding the Born expres-
sion - g i

1
211 - 1>er2Q2

i >4pe0ai to the intercharge electrostatic potential-energy change g j7 i g i QiQj>er4pe0Ri j - g j7 i g i QiQj>4pe0Ri j to get

	 �G � - a1 -
1
er
b a

j7 i
a

i

QiQj

4pe0Rij
-

1

2
a1 -

1
er
b a

i

Q2
i

4pe0ai
	 (17.93)

an equation sometimes called the generalized Born equation. If we model a solute mol-
ecule as a set of overlapping spheres with charges Qi (where Qi is a partial atomic 
charge) and radii ai, then the generalized Born equation gives an approximation to the 
electrostatic contribution �G�solv,el (Section 15.17) to the solvation free energy. However, 
this method would overestimate the interactions between the solvent and charges buried 
within the solute molecule’s interior. Instead, Still and co-workers proposed replacing 
(17.93) with

	 �G�solv,el = -
1

2
a1 -

1
er
b a

i
a

j

QiQj

4pe03R2
ij + aiaje

-R2
i j>4aiaj41>2	 (17.94)

where the sums go over all atoms in the molecule. For two charges, this expression reduces 
to the Born equation when Rij = 0, gives a result close to the Onsager result for a dipole 
in a sphere (Section 15.17) when Rij V aiaj, and gives a result close to the sum of the 
Born plus intercharge potential energy when Rij W aiaj. The partial atomic charges Qi to 
be used in (17.94) can be found by any of the usual methods used in molecular mechanics, 
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but the best results are obtained using either charges fit to molecular electrostatic potentials 
or OPLS charges, which were derived from liquid simulations. The Born atomic radii ai 
are calculated by a complicated procedure [see Leach, Chapter 11; D. Qiu et al., J. Phys. 
Chem. A, 101, 3005 (1997)]. The term Born radius for ai is misleading, in that ai in (17.94) 
is some sort of average distance from the atomic charge Qi to the dielectric continuum that 
surrounds the solute molecule.

Still and co-workers modeled the cavitation and van der Waals contributions to �G�solv by

	 �G�cav + �G�vdw = a
k
skAk	 (17.95)

where the sum goes over all atoms in the solute molecule, Ak is the solvent-accessible 
surface area for atom k, and the parameter sk is taken as 10 cal>(mol Å22 for S and sp3 C 
atoms, 7 cal/(mol Å22 for P and sp2 and sp C atoms, and 0 for O and N atoms. In (17.95), 
a united-atom approach (Section 17.5) is used for hydrogens, so there is no sk for H.

Addition of (17.94) and (17.95) gives the GB/SA expression for �G�solv. The 
GB/SA expression is readily differentiated analytically, making it easy to use in 
molecular-mechanics energy minimizations (one finds the geometry that minimizes the 
sum of the MM steric energy and �G�solv), and molecular-dynamics and Metropolis 
Monte Carlo simulations with inclusion of solvent effects. The GB/SA method is avail-
able in the MacroModel program (Section 17.5).

Quantum-Mechanical Continuum Solvation Models
Several ab initio continuum solvation models were discussed in Section 15.17. One can 
calculate �G�solv,el by such SCRF methods as the dipole-in-a-sphere, the multipole expan-
sion, or the PCM methods using semiempirical methods such as AM1 or PM3 instead of 
an ab initio electronic-structure method. Thus the programs MOPAC2012 and AMPAC 9 
implement the COSMO method.

Cramer, Truhlar, and co-workers developed a series of semiempirical continuum 
solvation models SMx, where SM stands for solvation model and x = 1, 2, 3, 4, 5, 6, 8, 
D is the version. The models SM1, SM2, SM3, and SM4 are obsolete. The SMx methods 
are quantum-mechanical versions of Still’s GB/SA method, except for SMD. The earlier 
versions of SM5 (SM5.2 and SM5.4) were parametrized for use with the AM1 and PM3 
semiempirical methods, but later versions of SM5 (SM5.42 and SM5.43) were also param-
etrized for use with the DFT and HF methods; SM6 and SM8 [A. V. Marenich et al., J. 
Chem. Theory Comput., 3, 2011 (2007)] are parametrized for use only with DFT or HF 
calculations. In SMx, the solvation energy is written as

	 �G�solv = �EEN + GP + �G�CDS	 (17.96)

In this equation, the electronic and nuclear term �EEN is the change in the electronic 
energy including nuclear repulsion of a solute molecule when it goes from the gas phase 
into solution; �EEN corresponds to 8c1 f2 0Hn 0 0c1f29 - 8c102 0Hn 0 0c1029  in Eq. (15.84). The 
polarization contribution GP is the free-energy change due to electrostatic interactions 
between solute and solvent, including polarization of the solvent. GP corresponds to 
8c1 f2 0V int 0c1 f 29 + Epol in Section 15.17. The sum �EEN + GP equals �G�solv,el of (15.84). 
The cavitation–dispersion–solvent-disposition term G�CDS is the free-energy change due to 
creation of the cavity around the solute molecule, dispersion interactions between solute 
and solvent molecules, and structural changes in the solvent, due to such things as solute–
solvent hydrogen bonding. Other contributions are small and are neglected.

The SM5 series of models [G. D. Hawkins, C. J. Cramer, and D. G. Truhlar, J. Phys. 
Chem., 100, 19824 (1996) and references cited therein] has been parametrized for com-
pounds containing H, C, N, O, F, S, Cl, Br, and I. In SM5, the polarization contribution 
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GP is taken as equal to the Still expression (17.94), except that the 4 in the exponential is 
replaced by 4.2 when the two atoms i and j are C and H. The Born radii ai are calculated 
using Still’s procedure or a faster procedure called pairwise descreening (PD) that is an 
approximation to Still’s procedure [Hawkins et al., J. Phys. Chem., 100, 19824 (1996)].

In the version SM5.2PD, the atomic partial charges are taken as the Mulliken-

population-analysis net charges (Section 15.6), which are given by CB - g r Prr, where 
CB is the charge on the core of atom B, the sum goes over all valence AOs centered on B, 
and Prr is a density matrix element [Eq. (14.42)]. The SM5 model does an AM1 or PM3 
or DFT or ab initio HF SCF calculation to minimize the sum of the molecular electronic 
energy, including nuclear repulsion and GP. Because GP is included in the quantity to be 
minimized, one must modify the Fock matrix elements (14.41) by adding a term that is 
closely related to GP and that contains the atomic partial charges Qi that occur in GP in 
(17.94). To do the SCF calculation, one starts with a guess for the density matrix elements 
Prs, uses these to calculate the initial estimates of the atomic charges Qi, and uses the 
initial Qi’s and Prs’s to calculate the initial estimates of the Fock matrix elements. Solu-
tion of the Fock–Roothaan equations then allows improved density matrix elements to be 
found, which are used to start another cycle of the calculation. The calculation ends when 
self-consistency is reached.

The versions SM5.4 and SM5.4PD use improved charges (called class IV charges) 
instead of the Mulliken charges (called class II charges) used in SM5.2PD. Class IV charges 
are found as follows. For a training set of molecules with known dipole moments, one cal-
culates the Mulliken charges Qi using the AM1 or PM3 method and writes Qi,IV = g1Qi2, 
where g is a certain function that contains parameters and that maps the Mulliken charges 
into class-IV charges. One varies the parameters in g so that the molecular dipole moments 
calculated from the class-IV charges give a good fit to the known dipole moments. Once 
the parameters in g have been determined, one can use g to calculate class-IV charges 
from the Mulliken charges for any molecule. This particular method of getting class-IV 
charges is called CM1 (charge model 1).

The version SM5.42R [T. Zhu et al., J. Chem. Phys., 109, 9117 (1998)] uses the improved 
method CM2 of generating the class-IV charges (hence the 2 in 5.42). The version SM5.43R 
[J. D. Thompson et al., J. Phys. Chem. A, 108, 6532 (2004)] uses the further-improved CM3 
method to generate the class-IV charges.

The version SM6 [C. P. Kelly et al., J. Chem. Theory Comput. 1, 1133 (2005)] improves 
on SM5.43R by using charges that are based on the CM4 method and by using a larger and 
more varied data set for the parametrization.

The SM5 and SM6 models calculate G�CDS using the SASA approach:

G�CDS = a
k
sk Ak

where Ak is the solvent-accessible surface area of atom k, and sk has a form similar to that 
of si in the SM5.0R model discussed near the beginning of this subsection.

The SMD model (D stands for density), unlike the preceding models, does not use 
partial atomic charges but instead is based on the interaction of the electron charge density 
-er of the solute molecule, with the solvent represented as a continuum [A. Marenich et al., 
J. Phys. Chem. B, 113, 6378 (2009)]. The method can be used for any solute and for any 
solvent for which the dielectric constant, refractive index, surface tension, and acidity and 
basicity parameters are known, and can be applied with any quantum-mechanical method 
to calculate r. The method was parametrized using data for many solutes in several solvents 
and using DFT and HF calculations. The method gives good results with mean absolute 
errors in 25°C �G�solv values of 0.6 to 0.9 kcal/mol for a variety of solutes and solvents, and it 
outperforms the default solvation models in several standard quantum-chemistry programs.
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Various SMX solvation models are available in many quantum-chemistry programs. 
For listings, see comp.chem.umn.edu/solvation.

COSMO-RS (COSMO for real solvents) is an extension of COSMO (Section 15.17) 
beyond the dielectric-continuum approximation [A. Klamt et al., J. Phys. Chem. A, 102, 
5074 (1998)]. COSMO-RS does not treat the solvent as a continuous dielectric, but treats 
solute and solvent molecules on an equal footing and uses cavities and surface charges for 
both the solute and solvent molecules. COSMO-RS has eight general parameters plus two 
parameters for each different element and does not use solvent-specific parameters. Thus 
for solutions containing compounds of H, C, N, O, and Cl, COSMO-RS has 18 parameters, 
whose values were chosen by fitting to experimental data.

17.7 Chemical Reactions
Because of the difficulties involved in ab initio calculations of potential-energy surfaces for 
reactions, it would be highly desirable to have a semiempirical method that gives reliable 
reaction PES results. The MNDO, AM1, and PM3 methods have been widely applied to 
calculate relevant portions of PESs for chemical reactions (often with inclusion of solvent 
effects) so as to elucidate reaction mechanisms and transition-state structures.

An analysis of MNDO results for 24 simple organic reactions found that MNDO 
usually gave a fairly realistic transition-state structure [S. Schröder and W. Thiel, J. Am. 
Chem. Soc., 107, 4422 (1985)], with average absolute deviations from ab initio SCF MO 
results of 0.06 Å in bond lengths, 8� in bond angles, and 111

2� in dihedral angles. However, 
the calculated MNDO barrier heights were not accurate, with an average absolute devia-
tion of 22 kcal>mol from ab initio MP4 or MP3 results. MNDO was suggested as being 
suitable “for fast initial scans of potential surfaces to assess their qualitative features, but 
it has to be kept in mind that some of these characteristics may change at higher levels” 
(Schröder and Thiel, op. cit.).

Some shortcomings of AM1 for studying reactions are discussed by O. N. Ventura 
in S. Fraga (ed.), Computational Chemistry, Part B, Elsevier, 1992, pp. 605–607. Ventura 
concludes that “there is no semiempirical method at present which can be used reliably in 
all situations [to study reactions].”

A method that improves the accuracy of a semiempirical PES for a particular reaction 
is NDDO-SRP of Truhlar and co-workers (NDDO with specific reaction parameters; recall 
that MNDO, AM1, and PM3 are all NDDO methods). Here, some of the parameters in 
the AM1 method are adjusted either to reproduce such experimental data as the reaction’s 
energy change, barrier height, and rate constant or to reproduce a small number of points 
on the PES calculated with an ab initio method that includes correlation. See the references 
cited in W. Thiel, Adv. Chem. Phys., 93, 731 (1996).

Although the force fields mentioned in Section 17.5 do not apply to bond-breaking 
reactions, they can be applied to reactions involving only a change in molecular confor-
mation. Some attempts have been made to develop force fields that will describe bond 
breaking; see F. Jensen and P.-O. Norrby, Theor. Chem. Acc., 109, 1 (2003); Cramer, 
Section 2.4.2.

MO theory has been used to draw qualitative conclusions about the course of chemi-
cal reactions. The most fruitful applications have come from the Woodward–Hoffmann 
rules, which predict the preferred path and stereochemistry for many important classes of 
organic reactions. As an example of the application of these rules, we consider the cycliza-
tion of a substituted s-cis-butadiene to a substituted cyclobutene. The reaction can take two 
possible steric courses described as conrotatory or disrotatory, depending on whether the 
terminal groups rotate in the same or opposite senses as the reaction proceeds. Note the 
difference in products in Fig. 17.11.
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When the reaction is thermally induced, the butadiene cyclization process is found to be 
conrotatory, but when the reaction is photochemically induced, the process is disrotatory. The 
simplest approach that explains these facts starts with the assumption that the energy change 
during the reaction is determined primarily by the energy change in the highest-occupied 
MO (HOMO) of the substituted s-cis-butadiene molecule. This is the p MO f2 in 
Fig. 17.1. Figure 17.12 shows that for f2, a conrotatory motion of the p AOs on carbons 1 
and 4 causes the positive lobe of C12pp to overlap the positive lobe of C42pp; this overlap 
gives a bonding interaction of these AOs and leads to formation of the 194 s bond of the 
cyclobutene. On the other hand, a disrotatory motion of these two AOs causes overlap 
of the positive lobe of one p AO with the negative lobe of the other p AO; this gives an 
antibonding interaction. Thus we expect the conrotatory process to have a lower activation 
energy than the disrotatory and to be preferred over the disrotatory. As a further check, 
we note that conrotatory motion leads to an antibonding interaction between the carbon 
1 and 4 p AOs in the lowest p MO f1; this leaves the p AOs of carbons 2 and 3 in f1 to 
form the 293 p bond in the cyclobutene. (Note that if the butadiene is less symmetrically 
substituted than in Fig. 17.11, clockwise and counterclockwise conrotatory motions lead 
to a mixture of two products.)

When the above reaction is induced photochemically, an absorbed photon excites 
an electron from f2 to the butadiene p MO f3 (Fig. 17.1). The highest occupied MO 
is now f3, in which the 2pp AOs on carbons 1 and 4 have the same phases (rather 
than opposite phases as in f2) and in which a disrotatory motion produces positive 

Figure 17.11  Conrotatory 
and disrotatory cyclizations. 
All atoms lie in the same 
plane except those shown 
with dashed or heavy bonds.
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bonding overlap between these AOs. Thus we predict disrotatory ring closure, as 
observed. The  same reasoning correctly predicts the courses of other polyene ring 
closures (Prob. 17.46).

Provided the reactants and products do not differ greatly in energy, a high barrier for 
the forward reaction implies a high barrier for the reverse reaction (in which the reaction 
path is traversed in the opposite direction). Thus the above reasoning also applies in deter-
mining the course of the reverse, ring-opening, reactions.

Rather than considering only the energy change in the HOMO of butadiene, one can 
use a less approximate approach that looks at the energy changes in all MOs (occupied 
or unoccupied) that are involved in the bonds being broken or formed and that uses sym-
metry to correlate the MOs of the reactant(s) with the MOs of the product(s); see Lowe 
and Peterson, Section 14-9.

For further details of the Woodward–Hoffmann rules and their application to a wide 
variety of organic reactions, see R. B. Woodward and R. Hoffmann, Angew. Chem. Intern. 
Ed., 8, 781 (1969); The Conservation of Orbital Symmetry, Academic Press, 1970; R. E. Lehr 
and A. P. Marchand, Orbital Symmetry, Academic Press, 1972.

Pearson has applied orbital symmetry concepts to inorganic reactions. As two reactant 
molecules approach, electrons begin to flow from the HOMO of one to the lowest unoc-
cupied MO (LUMO) of the other. These two MOs are called frontier orbitals. For a low 
activation energy, we require a positive overlap between these two MOs.

An example is the H2 + F2 S 2HF reaction. Consider a proposed mechanism in 
which the two molecules collide broadside to give a four-center transition state. The 
HOMO of H2 is the sg1s MO; the LUMO of F2 is the s*u2p MO (Sections 13.6 and 13.7). 
Flow of electrons out of H2 sg1s toward F2 s*u2p would lead to breaking of the HiH 
bond and formation of two HiF bonds. However, Fig. 17.13a shows that these two MOs 
do not have a positive overlap. Hence electron flow from H2 to F2 is forbidden by sym-
metry. Figure 17.13b shows the HOMO of F2 and LUMO of H2. Here there is a positive 
overlap, but flow of electrons out of the antibonding p*g  MO would strengthen rather 
than weaken the FiF bond. We conclude that this bimolecular one-step mechanism has 
a high activation energy and is not favored. (The same reasoning applies to the famous 
H2 + I2 reaction.)

Further applications of orbital symmetry to inorganic reactions may be found in R. G. 
Pearson, Acc. Chem. Res., 4, 152 (1971); J. Am. Chem. Soc., 94, 8287 (1972); Symmetry 
Rules for Chemical Reactions, Wiley, 1976.

The frontier-orbital approach sometimes fails. For a criticism of the frontier-orbital 
theory, see M. J. S. Dewar, THEOCHEM, 59, 301 (1989).

Figure 17.13  HOMOs and 
LUMOs for H2 and F2. 
Occupied MOs are shaded.
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17.8 The Future of Quantum Chemistry
In the 1950s there was a general belief that meaningful ab initio calculation of molecular 
properties for all except very small molecules was out of the question. Quantum-chemistry 
books written in this period contain such statements as “we cannot hope ever to make 
satisfactory ab initio calculations [for organic compounds]” and “it is wise to renounce 
at the outset any attempt at obtaining precise solutions of the Schrödinger equation for 
systems more complicated than the hydrogen molecule ion.” In 1959, Mulliken and Root-
haan identified the “bottleneck” holding up accurate quantum-mechanical calculations on 
polyatomic molecules as the difficulty in evaluating multicenter integrals. This bottleneck 
has now been eliminated.

Ab initio HF calculations and geometry optimizations on moderate-size molecules 
have become routine, and computationally efficient methods (for example, DFT, MP2, 
and SCS-MP2) for inclusion of electron correlation are available. The degree of reliability 
of various quantum-mechanical methods and basis sets has been established by numer-
ous calculations. The size of a molecule for which one can do an accurate ab initio or 
density-functional calculation is limited by the speed and storage capacity of the available 
electronic computers. As larger and faster computers are developed, it will become feasible 
to treat larger molecules.

The very substantial progress in quantum chemistry in recent years has made quan-
tum-mechanical calculations a valuable tool to help decide a wide variety of questions of 
real chemical interest. Whereas years ago quantum-mechanical calculations on molecules 
were largely confined to journals read mainly by theoretical chemists, nowadays such 
calculations appear routinely in journals such as the Journal of the American Chemical 
Society, read by all kinds of chemists. Quantum chemistry is being applied to such prob-
lems as the hydration of ions in solution, surface catalysis, the structures and energies 
of reaction intermediates, the conformations of biological molecules, and the study of 
enzyme-catalyzed reactions. In many cases, theoretical calculations may not give defini-
tive answers, but they are frequently good enough to allow for a very fruitful interaction of 
theory and experiment. Moreover, qualitative concepts such as the Woodward–Hoffmann 
rules have provided considerable insight into the course of chemical reactions and into 
chemical bonding.

The 1998 Nobel Prize in chemistry was shared by Walter Kohn, one of the develop-
ers of density-functional theory, and John A. Pople, one of the developers of the Gaussian 
series of programs and widely used Gaussian basis sets, the Pariser–Parr–Pople method, 
and the CNDO and INDO methods, and one of the first to apply the MP and CC methods to 
molecular calculations. The Nobel committee noted that computational quantum chemistry 
is “revolutionising the whole of chemistry.”

In 1929, Dirac wrote, “The underlying physical laws necessary for the mathematical 
theory of . . . the whole of chemistry are thus completely known, and the difficulty is only 
that the exact application of these laws leads to equations much too complicated to be 
soluble.” Application of high-speed digital computers to quantum chemistry has overcome 
to a significant degree the difficulties referred to by Dirac. Of course, just a small fraction 
of chemically important problems have been successfully treated by quantum mechanics, 
but future prospects are bright.

Ab initio, density-functional, and semiempirical calculations are now routinely used 
by many chemists as a valuable guide to experimental work and are revolutionizing the 
way chemistry is done. The future of quantum chemistry and the future of chemistry are 
inextricably linked.
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Problems

Sec. 17.2 17.3 17.4 17.5 17.7

Probs. 17.1–17.24 17.25 17.26–17.36 17.37–17.45 17.46–17.47

	17.1	 For the allyl radical # CH2iCH “ CH2, find (a) the HMOs and energies; (b) the mobile bond 
orders; (c) the p-electron charges; (d) the free valences (Prob. 17.19); (e) the delocalization 
energy.

	17.2	 Calculate the quantities (a) through (e) of Prob. 17.1 for the allyl cation and anion, 
3CH2CHCH24+ and [CH2CHCH24-. Which ion is predicted to be more stable?

	17.3	 For the polyenes (17.28), observed longest-wavelength electronic absorption bands are at 
162.5, 217, 268, 304, 334, 364, 390, 410, and 447 nm for s = 0, 1, 2, 3, 4, 5, 6, 7, and 9, 
respectively. Compare these values with those given by the Hückel equation (17.31) and 
calculate the average absolute percent error.

	17.4	 Verify the butadiene HMO coefficients for f2, f3, and f4 in (17.26).

	17.5	 (a) Verify that the HMO coefficients (17.30) satisfy the HMO set of simultaneous equations. 
[Hint: Use the identity sin a + sin b = 2 sin 121a + b2 cos 121a - b2.] (b) Verify that the coef-
ficients (17.30) give a normalized HMO. To evaluate the needed sum, express the sine function 
as exponentials and then use the formula for the sum of a geometric series.

	17.6	 Calculate the HMO total bond orders and the p-electron charges for the lowest excited state 
of butadiene.

	17.7	 Since only the topology of the carbon framework is of significance in the HMO method, the full 
symmetry of s-trans-butadiene need not be used to get the maximum simplification possible in 
the HMO method; instead, it is sufficient to use only the C2 axis. (a) Write down the two possible 
symmetry species for the group �2. (b) Construct p-electron symmetry orbitals for butadiene, 
classifying them according to the symmetry species of �2. (c) Set up and solve the two Hückel 
secular equations for butadiene using the symmetry orbitals of (b) as basis functions.

	17.8	 Verify that the geometric construction of Fig. 17.5 gives the correct HMO energies of the 
cyclic polyene CnHn.

	17.9	 (a) Calculate the energy needed to compress three carbon–carbon single bonds and stretch 
three carbon–carbon double bonds to the benzene bond length 1.397 Å. Assume a harmonic-
oscillator potential-energy function for bond stretching and compression. Typical carbon–
carbon single- and double-bond lengths are 1.53 and 1.335 Å; typical stretching force constants 
for carbon–carbon single and double bonds are 500 and 950 N/m. (b) Use the result of (a) to 
calculate an improved b value for benzene from the data following Eq. (17.51).

	17.10	 Typical bond energies in kcal>mol are 99 for CiH, 83 for CiC, and 146 for C “ C. 
The heat of formation of gas-phase benzene from gas-phase hydrogen and carbon atoms is 
-1323 kcal>mol. Calculate the “experimental” delocalization energy of benzene using these 
data, first omitting the strain-energy correction (Prob. 17.9) and then including it. (Because 
bond energies vary from compound to compound, this procedure is very rough.)

	17.11	 (a) Calculate the quantities (a) through (e) of Prob. 17.1 for the diradical trimethylenemethane 
C1CH223. (The degenerate MOs can be taken as either real or complex, similar to the benzene 
degenerate MOs.) (b) Do the same as in (a) for the propargyl diradical HC “ C “ CH. Save 
time by using the results of Prob. 17.1. Note that this linear molecule has two sets of spatially 
perpendicular p MOs.

	17.12	 The ionization energies of the first few polyacenes are 9.4 eV for benzene, 8.3 eV for naph-
thalene, 7.6 eV for anthracene, and 7.0 eV for tetracene. Use these data to calculate values 
of a and b in the HMO method. Compare the result with the b value in (17.49). Predict the 
ionization energy of pentacene. The HMO x values for the highest-occupied MOs of these 
polyacenes are -1.00, -0.618, -0.414, -0.295, and -0.220.

	17.13	 The terms involving a always cancel in calculations of the delocalization energy, so 
Hess and Schaad measured energies relative to a In this problem, a is therefore omitted. 
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The Hess–Schaad Ep,b values for the various conjugated-bond types are 2.0000b for 
CH2 “ CH, 2.0699b for CH “ CH, 2.0000b for CH2 “ C, 2.1083b for CH “ C, 2.1716b 
for C “ C, 0.4660b for CHiCH, 0.4362b for CHiC, 0.4358b for CiC. (a) Verify 
that for 1,3-butadiene, gb nb Ep,b = 4.466b, which is very close to the Hückel Ep value 
4.472b in (17.50). The Hess–Schaad method makes the delocalization energies of noncyc-
lic conjugated polyenes essentially zero. (b) Verify that for benzene, �b nbEp,b = 7.6077b 
and that the Hess–Schaad REPE for benzene is 0.065 0b 0 . (c) Find the Hess–Schaad reso-
nance energy and REPE for each of the following and predict whether the compound will 
be aromatic, nonaromatic, or antiaromatic: cyclobutadiene; planar [8]annulene; planar  
[18]annulene; azulene, for which the x values in (17.20) of the occupied MOs are 
-2.3103, -1.6516, -1.3557, -0.8870, and -0.4773.

	17.14	 Estimate the carbon–carbon bond length in (a) C5H
-
5; (b) C7H

+
7; (c) C8H

2 -
8 .

	17.15	 (a) Verify the secular equation given in the text for the b3u naphthalene MOs. (b) Set up and 
solve the au, b2g, and b1g HMO secular equations for naphthalene. (c) Find the coefficients of 
the lowest naphthalene HMO.

	17.16	 Derive Eq. (17.58) for Ep. Hint: Start with Ep as the sum of orbital energies and use 
ei = 8fi 0 Hn eff 0 fi9 .

	17.17	 (a) For ptot
rs  equal to 1 and to 3, compare the bond-length predictions of Eq. (17.57) with 

experimental carbon–carbon single- and triple-bond lengths. (b) Look up or use a program to 
calculate the Hückel bond orders of azulene and compare the predicted bond lengths with the 
experimental values. [The experimental data can be found in R. J. Buenker and S. D. Peyer-
imhoff, Chem. Phys. Lett., 3, 37 (1969).]

	17.18	 Verify that the Ep expression (17.58) holds for 1,3-butadiene.

	17.19	 The free-valence index Fr for carbon atom r in a planar conjugated compound is defined as 
Fr K 13 - g�s prs, where the sum is over the atoms bonded to atom r. [The quantity 23 
is the value of g�s prs for the central atom of the diradical C(CH223, whose central C has the 
largest possible value for this sum of any trigonally bonded carbon.] Fr is a measure of the 
unused bonding power of atom r and is used to estimate the susceptibility of a given atom to 
attack by an uncharged free radical. Calculate Fr for each carbon in 1,3-butadiene, and state 
which carbon is predicted to be preferentially attacked by free radicals.

	17.20	For each of the following molecules, put stars on some of the carbon atoms such that starred 
carbons are bonded only to unstarred carbons and unstarred carbons are bonded only to 
starred carbons. It may not be possible to do this in all cases. (a) benzene; (b) naphthalene; 
(c) azulene.

	17.21	 (a) Show that the equations satisfied by the HMO coefficients of a conjugated hydrocarbon 
are xicri + g sSr csi = 0,  r = 1, c, nC, where the sum is over carbons bonded to carbon 
r. If the hydrocarbon is an alternant, then we can divide the carbons into two sets such that 
carbons in one set are bonded only to carbons in the other set. Verify that for an alternant 
hydrocarbon, if we replace xi by -xi and multiply the coefficients of one set of carbons by -1 
in each HMO equation of (a), we obtain equations that are satisfied. Hence (provided xi � 0), 
for each HMO of an alternant hydrocarbon with 1a - ei2>b = xi, there is an HMO with 
1a - ei2>b = -xi, whose coefficients are obtained by multiplying the coefficients of one 
set of carbons in the first HMO by -1.

	17.22	 (a) What is the HMO delocalization energy of cyclobutadiene? (b) Calculate the HMO total 
bond orders in cyclobutadiene.

	17.23	 Show that g r qr = np in the HMO method.

	17.24	 (a) Show that, with inclusion of overlap between carbons bonded to each other (the Wheland 
method), the HMO equation for benzene is like (17.32) except that each x is replaced by w, 
where w K 1a - ei2>1b - Sei2. Hence the values of w are the same as those found for x 
with overlap omitted. Provided a common value of S is used for any two bonded carbons in 
a molecule, the same situation holds for any planar conjugated hydrocarbon. (b) Verify that, 
with inclusion of overlap, ei = a - wg> 11 - Sw2, where g K b - Sa. (c) With S taken as 
0.25, find the Wheland ei values for benzene in terms of a and g. (d) Show that the predicted 
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wavenumber of the transition between the highest-occupied (HO) and lowest-unoccupied (LU) 
Wheland p MOs is

1

l
=

g1wHO - wLU2
hc31 + S2wLUwHO - S1wLU + wHO24

		  Explain why wLU = -wHO for an alternant hydrocarbon and use this relation to show that for 
an alternant hydrocarbon

1>l = 0 g 0  �w>hc31 -
1
4S21�w224

		  where �w K 0wHO - wLU 0 . �w is identical to �x calculated without overlap; also, S = 0.25 
and �w is typically about 1 or 2, so 14 S21�w22 V 1. Hence the 1>l value is nearly the same 
as calculated [Eq. (17.47)] without overlap, except that the empirical proportionality constant 
is interpreted as 0 g 0 = 0b - Sa 0 , rather than as 0b 0 .

	17.25	 Verify (17.64) for the PPP Fp matrix elements.

	17.26	 Apply the extended Hückel method to H2. Use K = 1.75; use the expression (13.60) of S as 
a function of R; plot the valence-electron energy as a function of R; compare the predicted 
value of Re with the experimental value. (To avoid solving a secular equation, use symmetry 
orbitals.) Use 1.0 as the orbital exponent.

	17.27	 (a) Set up (but do not solve) the 8 * 8 extended Hückel secular determinant for methane at 
the equilibrium configuration; do not use symmetry orbitals. Take K = 1.75; use Slater’s rules 
(Prob. 15.62) for the orbital exponents; evaluate the overlap integrals from the reference of 
Prob. 15.29. (b) Do the same as in (a), but now use symmetry orbitals.

	17.28	 Let the valence AOs rA, sA, tB, uB, vC be centered on different atoms A, B, and C in a mol-
ecule, with rA and sA being different AOs. Which of the following integrals are neglected in 
the CNDO method? Which are neglected in the INDO method? Which are neglected in the 
MNDO method? Which are neglected in the AM1 method? (a) 1rArA 0 sAsA2; (b) 1rAsA 0 rAsA2; 
(c) 1rArA 0 tBtB2; (d) 1rAtB 0 rAtB2; (e) 1rArA 0 rAtB2; (f) 1rAsA 0 tBuB2; (g) 1rArA 0 tBvC2.

	17.29	 The AM1 valence electronic energies of the atoms H and O are -11.396 eV and -316.100 eV, 
respectively. For H2O at its AM1-calculated equilibrium geometry, the AM1 valence elec-
tronic energy (core–core repulsion omitted) is -493.358 eV and the AM1 core–core repulsion 
energy is 144.796 eV. For H(g) and O(g), �H�f,298 values are 52.102 and 59.559 kcal/mol, 
respectively. Find the AM1 prediction of �H�f,298 of H2O1g2. The experimental value is 
-57.796 kcal>mol.

	17.30	 For each of the following molecules, do AM1 and PM3 calculations to find the predicted 
geometry, dipole moment, and gas-phase �H�f,298. Compare with experimental �H�f,298 values 
in thermodynamics tables. (a) CH3CH2CH3; (b) H2S; (c) benzene.

	17.31	 Calculate the barrier to internal rotation in ethane using AM1 and PM3. Compare the results 
to experiment and to the HF>6@31G** result (Prob. 15.53).

	17.32	 Find the AM1 geometry, dipole moment, and vibrational frequencies of formaldehyde. Com-
pare the results with experiment and with the HF>3@21G and 6@31G* results (Prob. 15.45).

	17.33	 Find the AM1 geometries and dipole moments of the gauche and anti conformers of butane 
and compare with HF>6@31G* results (Prob. 15.58). Also find the AM1 difference in �H�f,298 
for these conformers.

	17.34	 Find the AM1 geometries and dipole moments of the two conformers of formic acid and compare 
with HF results (Prob. 15.57). Also find the AM1 difference in �H�f,298 for these conformers.

	17.35	 Use a program such as Spartan or the online WebMO Demo Server that provides animations of 
calculated vibrational normal modes to: (a) Find the PM6 normal-mode harmonic vibrational 
wavenumbers of CH3OH. (Note: The program output will likely call these “frequencies,” but 
the units of cm-1 means they are actually wavenumbers.) (b) Calculate the PM6 zero-point 
energy of methanol per molecule and per mole. (c) View the animation of each normal mode 
and state the wavenumber of each of the following vibrations: CO stretching, OH stretching, 
torsion (twisting) about the CO bond, COH bending, symmetric CH stretching. (You may 



want to rotate the molecule for a clearer view of the vibration.) (d) As noted in Sec. 15.12, 
the accuracy of computed vibrational frequencies is improved by use of a scale factor. For 
PM6 the scale factor for harmonic vibrational frequencies is 1.093 (comp.chem.umn.edu/
freqscale). Multiply the wavenumbers in (a) by this scale factor and compare the results with 
the experimental methanol harmonic frequencies found in the literature. (If you have trouble 
finding experimental harmonic frequencies, use fundamental frequencies instead.) Then repeat 
part (a) with another semiempirical method and see how much the wavenumbers differ.

	17.36	 Find the AM1 geometries of the reactant, product, and transition state in the reaction 
HCN S HNC and compare with the HF>6@31G* results (Prob. 16.45).

	17.37	 Give the number of bond-stretching terms, bond-bending terms, bond-torsion terms, van der 
Waals terms, and electrostatic terms in a force field for each of the following: (a) CF3OH; 
(b) CCl3CCl2OH.

	17.38	 Equation (17.89) for the van der Waals interaction between two atoms has the form V = a>R12 -

b>R6. (a) If s is the finite value of R at which V is zero, show that V = bs6>R12 - b>R6. 
(b) If R* is the value of R at the minimum in V, show that R* = 21>6s. (c) If e = V1�2 - V1R*2 
is the depth of the van der Waals well, show that b = 4s6e. (d) Use these results to show that the 
van der Waals V can be written in each of the two forms in (17.89).

	17.39	 Use whatever molecular-mechanics program is available to you to calculate the geometries of 
the two conformers of HCOOH and find the energy difference between them. Omit zero-point 
vibrational energies and thermal energies in this and the following MM problems.

	17.40	 Use a molecular-mechanics program to calculate the barrier to internal rotation in ethane.

	17.41	 Use a molecular-mechanics program to find the geometries of the gauche and anti conforma-
tions of butane and the energy difference between them.

	17.42	 Repeat the vibrational wavenumber calculations of Prob. 17.35 (a), (b), and (c) using the MM3 
force field and compare with the PM6 results. Assume the MM3 scale factor is 1.

	17.43	 Use a molecular-mechanics program to find the geometries of the two conformers of vinyl 
alcohol 1CH2CHOH2 and the energy difference between them.

	17.44	 Use a molecular-mechanics program to find the geometries and the energy difference between 
(a) cis and trans 1,2-difluoroethylene; (b) cis and trans 1,2-dichloroethylene; (c) cis and trans 
1,2-diiodoethylene. Compare your results with available literature data as to which is the more 
stable isomer of each pair.

	17.45	MM3 parameters in kcal>mol to be used with (17.90) to calculate �H�f,298 values of satu-
rated hydrocarbons are aCH = -4.590 and aCC = 2.447; in addition, the following cor-
rections (in kcal>mol) are included: 1.045 for each CH3 group, -2.627 for each carbon 
bonded to three other carbons, -6.641 for each carbon bonded to four other carbons, 0.42 
for each bond (except CiCH3 bonds) with a low rotational barrier, -1.780 for each four-
membered ring, and -5.508 for each five-membered ring. Given the following MM3 steric 
energies, calculate the gas-phase �H�f,298 of each compound and compare with the experi-
mental values given in parentheses: (a) 2.05 kcal>mol for propane 1-24.82 kcal>mol2; 
(b) 3.18 kcal>mol for isobutane 1-32.15 kcal>mol2; (c) 32.63 kcal>mol for cyclobutane 
16.78 kcal>mol2. (d) How many conformations must be considered when calculating the 
MM �H�f,298 of butane?

	17.46	 Consider the thermal reaction 1,3,5@hexatriene S 1,3@cyclohexadiene. (a) Use the symmetry 
of the polyene HOMO to predict whether the reaction path is conrotatory or disrotatory. (The 
HMOs need not be found explicitly; all that is needed are the signs of the AOs in the HOMO, 
and these can be found from the pattern of nodes; the number of vertical nodal planes is zero 
for the ground state and increases by 1 for each higher state.) (b) Do the same as in (a) when the 
reaction occurs photochemically. (c) State the general rules for the cyclization of the polyene 
(17.28) with np p electrons.

	17.47	 Examine the frontier orbitals and decide whether each of the following elementary reactions 
should have a high or low activation energy for a four-center broadside-collision reaction path. 
(a) H2 + D2 S 2HD; (b) N2 + O2 S 2NO; (c) F2 + Br2 S 2FBr; (d) H2 + C2H4 S C2H6.
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Table A.1  Physical Constantsa

Constant Symbol SI Value

Speed of light in vacuum c 2.99792458 * 108 m>s

Proton charge e 1.6021766 * 10-19 C

Permittivity of vacuum e0 8.8541878 * 10-12 C2 N-1 m-2

Planck constant h 6.626070 * 10-34 J s

Electron rest mass me 9.109383 * 10-31 kg

Proton rest mass mp 1.672622 * 10-27 kg

Neutron rest mass mn 1.674927 * 10-27 kg

Avogadro constant NA 6.022141 * 1023 mol-1

Faraday constant F = NAe 96485.34 C mol-1

Permeability of vacuum m0 4p * 10-7 N C-2 s2

Bohr radius a0 = e0h
2>pmee

2 5.29177211 * 10-11 m

Bohr magneton mB = eU>2me 9.274010 * 10-24 J T-1

Nuclear magneton mN = eU>2mp 5.050783 * 10-27 J T-1

Electron g value ge 2.00231930436

Proton g value gp 5.5856947

Gas constant R 8.31446 J mol-1 K-1

Boltzmann constant k = R>NA 1.380649 * 10-23 J K-1

Gravitational constant G 6.674 * 10-11 m3 kg-1 s-2

aAdapted from P. J. Mohr, B. N. Taylor, and D. B. Newell (2011), “CODATA Recommended Values of the 
Fundamental Physical Constants: 2010” at physics.nist.gov/cuu/Constants and Mohr, Taylor, and Newell, 
Rev. Mod. Phys., 84, 1527 (2012).

Table A.2  Conversion Factorsa

1 cal = 4.184 J

1 eV = 1.6021766 * 10-19 J =n 23.06055 kcal>mol = 96.48534 kJ>mol

1 hartree = 4.359744 * 10-18 J = 27.211385 eV =n 627.5095 kcal>mol = 2625.500 kJ>mol

1 cm-1 =n 0.011962657 kJ>mol =n 1.2398419 * 10-4 eV = 4.55633525 * 10-6 hartree

1 debye = 3.335641 * 10-30 C m = 0.39343029 au
aThe symbol =n  means “corresponds to.”

Appendix
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Table A.4  Greek Alphabet

Alpha A a Iota � i Rho � r

Beta B b Kappa � k Sigma � s

Gamma � g Lambda � l Tau � t

Delta � d Mu � m Upsilon � y

Epsilon � e Nu � n Phi � f

Zeta � z Xi � j Chi � x

Eta � h Omicron � o Psi 
 c

Theta � u Pi � p Omega 
 v

Table A.3  Relative Isotopic Massesa

Isotope Atomic Mass Isotope Atomic Mass
1H 1.0078250 19F 18.998403

2H 2.014102 23Na 22.989769

12C 12.000 … 32S 31.972071

13C 13.003355 35Cl 34.968853

14N 14.003074 37Cl 36.965903

16O 15.994915 127I 126.90447
awww.nist.gov/pml/data/comp.cfm
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Table A.5  Integralsa

Lx sin bx dx =
1

b2 sin bx -
x

b
 cos bx (A.1)

L  sin2 bx dx =
x

2
-

1

4b
 sin12bx2 (A.2)

Lx sin2 bx dx =
x2

4
-

x

4b
 sin12bx2 -

1

8b2 cos12bx2 (A.3)

Lx2 sin2 bx dx =
x3

6
- a x2

4b
-

1

8b3 bsin12bx2 -
x

4b2 cos12bx2 (A.4)

L  sin ax sin bx dx =
 sin31a - b2x4

21a - b2 -
 sin31a + b2x4

21a + b2 ,  a2 � b2 (A.5)

Lxebx dx = a x

b
-

1

b2 bebx (A.6)

Lx2ebx dx = ebxa x2

b
-

2x

b2 +
2

b3 b (A.7)

L
	

0
xne-qx dx =

n!

qn + 1,  n 7 -1, q 7 0 (A.8)

L
	

0
e-bx2

dx =
1

2
ap

b
b

1>2
, b 7 0 (A.9)

L
	

0
x2ne-bx2

dx =
12n2!

22n + 1n!
a p

b2n + 1 b
1>2

,  b 7 0, n = 1, 2, 3, g (A.10)

L
	

t
zne-az dz =

n!

an + 1 e-ata1 + at +
a2t2

2!
+ g +

antn

n!
b ,  n = 0, 1, 2, g , a 7 0 (A.11)

aIndefinite integration of functions can be done at no charge at integrals.wolfram.com
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Answers to Selected Problems

Chapter 1

1.1	 (a) F. (b) T. (c) T.

1.2	 (a) 1.867 * 10-19 J; (b) 5 * 1017.

1.3	 399 kJ/mol.

1.4	 (a) 3.45 eV; (b) 451 nm.

1.6	 0.332 nm.

1.8	 2mb2 x2.

1.9	 (a) F. (b) F.

1.10	 3cU2>m = 6.67 * 10-20 J. Hint: Use the time-independent Schrödinger equation.

1.12	 (a) 3.29 * 10-6; (b) 0.0753; (c) at x = 0. (d) Hint: Use the change of variable z = -x in 
one of the integrals and use an integral in the Appendix.

1.13	 0.000216.

1.14	 4.978 * 10-6.

1.15	 None; the function in (c) is not normalized.

1.16	 (a) 1>3; (b) 1>2.

1.17	 2.24, 0.0126.

1.18	 1 - 2113212> 126225 = 13>25.

1.19	 (a) The Maxwell distribution of molecular speeds.

1.20	 (b), (d), and (e) are imaginary.

1.23	 (a) -1; (b) - i; (c) 1; (d) 1; (e) 17 + 7i; (f) -0.1 - 0.7i.

1.24	 (a) -4; (b) 2i; (c) 6 - 3i; (d) 2eip>5.
1.25	 (a) 1, p>2; (b) 2, p>3; (c) 2, 4p>3; (d) 51>2, 296.6�.

1.27	 (a) eip>2; (b) e-ip; (c) 51>2e5.176i; (d) 21>2ei5p>4.
1.28	 (a) 1, -

1
2 +

1
213i, -

1
2 -

1
213i.

1.30	 (a) kg m s-2; (b) kg m2 s-2.

1.31	 0.405 N.

1.33	 (a) T. (b) F. (c) F. (d) T. (e) F. (f) T.

Chapter 2

2.1	 (a) y = c1e
-3x + c2e

2x; (b) c1 = -1>5, c2 = 1>5.

2.3	 (b) y = aex + bxex.

2.4	 (a) linear; (b) linear; (c) nonlinear.

2.5	 (a) F. (b) F. (c) T. (d) F. (e) T.

2.7	 (a) 14 - 12np2-1 sin1np>22; (b) 3; (c) 14; (d) correspondence principle.

2.8	 (a) 655; (b) 159.

2.10	 (a) 1.8 * 10-17 J; (b) 11 nm; (c) UV.

2.11	 3.0 * 1026.

2.12	 1.8 nm.

2.13	 4.

2.14	 1.0 * 1013 s-1.

2.15	 3 and 2.
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2.17	 323 nm.

2.18	 The same energies and wave functions are obtained (although the mathematical 
expression for c looks different).

2.20	 exp1- iEt>U2 times (2.30).

2.23	 2.

2.24	 4.02 eV, 13.6 eV.

2.27	 0.264 nm.

2.28	 0.347 nm, 0.521 nm.

2.32	 (a) F. (b) F. (c) T. (d) F. (e) T. (f) F. (g) T. (h) F. (i) T.

Chapter 3

3.1	 (a) -2x sin1x2 + 12; (b) 5 sin x; (c) sin2 x; (d) x; (e) -1>x2; (f) 36x3 + 24x.

3.2	 (a) Operator; (b) function; (c) function; (d) operator; (e) operator; (f) function.

3.6	 Hint: Read the definition of equality of operators.

3.8	 (a) 20x3; (b) 6x3; (c) x2f � + 4xf � + 2f; (d) x2f �.

3.11	 (b) An and Bn linear and commute.

3.13	 (a) -cos z; (b) 2a + 14ax + 2b2 d>dx; (c) 0.

3.14	 (a) Linear; (b) nonlinear; (c) linear; (d) nonlinear; (e) linear.

3.19	 (a) Complex conjugation; (b) Hint: Consider an operator that is the product of three operators.

3.21	 (a) Yes; (b) 1 - 2x.

3.23	 (a) Yes, 1; (b) no; (c) yes, -1; (d) yes, -1; (e) yes, -1.

3.25	 The eigenfunctions are (2.30) with E replaced by the eigenvalues k, where k Ú 0.

3.28	 (a) iU303>0y3; (b) - iU1x 0 >0y - y 0 >0x2.

3.30	 (a) iU; (b) 2U20 >0x; (c) 0; (d) 0; (e) 1U2>m20 >0x; (f) 2yzU20 >0x.

3.33	 (a) 12
0 � �1x, t2 �2 dx. (b) Hint: Try working Prob. 3.36.

3.34	 (a) length-1>2.
3.35	 7.58 * 1014 s-1.

3.36	 (a) 0.0108; (b) 0.306; (c) 0.306.

3.37	 For (b), n2
xh

2>4a2. For (c), n2
zh

2>4c2.

3.44	 (a) 17; (b) 6.

3.45	 (a) Nondegenerate; (b) 6; (c) 4.

3.46	 (a), (c), (d), (g).

3.48	 (a) a>2; (b) b>2, c>2; (c) 0; (d) 11 - 3>2n2
xp

22a2>3, no, yes.

3.50	 (a) No; (b) yes; (c) yes; (d) yes; (e) no.

3.52	 (b) 12.

3.53	 (a) T. (b) F. (c) F. (d) F. (e) F. (f) F. (g) F. (h) F. (i) T. (j) T. (k) T. (l) F. (m) T. (n) F. (o) F.

Chapter 4

4.2	 (a) g �
n = 0 1-12nx 2n + 1> 12n + 12!; (b) g �

n = 0 
1-12n x 2n> 12n2!.

4.3	 (a) g �
n = 0  x n>n!.

4.5	 (a) cn + 2 = 1n2 + n - 32cn> 1n + 121n + 22; (b) c4 = -3c0>8, c5 = -3c1>40.

4.6	 (a) Odd; (b) even; (c) odd; (d) neither; (e) even; (f) odd; (g) neither; (h) even.

4.8	 (c) 0.

4.9	 hn>4, hn>4.

4.11	 {1a>9p21>412a3>2 x3 - 3a1>2x2e-ax2>2.

4.12	 e-ax2>211 - 4ax2 +
4
3 a2x42.

4.13	  x = {a-1>2.
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4.16	 (a) T. (b) T. (c) F. (d) T. (e) T.

4.19	 12n +
3
22hn, n = 0, 1, 2, . . . .

4.20	 (a) 1vx +
1
22hnx + 1vy +

1
22hny + 1vz +

1
22hnz; (b) 1, 3, 6, 10.

4.24	 (a) 480 N>m; (b) 2.87 * 10-20 J; (c) 6.20 * 1013 Hz.

4.25	 (a) 2989.96 cm-1, 52.0 cm-1; (b) 8346.0 cm-1.

4.26	 (a) 0.00142, 0.0160; (b) 0.159, 0.314.

4.30	 With sr = 0.01, E> 1U2>ml22 = 4.93480218, 19.73920752, 44.41320520.

4.31	 (a) sr = 0.01 and xr, max - xr, min = 4 give E> 1U2>ml22 = 2.772516 and 10.605119. 
The method fails to find a third energy below 20. (b) Er = 3.356822, 13.256836, 
29.003101, 47.665198. (c) For (a), Er = 2.814429, 10.751612, 19.991961. For (b), 3.413571, 
13.475723, 29.452308, 48.143464.

4.32	 For sr = 0.05 and xr ranging from -3.5 to 3.5, E>m-2>3U4>3c1>3 = 0.66798613, 
2.39364258, 4.69678795.

4.33	 For sr = 0.02 and xr ranging from -3 to 3, E>m-4>5a1>5U8>5 = 0.7040487625, 2.7315324, 
5.8841762.

4.34	 For sr = 0.05 and xr,max = 10, we get E>m-1>3U2>3b2>3 = 1.855757, 3.244607, 4.381670.

4.35	 (c) For sr = 0.1 and xr from -6.5 to 6.5, we get E> 1U2>ma22 = -6.125015, 
-3.125056, -1.125079, -0.120976.

4.36	 (c) sr = 0.05 and xr ranging from -6.5 to 6.5 gives 12 eigenvalues in this range. The 
lowest two are Er = 0.973365 and 0.973395, and the highest is 9.794873.

4.37	 (a) With sr = 0.01, the lowest Er is 5.740086; (c) With sr = 0.01, the lowest two are 
Er = 63.869414269 and 63.869414294.

4.42	 0.16; 0.12.

4.49	 (b) Hints: Show that tanh ix = i tan x. Er = V0r is not an eigenvalue. To help the 
Solver, you can add a constraint such as Er 7 0.001. For V0r = 1, Er = 5.750345, 
20.236043, 44.808373, 79.459210. For V0r = 1000, the lowest two are 66.399924233 and 
66.399924251.

4.51	 (b) V is an even function with 3 nodes and minima at x = {14a2-1>4; V1{ �2 = �. 
(c) Yes, since c has no interior nodes.

4.53	 (a) F. (b) T. (c) T. (d) T. (e) F. (f) T. (g) T.

Chapter 5

5.1	 (a) No. (b) Yes. (c) Yes. (d) Yes.

5.3	 13U3>i202>0x2.

5.4	 �x = 1h>8p2mn21>2, �px = 1mhn>221>2, �x �px = U>2.

5.5	 �x = 15>19221>2l, �px = 11421>2U>l.

5.8	 1, 0.707.

5.10	 � A � = 7, � B � = 13321>2, A # B = 13, A : B = -32i -18j +10k, u = 71.1�, 
A + B =  2i + 2j + 10k, A - B = 4i - 6j + 2k.

5.11	 arccos1-1>32 = 109.47�.

5.12	 (b) 111.6�.

5.13	 grad f = 14x - 5yz2i - 5xzj + 12z - 5xy2k; �2f = 6.

5.14	 (b) 3.

5.19	 (a) r = 51>2, u = p>2, f = 63.4�. (b) r = 11021>2, u = 184�, f = 180�; (c) r = 11421>2, 
u = 122.3�, f = 18.4�; (d) r = 31>2, u = 125.3�, f = 225�.

5.20	 (a) x = -1, y = 0, z = 0; (b) x = 1.414, y = 0, z = 1.414.

5.23	 35.3�, 65.9�, 90�, 114.1�, 144.7�.

5.37	 (a) T. (b) F. (c) T. (d) T. (e) T. (f) F.
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Chapter 6

6.1	 (a) T. (b) F.

6.5	 (a) F. (b) T.

6.6	 0.31c, 0.64c, 0.91c, 1.20c, 1.24c, and 1.80c, where c = 5.49 * 10-19 J.

6.7	 (a) T. (b) T.

6.9	 (a) 1.1309 Å; (b) 230542 MHz and 345813 MHz; (c) 110189 MHz; (d) 2.945, 4.729.

6.10	 Approximately 252.8 GHz.

6.15	 2 * 1039.

6.17	 (a) 10941.2 Å, 2.7400 * 1014 Hz; (b) 2735 Å, 1.096 * 1015 Hz.

6.18	 3971.2 Å, 3890.2 Å, 3647.1 Å.

6.19	 (b) 4340.5 Å, 4101.8 Å.

6.22	 -6.8 eV.

6.24	 5a>Z.

6.25	 30a2>Z 2.

6.28	 s states.

6.29	 14.

6.30	 -108.8 eV.

6.31	 a>Z.

6.32	 At the origin (nucleus).

6.33	 (a) 0.24. (b) 0.24.

6.36	 (a) -e2>4pe0a; (b) e2>8pe0a; (c) 1/137.0.

6.38	 Hint: Use the fact that all directions of space are equivalent.

6.40	 (a) All; (b) Hn , Ln 2; (c) all.

6.41	 (a) A sphere centered at the origin; (b) m.

6.49	 With sr = 0.05 and rr going from 1 * 10-12 to 6, we get E>hn = 1.49999984, 
3.4999985, 5.4999944, 7.499987 for l = 0 and 2.499986, 4.499964, 
6.499933, 8.499902 for l = 1.

6.51	 With sr = 0.01, E> 1U2>mb22 is 4.93480 for the lowest l = 0 state and is 10.095357 for the 
lowest l = 1 state.

6.53	 (a) 16 * 10-173; (b) 1.6 * 10-51; (c) 2.9 * 10-5.

6.56	 (a) F. (b) T. (c) F. (d) T. (e) F. (f) F. (g) F. (h) T. (i) T.

Chapter 7

7.1	 (a) T. (b) T. (c) F.

7.8	 i1d>dx2, 4 d 2>dx2.

7.9	 (c) and (d).

7.17	 (b) 2px, 2
1>22p1 - 2px or 2p1, 2

1>22px - 2p1; Hn , Ln 2.

7.18	 (a) Use a table of integrals to help you. (b) p3>32�1 - 1>33 + 1>53

- 1>73 + 1>93; p3 � 31.021; (c) -2.70%, 0.128%, -0.022%.

7.19	 (b) -1 = 14>p21-1 + 1>3 - 1>5 + 1>7 - g2; -27.32%, -10.35%, -6.31%, 
-4.52%.

7.20	 (a) F. (b) F. (c) T.

7.22	 (c) Yes; no.

7.24	 (b) and (c).

7.25	 The n nth roots of 1.

7.31	 (a) 0, 1, 0; (b) 12, 0, 12; (c) 0, 0, 1.

7.33	 Probability 2>3 for 2U2; probability 1>3 for 6U2. 10U2>3.
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7.36	 1>4 for h2>8ml2, 3>4 for h2>2ml2.

7.37	 Use a table of integrals. Outcomes are n2h2>8ml2, where n = 1, 2, 3, . . . . Probabilities are 
c2

n, where cn> 121021>2 = 16 - n2p221sin np2>n4p4 - 14 cos np2>n3p3 - 2>n3p3.

7.39	 (b) 12mE21>2, - 12mE21>2; (c) probabilities � c1 �2 for 12mE21>2 and � c2 �2 for - 12mE21>2.
7.42	 (a) 1; (b) 0; (c) 1; (d) 0.

7.44	 1
2 f102.

7.47	 (a) 1.47 * 10-16 s.

7.49	 (a) First row: 6, 2; second row: -12, -12. (b) First row: 2, 4; second row: 8, -8. 
(c) First row: 3, 0; second row: 4, 1; (d) First row: 6, 3; second row: 0, -9. 
(e) First row: -2, 5; second row: -16, -19.

7.50	 First row of CD: 5i, 10, 5; second row: 0, 0, 0; third row: - i, -2, -1. DC is a 
1 * 1 matrix whose sole element is 5i - 1.

7.56	 (a) 0; (b) U.

7.57	 (b) 13h2>32ml2; (c) Use product-to-sum trigonometric identities to evaluate the integral. 
8x9 =

1
2 l + 8131>2l>9p22 cos13h2t>8ml2U2; 8x9max = 0.656l; 8x9min = 0.344l, 

since the cosine ranges from 1 to -1.

7.62	 As a further hint, see the definition of a Hermitian operator.

7.64	 (a) F. (b) T. (c) F. (d) F. (e) F. (f) T. (g) F. (h) F. (i) F. (j) F. (k) T. (l) F. (m) F. (n) T. (o) T. 
(p) F. (q) T. (r) F.

Chapter 8

8.2	 (a) 8f1 � Hn �f19 = 5.753112U2>ml2; (b) 5.792969U2>ml 2.

8.5	 1.3% error.

8.6	 (a) 15h2>4p2mb22.

8.7	 0.72598U3>2a1>4>m3>4.
8.10	 0% error.

8.12	 (b) k = 1.11237244, 0.298%.

8.16	 (a) 3h2>2p2ml2, 21.6%.

8.17	 (a) c = 8>9p, 15% error; (b) c = 8>729p.

8.18	 20.23921U2>ml2.

8.19	 (b) -84.

8.23	 1, 0, 4, -1.

8.25	 -84.

8.26	 (a) x = 0, y = 0.

8.27	 (a) x = 0, y = 0, z = 0; (b) x = -5k, y = -2k, z = 3k.

8.29	 (a) F. (b) T. (c) F. (d) F.

8.31	 1, -1.

8.32	 5.750518U2>ml2, 44.809711U2>ml2.

8.33	 1.3%, 6.4%.

8.45	 For A: l = 1 + 12i, c1 = -1>112 + i>16, c2 = 13>2; l = 1 - 12i, c1 =

-1>112 - i>16, c2 = 13>2. (Other answers are possible for the eigenvectors, 
depending on the choice of phase.) For B: l = 2, c1 = 0, c2 = 1; l = 2, c1 = 0, 
c2 = 1. For C: l = 4, c1 = 1, c2 = 0; l = 4, c1 = 0, c2 = 1. (Any linear combination 
of these eigenvectors is an eigenvector.)

8.47	 (a) l = 3, c1 = 2>51>2, c2 = 1>51>2; l = -2, c1 = 1>51>2, c2 = -2>51>2. (b) Yes. Yes. 
(c) Yes. Yes. (d) C-1 = CT.

8.48	 (a) l = 0, c1 = i>21>2, c2 = 1>21>2; l = 4, c1 = - i>21>2, c2 = 1>21>2. (b) No. Yes. 
(c) No. Yes. (d) C-1 = C-.
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8.50	 l = -2, c1 = 2>51>2 = 0.89443, c2 = 0, c3 = 1>51>2 = 0.44721; l = 3, 
c1 = -0.44721, c2 = 0, c3 = 0.89443; l = 5, c1 = -0.27669, c2 = 0.48420, 
c3 = 0.83006.

8.51	 The rows of A-1 are -1>3, 4>15, -1>3; 0, 1>5, 0; -1>3, -2>15, 1>6.

8.52	 Eigenvalues: -3.366401, -0.185277, -0.004990, -0.000120, -0.0000011, 
24.556790. Components of the eigenvector of the lowest eigenvalue: 0.6696, 0.4292, 
0.1792, -0.0604, -0.2863, -0.4996.

8.54	 The “missing” roots are imaginary numbers.

8.60	 (a) With TOL = 10-9 and 32 basis functions, we get 45.80785, 46.11184, 113.93885, 
143.35815.

8.63	 With TOL = 10-8 and 13 basis functions, Er = 0.500000, 1.500001, 2.500002, 
3.500215, 4.500204.

8.65	 With TOL = 10-7 and 28 basis functions, Er = -0.4733, -0.1214, -0.0540.

8.66	 (a) T. (b) T. (c) T. (d) T. (e) T. (f) T. (g) T. (h) F. (i) T. (j) F. (k) F. (l) T. (m) T. (n) T.

Chapter 9

9.1	 (b) C.

9.3	 15dh2>64p4n2m2.

9.4	 (a) V0>2 - 1V0>2np23sin13
2np2 - sin11

2np24 ; (b) 5.753112U2>ml2, 20.23921U2>ml2.

9.6	 g k � n H�knc
102
k > 1E(02

n - E102
k ), where c102

k = 12>l21>2 sin 1kpx>l2, E
102
n - E

102
k =

1n2 - k22h2>8ml2, H�kn = 1V0>p23Ak> 1n - k2 - Bk> 1n + k24  with Ak =

sin331n - k2p>44 - sin31n - k2p>44 , Bk = sin331n + k2p>44 - sin31n + k2p>44 .

9.7	 (b) E122 = -0.0027338U2>ml2, E102 + E112 + E122 = 5.750378U2>ml2.

9.9	 1.2 * 10-8 eV.

9.11	 (a) E112 = 0 (parity); (b) - 130v

2 + 30v + 112c2>8a3hn.

9.12	 -12.86 eV.

9.13	 E102 = -77.5 eV; E112 = 0.

9.15	 First power.

9.17	 3a>2z.

9.18	 (a) 15 { 51>22b.

9.22	 (b) E112 = 11 + 2>p22b>4 for the ground state. E112 = 11 + 2>p2b>4, 
11 + 2>p2b>4, for the states of the first excited level.

9.23	 0, 0, {3e�a0; 2p1, 2p-1, 2
-1>212s | 2p02.

9.24	 1s3s, two nondegenerate levels; 1s3p, two triply degenerate levels; 1s3d, two fivefold-
degenerate levels.

9.25	 -27.2 eV.

9.27	 a.

9.31	 (a) T. (b) F. (c) F. (d) F.

Chapter 10

10.1	 9.13 * 10-35 J s.

10.2	 54.7� (note that the component in the xy plane exceeds the z component).

10.4	 (c) The equation cannot be obeyed for s = 3>2.

10.5	 (a) Fermion; (b) fermion; (c) fermion; (d) boson.

10.8	 (1) Neither. (2) Antisymmetric. (3) Symmetric. (4) Neither. (5) Symmetric. (6) Symmetric.

10.9	 Ground state: 1s1121s1221s132.

10.11	 (a) 2-1>211 - Pn122.
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10.13	 One of my students gave the answer: “A permanent is used to put the wave 
into the function.”

10.16	 2J1s2s + J1s1s.

10.17	 1.61 * 10-23 J>T.

10.18	 (b) 2.80 * 1010 Hz.

10.20	 (b) 42.58 MHz.

10.26	 (a) 12 U or -1
2 U; (b) 1a + b2>21>2, 1a - b2>21>2; (c) 0.5 for 12 U, 0.5 for -1

2 U.

10.28	 (d) eigenvalues 12 U, -1
2 U.

10.29	 (a) F. (b) T. (c) F. (d) F. (e) T. (f) T. (g) T.

Chapter 11

11.1	 (a) 2n2; (b) 4l + 2; (c) 2; (d) 1.

11.6	 22.

11.8	 11>2, 9>2, 7>2, 5>2; (b) 11>2, 9>2, 9>2, 7>2, 7>2, 5>2, 5>2, 3>2, 3>2, 1>2.

11.13	 (a) F. (b) T.

11.15	 (a) 1F, 1G, 1H, 3F, 3G, 3H; (c) 2D, 2S, 2P, 2D, 2F, 2G, 4P, 4D, 4F, 2P, 2D, 2F.

11.16	 (a), (c), (e), (f).

11.18	 (a) 45�; (b) 70.53�, 70.53�, 70.53�, 180�. (c) 90�.

11.20	 B, N, F.

11.21	 (a) 28; (b) 1; (c) 9; (d) 10.

11.22	 (a) 15; (b) 36.

11.23	 (a) 2; (b) 1, 3; (c) 4, 2; (d) 8, 6, 4, 2; (e) 1, 3; (f) 2.

11.24	 (a) 1S0, 1; (b) 2S1>2 2; (c) 3F4, 9; 3F3, 7; 3F2, 5; (d) 4D7>2, 8; 4D5>2, 6; 4D3>2, 4; 4D1>2, 2.

11.25	 (a) 61>2U; (b) 21>2U; (c) 11221>2U.

11.26	 2S1>2, 1S0, 
2S1>2, 1S0, 

2P1>2, 3P0, 
4S3>2, 3P2, 

2P3>2, 1S0.

11.27	 2D3>2, 3F2, 
4F3>2, 7S3, 

6S5>2, 5D4, 
4F9>2, 3F4, 

2S1>2, 1S0. Cobalt.

11.31	 64089.8, 75254.0, 105798.7, 64073.4, 64074.5, 75237.6, 75238.9, 75239.7, 
105782.3, 64043.5, 64046.4, 64047.5, 75210.6, 75211.9, 105755.3, 87685, 109685, 
98230 cm-1.

11.33	 4.5 * 10-5 eV.

11.34	 No.

11.36	 7.7 * 10-6 eV.

11.42	 (a) T. (b) T. (c) F. (d) F. (e) F.

Chapter 12

12.1	 (a) F. (b) F. (c) T.

12.2	 (a) 2s
v
, C2; (b) 3s

v
, C3; (c) C3, 3sv

; (d) s; (g) none.

12.3	 (a) sn
v
, sn �

v
, Cn2, En (b) sn

v
, sn �

v
, sn �

v
, Cn3, Cn

2
3, En; (c) same as (b); (d) sn , En (g) En.

12.5	 (a) En; (b) sn ; (c) Cn2; (d) Cn2; (h) in.

12.6	 (a) A Cn2 rotation about the line through F3 and F5.

12.7	 (a) Yes. (b) No. (c) Yes.

12.8	 (a) Lies along the C2 axis; (b) lies along the C3 axis; (e) is zero; (g) no information.

12.10	 (a) The unit matrix of order 3. (b) A diagonal matrix with diagonal elements 1, 1, -1. 
(c) A diagonal matrix with diagonal elements -1, 1, 1. (d) A diagonal matrix with diagonal 
elements 1, -1, -1.

12.12	 (b) No, since its eigenvalues are not all real.

12.15	 10, 3, 14.
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12.16	 (a) Yes. (b) No.

12.19	 (a) �d; (b) �3v
; (c) �2v

; (d) �3v
; (e) �h; (f) �4v

; (g) �4h; (h) �3v
.

12.20	 (a) �2h.

12.21	 (a) �6h; (b) �2v
; (c) �2v

; (d) �2v
; (e) �2h.

12.22	 (a) �� v
.

12.23	 (a) �h; (b) �4v
.

12.24	 (a) 6; (b) 2; (c) �.

12.28	 The answer is not �2.

12.30	 (a) �4v
; (b) �� v

; (c) �4h; (d) �4v
; (e) �� h.

12.31	 (a) The regular tetrahedron.

12.33	 �1, �s, �n, �nv
.

12.34	 �1, �n, �n, �, �, �.

12.35	 The first player will win. The winning strategy is given in H. E. Dudeney, 
Amusements in Mathematics, Dover, 1958.

Chapter 13

13.1	 (a) F. (b) T. (c) F.

13.2	 432.07 kJ/mol.

13.3	 15.425 eV.

13.4	 (a) 4.61 eV; (b) 4.48 eV.

13.5	 (b) 2.5151 eV.

13.10	 With sr = 0.01 and xr going from -0.70 to 0.80, we get 107.02, 319.68, 530.51, 739.51, 
946.66, 1151.98 cm-1.

13.15	 (a) 1836.15; (b) -1; (c) 2p; (d) -2; (e) 4.134 * 1016 1one atomic unit of time
= 4pe0Ua0>e2 = 2.419 * 10-17 s; (f) 137.036; (g) -0.49973; (h) 0.3934.

13.19	 At R = 0.5, k = 1.78 and U = 0.26824. At R = 1.0, k = 1.54 and U = -0.44100. 
At R = 2.0, k = 1.24, and U = -0.58651.

13.20	 k = 1.2380 and R = 2.0033.

13.22	 (a) 0.998948, 1.001049; (b) 0.995439, 1.010694; (c) 1.028419, 1.015963; 
(g) 1.979895, 0.420001.

13.25	 (a) Li2; (b) C2; (c) O+
2; (d) F+

2. (Actually, De of Li+2  is greater than that of Li2.)

13.26	 (a) 2, 2; (b) 2.5, 1; (c) 1.5, 1; 1l2 11
2, 1; (m) 2, 0; 1n2 21

2, 1.

13.27	 (a) 3�-
g; (l) 2�u; 1m2 1�+

g; 1n2 2�+
g .

13.28	 (a) 1; (b) 3; (c) 6; (d) 2.

13.29	 (a) 1�-; (b) 3�+; (c) 3�2, 
3�1, 

3�0; (d) 1�3.

13.32	 j + k must be an even number.

13.38	 (a) 0, 1�+; (b) 0, 1�+; (c) 0, 1�+; (d) 1, 2�+; (e) 1, 2�; (f) 1, 2�.

13.40	 VB.

13.43	 (a) F. (b) T. (c) F.

Chapter 14

14.5	 4.56 eV, 11.3 D.

14.19	 The calculation converges to the same final result.

14.20	 (b) 4 for each except 5 for -1.

14.23	 (b) 0; (c) -2; (d) 3/2.

14.24	 state 1.

14.26	 (a) 8V9 = 15z>8 - 2Zz2e2>4pe0a0, 8T9 = z2e2>4pe0a0.
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14.29	 8V9 = 31
3 eV.

14.35	 -31.95 eV, -63.90 eV, -83.33 eV, 31.95 eV.

14.37	 (a) Z>n2a.

14.38	 1v +
1
22hnm.

14.41	 0.45, 0.42, 0.28, and 0.25 Å. General formula: Re> 31Zb>Za21>2 - 14 .

Chapter 15

15.2	 1, 1, 1, 1; 1, 1, -1, -1; 1, -1, 1, -1; 1, -1, -1, 1; where the symmetry eigenvalues 
are listed in the order En, Cn21z2, Cn21y2, Cn21x2.

15.3	 (b) 2.

15.4	 (a) 56.

15.5	 (a) 35; (b) 65; (c) 95; (d) 125; (e) 115.

15.6	 (a) 540; (b) 900; (c) 1404.

15.12	 CO2 for example.

15.13	 (a) a1: H11s + H21s, C1s, C2s, C2pz, O1s, O2s, O2pz
. b1: C2px, O2px. b2: C2py, 

O2py, H11s - H21s. (b) Ten s, two p; seven s, one p. (c) Partial answer: For i(C): 
C1s; for b1CH12: H11s, C2s, C2py, C2pz; for l11O2: O2s, O2py, O2pz. (d) 7 * 7.

15.14	 There are nine a1, nine b2, two b1, and two a2 orbitals.

15.17	 (c).

15.20	 For the a1 MOs, 3dz2, and 3dx2 - y2 contribute. For the 1b2 MO, 3dyz contributes. For the 1b1 
MO, 3dxz contributes.

15.28	 Interchanges the subscripts 1 and 3 for the b symmetry species.

15.29	 (a) No.

15.30	 Partial answer: 1ag � g2; 1b1u � g6; 2ag � g3 + g1; 2b1u � g5 + g7 - g8, where 
the coefficients are omitted.

15.31	 (a) Gradient: 2c1xi + 2c2yj + 2c3zk. Hessian rows: 2c1 0 0; 0 2c2 0; 0 0 2c3.

15.32	 (a) RCH = 1.09 A� , RCO = 1.43 A� , ROH = 0.96 A� , �HCH = 109.5�, �HCO = 109.5�, 
�COH a bit less than 109.5�, D1HCOH2 = 60�. (b) RCH = 1.08 A� , RCC = 1.34 A� , 
�HCH a bit less than 120�, �HCC a bit more than 120�.

15.33	 (a) One stationary point. (b) One saddle point.

15.34	 (a) x = 1, y = 2.

15.36	 Rows: 0  0.96  0.96; 0.96  0  1.51; 0.96 1.51 0 (where distances are in angstroms).

15.37	 (a) T. (b) T. (c) T. (d) T.

15.39	 (a) 0.14 kJ/mol; (b) 1.10 kJ/mol; (c) 0.0015 kJ/mol.

15.40	 (a) 10.49 eV; (b) 10.18 eV, 234.8 kcal/mol; (c) 222.6 kJ/mol, 222.2 kJ/mol including 
vibrational contributions (Prob. 15.39).

15.41	 (a) Rows: C1; X2 1 1.0; O3 1 1.16 2 90.0; O4 1 1.16 2 90.0 3 180.0 (where the semicolons 
are not actually present in the Z-matrix). (b) C1; H2 1 1.09; H3 1 1.09 2 109.47; H4 1 1.09 
2 109.47 3 120.0; H5 1 1.09 2 109.47 3 -120.0 (c) C1; O2 1 1.22; H3 1 1.08 2 120.0; H4 1 
1.08 2 120.0 3 180.0 (d) N1; X2 1 1.0; H3 1 1.01 2 109.0; H4 1 1.01 2 109.0 3 120.0; H5 1 
1.01 2 109.0 3 -120.0

15.45	 (a) RCO = 1.207 A� , RCH = 1.083 A� , �HCO = 122.5�, �HCH = 114.9�, planar; 2.66 D; 
1337, 1378, 1693, 1916, 3163, 3234 cm-1.

15.52	 -75.5838626 hartrees at 100�; 108.0�.

15.53	 3.02 kcal/mol.

15.54	 (a) Staggered conformation. (b) Planar with D(OCOH) = 180�.

15.56	 (c) 1.6 kcal/mol (experimental value is 6 kcal/mol).

15.57	 (a) 1.41 D, 4.55 D, 7.2 kcal/mol. (b) 6.9 kcal/mol with a scale factor of 0.89.

15.58	 (b) 0.9 kcal/mol.
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15.59	 0 D, 2.24 D, 2.8 kcal/mol without zero-point energy, 2.5 kcal/mol with zero-point energy.

15.60	 Only one conformer at a local minimum; 0.305 D.

15.61	 4.

15.62	 1.0 for H1s; 1.70 for He1s; 5.70 for C1s, 1.625 for C2s and C2p; 6.70 for N1s, 1.95 for N2s 
and N2p.

Chapter 16

16.1	 1.86 * 1028.

16.2	 82% to 89% for n = 20; 44% to 55% for n = 200.

16.3	 0.9731.

16.7	 (a) 8, 8; (b) 10, 6.

16.11	 True.

16.12	 (a) 1.180A� , 16.43 eV, 378.9 kcal/mol.

16.23	 (a) - (3a>2)(3r>p)1>3.
16.29	 (a) 20.47 eV, 17.04 eV, 16.38 eV.

16.41	 (a) 2.

16.42	 (a) 42; (b) 3.

16.45	 (a) RCH = 1.059 A� , RCN = 1.132 A� ; RNH = 0.985 A� , RCN = 1.154 A� . 
(b) RCH = 1.155 A� , RCN = 1.169 A� , �HCN = 77.5�.

16.46	 (a) Both conformers at minima are planar. TS has D1HOCO2 = 96.0�, and 
D1HOCH2 = -86.4�. 13.5 and 7.4 kcal/mol from the low-energy and 
high-energy conformers, respectively.

Chapter 17

17.1	 (a) a + 21>2b, a, a - 21>2b; f1 =
1
2 f1 + 2-1>2f2 +

1
2 f3, f2 = 2-1>2f1 - 2-1>2f3, 

f3 =
1
2 f1 - 2-1>2f2 +

1
2 f3. (b) 0.707, 0.707; (c) 1, 1, 1; (d) 1.025, 0.318, 1.025; (e) 0.828 b.

17.2	 (a) Same as Prob. 17.1; (b) 0.707, 0.707; 0.707; 0.707; (c) 12, 1, 12; 1.5, 1, 1.5; (d) 1.025, 0.318, 
1.025; 1.025, 0.318, 1.025; (e) 0.828b, 0.828b.

17.6	 P12 = 1.448, P23 = 1.725; q1 = 1.00, q2 = 1.00.

17.9	 (a) 27 kcal/mol; (b) 1.4 eV.

17.10	 42 kcal/mol, 69 kcal/mol.

17.11	 (a) e1 = a + 31>2b, e2 = a, e3 = a, e4 = a - 31>2b, 
f1 = 2-1>2f1 + 6-1>21f2 + f3 + f42, f2 = 3-1>2f2 + 3-1>2e2pi>3f3 + 3-1>2e4pi>3f4, 
f3 = 3-1>2f2 + 3-1>2e-2pi>3f3 + 3-1>2e-4pi>3f4; P12 = 0.577; q1 = 1, q2 = 1, q3 = 1, 
q4 = 1; F1 = 0, F2 = F3 = F4 = 1.155, delocalization energy = 1.464b. 
(b) P12 = P23 = 1.414. Hint: Each set of spatially perpendicular MOs has three electrons.

17.12	 a = -6.1 eV, b = -3.3 eV; 6.9 eV.

17.13	 (c) For azulene, 0.0231 �b � , aromatic.

17.14	 (a) 1.401 A� ; (b) 1.402 A� ; (c) 1.409 A� .

17.15	 (c) f1 = 0.3011f1 + f4 + f5 + f82 + 0.2311f2 + f3 + f6 + f72 + 0.4611f9 + f102.

17.19	 0.84, 0.39, 0.39, 0.84; the end carbons.

17.24	 (c) a + 1.33g, a + 0.80g, a + 0.80g, a - 1.33g, a - 1.33g, a - 4.0g.

17.26	 Predicted Re = 0.

17.28	 CNDO: (b), (d), (e), (f), (g). INDO: (d), (e), (f), (g). MNDO: (d), (e), (g).

17.29	 -59.24 kcal/mol.

17.30	 (a) AM1: 0.004 D, -24.3 kcal/mol; PM3: 0.005 D, -23.7 kcal/mol (experimental dipole 
moment is 0.08 D). (b) AM1: 1.317 A� , 98.8�, 1.98 D, 4.0 kcal/mol; PM3: 1.290 A� , 93.5�, 
1.77 D, -0.9 kcal/mol. (c) AM1: 22.0 kcal/mol; PM3: 23.5 kcal/mol.
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17.31	 1.25 kcal/mol for AM1; 1.4 kcal/mol for PM3.

17.32	 RCO = 1.227 A� , �HCH = 115.5�, 2.32 D, lowest wavenumber is 1147 cm-1.

17.33	 D1CCCC2 = 74.7� and m = 0.01 D for the gauche conformer. 0.7 kcal/mol.

17.34	 1.48 D, 4.02 D, 7.4 kcal/mol.

17.36	 Transition state has RCH = 1.298 A� , RCN = 1.216 A� , �HCN = 67.5�.

17.37	 (a) 5, 7, 3, 3, 3.

17.39	 MM+  in HyperChem gives 3.9 kcal/mol.

17.40	 MM+  in HyperChem gives 2.3 kcal/mol.

17.45	 (a) -25.32 kcal/mol; (b) -32.50 kcal/mol; (c) 6.29 kcal/mol.

17.46	 (a) Disrotatory; (b) conrotatory.

17.47	 (a) High.
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Index

A
AA force field, 636
Ab initio calculations, 436, 571 (see also Configuration 

interaction; Coupled-cluster method; Hartree–
Fock method; Møller–Plesset perturbation 
theory)

database of, 437
of entropies, 500
errors in, 525
of geometries, 480–490
of heats of formation, 499–500, 572–574
input for, 501–505
kinds of, 505
output of, 505–506
performing, 501–507
programs for, 500–501
of rotational barriers, 475
specification of, 449, 531
of vibrational frequencies, 496–498, 505

Absolute reference, 80
Absolute value, 16
Absorption of radiation, 259 (see also Spectrum)
ACES, 501
Acetylene, 479, 586
Activation energy, 572, 591, 653
Active electrons, 536
Active orbitals, 536
ADF, 563
Adiabatic ionization energy, 456
Adjoint of matrix, 219
Aharonov, Y., 94
AIM theory, 462–463
All-atom force field, 636
Allowed transition, 260
Alternant hydrocarbons, 613, 617
Aluminum molecule, 373
AMBER force field, 635, 636
AM1 method, 630, 633, 652
AMPAC, 632
Amplitudes, vibrational, 497
Amplitudes in CC method, 548
Analytical gradients, 483, 485, 543, 550, 562

Angstrom, 2
Angular momentum, 99–114

addition of, 300–306
in atoms, 305–315
classical, 99–100
commutation relations for, 100–101, 109,  

300–301
conservation of, 99, 102, 119–120
eigenfunctions for, 104–110
eigenvalues of, 105, 108–109, 114, 300–301
ladder operators for, 110–114, 283–284
letter codes for, 138, 305, 356, 375
in molecules, 354, 356, 375, 437
nuclear spin, 281
operators for, 100–104, 119
orbital, 99–114, 305
parity of eigenfunctions of, 193, 313–314
spin, 265–284, 306, 311–312
and symmetry, 334
total, 301, 305–306, 314–315, 316, 320
uncertainty relations for, 109

Anharmonicity, 72, 352
Anharmonic oscillator, 232, 235
Annulenes, 611, 615
Antiaromaticity, 615
Antibinding region, 431–432
Antibonding orbitals, 363, 374
Anticonformation, 481
Antisymmetric functions, 269–271, 275
Antisymmetric spin functions, 272, 276
Antisymmetrization operator, 286
Apparent surface charges (ASC), 515–516
Aromaticity, 614–615
Associated Legendre functions, 116–117
Associativity, 35, 189, 335
Asymptotic behavior, 131
Atomic charges, 459, 462–464, 639, 651
Atomic orbitals, 129, 240, 289–298
Atomic solvation parameters, 648
Atomic surface tensions, 648
Atomic units, 352–353
Atomic valence state, 587–588
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Atomization energy, 489, 567 (see also Dissociation 
energy)

Atoms:
many-electron, 289–324, 419 (see also Helium atom; 

Lithium atom)
one-electron (see Hydrogen atom) 1, 2, 635

Atoms in molecules (AIM) theory, 462–463
Atom types, 634
Austin Model 1 method (see AM1 method)
Automatic model builders, 506–507
Auxiliary basis set, 509, 544
Auxiliary equation, 22
Average value, 51–54, 91, 156, 173, 180, 181
Axis of symmetry (see Symmetry axis)

B
B3LYP functional, 566, 567, 569, 579
B3PW91 functional, 566, 579
Bader, R. F. W., 363, 463
BALLView, 646
Banana bonds, 479
Barrier to internal rotation, 475–476, 637–638
Barrier height for reaction, 572, 591, 652
Bartlett, R. J., 540, 546
Basis, 98, 189, 190, 335
Basis functions, 209, 293, 390, 409, 442–449, 529,  

543, 562 (see also Gaussian-type function (GTF); 
Slater-type orbitals (STOs); Symmetry-adapted 
basis functions)

3-21G, 446, 447
3-21G(*), 447
3-21++G, 447
6-31G, 446, 527
6-31G*, 446–447, 579, 580, 617, 632, 638
6-31G**, 446, 579, 580
6-31+G*, 447
6-31++G*, 447
6-311G**, 447, 517
aug-cc-pVnZ, 448
cc-pVnZ, 447–448, 454, 551
cc-pCVnZ, 447
cc-pVQZ, 527
in correlation calculations, 529, 543, 562
correlation consistent (cc), 447–448, 455
in DFT, 569
Gaussian Basis Set Exchange for, 448
notation for, 527
Pople, 447

STO-3G, 445576
test sets of data, 527–528

Basis-set correlation energy, 529
Basis Set Exchange, 448
Basis-set incompleteness error, 525
Basis-set superposition error, 576–577
Basis-set truncation error, 514, 525, 527, 543, 544
Becke, A. D., 565, 566, 570
Becke (B) functional, 565
Bell, J. S., 186
Bell’s theorem, 186
Bent bonds, 468
Benzene:

HMO treatment of, 606–609, 615
VB treatment of, 586

Berlin, T., 431
Beryllium atom, 300, 322–323, 526
Beryllium molecule, 372, 375
BFGS procedure, 488
Bibliography, 665–666
Binding region, 431–432
Blackbody radiation, 3
Block-diagonal form, 205, 213, 249
Block-diagonal Newton–Raphson method, 489
BMK functional, 567, 572
Bohm, D., 94, 186, 187
Bohmian mechanics, 187
Bohr (unit), 353
Bohr, N., 5, 186
Bohr correspondence principle, 26
Bohr magneton, 148
Bohr radius, 136, 353
Bohr theory of H atom, 5, 10
Boltzmann distribution law, 73, 127
Bond, chemical, 363, 422–426, 430–432, 464, 470
Bond angles (see also Geometry of molecules)

prediction of, 484
Bond bending terms in force fields, 637, 642
Bond eigenfunctions, 583
Bonding orbitals, 363, 374, 468–469
Bond integral, 359, 602, 606, 613, 615
Bond lengths, 127–128, 374, 617 (see also Geometry of 

molecules)
table of typical, 484

Bond orbital, 469
Bond order, 374

Mayer, 460
pi-electron, 616–617
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Bond-stretching terms in force fields, 636–637, 642
Born, M., 9–10, 11, 215, 347
Born–Oppenheimer approximation, 344–347,  

429, 525
Born postulate, 10, 46, 179, 184
Boron molecule, 372
Bose–Einstein condensation, 277
Bosons, 271, 277
Boundary conditions, 13, 22, 28, 29, 39, 55,  

132–133
Bound state, 31, 131
BOVB method, 591
Box, particle in a (see Particle in a box)
Boys, S. F., 442
Bracket notation, 155
BSSE, 576–577
Buckminsterfullerene, 543
Bump check, 490
Butadiene:

cyclization of, 652–653
HMO treatment of, 603–605, 615, 617
s-trans, s-cis, and gauche, 603

Butane, 481, 500

C
Calculus, 18
Cambridge Structural Database, 506
Canonical MOs, 466
Canonical VB structures, 583
C++ program for Numerov solution, 79
Capping atom, 580, 594, 595, 647
Carbon molecule, 372–373, 529, 535
Carbon monoxide, 392, 393
Carbon valence state in methane, 588
Cartesian coordinates, 486, 504
Cartesian Gaussian, 442
CASPT2 method, 539, 546
CASSCF method, 536, 539
Causality, 9, 184–187
Cavitation contribution, 514, 650
Cayley, Arthur, 215
CBS limit, extrapolation to, 454, 527, 551
CBS methods, 574
ccCA, 573
CCCBDB, 437, 505
CCD method, 548–550

cc-pVnZ basis sets, 447–448, 454, 551
CCSD method, 550, 571
CCSD-R12 method, 551
CCSDT method, 550
CCSD(T) method, 527, 550, 551, 571, 572
CCSD(T)-R12 method, 551
Center of mass, 122, 331
Center of symmetry, 329–330
Central-field approximation, 291
Central force, 118, 130
CFMM, 509
CGenFF force field, 635–636
Chain rule, 102
Chaos, 9
Characteristic equation, 217, 220
Characteristic polynomial, 217, 221
Charge cloud, 147, 407, 430, 460, 559
Charge Model 1, 2, 3, 4, 5 charges, 463
Charges on atoms in molecules, 459, 462–464, 639, 

650–651
CHARMm force field, 635
CHARMM force field, 635–636
CHARMM program, 636, 646
CHELPG, 462
ChemBio3D, 504, 646
ChemDB, 506
Chemical bond, 363, 422–426, 430–432, 464, 470
Chemical equilibrium in solution, 517–518
Chemical reactions, 591–595, 652–654
Chemical shift, 578–580 

of nucleus, 578–579
in organic compounds, 580

Cholesky decomposition method, 510
Circulant, 607
CI (see Configuration interaction)
CI-SD, 529–530, 531, 550
CI-SDTQ, 530, 550
CI-singles (CIS) method, 538–539
Classical barrier height, 591
Classically forbidden region, 30, 70, 74, 78
Classical mechanics, 8–9, 11, 62–64, 196
Clebsch–Gordan coefficients, 302, 312
Cluster operator, 547
CM charges, 463
CNDO method, 624–626
Cofactor, 203
Column matrix, 188, 217
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Column vector, 188, 217
Commutation relations:

for angular momentum, 100–101, 111, 301
for coordinates and momenta, 91
for spin, 266

Commutator, 35, 90–94
Commutator identities, 91
Commuting operators, 35, 91–94, 109, 167–169, 331
Comparisons of calculational methods:

for hydrogen bonding, 576–578
for NMR shielding constants, 578–580

Complete active space SCF method, 536
Complete basis set methods, 573
Complete neglect of differential overlap method (see 

CNDO method)
Complete sets, 164–167, 167–169, 181
Complex conjugate, 16
Complex numbers, 16–17
Complex plane, 16
Composite methods for energy calculations,  

572–574
Computational Chemistry Comparison and Benchmark 

Database, 437
Computer algebra systems, 84
Condon–Slater rules, 320–323
Configuration:

atomic, 300, 307, 309–310, 318
molecular, 371–375, 375, 441

Configuration function, 299, 528, 529, 548
Configuration interaction, 528–539

in atoms, 299–300, 313, 531–534
in diatomic molecules, 381, 385
in He, 531–534
in polyatomic molecules, 528–539

Configuration state function (CSF), 299, 525, 528,  
529, 548

Confocal elliptic coordinates, 354, 360
Conformational energy differences, 500
Conformational searching, 490–496
Conformations of molecules, 481, 490–496
Conformers, 481
Conjugated bonds in force fields, 641–642
Conjugated polyenes, 605–606

monocyclic, 610–611
Conjugate-gradient density-matrix-search method,  

563, 633
Conjugate-gradient method, 489–490

Conjugate momentum, 39–40
Conjugate transpose, 219
Conjugate variables, 40
Conrotatory cyclization, 652–653
Consciousness, 186
Conservative system, 39
Constants of motion, 334
Continuant, 603
Continuous eigenvalues, 29, 30, 131, 160–161
Continuous fast multipole method, 509
Continuous function, 23–24, 29, 55
Continuum functions, 131, 165, 238
Continuum solvent model, 511–518, 648
Contracted Gaussian basis set, 444–449
Contraction coefficients, 444, 449
Conventional stored-integral method, 508
Conversion factors, table of, 661
Cooley–Numerov method, 348
Copenhagen interpretation, 186
Core charge, 624, 627
Core–core repulsion energy, 624, 626–627, 629, 631
Core electrons, 397
Core Hamiltonian, 407
CORINA, 506
Correct zeroth-order functions, 246, 247, 249–250
Correlation, dynamic, 525
Correlation, electron, 298–300, 386, 475 (see also 

Configuration interaction; Coupled-cluster  
(CC) method; Density-functional theory;  
Møller–Plesset (MP) perturbation theory)

Correlation, static, 526
Correlation consistent (cc) basis sets, 552, 569
Correlation diagram, 370–371
Correlation energy, 298, 475–476, 480, 525–528,  

561, 564
dynamic, 525
kinetic, 559, 561
nondynamic, 525
static, 526
strong, 526

Correlation-energy functional, 561, 564
Correspondence principle, 26
COSMO, 517
COSMO-RS, 517, 652
Coulomb (unit), 17
Coulomb hole, 298
Coulombic correlation energy, 559
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Coulomb integral, 252, 254, 322–323, 408, 602
Coulomb matrix element, 508–510, 563
Coulomb operator, 408
Coulomb’s law, 17, 129
Counterpoise correction, 576–577
Coupled-cluster (CC) method, 546–552

CCD, 548–550
CCSD, 550, 571
CCSD-R12 method, 551
CCSDT, 550
CCSD(T), 550, 571, 572
CCSD(T)-R12 method, 551
EOM-CCSD, 550

C-PCM, 517
Cramer’s rule, 205
Crossover point, 509
Cross product of vectors, 96–97
Cross terms in force fields, 638–639
CSF (see Configuration state function)
Cubic splines, 348
Cusp, 138, 442
Cutoffs in force fields, 640–641
Cyclic permutation, 101
Cyclobutadiene, 610
Cycloheptadecane, 495
Cyclooctatetraene, 611

D
D3H4, 632
Database(s)

of structures, 506
for quantum chemistry calculations, 437
for quantum chemistry literature, 437

Database searching, 506
Davidson correction, 531
de Broglie, L., 5, 186, 187
de Broglie wavelength, 5, 11
Debye (unit), 392
Degeneracy, 50–51, 73, 94, 110, 160, 168

in hydrogen atom, 134–135, 268, 315
in many-electron atoms, 255–256, 307, 314
in molecules, 356, 357, 379, 439
orbital, 438–439
of particle in a cube, 50
of rigid two-particle rotor, 126

Degenerate perturbation theory, 245–256

Degree of degeneracy, 50, 51
Degrees of freedom, 480
Del, 97
Delocalization energy, 614–615
Delocalized internal coordinates, 486
Delta function, 177–179
Delta orbital, 480
Density fitting (DF) approximation, 509, 544, 551, 567
Density-functional theory, 436, 552–572, 581

and activation energies
basis sets in, 562, 569
and dispersion corrections, 568
and excited states, 570, 571
and NMR shielding constants, 579

Density matrix, 416, 633
Density matrix elements, 411, 618
Determinants, 202–205, 275–276, 465, 603–604, 607

Slater, 277–278, 320–321, 465
Determinism, 9, 186
Dewar, M. J. S., 615, 626
Dewar structures, 586
Dewar-type theory, 626
DF-LMP2 method, 544
DFT (see Density-functional theory)
DFT-D method, 568
DFT-D3 method, 568
Diagonal determinant, 204
Diagonal form, 205, 249
Diagonalization of matrices, 221–222
Diagonal matrix, 189
Diagonal planes, 338
Diatomic molecules:

angular momentum in, 354, 356, 375
electronic structure of, 344–397
MO configurations of, 369–375
rotation of, 126–128, 350
SCF wave functions of, 390–396
table of properties of, 373
terms of, 375–379
vibration of, 71–74, 350–352
and virial theorem, 420–426

Dielectric constant, 511
Differential equations, 21–22

power-series solution of, 60–62
Diffraction, 2, 5, 6
Diffuse basis function, 446, 447
Diffusion-equation method (DEM), 494
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Diffusion quantum Monte Carlo (DQMC)  
method, 575

Dihedral angles, 482, 502, 503
rules for predicting, 484

Dimensionless variables, 76–78
Dipole-in-a-sphere method, 512–513, 515
Dipole moment, electric, 147

atomic unit of, 352–353
induced, 406
of molecules, 392, 404–407
operator for, 405
solvent effect on, 511, 518
and symmetry, 332

Dipole moment, magnetic, 148, 280–282
Dipole-moment operator, 405
Dirac, P. A. M., 11, 265, 270, 280, 655
Dirac delta function, 177–179
Dirac–Fock calculations, 581
Dirac–Slater calculations, 581
Direct CI method, 534
Direction angles, 98
Direction cosines, 472–473
Direct MP2 method, 543
Direct SCF method, 508
Discontinuity, 55
Dispersion contribution to solvation Gibbs energy, 514
Dispersion corrections, 568, 577–578, 631–633
Dispersion force, 374, 423, 432
Disrotatory cyclization, 652–653
Dissociation energy, 346, 392, 456, 498–499

table of, 373
Distance-geometry search method, 491
Distance matrix, 491
Divergence, 116
Divide and conquer method, 633
DNA, dispersion interactions in, 577
Dot product of vectors, 95–96
Double hybrid functionals, 567–568
Doublet term, 315
Double-zeta basis set, 443, 444
Double-zeta plus polarization (DZP) basis set, 444
Doubly excited function, 528
D-PCM, 517
DQMC method, 575
DREIDING force field, 636
d-type Gaussian, 442
Dual solids, 338, 339

Dummy atom, 503
Dummy variable, 61
Dunning basis sets, 446, 447
Dynamic correlation, 525
DZ basis set, 443, 444
DZP basis set, 444

E
Ecce, 504
Effective core potential (ECP), 507, 581
Effective nuclear charge, 295
EH method, 621–623
Ehrenfest’s theorem, 196
Eigenfunctions, 38–39, 42 (see also Harmonic 

oscillator, etc.)
for angular momentum, 104, 108–109
of commuting operators, 90–94, 167–169
of Hermitian operators, 159–161, 164–167
of momentum operator, 42, 165
of parity operator, 170–171
of permutation operator, 269
of position operator, 177–179
of spin operators, 266–267, 272, 312, 388

Eigenvalues, 38–39, 42
for angular momentum, 104, 108–109
degenerate (see Degeneracy)
of Hermitian operators, 159
of a matrix, 216–217, 219–222, 534
and measurement, 42–44, 174, 180–181

Eigenvectors, 216–217, 219–222, 534
[18]annulene, 611
Einstein, A., 3–4, 185, 277
Electric constant, 18
Electric dipole moment (see Dipole moment, electric)
Electric field, 258, 405, 511, 512
Electric potential, 460
Electromagnetic radiation, 2

interaction with matter, 258–260
Electron, 4, 5–6, 10, 128, 147, 266, 270

magnetic moment of, 280
spin of, 265–284

Electron configuration (see Configuration)
Electron correlation, 298–300, 386, 475 (see also 

Configuration interaction; Coupled-cluster 
method; Density-functional theory; Møller–Plesset 
perturbation theory)
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Electronic energy, 345, 347, 350
Electronic Hamiltonian, 345, 440
Electronic transitions, 538, 606, 613–614, 625
Electron probability density, 294, 361–362, 392,  

402–404, 460–461, 552–553 (see also 
Density-functional theory)

maxima in, 404
Electron repulsion integrals (ERIs), 411, 412, 442, 443, 

507–508, 534, 542, 543
in CNDO method, 624, 625
in Dewar-type theories, 626
equalities for, 412
in INDO, 625
in MNDO, 629
in NDDO, 626
notation for, 411
in PPP method, 620
rapid calculation of, 507–508

Electronvolt (eV), 136
Electrostatic contribution to solvation Gibbs energy,  

513, 649
Electrostatic potential (ESP) charges, 461,  

464, 639
Electrostatic terms in force fields, 639, 641
Electrostatic theorem, 429–432
Emission of radiation, 260
Empirical force field (EFF) method (see Molecular-

mechanics method)
Empirical scaling procedure, 579
Energy (see also Atomization energy; Dissociation 

energy; Energy levels; Orbital energy)
electronic, 345, 347, 350
Hartree–Fock, 408, 410, 411
kinetic, 41, 70, 201, 363, 418–426, 432
minimization of, 482–490, 643
potential, 8, 41, 63, 97, 129, 171–172, 200–201,  

418–426 (see also Virial theorem)
Energy conversion factors, table of, 661
Energy gradient, 483, 485, 489, 543, 550
Energy levels:

atomic, 314–315, 317–318
of free particle, 28
of harmonic oscillator, 66
of hydrogen atom, 134, 136–137
of particle in a box, 24, 49, 50
of particle in a well, 30
of rigid two-particle rotor, 126

Energy-localized orbitals, 467–470, 479

Energy operator, 41, 93 (see also Hamiltonian 
operator)

Enthalpy of formation, 499–500, 626, 627, 644–645
Entropies, 500
EOM-CCSD, 550
Equilibrium dissociation energy, 346
Equilibrium internuclear distance, 72, 346
Equilibrium vibrational frequency, 72, 350, 496–498
Equivalent electrons, 308, 310, 378
Equivalent orbitals, 466
ERIs (see Electron repulsion integrals)
Errors in ab initio calculations, 525
ESP charges, 461, 464, 639
ESR spectroscopy, 281
Ethane, 30, 475–476, 638
Ethanol, NMR spectrum of, 282
Ethyl cation, 483
Ethylene, 476–480, 586
Euclidean norm, 98
Euler’s theorem, 417–418
Even function, 68, 170, 171, 269
Exact exchange, 566–567
Exchange–correlation energy functional, 558, 559, 561

gradient-corrected, 564–565
hybrid, 566–567
meta-GGA, 566, 579

Exchange–correlation potential, 558, 564–569
Exchange degeneracy, 255
Exchange energy, 559, 561, 564
Exchange-energy functional, 561, 564
Exchange integral, 252, 254, 322–323, 408
Exchange matrix element, 508, 509
Exchange operator, 269, 408
Excitation level, 541
Excitation operator, 547
Excited state, 24
Exclusion principle, 276–277
Expansion coefficients, evaluation of, 162–164,  

165–166
Expansion of functions, 162–167
Expectation value (see Average value)
Explicitly correlated wave function, 545
Explicit-solvent method, 511, 648
Extended basis set, 390
Extended Hückel (EH) method, 621–623
External potential, 553
Extrapolation to CBS limit, 455–456, 551
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F
Facio, 504
Fast multipole method (FMM), 508–509
FC calculation, 529, 542, 550
FCI calculation (see Full CI calculation)
Fermi hole, 298
Fermions, 271, 277
Feynman, R. P., 11, 429, 432
Fine structure, 265, 317
Fine-structure constant, 280
Finite-element method, 349
First-order correction:

to energy, 235, 247
to wave function, 236

First-order saddle point, 481
First principles calculation, 436
First-row atom, 445
Fixed-node (FN) DQMC method, 575
Fletcher–Reeves formula, 490
Fluorine molecule, 391
FMM, 508–509
Fock,V., 290, 292
Fock matrix elements, 410–412

in CNDO method, 624
in MNDO method, 629
in PPP method, 620–621
rapid evaluation of, 508–510

Fock operator, 292, 408, 408, 558
Forbidden transition, 260
Force, 8, 62, 97, 430
Force constant, 63, 72, 349, 483, 496
Force-constant matrix, 483, 496
Force fields, 634

list of, 635
parametrization of, 642–643
terms in, 634, 637–640

Fourier series, 161
Fourier-transform Coulomb method, 510
Fragmentation methods, 580–581
Franck–Condon principle, 538
Free particle, 28, 42, 51
Free-valence index, 697
Frequency, vibrational (see Vibrational frequencies)
Frontier orbitals, 654
Frozen-core (FC) approximation, 529, 542
FTC method, 510
F12 method, 527

Full CI (FCI) calculation, 529, 530, 550
for C2, 529

Functional, 553 (see also GGA functionals; Hybrid 
functions; meta-GGA functionals)

Functional derivative, 558
Fundamental frequency, 498
Fusion, nuclear, 357

G
G2 method, 572
G2 set, 527
G2/97 set, 527
G3 method, 572–573
G3B method, 573
G3S method, 573
G3SX method, 573
G3X method, 573
G3(MP2) method, 573
G3X(MP2), 573
G4 method, 573
Gabedit, 504
GAMESS, 501, 504, 581
+Gauche conformation, 481
Gauge, 578
Gauge-including atomic-orbital (GIAO) method,  

578, 579
Gaussian, 500, 502, 504, 505, 563, 580, 593, 632, 646
Gaussian Basis Set Exchange, 448–449
Gaussian elimination, 206
Gaussian-2 method, 572
Gaussian-3 method, 572–573
Gaussian-type function (GTF), 442–443, 444–449

contracted, 444–449, 562
Gauss–Jordan elimination, 206, 208
GaussView, 504
GB/SA method, 649
GDIIS method, 489
Generalized Born equation, 649
Generalized Born/surface area method, 649
Generalized-gradient approximation (GGA), 564–565
Generalized Hellmann–Feynman theorem, 428
Generalized transition-state theory, 593
Generalized valence-bond (GVB) method, 589–590
Genetic algorithm (GA) search method, 491–492
Geometry of molecules, 480–496

optimization of, 482–490, 501, 505, 643
relativistic effects on, 581
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in solution, 518
transition state, 594, 595

Gerade, 357, 371
g factor, 280
GGA functionals, 564–565

hybrid, 567–568
GIAO method, 568, 579
Gibbs energy of solvation, 513–515, 516–517, 712
Givens method, 222
Global minimum, 481, 490, 493, 494, 495
GMTKN30 database, 528
Goddard, W. A., 589
Google matrix, 222
Gradient, 97, 99, 483

energy, 483, 485, 489, 543, 550
Gradient-corrected functionals, 564–565
Gradient paths, 462–463
Greek alphabet, 662
Grid search method, 490
GROMOS force field, 635
Gross atomic population, 459
Gross populations, 459
Ground state, 24
Group, 335–336
Group theory, 336, 438–440
Groups, symmetry, 335–341
G3/05 test set, 527
GTF, 442–449
GVB method, 589–590

reaction surface, 594

H
H + H2 reaction surface, 593
Hamilton, W. R., 39
Hamiltonian function, 39
Hamiltonian operator, 39–42, 44–45

for atoms, 289, 319
for molecules, 344, 440
purely electronic, 345, 440

Harmonic oscillator, 62–71, 72, 200, 350, 418, 428
ladder operators for, 117
numerical solution of Schrödinger equation for, 

74–84
and virial theorem, 418

Harmonic vibrational frequency, 72, 350, 496–498
Harmonium, 241
Hartree (unit), 353

Hartree, D. R., 290, 295
Hartree–Fock energy, 408, 410, 411
Hartree–Fock equations, 292, 466, 512, 539
Hartree–Fock method:

for atoms, 292–295, 412–414
for CH4, 470–475
for C2H4, 476–480
for C2H6, 475–476
He example of, 412–414
for H2O, 449–456
for molecules, 381, 407–416, 440–480, 531, 579
for open-shell states, 441
for transition states, 594
unrestricted, 441
and vibrational frequencies, 498
and virial theorem, 422

Hartree–Fock operator, 292, 408, 409
Hartree–Fock–Slater method, 562
Hartree method, 289–292
h-bar, 9
Heats of formation, 499–500, 626, 627, 644–645, 

703–706
Heaviside step function, 177
Heisenberg, W., 7, 11, 186
Heisenberg uncertainty principle (see Uncertainty 

principle)
Heitler, W., 382
Heitler–London treatment of H2, 382–384, 387
Heitler–London wave functions, 413
Helium atom, 238

CI calculation for, 531–534
correlation energy of, 299
Hartree–Fock wave function for, 293–294
levels of, 315
perturbation treatment of, 238–241, 250–256
SCF calculation for, 412–414
and Slater determinants, 277
and spin, 271–273
variation treatment of, 242–245

Helium molecule, 373, 374, 387
Hellmann–Feynman electrostatic theorem, 429–432
Hellmann–Feynman theorem, 426–432
Hermite polynomials, 70, 86
Hermitian matrix, 218, 219–221
Hermitian operators, 156–161, 164–167, 181, 284, 607

definition of, 156–157
examples of, 157–158
theorems about, 158–161
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Hertz (unit), 73
Hessian matrix, 483, 487–489, 496, 592
Hess–Schaad resonance energy, 615
Heteronuclear diatomics:

MO treatment of, 393–395
VB treatment of, 396

HF method (see Hartree–Fock method)
Hidden variables, 186
Higher-level correction, 573
Hirshfeld-I charges, 464
HMO method (see Hückel molecular-orbital (HMO) 

method)
Hoffmann, R., 621, 622
Hohenberg–Kohn theorem, 552–554
Hohenberg–Kohn variational theorem, 555
HOMO, 526, 653, 654
Homogeneous differential equations, 21–22
Homogeneous electron gas, 559, 560
Homogeneous function, 418
Homogeneous linear equations, 206–208
Homonuclear diatomics:

MO treatment, 369–375, 390–392
table of properties of, 373
VB treatment, 382–388

Hooke’s law atom, 241
Hot bands, 73
Householder method, 222
H2

+  excited states, molecular orbitals for, 365–369
Hückel 4m + 2 rule, 610–611
Hückel molecular-orbital (HMO) method, 601–619

for benzene, 606–609, 615
for conjugated polyenes, 605–606
and electronic transitions, 606, 613–614
for heteromolecules, 618
matrix formulation of, 619
for monocyclic polyenes, 610–611
for naphthalene, 612–613
with overlap, 18–619

Hund, F., 386
Hund’s rule, 310–311, 373
Hybrid functionals, 566–567

B3LYP, 566, 569, 571, 579
B3PW91, 566B97, 567
B98, 567
BMK, 567, 572
double, 567–568
mPW2PLYP, 567–568

Hybridization, 365, 392, 475, 585, 586
Hybridizational invariance, 624
Hydrogen atom, 127–147 (see also Hydrogen atom wave 

functions)
degeneracy in, 134–135, 268, 315
energy levels of, 134
hyperfine splitting in, 320
quantum numbers for, 134–135
reaction with H2, 593–594
and spin, 268
terms of, 315
and virial theorem, 418

Hydrogen-atom wave functions, 135–147
for ground state, 135
nodes in, 135
parity of, 172
radial factors in, 138
real, 141–143
table of, 143

Hydrogen bonding, 576–578, 631–633
in force fields, 641

Hydrogen fluoride, 394, 396
Hydrogenlike atom, 129 (see also Hydrogen atom)
Hydrogenlike orbitals, 143–147
Hydrogen molecule, 379–384, 403

excited states of, 389–390
GVB method for, 589
Hamiltonian for, 344, 379
LSDA calculation for, 564
MO method for, 380–381, 384–386
VB method for, 382–386, 387
vibrational levels of, 350–352

Hydrogen molecule ion, 353–369, 425–426
Hylleraas, E., 244–245
HyperChem, 501, 632, 646
Hyperconjugation, 476
Hyperfine structure, 320
Hypervirial theorem, 417
Hypothetical particle, 71

I
icMRCI, 537
Identical particles, 268–270
Identity element, 335
Identity operation, 331
IEF-PCM, 517
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Imaginary frequency, 485, 505, 592
Imaginary number, 16
IMOHC method, 595
IMOMM method, 595
IMOMO method, 594–595
Importance sampling, 575
Independent function, 51
Indistinguishability, 268–270
Individual VB function, 584
INDO method, 623, 626
INDO/S method, 626
Induced dipole moment, 406
Infinite wave function, 55, 107, 132
Infrared spectrum, 73
Inhomogeneous differential equation, 21
Inhomogeneous linear equations, 205
Inner product, 98
Input

for ab initio calculation, 501–505, 634
for molecular-mechanics calculation, 634

Integrals (see also Bond integral; Coulomb integral; 
Exchange integral; Overlap integral; Resonance 
integral): 

Condon–Slater rules for, 320–323
electron repulsion (see Electron repulsion integrals 

(ERIs))
multicenter, 384, 442
notation for, 46, 155, 268, 411
and parity, 172
table of, 663

Integration by parts, 158
Interelectronic distance, 527
Interference, 2, 5
Intermediate normalization, 234
Internal coordinates, 122, 486
Internally contracted MRCI, 537
Internal rotation, 30, 475–476, 637–638
International System of units, 17
Internuclear repulsion, 345
Intrinsic angular momentum (see Spin)
Intrinsic reaction coordinate (IRC), 593–594
Inverse of matrix, 216, 228
Inversion of coordinates, 193, 329–330, 331, 334
Inverted multiplet, 317, 379
Ionic VB structures, 385, 396, 584, 585, 586, 588
Ionization energies, 456
IPCM, 516

IRC, 593–594
Irreducible representation, 438
Isodensity polarizable continuum model (IPCM), 516
Isodensity surface, 461
Isomerization energies, 500
Isotopic masses, table of, 622

J
Jacobi method, 221
Jaguar, 501, 504, 563
Jellium, 560
j–j coupling, 320
J-matrix engine, 509
Jmol, 506

K
Kekulé structures, 586
Ket notation, 166
Kinds of calculations, 505
Kinetic correlation energy, 559, 561
Kinetic energy, 41, 70, 201, 363, 418–426, 432
Kinetic-energy density, 566
Kinetic energy operator, 41, 45
Kohn, W., 552, 555, 559, 655
Kohn–Sham (KS) method, 555–559
Kohn–Sham operator, 555, 557, 558
Kohn–Sham orbital energies, 555, 559
Kohn–Sham orbitals, 555, 557, 558, 562
Kolos, W., 381
Koopmans’ theorem, 293, 456, 559
Kronecker delta, 27, 162
KS DFT, 555–572

L
Ladder operators:

for angular momentum, 110–114
for electron spin, 283–284
for harmonic oscillator, 117
for hydrogen atom, 135

Lambda-type doubling, 377
Landé g-factor, 319
Laplacian, 45, 119
LCAO approximation, 359–369
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LCCSD(T) method, 551, 579
LCCSD(T0) method, 551
LDA, 559–561
Lee–Yang–Parr functional, 565
Lennard-Jones potential, 640
Level:

atomic, 314–315, 317
molecular, 378–379

Levy, M., 555
Light, 2–3, 6

interaction with matter, 258–260
Limited CI, 530
Linear combination, 50
Linear differential equations, 21
Linear independence, 51, 217
Linear molecules:

groups for, 339
terms for, 437, 438

Linear momentum (see Momentum)
Linear operators, 36, 180
Linear scaling, 509
Linear simultaneous equations, 205–208, 215
Linear variation functions, 209–215, 217, 218, 222
Line search, 488
Link atom, 594, 595
LinK method, 510
Lithium atom, 244, 273–274, 276, 278–280, 293,  

322–323
Lithium molecule, 372, 388, 391, 392

electron probability density in, 404
LMOs, 464–470
LMP2 method, 543
Local density approximation (LDA), 559–561
Locality, 186
Localized correlation methods, 535
Localized MP2 (LMP2) method, 543
Localized orbitals, 464–470, 472–475, 479, 590

Boys, 470
Edmiston–Ruedenberg, 467–470
Pipek–Mezey, 470

Local correlation (LC) method, 535
Local minimum, 481, 496
Local spin-density approximation (LSDA), 563–564, 

565
London, F., 382
London forces, 374, 423, 431
Löwdin population analysis, 459

Lowering operator, 111, 283
Low-mode search method (LMOD), 494, 495
LR-TDDFT, 570
L–S coupling, 305–306, 320, 375
LSDA, 563–564, 565
LUMO, 526, 654
LYP functional, 565

M
M05 functionals, 568–569, 
M06 functionals, 568–569
MacroModel program, 646
Maestro, 504
Magnetic dipole moment, 148, 280–282
Magnetic field, 147
Magnetic flux density, 147
Magnetic induction, 147
Magnetic moment, 148

spin, 280–282, 320
Magnetic quantum number, 149
Magnetogyric ratio, 281
Many-body perturbation theory (MBPT), 539
Mass-weighted force-constant matrix, 496
Mathcad, 84
Matrix (matrices), 187–190, 215–222

adjoint of, 219
algebra, 215
characteristic equation of, 217
column, 188
complex conjugate of, 219
conjugate transpose of, 219
determinant of a, 216
diagonal, 189, 217
diagonalization of, 221–222, 534
distance, 491
eigenvalues of, 16–217, 219–222, 534
eigenvectors of, 216–218, 219–222
elements of, 155, 188, 189
equality of, 188
Fock (see Fock matrix elements)
and functions, 190
Google, 222
Hermitian, 218, 219–220
Hessian, 483, 487–489, 496
inverse of, 216, 228
nonsingular, 216
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nonzero, 189
and operators, 189–190
order of, 189
orthogonal, 219, 220, 229–230
principal diagonal of, 189
product of, 188
and quantum mechanics, 189–190, 222
real, 218
row, 188
spin, 287
square, 189
sum of, 188
symmetric, 218
and symmetry operations, 335
trace of, 189
transpose of, 218
tridiagonal, 221
unit, 189
unitary, 219
zero, 189

Matrix element, 155, 188, 189
Matrix mechanics, 11
Matrix representative, 189
Maxwell, James Clerk, 2
Maxwell’s equations, 2
MCSCF method, 535–536, 546
Measurement:

and eigenvalues, 42–44, 174, 180, 181
of position, 10, 184–185 (see also Born postulate)
and reduction of wave function, 184–185
and superposition of states, 172–177
and uncertainty principle, 6–7, 93

Megahertz (MHz), 73, 
MEP, 461–462, 593
Meta-GGA functionals, 565–566, 579

B95, 566
M05 and M06, 568–569
Met-enkephalin, 494
Methane:

GVB treatment of, 589–590
localized MOs of, 472–475
SCF MO treatment of, 470–475
valence state of C in, 588
VB treatment of, 585–586

Metropolis criterion, 493
Metropolis Monte Carlo search method, 492
MIA approximation, 510

Microwave spectrum, 127
MINDO/3 method, 628
Minimal basis set, 390, 443, 444
Minimization of energy, 482–490, 503, 643
Minimum-energy path, 591, 593
Minor, 203
Missing parameters in force fields, 645–646
MM method, 634–648
MM2 force-field, 635
MM3 force field, 635
MM4 force field, 635
MMFF94 force field, 635, 636, 643
MNDO method, 628–630, 652
MNDO/d method, 632
Model builders, 506–507
Molden, 504
Molecular dynamics search method, 492, 493
Molecular dynamics simulations, 634, 641, 644
Molecular electrostatic potential (MEP), 461–462
Molecular geometry (see Geometry of molecules)
Molecular-mechanics (MM) method, 436, 634–648, 595

and energy differences between conformers, 643
and heats of formation, 644–645
and molecular geometries, 643
programs for, 646
and rotational barriers, 643
and vibrational frequencies, 645

Molecular-orbital (MO) method (see also Hartree–Fock 
method; Orbitals):

for diatomic molecules, 357–375, 384–388, 390–395
for H2

+  excited states, 365–369
for hydrogen molecule, 380–381, 384–386
for polyatomic molecules, 407–416, 440–480  

(see also under individual molecules)
and VB method, 384–386, 588

Molecular-orbital nomenclature:
for diatomic molecules, 356–357, 371, 393
for polyatomic molecules, 440

Molecular surface area, 461
Molecular surface electrostatic potential (MSEP), 

461–462
Molecular volume, 461
Molecule builder, 504
Molekel, 504
Møller–Plesset (MP) perturbation theory, 539–546  

(see also MP2 calculations)
convergence of, 543
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Molpro, 501
Moment of inertia, 125
Momentum, 5, 7, 39–40, 99
Momentum eigenfunctions, 42, 166
Momentum operator, 40–41, 97, 158
MO method (see Molecular-orbital (MO) method)
Monocyclic conjugated polyenes, 610–611
Monte Carlo search method, 491
MOPAC2012, 632
MOPAC2009, 632
Morse function, 86, 350
MP2 calculations, 542–546, 579, 577, 715, 716
MP2.5, 578
MP2.X, 578
MP4 calculations, 542, 543
MP4(SDQ) calculation, 542
MP-F12 method, 544–545
MP-R12 method, 544–545
mPW1PW functional, 571–572
MRCI method, 537
MSEP, 461–462
Mulliken population analysis, 456–460
Multicenter integrals, 442, 443
Multiconfiguration SCF method, 535–536
Multiconfiguration wave function, 526
Multiple minima problem, 481
Multiplet, 317
Multiplicative integral approximation (MIA), 510
Multiplicity, 315, 375, 437
Multipole expansion, 509, 515
Multipole expansion treatment of solvation, 515
Multireference CI method, 537
Muon, 357

N
Nanometer (nm), 2
Naphthalene, HMO treatment of, 612–6
Natural atomic orbitals, 459
Natural bond orbitals (NBOs), 459
Natural length, 636
Natural population analysis (NPA), 459
NDDO method, 626, 628
NDDO-SRP, 652
Net (atomic) charge, 459, 462–464
Net population, 457
Newton method, 483, 489

Newton–Raphson method, 483, 489
Newton’s second law, 8, 196
Nitrogen molecule, 373, 388, 469
NMR shielding constants, 282, 578–580
NMR spectroscopy, 281–283
NMR spin–spin coupling constants, 579, 580
Nodes, 26, 69, 76, 81, 135, 291, 575
Nonbonded interactions in force fields, 640
Noncovalent interactions, 576–578
Noncrossing rule, 371
Nonequivalent electrons, 308, 310, 376
Noninteracting particles, 120–121
Noninteracting system in DFT, 555
Nontrivial solution, 206
Nonzero matrix, 189
Normalization, 15, 25, 28, 46–47, 49, 54, 105, 161, 

267–268
of HMOs, 602
intermediate, 234
of Slater determinant, 278
of spherical harmonics, 105, 161
of spin functions, 267–268
of vectors, 98, 217

Normalization constant, 54
Normal mode, 73, 496–497
N-representability conditions, 539
Nuclear fusion, 357
Nuclear g factor, 281
Nuclear motion:

in atoms, 136, 320
in molecules, 347–352, 496

Nuclear spin, 281, 320
Nucleus, atomic, 4, 281
Null operator, 35
Numerov method, 74–84, 149–150, 349, 351
Numerov solution, C++ program for, 79
NWChem, 501

O
Objectivity, 186
Occupation numbers

for VB structures, 583
Odd function, 68, 170–172, 269
OMEGA, 506
One, nth roots of, 17
One-electron operator, 321, 404
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One-electron property, 530
ONIOM method, 595
ONX method, 510
Operator(s), 34–44, 56, 180

angular-momentum, 100–104, 119
antisymmetrization, 286
associativity of, 35
cluster, 547
commutation of, 35, 90–94, 109, 167–169
coordinate, 39, 40
Coulomb, 408
definition of, 34
difference of, 34
dipole moment, 405
eigenfunctions of (see Eigenfunctions)
eigenvalues of (see Eigenvalues)
equality of, 35
exchange, 269, 271, 408
excitation, 547
Fock, 292, 408, 409, 558
Hamiltonian, 39–42, 44–45, 289, 318–320, 344, 345, 440
Hartree–Fock, 292, 408, 409, 558
Hermitian, 156–161, 164–167, 180, 181, 284, 607
kinetic-energy, 41, 45
Kohn–Sham, 555, 557, 558
ladder (see Ladder operators)
Laplacian, 45
linear, 36, 180
and matrices, 189–190
momentum, 40–41, 42, 97, 158
one-electron, 321, 404
parity, 170–172, 334
permutation, 269
position, 40, 41, 177
potential-energy, 41
product of, 34–35
quantum-mechanical, 39–44, 56, 180
spin, 265–266, 283–284
square of, 36
sum of, 34
symmetry, 333–334, 437–440, 607
two-electron, 321
unit, 35
vector, 97

OPLS force field, 635
Oppenheimer, J. R., 347
Optical activity, 332–333

Optimization of geometry, 482–490, 506
Orbital (see Orbitals)
Orbital angular momentum (see Angular momentum)
Orbital degeneracy, 438–439
Orbital energy, 291, 292, 293, 295–298, 408, 456

Kohn–Sham, 555, 559
Orbital exponent, 293, 294, 362, 442, 443, 444,  

447, 452
Orbitals:

active, 536
antibonding, 363, 374
atomic, 129, 240, 289–298
bond, 469
bonding, 363, 374, 468–469
canonical, 466
classification of molecular, 440–441
definition of, 129
delta, 480
energy-localized, 467–470, 479
equivalent, 466
Hartree–Fock (see Hartree–Fock method)
hybrid, 365, 392, 475, 585–586, 587
hydrogenlike, 143–147
inactive, 536
Kohn–Sham, 555, 557, 558, 562
localized, 464–470, 472–475, 479, 535
molecular (see Molecular-orbital method)
pi, 469, 477–480, 600
shape of, 143–147
sigma, 469, 477–480, 600
symmetrically orthogonalized, 620
symmetry, 450–451, 471, 477–478, 612
symmetry species of, 440
virtual, 299, 453

ORCA, 501
Order, 21, 189, 202
Ordinary differential equation, 21
Orthogonal matrix, 219, 220
Orthogonality, 27, 159

of column vectors, 217
of eigenfunctions, 27, 159–160
of MOs, 408
of spin functions, 267
of vectors, 98

Orthogonalization:
Schmidt, 160
symmetric, 229–230, 620
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Orthogonalized AOs, 620
Orthogonalized STO, 390, 452
Orthonormality, 27, 162
Out-of-plane bending terms in force fields, 638
Overlap integral, 209, 359, 362, 457, 602, 621

in EH method, 621
Overlap population, 457
Oxygen molecule, 374, 378, 389, 526
Ozawa uncertainty principle, 92–93

P
Parametrization:

in Dewar-type semiempirical theories, 627–628
in force fields, 642–643

Pariser–Parr–Pople (PPP) method, 619–621
Parity, 170–172

and angular momentum, 193, 313–314
in atoms, 313–314
and harmonic oscillator, 68
and integrals, 172
in molecules, 356, 378

Parity operator, 170–172, 334
Parr, R. G., 570, 601
Partial atomic charge, 459, 462–464, 639, 649, 651
Partial differential equation, 21
Particle in a box:

one-dimensional, 22–27, 43, 199, 212–215, 260
three-dimensional, 47–50, 54
with walls of finite height, 28–30

Particle in a rectangular well, 28–30
Particle-mesh Ewald method, 641
Path-integral form of quantum mechanics, 11
Pauli, W., 271
Pauli exclusion principle, 273–277
Pauli repulsion, 271, 311, 476
PBE functional, 565
PCM method, 515–517
PDDG/PM3 method, 630
Pekeris, C. L., 244
Perdew–Burke–Ernzerhof (PBE) functional, 565
Perdew–Wang (PW) functional, 565
Perfect pairing approximation, 586
Perfect pairing GVB wave function, 590
Period, 63
Periodic table of elements, 295–298
Permanent, 286

Permeability of vacuum, 147
Permittivity of vacuum, 18
Permutation, 225
Permutation operator, 269
Perturbation, 232
Perturbation theory, 232–260

degenerate, 245–256
of helium, 238–241, 250–256
of hydrogen molecule, 358–359, 386
of lithium, 278–279
Møller–Plesset, 539–546 (see also MP2 calculations)
nondegenerate, 233–238
solution by variation method, 238, 242, 255
time-dependent, 256–260
and variation method, 238, 241

PES (see Potential-energy surface)
P53 protein, 509
Phase, 16, 25, 117
Photoelectric effect, 3–4
Photoelectron spectroscopy, 456
Photon, 3–4, 5, 6, 129, 266
Physical constants, table of, 661
Pi-electron approximation, 600–601
Pi-electron bond order, 616–618
Pi-electron charge, 616–617, 618
Pi-electron density, 616
Pi-electron energy, 601, 614, 618
Pierotti–Claverie formula, 514
Pi orbitals, 469, 477–480, 600
Pitzer, K. S., 475
Pitzer, R. M., 452, 472, 475
Planck, M., 3
Planck’s constant, 3, 9
Plane of symmetry, 329, 330, 331

diagonal, 338
horizontal, 331
vertical, 331

Plane-wave function, 510
Platonic solids, 338–339
Plus and minus terms, 377
PM3 method, 630, 571
PM5 method, 631
PM6 method, 631
PM6-DH2 method, 632
PM6-DH+ method, 632
PM6-D3H4 method, 632
PM7 method, 632
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Point groups, 335–341
diagram of, 340

Polak–Ribiere formula, 490
Polarizability, 406
Polarizable-continuum model (PCM), 515–517
Polarization energy, 513, 650
Polarization functions, 444
Polyacetylene, 617
Polyenes:

conjugated, 603–606
monocyclic, 606–611

Pople, J. A., 447, 540, 546, 623, 625, 626, 655
Population analysis, 456–460
Position:

eigenfunctions of, 177–179
measurement of, 9–10, 184–185 (see also Born 

postulate)
Positron, 153
Positronium, 153
Postulates of quantum mechanics, 9–11, 40, 41, 44, 46, 

53, 56, 180–184, 265–266, 270
Potential energy, 8, 41, 63, 97, 200–201, 418–426

of charges, 129
and parity, 171–172
spherically symmetric, 118–120
and virial theorem, 418–426, 432

Potential-energy curve for molecules, 345–349, 389
Potential-energy surface (PES), 480–482

for reactions, 591–594
Potential-smoothing search, 494, 495
PPP method, 619–621
Precession of angular momentum, 149
Primitive Gaussian, 444
Principal diagonal, 189, 205
Probability, 10, 14–15, 174–177, 181
Probability amplitude, 175
Probability density, 10, 13, 14, 46, 177, 184, 185 (see 

also Density-functional theory)
in atoms, 294
in molecules, 392, 402–404, 430, 462

Product notation, 604
Protein folding, 495
Proton, 4, 128, 266
Pseudobond QM/MM method, 646–648
Pseudopotentials, 507
p-type Gaussian, 442
Pulay, P., 485

Pure imaginary number, 16
Purely electronic energy, 345
Purely electronic Hamiltonian, 345, 440
Pure-rotational transition, 126
PW functional, 565

Q
Q-Chem, 501, 504, 563
QCI method, 550
QCISD(T) method, 550, 572
QCTC, 509
QM/MM methods, 646–648
QR method, 222
Quadratic configuration interaction (QCI) method, 550
Quadratic integrability, 55, 180
Quadruple bond, 480
Quantized energy, 3
Quantum chemical tree code (QCTC), 509
Quantum chemistry, 1–2
Quantum Chemistry Literature Database, 437
Quantum field theory, 259
Quantum mechanics, 1–2, 7, 9

historical background of, 2–6
interpretation of, 184–187
postulates of, 9–10, 40, 41, 44, 46, 53, 56, 180–184, 

265–266, 270
Quantum Monte Carlo (QMC) method, 575
Quantum numbers, 25–26, 49

spin, 266
Quantum-Onsager method, 512–513, 515
Quantum potential, 187
Quantum dot, 1
Quantum well, 1
Quantum wire, 1
Quasi-Newton method, 484, 486–488

R
Radial distribution function, 139–141, 294
Radial eigenfunctions of H:

formula for, 135
table of, 138

Radial Schrödinger equation, 120, 130–134, 149–150, 
347–352

Radiation, interaction with matter, 258–260
Radius, atomic, 294
Raising operator, 111, 283
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Random search method, 491
Rayleigh–Schrödinger perturbation theory, 237
Reaction field, 511, 512
Reaction intermediate, 592
Reaction path, 593
Reactions, chemical, 591–595, 652–654
Reaction surface, 591–594
Realism, 186
Real number, 16
RECP, 581
Recursion relation, 62, 65, 66
Reduced mass, 71, 123–124, 130, 136
Reduction of the wave function, 184–185, 186, 258
Reference function, 537
Reference length, 636
Regular multiplet, 317, 379
Relative coordinates, 122, 124
Relative reference, 80
Relativistic effective core potential, 581
Relativistic effects, 11, 265, 320, 454

on molecular properties, 581–582
REPE, 615
Representative, matrix, 189, 335
Repulsion integrals (see Electron repulsion integrals)
Resolution of the identity approximation, 510, 545,  

551, 567
Resonance, 385, 582
Resonance energy, 587, 614

Hess–Schaad, 615
Resonance hybrid, 582
Resonance integral, 359
Restricted Hartree–Fock method, 441
Restricted open-shell Hartree–Fock method, 441
RHF method, 441
RI approximation, 509–510, 545, 551, 567
Rigid two-particle rotor, 124–128
RI-MP2 method, 544
RM1 method, 630
ROHF method, 441
ROHF MP method, 544
Roothaan, C. C. J., 293, 410
Roothaan equations, 410, 415–416, 451
Rotational barriers, 475–476, 637–638
Rotational constant, 127
Rotational invariance, 624
Rotation axis (see Symmetry axis)
Rotation of diatomic molecules, 126–128, 350

Row matrix, 188
Ruedenberg, K., 362, 467
Rumer diagram, 583
Russell–Saunders coupling, 305–315, 320, 375
Rutherford scattering, 4
Rydberg constant, 134

S
s, p, d, f notation, 138
S66 test set, 527–528
Saddle point, 481, 483, 485, 494, 496, 505, 592
SAMM, 641
SASA method, 648–649
Scalar, 94
Scalar product, 95, 98
Scaled-particle theory, 514
Scale factor, 445

vibrational, 498
Scanning tunneling microscope, 31
SCC-DFTB method, 632–633
SCF MO method (see Hartree–Fock method)
SCIPCM, 516
Schmidt orthogonalization, 160
Schrödinger, E., 10, 11, 147, 185
Schrödinger equation:

C++ program for Numerov solution of, 79
electronic, 345
for nuclear motion, 71, 347–352, 496
numerical solution of time-independent, 74–84, 

149–150, 351
radial, 120, 130–134, 149–150, 347–352
time-dependent, 7–11, 44, 181–183
time-independent, 11–13, 44–45, 181–182

Screening constant, 295, 524
SCRF model, 512, 580
SCS-MP2 method, 545–546
SCS(MI)-CCSD method, 578
Second-order correction to energy, 236–237
Secular determinant, 247, 249, 451
Secular equation, 212, 247, 248–250
Selecting cell in spreadsheet, 80
Selection rules, 73, 126, 260
Self-consistent-field method (see Hartree–Fock method)
Self-consistent reaction-field (SCRF) model, 512
Self-interaction correction, 559, 571
Semidirect MP2 method, 543
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Semidirect SCF method, 508
Semiempirical calculations, 436, 600–634, 652

of hydrogen bonding, 577
on very large molecules, 633–634

Separated atoms, 364, 374
Separation of variables, 12–13, 47–48, 120–121
Shell, 292, 375, 441
Shielding constants, NMR, 282, 578–580
Sigma MOs, 469, 477–480, 600
Silicon molecule, 373
Simulated annealing, 493
Simultaneous linear equations, 205–208, 215
Single-point calculation, 481, 504
Singlet terms, 315, 437, 606, 613
Single-valuedness, 55, 105, 114
Singly excited CSF, 528, 530
Singularity, 86
SI units, 17, 352
Size consistency, 514, 526, 530, 571
Size extensivity, 526, 530, 542, 550
Slater, J. C., 277, 290, 292, 562
Slater determinant, 277–278, 320–321, 465, 526, 528
Slater orbital, 295 (see also Slater-type orbitals)
Slater’s rules, 294, 524
Slater-type orbitals (STOs), 293, 442, 445, 448, 562, 

622, 623, 626, 631
SM5 models, 648, 650–651SM5.0R method, 648
SMX method, 652
SMILES string, 506
Sodium chloride, 396
Solvation, Gibbs energy of, 513–515, 516–517
Solvent accessible surface, 648
Solvent-accessible surface area, 648
Solvent effects

ab initio treatments of, 510–518
empirical and semiempirical treatments of,  

648–652
SOS-MP2 method, 545–546
Spartan, 437, 501, 504, 563, 632, 646
Spectrum:

of conjugated molecules, 606, 613–614
of hydrogen atom, 134
rotational, 126–127
vibrational, 73–74

Spherical coordinates, 102, 105
Spherical harmonics, 108, 117, 120, 161, 288, 293
Spherically symmetric function, 108, 118, 120

Spin, 265–284, 375, 437
ladder operators for, 283–284
nuclear, 281, 320
two-electron functions for, 271–272, 311–312

Spin contamination, 544, 550, 564
Spin-density-functional theory, 563–564
Spin magnetic moment, 280–282, 320
Spin matrices, 287
Spin multiplicity, 315, 375, 438, 502
Spin-orbitals, 276, 321, 540
Spin–orbit interaction, 314, 316–320, 379, 436, 437
Spin–spin interaction, 320
Spin–spin splitting, 283
Spin–statistics theorem, 270–271

and helium, 271–273
Split-valence (SV) basis set, 443
Spontaneous emission, 259
Spreadsheet solution of Schrödinger equation, 80–84
Square matrix, 189
Standard deviation, 92
Stark effect, 406
State:

atomic, 314, 317
bound, 30, 131
classical-mechanical, 8–9
quantum-mechanical, 9

State function, 9, 180 (see also Wave function)
Static correlation, 526
Stationary point, 483, 485, 496, 592
Stationary state, 13, 42, 53, 182
Statistical nature of quantum mechanics (see Born 

postulate; Measurement)
Steepest-descent method, 489–490
Steric energy, 634, 643–644
Stern–Gerlach experiment, 287
Stewart, J. J. P., 630, 633
Stimulated emission, 259
Stochastic search method, 491
STO (see Slater-type orbitals)
STO-3G set, 445576, 716
Strain energy, 634
s-type Gaussian, 442
Subshell, 292
SUMM method, 495
Superposition of states, 174
Surface area, molecular, 461
SVWN, 565
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Switching function, 641
SYBYL force field, 635
Symmetrically orthogonalized AOs, 620
Symmetric function, 269–271
Symmetric matrix, 218
Symmetric spin functions, 272
Symmetry, molecular, 328–341, 437–440
Symmetry-adapted basis functions, 450–451, 471, 

477–478, 612
Symmetry axis:

improper, 330–331
proper, 329
rotation, 329
rotation–inversion, 342
rotation–reflection, 330–331

Symmetry element, 328–331
Symmetry function (VB), 584
Symmetry number, 271
Symmetry operations, 328–335, 336

and matrices, 335
product of, 331–332

Symmetry operators, 333–335, 437–440, 607
Symmetry orbitals, 450–451, 471, 477–478, 612
Symmetry plane, 329
Symmetry point groups, 335–341

diagram of, 340
Symmetry species, 438–440, 441, 450–452, 471,  

477–478, 612
Symmetry structures, 584
Symmetry type (see Symmetry species)
Syn conformation, 481
Systematic search method, 490

T
Taylor series, 61, 85, 486
Terms:

atomic, 306–311
molecular, 375–379, 436–440, 441
tables of, 309, 378

Term symbol, 307, 375–379, 438–440
Tesla (unit), 147
Tetramethylsilane (TMS), 578
Thermodynamic properties, 498–500
Thomas–Fermi–Dirac method, 295
Time, 93

atomic unit of, 353
Time-dependent perturbation theory, 256–260

Time-dependent Schrödinger equation, 7–10, 11–13, 44, 
181–183, 256

Time-independent Schrödinger equation, 11–13, 44–45, 
181–182

Time-independent wave function, 14, 44–45, 182
TINKER, 646
Torque, 100
Torsion terms in force fields, 637–638, 642
Totally symmetric species, 438, 440
Training set, 642
Transformation theory, 11
Transition (dipole) moment, 260
Transition-metal compounds, 526, 527, 564
Transitions, 260
Transition state, 591–594, 652
Transition-state theory (TST), 593
Translational motion, 123, 124, 347
Transpose of matrix, 218
Tree code method, 509
Trial variation function, 198 (see also Variation 

method)
Triangle inequality, 491
Triplet terms, 315, 437, 606, 613–614
Triple-zeta basis set, 443
Tripos force field, 635
Trivial solution, 206
Truncated Newton (TN) method, 490
Tunneling, 30–31, 591
Turbomole, 501
Two-electron integrals (see Electron repulsion integrals 

(ERIs))
Two-electron operator, 321
Two-electron reduced density matrix (2-RDM), 539
Two-electron spin functions, 272, 311–312
Two-particle problem, 121–124
Two-particle rigid rotor, 124–128

U
UA force field, 636
UAHF PCM, 516–517
UFF force field, 636, 643
UHF method, 441, 499, 563, 564
UMP calculations, 544
Unbound state, 30, 131
Uncertainty principle, 9, 92–93

for angular momentum, 109
and chemical bonding, 425
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for coordinates and momenta, 6–7, 92
for energy and time, 93–94, 260
Ozawa formulation of, 92–93
proof of, 196

Ungerade, 357, 371
Uniform electron gas (UEG), 560, 561
Unitary matrix, 219
United atom, 364, 369, 370, 423
United-atom force field, 636
United-atom Hartree–Fock PCM method, 516–517
Unit matrix, 189
Unit operator, 35
Units, 17, 352, 365
Unit vectors, 94–95, 98
Unity, nth roots of, 17
Unperturbed system, 232
Unrestricted GVB wave function, 590
Unrestricted Hartree–Fock method, 441, 499,  

563, 564
Unrestricted Møller–Plesset calculations, 544
Unsöld’s theorem, 292

V
Valence-bond (VB) method:

for benzene, 586
for diatomic molecules, 382–388, 396
generalized, 589–590
for hydrogen molecule, 382–386
ionic structures in, 385, 396, 584, 585, 586, 588
for methane, 585–586
modern, 590–591
and MO method, 384–386, 588
for polyatomic molecules, 582–591
for water, 583–585

Valence-bond structures, 583–585
Valence double zeta (VDZ) basis set, 443
Valence-electron approximation, 396–397, 621,  

623, 626
Valence force field, 642
Valence state, 587–588, 621
Valence-state ionization potential (VSIP), 588,  

621–622, 625
van der Waals forces, 374, 423, 640
van der Waals molecules, 374, 571–572
van der Waals radius, 294, 461
van der Waals surface, 461
van der Waals terms in force fields, 640

Variable metric method, 484
Variance, 91
Variational integral, 198
Variational property, 514, 530, 542, 550, 571
Variation method, 197–202, 209–215

for excited states, 201–202, 209–215
for the ground state, 197–201, 209–215
for helium atom, 242–245, 273, 412–414, 531–534
linear, 209–215, 217, 222
for lithium, 279–280
and perturbation theory, 238, 241

Variation–perturbation method, 238, 241, 255
Variation theorem, 197–198
VB method (see Valence-bond method)
VBSCF method, 590
Vector addition coefficient, 302
Vectors, 94–99

magnitude of, 95, 98
n-dimensional, 97–99, 486
orthogonal, 98
orthonormal, 98

Velocity, 99
Vertical excitation energy, 538, 625
Vertical ionization energy, 456
Vibration:

of diatomic molecules, 71–74, 350–353
of polyatomic molecules, 496–498

Vibration-rotation transition, 73
Vibrational frequencies, 63, 72, 496–498, 505, 592, 644, 

711–712
equilibrium, 350
fundamental, 498
harmonic, 72, 350, 496–498
imaginary, 485, 505, 592
in solution, 518

Vibrational scale factor, 498
Vinyl cation, 482
Virial theorem, 416–426

for atoms, 418
and bonding, 422–426
for molecules, 419–426
and scaling, 422

Virtual orbitals, 299, 453, 528
Vosko, Wilk, Nusair (VWN), 560, 565
v-representability, 555
VSEPR method, 484
VV10 correlation functional, 568
VWN, 560, 565
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W
W1 method, 574
W2 method, 574
W3 method, 574
W4 method, 574
Walkers, 575
Water:

Cl calculations on, 531
dipole moment in liquid, 511
GVB treatment of, 590
localized MOs for, 467–470
population analysis for, 458–459
SCF MO treatment of, 449–456
symmetry orbitals for, 450–451
symmetry species of, 437–439, 450–452
table of calculations on, 455, 532
valence state of O in, 587
VB method for, 583–585
vibration of, 497–498

Wave equation (see Schrödinger equation)
Wave function, 9, 13, 180, 182

conditions on, 13, 55, 114, 132–133
finiteness of, 55, 132
interpretation of, 10, 147, 180
multiconfiguration, 526
reduction of, 184–185, 258
units of, 49, 365

Wave mechanics, 11
Wavenumber, 73, 498
Wave–particle duality, 5–6, 7
WebMO, 505
Well, particle in a, 28–30
Well-behaved function, 55, 271
WFT, 569
Wigner coefficients, 302
Wigner, E. P., 186
Work function, 4
Woodward–Hoffmann rules, 652–654

X
Xá method, 562, 570

Z
ZDO, 620, 624
Zeeman effect, 147–149, 319
Zero differential overlap (ZDO), 620, 624
Zero matrix, 189
Zero-point energy (ZPE), 67, 346, 496, 496, 498–499, 

644
Zeroth-order wave function, correct, 246, 247, 249–250
ZINC, 507
ZINDO, 626
Z-matrix, 503
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